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Abstract: Reactivity studies of silyliumylidenes remain scarce with only a handful of publications
to date. Herein we report the activation of S–H bonds in hydrogen sulfide by mTer-silyliumylidene
ion A (mTer = 2,6-Mes2-C6H3, Mes = 2,4,6-Me3-C6H2) to yield an NHC-stabilized thiosilaaldehyde B.
The results of NBO and QTAIM analyses suggest a zwitterionic formulation of the product B as the most
appropriate. Detailed mechanistic investigations are performed at the M06-L/6-311+G(d,p)(SMD:
acetonitrile/benzene)//M06-L/6-311+G(d,p) level of density functional theory. Several pathways for
the formation of thiosilaaldehyde B are examined. The energetically preferred route commences with
a stepwise addition of H2S to the nucleophilic silicon center. Subsequent NHC dissociation and proton
abstraction yields the thiosilaaldehyde in a strongly exergonic reaction. Intermediacy of a chlorosilylene
or a thiosilylene is kinetically precluded. With an overall activation barrier of 15 kcal/mol, the resulting
mechanistic picture is fully in line with the experimental observation of an instantaneous reaction
at sub-zero temperatures.

Keywords: silicon; N-heterocyclic carbenes; silyliumylidenes; small molecule activation; mechanistic insights

1. Introduction

Low-valent main group chemistry is a rapidly developing field and the wealth of new structural
motifs, which have been isolated in the past two decades, have increasingly gained interest in using these
species for the activation of small molecules and, potentially, for catalysis (for representative reviews
see [1–7]). Key to these developments have been the usage of suitable synthetic methodologies in
combination with thermodynamic and kinetic stabilization by appropriately chosen ligands. In particular,
for the heavier carbon analogue silicon, a plethora of studies reported new low-valent compounds in recent
years [8–25] and the chemistry of silylene base adducts has already been carefully developed [14,26–36].
Before these findings, silyliumylidene ions, cationic Si(II) species were found to be promising as similar
versatile Lewis amphiphiles [37,38].

In 2004, Jutzi initiated the chemistry of silyliumylidene ions taking advantage of the stabilizing
effects of the η5-coordinated pentamethyl-cyclopentadienyl ligand to prepare hypercoordinate
silyliumylidene ion I (Figure 1) [39]. Driess and coworkers isolated the two coordinated silyliumylidene
ion II, stabilized by aromatic 6π-electron delocalization as well as by intramolecular donation of
the sterically encumbered β-diketiminate ligand [40]. N-heterocyclic carbenes (NHCs) represent
another ligand class, widely used in modern main group chemistry. As NHCs are strong σ donors,
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their application in main group chemistry enabled the isolation of a large variety of low coordinate
and low-valent main group compounds [41,42]. The first NHC-stabilized silyliumylidenes, III and IV
were synthesized by Filippou and coworkers via a three-step protocol from SiI4 [28], and by Driess
and coworkers through the reaction of Roesky’s NHC-stabilized dichlorosilylene with their bridged
bis-carbene ligand [23].
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tetraethyl-3,3,5,5-tetramethyl-s-hydrindacen-4-yl) [45]. It should be noted that the corresponding 
iodosilyliumylidene stabilized by one NHC and one cAAC (cyclic (alkyl)aminocarbene) moiety have 
been reported by So and coworkers [46], as well as the parent silyliumylidene [HSi+] stabilized by 
two ImMe4 moieties [47]. 
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divergent reactivity was provided by Szilvási and coworkers, revealing a unique insertion step to 
form the 1,4 adducts, followed by varying pathways towards the products [53]. The NHC-stabilized 
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Sasamori, Matsuo, Tokitoh and coworkers obtained the bulky aryl-substituted silyliumylidenes
Va-c by treatment of the corresponding diaryldibromodisilene with the carbenes ImMe4

