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Ultrafast quantum control of ionization dynamics in
krypton
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Johann Riemensberger1,2, Andreas Duensing1, Rupert Heider1, Martin S. Wagner1, Alexander Guggenmos 2,

Stephan Fritzsche3,4,5, Nikolay M. Kabachnik6,7,8, Reinhard Kienberger1,2 & Birgitta Bernhardt 1,5,9

Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of

ultrafast electron dynamics in atoms, molecules and solids. These experiments employ

attosecond pulses or pulse trains and explore dynamical processes in a pump–probe scheme

that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption

spectroscopy or that includes changes of the ionic state detected via photo-ion mass

spectrometry. Here, we demonstrate how the implementation of combined photo-ion and

absorption spectroscopy with attosecond resolution enables tracking the complex multi-

dimensional excitation and decay cascade of an Auger auto-ionization process of a few

femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of

intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of

a dressing laser field addresses different groups of decay channels and allows exerting

temporal and quantitative control over the ionization dynamics in rare gas atoms.
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In the last decade, time-resolved spectroscopy with attosecond
resolution1–13 has revolutionized our understanding of elec-
tron dynamics by capturing ultrafast processes in atoms,

molecules and solids in real time. While the first photoelectron
studies with attosecond resolution could, for example, track a
few-femtosecond Auger process14, meanwhile ultrafast metrology
became so advanced that unexpected delays in photoemission
from atoms were discovered4,15, most recently down to sub-
attosecond precision5. Attosecond time-resolved mass spectro-
scopy16,17 provided the first time-domain observation of field-
induced tunnel ionization manifesting itself in a step-like rise in
the ion yield. More recently, attosecond transient absorption
detection could launch and detect valence electron wavepackets in
atoms11, examine their interference with continuum states13 and
enabled studying tunnel ionization in solids18.

Photoelectron detection techniques generally suffer from
electron backgrounds produced by strong laser fields or second-
ary electrons that do not carry any information about the
dynamics under inspection. The detection of the correspondingly
produced ions, however, is background-free. Nevertheless, both
methods require the release of photoelectrons and thus are sui-
table only for the study of ionizing events. Transient absorption
spectroscopy (TAS) in contrast is not limited to phenomena
liberating electrons and is the method of choice for investigating
bound–bound transitions19,20. Instead of measuring the yield of
generated charge carriers, TAS measures the spectrally resolved
absorption of an attosecond extreme ultraviolet (XUV) pulse in a
medium that has been coherently excited by an XUV pulse or
dressed by an intense, time-delayed near-infrared (NIR) few-cycle
laser pulse. This method typically provides a higher resolution in
energy (ΔE/E ~ 10−3) than ion or electron detection (ΔE/E ~ 10−2

at best). However, it generally lacks the dynamic range to
simultaneously detect the characteristic absorption signals of

different co-existing ionic charge states due to insufficient spectral
bandwidth or due to the absorption cross-sections and abun-
dances of the different ionization states that typically vary by
several orders of magnitude. TAS experiments have been suc-
cessful in recording auto-ionizing state lifetimes in xenon12 and
other species21. However, even a detailed theoretical investigation
could not explain whether the interrogating ultrashort and
intense NIR laser pulse couples the auto-ionizing states to
neighboring resonances or to which extent excited electrons are
promoted into the ionization continuum by the laser field22. In
contrast, the ion detection that enabled the first observation of
tunneling electrons in neon and xenon could track the change in
ion yield of different charge states. However, mass spectroscopic
studies to this date cannot resolve individual shake up satellites16.

