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Abstract 

Viruses can cause enormous crop losses in agriculture and are responsible for severe 

infections, that can even be lethal. The continuous discovery of new viruses, and the lack 

of treatments for some of their most dangerous representatives like arenaviruses causing 

viral meningitis or HIV, highlights the importance enhancing our understanding of the viral 

replication cycle and its mechanisms. RNA structure has been shown to have a significant 

impact on the replication cycle of viruses. 

Within the negative sense RNA viruses, the ambisense viruses are a special group of 

pathogens, that infect plants, animals and humans, leading to severe diseases like the 

hemorrhagic fever. Their segmented genome consists of at least one ambisense RNA 

segment that exhibits the ambisense expression strategy, i.e. it harbors two genes, which 

are oriented in opposite reading directions and are separated by a non-coding intergenic 

region. Within this intergenic region, some viruses contain a secondary structure element 

which is suspected to be involved in transcription termination. Within the first publication 

of this thesis we sought to give a thorough overview of conserved secondary structures in 

the intergenic regions of ambisense mRNAs, and give insight in their evolutionary 

relations. 

While functional RNA secondary structures in non-coding regions have been studied 

excessively, there are only few examples of structures located in coding regions. Besides 

well characterized non-coding RNA structures, it has also been shown that structures in 

coding regions play an important role in regulatory processes and within the viral life cycle. 

The possible number of stable structural folds a sequence can adopt grows exponentially 

with increasing sequence length. This makes structure prediction of long molecules, such 

as mRNA sequences difficult. The second publication of this thesis covers the creation of 

a possibly complete census of conserved secondary structures in the coding regions of viral 

mRNAs. A structure and function prediction pipeline was applied to orthologous groups of 

viruses which were subsequently split the orthologous groups into structurally homogenous 

subgroups, which are called subVOGs. The resulting compilation of conserved RNA 

structures was embedded in our newly created web database RNASIV (RNA structures in 

viruses), providing access to the data for future research. 
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Zusammenfassung 

Viren können für enorme Ernteausfälle verantwortlich sein und schwere Infektionen 

auslösen, welche tödlich enden können. Die ständige Entdeckung neuer Viren sowie der 

Mangel an Behandlungsmöglichkeiten für einige der gefährlichsten Vertreter wie die 

Meningitis auslösenden Arenaviren oder HIV zeigen die Relevanz unser Verständnis des 

viralen Replikationszyklus und dessen Mechanismen zu verbessern. Es wurde gezeigt, dass 

RNA Strukturen einen signifikanten Einfluss auf den viralen Replikationsmechanismus 

haben. 

Innerhalb der negative sense RNA Viren, bilden ambisense Viren eine besondere Gruppe 

welche Pflanzen, Tiere und auch Menschen infiziert, und zu schweren Krankheiten, wie 

zum Beispiel dem Hämorrhagischem Fieber führen kann. Das segmentierte Genom 

beinhaltet mindestens eine RNA, welche nach der ambisense Strategie exprimiert wird. Das 

bedeutet, dass diese mRNA zwei Gene in entgegengesetzter Leserichtung enthält, welche 

von einer nicht kodierenden, intergenischen Region getrennt sind. Es wurde für einige 

dieser Viren gezeigt, dass innerhalb der intergenischen Region ein stabiles 

Sekundärstrukturelement lokalisiert ist, welches im Verdacht steht an der 

Transkriptionsterminierung beteiligt zu sein. Mit dieser ersten Publikation wurde versucht, 

sowohl einen vollständigen Überblick über alle Sekundärstrukturen in intergenischen 

Regionen von ambisense Viren zu geben, als auch deren evolutionäre Beziehungen zu 

klären. 

Während RNA Strukturen in nicht kodierenden Bereichen bereits intensiv untersucht 

wurden, sind nur einige Beispiele von funktionellen Strukturen in kodierenden Regionen 

bekannt. Dennoch konnte man neben der Vielzahl von funktionellen nicht kodierenden 

Strukturen zeigen, dass auch Strukturen in kodierenden Bereichen an wichtigen 

regulatorischen Prozessen und dem viralen Replikationszyklus beteiligt sind. Die Zahl der 

möglichen strukturellen Faltungen die ein RNA Molekül annehmen kann, wächst 

exponentiell mit steigender Sequenzlänge. Dies erschwert die Strukturvorhersage von 

langen Molekülen wie mRNAs enorm. Mit der zweiten Publikation dieser Arbeit wird ein 

möglicherweise vollständiger Überblick über konservierte Sekundärstrukturen in viralen 

mRNAs gegeben. Unter Anwendung einer Strukturvorhersagepipeline wurden orthologe 

Gruppen von Viren in strukturell homogene Untergruppen, genannt subVOGs aufgeteilt. 
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Die daraus resultierende Sammlung konservierter RNA Strukturen wurde in die explizit 

dafür erstellte Webdatenbank RNASIV (RNA structures in viruses) eingepflegt, und steht 

somit für zukünftige Forschungszwecke zur Verfügung.  
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1. Introduction 

The following introduction provides information about the biological and methodological 

background as well as its implications for the approaches used in the published articles.  

1.1. Motivation 

1.1.1. Viruses 

Viruses are small pathogenic particles that infect a host organism and hijack its cellular 

machinery responsible for protein production in order to reproduce. They essentially 

consist of single stranded (ss) or double stranded (ds) genetic material surrounded by a 

protein coat. Depending on their employed mechanism of mRNA production, they are 

categorized into DNA, RNA and reverse transcribing viruses. At a second level they are 

further distinguished according to the type of genetic material they harbor (Table 1). 

DNA viruses 
ds DNA viruses 

ss DNA viruses 

RNA viruses 

ds RNA viruses 

positive sense ss RNA viruses 

negative sense ss RNA viruses 

circular ss RNA viruses 

Retro/Reverse transcribing viruses Retro/Reverse transcribing viruses 
Table 1: Top level of viral categorization. 

Apart from being responsible for various severe diseases, they also pose a significant threat 

to human welfare by causing livestock and crop shortfalls. That makes viruses and the 

inhibition of their replication cycle an interesting and important field of research. A very 

effective way of mitigating their spread is vaccination with killed or attenuated viral 

particles, leading to an immunization of a potential host against an infection with a certain 

virus (Fiore, Bridges, & Cox, 2009). Nevertheless, vaccines against some of the most 

dangerous viruses, such as the West Nile virus, are still unavailable. 
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1.1.1.1. Viral entry into a host cell 

The first requirement for a successful infection is the entry into the host’s cell. Depending 

on whether the virus is enveloped by an additional outer membrane or not, the strategy for 

intrusion can be different (Cohen, 2016). The two possible methods are receptor mediated 

fusion or hijacking the endocytotic pathway. Viruses employing receptor mediated fusion, 

rely on binding to a protein, which is present on the surface of the host cell membrane. The 

binding leads to a conformational change of the viruses’ fusion protein, facilitating the 

entry of the viral genetic material into the host cell. In the second path, hijacking the 

endocytotic pathway, the virus is encapsidated inside an endosome. A low PH level of the 

endosome then induces the fusion. Enveloped viruses can enter a cell employing either 

method, while viruses without an envelope usually enter the cell via the endocytotic 

pathway (Thorley, McKeating, & Rappoport, 2010). 

 

Figure 1: Visualization of the two main entry mechanisms of viruses into a host cell. 
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1.1.1.2. Viral exit strategies 

Once the host cell has produced enough viral replicates and is no longer beneficial for the 

virus, the viral copies are released to infect further host cells and start a new replication 

cycle. In the following sections the three main mechanisms for exiting host cells are 

described briefly. 

Budding 

Budding means that a virus traverses the cell membrane, and gets enveloped into the hosts 

cell membrane in turn (Komarova, 2007). The budding mechanism is employed by 

enveloped viruses including the human immune deficiency (HIV) virus or Influenza 

(Pornillos, Garrus, & Sundquist, 2002). Budding does not result in immediate cell death, 

but as more viruses are budding through the membrane, it slowly dissolves and ultimately 

disintegrates. The released viruses can instantly infect other host cells. 

Apoptosis  

Apoptosis, the programmed cell death, is the last defence mechanism of a cell in case of a 

severe viral infection. The genetic material of the cell is fragmented, and the cell activates 

pathways that lead to its lysis, allowing it to be absorbed by macrophages. This mechanism 

is exploited primarily by non-enveloped viruses. Nevertheless, some enveloped viruses like 

HIV, use the process to either infect macrophages or to be transported into different host 

compartments (Stewart, Poon, Song, & Chen, 2000). In rare cases, apoptosis also leads to 

a quick dissolvement of the cell membrane, which immediately releases the viral replicates 

into the extracellular space (Bursch, Oberhammer, & Schulte-Hermann, 1992).  

Exocytosis  

This exit strategy is special, because it does not destroy the host cell. The virus hijacks the 

cell’s transport system, and sends its progeny out of the cell in its own vesicles (Münz, 

2017). Once the cell membrane is surpassed, the viral replicates are released in the 

extracellular space. This mechanism is mainly used by non-enveloped viruses, however, 

some enveloped viruses using this strategy exist (Olson & Grose, 1997).  



 

 
 

4 

1.1.2. Viral evolution 

In evolutionary biology one of the most important tools are fossil records. Unfortunately, 

viruses do not leave such trails. To investigate viral evolution, we must rely on what we 

can learn from the extant viruses and their hosts. The fast evolution of viral genomes 

necessary to evade the constantly adapting immune systems of their hosts, and the large 

number of replicates each virus generation can have, make it difficult to rely on the same 

techniques used for other organisms to clarify their evolutionary relationships. At least the 

arms race of viruses and their hosts in adapting to each other resulted in a strong 

coevolutionary signal (Nasir, Kim, & Caetano-Anollés, 2012).  

The origin of viruses is still an unsolved scientific question, for which three main theories 

have been proposed: i) virus first theory , ii) reduction hypothesis and iii) escape hypothesis 

(Nasir et al., 2012). The virus first theory claims that viruses existed before cellular life 

arose on earth, and even contributed to its emergence (Koonin, Senkevich, & Dolja, 2006; 

2009). The fact that viruses can only replicate with a host organism questions this theory, 

and furthermore suggests that cellular organisms are essential for the emergence of viruses 

(Forterre, 2006). The reduction theory therefore suggests that viruses have evolved from 

parasitic organisms (Bândea, 1983). Finally, the escape hypothesis proposes that some 

genetic material of host organisms managed to escape the cellular control and acquired 

genes through horizontal gene transfer. 

1.1.3. Taxonomy of viruses 

The taxonomy of viruses is mainly handled by the International Committee on Taxonomy 

of Viruses (ICTV) (Lefkowitz et al., 2018). The viral taxonomy is defined in a hierarchical 

scheme, including naming conventions for each level in the hierarchy (Table 2). Only two 

levels within the hierarchy, the genus and subgenus, are mandatorily assigned to a virus, 

the other levels are optional. The taxonomic classification of viruses was published the first 

time in 1971 (MELNICK, 1971) for the first time and is updated very frequently in 

accordance with new findings. Therefore, it does not necessarily mirror the ground truth 

evolutionary context of viruses. Recent research showed that the relations between viruses 

are modelled more realistically by using protein sequence similarity rather than through 

taxonomic definitions (C. Chen et al., 2016). Furthermore  it has been shown that RNA 
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structure can have an effect on the long term evolution of RNA sequences (Simmonds & 

Smith, 1999). Thus, RNA structure builds another layer of measurable relationship on top 

of the sequence conservation. Due to the high evolutionary pressure viruses are subjected 

to, it is believed that the evolutionary conservation of RNA structures preponderates RNA 

sequence conservation in many cases (Capriotti & Marti-Renom, 2010). In order to find 

new ways to stop viral infections from spreading, we need to enhance our understanding of 

the viral lifecycle and its regulatory mechanisms. Within this thesis we sought to investigate 

conserved potentially functional conserved secondary structures in viral mRNAs and give 

a possibly complete census. 

Hierarchy level Rank name Name suffix  Mandatory / optional 
0 Realm -viria Optional 
1 Subrealm -vira Optional 
2 Kingdom -virae Optional 
3 Subkingdom -virites Optional 
4 Phylum -viricota Optional 
5 Subphylum -viricotina Optional 
6 Class  -viricetes Optional 
7 Subclass -viricetidae Optional 
8 Order -virales Optional 
9 Suborder -virineae Optional 
10 Family -viridae Optional 
11 Subfamily -virinae Optional 
12 Genus -virus Mandatory 
13 Subgenus -virus Mandatory 

Table 2: Hierarchical taxonomic classification scheme of the ICTV. 

 

1.2. (m)RNA structure 

1.2.1. (m)RNA structure and visualization 

All forms of life make use of mRNA to encode proteins. The mRNA molecule consists of 

a sequence of the four ribonucleotides adenine (A), guanine (G), cytosine (C) and uracil 

(U). Complementary nucleotides (A-U and G-C) can form bonds within the chain and fold 

into complex secondary and tertiary structures. Additionally to the standard base pairs, non-

canonical, less stable base pairs, e.g. G-U can be observed. The stability of an RNA 

molecule is measured by its free energy. The lower the free energy, the more stable the 

structure is. It is still very difficult to predict tertiary structures of RNAs and therefore, in 

most bioinformatic analyses only RNA secondary structure is analyzed. For most purposes 
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this is sufficient, because functional RNA secondary structures tend to be conserved 

through evolution, the folding energy of the molecule can be approximated sufficiently, 

and RNA function can be modeled successfully using secondary structure alone (Fontana, 

Konings, Stadler, & Schuster, 1993). The secondary structure can be split into seven 

distinct structural elements: 

• stacks – stacked base pairs forming double helical regions 

• hairpin loop – a series of unpaired bases that close a stack region 

• internal loop – two series of unpaired bases, that connect two stack regions 

• bulge – a single stretch of unpaired nucleotides that connect two stack regions 

• multiloop – several stack regions (more than two) connected by several series of 

unpaired nucleotides  

• joints – freely movable substructures, connected by a series of unpaired bases 

• free ends 

Depending on the desired level of detail, this definition can be altered into more general 

structural elements. An example is the RNAshape method, which provides five levels of 

decreasing complexity outlining how RNA secondary structures can be regarded 

(Giegerich, Voss, & Rehmsmeier, 2004). Looking at structures in a less detailed level 

makes it possible to align structures on different levels of abstraction and can sometimes 

help to identify similarities between large and complex structures in a more general fashion. 

The most common framework for visualizing RNA secondary structures is the dot bracket 

notation (Figure 2 a), where a dot indicates an unpaired base, and two matching brackets 

indicate a base pair. In Figure 2 provides further examples of common structure 

visualizations, i.e. mountain plots, circular and linear layouts and RNAshape. One 

additional visualization scheme that is worth mentioning here is FORNA (Kerpedjiev, 

Hammer, & Hofacker, 2015). The advantages of FORNA are, that the structures are drawn 

using force field calculations, and can be dynamically moved and bent by the user. In 

addition, it facilitates the visual comparison of elements, by allowing to load multiple 

structures into the same canvas. 



 

 
 

7 

1.2.2. Pseudoknots 

Special cases of RNA secondary structure are the so-called pseudoknots. A pseudoknot 

consists of at least two helical regions, which are connected by loops or single stranded 

regions. In other words, two substructures of a structured region interact with each other. 