(1,3,4,5-Me4-imidazol-2-ylidene) or ImiPr2Me2 (1,3-iPr2-4,5-Me2-imidazol-2-ylidene) [43].
Around the same time our group reported the mTer- and Tipp-substituted silyliumylidenes A
and A’ (mTer = 2,6-Mes2-C6H3, Mes = 2,4,6-Me3-C6H2, Tipp = 2,4,6-iPr3-C6H2) [44]. Different to all
other known silyliumylidenes, A and A’ are accessible via an easy one-step synthesis: the addition of
3 equivalents of ImMe4 to the corresponding Si(IV) aryldichlorosilanes to give the silyliumylidenes
via HCl removal by ImMe4 and nucleophilic substitution of chloride. The same approach was
recently used by the group of Matsuo, obtaining Va via addition of ImMe4 to a solution of
(EMind)dichlorosilane (EMind = 1,1,7,7-tetraethyl-3,3,5,5-tetramethyl-s-hydrindacen-4-yl) [45].
It should be noted that the corresponding iodosilyliumylidene stabilized by one NHC and one cAAC
(cyclic (alkyl)aminocarbene) moiety have been reported by So and coworkers [46], as well as the parent
silyliumylidene [HSi+] stabilized by two ImMe4 moieties [47].

Although a handful of silyliumylidenes have been reported in the last few years, reactivity studies
are limited to the activation of elemental sulfur [24,48], the synthesis of a stable silylone from IV [23],
and the catalytic application of I in the degradation of ethers [49]. For comparison, the neutral
silylene derivative of silyliumylidene II (Figure 1) has been applied in the activation of several
small molecules such as NH3, H2S, H2O, AsH3 and PH3 [50–52]. A theoretical assessment of
the observed divergent reactivity was provided by Szilvási and coworkers, revealing a unique
insertion step to form the 1,4 adducts, followed by varying pathways towards the products [53].
The NHC-stabilized arylchlorosilylene corresponding to A has already been published by Filippou
and coworkers in 2010, as well as the chlorosilylene with sterically more demanding mTeriPr ligand
(mTeriPr = 2,6-Tipp2C6H3) [54]. Subsequently, the mTeriPr-chlorosilylene was employed as the precursor
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for the preparation of a silylidyne complex Cp(CO)2Mo≡Si(mTeriPr) [55]. The conversion of those
chlorosilylenes with lithium diphenylphosphine and LiPH2 to the corresponding phosphinosilylene
and 1,2-dihydrophosphasilene reported by Driess and coworkers in 2015 [56,57] as well as the reaction
towards diazoalkanes and azides presented by Filippou and coworkers [58] remain as the only reports
regarding the reactivity of this species.

In any case, we consider silyliumylidene ions as promising candidates for small molecule
activation as they possess two different reactive sites: an electron lone pair, and two empty p-orbitals
at the silicon center. The electrophilicity of A and A’ is moderately mitigated by N-heterocyclic
carbene coordination to the silicon center (Figure 2). Moreover, the zwitterionic representation of A/A’
(Figure 2) emphasizes the view of a silyl-anion, which appears useful further below.

We have already presented the silylene-like reactivity of A in the C–H activation of
phenylacetylene to give the 1-alkenyl-1,1dialkynylsilane VI as the Z-isomer exclusively (Figure 2) [44].
We have also reported the application of A/A’ for the reduction of CO2 yielding the first NHC-stabilized
silaacylium ions (VII/VII’) [59]. In addition, we have demonstrated the importance of kinetic
stabilization by the steric bulk of the aryl ligands. In contrast to VII, the less shielded compound VII’
is kinetically labile even at sub-zero temperatures and could only be characterized spectroscopically.
Very recently, we reported the synthesis of the corresponding heavier silaacylium ions VIIIa-c obtained
from the reactions with CS2 or S8, Se, and Te, respectively [60]. Also, we could demonstrate the recovery
of silyliumylidene A from VIIIa-c by the treatment with AuI as well as chalcogen transfer reactions.
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Figure 2. Reactions of silyliumylidenes A and A’. 
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limited to the studies on intramolecularly stabilized silathioformamide by Driess and coworkers [50] 
and the NHC-stabilized heavier silaaldehydes by Müller and coworkers [62]. 

