
©2019 IEEE. This is the authors version of the work. It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in Proceedings of the 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE 2019), Florence, Italy, 2019, pp. 872-877.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting / republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
DOI: 10.23919/DATE.2019.8715181

https://ieeexplore.ieee.org/abstract/document/8715181


Cost/Privacy Co-optimization in Smart Energy
Grids
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Abstract—The smart energy grid features real-time monitoring
of electricity usage such that it can control the generation and
distribution of electricity as well as utilize dynamic pricing in
response to the demands. For this purpose, smart metering
systems continuously monitor the electricity usage of customers,
and report it back to the Utility Provider (UP). This raises privacy
concerns regarding the undesired exposure of human activity
and time-of-use of home appliances. Photovoltaics (PV) and a
residential Electrical Energy Storage (EES) have proven to be
effective in mitigating the privacy concerns. However, this comes
at several costs: Installation of PV and EES, their subsequent
aging and the possibly increased electricity cost. We quantify
the trade-off between privacy exposure and financial costs by
formulating a stochastic dynamic programming problem. Our
analysis shows that i) there is a quantifiable trade-off between
the financial cost and privacy leakage, ii) proper control of the
system is crucial for both metrics, iii) a strategy solely focusing on
privacy results in high financial costs, and iv) that for a typical
residential setting, the costs for a trade-off solution lie in the
range of 600 US$-1700 US$. As the load flattening has a peak
shaving effect desirable for UPs, increasing privacy is mutually
beneficial for both, customers and UPs.

I. INTRODUCTION

Smart grids promise more efficient electricity generation and
distribution thanks to the use of information and communica-
tion technologies. Dynamic energy pricing motivates the users
to shift loads and perform demand side management increasing
the energy efficiency of the grid. All this is enabled by the
use of smart meters, which continuously monitor the load and
communicate the data to the Utility Provider (UP). The UP can
then set electricity prices to encourage customers to voluntarily
shift the load out of the peak hours. At grid scale, the avoidance
of peak loads increases load predictability and reduces the need
for costly fossil-fuel reserve generators, which enhances the
energy efficiency and reduces the carbon dioxide emission.
Privacy leakage by smart meters: The load profiles gathered
by smart meters convey private information [1], [2]. While
conventional electricity meters only record the accumulated
usage over a month, smart meters allow to access real-time,
fine-grained data. In the worst case, if accessed by an unautho-
rized third party, information on residential activities can be
extracted. E.g., Non-Intrusive Load Monitoring (NILM) could
be used to identify individual appliances and usage profiles [3].
Prior works: Prior works have aimed at reducing the privacy
leakage by using a battery storage to modify and hide the
usage pattern of appliances and human activities [4]–[7]. Other
works propose distributed load shifting [8]. Also, the impact of
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Fig. 1. The original profile seen at the smart meter can be modified through a
water filling strategy using EES and PV to increase privacy at increased cost.
We propose a cost/privacy trade-off.

additional renewable energies on the privacy leakage rate has
been investigated [7]. Generally, the proposed algorithms either
flatten [4], [5] or randomize the load [8]. Interestingly, these
works overlooked an important advantage of load flattening: Its
peak shaving effect is very much desirable for the UP’s demand
side management by increasing the predictability of grid power
and hence reducing reserve power. Thus, load flattening is
mutually beneficial for customers as well as UPs.

While the effectiveness of the approaches in privacy protec-
tion has been well studied, there has been limited research on
its cost. There have been approaches to reduce battery energy
losses [4], electricity cost of a dynamic pricing policy [5]
and maintenance cost in terms of battery cycle life [4], [5].
However, the latter is one of the most important factors and has
not been considered properly, mainly due to the complexity of
the battery aging models. Previous work calculates the battery
degradation based on cycle counting [5], which is very inaccu-
rate unless very simplistic battery usage profiles are assumed.
Other works consider the effect of Depth of Discharge (DOD)
on battery aging, but neglect other important factors such as
average State of Charge (SOC) and C-rate [4], where C-rate is
defined as the battery current relative to the battery capacity.
However, it is widely known that the battery aging not only
depends on the number of charge/discharge cycles or DOD, but
also on other factors such as average SOC, temperature and
C-rate. As such works intend to develop sophisticated battery
management policies resulting in complex battery usage, cycle
life estimation will be inaccurate without considering such
factors, and proper analysis on the relationship between the
privacy enhancement and its costs cannot be made. Today,
battery costs are significant and proper estimation is necessary
to evaluate the cost of privacy protection.
Trade-off between privacy and cost: The general setup
is shown in Figure 1: An EES and PV jointly modify the



