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Abstract

Host-parasite coevolution is a biologically relevant process in all types of environments.

It describes the process by which hosts and parasites exert reciprocal selective pressure

on one another resulting in evolutionary changes (allele frequencies, genotype frequencies,

phenotype frequencies) in both species. The resulting coevolutionary dynamics can be

placed in a continuum ranging from successive fixation of novel beneficial types (arms-

race dynamics) to stable maintenance of several types in both species (trench-warfare

dynamics). Understanding host-parasite coevolution has been an active research field for

decades due to its relevance for food production and medicine and its suggested role in

facilitating the evolution of sex. Much research effort has been put into detecting the

underlying genomic basis, understanding the maintenance of genetic and allelic polymor-

phism at the involved loci and into improving our understanding of the temporal dynamics

of host-parasite coevolution.

The increasing availability of host and parasite full genome data offers promising ways to

further enhance our knowledge on all of these aspects. However, this requires an under-

standing of 1) how coevolutionary dynamics interact with and shape the polymorphism

patterns at the coevolving loci, 2) how these polymorphism patterns vary over time, 3)

how much information about the underlying coevolutionary process is contained in the

polymorphism data of the coevolving loci and 4) how this information can be extracted

efficiently and in meaningful ways.

The aim of this thesis is to tackle several aspects of these questions. First, we outline the

relevant processes shaping genomic diversity at the coevolving genes and at a genome-wide

level. In the next step, we test for the suitability of cross-species genome-wide association

studies to detect the coevolving loci. Such studies are based on collecting genomic data

of infected hosts and their associated parasites strains. Here, we especially test for the

effect of two forms of host genotype x parasite genotype (GxG) interactions (gene-for-gene

and matching alleles) and two types of coevolutionary dynamics (arms-race and trench-

warfare) on the detection of the coevolving loci. We define two indices, the cross-species

association index and the cross-species prevalence index and derive their expected distri-
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bution for neutral loci. We show that the underlying GxG interactions and the temporal

dynamics determine the power for discriminating between coevolving loci from the neutral

background.

In the next chapter, we first analyse how the coevolutionary dynamics in combination

with genetic drift relate to genetic signatures at the coevolving loci. Therefore, we couple

a gene-for-gene coevolution model with coalescent simulations. We show that the poly-

morphic equilibrium frequencies determine the strength of balancing selection signatures

under trench-warfare dynamics. These equilibrium frequencies are affected by several

evolutionary costs such as cost of resistance, infection and infectivity. Therefore, we test

as a proof-of-principle whether information about these costs can be recovered by jointly

analyzing host and parasite polymorphism data at the coevolving loci from repeated ex-

periments. Using an Approximate Bayesian Computation approach, we can show that it

is possible to infer these costs if either a) some costs are known or b) the host and parasite

population sizes are known. Most strikingly, the host polymorphism data are informative

about costs applying to the parasite and vice-versa, underscoring the reciprocal nature of

the interaction.

Finally, we outline ideas for a simulator which can be used to simulate simultaneously

the host and parasite population sizes and allele frequency changes arising from coevo-

lution, the resulting haplotypes at the coevolving loci and the genome-wide neutral site

frequency spectrum. This simulator will likely provide valuable future insights on how

eco-evolutionary feedbacks arising from host-parasite coevolution shape the genomic sig-

natures at the coevolving loci. We will reveal also how the coevolving loci can be dis-

tinguished from neutral loci when coevolution causes simultaneous changes in population

sizes and how different genomic information can be optimally combined in order to infer

information about the short-term and long-term coevolutionary dynamics from them.

We conclude by discussing the value and limits of genomic data for understanding host-

parasite coevolution, and the means by which the approaches outlined in this thesis can

be further combined and used in combination with additional sources of information.

xv



Zusammenfassung

Die Koevolution zwischen Wirt und Parasit ist ein allgegenwärtiger Prozess in sämtlichen

Lebensräumen. Unter Wirt-Parasit-Koevolution versteht man einen Prozess, in dem ein

Wirt und ein Parasit einen wechselseitigen Selektionsdruck aufeinander ausüben, sowie die

sich daraus ergebenden evolutionären Veränderungen (relative Allelhäufigkeiten, Geno-

typhäufigkeiten und Phänotyphäufigkeiten). Koevolutionäre Dynamiken können in einen

Gradienten eingeordnet werden, der von der wiederholten Fixierung von neuen vorteil-

haften Typen (Arms-Race dynamics, Wettrüsten) bis hin zum fortlaufenden Erhalt von

mehreren Typen in beiden Partnern (Trench-Warfare dynamics, Grabenkrieg) reicht.

Das Verständnis von Wirt-Parasit-Koevolution ist, aufgrund ihrer Relevanz für die land-

wirtschaftliche Lebensmittelproduktion, die Medizin und ihrer vermuteten Rolle in der

Evolution sexueller Reproduktionsysteme, ein Forschungsfeld mit langer Tradition. Dabei

wurde vor allem viel daran geforscht, wie die Gene, die der Interaktion zugrunde liegen,

identifiziert werden können. Ein weiteres Augenmerk lag auf dem Verständnis des Erhalts

von genetischer Diversität und der Diversität von Allelen an den involvierten Genorten,

sowie den temporären Dynamiken von Wirt-Parasit-Koevolution.

Die zunehmende Verfügbarkeit von kompletten Wirt- und Parasit-Genomen bietet vielver-

sprechende Möglichkeiten, um das Wissen hinsichtlich all dieser Aspekte zu erweitern.

Jedoch wird dazu ein detailiertes Verständnis über folgende Fragestellungen benötigt:

1. Wie interagieren die koevolutionären Dynamiken mit der genetischen Variation an den

koevolvierenden Genorten und wie prägen sie diese? 2. Wie verändert sich diese gene-

tische Variation über die Zeit? 3. Wie viel Information wird über die zugrunde liegenden

koevolutionären Prozesse in der genetischen Variation gespeichert? 4. Wie kann diese

Information effizient und sinnvoll extrahiert werden?

Das Ziel dieser Arbeit ist es, diese Fragen näher zu untersuchen. Zunächst werden

dazu relevante Prozesse beschrieben, die die genetische Diversität auf der Ebene der koe-

volvierenden Gene und der Ebene des Genoms formen. Im nächsten Schritt wird die Eig-

nung von so genannten ‘Cross-Species-Genome-Wide-Association’-Studien zur Entdeck-

ung von koevolvierenden Genorten betrachtet. Solche Studien basieren darauf, dass gleich-
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zeitig Genomdaten von infizierten Wirten und den Parasitenstämmen, die den jeweiligen

Wirt infizieren, gesammelt werden. In dieser Arbeit wird vor allem untersucht, wie sich

zwei unterschiedliche Formen von Wirt-Genotyp x Parasit-Genotyp-Interaktionen (GxG),

genauer gesagt Gene-for-Gene und Matching-Alleles, und unterschiedliche koevolutionäre

Dynamiken (Arms-Race und Trench-Warfare) auf das Auffinden der koevolvierenden Gene

auswirken. Dazu werden zwei Indices definiert, der Cross-Species-Association-Index und

der Cross-Species-Prevalence-Index und deren erwartete Verteilung für neutrale Genorte

hergeleitet. Es kann gezeigt werden, dass die Unterscheidbarkeit zwischen dem koevol-

vierenden Genort und dem neutralen Hintergrund im Wesentlichen durch die jeweilige

GxG-Interaktion und die jeweilige Form der koevolutionären Dynamiken bestimmt wird.

Im nächsten Kapitel wird analysiert, wie sich die Kombination von koevolutionären Dy-

namiken und genetischer Drift auf die genetischen Signaturen an den koevolvierenden

Genorten auswirkt. Dazu wird ein Gene-for-Gene-Koevolutionsmodell mit Coalescent-

Simulationen verknüpft. Dabei zeigt sich, dass die Ausprägung der Signaturen balan-

cierender Selektion unter Trench-Warfare-Dynamiken durch die relativen Häufigkeiten

der einzelnen Allele im polymorphen Gleichgewicht bestimmt wird. Diese relativen Allel-

häufigkeiten werden durch mehrere evolutionäre Kosten, wie die Kosten für Resistenz,

Infektivität oder Infektion, bestimmt. Deshalb wird getestet, ob Wirt- und Parasit-

Genomdaten der koevolvierenden Genorte, die in wiederholten Experimenten erhoben

wurden, Aufschlüsse über diese Kosten geben können. Durch die Verwendung einer

Approximate-Bayesian-Computation-Methode kann gezeigt werden, dass es möglich ist,

Rückschlüsse auf diese Kosten zu ziehen. Dafür müssen entweder einige dieser Kosten

oder die Wirt- und Parasitpopulationsgrößen bekannt sein. Es zeigt sich, dass anhand der

Daten des Wirtes Rückschlüsse über die Kosten, die den Parasiten beeinflussen, gezogen

werden können und umgekehrt. Dies spiegelt die Natur der wechselseitige Interaktion

wider.

Schließlich wird die Idee für einen Simulator skizziert, mit dem folgende Merkmale gleich-

zeitig simuliert werden können: die Veränderungen der Populationsgrößen des Wirtes und

des Parasiten, die Veränderungen der relativen Allelhäufigkeiten im Wirt und Parasit, die

daraus resultierenden Haplotypen an den koevolvierenden Genorten und das genomweite

Site-Frequency-Spectrum. Mit diesem Simulator können in Zukunft wahrscheinlich nützliche

Erkenntnisse darüber gewonnen werden, wie sich eco-evolutionäre Feedbacks, die durch

Wirt-Parasit-Koevolution entstehen, auf die Genomdaten der koevolvierenden Genorte

auswirken. Zudem kann untersucht werden, inwiefern koevolvierende von neutralen Genorte
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unterschieden werden können, wenn sich durch Koevolution gleichzeitig die relativen Al-

lelhäufigkeiten und Populationsgrößen verändern. Außerdem kann der Simulator genutzt

werden, um aufzuzeigen, wie unterschiedliche genomische Informationen optimal kom-

biniert werden können, um daraus Rückschlüsse über kurzfristige und langfristige koevo-

lutionäre Dynamiken zu ziehen.

Zum Schluss wird der Nutzen von Genomdaten zum besseren Verständnis von Wirt-

Parasit-Koevolution diskutiert, welche Beschränkungen dabei bestehen und wie die in

dieser Arbeit vorgestellten Methoden miteinander und mit weiteren Informationsquellen

verknüpft werden können.

xviii



1
Introduction

Host-parasite coevolution is a highly dynamic and interactive process which not only af-

fects the evolutionary history of the host and the parasite but also has the potential to

affect the structure of communities and biodiversity at all levels (Bohannan and Lenski

2000; Koskella and Brockhurst 2014). Coevolutionary interactions are characterised by

reciprocal evolutionary changes in response to the selective pressures two species exert on

one another (Janzen 1980; Woolhouse et al. 2002). Put in a different way coevolution-

ary interactions are biotic interactions with evolutionary consequences in both interacting

partners. Thus, host-parasite coevolution has attracted the considerable attention of ecol-

ogists and evolutionary biologists. Due to the potentially devastating effects of disease on

food production and human health, host-parasite coevolution is also of central relevance

for agriculture and medicine.

A large body of literature has studied and sought to understand the short and long-term

consequences of host-parasite coevolutionary interactions such as population size changes,

trait evolution (Boots and Haraguchi 1999; Boots et al. 2014; Thrall and Burdon 2003)

and maintenance of polymorphism (Frank 1992; Leonard 1994; Sasaki 2000). In the short

run and thus, on ecologically relevant time scales, severe epidemics can drastically alter the

population sizes of the host (Frick et al. 2010; Ebert et al. 2000; Berger et al. 1998). Con-

versely, levels of host resistance variation have been shown to affect disease levels in local

populations (Thrall and Burdon 2000; Laine 2004). In the long run the selective nature of

host-parasite coevolution affects the genetic diversity at the loci involved into the coevo-

lutionary interaction. Adaptive evolutionary changes can be very rapid in host-parasite

coevolution (Brown 2015; Paterson et al. 2010; Obbard et al. 2006). Thus, ecological

changes (population size changes) and evolutionary changes can feedback on each other

in host-parasite coevolution (Frickel et al. 2016), resulting in so called eco-evolutionary

feedback loops (Kokko and López-Sepulcre 2007; Schoener 2011; Bailey et al. 2009; Post

and Palkovacs 2009).

The pivotal role of host-parasite interactions is reflected by the magnitude of evolved host

defense mechanisms and the equally large diversity of parasite strategies to circumvent or

exploit these defense mechanisms. Plants for example have evolved a two-layered immune
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system (Jones and Dangl 2006; Chisholm et al. 2006; Dodds and Rathjen 2010). On a

first level pattern recognition receptors (PRRs) can detect molecular patterns which are

characteristic for a particular class of pathogens/microbes, such as flagellin for bacteria.

The recognition of these molecular patterns, called PAMPs/MAMPs (pathogen/microbe

associated molecular patterns) by PRRs results in PAMP/MAMP-triggered immunity

(PTI). This layer of the plant immune system thus shares common features with the

innate immune system in vertebrates. However, pathogens have evolved means to cir-

cumvent PTI by releasing so called effectors which interfere with the signaling cascade

in PTI. The second layer of the plant immune system consist of effector triggered immu-

nity. Here, plant resistance genes (R-genes) either directly or indirectly recognize specific

pathogen effectors in distinct ways (Kourelis and van der Hoorn 2018) which results in

effector-triggered immunity (ETI).

Genomic and molecular analysis have shown that many plant species have evolved a rich

repertoire of resistance genes (R-genes) and similarly parasites have evolved a large arse-

nal of effector genes. Most of these genomic analyses have been performed by applying

population genetic/genomic techniques to genomic data from one of the coevolving part-

ners from a single time point. This techniques have been originally developed for single

species in order to a) to detect loci which are associated with particular phenotypes or

b) to understand the relative strength of the different evolutionary forces. Based on

these methods several previously unidentified new resistance and effectors gene could be

uncovered. Genomic analysis have further demonstrated the long-term maintenance of

polymorphism at R-genes in different plant species (Caicedo and Schaal 2004; Hoerger

et al. 2012; Rose et al. 2007; Karasov et al. 2014; Stahl et al. 1999; Koenig et al. 2019)

and signatures of positive selection at several R-genes and effector genes (Obbard et al.

2011; Schweizer et al. 2018).

Recently new methods have been developed which take simultaneously information from

the host and the parasite into account (Wang et al. 2018; MacPherson et al. 2018; Nuis-

mer et al. 2017; Bartha et al. 2013) (see also chapter 2 for more information) in order to

identify genes under coevolution. Thus, these methods account explicitly for the recipro-

cal nature of coevolutionary interactions. MacPherson et al. (2018) have further shown

that ignoring genetic structure of the coevolving partner can yield biased effect sizes in

genome-wide association studies.

The method by Bartha et al. (2013) relies on obtaining genomic data from infected hosts

and the parasite strains which infect them. Based on this data they perform a genome-to-

2
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genome association study. So far, nobody has tested how the ability to detect loci under

coevolution by means of such an approach depends on temporal dynamics of host-parasite

coevolution and the involved host genotype x parasite genotype interactions. Therefore,

this question will be examined in further detail in chapter 4 of this thesis.

However for disease management, it is not only important to identify loci under coevolu-

tion, but also to understand the processes which have given rise to the observed polymor-

phism patterns (Gandon et al. 2016). There are expectations from theory how particular

host-parasite coevolutionary dynamics link to the polymorphism patterns, so called sig-

natures, at the coevolving loci. However, these dynamics can be due to different processes

and can also interact with other evolutionary forces such as mutation and genetic drift.

Thus the aim of chapter 2 is to outline the ecological and evolutionary processes which

are potentially relevant. Although within this chapter, these processes are specifically de-

scribed and illustrated using examples from host-virus coevolution they do not exclusively

apply to host-virus coevolution. Most of them are also relevant for any other host-parasite

system although their relative effect sizes will vary depending on the biology of the species.

In chapter 5 we will investigate how coevolutionary dynamics in combination with genetic

drift link to genomic signatures at the coevolving genes. A more detailed information

about the underlying theory and models can be found in chapter 3. In chapter 5 we

will further show as a proof-of-principle that information about the past coevolutionary

history, namely several fitness costs, can be recovered from genomic data. Therefore,

we use Approximate Bayesian Computation (ABC) which is a commonly used inference

method in population genetics and which will be introduced in more detail in chapter 3.

In chapter 6 an idea for a simulator is outlined which can simultaneously keep track of

host-parasite coevolutionary dynamics in the short run and the long run and how these

dynamics affect polymorphism patterns at a genome-wide level and at the level of the

coevolving genes in both species. The core novelty of this simulator is to keep track of

host population size changes, parasite population sizes changes, haplotypes at the coe-

volving loci and the genome-wide site frequency spectrum over time. Thus, this simulator

will allow for investigating 1) the temporal changes in genomic diversity in the host and

the parasite in more detail and for investigating 2) how the ability to detect coevolving

loci changes over time. So far it is unknown how host-parasite coevolutionary dynamics

resulting in simultaneous changes of populations sizes and allele frequencies shape the

signatures at the coevolving genes. Further, this simulator can be also used to address

the question how time-sampled data can be used efficiently to gain a better understanding

3
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Fig. 1.1: Schematic of the two main topics of this thesis. First, we aim to understand how
host-parasite coevolution interacts with and shapes host and parasite polymorphism data. Second,
given that we have sampled host and parasite polymorphism data, which information about the
coevolutionary interaction can we recover from these data and by means of which methods?

of past coevolutionary dynamics and to devise optimal sampling schemes.

Therefore, the two main topics of these thesis can be summarized as follows (see Fig. 1.1):

1) How do coevolutionary interactions shape the polymorphism data of the interacting

partners? 2) Which information about the coevolutionary interaction can be recovered

by applying inference methods to full genome data of the species over time?

4
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2.1 Abstract

The contemporary genomic diversity of viruses is a result of the continuous and dynamic

interaction of past ecological and evolutionary processes. Thus, genome sequences of

viruses can be a valuable source of information about these processes. In this review,

we first describe the relevant processes shaping viral genomic variation, with a focus

on the role of host–virus coevolution and its potential to give rise to eco-evolutionary

feedback loops. We further give a brief overview of available methodology designed to

extract information about these processes from genomic data. Short generation times

and small genomes make viruses ideal model systems to study the joint effect of complex

coevolutionary and eco-evolutionary interactions on genetic evolution. This complexity,

together with the diverse array of lifetime and reproductive strategies in viruses ask for

extensions of existing inference methods, for example by integrating multiple information

sources. Such integration can broaden the applicability of genetic inference methods and

thus further improve our understanding of the role viruses play in biological communities.
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2.2 Introduction

Viruses are ubiquitous and diverse (Koonin et al. 2006; Suttle 2005), adapt rapidly (Mar-

tiny et al. 2014), and often engage in intimate relationships with their host (Clokie et al.

2011). Delimitation and discovery of new viruses has been strongly eased by the advent of

new sequencing technologies, and genetic barcoding is nowadays a standard technique in

virology (Radford et al. 2012; Shi et al. 2016; Simmonds 2018). The contemporary genome

sequence and genetic variation within a given virus strain is shaped by the ongoing inter-

action of dynamic ecological and evolutionary forces. Thus, besides species delimitation,

sequence data can provide valuable information about the evolutionary history of viruses

and have been used to track transmission patterns (Gire et al. 2014), to date the emer-

gence of new viruses (Faria et al. 2014; Saxenhofer et al. 2017) and host shifts (Longdon

et al. 2014), and to identify genes that are under selection (Foll et al. 2014). However,

extracting such information requires an understanding of all other factors which can (in-

teractively) affect genetic change and create, maintain, and/or deplete genetic variation.

Our aim is to review the relevant evolutionary and ecological processes that affect viral

genetic diversity and outline how different processes interact and temporally vary (or not).

In this review we focus on antagonistic coevolutionary and eco-evolutionary feedback in-

teractions between host and virus species, without restricting ourselves to a particular

group of viruses. The influence of abiotic factors such as temperature, CO2 concentra-

tion, and UV radiation on viruses and the interaction with the host has been reviewed

elsewhere (Danovaro et al. 2011; Horas et al. 2018). We will furthermore give a brief

overview of existing methodology designed to infer aspects of evolutionary history based

on genetic data and describe some recently developed tools for the simultaneous analysis

of host and virus genetic data.

2.3 Viral population genetics

Variation at the sequence level of viruses is created by mutations which range from changes

at single bases (single-nucleotide polymorphism, SNP) up to rearrangements of the genome

6
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architecture. Variant forms of a genetic sequence are called alleles, and the position at

which they occur is referred to as locus. Viral mutation rate estimates range from 10−8

to 10−6 changes per base pair per cellular infection ( generation) for DNA viruses and

from 10−6 to 10−4 for RNA viruses (Drake et al. 1998; Duffy et al. 2008; Sanjuán et al.

2010). These rates are high compared to microbes such as E. coli and S. saccharomyces

(both < 10−9 (Jee et al. 2016; Lang and Murray 2008)). The total mutation supply in a

population per generation not only depends on the mutation rate per sequence per gener-

ation (µ) but also on the effective population size Ne (see below) of the focal population.

The population mutation rate θ = 4Neµ captures this interplay and represents the

expected number of accumulated differences between a pair of randomly chosen sequences

in a population (Hein et al. 2004). The ultimate fate of a mutation, i.e., fixation, loss, or

maintenance at intermediate frequency—and by extension the total amount of genomic

variation in a population, is determined by the interaction between genetic drift, selection,

recombination, and migration. In this review, we pay less attention to viral recombina-

tion (Meier-Kolthoff et al. 2018; Pérez-Losada et al. 2015) and the concepts of spatial

structure and migration (Berngruber et al. 2015; Declerck et al. 2013) but focus on drift

and selection because they are especially relevant for microbial viruses.

Genetic drift describes the process of stochastic changes in allele frequencies due to

random sampling of offspring from the parental generation. Generally, the strength of

genetic drift depends mainly on the effective population size, with smaller populations ex-

periencing stronger drift. The effective population size (Ne) corresponds to the size of

an idealized population (satisfying the assumptions of the so-called Wright–Fisher model

of population genetics: constant population size, non-overlapping generations, diploid

individuals, equal sex ratio, no selection, no recombination, small variance in offspring

numbers, and random mating among individuals) which experiences the same amount of

stochastic genetic change as the population analyzed (Charlesworth 2009). The ratio of

Ne to census population size N is affected by factors such as the mode of reproduction and

temporal variation in population size (Ellegren and Galtier 2016). Viruses possess several

characteristics that reduce the Ne-to-N ratio. Population sizes of viruses infecting several

globally important phytoplankton species can fluctuate by orders of magnitude within

a season (Brussaard et al. 2005; Castberg et al. 2001; Johannessen et al. 2017; Yoshida

et al. 2008). Viruses typically also have skewed offspring distributions, with a lot of virions

never successfully reproducing and a few contributing disproportionately large amounts

of genetic material to the next generation (Sanjuán 2018). For example, the RNA virus

7
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vesicular stomatitis virus and the dsDNA virus chlorovirus PBCV-1 can produce burst

sizes ranging from 50 to 8000 and 100 to 350 particles per replication event, respectively

(Zhu et al. 2009; Van Etten et al. 1983). Both fluctuating population size and skewed

offspring distributions increase the relative importance of drift. Hence, viruses experience

stronger drift than other organisms with similar census population sizes.

Besides genetic drift, the type and strength of selection influences the probability and

rate by which alleles increase or decrease in frequency in a population. The term fitness

captures the number of offspring any individual possessing a particular genotype is ex-

pected to contribute to the next generation. Positive selection describes selection on

constantly beneficial alleles (Weigand and Leese 2018), which are expected to increase in

frequency across generations until they reach fixation, meaning that every individual in

the population possesses the allele and variation at the locus is lost. Opposed to positive

selection, purifying selection captures the process of selection against deleterious muta-

tions. Balancing selection summarizes any form of selection which maintains variation

in the population (i.e., more than one allele at a locus) (Charlesworth 2006).

Alleles under positive selection can decrease in frequency due to genetic drift. Therefore,

there is always a chance that they are lost from a population, especially when their fre-

quency is low (Fig. 2.1). In a Wright–Fisher type population, the probability of fixation

of a beneficial mutation present in a single individual, provided that it has a weak selective

advantage s and population size is large, is approximately 2sNe/N (Kimura 1962; Otto

and Whitlock 1997). Skewed offspring distributions as seen in many viruses increase the

probability that beneficial mutations reach fixation (Der et al. 2011; Irwin et al. 2016)

and decrease the expected time this takes (Eldon and Wakeley 2009). For these reasons,

we expect frequency changes of alleles under selection in virus populations to be compar-

atively rapid. Alleles that have no or small fitness effects which are physically associated

with (linked to) a positively selected mutation are expected to change simultaneously in

frequency with the mutation under selection, a process referred to as genetic hitchhik-

ing (Barton 1998; Kaplan et al. 1989; Maynard Smith and Haigh 1974). Being “dragged

along” with alleles under positive selection increases the variance in temporal frequency

changes of genetic hitchhikers compared to those of neutrally evolving loci (Kosheleva

and Desai 2013; Schiffels et al. 2011). Genetic diversity and frequency changes at neu-

tral sites can be further affected by purifying selection against deleterious mutations, a

process termed background selection (Charlesworth et al. 1993). Background selection

decreases genetic variation at linked sites (Ewing and Jensen 2016; Good et al. 2014) and

8
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has the potential to slow down or even impede the expected frequency increase of linked

adaptive alleles (Charlesworth 2013). Associations between physically linked sites can be

broken up by recombination. In the absence of recombination, two beneficial mutations

that arise independently in different lineages will never be combined in a single genotype

(Felsenstein 1974; Muller 1964). Rather, there will be competition among the offspring

of these two lineages: a process termed clonal interference (Gerrish and Lenski 1998;

Park and Krug 2007). Clonal interference can result in hampered frequency increases and

the extinction of one of the two lineages (Lang et al. 2011; Schiffels et al. 2011).

The combination of high mutation rate and large population size leads to a high supply

of de novo mutations in virus populations. This increases the likelihood that multiple

mutations with varying effects on fitness segregate simultaneously in virus populations

(Desai et al. 2007; Neher 2013), and both clonal interference and genetic hitchhiking are

then likely to occur (Cvijović et al. 2018). However, as viral genomes are in most cases

rather small (but see recently discovered giant viruses, e.g., (Colson et al. 2017)) and

densely packed with protein-coding regions, most mutations are likely to be highly dele-

terious. This suggests a prominent role for background selection in most viruses (Irwin

et al. 2016) and decreases the potential for multiple mutations to segregate simultaneously

(but see (Renzette et al. 2015), where genetic variation was found at hundreds of sites

in human cytomegalovirus populations within host individuals). There is currently not

enough empirical data available to make general statements about the occurrence and

relative strength of interference between deleterious and beneficial mutations in viruses

(Renzette et al. 2016). In summary, the observed variation at the genomic level results

from a complex interplay between mutation supply, drift, and selection, and their indi-

vidual contributions depend on the biology of the particular virus.
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Fig. 2.1: The combined effects of drift and selection on genetic change over time (x-axis). Shown
are simulated allele frequencies (y-axis) of a focal allele for different combinations of effective
population size Ne (columns) and selection coefficient s (rows). A positive selection coefficient
(s > 0) indicates a selective advantage of the focal allele compared to the other allele, if s = 0 both
alleles are neutral and thus, allele frequency changes are only due to genetic drift. Each panel
shows the results of ten independent replicates with an initial frequency of 0.1 for the focal allele.
Note that when effective population size is small, even positively selected alleles sometimes go
extinct due to drift (left column, middle and bottom row). Absolute frequencies k of the allele in
generation t+ 1 were obtained by randomly drawing from a binomial distribution with

P (X = k) =
(
Ne
k

)
pkt+1(1− pt+1)n−k and pt+1 = pt(1+s)

ŵ , where w denotes the average fitness of the
population and pt+1 denotes the expected frequency of the focal allele without drift in the next
generation t+ 1.
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2.4 Host-virus coevolution

Because viruses depend on their hosts for replication, their genome evolution is also

strongly influenced by their host (Bozick and Real 2015; Simmonds et al. 2018). Sim-

ilarly, hosts are under constant pressure to reduce the detrimental fitness effects of viruses

(Bernatchez and Landry 2003; Rodriguez-Valera et al. 2009). This reciprocal evolutionary

interplay is called coevolution when adaptation of one species changes selection on the

interacting partner and vice versa (Burmeister et al. 2016; Janzen 1980; Nuismer et al.

2010). The dynamics and genetic consequences of host–virus coevolution in particular

and of antagonistic species interactions in general have been enigmatic research topics

dedicated to understanding the maintenance of genetic diversity (Clarke 1979), the evo-

lution of sex (Hamilton et al. 1990), patterns of local adaptation (Thompson 2005), and

the speed of evolution (Paterson et al. 2010).

An important determinant of host–virus coevolutionary dynamics is the number of geno-

types per population and how these interact with antagonist genotypes, captured in an

infection matrix (Agrawal and Lively 2002). The two opposite ends of the continuum

of possible infection matrices are, on the one hand, matching alleles, where every virus

genotype can only infect one host genotype (Ebert 1994; Spanakis and Horne 1987) (Fig.

2.2a), and, on the other, gene-for-gene interactions (Fig. 2.2b), where virus genotypes

infect a broad range of host genotypes (Flor 1956). There is a range of possible infection

matrices in between these two extremes (Engelstädter 2015; Forde et al. 2008) (Fig. 2.2c).

Viruses infecting bacterial hosts completely span this range (Dennehy 2012; Koskella and

Meaden 2013). Importantly, adaptation of one or both interacting partners can lead to

changes in the underlying infection matrix and in the resulting coevolutionary dynamics

(Frickel et al. 2016; Poullain et al. 2008; Scanlan et al. 2011).

The coevolutionary dynamics of genes underlying the molecular interaction between host

and virus are separated into arms race or fluctuating selection dynamics (also called

trench-warfare or Red Queen dynamics) (Woolhouse et al. 2002) although these two cat-

egories rather describe the two end points of a continuum (Agrawal and Lively 2002).

In arms race dynamics, coevolution is driven by the reciprocal consecutive increases in

frequency of novel genotypes which provide an evolutionary advantage (e.g., the ability

to target a novel outer cell membrane protein (Meyer et al. 2012)), ultimately resulting in

fixation. On the genomic level, these frequency increases result in a reduction of genetic

diversity at linked loci (Barton 1998; Maynard Smith and Haigh 1974), also referred to

11
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as a selective sweep. Arms race dynamics are characterized by directional changes in

phenotype distributions, such as a monotonic increase in viral infectivity (Gómez et al.

2015; Marston et al. 2012; Schiffels et al. 2011). Known examples of arms races in (semi-

)natural species interactions are Flavobacterium phage coevolution in fish farms (Laanto

et al. 2017) and Drosophila resistance to sigma virus (Wilfert and Jiggins 2012).

Fluctuating selection dynamics, a form of balancing selection, occur when the fitness of

multiple functional genotypes in both species negatively depends on their frequency in the

population. This results in fluctuations of their relative frequencies and thus maintenance

of several genotypes in both interacting species. The underlying mechanism, here outlined

for two host and two virus genotypes, is as follows: selection in the virus favors efficient

exploitation of the most common host genotype A. This confers a selective advantage to

a rarer host genotype B, which is thus expected to increase in frequency over the course

of generations. Once host genotype B becomes the most common one, selection in the

virus no longer favors exploitation of host genotype A, granting another virus capable of

infecting host genotype B the selective advantage. Such frequency-dependent selection

patterns can lead to perpetual oscillations of functional allele frequencies in both coe-

volving populations, with allele frequencies in the virus population following those in the

host (Rosenzweig and MacArthur 1963). Fluctuating selection dynamics are character-

ized by oscillating phenotype distributions (Betts et al. 2014; Papkou et al. 2018) and are

expected to result in higher levels of genomic variation at functional and associated loci

than expected under neutrality. Negative frequency-dependent host–parasite interactions

have been found in a taxonomically wide range of antagonistically coevolving systems,

such as flax and its fungal pathogen flax rust (Thrall et al. 2012), Daphnia magna and

its bacterial endoparasite Pasteuria ramosa (Decaestecker et al. 2007), and Pseudomonas

with naturally associated lytic viruses (Gómez and Buckling 2011).