This phenomenon was first discovered in 1982 in the genome of the turnip yellow mosaic 

virus (Rietveld, Van Poelgeest, Pleij, Van Boom, & Bosch, 1982). An example for a 

pseudoknot structure from the literature is the H-type (Figure 2 g), which was found in the 

human telomerase RNA sequence (J.-L. Chen & Greider, 2005). Most RNA structure 

prediction algorithms use dynamic programming approaches and are therefore not able to 

predict pseudoknots, because the recursion equation cannot model base pairings between 

already defined substructures. There are special algorithms designed to predict pseudoknots  

at the cost of an enormous runtime increase compared to the conventional structure 

prediction algorithms. Due to these complications, pseudoknot prediction is as of yet not 

applicable to large scale RNA structure analyses. 
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Figure 2: Different RNA structure visualizations: 

a) RNA sequence with its minimum free energy (MFE) structure in dot bracket notation. Dots indicate unpaired 

residues, matching brackets indicate base pairs. 

b) RNA diagram drawn with the R2R software package (Weinberg & Breaker, 2011).  

c) mountain representation. The x-axis corresponds to sequence positions, and the y-axis to the number of base pairs 

enclosing the base at this position. Plateaus correspond to loops. The plot was created with the RNAfold webserver 

(Lorenz et al., 2011).  

d) RNAshape representation in the five levels of abstraction, from the most detailed level 1 to the most abstract level 5 

(Giegerich et al., 2004; Steffen, Voss, Rehmsmeier, Reeder, & Giegerich, 2006). 

e) Linear graph representation. Blue lines indicate base pairs. The drawing was created with VARNA (Darty, Denise, 

& Ponty, 2009). 

f) Circular graph representation. Blue lines indicate base pairs. The drawing was created with VARNA. 

g) Pseudoknot structure of the human telomerase sequence, visualized with PseudoViewer2 (J.-L. Chen & Greider, 

2005; Han & Byun, 2003). 

 

1.2.3. Functions of RNA structure 

Structured RNA can be involved in various functional processes. For example structures 

that change their conformation, when the matching ligand binds to the structure are called 

riboswitches. This structural alteration is for example used to dynamically regulate 

transcription in many cases. Riboswitches are common in prokaryotes, where about two 
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percent of the genes are regulated by this kind of structure (Sashital & Butcher, 2006). The 

thiamine pyrophosphate riboswitch was the first to be discovered in the human genome 

(Miranda-Ríos, 2007). Another interesting function that RNA structure can have is 

temperature sensing. RNA structures can be completely different depending on the 

temperature, a phenomenon used by some bacteria to control gene expression depending 

on the temperature of the environment (Johansson et al., 2002; Kortmann & Narberhaus, 

2012). RNA structures can also perform catalytic functions, as in the case of ribozymes, 

which can for example perform self-cleavage or also cleave other transcripts (Vandivier, 

Anderson, Foley, & Gregory, 2016). Furthermore, RNA structure is essential for enabling 

translation, which only works due to the tRNAs’ specific shape, which adopt a cloverleaf 

structure enabling aminoacylation (Bhaskaran, Rodriguez-Hernandez, & Perona, 2012). 

Another biological process that relies on RNA structure is microRNA silencing, which in 

some cases even leads to the digestion of mRNAs (Wienholds & Plasterk, 2005). An 

impressive example of structures located on mRNAs are internal ribosomal entry sites, 

which are used to initiate translation and are also frequently found in viruses (Mailliot & 

Martin, 2018). This list of functional RNA structures is by far not exhaustive and is likely 

to continue to grow with future research. 

1.2.4. RNA structure comparison 

The fact that functional RNA structures tend to be evolutionary conserved makes it 

necessary to compare different structural elements with each other and measure their 

similarity (or the distance between them). There are various methods for RNA secondary 

structure comparison, e.g. tree edit distance, mountain metric, base pairs distance, or the 

structure conservation index (SCI).  These diverse metrics use different approaches to 

calculate the structural similarity or distance. The base pair distance is one of the simplest 

approaches, as it just counts the number of base pairs that are not shared by the two 

structures. The discriminative power of this measure is limited (Agius, Bennett, & Zuker, 

2010), especially for sequences of unequal length. A more complex approach is used by 

the mountain metric, which calculates the difference of two mountain plots of RNA 

structures (Hogeweg & Hesper, 1984). An even more advanced idea was used for the tree 

edit distance method, where the structures are represented as rooted, ordered trees, and the 

distance is expressed as the number of tree editing steps necessary to convert one structure 
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tree into another. Finally the SCI is based on the free energies of the structures; this might 

not be intuitive at first, because energies are compared instead of the structural sequences 

themselves, but the benefits of this approach become more apparent when we delve deeper 

into the details behind the measure: The average minimum free energy (MFE) of all 

structures is calculated, and divided by the energy of the consensus structure, into which 

all sequences can fold simultaneously. Comparing the MFEs of the sequences directly 

would not yield the desired result as two completely different structures still can have a 

similar MFE. However, comparing the average MFE to the energy of a consensus structure 

solves this problem, because the consensus structure can exhibit a similarly low MFE as 

the individual sequences, only if all the structures are similar. This measure has proven to 

be one of the most powerful metrics for structure comparison (Gruber, Bernhart, Hofacker, 

& Washietl, 2008). 

1.2.5. RNA structure determination 

Experimental approaches of RNA structure determination can be classified into two basic 

types: i) biophysical methods and ii) biochemical methods. While biophysical structure 

determination methods exploit physical traits of RNA molecules, biochemical approaches 

leverage the chemical properties of the nucleic acid bases by using specific reagents to infer 

the RNA structure. The reactivity of a nucleotide at a certain position with specific reagents 

gives information about the accessibility of the residue. In other words, a residue can only 

react with the reagent if it is not already paired to a different residue. Unfortunately, there 

are only a few experimentally verified RNA structures, and some of those are only available 

in a protein complex. Furthermore, RNA structures account only for a small fraction of 

entries in structural databases. The protein data bank (Berman et al., 2000) harbors about 

141000 protein structures, but only about 11000 nucleic acid containing structures. Of 

these, only a small subset totaling 1384 structures contains RNA. The Rfam database 

(Griffiths-Jones, Bateman, Marshall, Khanna, & Eddy, 2003) a resource holding non-

coding RNA families, where at least one member of the family is an experimentally verified 

RNA structure, contains only 3016 distinct families. 
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1.2.5.1. Biophysical methods 

Biophysical methods represent the most accurate approaches for structure determination. 

The most prominent techniques are i) X-ray, ii) nuclear magnetic resonance spectroscopy 

(NMR) and iii) cryogenic electron microscopy (cryo-EM). These methods are described 

briefly in the following sections. 

X-ray 

The X-ray crystallography approach is the most accurate structure determination technique 

up until now. Unfortunately, it requires the molecule of interest to be crystallized, such that 

X-rays can be diffracted of a repetitive lattice comprised of multiple copies of the molecule 

of interest in order to yield accurate electron density maps. An example where the method 

allowed solving the RNA tertiary structure is the RNA tetraplex (Deng, Xiong, & 

Sundaralingam, 2001). It is still difficult to produce high quality crystals of RNA 

molecules, especially if their sequence is long Therefore,  the number of X-ray structures 

determined for RNA sequences is still quite low (Ke & Doudna, 2004). Nevertheless, new 

approaches to enhance the crystallization process are being continuously developed 

(Golden & Kundrot, 2003; “Selecting New RNA Crystal Contacts,” 2018; Shoffner, Wang, 

Podell, Cech, & Guo, 2018) and are expected to bring more high resolution RNA structures 

in the future. Due to technical difficulties, the high throughput analysis of RNAs using X-

ray crystallography is not possible, and the number of solved structures using this approach 

is far too low for competitive bioinformatic analyses. 

NMR 

Nuclear magnetic resonance (NMR) enables researchers to study the dynamics and 

structure of molecules in solution with reasonable accuracy (Fürtig, Richter, Wöhnert, & 

Schwalbe, 2003). In 2003, half of all solved 3D nucleotide structures were obtained using 

the NMR method (Fürtig et al., 2003), demonstrating its importance. The method leverages 

the phenomenon of nuclear magnetic spin polarization when atomic nuclei with non-zero 

spins (atoms containing an odd number of protons or neutrons, whose spins do not cancel 

each other out) are placed within a magnetic field (Ashbrook, Griffin, & Johnston, 2018). 

Such nuclei can take one of two energy states (the lower state when the spin moments align 

with the external field or the excited state when they are anti-parallel). Upon excitation with 

a pulse of electromagnetic radiation matching the resonance frequency of the atoms, some 
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of the nuclei absorb energy and jump into the higher energy state. After some time, these 

nuclei relax down to the ground energy state, re-emitting energy in the process. These 

packets of energy have frequencies which are characteristic to the resonance frequency of 

the specific nucleus. The frequency and intensity of the emitted radiation is measured in 

order to determine the structure of the molecule being probed. The details of the structure 

are revealed thanks to the phenomenon of nuclear shielding i.e. shielding of the magnetic 

field that each nucleus experiences due to the induced magnetic fields in the electrons, 

which oppose the external magnetic field. If many such electrons are present in the vicinity 

of a nucleus, the magnitude of this shielding is greater and the exact amount of shielding is 

referred to as the chemical shift, defined as the difference between the expected resonance 

of a bare nucleus and the actual measured frequency of the nucleus shielded by the 

surrounding electrons (for example, electrons belonging to a carbon atom nearby). The 

method has been applied successfully to various RNA sequences, e.g. the 14-mer cUUCGg 

tetraloop hairpin RNA model system (Nozinovic, Fürtig, Jonker, Richter, & Schwalbe, 

2010). The greatest benefit of this technique is, especially when compared to X-ray 

crystallography is that it captures multiple conformations of each molecule which is very 

informative when the molecule is unstable or undergoes conformational changes in order 

to perform its function. NMR is a promising method for determining RNA structures, but 

it is also not feasible for high-throughput determination of structures, especially with the 

goal to keep up with the quickly growing space of newly discovered RNA sequences, and 

the amount of time and cost a single NMR experiment entails. A further limiting factor for 

this method is the length of RNA sequences, as NMR cannot be used to analyze sequences 

of more than 1000 nucleotides, because of their slow rotational diffusion (Gopal, Zhou, 

Knobler, & Gelbart, 2012). The resolution of NMR structures is below that of X-ray 

experiments, but the fact that the molecules are studied in solution and their molecular 

motions can be captured renders this method equally important. 

CryoEM 

The cryoEM technique is used to analyze flash frozen RNA molecules and to obtain 

snapshots of their structural conformations out of the structural ensemble. The images are 

captured with an electron microscope (Gopal et al., 2012). The method produces images 

with considerably lower resolutions than NMR or X-ray experiments, but can still be used 

to infer the overall shape and the 3D size of molecules. For example, using cryoEM, it  has 
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been shown that ensembles of large RNAs in solution are anisotropic (Gopal et al., 2012). 

The method can also indirectly be used to determine RNA secondary structure by recording 

2D projections of RNA molecules and quantifying the observed branching patterns 

(Garmann et al., 2015). 

1.2.5.2. Biochemical methods 

Biochemical methods of structure probing use different chemical compounds that react 

with unpaired regions of folded molecules. Afterwards it is measured which residues have 

reacted with the compounds and which have not. In the following two sections, the main 

principles of two selected examples are explained briefly. 

DMS (Dimethyl sulfate) 

DMS is can be used to add a methyl adduct to adenine or cytosine residues (Ehresmann et 

al., 1987). This reaction is only possible for unpaired nucleotides, helix-terminating base 

pairs or base pairs located next to a GU wobble base pair. Using reverse transcription PCR 

(polymerase chain reaction) of the methylated RNA sequence the sequence stretches 

without methyl adducts can be amplified. The reverse transcriptase cannot continue 

transcription once it reaches a methylated residue. The resulting fragments can then be 

sequenced, and the paired or unpaired regions can then be mapped back to the sequence. 

The result of a DMS probing experiment is not a resolved RNA tertiary or secondary 

structure, but something analogous to an experimentally verified partition function of the 

sequence. 

Carbodiimides 

Carbodiimides are synthetic chemical compounds that can, similarly to DMS, form adducts 

with ribonucleases, which can then be detected using reverse transcription (Tijerina, Mohr, 

& Russell, 2007). Since the Carbodiimides reaction applies to G and U, while DMS reacts 

with A and C, the two compounds can be used as complementary analyses (Incarnato, Neri, 

Anselmi, & Oliviero, 2014).  

SHAPE (Selective 2′-hydroxyl acylation analyzed by primer extension) 

Similarly to DMS probing, the SHAPE method utilizes reagents that can react with the 

single stranded regions of a folded RNA molecule. But unlike the reagents of previous 

probing techniques, the SHAPE compounds react with all residues (Merino, Wilkinson, 
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Coughlan, & Weeks, 2005). The strength of the reaction gives insights into the flexibility 

of a residue, and thus the probability of being paired or unpaired. The sequence is extended 

with a complementary DNA primer, utilizing a reverse transcriptase. The fragments are 

then sequenced, and compared to an unmodified control sequence (Merino et al., 2005). 

Like other probing methods SHAPE also provides base pairing probabilities for all residues 

of a sequence. These probabilities can be used in RNA structure prediction methods to 

produce highly accurate secondary structures of RNAs (Deigan, Li, Mathews, & Weeks, 

2009). The method has been successfully applied on whole genome sequences of e.g. the 

human immunodeficiency virus (Watts et al., 2009). With more and more probing-resolved 

structures emerging in the near future, it will soon be possible to bring RNA structure 

prediction to a new level for example by using e.g. machine learning techniques that predict 

the base paring probabilities of sequences based on large sets of prelabeled probing data. 

1.2.6. RNA structure prediction 

Since the discovery of the cloverleaf structure of transfer RNA molecules in 1965 various 

functional RNA structures were found (Holley, 1965). We are still at the beginning of 

uncovering the full diversity of RNA structures understating their importance for regulating 

processes within the cell. A well-known example are riboswitches, which alter their 

structural conformation when a certain stimulus is triggered, and as a consequence up- or 

down-regulate gene expression (Serganov & Patel, 2007). In non-coding regions, it has 

been shown that translation can be completely dependent on secondary structures (Gray & 

Hentze, 1994; Kozak, 2005). Also structures within coding regions of mRNAs have been 

proposed to alter translational processes for example by ribosomal stalling (Katz & Burge, 

2003). The vast numbers and the length of nucleotide sequences makes it impossible to 

search for functional structures using experimental techniques only. Therefore, high-

throughput structure prediction methods are crucial to conduct research in this field. 

1.2.6.1. RNA structure prediction for single sequences 

Most structure prediction methods nowadays rely on the minimization of the free energy 

using dynamic programming. For predicting structures of single sequences we use 

RNAfold from the ViennaRNA package (Lorenz et al., 2011). There are similar methods 

like mFold (Zuker & Stiegler, 1981) or Sfold (Ding & Lawrence, 2003) with analog 
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performance (Gardner & Giegerich, 2004). Personally we decided to prefer methods from 

the ViennaRNA package as long as they are competitive. RNAfold applies the McCaskill 

algorithm to calculate the partition function of a sequence (McCaskill, 1990). The partition 

function is a vector of base pairing probabilities for each nucleotide of a sequence. 

Incorporating this function into the dynamic programming algorithm enables the free 

energy minimization to be performed not only in reasonable time, but also gives the 

possibility to calculate suboptimal structures besides the MFE structure. The accuracy of 

energy minimizing algorithms for single sequences lies around 73%. 

