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The Finite Element Method results in inaccuracies for temperature changes at the boundary if the mesh is
too coarse in comparison with the applied time step. Oscillations occur as the adjacent elements balance
the excessive energy of the boundary element. An Extended Finite Element Method (XFEM) with extrinsic
enrichment of the boundary element by a parameterized problem-specific ansatz function is presented.
The method is able to represent high thermal gradients at the boundary with a coarse mesh as the enrich-
ment function compensates for the excessive energy at the element affected by the temperature change.
The parameterization covers the temporal change of the gradient and avoids the enrichment by further
ansatz functions. The introduced parameterization variable is handed over to the system of equations as
an additional degree of freedom. Analytical integration is used for the evaluation of the integrals in the
weak formulation as the ansatz function depends non-linearly on the parameterization variable.
� 2017 Society for Computational Design and Engineering. Publishing Services by Elsevier. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Simulation is no longer just for the generation of process under-
standing (Langermann, 2008). Nowadays, it is used as an integral
element in the development process and by this reduces produc-
tion costs (Gausemeier et al., 2013). However, it is crucial that
the simulation is capable of correctly modeling the major factors
of influence. In processes with laser sources, steep temporal and
spatial thermal gradients occur at the boundary as a consequence
of the high local energy input. In addition, the load-time at which
a point is subjected to the laser spot can be extremely short due to
the laser speed, e. g. in the magnitude of 1 m/s for laser beammelt-
ing (King et al., 2015). In a thermomechanical analysis it is impor-
tant to determine the temperature field correctly in order to obtain
the real warping behavior. Due to the short-term occurrence of the
heat input, the Finite Element Method (FEM) requires a very fine
mesh in the region affected by the laser beam in order to fulfill
the penetration depth condition and simulate the thermal gradients
with sufficient accuracy. The disregard of the penetration depth
condition will result in spatial oscillations of the solution and a vio-
lation of the maximum principle of the heat equation (Hogge &
Gerrekens, 1983). Using FEM, the number of required degrees of
freedom leads to a high computational effort. Otherwise, a correct
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physical representation of the occurring thermal gradient cannot
be achieved.

A method for the efficient calculation of steep thermal gradients
at the boundary is presented which avoids the usage of a fine spa-
tial discretization. Instead of mesh refinement, the affected ele-
ments are locally enriched by a parameterized problem-adjusted
shape function, where the parameterization-variable is treated as
an additional degree of freedom. This allows not only the represen-
tation of the sharp gradient at a time but also of its temporal
behavior. The nonlinear dependency of the enrichment function
from the parameterization variable requires an analytical
integration.

The outline of the paper is as follows. Section 2 provides an
overview of methods for avoiding fine local discretization. The con-
cept of the Parameterized Extended Finite Element Method is
introduced in Section 3. The results are presented in Section 4. Dis-
cussions and conclusions are made in Section 5.
2. State of the art for high thermal gradients

The heat equation, also known as Fourier equation, is a second
order quasilinear partial differential equation. The general homo-
geneous form is

cðTÞqðTÞ @Tðx; tÞ
@t

¼ $ � ½kðTÞ$Tðx; tÞ� 8x 2 X; t 2 ½0; tM� ð2:1Þ

with the temperature dependent material parameters thermal con-
ductivity k, density q and specific heat capacity c.
es by Elsevier.
/licenses/by-nc-nd/4.0/).
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Fig. 2.1. Comparison of FEM results that meet (green) and violate (blue) the
penetration depth condition of Eq. (2.6).
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Internal heat sources are neglected as only temperature
changes resulting from boundary conditions are considered in this
paper. Additionally, only isotropic material (k ¼ k) is regarded. The
heat equation requires initial and boundary conditions to be a
well-posed problem and to obtain a unique solution. For the sake
of simplicity and without loss of generality, only Dirichlet bound-
ary conditions are considered and units are not indicated in the
paper as the dimensionless form is used in the following.