power profile such that less residential activity information
can be extracted. The power generated by the PV could be
either used directly to satisfy any household appliances or
it could be stored in the EES. Similarly, electricity could be
drawn from the grid and be stored in the EES for later use.
One strategy for privacy protection would be the water filling
policy [4], which completely flattens the load profile and leaks
no privacy information, see Figure 1. This particular strategy
has the additional advantage of being beneficial for the UP’s
demand side management through its peak shaving effect, a
synergy that should be exploited. On the other hand, costs arise
from PV and EES installation and maintenance and possibly
increased electricity bills. E.g., larger EES sizes provide more
flexibility for privacy protection, but come at a higher cost.
Larger PV sizes are financially beneficial by reducing the use
of grid electricity, but their usefulness in protecting privacy
should be carefully evaluated as, if too large, they might
saturate the EES and reduce its capability of flattening the
load profile. Apart from that, EES degradation depends very
much on the usage pattern, i.e., the chosen control actions. In
general, higher EES usage increases the aging rate.
Proposed work: In this paper, we, for the first time, perform
a comprehensive analysis on the trade-off between the privacy
enhancement with concurrent peak shaving and the associated
financial overhead. To the best of our knowledge, this is
the first work to present a control strategy that not only
minimizes the privacy leakage and performs peak shaving but
also minimizes the financial cost with realistic battery aging
models. In order to jointly consider the reduction of privacy
leakage and financial costs, we synthesize an optimal controller
for a given EES and PV setup. We model a whole residential
system as a Markov Decision Process (MDP), formulate an
average reward maximization problem, and derive the optimal
controller using a relative value iteration algorithm.

The contributions of this paper are summarized as follows.
• We propose a control strategy for a system consisting of

EES and PV that minimizes both financial cost, i.e., the
sum of battery and PV depreciation and grid electricity
costs, as well as the privacy enhancement, that simulta-
neously results in peak shaving.

• We quantify the trade-off of privacy enhancement with
peak shaving and financial overhead under privacy and
financial cost optimal control strategies. Using our frame-
work, we identify the Pareto-optimal solutions.

• We achieve increased accuracy in our solution and analy-
sis by using an elaborate battery model in our framework
that is more precise compared to models in previous
works and considers SOC, C-rate and temperature.

• We identify balanced strategies that trade-off privacy and
financial cost. Towards this, we show that, while full
privacy can be achieved at acceptable but non-negligible
costs, a controlled cost/privacy trade-off based on our
methodology reduces these costs by more than half.

• Due to the correlation of privacy enhancement and peak
shaving, which mutually benefit consumer and UP, we
propose cost splitting of trade-off-strategies, potentially
creating a new business model.
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Fig. 2. Grid power of privacy focused water filling wp = 1 vs. grid cost
focused strategy wg = 1. The mutual information for the privacy and grid
cost focused strategy is 10.733 and 11.28, respectively. Data: EES 3 and PV 1,
June 4-10, 2015.

The paper is organized as follows. Section II reviews privacy
concerns and shows the problem formulation. System model-
ing and controller derivation are found in Sections III and IV,
respectively. Simulation results are discussed in Section V.
II. MOTIVATIONAL EXAMPLE AND PROBLEM STATEMENT