In summary, coevolutionary dynamics at the functional loci can be classified based on

their effect on the number and frequencies of functional genotypes in both antagonistic

species over time. The occurring type of dynamics depends on various factors, such as

the number of functional genes, the underlying infection matrix of different genotypes,

and the ecology of the interacting species. The effect on the genomic diversity at the in-

teracting functional loci is determined by the interaction of the particular dynamics with

de novo mutations, standing genetic variation, recombination, and the amount of genetic

drift.
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Fig. 2.2: Overview of possible types of coevolutionary interactions between host genotypes (Hi)
and virus genotypes (Vj). The top row shows a graphical representation of potential interactions
between different host and parasite genotypes. Lines indicate that a virus with genotype j can
infect a host with genotype i. The corresponding infection matrices are shown in the bottom line.
Entries in the infection matrix which are equal to 0 (1) indicate that the host genotype in row i is
fully resistant (susceptible) to the virus genotype in column j. (a) In a matching-allele system each
virus genotype can successfully infect only one host genotype. (b) In gene-for-gene systems there is
one universally infective virus genotype (here V3) which is able to infect all host genotypes. Most
coevolutionary interactions fall onto a continuum between these two extremes and can be captured
in a correspondingly parameterized infection matrix as illustrated in (c). αij reflects the rate of
success for virus genotype j to infect host genotype i. Every αij can take values between 0 and 1.
Genotype-altering mutations happen at rate µH in the host and µP in the parasite.

2.5 Eco-evolutionary feedbacks in viruses

Host–virus systems are likely to be subject to feedbacks between ecological and evolution-

ary change. Population densities affect encounter rates between antagonistic individuals.

Therefore, the strength of antagonistic selection varies in concert with population size.

Population sizes, in turn, mediate the strength of drift and supply of de novo mutations

(section 2). For these reasons, abundance (ecological) and allele frequency (evolution-

ary) dynamics often reciprocally influence each other (Kokko and López-Sepulcre 2007)

in host–virus interactions (Papkou et al. 2016) and interactively determine coevolutionary

genetic change (Fig. 2.3) (Becks et al. 2012; Frickel et al. 2018).

Reciprocal effects between ecological and evolutionary change are especially important to

consider when evolutionary and ecological changes occur on similar timescales, i.e., when

evolution is rapid (Hairston et al. 2005; Messer et al. 2016). How often contemporary evo-

lution has a considerable influence on community dynamics is an outstanding question in

ecology and evolution (Koch et al. 2014; Thompson 2009). Rapid evolution of resistance

13
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has been experimentally shown to change the effects chlorovirus has on the population

dynamics of its host (Frickel et al. 2016) and to facilitate coexistence with a third species

(Frickel et al. 2017). Furthermore, rapid host resistance evolution has been demonstrated

to alter the effects myovirus has on marine microbial food web structure (Lennon and

Martiny 2008). With their short generation times and large population sizes, both viruses

and microbes are likely to display rapid adaptive responses, and hence to be involved in

eco-evolutionary feedbacks.

Analytical predictions on allele frequency dynamics and equilibrium states change when

population sizes are allowed to vary and determine the strength of antagonistic selection

(Govaert et al. 2019; Luo and Koelle 2013). Mechanistic predictions on reciprocal allele

frequency changes can then be done by combining information on phenotypic traits and

abundances of both populations (Velzen and Gaedke 2017; van Velzen and Gaedke 2018).

Balancing selection—thus, maintenance of higher-than-expected levels of genetic diver-

sity—becomes more likely and can occur even when the infection matrix conforms to a

‘true‘ gene-for-gene system (see Fig. 2.2b), where virus genotypes are equally successful

on all host genotypes (Best et al. 2017). However, population bottlenecks (drastic re-

ductions in size) increase the probability that stochastic fixation events occur (Gokhale

et al. 2013). Such events remove functional genotypes and subsequently diminish genomic

variation. Even if no genotypes are stochastically lost, the traditionally predicted simple

harmonic oscillations of allele frequencies are either replaced by more complex combina-

tions of sinusoidal functions (Song et al. 2015), or allele frequencies stabilize but species

abundances fluctuate (De Andreazzi et al. 2018; MacPherson and Otto 2018) in models

including eco-evolutionary feedback effects.

In summary, strong reciprocal fitness effects that cause fluctuations in population size

and the potential to adapt rapidly make microbial host–virus interactions likely subject

to eco-evolutionary feedback dynamics. To which extent the integration of such feedback

is necessary to correctly interpret the genetic signature of coevolution is an unresolved

question in evolutionary genetics.
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2.6 Genomic inference methods

After having outlined the various processes which can affect and interact with viral ge-

nomic diversity, we will now give an introductory overview of available inference methods

that can be used to extract information about these processes from genomic data. We

will start with methods which are traditionally used to analyze genomic data of a single

species. Then, we present some recently developed methods which take into account the

reciprocal nature of host–virus coevolutionary interactions.

Outlier scans can be used to search for loci that are putatively under selection (Fig.

2.4a). Genomes from a population sample are scanned for loci which show either elevated

or decreased levels of genetic diversity and/or linkage disequilibrium compared to the

genome-wide average. Deviations from the average are interpreted as evidence for selec-

tion having acted (Aguileta et al. 2009; Nielsen 2005; Vitti et al. 2013; Weigand and Leese

2018). Depending on the type of available data, these scans are often based on summaries

of the sequence data, such as the site frequency spectrum (from which statistics such as

Tajima’s D can be calculated), haplotype distribution, or when multiple populations are

compared, e.g., by differentiation measures such as FST .

The first step in outlier scanning is the establishment of the demographic history of the

population based on diversity patterns of putatively neutrally evolving loci. This step is

crucial, as various demographic scenarios can produce genomic signatures which are very

similar to those of positive selection (recent population expansion after a bottleneck) or

of balancing selection (population decline) (Bank et al. 2014; Crisci et al. 2012; Hoban

et al. 2016). It is further important to note that not accounting for background selection

can result in biased demographic inference, most pronounced when it is at intermediate

levels (Bank et al. 2014; Ewing and Jensen 2016). The second step involves comparing the

diversity per locus to the expected neutral distribution given the established population

demography. Loci under positive selection are expected to show lower levels of diversity

and higher linkage disequilibrium with neighboring regions. Loci under balancing selec-

tion will on the other hand show elevated levels of nucleotide diversity, detection of which

can be hard depending on the timescale at which selection has acted (Fijarczyk and Babik

2015).

The power of jointly inferring demography and selection can be increased by sampling

genome data or collecting allele frequencies at several time points (Fig. 2.4b; see, e.g.,

Foll et al. (2014)). An overview on existing methods to analyze such time-sampled data,
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including the advantages and potential biases, is given in (Bank et al. 2014).

If phenotype data of sequenced individuals are available, it is possible to perform a

genome-wide association study (GWAS; Fig. 2.4c), which searches for alleles that are

statistically associated with an observed phenotype (e.g., Gutierrez et al. (2018)). It

should be noted that GWAS studies can yield different effect sizes for a single locus if

the genetic structure of the coevolving partner is not taken into account (MacPherson

et al. 2018). The authors of this publication further demonstrated the value of integrat-

ing genomic information of both co-evolving partners simultaneously into a “two-species

co-GWAS” (MacPherson et al. 2018).

Methods jointly integrating genome data from both coevolving partners are very likely to

increase our understanding of the genetic basis underlying coevolution, as the genomes

of both partners contain pieces of information on their joint coevolutionary history (Fig.

2.4d). Wang et al. (2018) proposed such a method, called Analysis with a Two-Organism

Mixed Model or ATOMM, which aims to associate the outcome of reciprocal infection

experiments (e.g., the level of quantitative resistance) with genetic variants in the host

and parasite genome, simultaneously (Wang et al. 2018). Their method also accounts for

a latent population structure and allows for different types of genetic variants including

insertion/deletion polymorphisms. Nuismer, Jenkins, and Dybdahl proposed a framework

to identify coevolutionary loci by measuring the spatial covariation of marker frequencies

in the host and parasite across several populations (Nuismer et al. 2017). They showed

that the performance of their method mainly depends on the strength of local adaptation

between host and parasite, the number of populations being sampled, and the genomic

architecture of the trait.

In summary, we have presented an overview of genetic inference methods. Detecting the

genomic basis of coevolution can be achieved by incorporating different sources of informa-

tion (genotypic information, phenotypic information, information from both interacting

partners, or from multiple time points) and combining different sets of methods which are

most appropriate for the given system. The overview above also underlines that currently

much work is being done on the development and extension of methods that are specifi-

cally tailored for the analysis of coevolving systems.
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Fig. 2.4: Analysis steps involved in the genetic inference methods outlined in section 2.6. (a) In
outlier scans, genetic data are used to obtain an estimate of the demographic history and the
distribution of neutral diversity given this demography. Loci which are at the extremes or even
outside of this neutral distribution are subsequently identified as putatively under selection. (b)
Genetic data from multiple time points allow the calculation of changes in allele frequencies over
time. This increases the power to jointly estimate the demography and identify loci under selection.
(c) Genome-wide association studies (GWAS) are performed with phenotypic and genetic
information from a sample of individuals within a population to detect associations between genetic
variants and a certain phenotype (e.g., quantitative virulence). (d) Two-species GWAS integrates
genomic information from a sample of nH host individuals and nV virus individuals and phenotypic
outcome of all nH ∗ nV pairwise interactions. Data from the virus are shown in yellow. Data from
the host are shown in green.
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2.7 Discussion

In this review, we have outlined the evolutionary processes shaping the genomic diversity

of viruses and highlighted how they can (individually and interactively) affect genomic

diversity (see Fig. 2.3 for an overview). Many analysis tools have been developed by pop-

ulation geneticists to infer the presence and strength of evolutionary forces from genome

data of a single species (Fig. 2.4). When applying them, one must be aware of their

respective underlying assumptions and to which extent they fit the biology of the virus

being studied. Recently developed methods have started to extend beyond a single species

analysis framework, enabling the integration of genetic and phenotypic data of coevolving

virus and host populations, thus, explicitly taking the reciprocal nature of antagonis-

tic coevolution into account. Such methods provide promising opportunities to identify

previously undetected targets of selection, such as resistance genes, virulence factors, or

regulatory regions, which will deepen our insights into the molecular basis of host–virus

interactions and coevolution.

When viruses are involved in complex eco-evolutionary feedback loops, species abun-

dances, phenotypic trait distributions, and allele frequencies all change continuously and

simultaneously (Frickel et al. 2016). In such cases, sampling genomic data at several points

in time while simultaneously keeping track of phenotype data and population size data

enables us to establish links between genetic, phenotypic, and population size changes.

Time-sampled genomic data specifically allow for a more precise quantification of the

strength of selection (Renzette et al. 2013) and offer more powerful means to disentangle

the effects of various ecological and evolutionary forces on genome-wide diversity dynam-

ics (Bank et al. 2014; Foll et al. 2014; Pennings et al. 2014). With their diverse array

of life-history traits, life-time strategies, often comparatively small genomes, and short

generation times, viruses offer a great opportunity to study the dynamics of complex bi-

ological systems in real time. Such a time-resolved multifarious view on ecological and

evolutionary dynamics will also increase our mechanistic understanding of the role viruses

play in natural ecosystems.

The possibility to sample and analyze data from repeated experiments provides further

insights into the diversity of the possible paths antagonistic coevolution can take (Desai

2013; Frickel et al. 2018) and how the interaction between different kinds of mutations

(beneficial, neutral, and deleterious) will shape the resulting eco-evolutionary dynamics

(Hinkley et al. 2011; Jiang et al. 2016; Kryazhimskiy et al. 2011). Analyzing replicated
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viral genomic data from, e.g., microcosm experiments or different populations with similar

environmental properties will allow us to identify conditions under which viral evolution

is predictable and will thus aid in understanding and predicting, e.g., disease outbreaks

(Russell et al. 2012). Several challenges remain to be addressed. First, we are not aware

of any genomic inference methods that simultaneously take coevolutionary change and

ecological population size changes into account. Second, it is important to increase the

discussion on optimal sampling schemes (in terms of replication, temporal sampling den-

sity, and specific sampling times) to capture as much relevant information as possible

in a time- and cost-effective way. Third, there are limits as to how much genomic data

can tell us about such highly complex systems, and these limits should be investigated

carefully. For all of this, advancement will crucially depend on ongoing exchange between

empiricists and theoreticians from various fields, such as virology, ecology, evolutionary

biology, and population genetics.

In summary, we have shown in our review how genomic data of viruses—besides helping

to delimitate species—offer a powerful source of information to elucidate past ecological

and evolutionary processes, to study the genomic basis of adaptation, to improve our

understanding of evolution under species interactions, and to shed light on reciprocal in-

teractions between ecological and evolutionary change. These are exciting times in which

more and finer-scaled genetic data is increasingly available, and substantial progress is

being made in the development of methods linking such data to theory. Both are vital

to increase our understanding on how viruses interact with their hosts, how this shapes

genomic diversity of both interacting partners, and how this feeds back into ecological

processes.
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3
Extended introduction

After having outlined a) some general motivations to study host parasite coevolution, b)

the research questions which will be addressed in this thesis and c) the processes which are

potentially relevant in host-parasite coevolution, this chapter is meant to introduce some

theoretical background information and modelling approaches in more detail. First, we in-

troduce two types of models which are frequently used to model host-parasite interactions

and coevolution. The first type of models, population genetics models, can be used to

understand the maintenance of allelic polymorphism at the coevolving genes (Frank 1992;

Tellier and Brown 2007b,a; Leonard 1994; Sasaki 2000). The second type of models, SI-

models (Anderson and May 1979), has been used to understand the temporal dynamics of

epidemics and the evolution of host and parasite traits. Third, we give some more detailed

information about population genetics. Here, genetic drift is described in more detail as

drift becomes relevant in chapter 5 when linking host-parasite coevolutionary dynamics to

genomic signatures. Further, we give some brief introduction into the standard coalescent

(Kingman 1982a,b) which is a probabilistic model to describe the ancestral relationship

of a sample of individuals. It is a powerful framework to simulate genomic data for a

sample of individuals under a particular demographic scenario. Further, the expectations

of some frequently used summary statistics such as the site frequency or Tajima’s D can

be derived from it. And finally, a short overview is given about Approximate Bayesian

Computation, which is a widely used inference method in population genetics and on

which the inference in chapter 5 is based.

3.1 Modelling host-parasite coevolution

3.1.1 Population genetics model

Coevolutionary changes, namely changes in allele frequencies or phenotypes, can be mod-

eled by a population genetics model. Population genetic models are based on the assump-

tion that selection is the main evolutionary force within a population. Therefore, one core

assumption of such models is that the populations sizes are infinite, or extremely large,
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so that the effect of genetic drift becomes negligible. In the next paragraphs we will first

introduce the general form of a population genetics model for haploid populations (each

individual has a single copy of the gene) with discrete generations. Further, we will outline

the general model for diploid populations with discrete generations and for a haploid pop-

ulations with overlapping generations. Based on the model for haploid populations with

discrete generations, we will introduce the general form of coevolutionary models when

hosts and parasites are haploid. Further, we will describe the features and costs which

are frequently incorporated in such models and how they relate to the biology of the two

coevolving species. By doing so, we will introduce three models which will be used in this

thesis and one well known model of the host-parasite coevolutionary literature, namely

the Leonard model (Leonard 1994). A non-exhaustive list of coevolutionary models from

the literature and their underlying assumptions can be found in Tab. 3.1.

General form of population genetics models

A population genetics model in its most simple form tracks the allele frequencies at a single

locus with two alleles, A and a, in a haploid population with discrete generations. Central

to any population genetics models is the calculation of the fitness for each allele/genotype.

The term fitness expresses the exptected life-time reproductive success of individuals with

a particular genotype. Based on the fitness and the frequency of a particular allele in the

current generation g, the allele frequencies in the next generation g + 1 can be obtained

as (Otto and Day 2007, p.64):

pg+1 =
pgwA

pgwA + qgwa
=

pgwA
pgwA + (1− pg)wa

=
pgwA
w̄

(3.1)

Here, pg (qg) denotes the allele frequency of allele A (a) in generation g. The frequency

of allele a can be alternatively expressed as 1 − pg, since the frequencies of both alleles

must sum up to one. wA (wa) is the relative fitness of allele A (a) and w̄ is the average

fitness of the whole population. The average population fitness, w̄, can be obtained by

weighting the fitness of each allele, wA and wa respectively, by its current frequency in

the population.

It is straightforward to extend this model to diploid populations (each individual has two

copies of each gene). In order to calculate the new frequency of allele A, one first has to

compute its current frequency based on the frequencies of the A-homozygotes (individuals
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having two copies of the A-allele) and the frequency of heterozygotes (individuals with

one copy of the A and one copy of the a allele) and the respective fitness of the A-

homozygotes and the heterozygotes. Accordingly, the recurrence equation for a model of

natural selection in a diploid population is given by (see Otto and Day (2007), p.71):

pg+1 =
pg (pgwAA + (1− pg)wAa)

pg (pgwAA + (1− pg)wAa) + (1− pg) (pgwAa + (1− pg)waa)
, (3.2)

with wAA and waa being the fitness of the homozygotes and wAa being the fitness of the

heterozygote.

Similarly, the model in equation 3.1 for haploid populations with continuous (overlapping

generations) can be written as (Otto and Day 2007, p.67):

dp

dt
= s p(t) (1− p(t)) , (3.3)

where s is the selection coefficient, namely the difference in growth rates of alleles A

and a (Otto and Day 2007, p.69). Whether to use a discrete-time or a continuous-time

model depends on the reproductive system and the age structure in the population of

concern. Discrete-time models are appropriate for species where all individuals reproduce

at the same time and die afterwards. Therefore, discrete-time models are for example

well suited for annual plants, soil-borne pathogens or pathogens which sporulate at the

end of the host season, survive on an intermediate host and than spread at the beginning

of the next season again. If on the other hand, hosts and/or parasites are continuously

dying and reproducing, continuous-time models are a more appropriate choice. Such

populations are characterized by so called overlapping generations, meaning that parents

and their offspring live at the same time. Coevolutionary systems which are characterized

by overlapping generations are for example algae or bacteria coevolving with phages.

General model form coevolutionary population genetics model for major genes in

haploid populations

In this thesis we will for the most part focus on coevolutionary interactions between a

haploid host and a haploid parasite with discrete generations. Further, we assume that

the coevolutionary interaction is driven by a bi-allelic major locus in the host and a bi-

allelic major locus in the parasite. By writing equation 3.1 once for the host and once for
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the parasite, the coevolutionary system can be described by the following two recurrence

equations:

hi,g+1 =
hi,gwHi,g
w̄H,g

(3.4)

pj,g+1 =
pj,gwPj ,g

w̄P,g
(3.5)

Here, hi,g denotes the frequency of the i-th host allele in generation g and pj,g is the

frequency of the j-th parasite allele in generation g. Similarly, wHi,g (wPj ,g) is the fitness

of the i-th host (j-th parasite) allele in generation g and w̄H,g (w̄P,g) is the average fitness

of the host (parasite population). Inherent to the coevolutionary interaction is the idea

that the fitness of the various host (parasite) types depends on the outcome of the inter-

action with the various parasite (host) types and the composition of the parasite (host)

population in terms of allele frequencies.

The infection matrix α

The infection matrix A stores the outcome of all host genotype x parasite genotype in-

teractions. It is a m · n matrix with m being the number of host types and n being the

number of parasite types. Each entry αij in this matrix denotes the probability that a

parasite of type j can infect a host of type i. For a simple system with two host and

parasite types this matrix writes as:

( P1 P2

H1 α11 α12

H2 α21 α22

)
. (3.6)

Two well studied types of infection matrices are the gene-for-gene and the matching-

allele matrix. The gene-for-gene matrix is based on the work by Flor (1956, 1971) on the

Linum marginale–Melampsora lini system. Gene-for-gene interactions are characterized

by a universally infective parasite (a parasite which can infect all hosts) and a generally

susceptible host (a host which can be infected by any parasite). Therefore, this infection

matrix captures well the molecular interactions underlying effector-triggered immunity

(Dodds and Rathjen 2010). One well studied other type is matching-alleles interactions,

where each parasite type can only infect a matching host type (Luijckx et al. 2013). This
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type of infection matrix fits best to systems with self-non-self recognition such as the

MHC-complex in vertebrates. Generally, gene-for-gene and matching-alleles infection ma-

trices represent some points in a continuum of infection matrices with varying specificity

(Agrawal and Lively 2002; Engelstaedter 2015).

Fitness costs/gains in coevolutionary models

Infection decreases the fitness of a host by an amount s, the cost of infection. For parasites

either the fitness of a parasite which can not infect a host, decreases by an amount c

compared to parasite which infect successfully (Tellier and Brown 2007b) or the fitness of

parasites which infect hosts successfully increases by some amount ζ compared to parasites

which fail to infect hosts (Leonard 1994, see infobox below). Further each host (parasite)

genotype can be associated with some fitness cost cHi(cPj). For the host this can be some

cost of resistance (Tian et al. 2003; Bergelson and Purrington 1996; Karasov et al. 2014).

Similarly for the parasite this could reflect a cost of infectivity/virulence (Bahri et al.

2009; Thrall and Burdon 2003; Montarry et al. 2010). Taking the infection matrix and

these potential costs into account, we can rewrite equation 3.4 as:

hi,g+1 =

hi,g(1− cHi)

(
1− φgs

2∑
j=1

αijpj,g

)
w̄H,g

(3.7)

pj,g+1 =

pj,g(1− cPj)
(

1− c
2∑
i=1

(1− αij)hi,g
)

w̄P,g
(3.8)

Inherent to these equations are two further assumption. First, hosts and parasites interact

in a frequency-dependent manner and thus, disease transmission is frequency-dependent.

Second, a proportion φg of the host population interacts with the parasite population in

generation g.

Type of disease transmission

In our model we assume that the disease transmission is frequency-dependent. Thus, the

probability whether a host of type i encounters a parasite of type j is only dependent on

their respective frequencies hi and pj. Such a disease transmission mechanism could for

example apply to sexually transmitted diseases (Antonovics 2017). Frequency-dependent
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disease transmission is the only disease transmission type which can incorporated in clas-

sic population genetics model. However, an other type of disease transmission, namely

density-dependent transmission, can be relevant when populations are of finite size. Here,

the frequency of encounters between hosts of type i and parasites of type j depends on

their respective densities (numbers).

Disease prevalence

Further, we assume that every generation a proportion φg (0 ≤ φg ≤ 1) of the host

population interacts with the parasite population. A disease prevalence of φg < 1 could

be for example due to parasites with limited dispersal.

The simple coevolution model for a gene-for-gene system

In a gene-for-gene interaction there are two host types, namely, susceptible hosts (res)

and resistant hosts (RES ), and two parasite types, namely, infective parasites (INF ) and

non-infective parasites (ninf )-parasites. Note that in the case of diploid hosts it is usually

assumed that resistance is dominant to susceptibility and non-infectivity is dominant to

infectivity. Therefore from a molecular perspective, it would be natural to abbreviate

the infective parasite by small letters and the non-infective parasite by capital letters.

However, in order to be consistent with other papers from our group (Tellier et al. 2014;

Verin and Tellier 2018) we use the former notation. Further, note that in the plant

pathology literature the infectivity allele is frequently called the virulence allele and the

non-infective allele is called the avirulence allele.

The frequency of resistant (susceptible) hosts is denoted by Rg (rg) and the frequency of

non-infective (infective) parasites is denoted by Ag (ag). Based on experiments it has been

shown that resistance can be costly (Karasov et al. 2014; Bergelson and Purrington 1996).

Therefore, the model for a gene-for-gene interaction incorporates a fitness cost for the

resistant host genotype (in the following paragraphs cH for short). Further, we assume a

cost of infectivity for infective (virulent sensu plant pathology literature) parasites (Thrall

and Burdon 2003; Bahri et al. 2009; Montarry et al. 2010) and that the disease prevalence
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Fig. 3.1: Coevolutionary dynamics in a monocyclic gene-for-gene-model. Each dot represents the
frequency of resistance (x-axis) and frequency of infectivity (y-axis) in a single generation g. The
dynamics were simulated based on eq. 4.6 for cH = 0.05, cP = 0.1, s = 0.4, c = 1, R0 = a0 = 0.15

is φ = 1. Therefore, the model writes as (Tellier and Brown 2007b):

Rg+1 =
Rg(1− cH) (1− sag)

w̄H
(3.9)

rg+1 =
rg (1− s)

w̄H
(3.10)

Ag+1 =
Ag((1− c)Rg + rg)

w̄P
(3.11)

ag+1 =
ag (1− cP ) [Rg + rg]

w̄P
(3.12)

The dynamics of this model (and other bi-allelic coevolution models) can be plotted in a

2-D plane where the frequency of one of the two host alleles is plotted on the x-axis and

the frequency of one of the two parasite alleles is plotted on the y-axis. Each point in

the resulting plot represents the frequencies of these alleles in a single generation g. By

connecting the points of consecutive generations, we obtain the so-called allele frequency

trajectory. Fig. 3.1 shows one exemplary trajectory of the model.

The dynamics can be understood as follows. Initially, the proportion of infective parasite

and resistant hosts is small. Therefore, resistant hosts have a selective advantage compared

to susceptible hosts as the cost of resistance is smaller compared to the cost of infection in
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susceptible hosts. Therefore, the frequency of resistant hosts increases (orange part of the

trajectory). Due to the increase of resistance in the host population, infectivity becomes

advantageous compared to non-infectivity. Infective parasites can infect both host types

and this outweighs the fitness loss due to the cost of infectivity. Accordingly, the frequency

of the infectivity allele increases almost to fixation (green part of the trajectory). However,

due to the very high frequency of infective parasites, the fitness of resistant compared to

susceptible hosts decreases. Resistant hosts have to pay now both, the cost of resistance

and the cost of infection, in almost all interactions. As the cost of resistance is small

in the example shown, the frequency of resistant hosts only marginally decreases every

generation (blue part of the trajectory) until almost the whole host population becomes

susceptible again. This in turn selects against infective parasites. Therefore, the frequency

of non-infective parasites increases again (lightblue part of the trajectory) up to the point

the next cycle starts.

In the shown example, the allele frequencies spiral outwards towards the corners of the

plane. Each of the four corners of the plane represents a monomorphic equilibrium point.

At a monomorphic equilibrium both the host and the parasite population are fixed for

either of the two alleles. However, the model also has a fifth equilibrium point where

both alleles are maintained. However, as soon as the system is slightly displaced from this

polymorphic equilibrium the allele frequencies ’move’ away from it and finally get fixed

at one of the monomorphic equilibrium. Accordingly, the polymorphic equilibrium point

is unstable (Tellier and Brown 2007b) in this model.

Monocylic disease vs polycylic disease

For now we have only considered a so-called monocyclic disease in our model. Monocyclic

diseases are characterized by a single infection cycle per host season/generation. However,

many diseases are characterized by more than one infection cycle per season. Such diseases

are termed polycyclic. The above presented model can be extended to a polycyclic disease

with T parasite generations per host generation g. When there are T = 2 parasite

generations per host generation the coevolutionary interaction can be described by the

following three recurrence equations (still assuming discrete host and parasite generations)
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(Tellier and Brown 2007b).

ag,2 =
ag,1 · (1− cP )

ag,1 · (1− cP ) + Ag,1 · rg
(3.13)

ag+1,1 =
(1− cP ) · [Rg (Ag,1ag,2 + ag,1) + rgag,1]

(1− cP ) · [Rg (Ag,1ag,2 + ag,1) + rgag,1] + rgAg,1
(3.14)

Rg+1 =
Rg · (1− cH) [Ag,1Ag,2 + Ag,1ag,2(1− s2) + ag,1(1− s1)]

Rg · (1− cH) [Ag,1Ag,2 + Ag,1ag,2(1− s2) + ag,1(1− s1) + rg(1− s1)]
(3.15)

The presented model has the assumption that parasites from the second generation infect

the same host as their parent. Accordingly, resistant and susceptible hosts infected with

infective parasites in the first parasite generation, stay infected with infective parasites

in the second parasite generation. Further, susceptible host which are infected by non-

infective parasites in the first generation stay infected by non-infective parasites. When

hosts are infected for two consecutive parasite generation they bear a cost of infection, s1.

Resistant host which are attacked by non-infective parasite in the first generation can be

attacked by any parasite type in the second parasite generation. Here again non-infective

parasites fail to infect, whereas infective parasite can infect successfully. In the latter case

resistant hosts loose an amount s2 of their fitness.

Auto vs alloinfections

This model incorporates an additional assumption, which is of relevance for polycyclic dis-

eases, namely whether a parasite was produced on the host it is currently infecting or on

a different host. In the previous model parasites infected the same host as their parents.

Such infections are called auto-infections (Mundt 2009). Auto-infections can for example

occur when parasites are splashed by water from one plant part to another part. Opposed

to auto-infections are allo-infections. Here, parasites infecting a particular host have been

produced on a distinct host (Mundt 2009). Taking the possibility of allo-infections at rate

ψ into account, the previous model can be rewritten as (Tellier and Brown 2007b):
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ag,2 =
ag,1 · (1− cP )

ag,1 · (1− cP ) + Ag,1 · rg
(3.16)

ag+1,1 =
(1− cP ) · [RgAg,1ag,2 + rgAg,1ag,2(1− ψ) + ag,1(ψ + ag,2(1− ψ) )](

rg · (ψAg,1 + Ag,2(1− ψ))
+ (1− cP ) · [RgAg,1ag,2 + rgAg,1ag,2(1− ψ) + ag,1 (ψ + ag,2(1− ψ))]

)(3.17)

Rg+1 =

(
Rg · (1− cH) [Ag,1Ag,2 + (1− s2)(Ag,1ag,2

+ag,1Ag,2(1− ψ)) + (1− s1)(ag,1ψ + ag,1ag,2(1− ψ))]

)
(
Rg · (1− cH) [Ag,1Ag,2 + (1− s2)(Ag,1ag,2 + ag,1Ag,2(1− ψ))

+(1− s1)(ag,1ψ + ag,1ag,2(1− ψ))] + rg(1− s1)

) (3.18)

Genomic architecture of resistance

For now we have only considered the coevolution between a single major host locus and

a single major parasite locus. However for many hosts and parasites, the interaction

is presumably driven by several loci with major effects. One way to extend the above

presented model towards L major interacting loci is to represent each host (parasite)

genotype by a string of length L. Each entry of this string depicts the allelic state at

one of the L major loci. For haploid species with biallelic loci the string can represented

as a binary number and accordingly there is a total number of 2L different host and

different parasite genotypes. Therefore, the dimension of the infection matrix becomes

2L ∗2L, where each entry gives the probability that a host genotype i can be infected by a

parasite genotype j. In a gene-for-gene like interaction each entry in the host string which

is equal to 1 (0) can be interpreted as a resistance (susceptibility) allele. Similarly, each

entry in the parasite string which is equal to 1 (0) denotes a infectivity (non-infective)

allele. Accordingly, a host genotype i is (partially) resistant to a parasite genotype j if the

host genotype for at least one locus l has the resistance gene and the parasite genotype

has the corresponding non-infectivity allele. The gene-for-gene matrix for an interaction
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with L = 3 host and parasite loci involved looks for example as follows:



000 100 010 001 110 101 011 111

000 1 1 1 1 1 1 1 1

100 0 1 1 1 1 1 1 1

010 0 0 1 1 1 1 1 1

001 0 0 0 1 1 1 1 1

110 0 0 0 0 1 1 1 1

101 0 0 0 0 0 1 1 1

011 0 0 0 0 0 0 1 1

111 0 0 0 0 0 0 0 1


. (3.19)

In such multi-loci models the cost of resistance is usually integrated as a function of

the number of resistance allele a particular host genotype i is carrying and the cost of

infectivity becomes a function of the number of infectivity alleles a particular parasite

genotype j is carrying. Such multi-locus models have been for example analysed by

Tellier and Brown (2007a) and Sasaki (2000).
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Box 1.1: Leonard model

The Leonard model is based on the following assumptions:

• Diploid hosts and haploid parasites

• gene-for-gene interaction

• coevolution between a bi-allelic host (resistance allele and susceptible allele) and
bi-allelic parasite locus (infectivity allele and non-infectivity allele)

• resistance fully dominant to susceptibility

• non-infectivity fully dominant to infectivity

• discrete host and parasite generations

• delayed feedback between host and parasite. Fitness of a given parasite allele depends
on the frequencies of the host genotypes in generation g, fitness of the host alleles
depends on the frequencies of the parasite alleles at the beginning of generation g+1.