1.2.6.2. RNA structure prediction for multiple sequences 

Predicting structures for single sequences is less accurate than using a set of sequences that 

potentially share structural features (Gardner & Giegerich, 2004). The diversity of 

sequences sharing the same structure gives additional information that can be leveraged to 

predict the consensus structure. This is due to the evolutionary pressure that acts on 

functional structures and preserves their shape. In a functional RNA structure, a mutation 

in the sequence that would disrupt it and compromise its functionality must be compensated 

by another mutation. These compensatory mutations are used in simultaneous folding 

algorithms, e.g. RNAalifold from the ViennaRNA package, to increase the accuracy of the 

predicted structures. Algorithms that simultaneously fold sets of RNA sequences into a 

common consensus structure take an alignment of the sequences as input. Most of them 

implement adapted versions of the Sankoff algorithm, which gives a solution to solving the 

three problems of i) aligning sequences ii) folding sequences and iii) reconstructing a 

phylogenetic tree of sequences, simultaneously in reasonable time using dynamic 

programming (Sankoff, 2006). 

1.2.7. Function prediction of RNA secondary structures 

All RNA molecules fold into secondary structures, but most of these structures are not 

functional. It becomes more and more important to distinguish random structures from 

functional elements and computational approaches are currently the only possibility for 

performing this task in a reasonable amount of cost and time is using computational 

approaches. RNAz from the ViennaRNA package is a widely used tool that performs 

function prediction for aligned RNA sequences with high accuracy. The main principle to 
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separate important structures from of the overwhelming mass of possible structures in 

RNAz is the calculation discriminating features regarding i) the thermodynamic stability 

and ii) the structural conservation. To efficiently model the thermodynamic stability of 

sequences, RNAz calculates z-scores. The z-score refers to the number of standard 

deviations the MFE of a structure deviates from a set of randomized sequences with the 

same length and base composition. The more negative the z-score, the more stable is the 

structure compared to the structures that are generated from random permutations of the 

sequence. The creation of sets of randomized sequences for each input alignment and the 

subsequent calculation of their MFEs is computationally very expensive. RNAz overcomes 

this problem by using a support vector regression to predict the z-score of the input 

sequences with high accuracy. The structural conservation is mainly modelled using the 

SCI, which compares the MFE of the sequences to the energy of their common consensus 

structure. The consensus structure is predicted using RNAalifold from the ViennaRNA 

package, which incorporates bonus energies for compensatory mutations. In the final 

prediction model, all features are combined in a support vector machine, and the input 

alignment is classified as functional RNA structure or not. Using this technique, we can 

predict functional RNA structure fragments in reasonable time and with high accuracy. 

Nevertheless, the length of RNA sequences is still a limiting factor, as the accuracy of 

structure prediction tools decreases with increasing sequence length. The main reason for 

this is that the number of possible secondary structures grows exponentially with increasing 

length. There are two common solutions to this problem: i) sliding windows and ii) 

RNAlalifold. The sliding window approach simply cuts an input alignment into 

overlapping slices of predefined size and uses them as input to the structure prediction 

software. RNAlalifold on the other hand scans a sequence alignment for local optimal 

substructures, by extending the current alignment window in both directions as long as the 

calculated MFE decreases. Both methods are used for screening large alignments, such as 

whole genome alignments, and are also applied within this thesis. The benefit of the 

RNAlalifold approach is that the boundaries of the potentially functional structures are 

better defined than using a randomly sliced window. The boundaries of structures are of 

special importance for the accuracy of structure prediction methods, because of the fast-

growing structure space with increasing sequence length. To further increase the accuracy 

of structure or function prediction methods, the potentially functional structured regions 
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can be realigned using structure guided alignment methods like e.g. mLocARNA (Olivier 

et al., 2005; Will, Joshi, Hofacker, Stadler, & Backofen, 2012). 

1.3. Research goals and investigation 

The main goals of this research were to investigate structure-function relationships in 

conserved secondary structure elements of viral mRNAs and delineate their evolutionary 

impact. Most research has been done on structures in non-coding regions of genetic 

material, which leads to the question if the tools, that were developed specifically for these 

tasks can also be applied to coding regions. In a first publication we investigated conserved 

secondary structures in the intergenic regions of ambisense viruses and in turn compared 

the behavior of structure prediction methods in non-coding and coding regions. To further 

investigate the coding regions of viral mRNAs, the second publication deals with the 

creation of a thorough overview of conserved secondary structures in coding regions of 

viral mRNAs of all viral sequences within RefSeq (O'Leary et al., 2016), and the creation 

of a suitable web resource to provide the results for future research. 

1.3.1. Ambisense viruses 

Ambisense viruses belong to the negative sense ss RNA viruses and perform an unique 

expression strategy. They contain mRNA harboring two genes in opposite reading 

directions (Figure 3). These two genes are separated by a non-coding intergenic region, 

containing a potentially functional secondary structure element (López & Franze-

Fernández, 2007). 
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Figure 3: Schematic representation of the ambisense transcription strategy, as performed in e.g. arenaviruses. 

 

The negative strand of the mRNA can be transcribed by the host cell immediately after the 

viral intrusion, since it is located on the inserted strand which is also called the viral strand 

(vRNA). Expression of the positive strand requires the intermediate replication step in 

which the viral complementary strand (vcRNA) is synthesized. In many cases the viruses 

encode their own RNA dependent RNA polymerases, to ensure transcription (Nguyen & 

Haenni, 2003). Ambisense viruses do contain a gene in the positive reading direction, but 

have more similarities with the negative sense ss RNA viruses than with the positive sense 

ss RNA viruses. Positive sense ss RNA viruses harbor mRNA that can be directly translated 

into a functional protein, while the ambisense RNA has to include a transcription step prior 

to translation (Nguyen & Haenni, 2003). The two genes are separated by a non-coding 

intergenic region, which was, in some cases, shown to comprise secondary structure 
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elements (López & Franze-Fernández, 2007). Furthermore it was shown that transcription 

termination takes place in the intergenic region (Brennan, Rezelj, & Elliott, 2017; López & 

Franze-Fernández, 2007), therefore it is suspected that the structural elements are involved 

in this process. Ambisense viruses infect various hosts and can cause severe damage to 

them. E.g. the tobacco mosaic virus and the tomato spotted wilt virus both infect plants and 

are responsible for enormous crop losses while arenaviruses infect humans and cause 

hemorrhagic fever. Within this thesis a pipeline that identifies conserved RNA secondary 

structures is applied to the intergenic regions of ambisense segments of all known virus 

genera performing this unique expression strategy. If the ambisense strategy involving a 

secondary structure element for transcription termination could be traced back to a common 

ancestor, the identified structures in the different viruses should be conserved between the 

species to some extend. Otherwise the results would point to a convergent evolution of the 

ambisense transcription strategy. Additionally, the study employed an approach to compare 

the usage of RNA structure and function prediction software, which is specifically trained 

with non-coding RNA sequences, for coding regions. 

1.3.2. Virus orthologous groups 

The virus orthologous groups (VOGs) are a collection of orthologous viral proteins, 

covering all viral peptides contained in the RefSeq database (O'Leary et al., 2016). The 

development was carried out by the CUBE institute at the university of Vienna, employing 

the COGsoft program (Kristensen et al., 2010). As many viruses make use of RNA 

structures in their replication cycle, and as these functional structures are potentially 

evolutionary conserved, these orthologous relations between viral proteins can be further 

investigated at the mRNA level. The fact that horizontal gene transfer is common in many 

viruses (Liu et al., 2010) suggests that it could be beneficial to look into the evolution of 

the individual components instead of trying to find a common ancestor for the whole virus. 

The VOGs provide information about the proteins of a virus, which can be transferred to 

the corresponding mRNAs. Therefore, each VOG represents group of proteins with their 

corresponding mRNA that potentially contains evolutionary conserved RNA secondary 

structures. These could give further insights into the evolutionary relationships between 

viruses. While RNA secondary structure has been investigated intensely in non-coding 

regions, only few analyses of the coding sequences can be found in the literature so far. A 
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thorough overview over conserved, potentially functional RNA structures in viral mRNAs 

provides targets for experimental verification in the first place, but also for the development 

of antiviral drugs in the long run, in case the former hypothesis is confirmed. Learning more 

about viruses, and especially RNA secondary structures and their functions will help us 

finding new ways to interrupt the viral replication cycle and stop viral epidemics from 

spreading. In this study we used the VOG data set as a source to create structurally 

homogenous subgroups of VOGs which we call subVOGs. We created an online database 

called RNASIV, where the subVOGs are accessible, and the identified conserved RNA 

secondary structures can be viewed and downloaded for future research. 
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2. Conserved RNA structures in the intergenic regions of 

ambisense viruses 
The goal of this publication was to build a comprehensive overview over the conserved 

RNA secondary structures in the intergenic regions of all known ambisense viruses. The 

data was acquired using the NCBI taxonomy browser and redundancy reduced regarding 

the sequence of the intergenic regions. To get an overview over the structural potential of 

the intergenic coding regions we employed the RNAsurface algorithm to the sequences. 

The intergenic regions showed on average a higher structural potential than the coding 

regions, and amongst the non-coding regions, arenaviruses exhibited the highest potential 

to build stable secondary structures. 

In order to identify conserved RNA structures within the intergenic regions, we employed 

the RNAclust algorithm. RNAclust clusters RNA sequences due to their predicted 

structural similarity. The predicted structural clusters were furthermore checked for 

potential functionality of the structures using RNAz and commonalities between different 

clusters using RNAshape. We found stable structures in the intergenic regions of 

arenaviruses, tospoviruses and a subset of phleboviruses, but the structures were not 

conserved between the species. This finding rather pins to a parallel evolution of the 

ambisense expression strategy, than to a common ancestor. 

The similar results for coding and non-coding regions, when we investigated the 

relationship of sequence- and structure similarity in terms of the mean pairwise identity and 

the structure conservation index lead to the conclusion, that the structure prediction 

software, which was trained on non-coding sequences only, can also be applied to coding 

sequences. 

The supplemental (Figures S1, S2, Table S1, S2, S3, S4) material can be accessed online 

with the published article. Prof. Friedemann Weber suggested the idea of the study. Dmitrij 

Frishman and Michael Kiening designed the study. Michael Kiening conducted the 

computational analyses. All authors interpreted the data and wrote the manuscript. 

2.1. Abstract 

Ambisense viruses are negative-sense single-stranded RNA viruses that use a unique 

expression strategy. Their genome contains at least one ambisense RNA segment that 
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carries two oppositely oriented reading frames separated by an intergenic region. It is 

believed that a structural RNA element within the intergenic region is involved in 

transcription termination. However, a general overview over the structural repertoire of 

ambisense intergenic regions is currently lacking. In this study we investigated the 

structural potential of the intergenic regions of all known ambisense viruses and compared 

their structural repertoire by structure-guided clustering. Intergenic regions of most 

ambisense viruses possess a high potential to build stable secondary structures and many 

viruses share common structural motifs in the intergenic regions of their ambisense 

segments. We demonstrate that (i) within the phylogenetic virus groups sets of conserved 

functional structures are present, but that (ii) between the groups conservation is low to 

non-existent. These results reflect a high degree of freedom to regulate ambisense 

transcription termination and also imply that the genetic strategy of having an ambisense 

RNA genome has evolved several times independently. 

2.2. Introduction 

Ambisense viruses comprise a subsection of the segmented negative-sense single-stranded 

RNA viruses. In contrast to the genome of the purely negative-sense RNA viruses, the 

ambisense genome contains at least one segment with an additional positive-sense reading 

frame (Nguyen & Haenni, 2003). The two parts are oppositely oriented and separated by a 

noncoding intergenic region (IGR), where transcription termination takes place (Emery & 

Bishop, 1987). The gene of the negative-sense reading frame is directly transcribed from 

the viral RNA (vRNA) that is delivered by the infecting particles. To express the gene of 

the positive-sense reading frame, however, the genome first has to be faithfully copied by 

the viral RNA-dependent RNA polymerase into the viral complementary RNA (vcRNA) 

which, in turn, serves as template for transcription. Ambisense viruses are found within the 

entire family Arenaviridae, within the genera Phlebovirus and Tenuivirus of the family 

Phenuiviridae (order Bunyavirales), and in the family Tospoviridae (order Bunyavirales). 

Arenaviruses and Phleboviruses infect animals and humans, while Tospoviruses and 

Tenuiviruses infect plants. 

It has been shown for some of the ambisense viruses, e.g. Arenavirus or Phleboviruses that 

transcription termination takes place within the IGR (Albariño, Bird, & Nichol, 2007; 

Brennan et al., 2017; Ikegami, Won, Peters, & Makino, 2007; Lara, Billecocq, Leger, & 
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Bouloy, 2011; López & Franze-Fernández, 2007; Pinschewer, Perez, & la Torre, 2005) and 

it is suspected that a secondary structure element is involved in the termination process. 

Within the S segment of Arenaviruses Lassa virus and Mopeia virus this element is 

predicted to be a single- or a two-hairpin structure, respectively (Wilson & Clegg, 1991). 

Within the IGRs of viruses belonging to the family Tospoviridae, stable tetraloop structures 

were identified (Clabbers, Olsthoorn, & Gultyaev, 2014) and suggested to act in 

transcription termination (de Haan, Wagemakers, Peters, & Goldbach, 1990). 

Phleboviruses are thought to not contain any stable secondary structures in the IGR 

(Albariño et al., 2007).  

So far, a general overview of the structural repertoire of ambisense IGRs is lacking. To fill 

this knowledge gap, we investigated the presence of conserved structural elements within 

the IGR of all known ambisense viruses. We demonstrate that the IGRs of most ambisense 

viruses have a high potential to build stable secondary structures, many of which are 

conserved within the phylogenetic groups, but not between them. Our findings imply that 

such structures are functional and that the ambisense coding strategy may have arisen 

several times independently during the evolution of segmented negative-strand RNA 

viruses.  

2.3. Material and Method 

2.3.1. Data set of ambisense RNA segments 

GenBank (Clark, Karsch-Mizrachi, Lipman, Ostell, & Sayers, 2015) files containing 

genomic RNA sequences of the four known ambisense virus groups – Arenavirus (AV), 

Phlebovirus (PV), Tospovirus (TV), and Tenuivirus (TEV) - were collected using the NCBI 

taxonomy browser (NCBI Resource Coordinators, 2015). The sequences were filtered for 

segments fulfilling the typical criteria for the ambisense transcription strategy: two coding 

regions (CDSs) on opposite strands separated by an intervening noncoding IGR (Nguyen 

& Haenni, 2003). Subsequently, redundancy reduction was performed such that no two 

genomic segments shared 100% sequence identity in their IGRs.  Sequences containing 

ambiguity codes corresponding to incompletely specified bases were excluded from 

consideration. In our final data set each virus segment was represented by its sequences in 

both 5’–3’ and 3’-5’ orientation, which are referred to as viral (v) and viral complementary 

(vc), respectively (Table 1).  
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Virus Segment Strand 
aData  set 

name 

Number of  

sequences 

bAverage  

GC-content 

bAverage 

length 

[bp] 

Arenavirus 

S v 
AV-S-v (-

IGR) 
97 0.44 (0.69) 3386 (78) 

S vc 
AV-S-vc (-

IGR) 

L v 
AV-L-v (-

IGR) 
61 0.40 (0.75) 7179 (124) 

L vc 
AV-L-vc (-

IGR) 

Tospovirus 

S v 
TV-S-v (-

IGR) 
70 0.34 (0.22) 3045 (681) 

S vc 
TV-S-vc (-

IGR) 

M v 
TV-M-v (-

IGR) 
77 0.35 (0.22) 4809 (325) 

M vc 
TV-M-vc (-

IGR) 

Phlebovirus 

S v 
PV-S-v (-

IGR) 
168 0.46 (0.51) 1769 (120) 

S vc 
PV-S-vc (-

IGR) 

Tenuivirus 

2 v 
TEV-2-v (-

IGR) 
35 0.39 (0.36) 3555 (314) 

2 vc 
TEV-2-vc (-

IGR) 
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3 v 
TEV-3-v (-

IGR) 
53 0.38 (0.26) 2511 (754) 

3 vc 
TEV-3-vc (-

IGR) 

4 v 
TEV-4-v (-

IGR) 
53 0.39 (0.35) 2218 (665) 

4 vc 
TEV-4-vc (-

IGR) 

Table 3: Ambisense virus data sets.  

aData set names are composed of three abbreviations: virus name-segment name–strand. If only the intergenic regions 
are used for a specific analysis, -IGR is added to the data set name. 

bValues in parantheses refer to IRs only. 