In this article, we further expand our series by the reaction of silyliumylidene A with hydrogen 
sulfide, yielding an NHC-stabilized thiosilaaldehyde, in a combined experimental and theoretical 
approach. 
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For the last 30 years, neutral congeners of VIIIa-c, silanechalcogenones R2Si=E with E = S, Se,
Te have been studied extensively [61]. In contrast, related compounds of type RHSi=E (E = S, Se, Te) are
limited to the studies on intramolecularly stabilized silathioformamide by Driess and coworkers [50] and
the NHC-stabilized heavier silaaldehydes by Müller and coworkers [62].

In this article, we further expand our series by the reaction of silyliumylidene A with
hydrogen sulfide, yielding an NHC-stabilized thiosilaaldehyde, in a combined experimental and
theoretical approach.
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2. Results and Discussion

2.1. Reaction of Silyliumylidene A with H2S

The reaction of NHC-stabilized silyliumylidene A, dissolved in acetonitrile, with 1 M H2S solution
in THF proceeded rapidly even at −20 ◦C, and the orange color of the starting material vanished
within seconds. 1H NMR spectroscopy indicated the formation of imidazolium salt, and one remaining
ImMe4 coordinated to the silicon center (3.46 ppm, 6H, NCH3, ImMe4). The splitting of the signals for
the ortho-methyl groups and the benzylic protons in the mesityl moieties indicated reduced symmetry in
the product. A new signal at 5.35 ppm with 29Si satellites (1JSiH = 209.0 Hz) was assigned to the Si bound
hydrogen atom by 1H/29Si-HMBC-NMR spectroscopy. The 29Si NMR signal was shifted down-field from
−69.03 ppm in the starting material to−39.59 ppm. Single crystals were obtained after storing the reaction
solution at 8 ◦C overnight. X-ray crystallography confirmed the formation of the NHC-stabilized
thiosilaaldehyde B (Figure 3). In earlier work by Müller and coworkers, they obtained the analogous
species with the bulkier mTeriPr ligand by the reaction of the NHC-stabilized hydridosilylene with
elemental sulfur [62]. BmTeriPr features the same 1JSiH coupling constant (209 Hz), which is smaller
compared to the one of silathioformamide (255 Hz) reported by Driess and coworkers. [50]. Compound B
is stable under the inert atmosphere and shows good solubility in acetonitrile, however, in contrast
to thiosilaaldehyde BmTeriPr, only a limited solubility in aromatic solvents is observed. Removal of
the imidazolium byproduct from B was achieved by fractional crystallization from acetonitrile to obtain
B as an analytically pure crystalline solid in 54% yield. Repetition of the experiments using A’ featured
the same fast decoloring, but the attempts to isolate the corresponding B’ were not successful, most likely
due to the kinetic lability of the formed product.
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intramolecular, stabilized thiosilaaldehyde by Driess and coworkers (1.9854(9) Å) [50]. It is closer to 
the covalent double bond radii of sulphur and silicon (2.01 Å) than to the sum of single bond radii 
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Figure 3. (a) Conversion of silyliumylidene A to B with H2S and (b) the molecular structure of B.
Thermal ellipsoids are shown at the 50% probability level. Except for the H1 atom, hydrogen atoms
are omitted for clarity. Selected bond lengths [Å] and angles [◦] of B: S1–Si1 2.0227(9), Si1–C1 1.902(2),
Si1–C25 1.934(2), Si1–H1 1.41(3), S1–Si1–H1 113.5(11), C1–Si1–S1 121.14(8), C1–Si1–H1 113.3(11).

The tetracoordinate NHC-stabilized thiosilaaldehyde B (Figure 3) exhibits a distorted tetrahedral
coordination around the silicon atom with a π-stacking of the NHC and a mesityl group of
the terphenyl ligand. The Si–S bond length was 2.0227(9) Å, which is slightly longer than in compound
VIIa (2.013(1) Å and 2.018(1) Å for the two independent molecules) [60], as well as the intramolecular,
stabilized thiosilaaldehyde by Driess and coworkers (1.9854(9) Å) [50]. It is closer to the covalent
double bond radii of sulphur and silicon (2.01 Å) than to the sum of single bond radii (2.19 Å) [63].
The Si–CNHC bond (1.934(2) Å) and the Si–CmTer bond (1.902(2) Å) are shortened compared to
A (1.9481(19) Å and 1.9665(19) Å/1.9355(19) Å). The structural parameters are close to those of
BmTeriPr [62].

