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Abstract: People exhibit a robust ability to understand the
actions of others around them. In this work, we identify
two biologically inspired mechanisms that we hypothe-
size to be central in the function of action understand-
ing. The first module is a contextual predictor of the ob-
served action, given the goal-directed movement towards
objects, and the actions that are allowed to be performed
on the object. The secondmodule is a kinematic trajectory
parser that validates the previous prediction against a set
of learned templates.Wemodel bothmechanisms and link
them to the environment using the cognitive framework
of Dynamic Field Theory and present our first steps into
integrating the aforementioned modules into a consistent
framework for the purpose of action understanding. The
twomodules and the combined architecture as awhole are
experimentally validated using a recording of an actor per-
forming a series of intentional actions testing the ability of
the architecture to understand context and parse actions
dynamically. Our initial qualitative results show that ac-
tion understanding benefits from the combination of the
two modules, while any module alone would be insuffi-
cient to resolve ambiguity in the perceived actions.
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1 Introduction
The promise of intelligent robots sharing the environment
with human agents and collaborating towards a common
goal has been a major driving force for assistive robotics
applications [1, 2]. That in itself requires robots to be en-
dowed with capabilities that are comparable to humans
in behavior production and environmental reasoning. Hu-
man behavior and cognitive reasoning abilities can be
seen as a dynamic, complex interaction between the body,
brain and the environment the human agent is situated in.
It is the tight coupling between the agent’s sensory and
motor systems and the environment that gives rise to a se-
ries of adaptive and proactive actions to fulfill a certain
intention. The situated embodied view of cognition en-
compasses the above ideas [3]. Furthermore, it aims to in-
clude the agent’s past experiences as well as the neuronal
processes to its understanding of behavior and cognition
[4, 5].

Action understanding (AU) can be defined as the task
of classifying a stream of human-related multimodal data
(motion, audio, contextual, etc.) into semantic terms suit-
able for influencing the future intelligent behavior to sup-
port the human agent in a meaningful manner. Intelli-
gent systems face several challenges in AU. These include
the spatiotemporal variation within a class of actions, as
well as interclass and intraclass variation in how persons
perform actions. The spatiotemporal variation here refers
to the fact that similar actions might vary in duration
and path followed across agents and trials. Another ma-
jor challenge is the large search space of actions available
to an agent in any environment [6, 7]. To be able to under-
standanaction, intelligent systemsneed to be able to solve
the spatiotemporal variation problem by a robust trajec-
tory recognition system, and the large search space prob-
lem by incorporating the context of the action.

In our quest towards an end-to-end biologically-
inspired architecture for hierarchical humanactionunder-
standing, we present two systems that address the chal-
lenges mentioned above and that we hypothesize to be
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central to the task of AU. The two systems are inspired by
processes observed within human behavioral studies, as
discussed in section 2. The main challenges addressed in
this work are the context understanding of an observed
movement and the trajectoryparsingof themovement.Ad-
ditional secondary challenges addressed in this work in-
clude how the context understanding interacts with tra-
jectory parsing, and how visual information of motion can
be used as an input in a manner consistent with the com-
plete system. Thework presented is inspired by definitions
within the embodied situated cognition stance, as dis-
cussed in section 2.1. The context understanding is based
on definitions of affordances as given in section 2.2, and
the trajectory parsing follows ideas of biological motion
perception as discussed in section 2.3. The modules and
the whole systems are modeled using the cognitive frame-
work developed within dynamic field theory (DFT).

The modeling of action understanding systems us-
ing DFT has been addressed recently in the literature.
A neural dynamic approach for parsing a sequence of
actions was presented in [8] by Lobato et al. The au-
thors present a neural-dynamic architecture that is capa-
ble of detecting and representing a sequence of actions,
namely reaching/grasping/dropping objects on a table-
top scenario. Trajectory recognition was not considered,
but rather three-dimensional positions of hands and ob-
jects were used to calculate whether the hand was ap-
proaching the object or not. The overall architecture is ca-
pable of memorizing a string of actions for overall action
understanding. Similar work was also presented within
neural fields in the work of Bicho et al., in which the fo-
cus was on integrating verbal and nonverbal communica-
tion in a joint-assembly task in which the sequence of ac-
tionswasgiven [9]. In contrast to theworkpresentedbyLo-
bato et al. and Bicho et al. we extend the application area
of DNFs towards representation and recognition of tempo-
rally extended actions using context and movement infor-
mation. Furthermore, while the work presented in Lobato
et al. andBicho et al. dealwith only table-top scenarios,we
present systems that are general enough for understand-
ing locomotion, manipulation, and actions in free-space.

Regarding the task of AU itself, there exist many ways
to understand actions an agent might perform, which ren-
ders a large search space for an AU system. We address
this problem of context understanding by modeling three
processes into a contextual action understanding system.
Firstly, we model the detection of goal-directed move-
ments. Secondly, we model the shifting of attention from
joints (end-effector) to objects in the line of action of the
joint movements. Finally, we model the context under-
standing of the movement given the affordances of the ob-

jects towards which the attention was shifted. The term af-
fordances relates to the action possibilities that an object
might allow [10]. A thorough definition of affordances is
given in section 2.2. The context of the movement based
on affordances is understood using a novel contextual ac-
tion recognition system (CARS). This CARS is composed
of several contextual action recognitionmodules (CARMs)
which are further discussed in section 5.2. Several CARMs
are used as one CARM is needed for every item of inter-
est (e.g., end-effector) that we might want to track. The
function of the CARS is to pick the most relevant subset
of templates, in a pre-learned database of templates, that
represent movement features. A separate affordance logic
block aids in this selection, and is further discussed in sec-
tion 5.4.

The second AU challenge addressed in this work is
trajectory parsing. This online comparison is performed
within the trajectory action recognition system (TARS).
This system allows for spatiotemporal variation between
the template and the observed motion and outputs a pos-
itive result if they are matched. The TARS is composed
of several action recognition modules (TARMs) specific
for each action to be recognized as discussed in sec-
tion 5.3. The transformation from the visual input of joint
movements into biologically-inspired features for compar-
ison purposes is considered and further discussed in sec-
tion 5.1.

Overall, the AU architecture in this work presents, for
the first time, a novel predictive system within DFT that
models attention-shifts andpairs upwith a trajectory pars-
ing system in a second step. The trajectory parsing system
takes account of spatial as well as temporal variations that
are usually problematic when understanding actions. Par-
ticular attention is given to how objects and the environ-
ment are integrated into the overall architecture and on
how they can drive action understanding. The two mod-
ules and the combined architecture as a whole are experi-
mentally validated using a recording of an actor perform-
ing a series of intentional actions. This experiment focuses
on the ability of the architecture to understand the context
and parse actions dynamically. Our initial qualitative re-
sults, which are given in section 6, show that action under-
standing benefits from the combination of the two mod-
ules, while any module alone would be insufficient to re-
solve ambiguity in the perceived actions. A complete dis-
cussion of the results and the AUA itself is given in section
8.

Compared to the state-of-the-art, the AU architecture
in this work combines both context recognition and tra-
jectory recognition rather than opting for either contextual
recognition alone or trajectory parsing by itself for the task
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of action understanding. Furthermore compared to the re-
lated work within DFT we explicitly model objects and
their affordances in amanner that is consistentwithdefini-
tions in the situated, embodied view of cognition that DFT
is built upon. The application domain of thismodel ranges
from scenario understanding to human-robotic interac-
tion scenarios where intelligent systems are expected to
assist humans in a meaningful manner. [1, 2]. The model’s
strength stems from the interaction between the contex-
tual systems (CARS), the trajectory parsing system (TARS)
and the affordance system, such that a wide range of ac-
tions (manipulation, locomotion and free-space actions)
could be understood. The model suffers from a few limita-
tions currently. Firstly, the model makes use of a few algo-
rithmic shortcuts that are not biologically plausible. Sec-
ondly, the current technical implementation is restrictive
(e.g., due to slow o�ine template generation). A faster im-
plementation would be a topic for future work such that a
full evaluation of system performance across different sce-
narios becomes possible.

2 Background
In this section we aim at defining the main concepts that
motivate our cognitive actionunderstanding approach for-
mally. We will discuss the ideas behind situated cognition
in section 2.1, and how it motivates the concept of affor-
dances that is further discussed in section 2.2.We also give
a brief discussion on human movement perception in sec-
tion 2.3 and discuss how it has been historically significant
to the problem of action understanding. Finally, in section
2.4, we discuss the connections of the systems developed
in this work to findings in neuroscience.

2.1 Situated Embodied Embedded Cognition

The basic hypothesis behind situated cognition is that be-
havior is a product of the dynamic interaction between
the agent and its environment, and is inseparable from
the context that it emerges from [4, 11, 12]. Information is
thought to be a product of the coupling between the agent
and its environment rather than an a priori representation
in the agent’s brain as proposed by traditional views of
cognition. Situated cognition shares ideas with ecological
psychology [10] and intentional dynamics [13]. Moreover,
cognition, as defined here, is understood as a continuous
state inwhichmotor-sensory systems interact dynamically

and thus can be described naturally using ideas from dy-
namic system theory [5].

We define action understanding to be a dynamic pro-
cess that respects the tightly coupled interaction between
the motor system, sensory information, and the environ-
ment. We use DFT to model this dynamic process as DFT
provides the required tools, e.g., the stability of attractor
states, localized-bump representations, etc. to model the,
e.g., link between environment and sensors. We discuss
DFT in detail in section 3. Situated cognition shares ideas
with the field of ecological psychology, specifically with
definitions of affordances which we discuss further in the
following section.

2.2 Affordances

There has been accumulating evidence that actions are
coded in their goals [14–17]. Direct perception of action
possibilities (affordances) of the objects available in the
environment and the goal-directed movements towards
them could give a hint of what the context of the action
is [10, 18]. The CARS presented in this work models this
process. The function of the CARS is to understand goal-
directed behaviors through prediction of the object to be
manipulated and the processing of the affordances of that
object.

The term affordances was introduced by Gibson as a
general concept to explain what the environment can af-
ford for an agent, and what the action possibilities are [10,
18, 19]. The exact definition of affordances has been apoint
of dispute since it was introduced by Gibson himself, lead-
ing to a range of attempts to formalize the concept [20–24].
In this work, however, we take inspiration from the pre-
vious references and define affordances as agent-relative,
activity-potentials an agent directly perceives from the im-
mediate environment. They are agent-relative in the sense
that the affordances are attributed to environmental ob-
jects with respect to agent parameters (e.g height, width,
ability, etc.), as an example, an infant’s chair might not af-
ford sitting on for an adult and so on [25]. Trajectory in-
formation should also be used alongside context to vali-
date the results of the contextual information and solve
anyambiguitywhen several possible affordances/contexts
are present. In the following, we discuss what biological
motion perception is, and how trajectories are perceived
and understood biologically.
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2.3 Biological motion perception

The early works of Jules Marey [26] and Gunnar Johans-
son [27] tried to study human biological motion percep-
tion by attaching markers or light sources to the joints of
a human in a dark suit. The animation produced when
recording the activity of the actor is known as point light
animation (PLA). These PLAs were of great interest as hu-
manswere successful at recognizing the underlying action
when the animations were shown to them [28]. These re-
sults indicate that stored patterns of movement informa-
tion could be used to interpret incoming sensory informa-
tion of movement. Indeed, biological systems depend on
a stream of features (stimulus) produced by static views
of the body to perceive and classify movement patterns
[29]. These features can be thought as form cues of a spe-
cific body configuration, to that endGiese in [30] discusses
the concept of snapshots to explain how biologicalmotion
could be solved. We direct the reader to the Giese’s work
in [31–34] for further discussion. Therefore, information
extracted from biological motion is crucial to the under-
standing of human movements [35, 36]. The TARS within
our work models these ideas and aims at understanding
actions by parsing the movement trajectories.

2.4 Relation to Neuroscience

Action and context understanding is also observed on a
neuronal level in biological agents, e.g., as functions of
the mirror neuron system (MN) and the Canonical neuron
system (CN), respectively. MNs are specific neurons in the
agent’s brain that fire not only when the agent is perform-
ing an action, but also when the same goal-directed action
is observed. Their proposed function is to represent an em-
bodied process that allows action and intention recogni-
tion [14, 37] as well as Theory of Mind [38]. The mecha-
nisms the MN system uses to achieve these functions are
usually explained by the direct “matching hypothesis” or
“motor resonance” in which the encoded neural code of
what is observed is matched with a generated neural code
of how that movement could be executed [39, 40]. What
is being matched could be, high-level abstraction of the
intentions, a motor code encoding the plan to emulate a
goal-oriented action, or a detailed motor code of the ac-
tion itself encoding the trajectory of the movement and
how to imitate it [41]. Additionally, it has been shown that
there exist specific neurons in the MN system that have
large specificity towards the way the action is performed
and the final goal accomplished, while other neurons lack
this level of specificity and the relationship is restricted to

the action goal. Other properties of MNs are that they do
not activate when observing objects alone, nor when the
movement alone is shown [42].

Canonical neurons, on the other hand, seem to
encode action possibilities directed towards objects and
motivates our incorporation of affordances in a biological
model for AU [42–46]. Indeed, action can be understood
given both the motion and the goal towards which the
action is directed [47].

In this section, we highlighted the need for both bio-
logically inspiredprocesses of environment context under-
standing and trajectory parsing to be integrated dynami-
cally within a consistent cognitive framework for AU. We
decided to model this framework using the Dynamic Field
Theory as introduced next.

