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The scrambling of quantum information in closed many-body systems, as measured by out-of-time-
ordered correlation functions (OTOCs), has received considerable attention lately. Recently, a hydrody-
namical description of OTOCs has emerged from considering random local circuits. Numerical work
suggests that aspects of this description are universal to ergodic many-body systems, even without
randomness; a conjectured explanation for this is that while the random circuits have noise built into them,
deterministic quantum systems, much like classically chaotic ones, “generate their own noise” and look
effectively random on sufficient length scales and timescales. In this paper, we extend this approach to
systems with locally conserved quantities (e.g., energy). We do this by considering local random unitary
circuits with a conserved U(1) charge and argue, with numerical and analytical evidence, that the presence
of a conservation law slows relaxation in both time-ordered and out-of-time-ordered correlation functions;
both can have a diffusively relaxing component or “hydrodynamic tail” at late times. We verify the presence
of such tails also in a deterministic, periodically driven system. We show that for OTOCs, the combination
of diffusive and ballistic components leads to a wave front with a specific asymmetric shape, decaying as a
power law behind the front. These results also explain existing numerical investigations in non-noisy
ergodic systems with energy conservation. Moreover, we consider OTOCs in Gibbs states, parametrized by
a chemical potential μ, and apply perturbative arguments to show that for μ ≫ 1 the ballistic front of
information spreading can only develop at times exponentially large in μ—with the information traveling
diffusively at earlier times. We also develop a new formalism for describing OTOCs and operator
spreading, which allows us to interpret the saturation of OTOCs as a form of thermalization on the Hilbert
space of operators.
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I. INTRODUCTION

The question of how quantum information spreads in a
closed quantum system as it approaches equilibrium via
unitary time evolution has appeared in various guises in the
literature of the past decade [1–3]. While many studies
focus on the buildup of entanglement between spatially
separated regions [4–7], in recent years a great deal of
attention has focused on different measures of the “scram-
bling” of quantum information, coming from the fields of
high-energy physics, condensed matter physics, and quan-
tum information theory [8–10]. The problem of scrambling

is related to the spreading of operators in the Heisenberg
picture, and to the definition of “many-body quantum
chaos” as put forward in Refs. [11,12]. These effects are
captured by so-called out-of-time-ordered correlation func-
tions, or OTOCs [13], defined as

CWVðtÞ ¼ 1

2
h½V̂ðtÞ; Ŵ�†½V̂ðtÞ; Ŵ�i;

where V̂, Ŵ are two appropriately chosen operators and the
expectation value is usually taken in some equilibrium
state. The OTOC exhibits an initial exponential time
dependence, in analogy with the exponential divergence
of trajectories which defines classical chaos, in certain
weakly coupled field theories [14–17] (and their extrapo-
lations to the strongly correlated regime [18]) and in the
Sachdev-Ye-Kitaev model [12,19–21]. There is, however,
no clear indication of such an exponent appearing in
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generic local lattice systems [22–27]. In Ref. [28] it was
shown that the growth rate of the OTOC has an upper
bound which is linearly increasing with temperature and
which is saturated by models that are dual to black holes.
Moreover, in cases where the dynamics is local, it was
found that OTOCs show a ballistic spreading with the so-
called “butterfly velocity”.
While there is a profusion of valuable numerical work on

these questions, and various, often uncontrolled forays in
quantum field theory, exact results are few and far between.
Recent work by the authors and others [7,25,26] set out to
examine these questions in the context of local random
unitary circuits, where a number of exact results can be
derived for the average behavior of OTOCs and other
relevant quantities. Most prominently, the OTOCs in these
circuits were found to obey a “hydrodynamic” equation of
motion, given in terms of a biased diffusion equation. The
main prediction of this formalism is that the OTOC has a
light-cone structure in space-time, where the light cone
itself broadens diffusively as a function of time. This
prediction has been shown to hold more generally in
systems without randomness, for example, in deterministic
ergodic Hamiltonians [27,29] and Floquet unitaries [26].
It is striking that the OTOC behavior of random circuits

agrees well with that in deterministic systems. One possible
explanation follows. Consider first a classical problem, the
Brownian motion of a tracer particle moving in a back-
ground of hard spheres. Even though the microscopic
motion of all the particles is fully deterministic, such
systems are well described by the Langevin equation,
which ignores the complicated motion of the background
particles, and simply replaces them with a noisy forcing
term consistent with their temperature. This approach of
approximating a many-body background by inserting noise
“by hand” is widely used in studies of classical hydro-
dynamics [30]. Our motivation for considering random
unitary circuits is similar. Consider a deterministic ergodic
system, and some bipartition of the degrees of freedom. Our
program is based on the conjecture that one of the
components of the system can behave as a noisy environ-
ment for the other, effectively inducing noisy dynamics.
This conjecture is consistent with some intriguing recent
studies on the coarse graining of Keldysh quantum field
theories [31], where it is shown that integrating out the
high-energy degrees of freedom in an interacting quantum
field theory can induce Lindblad dynamics on the lower-
energy degrees of freedom (see also Ref. [32]). In other
words, the high-energy degrees of freedom can act as a
noisy bath for the lower-energy degrees of freedom. Indeed,
diffusion of conserved quantities, typically associated with
noisy stochastic dynamics, appears in many deterministic
or non-noisy interacting quantum systems and is conjec-
tured to be generic [33–35] at sufficiently high temper-
atures. Thus, we are motivated to consider quantum
systems with noisy dynamics, like random circuits, in

the hope that these tractable models describe the long
wavelength, long timescale physics of deterministic ergo-
dic systems. Understanding how and when precisely such a
noisy effective description is applicable is an important
direction for future research.
The goal of this work is to understand how the OTOC is

affected by the presence of a conserved quantity (e.g.,
energy) in generic ergodic lattice systems. Our plan of
attack is to assume that the above hypothesis concerning
self-generated noise holds, and therefore we study this
problem in the context of a one-dimensional local random
unitary circuit with a conserved U(1) charge. In this setting
we are able to obtain long-time numerical results on the
behavior of OTOCs, as well as analytical arguments
explaining their behavior. We then provide numerical
evidence that the same features are also present in a system
without any randomness. Our random circuit predictions
also help in explaining existing numerical results in time-
independent ergodic spin chains [36].
Our key results are as follows. (i) For random circuits, we

prove that on-site observables relax slowly (diffusively) on
average if they overlap with the conserved charge, while
they relax instantly otherwise. The result that the charge
undergoes diffusion, derived for random circuits, is in
agreement with the expectation that conserved densities
generically diffuse in interacting ergodic systems, even
those with deterministic or nonrandom dynamics [29,33–
35,37]. We then map the calculation of the OTOC to the
evaluation of a classical partition function, which in turn
allows us to simulate the system up to long times and
establish numerically that (ii) on top of the usual light-cone
structure understood in the case without symmetries,
OTOCs also have diffusive relaxation when either of the
operators involved have overlap (which we define precisely
below) with the local charge density, otherwise the relax-
ation is exponentially fast, as was the case in circuits
without conserved quantities. We also provide both an
analytical justification for this result and strong numerical
evidence that it continues to hold in systems without noise.
(iii) Those OTOCs with diffusive relaxation have a par-
ticular algebraic space-time structure, ∼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vBt − x

p
, well

behind the front jxj ≤ vBt. (v) Considering OTOCs in a
Gibbs ensemble with respect to the conserved charge,
parametrized by a chemical potential μ, we show evidence
that (i)–(iii) remain valid at small chemical potentials, while
for large μ and short times t < e2μ the OTOC can show a
space-time structure which is diffusive, rather than ballistic.
Some comments are in order. We can explain (ii) at a

general level by rewriting the OTOC as an expectation
value on a doubled version of the original Hilbert space,
which we also call “operator space.” This novel language,
expressed in terms of superoperators, makes it explicit that
there are two (rather than one) charge densities relevant for
the dynamics of the OTOCs, which we denote as LQ, RQ.
Whether or not the OTOC has slow diffusive relaxation can
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be attributed to the diffusion of one or both of these new
charge densities. As a useful aside, we show that the
superoperator formalism also gives a direct interpretation of
the saturation of OTOCs as a measure of thermalization on
operator space. Moreover, we show that the long-time
saturation value of the OTOC is determined by a Gibbs-like
ensemble on operator space, involving LQ and RQ. We
briefly provide an alternative view of (ii) by considering the
problem of operator spreading in the presence of sym-
metries. Explaining (iii) requires a direct calculation,
approximating the Haar averaged OTOC. To do this, we
study a circuit with gates acting on 2M rather than just 2
sites. ThisM can be used as a large parameter which allows
us to better control an analytical calculation. To attack
(iv) we apply our partition function method to the case of
nonzero chemical potential μ, focusing on the μ ≫ 1 limit.
The most striking feature of this is a lack of a ballistically
traveling front up to times t ∼ e2μ, which we understand by
developing a perturbative expansion for the OTOCs around
the μ ¼ ∞ (“zero temperature”) limit. We show that in this
limit certain OTOCs can exhibit a double plateau structure,
saturating to a prethermal value on a Oð1Þ time scale and
reaching their expected long-time values only at a timescale
that diverges in the μ → ∞ limit.
The remainder of the paper is organized as follows. In

Sec. II, we introduce charge-conserving random circuits
and then prove charge diffusion in Sec. III. In Sec. IV, we
turn to the discussion of out-of-time-ordered correlators.
We begin by showing how to map the computation of the
Haar averaged OTOC onto the evaluation of a classical
partition function which can more readily be computed
numerically. We summarize these numerical results for the
case of μ ¼ 0 in Sec. IV B, supporting assertions (ii) and
(iii) above. We complement our discussion of the random
circuit model in Sec. IV C with numerical data on a
nonrandom spin chain, showing the same long-time tails
in the relaxation of OTOCs. Section V provides a theo-
retical description of these hydrodynamical tails, first in the
language of operator spreading in Sec. V B, and then in a
superoperator formalism which we develop in Sec. V B 1.
Then in Sec. V C we describe analytically the detailed
∼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vBt − x

p
space-time structure of certain OTOCs at late

times using a “coarse-grained” unitary circuit. Last, in
Sec. VI, we consider the behavior of OTOCs in the nonzero
μ case, starting with an analytical calculation of their long-
time saturation values in Sec. VI A, which we verify in
Sec. VI B, and then by expanding around the μ ¼ ∞ limit
in Sec. VI C. We conclude in Sec. VII with a summary and
discussion.
In Appendix A, we derive formulas for the average effect

of a single, charge-conserving random unitary operator,
which are used for the derivation of the classical partition
function in Sec. IVA. We use these formulas also in
Appendix B to derive the result Eq. (22) for the shape
of the OTOC wave front in the coarse-grained version of

the circuit (introduced in Sec. V C). Appendix C explains
how the long-time limit of OTOCs can be interpreted as a
form of thermalization on the space of operators. In
Appendixes D and E, we present additional details of
the calculation of OTOCs in the low filling (large chemical
potential) limit.

II. RANDOM LOCAL UNITARY DYNAMICS
WITH A CONSERVED CHARGE

For most of the paper we focus on a random circuit with
the geometry illustrated in Fig. 1, wherein two-site gates act
in turns on the even and odd bonds of a one-dimensional
spin chain. (Later in Sec. V C and its associated appen-
dixes, we consider a slightly modified geometry, consisting
of longer-range unitary gates as shown by Fig. 8.) Each gate
is independently chosen from an ensemble of random
unitary operators, which are block diagonal with respect
to the total charge on the two sites, but Haar random within
each block.
Consider a spin system with L sites and a q-dimensional

on-site Hilbert spaceHon-site ¼ Cq. We will think of these q
different states as corresponding to q possible values
of some charge, measured by the operator Q̂on-site ¼
diagð0; 1;…; q − 1Þ. We then define a global conserved
charge Q̂ as the sum over sites r of the local charge density
Q̂r, given by

Q̂≡XL
r¼1

Q̂r; Q̂r ≡ ⊗
s≠r

11on-sites ⊗ Q̂on-site
r ; ð1Þ

where 1on-sites is a local identity operator acting on site s, and
Q̂on-site

r is the on-site charge operator on site r.
The random circuit model is defined as follows.

Consider a discrete time evolution, consisting of layers
of two-site unitary gates acting on pairs of neighboring sites
in the chain. Odd numbered layers act on all the odd bonds
of the chain while even numbered layers act on even bonds.
Each two-site gate is chosen independently from the Haar
distribution over q2 × q2 unitary matrices which commute
with Q̂. In practice, this means that the two-site unitary

FIG. 1. Structure of the local unitary circuits. The on-site
Hilbert space dimension is q. Each two-site gate is an independ-
ently chosen q2 × q2 unitary matrix commuting with the U(1)
charge Q̂, defined in Eq. (1).
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Ur;rþ1, acting on sites r, rþ 1, is block diagonal with
respect to Q̂r þ Q̂rþ1, and each of the blocks is Haar
random. With the definition of Q̂ given above, the block
structure of such a two-site unitary is Ur;rþ1 ¼⨁2ðq−1Þ

Q¼0
UQ,

where UQ is a Haar-random unitary acting on HQ, the
dQ ≡ dimðHQÞ ¼ q − jQþ 1 − qj dimensional space of
states on sites r, rþ 1 that have total charge Q. For
example, for q ¼ 2 it has the form

Ur;rþ1 ¼

0
B@

Q ¼ 0

Q ¼ 1

Q ¼ 2

1
CA;

where the first and last blocks are 1 × 1 and the second
block is a 2 × 2 Haar-random unitary.
The time evolution after an even number of 2t layers is

given by

UðtÞ ¼
Y2t
τ¼1

YL=2
x¼1

U2x−1þnτ;2xþnτðτÞ; ð2Þ

where nτ ¼ f½1þ ð−1Þτ�=2g and each of the unitaries
Ur;rþ1ðτÞ, labeled by the pair of sites they act on as well
as the layer or time label τ, is an independent random
matrix chosen from the charge-conserving (i.e., block-
diagonal) random ensemble defined above. The productQ

2t
τ¼1 is defined to be time ordered. The geometry of such a

circuit is graphically illustrated in Fig. 1. We denote
averages over the different circuit realizations by ð� � �Þ.