The model involves the following costs:

Notation Leonard
(1994)

Notation used Description

k cP cost of infectivity (viru-
lence)

t c effectiveness of resistance

a ζ advantage of virulent para-
site on resistant host

c cH cost of resistance

s s cost of infection

The notations for the frequencies have been adapted to the style of the thesis. Coevolution
follows the following recurrence equations:

ag+1 =
ag
[
1− cP + (1− r2

g) · gP
]

1− (1− r2
g) · c+ a ·

[
(1− r2

g) · (ζ + t)− cP
]

Rg+1 =
Rg [1− cH − s · (1− c) + ag+1 · s · (cP − ζ − c)]

1− s+ ag+1 · cP · s+ (1− r2
g) · [c · s− cH − ag+1 · s · (ζ + c)]

(3.20)

The polymorphic equilibrium frequencies are:

(1− r̂2) =
cP
ζ + c

â =
cs− cH
cs− ζs

(3.21)
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3.1.2 SI-models

SI (Susceptible-infected)-models (Anderson and May 1979) are widely used in epidemi-

ological modeling for understanding the 1) temporal dynamics of an epidemic, 2) the

conditions for an epidemic to start and to persist, 3) the effect of different intervention

schemes on an epidemic and 4) to understand the evolution of host and parasite life-

history traits such as virulence and resistance. A SI model keeps track of the number of

susceptible (S) host individuals, the healthy compartment, and the number of infected

(I) host individuals, the infected compartment, over time. The number changes in these

compartments are usually modeled by a set of coupled differential equations. The use of

differential equations implies implicitly that host and parasite generations are overlapping.

Usually, these models include at least the following four parameters (see Fig. 3.2): b, the

natural host birth rate, d, the natural host death rate, β, the disease transmission rate

and γ, the parasite induced death rate or virulence sensu animal literature. The number

of parasites can be obtained indirectly via the number of infected hosts.

The density of susceptible hosts increases by birth from susceptible individuals. It further

increases by birth of new individuals from the infected class given that the disease is only

transmitted horizontally (only among individuals but not from parent to offspring) and

the parasite is not sterilizing the host. The number of susceptible individuals increases

due to disease transmission at rate β when susceptible hosts interact with infected hosts.

In SI-models, disease transmission can be either included in a density-dependent or a

frequency-dependent manner. A discussion about disease transmission mechanisms and

how they could apply to different types of diseases can be found in Antonovics (2017).

Both types of hosts (susceptible and infected ones) die at rate d. Further, the number of

infected hosts decreases by parasite induced death and increases due to new infections.

One central quantity in epidemiological models is the basic reproduction number R0. It

captures the number of secondary infection which are produced by a single infected indi-

vidual which is placed into a fully susceptible host population (May and Anderson 1983).

This number therefore determines whether a disease spreads (that is R0 > 1) in a popu-

lation or not (that is R0 ≤ 1). SI models can be readily extended to SIR models, where

hosts can recover from the disease at rate ν. Further, such models can be extended to

include more than one host type or more than one parasite type by increasing the number

of compartments accordingly.
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S(t)
Susceptible hosts

I(t)
Infected hosts

βS(t)I(t)S(t)I(t)

ɣI(t)dI(t)dS(t)

bI(t)

bS(t)

Fig. 3.2: Basic susceptible-infected model with density-dependent disease transmission. The
number of susceptible hosts S(t) decreases by new infections and natural death d and increases by
natural birth from susceptible and infected hosts. The number of infected hosts increases by new
infections and decrease by natural death and disease induced death. The parameters are: β =
disease transmission rate, d = natural death rate, b = natural birth rate and γ = disease induced
death rate.

3.2 Population genetics

The field of population genetics deals with the genetic composition and the evolutionary

changes of genetic variants in a population and how they are shaped by the interplay of

the evolutionary forces. Remember from chapter 2 that the evolutionary forces shaping

genomic data are mutation, selection, recombination, genetic drift and migration. Se-

lection acts on the phenotype and results in changes of allele frequencies at the genes

underlying the phenotype. Here, an allele is defined as a variant form of a locus (can be a

gene, a SNP, ...). These variant forms arise by mutations which are the result of erroneous

DNA/RNA replication and range from changes at single base positions (Single Nucleotide

Polymorphism), the insertion or deletion of several base pairs up to chromosomal rear-

rangements. The allelic state before the mutation occurred is called the ancestral state,

the allelic state created by a mutation is called the derived state. Mutations create new

diversity on which other forces such as selection, demography and recombination can act

on. Thus, the ultimate fate (loss, fixation, maintenance) of a mutation is determined by

the strength of the other evolutionary forces. A commonly accepted view is that the ma-

jority of de novo mutations has a neutral or slightly deleterious effect (but see Kern and

Hahn (2018) for starting a recent controversial discussion (Jensen et al. 2019)). Here, the

word neutral implies that the particular mutation does not alter the fitness of its carriers
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compared to individuals with the ancestral state. The frequencies of neutral mutations

are mainly affected by demography but can also change due to linkage to selected sites

(Hill-Robertson-effect, Hill and Robertson (1966)).

In general linkage between sites can be broken up by recombination. Recombination can

combine genetic information from both parents in the sequence of an offspring. Once a

recombination event happens, the sequence of the resulting offspring contains sequence

information from both parents on a single chromosome. It inherits all the sequence in-

formation to the right of the recombination event from one of the two parents and all

sequence information to the left of the recombination event from the other parent. The

recombination rate therefore also determines whether the allele frequencies, and thus the

evolutionary trajectories, at two distinct loci in a genome are independent of each other

or not. If two loci are independent of each other the chance for a single individual to

have a particular allele A on the first locus and a particular allele B on the second lo-

cus is just equal to the product of the frequencies of these two allele in the population

(pA · pB) (Charlesworth and Charlesworth 2010). Conversely, if two loci are fully linked

a particular allele at the first locus always comes together with a particular allele at the

other locus. In this case the two loci are in strong linkage disequilibrium. The amount of

linkage disequilibrium between two loci can be measured as:

D = gABgab − gaBgAb, (3.1)

where gAB is the frequency of individuals in the population which have allele A at the

first locus and allele B at the second locus and so forth (see e.g. Lewontin and Kojima

(1960)). If |D| = 1 the two loci are in complete linkage and if |D| = 0 the two loci are

completely independent of each other.

3.2.1 Genetic drift

Genetic drift describes the random changes in allele frequencies arising from stochastic

effects in offspring reproduction. The standard model for capturing the effect of genetic

drift is the so-called Wright-Fisher model which was introduced by Fisher and Wright in

the 1930s. This model is based on the assumptions that the population is haploid with a

constant size of 2N haploid indviduals (which corresponds to a diploid population with

size N), non-overlapping and discrete generations, equal offspring distribution for each

individual, random mating and panmixia and absence of selection and recombination.
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The model tracks the temporal changes in allele frequencies of neutral alleles (therefore,

selection is absent) at a given locus and is used to understand the time to fixation and the

probability of fixation for an allele with some initial frequency p. For a bi-allelic locus there

are two alleles, A and a, respectively. Allele A is in frequency pt in generation t and allele a

is in some frequency qt = 1−pt. It is intuitive that in an extremely large population where

each individual gets one child on average (arising from assumption that the population

size stays constant and that all the individuals have the same offspring distribution),

the frequencies of both alleles should remain constant over time. However, the number

of offspring per individual vi is a random variable which follows a Poisson distribution

with mean 1 for a Wright-Fisher population. Thus, some individuals by chance contribute

more than one offspring to the next generation whereas some individuals do not contribute

any offspring. Individuals from generation t produce offspring, which will compose the

population of generation t + 1 and die immediately after reproduction. As all alleles

have equal fitness, each individual in generation t has the same chance to be the parent

of a particular individual in generation t + 1. Therefore, the number of individuals in

generation t + 1 with allele A can be obtained by sampling from a binomial distribution

with mean pt.

P (NA,t+1 = k) =

(
2N

k

)
pkt q

2N−k
t (3.2)

The probability that an allele which is in initial frequency p0 = 1
2N

in the population

is fixed is 1
2N

(see e.g Kimura (1962)). Thus, the amount of genetic drift is larger in

small compared to large populations. The expected time t̄(p0) to fixation (conditional on

fixation) for an allele with intial frequency p0 is equal to (Kimura and Ohta 1969):

t̄(p0) = − 1

p0

(4Ne (1− p0) log (1− p0)) (3.3)

3.2.2 The standard coalescent

In the previous section we have described the effect of genetic drift forward in time.

However, in very few cases one can possibly track a population forward in time. It is

rather common that we have sampled data from a present day population and based on

this sample we aim to infer properties of the past evolutionary history in a retrospective

way. The coalescent is a probabilistic model to describe the genealogical relationship for
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Fig. 3.3: Coalescent tree for a sample of size n = 5. Coalescent events are indicated by a black
circle and reduce the number of ancestral lineages by one. The most recent common ancestor of the
whole sample is shown in blue. The tree on the left contains all Ti (i ∈ {2, . . . , n}) coalescent times
which are also reflected by the coloured edges. The same tree is shown on the right this time with
the mutation process on top. Time in the coalescent is measured from the present to the past.

a sample of size n up to the most recent common ancestor (MRCA) of all individuals in

the sample. The standard n- coalescent (Kingman 1982a,b) can be used as a continuous-

time approximation to describe the ancestral process of a Wright-Fisher population when

the population size is large (2N → ∞) and the sample size is small compared to the

population size (n << 2N). The process starts with n samples (see grey circles in Fig.

3.3). Every time two lineages find their common ancestor t generations back in time,

their ancestral lineages coalesce (black circles in Fig. 3.3) and the number of lineages

ancestral to the sample reduces by one. This process repeats until the last two ancestral

lineages find their most recent common ancestor (blue circle in Fig. 3.3). Therefore, the

process can be illustrated by a bifurcating rooted tree, the coalescent tree. Each of the

n leaves of this tree represents one of the samples and each node represents a coalescent

event. The statistical properties of this process can be derived as follows (Hein et al. 2004;

Wakeley 2008; Donnelly and Tavare 1995, and literature cited herein). For a sample of

size n = 2 in a population of size 2N , the probability that these two samples find their

most recent common ancestor in the previous generation is equal to 1
2N

. The reasoning

behind is as follows: The first individual chooses any of the parents. The probability that

the second individual has the exact same parent is equal to 1
2N

due to the assumption of
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constant population size and equal fitness of all individuals in the parental population.

Thus, the probability of a coalescent event in the previous generation t = 1 is equal to 1
2N

.

Correspondingly, the probability of no coalescent event happening is 1− 1
2N

. Therefore, the

probability that n = 2 samples find their MRCA T2 generations ago, follows a geometric

distribution given by:

Pr(T2 = t) =

(
1− 1

2N

)t−1

· 1

2N
(3.4)

Thus, the expected time to the MRCA of a sample of size n = 2 is equal to E[T2] = 2N

and the corresponding variance is equal to
1− 1

2N

( 1
2N

)2
= 2N(2N − 1).

For a sample of size n the probability that no coalescent event happens in the previous

generation and, accordingly the probability that n samples have n ancestors in the previous

generation is given by (Hein et al. 2004 p.22, Wakeley 2008 p.68):

Gk,k = 1 · 2N − 1

2N
· 2N − 2

2N
· ... · 2N − k + 2

2N
· 2N − k + 1

2N

=
k−1∏
i=1

(
1− i

2N

)

=

(
1−

k−1∑
i=1

i

2N

)
+O

((
1

2N

)2
)

≈ 1−
(
k
2

)
2N

(N →∞)

(3.5)

The first individual picks a parent with probability p1 = 1. The probability that the

second out of the n individuals chooses a different parent is equal to p2 = 2N−1
2N

, the

probability that the third individual chooses a parent which has not been previously

chosen is p3 = 2N−2
2N

and so forth. Therefore, the probability that two samples in a sample

of size k find their MRCA in the previous generation is approximately

Gn,n−1 =

(
n

2

)
1

2N
(3.6)

if n << 2N and 2N is large (the probability that more than two individuals find the same

parent become negligible under this assumption). Thus, the probability that no pair out
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of the n lineages has found their MRCA up to t generations in the past is:

Pr(Tn > t) ≈

(
1−

(
n
2

)
2N

)t

≈ e
(n2)
2N

t

≈ e(
n
2)tc with tc =

t

2N

(3.7)

Therefore, the time Tn to a coalescent event in a sample of size n can be approximated

by an exponential distribution with rate
(
n
2

)
when time is scaled in units of 2N , the

coalescent time scale. Accordingly, the expected time to a coalescent event in a sample

of size k = n is E[Tn] = 2
n(n−1)

. When a coalescent event happens, two ancestral lineages

fuse into a single ancestral lineage and therefore, the number of ancestral lineages reduces

to n − 1. The waiting time Tn−1 to the next coalescent event among the k = n − 1

remaining ancestral lineages is again exponentially distributed, but this time with rate

λn−1 =
(
n−1

2

)
.

As the coalescent times are independent of each other, the distribution of the time to

the MRCA (TMRCA) for a sample of size n can be obtained as the convolution of the Tk

(k ∈ {2, . . . , n}) waiting times which are exponential random variabls with rates λn =(
n
2

)
, λn−1 =

(
n−1

2

)
, . . . , λ3 =

(
3
2

)
, λ2 =

(
2
2

)
. Therefore, the expected time to the MRCA of

the whole sample is (Hein et al. 2004 p.26, Wakeley 2008 p.76):

E(MRCA) =
n∑
k=2

E(Tk) = 2
n∑
k=2

1

k(k − 1)
(3.8)

To obtain the expected total length E(Ln) of all branches in the coalescent tree one has

to proceed as follows. For an expected amount of time E(Tk) there are k lineages present.

Therefore, the expected length of all branches in this time interval is kE[Tk] (see Fig.

3.3). Accordingly, one can obtain the expected total length of the coalescent tree as (Hein

et al. 2004 p.27, Wakeley 2008 p.76):

E(Ln) =
n∑
k=2

k · E(Tk) =
n∑
k=2

k
2

k(k − 1)
= 2

n−1∑
k=1

1

k
(3.9)

The branches in the coalescent tree can be categorized based on the number of descendants
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they have. Branches which have only one single descendant, namely one of the samples, are

called external branches. Branches with several descendants are called internal branches.

A coalescent tree for a sample of size n has a total number of 2n−2 branches, from which

n branches are external branches and n− 2 branches are internal branches.

3.2.3 The standard coalescent with mutations

Due to the assumption of selective neutrality, the mutational process can be considered

independently of the genealogical process, as neutral mutations do not affect the chance

that an individual is chosen as a parent. Therefore, sequences under the coalescent with

mutation can be obtained by first simulating the genealogy and afterwards placing the

mutations on the genealogy (see Fig. 3.3). The mutational process itself can follow

different mutation models. Which mutation model is most appropriate for a given species

depends on the genome size and the biology of the species of concern.

In the infinite alleles model (Kimura and Crow 1964) each mutation creates a new allele

in the population. Under the infinite sites model each mutations falls on a previously

unmutated site (Kimura 1969). Therefore, there are at most two different states at a single

position when comparing samples from several individuals of the population. Further, no

recurrent mutations are happening at a single position in the genome. Accordingly under

the infinite sites model, identity by state (for example when two individuals have both

an adenine at some base position) also implies identity by descent (they have a common

ancestor from which they inherited the mutation). The infinite sites mutation model is

appropriate when the mutation rate/base/generation is very low and the sequence is very

large. If information from an outgroup is available the ancestral state (the state before

the mutation happened) is usually labelled as 0 and the derived state (the state created

by the mutation) as 1.

In contrast to the infinite sites model, mutations can recurrently happen at the same

position in the genome in a finite sites model (Jukes and Cantor 1969). Thus, more

than two different states can be found at any position in the genome. Further under a finite

sites model, identity by state does no longer imply identity by descent due to the possibility

of back mutations. The finite sites model adds more biological reality for species which are

characterized by high mutation rates and small genome sizes. Jukes and Cantor (1969)

introduced the first, very basic, finite sites model. Their model relies on the assumption

that all bases have equal frequencies along the whole sequence. Further, mutations happen
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to any other base with equal probability. More refined models additionally take the non-

equal distribution of bases along the sequence and transition to transversion biases into

account (Tamura 1992; Tamura and Nei 1993; Felsenstein 1981; Kishino and Hasegawa

1989).

One core parameter in population genetics is the so called population mutation rate θ.

The population mutation rate θ = 4 ·Neµ can be interpreted as the expected number of

mutations which have accumulated in a pair of individuals since their most recent common

ancestor (Hein et al. 2004, p.40). The idea behind this interpretation is as follows the

expected time to coalescent for a sample of size n = 2 is
(

2
2

)
= 1 on the coalescent time

scale. µ is the mutation rate per generation per genome. To obtain the real time, the

time in units of the coalescent time scale has to be rescaled by 2N . Accordingly, the total

length of the branches separating the two individuals from each other is 2E[T2] ·2N = 4N

and the expected number of mutations which have accumulated since the most recent

common ancestor is θ = 4Nµ.

The number of mutations per unit coalescent time is Poisson distributed with mean θ/2.

Therefore, the time to a mutation event is exponentially distributed with mean θ/2.

Accordingly the expected number of segregating sites for a sample of size n can be obtained

by weighting the expected number of mutations per unit time interval on the coalescent

time scale by the expected length of the coalescent tree.

E(Sn) =
θ

2
E[Ln] =

θ

2
· 2

n−1∑
k=1

1

k
= θ

n−1∑
k=1

1

k
(3.10)

In general there are two different possibilities to simulate a neutral coalescent tree with

mutations following an infinite sites model.

Recipe 1 (see Hein et al. (2004), p.42-43)

1. Set n=k

2. While k > 1

• Draw a waiting time tw from an exponential distribution with rate λ = (
(
k
2

)
+

kθ
2

). The underlying rationale is that the coalescent process and the mutation

process are two independent Poisson processes. Accordingly, the waiting time

to the first event (either a coalescent event or a mutation event) is exponentially
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distributed with rate λ which is equal to the sum of the rates of both Poisson

processes.

• With probability
θ
2

θ
2

+(k2)
the event is a mutation event and with probability

(k2)
θ
2

+(k2)
the event is a coalescent event

• If the event is a coalescent randomly choose two of the k lineages to coalesce

at time tw and set k = k − 1.

• It the event is mutation event choose any of the k lineages with equal probability

and place a mutation on this lineage at time tw

Recipe 2 (see Hein et al. (2004), p.41-42) (Hudson 2002))

1. Set n=k

2. While k > 1

• Draw the time to the next coalescent event tk from an exponential distribution

with mean
(
k
2

)
• Randomly choose two of the k individuals to coalesce at time Tk

• Decrease k by one

3. Draw the number of mutations on the whole genealogy from a Poisson distribution

with rate λ = θ
2

n∑
k=2

tk

4. Distribute the K mutations uniformly on the genealogy

Therefore, the coalescent tree not only provides means to obtain the statistical properties

of the genealogy of a sample of size n but also provides means to simulate sequences for

a sample of size n.

Based on the example shown in Fig. 3.3 the resulting sequences could look as follows

(each segregating site shown in red):
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Sequence 1 A T A T G C T A A C T G T A T G T

Sequence 2 A T A T G C T A A C T G A A C G T

Sequence 3 A T A T C C T G A C T G A A C G G

Sequence 4 A T A T C C T A A C T C A A C G G

Sequence 5 A T A T C C T A A C T G A A C G T

The site frequency spectrum (SFS

For many applications it is valuable to condense the information contained in the sequence

data into summary statistics. The site frequency spectrum (also allele frequency

spectrum) is a summary statistic of the sequences of n-sampled individuals. It condenses

the information about the frequencies of all segregating sites in the sample. The site

frequency spectrum comes in two flavours depending on whether the ancestral state at

each particular position in the sequence is known or not. If an outgroup sequence is

available and thus, the (likely) ancestral state of the allele can be determined, the unfolded

site frequency spectrum is usually used. It summarizes the number of segregating sites in

the sample with derived allele frequency i. Thus, the site frequency spectrum is a vector

ξ = (ξ1, ξ2, ...., ξn−2, ξn−1) of size n − 1 and the sum of all vector entries is equal to the

number of segregating sites (|ξ| = S).

Whenever the ancestral states are unknown, the folded site frequency spectrum has to be

used. The folded site frequency spectrum is a vector η of length bn/2c where each entry

ηi gives the number of segregating sites in the sample with minor allele frequency i. The

folded site frequency spectrum links to the unfolded site frequency spectrum as follows:

ηi =
ξi + ξn−i
1 + δi,n−i

1 ≤ i ≤ bn/2c

δi,n−i =


0 i 6= j

1 i = j

,

(3.11)
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which corresponds to collapsing ξ1 and ξn−1 into a single class η1 and so forth. The

expected unfolded site frequency spectrum for a Wright-Fisher population at equilibrium

is given by:

ξi =
θ

i
(3.12)

Therefore, given that the ancestral state is known, the sequences from the samples in

Fig.3.3 can be converted to the unfolded site frequency spectrum as shown in Fig. 3.4.

G A G T C T

G A G T T T

G A G A C T

C G G A C G

C A C A C G

C A G A C T

0 0 0 0 1 0

0 0 0 1 0 0

1 1 0 1 0 1

1 0 1 1 0 1

1 0 0 1 0 0

ξ = (ξ1, ξ2, ξ3, ξ4) = (3, 1, 1, 1)

Fig. 3.4: Converting the sequences from the example shown in Fig. 3.3 to an unfolded site
frequency spectrum when the ancestral state at each site is known.

However, if the ancestral state is unknown, only the folded site frequency spectrum can

be calculated (see Fig.3.5) for the sequences of example Fig. 3.3.

G A G T T T

G A G A C T

C G G A C G

C A C A C G

C A G A C T

1 0 0 1 1 0

1 0 0 0 0 0

0 1 0 0 0 1

0 0 1 0 0 1

0 0 0 0 0 0

η = (η1, η2) = (4, 2)

Fig. 3.5: Converting the sequences from the example shown in Fig. 3.3 to a folded site frequency
spectrum. Note that it is assumed that the ancestral state is unknown. Therefore, the minor allele
at each sites was labeled with 1 and the major allele with 0.

The site frequency spectrum is intimately linked to the ancestral process of the sample.

When mutations follow an infinite sites model, we know immediately that a mutation

which has given rise to a singleton (a segregating site in frequency one) must have hap-

pened on an external branch. Similarly, each segregating site which is in frequency two,

a so-called doubleton, must be due to a mutation on a branch which is the ancestor

of exactly two of the nowadays samples. The site frequency spectrum can be roughly
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split into three categories, namely the low frequency classes, which include singletons and

doubletons, the intermediate frequency classes and the high frequency classes. The site

frequency spectrum can be further summarized by other summary statistics.

Additionally, as the expected number of segregating sites in each frequency class is known

under neutrality, deviations from the expected neutral site frequency spectrum are indica-

tive about that one of the assumption which have been used to derive the coalescent must

have been violated in the population of concern.

3.2.4 Non constant population size

There are several ways how the population size can vary over time. Two possible sim-

ple scenarios are 1) a bottleneck backward in time (which corresponds to a population

expansion forward in time) and 2) a population expansion backward in time (which corre-

sponds to a population bottleneck forward in time). In this section we will only verbally

describe how these different scenarios will affect the distribution of branch lengths in the

coalescent tree and the expected time to the most recent common ancestor. When the

population size is decreasing backward in time, the number of individuals which can be

chosen as parent decreases. Accordingly, the probability of a coalescent event to happen

increases. Therefore, a population bottleneck backward in time decreases the size of the

internal branches compared to the external branches and the resulting genealogies are

more star-like. This results in an excess of low frequency variants and a decrease in inter-

mediate frequency classes compared to the neutral site frequency spectrum. It is further

expected that the variance in the number of segregating sites and expected coalescent

times between several independent loci in the genome is low (Wakeley 2008, p.120).

On the other hand if the population is expanding backward in time and thus, there is a

population bottleneck forward in time, it is expected that the internal branches are longer

compared to external branches (Wakeley 2008, p.120).

3.2.5 Population structure

Population structure can be due to different processes. Either individuals are splitted

up into several populations which are connected by migration with varying rate or there

can be also assortative mating within a single population and accordingly the chance of

picking a particular parent backward in time is not the same for all individuals. If a pop-

ulation is structured, the ancestral process has to be modelled by a so-called structured
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coalescent (Wakeley 2008, p.131). In a structured coalescent the samples are taken from

l-demes in the population. Therefore, an additional event, namely migration, has to be

accounted for besides coalescent and mutation. Backward in time samples can migrate

from population j to population i which corresponds to a migration event from population

i to population j forward in time.

In general, population structure tends to increase the length of internal branches com-

pared to external branches and accordingly results in an excess of intermediate frequency

variants. The prolongation of the internal compared to external branches arises from the

fact that in order to find the most recent common ancestor of the whole sample the last

two remaining lineages have to first migrate to the same deme and coalesce there. If

migration rates are low this event can reach long way back into the past. If populations

are completely isolated for some amount of time the variance in coalescent time among

independent sites tends to be small. However, if migration rates are low there can be con-

siderable variation in coalescent times and number of segregating sites among independent

sites (Wakeley 2008, p.120).

3.2.6 Selection

Selection also changes the shape of the coalescent tree compared to the neutral expecta-

tion. Under positive selection, the frequency of a particular allele is increasing forward in

time. Further, individuals with the beneficial allele have a higher chance to be selected

as a parents. However, initially the frequency of a benefical allele is assumed to be low

in a population. Therefore, the genealogical process resembles the one of a a population

decline backward in time. Accordingly, the genealogy tends to be star like and the site

frequency spectrum at the selected locus is characterized by an excess of low frequency

and high frequency variants. However, a selective sweep only affects the locus under se-

lection and not all sides in the genome. Therefore, one way to distinguish a population

expansion from a selective sweep is to check if all independent sites in the genome show

an excess of low frequency variants or if the excess of low frequency variants is restricted

to a single locus.

In contrast to positive selection, balancing selection affects the genealogical relationship

among the samples in a way similar to population structure (Hein et al. 2004, p.118-119).

Here the individuals carrying the different alleles can be thought of individuals belonging

to several demes. If no recurrent mutations events between alleles take place the coales-
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cent process resembles the one of two populations which became completely isolated from

each other after the split from the ancestral population. Accordingly, first all lineages

having a particular allele coalesce within their deme and then find their most recent com-

mon ancestor only at the time when a mutation created the derived allele. If recurrent

mutations are taking place the ancestral process is similar to the one of two demes being

connected by migration. However, ’migration’ events for two alleles being maintained

by balancing selection are recurrent mutation between alleles. In either type of scenario

balancing selection results in an relative expansion of the internal branches compared to

the external branches. Accordingly, the site frequency spectrum is expected to show an

excess of intermediate frequency variants.

3.2.7 Recombination

Recombination reshuffles information from the parents. Seen forward in time a recombi-

nation event combines the information of both parents into a single sequence. All parts

of the sequence left to the recombination event is obtained from the parent on the left

and everything to the right hand of the recombination parents is obtained from the other

parent. Accordingly backward in time, a recombination event corresponds to the split

of an ancestral lineage into two ancestral lineages (Hudson 1983). Given that there is

recombination at the locus of concern, the ancestral process of its sequence can be no

longer describe by a coalescent tree. Rather, the ancestral process has to be described

by a graph, the so called ancestral recombination graph, into which the coalescent tree of

each site in the sequence is embedded (Hein et al. 2004, p.139-142).

3.2.8 Summary statistics based on the site frequency spectrum to detect deviations

from neutrality

There are several summary statistics which further summarize the site frequency spectrum.

Many of them give an estimate of the population mutation rate under the assumption of

constant population size, absence of recombination and selection and random mating. As

all of them are based on different parts of the site frequency spectrum and therefore, are

differently affected by deviations from neutrality they can be used to detect signatures of

selection or population structure. One well known summary statistic of the site frequency

spectrum is the average number θπ of of pairwise nucleotide differences πij for a sample
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of size n (Nei and Tajima 1981).

θπ =
2

n(n− 1)

n−1∑
i=1

n∑
j=2

πij =
2

n(n− 1)

n−1∑
i=1

i(n− i)ξi (3.13)

θπ is increasing with an excess of intermediate frequency variants. One famous summary

statistic is Tajima’s D which combines the Watterson estimator (Watterson 1975) of the

population mutation rate and θπ. The Watterson estimator is obtained as θW = S/
n−1∑
i=1

1
i
,

where S is the number of segregating sites in the sample. Under neutrality it is expected

that θπ − θW = 0. Therefore, Tajima (1989) proposed the following summary statistic to

the test for deviations from the neutral model:

TD =
θπ − S

an√
V̂
[
θπ − S

an

] with an =
n−1∑
i=1

1

i
(3.14)

Accordingly, an excess of intermediate frequency variants results in positive values of

Tajima’s D and a deficit of intermediate frequency variants results in negative values of

Tajima’s D. Therefore, positive values of Tajima’s are indicative of balancing selection,

population expansions backward in time (population decrease forward in time) and struc-

tured populations. Negative values of Tajima’s D on the other hand are indicative of

selective sweeps and populations decrease backward in time (population expansions for-

ward in time). Fu and Li (1993) derived two further summary statistics which are based

on a similar idea. Fu and Li’s D Fu and Li (1993) is based on comparing the Watterson

estimator to the number of singletons, whereas Fu and Li’s F Fu and Li (1993) is based

on comparing θπ to the number of singletons.

3.3 Approximate Bayesian Computation

Extracting information about evolutionary relevant processes from genomic data requires

the use of statistical inference methods. For many cases the main interest is to infer prop-

erties of the underlying process (the Model M) and the parameters associated with the

process (Θ = {Θ1,Θ2, . . .}) based on an observed data set D. To give a short example, let

us assume we aim to infer the rate of an exponential population expansion from sequences

of n-individuals. In this case the sequences of the n-individuals would be the observed
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data set D, the model M is an exponential population expansion and the parameter to be

inferred Θ = {Θ1} is the rate of the expansion. One widely used method to tackle such

problems, especially when the underlying models are complex, is Approximate Bayesian

Computation. Baye’s theorem states that:

p(Θ|D) =
p(D|Θ)π(Θ)

p(D)
(3.1)

p(Θ|D) is called the posterior distribution and gives the probability distribution of the

parameters of interest given the data. p(D|Θ) is called the likelihood and gives the prob-

ability of observing the data conditional on the parameters, π(Θ) is the prior distribution

of the parameters and p(D) is called the marginal density of the data. Generally, the

Bayesian approach can be summarized as updating our prior knowledge (π(Θ)) on the

parameters of interest once we have seen the data. This updated knowledge is captured in

the posterior distribution. Yet, for biologically complex models it can be hard or even im-

possible to calculate the likelihood or/and the marginal density. In Approximate Bayesian

computation methods the computation of the likelihood is circumvented by performing

simulations. An overview about the historical developments of Approximate Bayesian

Computation in population genetics is e.g given in Beaumont (2010) and Sunnaker et al.

(2013). Generally, Approximate Bayesian Computation methods can be roughly divided

into three different approaches (Csillery et al. 2010; Sunnaker et al. 2013).

• Rejection algorithms (Pritchard et al. 1999; Beaumont et al. 2002; Wegmann et al.

2010)

• Markov chain monte carlo (MCMC) without likelihood methods (Marjoram et al.

2003; Wegmann et al. 2009, 2010)

• Sequential Monte Carlo without likelihoods (Sisson et al. 2007; Beaumont et al.

2009; Wegmann et al. 2010)

Irrespective of the chosen approach, the observed data D are usually summarized by a set

of summary statistics sobs = {s1,obs, s2,obs, . . .} which are sufficient about the data. Suffi-

cient summary statistics capture all the relevant information about the data (Wegmann

et al. 2010, and corresponding manual of ABCToolbox). Converting the data set into a

set of summary statistics reduces the dimensionality of the data and hence, is supposed

to lower the effect of ’curse of dimensionality’ problems. In the example from before the

51



3. Extended introduction

sequences could be summarized by the number of segregating sites or the site frequency

spectrum. Common to all three approaches is to simulate a large amount of data sets for

the given model and for different values of the parameters of interest. For each simulated

data set i the same set of summary statistics si as for the observed data is calculated and

compared to the statistics of the observed data set. However, the three approaches differ

in the way how the posterior distribution is obtained.

