Essential Gravimetric Variables – Identification and Initial Assessment

Thomas Gruber & Roland Pail
Institute of Astronomical and Physical Geodesy, Technical University of Munich, Germany

Geometry and Kinematic

Reference Systems

Gravity Field

Earth Rotation

DORIS
GNSS
RS
Altimetry
VLBI
SLR
GRACE-FO
GOCE
Essential Variables

<table>
<thead>
<tr>
<th>System</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Climate Observing System (GCOS)</td>
<td>Essential Climate Variables (ECV)
“Physical, chemical or biological variable or a group of linked variables that critically contributes to the characterization of Earth’s climate.”</td>
</tr>
<tr>
<td>Global Ocean Observing System (GOOS)</td>
<td>Essential Ocean Variables (EOV)</td>
</tr>
<tr>
<td>Group on Earth Observations Biodiversity Observation Network (GEO BON)</td>
<td>Essential Biodiversity Variables (EBV)</td>
</tr>
<tr>
<td>Global Geodetic Observing System (GGOS)</td>
<td>Essential Geodetic Variables (EGV)
“Observed variables that are crucial (essential) to characterizing the geodetic properties of the Earth and that are key to sustainable geodetic observations.” (R. Gross)</td>
</tr>
</tbody>
</table>
The BPS supports GGOS in its key goal to obtain consistent products describing the geometry, rotation and gravity field of the Earth.

- Homogenization of IAG standards and products;
- Keep track of the adopted geodetic standards and conventions across IAG components,
- Integration of geometric and gravimetric parameters and to develop new geodetic products, needed for Earth sciences and society.
- Coordinate the Committee on “Essential Geodetic Variables (EGVs)” whose task is apart from others the definition of “Essential Gravimetric Variables (EGrVs)”

after Drewes (2007), IAG Symposia 130
Links between Essential Variables and EGrVs

<table>
<thead>
<tr>
<th>Land</th>
<th>Ocean Surface</th>
<th>Ocean Sub-Surface</th>
<th>Atmosphere Surface</th>
<th>Atmosphere Upper-air</th>
<th>Atmosph. Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>River discharge</td>
<td>Temperature</td>
<td>Temperature</td>
<td>Temperature</td>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Water use</td>
<td>Salinity</td>
<td>Salinity</td>
<td>Wind speed & dir.</td>
<td>Wind speed & dir.</td>
<td></td>
</tr>
<tr>
<td>Ground water</td>
<td>Sea level</td>
<td></td>
<td>Water vapour</td>
<td>Water vapour</td>
<td></td>
</tr>
<tr>
<td>Lakes</td>
<td>Sea state</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil moisture</td>
<td>Sea ice</td>
<td></td>
<td>Precipitation</td>
<td>Lightning</td>
<td></td>
</tr>
<tr>
<td>Snow cover</td>
<td>Surface Current</td>
<td>Sub-surface current</td>
<td>Surface radiation</td>
<td>Earth radiation</td>
<td></td>
</tr>
<tr>
<td>Glaciers & ice caps</td>
<td>Ocean colour</td>
<td></td>
<td>Cloud properties</td>
<td>Cloud properties</td>
<td></td>
</tr>
<tr>
<td>Ice sheets</td>
<td>Carbon dioxide</td>
<td>Carbon dioxide</td>
<td></td>
<td>Carbon dioxide</td>
<td></td>
</tr>
<tr>
<td>Permafrost</td>
<td>Ocean acidity</td>
<td>Ocean acidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land cover</td>
<td>Phytoplankton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAPAR</td>
<td>Stress</td>
<td>Oxygen</td>
<td></td>
<td></td>
<td>Methane</td>
</tr>
<tr>
<td>Leaf area index</td>
<td>Heat flux</td>
<td>Nutrients</td>
<td></td>
<td></td>
<td>Ozone</td>
</tr>
<tr>
<td>Biomass</td>
<td></td>
<td>Tracers</td>
<td></td>
<td></td>
<td>Aerosols properties</td>
</tr>
<tr>
<td>Soil carbon</td>
<td></td>
<td>Nitrous oxide</td>
<td></td>
<td></td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>Fire disturbance</td>
<td></td>
<td>Carbon isotopes</td>
<td></td>
<td></td>
<td>Precursors</td>
</tr>
<tr>
<td>Albedo</td>
<td></td>
<td>Organic carbon</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECV

EOV

ECV & EOV

Link to EGrV

EOV's for Biology & Ecosystems and EBV's not connected to EGV's
Essential Gravimetric Variables (EGrVs)

Geodetic Product Levels = EGrV Levels

Level 0 EGrVs: Geodetic Standards
- Reference Frames: e.g. Center of Mass
- Gravity Standards

Level 1 EGrVs: Observations
- Gravity Potential (Geoid)
- Gravity Acceleration (1st derivative radial)
- Deflections of the Vertical (1st derivatives horizontal)
- Gravity Gradients (2nd derivatives)

Level 2 EGrVs: Geopotential Models
- Global Models (Mean and Time-variable)
- Global Geoid (Mean and Time-variable)
- Regional Geoid (Mean and Time-variable)

Level 3 EGrVs: Application Variables
- Mass Distribution in Earth System
- Mass Transport in Earth System

Contributions to ECV’s & EOV’s
- River discharge
- Water use
- Ground water
- Lakes
- Soil moisture
- Snow cover
- Glaciers
- Ice caps
- Ice sheets
- Permafrost
- Sea level
- Surface currents
- Sub-surface currents
- Pressure
Example: L0 EGrV – Geodetic Standards

IGFS – Central Bureau is implementing a set of standards related to gravity field observations to secure consistency and to promote their use within the geoscientific community (Geoid Metadata Editor (v0.1.3) and Gravity Metadata Editor (v0.2.6)).

<table>
<thead>
<tr>
<th>Section</th>
<th>Geoid</th>
<th>Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reference Information</td>
<td>Organisation, Contact, Creation Date</td>
<td></td>
</tr>
<tr>
<td>2. Identification</td>
<td>Reference System, Citation, Description, Status, Point of Contact, Spatial Extent Geographic Bounding Box Coordinates</td>
<td></td>
</tr>
<tr>
<td>3. Distribution</td>
<td>Distributor, Order Process, Constraints</td>
<td></td>
</tr>
<tr>
<td>4. Standard and Conventions</td>
<td>GM, a, f, Tide System, Reference Ellipsoid, Standard Density of the Earth</td>
<td>GM, a, f, normal gravity reference ellipsoid, Tide System, EOP’s, Tidal Conventions, Station Coordinates and Corrections</td>
</tr>
<tr>
<td>5. Data and Data Quality Information</td>
<td>Data and Data Quality Information; Accuracy, Consistency, Completeness, Data Distribution, Geoid Data, Gravity Data, Position and Height Accuracy</td>
<td>Accuracy, Consistency, Completeness, Data Distribution, Gravity Data, Position and Height Accuracy, Time Period of Content</td>
</tr>
</tbody>
</table>
Example: L1 EGrV - Observations

Ground based, Airborne and Satellite Observations & Integration Area

<table>
<thead>
<tr>
<th>Observation Type</th>
<th>Derivative</th>
<th>Height</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRACE (FO)</td>
<td>1^{st}</td>
<td>500 km</td>
<td>200 km</td>
</tr>
<tr>
<td>GOCE</td>
<td>2^{nd}</td>
<td>250 km</td>
<td>80 km</td>
</tr>
<tr>
<td>Airborne Gravimetry</td>
<td>1^{st}</td>
<td><10 km</td>
<td>2-5 km</td>
</tr>
<tr>
<td>Geoid (Levelling)</td>
<td>0</td>
<td>Ground</td>
<td>In-situ</td>
</tr>
<tr>
<td>Gravimetry</td>
<td>1^{st}</td>
<td>Ground</td>
<td>In-situ</td>
</tr>
<tr>
<td>Deflections of the Vertical</td>
<td>1^{st}</td>
<td>Ground</td>
<td>In-situ</td>
</tr>
</tbody>
</table>

(According to Rummel, van Gelderen, 1995)
Mean Ocean Geoid as Reference Surface for Ocean Circulation – Geodetic MDT

Improved ocean geoid leads to improved MDT

Improved MDT leads to improved geostrophic current velocities

Improved geostrophic current velocities lead to improved transport

Meridional overturning circulation at 26°N as observed by the RAPID array, depending on depth, and applying geodetic MDTs.