A number of algorithms exist for extracting privacy infor-
mation from an electricity usage trace. Among them, NILM
algorithms are capable of identifying when individual ap-
pliances are turned on and off [9], and of distinguishing
different instances of light bulbs using cluster analysis [10].
Such information could be exploited by malicious attackers
to find absence routines of the residents and to disclose their
behaviors. One possibility for full privacy protection would
be a water filling strategy such as the one shown in Figure 1
using EES and PV. The EES is used to hide the residential
load completely such that the power usage seen from the grid
is almost constant and maintained around a target line. On the
downside, this strategy would extensively use the EES and not
optimize towards time-of-use prices resulting in accelerated
EES degradation in addition to increased electricity cost. In
Figure 2, we show two grid power profiles of a home equipped
with PV and EES resulting from a financial cost focused
strategy and a privacy focused strategy. In our results, we find
that the total system cost of privacy leakage reduction and
peak shaving sums up to around 1300 to 1600 US$ per year,
while a conventional, financial cost optimal set-up reduces the
electricity bill and costs around 600 US$ per year. This high
discrepancy, which is dominated by battery aging costs, con-
firms the need for an improved cost analysis by using a more
accurate battery aging model than the ones in previous works
[4], [5]. A user wanting some privacy protection would desire
a balancing of cost and privacy. Our optimization objective
therefore is to minimize privacy leakage, battery aging and
grid cost at the same time. A bilateral profit originates from
load profile flattening also being known as peak shaving, which
benefits the UPs’ demand side management and motivates cost
splitting among the involved parties.
Problem statement: We propose to solve this multi-
objective optimization problem by formulating a single-
objective weighted sum problem. The weighted objective con-
sists of the cost associated to buying and selling electricity to
and from the grid cg , the battery degradation cost ch and the
privacy cost cp, here determined by the deviation of the grid
power from the average household load power. We want to
find the EES current IEES(t) that minimizes the sum of the
aforementioned costs over the total lifetime of the system:

min
IEES

lim
T→∞

T∑
t=0

wgcg(t, IEES)+whch(t, IEES)+wpcp(t, IEES),

(1)
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with wg , wh and wp being the associated weights. We need a
decision at each time instance t and reformulate the objective:
∀t : min

IEES

wgcg(t, IEES) + whch(t, IEES) + wpcp(t, IEES) (2)

III. SYSTEM MODELS

In this section, we present the models required in the MDP
optimization framework: An elaborate battery cycle life model,
which is crucial for correctly assessing the financial cost,
a stochastic residential load model, a PV power generation
model, a dynamic energy pricing policy and a privacy metric.

A. Battery Cycle Life and Associated Cost
We model the Li-ion battery behavior according to the

equivalent circuit model in [11] and derive its cycle life
degradation in terms of an empirically fitted severity factor
map [12]. The severity factor σfunct describes the amount of
damage done to a battery by its current SOC, the applied
C-rate and the temperature as shown in Figure 3. This cycle
life model is particularly developed for control applications as
the computational effort is comparably low and no iterative
dependencies exist. The model is derived for Li-ion batteries,
which are commonly used in hybrid electric vehicles but also
in stationary storages. The framework can be easily adopted
to other cell chemistries by data fitting as in [13].

We use the severity factor σfunct for the controller design and
determine the financial loss due to EES degradation. Assuming
that a new storage is purchased at some cost CEES in US$ and
that an EES that has reached its End of Life (EOL), i.e., when
80% of the initial capacity is left, is worth 0 US$, we calculate
the cost in US$ in dependence of the capacity loss Qloss,%:

cSOH =
1

1− EOL
CEESQloss,% (3)

B. Residential Load Model
We use the publicly available UMass Smart* Home Data Set

[14] to model a residential load. The data set monitors several
appliances in a home with three residents. The accumulated
load power of Home A in 2014 is used for model training and
in order to show the effectiveness of the method, other data
than the training data is used for the evaluation, i.e., Home A
data from 2015. Most times, the residential load data is in the
range of 0 kW to 2 kW. Rarely, higher values occur, and in
a preprocessing step these data points are removed in order
to reduce the state space of our model and simulation time.
We use six equally spaced power states whose probabilities
are shown in Figure 4. We compute the transition probability
matrix MLd from the transition histogram for Home A in 2014.

C. PV Power Generation Model and PV Cost
PV Power Generation: The PV power generation depends
on the location and orientation of the PV cells as well as the
solar irradiance, which varies according to the cloud cover.
If more clouds occlude the sky, the irradiance is less and

therefore less PV power is produced. We use the cloud cover
from the data set [14] we also used for the load model and
calculate the cloud cover transition probability matrix. We use
the model from [15] to then derive the solar irradiance. The
model requires the latitude and longitude associated to the
cloud cover data. Due to data protection, the exact location is
not conveyed in the data set, but the rough location is known
to be in Western Massachusetts [16]. As any location within
that region suits our purposes, we choose the latitude 42.45◦