Rejection algorithms are based on simulating a large number N of datasets under a

particular model M and by randomly drawing parameter values from the prior distribu-

tion π(Θ) for each simulation. After all simulations have been performed, each simulated

data set D′ is compared to the observed data set D. A simulation i is accepted when

the summary statistics of the simulated data set si are sufficiently close to the summary

statistics of the observed data set (sobs), that is ‖si − sobs‖ < ε. Here, ‖·‖ is a metric to

calculate the distance between the simulated and the observed data set. The tolerance

ε can be either fixed or chosen in such a way that a certain proportion of all simulated

data sets is accepted. Based on all retained simulations the posterior distribution of the

parameters of interest is either obtained by immediately fitting a kernel to the parameter

values of the retained simulations or by first performing some post-sampling adjustment

to account for the distance between the summary statistics of the observed data set and

the retained simulations and then applying a kernel density estimation to the adjusted

parameter values. The post-sampling adjustment can be for example achieved by per-

forming a local linear regression (Beaumont et al. 2002) or by applying a general linear

model (Leuenberger and Wegmann 2010). In chapter 5 we will use the rejection algo-

rithm with a post-sampling adjustment based on a general linear model as implemented

in ABCtoolbox (Wegmann et al. 2010).

MCMC without likelihood methods (Marjoram et al. 2003) are based on drawing

an initial value Θ(0) from the prior distribution. At each iteration t of the Markov chain

a new set of parameters Θ′ is proposed based on some transition kernel K(Θ′|Θ(t−1)) and

the parameters of the previous iteration. A data set D′ is simulated with the proposed

values Θ′. If the summary statistics of the simulated data set are within the tolerance

distance to the observed data set ‖s′ − sobs‖ < ε, then set Θ(t) = Θ′ to be the new state

of the chain with probability π(Θ′)K(Θ(t−1)|Θ′)
π(Θ(t−1))K(Θ′|Θ(t−1))

otherwise set Θ(t) = Θ(t−1). With an an

increasing number of iterations the Markov chain approximately converges to the poste-

rior distribution (Marjoram et al. 2003; Beaumont 2010; Wegmann et al. 2009).

Sequential Monte Carlo methods (Sisson et al. 2007; Beaumont et al. 2009) com-
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bine properties of both other approaches. First, parameter values are drawn from the

prior distribution until N simulations have been accepted based on an initial tolerance

level. Based on a density kernel of these accepted parameter values new parameter values

are proposed until again N simulations have been accepted, this time based on a lower

tolerance level.
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4
Cross-Species association statistics for genome-wide

studies of host and parasite polymorphism data

4.1 Abstract

Uncovering the genes governing the outcome of host-parasite interactions, and thus ex-

pected to be under coevolution, is of importance for disease management in agriculture

and human medicine. Increasing amounts of host and parasite full genome-data offer

new perspectives to gain such information. One promising approach is to perform cross-

species genome-wide association studies based on genomic data of infected hosts and their

associated parasites strains. We aim to understand the power of such an approach for dif-

ferent types of coevolutionary dynamics and host-parasite genotype-by-genotype (GxG)

interactions over the course of the coevolutionary history. Therefore, we use two indices,

the cross species association (CSA) and the cross species prevalence (CSP), the latter

additionally incorporating genomic data from uninfected hosts. For both indices, we de-

rive genome-wide significance thresholds by computing their expected distribution over

all neutral loci, i.e. those not involved in determining the outcome of interaction. Using

two types of coevolutionary models, namely a population genetics and an epidemiologi-

cal model, we demonstrate that the power of these indices to detect the interacting loci

depends on 1) the type of GxG interactions, 2) type of coevolutionary dynamics, and 3)

varies over time. When coevolution follows trench-warfare dynamics, CSA and CSP are

very accurate in pinpointing the loci under coevolution. However, under arms-race dy-

namics, the association indices have limited power especially when the GxG interactions

are asymmetric, such as in a gene-for-gene interaction. Furthermore, we reveal that the

combination of both indices across time samples is a good indicator of the underlying

infection matrix. Thus, our results provide novel insights into the power and biological

interpretation of cross-species association studies using samples from natural populations

or controlled experiments.
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4.2 Introduction

The increasing availability of host and parasite whole-genome data provides powerful

means to detect genes determining the outcome of host-parasite interactions. Recently,

new Genome-Wide Association (GWA) methods to understand host-parasite coevolu-

tionary interactions have been proposed and performed (Ebert 2018; Wang et al. 2018;

MacPherson et al. 2018; Nuismer et al. 2017). However, such analyses rely on performing

controlled experiments for large host and parasites genotype sample sizes. A promising

less-labour intensive alternative is to perform cross-species association studies based on

whole-genome data of infected hosts and their associated parasites (Bartha et al. 2013;

Bartoli and Roux 2017). Such data sets inherently contain phenotypic information for

each sampled host-parasite pair, namely the particular host is susceptible to the partic-

ular parasite and the particular parasite is infective on the particular host. Accordingly,

the causal genetic variants for host susceptibility and parasite infectivity are expected to

show statistically significant associations (Host Genotype x Parasite Genotype) and thus,

to be distinguishable from neutral variants without any effect on the interaction outcome.

This approach has been applied to uncover strong associations between SNPs in the hu-

man major histocompatibility complex (MHC) and amino acids in known HIV epitopes

(Bartha et al. 2013).

In principle, such an approach can be readily extended to any coevolutionary system where

it is possible to call SNPs for a sample of infected hosts and the corresponding infecting

parasites (Bartoli and Roux 2017). For example, it could be applied to transcriptome

data of infected hosts and the corresponding infecting parasites (Dobon et al. 2016) or to

whole genome-data from controlled coevolutionary experiments.

One common underlying assumption of host-parasite GWAs is that the genes determining

the infection outcome, i.e. susceptibility or resistance, are coevolving with the correspond-

ing infectivity genes in the parasite. Coevolution can be defined as reciprocal changes in

allele frequencies at the coevolving loci which are resulting from selective pressures two in-

teracting species exert on each another (Janzen 1980). This definition encompasses both,
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synergistic (symbiosis) and antagonistic (host-parasite, prey-predator) interactions.

Allele frequency changes at the coevolutionary loci are commonly described by a contin-

uum between two extremes (Woolhouse et al. 2002), namely, arms-race (Stahl and Bishop

2000; Woolhouse et al. 2002; Dawkins and Krebs 1979) and trench-warfare (Stahl et al.

1999) dynamics. In arms-race dynamics, covevolution causes recurrent fixation of alleles

at the interacting loci, and accordingly, allelic polymorphism is only transient. In con-

trast, several alleles are maintained for a long-period of time in trench-warfare dynamics,

with their individual frequencies either persistently fluctuating over time or converging

towards a stable polymorphic equilibrium. Note that in both scenarios, allele frequencies

fluctuate over time before reaching fixation or the stable equilibrium.

The speed and type of frequency fluctuations depends on the underlying GxG interac-

tions. Given the assumption that few major genes determine the interaction outcome,

these GxG interactions can be captured in a so called infection matrix A. Here, each

entry αij stores the probability that a parasite genotype j can infect a host genotype i

(Tab. 4.1). Two well known infection matrices, are the matching-allele (MA) and the

gene-for-gene (GFG) model. Both the MA and the GFG model represent some point in

a continuum of infection matrices (Agrawal and Lively 2002) and are a subset of more

complex matrices (with several alleles or loci, Gandon and Michalakis (2002), Ashby and

Boots (2017)). In MA interactions a given parasite genotype can only infect a host when it

matches the particular host allele (diagonal coefficients in Tab. 4.1b). For a 2x2 infection

matrix the probabilities to infect the ”non-matching” host genotypes can be defined as

1 − c1 and 1 − c2 (off diagonal coefficients in Tab. 4.1b). GFG interactions (Tab. 4.1c)

are characterized by a universally susceptible host genotype (here host i = 1) and an

universally infective parasite (here parasite j = 2). Here, the probability that host i = 2

is infected by parasite j = 1 is denoted by 1− c.
This continuum of coevolutionary dynamics in combination with the varying extent of

specificity in GxG host-parasite interactions gives rise to several important questions in

the context of cross-species association studies: 1) Which statistics can be used in cross-

species association studies? 2) What is the power of these statistics to distinguish neutral

from coevolutionary loci? 3) How is their power affected by allele frequencies fluctuations

and the underlying infection matrix? 4) Are combinations of these statistics indicative of

the underlying infection matrix? To answer these questions, we first use and define two

indices namely, the cross-species association (CSA) index (based on Bartoli and Roux

(2017)) and the cross species prevalence (CSP) index to measure the association of al-
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Tab. 4.1: Infection matrices for coevolutionary models

a) general infection matrix b) matching-allele c) gene-for-gene

 α11 α12

α21 α22

  1 1− c1

1− c2 1

  1 1

1− c 1



The infection matrix A determines the outcome of the interaction between host genotypes (rows)
and parasite genotypes (columns). A rate αij = 1 indicates infection while αij = 1−cx indicates
the degree of infection (or degree of resistance).

leles between the coevolutionary locus in the host and the parasite. Second, we predict

the power of these cross-species indices to distinguish coevolving loci from neutral loci

by computing the expected distribution for associations between neutral host SNPs to a

neutral parasite SNPs. As a result, we quantify the statistical power of these statistics to

detect the loci underlying coevolution over the course of coevolutionary cycles, and show

that applying our indices to host and parasite samples from different time points gives an

indication about the underlying GxG interaction matrix at the coevolutionary loci. We

then discuss the applicability and usefulness of our GWA indices when applying them to

samples from natural and controlled coevolutionary experiments.

4.3 Methods

4.3.1 The coevolutionary models

We assume that the outcome of an interaction between a host and a parasite, namely

if the host is infected or not, is determined by a single biallelic host and single biallelic

parasite locus. These two loci are defined as the coevolving loci. For simplicity, we

consider a haploid model for hosts and parasites. The outcome of the interaction between

a particular host and parasite genotype is determined by the infection matrix A = (αij)

with 1 ≤ i, j ≤ A (Table 4.1).
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Model 4A: population genetics model

First, we use a simple population genetics model (henceforward termed model 4A) to

study the allele frequency changes at the coevolving loci under the assumption of very

large (infinite) host and parasite population sizes. We assume that host and parasite

generations are discrete and synchronized in terms of reproduction. The frequency of

host genotype hi and parasite genotype pj in generation g + 1 is obtained as:

hi,g+1 =
hi,gwH,i
w̄H,g

, and pj,g+1 =
pj,gwP,j
w̄P,g

where wH,i (wP,j) is the fitness of host genotype i (parasite genotype j). The average fitness

of the host (parasite) population, w̄H,g (w̄P,g), is obtained as
2∑
i=1

wH,i · hi.g (
2∑
j=1

wP,j · pj,g).

Every generation g a proportion φg, i.e. the disease prevalence, of the host population

interacts with the parasite population in a frequency-dependent manner. Note that φg

can be constant over time or depend on the epidemiological dynamics of the system (see

Model 4B), but in principle its value can be measured experimentally at each generation g.

Whether a particular interaction between host genotype i and parasite genotype j results

in an infection depends on the matrix A. An infection reduces the relative fitness of hosts

by an amount s (cost of infection). Further, each host genotype i (parasite genotype j)

can be associated with some fitness cost cHi (cPj), such as a cost of resistance (infectivity).

Therefore, the frequencies of the different host and parasite genotypes can be modelled

using the following recurrence equations:

hi,g+1 =

hi,g · (1− cHi) ·

(
1− φg · s ·

2∑
j=1

αijpj,g

)
w̄H,g

(4.1a)

pj,g+1 =

pj,g · (1− cPj) ·
(

2∑
i=1

αijhi,g

)
w̄P,g

(4.1b)

This dynamical system is at an equilibrium point when the conditions hi,g+1 = hi,g = ĥi

and pj,g+1 = pj,g = p̂j hold for each host genotype i and each parasite genotype j. There

are four so called trivial monomorphic equilibrium points at which one host and one
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parasite allele are fixed, and one polymorphic equilibrium with frequencies:

ĥ1 =
α22(1− cP2)− α21(1− cP1)

(α11 − α21) (1− cP1) + (α22 − α12) (1− cP2)
(4.2a)

p̂1 =
cH1 − cH2 + φs (α12(1− cH1)− α22(1− cH2))

φs ((α12 − α11)(1− cH1) + (α21 − α22)(1− cH2))
(4.2b)

In line with previous studies, for both the symmetric and asymmetric MA model we

assume no costs cH1 = cH2 = cP1 = cP2 = 0 (Gandon and Nuismer 2009). For the GFG

model we use the infection matrix shown in Tab. 4.1c) and assume that 0 < cH2 , cP2 < 1

and cH1 = cP1 = 0 (Tellier and Brown 2007b).

Model 4B: model with epidemiological dynamics and feedback

In model 4B we consider a continuous time coevolutionary model (Živković et al. 2019)

based on a known Susceptible-Infected model (May and Anderson 1983; Boots et al. 2014;

Ashby and Boots 2017). This model allows for modelling simultaneously the changes in

allele frequencies and changes in population sizes arising from epidemiological feedback.

Previous analyses have shown that depending on the parametrization (chosen infection

matrix and parameter values) this model results in a range of different dynamics (arms-

race dynamics, trench-warfare dynamics with stable limit cycles and trench-warfare dy-

namics with a stable interior equilibrium point) (Živković et al. 2019; Ashby and Boots

2017). We focus here chiefly on the trench warfare outcome. The total number of hosts of

type i includes Si susceptible and
∑

j Iij infected individuals. The change in number of

susceptible hosts Si is given by Eq. 4.3a and the change in number of infected individuals

Iij is given by Eq. 4.3b.

dSi
dt

= Si

[
b(1− cHi)− d−

2∑
j=1

αijβ(1− cPj)
2∑

k=1

Ikj

]
+ b(1− cHi)(1− s)

2∑
j=1

Iij,

(4.3a)

dIij
dt

= −dIij + Si

[
αijβ(1− cPj)

2∑
k=1

Ikj

]
. (4.3b)
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The number of parasites of type j is obtained as Pj =
∑
i

Iij and hence, the change in

number of parasites of type j is given by
dPj
dt

=
∑
i

dIij
dt

. Hosts reproduce at natural birth

rate b and die at natural death rate d. The total host population size at time step t is

N =
∑
i,j

Iij +
∑
i

Si. We assume that there is no vertical transmission of disease, and the

infections are sustained in the populations through an overlap between generations. The

newborn hosts are always susceptible, and they can get infected by the horizontal transfer

of infections with rate β. The costs cHi , cPj and s are defined as in model 4A.

To simulate the dynamics, we discretize model 4B into small time steps of size δt. Hence,

one discrete time step t consists of 1
δt

time steps. The value of δt is chosen so that the

continuous and discretized time dynamics match. The population size changes, allele

frequencies changes and corresponding association statistics values are computed over

time and at the equilibrium point. The equilibrium points can be computed for this

system (Živković et al. 2019) but as the formulae are complex and not very intuitive we

refrain from using them here. The disease prevalence is here a inherent property of the

disease dynamics and allele frequencies as defined under the eco-evo feedbacks (Boots

et al. 2014; Ashby et al. 2019), and thus varies over time:

φt =

(∑2
j=1 β

(
1− cPj

)∑2
k=1 Ikj

)
N

. (4.4)

4.3.2 Definition of the association statistics

We assume that nT host individuals have been sampled and genotyped at each biallelic

single nucleotide polymorphism (SNP) in the genome, so that two types of hosts are

found (i ∈ (1, 2)). The total host sample nT consists of nInf infected hosts, the infected

subsample, and nH non-infected, healthy, hosts, the non-infected subsample. A number of

nPar parasite samples is obtained from the nInf infected hosts (one sample per host) and

also genotyped at each biallelic SNP. Accordingly, there are also have two parasite types

for each biallelic SNP (j ∈ (1, 2)).
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Fig. 4.1: Graphic illustration of the properties of our indices CSA and CSP. The host population
consists of two host types H1 (blue) and H2 (red). The parasite population consists of two types P1

(black) and P2 (grey). A proportion φ of the hosts is exposed to parasites. Hosts which are exposed
to the parasite either become infected or they can resist infection. Infected hosts are colored based
on the identity of the infecting parasite genotype (grey or black). fij is the proportion of hosts with
type i which are infected by parasites of type j in the proportion of all infected hosts. Fij is the
proportion of hosts of type i being infect by parasites of type j in the whole host population (sum
of all hosts). Fi0 is the proportion of non-infected hosts of type i in the whole host population. Fi0
is composed of hosts of type i which either did not receive spores (1− φ) or which received spores
but are resistant to the respective parasite.

61



4. Cross-Species association statistics for genome-wide studies of host and parasite polymorphism data

The Cross-Species Association index (CSA)

We define the absolute Cross Species Association index (CSA) when sampling nInf hosts

and nPar = nInf parasites as:

CSA = |f11f22 − f21f12| (4.5)

Here, fij is the number of hosts of type i being infected by a parasite of type j divided by

the size of the infected subsample (nInf), so that
∑
∀i,j

fij = 1. This statistic is an adaptation

of the well-known linkage disequilibrium (LD) measure in population genetics (Lewontin

and Kojima 1960; Charlesworth and Charlesworth 2010, p.371-373) and related to the

statistics performed in Bartha et al. (2013).

Following population genetics theory (Charlesworth and Charlesworth 2010, p.371-373),

we normalize CSA in two different ways such that the absolute values range from 0 to 1.

First, we define CSA′ which is obtained by normalizing each CSA value by the maximum

CSA value possible, CSAmax = 0.25. CSA reaches its maximum value when hosts of

type 1 are solely infected by parasites of type 1 and hosts of type 2 are solely infected

by parasites of type 2 and f11 = f22 = 0.5 (or when hosts of type 1 are solely infected

by parasites of type 2 and hosts of type 2 are solely infected by parasites of type 1 and

f12 = f21 = 0.5).

CSA′ =
CSA

CSAmax =
|f11f22 − f21f12|

0.25
= 4 · CSA (4.6)

Our second normalization consists in dividing the CSA value by the square root of the

product of the frequencies of the different host and parasite alleles in the infected sub-

sample.

CSAr =
f11f22 − f21f12√

(f11 + f12)(f21 + f22)(f11 + f21)(f12 + f22)
(4.7)

We calculate the value of CSA at each generation g (eq. 4.5) based on our coevolutionary

model 4A (eq. 4.1a):

CSAg =

∣∣∣∣α11h1,gp1,gα22h2,gp2,g − α21h2,gp1,gα12h1,gp2,g

∆2

∣∣∣∣ (4.8)
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where ∆ = α11h1,gp1,g + α22h2,gp2,g + α21h2,gp1,g + α12h1,gp2,g (introduced to make sure in

eq. 4.5 that
∑
∀i,j

fij = 1). Note that the disease prevalence (φ) does drop out because the

frequencies of h1, h2, p1, p2 are the same in the proportion of the population unexposed

to parasites (1 − φ) as the one exposed to parasites (φ). Therefore, h1 + h2 = 1 and

p1 + p2 = 1 also holds for the hosts exposed to parasites (see Fig. 4.1).

For Model 4B, the CSA at each time step t is obtained as:

CSAt =

∣∣∣∣∣∣∣
I11 · I22 − I12 · I21

(
∑
i

∑
j

Iij)2
.

∣∣∣∣∣∣∣ (4.9)

Therefore, we can compute CSA′ and CSAr at each generation based on eq. 4.8 for Model

4A and based on eq. 4.9 for Model 4B.

The Cross-Species Prevalence index (CSP)

We define the Cross Species Prevalence index (CSP) at any generation at which nInf

infected and nH non-infected hosts and pathogens are sampled.

CSP =

∣∣∣∣F11 + F12

F10

− F21 + F22

F20

∣∣∣∣ (4.10)

Here, Fij is the proportion of host type i infected by parasite type j in the total host

sample (nT). At the denominator, Fi0 is the proportion of uninfected hosts of type i in

the total sample. By definition, nInf

nT
= F11 + F12 + F21 + F22, nT−nInf

nT
= F10 + F20, and

F11+F12+F21+F22+F10+F20 = 1 (see Fig. 4.1). Note that Fi0 is composed of individuals

which 1) did not encounter any parasite due to the incomplete disease prevalence in the

population, and 2) which got exposed to parasites but were resistant.

When eq. 4.10 is applied to our coevolutionary model 4A, CSP at each generation g is

obtained as:

CSPg =

∣∣∣∣ φg(α11h1,gp1,g + α12h1,gp2,g)

(1− φg)h1,g + φg((1− α11)h1,gp1,g + (1− α12)h1,gp2,g)

− φg(α21h2,gp1,g + α22h2,gp2,g)

(1− φg)h2,g + φg((1− α21)h2,gp1,g + (1− α22)h2,gp2,g)

∣∣∣∣ (4.11)
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For Model 4B, the CSP at time t is given by:

CSPt =

∣∣∣∣I11 + I12

S1

− I21 + I22

S2

∣∣∣∣ (4.12)

Irrespective of the model, CSP is only defined as long as some hosts are not infected.

4.3.3 Detection thresholds for CSA and CSP

In order to evaluate the power of CSA and CSP to pinpoint coevolutionary loci, it is

necessary to derive threshold (cut-off) values for these indices based on all possible com-

parisons of pairs of loci from host and parasite genome data. Any pair of host and parasite

SNPs exhibiting a value above the cut-off would be considered as a strong candidate pair

for governing the outcome of infection and hence, to be under coevolution. It is common

to obtain these cut-off values from the distribution of all empirical values of a given data

set (using ad hoc multiple testing correction). By contrast, as here we have obtained

sequences from a random samples of infected and non-infected hosts from the population

(natural or controlled), we can derive the expected distribution of CSA (CSA′ and CSAr,

correspondingly) and CSP for pairwise comparisons of neutral host and parasite SNPs

based on classic population genetic assumptions. We present the ideas underlying these

cut-off calculations in a nutshell, and refer the indefatigable reader to the appendix for

the detailed explanations and calculations.

By definition, neutral host and parasite loci are not determining the outcome of infection,

and therefore, each neutral host SNP-neutral parasite SNP-pair is characterized by an

infection matrix Aneutral =

 1 1

1 1

.

Full genome data usually contain a large number of neutral SNPs which are distributed

across the whole genome. Given that the recombination rate is high enough, these neutral

SNPs evolve independently of each other and therefore, also their allele frequencies in the

population and in the sample are mutually independent. In order to obtain the expected

neutral distribution of CSA and CSP we have to answer the following three questions for

each neutral host SNP – neutral parasite SNP comparison in the sample: 1) what is the

probability p that the host minor allele frequency count in the sample is v and what is

the probability q that the parasite minor allele frequency count in the sample is w, 2)

given the minor allele frequency counts and the neutral infection matrix Aneutral what
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are possible combinations of host and parasite alleles in the sample, and 3) what is the

respective CSA/CSP value for each combination of SNPs. The minor allele frequencies

of all neutral SNPs in the host and parasite samples can be summarized by the so-called

folded site-frequency spectrum (SFS). The expected site frequency spectra are known un-

der the assumption of mutation-drift balance and constant population size. Namely, the

expected number of SNPs with minor allele frequency k is proportional to the host or

parasite population mutation rate θ. We obtain the relative SFS, i.e. the proportion of

SNPs with minor allele frequency k in the sample, for hosts and parasites by dividing the

absolute site frequency spectrum by the respective θ. Therefore, the effective population

sizes and mutation rates do not factor in the calculations of the exact distributions of

CSA/CSP. We obtain the distribution for different sample sizes. In the results we will

present the cut-offs corresponding to the 95 and 99 high percentiles for nT = 200 and

nInf = nH = 100 (but see the appendix for the cutoff values for other sampling schemes).

4.4 Results

4.4.1 Analytical results for model 4A

We first present some analytical results by computing CSA and CSP for the population

genetics models with a matching-alleles and a gene-for-gene interaction to provide some

intuition on the behaviour of the presented indices. In the calculations, we only focus

on CSA, as it is straightforward to obtain CSA′ and CSAr by applying the respective

normalizations.

Under the Matching Allele infection matrix

For a matching-allele infection matrix and for cH1 = cH2 = cP1 = cP2 = 0 the equations

for model 4A (eq. 4.1a) reduce to:

h1,g+1 =
h1,g (1− φgs [p1,g + (1− c1)p2,g])

w̄H
, and h2,g+1 =

h2,g (1− φgs [p2,g + (1− c2)p1,g])

w̄H
.

p1,g+1 =
p1,g (h1,g + h2,g(1− c2))

w̄P
, and p2,g+1 =

p2,g(h2,g + h1,g(1− c1))

w̄P
. (4.1)

65



4. Cross-Species association statistics for genome-wide studies of host and parasite polymorphism data

By applying eq. 4.8 and eq. 4.10 to these MA-equations, we obtain CSAg,MA and CSPg,MA

at any generation g.

CSAg,MA =

∣∣∣∣∣(c1 + c2 − c1c2)h1,gh2,gp1,gp2,g

(1− c2h2,gp1,g − c1h1,gp2,g)
2

∣∣∣∣∣ , (4.2)

CSPg,MA =

∣∣∣∣ φg (c2p1,g − c1p2,g)

(1− φg (1− c1p2,g)) (1− φg (1− c2p1,g))

∣∣∣∣ . (4.3)

It is noticeable that CSP, by contrast to the CSA, does not depend on the frequencies of

the different host types but only on the parasite frequencies. Moreover, the CSP cannot

be computed if the disease prevalence is at maximum (φ = 1) and if neither of the host

alleles provides any resistance to any parasite genotype (c1 = c2 = 0)

Further, the matching-allele model formulated in equation 4.1 has four monomorphic

equilibria and one polymorphic equilibrium with frequencies given by:

p̂1 = ĥ2 =
c1

c1 + c2

, and ĥ1 = p̂2 =
c2

c2 + c1

. (4.4)

Inserting these equilibrium frequencies into eq. 4.2 and eq. 4.3 we can obtain the values

of the indices at the polymorphic equilibrium point.

ĈSAMA =
c2

1c
2
2

(c1 + c2)2 (c1 + c2 − c2c1)
, and ĈSPMA = 0. (4.5)

For a matching alleles interaction without any genotype costs, CSP is always zero at the

equilibrium point, irrespective of the values of c1 and c2. The values of the CSA and CSP

display a different behavior over time and at the equilibrium. Comparing their values

over time and at the equilibrium can give a good indication about the asymmetry of the

infection matrix.

Under the Gene-For-Gene infection matrix

For a gene-for-gene infection matrix and for 0 < cH2 , cP2 < 1 and cH1 = cP1 = 0, the

equations for the coevolutionary model 4A (eq. 4.1a) reduce to:

h1,g+1 =
h1,g(1− sφg)

w̄H
, and h2,g+1 =

h2,g(1− cH2) (1− φgs [(1− c)p1,g + p2,g])

w̄H
,

p1,g+1 =
p1,g(h1,g + h2,g(1− c))

w̄P
, and p2,g+1 =

p2,g(1− cP2)

w̄P
. (4.6)
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Applying eq. 4.8 and eq. 4.10 to the GFG system of equation, yields the following values

of CSAg,GFG and CSPg,GFG at some generation g.

CSAg,GFG =
ch1,gh2,gp1,gp2,g

(1− ch2,gp1,g)
2 , (4.7)

CSPg,GFG =
φgcp1,g

(1− φg)(1− φg(1− c · p1,g))
. (4.8)

As for the MA model, the CSP values, by contrast to the CSA, do not depend on the

frequencies of the different host types but only on the the parasite frequencies. The

conditions for computing the CSP are more restrictive than under the MA, as CSP is not

defined as soon as the disease prevalence is maximum (φ = 1) and therefore, all hosts of

type 1 are infected.

The polymorphic equilibrium frequencies of this model 4A with GFG are given by:

p̂1 =
cH2(1− sφ)

cφs(1− cH2)
, and ĥ1 =

c− cP2

c
,

p̂2 = 1− cH2(1− sφ)

cφs(1− cH2)
, and ĥ2 =

cP2

c
. (4.9)

Inserting these frequencies into eq. 4.7 and 4.8 we can obtain the values of the indices at

the polymorphic equilibrium point.

ĈSAGFG =

cP2cH2(c−cP2)(1−sφ)

c2φs(1−cH2)

(
1− cH2

(1−sφ)

cφs(1−cH2)

)
(

1− cP2cH2
(1−sφ)

cφs(1−cH2)

)2 , (4.10)

ĈSPGFG =
cH2 (1− φs)

(1− φ) ((1− φ) s+ cH2 (1− s))
. (4.11)

To gain a deeper understanding of these results, we conduct numerical simulations for both

types of interactions over 500 generations and compare the values of the CSAr/CSA′/CSP

over time to the detection threshold obtained for neutral loci.

4.4.2 Numerical simulations: Temporal changes of CSA/CSP and detection thresh-

olds

When simulating an asymmetric MA interaction (c1 = 0.9, c2 = 0.7, model 4A) over 500

generations (Fig. 4.2) coevolution results in arms-race dynamics. We observe that CSA
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and CSP fluctuate over time due to the coevolutionary cycles and the associated allele

frequency changes. Overall, the CSA values decrease over time and are constantly found

below the detection threshold after g = 300 generations. Therefore, under unstable co-

evolutionary dynamics with increasing amplitude and period of the coevolutionary cycles

(resulting ultimately in fixation of alleles), the associations between hosts and parasites

alleles in the infected sample become too weak to be observable (Fig. 4.2c,d). Under

an arms-race, one host allele occurs in very high frequency and the parasite tracks this

frequency down over time which generates the coevolutionary cycles. During these cycles

there is only a very limited amount of time at which both hosts and parasites alleles are

found in intermediate frequencies yielding high values of CSA index. On the other hand,

the CSP values under the MA model are consistently high and exhibit enough statistical

power to detect the loci under coevolution (Fig. 4.2d). This demonstrates the importance

of obtaining additional non-infected host samples. Under the same model 4A with sym-

metric MA, we find similar outcome as in Fig. 4.2, albeit the oscillations of CSA and CSP

values are perfectly matching the allele frequency cycles and show a regular amplitude

pattern (Fig. 4.B.1).

Under the GFG model with arms race, CSA values are consistently small with narrow

peaks (Fig. 4.3b,c) which are barely above the detection threshold. The CSP has several

peaks above the cut-off value, yet it maybe difficult to detect the coevolutionary locus

even when time samples are available if the more stringent 0.99-cutoff level is applied

(Fig. 4.3d). The comparison of MA and GFG arms race dynamics shows that the com-

bination of CSA and CSP values over time gives some indication about the symmetry of

the infection matrix. Furthermore, the CSP exhibits the highest power to disentangle loci

under coevolution from the neutral background but also to infer the asymmetry of the

infection matrix.

Under Model 4B trench-warfare dynamics can take place for MA-interactions and allele

frequencies can converge to a stable polymorphic equilibrium. Once the allele frequencies

are at equilibrium, CSA has a very strong power to distinguish the coevolving loci from

the neutral background, while the CSP decreases to zero (as shown above in eq. 4.5). In

Model 4B, the disease prevalence varies over time as a function of the changes in allele

frequencies, so that it is expected that CSP varies over time. However, once the allele fre-

quencies reach a stable equilibrium also the numbers in all host compartments eventually

remain constant. When the ratio of infected to non-infected individuals is the same for

both host types then CSP drops to zero. The value of CSA at equilibrium depends on the
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respective equilibrium frequencies and thus, is highest when alleles are in frequency 0.5

(eq. 4.5). Even if coevolution results in stably sustained cycles, the CSA values remain

high as long as the amplitude of the cycles does not become too large and therefore al-

leles do not reach too high or too low frequencies (close to the boundaries). When allele

frequency fluctuations do not occur and the system is already at the polymorphic equi-

librium, CSA is fixed to a constant and high value (Fig. 4.B.2), while the CSP is fixed

to zero (under a symmetric MA infection matrix). Note that the epidemiological model

4B can also generate arms race dynamics with a consequent fixation of one host and one

parasite allele for some parameter combinations under a GFG-interaction (Fig. 4.B.3). In

such cases, the obtained results are similar to those of Fig. 4.3 with both indices dropping

to zero over time. Finally, we note that the two measures of CSA we introduce, CSA’

and CSAr show the same trend and similar power under an arms-race, while the CSAr is

slightly more precise under trench-warfare when allele frequencies reach very high or very

low values (close to fixation or loss).
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Fig. 4.2: Temporal changes in allele frequencies, CSA′,CSA′r and CSP in an unstable asymmetric
MA-model (model 4A) with one parasite generation per host generation. For each index cutoff
values are shown based on the expected neutral distributions for a total host sample size nT = 200
and for nInf = nH = 100. The 0.95-cutoff value is shown in blue (dashed line) and the 0.99-cutoff
value is shown in grey (dotted-dashed line). Top left: frequencies of h1 (darkblue) and p1
(lightblue). Top right: CSA′. Bottom left: CSAr. Bottom right: CSP. The model parameters are
c1 = 0.9, c2 = 0.7, φ = 0.8, s = 0.35, initial values h1,g=0 = p1,g=0 = 0.45.
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Fig. 4.3: Temporal changes in allele frequencies, CSA′,CSA′r and CSP in an unstable GFG-model
(model 4A) with one parasite generation per host generation. For each index cutoff values are
shown based on the expected neutral distributions for a total host sample size nT = 200 and for
nInf = nH = 100. The 0.95-cutoff value is shown in blue (dashed line) and the 0.99-cutoff value is
shown in grey (dotted-dashed line). Top left: frequencies of h1 (darkblue) and p1 (lightblue). Top
right: CSA′. Bottom left: CSAr. Bottom right: CSP. The model parameters are cH1

= cP1
= 0,

cH2 = 0.05, cP2 = 0.2, φ = 0.8, s = 0.35, c = 0.9, initial values h1,g=0 = p1,g=0 = 0.45.
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Fig. 4.4: Temporal changes in allele frequencies, CSA′,CSA′r and CSP in an epidemiological
(model 4B) with an asymmetric MA-infection matrix. For each index cutoff values are shown based
on the expected neutral distributions for a total host sample size nT = 200 and for
nInf = nH = 100. The 0.95-cutoff value is shown in blue (dashed line) and the 0.99-cutoff value is
shown in grey (dotted-dashed line). Top left: frequencies of h1 (darkblue) and p1 (lightblue). Top
right: CSA′. Bottom left: CSAr. Bottom right: CSP. The model parameters are β = 0.00005,
s = 0.6, c1 = 0.9, c2 = 0.7, b = 1, d = 0.9, and cH1 = cP1 = cH2 = cP2 = 0. The initial values are
S1,t=0 = S2,t=0 = 4150, I11,t=0 = I12,t=0 = I21,t=0 = I22,t=0 = 415. The time intervals for
computations is δt = 0.001.
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4.5 Discussion

With the technological advances, it has become feasible to sequence full genomes of several

hosts from a given population as well as the parasite strains infecting them. In a previ-

ous study, all host and parasite SNPs in the samples have been compared in a pairwise

manner for their degree of association (Bartha et al. 2013), generating a genome wide

cross species association study (sensu Bartoli and Roux (2017)). We showed here, that

the power of such studies can be improved if additional sequence data from non-infected

hosts are available. Further, we derived cut-off values for significant associations based

on simple population genetics assumptions. Finally, we demonstrated that the power to

identify the loci underlying coevolution and thus, determining the infection outcome and

the phenotype, varies in time and depends on the asymmetry of the underlying infection

matrix.