In most cases it is not possible to find an analytical solution for
the partial differential equation in (2.1). Therefore, the equation is
weakened to a more general form which must be fulfilled for only
certain test functions wðxÞ 2 V . Additional transformation by
Green’s function results in the following form:Z
X
cðTÞqðTÞ @T

@t
wdXþ

Z
X
kðTÞ$w � $T dX ¼ 0 ð2:2Þ

The Finite Element Method discretizes the region X into n nodes
x1; . . . ; xn and approximates the temperature T by ansatz functions
uðxÞ 2 W:

Tðx; tÞ ¼
Xn

k¼1

TkðtÞukðxÞ ð2:3Þ

with Tk the nodal temperatures at the nodes xk. The same ansatz
functions u are used for the temperature T as well as for test func-
tions w. By including this approximation in (2.2) the following sys-
tem of equation is obtained:

MðTÞ � _T þ SðTÞ � T ¼ 0 ð2:4Þ
with

MðTÞij ¼
Z
x
cðTÞqðTÞuiuj dx ð2:5aÞ

and

SðTÞij ¼
Z
x
kðTÞ @ui

@x
@uj

@x
dx ð2:5bÞ

exemplary for the one-dimensional case. A more detailed derivation
can be found in (Zienkiewicz & Taylor, 2002).

The region Dx affected by a change in the boundary condition
after the time Dt can be expressed by the penetration depth condi-
tion. It reads as follows for the heat equation with constant mate-
rial parameters:

Dx 6 k

ffiffiffiffiffiffiffiffiffiffiffiffi
k
qc

Dt

s
; k 2 Rþ ð2:6Þ

The value of k differs due to the kind of boundary condition (Hogge
& Gerrekens, 1983; Yan, 2002). In order to obtain a correct solution
without oscillation a sufficient fine mesh is required inside the pen-
etration depth. (Hogge & Gerrekens, 1983) uses four elements for
the discretization of the penetration depth. Fewer elements result
in oscillation and thereby violation of the maximum principle
(Fig. 2.1). Several approaches exist with the aim to avoid the
required fine mesh in the simulation of thermal processes with high
gradients. They will be presented in the following.

The most convenient procedure is the adaptive refinement of
the mesh. The elements in the region of interest are subdivided
into smaller elements. However, this is not effective for every kind
of element. In order to overcome this problem, structural meshes
are used and automatically refined with a predefined refinement
strategy (Pal et al., 2016). The disadvantage is that a structured
mesh can only be obtained for simple geometries or if inaccuracies
in the geometric fidelity of the mesh are accepted.

The discretemaximumprinciple is one of the basic characteristic
properties of classical solutions of second order partial differential
equations (Zienkiewicz& Taylor, 2002). It is satisfied in the FEMpro-
cedure by obtaining the systemmatrix of the discretized domain in
the M-matrix form. An M-matrix, an invertible matrix A with ele-

ments aii > 0; aij 6 0 and A�1
> 0, ensures that the results obtained

are physically relevant and consistent, e. g. heat energy flow from
a node at higher temperature to the colder one and not vice versa.
(Fachinotti & Bellet, 2006) discuss about the work of other authors
whose proposed methods provide the required M-matrix form of
the system matrix and point out the drawback of the method,
wherein the constraints on the geometry of the element restrict
the use of general meshing approaches used by FEM software.

The diffusion split method introduces an augmented conductiv-
ity k�

k� ¼ k
Dtpd
Dt

if Dtpd > Dt ð2:7Þ

and the accompanying stiffness matrix S� in order to compensate
for the time step size and satisfy the penetration depth condition
for a given value of Dx and the associated Dtpd from Eq. (2.6)
(Fachinotti & Bellet, 2006). An appropriate time step is obtained
by an iterative process until the unrealistic temperature spikes
are reduced in the solution. This method is not pursued further as
it involves changing of the governing equations. Also, in case of
unstructured meshes, the calculation of Dtts becomes difficult due
to the different element sizes.