3 Dynamic field theory
At the core of the modules that make up TARS, CARS
and the affordance logic system, are decision making pro-
cesses that dynamically evolve with the tightly coupled in-
put. These three systems all require cognitive abilities to
achieve their functions. CARS requires the cognitive abil-
ities of object detection, motion prediction, and goal se-
lection. TARS, on the other hand, requires feature detec-
tion and comparison. Finally, the affordance logic system
requires the abilities of dynamic selection and long-term
memory. In the following, we present the dynamic cog-
nitive framework of DFT and elaborate on the building
blocks that are used within the different systems in this
work.

3.1 Dynamics and instabilities

Dynamicfield theory (DFT)provides themathematical and
theoretical framework, which builds on dynamic neural
fields (DNFs), to model the embodied, situated view of
cognition [5]. DNF is a cognitive mathematical model of
the dynamic neuronal activation on a population level.
It describes decision making inspired by the pattern for-
mation within the cortical neural populations. It is the
stable states (localized-bumps) that dynamically evolve
(anddevolve) in time, given dynamic perceptual input into
the neural fields, which provide a unit of representation.
These units of representations are a function of the com-
plex interaction between the neurons in the population
and are the primary units to describe cognitive proper-
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ties within the neural fields. The strong recurrent connec-
tions between these neurons produce patterns that model
detection, selectivity, and working memory. The dynam-
ics are mathematically described in the following integro-
differential equation that was initially proposed in [48]

τu̇(x, t) = −u(x, t)+h+
∫︁
f
(︀
u(x′, t)

)︀
ω(x−x′)dx′+S(x, t) (1)

ω(x−x′) = cexc exp
(︂
(x − x′)2

2σ2exc

)︂
−cinh exp

(︂
(x − x′)2

2σ2inh

)︂
(2)

f
(︀
u(x, t)

)︀
= 1
1 + exp

(︀
− βu(x, t)

)︀ (3)

in which the activation of the field u(x, t), as given in (1),
describes the activity over the metric dimension x at time
t. Here, x, represents a behavioral dimension that the un-
derlying neuronal populations respond to. This behavioral
dimension corresponds to a space of features and proper-
ties that the neurons encode. Explicitly stated, activity at
a certain point in the feature space reflects evidence for
that feature value. The amount of activation of the field
u can then be understood as the presence or lack of in-
formation about a space of features along the behavioral
dimension x. The time scale τ describes the relaxation of
the field, and the negative constant h defines the resting
level of the field. The term S(x, t) describes an external in-
put to the neural field. The integral term conveys the in-
teraction between different field locations. Sufficiently ac-
tivated field locations contribute to the neural interaction
by way of the interaction kernel ω given in (2). That is, the
output of the sigmoid function f , given in (3), modulates
the activation contribution, given by ω, to other field loca-
tions. The sigmoid function with slope β is shown in Fig.
1(a). An example of an interaction kernelω could be a sym-
metrical homogeneous interaction kernelwith short-range
excitation (determined by the amplitude factor cexc, with
an area of influence determined by σexc) and a long-range
inhibition (determined by the amplitude factor cinh, with
an area of influence determined by σinh) [49]. Four interac-
tion kernels are shown in Fig. 1(b). The choice of the kernel
is usually dependent on the kind of cognitive behavior to
be shown. Analysis of (1) leads to the characterization of
attractor solutions. In the following, we describe these so-
lutions and their significance [5, 48, 50].

In the case where no external input is present, the
field has a constant level of activation, equal to the neg-
ative resting level h, along the field dimension. This non-
peak attractor state, referred to as a sub-threshold solution,
maintains its stability under weak external input S(x, t).
In the case that the activation level exceeds a threshold
level where the lateral interaction ω(x − x′) and the sig-
moid function f (u(x′, t)) become active, the neural field is

driven in a different dynamic domain. In this case, a local-
ized peak develops in the field due to the increase of acti-
vation in the field locations where the external input is the
largest [50].

Starting from a sub-threshold solution, a detection in-
stability can occur in which peaks evolve at positions of
sufficient activation. The word instability here is used to
indicate a translation between two stable states. The de-
tection instability occurs at positions that were successful
at accumulating enough activation to overcome the acti-
vation threshold of the field. In other words, the saliency
of the input, or stimulus strength of that feature-space
at that position, or the certainty of the presence of that
feature in the current state, was significant. It is possible
to have enough activation at several locations within the
field and develop localized activity peaks that provide a
representation of the existence of the underlying feature-
space values. The interaction kernel labeled with num-
ber 2 in Fig. 1(b) is an example of a kernel that is used
for the detection instability. Furthermore, an example is
given in Fig. 1(c) and Fig. 1(d). Figure 1(c) shows an in-
put at a feature position with stimulus strength (solid grey
line) that is not sufficient enough to activate the complete
field (dashed black line) therefore no information is rep-
resented in that field. In Fig. 1(d) the stimulus is strong
enough to produce a bump in the field, giving a represen-
tation of the existence of information which can be read
out for further processing. The interaction kernel used in
this example is the second kernel in Fig. 1(b), and that is
shown by the fact that the output takes the shape of the
kernel around the input’s location.

The second case that can be observed is known as
the selection instability, in which only one stable peak can
evolve in the field, and any subsequent activation at differ-
ent locations in the field is inhibited. Only a large enough
activation (one that can accumulate enough activation to
overcome the global inhibition induced by the first peak
as well as the field’s threshold) can appear and inhibit
the original peak. When two positions of a quiescent field,
that shows the selection instability, show activation at the
same time, the one with higher activation develops the
peak, and inhibits the other positions, showing a selec-
tion of two options. In the case when two or more posi-
tions have similar activation values in a field showing the
selection instability, noise in the field plays a role in se-
lecting one of the locations to develop a peak. Positions,
where peaks of activations are developed, are meaningful
as units of representation, and they indicate the existence
of an essential underlying value given the selected feature-
space. The interaction kernel labeledwith number 3 in Fig.

Unangemeldet
Heruntergeladen am | 15.07.19 11:00



24 | Laith Alkurdi, Christian Busch, and Angelika Peer

f(
x
)

w
(x

)

x x

feature space feature space

in
p
u
t/

 a
ct

iv
at

io
n

in
p
u
t/

 a
ct

iv
at

io
n

feature spacefi
ri

n
g
 r

at
e 

(H
z)

feature spacefi
ri

n
g
 r

at
e 

(H
z)

(a) (b)

(c) (d)

(e) (f)

1

2

3
4

h
h

Figure 1. Dynamic neural field components and distribution of population activation. (a) The sigmoid function. (b)
Examples of the interaction kernels: 1) An interaction kernel used to model a workingmemory instability. 2) An interac-
tion kernel used tomodel the detection instability. 3) An interaction kernel used tomodel the selection instability. 4) An
interaction kernel used to produce a traveling wave transient state. (c) Subactivation solution within the DNF. (d) A field
with a stable solution around the input. (e) A group of tuning curves spanning over the features space with no response
to a stimulus. (f) The distribution of population activation solution (dashed grey line) to a feature input (indicated at
position of the black arrow).
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1(b) is an example of a kernel that is used for the selection
instability.

An important case that can also be observed in the
analysis of (1) is one that modelsworking memory. This in-
stability can be observed when sufficient interactions are
existent in the field to sustain an input evenwhen these in-
puts cease to exist. This instability aids in modeling deci-
sion/features that weremade/observed in the past. The in-
teraction kernel labeled with number 1 in Fig. 1(b) is an ex-
ample of a kernel that is used for modeling working mem-
ory instability. The working memory instability ultimately
leads to a self-sustainedactivation that representsworking
memory.

In the same way that peaks can be stabilized, they
can be destabilized by introducing a negative input to the
peak position or by reducing the excitation there. This is
referred to as the reverse detection instability or forgetting
instability.

3.2 Dynamic neural fields and distribution of
population activity

These elementary forms of cognition (detection, selection
andworkingmemory) discussed so far operate on patterns
of neural activity representing sensory stimuli or motor
control information. To establish this link between neural
activity and external stimuli and internal motor actions,
the concept of neural tuning is commonly used. The way
a DNF can be related to an activity of neural population is
through the concept of Distribution of Population Activity
(DPA) [51]. An example is given in Fig. 1(e), where 7 (Gaus-
sian approximated) tuning curves span the feature space.
The DPA is calculated using the following equation

DPA(x, t) =
(︁∑︁

tuningx × firing rate(i, t)
)︁
/N, (4)

where N is the number of neurons whose tuning curves at
positions x are multiplied by their activation (firing rate),
at time t. The final result of a DPA is shown in Fig. 1(f)
where given a feature value, several neurons respondwith
their firing rate (solid black lines). The final result is visu-
alized with the DPA (dashed grey line). The lateral interac-
tion between those neurons by their activations give way
to dynamics within the field as discussed in section 3.1.

3.3 Learning within dynamic field theory

The input that might be used in a field could be processed
into a decision, or it could be used to maintain a memory
trace over the feature space as a simple form of learning.

Learning in DNFs can be understood using what is known
as apreshapeor amemory trace [5, 50]. It is a formalization
that allows retention of stimuli information in long-term
memory form. The memory trace, which equation is

τl Ṗ(x, t) =λbuild
(︁
− P(x, t) + f

(︀
u(x, t)

)︀)︁
f
(︀
u(x, t)

)︀
−λdecayP(x, t)

(︁
1 − f

(︀
u(x, t)

)︀)︁
, (5)

takes input from a DNF with u(x, t), and builds up acti-
vation P(x, t) towards the attractor solution (activation-
bump) from the input with a time constant τl/λbuild that
is slower than the underlaying DNF. This built up informa-
tion is lost at a rate that is even slower, τl/λdecay, when
there is no activation present and models long-term mem-
ory. Here, λdecay and λbuild are the rates at which the pre-
shape decays or builds up. The constant τl is the time con-
stant of learning in the preshape field.

The memory trace is used as a non-activating input to
other decision DNFs. It thus acts as a sub-threshold solu-
tion to the field, preshaping (biasing) the locations in the
DNF and allowing for easier activation if an input at those
specific positions are later introduced into the preshaped
DNF. Alternatively, a positive homogeneous input to the
field (also known as a boost input) would activate those
sub-threshold activations in the field.

3.4 Comparisons within dynamic field
theory

It is essential to compare different DNFs (e.g., memory
trace field and perceptual fields that hold the current in-
put from the environment) tomodel the recognition of spe-
cific, meaningful features in the environment. In addition
to the recognition of features in the environment, compar-
ison is essential to obtain a level of satisfaction regarding
the completion of an action command that was sent to an
intelligent system. To that end, the concept of condition of
satisfaction (CoS) was introduced to check if a field had
reached a predefined level of activation on one or more
feature values [52–54]. In the general case where an intel-
ligent system is a part of the action/perception loop, the
action field represents the desired action to be fulfilled.
This action field affects the intelligent system by provid-
ing set points for the satisfaction of the action. The level
of satisfaction is dynamically calculated in the CoS field
where the action/preshape field is continuously compared
against the perception field. In contrast, in Fig. 2(b), the
stimulus in the prescription CoS field matches the learned
preshape in the action field, and a decision bump appears
in the CoS field, prompting an activation to be detected.
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The action and perception fields are an input to a CoS field
that indicates if there is amatchornot. TheCoSfield is aug-
mented with a node that gives a logical value of detection
or not as shown in Fig. 2(a,b).

For human motion comparison, the CoS suffers from
two main drawbacks. Firstly, the CoS field is activated
above threshold once a minimum input value of the state
of interest is achieved and any further increase in the input
is not detected anymore. However, in some comparison
tasks, we would like to detect if an input is within a spe-
cific range. Secondly, the CoS compares only one specific
location in the feature space. However, in our use case, we
would like to compare the entire shape of the activation.
This would give us confidence that a positive result indi-
cates that the input is of a specific shape as opposed to be-
ing activated everywhere. For that purpose we expanded
the concept of CoS and propose the concepts of Range of
Satisfaction (RoS), Metric of Satisfaction (MoS) and Shape
of Satisfaction (SoS).

In this RoS formulation, the action field is used as a
pre-activation for both the upper and lower CoS fields. The
upper CoS field is also pre-activated with a global negative
input with a value that equals the desired range −R/2. In
the samemanner, the lower CoS field is pre-activated with
a global positive input with a value that equals the desired
rangeR/2. This allows thedetectionof a feature in themet-
ric space earlier in the lower CoS. Furthermore, it would
allow for comparing for a range of activation levels as the
upper CoS field would activate and in turn deactivate the
RoSneuron. This deactivation aids in checking for the next
feature which is an important function when comparing a
time-continuousmovement such as a reachingmotion. An
illustration of the function of the RoS is shown in Fig. 2(c).

The MoS concept extends the concept of CoS across
the complete metric space rather than just one specific lo-
cation. The MoS is achieved by negating the preshape in-
put to the CoS field and setting the resting level of the field
to zero. This results in activation in the CoS field onlywhen
the input exceeds the preshape value. Finally, the similar-
ity of the input to the preshape can be obtained by sum-
ming up the activation of the CoS field.

Finally, the Shape of Satisfaction (SoS) is the combina-
tion of RoS and MoS. Explicitly, the SoS is the RoS how-
ever, instead of using the concept of CoS for the upper and
lower fields, we use the MoS instead. The SoS allows for
the comparison of the shape of the input stimulus with a
preshape within a range. Furthermore, the SoS allows for
a comparison where the shape of the input is given higher
importance rather than it achieving a predefined level of
activation.

3.5 Prediction within dynamic field theory

So far, we have discussed several cognitive properties of
DFT that can be used as building blocks in any cognitive
architecture. We have expanded on the function of CoS to
better suite the applicationof action recognition.However,
the prediction capabilities within DFT are somewhat lim-
ited. Yet, they are vital in an online dynamic application
of action understanding. That is why in the following we
argue for the need of a mechanism that can look ahead
in a feature space and provide predictive capabilities. A
transient state that could provide these capabilities can
be found in traveling waves. Dynamic behavior of travel-
ing activation pulses in the cortical sheets of the brain had
been observed [55, 56] andmodeled in DNFs [48]. Such dy-
namics in the neural field has been exploited for intelli-
gent behavior generation [57] and for influencing robotic
arm control [58]. Further research on traveling bumps in
neural fields have since been conducted and solutions for
their collision been modeled [59]. The mathematical for-
mulation of this transient state is given in Appendix D as
described in [57]. An example of the kernel required to
achieve traveling waves is shown in Fig. 1(b) (black dashed
line labelled with number 4).