Further insight into the nature of the Si–S bond in B is provided by density functional theory
(DFT) computations at the M06-L/6-311++G(2d,2p)//M06-L/6-31+G(d,p) level. For all bonding
analyses, we chose a truncated molecular model replacing the mTer ligand by phenyl and ImMe4 by
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ImMe2H2 (1,3-Me2-imidazol-2-ylidene). The computed structural parameters of BModel agreed well
with the experimental molecular structure obtained from X-ray diffraction (see Table S3). Natural bond
orbital (NBO) analysis reveal natural localized molecular orbitals (NLMOs, Figure 4b) corresponding
to Si–H, Si–CNHC, Si–CmTer and Si–S single bonds as well as three NLMOs representing the electron
lone pairs at sulfur. This zwitterionic representation of BModel is also the dominant Lewis resonance
structure within the natural resonance theory (NRT) formalism (Figure 4a). In line with analysis
by Müller and co-workers [62], the short Si–S bond and the Wiberg bond index of 1.38 can be
rationalized by negative hyperconjugation [64,65] of the sulphur lone pairs into the σ*(Si–R) orbitals:
the occupancy of the LP(S) NBOs is significantly decreased (1.81 e, 1.76 e), while the NBOs for
the anti-bonding σ*-orbitals are partly populated (Si–H: 0.11 e, Si–CNHC: 0.14 e, Si–CmTer: 0.12 e).
Topological analysis of the computed electron density, by means of Bader’s quantum theory of atoms
in molecules (QTAIM) [66,67], characterizes the Si–S bond as a strongly polar covalent interaction as
indicated by a marked shift of the bond-critical point (bcp) towards the more electropositive Si site,
a relatively large electron density ρbcp, a positive Laplacian ∇2]ρbcp as well as a negative total energy
density Hbcp at the bcp (Figure 4c) [68,69].
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compound 4, Figure 4d). The results of the corresponding QTAIM analyses are summarized in Table 
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compounds 2 and 4 compared to single bonded compounds 1 and 3. The electron density and its 

Figure 4. Results of the bonding analysis of BModel. (a) Dominant Lewis resonance structure according
to NRT analysis, (b) NLMOs representing the electron lone pairs at sulphur and the Si–CNHC, Si–CPh,
Si–S, and Si–H single bonds, (c) 2D plot of ∇2ρ(r) charge concentration (- - -), and depletion (—), bond
path (—) and bcps (black dots) with characteristic properties and bond path lengths of the Si–S bond,
(d) related compounds 1–4.

For a classification of further characteristics at the Si–S bcp, we analyzed related species containing
a Si–S single bond (1 and parent compound 3) or a Si=S double bond (2 and parent compound 4,
Figure 4d). The results of the corresponding QTAIM analyses are summarized in Table 1. All molecular
graphs display a characteristic shift of the Si–S bcp towards the more electropositive silicon site. In line
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with expectation, the values of ρbcp and ∇2ρbcp are higher for double bonded compounds 2 and 4
compared to single bonded compounds 1 and 3. The electron density and its Laplacian for the Si–S
bond in BModel are located in between, suggesting the presence of a partial double bond [70,71].
Also, the delocalization gradient δSi,S, i.e., the number of electron pairs shared between two atoms,
lies between the values for the single and double bonded species. However, the bond ellipticity εbcp,
a measure of ρbcp anisotropy indicating the π character of a bond, is rather small with a value of 0.01.
Nevertheless, the Si–S bond shortening, as well as the decrease in ellipticity compared to εbcp for the Si–S
single bonds in 1 and 3, agree with the presence of negative hyperconjugation in BModel [72], which was
already observed within the NBO framework.

Table 1. Results of QTAIM analyses of BModel and 1–4. Selected properties of the electron density
distribution of the Si–S bond: Bond path lengths dSi–S, and distances to bcps dSi–bcp and dbcp–S,
the electron density ρbcp, the Laplacian of the electron density ∇2ρbcp, the total energy density Hbcp,
the bond ellipticity εbcp = λ1/λ2 − 1 (derived from the two negative eigenvalues of the Hessian matrix
of the electron density at the bcp with λ1 ≥ λ2), delocalization index δSi,S.