The FEM is based on approximating the problem using a piece-
wise differentiable polynomial, which is incapable of representing
steep gradients with a too coarse mesh. The mentioned adaptive
refinement of the mesh can be further complicated by the need
of updating the topology of the mesh with each new step. This
means that when using the conventional mesh refinement
approach of the FEM, especially in a transient problem, the process
becomes tedious (Khoei, 2015). The Extended Finite Element
Method (XFEM) is achieved by enriching the FEM in the domain
of interest with special shape functions which are capable of repre-
senting high gradients in an efficient manner. XFEM provides a
way to obtain accurate results without changing the mesh topol-
ogy at the nodes near discontinuities or refinement near singular-
ities. (Abbas, Alizada, & Fries, 2010) use a set of four enrichment
functions to cover the total change of the thermal gradient over
time. The domain X ¼ 0;1� ½ was discretized by 10 elements and
the obtained accuracy by the XFEM was several orders of magni-
tudes greater than by the FEM. Nevertheless, in order to obtain
the optimal set of enrichment functions a previous optimization
run is necessary.

The presented Parameterized XFEM avoids the enrichment by
several functions and the a priori determination of those. The



Fig. 3.1. Assumed remaining residual by FEM with correct nodal values at time t1 and t2; t1 < t2.
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FEM is enriched by a parameterized function and the optimal
parameter is simultaneously calculated for every time step with
the calculation of the thermal field.

3. Parameterized Extended Finite Element Method

The Finite ElementMethod tries to correctlymap the energy input
from the boundary condition even if the ansatz functions are not able
Fig. 3.2. Approximation of the residuals from Fig. 3.1 by th
to represent the gradient in a sufficient manner. Thus, the surround-
ing elements compensate for the excessive energy in the boundary
element and consequently oscillations occur as shown in Fig. 2.1.

Fig. 3.1 shows the remaining residual over the time, assuming
that the FEM determines the correct node values. The analytical
solution for the semi-infinite heat equation serves as a reference
since it can be used for short-term problems in bounded domains,
too (Polifke & Kopitz, 2009):
e enrichment function (3.5) at time t1 and t2; t1 < t2.
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Tanaðx; tÞ ¼ 1� erf
xffiffiffiffiffiffiffiffi
4at

p
� �

; a ¼ k
q � c ð3:1Þ

The aim of the presented method is to extrinsically enrich for the
excess energy in the boundary element and to reduce the energy
imbalance which leads to oscillations or inaccuracies. The enrich-
ment functions u�

ij disappear on the boundary and are only
intended to compensate the remaining residual per element
(Fig. 3.1, below) as the FEM delivers the correct node values. Addi-
tionally, the enrichment function is parameterized in order to cover
the residual change over time. The parameterization variable f is
handed over to the system as an additional degree of freedom and
is calculated simultaneously to scale the gradient. Consequently,
an initial value of f is necessary for a well posed problem. The value
is significant for the required accuracy since it sets the initial
gradient.
3.1. Formulation

The PARAMETERIZED EXTENDED FINITE ELEMENT METHOD for the enrichment
of m elements in one dimension is thus given by
Fig. 4.1. Results for the Parameterized XFEM and the XFEM with enrichment of the first
done.
T�ðx; tÞ ¼
Xn
k¼1

TkðtÞukðxÞ þ
X
ði;jÞ2K

TiðtÞ � TjðtÞ
� �

u�
i;jðx; fi;jðtÞÞ ð3:2Þ
where K; j K j¼ m is a set of pairs ði; jÞ with i and j being the indices
of adjacent nodes of the enriched elements.