We depend on the different stable states and their
instabilities discussed in this section to model cognitive
building blocks that are used extensively within the CARS,
TARS, and the affordance logic as will be discussed thor-
oughly in Section 5. Firstly, however, we introduce the ac-
tion recognition task that we had setup to test the devel-
oped systems.

4 The action understanding task
For the human action understanding task, we had set up
an apartment environment within our laboratory and in-
vited ten participants to perform high-level scenarios as
well as short, precise movements we refer to as primitives.
The goal of the primitives is to provide our system with
learning examples of how simple movements were per-
formed. The concatenation of several simple movement
primitives (e.g., walk forward, turn, step forward, reach,
grab, pull, etc.) add up to a higher level intention. The
primitive actions could be separated into two main cat-
egories: manipulation and locomotion actions. The loco-
motion actions that were recorded were: step (forward,
left, right and back), walk (forward and backward), turn
(right/left, 90/180 degrees), standing up and sitting down.
The manipulation actions that were recorded were: ap-
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Figure 2.Illustration of the Condition of Satisfaction (CoS) approach. (a) Preshaped CoS field without corresponding
input from the Perception of CoS. (b) Matching input resulting in an activation in the CoS field, which can be used to
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input for both, the lower field and upper field. Further, the range boundaries are illustrated within the fields.
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proach (reaching action without a grasp, such as turn on
the light switch), grasp (a reaching action with a grasp),
push, pull, place, open and close door.

We designed the high-level scenarios that portray a
specific intention such that a series of primitives men-
tioned above were used to execute them. The scenarios we
set upwere: pick up the remote towatch TV, pick up a snack
to eat, go to work, get up on a vacation day and tidy up.
The ten participants were instructed to perform the high-
level scenarios and were not told to follow a specific or-
der in their execution.We assume that recorded primitives
would give us a wide range of movements and allow us to
recognize them within the execution of a high-level sce-
nario (intention). By performing the recording session of
primitives first, we would prime the participants to using
those specific primitives in the high-level scenarios. How-
ever, this priming effect was notmeasured nor analyzed. It
was observed, however, that some participants employed
creativity and added a lot of character into the high-level
scenarios, as one of the instructions they were given was
to act as if they were in their own apartment. As an exam-
ple, some chose to do stretching movements in the get-up
scenario.

For the motion recording, we used an Xsens MVN full-
body inertial motion capture (MoCap) suit. The sensor fu-
sion scheme of the Xsens MVN suit gives the kinematic
information (position, velocity, acceleration, orientation,
angular velocity and angular acceleration) of each body
segment as an output [60]. We opted for a motion cap-
ture suit as extracting a skeleton of video frames is not
the focus of our work. Furthermore, having MoCap data
of movement allows us to model the observing robot any-
where within the apartment environment without being
restricted to a specific viewpoint or having to deal with oc-
clusion.

The grab a snack task will be evaluated to discuss the
results of the CARS in section 6.1. Then, the pick up remote
scenario will be used to give initial results for the integra-
tion of the TARS and CARS in section 6.3. In the following,
we will discuss the CARS and TARS individually and then
introduce how they can be integrated into an action un-
derstanding system.

5 Action understanding system
architecture

The systems presented in this work are motivated by find-
ings in situated cognition and neuroscience as discussed
in section 2. Explicitly, integrationof both systems respects

the dynamic coupling between the agent and its environ-
ment as the source of intelligent behavior. Additionally,
we motivate our approach by descriptions of cognition in
which cognition is said to be enacted in the sense that cog-
nition arises for adaptive actions [4], and the objects in the
environment are represented to reflect their action possi-
bilities and affordances [18, 61, 62]. When observing act-
ing agents in the environment, an observing agent uses
its body to understand the observed agent’s behavior [63].
Furthermore, the observing agent perceives information
directly from the environment and uses the context for un-
derstanding and making decisions accordingly. Indeed a
major theme in socially-situated cognition is reserved to
the idea that the movement and the environmental state
of the agents around us are mapped onto the perceiver’s
body [12]. We expand on the motivation of each of the sys-
tems in their respective sections. Concretely put, our hy-
pothesis for modeling the understanding of human action
is as follows, the robotic (intelligent) system projects its
perspective to that of the acting agent - whose action is
to be understood. The robot perceives the affordances di-
rectly, relative to the acting agent’s body and the environ-
ment (objects and their properties). The agent’s brain con-
trols the body to localize itself towards objects and to per-
formmanipulation actions. The brain can also observe the
own performed actions or of other acting agents. We show
an illustration of this workflow in Fig. 3(a).

The abstract blocks and connections, motivated from
cognitive studies and neuroscience, illustrated in Fig. 3(a)
are translated into the proposed systems and their connec-
tions in Fig. 3(b) where the connections between the per-
ception blocks (body and (virtual) objects), the CARS, the
affordance logic and the TARS are shown. The suggested
future replacement of the preshape block that represents
long-termmemory andexperiences is shown in thehashed
motor control/proprioception block.

As discussed in the introduction, the ability to under-
stand the actions of others is a combination of understand-
ing the action possibilities of the goal-directed objects to
which manipulations are aimed at, and the spatiotempo-
ral comparison of observed movements to memorized ex-
periences of movement classes. Information from the en-
vironment and observed agents are projected onto the ob-
server’s body. This processing happens in the body block.
Our primary hypothesis within this block is that themove-
ments of the actor are seen as the observer’s own and the
objects around the actor are also projected around the ob-
server [11]. We explain our architecture for extracting neu-
ronally inspired features in section 5.1. When the actor’s
movement is directed towards an object, the contextual
action recognition system (CARS) uses information of op-
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Figure 3. (a) Illustration of the interactions between brain, body and world or environment based on the contextual
affordance input as well as the trajectory input information. (b) Connection of contextual- and trajectory based action
recognition system. The hatched connections are used to represent possible connections and are not currently modeled
in this work.

tical flow (speed and direction of, e.g., the wrists/pelvis)
and predicts the object that is to be manipulated. The im-
plementation of the contextual action recognition mod-
ules (CARMs) is given in section 5.2. The available affor-
dances of objects (reasoned by an affordance logic block)
give an idea of what the meaning of that movement is,
this is presented in section 5.4. The trajectory action recog-
nition modules (TARMs), presented in section 5.3, load a
memory of a similar movement experienced/learned pre-
viously with the help of the preshape block and compare
the observed movement to that memory. Each TARM rep-
resents a specific action, and thus several of these mod-
ules are combined to make the TARS. The internal simu-
lation could also be attained using a dynamic motor con-
trol block (shown in the hashed block in Fig. 3(b)), rather
than long-term memories currently stored in the preshape
block. The use of a human-likemotor controller is the sub-
ject of our ongoing research andwill be integratedwith the
complete action understanding architecture in future pub-
lications. If the action memory is finally validated, then
this action is actually being observed, and the system is re-
set to wait for the next movement. We implemented the ar-
chitecture using DNFs, where each block in Fig. 3(b) repre-
sents the connected neural populations. The next sections
discuss the systems that compose this architecture in de-
tail.

5.1 From moving bodies to biologically
motivated features

An observer perceives an acting agent as well as the envi-
ronmental state (in terms of the object in the actor’s vicin-
ity and how he interacts with them) to infer about this
actor’s mental states of actions, (action) plans and inten-
tions. In the following,wepresent our decisions formodel-
ing the perception of the moving body in amanner consis-
tentwithwhat is given inneurally-focused studies. Specifi-
cally,we discuss our choices for how the body is perceived,
what are the required transformations, what are the fea-
tures extracted for the AU task and finally, how these fea-
tures can be used in a neural population approach that is
compatible with the DFT.

5.1.1 Embeddedness and egocentric coordinates

Complyingwith the embeddedness concept, the observing
agent projects the skeleton of the perceived acting agent
on his own. Studies have shown that biological motion
might be perceived by projection on egocentric coordi-
nates and thismight aid guidingbehavior andunderstand-
ing [11, 33, 64, 65]. Similarly, studies in neuroscience and
mirror neurons have shown evidence of egocentric action
understanding [41, 66]. Therefore, the first step in our ac-
tion understanding architecture is the projection of the ac-
tor’s frame of reference onto the observer’s frame of ref-
erence. Furthermore, the environment the objects in that
environment are transformed onto the observer’s frame of
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reference. An illustration of the desired transformation is
shown in Fig. 4(a).

5.1.2 The body joint extension and projected relative
angle features

Moreover, when observing an acting agent, the observer’s
visual system focuses on the joints of the acting agent [67].
Out of all the joints, studies have shown that there was a
focus on the upper body joints, namely the head, left and
right wrists [67]. In our work, we have also integrated the
pelvis joint as well as the left and right ankle joints, which
are also essential to the understanding of locomotion ac-
tions.

The positional information extracted from these joints
are then projected onto the transverse and sagittal planes
of the observer (after the whole skeleton of the actor had
been transformed onto the observer’s body frame) [68].We
implemented these transformations mathematically with
no regard to possible neural mechanisms behind it. How-
ever, transformation-capable DFT systems were also dis-
cussed in literature [69] that could also be extended to ego-
centric coordinate frame transformations for motion per-
ception.

Following from the previous paragraphs, we decided
for two feature types to be extracted from the projected
view for action recognition. The first feature type is the
Body Joint Extension. It is a non-circular feature (linear fea-
ture space, 0-100%)whichmeasures the percentage exten-
sion between two joints that are not shared by the same
bone. For example thewrist-shoulder body joint extension
equals 100% when the arm is fully extended, and 50%
when the elbow joint makes a 90-degree angle. We used
average human dimensions as given in [70], and calcu-
lated the full extension values for a 1.8 meter male for sim-
plification. The second feature type is the Projected Rela-
tive Angle. It is a feature with a circular feature space (0–
360-degrees) which measures the projected relative angle
between two joints. Both feature types are described to be
view-centered as they are dependent on the position of the
viewer relative to the perceived objects (different joints).
View-centered representation is one of two major types of
descriptions (the other being object-oriented representa-
tion) suggested to model the ability to extract information
from the projection of a 3D object on retinal images [71–
73]. Overall, and given different joints that could be used
logically, we propose 39 various features that are calcu-
lated for anymotionwithin thiswork, this accounts for dif-
ferent joints and different plane projections. The full list
of features is given in Appendix A. Several combinations

of these features can be made depending on the class of
the action and the level of joint involvement in that spe-
cific movement. Within our work, the temporal evolution
of these features is learned frommultiple examples to com-
pose amemory that preshapes a comparisondynamic neu-
ral field. A memory is learned for each class of action and
can be thought as a memorized trace to which the features
extracted from the observed action is compared against
within the TARM.

The specific choice of the two features mentioned
above is motivated by studies of the neural mechanisms
behind intentional reaching movements [74–76]. These
studies indicate that a reaching motion is decoded from
neural populations of directionally tuned cells. Each en-
semble of directionally tuned cells is tuned towards a pre-
ferred direction of movement. Each ensemble within the
population contributes to the population by a vector di-
rected towards the preferred direction of movement spe-
cific to ensemble of cells and is weighted by the cells’
change in activity. The final sumof the population is called
the neural population vector and points to a direction close
to the observeddirection ofmovement. The intensity of the
neural population vector was also shown to be related to
the speed or amplitude of the movement. The mirror neu-
ron system suggests that the same mechanisms involved
in action generation are the same as those in action per-
ception. Therefore it follows that features for action un-
derstanding should bemapped onto the direction and am-
plitude (distance) of movement [41, 66]. The projected rel-
ative angle is a general representation of the direction of
movement, while the body joint extension represents the
calculation of the amplitude (distance) of the movement.
The previous features should be provided as an input to
the DFT system in a manner that is neuronally consistent,
using formulations within DPA, this process is illustrated
in Fig. 5.

5.1.3 Parameter choice for the DPA feature formulation

Tuning curves, centered around the optimal response
value, can be modeled using different shapes [51, 77]. For
example, they can be Gaussian tuning curves, cosine tun-
ing curves, or sigmoidal tuning curves [78]. The shapes
and the parameters of each tuning curve are usually de-
pendent on the specific neuron and stimulus.We highlight
the work performed by Perret et al. in [79] and the work
of Newsome and Salzman in [80] that investigated the fir-
ing patterns in reaching motions, and which we base our
work upon. We extracted their results and used the func-
tions they proposed in designing our Gaussian functions
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that represent the tuning curves for motion-sensitive neu-
rons. Further details are given in Appendix B.

For our cyclic features of orientation, we
chose eight equidistant neurons representing
the feature space. Specifically, the optimal re-
sponse of neuron is ni = fi , i = 1, 2, ..., 8 where
f = {0 ∘, 45 ∘, 90 ∘, 135 ∘, 180 ∘, 225 ∘, 270 ∘, 315 ∘}.
The cyclic features’ shape (tuning curves) are modeled
after the viewer-centered narrow tuned cell response
[79]. For the linear feature space of distance, we used six
neurons. The optimal response of each of the neurons was
equidistant covering the complete feature space 0−100%.
The tuning curve of each of the neurons was modeled
using a Gaussian function with a wide standard deviation.
The Gaussian functions were adjusted using the standard
deviation to resemble the results of the fitted tuning
curves discussed in the Appendix B and were finally used
as they are the standard standards in the DNF framework
[50]. The transition from discrete neurons to continuous
feature space can be described by the DPA and is used as
an input in our work to our DFT architecture. An example
is shown in Fig. 6. A stimulus of arm configuration where
the projected relative angle was 150 ∘ was presented.
The dashed grey line in Fig. 6(a) shows the response of
the population, while the individual black lines show
the individual responses of the individual neurons in
the population. While Fig. 6 (a) shows the response for a
specific time step, Fig. 6(b) shows the evolution over time
in a neural field.