and longitude -73.2458333◦ of Pittsfield. The solar irradiance
is then integrated into a PV model [17]. We incorporate the
dominant PV characteristics, but refining might be possible by
considering further factors, such as series-parallel connections
of panels, shading, bypass diodes and choice of microinverters.
PV Cost: Additionally to the gain from PV power selling,
costs of PV installation and degradation occur. We assume a
cost of 1.37 US$/W in 2011 [18] and an overall installation
cost including other factors such as the inverter of 3.43 US$/W
for rooftop use. The PV degradation rate can be estimated to
be 0.8% per year [19]. The EOL is reached at 80% degradation
or after a lifetime of 25 years with linear degradation.

D. Dynamic Energy Pricing
Modern grid energy price policies vary the prices depending

on the time of the day, such as the one offered by the Los
Angeles Department of Water and Power [20]. Below are the
prices in US$ per kW h for weekdays in June 2017.

cUSD(t) =


0.13967 US$ for 00:00 - 09:59, 20:00 - 23:59

0.16411 US$ for 10:00 - 12:59, 17:00 - 19:59

0.24328 US$ for 13:00 - 16:59

(4)

Selling energy comes at a gain of 0.145 US$ per kW h [20].

E. Mutual information
We use mutual information as a metric to quantify the

privacy exposure as in many prior works [6], [7]. Mutual
information I(X;Y ) is an information theoretic quantification
metric that describes the amount of information that one
random variable X = {x1, x2, ..., xn} contains about another
random variable Y = {y1, y2, ..., yn}. It is defined as

I(X;Y ) = H(X) +H(Y )−H(X,Y )

=
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
. (5)

The average amount of information contained in one random
variable is expressed by its entropy, H(X) and H(Y ), and
H(X,Y ) denotes the joint entropy. Here, the two random
variables are the original residential grid power consumption
and the new grid power draw after the original load has been
modified using EES and PV. We use the mutual information
to evaluate the performance of our control strategies.

IV. FINANCIAL COST AND PRIVACY OPTIMIZATION

To solve the optimization problem stated in Section II, we
formulate an MDP average reward maximization problem
based on the component models from the previous section.
The goal is to minimize the weighted sum of electricity cost,
battery depreciation cost, and privacy exposure. We provide the
transition probability matrix (TPM), transition reward matrix
(TRM) and synthesize a controller.



States, actions and reward: An MDP enhances Markov
chains by actions and rewards. The latter ones motivate state
transitions as the goal is to maximize the reward. Actions and
random variables influence the transitions between states. In
our problem, a state b ∈ B is defined by the tuple (cc, z, l, s)
consisting of the present cloud cover cc ∈ CC at a given time-
of-day z ∈ Z , resulting in a certain PV power, the load power
l ∈ L and the EES SOC s ∈ S . A change in any of the four
variables results in a state transition. Changes in time-of-day
are deterministic as the next time-of-day state depends on the
previous one. The action a ∈ A is the EES charge or discharge
current. A non-zero EES current automatically results in a state
change. The reward R(b, b′) for transitioning from one state b
to another state b′ takes values in r ∈ R. The overall reward
depends on z due to the time-of-use pricing scheme and is the
weighted sum of privacy leakage, aging cost and the cost from
buying or selling electricity to or from the grid.
Transition Probability Matrix: The TPM contains the prob-
ability for a transition from state b to state b′ if action a is
taken. Assuming that the cloud cover and load are independent
processes, we can simply multiply the respective probabilities:
Pra(b, b′) = Prcc(ccb, cc

′
b)Prz(zb, z

′
b)Prl(lb, l

′
b)Prs,a(sb, s

′
b)

(6)
The sequence of states is aligned with time and the probability
of moving from one time-of-day to the subsequent one is
Prz(zb, z

′
b) = 1, while all other transitions of z are 0. Contrary

to the probabilities of cloud cover transition Prcc(ccb, cc
′
b)

and load power transitions Prl(lb, l
′
b), the SOC transition

probabilities Prs,a(sb, s
′
b) depend on the action a. The SOC

change is largely deterministic, but the accuracy of run-time
estimation of SOC is known to be limited, and hence, we
probabilistically model the transition. We assume that the
probability of the actual SOC is uniformly distributed around
the estimate sb from sb − su/2 to sb + su/2, where su
is the SOC granularity. Hence, the probability of the actual
SOC after ∆t, would be uniformly distributed in a window
of length su around sb + Ic(a)∆t/3600 where Ic(a) is the
C-rate corresponding to a. We omit the exact equation for
Prs,a(sb, s

′
b) due to space constraints.