III. CHARGE DIFFUSION AND
TIME-ORDERED CORRELATORS

Before attacking the problem of OTOCs, we begin our
study of the charge-conserving random circuit by showing
rigorously that the density of conserved charge diffuses in
this system when averaged over many realizations of the
circuit. This is analogous to the diffusive behavior observed
[22,29,37,38] in generic interacting many-body systems
with a few (in our case a single) global conserved quantities
in the regime of incoherent transport. We show the diffusive
spreading by directly considering the time evolution of the
local charge operator Q̂r in the Heisenberg picture, and
discuss how it appears in time-ordered correlation functions.
To understand the dynamics of Q̂r let us first understand

how a single two-site gate, acting on sites r and rþ 1,
evolves a generic operator Ô acting on the same sites. After
applying a single two-site random charge-conserving gate
on these two sites, the operator becomes, on average (see
also Appendix A)

ÔðΔτÞ ¼
X
Q;Q0

P̂QUQP̂QÔP̂Q0U†
Q0P̂Q0

¼
X
Q

1

dQ
P̂QtrðÔP̂QÞ; ð3Þ

where P̂Q projects onto the sector of the two-site Hilbert
space with Q̂ ¼ Q and we use the fact that U decomposes
into blocks UQ, each of which is Haar random. We use Δτ
as shorthand for time evolution with a single layer of the
random circuit. The diffusion of charge density follows
from this algebraic result, but a more elementary argument

goes as follows. Note that Q̂ðΔτÞ ¼ Q̂, because the Haar
ensemble commutes with the total charge on two sites. On
the other hand, the ensemble of two-site gates is invariant
under multiplication by the operator swapping sites r,

rþ 1, so ¯̂QrðΔτÞ ¼ ¯̂Qrþ1ðΔτÞ. This allows us to write

Q̂rðΔτÞ ¼
1

2
ðQ̂r þ Q̂rþ1Þ: ð4Þ

Let us iterate the above formula for a series of two-site
gates arranged in the regular gate geometry shown in Fig. 1.
The local charge operator performs a random walk, such
that at each application of a two-site gate it ends up on
either of the two sites with equal probabilities. It is readily
verified that after an even number 2t layers of the circuit it
becomes

Q̂rðtÞ ¼
1

22t

X2t−1
k¼0

�
2t − 1

k

�
ðQ̂2j−2tþ2k þ Q̂2jþ1−2tþ2kÞ; ð5Þ

where j ¼ bðrþ 1Þ=2c. At large times, the right-hand side
behaves like an unbiased diffusion kernel. Note that
summing the equation over all r gives Q̂ðtÞ ¼ Q̂ð0Þ, which
is the global conservation law.
An approximate continuum formulation of the above

discrete operator equation is

∂t
¯̂Qðx; tÞ ¼ D∂2

x
¯̂Qðx; tÞ; ð6Þ

where D is a constant independent of q [39]. Hence, on
average, the local charge density obeys diffusive dynamics.
In this sense our random circuit model can be thought of as
a toy model for a many-body system in the regime of
incoherent, diffusive transport. Such behavior is expected
also in clean systems at times longer than the coherence
time of charged quasiparticle excitations [33–35] (which
can be very short, for example, at high temperatures [22]),
or in systems that do not possess well-defined quasipar-
ticles at all [40]. Note that in our case the diffusion of
charge appears directly at the level of operators, without
having to refer to any particular state, indicating incoherent
charge transport over all timescales. This is consistent with
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the behavior of the single-particle Green’s function,
hσ̂−0 ðtÞσ̂þr i, where σ̂þr is the operator creating a single
charge on site r. Applying formula Eq. (3) shows that this
Green’s function vanishes on average after only a single
time step, independently of the state chosen, which is
another way of saying that there is no coherent charge
transport.
We have shown that the local charge density relaxes

diffusively. As a result, at the longest times (t > L2=D)
the charge density becomes uniform in the system. Off-
diagonal operators, on the other hand, equilibrate immedi-
ately to zero on average. Both of these statements imply that
for the purposes of calculating on-site expectation values,
the system thermalizes to a Gibbs ensemble of the form

ρ̂μ ¼ e−μQ̂=trðe−μQ̂Þ; ð7Þ

where μ is determined by the charge density of the initial
state. It is similarly possible to argue that more complicated
many-body operators eventually equilibrate to a value
determined by the same ensemble on average (we leave
the proof of this to futurework). Using this ensemblewe can
also make contact with more conventional definitions of the
diffusion constant [22], given by the autocorrelation func-
tion hQ̂rðtÞQ̂rð0Þiμ − hQ̂ri2μ in the above Gibbs state. This
correlator captures the relaxation of charge to the equilib-
rium value. Applying the solution Eq. (5), we find that it
behaves at long times as

hQ̂rðtÞQ̂rð0Þiμ − hQ̂ri2μ ≈
1ffiffiffiffiffi
πt

p 1

ð2 cosh μ
2
Þ2 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πDðμÞtp :

The last equation defines an effective diffusion constant
DðμÞ which singles out an effective timescale for charge
relaxation, tD ∝ 1=DðμÞ with DðμÞ ¼ 4 cosh4 μ=2.

IV. OUT-OF-TIME-ORDERED CORRELATORS

We now turn to the description of out-of-time-ordered
correlators in the charge-conserving random circuit. Such
quantities are a measure of the spreading of quantum
information in many-body systems [12–18,22,23,41]. For
translation-invariant systems they have been studied in
weakly coupled [42] local quantum field theories
[15,16,18,43,44], in models for black hole scrambling
[12,28,45], and more recently in local random circuits
[25,26]. In all these studies it was found that the OTOC
exhibits ballistic behavior with a linearly moving front,
behind which it saturates to an Oð1Þ value, even in cases
where conventional (i.e., time-ordered) correlators behave
diffusively. In this regard the OTOC is more similar to
measures of quantum information, such as entanglement
[6], rather than to usual correlation functions.
In lattice systems the OTOC can be understood as a

measure of “operator spreading,” i.e., how simple product

operators become superpositions of many such operators
under time evolution (also resulting in the growth of
operator entanglement [46,47]). In Refs. [25,26] it was
shown that the behavior of the OTOC in spin chains can be
understood in terms of a hydrodynamic description, taking
the form of a biased diffusion equation in 1D, which gives
rise to the aforementioned ballistic front, albeit with a front
that itself broadens in time diffusively. This description was
shown to hold exactly on average for random circuits
without symmetries, and it was conjectured to remain valid
as an effective description in other chaotic systems at
sufficiently large timescales and length scales, evidence of
which has been observed numerically [26,29].
One question of great interest is how the behavior of

OTOCs changes with temperature. On general grounds it is
expected that at higher temperatures many-body systems
behave more chaotically as there are effectively more states
to scramble over. In Ref. [28] a temperature-dependent
upper bound was derived for the growth rate of OTOCs
which is known to be saturated in certain holographic
models. In more generic systems, however, not much is
known about the detailed dependence of out-of-time-
ordered correlators on temperature [22].
While temperature is not well defined for the random

circuits we study, due to lack of energy conservation, it is
plausible that the chemical potential μ can play a similar
role, setting the equilibrium entropy density of the system
and thus effectively limiting the size of the Hilbert space
available for the dynamics. For example, the μ → ∞
projects it down to a single stationary state, analogous to
T → 0 in conventional systems. On the other hand, μ → 0
is equivalent to the T → ∞ infinite temperature limit. We
therefore define the out-of-time-ordered correlator between
operators V̂ and Ŵ as

CWV
μ ðtÞ ¼ 1

2
trðρ̂μ½V̂ðtÞ; Ŵ�†½V̂ðtÞ; Ŵ�Þ; ð8Þ

where ρ̂μ ¼ e−μQ̂=trðe−μQ̂Þ is the Gibbs state defined in
Eq. (7). By expanding the commutators, we get

CWV
μ ðtÞ ¼ hŴ†V̂†ðtÞV̂ðtÞŴiμ þ hV̂†ðtÞŴ†Ŵ V̂ðtÞiμ

2

− RehV̂†ðtÞŴ†V̂ðtÞŴiμ:

We refer to the last term as the out-of-time-ordered part of
the OTOC and to the first two terms as its time-ordered part.
The interesting physics of the OTOC are captured by the
out-of-time-ordered part [49], which we denote

FVW
μ ðtÞ≡ RehV̂†ðtÞŴ†V̂ðtÞŴiμ: ð9Þ

In the following, we mostly focus on this quantity
(a notable exception is in Sec. VI A where we discuss
the long-time limit of the full OTOC, which is mostly
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dominated by its time-ordered part). Unless stated other-
wise, we assume that V̂ and Ŵ both have trace zero.
It will be convenient to consider operators V̂, Ŵ with

particular charges λV , λW under the adjoint action, i.e.,
½Q̂; V̂� ¼ λVV̂. For example, in the q ¼ 2 case which we
focus on, the one-site operators σ̂þ, σ̂−, Ẑ have chargesþ1,
−1, 0, respectively (in the following, Ẑr denotes the Pauli z
operator on site r, while the operators σ̂�r increase or
decrease the local charge by one). As we show below, the
behavior of the OTOC can depend strongly on the charges
λV and λW . It is particularly interesting to consider operators
with charge λV ¼ 0, which can have a nonvanishing over-
lap with the conserved quantity, trðQ̂ V̂Þ ≠ 0. As we argue
below, for such operators the diffusion of charge implies
(a) slow relaxation of the OTOCs and (b) nontrivial long-
time saturationvalues at finiteμ (see Secs. IV B,V, andVI A,
in particular) [50].
We can reduce the number of distinct OTOCs we need to

consider by noting that there are certain relations between
them. For example, note that

FV†W†
μ ðtÞ ¼ e−μðλVþλWÞFWV

μ ðtÞ

holds on general grounds, decreasing the number of
independent OTOCs. Moreover, in the q ¼ 2 case we
discuss below, we can also make use of the relation

F
σþ
0
σ−r

μ ðtÞ ¼ e−μF
σþ
0
σþr

μ ðtÞ: ð10Þ

Therefore, we will focus solely on the OTOCs between
operators Ẑ Ẑ, Ẑσ̂þ, and σ̂þσ̂þ. Note that we can relate Ẑr to
the local charge density Q̂r as

ẐrðtÞ ¼ 1̂r − 2Q̂rðtÞ; ð11Þ

which means that any correlator of the form Eq. (9) has the
same behavior if we replace all occurrences of Ẑr with Q̂r,
up to some unimportant contributions that are either time
independent or decay diffusively, as in Eq. (5).
In the remainder of this section we first focus on OTOCs

at zero chemical potential. We begin by showing that
computing the average value of the OTOC in our random
circuit problem is equivalent to evaluating a classical
partition function. This allows us to compute the OTOC
to significantly longer times than those available to direct
numerical calculations. We find that at μ ¼ 0 all OTOCs
spread in a ballistic wave front, wherein the width of the
front broadens in time, similarly to the case of random
circuits without symmetries. The main new feature is that
OTOCs involving the conserved operator Ẑ exhibit a slow
decay behind their wave front, which we confirm also for a
nonrandom spin chain. We explain this behavior in Sec. V
by building on the results of Sec. III and detailing the
different ways in which the diffusion of charge affects the

dynamics of OTOCs. We give further support to our
numerical results in Sec. V C by considering a modified
version of the random circuit where we are able to derive
analytical predictions for the dynamics of different OTOCs.
We return to the question of their behavior at finite
chemical potential in Sec. VI.

A. Mapping to a classical partition function

We now outline how to compute OTOCs in the charge-
conserving random circuit problem. The properties of the
Haar distribution allow us to evaluate the average effect of a
single two-site gate on the OTOC exactly. As we show
below, applying this averaging procedure to all the gates in
the circuit transforms the problem of computing the
average OTOC to the evaluation of a particular classical
partition function, similar to what has been achieved in
random circuits without symmetries in Refs. [25,26]. While
the classical model we obtain has much more structure than
the nonsymmetric case, and does not allow for an exact
closed-form solution, it serves as the basis of both numeri-
cal calculations and analytical approximations which we
present throughout the rest of the paper.
We begin by observing that one can write the μ ¼ 0

OTOC as (the generalization to finite μ is straightforward,
as we describe later in Sec. VI)

FVW
μ¼0ðtÞ∝U�

βαV
�
γβUγδW�

μδU
�
νμVνλUληWηα

¼V�
γβVνλðU�⊗U⊗U�⊗UÞðβγνλÞðαδμηÞW�

μδWηα;

ð12Þ

where U is defined in Eq. (2). Therefore, the central
quantity one needs to compute in order to obtain the
average OTOC is U� ⊗ U ⊗ U� ⊗ U. This is an operator
acting on four copies of the original Hilbert space. We can
think of this construction as a generalization of the Keldysh
contour [16], involving four “layers,” as illustrated in
Fig. 2. Each of the four operators appearing in the definition
of the OTOC connects two of these layers.
Since every gate in the random circuit is independently

chosen, we can evaluate the Haar average for all of the gates
individually. For each gate, the Haar averaging results in a
four-leg tensor with two incoming and two outgoing legs,
one for both of the sites the gate acts on. One leg of this
averaged tensor corresponds to four copies of the original
Hilbert space. For our q ¼ 2 case, this would mean in
principle 16 states per site of the form jαβγδi for α, β, γ,
δ ¼ 0, 1. As we argue below, only 6 of these 16 appear in
the averaged circuit and therefore the average OTOC can be
calculated in terms of an effective description involving 6
states per site.
In particular, as we show in Appendix A, the average for

a single two-site gate takes the form
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U� ⊗ U ⊗ U� ⊗ U

¼
X
s¼�

X
Q1≠Q2

1

dQ1
dQ2

jIs
Q1Q2

ihIs
Q1Q2

j

þ
X
s¼�

X
Q

1

d2Q − 1

�
jIs

QQihIs
QQj −

1

dQ
jI s

QQihI−s
QQj

�
;

ð13Þ
where jI�

Q1Q2
i are states from four copies of the two-site

Hilbert space, defined as

jIþ
Q1Q2

i≡ X
α∈HQ1
β∈HQ2

jααββi; jI−
Q1Q2

i≡ X
α∈HQ1
β∈HQ2

jαββαi: ð14Þ

HQ here is the sector of the two-site Hilbert space with total
charge Q.
The states jI�

Q1Q2
i cannot be written as products of states

on (four copies of) the individual sites [51]. Nevertheless,
as we detail in Appendix A, they can all be written in terms
of the following six states, living on four copies of a single
site: j0000i, j1100i, j0011i, j1001i, j0110i, and j1111i
(e.g., jI−

12i ¼ j1111i1j0110i2 þ j0110i1j1111i2). The first
of these is an “empty” state, wherein all four layers are
unoccupied at a given site. We refer to the states with
exactly two layers occupied as having a single “particle” on
a given site, which can belong to four different species, as
illustrated in Fig. 3(a). The last state then can be thought of
as a site being occupied by two particles. In terms of these
six states, Eq. (13) defines a four-leg tensor that maps each
of the 36 possible states on the two sites to a linear
combination of the same 36 states with some particular
(real, but possibly negative) coefficients. Some of these
possible processes are shown in Fig. 3(b), while the other
nonzero coefficients can be obtained by swapping the two
sites (either on the bottom or the top of the gate) or
permuting the different particle types.
To compute the full-time evolution we need to contract

the four-leg tensors, defined above, according to the
geometry of the circuit seen in Fig. 1. Thus, every layer

of the random circuit acts as a transfer matrix, evolving a
configuration of particles (in the sense defined above) to a
linear combination of different configurations. Finally, in
the first and last layers, we need to contract the remaining
legs with those of the operators V̂ and Ŵ appearing in the
OTOC formula Eq. (12). We can write the result as the
matrix element

FVW
μ¼0ðtÞ ∝ hPV jU� ⊗ U ⊗ U� ⊗ UjDWi; ð15Þ

where jPVi and jDWi are states in the four-copy Hilbert
space, defined by hαβγδjPVi ¼ VβαV�

γδ and hαβγδjDWi ¼
WδαW�

γβ (we give an interpretation of these quantities in
terms of superoperators in Sec. V B 1). In this formula,U is
the full unitary circuit of Eq. (2). Equation (15), together
with Eq. (13), can be interpreted as a classical partition
function on a two-dimensional lattice, where every site has
six possible states. The gates in one layer of the circuit form
a transfer matrix of this classical spin problem while the
operators V̂ and Ŵ in the definition of the OTOC appear
through the boundary conditions, at times 0 and t, respec-
tively. While we are not able to evaluate this partition
function exactly (unlike the case with no symmetries), it
allows for efficient numerical computations, much beyond
the timescales attainable otherwise, as well as for some
analytical approximations, which we detail below.

B. Hydrodynamic tails and the shape of the OTOC
wave front in the random circuit model

Using the formalism developed in the previous section
for computing circuit-averaged OTOCs as classical parti-
tion functions, we are able to investigate their dynamics at
timescales much larger than what is obtainable using real-
time evolution. We evaluate this partition function numeri-
cally, representing it as a two-dimensional tensor network.
We present the results below and find evidence of both the
ballistically propagating, diffusively broadening wave
front, found previously for random circuits without sym-
metries, as well as the late-time power-law tails with

FIG. 2. Representation of the OTOC hV̂†ðtÞŴ†V̂ðtÞŴi, as a
“path integral” involving four layers. Each layer corresponds to
one of the unitary time evolution operators (blue, U; red, U†)
appearing in the correlator. These unitaries are given by a
realization of the random circuit, and averaging over them gives
rise to interactions between different layers.