To overcome the limitations of single observable experiments
and in order to draw a complete picture of the co-evolving
excitation/ionization dynamics, in this article we demonstrate the
benefit of combining ion spectroscopy and transient absorption
with attosecond temporal resolution. Merging these detection
methods provides complementary insight into the excitation/
decay mechanism as the transient absorption maps the initiating
resonant excitation and the ion detection sensitively records the
subsequent branching into intermediate and final states. The
combination of transient absorption with ion spectroscopy
compensates the limits in the simultaneous detection of several
ionic states that absorption spectroscopy typically brings along.
The prerequisite is that the pump–probe experiment can be
performed twice under identical experimental conditions except
for differing target densities optimized for the two detection
methods. Adjusting the laser electric field amplitude allows
selectively addressing different intermediate states of the auto-
ionization cascades that follow the XUV excitation resulting in
different apparent lifetimes. With that, the experimentalist
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Fig. 1 Overview of the experiment. a Krypton excitation and decay scheme. The XUV pulse excites the 3d−15/2 np/3d−13/2 np states (violet arrow) that can
decay via different Auger cascades (green arrows). Depending on the NIR laser intensity, the different intermediate Kr+ states can be further ionized to
Kr3+: at low NIR intensities, the intermediate 4s−2np states can be ionized to Kr3+ (thin red arrow, INIR = (8.6± 1) × 1013W cm−2), at higher NIR
intensities, the 4p−34dnp/4s−14p−1np states can be ionized to Kr3+ (thick red arrow, (2.9± 0.5) × 1014W cm−2). The direct XUV ionization and the
corresponding decay channels are not shown for the sake of clarity, but are considered in the data analysis. For a more detailed figure see refs.17,31 for
example. b Experimental setup with a double mirror configuration introducing a time delay between the XUV pulse and the NIR few-cycle pulse (the XUV
pulse arriving first for positive time delays). XUV and NIR beams are focused into a krypton gas cloud. The remaining XUV radiation transmitted by the Kr
gas is measured by an XUV spectrometer, while the Kr ions are detected by a reflectron-type ion spectrometer. c Incident XUV spectrum centered at
90 eV (violet) and a typical krypton transmission spectrum (green) showing the 3d−15/2 5p transition at 91.23 eV and the 3d−15/2 6p/3d−13/2 5p transitions
at 92.45 eV, respectively. d Measured ion spectrum yielding singly, doubly and triply charged krypton ions. For the absorption and ion spectra of c and d,
the NIR pulse was set to advance the XUV pulse by 150 fs (Δt = − 150 fs)
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obtains control of the temporal evolution and the absolute yield
of the ionization dynamics by accessing different level groups in
the cascade with different NIR intensities. The accompanying
absorption measurement enables the determination of the
instrument response function, the lifetimes of resonantly excited
states involved in the process and proves that the overall condi-
tions of the experiment (resonant excitation and ionization)
remain unchanged for a large range of NIR intensities.

Results
Experiment. To explore the decay dynamics of highly excited
krypton (see Fig. 1a), a phase-stabilized Ti:Sapphire few-cycle
laser14,16,17 is used to produce isolated attosecond pulses (cp.
Supplementary Fig. 1) via high harmonic generation in a
pump–probe scheme united with a reflectron-type ion spectro-
meter and an XUV grating spectrometer (see Fig. 1b and Sup-
plementary Note 1 for details). Figure 1c shows the transmission
spectrum without (violet) and with (green) krypton gas sample
with the NIR pulse preceding the XUV pulse by 150 fs. For the
same time delay, Fig. 1d depicts the corresponding ion spectrum
with singly, doubly and triply charged krypton ions. For the time-
resolved studies, we measured the krypton transmission and ion

spectrum scanning the arrival time difference between XUV and
laser pulse.

Merging ultrafast absorption and ion mass spectroscopy. Fig-
ure 2a shows the spectrally resolved change in absorbance (optical
density OD = −log10(It(Δt)/I0), with I0 as incident XUV spec-
trum) as function of the XUV/NIR time delay, while Fig. 2b
depicts the isotope-resolved Kr3+ ion yield change. The absor-
bance starts to transiently decrease at XUV/NIR pulse synchrony
while the Kr3+ ion yield shortly rises, however, with a slightly
retarded response with respect to the absorption change.