 

2.3.2. Evaluating the structural potential of RNA sequences 

To evaluate the structural potential within the IGRs and CDSs of ambisense viruses we 

employed the RNAsurface algorithm (Soldatov, Vinogradova, & Mironov, 2014). 

RNAsurface converts the values of minimal free energy (MFE) for a given RNA sequence 

into a z-score calculated as: 

 z = #$%
&

, (1) 

 

where E denotes the MFE while µ and  are the average and standard deviation of the 

energy distribution of random sequences with comparable nucleotide composition and 

length. RNAsurface uses z-score evaluation to reconstruct the structural potential surface 

of an RNA sequence, which can be visualized by a two dimensional heat map (see Figure 

4). The x-axis corresponds to sequence positions while the y-axis corresponds to segment 

length. Each point and its color on the heat map represent a substring of the sequence and 

its structural potential. z-scores for all possible substrings of length between a certain 

minimal and maximal window size (Wmin, Wmax) are calculated. Locally optimal segments are 

visualized as peaks within the structural potential surface. A segment is regarded as locally 

s
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optimal if small changes of its boundaries lead to worse z-scores. We used the default 

values of Wmin and Wmax of 30 and 200 nucleotides, respectively. 

 

Figure 4: Fragment of the RNAsurface heatmap and the MZ plot for the Arenavirus segment S (GeneBank ID: 

AB261991), including the IR (positions 1579–1642). The line plot in the upper half of the picture shows the MZ 

values (y-axis) for each sequence position (x-axis). The heatmap below represents the surface of the structural 

potential, where the triangles represent locally optimal segments. Each point on the surface corresponds to a 

RNA subsequence. Colors represent the significance of the secondary structure predicted for the subsequence 

at each point. Blue corresponds to highly structured regions while red corresponds to unstructured regions. 

Circles in the heatmap denote local optimal segments. 

 

The structural potential surface defined in this fashion can be reduced to a one-dimensional 

curve reflecting the structuredness of a sequence segment. For each individual sequence 

position i the maximum squared z-score (MZ) among all negative z-scores of sequences of 

length between Wmin and Wmax covering this position is computed.  

RNAsurface was applied to each strand of CDS and IGR RNA sequences separately. To 

make the resulting MZ curves comparable between sequences of different length n, 

sequence positions p were converted to relative positions p()* on the percentage scale, with 

the leftmost and rightmost positions of each sequence corresponding to 0% and 100% for 

CDS1, 100% and 200% for the IGR, and 200% and 300% for CDS2 respectively, according 

to the following equations:  

 p < IR./0(/ → p()* =
p

IR./0(/ − 1
,  
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 pϵIR → p()* = 6 7$89:;<=;
89:;<=;$89>?@

∗ 100C + 100,  (2) 

 p > IR)FG → p()* = 67$89>?@
F$89>?@

∗ 100C + 200,  

 

with IR./0(/ and IR)FG being the first and last residue within the IGR respectively. 

2.3.3. Clustering and identification of evolutionary conserved RNA 

structures in the intergenic regions of ambisense segments 

In addition to the analysis of the structural potential described above we delineated 

conserved structural motifs in all 16 IGR of ambisense viruses listed  in Table 1 by 

performing motif clustering using RNAclust (Will, Reiche, Hofacker, Stadler, & Backofen, 

2007). Applying this technique to CDS regions would be computationally prohibitive 

because they are too long to build structure guided alignments in reasonable time. In a first 

step RNAclust employs RNAfold from the Vienna package (Hofacker & Stadler, 2006) to 

calculate for each input sequence the base pairing matrix, which contains the probability 

for each base to be paired with each other base of the sequence. These matrices are then 

used to calculate pairwise alignments between all input sequences using LocARNA (Will et 

al., 2012). Subsequently, a hierarchical tree, based on the pairwise alignment scores is 

derived, using the WPGMA (weighted pair group method with averaging) (Lemey, Salemi, 

& Vandamme, 2009) method. Each node in the tree corresponds to a possible cluster of 

sequences sharing a structural motif. For each node a multiple sequence alignment (MSA) 

and a consensus secondary structure are computed using mLocARNA and RNAalifold 

(Hofacker, 2007), respectively. (m)LocARNA performs a variation of the Sankoff Fold and 

Align algorithm and thus produces structure guided (multiple) sequence alignments 

(Lemey et al., 2009; Will et al., 2012). 

To obtain the final motif clusters on the tree we employed RNAsoup, a script implementing 

an adapted version of the Duda and Hart (Duda, Hart, & Stork, 2012) rule to find the 

optimal motif clusters. Briefly, the null hypothesis is that the sequences i to n belonging to 

an internal node C form one cluster and should not be further split into separate clusters 

corresponding to the child nodes of C, C1 and C2. The squared error for this hypothesis 
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(Je(1)) is calculated as a sum of differences between the MFE of each individual sequence 

(Ei) and the consensus of all sequences belonging to C (Econs) (Kaczkowski et al., 2009): 

 
𝐽𝑒(1) =M(𝐸O − 𝐸PQRS)T

R

OUV

 (3) 

 

The squared error for the opposite hypothesis, namely that the cluster C should be split into 

separate clusters C1 and C2, is calculated as: 

 
𝐽𝑒(2) =MM(𝐸O − 𝐸PQRS)T

RW

OUV

T

XUV

 (4) 

 

The null hypothesis is rejected if: 

 
𝐽𝑒(1)
𝐽𝑒(2) < 1 −

2
𝜋 𝑘

[2 −
16
𝜋T
𝑛  (5) 

 

where k is a user-defined parameter, with larger k values resulting in larger clusters and 

vice versa. The procedure results in an hierarchical tree containing all input sequences, 

which are then divided into clusters. Since altering the levels of k leads to a change in the 

cluster size, each value of k represents a possible clustering. Based on the analysis of Rfam 

sequence families (Will et al., 2007) it was previously shown that k values between 0.8 and 

1.2 result in the best structural consistency of RNA sequences within each family. We 

discuss the optimal choice of the k value for our study in the Results section. For the 

visualization of the structures FORNA (Kerpedjiev et al., 2015) was used. 

2.3.4. Potential functionality of structures 

The clusters predicted by the RNAclust pipeline were further checked for functionality 

using RNAz (Gruber, Findeiß, Washietl, Hofacker, & Stadler, 2010). For each set of aligned 

RNA sequences secondary structure prediction was affected by RNAz, which implements 

the ‘Align, then Fold’ strategy. The RNAz method uses the RNAfold algorithm from the 
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Vienna package to calculate secondary structures and the corresponding MFE for each 

individual RNA sequence in the alignment. In addition, for each aligned sequence set RNAz 

calculates a consensus secondary structure and its MFE using the RNAalifold algorithm 

from the Vienna package. Subsequently RNAz calculates three measures of structure 

conservation: i) the MFE z-score for each individual sequence, ii) the mean MFE z-score 

amongst all sequences, and iii) the structure conservation index (SCI) of the entire 

alignment. The SCI is calculated as the average MFE value of the sequences contained in 

the input MSA, divided by the MFE value of the consensus structure. Similar to the 

RNAsurface described above, an RNAz z-score describes the number of standard deviations 

by which the MFE of a given sequence deviates from the MFEs of a set of randomized 

sequences with the same length and base composition. However, since MFE calculations 

for a large set of randomized sequences are computationally prohibitive, RNAz predicts z-

score values for each sequence by a support vector regression that estimates the mean and 

standard deviation of random MFEs dependent on the nucleotide composition of the given 

sequence. Negative and positive z-scores indicate structures that are more and less stable, 

respectively, than would be expected by chance (Gruber et al., 2010). The mean z-score is 

calculated as the sum of all individual z-scores divided by the number of sequences. RNAz 

assumes that conserved and thermodynamically stable structures are functional, in which 

case it outputs ‘RNA’, otherwise it outputs ‘OTHER’. For this purpose a p-value, called 

class probability, is calculated. p-values greater or smaller than 0.5 trigger the prediction of 

the ‘RNA’ or ‘OTHER’ class, respectively. The default classifier of RNAz is trained using 

MSAs that are created without any structure information. Predicting conserved structures 

based on alignments derived from LocARNA would result in an over-prediction of 

functional RNAs, as LocARNA alignments are already guided by structures. To avoid such 

over-prediction the option ‘-l’ for LocARNA type alignments was used, which enables a 

different training model in RNAz that is optimized on structure guided alignments. 

2.3.5. Deducing recurring structural motifs using shape abstraction 

The clustering procedure described above joins together sequences that display global 

structural similarity, as judged by the SCI calculated over the entire sequence length.  In 

order to find local structural motifs shared by ambisense viruses we converted the 

consensus structures of each cluster into the abstract shape notation (Giegerich et al., 2004). 
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Shapes are defined at five levels of abstraction – from the most realistic to the most abstract 

ones: 

Level 1: nesting pattern for all loop types and all unpaired regions. 

Level 2: nesting pattern for all loop types and unpaired regions in external loop and 

multiloop. 

Level 3: nesting pattern for all loop types, but no unpaired regions. 

Level 4: helix nesting pattern and unpaired regions in external loop and multiloop. 

Level 5: helix nesting pattern and no unpaired regions. 

In order to infer the overall structural similarity between RNA molecules we used the most 

abstract level 5, which strongly compresses structural diversity. In addition level 3, which 

provides the best trade-off between accuracy and abstraction, was used to assess specific 

differences between the consensus structures. 

To convert the dot-bracket notation of RNAalifold into shape notation the tool RNAshape 

(Steffen et al., 2006) was used. Only shapes of the same type can be compared with each 

other. For each data set we locally aligned the consensus shapes of all clusters against each 

other using the dynamic programming tool water from the EMBOSS toolkit (“EMBOSS: 

The European Molecular Biology Open Software Suite,” 2000). As water accepts only 

nucleotide sequences as input, we replaced the shape notation with nucleotides (‘[‘=’A’, 

‘]’=’T’, ‘_’=G), and used a simple scoring scheme (match +1, mismatch 0, gap -1). The 

nucleotide alignments were then translated back into the shape notation. 

2.3.6. Investigation of the relationship between sequence and structure 

conservation in the intergenic and coding regions 

To investigate sequence-structure relationships in ambisense virus segments we calculated 

two measures of evolutionary conservation using RNAz: SCI and mean pairwise identity 

(mPID). In order to find out whether the relationship between mPID and SCI is different if 

pure sequence alignments, rather than structure guided alignments, are employed we also 

conducted the same analysis using the multiple sequence alignment method clustalOmega 

(Sievers & Higgins, 2014). To derive the SCI and mPID values for the three regions (CDS1, 

CDS2, IGR) in each cluster we first multiply aligned sequences and then split the MSAs 
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into overlapping windows using the helper perl script rnazWindow.pl, which is part of the 

RNAz package. As the full-length CDS are too long to produce structure guided alignments 

in reasonable time, we realigned the alignment windows initially produced with 

clustalOmega using mLocARNA. In a last step the alignment windows generated by both 

methods were passed to RNAz and correlation coefficients between mPID and SCI for each 

region were calculated separately.  

Data Availability 

The datasets generated during and/or analysed during the current study are available from 

the corresponding author on reasonable request. 

2.4. Results and Discussion 

2.4.1. Highest structural potential within IGR in most sequences 

For each of the data sets listed in Table 1 we compared the structural potential of the IGRs 

to that of the CDSs by calculating MZ values for each sequence position using RNAsurface 

(Figures 5 and 6). Sequence positions were converted to a percentage scale for each part of 

the sequences (CDS1, IGR, CDS2), as explained in Methods. The largest contrast in 

structure potential between CDSs and IGR was identified in the Arenavirus data sets. The 

median MZ values within the IGRs are between 20 for AV-L-v and 67 for AV-S-v, while 

in the CDSs they range between 0.2 and 2. In TV and TEV the difference in structural 

potential between CDSs and IGR is less pronounced, although the highest MZ peaks are 

still located within the IGR (see boxplots in Figure 6). Within the TV sequences and the 

sequences of TEV segment 4 the higher structuredness of the IGR is still quite apparent, 

while in TEV segments 2 and 3 the difference between CDS and IGR is very small. The 

CDSs of PV appear to contain potentially structured regions, while their IGRs can be 

subdivided into three groups: i) those with no structural potential within IGRs at all (24% 

and 43% for v and vc, respectively), ii) those containing local optimal segments, whose 

MZ peak is however lower than that of the CDSs (25% and 45% for v and vc, respectively), 

and iii) those containing the highest MZ peak in the entire sequence, including CDSs (51% 

and 12% for v and vc, respectively). Thus, our analysis shows that there is high structural 

potential within the IGSRs of most of the ambisense virus sequences. 
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Figure 5: Structural potential plots for all data sets listed in Table 1. The x-axis corresponds to the relative 

sequence position, with the ranges 0–100%, 100–200%, and 200–300% corresponding to CDS1, IR, and CDS2, 

respectively. Black lines indicate maximum squared z-score values (MZ) of individual sequences derived from 

RNAsurface. Green and red lines correspond to the median and 25%/75% quartiles, respectively. Vertical blue 

lines highlight the borders of the IR. High MZ values indicate potentially structured regions. 
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Figure 6: Boxplots showing the distribution of MZ values in each data set for CDS1, IR, and CDS2. MZ values 

reflect the potential of a sequence to form stable secondary structures. 

 

2.4.2. Structural Clustering 

Using the RNAclust pipeline, hierarchical trees and multiple structure guided sequence 

alignments were calculated for each data set. The trees, and a table showing all sequences 

in their corresponding clusters can be found in the supplementary material (Figures S1, S2 

and Tables S1A, S1B). The full clustering results including all alignments are available 

upon request. Sequence clusters potentially sharing common structural motifs were 

delineated from trees using a certain cutoff value of the parameter k (see Methods).  

The consensus structure of each cluster is described in terms of the structural features it 

contains (Table S2). We define the following five structural features (Figure 7): 

1. Stem: a series of consecutive base pairs that can include bulges and/or internal 

loops. 

2. Loop: a series of unpaired residues followed by one base pair. Smaller loops are 

named according to the amount of unpaired residues in the loop, e.g. triloop (three 

unpaired residues), tetraloop (four unpaired residues) or pentaloop (five unpaired 

residues). 
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3. Internal loop: two or more unpaired residues on both sides of a stem. 

4. Bulge: a series of unpaired residues on one side of a stem.  

5. Multiloop (Mloop): a region where at least three stems come together. A stem can 

be followed by either unpaired residues or by another stem. 

 
Figure 7: Example structure visualizing the structural features used in our analysis: (a) stem, (b) loop, (c) internal 
loop, (d) bulge, (e) multi loop. 
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We identified a large number of structural motifs in the 

clustered IGRs of ambisense viruses (Tables S2 and S3). 

The clusters are characterized by the mPID of the 

underlying structure guided MSA, the SCI, the RNAz 

prediction of functionality (‘RNA’ or ‘OTHER’), and by 

structural features contained in the consensus structure, if 

available. We paid special attention to the hairpin loop 

motifs, which are believed to play a role in transcription 

termination of ambisense RNAs (Nguyen & Haenni, 2003). 