Link to ECV’s & EOV’s
Surface currents
Sub-surface currents

L3 EGrV Mass Transport in Earth System

Link to ECV’s & EOV’s

Sea level

L2 EGrV
Global Geoid (Mean)

Mass Transport in Earth System

Link to ECV’s & EOV’s
Surface currents
Sub-surface currents

L3 EGrV Mass Transport in Earth System

Link to ECV’s & EOV’s
Example: L2 EGrV – Regional Geoid (Mean)

Mean Regional Geoid as Reference Surface for Physical Heights on Land

GNSS-Levelling: \(H_G = h - N - N_0 - N_1 \approx h - N \)

Spirit Levelling: \(H_R \)

Ideal Case: \(H_G = H_R \)

L2 EGrV
- Global Geoid (Mean)
- Regional Geoid (Mean)

Link to ECV’s
- River Discharge
- Lakes
- Sea Level
Mean Geoid as Reference Surface for Absolute Sea Level

Sea Level wrt. Local Datum
\[SL_A = TG_A \quad SL_B = TG_B \]
\[\Delta SL_{AB} \neq TG_A - TG_B \]

Absolute Sea Level wrt. Global Geoid
\[SL_A = TG_A + N_A \]
\[SL_B = TG_B + N_B \]
\[\Delta SL_{AB} = SL_A - SL_B = TG_A - TG_B + (N_A - N_B) \]

In Case of Vertical Land Motion:
\[\Delta SL_{AB} = TG_A - TG_B + (N_A - N_B) + (h_A - h_B) \]

Tide Gauge Benchmark
Earth Surface (Geometry)
Ocean Surface (Geometry)
Tide Gauge Height
Tide Gauge Reading

L2 EGrV
Global Geoid (Mean)
Regional Geoid (Mean)

Link to ECV’s Sea Level
EGrVs Requirements

<table>
<thead>
<tr>
<th>EGrV</th>
<th>Current Resolution, Accuracy</th>
<th>Required Resolution, Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0: CoM Gravity Standards (Constants)</td>
<td>? high</td>
<td>1 mm 3-axes high</td>
</tr>
<tr>
<td>L1: Land Gravimetry</td>
<td>Point Obs., µGal m to km, mGal 100-200km, mGal Point Obs. mm/km, cm/km</td>
<td>Point Obs., µGal m to km, <mGal 100km, <mGal Point Obs., mm/km</td>
</tr>
<tr>
<td>L2: Global Models Mean Geoid</td>
<td>8km, cm to dm 200km, 1mo, mm 1-100km, cm to dm -</td>
<td>8km, 1cm 100km, 1d-1mo, 1mm 1km, 1cm ?, 1 cm/decade</td>
</tr>
<tr>
<td>L3: Mass Distribution (Satellites)</td>
<td>100km, 50cm EWH 200km, 1mo, 10km³(Gt)</td>
<td>100km, 10cm EWH 100km, 1d-1mo, 1Gt</td>
</tr>
</tbody>
</table>
IUGG General Assembly, Montreal, 15.7.2019

Summary and Conclusions

- ECVs and EOVs well defined
- EGVs for Geometry, Earth Orientation and Gravimetry → Essential Gravimetric Variables (EGrVs).
- Different Levels of EGrVs are proposed:
 - Level 0: Geodetic (Gravimetric) Standards
 - Level 1: Gravity Observations of different kind with different integration areas.
 - Level 2: Geopotential Models (regional & global)
 - Level 3: Application Variables (mass distribution and mass transport)
- Requirements for EGrVs need to be fixed.