Compound dSi–S [Å]
dSi–bcp

[Å]
dbcp–S

[Å]
ρbcp

[eÅ−3]
∇2ρbcp

[eÅ−5]
Hbcp

[EhÅ−3]
εbcp δSi,S

BModel 2.00 0.75 1.26 0.78 3.33 −0.52 0.01 0.78
1 2.13 0.77 1.36 0.66 1.36 −0.43 0.12 0.56
2 1.95 0.73 1.22 0.83 5.24 −0.55 0.21 1.15
3 2.14 0.78 1.37 0.64 1.36 −0.40 0.10 0.57
4 1.94 0.73 1.21 0.83 5.39 −0.56 0.23 1.25

These results support a zwitterionic nature of B with the partial double bond character of the Si–S
bond due to negative hyperconjugation. This enhanced interaction between silicon and sulphur is
reflected experimentally by the short bond length found in single crystal XRD analysis.

2.2. Mechanistic Investigations on the Reaction of Silyliumylidene A with H2S

The reaction of H2S and A proceeds instantaneously, preventing the NMR detection of
intermediates to gain further information on this conversion. To rule out the formation of chlorosilylene
C as reaction intermediate, we investigated the interconversion of C and A in a combined experimental
and theoretical approach (Figures 5 and 6).

Addition of one further equivalent of ImMe4 to a solution of chlorosilylene C in benzene at RT lead
to no change in color or 1H-NMR. Heating of the reaction solution to 40 ◦C resulted in slow darkening
of the solution to orange. After several hours the formation of orange crystals in the lower part of
the Schlenk tube was observed, yielding silyliumylidene A in 58% isolated yield after a prolonged
reaction time of 18 h. The reverse reaction could not be demonstrated experimentally due to the limited
stability of chlorosilylene C and ImMe4 in MeCN, the sole solvent in which A is soluble and stable.
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DFT calculations on the interconversion of C and A were performed at the M06-L/6-311+G(d,p)
(SMD = benzene)//M06-L/6-31+G(d,p) level of theory with a marginally reduced molecular model
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(mTer reduced to 2,6-diphenyl-C6H3 and ImMe4 replaced by ImMe2H2). Silyliumylidene 7 is only
slightly lower in energy than chlorosilylene 5 (Figure 6). This is in accordance with a report on the related
silyliumylidene ions Vb and Vc, for which a substituent-dependent shift in relative stabilities was
observed [43]. We further investigated the potential energy surface of the interconversion: NHC addition
to chlorosilylene 5 via TS56 (∆‡G = 19.6 kcal/mol) leads to tetracoordinate 6, which is located as
an unstable intermediate (18.8 kcal/mol). En route to silyliumylidene ion 7, a substantial effective barrier
of 28.4 kcal/mol for the chloride dissociation in TS67 is found. This is in line with interconversion of
chlorosilylene C to silyliumylidene A taking place at elevated temperatures but clearly incompatible with
the H2S activation that takes place at−20 ◦C. Based on our combined experimental and theoretical studies,
we thus conclude that formation of thiosilaaldehyde B does not involve intermediacy of chlorosilylene C.

Inorganics 2018, 6, x FOR PEER REVIEW  7 of 15 

 

the related silyliumylidene ions Vb and Vc, for which a substituent-dependent shift in relative 
stabilities was observed [43]. We further investigated the potential energy surface of the 
interconversion: NHC addition to chlorosilylene 5 via TS56 (Δ‡G = 19.6 kcal/mol) leads to 
tetracoordinate 6, which is located as an unstable intermediate (18.8 kcal/mol). En route to 
silyliumylidene ion 7, a substantial effective barrier of 28.4 kcal/mol for the chloride dissociation in 
TS67 is found. This is in line with interconversion of chlorosilylene C to silyliumylidene A taking 
place at elevated temperatures but clearly incompatible with the H2S activation that takes place at 
−20 °C. Based on our combined experimental and theoretical studies, we thus conclude that formation 
of thiosilaaldehyde B does not involve intermediacy of chlorosilylene C. 