Using the recommended values of k (between 0.80 and 

1.20) we were not able to reproduce previously reported 

structural features of TV sequences (e.g. y-shaped 

tetraloops (Clabbers et al., 2014)), which only became 

visible in our clusters at k=0.6. Based on this limited 

benchmark we used the value of k=0.6 in this study. A 

lower value of k results in more fine-grained clusters, which 

is acceptable as no wrong structures are accumulated in a 

cluster. The size of clusters and their number vary 

drastically between data sets (Figure S2).  

2.4.3. Conserved stem-loop structures in 

Arenaviruses 

In general, clustering results echo those obtained by 

analysing the structural potential of IGRs. Arenavirus 

sequences show the strongest structural conservation 

among all data sets, as evidenced by the consistently high 

SCI values in the AV-S-v/vc-IGR data sets (Table S2). 

Almost all the clusters containing more than one sequence 

(either viral and viral complementary) are predicted by 

RNAz to contain functional RNAs (Table S2 and Figure 

S2). The only structural features present in the consensus 

structures of the S segment are stems and loops (Table 

Figure 8: Consensus secondary structures, visualized 
with FORNA: (a) AV-S-v-IR cluster 3 (b) AV-L-v-IR 
cluster 55 (c) TV-M-v-IR cluster 11. 
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S3). The stem size varies between 5 and 18 base pairs, and the loop size between 3 and 7 

unpaired bases. The biggest cluster in the AV-S-v-IGR set (node ID 3 in the hierarchical 

tree) consists of 56 sequences. The only consensus stem-loop structure for this cluster, 

predicted with RNAalifold, contains the hexaloop sequence ‘CCUAAAGG’ (Figure 8a), 

with the first and the last bases forming a base pair. The mPID of the alignment is 0.65 

while the SCI is 0.94 (Table S2). The high SCI value indicates that the structures of the 

individual sequences within the cluster are energetically very close to the consensus 

structure, and thus are strongly conserved. The cluster contains 18 species (Tables S1A, 

S1B), of which four have been previously reported to contain the single stem-loop feature: 

Pichinde (Auperin, Galinski, & Bishop, 1984), Lymphotic choriomeningitis virus (LCV) 

(Romanowski & Bishop, 1985), Lassa virus (Auperin, Sasso, & McCormick, 1986) and 

Lujo virus (Briese et al., 2009). Thus, our analysis proposes 14 further species to fall into 

this structural class. The smaller clusters have more than one stem-loop structure. Clusters 

155, 138 and 180 consist of 13, 9 and 5 sequences, respectively, and have two stem-loops. 

This structural feature was already described for the Tacaribe virus (López & Franze-

Fernández, 2007), which did not fit into any cluster in our analysis. All sequences but one, 

the Morogoro virus, that share the two stem-loop feature belong to the group of new world 

Arenaviruses. Cluster 119 consists of 10 sequences, all belonging to the species Junin virus, 

and has three stem-loops, two triloops and one pentaloop. The two triloops found in the 

Junin virus sequences are already described in the literature (Ghiringhelli, Rivera-Pomar, 

Lozano, Grau, & Romanowski, 1991), while the pentaloop has not been mentioned before. 

All Machupo virus sequences form one cluster (138) and also share two highly conserved 

triloops. All but one found consensus structures consist of loops with GC closing pairs and 

thus are very stable. The AV-S-vc-IGR set is subdivided into a larger number of smaller 

clusters, but shows a similar distribution of stem-loops, also with very high SCI values.  

 

The IGR structures of the L segment of AV have received much less attention in the 

literature so far. The distinction between the New World and the Old World Arenaviruses 

becomes even more apparent within the L segment, as all clusters only contain sequences 

from one of these groups. In contrast to S segment, which only harbors stems and loops, 

some consensus structures of the L segment contain two further structural features, internal 

loops and Mloops (Table S3). The stem size varies between 3 and 27 base pairs, the loop 
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size between 3 and more than 10 unpaired residues, and the internal loop size between 2 

and 9 unpaired residues. The biggest cluster (node ID 55 with 10 sequences), containing 

only Old World Arenaviruses of the species Lassa virus, Mopeia virus, Mobala virus and 

Luna virus Arenaviruses also adopts the single stem-loop feature with an additional internal 

loop (Figure 8b). The consensus structure of this cluster has quite a high SCI value of 0.74 

and the underlying MSA has a mPID of 0.57 (Table S2). The representatives of the New 

World Arenaviruses, Machupo virus, Tacaribe virus, Sabia virus and Chapere virus share 

one conserved triloop, while all other members of this group have at least two stem-loops. 

The clusters comprising LCV (92, 97, 106) tend to contain more than one stem-loop, 

connected through an Mloop (Table S3, structures 10, 11). The stems sometimes also 

contain internal loops. Only one cluster containing LCV sequences (113) shows a different 

consensus with only one stem-loop. 

As expected, Arenavirus sequences belonging to the same species tend to appear in the 

same cluster (this also applies to all other ambisense virus genera). Our analysis thus 

indicates that structures are more conserved within species than between them. It is also 

remarkable that all clusters in the AV-S-v/vc-IGR data set, except the cluster 180 in the v 

set and the cluster 69 in the vc set, as well as all clusters in the AV-L-v-IGR data set, and 

all clusters in the AV-L-vc-IGR data set, except clusters 8 and 16, are predicted to contain 

functional RNAs by RNAz (Tables S2, S3). This finding is in line with the previous studies 

that show that a stable hairpin in the IGR of Arenaviruses is required for transcription 

termination (López & Franze-Fernández, 2007). 

2.4.4. Conserved motifs within Tospovirus segment M 

The TV-M-v/vc-IGRs contain diverse structural features, with stem sizes varying between 

4 and 44 base pairs and loops containing between 3 and 10 unpaired nucleotides (Table 

S3). All clusters of the v set contain at least one multiloop with 3 base pairs, internal loops 

between 2 and 11 nucleotides, as well as occasional bulges of size 1 to 3 nucleotides. The 

four tomato spotted wilt virus (TSWV) clusters (5, 31, 71, 90) share two strongly conserved 

y-shaped tetraloops: ‘UGAAAA’ and ‘CCGAAG’ (Table S3, structure 16). Clusters 71 and 

90 additionally have a pentaloop (‘UGACAAG’) and a decaloop (‘UAAUCUGACUAA’) 

in common, while cluster 5 contains 2 additional triloops (‘CAAUG’, ‘UCAAA’) that are 

not conserved in other clusters. The presence of y-shaped tetraloops in the IGR of the TV-
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M segment was reported previously (Clabbers et al., 2014). Cluster 110 also contains three 

tetraloops (‘AAAUAU’, ‘CUUAGG’, ‘UUUU-A’), of which two adopt the y-shape (Figure 

8c). Cluster 115 is the only cluster where no consensus structure could be found at all. The 

vc sequences show the same picture. All TSWV clusters (49, 56, 64, 84) share the tetraloop 

‘UUUUCA’, (Table S3, structures 18, 20, 22) with the exception of the cluster 6, in which 

this tetraloop exhibits the sequence ‘UACAAA’. The y-shape is not always present in the 

vc sequences, where some of the structures tend to build a longer stem loop (Table S3, 

structure 22). The TSWV clusters also contain a number of partially conserved internal 

loops as well as triloops, tetraloops and several larger loops up to a septaloop. 

The IGRs of the TV-M segment, with a mean length of 324 nucleotides, are quite long 

compared to the size of the local structural elements, that range in size between 40 and 80 

nucleotides. For this reason the overall conservation signal in terms of the global SCI tends 

to be weak. 

2.4.5. Phleboviruses 

Based on the structural elements contained in the IGR, PV sequences can be separated into 

several groups. The first group (clusters 6, 296, 299, 130, 135, 138, 146, 151, 156, 165, 

200, and 282) contains only one stem-loop and in some cases internal loops (Table S3, 

structure 23). The stem size within this group varies between 3 and 15 base pairs (Table 

S3). The loops typically contain between 4 and 15 unpaired residues, although larger loops 

with more than 20 unpaired residues also exist. The second group (clusters 289, 319, 271, 

227, 127, 230, and 214) possesses consensus structures containing several stem-loops, with 

the stem length between 3 and 40 base pairs, the loop size ranging between 3 and more than 

20 unpaired nucleotides, the internal loops containing between 2 and over 20 unpaired 

nucleotides, and some bulges of size 1 or 2 (Table S3, structure 25). The third group 

(clusters 221, 235, 279, 286, 306, 309, and 332) is characterized by the presence of an 

additional multiloop with 3 to 6 base pairs (Table S3, structure 24). In all three groups we 

find clusters predicted to contain functional RNAs by RNAz (see Methods) as well as 

clusters predicted to not contain functional RNAs (Tables S2, S3). Finally, the fourth group, 

comprising all other clusters, does not contain any structural elements at all. We were 

unable to find any published indication that transcription termination by phleboviral IGRs 

depends on a specific secondary structure element. However, for Rift Valley fever virus it 
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was shown that the UTR of the L segment (which is not ambisense) forms a functional 

stem-loop structure that takes part in transcription termination (Ikegami et al., 2007). Our 

analysis indicates that at least some Pheboviruses contain similar local structural elements 

in the IGR that could serve as transcription regulating elements. 

2.4.6. Tenuiviruses 

Sequences from the TEV-2-v/vc-IGR data sets possess the lowest structural potential 

compared to all other data sets. The structural potential of a sequence is assessed based on 

the z-scores of its MFE structures and thus reflects the significance of these MFE structures 

(Soldatov et al., 2014). Low structural potential in a set of sequences may imply that the 

MFE structures are random and thus unlikely to be evolutionarily conserved. Indeed, the 

RNAclust analysis revealed that although the IGRs are very similar at the sequence level, 

the structural conservation in terms of the SCI is weak for the v sequences and even lower 

for the vc sequences. The biggest cluster of the v set (node ID 4), making up 70% of the 

data set, has a mPID of 96% and a SCI of 78%. In the vc set, all sequences are clustered 

into one cluster (0) sharing a mPID of 93% and a SCI of 25%. All consensus structures of 

both sets are predicted to be non-functional by RNAz. We were thus unable to detect any 

structural conservation in the IGRs of these sequences. 

Similarly, the sequences of the TEV-4-v/vc-IGR data sets were grouped into a single cluster 

and showed almost no structural conservation, although they share a mPID of 81% and 

87% in the v and vc set respectively, and both alignments were classified to contain a 

functional RNA by RNAz. 

2.4.7. The relation between the sequence and structural similarity in the 

intergenic and coding regions of ambisense viruses 

Previous research suggests that there is a certain relationship between mPID and structural 

conservation in RNA sequences. For non-coding RNAs, such as small nuclear RNAs, the 

correlation between sequence identity and structural similarity quickly increases as the 

sequence similarity approaches ~60% and saturates between 60-100% (Capriotti & Marti-

Renom, 2010), while in mRNAs this correlation only exists at sequence identity levels 

between 85% and 100% (Chursov et al., 2012). We investigated the relation between SCI 

and mPID in ambisense virus IGR and CDS based both on pure multiple sequence 
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alignments computed by ClustalOmega and on structure guided alignments created with 

mLocarna. The SCI and mPID values were calculated for MSAs produced by both 

alignment algorithms for all nodes in the RNAclust hierarchical trees (at k=0.6). Since the 

SCI and mPID values follow a normal distribution according to the Kolmogorov-Smirnov 

test (Lilliefors, 1967), we computed Pearson correlation coefficients between them and 

retained only significant correlations (p-value <0.05; two sided t-test; Figure 9). mPID 

values calculated both from sequence and structure-based alignments are strongly 

positively correlated with SCI, in the intergenic as well as in the coding regions (Figures 9 

and 10; Table 4). The correlation is generally stronger for higher mPID values, which is in 

line with our previous results obtained for yeast mRNAs (Chursov et al., 2012). 

 

Region Pearson correlation coefficient between SCI and mPID 

Sequence alignments (MAFFT) Structure-guided alignments 

(mLocARNA) 

CDS1 0.85 0.89 

CDS2 0.86 0.89 

IGR 0.34 0.89 
Table 4: Correlation between mPID and SCI across all data sets. 
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Figure 9: Correlation of mPID and SCI within different mPID threshold ranges. The shape of the data points 

refers to the three regions: triangles – CDS1, squares – CDS2, pluses – IR; circles represent all three regions 

taken together. Colours correspond to the alignment method used: grey – mLocARNA, black ClustalOmega. 

Only significant (confidence interval of 0.95, P-value<0.05) correlations are shown. For better visibility of 

overlapping points a horizontal jitter function was applied. The black line shows the regression performed on all 

data points, and the grey shaded area the standard error. Correlations for the mPID values below 50% were not 

significant and are thus not shown. 
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Figure 10: Comparison of sequence similarity in terms of the mPID on the x-axis and structure similarity in terms of the 
SCI on the y-axis, for the CDSs and IRs of all data sets for (a) Multiple sequence alignments generated with 
ClustalOmega. (b) Structure guided multiple sequence alignments generated with mLocaRNA. Each point corresponds 
to an alignment that covers a window of 120 nucleotides either of CDS1, CDS2 or the IR. 
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2.4.8. Inference of shape motifs 

To find conserved local motifs in the IGRs of ambisense viruses, we converted the 

consensus secondary structures of RNAs in each cluster into shapes at the five levels of 

abstraction described in Methods. At each abstraction level shapes were locally aligned 

using the program water from the EMBOSS toolkit. To assess the differences between the 

consensus structures we chose layer 3 as the best tradeoff between the accuracy and 

abstraction, because it depicts all nesting patterns for all loop types, but no unpaired 

regions. To define the maximum motif the structures have in common, the most abstract 

level 5 was used. All shape consensus structures are listed in Table S4. 

Within the AV-S-v/vc-IGR data sets the consensus structures already showed a high overall 

similarity between different clusters. Expectedly, the shape analysis led to qualitatively 

similar results: the consensus structures of the largest clusters, that make up 58% and 40% 

of the v and vc data set, respectively, contain a single stem-loop ([] in shape notation). 28% 

of the v set and 31% of the vc set share an additional stem-loop ([][]), and sometimes also 

internal loops (e.g. [][[]]). Only 10% of both data sets contain a third stem-loop ([][][]), 

occasionally with internal loops. Likewise, the results for the AV-L-v/vc-IGR data sets are 

as follows. 32% of the v and vc sets share one stem-loop (containing internal loops), 25% 

of both sets share two stem-loops (containing internal loops), three stem-loops are harbored 

by 15% of the data sets, and 10% of the v sequences as well as 16% of the vc sequences 

harbor four stem-loops. 

The TV-M-v/vc-IGR data set showed a weak structural conservation based on the RNAclust 

analysis, but it is known from previous research that the sequences contain conserved 

structural elements (Clabbers et al., 2014). Interestingly, this conservation is visible in the 

shape analysis, with the exception of cluster 115 (25% of the sequences) in the v set and 

cluster 122 (12% of the sequences) in the vs set, which did not produce any consensus 

structure. Clusters 90 and 71 from the v set show the exact same shape, consisting of four 

stem-loops, including the y-shaped loops already described in literature, and cluster 5 only 

differs from those by an additional internal loop. These three clusters make up ~43% of the 

sequences. Clusters 31 and 110 (30%) harbor only three stem-loops, but also share the y-

shaped loops. The level 5 shape motif visible from the local alignments of all clusters of 

the v set, except 115 and 110, is [[[][]][]], while in the consensus structure of cluster 110 
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the third stem-loop is situated before the y-shaped loop: [[][[][]]]. Within the vc set, the 

structures are more diverse, but also share a conserved core. Cluster 64 (13%) consists of a 

single long stem-loop containing several internal loops and bulges, while cluster 111 (6%) 

harbors two loops. The majority of sequences share three stem-loops (31%). The remaining 

30% of the sequences harbor four or more loop structures. The y-shaped motif is only 

visible in clusters 84 ([[][][[][]][]]) and 147 ([][[[][]][][]]), which account for 21% of the 

sequences; in both cases the y-shaped loops are part of a multiloop. 