(a) (b)

FIG. 3. Interpretation of Eq. (13) in terms of local states.
(a) Notation of the five different “particle types” that can occur:
the first four correspond to exactly two of the four layers (shown
in Fig. 2) being occupied by a charge, while the last one is a
bound state, formed by either the first two or the second two
particle types. The empty state is not denoted. (b) Some possible
one- and two-particle processes generated by averaging over a
single two-site gate.
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characteristic space-time dependence ∝ ðvBt − rÞ−1=2 men-
tioned in Sec. I. We present our analytical understanding of
these results in Sec. V.
Armedwith themapping to the classical partition function

described in Sec. IVA, we evaluate the OTOC up to time
t ≈ 40 (80 layers of the random circuit). We do this by
representing the partition function as a two-dimensional
tensor network, built out of the four-legged tensors, defined
in Eq. (13), that arise when averaging a single gate. We
contract these together by representing the boundary con-
dition jDWi at t ¼ 0 as a matrix product state (MPS), which
we then propagate forward layer by layer, using a method
analogous to the well-known time-evolving block decima-
tion (TEBD) algorithm. [52,53] The OTOC is then com-
puted by taking the overlap of thisMPSwith another one that
represents the boundary condition hPV j at time t.
In this section, we focus on the case where μ ¼ 0; the

finite μ case is treated separately in Sec. VI. The results, in
Fig. 4, demonstrate that OTOCs exhibit ballistic behavior

much like that which has been analytically described for
random circuits without conserved quantities [25,26]. In
particular, there exists a velocity scale [54] vB such that the
OTOC FV0Wr

μ¼0 ðtÞ is of Oð1Þ at jrj > vBt, decreases near the
so-called “butterfly front” jrj ≈ vBt, and saturates to 0 for
vBt ≫ jrj, as shown in Fig 4. In line with previous work,
our numerics indicate that the regime over which the
OTOCs obtain an Oð1Þ value (the “width of the front”)
broadens diffusively (∼

ffiffi
t

p
) in time (see, in particular, the

last panel of Fig 4).
Our results indicate that OTOCs saturate to zero behind

the front (this is peculiar to the μ ¼ 0 case considered here:
as we argue in Sec. VI A, at finite μ certain OTOCs have
finite saturation values). Our main new finding is that
OTOCs FVWðtÞ for which at least one of V̂, Ŵ is the
conserved density Ẑr decay at long times as F ∝ 1=

ffiffi
t

p
. We

refer to this slow, power-law relaxation as a “hydrodynamic
tail,” due to its analogy with similar slow decay of time-
ordered correlation functions in classical and quantum
hydrodynamics [35,37,38,55]. The σ̂þ0 σ̂

þ
0 OTOC, on the

other hand, decays exponentially with time, and using
Eq. (10), the same is true for the σ̂þ0 σ̂

−
0 OTOC. These results

are in contrast with previous results on random circuits
without symmetries, where all OTOCs showed an expo-
nential decay. As we explain in Sec. V, the hydrodynamic
tails we observe here are a natural consequence of the
diffusive charge transport discussed in Sec. III.
Going beyond the decay of the OTOC at a given position,

we can ask the question, what is the shape of the front at a
fixed time? As we noted above, there is a diffusive broad-
ening around the middle of the front which is expected from
previous studies of random circuits without symmetries,
where theOTOCnear the frontwaswell approximated by an
error function [26]. While this form is in agreement with the
behavior of the σ̂þσ̂þOTOC inFig. 4, note in the same figure
that the Ẑ Ẑ OTOC has a position dependence that differs
significantly from this error-function profile. Well behind
the butterfly front, the position dependence of the OTOC is
well described by F ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vBt − r

p
; i.e., it exhibits power-

law decay as a function of the distance from the position of
the front. This is shown in Fig. 5. These results indicate that
the simple biased diffusion description of OTOCs, devel-
oped previously for random circuits without symmetries,
has to be supplemented by considerations of the diffusion of
the local conserved quantities.We elaborate on this further in
Sec. V C, where, by considering a modified random circuit
with a large parameter, we derive such a “hydrodynamic”
equation of motion for the OTOCs. The solution of this
equation shows the same 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vBt − r

p
behavior observed in

our numerics (see Fig. 9, in particular).

C. Hydrodynamic tails in deterministic systems

As we argued in the Introduction, we expect random
unitary circuits, like the one studied in this paper, to capture

(a) (b)

(c) (d)

FIG. 4. The average OTOC F , defined in Eq. (9), at μ ¼ 0,
evaluated as a classical partition function. All OTOCs spread in a
ballistically propagating front, which itself diffusively broadens
in time, and saturate to zero behind the front. The shape of the
front is shown for (a) the Ẑ Ẑ and (b) the σ̂þσ̂þ OTOCs for times
(from left to right) t ¼ 7, 10, 20, 30, 40. The black stars represent
data obtained by performing the unitary time evolution with
TEBD and averaging over 100 realizations. The insets show the
value of F for different operators at site 0 as a function of time.
For OTOCs involving Ẑ we find that 1=F 2 grows linearly in time,
indicating a saturation F ∝ 1=

ffiffi
t

p
at long times, while the σ̂þσ̂þ

OTOC saturates exponentially fast. The two lower panels show
the (c) position and (d) width of the front as a function of time.
The front moves ballistically with the three types of OTOCs
having similar front velocities vB ≈ 0.45 in units of the circuit
light-cone velocity, while they all broaden diffusively. The
position and the width are extracted from a curve that smoothly
interpolates between the data points: the front position is defined
by the point where the OTOC decays to half of its original value,
while the width is computed as the inverse of the maximal
derivative of this curve near the front.
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universal properties of non-noisy, ergodic quantum systems
in the strongly interacting, high-temperature regime. This is
true for the diffusion of conserved quantities, discussed in
Sec. III, and recent numerical work suggests that it is also
the case for the diffusive broadening of the OTOC wave
front [26,29]. We expect that the hydrodynamic tails that
we observed in the previous section—and which, as we
argue below, are a direct consequence of charge diffusion—
should therefore also be present in non-noisy systems,
provided that they exhibit diffusive transport of conserved
quantities. Such power-law decay of OTOCs in a weakly
disordered Hamiltonian system has already been observed
numerically in Ref. [36]. Here we show that the same
phenomena appear also in a system without any random-
ness. We do this by considering a periodically driven
(Floquet) spin chain, where the total spin z component
is conserved, and find that OTOCs involving Ẑ show
similar diffusive decay to the one seen in the random
circuit model, while OTOCs between nonconserved oper-
ators decay exponentially.
We consider a one-dimensional chain of spin-1=2

degrees of freedom. A single driving sequence consists
of four parts, with the so-called Floquet unitary given by

UF ¼ e−iτH4e−iτH3e−iτH2e−iτH1 ;

H1 ¼ Jð1Þz

X
r

ẐrẐrþ1;

H3 ¼ Jð2Þz

X
r

ẐrẐrþ2;

H2 ¼ H4 ¼ Jxy
X
r

ðX̂rX̂rþ1 þ ŶrŶrþ1Þ; ð16Þ

where X̂r ≡ σ̂þr þ σ̂−r and Ŷr ≡ −iðσ̂þr − σ̂−r Þ are Pauli spin
operators on site r, and we take periodic boundary con-
ditions r≡ rþ L. Every part of the drive individually
conserves the spin z component, ½Ha;

P
rẐr� ¼ 0 for

a ¼ 1, 2, 3, 4. We take the period time to be T ≡ 4τ ¼ 1

and the couplings to be all order 1, namely,

Jð1Þz ¼ ð ffiffiffi
3

p þ 5Þ=6, Jð2Þz ¼ ffiffiffi
5

p
=2, and Jxy ¼ ð2 ffiffiffi

3
p þ 3Þ=7.

We compute the OTOC Eq. (9) at μ ¼ 0 (infinite
temperature) in this system using exact diagonalization
methods, up to system size L ¼ 24. We do this be
approximating the trace in the infinite temperature average
by an expectation value in a random state, jΨi, drawn from
the Haar measure over the whole Hilbert space. The OTOC
is then calculated as the overlap FVW

μ¼0ðtÞ ≈ RehΨ1jΨ2i,
where jΨ1i≡ ŴU−t

F V̂Ut
FjΨi and jΨ2i≡U−t

F V̂Ut
FŴjΨi.

This overlap approximates the infinite temperature average
up to an error which is exponentially small in the system
size [23], and we indeed find numerically that the deviation
of the OTOC between different random states is negligible
at the system sizes we consider.
In Fig. 6 we show the results for the Ẑ Ẑ, X̂ X̂, and Ẑ X̂

OTOCs. The local operator X̂ has no overlap with the
conserved quantity and is therefore expected to behave
similarly to σ̂þ discussed above for the random circuit
(indeed, it is a simple linear combination of σ̂þ and σ̂−). We
take the OTOC between two operators on nearest-neighbor
sites such that they all have the same initial value 1. We
find numerically that while the decay of the Ẑ Ẑ and Ẑ X̂
OTOCs is well described by the diffusive ∝ 1=

ffiffi
t

p
behavior,

the X̂ X̂ OTOC decays more quickly, approximately as an

FIG. 5. Space-time structure of the wave front in Fig. 4 at time
t ¼ 40 for OTOCs involving the conserved density Ẑ0. We plot
F−2 at μ ¼ 0 for V̂ ¼ Ẑ0 and Ŵ ¼ Ẑr, σ̂þr as a function of
the distance from the front vBt − r and find a linearly growing
regime in both quantities, indicating a decay of the form
F ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vBt − r

p
.

FIG. 6. OTOC for different operators on nearest-neighbor sites
at zero chemical potential in the nonrandom Floquet model
Eq. (16) which conserves

P
rẐr. Upper panel: OTOCs on

nearest-neighbor sites for system size L ¼ 24 sites. Both the
Ẑ Ẑ and the Ẑ X̂ OTOC decay as a power law, approximately as
∼t=1=2, while the X̂ X̂ OTOC decays faster than a power law, as
shown by the log-log plot in the upper panel. The lower two
panels show a comparison between system sizes L ¼ 20, 22, 24
for the Ẑ Ẑ and X̂ X̂ OTOCs, respectively. The latter is shown in a
lin-log plot and is well approximated by an exponential decay.
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exponential. This is all in agreement with the results found
for the random circuit model, and we conjecture that it is
the generic behavior for one-dimensional systems with
diffusive transport properties. Indeed, we argue in the
following section that these hydrodynamic tails, exhibited
by OTOCs involving the conserved density, are a natural
consequence of diffusion.

V. EXPLAINING THE PRESENCE AND
STRUCTURE OF THE TAILS

In Sec. III, we show that the presence of a local
conservation law leads to a diffusive, rather than exponen-
tial, relaxation of the associated charge. We now discuss
how the presence of the same conserved quantity alters the
behavior of OTOCs, leading to the hydrodynamic tails
observed numerically in the previous section. Our discus-
sion focuses on the random circuit model, but since most of
our arguments are based on the diffusion of the conserved
quantity, they should apply, with some slight changes, to
other systems with diffusive transport, such as the Floquet
system introduced in Sec. IV C or the Hamiltonian system
described in Ref. [36].
First, in Secs. VA and V B we argue that OTOCs

FVWðtÞ (with traceless local operators V̂, Ŵ) decay slowly
(as a diffusive power law) precisely when at least one of V̂,
Ŵ has nonvanishing overlap with the conserved charge,
i.e., trðQ̂ V̂Þ ≠ 0. In the case that neither V̂, Ŵ have such an
overlap, the decay is expected to be exponentially quick,
identical to the behavior observed in random circuits
without symmetries [25,26]. Our arguments in Secs. VA
and V B are not fully controlled analytically. However, they
(particularly those in Sec. V B) have the merit of being
completely analogous to those well established by previous
work on hydrodynamical tails in regular observables, in
both quantum and classical dynamics [37,38,55].
In Sec. V C, we provide a more controlled analytical

argument which yields the detailed space-time structure of
the front in those cases where it is present. For this analysis,
we use a coarse-grained model with a different circuit
geometry, and a built-in large parameter which simplifies
the calculations. Our conjecture is that such a model should
describe the long-time dynamics of the circuit in Sec. II.
Indeed, we find in this coarse-grained circuit an OTOC that
has the space-time profile ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vBt − x

p
, in agreement

with the numerical data presented for the original circuit in
Sec. IV B.

A. Operator spreading explanation
for the presence of tails

The presence of hydrodynamic tails in out-of-time-
ordered correlators is, in our opinion, most neatly explained
in the language of superoperators. However, this requires
introducing the appropriate formalism, which we delay until
the next section. Before doing that, we explain the presence

of tails for a particular OTOC, in the case V̂ ¼ Ẑ, in the
(perhaps) more familiar language of operator spreading.
Consider an OTOC between two local Pauli operators

σ̂α¼x;y;z
0 , σ̂β¼x;y;z

r on sites 0 and r. At time t, σ̂α0 evolves into a
superposition of operators,

σ̂α0ðtÞ ¼
X
ν
σ̂νcνðtÞ; ð17Þ

where σ̂ν denotes a Pauli string of the form ⊗L
s¼1 σ̂

νs
s , with

νs ¼ 0, x, y, z. The out-of-time-ordered part of the OTOC at
zero chemical potential then takes the form

F αβ
μ¼0 ¼

X
ν
Sðνr; βÞjcνðtÞj2; ð18Þ

where Sðνr; βÞ ¼ �1 depending on whether σ̂ν commutes
or anticommutes with σ̂βr . A similar expression can be
derived for the case of general q [26].
In the case without symmetries it was found that the

distribution of jcνðtÞj2 is strongly dominated by Pauli strings
ν which fill most of the spatial region ½−vBt;þvBt�, while
the total weight contained in strings of a fixed length decays
exponentially, an observation that follows simply from the
fact that there are exponentially more long operators than
short ones [26]. Since the operator norm is conserved, the
averageweight on a single string is jcνj2 ∼ q−4vBt. Assuming
jcνj2 is largely independent of νr for typical strings when
jrj ≪ vBt, the sum in Eq. (18) would average to 0, as the
positive and negative contributions cancel. In practice not
all strings have the same weight, but we expect such
fluctuation to be suppressed (by the law of large numbers)
as Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=q−4vBt

p
Þ. Accounting for these fluctuations, and

exponentially small contributions from Pauli strings well
behind the front, we were able to prove [26] exponential
decay of the OTOC F αβ

μ¼0 ∼Oðe−atÞ.
The presence of conserved charges constrains some of

the operator spread coefficients and alters the above argu-
ment significantly. In particular, expressions of the form
tr(fðQ̂Þσ̂α0ðtÞ) are independent of time, due to charge
conservation, for any function f. One immediate conse-
quence for the operator Ẑ0ðtÞ is that its operator spread
coefficients on single-site Ẑr operators, defined as
cZr
Z0
ðtÞ≡ q−Ltr(ẐrẐ0ðtÞ), satisfy

P
rc

Zr
Z0
ðtÞ ¼ 1 at all times,

where r ranges over all sites in the forward light cone of Ẑ0.
Indeed, as we have shown in Sec. III, the coefficients decay
on average as t−1=2, rather than exponentially as they would

without conservation laws. Using jcνj2 ≥ jcνj2 and Eq. (5),
and summing over all sites r, implies that the total weight
on single-site Ẑ operators is lower bounded by a value that
decays as ∼t−1=2. We observe numerically that while this
weight initially decays faster (approximately as t−0.8), it
approaches this lower bound at times ≈10 (see Fig. 7).
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Based on these numerical results, we expect that at longer

times
P

r jcZr
Z0
j2ðtÞ ∼ 1=

ffiffi
t

p
. In contrast, recall that the same

weight is expected to decay exponentially quickly for
circuits without a conserved charge.
The above argument shows that if we pick α ¼ z in

Eq. (18) there is an anomalously large, slowly (diffusively)
decaying positive contribution to the OTOC, coming from
the jcZl

Z0
ðtÞj2 coefficients discussed above. This suggests

that OTOCs involving Ẑ relax to their long-time value as
∼1=

ffiffi
t

p
at leading order in t, in agreement with the

numerical evidence in Fig. 4. We expect similar behavior
for the relaxation of OTOCs in Hamiltonian systems for
operators that have a nonvanishing overlap with the local
energy density, an effect already observed numerically
in Ref. [36].

B. Diffusive tails in a superoperator formalism

An alternative, possibly more general way of under-
standing the effects of charge conservation on operator
spreading is possible using the language of superoperators.