The Eq. (3.2) is included in (2.2) similar to the FEM and the fol-
lowing system of equations is obtained:
MðT�; _T�Þ þ SðT�Þ ¼ 0 ð3:3Þ
with
MðT�; _T�Þk ¼
Z
x
cðT�ÞqðT�Þ _T�/k dx ð3:4aÞ

SðT�Þk ¼
Z
x
kðT�Þ @T

�

@x
@/k

@x
dx ð3:4bÞ
and /k 2 uj; j ¼ ð1; . . . ;nÞ
n o

[ u�
i;j; ði; jÞ 2 K

n o
.

element. A constant time steps was used and a total number of 300 time steps were



Fig. 4.2. Results for the Parameterized XFEM with enrichment of the first element and a quadratic time step adaption, i. e. Dtiþ1 ¼ 2Dti . A total number of 8 time steps were
done.
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3.2. Enrichment functions

The inability of standard linear FEM is overcome by using
enrichment functions which can approximate the residual in
(3.1) and represent high gradients in combination with the stan-
dard shape functions from the FEM. These functions can be, for
example, exponential functions, trigonometric functions or Gaus-
sian error functions (e. g. expðf� fxÞ;1� erfðfxÞ). In order to obtain
a suitable enrichment function for the Parameterized XFEM, the
linear portion is subtracted as it is already covered by the FEM
shape function. In addition, the function is scaled to vanish on
the boundary of the element. Exemplary enrichment functions are



Fig. 4.3. Results for the Parameterized XFEM with enrichment of the first element and a cubic time step adaption, i. e. Dtiþ1 ¼ 3Dti . A total number of 6 time steps were done.
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u�ðx; fÞ ¼ expðf� f x
hÞ � 1

expðfÞ � 1
� 1� x

h

� �
ð3:5Þ
or
u�ðx; fÞ ¼ erfðfhÞ � erfðfxÞ
erfðfhÞ � 1� x

h

� �
ð3:6Þ

erfðxÞ ¼ 2ffiffiffiffi
p

p
Z x

0
e�s

2
ds ð3:7Þ

Fig. 3.2 shows the possible approximation of the remaining
residual from Fig. 3.1 by the enrichment function (3.5).

The enrichment by the Gaussian error function according to
(3.6) promises a high degree of accuracy as it is directly derived
from the analytical solution (3.1). Although the use of the Gaussian
error function is not practicable because of the inherent integral in
the formulation which has to be calculated at every step and thus
makes the formulation costly. Hence, it will not be considered in
the following and only the parameterized enrichment function
(3.5) is analyzed.
3.3. Quadrature

Similar to the FEM, the integrals in Eq. (3.4) have to be deter-
mined in order to obtain the global system of Eq. (3.3). The depen-
dency of the enrichment function from the additional
parameterization variable fi;j is non-linear in contrast to the tem-
perature values Tk. Therefore, the evaluation of the integrals in
(3.4) cannot be decoupled from fi;j as it is done for Tk in the FEM.

The claim of the presented method is the use of parameterized
shape functions, whose additional parameter fi;j is able to cover a
large temporal range of the gradient, i. e. fi;j ¼ Oð1� 10Þ. For this
reason, static quadrature rules with fixed integration points are
not applicable. On the other hand, adaptive quadrature formulas
slow down the assembly of the global system of equations as addi-
tional optimization runs are necessary. Therefore, the integrals in
Eq. (3.4) are analytically solved.

Numerical integration schemes are generally used in the FEM,
but there are also approaches to solve the integrals analytically
(Videla, Baloa, Griffiths, & Cerrolaza, 2008). Those approaches have
the aim to save computational effort in the simulation. Neverthe-



Fig. 4.4. Absolute spatial error eabs over time evaluated for the enriched element at the left boundary.
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less, the exact determination of the integrals is not required for
convergence (Zienkiewicz & Taylor, 2002).

4. Results

The method was implemented for the homogeneous linear heat
equation in one dimension

@Tðx; tÞ
@t

¼ a
@2Tðx; tÞ

@x2
8x 2 ½0;1�; t 2 ½0; tM� ð4:1Þ

with the boundary and initial conditions

Tð0; tÞ ¼ 1; 8t 2 ½0; tM�; ð4:2aÞ
Tð1; tÞ ¼ 0; 8t 2 ½0; tM�; ð4:2bÞ
Tðx;0Þ ¼ 0; 8x 2 ½0;1�: ð4:2cÞ

The thermal diffusivity a was chosen to be 1. The domain ½0;1�
was discretized in 10 elements of first order and enriched by the
parameterized enrichment function from Eq. (3.5) at the boundary
element on the left side. The value f1;2ð0Þ ¼ 100 was chosen as
additional necessary initial condition for the parameterization
variable. The implicit Euler was used as numerical integrator and
the Newton method solves the resulting system of equations.