In line with the RNAclust analysis several groups become apparent within the Phlebovirus 

data sets (PV-S-v/vc-IGR):  

• 11% of the v set and 21% of the vc set do not contain any structure. 

• 58% of the v set as well as 29% of the vc sequences harbor one stem-loop ([]) and in 

some cases also internal loops ([[]]) 

• Two stem-loops are harbored by 13% and 44% of the v and vc sequences, respectively. 

• Within the viral sequences, 4% harbor three stem-loops. 

• Finally, two groups of vc sequences, accounting for 10% and 5% of the data, 

respectively, are characterized by the presence of a multiloop and three ([[][][]])  to 

four ([[][][][]])stem-loops. 

In contrast to what is currently known, the vast majority of the Phlebovirus sequences 

harbors at least one single stem-loop with a varying number of internal loops within the 

stems on the v strand and two stem-loops on the vc strand. Only a small proportion of 

sequences does not show any structural feature. 

2.4.9. Conclusions 

Segmented negative-strand RNA viruses are in principle only capable of expressing one 

gene per segment (Ferron, Weber, la Torre, & Reguera, 2017). To expand the coding 

capacity, they express additional genes either via polyprotein expression, insertion of ORFs 

with a shifted reading frame, or by the ambisense strategy (Elliott & Brennan, 2014; Wuerth 

& Weber, 2016). The IGR is an inherent feature of the ambisense RNA viruses, pathogens 

of major medical and economical importance. Here, we present the first comprehensive 

comparison of the predicted IGR structures among and between the arenaviruses, 

tospoviruses, phleboviruses and tenuiviruses.  
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In order to obtain a general overview of the structural repertoire of the ambisense RNA 

segments, we explored their potential to build stable secondary structures by clustering the 

sequences globally based on structural similarity, predicting consensus structures for each 

cluster, and identifying local structural motifs using shape abstraction. The shape analysis 

showed that the consensus structures of the clusters can be further compressed due to their 

similar shapes, reducing the structural repertoire of the IGR to three to four recurring 

patterns within each data set. Arenaviruses showed the highest structural potential within 

their IGRs, and a very low degree of structuredness in the two CDSs. The structural 

potential of the Arenavirus IGRs is also clearly the strongest among all ambisense viruses. 

The most prominent feature of Arenavirus IGRs is the presence of at least one stem-loop 

structure, which is presumed to be a transcription termination signal. This structure has 

been previously discovered in four of the Arenavirus species, and our analysis also suggests 

that it is conserved in 14 further species. Approximately 60% of the sequences contain only 

one stem-loop structure (shape []). Further 30% of the IGRs contain two stem-loop 

structures (shape [][]) in 10 species, including the Tacaribe virus, where they have been 

previously described (López & Franze-Fernández, 2007). Finally, 10% of the IGRs, all 

belonging to the species Junin virus, contain three stem-loop structures (shape [][][]) – an 

arrangement that has not been mentioned in literature so far. According to previous research 

this species also belongs to the group, which contains two stem-loops (Ghiringhelli et al., 

1991). Interestingly, only the sequences belonging to the “New world Arenaviruses” harbor 

more than one stem-loop. Almost all structures were classified as functional, which 

reinforces the assumption that they may play a role in transcription termination. 

In contrast to Arenaviruses, Tospovirus sequences showed only a moderate structural 

potential in the IGR, although it is still higher than in the CDS regions. We found conserved 

y-shaped tetraloops and triloops in the IGRs of the M segment on the viral strand, with the 

y-shaped loops containing a varying amount of internal loops: i) [[[[[[][]]]]], ii) [[[][[]]]], 

and iii) [[[[[[][]]][]]. Sequences of the viral complementary strand tend to fold into a long 

single stem-loop ([]), while the y shape is only present in 21% of the vc sequences. 48% of 

the sequences harbor one to seven additional stem-loops. All consensus structures of the 

Tospovirus clusters, viral as well as viral complementary, were predicted to be functional.  
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The Phlebovirus IGRs have so far not been thought to contain any functionally relevant 

structural features (Albariño et al., 2007), which led us to expect a low structural potential 

in their IGRs. This is indeed true for most of the analysed Phlebovirus sequences. 

Nevertheless, a subset of Phlebovirus sequences, comprising approximately 76% and 57% 

of the vRNA and vcRNA data set respectively, showed a high potential to build stable 

secondary structures in the IGR. For 51% and 12% of the v and vc sequences, respectively, 

the potential is higher than the structural potential of the two CDS. RNAclust analysis 

confirmed that these structures are highly conserved within the corresponding clusters. 

Only 11% of the sequences did not produce any consensus structure. Shape analysis 

revealed that the most prominent feature on the vRNA strand is a single stem-loop with a 

varying amount of internal loops, and on the vcRNA strand two stem-loops with internal 

loops. The found structures are predicted to be functional. Tenuiviruses appear to be the 

only ambisense viruses that lack conserved structures in the IGRs, in spite of the high level 

of sequence similarity. Still the consensus structures of segment four were predicted to be 

functional. 

The structure conservation index was used to identify conserved structures in the IGRs of 

ambisense viruses and to measure their reliability. As this measure is dependent on the 

sequence similarity of the underlying alignment (Gruber et al., 2010), we investigated the 

relation between sequence and structure conservation in terms of the mPID and the SCI 

respectively both for pure sequence and structure guided MSAs. The analysis showed that 

SCI and mPID are highly correlated both in the intergenic and in the coding regions, and 

the correlation is stronger for higher mPID values. Similarity of sequence-structure 

relationships between the coding and non-coding regions suggests that RNAz and other 

methods for predicting stable and conserved RNA secondary structures, which are usually 

trained on non-coding regions, can also be applied to coding sequences. 

Genomic RNA of ambisense RNA viruses is largely encapsidated by N proteins (Reguera, 

Cusack, & Kolakofsky, 2014). In non-ambisense bunyaviruses, transcription is believed to 

be terminated by 3’ UTR structures formed in either the genome template or the nascent 

mRNA (Barr, 2007). Similarly, whether the IGR-located transcription termination signal 

of ambisense bunyaviruses acts on the mRNA level, or whether it already forms on the 

nucleocapsids, is currently unknown.  
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To summarize, we detected certain levels of structural conservation (or the absence of any 

predicted structures) within the ambisense virus groups, but not between them. This may 

indicate that transcriptional termination per se could be achieved by many different types 

of IGRs. Other, group-specific, IGR functions may exist that constrain the structural 

freedom despite the fact that the IGR can be a target of antiviral host defences (Moy et al., 

2014). 

In any case, our results indicate that the ambisense gene expression strategy has evolved 

several times independently as a means to alleviate the one-gene-per-segment restriction of 

the segmented negative-strand RNA viruses. These findings may improve our 

understanding of negative-strand RNA virus gene regulation and evolution and prompt 

further research into the structure-function relationship of the IGR.  
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3. Conserved Secondary Structures in Viral mRNAs 
In this second publication, we sought to give a comprehensive overview over conserved 

structures on viral mRNAs of all viruses which are part of RefSeq. We used the virus 

orthologous groups (VOGs) data set as starting point. The VOGs were provided by the 

CUBE institute of the university of Vienna and represent orthologous groups, containing 

all proteins with an entry in RefSeq. 

We calculated distance trees for the mRNA sequences belonging to VOG proteins and 

subsequently predicted structural conservation and functionality of the identified structures 

for the inner nodes of the trees. The nodes with the maximum number of sequences still 

exhibiting conserved structures were annotated as structurally homogenous subgroups of 

VOGs (subVOG). Using this procedure, we could resemble structures that were already 

described in the literature and propose new viral sequences which contain them as well. We 

furthermore investigated the relationship of mRNA structure and protein function, and 

found trends previously described for cellular organisms, as well as newly described virus 

specific relationships. An online resource RNASIV was created, where the subVOGs can 

be accessed and downloaded for future research. 

The supplemental (Figures S1, S2, S3, Table S1) material can be accessed online with the 

published article. Michael Kiening designed the study, the methodology, implemented the 

software, interpreted the results and wrote the manuscript. Roman Ochsenreiter designed 

the study and interpreted the results. The data set was provided by Prof. Thomas Rattei and 

Hans-Jörg Hellinger. Ivo Hofacker, Thomas Rattei and Dmitrij Frishman had the idea to 

the study, designed the study, supervised the project and wrote the manuscript.  

3.1. Abstract  

RNA secondary structure in untranslated and protein coding regions has been shown to 

play an important role in regulatory processes and the viral replication cycle. While 

structures in non-coding regions have been investigated extensively, a thorough overview 

of the structural repertoire of protein coding mRNAs, especially for viruses, is lacking. 

Secondary structure prediction of large molecules, such as long mRNAs remains a 

challenging task, as the contingent of structures a sequence can theoretically fold into grows 
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exponentially with sequence length. We applied a structure prediction pipeline to Viral 

Orthologous Groups that first identifies the local boundaries of potentially structured 

regions and subsequently predicts their functional importance. Using this procedure, the 

orthologous groups were split into structurally homogenous subgroups, which we call 

subVOGs. This is the first compilation of potentially functional conserved RNA structures 

in viral coding regions, covering the complete RefSeq viral database. We were able to 

recover structural elements from previous studies and discovered a variety of novel 

structured regions. The subVOGs are available through our web resource RNASIV (RNA 

structure in viruses). 

3.2. Introduction 

Secondary structures formed in single-stranded mRNA molecules through complementary 

self-interactions, both in the untranslated (UTR) and coding (CDS) regions of mRNAs, 

have been implicated in a variety of regulatory functions (Bevilacqua & Blose, 2008). For 

example, riboswitches modulate gene expression through conformational changes in 

response to various stimuli (Serganov & Patel, 2007). Translation initiation, elongation, 

and termination as well as translation efficiency depend on higher order mRNA secondary 

structures in non-coding regions (Gray & Hentze, 1994; Kozak, 2005). CDS hairpins have 

also been suggested to play a role in the regulation of translation (Katz & Burge, 2003), in 

particular by causing ribosomal stalling and modulating translational efficiency (Mortimer, 

Kidwell, & Doudna, 2014). The relationship between mRNA structure in the CDS and gene 

expression has been demonstrated both computationally and experimentally (Carlini, Chen, 

& Stephan, 2001; Duan et al., 2003; Ilyinskii et al., 2009; Kudla, Murray, Tollervey, & 

Plotkin, 2009; Nackley et al., 2006). In particular, reduced mRNA stability near the start 

codon has been observed in a wide range of species, probably as a mechanism to facilitate 

ribosome binding or start codon recognition by initiator-tRNA (Gu, Zhou, & Wilke, 2010). 

Structured elements within CDS directly influence mRNA abundance (Del Campo, 

Bartholomäus, Fedyunin, & Ignatova, 2015). Computational studies show that native 

mRNAs have lower folding energies and are thus more stable than codon-randomized ones 

(Katz & Burge, 2003). The three mRNA functional domains—5’UTR, CDS, and 3’UTR—

form largely independent folding units, while base pairing across domain borders is rare 

(Shabalina, Ogurtsov, & Spiridonov, 2006). The ability of viruses to persist in their host in 
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a genus-specific manner is influenced by the interplay between local structural motifs and 

genome-scale ordered RNA structures (GORS) (Simmonds, Tuplin, & Evans, 2004), which 

impose additional restraints on the RNA sequence space. Evolutionarily conserved local 

secondary structures have been identified in CDSs (Meyer & Miklós, 2005) and shown to 

be functional (Olivier et al., 2005). An indirect indication of the global importance of RNA 

structures in the coding regions comes from the recent study of Fricke et al. who identified 

selection favoring specific pairing patterns between synonymous codons within RNA 

hairpins (Fricke, Gerst, Ibrahim, Niepmann, & Marz, 2019). 

Increasing evidence suggests that secondary structural elements in the CDSs of viral RNAs 

also constitute a previously underappreciated, evolutionarily conserved level of functional 

organization of viruses. A large number of conserved secondary structural motifs were 

computationally identified in the Flavivirus genomes (Fricke et al., 2015; Pirakitikulr, 

Kohlway, Lindenbach, & Pyle, 2016; Thurner, Witwer, Hofacker, & Stadler, 2004), 

predicted to restrain sequence variability (Simmonds & Smith, 1999) and experimentally 

shown to regulate important biological processes, such as replication and infection 

(Pirakitikulr et al., 2016). Multiple secondary structures were described in the coding 

regions of the (+) sense RNA of the Influenza A virus (Moss, Priore, & Turner, 2011). 

Another example is a secondary structural element within the coding region of the Dengue 

virus type 2, which is essential for its replication (Clyde & Harris, 2006). More recently, 

using a comparative genomics approach, Goz and Tuller identified a large number of 

potentially functionally important regions in the coding regions of Dengue viruses, in which 

the RNA folding strength is conserved independently of sequence conservation and 

compositional bias (Goz & Tuller, 2015). Specific regions in the HIV structural genes were 

reported to be under strong selection for stable secondary structures (Goz & Tuller, 2016). 

Recent research shows that mechanisms of translational control by RNA structures can be 

shared between viruses and cellular organisms (Díez & Jungfleisch, 2017). 

Given the important role played by RNA structures in shaping the evolutionary dynamics 

of viruses and modulating their interaction with the host, a large-scale investigation of RNA 

motifs in viruses would be warranted. However, there are two major challenges that need 

to be addressed before embarking on such an investigation. First, accurate structure 

prediction for long RNA molecules, such as mRNAs, is generally out of reach for the 

existing computational methods. Second, conserved stem-loop structures can only be 
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derived from a collection of high-quality alignments of orthologous viral transcripts, which 

are difficult to obtain, given the rapid pace of viral evolution and the ensuing poor sequence 

conservation, even between closely related species. 

Here, we propose a computational approach to explore the RNA structurome of the viral 

coding regions, in which local structure predictions are applied to VOG (Viral Orthologous 

Groups, http://vogdb.org), the first comprehensive collection of orthologous groups derived 

for all viral proteins contained in the RefSeq (Pruitt, Tatusova, Brown, & Maglott, 2012) 

database. We utilize RNALalifold (Lorenz et al., 2011) to scan long input sequences for 

locally optimal secondary structures. The identified structural boundaries are more accurate 

than those derived from using a sliding window of fixed length. Functional importance of 

structured regions is assessed by RNAz (Gruber et al., 2010). We present a novel database, 

RNASIV (RNA structure in viruses; http://rnasiv.bio.wzw.tum.de), which contains the 

largest currently available collection of predicted RNA structures in viruses. It provides 

access to 201,708 viral mRNA sequences clustered into 42,293 structurally homogenous 

groups and is intended to become a useful tool for exploring structure–function 

relationships in virus families. 

3.3. Materials and Methods 

3.3.1. Viral Orthologous Groups (VOGs) 

All genome sequences and their annotations were retrieved from the RefSeq viral database 

release 79 (O'Leary et al., 2016) and grouped into phages and non-phages, based on the 

available taxonomic information. Assemblies containing inconsistently annotated or 

completely unannotated polyproteins were identified based on the manually curated 

information provided by ViralZone (Hulo et al., 2011) and excluded from consideration. 