We expected a priori that the power to detect coevolutionary loci varies in time due to

the coevolutionary dynamics and the respective allele frequency changes at the involved

loci. Our approach and results are similar in spirit to studies measuring local adapta-

tion by performing reciprocal transplant or common garden experiments across several

host-parasite populations being connected by migration. A large body of literature has

shown that the power to detect coevolutionary loci based on local adaptation between the

host and the parasite varies over time due to the reciprocal changes in allele frequencies

(Gandon and Nuismer 2009; Nuismer et al. 2017). The CSA measure is closely related

to the covariance computed in Gandon and Nuismer (2009) and Nuismer et al. (2017),

which shows also variable statistical power over time to detect coevolution. In contrast to

reciprocal transplant or common garden (Gandon and Nuismer 2009; Nuismer et al. 2017)

and host-parasite co-GWAs (MacPherson et al. 2018; Wang et al. 2018) experiments, the

study design in cross-species association studies already implicitly contains phenotypic

information on the host and the parasite, as the infection experiment has already been

”naturally” performed in the population. A further difference to the co-GWAs studies

(MacPherson et al. 2018; Wang et al. 2018) is that the sequenced samples of infected

and non-infected hosts are random samples from panmictic reproducing host and parasite

populations. This allows us to apply population genetics theory to derive the expected

power of our indices.

Our results indicate that the CSA and CSP are differently affected by the reciprocal

changes in allele frequencies. The non-infected hosts are composed of individuals which
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either did not receive spores or which received spores but are resistant. The comparison

of the genotype frequencies among uninfected and infected host, thus provides additional

information about the distribution of allele frequencies in the non-infected and the in-

fected population subsample. An implicit assumption in Bartha et al. (2013), Bartoli and

Roux (2017) and our model is that disease transmission is random and panmictic so that

potentially every host can get in contact with the disease (no population sub-structuring

affecting disease transmission). Thus, it is crucial to assess the extent of population struc-

ture before performing a cross-species association study as different populations can be

at different stages of the coevolutionary cycle (Gavrilets and Michalakis 2008).

As indicated by analytical and simulation results, the two indices we introduce, CSA and

CSP, provide different information regarding 1) the symmetry of the infection matrix, 2)

the type of dynamics, and 3) whether the allele frequencies have reached a stable poly-

morphic equilibrium point. Rather than focusing on the limitations of these indices and

cross-species association studies, we focus here on how this information can be potentially

used to draw inference about the three above mentioned coevolutionary characteristics.

Our results suggest that obtaining samples from several time points is likely to give more

accurate inference results than samples from a single time point. First, in order to infer

the infection matrix, we can see that two time samples for a MA or GFG interaction

with an arms-race would likely both yield low values of CSA, while the value of CSP

value would be comparatively high for a MA interaction and low for a GFG interaction.

Additionally, time samples from several time-points which are dense enough to capture

the finer patterns of regular peak behaviour can be informative about the asymmetry in a

MA-alleles infection matrices. Second, two or few time samples would be enough to allow

inference of the type of coevolutionary dynamics, namely arms-race vs. trench-warfare.

A similar idea was proposed in Gandon et al. (2008) for the study of local adaptation,

when using phenotypic (infection) data. In our case, we see that increasing amplitudes of

allele frequencies (arms-race) leads to a decrease of both CSA and CSP values over time,

while decreasing amplitudes (trench-warfare dynamics) of coevolutionary cycles generate

increasing CSA and CSP values. Under perfectly stable allele frequency dynamics with

a given amplitude and period, the CSA and CSP would oscillate regularly as well, with

their mean value depending on the amplitude of the coevolutionary cycles. If the cycling

amplitudes are large and close to the boundaries, the CSA and CSP values will be small.

Note that our population genetics model is based on the assumption of infinite popula-

tion size. However, realistic models with finite population size predict that fixation of
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alleles (arms-race dynamics) is likely to occur due to the effect of genetic drift when their

frequencies are close to the boundary (Tellier et al. 2014; Gokhale et al. 2013). So the

power of performing CSA/CSP measures should be higher in populations with large size

(approx. higher than 5,000 hosts and parasites, (Tellier et al. 2014)) Third, it follows once

a stable polymorphic equilibrium is reached, few time points will reveal constant or close

to constant values of the CSA and CSP. Therefore, the CSA and CSP indices could be

also introduced as summary statistic into the inference approach presented in chapter 5

in order to estimate the values of the coevolutionary parameters.

One crucial result of our study is the derivation of the neutral expectations for CSA and

CSP which allows us to compute detection thresholds for different sample sizes. To do

so, we assume that host and parasite populations are at drift-mutation equilibrium, so

the expected distribution of neutral allele frequencies is given by a neutral SFS under

the assumption of constant population size. However, host and parasite population sizes

both change over time to 1) eco-evolutionary feedback arising from the epidemiological

dynamics (as for example in model 4B), and/or 2) due to abiotic environmental factors

such as resource availability and habitat suitability. Irrespective of the source causing

the respective population size changes, it is possible to compute the neutral SFS for both

scenarios based on previous work (Živković et al. 2015, 2019). Further, the influence of

the available sample sizes on cut-off values can be large. Small sample sizes (nT < 25)

decrease substantially the power to detect the coevolving loci.

One simplifying assumption in our approach is the strict one to one relationship between

the host and the parasite. This also implies that one parasite sample is obtained per host.

However, there is evidence that for many diseases co-infections are common (Alizon et al.

2013; Tollenaere et al. 2016). In such cases, a solution would be to use only the major

strain of parasite found per host individual for sequencing as in Bartha et al. (2013).

Finally, we also assume a simple single biallelic locus model, haploid host and haploid

parasite coevolutionary model. One can apply the tests and indices independently to

each locus in the host genome and each parasite locus. As long as few freely recombining

genes with major effects determine the outcome of the interaction the approach should

be still suited to capture the loci under coevolution assuming no pleiotropic or epistatic

effects between these genes. The biallelic locus should be understood here as the simple

case of two alleles at a single SNP but also applies to presence/absence polymorphism

of a gene (or gene domain). In general, the approach presented here is also potentially

applicable to detect the major genes which are determining the compatibility between
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symbionts in mutualistic interactions. It is straightforward to study the power of the

presented indices for such types of interaction by adjusting the equations governing the

coevolutionary dynamics accordingly.

We conclude by presenting a set of recommendations for applying this method to different

host-parasite systems. It is advised to obtain infected and non-infected hosts and parasite

random samples at several time points from natural populations or from controlled experi-

ments. The cross-species association method has a high power when applied to parasite

with strong life-cycle dependency on their hosts, in contrast to generalists, non-biotrophic

or parasites with complex life-cycles with stages on different hosts. Further, polycyclic

parasites, that is parasites with several infection cycles/generations per host generation,

track down the host frequencies within a host generation (Brown and Tellier 2011). This

effect should be strongly pronounced for parasites with much shorter generation time than

their hosts (viruses (Bartha et al. 2013) or bacteria). For such types of parasites taking

serial samples within a single host generations should help to pinpoint coevolutionary loci

very well. These loci are expected to show an increasing association with the correspond-

ing host loci over the course of a single host generation.

A difficulty which can arise in viruses or bacteria is the absence of recombination within

the genome or that recombination rates are very low. Thus, the assumption of indepen-

dence between the neutral and coevolving loci is violated. However, our computations for

obtaining threshold values for the cross species association indices rely on recombination

in order to disentangle candidate loci from neutral background. In Bartha et al. (2013),

this hurdle was overcome by first performing a phylogeny of the virus samples, and then

clusters of polymorphic SNPs could be identified across the phylogeny. Based on these

clusters the association study was performed in a second step.

For parasites of annual plants or of invertebrate hosts with short life spans, it is expected

that temporal samples between years can yield enough power to detect the coevolution-

ary loci by comparing indices values between time samples. In the case of species with

dormant stages (seed or egg banks), an adjustment of the neutral SFS computation may

be necessary per time sample.

An alternative solution to sequence data from several time points could be the use of

sequence data from several host and parasite populations which are connected by low mi-

gration rates. If data from several populations are to be used, we suggest to compute the

CSA/CSP indices per population as well as based on pooling all samples together. How-

ever, note that the neutral SFS of pooled samples from a spatially structured population
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does not follow the equations we used here. A description of the effect of spatial popula-

tion structure on allele frequency distributions can be for example found in Wakeley and

Aliacar (2002) and Staedler et al. (2009).
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Supplementary information

4.A Cross species summary statistics for neutral loci

Our aim is to derive the expectations and confidence intervals for both statistics, CSA

and CSP, when measuring associations between a random neutral host and parasite locus.

Neutral loci are defined as SNPs without any influence on the infection outcome. Thus,

they segregate independently of the locus under coevolution. Put in a different way,

interactions between neutral SNPs can be seen as interactions where all entries αij in the

infection matrix A are αij = 1. We assume that the allele frequency distribution of neutral

SNPs in both, the host and the parasite, follows the site frequency spectrum (SFS) under

drift-mutation equilibrium for a Wright-Fisher model. Further, we assume that there is no

outgroup sequence available, thus the ancestral and derived state are unknown for a given

SNP. The expected folded SFS η = {η1, . . . , ηbn/2c} under drift-mutation equilibrium for

a sample of size n is given by:

ηk =
θ
k

+ θ
n−k

1 + δk,n−k
for 1 ≤ k ≤ bn/2c (4.1)

where θ is the population mutation rate, bn/2c denotes the largest integer being smaller

or equal to n/2 and δk,l is Kronecker’s delta with

δk,l =

0 for k 6= l

1 for k = l
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Thus, the probability (pk) to choose a SNP with minor allele frequency k in a sample of

size n, is given by:

pk =
ηk

bn/2c∑
i=1

ηi

=

(
1
k

+ 1
n−k

1 + δk,n−k

)
bn/2c∑
i=1

(
1
k

+ 1
n−k

1 + δk,n−k

) (4.2)

Our computations include singletons, that is alleles with frequency 1/n in the sample.

However, it is known that the sequencing and detection of singletons can be biased (e.g.

with NGS technologies or pooling of samples). Therefore, singletons can be also removed

from the CSA calculation and the CSP calculations should be adjusted accordingly by

constraining the minor allele frequency in the infected subsample to be at least equal to

two.

4.A.1 Cross species association index (CSA)

Remember that we have obtained nInf host samples and one representative parasite strain

from each of these infected hosts. Thus, the host sample size (nInf) and the parasite

sample size (nPar) are the same (n = nInf = npar). In order to get the expected CSA

for neutral SNPs we first have to derive an expression for the expected value of CSA

(E(CSAvw)) measuring the association between a host SNP with minor allele frequency v

and a parasite SNP with minor allele frequency w. Therefore, we first compute the number

of all such possible combinations. For each combination, the value CSA is CSAvw,k and

the probability of that particular combination is
(
v
k

)(
nInf−v
w−k

)
. The expectation E(CSAvw)

is then:

E(CSAvw) = Ωvw

l∑
k=0

(
v
k

)(
nInf−v
w−k

)(
nInf

w

) CSAvw,k (4.3)

= Ωvw

l∑
k=0

(
v
k

)(
nInf−v
w−k

)(
nInf

w

) (∣∣∣∣ knInf

· nInf − v − (w − k)

nInf

− v − k
nInf

· w − k
nInf

∣∣∣∣)(4.4)

= Ωvw

l∑
k=0

(
v
k

)(
n−v
w−k

)(
nInf

w

) ∣∣∣∣knInf − vw
n2

Inf

∣∣∣∣ (4.5)
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where l = min(v, w).

Here the index k can be interpreted as the number of hosts with the minor allele which

are infected by a parasite with the minor allele, or put in a different way, w − k out of

the nInf − v hosts with the major allele are infected by a parasite with the minor allele.

Accordingly, v − k hosts with the minor allele are infected by a parasite which has the

major allele, and nInf − v − (w − k) hosts with the major allele are infected by parasites

with the major allele. We define Ωvw as the normalization for either obtaining CSA′ (with

Ωvw = 4) or CSAr (with Ωvw = 1√
v

nInf

n−v
nInf

w
nInf

n−w
nInf

).

Second, to calculate the expectation of CSA over all pairwise comparisons of neutral host

and parasite SNPs, we have to weight each E(CSAvw) value by the probability that a

neutral host SNP has minor allele frequency v (pv) and a neutral parasite SNP has minor

allele frequency w (qw) in the sample. These probabilities can be obtained by using eq. 4.2.

Therefore, the expected CSA value for a randomly chosen pair of neutral host and parasite

SNPs is given by:

E(CSA) =

bn/2c∑
v=1

bn/2c∑
w=1

pvqwE(CSAvw) (4.6)
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4.A.2 Distribution of CSA for different sample sizes
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Fig. 4.A.1: Expected values of CSA′ (top left) and CSAr (top right) when comparing all neutral
host SNPs with minor allele frequency v (v ∈ {1, . . . , bnInf/2c}) to all neutral parasite SNPs with
minor allele frequency w (w ∈ {1, . . . , bnPar/2c} and the resulting expected cumulative distribution
function of E(CSA’) (bottom left) and E(CSAr) (bottom right) for a sample size of
nInf = nPar = 100.
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Fig. 4.A.2: Expected cumulative distribution function of CSA′ (left) and CSAr (right) when
comparing all neutral host SNPs with minor allele frequency v (v ∈ {1, . . . , bn/2c}) to all neutral
parasite SNPs with minor allele frequency w (w ∈ {1, . . . , bn/2c} for a sample size of
nInf = nPar = 10.
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Fig. 4.A.3: Expected cumulative distribution function of CSA′ (left) and CSAr (right) when
comparing all neutral host SNPs with minor allele frequency v (v ∈ {1, . . . , bn/2c}) to all neutral
parasite SNPs with minor allele frequency w (w ∈ {1, . . . , bn/2c} for a sample size of
nInf = nPar = 25.
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Fig. 4.A.4: Expected cumulative distribution function of CSA′ (left) and CSAr (right) when
comparing all neutral host SNPs with minor allele frequency v (v ∈ {1, . . . , bn/2c}) to all neutral
parasite SNPs with minor allele frequency w (w ∈ {1, . . . , bn/2c} for a sample size of
nInf = nPar = 50.
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Fig. 4.A.5: Expected cumulative distribution function of CSA′ (left) and CSAr (right) when
comparing all neutral host SNPs with minor allele frequency v (v ∈ {1, . . . , bn/2c}) to all neutral
parasite SNPs with minor allele frequency w (w ∈ {1, . . . , bn/2c} for a sample size of
nInf = nPar = 150.

4.A.3 Cross species prevalence index (CSP)

We label the host allele with minor frequency in the infected subsample as i = 1 and the

host allele with major frequency in the infected subsample as i = 2. Note that the allele

with minor allele frequency in the infected subsample is not necessarily the minor allele
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Fig. 4.A.6: Two possible host configurations when sampling a total number nT = 12 host
individuals among which nInf = 6 individuals are infected (grey box) and nH = 6 individuals are
healthy (lightblue box) and the minor host allele frequency is v = 5. Host individuals which have
the minor allele (based on the whole sample) are shown in lightblue, host individuals with the
major allele (based on the whole sample) are shown in darkblue. Labelling of the alleles for the
calculation of CSP is based on the minor allele frequency in the infected subsample. On the left,
the minor allele is labelled by 1 as it is also the minor allele in the infected subsample. On the
right, the major allele of the total sample is labelled by 1 as it represents the allele with minor
allele frequency in the infected subsample.

in the whole sample (see Fig. 4.A.6). In cases where both alleles have equal frequencies

in the infected subsample, the allele with minor allele frequency in the whole sample

will be labelled as 1 and the allele with major allele frequency in the whole sample will

be labelled as 2. Therefore, F11 (F12) is the proportion of hosts with label 1 which are

infected by a parasite with the minor (major) allele. F21 (F22) is the proportion of hosts

with label 2 which are infected by a parasite with the minor (major) allele. Further, F10

(respectively F20) is the proportion of non-infected hosts carrying allele 1 (respectively 2).

If for a neutral locus there are v minor alleles in the total host sample nT , these minor

alleles can be found with equal probability on each of the nT individuals (irrespective of

the infection status) as a neutral SNP does not have an effect on the infection outcome.

Similarly, all of the w parasite minor alleles can be randomly assigned to any of the npar

parasite individuals which are infecting the nInf host individuals. Further, note that CSP

is only informative when the minor and major allele can be found in both, the infected

and the non-infected subsample. Therefore, we exclude SNPs which are singletons in the

total host sample (nT). We proceed as follows to obtain the expected CSP for a neutral

host SNP with minor allele frequency v and and neutral parasite SNP with minor allele

frequency w.
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First, we have to find all host combinations (and their probability) for which the minor

and major host alleles are found in both the infected and non-infected subsamples. We

define z as the number of minor host alleles which are found in the infected subsample

for a given combination. Accordingly, the number of major host alleles in the infected

subsample is nInf−z, the number of minor host alleles in the non-infected subsample is v−z
and the number of major host alleles in the non-infected subsample is nT −nInf− (v− z).

Based on the resulting composition of the infected subsample the alleles are labeled. The

indicator variable λ is used to keep track of whether the minor allele in the total sample

is the minor (λ = 0) or the major (λ = 1) allele in the infected subsample.

Second, the npar parasites among which w individuals have the minor parasite allele are

assigned within the nInf sample. Hereby, k denotes the number of hosts with label 1 which

are infected by a parasite with the minor allele (see CSA). Thus, the expected value of

CSP for a SNP with minor allele frequency v in the host and minor allele frequency w in

the parasite is given by:
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Fig. 4.A.7: Cumulative distribution function of the expected value of CSP when taking a host
sample of total size nT = 200 which includes nInf = 100 infected hosts and nH = 100 healthy hosts.

The condition that z starts from ρ = max(1, v−(nT −nInf)+1) is necessary to avoid com-

binations where 1) no minor allele is found in the infected subsample, and 2) the healthy

sample only consists of hosts with the minor allele. The condition that z has values up to

m− 1 is necessary to avoid two configurations where 1) none of the minor alleles is found

in the non-infected subsample, and 2) all individuals in the infected subsample have the

minor allele. For a given host allele combination, we perform the labeling step mentioned

above by defining a = min(z, nInf − z). Then, we assign the nPar parasites, w of them

having the minor allele, to the nInf host. Here, k is the number of hosts with label 1

which are infected by a parasite with the minor allele (F11 ·nT ). Accordingly, a− k is the

number of hosts with label 1 which are infected by a parasite with major allele (F12 ·nT ),

w − k is the number of hosts with label 2 which are infected by a parasite with minor

allele (F21 · nT ) and nInf − a− (w − k) with label 2 which are infected by a parasite with

the major allele.
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Tab. 4.A.1: Parameter values used to simulate the data for evaluating the potential of CSA and
CSP to distinguish between neutral and coevolving loci

Infection matrix unstable popgen epidemiological

MA

 1 1− c

1− c 1

 c = 0.9, φ = 0.8, cH1
=

0, cH2
= 0, cP1

= 0,
cP2 = 0, s = 0.35, p1 =
0.45, h1 = 0.45

c = 0.9, cH1 = 0,
cH2

= 0, cP1
= 0,

cP2 = 0, s = 1&0.6,
S1 = S2 = 4150, I11 =
I12 = I21 = I22 = 415,
β = 0.00005, b = 1,
d = 0.9, δt = 0.001

MA asymmetric

 1 1− c1
1− c2 1

 c1 = 0.9, c2 = 0.7, φ =
0.8, cH1

= 0, cH2
= 0,

cP1 = 0, cP2 = 0, s =
0.35, p1 = 0.45, h1 =
0.45

c1 = 0.9, c2 = 0.7,
cH1

= 0, cH2
= 0,

cP1 = 0, cP2 = 0,
s = 1&0.6, S1 = S2 =
4150, I11 = I12 =
I21 = I22 = 415, β =
0.00005, b = 1, d = 0.9,
δt = 0.001

GFG

 1 1

1− c 1

 c = 0.9, φ = 0.8, cH1
=

0, cH2 = 0.05, cP1 =
0, cP2

= 0.2, s = 0.35,
p1 = 0.45, h1 = 0.45

c = 0.9, cH1
= 0,

cH2 = 0.05, cP1 = 0,
cP2

= 0.05, s = 1&0.6,
S1 = S2 = 4150, I11 =
I12 = I21 = I22 = 415,
β = 0.00005, b = 1,
d = 0.9, δt = 0.001
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4.B Supplementary figures
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Fig. 4.B.1: Temporal changes in allele frequencies, CSA′, CSAr and CSP in an unstable
MA-model (model 4A) with one parasite generation per host generation. For each index cutoff
values are shown based on the expected neutral distributions for a total host sample size nT = 200
and for nInf = nH = 100. The 0.95-cutoff value is shown in blue (dashed line) and the 0.99-cutoff
value is shown in grey (dotted-dashed line). Top left: frequencies of h1 (darkblue) and p1
(lightblue). Top right: CSA′. Bottom left: CSAr. Bottom right: CSP. The parameters values of
the model are: c1 = c2 = 0.9, cH1 = cP1 = cH2 = cP2 = 0, φ = 0.8, s = 0.35, h1,init = p1,init = 0.45
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Fig. 4.B.2: Temporal changes in allele frequencies, CSA′, CSAr and CSP in an epidemiological
model (model 4B) with a symmetric MA-infection matrix. For each index cutoff values are shown
based on the expected neutral distributions for a total host sample size nT = 200 and for
nInf = nH = 100. The 0.95-cutoff value is shown in blue (dashed line) and the 0.99-cutoff value is
shown in grey (dotted-dashed line). Top left: frequencies of h1 (darkblue) and p1 (lightblue). Top
right: CSA′. Bottom left: CSAr. Bottom right: CSP. The parameters values of the model are:
cH1 = cP1 = cH2 = cP2 = 0, β = 0.00005, s = 0.6, c1 = c2 = 0.9, S1,init = S2,init = 4150,
I11 = I12 = I21 = I22 = 415, δt = 0.001, b = 1, d = 0.9
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Fig. 4.B.3: Temporal changes in allele frequencies, CSA′, CSAr and CSP an epidemiological
(model 4B) with a GFG-infection matrix. For each index cutoff values are shown based on the
expected neutral distributions for a total host sample size nT = 200 and for nInf = nH = 100. The
0.95-cutoff value is shown in blue (dashed line) and the 0.99-cutoff value is shown in grey
(dotted-dashed line). Top left: frequencies of h1 (darkblue) and p1 (lightblue). Top right: CSA′.
Bottom left: CSAr. Bottom right: CSP. The parameters values of the model are: cH1

= cP1
= 0,

cH2 = cP2 = 0.05, β = 0.00005, s = 0.6,c = 0.9, S1,init = S2,init = 4150, I11 = I12 = I21 = I22 = 415,
δt = 0.001, b = 1, d = 0.9
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5
Inference of coevolutionary dynamics and parameters

from host and parasite polymorphism data of repeated

experiments

This chapter is currently under review in PLoS Computational Biology. The formatting

has been adjusted to the layout of this thesis.

5.1 Abstract

There is a long-standing interest in understanding host-parasite coevolutionary dynamics

and associated fitness effects. Increasing amounts of genomic data offer a promising source

to identify candidate loci and to infer core parameters of the past coevolutionary history.

However, designing methods to extract such information requires to understand 1) how

coevolutionary dynamics and genetic drift jointly shape genetic diversity at the coevolving

loci, and 2) the extent to which genomic signatures at the coevolving loci are informative

about the parameters of interest. By coupling a gene-for-gene model with coalescent

simulations, we show that under trench-warfare dynamics the allele frequencies at the

internal equilibrium point determine the strength of the resulting balancing selection

signatures. As these equilibrium frequencies are differentially affected by the costs of

resistance, infectivity and infection, we suggest that the signatures at the coevolving host

and parasite loci potentially contain enough information about these costs. As a proof-

of-principle, we apply an Approximate Bayesian Computation approach to infer these

costs by jointly integrating host and parasite polymorphism data at the coevolving loci

from repeated experiments. First, we demonstrate that the cost of infection and host and

parasite population sizes can be inferred when the costs of resistance and infectivity are

known. Second, joint inference of all three costs works reasonably well when population

sizes are known. Third, polymorphism data of the parasite are informative about costs

applying to the host and vice-versa. We discuss the implications of our results for genomic-

based inference of host-parasite coevolution.
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Author summary

It is of importance for agriculture and medicine to understand host-parasite antagonistic

coevolutionary dynamics and the deleterious associated fitness effects, as well as to reveal

the genes underpinning these interactions. The increasing amount of genomic data for

hosts and parasites offer a promising source to identify such candidate loci, but also to

use statistical inference methods to reconstruct the past coevolutionary history. In our

study we attempt to draw inference on the past coevolutionary history at key host and

parasites loci using sequence data from several individuals and across several experimental

replicates. We demonstrate that using a Bayesian statistical method, it is possible to

estimate the parameters driving the interaction of hosts and parasites at these loci for

thousands of generations. The main parameter that can be estimated is the fitness loss by

hosts upon infection. Our method and results can be applied to experimental coevolution

data with sequences at the key candidate loci providing enough repetitions and large

enough population sizes. As a proof of principle, our results open the door to reconstruct

past coevolutionary dynamics using sequence data of interacting species.

5.2 Introduction

Host-parasite coevolution is an ubiquitous process and has been demonstrated in terres-

trial (Thrall et al. 2012), limnological (Decaestecker et al. 2007) and marine environments

(Martiny et al. 2014). It describes the process of parasites and hosts exerting reciprocal

selective pressures on one another. Therefore, coevolutionary dynamics are expected to

substantially interact with and shape neutral genomic diversity linked to the coevolv-

ing sites. The latter can be single or multiple SNPs in coding or non-coding parts of

genes (Rose et al. 2007; Hoerger et al. 2012), insertions/deletions (Stahl et al. 1999) or

distributed across a gene network (Shin and MacCarthy 2015). Accordingly, the polymor-

phism patterns at the coevolving loci are expected to be distinct from loci not involved into

the coevolutionary interaction. Therefore, host and parasite genomic data are valuable

source to identify loci under coevolution and to infer their past coevolutionary history.

On the one hand, signatures of positive selection which are characterized by lower genetic

diversity compared to the genome-wide average and increased levels in linkage disequilib-

rium (Maynard Smith and Haigh 1974) are expected to arise under so called arms-race

93



5. Inference of coevolutionary dynamics and parameters from host and parasite polymorphism data of
repeated experiments

dynamics (Woolhouse et al. 2002; Holub 2001). In arms race dynamics, frequencies of

new beneficial alleles (such as new resistance or infectivity alleles) arising by de novo

mutations increase towards fixation in both interacting partners. Accordingly, alleles are

recurrently replaced and thus, are short lived and polymorphism is only transient (Wool-

house et al. 2002; Holub 2001). On the other hand, signatures of balancing selection

being characterized by higher than average diversity (Charlesworth 2006) are expected to

be the result of so called trench-warfare dynamics (also referred to as Red Queen dynam-

ics) (Stahl et al. 1999; Woolhouse et al. 2002). In this type of dynamics, several alleles

are stably maintained over large time periods in both coevolving species. Hereby, allele

frequencies either converge towards a stable equilbrium or they fluctuate persistently over

time. Based on these classic expectations, genomic studies have unravelled positive and

balancing selection signatures at various resistance genes (Stahl et al. 1999; Bakker et al.

2006; Karasov et al. 2014; Rose et al. 2007; Hoerger et al. 2012; Caicedo and Schaal 2004;

Obbard et al. 2011) and effector genes (Schweizer et al. 2018).

An additional difficulty for coevolutionary analyses, is that there is a continuum between

arms-race and trench-warfare dynamics and the dynamics are in fact strongly affected by

the type and strength of various forms of selection (negative indirect frequency-dependent

selection, negative direct frequency-dependent selection, overdominant selection) and their

interplay with genetic drift (Tellier et al. 2014; Gokhale et al. 2013) and mutation (Ejs-

mond and Radwan 2015; Salathe et al. 2005). In other words, the expectations above are

probably too simple to be accurately applicable as the effect of genetic drift and mutation

affecting the outcome of coevolutionary dynamics is ignored (Tellier et al. 2014; Gokhale

et al. 2013; Ejsmond and Radwan 2015). The force underlying coevolution is frequency-

dependent selection, which strength depends on the frequency of particular alleles. Neg-

ative indirect frequency-dependent selection (niFDS) takes place when the fitness of a

particular host allele increases with decreasing frequencies of a particular allele in the

parasite and vice-versa (Seger 1988; Tellier and Brown 2007b). When the fitness of a host

or parasite allele decreases with its own frequency negative direct frequency-dependent

selection (ndFDS) is acting. ndFDS can be promoted by factors such as asynchrony

between host and parasite life-cycles (overlapping parasite generations, several parasite

generations per host generation) or epidemiological feedback due to density dependent

disease transmission (Brown and Tellier 2011). Overdominant selection or some form of

ndFDS are a necessary but not always sufficient condition for trench-warfare dynamics

to take place in single locus host-parasite coevolutionary interactions (Tellier and Brown
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2007b; Ejsmond and Radwan 2015). Even with some form of ndFDS acting, arms-race

dynamics can take place if either the strength of ndFDS compared to niFDS is weak or

genetic drift is causing random loss of alleles.

The exact nature of the dynamics, such as the equilibrium frequencies of alleles and the

period and amplitude of coevolutionary cycles, is further affected by the way host and

parasite genotypes interact at the molecular level and the fitness costs associated with

the coevolutionary interaction. The interaction at the molecular level is captured by the

infection matrix which stores the specificity and level of infection in all possible pairwise

interactions between host and parasite genotypes (Kwiatkowski et al. 2012). One well

studied type of interaction is the gene-for-gene (GFG) interaction which presents one

endpoint of a continuum of infection matrices (Agrawal and Lively 2002; Engelstaedter

2015). GFG-interactions are characterized by one universally infective parasite genotype

and one universally susceptible host type. Such interactions have been found for example

in the Flax-Melampsora lini system (Flor 1971).