Ionization dynamics in krypton. To reveal further details of the
ionization dynamics, Fig. 3 presents the absorbance ΔOD at
91.23 eV (corresponding to the 3d5/25p resonance23) relative to
the OD measured at Δt = −30 fs and the Kr3+ ion yield added up
over the four most abundant krypton isotopes for two different
NIR intensities: Fig. 3a for low NIR intensity of (8.6± 1) × 1013

W cm−2 and Fig. 3b for high NIR intensity of (2.9± 0.5) × 1014

W cm−2. For both cases, the absorbance decreases on a quick
(<10 fs) time scale before it recovers almost to its original value.
The time constant of the fast ΔOD decrease reflects the
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Fig. 2 Absorption and ionization spectroscopy measurements. a Spectrally resolved optical density OD with respect to the time delay between the XUV
and the NIR pulse, revealing the 3d−15/25p and 3d−15/26p/3d−13/25p resonances at 91.23 eV and 92.45 eV, respectively. The XUV pulse is preceding the NIR
pulse for positive times on the delay axis. The absorbance at the resonances transiently decreases at XUV/NIR pulse overlap and subsequently recovers
almost to its original value, with an exponential time constant corresponding to the state lifetimes. b Time-dependent and isotope-resolved Kr3+ ion yield.
For all isotopes similarly, the Kr3+ ion yield rises shortly before XUV/NIR pulse overlap and decays with a slower time constant when compared to the
transient absorption in the left panel to a persistent elevated count rate. In both cases, the NIR intensity was (8.6± 1) × 1013W cm−2
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Fig. 3 Absorbance change ΔOD and Kr3+ ion yield vs. time delay. The change in absorbance or optical density ΔOD states the difference of the optical
density OD =−log10(It(Δt)/I0) at a given time delay Δt (It(Δt) is the transmitted signal at time delay Δt, I0 is the reference intensity measured at a time
delay tR= −30 fs). a At lower NIR intensities of (8.6± 1) × 1013W cm−2, the absorbance (light green, left scale) transiently drops around pulse overlap,
while the Kr3+ ion yield (blue, right scale) shortly rises before it settles to an elevated ion yield of almost 160 counts in 20 s integration time. b At a NIR
intensity three times as high, (2.9± 0.5) × 1014W cm−2, the absorbance (dark green, left scale) transiently drops around pulse overlap similar to a, while
the Kr3+ ion yield (orange, right scale) shortly rises before it settles to an elevated ion yield of about 860 counts in 20 s integration time with a slower
decay constant when compared to a. Please see Supplementary Note 2 for longer scans
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instrument response and the NIR pulse duration. A least squares
fit gives an instrument response function24 of 1.8± 0.4 fs and
hence a duration of 4.5± 1 fs for the Gaussian-shaped NIR pulse
while the exponential recovery of the absorbance after pulse
overlap yields a 6.8± 1.5 fs and a 7.7± 2.2 fs auto-ionization state
lifetime of the 3d−1np levels for low and high NIR intensity,
respectively. These lifetime results agree well with the previously
reported value of 7.9± 0.2 fs25. Potential NIR intensity-dependent
effects like the ac Stark shift or resonant coupling to neighboring
states resulting in a broadening or even splitting of the resonances
could be excluded by careful investigation of the resonance center
positions and line shapes for all recorded time delays. This and
the comparison to the literature values confirm that the initial
Auger decay is virtually unaffected by different NIR laser field
intensities. Recovery of the Kr3+ yield shows a strong dependence
on the intensity of the applied NIR laser field: the number of Kr3+

ions increases when the XUV and the NIR pulses start to overlap,
but not as quickly as the absorption changes at the 3d−1np
resonances. This is because at pulse overlap, a significant part of

the Kr3+ ions result from a cascaded Auger decay following the
resonant 3d−1np excitation. Hence, the Kr3+ ion yield rise time
does not only depend on the NIR pulse duration but also on the
lifetimes of the resonantly excited 3d−1np states. Taking into
account the instrument response function and the 3d−1np lifetime
for the increase of the Kr3+ ion yield curve, a least squares fit
yields a time constant of 9.3± 3.7 fs for the tail of the Kr3+ ion
count rate that corresponds to the effective lifetime of the inter-
mediate state of the Auger cascade (here: INIR = (8.6± 1) × 1013

W cm−2). This value differs from the previously reported value of
20± 4 fs17: our presented study is to our knowledge the first one
that systematically investigates the ionization dynamics in kryp-
ton for different NIR intensities. As the lowest NIR intensity is
twice as high as previously17, different auto-ionization paths in
the de-excitation of the Kr+ ions become visible and may lead to a
different apparent/effective decay time. In practice, we here
observe an effective lifetime for the 3d−1np→4s–2np→4s−14p−1/4p
−34d cascades that arise from a large number of individual but not
resolved fine-structure transitions. This is confirmed by our
multiconfiguration Dirac–Fock calculations using the GRASP26

and RATIP27 codes and by taking the average of all the individual
lifetimes, weighted by their relative decay probabilities. This
theoretical approach is for the first time applied to reveal effective
lifetimes of different potential group cascades (see Supplementary
Note 5 for details).