1. Superoperator formalism

First, we show that the objects defined in the formalism
of Sec. IVA have a natural interpretation as superoperators
that act on the operators of the original spin chain. This
provides a general language for describing OTOCs which
we use for the hydrodynamic interpretation of our results
on OTOC dynamics in the rest of this section as well as in
Sec. VI A where we show that the long-time limit of
OTOCs can be understood by generalizing the notion of
thermalization to the space of operators (rather than states).

We expect these concepts to be useful in the future study of
scrambling.
As described in Sec. IVA, the quantities jPVi and jDWi,

appearing in Eq. (15), have four indices; i.e., they live in a
Hilbert space which comprises four copies of the original
system. We can naturally interpret this as the space of
superoperators acting on the spin chain. This identification
goes as follows. Let us first note that an operator Ô of the
original system can be though of as a state jÔi ∈ H ⊗ H in
two copies of the original Hilbert space, such that
hαβjÔi≡ hαjÔjβi ¼ Oαβ. Operators thus naturally corre-
spond to states in a doubled space. Iterating this procedure
once more, we arrive at superoperators A that map one
operator to another, i.e., AjÔi ¼ jÔ0i (throughout the text,
we use capital calligraphic letters to denote superoperators
[56]). These can then be reinterpreted as states in four
copies of the original Hilbert space, defined as hαβγδjAi≡
hβαjAjγδi.
A natural basis of superoperators is of the form jÂihB̂j.

Another way to turn operators into superoperators is via left
and right multiplication, defined as LAjB̂i≡ jÂ B̂i and
RAjB̂i≡ jB̂ Âi. The two states appearing in Eq. (15) can
then be interpreted as follows. PV ¼ jV̂ihV̂j is the “density
matrix” corresponding to the state jV̂i, while DW ¼
LW†RW corresponds to multiplying from left and right
with Ŵ† and Ŵ, respectively. The OTOC then has the
interpretation of the time evolved expectation value of a
superoperator:

FVW
μ¼0ðtÞ ∝ hPV jDWðtÞi ¼ hV̂ðtÞjDW jV̂ðtÞi:

Aswe show in Sec.VI, theOTOCat μ ≠ 0 can bewritten in a
similar form,with V̂ replaced by a slightlymodified operator.
As we argue in Sec. VI A, the long-time limit of the “state”
jV̂ðtÞihV̂ðtÞj can be understood as relaxation to a state
analogous to a thermal equilibrium. We note here that the
states appearing in Eq. (13) also have simple interpretations
in the superoperator language as Iþ

Q1Q2
¼ jP̂Q1

ihP̂Q2
j and

I−
Q1Q2

¼ LPQ1
RPQ2

, where P̂Q are the projectors defined in
Eq. (3), acting on the two-site Hilbert space.

2. OTOC tails are associated with diffusion ofLQ andRQ

We now address the issue of tails, and when they appear
in OTOCs, in the language of superoperators. Consider,
from the preceding section, the superoperators correspond-
ing to left and right multiplication by Q̂, namely, LQ and
RQ. These superoperators are conserved as a function of
time:

LQ; RQ → LU†QU; RU†QU ¼ LQ; RQ:

Both superoperators are local densities, in that they
can be written as sums of local superoperators, e.g.,

FIG. 7. Average weights of single-site Ẑ operators jcZr
Z0
ðtÞj2

(dots) compared to their lower bound given by the squares of the

average coefficients (jcZr
Z0
ðtÞj)2 (dashed lines). The weights

approach the lower bound at times t ≈ 10. The weights are
computed using the classical partition function formalism of
Sec. IVA, and for comparison we show TEBD data averaged over
100 circuit realizations at time t ¼ 7 (black stars). Inset: The total
weight contained in single-site Ẑ operators decays in time at the
rate set by the diffusion of the coefficients cZr

Z0
ðtÞ, as t−1=2 at long

times.
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RQ ¼ P
rRQr

. Note that the relation LQr
ðtÞ, RQr

ðtÞ ¼
LQrðtÞ, RQrðtÞ, together with the diffusion of the local

charge Q̂r, derived in Eq. (5), implies that LQr
,RQr

diffuse
on average as well. Thus, the presence of a diffusing
conserved quantity in the original many-body problem
leads to the presence of two new diffusing conserved
quantities in operator space. In the continuum approxima-
tion, we can write this as

∂tLQrðtÞ ¼ D∂2
rLQrðtÞ;

∂tRQrðtÞ ¼ D∂2
rRQrðtÞ: ð19Þ

We can make use of the conservation of LQ, RQ to shed
new light on the diffusive relaxation of certain OTOCs,
discussed previously in Sec. IV B. There, we noted that the
Ẑ Ẑ and Ẑσ̂þ OTOCs have a power-law relaxation. We can
account for both of these tails in the following way. These
two OTOCs can be written in the form hV̂ðtÞjDZr

jV̂ðtÞi,
where V̂ ¼ Ẑ; σ̂þ. Note that the superoperator in this
expression can be rewritten as

DZr
¼ 1 − 2ðLQrðtÞ −RQrðtÞÞ2:

This expression is quadratic in LQr
−RQr

, which is a
conserved density. In ergodic theories, conserved densities,
and their variances, are expected to show 1=

ffiffi
t

p
relaxation

in 1D. The variances in conserved densities show this
diffusive behavior even for states where the densities
themselves are initially homogenous [37]. In the super-
operator language, it is thus natural to conclude that Ẑ-type
OTOCs relax as 1=

ffiffi
t

p
[57]. The remaining OTOCs σ̂þ, σ̂�

do not involve Ẑ, and also do not show diffusive decay. We
attribute this to the fact that the corresponding OTOC
operator Dσ̂þr is orthogonal to any algebraic combination of
the only two available local conserved densities, LQ

and RQ.

C. OTOC hydrodynamics from coarse graining

Since an exact analytical calculation of the partition
function Eq. (15) is out of reach, we instead consider a
modified version of the random circuit which we expect to
reproduce the behavior of the original model at long
timescales and length scales. We use this simplified model
to shed light on the hydrodynamic nature of the OTOC
dynamics and give an analytical estimate for the shape of
the wave front, reproducing the numerical results of
Sec. IV B.
To arrive at this approximate description, we consider a

coarse-grained version of the circuit, defined by increasing
the range of the random unitary gates such that each one
acts on 2M consecutive sites, as illustrated in Fig. 8. We
label physical sites by r and supersites (consisting of M
copies of the q ¼ 2 Hilbert space) by x. Time evolution is

then described by a network of these longer-range random
symmetric unitaries, with a geometry similar to the original
M ¼ 1 case illustrated in Fig. 1. We find that in the limit
M ≫ 1, the dynamics simplifies considerably, allowing for
a closed approximate expression for the OTOC, which we
detail below. We consider evolving the operator Ẑr here and
leave the σ̂þr case for later work.
As noted above, the Ẑr OTOC superoperator can be

decomposed as

DZr
∼D1 − 2LQr

− 2RQr
þ 4LQr

RQr
; ð20Þ

where D1 ≡ L1R1 is a superoperator that acts on an
operator by multiplying it from both sides with the
identity, which is equivalent to the “superidentity,” obeying
D1jÔi¼jÔi for any operator Ô. The decomposition
Eq. (20) already suggests that the superoperatorDZr

should
have a diffusive component, since, as we showed previ-
ously, LQr

andRQr
diffuse on average. The main technical

aim of this section is to understand the average behavior of
the nonlinear termLQr

RQr
. Let us first evolveDZr

with one
unitary gate on sites r; rþ 1;…; rþ 2M − 1, correspond-
ing to “supersites” x, xþ 1. A straightforward application
of Eq. (13) yields a sum of two terms,

DZr
ðΔτÞ ¼

X
Q

bQ
dQ

Ix;xþ1
Q1Q2

þ 1

M2
Dð1=2Þðζxþζxþ1Þ; ð21Þ

where ζ̂x ≡P
r∈xẐr is the total charge on supersite x,

while IQ1Q2
≡ Iþ

Q1Q2
≡ jP̂Q1

ihP̂Q2
j and Dð1=2Þðζxþζxþ1Þ ≡

Lð1=2Þðζxþζxþ1ÞRð1=2Þðζxþζxþ1Þ are the superoperators
(acting on x, xþ 1) introduced in Sec. IVA, and
bQ ≡ 1 − ½1 − ðQ=MÞ�2. In this equation we neglected
terms that are suppressed by at least 1=M2. As we argue
in Appendix B, the first term in Eq. (21) grows ballistically
upon applying further layers of unitaries. For the second
term, on the other hand, we find that superoperators of the
form LQx

RQy
diffuse, unless supersites x and y are acted

upon by the same gate in the circuit, in which case extra
contact terms arise. Summing up these different contribu-
tions, and applying some further approximations which we

FIG. 8. Structure of the first few layers of the coarse-grained
random circuit. Each gate acts on 2M consecutive sites (the on-
site Hilbert space is q ¼ 2) and subsequent layers are shifted by
M sites. Every gate is an independently chosen random unitary,
block diagonal with respect to the total charge on the 2M sites and
Haar random in each block.
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detail in Appendix B, we arrive at the following form of the
OTOC operator at time t:

DZr∈x
ðtÞ ≈ 1 − 2M

2M
PAxðtÞ þ 1

M2
DζxðtÞ

−
1

2M

X
t0<t

X
y∈t0þ2Z

ðKx;yþ1 − Kx;yÞ2ðt0ÞPAyðt−t0Þ:

ð22Þ

Here, AxðtÞ ¼ ½x − t; xþ t� is a ballistically spreading
region around x and PA ≡ P1A=trð1AÞ is a projection unto
1A, the identity operator acting on this region. Kx;y denotes
the diffusion kernel defined by the right-hand side of
Eq. (5). Note that the time evolution of the OTOC involves
summing up contributions from diffusion processes starting
at different times t0. This is a consequence of the afore-
mentioned contact terms, wherein the diffusively spreading
densities RQr

, LQr
can be converted into ballistically

propagating P1 superoperators. In Appendix B we derive
a more general version of Eq. (22) which also involves
corrections from finite μ.
Applying the approximate solution Eq. (22) for the Ẑ Ẑ

OTOC, we get

FZ0Zx
μ¼0 ≈ 1 − δ(x ∈ A0ðtÞ)

�
2M − 1

2M
− Yðt; xÞ

�
; ð23Þ

where Yðt; xÞ stands for the double sum appearing in
Eq. (22) evaluated at the operator Ẑx, which reads

Yðt; xÞ ¼ 1

2M − 1

X
t0<t

X
y

½K0;yþ1ðt0Þ − K0;yðt0Þ�2

× δ(x ∈ Ayðt − t0Þ):

The formula Eq. (23) is plotted in Fig. 9. We find that it
exhibits a tail behind the front, where the OTOC decays as
ðt − xÞ−1=2, reproducing the shape found numerically in
Sec. IV B. These hydrodynamic tails were also studied in
more detail by Khemani et al. [58], finding a similar scaling
near the front. At the origin, the function Y relaxes as
at−1 þ bt−1=2, consistent with our earlier discussion of
power-law tails in Sec. V.
Evaluating Eq. (22) on the local operator σ̂þx gives the

result

FZ0σ
þ
x

μ¼0 ≈ δ(r ∈ A0ðtÞ)
�
−
1

2
Yðt; xÞ − K2

0xðtÞ
M2

�

þ 1

2
δ(r ∉ A0ðtÞ):

The main contribution that determines the shape of the
OTOC front is given by the same function, Yðt; xÞ, as for
the Ẑ Ẑ OTOC. This implies that the shape of the tail behind

the front is the same as the one seen in Fig. 9. This is also in
agreement with the results of Ref. [58].
The equation and the formalism in this section marry two

notions of hydrodynamics. As shown by our previous work
in Ref. [26], the ballistic spreading of OTOCs can be
understood to follow from a biased diffusion equation that
describes the spatial growth of an initially local operator.
The hydrodynamic nature of this equation is related to an
emergent conservation law, that of the norm of the evolving
operator, which follows from the unitarity of time evolu-
tion. A second, more conventional, notion of hydrody-
namics arises, as detailed in Secs. III and V, due to the
presence of the conserved charge Q̂, which leads to the two
locally conserved, diffusing, superoperator densities LQr

and RQr
. Our approximate coarse-grained description

couples these two types of quantities: Eq. (22) includes
ballistically spreading terms (namely P), as well as the
conserved densities LQr

,RQr
, and couplings between these

terms. The couplings lead to a conversion of the conserved
densities into ballistically propagating components and all
such terms, created at different times t0 < t, need to be
summed up to get the OTOC at time t. This process results
in the OTOC decaying as ∼1=

ffiffiffiffiffiffiffiffiffiffi
t − x

p
behind the front, as

shown in Fig. 9.

VI. FINITE CHEMICAL POTENTIAL

In this section, we extend our discussion from the
properties of OTOCs in the infinite temperature state
μ ¼ 0, discussed so far, to the case of a finite chemical
potential μ. The chemical potential controls the equilibrium
entropy density, and in this sense plays a role similar to
temperature in Hamiltonian systems. Our results are as

FIG. 9. Shape of theOTOCwave front for an initial operator that
overlaps with the conserved quantity. Left: Front shape arising
from the solution Eq. (23) of the coarse-grained circuit, substitut-
ingM ¼ 1. In evaluating the formula we used the continuum form
of the diffusion kernel Kx;yðtÞ ¼ exp½ðx − yÞ2=4t�= ffiffiffiffiffiffiffi

4πt
p

. While
the numerical values (for example, the saturation value behind the
front) haveOð1=MÞ corrections, the main features of the shape of
the OTOC behind the front should be captured by this solution.
Notably, we find that the hydrodynamic tail behind the main front
(which travels at speed vB ¼ 1 in this case) is proportional to
∼1=

ffiffiffiffiffiffiffiffiffiffi
t − x

p
, as illustrated by the inset.
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follows. (i) We show how the finite chemical potential
affects the long-time saturation value of the OTOC and use
the superoperator formalism developed above in Sec. V B 1
to interpret this as a form of thermalization on the space of
operators. (ii) We confirm our prediction for the saturation
values in the random circuit model and show that the
hydrodynamic tails observed at μ ¼ 0 are also present at
small but finite chemical potential. (iii) In the μ → ∞ limit
the OTOC spreads out diffusively as a function of space and
time, as opposed to having a ballistic light cone seen in
previous sections. In this somewhat special limit, the
OTOC can exhibit a double plateau structure: it initially
relaxes to a value different from the one predicted in (i),
only decaying to its final saturation value on timescales
OðL2Þ; we refer to this initial relaxation as a “prethermal
plateau.” (iv) Through a perturbative expansion, we show
that the μ → ∞ results, including the diffusive space-time
behavior and double plateau structure, can survive at finite
μ to times t ∼Oðe2μÞ.
We begin our discussion by rewriting the OTOC,

originally defined in Eq. (9), as

hV̂†ðtÞŴ†V̂ðtÞŴiμ ¼ eðμ=2ÞðλVþλWÞ tr(Ṽ
†ðtÞŴ†ṼðtÞŴ)

trðe−μQ̂Þ ;

ð24Þ

where we defined Ṽ ≡ e−ðμ=4ÞQ̂V̂e−ðμ=4ÞQ̂ (this is similar to
the regularized version of the OTOC introduced in
Ref. [28]). Thus we see that the effect of finite chemical
potential can be incorporated entirely into modifying the
boundary conditions of the partition function defined in
Eq. (15). These new boundary conditions penalize boun-
dary states (of the four-layer system) with large total
charges. We can therefore easily generalize the calculation
of the classical partition function, originally introduced in
Sec. IVA, to the case with finite μ. In the following section
wewill also use the form Eq. (24) of the OTOC to show that
its saturation value can be understood by assuming that the
“state” jṼi thermalizes at long times.