A fitness cost which has been shown to crucially affect the coevolutionary dynamics is the

loss in fitness due to infection (Tellier and Brown 2007b; Tellier et al. 2014). In addition,

costs of resistance such as reduced competitive ability or fertility in absence of the par-

asite (Kraaijeveld and Godfray 1997; Bergelson and Purrington 1996; Lenski 1988) and

costs of infectivity such as reduced spore production of infective pathogens (Thrall and

Burdon 2003) can further alter the dynamics. These costs also determine the equilibrium

frequencies of the coevolutionary system (Leonard 1994; Frank 1992) at which one or sev-

eral alleles are maintained or around which allele frequencies cycle. An important result

from previous theoretical investigations (Leonard 1994; Frank 1992) is that the equilib-

rium frequencies in the parasite population depend on the parasite fitness costs (cost of

infectivity) and vice-versa (cost of resistance and cost of infection).

Given this continuum of coevolutionary dynamics, it is necessary to gain a deeper and

refined understanding on how the interaction between allele frequency dynamics at the

coevolving loci, genetic drift and mutation shapes the resulting genomic signatures at the

coevolutionary loci and linked neutral sites. This is an important step for the development

and application of methods designed to draw inference on the coevolutionary history.

Therefore, our first aim is to explicitly investigate the links between coevolutionary dy-

namics and the resulting signatures by using a model spanning a range of coevolutionary

dynamics inbetween arms-race and trench-warfare with varying equilibrium frequencies.

We can show that the resulting coevolutionary signatures under trench-warfare dynam-
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ics are strongly affected by the equilibrium frequencies of alleles. As these equilibrium

frequencies are governed by coevolutionary costs, our second aim is to infer information

about these costs from polymorphism data of the coevolving loci. Therefore, we make

use of Approximate Bayesian Computation (Csillery et al. 2010; Beaumont et al. 2002;

Sunnaker et al. 2013). Approximate Bayesian computation (ABC) is an inference method

which can be used in situations where likelihood calculations are intractable, as it is the

case for the coevolutionary models (Nuismer and Week 2019). The core of ABC is to per-

form a huge amount of simulations under a model which is expected to have given rise to

the observed data. Each single simulation is run with different values for the parameters

to be inferred and the resulting summary statistics are compared to the same set of statis-

tics calculated from the observed data. We assume that our observed data set consists of

the average summary statistics from either r = 200 or r = 10 independent replicates of a

coevolutionary experiments where for each replicate n = 50 host and parasite sequences

from the coevolutionary loci have been obtained.

5.3 Materials and methods

5.3.1 Simulation of polymorphism data

We model coevolution between a single haploid host and a single haploid parasite species.

The coevolutionary interaction in both species is driven by a single bi-allelic functional

site (SNP, indel, ...). This functional site is located in the coevolutionary locus which

encompasses several other neutral sites. Hosts are either resistant (RES ) or susceptible

(res) and parasites are either non-infective (ninf ) or infective (INF ). Thus, the model

follows a gene-for-gene interaction with the following infection matrix:

(ninf INF

RES 0 1

res 1 1

)
. (5.1)

A 1-entry in the infection matrix indicates that the parasite is able to infect the host and

a 0-entry indicates that the host is fully resistant towards the parasite. To obtain poly-

morphism data at these major coevolutionary loci we combine a forward-in-time coevolu-
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tionary model (Tellier and Brown 2007b) including genetic drift and recurrent mutations

with backward-in-time coalescent simulations (Tellier et al. 2014).

Forward in time coevolution model

In the forward part, we obtain the frequencies of the different alleles at the beginning of

each discrete host generation g in three steps:

1. Using a discrete-time gene-for-gene coevolution model (shown below) we compute

the expected allele frequencies in the next generation (in infinite population size)

2. We incorporate genetic drift by performing a binomial sampling based on the fre-

quency of the RES -allele (INF -allele) after selection and the finite and fixed haploid

host population size NH (parasite population size NP ).

3. We allow for recurrent allele mutations to take place and change genotypes from

RES to res at rate µRtor or res to RES at rate µrtoR in the host and from ninf to

INF at rate µntoI and from INF to ninf at rate µIton in the parasite. Henceforward,

we call such mutations as functional mutations. We set all functional mutation rates

to µRtor = µntoI = µrtoR = µIton = 10−5.

Repeating this procedure for gmax host generations, we obtain the so called frequency

path, which summarizes the allele frequencies at both loci forward in time.

We denote the frequency of resistant (susceptibe) by R (r) and the frequency of infective

parasite (non-infective parasites) by a (A). The coevolution model (henceforward termed

model 5A) is based on the polycyclic auto-infection model in (Tellier and Brown 2007b).

This population genetics model (sensu Ashby et al. (2019)) assumes host and parasite

populations to be constant regardless of the disease prevalence and non-overlapping host

and parasite generations, and as such is probably more suited to describe plant-parasite

or invertebrate-parasite systems. Polycyclic diseases are characterized by more than one

infection cycle per season. For simplicity, the model is based on T = 2 infection cy-

cles per discrete host generation g each caused by a single discrete parasite generation t

(t ∈ {1, 2}). An auto-infection refers to an infection where a parasite re-infects the host

individual on which it was produced. Therefore, resistant (Rg) and susceptible hosts (rg)

which are infected by infective parasites (ag,1) in the first infection cycle (t = 1) stay
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infected by infective parasites in the second infection cycle (t = 2). This causes a fitness

reduction s1 (cost of infection). The same applies to susceptible host (rg) infected by

non-infective parasites (Ag,1) in the first infection cycle (t = 1). Resistant hosts which

are attacked by non-infective parasites in the first infection cycle (t = 1) resist infection.

In the second infection cycle (t = 2), this fraction of resistant hosts (Rg · Ag,1) either

receives a non-infective parasite (Ag,2) resulting in no fitness loss or an infective parasite

(ag,2) resulting in a reduced cost of infection s2. Host resistance comes at cost cH (cost of

resistance) and infectivity in the parasite comes at cost cP (cost of infectivity).

The allele frequencies of resistant hosts (Rg), susceptible hosts (rg), non-infective parasites

(Ag,t) and infective parasites (ag,t) are given by the following recursive equations (for the

corresponding fitness matrices see 5.B.1):

ag,2 =
ag,1 · (1− cP )

ag,1 · (1− cP ) + Ag,1 · rg
(5.2a)

ag+1,1 =
(1− cP ) · [Rg (Ag,1ag,2 + ag,1) + rgag,1]

(1− cP ) · [Rg (Ag,1ag,2 + ag,1) + rgag,1] + rgAg,1
(5.2b)

Rg+1 =
Rg · (1− cH) [Ag,1Ag,2 + Ag,1ag,2(1− s2) + ag,1(1− s1)]

Rg · (1− cH) [Ag,1Ag,2 + Ag,1ag,2(1− s2) + ag,1(1− s1) + rg(1− s1)]
(5.2c)

with Ag,t = 1−ag,t and rg = 1−Rg. The equilibrium frequencies â, R̂ (Tellier and Brown

2007b) at the internal, non-trivial equilibrium point are approximately given by:

â ≈
s2 + s1 −

√
(s2 + s1)2 − 4s2(s1 − cH)

2s2(1− cH)

R̂ ≈ cP
2− cP − â

≈ 2cP · s2 · (1− cH)

s2(3− 4cH − 2cP (1− cH))− s1 +
√

(s2 + s1)2 − 4s2(s1 − cH)

(5.3)

For investigating the link between coevolutionary dynamics in infinite population size

and genomic signatures in finite population size, we further use these recurrence equation

to simulate allele frequency trajectories in infinite population size for gmax = 30, 000

generations (without genetic drift and recurrent mutations) for all pairwise combinations

of s = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, cP = {0.1, 0.3} and cH = {0.05, 0.1}.
Additionally, we use two extensions, 5B and 5C respectively, of the basic model to check
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for the generality of our results. In model 5B, we extend model 5A to more than two

parasite (T > 2) generations per host generation g (see 5.B). Model 5C extends model

5A (keeping T = 2) by allowing for allo-infections to take place at rate (1 − ψ) in the

second parasite generation (t = 2) within host generation g (see 5.B).

Backward in time coalescent

To obtain polymorphism data at the coevolutionary loci we combine the obtained fre-

quency paths which include genetic drift and recurrrent mutations with coalescent sim-

ulations separately for the host and the parasite. Therefore, we first rescale time for

the frequencies paths appropriately (for more information see 5.B). Based on these time-

rescaled frequency paths we launch a modified version of msms (Ewing and Hermisson

2010; Tellier et al. 2014) once for each species. We set the sample size to nH = 50 for the

host (nP = 50 for the parasite). For both species we assume realistically a non-recombining

locus of length 2500 bp and a per site neutral mutation rate of 10−7. Accordingly, the neu-

tral population mutation rate is θH = 2·NH ·2500·10−7 for the host (θP = 2·NP ·2500·10−7

for the parasite). Note that the same trends for the summary statistics are obtained when

assuming a larger locus length or higher per site mutation rate. Based on the respective

msms-output we calculate eight summary statistics for each species which are based on

the site frequency spectrum (SFS) of the respective coevolving locus (5.D.2). We only

use summary statistics based on the unfolded site frequency spectrum (SFS), as it can be

hard to obtain unbiased haplotype summary statistics depending on the sequence method.

In addition to these 16 summary statistics we calculate an additional summary statistic

(Pairwise Manhattan Distance) which is combining information from host and parasite

polymorphism data (see 5.C).

5.3.2 Generating pseudo-observed data sets (PODs)

To understand the link between coevolutionary dynamics in finite population size and

genomic signatures at the coevolving loci we simulate pseudo-observed data sets (PODs)

for various costs of infection (s). This parameter strongly influences the coevolutionary

dynamics, namely the allele frequencies at the non-trivial equilibrium point and the sta-

bility of the internal equilibrium point (Fig. 5.1, Tab. 5.B.2, Tellier and Brown (2007b)).

Therefore by changing s, we can investigate a continuum between arms-race and trench-

warfare dynamics with varying internal equilibrium frequencies. We vary s from 0.2 to
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0.8 in steps of 0.1. We simulate r = 200 repetitions for each value of s using the above

mentioned forward-backward approach, and afterwards average the summary statistics

across the r = 200 repetitions/per parameter combination/per model. For the so called

standard case we fix the parameters as follows: cH = 0.05, cP = 0.1, NH = NP = 10, 000,

nH = nP = 50. We extend this standard case in two ways. First, we simulate data for

various combinations of host population size NH = (5, 000; 10, 000; 15, 000) and parasite

population size NP = (5, 000; 10, 000; 15, 000). Second, we assess the signatures for com-

binations of cH = (0.05, 0.1) and cP = (0.1, 0.3) while fixing the population sizes to their

standard values.

5.3.3 Performing ABC on the pseudo-observed data sets for model 5A

As a proof of principle we aim to infer different parameters determining the coevolutionary

dynamics in model 5A. In scenario 1, we aim to infer simultaneously the cost of infection

(s), the host population size (NH) and the parasite population size (NP ) assuming that

we know the true cost of resistance cH and the true cost of infectivity cP . This scenario

mimics systems where experimental measures of the costs of resistance or infectivity have

been performed (Tian et al. 2003; Thrall and Burdon 2003) and thus, these parameters

can be fixed in our method. In scenario 2, our goal is to infer simultaneously the cost of

infection (s), the cost of infectivity (cP ) and the cost of resistance (cH) assuming we know

the true host (NH) and parasite population sizes (NP ). Scenario 2 is motivated by the

assumption that an independent estimate of the effective population size can be obtained

by using full-genome data of loci unlinked to the coevolutionary locus. We also test for the

effect of the number of repetitions on the inference results. Thus, we base our inference on

the average summary statistics of r = 200 and r = 10 repetitions. Besides the effect of the

number of repetitions, we assess how the type of polymorphism data available affects the

accuracy of inference. Therefore, we perform inference based on a) polymorphism data of

both, the host and the parasite, b) polymorphism data of the host and c) polymorphism

data of the parasite. For the sampling step of the ABC we use the ABCsampler from

ABCtoolbox (Wegmann et al. 2010) and perform 100,000 simulations using the standard

sampler. The chosen priors, complex parameters and fixed parameters can be found in

Tab. 5.D.3. For the estimation step we retain the 1% best simulations and apply the post-

sampling adjustment (general linear model) as implemented in ABCestimator (Wegmann

et al. 2010) (note that similar results are obtained when using the 0.2% best simulations).
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All codes and pipelines used are available upon request and will be placed on a publicly

available repository.

5.4 Results

5.4.1 Link between coevolutionary dynamics and sequence data

The internal equilibrium frequency of the RES -allele mainly increases with increasing cost

of infectivity (cP ) (Fig. 5.1 a+b vs. Fig. 5.1 c+d), increases very slightly with increas-

ing cost of infection (s) and remains almost unaffected by changing costs of resistance

(cH) (Fig. 5.1 a+c vs. Fig. 5.1 b+d). The opposite is true for the parasite. Here, the

equilibrium frequency of the infective (INF )-parasite rises mainly with increasing cost of

infection (s) (Fig. 5.1). Higher costs of resistance (cH) decrease the equilibrium frequency

of INF -parasites (Fig. 5.1 a+c vs. Fig. 5.1 b+d) for a given value of s. In contrast to the

host, the equilibrium frequencies in the parasite are almost unaffected by changes in the

cost of infectivity (cP ). For high costs of infection s the dynamics are always switching

to arms-race dynamics, irrespectively of the underlying costs of resistance and infectivity

(Fig. 5.1, 5.A.7). A large body of theoretical studies has dealt with the dynamics and

equilibrium properties of coevolutionary models (i.e. Leonard (1994), Sasaki (2000) and

Tellier and Brown (2007b)). However, the result for the used model are shown here, to

make it easier to grasp the link between coevolutionary dynamics in infinite populations

and genomic signatures.

The changes in equilibrium frequencies with changing cost of infection (s), cost of resis-

tance (cH) and changing cost of infectivity (cP ) are reflected by the resulting genomic

signatures at the coevolving loci (Fig. 5.2). We summarize the genomic signatures of

coevolution chiefly as the value of Tajima’s D because its behaviour is well known under

selective sweeps and balancing selection (Fig. 5.2, 5.3). However, this statistic is also

affected by demography, negative selection and linked selection which we do not take

into account here (see discussion for the effect of demography). Generally, the strongest

signatures of balancing selection can be observed when the equilibrium frequencies of

INF -parasites or RES -hosts are close to 0.5 (see Fig. 5.1, Tab. 5.B.2, Fig. 5.2). The

strength of the signatures declines the further the equilibrium frequencies move away from

0.5.

The genomic signature in the parasite changes strongly with changing cost of infection
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(s), irrespectively of cH and cP . Further, the resulting genomic signatures in the parasites

for a given cost of infection s are distinguishable for different costs of resistance but not

for different costs of infectivity.
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Fig. 5.1: Deterministic equilibrium frequencies for model 5A (pure autoinfection model with T = 2
parasite generations) for different combinations of cost of resistance cH = (0.05, 0.1) (columns), cost
of infectivity cP = (0.1, 0. 3) (rows) and cost of infection s = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) (color
of the squares). Only combinations with trench-warfare dynamics are shown. Centres of the squares
represent the equilbrium frequencies obtained by simulating numerically the recursion equations
Eq. 5.2 for 30,000 generations starting with an initial frequency of R0 = 0.2 resistant hosts and
a0 = 0.2 infective parasites. Heads of the arrows represent the equilibrium frequencies based on Eq.
5.3 which slightly differ from the numerical computations due to analytical approximations.

The genomic signature in the host changes very slightly with increasing cost of infec-

tion (s) as the respective equilbrium frequencies are strongly affected by cP . Thus, the

strongest balancing selection signature for the host is found for an increased costs of in-

fectivity (cP = 0.3) and intermediate costs of infection.

The combination of host and parasite signatures holds the highest information content

about the fitness parameters guiding the coevolutionary dynamics. This is due to the

fact that the equilibrium frequencies in the host and parasite are differentially affected by
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these fitness parameters. The genomic signature in the host is mainly indicative about the

cost of infectivity (cP ), a cost which is affecting the parasite fitness, whereas the signature

in the parasite is mainly informative about the costs of resistance (cH) and infection (s),

parameters with a direct fitness effect in the host (Fig. 5.2). This results from the action

of niFDS. Increasing costs of resistance (cH) disfavor resistant hosts. Thus, the frequency

of infective parasites is decreasing which results in lower equilibrium frequencies of INF -

parasites. The opposite is true for increasing costs of infectivity (cP ). This cost reduces

the fitness of INF -parasites which in turn favors RES -hosts compared to res-hosts.

The qualitative changes of the genomic signatures for changing costs of infection in the

standard case remain similar even when population sizes differ in both interacting part-

ners (Fig. 5.3). However, the strength of genomic signatures is affected by the population

sizes. The strongest signature of balancing selection in the parasite is found when the

parasite population size is small compared to the host population size (Fig. 5.3 c). Here,

the large host population size reduces the amount of genetic drift in the host. Thus, there

are less allele frequency fluctuations in the host around the internal equilibrium point.

This in turn, also reduces allele frequency fluctuations in the parasite.

Overall, there is a strong link between the equilibrium frequencies under trench-warfare

dynamics and the resulting genomic signatures. We obtain similar results when we slightly

modify the assumptions about the coevolutionary interaction by either a) extending the

model to more than two parasite generations per host generation (model 5B, Fig. 5.A.1,

Fig. 5.A.3 c+d) or b) allowing for allo-infections at rate 1 − ψ in the second parasite

generation within host generation g (model 5C, Fig. 5.A.2, Fig. 5.A.3 a+b). Increasing

the number of parasite generations extends the parameter space in which trench-warfare

dynamics occur. Here, the strongest signatures of balancing selection are found for in-

termediate costs of infection (Fig. 5.A.3). Allowing for allo-infections, decreases the

parameter space in which trench-warfare dynamics take place and thus, also the range in

which balancing selection signatures can be observed in both interacting partners (Fig.

5.A.3 a+b).

The strong link between equilibrium frequencies and resulting genomic signatures can be

explained in terms of a structured coalescent tree. The coalescent tree in both coevolv-

ing species consists of two demes (RES and res for the host and INF and ninf for the

parasite). As we assume no recombination within the coevolutionary locus new muta-

tions are usually linked to the functional allele in which they arose. When a functional

mutation is taking place the affected lineage is migrating from one deme to the other.
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When the frequencies of both allles (ninf and INF in the parasite or RES and res in the

host) are fairly similar they have equal contributions to the sample. Thus, the underly-

ing coalescent tree is well balanced. Accordingly, we observe an excess of intermediate

frequency variants in the SFS. As the equilibrium frequencies move away from 0.5, the

average sample configuration changes and the coalescent tree becomes less balanced (see

Fig. 5.A.7 a-f and VII-XII). Therefore, the number of SNPs at intermediate frequencies

drops and Tajima’s D decreases (Fig. 5.2). Note that two trench-warfare models with

different parameters, but same equilibrium frequencies would exhibit the same genomic

signatures if reaching the stable polymorphic point. If there is cycling, rather than a fixed-

point equilibrium, then the dynamics and thus the polymorphism data do also depend

on the amplitude and period of the fluctuations, and likely generate different signatures

between the two models.

●
● ●

●
● ●

●
●

●

●

●

●

● ● ●

●

a)

●

●

● ● ●

●
● ●

●

●

●

●
● ●

●

●

c)

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

b)

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●
●

d)

cH=0.05 cH=0.1

c
P
=

0
.1

c
P
=

0
.3

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

1

0

1

Cost of infection (s)

T
a
ji
m

a
's

 D

 host

parasite

Fig. 5.2: Tajima’s D (y-axis) for model 5A for various cost of infection s (x-axis). The results are
shown for different combinations of cP (cP = 0.1 top, cP = 0.3 bottom) and cH (cH = 0.05 left,
cH = 0.1 right). The mean and standard error of Tajima’s D of the parasite population (dark grey)
and of the host population (light grey) are plotted for r = 200 repetitions. The other parameters are
fixed to: NH = NP = 10, 000, nH = nP = 50, θH = θP = 5, µRtor = µrtoR = µntoI = µIton = 10−5.
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Fig. 5.3: Tajima’s D (y-axis) for model 5A for various cost of infection s (x-axis) and different
combinations of NP (NP = 5, 000 top, NP = 10, 000 middle, NP = 15, 000 bottom) and NH
(NH = 5, 000 left, NH = 10, 000 middle, NH = 15, 000 right). The mean and standard error of
Tajima’s D of the parasite population (dark grey) and of the host population (light grey) are
plotted for r = 200 repetitions. Note that subfigure e corresponds to Fig. 5.2 a. The other
parameters are fixed to: cH = 0.05, cP = 0.1, θH = NH/2000, θP = NP /2000, nH = nP = 50,
µRtor = µrtoR = µntoI = µIton = 10−5.

5.4.2 Inference of coevolutionary dynamics from polymorphism data

Our results indicate that it is possible to infer the cost of infection using polymorphism

data from the host and parasite (Fig. 5.4, Fig. 5.5). The accuracy of inference mainly

depends on four factors being 1) the true value of the cost of infection, 2) the type of

polymorphism data being used (host and parasite together, only host or only parasite),

3) the number of available repetitions and 4) the type of known parameters.

Inferences of the cost of infection and of the population sizes are the most accurate if

the number of repetitions is high (r = 200), and host and parasite polymorphism data

are both available (Fig. 5.4, Fig. 5.A.4, Fig. 5.A.5). Generally, inference for Scenario

1 works best if host and parasite data are used together, irrespectively of the number of

repetitions available (compare Fig. 5.4 a to Fig. 5.4 b+c; Fig. 5.4 d to Fig. 5.4 e+f).
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Using only parasite polymorphism data is also quite accurate for small to intermediate

values of the cost of infection (s < 0.6) (Fig. 5.4 c+f) where trench-warfare dynamics

take place and SFS of the parasite changes pronouncedly with s (Fig. 5.A.7). In contrast,

using only host polymorphism data shows markedly less accuracy in the same parameter

range (Fig. 5.4 b+e), especially if the number of available repetitions is low. For low

costs of infection the respective equilibrium frequencies of the RES -genotype are close to

zero (< 0.1) and increase only very slightly when s increases (Tab. 5.B.2). Thus, the host

sample mostly consists of polymorphism data from res-hosts. Accordingly, the coalescent

tree consists of a very large subtree containing the res-samples and a very small subtree

containing the RES -samples and the overall tree looks almost neutral (Fig. 5.2). The

estimation accuracy of the cost of infection using only host information diminishes in the

transition between trench-warfare and arms-race dynamics (around s ≈ 0.6), especially if

the number of repetitions is low (r = 10). In this range, fixation of alleles in both species

can either happen due to genetic drift or due to the inherent dynamics of the coevolution-

ary interaction. This effect decreases the accuracy of parameter estimation even if host

and parasite polymorphism data are available (Fig. 5.4 a+d, Fig. 5.2).

The results indicate that the availability of more repetitions increases the accuracy of

inference (compare Fig. 5.4 a-c to Fig. 5.4 d-f). There are three sources of stochasticity

affecting the polymorphism data at the coevolutionary loci: 1) The effect of genetic drift

on the allele frequency trajectory under coevolution, 2) the stochasticity in the coalescent

process for a given allele frequency trajectory and 3) the stochasticity in the neutral mu-

tation process on top of the coalescent process. As the first type of stochasticity affects

the ’population’ sizes of the functional alleles in the host (in the parasite) over time it

also has a subsequent effect on the other two sources of stochasticity. Using data from

several repetitions allows to better handle and to average out the effect of genetic drift

on the variability of the allele frequency path and its subsequent effect on the observed

summary statistics. This is especially helpful in the range of parameter values where the

dynamics switch from arms-race to trench-warfare.

Like in scenario 1 inference for scenario 2 works best if data from both the host and the

parasite are available for a large amount of repetitions r = 200. However, the accuracy of

inference for the cost of infection s is generally not as accurate as in scenario 1. Simul-

taneous inference of all three parameters in scenario 2 is most accurate for intermediate

costs of infection and if both, host and parasite polymorphism data, are available. This

is due to the fact that signatures in the host and the parasite are differentially affected
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by the various costs (Fig. 5.2).

Inference of the cost of resistance (cH) works reasonably well if polymorphism data only

from the parasite are available. However, this comes at the cost of less accurate inference

of the cost of infection (s) as both paramters are affecting the equilibrium frequency in

the parasite (Fig. 5.4, Fig. 5.5). While the equilibrium frequency of INF -parasites in-

creases with increasing cost of infection, an increase in the cost of resistance for a fixed

cost of infection (s) decreases the respective equilibrium frequency. Thus, overestimating

the cost of infection (s) can be compensated by overestimating the cost of resistance (cH)

simultaneously. This effect can be seen for low costs of infection (s) if only the information

from the parasite polymorphism data is used in Scenario 2 (see Fig. 5.5 c+f). In contrast,

inference of the cost of infectivity (cP ) works reasonably well if polymorphism data only

from the host are available. This is due to the fact that changing costs of infectivity (cP )

mainly affect the equilibrium frequencies in the host but not in the parasite (Fig. 5.1).

Therefore, inference of this parameter does not work if only parasite polymorphism data

are available. All the above mentioned effects explain why the simultaneous inference of

several cost becomes less accurate with less (r = 10) repetitions (Fig 5.A.6).
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Fig. 5.4: . Median of the posterior distribution (y-axis) for the cost of infection s compared to the
true value (x-axis) for r = 10 (top, a-c) and r = 200 (bottom, d-f). The inference results for
scenario 1 based on host and parasite polymorphism data (left, a+d), host polymorphism data only
(middle, b+e) and parasite polymorphism data only (right, c+f) are shown. The chosen
parameters are: cH = 0.05, cP = 0.1, functional mutation rate 10−5, cH = 0.05, cP = 0.1,
gmax = 30, 000, θH = 5, θP = 5, nH = 50 and nP = 50. Priors have been chosen as follows: NH log
uniform(2000, 40000), NP log uniform(2000, 40000), s uniform (0.1, 0.9). s, NH and NP are inferred
simultaneously for all plots.
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Fig. 5.5: Median of the posterior distribution (y-axis) for the cost of infection s (a-c), cost of
resistance cH (d-f) and cost of infectivity cP (g-i) compared to the true value (x-axis) for r = 200.
Inference results for scenario 2 are based on host and parasite polymorphism data (left, a+d+g),
host polymorphism data only (middle, b+e+h) and parasite polymorphism data only (right,
c+f+i). The chosen parameters are: NH = NP = 10, 000, functional mutation rate 10−5,
gmax = 30, 000, θH = 5, θP = 5, nH = 50 and nP = 50. Priors have been chosen as follows: s
uniform(0.1, 0.9), cH uniform (0.01, 0.35), cP uniform(0.01, 0.35). s, cH and cP are inferred
simultaneously for all plots.
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5.5 Discussion

We established a link between coevolutionary dynamics (Fig. 5.1), the resulting genomic

signatures (Fig. 5.2, Fig. 5.3) and subsequentially the amount of information about the

underlying coevolutionary dynamics which can be extracted from genomic signatures at

the coevolving loci (Fig. 5.4, Fig. 5.5). Our results indicate that under trench-warfare

dynamics the allele frequencies at the non-trivial internal equilibrium point affect the

strength of genomic signatures at the coevolving loci in both, the host and parasite. We

further could show as a proof of principle that it is possible to infer information about

parameters underlying the coevolutionary interaction from polymorphism data at the

loci under coevolution if some relevant parameters such as diverse costs (Fig. 5.4) or

population sizes (Fig. 5.5) are known. This is due to the fact that various parameter

combinations can give rise to similar equilibrium frequencies and thus, result in undistin-

guishable genomic signatures. In general, inference works best if polymorphism data from

both the host and the parasite are available from repeated experiments.

As already shown in Tellier et al. (2014) the link between coevolutionary dynamics in

finite population and resulting signatures at the coevolving loci is not always black (arms-

race result in selective sweep signatures) and white (trench-warfare dynamics in balancing

selection signatures) but follows a continuum of outcomes. The strength of the genomic

signatures under trench-warfare dynamics is a result of the internal equilibrium frequen-

cies, the fluctuations around these equilbrium frequencies, the amount of genetic drift in

both partners and the proximity of these equilibrium frequencies to the fixation bound-

aries. When equilibrium frequencies are close to boundaries, alleles can be easily lost by

drift and thus, arms-race dynamics take place although trench-warfare dynamics would

be predicted based on the model.

The found links between dynamics in infinite population size and genomic signatures in

finite population size have several implications. Model-based inference of parameters gov-

erning the coevolutionary dynamics is possible if they substantially shift the equilibrium

frequencies of the dynamics and thus, the resulting genomic signatures. In cases where

different parameters shift the equilibrium frequencies along the same axis, three different

inference scenarios are possible. First, it is only possible to infer a compound parameter if

there is no a priori information on any of the parameters available. This is illustrated by

the inference results for scenario 2 when only parasite polymorphism data are available

(Fig. 5.5). Here, overestimating the cost of infection s compensates for overestimating
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the cost of resistance cH . Second, if some parameter values are a priori known from ex-

periments, the other parameters can be inferred conditional on this information. Third,

the parameters have different effects on the equilibrium frequencies in the host and par-

asite. Thus, combining host and parasite polymorphism data helps to infer the different

parameters simulataneously.

For many host-parasite models (including the one used here) it has been shown that

the equilibrium frequencies in the host are substantially or exclusively affected by fitness

penalties applying to the parasite and vice-versa (Frank 1992; Leonard 1994; Tellier and

Brown 2007b). Thus generally speaking, the strength of genomic signatures in either

species are presumably most indicative about processes affecting the coevolving partner.

We therefore speculate, that the balancing selection signatures which have been found at

R-genes in Arabidopsis thaliana (Stahl et al. 1999; Bakker et al. 2006) (Karasov et al.

2014), Solanum sp. (Rose et al. 2007; Hoerger et al. 2012; Caicedo and Schaal 2004),

Phaseolus vulgaris (De Meaux et al. 2003), Capsella (Gos et al. 2012), are indicative about

the selective pressure in the coevolving parasite or parasite community. Conversely, the

long term maintenance of strains in P. syringae (Karasov et al. 2018) could reflect fitness

costs in A. thaliana.

Further, we have shown that the genomic signatures might be rather weak and almost

undistinguishable from neutral signatures if the the internal equilibrium frequencies are

close to fixation. In such cases it is very likely that loci under coevolution are missed

when applying classic outlier scan methods.

In general, our results should not be restricted to the used coevolution model (see Ap-

pendix). We acknowledge that we assumed the most simple type of coevolutionary in-

teraction possible. However, understanding possible links between dynamics, signatures

and resulting accuracy of inference for this simple scenario is a useful starting point to

develop further inference methods where several major loci (Shin and MacCarthy 2015)

or quantitative traits (Nuismer and Week 2019) are involved. There are various other

coevolution models with respect to the biology of the coevolving species or the ecology of

the disease which have been shown to result in trench-warfare dynamics. Nevertheless as

long as the coevolutionary interaction is driven by a single bi-allelic functional site in each

species, the resulting equilbrium frequencies will be always confined to the 2-dimensional

plane and a limited amount of possible genomic signatures (see Fig. 5.A.1, Fig. 5.A.2

and Fig. 5.A.3). Therefore, our findings should also apply to coevolutionary epidemiology

models such as in (Ashby and Boots 2017; Gokhale et al. 2013).
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An important assumption of our model is the absence of intra-locus recombination at the

coevolutionary loci. Nevertheless, recombination does occur along the genomes of the host

and the parasite, so that the coevolutionary loci evolve independently from other unlinked

loci (for example on different chromosomes). This generates two important implications.

First, it is possible to estimate the past demographic history based on whole-genome data

of both species. So far, we did not take population size changes and the resulting tem-

poral variation in the amount of genetic drift into account. In host-parasite coevolution,

population size changes can be due to two different sources: 1) Population size changes

which are independent of the coevolutionary interaction and 2) population size changes

which arise as an immediate result of coevolutionary interaction, e.g. from epidemiological

feedback or any other form of eco-evolutionary feedback. Independently of the particular

source, demographic changes always affect all loci in the genome simultaneously, and the

resolution of the inference depends on the amplitude and time-scales of the population size

fluctuations. A recent study (Živković et al. 2019) has shown that fluctuations in popula-

tion size arising from host-parasite coevolution only leave a signature in the genome-wide

parasite site frequency spectrum if they happen at a slow enough time scale. Irrespec-

tively of whether the demographic changes can be resolved from genome-wide data or

not, the resulting genomic signatures will be always the result of the allele frequency path

at the coevolving loci. Therefore, further studies should focus on the specific effect of

eco-evolutionary feedback on the variability of the allele frequency path and the resulting

effect of the population size changes on mutation supply at the coevolving loci. Second,

our approach can be applied to several pairs of host and parasite coevolving loci, for exam-

ple a given host species interacting with several parasites species (bacteria, fungi,...). The

only requirement is that the coevolutionary dynamics are driven by few major loci in the

antagonistic species and no epistasy, pleiotropy or multi-locus phenoytpes are involved.