Phage and non-phage protein sequences were clustered into phage and non-phage preVOGs, 

using the NCBI’s COG software package with all default settings. 

For all phage and non-phage preVOGs, multiple sequence alignments were constructed with 

Clustal Omega v1.2.4 (Sievers & Higgins, 2014) and used to build HMM-profiles using 

HMMer 3 (Eddy, 2009). The profiles were subsequently aligned against each other, using 

HHalign from the HHsuite toolkit (Remmert, Biegert, Hauser, & Söding, 2011). The number 

of aligned HMM columns was used as an alignment score. All scores for alignments with 

HHalign probability >85, HHalign e-Value <10$^, and more than 70% of aligned columns 
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between the query and the match HMM were stored as an all-against-all matrix. This matrix 

was clustered into 21,200 VOGs, using the MCL (Markov Clustering) method (Enright, Van 

Dongen, & Ouzounis, 2002). Based on the manual inspection of the homogeneity of the 

protein function descriptions in the resulting clusters, we selected the inflation value of 2.0 

for the MCL clustering. For all VOG member proteins, we determined the closest homolog 

in the UniProt database (UniProt Consortium, 2015) from BLAST (Altschul, Gish, Miller, 

Myers, & Lipman, 1990) hits with E-values better than 10$^ and a minimal query coverage 

of 90%. Functional descriptions of VOGs were automatically derived based on the most 

frequent protein description found in the UniProt entries or, if not available, in the RefSeq 

annotation (O'Leary et al., 2016). The complete VOG dataset, which was used in this study, 

and supplementary files are available for download at http://vogdb.org. 

3.3.2. Mapping VOG Sequences to Specific Hosts 

We used Virus-Host DB (Mihara et al., 2016) to assign host information to VOG proteins. 

For 20757 VOGs, we were able to map all contained sequences to a specific host, while 428 

VOGs contain proteins from at least one viral species for which we could not find host 

annotation. Most VOGs include viruses infecting hosts from only one domain of life, i.e., 

bacteria (~72%), eukaryotes (~22%), or archaea (4%), while only 2% of VOGs are 

taxonomically mixed (Figure 11). Only 12 VOGs contain viruses that infect hosts from all 

three domains of life. The VOG sizes range from 15 proteins of 12 distinct species, up to 265 

proteins belonging to 261 different species (on average, 104 proteins from 95 different 

species). These VOGs mostly harbor highly conserved core enzymes of double-stranded 

DNA viruses, such as kinases, ligases, methylases, helicases, hydrolases, and synthases 

(Kazlauskas, Krupovic, & Venclovas, 2016). The other two VOGs additionally contain 

proteins from viruses belonging to the order of Caudovirales, which belong to the 

bacteriophages, which are not classified as double-stranded DNA viruses, according to the 

NCBI taxonomy. We excluded from consideration 15 VOGs containing satellite viruses 

infecting other viruses. 
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Figure 11: Venn diagram showing the taxonomy of the host organisms within all viral orthologous groups (VOGs). 
Only those VOGs are included for which host annotation for all viruses is available in the Virus-Host DB. 

 

3.3.3. Distance Trees of VOG Proteins 

Expectedly, we found that RNA structure conservation within VOGs decreases with 

increasing VOG size. Most VOGs (66%) consist of at least three sequences (size 

distribution shown in Figure 12) and can therefore potentially be split into smaller groups 

containing structures that are not conserved across the entire VOG. We therefore utilized 

distance trees derived by the neighbor-joining algorithm (Saitou & Nei, 1987) to identify 

structurally homogeneous subsets of VOGs (subVOGs). All-against-all pairwise 

alignments of protein sequences were calculated using Clustal Omega and then converted 

to the nucleotide alphabet. The distance matrices were derived from pairwise sequence 

identity values, and the trees were created from the matrices using neighbor joining, as 

implemented in the BioPerl toolkit (Stajich et al., 2002). The inner nodes of the sequence 

trees represent possible subVOG candidates, potentially containing structurally 

homogenous sequences. 
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Figure 12: Distribution of VOG sizes. 

 

3.3.4. Structure Prediction and subVOG Assignment 

In order to assess the amount of structural RNA conservation present in subVOG 

candidates, multiple sequence alignments (MSAs) of proteins were calculated for each 

inner node of the distance trees and converted to the nucleotide alphabet. The RefSeq 

nucleotide and protein sequences were obtained from the VOGDB. We then employed 

RNALalifold from the ViennaRNA package (Lorenz et al., 2011), with default parameters, 

to determine the boundaries of locally stable structures within each MSA, and realigned 

these local regions using mLocARNA (Will et al., 2012). MLocARNA produces structure-

guided multiple sequence alignments, using an adapted version of the Sankoff algorithm. 

The significance and conservation of the found structures was assessed with RNAz (Gruber 

et al., 2010). This procedure is simpler and arguably more accurate than the usual approach 

of applying RNAz to the entire MSA within a sliding window. RNAz classifies fragments 

of an MSA pre-selected by RNALalifold as containing or not containing a functional RNA 

secondary structural element. Realignment with mLocARNA significantly increases the 

precision of RNAz (Gruber et al., 2010). As no sequence of a potential subVOG can be 

regarded as a reference sequence, the option “no reference” was used for the subsequent 

RNAz analysis. The RNAz method uses the RNAfold algorithm from the ViennaRNA 

package to calculate secondary structures and the corresponding minimum free energy 

(MFE) for each individual RNA sequence in the alignment. In addition, for each aligned 

sequence set, RNAz calculates a consensus secondary structure and its MFE using the 
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RNAalifold algorithm. RNAz assumes that conserved and thermodynamically stable 

structures are functional, in which case it outputs “RNA”. Otherwise, it outputs “OTHER”. 

For this purpose, a class probability value, combining all information on an input alignment 

is calculated. We used a stringent threshold of 0.9 (default 0.5) for the class probability 

value, which is recommended for finding high confidence structures (Gruber et al., 2010). 

Subsequently, the trees were scanned for subtrees containing at least one conserved 

structural element, that is, predicted to be functional, and the largest subtrees were 

designated as structurally homogenous subVOGs. We found that sequences that are only 

distantly related according to the neighbor-joining tree may still share conserved RNA 

structures. In order to account for structure-level relationships between sequences, we built 

covariance models for all conserved structures found within subVOGs, using the tool 

cmbuild from the infernal package (Cui, Lu, Wang, Jing-Yan Wang, & Gao, 2016), and 

used them to search against all sequences in the entire VOG database.  

3.3.5. mRNA Stability 

Following Tuller et al. (Tuller et al., 2011) and Faure et al. (Faure, Ogurtsov, Shabalina, & 

Koonin, 2016), we employed RNAfold to calculate the folding energy of the most and the 

least stable 30-nucleotide segment of mRNAs (DGmin and DGmax, respectively), as well as 

the average folding energy of all possible 30 nucleotide segments (DGmean). Faure et al. 

investigated the effect of mRNA stability on the translation rate and protein folding. During 

translation, the ribosome sequentially unfolds parts of the mRNA. These parts are typically 

30 nucleotides long, which explains the choice of segment length in Faure et al. As this 

procedure does not take into account the actual boundaries of local structures, but rather limits 

all structures to the size of 30 nucleotides, we additionally calculated the three energy values 

for all local optimal structures found with RNALfold. 

3.3.6. mRNA Structures and Protein Function 

We investigated the relationship between protein function, described in terms of gene 

ontology (GO) annotation (Ashburner et al., 2000), and mRNA structures. Instead of using 

the global folding energy for classifying mRNAs as highly or lowly structured (Vandivier et 

al., 2013), we considered structural coverage—the portion of an mRNA covered by 

functional and conserved structures. GO terms for all VOG proteins were downloaded using 

QuickGO (Binns et al., 2009), where available. Based on the Evidence & Conclusion 
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Ontology (ECO) evidence codes (Giglio et al., 2019), two separate datasets were created: (i) 

Proteins annotated by manually or experimentally derived GO terms (ECO evidence codes: 

ECO:0000352, ECO:0000269), and (ii) proteins annotated by GO terms with any evidence 

codes. To find out whether mRNAs of proteins with certain functions tend to harbor more or 

fewer structures, we pooled together functionally similar GO terms with the average 

structural coverage of their corresponding mRNAs, using Revigo (Supek, Bošnjak, Škunca, 

& Šmuc, 2011). Revigo uses a semantic similarity measure to group similar GO terms 

together, which results in a concise list of distinct functions. To perform this analysis, we 

calculated the average structural coverage of all subVOG mRNAs with available GO 

annotation. For the experimental dataset we allowed a coverage value to be associated with 

a GO term if more than 50% of the sequences in a particular subVOG were annotated with 

this term. Within the dataset based on all evidence codes, we only allowed GO terms shared 

by all sequences of a subVOG. We only used mRNAs that were clustered into a subVOG. 

For sequences that were not part of any subVOG, we did not find conserved structures, 

although this does not necessarily mean that the mRNA did not contain functional structures. 

The distributions of standard deviations of the structural coverage values were compared 

within the actual and randomly generated Revigo clusters. Randomization was performed 

1000 times by preserving the size of the clusters and filling them with randomly chosen GO 

terms. 

3.4. Results 

3.4.1. Overview of the Study 

A graphical overview of the study is given in Figure 13. In a first step, we created distance 

trees for all protein sequences contained in each VOG, using the neighbor joining method, 

as described in Materials and Methods. All sequences of the inner nodes of each tree, 

representing potential subVOGs, were multiply aligned, converted to the nucleotide 

alphabet and processed with RNALalifold to obtain all potentially conserved local optimal 

structures. Each part of the alignment covering a potential structure was then realigned with 

the structure-guided alignment method mLocARNA and checked for functionality using 

RNAz. The use of structure-guided alignments as input for RNAz improves the 

performance, compared to pure sequence-based alignments (Gruber et al., 2010). The tree 

nodes containing the most sequences that yielded conserved structures were taken as final 
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subVOGs. For all obtained subVOG structures, we computed covariance models that could 

be used to search for similar structures in future research. 

 
Figure 13: Overview of the analysis of conserved RNA structures in VOGs. 

 

3.4.2. Structure Conservation in VOGs 

The current release of the VOG database, derived from the RefSeq release 77, contains 

21,200 VOGs, composed of 251,796 proteins from 6252 phages and eukaryotic viruses 

(Figure S1). Protein sequences in each VOG were aligned by Clustal Omega, converted to 

the nucleotide alphabet, and used as input for RNA structure prediction by RNALalifold. 

As seen in Figure 14, the number of local optimal structures conserved within entire VOGs 

decreases quickly with the number of aligned sequences, which may in part be the 

consequence of poor multiple alignment quality in large sets of sequences. Indeed, we 

found that proteins in smaller VOGs tend to be more closely related (Figure S2). To exclude 

structures found due to sequence conservation only, the potential functionality of structures 

was verified with RNAz. However, even those VOGs that only consist of a few sequences 

do not always contain conserved structures. There are 7232 VOGs with exactly two 

sequences, and for 1237 of these, we could not find any conserved structures. The 

remaining 5995 VOGs of size two had an average structural coverage of approximately 

25% (Figure 15a). Out of the 13,968 VOGs with more than two sequences, 7238 VOGs 

were predicted to contain RNA structures conserved across the entire VOG, with an 

average structural coverage of approximately 18% (Figure 15b). These contain between 3 
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and 96 sequences, with an average of 6. On average, VOGs contain sequences from three 

different genera, mostly belonging to the same taxonomic family and thus also to the same 

order (Figure 16a–c). The 25 most diverse VOGs contain sequences from three different 

orders and up to 19 taxonomic families. On average, a VOG contains mRNAs from viruses 

that infect hosts from four different genera, belonging to three different taxonomic families 

and two orders. The VOG with the highest host diversity corresponds to 209 different host 

genera from 114 families and 64 orders. 

 
Figure 14: Number of local RNA structures as a function of VOG size. 
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a) 

 

b) 

 

c) 

 

Figure 15: Coverage of VOG alignments by local optimal RNA structures. (a) VOGs with two sequences. (b) VOGs 
with more than two sequences, in which structures are conserved across all sequences. (c) subVOGs. VOGs that did 
not contain conserved structures, even after splitting into subVOGs, are not shown. 
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Figure 16: Taxonomic distribution of proteins in VOGs (with more than two sequences) and subVOGs. 

 

3.4.3. Structure Conservation in subVOGs 

We attempted to subdivide 6730 VOGs with more than two sequences and without 

conserved structures into structurally homogeneous subsets, which we call subVOGs, using 

phylogenetic trees derived by the neighbor-joining method. This procedure resulted in 

17,678 subVOGs with an average structural coverage of approximately 13% (Figure 15c). 

The average number of genera per subVOG is 2 and the most diverse of them contains 

sequences from three orders and 14 families. A subVOG contains on average sequences 

that infect two different host genera, and the most diverse subVOG infects hosts of 42 

different genera, belonging to 33 families and 20 different orders (Figure 17a–c). Thus, 

unsurprisingly, subVOGs, which constitute subsets of full VOGs with increased structural 

homogeneity, exhibit a reduced taxonomic spread, both of the viruses they contain and their 

hosts. A large fraction of subVOGs (63%) contains sequences from more than one genus 

and 21% contain sequences from more than one family. The structural coverage of 
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subVOGs, i.e., the fraction of alignment positions that are located within conserved RNA 

structures, decreases with increasing taxonomic diversity of the viruses and their hosts 

(Figure 18). An example that demonstrates the reduction of taxonomic spread between a 

VOG and its corresponding subVOGs is given in Figure 19. Here, the VOG 00052, which 

contains 20 proteins from 12 different virus species belonging to 4 different taxonomic 

families, was split into four structurally homogenous subVOGs. Two of the four subVOGs 

consist of mRNAs belonging to the genus Avipoxvirus from the family Poxviridae, the 

third subVOG contains sequences from the family Mimiviridae, and the fourth subVOG 

consists of two mRNAs belonging to viruses from two different taxonomic families, the 

Ascoviridae and the Iridoviridae. For two mRNAs, we could not find structures conserved 

in any of the other VOG members and they are therefore not part of any subVOG. 

 
Figure 17: Taxonomic distribution of hosts in VOGs (with more than two sequences) and subVOGs. 
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Figure 18: Structural coverage as a function of the taxonomic variety of subVOGs and their host organisms. 
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Figure 19: Example of a VOG split into structurally homogenous subVOGs. Shown is the VOG 00052 containing 20 
mRNAs, encoding for Kila-N domain proteins, from 12 virus species. On the left, the neighbor-joining tree based on the 
pairwise sequence identity between the protein sequences is shown. Colored boxes indicate subVOGs, within which 
conserved structures were predicted. The tree nodes outside colored boxes did not yield any conserved structures. On the 
right, the structure conservation index (SCI) (black line for each subVOG alignment) is plotted against the alignment 
position on the percentage scale. Plots are ordered according to the subVOG position in the tree. 

 

As an example, Figure 20 shows the subVOG 1 of VOG11160, which contains two mRNAs 

encoding the matrix protein 1 from the Influenza A virus (H3N2) and the Influenza B virus. 

There are three RNA structural motifs described in the literature for the Influenza A mRNA. 