A. Long-time saturation of OTOCs

Before examining the time evolution of OTOCs at finite
μ, we derive some analytical results on their expected long-
time behavior. For the purposes of this section we return to
the definition of the OTOC in terms of the squared
commutator Eq. (8). We show that the saturation value
that the OTOC approaches as t → ∞ depends nontrivially
on both the chemical potential and the type of operators
considered (i.e., their charges λV;W). Notably, we show that
the out-of-time-ordered part has a nonzero saturation value
for μ > 0 if either λV ¼ 0 or λW ¼ 0.
As a starting point of this calculation, we assume that

over vast timescales, well in excess of the system size, our
local random unitary dynamics for the OTOC becomes

indistinguishable from nonlocal dynamics with the same
conserved quantity Q̂. An analogous statement is known to
hold for a random circuit without symmetries [59,60], which
approximate the first two moments of the Haar distribution
at long times, and therefore it is natural to assume that the
same would happen in our case for each symmetry sector.
Thus we estimate the long-time value of Eq. (8) by taking
V̂ðtÞ ¼ U†ðtÞV̂UðtÞ, whereU is a unitary that conserves Q̂,
but which is otherwise completely Haar random, without
any notion of locality. Averaging the OTOC over such
unitaries is expected to yield the saturation values CVWμ ðt∞Þ.
In the limit of large system size, provided V̂, Ŵ are operators
with subextensive charge (which automatically holds in the
case of interest where V̂, Ŵ are local), this approach yields

CVWμ ðt∞Þ ¼
1

2
eμλV hŴ†

⊥Ŵ⊥iμhV̂⊥V̂†
⊥iμ

þ 1

2
eμλW hŴ⊥Ŵ†

⊥iμhV̂†
⊥V̂⊥iμ þOð1=LÞ; ð25Þ

where Ŵk ≡P
QðP̂Q=dQÞtrðP̂QWÞ is the part of Ŵ that is

diagonal in charge and Ŵ⊥ ≡ Ŵ − Ŵk is the off-diagonal
part. The behavior of Eq. (25) as a function μ for different
OTOCs of interest is shown in Fig. 10. Note that Eq. (25)
indicates that for μ ≠ 0, if one of the operators involved in
theOTOChas nonzero overlapwith Q̂, then the out-of-time-
ordered part does not saturate to zero; i.e., FVW

μ≠0ðt∞Þ ≠ 0.
This fact might also be of relevance for Hamiltonian systems
if the operators considered overlap with the local energy
density.
We can gain some further insight into the meaning of

Eq. (25) by relating it to the superoperator formalism
developed in Sec. V B 1. As we show in Appendix C, the
saturation values, and indeed the long-time value of any
superoperator, can be understood as a form of thermal-
ization, wherein the initial state (in operator space),
jṼð0ÞihṼð0Þj, for the operator Ṽ ≡ e−ðμ=4ÞQ̂V̂e−ðμ=4ÞQ̂ intro-
duced in Eq. (24), becomes at long times locally indis-
tinguishable from the “thermal” state,

FIG. 10. Long-time saturation values of different OTOCs CWV ,
predicted by Eq. (25), as a function of the chemical potential μ.
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jṼðt∞ÞihṼðt∞Þj ¼ trðṼ†
kṼkÞ

je−ðμ=2ÞQ̂ihe−ðμ=2ÞQ̂j
Zμ

þ trðṼ†
⊥Ṽ⊥Þ

e−μðLQþRQÞ

Z2
μ

; ð26Þ

where Zμ ¼ trðe−μQ̂Þ. The latter part of this expression in
Eq. (26) is none other than the Gibbs ensemble with respect
to the conserved quantities LQ, RQ defined in Sec. V B 2.
This result suggests (in a manner we detail in Appendix C)
that when considering objects like OTOCs or operator
weights, the usual notion of thermalization should be
supplemented by considering that of equilibration in
operator space, as defined above.
The above result relies on averaging over all possible

charge-conserving time evolutions without restrictions of
locality, which is a valid approximation at timescales long
compared to the system size. One might expect that this
saturation value is in fact approached on a much shorter, L-
independent timescale. This is indeed the case, for exam-
ple, at μ ¼ 0, where the OTOCs relax to the above
predicted long-time values either exponentially or as a
power law, as we showed above. We observe a similar
behavior at sufficiently small μ, as we show in Sec. VI B. In
the limit of μ ≫ 1, however, we find that the saturation of
certain OTOCs can take a time which grows exponentially
with μ, and in the limit μ → ∞, the long-time value of the
σ̂þσ̂þ OTOC in an infinite system deviates from the above
prediction by an Oð1Þ value. For a finite system this means
that the OTOC first saturates to a prethermal plateau and
approaches its final value only on a timescale that grows as
∼L2. We discuss this in Sec. VI C.

B. Relaxation of OTOCs at μ ∼Oð1Þ
We now confirm the predictions of the previous section

regarding the long-time saturation values of OTOCs at
finite μ, by computing their time evolution numerically in
the random circuit model. We also show that the relaxation
to these long-time values exhibits the same hydrodynamic
tails (at least for small μ) as the ones observed previously in
Sec. IV B.
As discussed at the beginning of Sec. VI, the mapping of

the average OTOC to the classical partition function
problem remains intact in the presence of finite μ, except
for some additional Gibbs factors which can be incorpo-
rated into either (or both) of the boundary conditions. We
can then evaluate the average OTOC using the same tensor
network methods that we used at μ ¼ 0. The results for the
OTOC between operators Ẑ0, Ẑ0 on the same site are shown
in Fig. 11. We find that the OTOC indeed saturates to
the value predicted by Eq. (25). Interestingly, for
μ ¼ 2, the OTOC first drops below this value and then
approaches it from below. Moreover, by plotting the

distance from saturation, jFZ0Z0
μ ðtÞ − FZ0Z0

μ ðt∞Þj, we find

that the hydrodynamical tail of the form jFZ0Z0
μ ðtÞ −

FZ0Z0
μ ðt∞Þj ∝ t−1=2 is present also for finite small μ.

Namely, we observe that the μ ¼ 1=2 OTOC decays in
exactly the same manner as the one at μ ¼ 0, which has
diffusive relaxation as discussed at length in the previous
sections. We find deviations from the t−1=2 behavior for
larger chemical potentials, although these might correspond
to some intermediate-time behavior. As we discuss in the
following section, the finite μ behavior of OTOCs at short
times can be very different from the one described so far in
the μ ¼ 0 case.

C. μ ≫ 1 and OTOC diffusion

We next turn our attention to the behavior of OTOCs at
low fillings, or large chemical potentials, and argue
perturbatively that there is an additional structure arising
in this limit, wherein the ballistic OTOC front does not
appear at times that are short compared to e2μ. Moreover,
certain OTOCs (F σþσþ , in particular) can initially relax to a
value different from the one predicted in the previous
section, only approaching their long-time limit at t ≫ e2μ.
As discussed in Sec. VA, in the infinite temperature

ensemble, i.e., at μ ¼ 0, OTOCs are closely related to the
problem of operator spreading, sampling over all coeffi-
cients appearing in Eq. (17) with equal measures [see
Eq. (18)]. This explains the ballistic spreading of OTOCs,
which in this language is a simple consequence of the fact
that there are exponentially more long Pauli strings than
short ones. However, when μ is increased, the OTOCwill be
more and more dominated by states with a few charges.
Here, we set out to explain how this affects their space-time
structure and saturation behavior in the limit μ ≫ 1. In this
limit we can expand theOTOC in powers of e−μ and find that
the terms in this perturbative expansion describe a diffu-
sively, rather than ballistically, spreading OTOC. This
diffusive behavior is exhibited by the three lowest orders

FIG. 11. Time evolution of the Ẑ Ẑ OTOC on site zero for
chemical potentials μ ¼ 0, 1=2, 1, 2 in the random circuit model.
The left-hand panel shows the OTOC approaching the saturation
value predicted by Eq. (25) (dashed horizontal lines). For μ ¼ 2
the OTOC tends to the long-time value from below. The right-
hand panel shows the distance from this equilibration value as a
function of time. The lines for μ ¼ 0 and μ ¼ 1=2 are parallel,
indicating that the latter also exhibits the diffusive t−1=2 decay
discussed in Sec. V.

DIFFUSIVE HYDRODYNAMICS OF OUT-OF-TIME- … PHYS. REV. X 8, 031058 (2018)

031058-15



of the expansion, and we conjecture that it survives up to a
timescale t ∼Oðe2μÞ, at which point the perturbation theory
breaks down.While themethod is well controlled only in the
μ ≫ 1 limit, there is excellent qualitative agreement
between the results of this section and those from TEBD
evenwhenμ ≈ 3 (see Fig. 13). Thus,we believe the results in
this section could be very useful in developing a qualitative
description of the early time behavior of OTOCs in low-
temperature strongly coupled systems (in particular systems
not permitting a quasiparticle description).
The starting point of the perturbative description is given

by expanding the boundary conditions in orders of e−μ=4 as

e−ðμ=4ÞQ̂ ¼
YL
r¼1

ðP̂r þ e−ðμ=4ÞQ̂rÞ; P̂r ¼ 11 − Q̂r: ð27Þ

When expanding this product, the different terms
correspond to different number of particles as defined in
Sec. IVA (see Fig. 3, in particular). Since the total number
of such particles is conserved during evolution with the
circuit, they have to be the same in both boundary
conditions. Gathering all terms with the same power of
e−μ, we find that the average value of the OTOC can be
expanded as a power series of the form

FVW
μ ðtÞ ≈

X
N

e−NμFVW
ðNÞðtÞ; ð28Þ

where the Oðe−NμÞ term corresponds to initial and final
conditions with 2N þ λV þ λW particles. FVW

ðNÞðtÞ can then

be evaluated by considering the same partition function as
defined in Sec. IVA but with the boundary conditions
restricted by the total number of particles, which can
therefore be more efficiently calculated, even using exact
diagonalization techniques.
Here we detail the behavior of the σ̂þσ̂þ OTOC which

has a nontrivial behavior even at zeroth order, leaving the
discussion of other OTOCs to Appendix E. The zeroth-
order contribution can be computed from a random walk
problem involving a pair of particles that annihilate upon
meeting each other, which has an exact solution, as we
show in Appendix D. One particularly interesting property
of the solution is the absence of a ballistically propagating
front. Indeed, as suggested by the formulation of the
problem as a two-particle random walk, the spreading of
the OTOC front is entirely diffusive, depending only on the
combination r=

ffiffi
t

p
, where r is the spatial separation of

the operators in the OTOC. This is demonstrated in the
left-hand panel of Fig. 12. This is in contrast to the behavior
seen at μ ¼ 0 in Fig. 4 (and general expectations of ballistic
propagation), and as we argue below is a property of the
perturbative expansion that is in general valid up to a μ-
dependent timescale.

Furthermore, if we consider the same OTOC at a fixed
distance r as a function of time, we find a double plateau
structure: it first saturates to the value 1

2
− ð1=πÞ on an

Oðr2=DÞ timescale, where D is the charge diffusion
constant defined by Eq. (6), and only goes to zero, as
predicted by Eq. (25), when the particles reach around the
whole system, at times OðL2=DÞ. This is illustrated in the
right-hand panel of Fig. 12. As we show in Appendix D,
this latter result, the noncommutativity of the L → ∞ and
the t → ∞ limits, can be understood from the fact that in an
infinite system two random walkers have a finite proba-
bility of avoiding each other forever, while they have to
meet eventually if the system is finite. Moreover, the
mapping from the OTOC to the above random walk
problem also holds if we consider similar random circuits
in higher dimensions, in which case the probability for
crossing paths is smaller, and the deviation from the
thermal expectation value in the thermodynamic limit is
even larger.
Computing the next term, F σþσþ

ð1Þ , which is of order

Oðe−μÞ, we find that it increases as ffiffi
t

p
up to anOðLÞ value,

as shown in the inset of Fig. 13. Similarly, we find that the
ratio F σþσþ

ð2Þ =F σþσþ
ð1Þ of the second- and first-order terms (not

shown here) also increases as
ffiffi
t

p
. This suggests that the

perturbative expansion is valid up to a timescale of order
t ∼ e2μ, at which point all terms become of comparable
size. Moreover, while the second-order contribution does
lead to a speed-up of the spreading of the OTOC compared
to the μ ¼ ∞ result shown in Fig. 12, it is still diffusive, as
also illustrated by the same inset. This suggests that the
diffusive behavior persists up to the aforementionedOðe2μÞ
timescale. Therefore, the σ̂þσ̂þ OTOC will saturate to the
prethermal plateau seen in Fig. 12, if μ is sufficiently large,
indicating that the scrambling time [28,61] associated to

FIG. 12. The OTOC F between σ̂þ0 and σ̂þr at infinite chemical
potential. Left: The OTOC as a function of initial distance r for
times t ¼ 50; 100;…; 500 in an infinite system. The OTOC
spreads diffusively and saturates to a “prethermal” plateau behind
the front. The inset shows the data collapse when the position is
rescaled as r → r=

ffiffi
t

p
. Right: The OTOC first saturates to the

value 1
2
− ð1=πÞ (dashed horizontal line) as 1=

ffiffi
t

p
. Then at a later

timescale t ∼ L2 it decays to zero. At late times its value decreases
as expð−π2t=L2Þ. The red dashed line shows the next-order
prediction at μ ¼ 5, which indicates that the plateau survives up
to a timescale that diverges with μ.

RAKOVSZKY, POLLMANN, and VON KEYSERLINGK PHYS. REV. X 8, 031058 (2018)

031058-16



saturation of the OTOC can be exponentially large in μ. As
shown by Fig. 13, the expansion up to OðeμÞ agrees well
with numerical TEBD results even for μ ¼ 3 at short
times t ≤ 7.
To confirm the results from the perturbative expansion,

we also computed the σ̂þσ̂þ OTOC exactly at different
finite μ, using the exact partition function Eq. (24). We
observe a pronounced slow-down of the OTOC spreading
even for μ ¼ 2 up to times t ≈ 20, as shown in Fig. 14.
We find similar behavior for the out-of-time-ordered part

of the OTOC between operators Q̂0 and Q̂r [note that the
OTOC FQ0Qr

μ is related to FZ0Zr
μ via Eq. (11)]. While both

the first- and second-order contributions decay in time as a
power law and than saturate to an L-dependent value, their
ratio, FQ0Qr

ð2Þ =FQ0Qr
ð1Þ , increases in time as

ffiffi
t

p
until it

saturates to a value which is linear in system size. The
OTOC between Q̂0 and σ̂þr , on the other hand, shows a
more complicated, nonmonotonic behavior. The data for
these two cases are presented in Appendix E.
In summary, we find that a variety of intriguing phe-

nomena can occur in OTOCs at early times when the
available space for the dynamic is restricted by a finite,
large chemical potential. The most robust of these seems to

be the initial diffusive spreading of the OTOC at early
times. Whether this initial behavior has some bearing on the
shape of the OTOC front at later times is an interesting
question for further study.

VII. CONCLUSIONS

In this work, we investigate the dynamics of a U(1)
symmetric local unitary circuit, which we propose as a toy
model for ergodic many-body systems at long length scales
and timescales for the purposes of calculating transport and
OTOCs. We prove that the conserved charge in this system
obeys an exact diffusion equation on average, in agreement
with the expectation that conserved quantities diffuse in
generic, locally interacting lattice spin systems at high
temperatures [33–35]. We provide both analytical argu-
ments and numerical evidence that this leads to the
appearance of hydrodynamic tails in out-of-time-ordered
correlators of operators that overlap with the total con-
served quantity. We also provide numerical evidence that
the same hydrodynamic tails appear in a clean periodically
driven spin chain. Furthermore, we argue that these hydro-
dynamic tails manifest themselves in a particular shape of
the OTOC wave front.
In the course of explaining the hydrodynamics of

OTOCs, we develop a general formalism, involving super-
operators, to describe the spatial spreading of operators and
the evolution of OTOCs in a unified framework. We believe
that this formalism will prove useful in other settings as
well. In particular, we note the appearance of conserved
superoperators LQ, RQ, whose diffusive behavior is con-
nected to the power-law relaxation of the OTOC. Since the
diffusion of LQ,RQ is a direct consequence of the diffusion
of Q itself, these arguments, and their conclusions regard-
ing hydrodynamic tails in OTOCs, should generalize to
other systems that exhibit diffusive transport, including
those with energy conservation. A corollary of this new
formalism is an interpretation of long-time saturation of
OTOCs in terms of a generalized notion of thermalization
for operators rather than states.
In the last part of the paper, we develop a perturbatve

expansion capturing the short-time behavior of OTOCs at
low filling, and find that the ballistic behavior usually
associated with OTOCs can develop only at timescales that
are exponentially large compared to the chemical potential
μ, while they initially have a diffusive space-time structure
instead. Moreover, we find that in this regime a peculiar
double plateau structure appears for the σ̂þσ̂þ OTOC,
wherein it initially saturates to a prethermal plateau and
only decays to zero on a similar, Oðe2μÞ timescale.
It would be an interesting direction for future research to

probe the detailed space-time structure of OTOCs in
Hamiltonian systems, in search for the particular front
shape we predict in this paper. Similarly, it is an important
open question whether the same behavior can be extracted
from field-theoretic calculations of OTOCs [14–16,18].