Control of krypton ionization dynamics. Figure 4 shows for
three different NIR intensities that the observed decay time
increases for higher NIR intensities due to a second set of decay
channels (3d−1np → 4s−14p–1np/4p−34dnp → 4p−2). This second
set (indicated by B in Fig. 1a) has a much longer effective lifetime
as it was already speculated17: A double exponential decay fit
gives rise to a second decay time of 60± 28 fs, if we apply 9.3 fs as
the first decay time that has been found for the lowest intensity.
At higher NIR intensity, channel B results in an increase of the
amplitude ratio B/A. Amplitude A corresponds to the Auger
cascade emerging at low NIR intensities. The results of our the-
oretical calculations of the effective lifetimes with 6 fs for the 4s
−2np levels and 49 fs for the 4s−14p−1np/4p−34dnp levels agree
very well with the measurements.

There occurs a transient drop in the Kr3+ ion production
shortly before pulse overlap (approximately at −5 fs) that depends
on the NIR intensity but appears independent of the carrier
envelope phase (strongest dip at high NIR intensities, best visible
in Fig. 3b). This dip has been observed previously17, and its origin
is not yet understood. It could result from a transient population
transfer28 but may arise also as a Fano-type resonance29 that is
embedded into the Kr2+ continuum.

Discussion
While a control of the end configuration in the dissociative
ionization process of deuterium by tuning the carrier envelope
phase has been already demonstrated30, we have shown here that
combined attosecond transient absorption and mass spectrometry
allows the observation and control of the XUV-induced ioniza-
tion dynamics in rare gas atoms. The study reveals the role of
intermediate electronic and ionic states and highlights how laser-
induced state coupling can be used to control the post-excitation
decay dynamics. The experiment simultaneously determines the
instrument response function, the effective lifetimes of the reso-
nantly excited states and confirms that the initiating resonant
excitation is not affected by the dressing laser field amplitude
while the evolution of the post-excitation decay can be dynami-
cally and quantitatively manipulated.
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Fig. 4 Control of Kr ionization dynamics. Time-dependent Kr3+ ion yield for
three different NIR intensities: a INIR= (8.6± 1) × 1013W cm−2, b INIR= (1.7
± 0.5) × 1014W cm−2 and c INIR= (2.9± 0.5) × 1014W cm−2. While for all
three intensities, the rise in the Kr3+ ion yield obeys the 7.9 fs 3d−1np
lifetime, the subsequent decrease of the ion counts is strongly affected by
the NIR intensity: a double exponential least squares fit yields the decay
constants of τA= 9.3± 3.7 fs and τB= 60± 26 fs with varying contributions
in their amplitudes for the three intensities: a A= 207± 53, B= 0± 7,
b A= 149± 35, B= 38± 13 and c A= 40± 31, B= 272± 140. This change
of the amplitude ratio B/A describes well the expected case that a second
channel is starting to be addressed for elevated NIR intensities (see the
levels marked with the green capital letters A and B in Fig. 1a and the text
for details). For the highest intensity, an accompanying pulse of the
ultrashort NIR laser pulse increases the ion yield at around 70–120 fs time
delay (see Supplementary Note 3 for more details). Please note that the
scaling, the initial and final values of the ion yields differ significantly for the
three NIR intensities. The violet numbers on the right side of each panel
indicate the difference between the maximum of the fitting function and the
value the fitting function relaxes to for large time delays (see
Supplementary Note 4 for a detailed explanation for the different ion yield
values). The error bars show the standard error of the average of six
measurements
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Data availability. The data that support the findings of this study
are available from the corresponding author upon request.
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