Transition Reward Matrix: The objective of the problem is
to find a policy π(b) that defines an action a to be taken when
in state b. The average reward over an infinite time window
should be maximized:

lim
T→∞

E
[ T∑
t=0

Ra(bt)
]
, (7)

where Ra(bt) is the instantaneous reward with respect to state
bt at time t, and a is the action to be taken when in bt. Here,
the instantaneous reward Ra(b, b′) when transitioning from
state b to b′ is the weighted sum of the inverse normalized
costs for battery depreciation ch,norm, grid related expenses
from buying or selling electricity cg,norm and action a induced
privacy leakage cp,norm:
Ra(b, b′) =wg(1− cg,norm(b, b′)) + wh(1− ch,norm(b, b′))

+ wp(1− cp,norm(b, b′)),
(8)

where the wg , wh, and wp are the respective weights. Due to
normalization, we let the sum of the weights equal 1.

TABLE I
MAXIMUM AND MINIMUM COSTS

j cj,max

h σfunct(1, Ic,max, θEES) 100% SOC, highest possible C-rate
g Pg,max∆tcUSD,peak max. grid power Pg,max at peak hours
p |Pg,max − ρ|. max. grid power
j cj,min

h σfunct(0, 0, θEES) 0% SOC, zero discharge current
g −Pg,max∆tcUSD,peak max. grid selling of PV and EES power
p cp,max = 0. no diversion from target value

Battery aging, grid and privacy cost: The cycle life cost
is determined by the severity factor for the given SOC sb,
the C-rate stemming from action a and the temperature θEES.
Assuming a perfect cooling, the latter is constant.

ch(b, b′) = f(sb, a) = σfunct(sb, Ic(a), θEES) (9)
The grid cost is determined by the amount of power drawn

from the grid Pg , which can easily be derived from the required
load power, the cloud cover dependent PV generation and
the EES power using PEES = Pload − PPV − Pg. The grid
electricity cost at some time-of-day is applied for period ∆t.

cg(b, b′) = f(a, cc, z, l) = Pg(a, cc, l)∆tcUSD(z) (10)
Finally, we model the privacy cost as the diversion of

the grid power Pg from a defined target value ρ. From an
information theoretic perspective, such flattening of the power
profile effectively reduces mutual information and simultane-
ously achieves peak shaving.

cp(b, b′) = f(a, cc, z, l) = |Pg(a, cc, l, z)− ρ| (11)
The target value ρ equals the average load power – which can
be estimated from past values, i.e., the average load over a
year – reduced by the average PV generation. Even though
the PV generation is subject to high seasonal as well as
daily variations, in a real system, it can be estimated for a
particular day from weather forecasts. We synthesize different
controllers for discretized levels of PV generation. Above costs
are normalized using max. and min. cost from Table I:

cj,norm(b, b′) =
cj(b, b

′)− cj,min

|cj,max − cj,min|
, j ∈ {g, h, p} (12)

Solution: The MDPToolbox from [21], that is used to solve
our optimization problem in MATLAB, implements a relative
value iteration algorithm to find the controller which maxi-
mizes the long term average reward. The interested reader may
refer to [22] to get more information on the algorithm.

V. SIMULATION RESULTS

The evaluation of the controllers derived above is done on
a custom developed simulator in MATLAB that also considers
converter efficiencies for connecting EES and PV to the grid.
We compare three EES and three PV sizes, as shown in
Table II, and vary the weights of the cost function. The sizes
of EES 2 and 3 are the two smallest commercially available
Tesla Powerwall storages [23]. EES 1 has half the capacity
of EES 2. The sampling time ∆t = 1800 s is the same as the
one used in the load data set and is also typical for smart
meters. The number of discrete states for EES SOC S, cloud
cover CC and load power L is 21, 9 and 6, respectively.
The number of discrete actions, i.e., the number of discrete
EES current levels, depends on the EES size and is 51,
126 and 251 for EES 1, 2 and 3, respectively. The EES is
maintained at θ =25 ◦C, the initial SOC is Sinit = 0.5 and the