Nucleotides 105 to 192 form either a multibranch structure, according to Moss et al. (Moss 

et al., 2011) and Jiang et al. (Jiang, Nogales, Baker, Martinez-Sobrido, & Turner, 2016), or 

a double hairpin structure, proposed by Jiang et al. (Jiang et al., 2016). Two consecutive 

stem-loop structures are formed from position 682 to 744, according to Moss et al. (Moss 

et al., 2011). Despite the sequences’ dissimilarity between Influenza A and B, both motifs 

are partly conserved, according to our RNAz analysis of the corresponding subVOG 

(Figure 20). Our analysis supports the second hairpin loop from the double hairpin 
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structure, described by Jiang et al. (Figure 20a–c). From the second motif, proposed by 

Moss et al., we also found that the second hairpin structure was partly conserved (Figure 

20d–e). The consensus structure of the first motif has a high structure conservation index 

(SCI) of 0.78, although the part of the alignment covering the structure has a low pairwise 

identity of 29%. The second motif has an SCI of 0.58 and a pairwise identity of 32%. Our 

analysis also revealed three further conserved stem-loop structures—position 346 to 369, 

438 to 483, and 654 to 674, with SCIs and mPIDs of 0.81 and 29%, 0.66 and 48%, and 0.65 

and 33%, respectively. 

A recent study of secondary structures in alphaviruses by Kutchko et al. revealed that 

Sindbis virus mRNAs harbor many functional structures, but they are poorly conserved in 

the closely related Venezuelan equine encephalitis virus (Kutchko et al., 2018). The 

corresponding subVOG containing mRNAs coding for the non-structural protein 1 includes 

orthologous mRNAs from 12 further alphaviruses. We identified three short structures that 

are conserved in all of the contained species and overlap with the functional structures 

described by Kutchko et al., while all other structures reported by Kutchko et al. are indeed 

poorly conserved in further Alphavirus species.  

An example of a subVOG in which structures are conserved across mRNAs from different 

taxonomic families is given in Figure 21. Shown is a subVOG containing proteins from 

two mosaic viruses (Maracuja mosaic virus, Tobacco mosaic virus), the Bell pepper mottle 

virus, and the Odontoglossum ringspot virus (Figure 21a,b). The proteins are classified as 

replicases and RNA polymerases. The subVOG contains overall 15 locally conserved 

structured regions. Figure 21 shows the region covering alignment positions 4766 to 4815. 

The alignment covering this structure has an mPID of 72% and the structures are conserved 

with an SCI of 0.9. 

Overall, we subdivided 21,200 VOGs containing, on average, 11 proteins (233,380 in total) 

into a total of 42,293 subVOGs, containing, on average, five mRNAs (201,708 in total) and 

three structured regions (147,087 in total). The VOGs with more than two sequences that 

had to be split up contain, on average, four subVOGs. 



 

 
 

66 

 
Figure 20: Structures found in Influenza A and B mRNAs encoding the matrix protein (VOG11160). Colors in MSA 
pictures encode compensatory mutations supporting the consensus structure. Red marks pairs with no sequence variation; 
ochre, green, turquoise, blue, and violet mark pairs with 2, 3, 4, 5, and 6 different types of pairs, respectively. (a) The 
second of the two consecutive stem loops of the structure proposed by Jiang et al. [52], covering positions 147–192, 
visualized with R2R [54]; (b) The predicted conserved consensus structure for nucleotides 148–188 supports the second 
hairpin loop of the model of Jiang et al., shown in (a). Colors encode the positional entropy; (c) Structure-guided 
alignment and dot bracket structure notation for the consensus structure shown in (a). The upper sequence corresponds 
to Influenza A and the lower sequence to Influenza B; (d) Shown are two consecutive hairpin loops for nucleotide positions 
682 to 744, proposed by Moss et al. [23], visualized with R2R; (e) The predicted conserved structure for nucleotides 697–
758 partly supports the model shown in (e). Colors encode the positional entropy; (f) Structure-guided alignment and dot 
bracket notation for the consensus structure shown in (e). The upper sequence corresponds to Influenza A and the lower 
sequence to Influenza B. 
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Figure 21: Example structures that were identified within subVOGs. (a) Structural annotation of the subVOG 30, 
belonging to VOG00029, which contains six mRNAs encoding a replicase protein of different Tobamovirus species. 
Consensus structure visualized by RNAalifold. Colors encode the positional entropy; (b) Structure-guided MSA and 
consensus structure in dot bracket notation corresponding to consensus structure shown in (a). Colors encode 
compensatory mutations supporting the consensus structure. Red marks pairs with no sequence variation; ochre, green, 
turquoise, blue, and violet mark pairs with 2, 3, 4, 5, and 6 different types of pairs, respectively; (c) Consensus structure 
of subVOG 64 from VOG00003, which contains four mRNAs coding for a p28-like protein of different 
alphabaculoviruses; (d) Structure found in a Heliothis virescens ascovirus 3e, by covariance model search of the structure 
shown in (c), using cmsearch in the entire sequence space of all VOGs. 

 

3.4.4. subVOG Covariance Models 

We built covariance models for all structures found within subVOGs and, using cmsearch, 

found that in many cases, structures are conserved between different subVOGs and even 

between different VOGs. In most cases, this was due to a shared sequence domain. For 

example, the subVOG 64 from VOG00003 harbors four mRNA sequences from different 

nucleopolyhedroviruses, belonging to the family Baculoviridae. This subVOG was 

predicted to contain four conserved structures. One of these structures is a highly conserved 

stem-loop structure (Figure 21c). This structure can also be found in an mRNA of Heliothis 

virescens ascovirus 3e, belonging to the family Ascoviridae, which is part of VOG01276 

(Figure 21d). The two structures are highly conserved with an SCI close to 1, although they 

are part of different VOGs and belong to mRNAs of different virus families. The alignment 

of the corresponding proteins revealed that these sequences share a common domain, but 

the sequence similarity is below the inclusion threshold of the VOG pipeline (Figure S3). 
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3.4.5. mRNA Stability and Length 

It was shown for a number of eukaryotic and prokaryotic organisms that longer mRNAs 

exhibit more stable RNA structures, which allows for more efficient control of co-

translational protein folding (Faure et al., 2016; Tuller et al., 2011). In our dataset of viral 

mRNA sequences, we also found a correlation between the free energy of the most stable 

30-nucleotide segment of an mRNA (DGmin) and mRNA length (Pearson correlation 

coefficient −0.27; from here on referred to as Pearson’s r), but no correlation between the 

average energy of all possible 30-nucleotide windows (DGmean) and mRNA length (Table 

5, Figure 22a). We additionally calculated the free energy of the most and least stable local 

optimal segment found by RNALalifold as well as the mean energy of all found 

RNALalifold segments, and obtained Pearson’s r values of −0.25, −0.07, and 0.29 

respectively. The Pearson’s r of folding energy and GC content lies between −0.5 for 

DGmax and −0.94 for DGmean (Table 5, Figure 22b). The number of bases that are within 

functional structures is positively correlated with the alignment length of subVOGS 

(Pearson’s r 0.40, p-value < 2.2$V`), while this correlation becomes negative when 

considering the percentage of bases within structures (structural coverage) instead of the 

absolute value (Pearson’s r −0.27, p-value < 2.2$V`) (Figure 23). In other words, longer 

mRNAs harbor more or longer structured regions, but at the same time, the percentage of 

positions in functional structures decreases with increasing length. The only explanation 

for this effect that we can think of is that there is a certain number of structured elements 

needed for regulatory functions, which is largely independent of the mRNA length. As 

expected (see Figure 18), there is a weak but significant negative correlation (Pearson’s r 

−0.23, p-value < 2.2$V`) between structural coverage and the number of sequences in the 

MSA, with more taxonomically diverse alignments containing fewer conserved structures.  
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a)

 

b)

 

Figure 22: MRNA folding energy as a function of (a) sequence length and (b) GC-content. DGmin: Minimum folding 
energy of either all possible 30-nucleotide windows of a sequence or all found local optimal structures using RNALfold. 
DGmean and DGmax: Mean and maximum of all windows, respectively. 
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Type of DG  Pearson correlation coefficient  
DG vs. sequence length DG vs. GC-content 

DGmin −0.27 (<2.2$V`) −0.73 (<2.2$V`) 
DGmean 0.004 (0.1655) –0.94 (<2.2$V`) 
DGmax 0.17 (<2.2$V`) −0.50 (<2.2$V`) 

DGmin (RNALfold) −0.24 (<2.2$V`) −0.86 (<2.2$V`) 
DGmean (RNALfold) −0.16 (<2.2$V`) −0.86 (<2.2$V`) 
DGmax (RNALfold) 0.29 (<2.2$V`) −0.07 (<2.2$V`) 

Table 5: Pearson correlation between alignment length or GC-content and the minimum (DGmin), maximum (DGmax), 
or mean (DGmean) folding energy of either all possible 30-nucleotide long-sequence windows or all local optimal 
structures found with RNALfold, of all mRNAs in our data set. P-values are given in parentheses. 

 

Figure 23: MRNA structure as a function of length. The graph shows the dependence of (a) the number of nucleotides 
within structures predicted to be functional, and (b) the structural coverage of the mRNAs in %, from the total length of 
mRNAs. Each point corresponds to one subVOG. 



 

 
 

71 

3.4.6. mRNA Structures and Protein Function 

We analyzed the relationship between protein function and mRNA structure in viral 

subVOGs by comparing RNA structural coverage with gene ontology (GO) annotation. 

Using the QuickGO database, we identified a total of 814 VOG proteins that are manually 

or experimentally annotated (according to ECO evidence codes, as described in Materials 

and Methods) with GO terms, of which 727 are part of a subVOG, and thus harbor 

conserved structures according to our analysis. (For the sake of completeness, we also 

performed the same analysis for all GO annotated proteins, without regard for the 

annotation evidence codes, see Table S2). For each individual GO term, we only considered 

the structural coverage of mRNA sequences if that term was assigned to more than 50% of 

the proteins in a given subVOG. This resulted in 106 GO terms from the biological process 

sub-ontology and 17 terms from the molecular function sub-ontology. Note that no GO 

terms from the cellular component sub-ontology satisfied the criteria explained above.  

Using Revigo, we derived 70 functionally similar groups of GO terms, with 57 belonging 

to the biological process ontology and 13 to the function sub-ontology (Table S1). The 

resulting GO term groups were subdivided into three categories, according to the average 

structural coverage of the corresponding subVOGs: Low structural coverage (up to 10%), 

medium structural coverage (up to 20%), and high structural coverage (more than 20%). 

We found that the standard deviation of the structural coverage values within the Revigo 

clusters was significantly smaller (Wilcoxon test p-value 1.068$Vb), compared to 

randomized clusters (Figure 24). In other words, our findings suggest that mRNAs 

encoding the proteins with coherent functions tend to exhibit a similar structural coverage. 

These findings are in line with the previous study by Vandivier et al. who found that 

transcripts in Arabidopsis thaliana with similar levels of secondary structure in their 

untranslated and coding regions tend to encode functionally similar proteins (Vandivier et 

al., 2013). Likewise, Wang et al. also identified GO terms associated with highly or lowly 

folded mRNAs in yeast (X. Wang, Li, & Gutenkunst, 2017). Four of the GO terms 

associated with highly structured mRNAs, according to Wang et al. (regulation of 

translation, posttranscriptional regulation of gene expression, regulation of cellular protein 

metabolic process, and cellular nitrogen compound biosynthetic process), correspond to 

highly structured viral mRNAs in our data. At the same time, none of the GO terms 
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corresponding to lowly structured yeast mRNAs according to Wang et al. were enriched in 

our results. On the other hand, Fan Li et al. found that Arabidopsis thaliana mRNAs related 

to “regulation of transcription” were structurally unstable (F. Li et al., 2012), while we 

found that mRNAs encoding the proteins related to “viral transcription” do harbor 

conserved RNA structures. We also found virus-specific trends not previously observed for 

cellular proteins, such as the high structure of viral mRNAs coding for proteins that regulate 

replication and transcription, suppression by viruses of host translation, or modulation by 

viruses of host process (Table S1). It has been reported that mRNA folding strength 

influences the efficiency of gene expression and that mRNAs encoding abundant proteins 

generally tend to be more structured (Zur & Tuller, 2012). In the future, once RNA-seq 

data for a sufficient number of viral genes becomes available, it will be interesting to 

investigate whether functional coherence between mRNAs with similar structural coverage 

is, at least in part, caused by similar expression levels. 

 
Figure 24: Distribution of standard deviations of mRNA structural coverage, mapped to GO-terms: Clustered with Revigo 
(solid line); randomized Revigo clusters (dashed line); not clustered (dotted line); vertical lines represent the mean of 
the corresponding dataset. 

 

3.4.7. subVOG Online Resource 

Structurally homogenous subVOGs can be accessed online (http://rnasiv.bio.wzw.tum.de) 

through two entry points: “Browse by VOG” and “Browse by taxonomy”. The first option 

is a list of all VOGs, together with the consensus description of their constituent proteins. 

The list can be filtered with a keyword search and links to the corresponding subVOGs of 
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each VOG are provided. The second option is an expandable taxonomic tree, based on the 

NCBI taxonomy (Federhen, 2012), which allows navigation to the viral species of interest. 

For each species, mRNA sequences are provided, if available, interlinked to the 

corresponding subVOGs. Tree nodes containing only mRNAs that are not part of any 

subVOG are colored grey. Each subVOG contains at least two sequences that share at least 

one structural element predicted to be functional. If a species of interest is not contained in 

the subVOG database, the taxonomy tree makes it possible to find the taxonomically closest 

species. Web pages describing individual subVOGs contain four parts: 

i) General information, i.e., number of mRNAs in the subVOG, the number of 

proteins and species in the parent VOG, as well as a consensus functional description; 

ii) Information on conserved structures among the subVOG sequences. A plot 

outlining the SCI for each column of the subVOG MSA gives a brief overview over the 

structure of the subVOG members. Also provided is a table that shows a list of all structures 

found, including the corresponding values of SCI, mPID, and the GC content. The 

consensus structure can also be visualized by Forna, and a covariance model is provided, 

which can be used to search for similar structures. Additionally, the RNAz results for each 

individual structured region can be accessed, including structure visualization, dot plots, 

and the local structure-guided alignments; 

iii) The global MSA for the subVOG sequences. Alignment columns colored in blue 

correspond to the structured regions described in the previous section. The alignment is 

visualized with the javascript library MSAviewer (Yachdav et al., 2016), which is based on 

Jalview (Waterhouse, Procter, Martin, Clamp, & Barton, 2009); 

iv) The list of subVOG members, including protein names, descriptions, and 

taxonomy. For each protein, a link to the RefSEQ entry is provided, as well as the amino 

acid and nucleotide sequences. The leftmost column of the list contains a checkbox for each 

subVOG member, which can be used to build a subset of members and analyze the RNA 

structures shared by these. 

3.5. Discussion 

In this work we set out to create a possibly complete census of conserved RNA secondary 

structures in the coding regions of viruses and to shed light on their biological role. Using 
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sequence comparison and structure prediction methods, we derived structurally 

homogenous groups of viral mRNAs from subsets of viral orthologous groups (VOGs), 

which we call subVOGs. We identified a total of 147,087 conserved structures in 42,293 

subVOGs, which we make accessible through our database RNASIV (RNA Structures in 

Viruses). On average, subVOGs contain three structured regions and their structural 

homogeneity decreases with increasing taxonomic diversity of the viruses and their hosts. 

We found that 63% of all subVOGs contain mRNAs from at least two genera and 21% 

from more than one taxonomic family. In line with the previous studies on cellular 

organisms, we confirm that, in viruses, longer mRNAs tend to contain more stable 

structures. However, the number of structures grows only slowly with length, which implies 

that there is a certain minimum amount of structures required to maintain regulatory 

functions and control protein folding. MRNAs annotated with similar GO terms tend to 

have a similar structural coverage, hinting at possible commonalities in the regulatory 

mechanisms of functionally related proteins. It is hoped that RNASIV will be a useful 

resource for exploring the structure–function relationships in viral mRNAs. 
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