 

Figure 6. Computed pathway for the interconversion between 5 and 7, R = 2,6-diphenyl-C6H3 and 
ImMe2H2; ΔG298 in kcal/mol. 

The reaction of 8 with hydrogen sulfide commences with a proton transfer via TS89 to give 
intermediate 9 as an ion pair in an exergonic step (Figure 7) (M06-L/6-
311+G(d,p)(SMD:acetonitrile)//M06-L/6-31+G(d,p) level of theory). Subsequently, the SH moiety was 
adds to the silicon center to yield 10, a pentacoordinate intermediate, with an effective barrier of 15.1 
kcal/mol. The assistance of a second H2S molecule in TS289 is entropically disfavored compared to 
TS89. The NHC-stabilized silyliumylidene 8 acts as a nucleophile in the reaction with hydrogen 
sulfide, as its electrophilicity is saturated by the presence of two coordinating NHCs. Accordingly, 
the zwitterionic representation of 8 in the following best emphasizes its nucleophilic character. 

SiR

N
N

N
N

0.0 (0.0)

8

H2S

+ 11.1 (- 9.5)

TS289

+ 3.2 (- 7.8)

SiR

N
N

N
N

H
S

H

TS89

- 6.8 (- 19.7)

10

SiR

N N

N N

H

SH

2 H2S - H2S

+ 6.4 (- 6.6)

SiR

N N

N N

H

SH

TS910

SiR

N
N

N
N

H SH

- 8.7 (- 12.5)

9

SiR

N
N

N
N

H S
H

H
SH

 

Figure 7. Computed pathway for the reaction from 8 to 10, R = 2,6-diphenyl-C6H3; ΔG298 (ΔH298) in 
kcal/mol. 

Figure 6. Computed pathway for the interconversion between 5 and 7, R = 2,6-diphenyl-C6H3 and
ImMe2H2; ∆G298 in kcal/mol.

The reaction of 8 with hydrogen sulfide commences with a proton transfer via TS89
to give intermediate 9 as an ion pair in an exergonic step (Figure 7) (M06-L/6-311+G(d,p)
(SMD:acetonitrile)//M06-L/6-31+G(d,p) level of theory). Subsequently, the SH moiety adds to
the silicon center to yield 10, a pentacoordinate intermediate, with an effective barrier of 15.1 kcal/mol.
The assistance of a second H2S molecule in TS289 is entropically disfavored compared to TS89.
The NHC-stabilized silyliumylidene 8 acts as a nucleophile in the reaction with hydrogen sulfide, as its
electrophilicity is saturated by the presence of two coordinating NHCs. Accordingly, the zwitterionic
representation of 8 in the following best emphasizes its nucleophilic character.
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Starting from 10, different pathways to NHC-stabilized thiosilaaldehyde 11 were examined
(Figure 8). The concerted NHC dissociation and S–H proton abstraction in transition state TS1011
is connected with a barrier of 6.9 kcal/mol and directly yield 11 in a strongly exergonic reaction.
Alternatively, dissociation of one NHC ligand from 10 to 12 was thermodynamically favored and
proceeded barrierlessly, as indicated by relaxed potential energy surface scans along the Si–CNHC bonds
(see Figures S7 and S8). The NHC liberated subsequently abstracts, with clear kinetic preference, the S–H
proton in 12 (TS1211: ∆‡G = 8.7 kcal/mol). The alternative route for Si–H hydride abstraction via TS1213
is connected with a substantially higher activation barrier (∆‡G = 23.5 kcal/mol), which renders this path
to 11 kinetically irrelevant. The atomic charges obtained by natural population analysis of 10 (HSi: −0.17 e,
HS: 0.18 e) supported the view that the increased activation barrier goes back to the additional charge
transfer occuring in the course of the hydride abstraction. Overall, the addition of H2S to silyliumylidene
8 via TS910 is rate-limiting with an effective activation barrier of 15 kcal/mol. Subsequent isomerization
to thiosilaaldehyde 11 is initiated by barrierless NHC dissociation and accomplished by abstraction of
the S–H proton by the free carbene. Concerted proton abstraction and NHC dissociation (TS1011) is
kinetically disfavored.
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In conclusion, we have presented the activation of hydrogen sulfide by silyliumylidene ion A to
give the thiosilaaldehyde B. Its nucleophilicity is best rationalized by assuming a zwitterionic character.
Combined experimental and theoretical investigations reveal that the thiosilaaldehyde formation does
not involve intermediacy of chlorosilylene C or thiosilylene 13. The NHC-stabilized silyliumylidene A
adds H2S in a stepwise reaction sequence followed by NHC dissociation. Proton abstraction by the latter
yields thiosilaaldehyde in a strongly exergonic reaction. With an overall activation barrier of 15 kcal/mol,
the resulting mechanistic picture is fully in line with the experimental observation of an instantaneous
reaction at sub-zero temperatures.