For coevolution due to quantiative traits (Nuismer and Week 2019; Shin and MacCarthy

2015) we expect the signatures to be weaker than in our model (see theory on polygenic

selection and polymorphism signatures, (Jain and Stephan 2017)).

We could show that of our ABC-approach is suited to infer the cost of infection with very

good accuracy by jointly using host and parasite polymorphism data from repeated ex-

periments. Thus, we demonstrate as a proof-of-principle that there is enough information

contained in the site frequency spectra of the loci under coevolution to infer information

about the past coevolutionary history. So far, our approach relies on data from repeated

experiments and it is probably best met by data from microcosm experiments (e.g. Hall
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et al. (2011); Frickel et al. (2016)) where coevolutionary interactions can be tracked across

several replicates for a reasonable amount of generations. Using data from repeated exper-

iments is one possible attempt to deal with the variability in allele frequency trajectories

resulting from the interaction between genetic drift and coevolution. The usage of data

from several independent populations or the usage of time-sampled might be possible al-

ternatives. Time samples offer an at least partially time-resolved view on changes in allele

frequencies and accordingly, can help to better capture the coevolutionary dynamics.

Our results further show that analyzing both interacting partners in a joint framework

rather than analyzing them separately helps to better recover information about the co-

evolutionary history. This is in line with recent method developments (MacPherson et al.

2018; Nuismer et al. 2017; Wang et al. 2018) which show the value of analyzing hosts and

parasite in a joint framework. Additionally, these methods can be promising approaches

to identify candidate loci being involved into the coevolutionary interaction on which our

approach is based on.

5.6 Conclusion

We investigated here the link between coevolutionary dynamics and resulting genomic

signatures and quantify the amount of information available in polymorphism data from

the coevolving loci. Although, we started from a very simple coevolutionary interaction we

show that model-based inference is possible. With growing availability of highly resolved

genome data, even of non-model species, it is important to gain a differentiated and

deep understanding of the continuum of possible links between coevolutionary dynamics

without or with eco-evolutionary feedbacks and their effect on polymorphism data. Such

thorough understanding is the basis for devising appropriate sampling schemes, for using

optimal combinations of diverse sources of information and for developing model-based

refined inference methods. Our results and the suitability of the ABC approach open the

door to further develop inference of past coevolutionary history based on genome-wide

data of hosts and parasites from natural populations or controlled experiments.
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Fig. 5.A.3: Mean and standard error of Tajima’s D (a+c) and pairwise manhattan distance
(PMD) (b+d) for various costs of infection s (x-axis) and r = 200 repetitions. Results for model
5B (pure autoinfection model with T = 5 and T = 10) are shown at the top, results for model 5C
(auto-allo-infection model with ψ = 0.95) are shown at the bottom. The other parameters are fixed
to: cH = 0.05 and cP = 0.1. Initial frequencies R0 and a0 in a and b are chosen randomly from a
uniform distribution between 0 and 1 while R0 = a0 = 0.2 in c and d.
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Fig. 5.A.4: Median of the posterior distribution (y-axis) for the host population size NH against
the true cost of infection s for r = 10 (top, a-c) and r = 200 (bottom, d-f). The inference results for
scenario 1 based on host and parasite polymorphism data (left, a+d), host polymorphism data only
(middle, b+e) and parasite polymorphism data only (right, c+f) are shown. The true host
population size is always NH = 10, 000 as indicated by the dashed horizontal line. The chosen
parameters are: cH = 0.05, cP = 0.1, functional mutation rates = 10−5, cH = 0.05, cP = 0.1,
gmax = 30, 000, θH = 5, θP = 5, nH = 50 and nP = 50. Priors have been chosen as follows: NH log
uniform(2000, 40000), NP log uniform(2000, 40000), s uniform(0.1, 0.9). s, NH and NP are inferred
simultaneously for all plots.
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Fig. 5.A.5: Median of the posterior distribution (y-axis) for the parasite population size NP
against the true cost of infection s for r = 10 (top, a-c) and r = 200 (bottom, d-f). The inference
results for scenario 1 based on host and parasite polymorphism data (left, a+d), host
polymorphism data only (middle, b+e) and parasite polymorphism data only (right, c+f) are
shown. The true parasite population size is always NP = 10, 000 as indicated by the dashed
horizontal line. The chosen parameters are: cH = 0.05, cP = 0.1, functional mutation rates = 10−5,
cH = 0.05, cP = 0.1, gmax = 30, 000, θH = 5, θP = 5, nH = 50 and nP = 50. Priors have been
chosen as follows: NH log uniform(2000, 40000), NP log uniform(2000, 40000), s uniform(0.1, 0.9).
s, NH and NP are inferred simultaneously for all plots.
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Fig. 5.A.6: Median of the posterior distribution (y-axis) for the cost of infection s (a-c), cost of
resistance cH (d-f) and cost of infectivity cP (g-i) compared to the true values (x-axis) for r = 10.
The results are shown for inference based on host and parasite polymorphism data (left, a+d+g),
host polymorphism data only (middle, b+e+h) and parasite polymorphism data only (right,
c+f+i). The fixed parameters are chosen as: NH = NP = 10, 000,
µRtor = µntoI = µrtoR = µIton = 10−5, gmax = 30, 000, θH = 5, θP = 5, nH = 50 and nP = 50.
Priors have been chosen as follows: s uniform(0.1, 0.9), cH uniform(0.01, 0.35), cP
uniform(0.01, 0.35). s, cH and cP are inferred simultaneously for all plots.
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Fig. 5.A.7: Influence of the cost of infection (s) on the coevolutionary dynamics and genomic
signatures in model 5A. The subfigures show the allele frequency trajectory in infinite population
size (a-f, A-F), one exemplary allele frequency path in finite population size which takes genetic
drift and functional mutations into account (g-l, G-L), the average unfolded host site frequency
spectrum of r = 200 repetitions (I-VI) and the average unfolded parasite site frequency spectrum of
r = 200 repetitions (VII-XII). In subfigures a-l each dot represents the frequency of resistant (RES )
hosts (x-axis) and infective (INF ) parasites (y-axis) at the beginning of a single host generation g.
The same information is displayed in a slightly different way in subfigures A-L. Here, the
frequencies of resistant (RES ) hosts (light grey) and infective (INF ) parasites (dark grey) (y-axis)
are plotted over time (x-axis). Costs are fixed to cH = 0.05, cP = 0.1. The results in finite
population size are plotted for NH = NP = 10, 000, µRtor = µntoI = µrtoR = µIton = 10−5. The site
frequency spectra are shown for θP = θH = 5 and nH = nP = 50.
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repeated experiments

5.B Supplementary information models

5.B.1 Model 5A

Detailed description how the allele frequency path is obtained

In order to obtain the frequency of a given allele in the next generation, we perform the

following steps:

• We compute the allele frequency after selection using the difference equations Eq.

2.

• We incorporate genetic drift by performing a binomial sampling based on the fre-

quency after selection and the finite and fixed haploid population size (NH for the

host and NP for the parasite).

• We allow for recurrent allele mutations (functional mutations) to take place and

change genotypes from RES to res at rate µRtor or res to RES at rate µrtoR in the

host and from ninf to INF at rate µntoI and from INF to ninf at rate µIton in the

parasite. We set all functional mutation rates to µRtor = µntoI = µrtoR = µIton =

10−5.

Note that the above mentioned steps are repeated twice for the parasite as there are two

parasite generation per host generation. Once when going from parasite generation g, 1

to g, 2 and once when going from parasite generation g, 2 to g + 1, 1.

Accordingly, the detailed calculations for each parasite generation are as follows:

1. The expected frequency of INF -parasites after selection ax (x=g,2 or x=g+1,1) is

obtained by using the respective recursion equation in Eq. 2. The corresponding

frequency of ninf -parasites is calculated as Ax = 1− ax.

2. The number of INF -parasite individuals after drift NI is sampled from a Binomial

distribution NI ∼ B(NP , ax) . Thus, the number of ninf -parasites after drift ist

equal to Nn = NP −NI .

3. In order to include the functional mutations the following two samplings are per-

formed:
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• the number of mutants MIn from INF to ninf is obtained by sampling from a

Poisson distribution with rate λ = µIton ·NI .

• the number of mutants MnI from ninf to INF is obtained by sampling from a

Poisson distribution with rate λ = µntoI ·Nn.

Thus, the number of INF -parasites in generation x is given by:

Nx,I = NI −MIn +MnI (5.1)

And the frequency of INF -parasites at the beginning of generation x is equal to:

Nx,I

NP

(5.2)

The corresponding steps for the host population are as follows.

1. The expected frequency of RES -hosts after selection Rg+1 is obtained by using

difference equation Eq. 2. The frequency of res-hosts is calculated as rg+1 = 1 −
Rg+1.

2. The number of RES -host individuals after drift is sampled from a Binomial distri-

bution NR ∼ B(NH , Rg+1) . Thus, the number of res-host after drift ist equal to

Nr = NH −NR.

3. In order to include the functional mutations the following two samplings are per-

formed:

• the number of mutants from RES to res MRr is obtained by sampling from a

Poisson distribution with rate λ = µRtor ·NR.

• the number of mutants from res to RES MrR is obtained by sampling from a

Poisson distribution with rate λ = µrtoR ·Nr.

Thus, the number of RES -individuals in generation g + 1 is given by:

Ng+1,R = NR −MRr +MrR (5.3)
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Tab. 5.B.1: Fitness matrix for model 5A capturing the fitness effects of different interactions
between host genotypes and parasites genotypes within a single host generation g. Rg (rg) denotes
the frequency of resistant (susceptible) hosts in generation g. Ag,1 (Ag,2) denotes the frequency of
non-infective parasites and ag,1 (ag,2) denotes the frequency of infective parasites at the beginning
of the first (second) parasite generation t = 1 (t = 2) within host generation g. The costs are:
cH=cost of resistance, cP=cost of infectivity, s1, s2=cost of infection.

first
generation

fitness g, 1 second
generation

fitness g, 2 host fitness

host
genotype
RES (Rg)

ninf
(Ag,1)

0 ninf (Ag,2) 0 1− cH

ninf
(Ag,1)

0 INF (ag,2) 1− cP (1 −
cH)(1− s2)

INF
(ag,1)

1− cP INF (ag,2) 1− cP (1 −
cH)(1− s1)

host
genotype
res (rg)

ninf
(Ag,1)

1 ninf (Ag,2) 1 1− s1

INF
(ag,1)

1− cP INF (ag,2) 1− cP 1− s1

And the frequency of RES -hosts at the beginning of generation g + 1 is equal to:

Ng+1,R

NH

(5.4)

By repeating this procedure for gmax = 3·max(NH , NP ) generations we obtain the so called

frequency path which consists of the frequencies of all four alleles at the beginning of each

generation g. In order to constrain a modified version of msms (Ewing and Hermisson

2010; Tellier et al. 2014) by this frequency path we rescale the generations g in the host

to g∗H = g/(2NH) and in the parasite to g∗P = g/(2NP ). Note that msms is in diploid size.

As NH and NP are haploid population sizes this rescaling is equivalent to rescale time

in units of 4 · NH,diploid and 4 · NP,diploid. Based on this time rescaled frequency path we

launch msms once for the host and once for the parasite.
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Tab. 5.B.2: Approximate frequencies of resistant hosts (R̂) and infective parasites (â) at the
non-trivial interal equilbrium point in model 5A (Eq. 5.3) for various combinations of cost of
resistance (cH), cost of infectivity (cP ) and cost of infection (s) as plotted in Fig. 5.1.

panel of Fig. 5.1 cH cP s1 s2 â R̂

a 0.05 0.10 0.20 0.10 0.667 0.081

a 0.05 0.10 0.30 0.15 0.775 0.089

a 0.05 0.10 0.40 0.20 0.835 0.094

a 0.05 0.10 0.50 0.25 0.873 0.097

a 0.05 0.10 0.60 0.30 0.899 0.100

a 0.05 0.10 0.70 0.35 0.919 0.102

a 0.05 0.10 0.80 0.40 0.934 0.104

b 0.10 0.10 0.20 0.10 0.424 0.068

b 0.10 0.10 0.30 0.15 0.603 0.077

b 0.10 0.10 0.40 0.20 0.704 0.084

b 0.10 0.10 0.50 0.25 0.771 0.089

b 0.10 0.10 0.60 0.30 0.818 0.092

b 0.10 0.10 0.70 0.35 0.853 0.096

b 0.10 0.10 0.80 0.40 0.881 0.098

c 0.05 0.30 0.20 0.10 0.667 0.291

c 0.05 0.30 0.30 0.15 0.775 0.324

c 0.05 0.30 0.40 0.20 0.835 0.347

c 0.05 0.30 0.50 0.25 0.873 0.363

c 0.05 0.30 0.60 0.30 0.899 0.375

c 0.05 0.30 0.70 0.35 0.919 0.384

c 0.05 0.30 0.80 0.40 0.934 0.392

d 0.10 0.30 0.20 0.10 0.424 0.235

d 0.10 0.30 0.30 0.15 0.603 0.273

d 0.10 0.30 0.40 0.20 0.704 0.301

d 0.10 0.30 0.50 0.25 0.771 0.323

d 0.10 0.30 0.60 0.30 0.818 0.340

d 0.10 0.30 0.70 0.35 0.853 0.354

d 0.10 0.30 0.80 0.40 0.881 0.366

126



5. Inference of coevolutionary dynamics and parameters from host and parasite polymorphism data of
repeated experiments

5.B.2 Model 5B

Model 5B extends the basic model to T > 2 parasite generations per host generation.

As in the basic model the cost of infection st is a function of the parasite generation t in

which the host became infected and the maximum cost of infection s, which correspond

to the cost of being infected at the first parasite generation t=1 within host generation

g. Upon infection a host stays infected until it reproduces and dies from natural death

(at the end of the host generation g). An infected host is reinfected by the offspring of

the particular parasite for all subsequent parasite generations within host generation g

(100% auto-infection). Hosts which have not been infected so far can be attacked by the

offspring of any parasite type at the beginning of each parasite generation t. Whether

this interaction subsequently results in an infection depends on the infection matrix. The

recursion equations for this model are given by:

ag,t+1 =

(1− cP )

[
ag,1 +

t∑
l=2

ag,lRg
l−1∏
m=1

Ag,m

]
(1− cP )

[
ag,1 +

t∑
l=2

ag,lRg
l−1∏
m=1

Ag,m

]
+Ag,1rg

(5.5a)

ag+1,1 =

(1− cP )

[
ag,1 +

T∑
l=2

ag,lRg
l−1∏
m=1

Ag,m

]
(1− cP )

[
ag,1 +

T∑
l=2

ag,lRg
l−1∏
m=1

Ag,m

]
+Ag,1rg

(5.5b)

ag,2 =
(1− cP ) · ag,1

(1− cP )ag,1 +Ag,1rg
(5.5c)

Rg+1 =

Rg · (1− cH)

(
(1− s1) ag,1 +

T∑
t=2

(
(1− st)ag,t

t−1∏
l=1

Ag,l

)
+

T∏
t=1

Ag,t

)
Rg · (1− cH)

(
(1− s1) ag,1 +

T∑
t=2

(
(1− st)ag,t

t−1∏
l=1

Ag,l

)
+

T∏
t=1

Ag,t

)
+ rg(1− s1)

(5.5d)

Note that in this side analysis, genetic drift and functional mutations are only taken into

account when going from host generation g to host generation g+ 1 in both, the host and

the parasite. The frequency path in the parasite which is used to launch msms consists of

the frequencies at the first parasite generation within host generation g. Time is rescaled

as g∗P = g/(2NP ) in the parasite.
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5.B.3 Model 5C

Model 5C is based on model C in (Tellier and Brown 2007b). As in model 5A, we

assume T = 2 discrete parasite generations per discrete host generation g and frequency-

dependent disease transmission. Parasites of the second (t = 2) generation within host

generation g infect the same host individual as there parent at rate ψ (auto-infection) or a

different host at rate 1−ψ (allo-infection). A host which is infected throughout the whole

host generation g looses the amount s1 = s (cost of infection) of its fitness. If it is only

infected during a single parasite generation the cost of infection reduces to s2 = s
2
. The

respective fitness matrix is shown in table 5.B.3 with Ag,t (ag,t) denoting the frequency of

ninf (INF )-parasites in the t-th parasite generation within host generation g and Rg (rg)

denoting the frequency of RES (res)-hosts in host generation g.

ag,2 =
ag,1 · (1− cP )

ag,1 · (1− cP ) +Ag,1 · rg
(5.6a)

ag+1,1 =
(1− cP ) · (RgAg,1ag,2 + rgAg,1ag,2(1− ψ) + ag,1[ψ + ag,2(1− ψ)])

rg · (ψAg,1 +Ag,2(1− ψ))
+ (1− cP ) · (RgAg,1ag,2 + rgAg,1ag,2(1− ψ) + ag,1[ψ + ag,2(1− ψ)])

(5.6b)

Rg+1 =

Rg · (1− cH)(Ag,1Ag,2 + (1− s2)(Ag,1ag,2 + ag,1Ag,2(1− ψ))
+ (1− s1)(ag,1ψ + ag,1ag,2(1− ψ)))

Rg · (1− cH) (Ag,1Ag,2 + (1− s2)(Ag,1ag,2 + ag,1Ag,2(1− ψ))
+(1− s1)(ag,1ψ + ag,1ag,2(1− ψ))) + rg(1− s1)

(5.6c)

The allele frequency path for this model is obtained in the same way as in model 5A.
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Fitness matrix

Tab. 5.B.3: Fitness matrix for model 5C capturing the fitness effects of different interactions
between hosts and parasites within a single host generation g. Rg (rg) denotes the frequency of
resistant (susceptible) hosts in generation g. Ag,1 (Ag,2) denotes the frequency of non-infective
parasites and ag,1 (ag,2) denotes the frequency of infective parasites at the beginning of the first
(second) parasite generation t = 1 (t = 2) within host generation g. n/a indicates that these hosts
have not been infected as ninf -parasites fail to infect RES -hosts. The costs are: cH=cost of
resistance, cP=cost of infectivity, s1, s2=costs of infection.

first

generation

auto-infection

(ψ)

allo-infection

(1− ψ)

second

generation

fitness of

second parasite

generation

host fitness

host genotype RES

(Rg)

ninf (Ag,1) n/a ninf (Ag,2) 0 1− cH

INF (ag,2) 1− cP (1−cH)(1−s2)

INF (ag,1) ψ INF (ag,2) 1− cP (1−cH)(1−s1)

1− ψ INF (ag,2) 1− cP (1−cH)(1−s1)

1− ψ ninf (Ag,2) 0 (1−cH)(1−s2)

host genotype res (rg) ninf (Ag,1) ψ ninf (Ag,2) 1 1− s1

1− ψ ninf (Ag,2) 1 1− s1

1− ψ INF (ag,2) 1− cP 1− s1

INF (ag,1) ψ INF (ag,2) 1− cP 1− s1

1− ψ INF (ag,2) 1− cP 1− s1

1− ψ ninf (Ag,2) 1 1− s1
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5.C Supplementary information pairwise manhattan dis-

tance

PMD is calculated as the sum of manhattan distances between class i in the host site

frequency spectrum and class i in the parasite site frequency spectrum. It is calculated

as:

PMD =
n−1∑
i=1

|ξH,i − ξP,i| (5.1)

with ξH,i (ξP,i) being the total number of neutral SNPs linked to the coevolving locus which

are in frequency class i of the unfolded site frequency spectrum of the host (parasite). Note

that in the current formulation the summary statistic relies on the sample size of the host

(nH) and the parasite (nP ) being the same. However it is possible to adjust this summary

statistic by downsampling the site frequency spectrum of the species with the higher

sample size.

5.D Supplementary tables

Tab. 5.D.1: Overview of all parameters and variables used in this paper.

name standard
value

Description

cH 0.05 cost of resistance

s 0.3 cost of infection

cP 0.10 cost of virulence

ψ 1 auto-infection rate

R0 0.20 initial frequency of RES -hosts

a0 0.20 initial frequency of INF -parasites

Rg frequency of RES -hosts in generation g

rg frequency of res-hosts in generation g

Ag,t frequency of ninf -parasites at the beginning of the t-th par-
asite generation within host generation g

ag,t frequency of INF -parasites at the beginning of the t-th par-
asite generation within host generation g

gmax 30, 000 number of host generations to simulate
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Tab. 5.D.1 Continued:

T 2 number of parasite generations within host generation g

g - counter for host generations

t - counter for parasite generations within host generation g

nH 50 sample size host

nP 50 sample size parasite

NH 10, 000 haploid host population size

NP 10, 000 haploid parasite population size

θH 5 neutral population mutation rate host

θP 5 neutral population mutation rate parasite

µRtor 10−5 mutation rate RES to res

µrtoR 10−5 mutation rate res to RES

µntoI 10−5 mutation rate ninf to INF

µIton 10−5 mutation rate INF to ninf

µneutral 10−7 neutral mutation rate per bp

NR number of RES -hosts after selection and genetic drift

Nr number of res-hosts after selection and genetic drift

Nn number of ninf -parasites after selection and genetic drift

NI number of INF -parasites after selection and genetic drift

MRr current number of mutants from RES to res

MrR current number of mutants from res to RES

MnI current number of mutants from ninf to INF

MIn current number of mutants from INF to ninf

Ng+1,R number of RES -hosts in host generation g + 1

Nx,I number of INF -parasites in parasite generation x
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Tab. 5.D.2: Summary statistics calculated for the pseudo-observed data sets

Summary statistic reference

number of segregating sites S Watterson (1975)

θW Watterson (1975)

nucleotide diversity π Nei and Tajima (1981)

Tajimas’ D Tajima (1989)

Fu and Li’s D Fu and Li (1993)

Fu and Li’s F Fu and Li (1993)

θH Fay and Wu (2000)

Hprime Zeng et al. (2006)

PMD
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6
Locus specific and genome wide signatures of

host-parasite coevolution under eco-evolutionary

feedbacks

6.1 Introduction

During the past decades there is accumulating empirical evidence of ecological and evolu-

tionary dynamics taking place at comparable timescales involving bidirectional feedback

loops (Hiltunen and Becks 2014; Fronhofer and Altermatt 2015; Frickel et al. 2016). A

process often being termed as eco-evolutionary feedback or ecogenetic feedback (Bailey

et al. 2009; Post and Palkovacs 2009; Schoener 2011; Kokko and López-Sepulcre 2007).

Ecological dynamics encompass changes in population size whereas evolutionary changes

are mainly concerned with changes at the genic level such allele frequency changes.

It has been shown that eco-evolutionary feedback loops can take place in host-parasite co-

evolution (Frickel et al. 2016). Host-parasite coevolution is defined as reciprocal changes in

trait distributions and allele frequencies due to selective pressures two interacting species

exert on one another (Janzen 1980). Parasite population sizes can fluctuate across sev-

eral orders of magnitude resulting from factors such varying success of between host-

transmission, seasonally fluctuating epidemiological dynamics and temporal fluctuations

in host availability. On the other hand parasites have the potential to severly reduce host

population size due diseae induced mortality as for example shown in bats (Frick et al.

2010), amphibians (Berger et al. 1998) and Daphnia magna (Ebert et al. 2000). The re-

sulting genetic changes can be rather fast as it has been demonstrated for barley mildew

adapting rapidly to newly introduced resistance gene in the UK (Brown 2015) or phage

φ2 rapidly responding to evolution of Pseudomonas fluorescens (Paterson et al. 2010).

Rapid adaptive changes on the genetic level are not limited to the parasite but have been

also demonstrated in hosts such as Drosophila (Obbard et al. 2006).

Coevolutionary dynamics at the underlying loci can be placed into continuum between two

extremes being known as arms-race and trench-warfare (Red Queen dynamics). Arms-

race dynamics are characterized by recurrent rapid and reciprocal increases of new ben-
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eficial host resistance and parasite virulence genes ultimately resulting in their fixation

(Woolhouse et al. 2002; Dawkins and Krebs 1979). In constrast several alleles exhibit

temporally fluctuating frequencies in trench-warfare dynamics (Woolhouse et al. 2002;

Stahl et al. 1999). The classic expectation is that arms-race dynamics result in signatures

of selective sweeps such as negative Tajima’s D whereas trech-warfare dynamics result in

signatures of balancing selection.

Our understanding of host-parasite coevolutionary dynamics and concerning genes (and

genomic architecture) underlying host-parasite coevolution has been greatly improved by

the increasing availability of sequencing data. So far most of the methods for detecting

genes under coevolution have been based on analysing both of the coevolving partners in-

dependently using single species selection detection methods such as outlier identification

or genome-wide association analysis (GWAS) (Dalman et al. 2013; Karasov et al. 2014;

Hartmann et al. 2018; Talas et al. 2016). Although, such single species analysis have im-

proved our understanding of host-parasite ceovolution they have particular shortcomings.

First, they might discard some additional information contained in the genomic data of

the coevolving partner arising from their intermingled evolutionary histories. Only re-

cently methods analyzing both interacting partners simultaneously have been developed

and demonstrated their benefits (MacPherson et al. 2018; Nuismer et al. 2017; Wang et al.

2018). Second, outlier detection methods require information on the underlying demo-

graphic history in order to choose appropriate thresholds for the detection of outliers.

Eco-evolutionary feedbacks resulting from host-parasite coevolution can result in persis-

tent population size fluctuations (henceforward termed co-demographic population size

fluctuations). It has been shown that these co-demographic population size fluctuations

can result in detectable signatures in genome-wide neutral polymorphism data (Živković

et al. 2019) if time samples are available. Thus, the appropriateness of establishing the

demography based on genome-wide neutral polymorphism data from a single time-point

is questionable in such cases. Using time-samples rather than single time point data can

be used to improve our understanding of the temporal fluctuations of host and parasite

population sizes due to coevolution. For example Foll et al. (2014) make use of time-

sampled whole-genome data in a two-round ABC to first estimate changes in effective

population size of influenza viruses and use the obtained posterior distribution to infer

selection coefficients for each locus.

Furthermore, little is known so far about how the signatures at the coevolving loci devi-

ate from the classic predictions (selective sweep or balancing selection) depending on the
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amplitude and period of the co-demographic population size fluctuations.

Therefore, our first goal is to understand how the genomic signatures at the coevolving loci

are affected by co-demographic population size fluctuations arising from eco-evolutionary

feedback. Therefore, we extend an already existing foward-in time simulator (Živković

et al. 2019) which couples a susceptible-infected-model with a population genetic coevolu-

tion model to simulate the genome-wide neutral site frequency spectrum (SFS) over time.

We extend it in such a way that we can explicitly keep track of polymorphism patterns

and haplotype distributions at the coevolving loci in both species simultaneously over

time.

Second, we seek to understand how well whole-genome samples from different time-points

in combination with unbiased estimators of genetic drift are suited to infer the demo-

graphic history arising from host-parasite eco-evolutionary feedback. In this context, we

also aim to devise optimal sampling schemes in terms of sampling intervals and sample

sizes. Therefore, our simulator not only simulates the genome-wide neutral SFS over time

but also keeps track of allele frequency changes at several independent neutral loci over

time.

Third, we are interested to which extend the power to detect coevolutionary loci can be

increased when host and parasite whole genome samples from several rather than single

time-points are available.

Fourth, we aim to investigate whether biological properties such as disease transmission

rate, cost of resistance or selection coefficients for the loci under coevolution can be re-

trieved from time-sampled whole genome data of the host and the parasite by extending

the ABC in chapter 5 to an approach similar to the one in Foll et al. (2014) and Foll et al.

(2015). Therefore, we extend the forward-in-time simulator by Živković et al. (2019) in

such a way that we can keep track of 1) the coevolutionary dynamics, namely the allele

frequency changes at the coevolutionary loci and the host and parasite population size

changes, 2) the genome-wide neutral host and neutral parasite SFS, 3) the allele frequency

changes at 2000 independent and neutral host and parasite SNPs and 4) the haplotypes at

the coevolving host and parasite loci. This simulator will allow us to investigate the short-

term and long-term consequences of host-parasite coevolution on the genomic diversity at

the coevolving genes and at a genome-wide level.

136



6. Locus specific and genome wide signatures of host-parasite coevolution under eco-evolutionary feedbacks

6.2 Methods and material

In the next few paragraphs, we outline in detail how all these different properties are

implemented and in which way they will be used to answer our research questions.

6.2.1 Coevolution model

In order to simultaneously keep track of the epidemiological dynamics (population size

changes) and evolutionary dynamcis (allele frequency changes) we use an susceptible-

infected (SI) model which is coupled with a population genetics coevolution model (Živković

et al. 2019). In the used SI-model, the number of individuals in the healthy host compart-

ment increases due to birth of newborns from the healthy and infected class and decreases

due to natural death and healthy individuals receiving an infection from already infected

individuals. The number of infected individuals increases due to new infections and de-

creases by natural death and disease induced death (virulence).

We integrate a population genetic component into the SI-model, by assuming that there

is a total number of two host and two parasite types. These host and parasite types

are determined by a single locus with two alleles each. As we further assume haploid

hosts and haploid parasites, the phenotype and the genotype are the same in our model.

Whether a given host genotype i (i ∈ {1, 2}) can be infected by a given parasite genotype

j (j ∈ {1, 2}) depends on the so called infection matrix α (see section 3.1.1).

Our SI-model keeps track of the number of susceptible hosts of type i (Si) and the number

of host of type i which are infected by a parasite of type j (Iij). Hence, there is a total of

six compartments in our model. The disease is only transmitted horizontally at rate β,

the disease transmission rate and disease transmission is density dependent. The fitness of

infected hosts decreases by an amount s (the cost of infection or the selection coefficient).

Additionally, infected hosts die from the disease at rate γ, the disease induced mortality

or virulence (sensu animal literature). Further, each host genotype i can be associated

with some fitness cost cHi , such as a cost of resistance (Karasov et al. 2014; Bergelson and

Purrington 1996; Tian et al. 2003). Similarly, each parasite genotype j can be associated

with some fitness cost cPj (cPj ∈ [0, 1]), such as a cost of infectivity (Thrall and Burdon

2003). All hosts produce healthy offspring at rate b (birth rate) and die at rate d (death

137



6. Locus specific and genome wide signatures of host-parasite coevolution under eco-evolutionary feedbacks

rate). Therefore, the full model (Živković et al. 2019) writes as:

dHi

dt
= Hi

b(1− cHi)− d− 2∑
j=1

αijβ(1− cPj )
2∑

k=1

Ikj

+ b(1− cHi)
2∑
j=1

(1− s)Iij

dIij
dt

= Iij(−d− γ) +Hi

[
αijβ(1− cPj )

2∑
k=1

Ikj

] (6.1)

The total number of hosts of type i can be obtained as Hi = Si +
∑

j Iij. We obtain the

effective host population size NH by summing up the numbers in all six compartments.

We assume that each host is solely infected by a single parasite. Therefore, the number

of parasites of type j can be obtained as Pj =
∑
i

Iij and the change in number is given

by
dPj
dt

=
∑
i

dIij
dt

. Accordingly, the effective parasite population size is given by NP =

2∑
j=1

2∑
i=1

Iij.

To simulate the coevolutionary dynamics we discretize the continuous time model into

small time steps of size δt = 0.001. The choice of δt is based on previous analysis (Živković

et al. 2019) and ensures that the discretized dynamics match the continuous-time behavior

of the model. Thus, one discrete host generation t consist of nmax = 1/δt = 1000 small

time steps. In each small time step n we update the number of individuals in each

compartment based on eq. 6.1. To do so, we rescale the rates β, γ, b, d by a factor δt.

Therefore, the change in number of healthy hosts of type i in the n-th small time step

within host generation t is given by:

Hi,n −Hi,n−1 = δt

(
Hi,n−1

[
b(1− cHi)− d−

2∑
j=1

αijβ(1− cPj)
2∑

k=1

Ikj,n−1

]

+b(1− cHi)
2∑
j=1

(1− s)Iij,n−1

)
(6.2)

and the change in number of hosts of type i infected by parasites of type j is given by:

Iij,n − Iij,n−1 = δt

(
Iij,n−1(−d− γ) +Hi,n−1

[
αijβ(1− cPj)

2∑
k=1

Ikj,n−1

])
(6.3)
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In our simulations, we allow for type changing mutations to take place at the coevolu-

tionary loci. Every time a host (parasite) offspring is born by a parent of type i (j), this

offspring is born with the other host (parasite) genotype k at rate µfH (µfP ), the func-

tional host (parasite) mutation rate. Thus, we assume (for now) symmetric functional

mutation rates in the host and the parasite. But see the discussion in Kirby and Burdon

(1997), that these mutation rates between functional types can be also fairly asymmetric.