TABLE II
PARAMETRIZATION FOR EES AND PV SIZES

parameter EES1 EES2 EES3
nominal size 6.75 kW h 13.5 kW h 27 kW h
purchase cost 5k US$ 8k US$ 15.4k US$
PESS,min,PESS,max ±2.3 kW ±4.59 kW ±9.18 kW
Pg,max 4.3 kW 6.59 kW 11.18 kW
# actions a 51 126 251
parameter PV1 PV2 PV3
PPV,out 1 kW 3 kW 5 kW
purchase cost 3430 US$ 10290 US$ 17150 US$
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EOL=0.8. We find that the grid power target level ρ should
vary depending on the predicted PV power generation on a
particular day. It changes based on the weather prediction and
has a discretization granularity of 0.25 kW steps. The predictor
errors are acceptable as the can easily be compensated.
Privacy-cost trade-off: We are interested in the Pareto-
optimal settings in terms of EES size, PV size and weights.
Figure 5 shows the financial cost versus the privacy leakage,
which is equivalent to the degree of peak shaving. Different
data points within a data group, defined by PV and EES
size combinations, denote results for different weight values.
As expected, higher weights for a particular reward come
with better performance for the reward, but a worse one for
other rewards. Strategies with high grid weight generally show
lower cost but higher privacy leakage. Strategies with high
privacy weight generally result in higher cost but lower privacy
leakage. However, the gain in one domain is not always linear
with the loss in another domain and hence a DSE approach
is applied to ensure the best quality of control achieved at
the lowest financial cost. The Pareto-front is depicted as a
dashed line. We can observe a trade-off relationship between
the financial cost and the privacy leakage. The spread of mutual
information may seem small at first. But the grid power profiles
of this seemingly low difference actually differ very much. As
shown in Figure 2, the grid power profile for a privacy-optimal
strategy, wp = 1, with mutual information 10.733 is relatively
flat, while the profile for a grid cost optimal strategy, wg = 1,
with mutual information 11.28 has much higher variation. The
controllers synthesized with a particular combination of weight
values, namely the ones whose results are part of the Pareto-
front, perform better even though the EES and PV sizes are
same. This shows the significance of our approach: the quality

TABLE III
DSE SELECTED RESULTS - PV 1, EES 2

idx EES [kWh] PV [kW] wg wh wp Fin. Cost mutInf
11 13.5 1 1

3
1
3

1
3

1009.30 11.029
12 13.5 1 1 0 0 637.05 11.195
13 13.5 1 0 0 1 1692.00 10.730
14 13.5 1 0 1 0 641.72 11.229
15 13.5 1 0.5 0 0.5 1540.70 10.733
16 13.5 1 0.5 0.5 0 641.72 11.229
17 13.5 1 0 0.5 0.5 1407.60 11.006
18 13.5 1 0.4 0.2 0.4 1377.00 10.908
19 13.5 1 0.4 0.4 0.2 641.10 11.230
20 13.5 1 0.2 0.4 0.4 1260.70 10.969
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Fig. 6. Cost breakdown EES 2, PV 1: Aging cost varies most.

of control is crucial in achieving these Pareto-fronts.
Dimensioning of PV: In Figures 5 and 7, we study the impact
of varying PV and EES sizes on mutual information and
financial cost. We find that all points at the Pareto-front use
the smallest PV size, PV 1. Larger PV sizes do not reduce
the mutual information as the EES looses flexibility in storing
grid power to flatten the profile. From the information-theoretic
perspective on the similarity of two random processes, more
mutual information exists between a profile selling PV power
to the grid and the original one than a flatter profile and the
original one. In future work, instead of either storing or selling
PV power, a third option could be to not use excess PV power.
From Figure 5, no clear impact of PV sizes on the financial
cost is visible. With larger PV sizes, more energy can be sold
to the grid, but the cost of purchasing the PV is also higher.
Dimensioning of EES and quantification of costs: We find
that, if the best control is performed, all EES and PV sizes
achieve good financial costs while larger EESs result in better
(lower) mutual information values as more energy can be
stored and hence, a flattening of the grid power is easier to
achieve. Combinations of PV 1 with EES 1 and 2 achieve good
trade-offs when an appropriate controller is used. The annual
costs for the Pareto results of PV 1 with EES 2, as shown in
Table III, are about 600 US$ (data point 12) for a financial cost
focused strategy, and 1700 US$ (data point 13) for a privacy
focused strategy. The costs of trade-off strategies naturally lie
in between. E.g., the more balanced scheme of data point 11
results in much lower costs of 1000 US$. Note that the cost
for the smallest EES 1 is lowest for a purely aging focused
strategy if PV 1 and 2 are installed. This means that the EES
cost cannot be compensated by grid gains. For all other cases,
the lowest total cost occurs for a grid price focused strategy.