3. Materials and Methods

3.1. General Methods and Instruments

All manipulations were carried out under the argon atmosphere using standard Schlenk or
glovebox techniques. Glassware was heat-dried under vacuum prior to use. Unless otherwise
stated, all chemicals were purchased from Sigma-Aldrich (Steinheim, Germany) and used as received.
Benzene, n-hexane, and acetonitrile were refluxed over standard drying agents (benzene/hexane
over sodium and benzophenone, acetonitrile over CaH2), distilled and deoxygenated prior to use.
Deuterated acetonitrile (CD3CN) and benzene (C6D6) were dried by short refluxing over CaH2 (CD3CN)
and/or storage over activated 3 Å molecular sieves (CD3CN and C6D6). All NMR samples were prepared
under argon in J. Young PTFE tubes. mTerSiHCl2, chlorosilylene C and ImMe4 were synthesized according
to procedures described in literature [54,73,74]. NMR spectra were recorded on Bruker AV-400 spectrometer
(Rheinstetten, Germany) at ambient temperature (300 K). 1H, 13C, and 29Si NMR spectroscopic chemical
shifts δ are reported in ppm relative to tetramethylsilane. δ(1H) and δ(13C) were referenced internally
to the relevant residual solvent resonances. δ(29Si) was referenced to the signal of tetramethylsilane
(TMS) (δ = 0 ppm) as the external standard. Elemental analyses (EA) were conducted with a EURO EA
(HEKA tech, Wegberg, Germany) instrument equipped with a CHNS combustion analyzer. Details on
XRD data are given in the supplementary materials.

3.2. Improved and Upscaled Synthesis of Silyliumylidene A

mTerSiHCl2 (1.00 g, 2.42 mmol, 1.0 eq.) and ImMe4 (901 mg, 7.26 mmol, 3.0 eq.) were each dissolved
in 17.5 mL of dry benzene in two different flasks. The ImMe4 solution was added very slowly to the silane
solution to generate a layer of immediately formed imidazolium hydrogenchloride salt separating both
solutions without stirring. After complete addition/overlaying stirring was switched on, both solutions
mixed thoroughly as fast as possible and the precipitated imidazolium hydrogenchloride salt was allowed
to settle down for a short time. The supernatant dark red solution was filtered into a new flask, the residue
was washed with 2 mL of dry benzene and the combined solutions were allowed to stand overnight
for complete crystallization of the orange silyliumylidene. The yellow supernatant was separated from
the orange crystalline solid, washed four times with 5 mL dry hexane to remove residues of white
imidazolium hydrogenchloride salt and dried in vacuo. An orange crystalline product was obtained in
66% yield (1.00 g). Analytical data are the same as previously published [44].