5.1.4 Summary

We have presented our biologically motivated model for
motionperception that serves as apre-processingblock for
the TARS. The CARS, on the other hand, takes the end ef-
fector’s/pelvis’ direction and speed as an input. The CARM
that makes up the CARS is discussed in the next section.

Our choice of features used to encode the 2D traces,
shown in Fig. 6(b), was motivated by neuronal optimal re-
sponse studies [68]. These studies showed that the orien-
tation and distance traveled of observed objects (in our
case hand and ankle joints) are encoded neuronally for
motion perception [81]. Optical flow, which also encodes a
vector of direction and distance of moving interest points,
has been shown to be significant of biological motion per-
ception. This is also compliant to what is believed to en-
code motor commands (preferred population vector for a
movement direction), enforcing the notion that the same
code that encodes action generation is also used for ac-
tion recognition [76]. These 2D traces are either saved as

long-term memories or provided online for internal com-
parison with savedmemories. The saved long-termmemo-
ries (preshapes) represent experiences of observing a spe-
cific action class [68]. The comparisons are performed in
the TARS, however, as the number of actions can be sub-
stantial (the number of memories loaded at one time for
comparison can be computationally expensive), we pro-
vide the CARS which we discuss in detail in the next sec-
tion.

5.2 The contextual action recognition
module

In this section,we propose a contextual system that aids in
action understanding. It does so by restraining the search
space and obtaining the context of the movement. Our
hypothesis in this section is that an intelligent system
can extract context from goal-directed motion performed
by a human actor by observing the relationship between
end-effector (hand) movement and the objects in the near
vicinity and their action potentials. In this subsection, we
propose an attention-shift model and explain how it was
implemented using DNFs.

5.2.1 Motivation and overview

Eye movement has been shown to react to goal-directed
movements. Moreover, the relationship between the eye
gaze of an observer and the hand of an actor is predictive
[82]. Explicitly, in CARS we model the attention shift by
the (robotic) observer eyes, from the hands/hip of the ac-
tor to the object towards which the movement is directed.
The CARS has additional significance since the robotic ob-
server has no option to sense gaze shifts without expen-
sive, invasive gaze detection sensors. Following from the
work in [82], and as the gaze of the observing agent follows
the actor’s end-effector, the chosen feature for the CARM
is the optical flow information of actor’s end-effector. Op-
tical flow here specifically refers to the direction of motion
tracking information. The optical flow information con-
sisting of the actor’s end effector (and hip) direction and
speed [83] is used as an input for the CARM.

This information is fed to the moving shape module,
as shown in Fig. 7, which in turn feeds into a neural field
that represents the environment that the actor is perform-
ing his actions in.

This moving shape field is initially located at the end
effector’s starting position and has a specific limit (set by
the limit input block) that it is allowed to travel to before it
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Figure 6. (a) The DPA response for a specific time step given an observed projected relative angle of 150 degrees. (b) The
2D memory trace of the projected relative angle between pelvis and right foot in the x − y-plane for forward walk action.

fades away. The environment neural field is preshaped by
the locations (given from the objects block) ofmanipulable
objects in the environment. It is activated if the peaks shot
from the actor’s hand (position is given by the position in-
put block using the direction/speed of the hand calculated
using the optical flow input block) hits a preshaped loca-
tion continuously. The peaks that are shot are calculated
in the shape neural field block, the speed of which is con-
trolled by manipulating the parameters in the asymmetric
kernel block. The term “preshaped” here refers to the fact
that the provided activation of the objects is not sufficient
to drive the neural field into activation, the field is then
said to be subactivated at those locations or preshaped. In
this sense, the environment block does not directly encode
the environment per se but the interaction between actor
and environment. In the next two paragraphs, we explain
the different objects that preshape the environment field
and the function of the moving shape module. So far, we
have given a high-level overview of the CARM’s building
blocks. Following, we will give a detailed overview of the
object and virtual object input block, the central moving
shape module and its inputs, finally the environment field
block.

5.2.2 Physical and virtual objects

The object information that is fed into the environment
field, as an input, can encode physical objects that pre-
shape the field at the same x, y location they are observed.
The same ideas are extended for locomotion actions (e.g.,
walking, turning, stepping left, stepping right, etc.).Virtual
objects are imagined around the actor, and motion di-

rected by the feet or the hands towards those virtual ob-
jects would read out their virtual affordances to give a hint
of what the possible action is. For example, the stepping
forward locomotion action can be understood using the
movement direction of the ankle towards a virtual object
in front of the feet and so on. While the use of the vir-
tual object is a simplification of how locomotion and free-
space movement could be understood, it allows these two
classes of movement to be assigned virtual affordances
and be integrated into the overall architecture.

5.2.3 The moving shape module

The moving shape module is shown in detail in Fig 7. The
inputs to the moving shape module are the optical flow in-
put, the position input and the limit input. The output of
the moving shape module is the memory trace activation
in the shape memory field. Themoving shapemodule con-
tains two fields. The first field is the shape field that takes
the calculated parameters of the asymmetrical kernel as a
first input and the calculated values of theGaussianmeans
as a second input. The second field is the shape memory
memory trace that accumulates the output of the shape
field. Both fields are defined of themetric space field span-
ning the immediate environment in meters.

The moving shape module models a temporally van-
ishing memory trace of traveling peaks. The traveling
peaks originate froma specific location in thefield towards
a direction given by the optical flow input. The optical flow
input represents the optical flow of a specific joint e.g. left
wrist. The optical flow is a two-dimensional input with
magnitude anddirection terms. This input is used to shape
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the asymmetrical interaction kernel of the shape field. The
asymmetric kernel allows the shape field to move with re-
spect to the optical flow input.

The shape field in Fig 7 has two inputs: the source
(which is a 2D Gaussian peak) input and the limit input.
The position of the 2D Gaussian peak is controlled by the
position of a joint (e.g., wrist) p(t)- relative to the shape
field dimensions (that is, egocentric coordinates are re-
spected here too) and is always kept at an amplitude suf-
ficient to cause a permanent activation in the shape field.
This input is used to represent the position of a specific
joint. The combination of the source input and the asym-
metric kernel defines the movement of the Gaussian peak
andwithin the shape field. This setup allows for the follow-
ing activationbehavior: an activationpeak is separatedpe-
riodically from the source input position and travels into
the direction of the optical flow until it vanishes. The shape
memory trace saves the activations of the shape field. It is
important to note that inputs to the shape field are always
active. Therefore, there can be multiple moving peaks at
the same time. Different moving shapes in the shape field
can be created given the optical flow input.

As different activation peaks are separated periodi-
cally from the source input given the optical flow input, it
was observed that it was hard to control the distance of
travel of those peaks as well as their vanishing time. For
that reason, the limit input was introduced. The limit in-
put preshapes (using a 2D Gaussian) the shape field to re-
strict the distance the traveling peaks are allowed to travel.
Thus, only regions where the activation peaks are allowed
to travel are preshaped sufficiently.

The optical flow input is calculated as follows:

o(p(t)) =
[︃
1 0 0
0 1 0

]︃
· (p(t) − p(t − 1)). (6)

The limit input is a preshape implemented as a 2D
Gaussian function g(x, y, µx(t), µy(t)) with maximum am-
plitude at the current position input p(t) as defined in (7).
Accordingly, the expectedvalue µ equals theposition input
p(t). Depending on the resting level of the moving shape
field, theGaussianhas to be shifted by c in order to prevent
activation within the field (as it should preshape locations
where the traveling peaks are allowed to reach):

g(x, y, µx(t), µy(t)) =

A · exp
(︂
−
(︂
(x − µx(t))2

2σ2x
+ (y − µy(t))2

2σ2y

)︂)︂
+ c.

(7)

The calculation of the asymmetric interaction kernel
wasym(x, y, o) is presented in (8). The basis shape is de-
fined by a 2DGaussian as described in (7) but without shift
c:

wasym(x, y, o) =g(x, y, µx(t), µy(t))

+ ox(t)
∂g(x, y, µx(t), µy(t))

∂x

+ oy(t)
∂g(x, y, µx(t), µy(t))

∂y .

(8)

A moving shape activation is shown in Fig. 8. This fig-
ure illustrates an armmoving towards the right. What this
would translate towithin themoving shapemodule are the
waves seen in the figure. A moving peak centered at the
wrist position would propagate given the information of
the optical flow. Accumulating waves would build up ac-
tivation while noise generated from the movement would
die out as shown in Fig. 8. The traces in Fig. 8 can have
complex shapes due to two reasons. Firstly, the moving
shape is dynamically accumulating input as the wrist po-
sition changes continuously. Secondly, the memory trace
within a CARMmaintains the activations in the field, given
the field’s timescale, thus allowing for complex shapes to
appear.
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(a) (b) (c)

Figure 8. Example of amoving shape output. This figure shows three snapshots (order from left to right) of the output
produced by amoving shapemodule in the case of non-zero optical flow.

5.2.4 The environment field

Finally, the environment field is a decision field that per-
forms a selection given the (virtual/physical) objects that
preshape it and the moving shape module’s output that
also provides a preshaping input. The field is defined over
the feature space representing the environment (in me-
ters). The output is the location of the objects that the ob-
served agent is predicted to manipulate. It is important to
note that physical objects in our implementation encode
both furniture andmanipulable objects. Virtual objects en-
code positions around the body used for both direction
and magnitude (the intensity of the motion) detection.

A stable peak in the environment field is an indica-
tion of which object the actor intends to interact with and
where this interaction is being (will be) performed. For
the virtual objects, it indicates what kind of locomotion
movement is being performed and intensity/direction of
the movement. The affordances of that specific object can
be read out and preshape the TARSwhich in turn validates
the type of affordance on amovement level.We discuss the
modules that make up the TARS in the following section.

5.3 The trajectory recognition module

When an acting agent performs an action, his/her move-
ment kinematics provide an abundance of information a
humanobserver coulduse to recognize the action. In terms
of movements, human action varies continuously. That is,
for the same action, a person performs movements differ-
ently across multiple runs. The time it takes to complete

the same action also varies from one trial to another and
fromone person to another, depending on the task and the
kinematics of the actor. In this section, we provide a DNF
model of motion trajectory comparison for action recog-
nition that acts independently of environmental informa-
tion. These different blocks that compose the trajectory
recognition module are visualized in Fig. 9. We explain
how we achieve spatial and temporal invariance and pro-
vide insights on how the intrinsic properties of the DNF
could be used to dynamically adapt the fitting between
stored memories and the observed data and give it a “bet-
ter chance” to get a positive fit. We also discuss our im-
plementation for producing and processing these stored
memories (templates).

In compliance with the template-matching model, bi-
ological systems depend on a streamof features (stimulus)
produced by static views of the body to perceive and clas-
sifymovement patterns [29]. These features canbe thought
as form cues of a specific body configuration, similar to
the concept of snapshots presented in [30]. They are called
snapshots of interest within our work. The existence of
a specific sequence of snapshots encodes a specific ac-
tion/movement. We refer to this sequence as the sequence
of interest. However, for comparison, we need a reference
sequence of interest to bematched against.We rely on a set
of stored memories (templates) for the observation of dif-
ferent actions as well as a comparison model. Templates
are learned in our DNFmodel by applying an activation of
motion features over time in a DNF that represents a tem-
plate. The understanding of actions here would be simi-
lar to other single-layered exemplar-based sequential ap-
proaches that depend on a sequence of feature vectors to
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perform the classification [6]. We discuss template gener-
ation in section 5.3.1. This template has to be adaptive to
account for the challenges of AU, for that we present our
dynamic template solution in section 5.3.3. From the pre-
vious overview, the TARM can be composed into an input
side and a preshape side, and they are compared against
each other within a comparison block, this is discussed in
section 5.3.2.

Due to the challenges of AU discussed, the differen-
tial speed between the input and the template should be
controlled for purposes of correct recognition, and this is
done by a controller block which is discussed in detail in
section 5.3.4. Specifically, the controller block controls the
speed (and the time intervals) at which the traveling wave
propagates through the preshape field, as the stimulus is
fed online as the movement is observed.

5.3.1 Template generation

The coremechanismhere is the accumulation of amemory
trace from multiple samples. The samples, which are rep-
resented in feature format, are accumulated within a field
with a memory trace. The features, as discussed in section
5.1, encode ego-centric distances and angles between the
pose of the head or hip (reference) and the wrists and an-
kles (end effector) in the sagittal, coronal and transverse
planes [64, 67, 68, 84]. The choice of wrists and ankles
are because they indeed move the most [85]. The observed
agent is projected onto the body frame of the observer such
as to achieve view (spatial) invariance and model the in-
ternal simulation behind action recognition [33]. The DPA
model discussed in section 3.2, was used to model a set of
angle and length sensitive neurons at discrete values sim-
ilar to what is observed in the neural system of the human
[75, 83, 86]. The activation of these angle/length sensitive
neuronal populations over time activates a DNF either for
learning a preshape (template) or to be directly fed as an
input for the comparison.