To include these type changing mutations into our simulations, we proceed as follows. For

each small time step n we calculate the total number of newborn hosts of type i, Bi,n,

based on the birth terms (terms which include b) in eq. 6.2. As we have discretized the

dynamics into small time steps of size δt, this results in the birth of fractional individuals

(Bi,n < 1) for most of the δt-time steps. Usually one would draw the number of type

changing mutants Mi,n from a Poisson distribution with λfH = µfH ·Bi,n where Bi,n is the

number of newborn individuals of host type i in the n-th small time-step. However, this

gives rise to an numerical issue and a biologically motivated issue. The small mutation

rate and the small number of newborn individuals in each single time step δt (frequently

Bi,n < 1) are likely to produce numerical issues. In addition, from a biological perspective

only a ’full’ newborn host individual can mutate. Therefore, we use a little approxima-

tion. We count the total number of newborn individuals of type i Bi,TT ′ =
∑T ′

n=T Bi,n in

some time interval T → T ′ consisting of consecutive δt time steps. Once Bi,TT ′ > 1, and

thus, at least one full host individual has been born by parents of type i, we allow for

type changing mutations to take place by drawing a random number Mi,n from a Poisson

distribution with λ = µfH · Bi,TT ′ . The number Mi,n is the number of type changing

mutants among the offspring of parents of type i. Accordingly, we decrease the number

of healthy hosts of type i by Mi,n and increase the number of healthy hosts of type k by

Mi,n. After the type changing mutations have taken place we reset Bi,TT ′ = 0 and set

T = T ′ + 1. We repeat this procedure until nmax and hence, the end of the generation is

reached. Once nmax is reached we reset Bi,TT ′ to zero. We proceed in a similar manner

for the parasites. Note that new infections correspond to the birth of a parasite. For

parasites we also have to keep track of host type i on which a parasite by a parent of type

j was born. For example a type changing mutation in an offspring from a parasite of type

j = 1 which is born on a host of type i = 1 decreases the number of I11 by one 1 and

increases the number of infected hosts of type I12 by one. The number of offspring from
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parasite parents of type j on hosts of type i at time n is given by:

Bj,n = δtHi,n−1

[
αijβ(1− cPj)

2∑
k=1

Ikj,n−1

]
(6.4)

6.2.2 Simulation of the neutral whole genome population site frequency spectrum

While simulating the coevolutionary dynamics we keep track of the unfolded neutral whole

genome site frequency spectrum for both, the host and the parasite. The whole genome-

site frequency spectrum summarizes the allele frequencies at neutral single nucleotide

polymorphism (SNP) which are distributed across the whole genome. By definition, these

neutral SNPs do not affect the infection outcome. We assume that they evolve indepen-

dently of each other and independently of the coevolutionary locus as the recombination

rate along the genome is high enough. By using the unfolded site frequency spectrum, we

assume that the ancestral and derived state are known for each SNP. As neutral SNPs are

not determining the infection outcome, we can track and update a single site frequency

spectrum for the whole host (parasite) population and must not proceed separately for

each host and each parasite types.

We initialize the population site frequency spectrum for each species under the assump-

tions of an infinite sites mutation model and mutation-drift balance. In an infinite sites

models each site can only mutate once, and thus all neutral SNPs are bi-allelic. Given

these assumptions, the expected unfolded population site frequency spectrum of species

x, where x can either be the host or the parasite, is given by:

ξkx =
2Nx,0µGx

k
=
θx
k

k ∈ {1, . . . , Nx − 1} (6.5)

Here, µG,x is the genome-wide mutation rate per generation for species x and θx is the

population mutation rate of species x. Note that as our model is based on haploid individ-

uals, Nx,0 corresponds to the initial haploid population size of species x. The genome-wide

mutation rate µGx is obtained as the product of the mutation rate per site per generation

µlx and the total genome size (lx).

µn = µlx · lx (6.6)
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Accordingly, we start our simulation with a total number of Sx neutral SNPs.

Sx = θ

Nx,0−1∑
k=1

1

k
(6.7)

The neutral site frequency spectrum of each species is updated after the SI-model has been

iterated for nmax time-steps and hence, the end of a discrete generation is reached. As our

SI-model allows for overlapping generations, namely when d < 1, the host and parasite

population are composed of individuals which already lived in the previous generation,

the overlap Ox,t, and newborn individuals Bx,t. This has to be taken into account when

updating the SFS. Therefore, we first calculate the number of overlapping individuals in

both species. The overlap in the host is obtained as:

OH,t = (1− d)NH,t−1 (6.8)

and the overlap in the parasite is obtained as:

OP,t = (1− (d+ γ))NP,t−1 (6.9)

We base our calculation of overlap on the previous population size and not on the current

population size as only indiviuals which already lived in the previous generation can sur-

vive and thus, be overlapping. If the population size rapidly declines between consecutive

discrete generations and the number of overlapping individuals would become larger than

the current population size (Ox,t > Nx,t), we set Ox,t = Nx,t. Note that in such cases the

current population is only composed of overlapping individuals. Based on the number

of overlapping individuals Ox,t and the current population size, the number of newborn

individuals (Bx,t) is obtained as:

Bx,t = Nx,t −Ox,t (6.10)

where Nx,t is the current population size of species x.

We use these numbers to update the SFS based on the previous SFS (from t−1). For each

single SNP l which had some derived allele frequency k in the previous generation, the

update consists of two sampling steps. First, we randomly sample the alleles of the overlap

from a hypergeometric distribution (sampling without replacement). Second, we sample
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the alleles of the newborns from a binomial distribution (sampling with replacement).

The hypergeometric sampling for the overlap is performed with parameters Nt−1, k and

Ot,x. The biological intuition behind is as follows: In the previous generation there have

been Nt−1 individuals among which k individuals had the derived allele at locus l and from

which Ot,x individuals are still living. As each individual can be only chosen once to be one

of the surviving individuals, the sampling has to be performed without replacement and

thus is hypergeometric. The random number drawn from the hypergeometric distribution

corresponds to the number of overlapping individuals with the derived allele at SNP l.

The newborns are sampled from a binomial distribution with parameters k/Nt−1 and Bt,x.

For neutral SNPs, each parent is equally likely to be the parent of a newborn individual

as both alleles have the same fitness by definition (unless they are physically linked to a

selected SNP). This is equivalent to let each newborn choose its parent at random from

all Nx,t−1 individuals in the previous generation. Among these Nx,t−1 parents k parents

had the derived allele at SNP l. Thus, the probability for each offspring to be born with

the derived allele is p = k/Nt−1. Note that obligatorily offspring have the same allele as

their parent as a consequence of the infinite-sites model assumption, which excludes the

possibility of recurrent mutations. As in addition each parent can potentially produce

several offspring the sampling is binomial. The random number drawn from the binomial

distribution is the number of newborn individuals which have the derived allele at the

considered SNP.

Thus, the current derived allele frequency at SNP l is obtained as the sum of the numbers

drawn from the hypergeometric and binomial distribution. This procedure is applied

to every neutral SNPs of the previous SFS. In addition, new SNPs can arise due to

mutation in the Bx,t newborn individuals. The number of new SNPs is drawn from a

Poisson distribution with mean λ = µGx ·Bx,t. Each mutation produces a new SNP with

frequency one and thus, increases the number of singletons in the current SFS by one.

Time samples genome wide site frequency spectrum

At each discrete generation t we output the expected sample site frequency spectrum for a

sample of size nx The sample site frequency spectrum can be obtained from the population

site frequency spectrum as:

ρm =

(
nx
m

)N−1∑
k=1

ξk,t

(
k

N

)m(
1− k

N

)nx−m
(6.11)
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where nx is the sample size and ρm is the expected number of sites in the sample with

minor allele frequency m (m ∈ {1, . . . , nx−1}) and ξk,t is the number of SNPs with minor

allele frequency k in the population SFS at time t.

6.2.3 Tracking allele frequency changes at neutral loci

Further, we initialize τn,x = 2000 neutral SNPs for which we explicitely track the allele

frequency changes over time. We use the allele frequency changes at these SNPs to obtain

an estimate of the effective population size between consecutive sampling time points by

using a drift estimator proposed by Jorde and Ryman (2007). The inital allele frequencies

of these neutral SNPs are drawn randomly from the initial population SFS under drift-

mutation-equilibrium (see previous section). Accordingly, the probability that the derived

allele frequency of the r-th tracked SNP in species x is k, is given by:

p(k) =
ξk

Nx,0−1∑
i=1

ξi

(6.12)

where Nx,0 is the initial population size. The allele frequencies for all neutral SNPs are

updated at the end of each discrete generation based on the new total host (parasite)

population size, the previous total host (parasite population size) and the overlap (1−d).

As for the update of the population site frequency spectrum the update for the explic-

itly tracked SNPs consists of two sampling steps, a binomial sampling for the newborn

individuals and a hypergeometric sampling for the overlapping individuals.

Temporal samples for 2000 neutral SNPs

Every ten time steps, we draw a random sample of n = 100 individuals for each SNP

r from a binomial distribution with parameter p = k
Nx,t

. We acknowledge that for large

n/Nx,t ratio the assumption of a binomial sampling might be violated. In such cases one

should rather sample from a hypergeometric than from a binomial distribution. We then

apply the estimator from Jorde and Ryman (2007) to obtain an estimate of the amount

of drift between the current and the previous sampling point. This estimator is based on

measuring the allele frequency change between two sampling times being g generations

143



6. Locus specific and genome wide signatures of host-parasite coevolution under eco-evolutionary feedbacks

apart from each other. The estimator over all tracked neutral SNPs τx is given by:

Fs′ =
Fs(1− 1

4ñ
)− 1

ñ

(1 + Fs
4

)(1− 1
2ny

)
with (6.13)

Fs =

τx∑
r=1

(κ1 − κ2)2

τx∑
i=r

zr(1− zr)
(6.14)

(6.15)

where κ1 is the derived allele frequency at SNP r in the first sample and κ2 is the the

derived allele frequency in the second sample which is g generations apart. zr is the

unweighted mean of the allele frequencies at locus r and is given by: zr = κ1+κ2
2

. ñ = 2
1
n1

+ 1
n2

is the harmonic mean of the diploid sample sizes at the two sampling points and n2 is

the diploid sample size for the second sample. Based on this an estimate of the effective

population size between two time points being g generations apart from each other, is

obtained as:

Ne =
g

Fs′
(6.16)

6.2.4 Simulation of the coevolutionary loci

As already introduced in the previous section we simulate the coevolution of a single bi-

allelic host locus and a single bi-allelic parasite locus. Our coevolutionary locus consists

of a so-called functional site which is surrounded by a number of lcH (lcP ) neutral sites in

the host (parasite). The functional site determines the allelic state at the coevolutionary

locus and can be a single SNP, an insertion/deletion polymorphism or the absence of

presence of a transposable element. We introduce the term background for the neutral

sites at the coevolutionary locus. All sites at the coevolutionary locus (functional and

neutral) are fully linked. Thus, we assume that recombination is absent or negligible

at the coevolutionary locus. Throughout the simulation we keep track of all haplotypes

existing at the coevolutionary locus. We initialize the host and parasite coevolutionary

locus with two haplotypes each. Namely, one haplotype for each host genotype i and for

each parasite genotype j. These two haplotypes only differ in the identity of the functional

site. Thus, the initial absolute number of the first (second) host haplotype is H10 (H20)

and the initial number of the first (second) parasite haplotype is P10 (P20). We update
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the haplotypes at the end of each discrete generation t. In contrast to the update of the

genome wide site frequency spectrum we have to update the haplotypes separately for

each host genotype i and for each parasite genotype j. Therefore, we proceed as follows.

1. First, we calculate the number of overlapping individuals and newborn individuals

for each host type i (parasite type j). The number of overlapping individuals for

host type i is obtained as:

Oi,t = (1− d)Hi,t−1 (6.17)

Similarly, the number of overlapping individuals of parasite type j is obtained as

Oj,t = (1− (d+ γ))Pj,t−1 (6.18)

2. Based on the overlap we calculate the number of newborn hosts of type i as:

Bi,t = Hi,t −Oi,t (6.19)

and the number of newborn hosts of type j as

Bj,t = Pj,t −Oj,t (6.20)

3. To take the functional mutations into account we draw the number of mutant

offspring Mi,t of host parents of type i from a Poisson distribution with mean

λfH = µfH · Bi,t and the number of mutant offspring Pj,t of parasite parents of

type j from a Poisson distribution with mean λfP = µfP ·Bj,t

4. We search for all host (parasite) haplotypes with functional site i (j).

5. We sample the haplotypes of the overlapping individuals of host (parasite) type i (j)

from all haplotypes with functional site i (j) of the previous generation. Therefore,

we perform a hypergeometric sampling based on the absolute frequencies of all

haplotypes with functional site i (j) in the previous generation

6. We obtain the haplotypes of the Bi,t −Mi,t (Bj,t −Mj,t) non-mutated offspring of

parents of host (parasite) type i (j). Therefore, we perform a multinomial sampling

from all haplotypes with functional site i (j) in generation t − 1. Each newborn
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individual by default inherits the haplotype of its parent. With probability lcH · µlH
(lcP · µlP ) a mutation happens in the coevolutionary background of each newborn

individual (Remember that µlH (µlP ) is the host (parasite) per site mutation rate

per generation). We assume that these neutral mutations also follow an infinite sites

model. Every neutral mutation in the background creates a new haplotype and this

haplotype is initially in frequency one.

7. We obtain the haplotypes of the Mi,t mutated offspring of parents of host (parasite)

type i (j). Therefore, we perform a multinomial sampling from all haplotypes with

functional site i (j) in generation t − 1. Each offspring inherits the background

of its parents but the functional site changes to the other host (parasite) type. In

contrast to the non-mutated Bi,t −Mi,t (Bj,t −Mj,t) no mutations happen in the

background of the mutated offspring, as we assume that to mutations happen at the

coevolutionary locus in a single individual is negligible.
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Advances in sequencing technologies have largely increased the amount of host and para-

site genomic data available. There are big hopes that such data provide a very valuable

resource to improve our understanding of host-parasite coevolution. This includes eluci-

dating the genomic basis of host-parasite coevolution on the one hand and inferring the

past coevolutionary history on the other hand. One central aim of this thesis was to un-

derstand how and which information about the genomic basis of host-parasite coevolution

and the past coevolutionary interactions can be extracted by jointly analysing host and

parasite genomic data. We could show that by means of cross-species genome wide associ-

ation studies it is possible to pinpoint the loci under coevolution. However, the ability to

detect these loci varies over time and depends on the underlying GxG-interaction and the

nature of the coevolutionary dynamics. Therefore, we suggested that samples from several

time points could be potentially used to gain a deeper understanding about the underlying

GxG interaction. We further could show in chapter 5 that under trench-warfare dynamics

the genomic signatures at the coevolving genes are indicative about the allelic equilibrium

frequencies. In the simple polycyclic model we used they were solely determined by sev-

eral fitness costs. Thus, shifts in the signatures at the coevolving genes could be directly

attributed to changing costs. However, there are distinct processes which can generate

direct frequency- dependent selection and thus, favour trench-warfare dynamics. In the

model used, direct frequency-dependent selection is created via auto-infections. However,

other factors such as seed-banks, overlapping generation or spatially heterogeneous selec-

tion have the potential to create direct frequency-dependent selection (Brown and Tellier

2011). Thus, in such cases the genomic data will be only informative about the costs if

they are the main determinants in shifting the equilibrium frequencies substantially.

Another aim was to provide additional methods for jointly analysing host and parasite

data in order to gain more information on the past coevolutionary history. Therefore,

we proposed two indices which could be potentially useful when performing cross-species

GWAS. We hypothesize that these indices might be also useful to detect divergent co-

evolutionary interactions in two populations given that data from several time points are

available. One possibility of such divergent selection could be that a host-parasite-locus
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pair is coevolving according to trench-warfare dynamics in population A and there is no

coevolution any longer in population B. For such cases it is expected that CSA is consis-

tently high in population A but constantly low with some minor fluctuations in population

B. If on the other hand the same host-parasite locus pair is coevolving in both populations,

but the dynamics are having some time lag due to limited migration, one then expects to

see the qualitatively same change in CSA over time.

Besides these indices we proposed a new approach which is based on coupling a coevo-

lutionary model with an Approximate Bayesian Computation method to infer properties

of the past coevolutionary history. Using this methods we could show that the genomic

signatures at the coevolving genes contain information about host and parasite coevolu-

tionary costs. Thus, this approach is an addition to the limited amount of methods which

exist (MacPherson et al. 2018; Nuismer et al. 2017; Wang et al. 2018; Bartoli and Roux

2017; Bartha et al. 2013) to analyse jointly host and parasite genomic data and which

take the reciprocal nature of coevolutionary interactions into account. Nuismer and Week

(2019) have also proposed to use ABC in order to gain a better understanding about host-

parasite arms-races. In contrast to our approach they used phenotypic data from several

populations in order to estimate the intensity of reciprocal selection. Combining their

ABC approach with our ABC approach and the cross-species indices could potentially

yield refined insights into the past coevolutionary interaction.

As further aspects of our results have been already discussed at the end of each chapter we

will now move to a more general discussion about our current understanding of genomic

polymorphism patterns under coevolution and the value of genomic data to gain a better

understanding on host-parasite coevolution. Here, we will address the following ques-

tions: 1) What is the value of genomic data for understanding host-parasite coevolution?

2) How much do we know about sequence evolution at the coevolutionary loci and at the

genome-wide level under coevolution? 3) What is the value of analyzing host and parasite

data in a joint framework? 4) How does the complexity of host-parasite coevolutionary

interactions likely affect our ability to extract information from genomic data? 5) Why

is theory important for analyzing genomic data of host-parasite coevolution? 6) How

can existing methods to analyze genomic data of host-parasite coevolution be further im-

proved? 7) How can we improve our understanding of host parasite coevolution in general?
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7.1 The value of genomic data for understanding host-

parasite coevolution

Analysis of host or parasite genomic data based on single species techniques such as out-

lier scans or genome-wide association studies have uncovered several host defense genes

and parasite attack genes which show either signatures of positive or balancing selection

(Schweizer et al. 2018; Dalman et al. 2013; Caicedo and Schaal 2004; Bergelson et al.

2001; Hoerger et al. 2012; Rose et al. 2007; Krishnan et al. 2018). Thus, genomic data

have been proven to be a valuable source to identify genes which are potentially involved

into coevolutionary interactions. These hits provide useful candidate genes for designing

molecular experiments and for further characterisation of potential host-parasite inter-

actions at the molecular level. However, signatures on their own do not contain any

conclusive information about whether these genes have been coevolving and/or whether

they are still coevolving and the exact nature of the underlying process. What are for

example the likely causes of the strong balancing selection signatures at several resistance

genes in plants (Karasov et al. 2014; Hoerger et al. 2012; Rose et al. 2007; Caicedo and

Schaal 2004)? In a nice study which combined molecular, experimental approaches and

sequencing approaches Karasov et al. (2014) suggested that the found balancing selection

signature at the Rps5-gene of A. thaliana is likely the result of diffuse interactions with

several parasite strains in their particular example. However in general, there are several

distinct processes which can give rise to balancing selection signatures under host parasite

coevolution. These include for example seed-banks, overlapping generations or epidemio-

logical feedback loops (Brown and Tellier 2011). Thus, outlier scans as such only provide

ways to detect polymorphism patterns which deviate from neutrality but do not give an

indication about the underlying process. It is therefore important to keep in mind that

outlier scans always need some validation in order to be conclusive.

Further, as we have shown in chapter 4 and 5 our ability to detect genes under coevolu-

tion based on genomic signatures is also crucially affected by the underlying dynamics of

the coevolutionary interaction (for example the equilibrium frequencies, temporal changes

of allele frequencies). For example the signatures of interactions where the equilibrium

frequencies are close to the boundaries resemble almost neutral signatures. Therefore, it

is important to keep in mind that the absence of strong signatures does not necessarily

imply absence of coevolution as such. On the opposite hand, the presence of a strong
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signature is not necessarily an indicator that the particular genes has been involved into

coevolution (see Nuismer et al. (2010); Janzen (1980) for similar arguments concerning

correlations).

Further, for devising optimal disease management strategies, it is crucial to not only detect

loci under coevolution but also to gain an understanding of the underlying coevolution-

ary processes. The presented ABC method in chapter 5 is an approach to extract such

information based on genomic data of the host and the parasite and thus, extends beyond

classic outlier scans. However, the model used in the ABC has to be used with caution

and as for outlier scans the results require a careful validation in order to avoid biased

interpretations of the results.

7.2 Link between coevolutionary dynamics and sequence

evolution at the coevolving loci

The classic prediction is that arms-race dynamics result in signatures of positive selection

and trench-warfare dynamics result in signatures of balancing selection. The reasoning

behind these simple predictions is straightforward. But taking the multitude of processes

interacting with each other in host-parasite coevolution into account (chapter 2), one

should expect that the genomic signatures at the coevolving genes rather fall into contin-

uum than map to a strict dichotomy. Such continua of signatures have been for example

found in Tellier et al. (2014) and chapter 5. Generally speaking, this demonstrates the

necessity to gain a refined understanding on how coevolutionary dynamics in finite popu-

lation size in combination with the biology of the coevolving species and the abiotic and

biotic environment link to genomic signatures at the coevolving genes.

As we have shown in chapter 5 the amount of genetic drift, which is intimately connected

to the demographic history, can interact with and alter the coevolutionary dynamics at

the coevolving genes. This can result in the stochastic extinction of alleles which in turn

has subsequent effects on the resulting signatures. So far, most studies have only consid-

ered the effect of drift by assuming a Wright-Fisher model (chapter 3 and 5 of this thesis

and Tellier and Brown 2007b; Kirby and Burdon 1997; Tellier et al. 2014; Salathe et al.

2005). However, the Wright-Fisher model is based on the assumption that the number

of offspring per individual is Poisson distributed with mean one. But, parasites can be
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characterized by highly skewed offspring distributions (Irwin et al. 2016). This implies

that some parasite individuals can potentially contribute a disproportionately large frac-

tion of offspring and thus, the whole parasite population is composed by the offspring of

only a few individuals. It has been shown that the time to fixation of a beneficial mutant

(conditional on fixation) is substantially decreased in populations with skewed offspring

distributions (Eldon and Stephan 2018). Further, the chance of loosing beneficial mu-

tants due to drift is also increased (Eldon and Stephan 2018). As the changes in host and

parasite allele frequencies feedback on each other in host-parasite coevolution it is very

likely that such forms of genetic drift have an impact on the coevolutionary dynamics

and thus on the genomic signatures at the coevolving loci. Skewed offspring distributions

are rather characterised by a multiple merger coalescent then a standard coalescent. In

multiple-merger coalescents there is a substantial chance that more than two individuals

find a common ancestor in the previous generation. Multiple merger coalescents violate

the assumptions of classic outlier scans or coalescent simulators such as msms (Ewing and

Hermisson 2010) which should be kept in mind when performing outlier scans.

Besides the effect of skewed offspring distributions on the amount of drift, the effect of eco-

evolutionary feedbacks on the signatures at the coevolving loci has not been theoretically

investigated so far. However, it is important to understand such effects as host-parasite

coevolution can result in eco-evolutionary feedback loops (Frickel et al. 2016). Popula-

tion size changes which arise from eco-evolutionary feedback loops determine the effect of

genetic drift and the supply of new mutations via the population mutation rate. Strong

population size fluctuations can result in recurrent bottlenecks which are likely to cause

a depletion of genetic variation at the coevolving loci and have been shown to affect the

genome-wide site frequency spectrum (Živković et al. 2019). This effect has the potential

to weaken the strength of balancing selection signatures although the alleles might be

maintained stabily for a long period of time. In addition strong strong bottlenecks can

also cause the random loss of alleles and generate multiple merger coalescent signatures

(Tellier and Lemaire 2014).

Thus, besides collecting increasing amounts of genomic data and asking for the devel-

opment of new inferences methods, it is also crucial to improve our understanding on

how the interplay between coevolutionary dynamics, the biology of the species and eco-

evolutionary feedbacks shapes the polymorphism data at the coevolving loci. This under-

standing is the basis for developing new meaningful methods and the correct interpretation

of any population genomic analysis.
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7.3 Analysing host and parasite data in a joint framework

All chapters in thesis are based on the assumption that host and parasite polymorphism

data are jointly analysed. This approach has several advantages compared to pure single

species techniques but also introduces some potential difficulties in certain circumstances.

Due to the fact that allele frequency changes at the coevolving loci feedback on one another

the coevolutionary histories of the host and the parasite locus are inevitably intermingled

with each other. Therefore, the polymorphism data at both loci have bits of informa-

tion about their joint coevolutionary history. Thus, the joint analysis of data from both

partners is likely to give a much clearer picture about the past coevolutionary dynamics

and histories. This is for example also resembled by the fact that host (parasite) equi-

librium frequencies are determined by costs which apply to the coevolving partner and

vice-versa (Tellier and Brown 2007b; Frank 1992). Additionally, we have shown in chap-

ter 5 that the signature in either species is presumably most indicative about costs which

applied to the coevolutionary partner. This also explained why analysing the host and

the parasite together greatly improved the accuracy of our inference approach in chapter

5. Further, Wang et al. (2018) and MacPherson et al. (2018) could show that the effect

size of single species GWAS depends on the allele frequency in the coevolving partner.

In addition, Živković et al. (2019) could show that the co-demographic changes arising

from host-parasite coevolution are detectable in time-samples from the parasite but not

in time samples of the host. Thus, the signal of co-demographic changes is missed when

only analysing the host. When performing further analysis for chapter 6 we also expect

that jointly analysing the host and the parasite over time will give a better indication

about the temporal changes in allele frequency and population sizes. Therefore, the infer-

ence of co-evolutionary parameters using this simulator should be also largely improved

when analysing the host and the parasite together. Based on all these examples, analysing

both partners simultaneously is a natural choice as such analysis take the interdependence

of both coevolving partners explicitly into account. In the light of decreasing sequencing

costs, we should therefore aim to perform more of such co-species approaches (Wang et al.

2018; Bartha et al. 2013). Nevertheless, joint host-parasite analysis can be also related to

some complications. First, multiple comparisons have to be performed which potentially
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decrease the statistical power and further, can be computationally extensive (MacPher-

son and Otto 2018). In addition, co-species analysis method compared to single species

analysis methods have to fit the biology of both interacting partners. This requires an

even more careful thinking compared to single species analysis.

7.4 How to deal with more complex forms of host-parasite

coevolution in inference

All the analysis presented in this thesis assume a strict one by one relationship between

the host and the parasite and that the coevolutionary interaction is driven by a single

major bi-allelic locus in each species. It is justified to claim that these assumptions are a

quite strong simplification of the reality and that such systems are barely or even never

found in nature. It is for example common that hosts are co-infected by several parasites

(Tollenaere et al. 2016). Further, is very likely that the different parasites display a dis-

tinct arsenal of effectors and thus, the host is exposed to different selective pressures from

different parasites. Karasov et al. (2014) therefore suspect that the long-term balancing

selection signature at the R-gene Rps5 in Arabidopsis might be the results of the interac-

tion with a community of different parasites.

On the other hand, it is known that many parasite species can infect several hosts (Barrett

et al. 2009). In such cases the parasite is potentially exposed to selective pressures from

different hosts. Third, it has been shown that hosts have a large number of resistance

gene homologues (Van de Weyer et al. 2019) and in the same manner parasite species

have a large number of effector genes. Therefore, there might be also coevolution among

some host R-genes and the R-gene network will determine the interaction outcome with

a single parasite.

However, developing new methods by starting from such a simple systems has several

advantages. First, already in such comparatively simple systems, it can be quite hard

to track simultaneously all quantities which determine the coevolutionary dynamics and

those which are affected by the coevolutionary interaction. There is no standard popula-

tion genetic simulator available which is by default suited to simultaneously keep track of

host and parasite genomic data. In addition understanding the power of new methods for

simple scenarios makes it also easier to understand potentially more complex interactions
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such as those with several R-genes involved.

Overall, the methods presented in this thesis are easily extensible to systems with several

major genes involved as long as these genes are not in linkage and there are no pleiotropic

or epistatic interaction among these genes. It has been shown that the conditions to

obtain trench-warfare dynamics are less restrictive in mulit-locus compared to single lo-

cus systems (Tellier and Brown 2007a). However, the resulting signatures at each single

locus might be potentially weaker and thus harder to be detected. This effect should be

especially pronounced for quantitative traits (Jain and Stephan 2017).

7.5 The value of theoretical studies for analysing host and

parasite genomic data

One could question why the methods presented in this thesis have so far not been applied

to real data. Further, it is also justified to ask why the effect of coevolution on genomic

signatures and the power of methods are first investigated by means of simulation. Put

in a nutshell, real genomic data are noisy. They are not only affected by coevolution but

also by other selective pressures such as the abiotic environment, competitive interactions

with other species or spatial heterogeneity in resource availability. Therefore, testing new

methods on simulated data is quite powerful to understand the full potential power of

these methods for a perfect data set. Further, it is exactly known which processes have

given rise to simulated data and replications can be easily done. Therefore, it becomes

feasible to investigate the relative importance of the different processes. In real data

the effect of particular processes will be always intermingled with the background noise.

However in the long-run, new methods are only useful when they can be applied to real

data. For the ABC in chapter 5 one could think about applying it to data from microcosm

experiments (Frickel et al. 2016). One further alternative could be to apply it to data

from coevolving metapopulations such as found in the Plantago lanceolata-Podosphaera

plantaginis-system (Jousimo et al. 2014) or the Linum usitatissimum-Melampsora lini -

system (Thrall et al. 2012). However, this requires to take the spatial structure into

account.
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7.6 Possible extensions of existing inference methods

It is important to refine and combine existing methods and to access which additional

sources of information can be incorporated to increase the power of such methods. One

promising approach to increase the power of inference methods is to incorporate genomic

data from several time points as proposed in chapter 6. Time-samples have proven to be

a valuable source to estimate the demographic history from allele frequency changes be-

tween different sampling times (Forde et al. 2008). Based on the established demography

appropriate thresholds for detecting loci under selection (Foll et al. 2014, 2015) can be

obtained. However, the availability of such data will crucially depend on the life-history

traits of the coevolving species. For species with short generation times such as used in

microcosm experiments (Frickel et al. 2016; Lenski 1988) it is straightforward to obtain

time samples. Even for annual crop species it is possible to obtain such time-sampled data

at least from the host. But obtaining such data can be rather difficult or even impossible

for long-lived species.

An other type of data which could be very helpful are genomic samples from different

populations. When migration rates are low the coevolutionary dynamics in the different

populations can be asynchronous and thus, the different populations are likely to be at

different stages of the coevolutionary cycles. Therefore, such data provide time samples

in space. There is already a large body of literature how such data are potentially in-

formative about coevolution (Gandon et al. 1996; Gandon and Michalakis 2002; Gandon

et al. 2008; Gandon and Nuismer 2009). However, environmental conditions can differ

among populations and it has been shown that abiotic factors can affect coevolutionary

interactions (Duncan et al. 2017). Further, the parasite community could be different

in the different populations and thus, introduce unknown confounding effects. Note in

addition, that the spatial structure has to be also taken into account when establishing

the demographic history of both species.

One further important question to be addressed is how coevolutionary inference meth-

ods for species with very low (or even absent) recombination rates (for example clonal

reproducing fungi) can be designed. In such cases the assumption of evolutionary inde-

pendence between the functional and coevolving loci is clearly violated. This makes it

potentially hard to disentangle the co-demographic or demographic history from the effect

of coevolution on the resulting genome data.
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Given the plethora of host-parasite coevolutionary systems with varying life-history traits

and the variety of interacting processes, there will be no single standard for analyzing

genomic data from potentially coevolving species. However, in the last years promising

approaches have been developed. Therefore, further effort should be put into thinking

about how data from different sources, may it be genomic, phenotypic, from from a single

or several populations, from a single or several time points, can be efficiently combined.

Additionally, it is important to derive optimal sampling schemes, in terms of sampling

times, sample sizes and spatial distribution of the samples. This requires a tight inte-

gration of theoretical modelling and experimental approaches. Further, we should aim

to identify system where such approaches can be easily tested with enough generality.

And most importantly, it requires that theoreticians, population geneticists, molecular

biologist and phytopathologist force exchanges between disciplines and stop focusing on

limitations of single approaches. Rather the field should move towards identifying the

strengths of the different approaches. Coevolution is an ongoing process and so are our

efforts to gain a better understanding of it. Scientists from different disciplines should

aim to make this field of study a mutualistic rather than an antagonistic one.
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