3.3. Synthesis of Thiosilaaldehyde B

Silyliumylidene A (150 mg, 221 µmol, 1.0 eq.) was dissolved in MeCN (3.0 mL), cooled to −20 ◦C
and an excess of H2S solution (approx. 0.8 M) in THF was added. The solution quickly turned from
orange to yellow to blue-green while a white precipitate was formed. The solution was allowed to
warm to RT upon which the precipitate redissolved. The solution was concentrated to halve the volume
and stored in the fridge for crystallization overnight. The supernatant was filtered off and the white
residue was washed with MeCN (0.5 mL) at 0 ◦C. The solid was dried in vacuo. B was obtained as
a white crystalline solid in 54% yield (59.0 mg, 118 µmol). Storage of a crude reaction mixture at 8 ◦C
yield single crystals of B suitable for X-ray diffraction analysis.
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1H-NMR (400 MHz, 298 K, CD3CN) δ 7.45 (t, J = 7.6 Hz, 1H, C4H, C6H3), 6.98 (s, 2H, C3/5H, Mes),
6.91 (d, J = 7.6 Hz, 2H, C3,5H, C6H3), 6.76 (s, 2H, C3/5H, Mes), 5.36 (s, 1H, SiH, 1JSiH = 209.0 Hz),
3.46 (s, 6H, NCH3, ImMe4), 2.36 (s, 6H, C1/3/5CH3, Mes), 2.31 (s, 6H, C1/3/5CH3, Mes), 1.98 (s, 6H,
CCH3, ImMe4), 1.93 (s, 6H, C1/3/5CH3, Mes); 13C-NMR (126 MHz, 298 K, CD3CN) δ 149.84, 148.75,
141.06, 138.76, 137.45, 137.42, 137.05, 130.08, 129.63, 128.45, 34.12 (NCH3, ImMe4), 22.21 (C2/4/6CH3, Mes),
21.76 (C2/4/6CH3, Mes), 21.23 (C2/4/6CH3, Mes), 8.68 (CCH3, ImMe4); 29Si-INEPT-NMR (99 MHz, 298 K,
CD3CN) δ−39.58; EA experimental (calculated): C 74.27 (74.65), H 7.66 (7.68), N 5.61 (5.62), S 6.25 (6.43) %.

3.4. Conversion of Chlorosilylene C to Silyliumylidene A

Chlorosilylene C (40.0 mg, 80 µmol, 1.0 eq.) and ImMe4 (10.1 mg, 80 µmol, 1.0 eq.) were dissolved
in 1.5 mL of dry benzene in a Schlenk tube. The tube was placed in an oil bath and heated to 40 ◦C
for 18 h. After this time, a large amount of orange crystals was formed with some white precipitate
(ImMe4·HCl) and a slightly yellow supernatant, which was removed via the syringe. The orange
crystals were washed two times with 2 mL benzene and three times with 2 mL hexane to remove
the white precipitate. The crystalline material was dried in vacuo to give A in 58% yield (29.0 mg).
Analytical data are the same as previously published [44].

3.5. DFT Calculations

Geometry optimizations and harmonic frequency calculations have been performed using
Gaussian09 [75] employing the M06-L/6-31+G(d,p) [76–78] level of density functional theory. The SMD
polarizable continuum model was used to account for solvent effects of acetonitrile and benzene [79].
The ‘ultrafine’ grid option was used for numerical integrations [80]. Stationary points were characterized
as minima or transition states by analysis of computed Hessians. The connectivity between minima and
transition states was validated by IRC calculations [81] or displacing the geometry along the transition
mode, followed by unconstrained optimization. For improved energies, single point calculations
were conducted at the SMD-M06-L/6-311+G(d,p) [82,83] level of theory; wave functions used for
bonding analysis were obtained at the M06-L/6-311++G(2d,2p) [82,83] level. Natural bond orbital
(NBO) and natural resonance theory (NRT) analyses were performed using the NBO 6.0 program [84],
interfaced with Gaussian09 [85,86]. The AIMALL [87] program was used for QTAIM analyses [66,67].
Unscaled zero-point vibrational energies, as well as thermal and entropic correction terms, were obtained
from Hessians computed at the M06-L/6-31+G(d,p) level using standard procedures. Pictures of
molecular structures were generated with the ChemCraft [88] program.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/6/2/54/s1,
Figures S1–S4: NMR spectra of B, Figures S5 and S6, Tables S1 and S2: Crystallographic details of B (CCDC 1839062),
Table S3: Comparison of calc. and exp. Structures, Tables S4-S7: Details of NBO and QTAIM analyses, Figures S7–S8:
Relaxed potential energy scans along the Si–CNHC bonds in 10, Table S9: Energies of all calculated compounds,
Tables S10–S35: Cartesian coordinates of all calculated compounds.
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