Templates were generated by a mean-like approach
within a DNF given several feature examples (the Body
Joint Extension feature and the Projected Relative Angle
feature, as discussed in section 5.1) from a class of actions.
The template generation process illustrated in Fig. 10 is
modeled such that a single observation (in stimulus trajec-
tory form) is appended to the already accumulatedmotion
observations. Ourmotivation stems from the intuition that
an action is observed completely and continuously and
is added to overall past experiences dynamically. From
multiple examples of an observed action recorded in our
dataset,wepick one randomsample andpresent it in stim-

ulus form. This is done in the select sample block. The
length (time) of the sample is normalized, in the prepro-
cessing block to a length that was pre-calculated. This pre-
calculated length represents the average length of this spe-
cific action class. This input is then fed into two pathways
that againmerge into aDNF. Theupper pathwaymultiplies
the sample with a gain, while the lower pathway accumu-
lates the observations within amemory andmultiplies the
output with a gain afterwards. These gains are essential
to the learning process. They define how the learned in-
formation is changed and when to select a new sample to
learn from. The twopathways aremerged into aDNF that is
projected from 2D to 1D such that the time axis is squashed
and finally its activation is summed up. A feedback sig-
nal (from comparison block to the controller block) is then
defined such that this activation summation (which is a
proxy of the percentage length of the current example) is
compared against a threshold value (which is set to be
around 0.95) that determines the transition to learn a new
example. The final template is accumulated overtime in
theMemory Trace field until all examples learnt.

5.3.2 Comparison block

As the learned preshapes could be substantially shorter or
longer in time compared to the observed motion, we pro-
pose usingmoving peaks to solve the problem of time vari-
ability. A peakwould propagate in the DNF of both the pre-
shapes templates and theperceived action. Thepeak in the
preshapewould jump to special locations characterized by
fast changes in the feature space. These jumps would be
fast in nature. A jump would occur to the next location in
the preshape field only if the same feature was observed
in the input field that represents the perceived action. This
check is performed in the comparison field as shown in
Fig. 9. As the wave in the preshape field propagates more
and more towards the end, the more we are sure that the
preshape correctly represents the action we think it is.

This jump that occurs from one snapshot of interest
to the other is determined by allowing the wave to prop-
agate forward at high speed and detect areas of interest
within thepreshape. These areas of interest are either zero-
crossing areas or extrema/saddle points. The snapshots of
interest are calculated online by merging a Gaussian wave
input, and the original preshape as second input in a neu-
ral field called the zero crossing field. The first input is a
Gaussian wave input that is centered around position 0
in the feature space and extended in time. The detection
approach using DNFs are shown in Fig.11. The two inputs
activate the neural field on intersection within the field;
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Figure 9.Overview of the trajectory action recognitionmodule. Dark grey blocks represent blocks that are explained in
detail in separate sections. Feedback signals are given to the controller from projection fields and the comparison field.
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Figure 10. System architecture to generate trajectory-based templates.
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this activation is designed to occur around zero crossing
points. Special care is given to the calculation of the rest-
ing level of the zero crossing field h, such that activation
occurs when both inputs overlap. The online calculation
is of vital importance as the area of interest should be al-
lowed to be shifted and adapted during comparison to al-
low for the best fit between observed and saved values
in the features. The projection of this zero crossing field
against feature value gives the times at which the sam-
ple has zero crossing points. This can be further expanded
against time and fed into as an input alongside the origi-
nal preshape in a field that presents the sequence of inter-
est. The saddle-extrema points can be calculated similar
to the zero crossing points, but after an initial derivation
of the preshape has been done. The derivation is done of-
fline. The sequence of Snapshots of Interest is called a Se-
quence of Interest. An example of a zero crossing Sequence
of Interest is illustrated in Fig. 12.

Comparison between the snapshots in the preshape
and the continuously evolving stimulus input occurs in
the comparison block as shown in Fig. 9. The comparison
block discussed in section 3.4 is utilized here. The com-
parison using the concept of SoS allows for the compari-
son of shapes. Furthermore, the introduction of RoSwithin
SoS, as discussed in section 3.4, provides a level of robust-
ness such that a range of activations can ultimately lead
to a successful comparison. The results of the comparison
(match/no match or continuous comparison) are used as
feedback signals to the controller block.

5.3.3 Dynamic templates

The coremechanismhere is dynamically changing the val-
ues of the different available parameters (e.g., resting level
of the preshape field or the value of the short-range exci-
tation of the interaction kernel) within the preshape field
given the success of the comparison within the TARM. The
underlying motivation behind the set of tools used in the
adopted dynamic templates approach is twofold. Firstly it
is considered a way to allow for a faster successful com-
parison. Secondly, it is a way to allow the generalization
of templates.

As the confidence of observing a specific action in-
creases, themore thedynamicpreshape is allowed to influ-
ence the action recognition process such as to compensate
the spatial variation between the preshape and the stim-
ulus. The portion of the preshape that had not been com-
paredagainst yet ismade tofit thepreviously observedmo-
tion. The compensation is calculated given the past infor-
mation of the perceived motion. It also allows for the im-

perfections observed when learning a preshape template
and allows some spatial variation between stimulus and
preshapes. It aids towards the generalization of the tem-
plates. While false positives might be a hindrance due to
the use of dynamic templates, the use of CARS would limit
the number of loaded preshapes such that this drawback
is mitigated as shown in the results section.

The dynamic preshape solution we propose is di-
vided into two steps. The changing preshape step aims at
manipulating parameters within the preshape generation
method. Such changes could limit the samples used orma-
nipulate the field to exhibit behavior other than producing
a mean-like stimulus trajectory. The changing preshape
step alters the shape of the preshape entirely and dynam-
ically.

The second adapting preshape step does not change
the preshape. It adapts the current preshape given the in-
formation seen so far from the stimulus by either shifting it
in feature space or influencing its shape slightly. The shape
is changed by performing the convolution normally done
within the DNF using an adapted 2D Gaussian kernel. The
width of the 2D Gaussian kernel is changed depending on
the confidence value of the overall trajectory comparison
module. This dynamic adaption of the preshape gives a
better chance for the fit to occur as we are more confident
of our action classification.

5.3.4 Controller block

The controller block shown in Fig. 9 takes three inputs.
These inputs are the temporal positions of the moving
waves within the stimulus field and the preshape field as
well as the results of the comparison block. The output
of this block controls the velocity of the moving preshape
wave. This controller block is purely an algorithmic imple-
mentationand is not implementedusingneural fields. Fur-
thermore, we assume for this control block that the length
of the input stimulus, and therefore the temporal position
of the stimuluswithin the currently observed action, is not
known. This is a logical assumption since we do not know
when the actor will end his action nor at which stage he
is currently in. We do however assume that we know the
length of the preshape and the position of the traveling
wave within the preshape. This is again a logical assump-
tion aswehave these preshapes stored asmemorieswithin
our action understanding system.

The controller block controls the velocity of the travel-
ing wave in the preshape field. This is dependent on the
feedback signal and is implemented using an approach
called stop and go approach. The TARS here then is al-
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Figure 11. Detection of zero crossing using a normalized preshape and a gaussian wave

ways true for multiple preshapes until the controller can-
not compensate the differences between the preshape and
the stimulus into adequate velocity commands (too fast or
stopping) then it is confirmed that the stimulus does not
match the preshape.

The controller, which provides a stop and go signal for
thewave, takes a logic input from the comparisonmodule.
The controller, which is implemented as an if/else state-
ment, stops the traveling wave (on a snapshot of interest)
or allows it to propagate forward with a velocity that is
at least as fast as the stimulus’ velocity towards the next
snapshot of interest. In our implementation the controller
sets the velocity of the traveling wave to be twice the ve-
locity of the input stimulus. The overall result of the TARM
comparison here can be presented as the percentage of the
current position of the wave within the preshape to the to-
tal length of the preshape. We define this value as the con-
fidence value within this document, which serves as an in-
dication of the correct matching preshape.

5.4 Affordance logic and connectivity fields

The observing agent identifies and predicts the acting
agent’s action through understanding its dynamic inter-
action with the (real or virtual) objects in the agent’s im-
mediate environment. The CARS shifts the attention of the
observer from the end effector towards real or virtual ob-
jects whose affordances can be read for further processing.
These affordances constrain the set of all possible actions
to a limited subset. This subset is used to bias the TARS
through a choice of a limited number of preshapes and dis-
missing the rest.We introduce in the following the concept
of connectivity fields which aids in achieving the previous
ideas.

The connectivity field is a lookup-table-like DNF that
encodes future possible object affordances given the ob-
ject’s current affordance state. It houses both ideas of se-

quential and nested affordances [87]. Each object is rep-
resented using its own connectivity fields, which is a 2D
DNF with a 2D feature space. The first dimension encodes
the current action states of the object and the second di-
mension contains the action states available in the next
time step. As an example, if a glass is being grasped now,
it can be released, placed, etc. as shown in Fig. 13. A gen-
eral structure of connectivity fields is shown in Fig. 13 (a)
for a connectivity field of k action possibilities a1−k an ob-
ject might have. A populated connectivity field is shown
in Fig. 13 (b), in which connections were learned in a 2D
memory field. The different shades of peaks in Fig. 13 (b)
refer to the fact that there exist different probabilities of ac-
tion transitions encoded in the strength of the connection.
Figure 13 (c) shows a learned connectivity field.

Within our implementation, we did not integrate abil-
ities of object recognition nor affordance attribution or
learning. Object recognition within DNFs has been dis-
cussed in [88]. We assumed knowledge of positions, la-
bels, and affordances of the objects in the environment to
be known. Furthermore, the list of affordanceswasdefined
in a complementary manner to fit the list of action primi-
tives that were recorded in our dataset. This is following
the notion that affordances provide action potentials and
provide a logical link between action and environment.
These affordances make up the connectivity field.

The connectivity field was realized using a memory
trace that saves peaks of activation at connection points
between previous and current action state. As the actions
are discrete, the input to the memory trace 2D field is
an activation of action (neural) population whose tun-
ing curves have no overlap and have an optimal response
value spread equidistantly over the feature space. The
learning of how current and future affordances are con-
nectedoccurs as follows:whenweobserve action changes,
both feature spaces activate at the locations of these dis-
crete actions, activation at the intersection of both actions
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Figure 12. Example for a zero crossing sequence of interest. a) shows the input stimulus of the derivation from a pro-
jected distance between right and left foot with respect to the x-y plane over time. b) The corresponding sequence of
interest when using zero crossing detection.
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Figure 13. Connectivity field. a) General structure of the connectivity field for k actions a. b) Connectivity field for
objects. Gray points represent connections between the current action at t and possible future actions at t + 1. Different
shades have been chosen in order to represent that different connection strengths are possible.

emerge within the connectivity matrix field. Finally, this
peak of activation is saved in the memory trace.

The output of the connectivitymatrix can inhibit or ex-
cite the savedpreshapes of the TARS.Whenanaction is ob-
served it influences the connectivity field. That is, an acti-
vation is spread horizontally at the location of that action.
This activation is sufficient to activate preshaped peaks
(learned in the previous step). These activations are read
out by projecting the 2D field onto the next action state
axis. These activations go on to excite preshapes in the
TARS, and the rest remain inhibited.

6 Results
The previous section focused on presenting the individual
modules of the overall architecture. Many TARMs could
be recruited depending on the number of actions to be
recognized and build the combination of which composes
the TARS. Likewise, many CARMs could be used depend-
ing on the end effectors, and items that are of interest
and the combination composes the CARS. In the follow-
ing we present our results of the dynamic systems, CARS,
and TARS, see section 6.1 and section 6.2. Additionally,
we present initial results of the integrated system in sec-
tion 6.3. The high-level scenario that we used to produce
the results in the CARS section is the Pick up a Snack sce-
nario. Finally, we evaluate the integrated system with the
Pick remote scenario. Figure 14 shows the 2D reconstruc-
tion of our apartment environment. The Pick up a Snack
scenario consists of getting up from the couch, walking to-
wards the kitchenette, picking up the apple and walking
back to the couch to sit there. The Pick remote consists of

getting up from the couch, walking towards the TV table,
picking up the remote and walking back to the couch to
sit there and place the remote on the coffee table. The en-
tire architecture was built using MATLAB/Simulink envi-
ronment using a modified version of the open source tool-
box COSIVINA [89].

6.1 Contextual action recognition system

Three CARMs are running at all times. One for the right
wrist, one for the left wrist and one for the pelvis (results
for the pelvis are not shown). The virtual objects necessary
to be loaded for the function of the pelvis CARM are only
loaded when the optical flow information of the pelvis is
above a certain magnitude (0.8-millimetres). This thresh-
old was calculated with a decision tree classifier using the
magnitude of the optical flow information of the pelvis as
the distinctive feature. Themoving shape field for the right
wrist and the left wrist was shown earlier in this article in
Fig. 8, in which a right wrist is simply moving right. The
field is preshapedwith objects that allow prediction of any
interaction.

For our example, the environment houses both fur-
niture items as well as objects. Contextual information of
what object and at which location it was manipulated can
be inferred using the CARS given the movement of both
wrists. We show the results of the CARMs for the right/left
wrist interactingwith furniture in Fig. 15-left ordinate, and
the right/leftwrist interactingwith objects is also shown in
Fig. 15-right ordinate. The right wrist contextual informa-
tion can be read using the solid/dashed black lines while
the grey lines are referring to the contextual information
of the left wrist. Figure 15 shows an initial interaction with
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Figure 14. The apartment environment that was used to record the high-level scenarios. (a) The couch (start position).
(b) TV table and remote positions. (c) Kitchenette and apple positions. (d) The couch (end position). (e) Coffee table.
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the couch (initial sitting position), then as the subjects
stands up his/her movement is towards the coffee table
and near the apartment walls later he/she interacts with
the kitchenette and walks back towards the couch where
he/she places the apple on the coffee table. Regarding ob-
jects, Fig. 15 shows more extended activation with the ap-
ple, as the subject reaches, grabs and walks back to the
couch with the apple. As can be seen in the results, the
CARS only makes a selection of objects/furniture that are
predicted to be manipulated, while suppressing the other
objects/furniture. The CARS as expected gives contextual
information ofwhat andwhere interactions take place. The
CARS also gives context of locomotion movements neces-
sary to understand such motion.