The method is dedicated for short-term heat problems where
only the boundary element is affected by the temperature change
in the first time step and the penetration depth condition (Eq.
(2.6)) is largely violated. Therefore, the first time step was chosen
to be Dt0 ¼ 1� 10�5 due to the element size Dx ¼ 1� 10�1 and the
period of observation was restricted to the temperature change of
the first two elements, i. e. tM � 3� 10�3 with the penetration
depth value k from (Yan, 2002). The domain was assumed to be
semi-infinite since the maximum considered Fourier number was

Fo ¼ a
tM
2Dx

¼ 7:5� 10�2 ð4:3Þ
and the analytical solution Tana of the semi-infinite heat equation
was thus used for validation (Polifke & Kopitz, 2009, p. 319).

The results for the Parameterized XFEM with constant time
steps and the analytical solution are shown in Fig. 4.1. Only the
first three elements are plotted since the remaining elements are
not affected by a temperature change during the period of observa-
tion. In addition, the results for the conventional XFEM are pro-
vided. The similar enrichment function (3.5) was used for the
XFEM as for the Parameterized XFEM. In contrast to the Parameter-
ized XFEM, the boundary element was enriched by three functions
with the constant values f ¼ 100;15 and 5 to cover the change of
the gradient over time. The comparison with the FEM is omitted
as it was already shown in Fig. 2.1 that the FEM leads to non-
usable results when the penetration depth condition is violated.

The use of constant time steps is usually an unnecessary com-
puting effort. Hence, the Parameterized XFEM was also applied to
quadratic and cubic time step schemes. The results are shown in
Figs. 4.2 and 4.3.

The absolute spatial error is shown in Fig. 4.4 and was evaluated
using the following definition:

eabsðtÞ ¼ kT� � Tanak2 ¼
Z Dx

0
T�ðx; tÞ � Tanaðx; tÞ½ �2 dx

� �1
2

ð4:4Þ

All simulations were performed using MATLAB and the Sym-
bolic Math Toolbox (MATLAB, 2016).

5. Discussion & conclusion

The conventional XFEM is able to decrease the error in compar-
ison to the FEM with similar element size. However, the error fluc-
tuates. This is because the XFEM correctly obtain the temperature
only for certain points in time when the solution can be approxi-
mated by just one enrichment function. However, the transition
of the temperature field of these points in time is nonlinear while
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the XFEM can only linearly represent it. Therefore, the error
increases between these certain points and the maximal error
strongly depends on the choice of the constants f in (3.5). It was
shown that the Parameterized XFEM, with f as additional degree
of freedom, is able to determine a solution with an absolute error
less than 1:5� 10�2 and without fluctuation. A element size of a
magnitude smaller is required for the FEM in order to obtain com-
parable results.

The Parameterized Extended Finite Element Method overcomes
the inability of the FEM to correctly map the energy input with a
too coarse mesh. The appearing steep gradient at the boundary
can be represented with sufficient agreement by the enrichment
function and oscillations at adjacent nodes are avoided. The tem-
poral change of the gradient takes place with only one additional
parameter. The refinement of the mesh or the enrichment by fur-
ther ansatz functions is not necessary.

As it can be seen in Fig. 4.4, an adaptive time stepping method
should be used since the uniform adaption of the time steps ini-
tially leads to an increase in the absolute error. However, this
was not the focus of this paper and should only provide the trans-
ferability of the method to adaptive time stepping methods.

The concept of parameterized enrichment functions can be
applied to further problems and is not restricted to the heat
equation.
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