FIG. 13. Comparison of the perturbative expansion to TEBD
results at short times for the average σ̂þσ̂þ OTOC at chemical
potential μ ¼ 3. Dots, TEBD results averaged over 100 circuits;
dashed lines, perturbative expansion at Oðe−μÞ. The perturbative
result agrees very well with the TEBD numerics up to the times

considered. Inset: TheOðe−μÞ correction to the OTOCF
σþ
0
σþ

ð1Þ . We

observe an approximate collapse of the data when F
σþ
0
σþr

ð1Þ =
ffiffi
t

p
is

plotted as a function of r=
ffiffi
t

p
, indicating that the OTOC is still

diffusive in nature.

FIG. 14. Space-time spreading of the σ̂þσ̂þ OTOC F
σþ
0
σþr

μ for
different chemical potentials μ ¼ 0, 2, 5. The ballistic light cone
observed for μ ¼ 0 slows down and gives way to a diffusively
spreading OTOC at large μ.
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Another possible direction is to extend our results to higher
dimensions, possibly by considering random circuit models
similar to the one introduced here.
Recently, we became aware of closely related work by

Khemani et al. [58]. While they take a slightly different
approach, our results appear to agree where they overlap.
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APPENDIX A: AVERAGE EFFECT
OF A SINGLE GATE

In this Appendix, we derive Eq. (13) that describes the
average effect of a single two-site gate on four copies of the

Hilbert space (i.e., on the time evolution of superoperators),
relevant for calculation of the OTOC. Let us start by
examining the simpler problem of the average time
evolution of an operator, already discussed in Eq. (3),
and rederive the result in a slightly different language. An
operator Ô evolves under the effect of the unitary U as

ðU†ÔUÞαβ ¼ U�
γαOγδUδβ ¼ OγδðU�UÞðγδÞðαβÞ; ðA1Þ

i.e., we can think of it as being evolved by the superoperator
U� ⊗ U. Now let us imagine that U is a two-site unitary,
with the block-diagonal structure U ¼ P

QUQ, where UQ

acts on states with total charge Q. We can then use the fact
that the blocks are independent Haar-random matrices
to evaluate the average. For an n × n random unitary
matrix u, the properties of the Haar distribution imply that
ū ¼ 0 and u� ⊗ u ¼ ð1=nÞj1̂ih1̂j, where j1̂ih1̂j≡ P1 is a
superoperator projecting (up to a normalization constant)
on the identity, using the notation of Sec. V B 1. We
conclude that

U� ⊗ U ¼
X
Q1;Q2

U�
Q1

⊗ UQ2
¼

X
Q

U�
Q ⊗ UQ ¼

X
Q

1

dQ
jP̂QihP̂Qj; ðA2Þ

where P̂Q are projectors acting on the two-site Hilbert space. The above expression acts on an operator as
Ô →

P
Qð1=dQÞtrðP̂QÔÞP̂Q.

For evaluating the OTOC we need to know how to average the time evolution on four, rather than two, copies of the
Hilbert space. For this four-layer case we have three distinct ways of pairing up the unitaries, which gives

U� ⊗ U ⊗ U� ⊗ U ¼
X

Q1≠Q2

ðU�
Q1

⊗ UQ1
⊗ U�

Q2
⊗ UQ2

þ U�
Q1

⊗ UQ2
⊗ U�

Q2
⊗ UQ1

Þ þ
X
Q

U�
Q ⊗ UQ ⊗ U�

Q ⊗ UQ :

ðA3Þ

For theQ1 ≠ Q2 terms, where each block only appears at most twice, we can use the result of Eq. (A2). In the simplest case,
this gives

U�
Q1

⊗ UQ1
⊗ U�

Q2
⊗ UQ2

¼ 1

dQ1

ðjP̂Q1
ihP̂Q1

jÞ ⊗ 1

dQ2

ðjP̂Q2
ihP̂Q2

jÞ≡ 1

dQ1
dQ2

jIþ
Q1Q2

ihIþ
Q1Q2

j; ðA4Þ

where we defined jIþ
Q1Q2

i≡P
α∈HQ1

P
β∈HQ2

jααββi. The second term in Eq. (A3) corresponds to swapping the second

and fourth copies, and thus gives

U�
Q1

⊗ UQ2
⊗ U�

Q2
⊗ U� ¼ 1

dQ1
dQ2

jI−
Q1Q2

ihI−
Q1Q2

j; ðA5Þ

where jI−
Q1Q2

i≡P
α∈HQ1

P
β∈HQ2

jαββαi.
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For the last term, we need to apply the Haar identity for the fourth moment of U. The result is given by [25,26]

U�
Q ⊗ UQ ⊗ U�

Q ⊗ UQ ¼ 1

d2Q − 1

�
ðjIþ

QQihIþ
QQj þ jI−

QQihI−
QQjÞ −

1

dQ
ðjIþ

QQihI−
QQj þ jI−

QQihIþ
QQjÞ

�
: ðA6Þ

Combining Eqs. (A4)–(A6) we get the full result for the average of a single gate in the four-layer system given in Eq. (13).
A significant difficulty of this charge-conserving circuit, compared to the one without symmetries, is that the states that

appear when averaging over a two-site gate do not factorize into independent states on the two sites. If we want to write
them in terms of such single-site states (living on four copies of a single site), they become

jIþ
Q1Q2

i ¼
X
αβγδ

jααββi1jγγδδi2δαþγ¼Q1
δβþδ¼Q2

; jI−
Q1Q2

i ¼
X
αβγδ

jαββαi1jγδδγi2δαþγ¼Q1
δβþδ¼Q2

: ðA7Þ

Let us focus on the case of only two states, j0i and j1i, on each site. A possible basis of operators on a single site is then
given by Q̂ ¼ j1ih1j, P̂≡ 1 − Q̂ ¼ j0ih0j, σ̂þ ¼ j1ih0j, and σ̂− ¼ j0ih1j. We can then write Eq. (A7) in terms of the
following six local states:

j0i≡ j0000i ¼ jP̂ihP̂j ¼ LPRP; j1i≡ j1111i ¼ jQ̂ihQ̂j ¼ LQRQ;

jAi≡ j1100i ¼ jQ̂ihP̂j ¼ LσþRσ− ; jBi≡ j0011i ¼ jP̂ijQ̂i ¼ Lσ−Rσþ ;

jCi≡ j1001i ¼ jσ̂þihσ̂þj ¼ LQRP; jDi≡ j0110i ¼ jσ̂−ihσ̂−j ¼ LPRQ; ðA8Þ

where we have included their interpretation as superoperators, using the definitions of Sec. V B 1. The states appearing in
the tensor corresponding to a single two-site gate can then be written in terms of the above states on each site as

jIþ
00i ¼ jI−

00i ¼ j0ij0i; jIþ
22i ¼ jI−

22i ¼ j1ij1i;
jIþ

02i ¼ jAijAi; jI−
02i ¼ jCijCi;

jIþ
20i ¼ jBijBi; jI−

20i ¼ jDijDi;
jIþ

01i ¼ j0ijAi þ jAij0i; jI−
01i ¼ j0ijCi þ jCij0i;

jIþ
10i ¼ j0ijBi þ jBij0i; jI−

10i ¼ j0ijDi þ jDij0i;
jIþ

21i ¼ j1ijAi þ jAij1i; jI−
21i ¼ j1ijCi þ jCij1i;

jIþ
12i ¼ j1ijBi þ jBij1i; jI−

12i ¼ j1ijDi þ jDij1i;
jIþ

11i ¼ j0ij1i þ j1ij0i þ jAijBi þ jBijAi; jI−
11i ¼ j0ij1i þ j1ij0i þ jCijDi þ jDijCi; ðA9Þ

where the two states on the right-hand side correspond to
the two neighboring sites on which the gate acts. Based on
these we can compute all the matrix elements of the form
hIJjU� ⊗ U ⊗ U� ⊗ UjKLi for I, J, K, L ¼ 0, A, B, C,
D, 1, which give us the transition coefficients illustrated in
Fig. 3. Applying these for each gate in the circuit, and
contracting with the appropriate boundary conditions
defined by the operators V̂, Ŵ and the chemical potential
μ, gives the 2D partition function one needs to evaluate to
compute the OTOC FVW

μ .
We end this appendix by noting that the above formula

for the average effect of the two-site gate can be written in
somewhat more compact form by introducing the states
jJ Q1Q2

i≡ jI−
Q1Q2

i − ðδQ1Q2
=dQ1

ÞjIþ
Q1Q2

i and renaming
jIþ

Q1Q2
i → jIQ1Q2

i. Using this notation, Eq. (13) becomes

U� ⊗ U ⊗ U� ⊗ U

¼
X
Q1;Q2

1

dQ1
dQ2

jIQ1Q2
ihIQ1Q2

j

þ
X
Q1;Q2

1

dQ1
dQ2

− δQ1Q2

jJ Q1Q2
ihJ Q1Q2

j: ðA10Þ

We will use this version of the formula in the following
appendix to derive Eq. (22).

APPENDIX B: DERIVATION OF EQ. (22)

In this appendix, we detail the derivation that leads us to
the conjectured long-time form of the OTOC presented in
Eq. (22). Here we consider a more general version of the
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equation of motion in Eq. (21), where we also take into
account effects of finite chemical potential. We do this by
considering a modified superoperator,

Dμ;V ≡ LωμVωμ
RωμV†ωμ

; ðB1Þ
where we introduced the notation ω̂μ ≡ e−ðμ=4ÞQ̂. Similarly,
it is useful to define a generalized version of the projection
superoperators as

Px
μ ≡ je−μQ̂xihe−μQ̂x j

trðe−μQ̂xÞ ; ðB2Þ

where Q̂x is the total charge within a single supersite x,
consisting of M sites of the original lattice, as shown
in Fig. 8.
The superoperator defined in Eq. (B1) becomes, on

average, after a single application of a unitary gate on 2M
sites,

Dμ;Z0
ðΔτÞ¼

X
Q

1

dQ
Ix;xþ1
QQ e−μQbQ ∶⧫

þ 1

M2
Lωμð1=2Þðζxþζxþ1Þωμ

Rωμð1=2Þðζxþζxþ1Þωμ
∶★;

where bQ ≡ 1 − ½1 − ðQ=MÞ�2. In the main text we argued
that the⧫ term is mainly responsible for ballistic spreading,
while the ★ term is more complicated and involves
diffusion of conserved superoperator densities. We detail
these arguments below. The resulting solution for the
OTOC superoperator is

Dμ;Zx
ðtÞ≈αμP

AxðtÞ
μ þ 1

M2
Dμ;ζxðtÞ

þ αμ
2M−1

X
t0<t

X
y∈t0þ2Z

ðKx;yþ1−Kx;yÞ2ðt0ÞPAyðt−t0Þ
μ ;

ðB3Þ

where αμ≡½ð1−2MÞ=2M�cosh−2ðμ=2Þ and PA
μ≡ ⊗x∈A Px

μ

for the ballistically growing region AxðtÞ ¼ ½x − t; xþ t�.

1. Ballistic expansion of ⧫
The operator ⧫, defined above, occupies two supersites,

x, xþ 1. Considered as a superoperator on the 22M

dimensional Hilbert space on these two sites, the individual
terms give typical expectation values on local operators of
size dQe−μQ. Such summands are, for large M, dominated
by Q̄ in a small window around 2M=ð1þ eμÞ. The most
significant term is, therefore,

ðjP̂Q̄ihP̂Q̄jÞx;xþ1 ¼
X

eLþeR¼Q̄

X
fLþfR¼Q̄

jP̂x
eLP̂

xþ1
eR ihP̂x

fL
P̂xþ1
fR

j;

where eL;R and fL;R are local charges on the two sites and
P̂x
e is a projection unto that charge on site x. This term is

similarly dominated by those terms with eL;R ¼ fL;R≈
Q̄=2. Taking the approximations together gives

⧫ ≈
αμ
dQ̄

e−μQ̄jP̂x
Q̄=2P̂

xþ1
Q̄=2ihP̂x

Q̄=2P̂
xþ1
Q̄=2j; ðB4Þ

where αμ ≡ ½ð1 − 2MÞ=2M�cosh−2ðμ=2Þ.
We will probe the dynamics of Eq. (B4) under unitary

dynamics on xþ 1, xþ 2. At this point it is useful to
remember that theOTOCoperator was originally defined on
the whole Hilbert space as L, R superoperators being pre-
and postmultiplied by thermal factors as in Eq. (B1). Taking
into account these additional factors coming from site xþ 2,

⧫ ¼ e−μQ̄

dQ̄
jPx

Q̄=2P
xþ1
Q̄=2ihPx

Q̄=2P
xþ1
Q̄=2jLe−μQxþ2=2Re−μQxþ2=2

¼ e−μQ̄

dQ̄
Px

Q̄=2P
xþ1
Q̄=2Le−μQxþ2=2Re−μQxþ2=2 ;

where Px
Q ≡ jP̂x

QihP̂x
Qj is a local projector on the space of

operators.
A straightforward but tedious application of Eq. (A10)

gives two contributions to the expression for ⧫ðΔτÞ ¼
⧫ðΔτÞ1 þ⧫ðΔτÞ2, corresponding to the first and second
terms in Eq. (A10), respectively. We detail the calculation
of both of these separately below. The first we can write,
making similar large M approximations as above, as

⧫ðΔτÞ1 ≈ e−3μQ̄
αμ

ðZ1
μÞ3

jP̂x
Q̄=2P̂

xþ1
Q̄=2P̂

xþ2
Q̄=2ihP̂x

Q̄=2P̂
xþ1
Q̄=2P̂

xþ2
Q̄=2j

≈ Px;xþ1;xþ2
μ ;

where we have defined Z1
μ as the partition function of a

single supersite, which is peaked at charge Q̄=2. The
second term, ⧫ðΔτÞ2, is obtained by applying the second
term in Eq. (A10); it is subleading by a factor at least
Oð1=dQÞ, which is typically exponentially small in Q.
On net, considering the full Hilbert space, we can iterate

the above procedure to argue that

⧫ðtÞ ¼ αμ ⊗
x∈AðtÞ

Px
μ ⊗
x∉AðtÞ

Le−μQx=2Re−μQx=2 ;

where AðtÞ is a region that ballistically spreads out from
initial site 1 at a velocity of 2M. We anticipate that there are
Oð1=MÞ errors involved in this approximation associated
with neglecting fluctuations in the charge arguments of the
projectorsP. We leave a more thorough accounting of these
errors to other works.

a. Computing ⧫ðΔτÞ1
Here we apply the first line of Eq. (A10) to⧫. We act on

supersites xþ 1, xþ 2. For the sake of the calculation it is
useful to define the local superoperators Ix

ef ≡ jP̂eihP̂fj
acting on a single supersite. Using these we can write
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hIxþ1;xþ2
Q1Q2

jPxþ1
Q̄=2Le−μQxþ2=2Re−μQxþ2=2i ¼

X
eLþeR¼Q1

X
fLþfR¼Q2

hIxþ1
eLfL

Ixþ2
eRfR

jPxþ1
Q̄=2Le−μQxþ2=2Re−μQxþ2=2i

¼
X

eLþeR¼Q1

X
fLþfR¼Q2

hIxþ1
eLfL

jPxþ1
Q̄=2ihIxþ2

eRfR
jLe−μQxþ2=2Re−μQxþ2=2i

¼
X

eLþeR¼Q1

X
fLþfR¼Q2

χQ̄=2χQ̄=2δeLQ̄=2δfLQ̄=2e
−μeRδeRfRχeR

¼ δQ1Q2
ðχQ̄=2Þ2e−μðQ1−Q̄=2ÞχðQ1−Q̄=2Þ;

where χQ is the size of the one-supersite Hilbert space with charge Q. Now we put this back into the first line of the
evolution equation to get