We now analyze the contribution of the grid, PV and aging
cost to the total cost. Figure 6 shows a cost breakdown for
EES 2 and PV 1. As expected, the PV cost is the same for all
controllers as it only depends on the PV size. The EES aging
cost is strongly dependent on the controller, where high aging
cost comes with a reduction in mutual information and higher
grid cost. The accumulated grid cost from buying and selling
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Fig. 7. Cost overhead: total ownership cost reduced by grid strategy cost.
Max. privacy for existing EES and PV costs a) 750 US$ and b) 900 US$. The
node labels in (b) link to the indices in Table III.
to the grid varies less in comparison to the EES aging cost.
Given the high impact of the aging cost, it may be tempting
to assign a high weight to wh. However, purely aging optimal
strategies, wh = 1, are not advisable for real employment as
they result in keeping the EES at a low SOC without charging
or discharging. Adding some aging-awareness results in better
cycle life and hence minimal long-term financial losses.
Cost overhead for existing installations: Assuming that
owners of already existing EES and PV systems desire to
switch from a purely grid optimal strategy to one that improves
their privacy, the cost overhead for EES 1, 2 with PV 1 is shown
in Figure 7. The overhead is determined by the total cost of
ownership (aging + grid + PV cost) reduced by the cost of a
grid optimal strategy (wg = 1). In few cases, the aging optimal
strategy may be cheaper than the grid optimal one resulting
in a negative cost overhead. However, a purely aging-focused
strategy does not use the EES which can be considered as
being poorly dimensioned EES and PV combinations and the
respective data points may be ignored. Again, the privacy/cost
trade-offs are achieved with appropriate controllers.
Cost splitting: Another interesting analysis our framework
provides is whether UPs could offer a special contract to
encourage load flattening for users with EES and PV. This
is beneficial for the UPs in that they could better manage the
electricity grid, and also for the users whose privacy is pre-
served. However, as indicated from our results, the high battery
aging costs result in high costs of flattening. Nevertheless, load
flattening could be subsidized by the UP by providing lower
rates. Consider the example in Table III: The yearly EES, grid
and PV costs for a flat profile are approximately 1692 US$,
682 US$ and 137 US$, respectively (data point 13). On the
other hand, a financial cost focused strategy entails EES, grid
and PV costs of 70 US$, 430 US$ and again 137 US$,
respectively (data point 12). Hence, the cost of flattening
the profile entails additional aging cost of 1055 US$ for the
consumer. This value is much larger compared to the grid cost,
which makes it impractical for the UP to offer a reasonable full
compensation scheme. However, in future, when the battery
price is expected to drop, the UP could introduce specialized
contracts, which motivate consumers to perform load shaving
and concurrently protect their privacy.

VI. CONCLUDING REMARKS

Privacy leakage is a serious concern of smart metering
systems. However, the installation of an EES and renewable
energies can improve privacy while preserving the benefits
of smart grids. We present a framework, which allows us to
investigate the privacy/cost trade-off. It is based on accurate
system models, and provides the most realistic estimations so

far. We show how EES and PV size, and also the weights of
the cost function impact the privacy, grid cost and aging cost.
As for controller design, sensitive data such as PV location
and load power histograms are required, future work should
also investigate the controller performance under more generic
assumptions and the applicability of machine learning. While
finding the Pareto-front, we observe that i) proper control of the
system is crucial for performance, ii) a strategy solely focusing
on privacy results in high financial costs, iii) significant privacy
enhancement comes at acceptable but not negligible cost, and
iv) when the user increases privacy, the UP benefits from peak
shaving and should partially compensate costs.
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