6.2 Trajectory action recognition system

Multiple TARMs are running the whole time. One for each
action and their respective features. They benefit from the
output of the CARS computationally as only a subset of
TARMs are excited at each time, the others are inhibited. In
the following, we show results for the TARS separately and
explain why simple trajectory comparison does not aid in
a dynamical action understanding architecture.

Figure 16 shows a comparison of a generatedmean for
a step forward action, for the feature of projection distance
in the x − z plane between right and left foot. Figure 16(a)
shows the generated template while Fig. 16(b) shows the
corresponding mathematical mean template. Figure 16(c)
illustrates the difference of (a) and (b). Thereby, dark red
represents the maximum value whereas dark blue repre-
sents the minimum. This comparison shows our approach
is comparable to the mathematical formulation of a mean
template.

Thismean template can be adapted dynamically given
the results of recognition confidence. The way that the
template is adaptedwithinDNF is shown in Fig. 17. Finally,
in Fig. 18 we show the results of comparing the step for-
ward action (used as the input to the TARM) against all
other action primitives. Only the step variants reach 100%
finally, a fault that can be resolved if the CARS was also
connected to suppress templates that represent significant
movements in the forward direction. However, the confi-
dence level reaches a high level of confidence late, and
recognition could be confused earlier acrossmany actions.
As these results are obtained by employing TARS alone,
the CARS provide means to eliminate a significant portion
of these actions and allow for a better comparison as will
be discussed in the next section that presents the results
of the integrated system.

Table 1: The pick a snack scenario: ground truth

Start End Furniture Object
(seconds) (seconds)
0 4.8 couch
9 10.5 kitchennete apple
16.5 19 couch

Table 2: The pick a snack scenario: right hand results

Start End Furniture Object
(seconds) (seconds)
0 4 couch
5.2 6.5 apartment walls
7.2 9 kitchenette apple
9 10 bed
11 13 couch apple
10.2 19 couch

6.3 Integration of context and trajectory
recognition

In the following section, we show our initial results of
the CARS and TARS for the “pick the remote” scenario.
Within this example, the participant stands up from the
couch, takes a few steps forward towards the television ta-
ble, picks up the remote, sits back down on the couch and
places the remote on the coffee table in front of him. The
“pick the remote” scenario’s ground truth is given in Ta-
ble 3. Figure 19(a) shows the results of the CARS and the
objects the observer predicts given the participant’s right
wrist movements. The affordances of the objects that are
predicted in the CARS step runs several TARMs at the same
time as shown in Fig. 19(b). As one TARM reaches a con-
fidence of over 0.8, a decision is made, and an action is
then recognized (as shown in the instances marked by the
red ovals). The combination of the CARS and TARS then
gives a semantic understanding of what are the actions
that are being observed. The results of the action under-
standing system are given in Table 4. In this example the
systemunderstands themovements as follows: standupat
couch (0-2.4 seconds) then step forward by the coffee table
(2.4-3.6 seconds), turn stepping left towards the TV table
and approach and approach the remote (3.6-5.2 seconds),
then step forward towards the couch (5.2-6.5 seconds) and
finally sitting down on the couch (6.5-9 seconds).

The combination of the two systems alongside the
dynamic affordance logic system allows for an end-to-
end biologically-inspired architecture for human action
understanding. The complete system would benefit from
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Figure 15. Interaction with the apartment furniture (listed on the left ordinate and read with the solid lines) and apart-
ment objects (listed on the right ordinate and read with the horizontally dashed lines) for the right wrist (solid/dashed
black lines) and left wrist (solid/dashed grey lines). The abscissa represents time in seconds. Detected interaction is
illustrated by lines. An example of reading the figure would be: the right wrist was interacting with the glass (dashed
black line) at the kitchenette (black solid line) around the 8.5 second mark.

Table 3: The pick the remote scenario: ground truth

Start End Action Furniture Object
(seconds) (seconds)
0 0.84 sit couch
0.85 2.35 sit-to-stand
2.36 3.28 step-forward coffee table
3.29 4.32 step coffee table
3.29 4.32 grasp TV table remote
4.33 5.22 step
5.23 6.09 step forward
6.1 6.44 turn right 90
6.45 7.59 stand to sit couch
7.6 8.83 sit couch

Table 4: The pick the remote scenario: results

Start End Action Furniture Object
(seconds) (seconds)
0 2.4 sit-to-stand couch
2.41 3.6 step-forward coffee table
3.6 5.2 step left
3.29 5.2 approach TV table remote
4.6 5.3 step left coffee table
5.2 6.8 step forward couch
6.1 6.44 pull coffee tabele remote
6.8 7.5 stand to sit couch

an extensive validation given a sizeable human behavior
dataset as well as human behavioral studies in intention
and action understanding. However, due to space limita-
tions, in this work, we focused on presenting the build-
ing blocks (TARS and CARS) and their interconnection.
We tested the blocks individually and provided initial re-
sults of the integration of these systems to give an insight
into the dynamics of decision making. Future work would
focus on an extensive validation of the overall architec-
ture. Validation should avoid static representations such
as confusion matrices and focus on using new dynamic
metrics that measure the conflict between different com-
peting hypotheses of action understanding. Further met-
rics shouldmeasure the interaction between the TARS and
CARS modules and weigh the benefit to complexity ratio
of combining both signals for a correct and early action
understanding. Thus, the proper evaluation of the devel-
oped system and definition of metrics constitutes an own
research question which will be addressed in our future
work.

7 Relation to Related Work
The AU architecture (AUA) presented in this work is a de-
terministic model that reacts to the input and produces
decisions dynamically. This is in contrast to probabilistic
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Figure 16. Comparison of a generated mean template with corresponding mathematically calculated equivalent. The
chosen example is: “STEP_FORWARD”, projection distance xz between right and left foot . a) Generated template. b)
Corresponding mathematical mean template. c) Difference of a) and b). Thereby, dark red represents the maximum
value whereas dark blue represents the minimum.
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Figure 17. Influence of the adapting kernel for increasing confidence. a) Preshape adapted with a kernel having almost
0% confidence input. b): Confidence is increased to 50%. Finally, c) shows the adapted preshape by 100% confidence,
which corresponds the original preshape.
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Figure 18. Comparison result of all primitive actions against an input of STEP_FORWARD action. The colored lines
represent the mean confidence of the corresponding actions (see legend). The shaded areas around each mean shows
the variance. Time has been normalized with respect to the length of the recordings.

models proposed in the literature (we refer the reader to
the review [6]). Specifically, we can classify our AUA ap-
proach as a dynamic, single-layered exemplar-based se-
quential method, that depends on contextual information
when choosing the example (template). Exemplar-based
sequential methods have an advantage of requiring less
training data to perform recognition when compared to
probabilistic methods [6].

Biologically-inspired AU architectures are usually pre-
sented as computational models for Mirror neuron sys-
tems. Examples of such computational models are the
MOdular Selection And Identification for Control (MO-
SAIC)model [90–92], and the Hierarchical AttentiveMulti-
ple Models of Execution and Recognition (HAMMER) [93,
94] that were primarily developed for imitation and later
extended for action recognition [95, 96]. The Mental State
Inference (MSI) model [97] as well as the Recurrent Neural
Networks with Parametric Bias (RNNPB) [98–100] and the
Mirror Neuron System 2 model (MNS2) [101], all model the
MNS for AU.

As our model is biologically inspired and resembles
the work of Mirror neuron computational models dis-
cussed in the previous paragraph, we give a detailed com-
parison between our model and the previously discussed
Mirror neuron computational models in the following. Ad-
ditional discussion on how CARS and TARS could be re-

lated to the Mirror neuron system and other findings in
neuroscience is further presented in section 2.4.

Our model resembles the HAMMER architecture in
that we do not emphasize a motor control role in the cur-
rent implementation. This is in contrast to the MOSAIC
model that was conceived for purposes of dynamic motor
control.

In terms of input, the kinematics of certain joints of
interest is used in our model similar to the MSI model.
However, unlike other implementations, we explain how
features can be represented in population of neurons for
action recognition and the generation of long-termmemo-
ries for each class of actions. In terms of features and logi-
cal approach, similar to the MNS and MSI models, we pre-
sented a model that gives a central role to the objects in
the environment and adopts an object-centered represen-
tation.We give this representation further importance and
build theCARS to extract informationof attention shifts to-
wards objects, select them, read out their affordance and
allow this information to bias the TARS. Goal-setting then
is a focus in our model, while it is not addressed in MO-
SAIC, HAMMER and RNNPB models. While other models
might allow for goal-setting explicitly, it is not an auto-
matic procedure by any means and the link to the object
affordances and motion parsing is not well established,
which is what we focus on in our implementation.
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Figure 19. Results for the “pick up remote” scenario (a) Results of the CARS indicating the interaction of the right wrist
with the furniture (left, solid lines) and objects (right, solid dashed lines). This indicates that there was interaction with
the couch at the beginning and the end of the complete action, with interactions with the coffee table and the TV table
in the middle of the complete action. (b) Results of the TARS. Many TARMs are online and comparing the observed
movement dynamically, once one of the systems in competition achieves an accuracy of over 0.8, then all systems are
reset and wait for CARS to bias the next round of comparisons. The red ovals indicate a decision made.
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Projection of the acting agent to the observer is amain
block in the TARS which allows the system to be agent-
independent and complies with the ideas of "internal
simulation" and "motor resonance". This self-observation
mechanism is also shared with the MNS and MSI mod-
els [102]. However, unlike its use in the feedback-loop for
action generation in the MSI model, our implementation
uses self-observation in our implementation such as to as-
sociate the observed stimulus in an associative memory
manner to achieve action understanding. We also address
how spatiotemporal variance between the stored long-
term memories and the observed data could be handled
using dynamic neural fields and to obtain an accurate un-
derstandingof the correctmotion. Tackling this spatiotem-
poral variance/similarity between the same/different class
of actions has not been addressed in the mirror neuron
computational models and is vital for the correct under-
standing of an action.

All of the discussed models employ a metric to cal-
culate the similarity between the observed or generated
(learned representation) of the action. While RNNPB op-
erates on a parameter space, the similarity is calculated
based on the distance between the calculated and ob-
served actions. The HAMMER architecture defines similar-
ity based on the completion of the goal. The MSI model,
similar to the MOSIAC architecture, simply calculates the
instantaneous error (or what is called the responsibility
signals in the HAMMER model) based on the difference
between the predicted and observed movement. These
three architectures, namely HAMMER, MSI, and MOSAIC,
in contrast to the RNNPB, operate on trajectory space and
thus can calculate the similarity metrics based on the ob-
served/generated motion trajectories [103]. In our model,
we obtain an understanding of an action in two steps.
First, the CARS selects the object of interest and reads out
the possible affordances available at that time step. Sec-
ondly, the motion trajectory is parsed in a second step and
a decision ismade based on the overall activation of a neu-
ronpopulation representing the storedmemories of the ac-
tions, and how far the traveling wave propagates in that
structure.

The setup we proposed within our model allows for
online action recognition. Online recognition can also be
achieved in the MSI and HAMMER architectures. It can
also be achieved in theMOSAIC architecture given the pos-
sibility of comparison between different responsibility sig-
nals.

Concerning verification, our model evaluates the re-
sults on real data of an everyday life scenario. Out of
the models reviewed, RNNPB and the HAMMER approach

used real data as opposed to simulated data used by the
other models.

Other cognitive action understanding systems in the
literature that do not explicitly model neuronal processes
include the work of Yang et. al in [104], in which context-
free grammar and parsing algorithms were proposed for
the understanding of goal-directed manipulation actions.
The architecture uses a depth image to obtain an articu-
lated model of the user’s end-effector as input. The depth
image is also used to obtain information about the la-
bels of the objects and their position on a table-top. The
hand model is transformed into a set of bio-inspired fea-
tures which then are used to classify the grasp type using
a Naive-Bayes classifier. Additionally, hand tracking pro-
duces trajectory profiles for trajectory-based action recog-
nition. The classes were obtained by using a combination
of PCA and k-means clustering. An attention model, com-
parable to our proposed CARS, makes use of bottom-up
processes to identify potential fixation points in an image
frame as well as top-down attention mechanisms based
on the hand location. The spatial intersection of fixation
points and the hand location shifts the attention towards
an object for monitoring. A new observation consists of a
triplet: subject, action, objects. A context-free manipula-
tion action grammar is proposed and using parsing algo-
rithms, a tree group is updated when a new observation
is given and dissolved automatically. The tree output can
be then passed to an intelligent agent for decision making
and further operations.

Other work presented by Aksoy et al. in [105], de-
scribes a complex action by combining descriptors that
analyze the relationship between the series of manipu-
lated objects with action-related information such as tra-
jectory segments, pose and object information. The combi-
nation of these descriptors allows for a better comparison
of observed actions and therefore enriches the meaning
behind each action. The work describes how observed ac-
tions are either understood as new actions or known ones.
The new actions are accommodated for by creating a novel
schemata, while the known ones, if slightly different are
assimilated with the representative schemata.

A neural dynamic approach for parsing a sequence of
actions was recently presented in [8] by Lobato et al. The
authors present a neural-dynamic architecture that is ca-
pable of detecting and representing an even of actions,
namely reaching/grasping/dropping objects on a table-
top scenario. Trajectory recognition was not considered,
but rather three-dimensional positions of hands and ob-
jects were used to calculate whether the hand was ap-
proaching the object or not. The overall architecture is ca-
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pable of memorizing a string of actions for overall action
understanding.