⧫ðΔτÞ1 ¼
X
Q1;Q2

1

dQ1
dQ2

Ixþ1;xþ2
Q1Q2

×
αμe−μQ̄

dQ̄
Px

Q̄=2 × δQ1Q2
ðχQ̄=2Þ2e−μðQ1−Q̄=2ÞχðQ1−Q̄=2Þ

¼ ðχQ̄=2Þ2αμe−μQ̄
X
Q1

Px
Q̄=2

dQ̄

Ixþ1;xþ2
Q1Q1

d2Q1

× e−μðQ1−Q̄=2ÞχQ1−Q̄=2:

Note that when we take expectation values of this quantity, we should find a value of size χ3, where χ is the typical value of
χQ in the thermal ensemble, which is exponentially large in M for large system size. As a function of Q1 the norm of the
terms is peaked around Q1 ¼ Q̄, giving

⧫ðΔτÞ1 ≈ ðd1Q̄=2Þ3αμe−3μQ̄=2
Px

Q̄=2P
xþ1
Q̄=2P

xþ2
Q̄=2

d3Q̄
≈ αμ

1

ðZ1
μÞ3

je−μðQ̂xþQ̂xþ1þQ̂xþ1Þihe−μðQ̂xþQ̂xþ1þQ̂xþ1Þj ¼ αμPx;xþ1;xþ2ðμÞ;

where Z1
μ is the one-site partition function.

b. Computing ⧫ðΔτÞ2
We now apply the second line of Eq. (A10) to ⧫, i.e., to calculate ⧫ðΔτÞ2. The main object of interest is

hLPQ1
RPQ2

jPxþ1
Q̄=2Le−μQxþ2=2Re−μQxþ2=2i ¼

X
eLþeR¼Q1

X
fLþfR¼Q2

hLPxþ1
eL
RPxþ1

fL
jPxþ1

Q̄=2ihLPxþ2
eR
RPxþ2

fR
jLe−μQxþ2=2Re−μQxþ2=2i

¼
X

eLþeR¼Q1

X
fLþfR¼Q2

δeLQ̄=2δfLQ̄=2χQ̄=2 × e−μðfRþeRÞ=2χeRχfR

¼ χQ̄=2 × e−μðQ1þQ2−Q̄Þ=2χ1Q1−Q̄=2χ
1
Q2−Q̄=2:

We also need to calculate

δQ1Q2

dQ1

hIxþ1;xþ2
Q1Q1

jPxþ1
Q̄=2Le−μQxþ2=2Re−μQxþ2=2i ≈

δQ1Q2

dQ1

ðχQ̄=2Þ2 × χQ1−Q̄=2e
−μðQ1−Q̄=2Þ:

Now by putting everything together we arrive at

⧫ðΔτÞ2 ≈
X
Q1;Q2

1

dQ1
dQ2

− δQ1Q2

αμe−μQ̄

dQ̄
Px

Q̄=2

�
Lxþ1;xþ2
PQ1

Rxþ1;xþ2
PQ2

−
δQ1Q2

Ixþ1;xþ2
Q1Q1

dQ1

�

×

�
χQ̄=2 × e−μðQ1þQ2−Q̄Þ=2χQ1−Q̄=2χQ2−Q̄=2 −

δQ1Q2

dQ1

ðχQ̄=2Þ2 × χQ1−Q̄=2e
−μðQ1−Q̄=2Þ

�
:

Note that expectation values here will take values of order OðχÞ on local product operators. For the Q of interest, this is a
factor of Oðχ2Þ smaller than ⧫ðΔτÞ1. So we ignore ⧫ðΔτÞ2.
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2. Evolution of ★
a. Evolve ð1=M2ÞLζxRζx on sites x, x+ 1

We now investigate the evolution of the ð1=M2ÞLζxRζx term under a unitary gate on x, xþ 1. Label the two lines of the
OTOC evolution in Eq. (A10) as ▴ and ▪, respectively. Consider ▴ first:

▴ ¼ 1

M2
hIx;xþ1

Q1Q2
jLζxRζxi ¼ δQ1Q2

X
eL

�
1 −

2eL
M

�
2

χeLχQ1−eL ;

where we have used

trxðζ̂xP̂x
fL
ζ̂xP̂

x
eLÞ ¼ trx

��
1 −

2Q̂x

M

�
P̂x
fL

�
1 −

2Q̂x

M

�
P̂x
eL

�
¼ M2

�
1 −

2eL
M

�
2

χeLδeLfL :

Hence,

▴ ¼
X
Q1;Q2

1

d2Q1

Ixþ1;xþ2
Q1Q1

X
eL

�
1 −

2eL
M

�
2

χeLχQ1−eL :

Now we estimate ▪ as

1

M2

�
LPx;xþ1

Q1

RPx;xþ1
Q2

−
δQ1Q2

Ix;xþ1
Q1Q1

dQ1

����LζxRζx

	
≈ dQ1

dQ2

�
1 −

Q1

M

��
1 −

Q2

M

�
:

We can drop the second term in the last line because it is a factor of Oðd2QÞ smaller than the first—this translates into being
exponentially smaller inM as our final expressions for OTOCs are dominated byQ for which d2Q is exponentially large inM
at finite chemical potential. This leads to

▪ ≈
X
Q1;Q2

1

dQ1
dQ2

− δQ1Q2

�
LPx;xþ1

Q1

RPx;xþ1
Q2

−
δQ1Q2

Ix;xþ1
Q1Q1

dQ1

�
× dQ1

dQ2

�
1 −

Q1

M

��
1 −

Q2

M

�
:

Combining the two terms ▪þ ▴ and dropping further terms of relative size Oð1=d2QÞ gives

X
Q1;Q2

1

dQ1
dQ2

LPx;xþ1
Q1

RPx;xþ1
Q2

�
1 −

Q1

M

��
1 −

Q2

M

�
þ
X
Q1

1

d2Q1

Ix;xþ1
Q1Q1

�X
eL

�
1 −

2eL
M

�
2

χeLχQ1−eL − dQ1

�
1 −

Q1

M

�
2
�
:

The former is readily expressed as ð1=M2ÞLðζxþζxþ1Þ=2Rðζxþζxþ1Þ=2. The latter term requires more work. Note first that we can
exactly evaluate

X
eL

�
1 −

2eL
M

�
2

d1eLd
1
Q1−eL − dQ1

�
1 −

Q1

M

�
2

¼ Q1

M2

�
1 −

Q1

2M

��
1

1 − 1
2M

�
dQ1

;

so that in total we get

1

M2
Lðζxþζxþ1Þ=2Rðζxþζxþ1Þ=2 þ

1

M

�
1

1 − 1
2M

�X
Q1

1

dQ1

Ix;xþ1
Q1Q1

Q1

M

�
1 −

Q1

2M

�

¼ 1

M2
Lðζxþζxþ1Þ=2Rðζxþζxþ1Þ=2 þ

1

2M − 1

X
Q1

1

dQ1

Ix;xþ1
Q1Q1

bQ:
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3. Evolve ð1=M2ÞLζx + 1Rζx , ð1=M2ÞLζxRζx + 1
on sites x, x+ 1

The result of such an evolution can be obtained from that
of ð1=M2ÞLζxRζxðΔτÞ in the previous section by noting
ð1=M2ÞLζxþ1

Rζx ¼ 1
M2 Lζxþ1þζxRζx − ð1=M2ÞLζxRζx and

that ζxþ1 þ ζx is conserved on x, xþ 1 for the gate
considered. As a result,

1

M2
Lζxþ1

RζxðΔτÞ ¼
1

M2
Lζxþ1þζxRð1=2Þðζxþζxþ1Þ

−
1

M2
LζxRζxðΔτÞ

¼ 1

M2
Lð1=2Þðζxþ1þζxÞRð1=2Þðζxþζxþ1Þ

−
1

2M − 1

X
Q1

1

dQ1

Px;xþ1
Q1

bQ:

The result is the same for ð1=M2ÞLζxRζxþ1
ðΔτÞ.

a. Summing up contact terms

Let us start by evolving the purely diffusive term at time t
by one time step. Using our results from earlier in this
section and the formulae in Table I, we obtain a sum of
contact terms in addition to the expected purely diffu-
sive term:

1

M2
LζxðtÞRζxðtÞ ¼

1

M2

X
yy0

Kxy0KxyLζyRζy0

→
1

M2
Lζxðtþ1ÞRζxðtþ1Þ þ

1

2M − 1

X
y∶y¼t mod 2

½K2
x;yðtÞ þ K2

x;yþ1ðtÞ�
X
Q1

1

dQ1

Py;yþ1
Q1

bQ1

−
1

2M − 1

X
y∶y¼t mod 2

2Kx;yKx;yþ1ðtÞ
X
Q1

1

dQ1

Py;yþ1
Q1

bQ

→
1

M2
Lζxðtþ1ÞRζxðtþ1Þ þ

1

2M − 1

X
y∶y¼t mod 2

ðKx;yþ1 − Kx;yÞ2ðtÞ
X
Q1

1

dQ1

Py;yþ1
Q1

bQ1
;

where ζxðtÞ ¼
P

yKxyζy and Kxy is the diffusion kernel of
Eq. (5).

APPENDIX C: EQUILIBRATION
IN OPERATOR SPACE

In this appendix, we use the superoperator formalism,
developed in Sec. V B 1, to show that the expectation
values of local superoperators, e.g., OTOCs, are at long
times determined by a Gibbs ensemble on operator space,
which reproduces the results established in Sec. VI A.
Consider a spin system with L sites, each with on-site
Hilbert space dimension q ¼ 2 (for concreteness). We want
to time evolve the “density matrix” corresponding to a pure
state in the space of operators, PVðtÞ ¼ jV̂ðtÞihV̂ðtÞj. It is
convenient to consider initial operators which include a
Gibbs factor, e.g., take an operator of form V̂ ¼ ω̂μÔ0ω̂μ,
where Ô0 ¼ Ẑ0, σ̂�0 is a local Pauli matrix on site 0 and
ω̂μ ≡ e−ðμ=4ÞQ̂. This is useful for our purposes because the
out-of-time-order part of the OTOC (the focus of our study)
can be expressed as an expectation value of a local
superoperator with respect to such a PV as

hPVðtÞjLW†
r
RWr

i¼hV̂ðtÞjLW†
r
RWr

jV̂ðtÞi
¼ tr½ω̂μÔ

†
0ω̂μŴ

†
rðtÞω̂μÔ0ω̂μŴrðtÞ�: ðC1Þ

If we apply local two-site U(1) random unitaries to such
a spin system for a very long time, we expect the system to
scramble completely, such that the time evolution is
essentially a nonlocal random unitary operator with con-
served U(1) charge. Hence, at long times, we expect the
average density matrix to be that obtained by plugging PV
into Eq. (13) for a unitary that acts on the whole chain. The
result is a Haar averaged density matrix (on operator space)
of the form

PVðt∞Þ ¼ jV̂kihV̂kj þ
X
Q1Q2

trðP̂Q1
V̂⊥P̂Q2

V̂†
⊥Þ

×
LPQ1

RPQ2
− δQ1Q2

dQ1

PQ1

dQ1
dQ2

− δQ1Q2

;

where we have separated V̂ into orthogonal components
V̂ ¼ V̂k þ V̂⊥, with V̂k ≡P

Qf½P̂QtrðP̂QV̂Þ�=dQg and

V̂⊥ ¼ V̂ − V̂k, and used the notation PQ ≡ jP̂QihP̂Qj. In

TABLE I. Useful expectation values for manipulating OTOC.

vr hvri hv†rvxi ð1=M2Þhv†rζxðtÞvrζxðtÞi
1 1 1 f½f2 þ ½(PyK

2
xyðtÞ)=M�ð1 − f2Þg

Z f 1 ff2 þ ½(PyK
2
xyðtÞ)=M�ð1 − f2Þg

σ� 0 ð1 ∓ fÞ=2 1
2
ð1�fÞ½ð1=M2ÞhζxðtÞζxðtÞi
−Kx½r�ð2=MÞf2−K2

x½r�ð2=M2Þð1−f2Þ�
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what follows, we consider the expectation value of a local
superoperator—for concreteness we will take a superop-
erator LWr

RW†
r
, where Ŵr is a local operator. When

evaluated in the “state” PVðtÞ, this will have two separate
contributions from the k, ⊥ components, respectively. Let
us deal first with the k component,

tr(PVk ðt∞ÞLWr
RW†

r
)

¼ trðω̂2μÔ
†
kŴrω̂2μÔkŴ†

rÞ
¼

X
Q1Q2

e−ðμ=2ÞðQ1þQ2ÞtrðÔ†
kP̂Q1

ŴrP̂Q2
ÔkŴ†

rÞ:

It is readily verified by example that for two local
observables, Ô and Ŵr, this sum is for large L sharply
peaked for Q1;2 ¼ Q̄þOð1Þ, where Q̄ ¼ L=ð1þ eμÞ.
[The key observation here is that local operators have
Oð1Þ charge under the adjoint action of Q̂]. This justifies
replacing PVkðt∞Þ with essentially any other distribution
peaked in the same position. A particularly simple choice is

PVkðt∞Þ → trðV̂†
kV̂kÞ

je−ðμ=2ÞQ̂ihe−ðμ=2ÞQ̂j
Zμ

;

where Zμ ¼ trðe−μQ̂Þ.
The ⊥ part of the density matrix takes form

PV⊥ðt∞Þ ¼
X
Q1Q2

trðP̂Q1
V̂⊥P̂Q2

V̂†
⊥Þ ×

LPQ1
RPQ2

− δQ1Q2
PQ1

dQ1

dQ1
dQ2

− δQ1Q2

:

We again consider the expectation values of local super-
operators (e.g., LWr

RW†
r
). Once again, the sum is sharply

peaked around Q1;2 ¼ Q̄þOð1Þ in the large L limit; i.e.,

PV⊥ðt∞Þ ∼ trðV̂†
⊥V̂⊥Þ

LPQ̄þλV
RPQ̄

dQ̄þλVdQ̄
:

As before, this justifies replacing PV⊥ðt∞Þ with a similar
distribution peaked at the same charge:

PV⊥ðt∞Þ → trðV̂†
⊥V̂⊥Þ

e−μðLQþRQÞ

Z2
μ

:

We reiterate that the above approximations are also
expected to hold only weakly [i.e., when we calculate
the expectation values of observables with anOð1Þ charge].
In summary, our late-time operator density matrix takes

the form

PVðt∞Þ ¼ trðV̂†
kV̂kÞ

je−ðμ=2ÞQ̂ihe−ðμ=2ÞQ̂j
Zμ

þ trðV̂†
⊥V̂⊥Þ

e−μðLQþRQÞ

Z2
μ

: ðC2Þ

This form, particularly the latter⊥ term, is nothing other than
a Gibbs ensemble for the superoperator conserved quantities
LQ, RQ. In fact, we could motivate Eq. (C2) using the
language standard to discussions of equilibration to the
Gibbs ensemble. Having identifiedLQ,RQ as the conserved
local densities, we could have proposed an obvious ansatz of
Gibbs form for the late-time density matrix,

Pansatz
V ¼ trðV̂†

kV̂kÞ
je−ð1=2Þη

ð1Þ
k Q̂ihe−ð1=2Þη

ð2Þ
k Q̂j

Zð1=2Þηð1Þk þð1=2Þηð2Þk

þ trðV̂†
⊥V̂⊥Þ

e−η
ð1Þ
⊥ LQ−η

ð2Þ
⊥ RQ

Z
ηð1Þ⊥

Z
ηð2Þ⊥

; ðC3Þ

and determined ηð1;2Þ⊥;k via the conditions depending on the

initial state,

hV̂⊥jLQjV̂⊥i
hV̂⊥jV̂⊥i

¼ tr
∘
�
e−η

ð1Þ
⊥ LQ−η

ð2Þ
⊥ RQ

Z
ηð1Þ⊥

Z
ηð2Þ⊥

LQ

�
; ðC4Þ

hV̂kjLQjV̂ki
hV̂kjV̂ki

¼ tr
∘� e−η

ð1Þ
k LQ−η

ð2Þ
k RQ

Zð1=2Þηð1Þk þð1=2Þηð2Þk

LQ

�
; ðC5Þ

and an otherwise identical pair of equations for RQ. It is
readily verified that for the choice of initial operator

V̂ ¼ ω̂μÔ0ω̂μ, we get η
ð1;2Þ
⊥;k ¼ μ as required, agreeing with

our final result Eq. (C2).
These results point to an extension of the principle of

thermalization to operator space. Recall that for the usual
notion of thermalization, if the time evolution U is
completely ergodic [save the presence of Uð1Þ symmetry],
we expect (and have indeed argued in previous sections for
random U) that local observables equilibrate according to

hÔðt → ∞Þiψ ¼ trðe−μψ Q̂ÔÞ
trðe−μψ Q̂Þ ðC6Þ

in the thermodynamic limit. Here, μψ is determined for a
given state ψ by balancing this equation for Ô ¼ Q̂. As we
have found above, a similar notion of thermalization occurs
in operator space. One uses the ansatz Eq. (C3), and

determines the chemical potentials ηð1;2Þk;⊥ by ensuring that

the superoperator charge densities in the initial state agree
with that of the final state [see Eqs. (C4) and (C5)]. The
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analogy is especially apparent for the ⊥ terms, where the
ensemble is precisely a Gibbs distribution with respect to
the superoperators.