Neural fields were also utilized for the task of action
recognition in the work of Fleischer et al. in [106]. A phys-
iologically inspired model for the recognition of transitive
hand actions from video data was proposed. The model
makes use of threemain components. The first component
is a neural shape processing hierarchy that recognizes the
moving effector and the goal object. Neural shape process-
ing utilizes Gabor filters, Gaussian radial basis functions
and linear regression at the different hierarchy levels to
perform recognition tasks of static and dynamics shapes.
The first components are also selective for the temporal or-
der of effector shapes to differentiate between, e.g., grasp-
ing vs. placing. This is done using the concepts of snap-
shots within the neural field. The second componentmod-
els the interrogation of information about the relationship
between the effector and the object. A two-dimensional
neural activation map named relative position map is uti-
lized to understand the relative relationship between the
hand and the object such that two features are extracted.
The first feature is the position of the hand relative to the
goal objects given the assumption of affordance neurons
that house all possible relative effector positions that con-
stitute a successful grasp. The second feature is the relative
motion of the effector in relation to the object which aids
in the recognition of e.g., approaching motion vs. mov-
ing apart motion. The third and final component consol-
idates the information from the previous components to
model the neural detection of goal-directed actions. The
work presented by Fleischer et al., in contrast to the work
presented here, uses the only the relative movement infor-
mation to recognize action and does not take the shape of
the trajectory into account. Furthermore, the model takes
as an input a sequence of video images as to detect the ef-
fector and object locations.

Overall, the AU architecture in this work presents
a novel predictive system within DFT, models attention-
shifts, and pairs up with a trajectory parsing system in a
second step. The trajectory parsing system takes account
of spatial as well as temporal variations that are usually
problematic when understanding actions. Particular at-
tention is given on how objects and the environment are
integrated into the overall architecture and on how they
can drive action understanding.

8 Discussion
There is an infinite set of intentional descriptions con-
sistent with any given behavior stream. However, even
though there exists a significant state space of possible in-
terpretations, adults seem to be skilled at agreeing about
the semantics of an observed action to a detailed descrip-
tion [107, 108]. Even from a young age, we can understand
actions (e.g., grasping, pointing and gazing) and attribute
a meaning behind them accordingly [109, 110]. These so-
cial abilities of action, plan, and intention understanding
that we possess as humans allow us to interact with others
around us socially.

We presented an action understanding architecture
that aims at understanding human actions through the in-
tegration of movement and context in a dynamic frame-
work that links bodies, brain, and environment in an em-
bedded cognitive fashion.We introduced an attention shift
model that has an application in the CARS and a trajectory
comparison model that has applications in TARS. We also
introduced how the link between CARS and TARS could be
logically motivated using the concept of affordances and
connectivity fields.

A biologically motivated approach for feature selec-
tion and generation was discussed. While the features in
this work were calculated for a generic 1.8 m tall male,
given the actual height and weight of the observed ac-
tor, the whole anthropometric measures (and thus the
features) can be derived using correlation formulas [111].
The features calculated, encode relations between dif-
ferent joints in the body. It would be beneficial to de-
vise a system that dynamically switches between different
feature sets for enhanced recognition and reduced com-
putational load. Considering features that encode end-
effector–objects relations could also be in line with the
current work and would enhance recognition rates. Over-
all the implemented 39 features were sufficient to test the
current system and produce the results as seen in the re-
sults section.

The features themselveswere represented and fed into
the DFT architecture using a biologically motivated ap-
proach, namely the DPA method which integrates natu-
rally with the concept of dynamic neural fields [112]. We
focus on representing the tuning curves in a way that is
consistent with neural response studies in the literature.
The assumption that tuning curves are the same across the
population is a limiting one. Indeed, it might be the case
that the shape of the tuning curve can be different. More-
over, our assumption of equally distributed tuning curves
across the feature space is simplistic and maybe not bio-
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logically plausible. We assume that the tuning curves are
the same across the population as well as being equally
distributed over the feature space as a simplification. Fur-
ther, work on how and what it means for the optimal re-
sponse values (both in value and quantity) to be optimally
distributed along the feature space might allow for a more
meaningful stimulus generation for the DFT architecture.

An attention-shift model was developed for context
understanding in action recognition tasks. The bias in-
troduced by the CARS aims to reduce the overall compu-
tational complexity of the system. The idea that an ob-
server’s expectation of a movement effects how the inten-
tion behind it is understood has been shown previously
in literature [113]. Furthermore, the need for a top-down
mechanism to constrain intentions of an actor has been
discussed in [114] where the Gricean pragmatic analysis of
language (specifically the reality and cooperative princi-
ples) were used as the constraint to the understanding of
simple, goal-oriented actions.

Regarding neural plausibility, the online computation
of the optical flow is problematic, however. This is because
the online calculation of the optical flow would require
rapid and precise plasticity in the synapses that imple-
ment lateral interactions. As such, the implementation of
CARS should be seen as an algorithmic shortcut for amore
complex neural system that could generate moving peaks
as described in the CARS implementation.

The TARS subsequently load only a fewpreshapes that
are dependent on the input from CARS. Furthermore, as
an internal comparison is the basis of the TARS, the cur-
rent implementationdepends ona learnedmemory of how
the movement evolves. The template generation methods
produce preshapes that are useful for the comparison pro-
cess. However, two major issues with the production of
template preshapes had been observed and been tackled,
namely the branching andwidening effects. Branching oc-
curs when there aremultiple ways of performing an action
kinematically (in contrast to having one way with small
variances in motion). In this occurrence, we can observe
a branch in the preshape that starts from a common point
and ends separately. The branching effect has been solved
by post-processing these preshapes into a DNF that ulti-
mately picks between branches (the one with most activa-
tion) and eliminates the other. The other issue iswidening,
which refers to the fact that the preshape can take a wide
rangeof features at someparts due to significant variations
in the performance of an action. These wide areas usu-
ally survive in the post-processing procedures and could
facilitate erroneous detection. This has many limitations;
specifically, an action recognition systemcannot house all
possibilities for the same action (different speeds/ exten-

sions) that could encode the same action class. We have
tackled this problem by trying to adapt the preshape dy-
namically as well as using a temporally invariant com-
parisonmethod (travelingwaves and extracting snapshots
within the learned memory/ preshape).

The CARS and the TARS are brought together such as
to limit the search space using ideas of affordances embed-
ded in the connectivity matrix. Using affordances, how-
ever, is not without complexity. Further, work should fo-
cus on how objects’ action potentials are perceived and
modeled within DNFs, similar to that presented in [115].
DNF can be used to attribute affordances to objects by
modeling a neuronal pool of properties that should all be
present for a given affordance to be turned on. Addition-
ally, affordances could be attributed to objects over time
by observing goal-directed movements towards new ob-
jects, recognizing the actions dynamically and associat-
ing the complementary affordance to that object. Affor-
dances suffer from a more elementary problem of defini-
tion. It is not clear how it is fully defined, and its imple-
mentation should model the state of the agent’s brain,
body, and environment as we have presented in this work.
That being said, the current system architecture cannot
learn new affordances, or detect new objects in the envi-
ronment. For a more meaningful and correct implemen-
tation of a cognitive architecture, these issues should be
addressed. Furthermore, detecting and learning new ac-
tion abilities (primitives) is also not implemented. How-
ever, if affordances could be attributed in futurework, new
actions that trigger these affordances could be learned on-
line given affordance understanding.

Given the above discussion, we describe in the follow-
ing how the different modules interact with each other us-
ing the “pick up remote” scenario presented in the results
section. Initially, as the observed agent moves around in
the environment, its skeleton is transformed onto the ob-
server’s egocentric coordinate frame as discussed in sec-
tion 5.1.1. Furthermore, the Body Joint Extension and the
Projected Relative Angle features (list of features given in
AppendixA) are calculated as discussed in section 5.1.2. As
the pelvis and wrists of the agents move, they provide in-
put to their CARMs todetect amanipulationmovement (to-
wards an object/ furniture) or a locomotionmovement (to-
wards a virtual object). In our example, the agent is inter-
acting with the couch. The CARS decides that the couch is
beingmanipulated. This affects the affordance logic block
to activate the TARMs that are related to the couch, e.g.,
sit-to-stand action or stand-to-sit. The TARS loads the ap-
propriate TARMs (sit-to-stand action and stand-to-sit), al-
lowing the prehshapes of each action across the different
features to be loaded. The comparison occurs in each of
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the TARMs relating to the action/feature pairs against the
observed motion as discussed in the comparison block in
section 5.3.2. A decision is achievedwithin the TARS as one
of the TARS achieves an accuracy of 0.8 or above. This re-
sets the system and waits for the CARS for the next input.
In this case, it is recognized as a locomotion action (the
attention shift was towards a virtual object), which forces
several locomotion TARMs to turn on as well as the new
affordance of the coach (sittability, now that the couch is
available to be sat on again). The next round of TARS de-
tects that the agent is stepping forward, and so on until the
end of the complete series of intentional actions.

Compared to similar work in literature, we presented
a novel predictive system within DFT models attention-
shifts and pairs up with a trajectory parsing system in a
second step. Special focus has been given to how kine-
matic trajectories are introduced into DFTs and how the
comparison could be performed regardless of possible
spatiotemporal variations between the completed and
saved representations of the actions.

9 Conclusions
This article presented, for the first time, two systems that
are hypothesized to be central to the task of action under-
standing. The two systems were realized within DNFs. The
first of which, TARS, takes information of movement kine-
matics. The CARS, on the other hand, takes information
of movement kinematics, object locations as well as affor-
dances in the environment. The two systemsproduced cog-
nitive decisions that answer questions of what is the ac-
tion that is being performed, where it is being performed
and towards which object, all within the theory of dy-
namic fields. The success of the two systems stems from
the tight, dynamic coupling between the environment and
the decision-making units. This allowed for the produc-
tion of contextual information necessary for further pro-
cessing. The initial test results generated using the inte-
gration of the two systems provide an essential step to-
wards a robotic cognitive ability of mental state estima-
tion and intention understanding. Further work should fo-
cus on further validating the complete system using the
recorded dataset to evaluate the accuracy of the archi-
tecture. In future work we also aim to extend the real-
ized system with action production modules to augment
the long-term memory templates, that are currently being
used within TARS, to achieve internal simulation of pre-
dicted actions. Human-centered studies could also be de-
signed to validate the need for a contextual system along-

side a trajectory recognition system to understand a se-
quence of actions.
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Appendix A: List of calculated
features
The list contains all calculated features, providing the
feature name, body plane (coordinate frames given in
figure (4)) and corresponding Xsens joint and segment
names:
1. projected relative angleXYHead: headangle projected

on the XY plane
2. projected relative angle XY LeftFoot: left foot angle

projected on the XY plane
3. projected relative angle XY LeftWrist: left Wrist angle

projected on the XY plane
4. projected relative angle XY RightFoot: right foot angle

projected on the XY plane
5. projected relative angle XY RightWrist: right Wrist an-

gle projected on the XY plane
6. projected relative angle XZHead: head angle projected

on the XZ plane
7. projected relative angle XZ LeftFoot: left foot angle

projected on the XZ plane
8. projected relative angle XZ LeftWrist: left Wrist angle

projected on the XZ plane
9. projected relative angle XZ RightFoot: right foot angle

projected on the XZ plane
10. projected relative angle XZ RightWrist: right Wrist an-

gle projected on the XZ plane
11. projected relative angle YZHead: head angle projected

on the YZ plane
12. projected relative angle YZ LeftFoot: left foot angle

projected on the YZ plane
13. projected relative angle YZ LeftWrist: left Wrist angle

projected on the YZ plane
14. projected relative angle YZ RightFoot: right foot angle

projected on the YZ plane
15. projected relative angle YZ RightWrist: right Wrist an-

gle projected on the YZ plane
16. body joint extension XY Head LeftWrist: percentage of

extension length between the head and left Wrist in
the XY plane.
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17. body joint extension XY Head RightWrist: percentage
of extension length between the head and right Wrist
in the XY plane.

18. body joint extension XY LeftFoot RightFoot: percent-
age of extension length between the left foot and right
foot in the XY plane.

19. body joint extension XY Pelvis Head: percentage of ex-
tension length between the pelvis and head in the XY
plane.

20. body joint extension XY Pelvis LeftFoot: percentage of
extension lengthbetween thepelvis and left foot in the
XY plane.

21. body joint extension XY Pelvis LeftWrist: percentage
of extension length between the pelvis and left foot in
the XY plane.

22. body joint extension XY Pelvis RightFoot: percentage
of extension length between the pelvis and right foot
in the XY plane.

23. body joint extension XY Pelvis RightWrist: percentage
of extension length between the pelvis and right Wrist
in the XY plane.

24. body joint extension XZ Head LeftWrist: percentage of
extension length between the head and left Wrist in
the XZ plane.

25. body joint extension XZ Head RightWrist: percentage
of extension length between the head and right Wrist
in the XZ plane.

26. body joint extension XZ LeftFoot RightFoot: percent-
age of extension length between the left foot and right
foot in the XZ plane.

27. body joint extension XZ Pelvis Head: percentage of ex-
tension length between the pelvis and head in the XZ
plane.

28. body joint extension XZ Pelvis LeftFoot: percentage of
extension lengthbetween thepelvis and left foot in the
XZ plane.

29. body joint extensionXZPelvis LeftWrist: percentage of
extension length between the pelvis and left Wrist in
the XZ plane.

30. body joint extension XZ Pelvis RightFoot: percentage
of extension length between the pelvis and right foot
in the XZ plane.

31. body joint extension XZ Pelvis RightWrist: percentage
of extension length between the pelvis and right Wrist
in the XZ plane.

32. body joint extension YZ Head LeftWrist: percentage of
extension length between the head and left Wrist in
the YZ plane.

33. body joint extension YZ Head RightWrist: percentage
of extension length between the head and right Wrist
in the YZ plane.