APPENDIX D: SOLUTION OF σ + σ + OTOC
IN THE μ=∞ LIMIT

In this appendix, we show how the OTOC F
σþ
0
σþr

μ¼∞ (the
only nontrivial OTOC in the μ → ∞ limit) can be under-
stood in terms of a two-particle random walk of absorbing
particles, and how this description gives rise to the two
important qualitative features (double plateau structure and
lack of ballistic light cone) shown in Fig. 12. The consid-
erations of this appendix apply also for higher-dimensional
random circuits, which should therefore also exhibit the
same qualitative features.

As described in Sec. VI C, the OTOC F
σþ
0
σþr

μ¼∞ , which is
the zeroth-order term in the perturbative expansion, is given
by a process wherein the partition function is evaluated
between boundary conditions that contain two particles.
These boundary conditions are the following (using the
notation of Fig. 2).

(i) At time 0 there is a particle on site 0 on layers 21 and
a second particle on site s ≠ 0 on layers 22.

(ii) At time t there is a particle on site 0 on layers 22 and
a second particle on site s0 ≠ r on layers 21.

As long as the two particles in the initial state do not meet,
they each perform a random walk process of the type
described in Eq. (4). Upon meeting each other the two
particles annihilate, since there is nomatrix element with this
specific set of incoming particles (see, e.g., Fig 3). This
means that the computation of the OTOC reduces to the
following problem: Given two random walkers, one that has
to start at site 0, and another which has to end up at site r at
time t, what is the probability that their paths avoid
each other?
The solution to this problem can be easily formulated in

terms of single-particle transition probabilities, by noting
that there is a one-to-one mapping between crossing paths
of the two particles with a fixed set of starting and end
points and arbitrary paths where the two end points at time
t are interchanged. This mapping is simply given by
reinterpreting the paths of the two particles by changing
the last crossing into a reflection or vice versa (this is a
simple case of the Lindström-Gessel-Viennot lemma; see
Ref. [62] and the references therein) [63]. Using this trick,
the solution is given by

F
σþ
0
σþr

μ¼∞ðtÞ ¼
�X

s0<r

X
s>0

þ
X
s0>r

X
s<0

�
½K0;s0 ðτÞKs;rðτÞ

− K0;rðτÞKs;s0 ðτÞ�; ðD1Þ

where Kr1;r2ðtÞ is the probability of a single random walker
traveling from site r1 to r2 in time t

The problem of calculating the OTOC thus reduces to
solving a single-particle diffusion problem. This is easily
done in an infinite system, with the result already stated in
Eq. (5). Plugging this formula into Eq. (D1) yields a
solution shown in the right-hand panel of Fig. 12, which is
a function of r=

ffiffi
t

p
and saturates to the value 1

2
− ð1=πÞ as

t−1=2. This saturation value is nonzero because in an infinite
system there is a finite probability that the two particles
avoid each other for arbitrarily long times, i.e., by traveling
in opposite directions. Note that the mapping of the μ ¼ ∞
OTOC to the random walk problem defined above is not
restricted to 1D and we would end up with a similar
counting of noncrossing paths for random circuits in higher
dimensions. This means that the saturation value (which
equals the probability of noncrossing paths) is even larger
in those cases, as random walkers in higher dimensions
have a larger probability of avoiding each other.
To get the full form of the OTOC, with eventual

saturation to the second plateau at zero, one needs to solve
the diffusion problem in a finite system with either periodic
or reflecting boundaries. For a finite system of size L, and
for times t ≫ L2=D [where D is the diffusion constant,
which is of Oð1Þ in our case], the paths of the two particles
have to cross eventually, and as a result the OTOC decays to
zero. Here we focus on the case of reflecting boundaries,
where the above way of counting crossing paths remains
valid, although we checked numerically that the results are
similar for closed boundaries (the time signaling the end of
the prethermal plateau is numerically larger in the case with
open boundaries, reflecting the fact that particles can evade
each other for longer). Instead of giving an exact solution
on the lattice (which is nevertheless possible), we solve the
same problem in the continuum, substituting the single-
particle transition probabilities with the solution of the
continuum diffusion equation with reflecting boundaries,

∂tKðx; tÞ ¼ D∂2
xKðx; tÞ;

∂xKðx; tÞjx¼0;L ¼ 0; ðD2Þ

where we defined Kðx; tÞ≡ K0;xðtÞ. This equation can be
solved by doing an eigendecomposition of the operator
−D∂2

x, using eigenstates with the appropriate boundary
conditions, resulting in the single-particle propagator

Kx;yðtÞ ¼
1

L

X
n∈Z

e−π
2Dtn2=2L2

cos
πnx
L

cos
πny
L

: ðD3Þ

We can then approximate the OTOC by plugging this
formula into Eq. (D1). At short times, when Dt ≪ L2, the
resulting curve follows the result in an infinite system
(which can be seen explicitly by applying the Poisson
summation formula to the above expression and then
looking at the lowest-order term in L2=ðDtÞ), while at
times Dt ≫ L2 it goes to zero as ∝ exp½−ðπ2DtÞ=ð2L2Þ�.
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APPENDIX E: FQ0Qr AND FQ0σ +
r

IN THE μ ≫ 1 LIMIT

Here we complement the results, presented in Sec. VI C
for μ ≫ 1 behavior of the σ̂þσ̂þ OTOC, with analogous
results for the Q̂ Q̂ and Q̂σ̂þ OTOCs. Looking at the first
two terms in the expansion Eq. (28) for FQQ

μ , evaluated as
the partition function Eq. (15) with the appropriate boun-
dary conditions, we find that both terms decay algebrai-
cally: theOðe−μÞ term as t−1=2 and theOðe−2μÞ term as t−1,
such that the relative size of the second to the first term
increases as

ffiffi
t

p
, similarly to the σ̂þσ̂þ case presented in the

main text. Eventually the ratio saturates to a value that is
linear in system size. These results are shown in Fig. 15.
Considering the FQσþ

μ OTOC, shown in the left-hand
panel of Fig. 16, we observe that while the first-order term
has a simple algebraic decay, the second term has a
somewhat more complicated structure than the ones pre-
sented in the main text. Rather than the ratio of the two
terms simply increasing monotonically in time as a power
law, it has an initial increase, a maximum, and then a

decreasing part. At an even later timescale, t ∼ L2, finite-
size effects become prominent, which leads to an eventual
increase to an OðLÞ value. Looking at the spatial structure
(right-hand panel of Figs. 15 and 16), we observe diffusive
spreading of both OTOCs, similarly to σ̂þσ̂þ and QQ
discussed in the main text.
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FIG. 15. Left: First nonvanishing contribution to the Q̂0Q̂0

OTOC at order e−μ for system sizes L ¼ 20; 24;…; 40. This term
decreases as 1=t until saturation. Inset: Ratio of the second- and
first-order contributions increases as

ffiffi
t

p
and saturates to an OðLÞ

value. Right: Contour lines of the Q̂ Q̂ OTOC truncated
at Oðe−2μÞ for μ ¼ 2, consistent with diffusively spreading
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behavior. Right: Contour lines of the Q̂σ̂þ OTOC truncated at
Oðe−2μÞ for μ ¼ 4.

RAKOVSZKY, POLLMANN, and VON KEYSERLINGK PHYS. REV. X 8, 031058 (2018)

031058-26

https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1073/pnas.1703516114
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
http://arXiv.org/abs/1210.6644
https://doi.org/10.1007/JHEP03(2015)051
http://online.kitp.ucsb.edu/online/entangled15/kitaev
http://online.kitp.ucsb.edu/online/entangled15/kitaev
http://online.kitp.ucsb.edu/online/entangled15/kitaev
http://online.kitp.ucsb.edu/online/entangled15/kitaev
http://online.kitp.ucsb.edu/online/entangled15/kitaev
https://doi.org/10.1103/PhysRevLett.115.131603
https://doi.org/10.1007/JHEP10(2016)009
https://doi.org/10.1007/JHEP10(2016)009
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1088/1751-8121/aa6f38
https://doi.org/10.1088/1751-8121/aa6f38
https://doi.org/10.1103/PhysRevD.96.065005


[19] S. Sachdev and J. Ye, Gapless Spin-Fluid Ground State in a
Random Quantum Heisenberg Magnet, Phys. Rev. Lett. 70,
3339 (1993).

[20] J. Polchinski and V. Rosenhaus, The Spectrum in the
Sachdev-Ye-Kitaev Model, J. High Energy Phys. 04
(2016) 001.

[21] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-
Kitaev Model, Phys. Rev. D 94, 106002 (2016).

[22] A. Bohrdt, C. B. Mendl, M. Endres, and M. Knap, Scram-
bling and Thermalization in a Diffusive Quantum Many-
Body System, New J. Phys. 19, 063001 (2017).

[23] D. J. Luitz and Y. B. Lev, Information Propagation in
Isolated Quantum Systems, Phys. Rev. B 96, 020406 (2017).

[24] I. Kukuljan, S. Grozdanov, and T. Prosen, Weak Quantum
Chaos, Phys. Rev. B 96, 060301 (2017).

[25] A. Nahum, S. Vijay, and J. Haah, Operator Spreading in
Random Unitary Circuits, Phys. Rev. X 8, 021014 (2018).

[26] C. von Keyserlingk, T. Rakovszky, F. Pollmann, and S.
Sondhi, Operator Hydrodynamics, OTOCs, and Entangle-
ment Growth in Systems without Conservation Laws, Phys.
Rev. X 8, 021013 (2018).

[27] C. Jonay (unpublished).
[28] J. Maldacena, S. H. Shenker, and D. Stanford, A Bound on

Chaos, J. High Energy Phys. 08 (2016) 106.
[29] E. Leviatan, F. Pollmann, J. H. Bardarson, and E. Altman,

Quantum Thermalization Dynamics with Matrix-Product
States, arXiv:1702.08894.

[30] J. R. Dorfman and P. Goddard, in An Introduction to Chaos
in Nonequilibrium Statistical Mechanics, Cambridge
Lecture Notes in Physics (Cambridge University Press,
Cambridge, England, 1999).

[31] A. C. Jana, R. Loganayagam, and A. Rudra, Renormaliza-
tion in Open Quantum Field Theory I: Scalar Field Theory,
arXiv:1704.08335.

[32] S. Nagy, J. Polonyi, and I. Steib, Quantum Renormalization
Group, Phys. Rev. D 93, 025008 (2016).

[33] N. Bloembergen, On the Interaction of Nuclear Spins in a
Crystalline Lattice, Physica (Amsterdam) 15, 386 (1949).

[34] P. G. De Gennes, Inelastic Magnetic Scattering of Neutrons
at High Temperatures, J. Phys. Chem. Solids 4, 223 (1958).

[35] L. P. Kadanoff and P. C. Martin, Hydrodynamic Equations
and Correlation Functions, Ann. Phys. (N.Y.) 24, 419
(1963).

[36] X. Chen, T. Zhou, D. A. Huse, and E. Fradkin, Out-of-Time-
Order Correlations in Many-Body Localized and Thermal
Phases, Ann. Phys. (Berlin) 529, 1600332 (2017).

[37] J. Lux, J. Müller, A. Mitra, and A. Rosch, Hydrodynamic
Long-Time Tails after a Quantum Quench, Phys. Rev. A 89,
053608 (2014).

[38] S. Mukerjee, V. Oganesyan, and D. Huse, Statistical Theory
of Transport by Strongly Interacting Lattice Fermions,
Phys. Rev. B 73, 035113 (2006).

[39] This is in contrast to the biased diffusion process describing
the dynamics of out-of-time-ordered correlators in random
circuits without conserved quantities as described in pre-
vious work [25,26]. In that case the diffusion constant was
found to be a decreasing function of the local Hilbert space
dimension q. We emphasize that the diffusive broadening of
the OTOC front is different from the diffusion of conserved
charge discussed in this section.

[40] S. A. Hartnoll, A. Lucas, and S. Sachdev, Holographic
Quantum Matter, arXiv:1612.07324.

[41] S. H. Shenker and D. Stanford, Black Holes and the
Butterfly Effect, J. High Energy Phys. 03 (2014) 067.

[42] Here, by weakly coupled we mean that a large N
limit is used to control the perturbation theory, sometimes
implicitly by simply ignoring certain diagrams, as in
Ref. [16].

[43] A. A. Patel, D. Chowdhury, S. Sachdev, and B. Swingle,
Quantum Butterfly Effect in Weakly Interacting Diffusive
Metals, Phys. Rev. X 7, 031047 (2017).

[44] Y. Werman, S. A. Kivelson, and E. Berg, Quantum
Chaos in an Electron-Phonon Bad Metal, arXiv:1705
.07895.

[45] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, Chaos in
Quantum Channels, J. High Energy Phys. 02 (2016) 004.

[46] T. Prosen and I. Pižorn, Operator Space Entanglement
Entropy in a Transverse Ising Chain, Phys. Rev. A 76,
032316 (2007).

[47] Note that this is different from the operator entanglement of
the time evolution operator itself, which is another proposed
measure of chaotic behavior [48].

[48] T. Zhou and D. J. Luitz, Operator Entanglement Entropy of
the Time Evolution Operator in Chaotic Systems, Phys. Rev.
B 95, 094206 (2017).

[49] In fact, for q ¼ 2, even when the time-ordered part is
nontrivial (i.e., time dependent), it can be computed exactly
on average using Eq. (5).

[50] We expect that more generally these conclusions hold for
any traceless operator V̂ with a finite support that satisfies
trðQ̂mV̂Þ ≠ 0 for some positive integer m.

[51] This is in contrast to the case without symmetries, where the
sums in Eq. (14) would go over all states in the two-site
Hilbert space and thus factorize [25].

[52] G. Vidal, Efficient Classical Simulation of Slightly En-
tangled Quantum Computations, Phys. Rev. Lett. 91,
147902 (2003).

[53] F. Verstraete, V. Murg, and J. I. Cirac, Matrix Product
States, Projected Entangled Pair States, and Variational
Renormalization Group Methods for Quantum Spin Sys-
tems, Adv. Phys. 57, 143 (2008).

[54] Note that the velocity vB ≈ 0.45 observed here numerically
is smaller than the butterfly velocity of a random circuit with
no symmetries and the same local Hilbert space dimension,
derived to be 0.6 in Refs. [25,26].

[55] D. Belitz, T. R. Kirkpatrick, and T. Vojta, How Generic
Scale Invariance Influences Quantum and Classical Phase
Transitions, Rev. Mod. Phys. 77, 579 (2005).

[56] Note that the OTOCs, C and F , are expectation values of
superoperators.

[57] The presence of hydrodynamic tails can be made even more
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