34. body joint extension YZ LeftFoot RightFoot: percent-
age of extension length between the left foot and right
foot in the YZ plane.

35. body joint extension YZ Pelvis Head: percentage of ex-
tension length between the pelvis and head in the YZ
plane.

36. body joint extension YZ Pelvis LeftFoot: percentage of
extension lengthbetween thepelvis and left foot in the
YZ plane.

37. body joint extension YZ Pelvis LeftWrist: percentage of
extension lengthbetween thepelvis and left foot in the
YZ plane.

38. body joint extension YZ Pelvis RightFoot: percentage
of extension length between the pelvis and right foot
in the YZ plane.

39. body joint extension YZ Pelvis RightWrist: percentage
of extension length between the pelvis and right Wrist
in the YZ plane.

Appendix B: Shapes of the tuning
curves
In our search for the most representative shapes of tun-
ing curves, we investigated the results of the work of New-
some and Salzman [80] and the work of Perret et. al. [79].
The work of Newsome and Salzman focused on the direc-
tion discrimination inmonkeys. Theymeasured the visual
response from the direction column in the middle tempo-
ral visual area (MT). We investigated their recorded data
that presented the intensity of response given the direc-
tion of motion of the shown stimuli. After initially testing
with cubic spline fitting, and parameter minimization us-
ing different family of curves, we settled on a representa-
tion using a Mexican hat function ψ(x, σ, c), with width
(standard deviation) of σ and offset c. The parameters of
which were decided by solving an argument minimisation
problem (equation (9)) that minimized the Euclidean dis-
tance between the fitted spline s(x) and the Mexican hat
ψ(x, σ, c) given in (10).

argmin
σ,c∈R

∑︁
x∈[−180,180]

|s(x) − ψ(x, σ, c)| (9)

ψ(x, σ, c) = 2
√
3σπ 1

4

(︂
1 − x

2

σ2

)︂
exp

(︂
−x2
2σ2

)︂
+ c (10)

The work in Perrett et. al. also providesmeasured tun-
ing curves and analyzed them. We investigated results in
their work in which they record neuronal responses to dif-
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ferent head orientations and used their data in our mod-
eling. The results showed that body parts are represented
using view-centered descriptions. Furthermore, cells can
be described as broadly, bimodally or narrowly tuned. We
used the cell response information to model the tuning
curves using a modified version of the fitting function
(equation (11)) used in their original work. Perrett et al. ar-
gue for their choice of this equation stating that “it makes
few assumptions about the nature of view tuning” [79].
Our modified version (15) guarantees symmetrical tuning
curves and was used to solve the optimization problem
in (12). Firstly however, the parameters β1−5 that compose
(11) have to be approximated given the extracted data d(x)
using the minimization (12). Therefore modifying (11) to
fulfill the condition R(x) = R(−x) we get (15) following
these steps:

R(θ) = β1 + β2 cos(θ) + β3 sin(θ) + β4 cos(2θ) + β5 sin(2θ)
(11)

argmin
β1−5∈R

∑︁
x∈[−180,180]

|d(x) − R(x, β1, β2, β3, β4, β5)| (12)

β1 + β2 cos(θ) + β3 sin(θ) + β4 cos(2θ) + β5 sin(2θ)...
= β1 + β2 cos(−θ) + β3 sin(−θ) + β4 cos(−2θ) + β5 sin(−2θ)
= β1 + β2 cos(θ) − β3 sin(θ) + β4 cos(2θ) − β5 sin(2θ)

(13)

β3 sin(θ) + β5 sin(2θ) = −β3 sin(θ) − β5 sin(2θ) (14)

Rs(θ) = βs1 + βs2 cos(θ) + βs3 cos(2θ) (15)

Appendix C: The motion capture
dataset
TheMotion Capture Dataset (MCD) consists of 19 primitive
action classes and 5 high-level scenarios. Overall, 10 sub-
jects performed each action 20 times and each scenario 5
times.

Used terms

In the following, the main expressions/abbreviations are
explained. These expressions will be used in the detailed
action description.

– SUBJECT: The person performing the actions is called
SUBJECT.

– NPOSE: This is the Neutral pose. The SUBJECT stands
straight having both arms pointing downwards on the
corresponding body-side. The foot are at the same
height, next to each other, at shoulder width apart.
The head is straight, looking forward.

– START_POSITION: The START_POSITION is defined
as the position in which the user starts the action. In
many cases this position can be defined on a fixed
point. The SUBJECT is asked to stand on a marked
area within the NPOSE, having the legs positioned in
a comfortable way (shoulder width).

Actions

The subjectswere asked to perform the actions in a natural
smooth movement, following the provided descriptions.
– STAND_TO_SIT: The SUBJECT stands on the marked

START_POSITION,having a chair behindhim/her. The
chair is positioned in such away that the SUBJECT can
sit down without moving the chair (If the chair is ad-
justable in height, the SUBJECT is asked to adjust it
before). The STAND_TO_SIT action is then performed
by the SUBJECT sitting down on the chair.

– SIT_TO_STAND: This action represents the reverse
movements from STAND_TO_SIT, i.e. now the SUB-
JECT starts sitting on a chair and stands up ending in
a neutral pose (NPOSE).

– STEP_FORWARD: The SUBJECT stands on themarked
STARTING_POSITION and makes a natural step, us-
ing the right leg, to the front. After this step the left
leg is positioned next to the right leg, i.e. the SUB-
JECT is ending in the NPOSE on step in front of the
START_POSITION.

– STEP_BACKWARD: This action is similar to the
STEP_FORWARD action. Instead of stepping forward,
the SUBJECT steps backwards with his/her right leg.
After the step the left leg is positioned at the same
height as the right leg ending in the NPOSE - analog
to STEP_FORWARD, but in this case one step behind
the START_POSITION.

– STEP_RIGHT: The SUBJECT stands on the
START_POSITION and steps with his / her right
leg one step to the right. Following the left leg is
positioned next to the right leg ending in a neutral
pose (NPOSE) again.

– STEP_LEFT: This action is analog theSTEP_RIGHTac-
tion, but the SUBJECT steps to the left. I.e. the SUB-
JECT steps, starting from the START_POSITION, with
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the left leg one step to the left - followed by the right
leg, which is positioned next to the left leg again - end-
ing up in the NPOSE.

– WALK_FORWARD: TheWALK_FORWARD action con-
sists of a five step walk. Therefore the SUBJECT starts
on the START_POSITION and steps five steps forward
(right, left, right, left, right) - starting with the right
leg. After the last step the SUBJECT stands on the right
leg. Now the left leg is positioned at the sameheight as
the right leg, ending up in the NPOSE. i.e. the begin-
ning and end are similar to the STEP_FORWARD ac-
tion.

– WALK_BACKWARD: This action represents the re-
verse movement of WALK_FORWARD, i.e. the SUB-
JECT walks five steps backwards. Therefore he/she
starts at the START_POSITION and steps, startingwith
the right leg, five steps backwards (right, left, right,
left, right). After the last step, the left leg is positioned
at the same height than the right leg again (NPOSE).

– TURN_RIGHT_90: The turning actions represent full
body turns. TURN_RIGHT_90 represents correspond-
ing to the name a right turn of 90∘. Hence the SUB-
JECT stands at the START_POSITION and turns 90∘

to the right and on the spot with the full body - end-
ing in a neutral pose (NPOSE). This turn is performed
at the same position, whereas small changes are ac-
cepted. Themovementswith legs are not specified, i.e.
the SUBJECT can perform them freely (but in a natural
way).

– TURN_LEFT_90: Analog to the TURN_RIGHT_90,
this action represents a full body left turn. The
SUBJECT starts at the START_POSITION and turns
90∘ to the left ending in the NPOSE (compare to
TURN_RIGHT_90). Themovements of the legs are free
to the SUBJECT.

– TURN_RIGHT_180: Analog to TURN_RIGHT_90, but
instead of turning 90∘ the SUBJECT has to turn 180∘

(Compare to TURN_RIGHT_90).
– TURN_LEFT_180: Analog to TURN_LEFT_90, but in-

stead of turning 90∘ the SUBJECT has to turn 180∘

(Compare to TURN_LEFT_90).
– APPROACH : The SUBJECT has to approach an object

- in this case a light switch. Hence the SUBJECT stands
in the NPOSE in a comfortable position in front of the
light switch and pushes it with the right hand. The ac-
tion stops at the point where the SUBJECT touches the
switch. The light switch is at a height of 1.2-meters.
Nomovements of the legs is required, nevertheless the
SUBJECT is not restricted to change the position of the
legs.

– PUSH: Within this action the SUBJECT has to push an
object. Two markers are attached on a tabletop (one
marker near the SUBJECT, the other with more dis-
tance). The object is placed at the near marker and
the SUBJECT stands at the START_POSITION in front
of the table - such that he/she can reach both mark-
ers. The right hand touches the object already. To per-
form the action the SUBJECT pushes the object from
the near to the more distant marker using the right
hand. During the push, the object doesn’t lose contact
with the tabletop and its orientation is kept in a similar
way (smaller changes are accepted).

– PULL: This action represents the reverse action to
PUSH. I.e. the object is located at a distant marker and
the SUBJECT has to pull it to the nearmarker using the
right hand. (Please compare to PUSH in order to have
a more detailed description).

– GRASP: The GRASP action represents an object
grasp. Therefore the SUBJECT stands in front of a ta-
ble within the START_POSITION (NPOSE). To perform
the action the SUBJECT grasps the object. The action
stops when the SUBJECT touches the object.

– PLACE: The PLACE action describes the placing of an
object. Hence it can e.g. be executed after the GRASP
position. The SUBJECT stands in front of a table with
twomarkers (onemarker left and one right). An object
is placed on top of one marker and it has to be moved
to the other marker. During the START_POSITION, the
SUBJECT already has grasped the object. Now he/she
has to move the object to the second marker. Dur-
ing this movement the object looses contact with the
tabletop. Themovement stopswhen theobject is at the
final position (SUBJECT still touches the object).

– OPEN_DOOR: The SUBJECT stands in the
START_POSITION in front of a closed door (NPOSE).
He/she has to open the door, in order to go through it.
Which hand is used is free to the SUBJECT. Further-
more the leg movements are not described. The task
for the SUBJECT is to open the door in a natural way.

– CLOSE_DOOR: Opposite to the OPEN_DOOR action,
the SUBJECT has to close a door within this action.
Hence, the SUBJECT stands in front of an open door
and has to close it in a natural way (Compared to
OPEN_DOOR).
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Scenarios

– DAF_OFF: The SUBJECT started lying in the bed.
He/she was asked to get up and start his/her morning
routine as if it would be a free day.

– GO_TO_WORK: This scenario starts similar to the
DAY_OFF scenario. However, this time the SUBJECT
was asked to perform a morning routine as if he/she
had to go to work.

– PICK_A_SNACK: The SUBJECT starts sitting on the
couch. He/she is asked to get up and take a snack.

– PICK_REMOTE: The SUBJECT starts sitting on the
couch again. Now, he/she is asked to get up and pick
the remote controller for the television.

– TIDY_UP: Similar to the two scenarios above, initially
the SUBJECT sits on the couch. He/she is asked to
tidy up the apartment. Therefore all objects have been
placed on defined initial positions. Corresponding to
the initial positions, final positions have been defined.
Hence, the subject had to move the objects from the
initial position to the corresponding final position.
However, the order was not given.

Appendix D: Derivation of the wave
transient
In the following, we provide a mathematical derivation of
the wave transient, for a complete derivation we direct the
reader to the work presented in [57]. The initial equation
is the dynamic field (1). Now, it is assumed that the field,
which is used to generate the moving peak, has a local ex-
citation (peak solution) (see a-solution [48]) and that the
input signal S(x, t) ≡ 0. In order to generatemovement, an
asymmetric interaction kernel wa = we +w0, consisting of
a symmetric kernel part we overlapped with an asymmet-
ric function w0, is developed. The shape of the function
w0, which is necessary to generate the movement, is de-
termined in the following. By taking the previous assump-
tions aswell as the asymmetric kernelwa into account, the
dynamic field equation (1) results into

τu̇(x, t) = −u(x, t) + h +
∫︁
f (u(x′, t))wa(x − x′)dx′. (16)

Assuming that there is an initial stable peak solution
within the field at time t = 0, meaning U(x) = u(x, 0).
Thus, the excitation distribution, for any time instance
t > 0, is given by

U(x, t) = U(x +
t∫︁

0

v(η)dη), (17)

whereby v(t) represents the velocity of the moving peak.
Equation (17) can be used to calculate an equation provid-
ing information about the relation ofw0 and v(t). Plugging
(17) into the right side of (16) we obtain

τu̇(x, t) = τU ′ ddt (x +
t∫︁

0

v(η)dη) = τU ′v(t). (18)

Plugging (17) into the left side of (16) results in

− U +
∞∫︁

−∞

wa(x, y)f (U(y))dy + h =
∞∫︁

−∞

wo(x, y)f (U(y))dy,

(19)
given the knowledge about the equilibrium solution under
we is

∞∫︁
−∞

we(x, y)f (U(y))dy = U − h. (20)

Finally, combining the left and right side we obtain

τU ′v(t) =
∞∫︁

−∞

wo(x, y)f (U(y))dy. (21)

It can be seen that the relation between w0 and v(t) is
not as simple as may be expected. However, by setting
w0 = p(t)w′e, and given the knowledge of (20) the complex
relation simplifies to

v(t) = p(t)τ . (22)

Here, p(t) is a time-depending factor and w′e the spa-
tial derivation of the symmetric kernel part. Now, (22) al-
lows to control the speed of the moving peak, whereas the
shape of the kernel influences the direction. An example of
this kernel is shown in Fig. 1(b) (black dashed line labelled
with number 4).
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