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Abstract Industrial robots cannot be reconfigured to optimally fulfill a given task and often have to 

be caged to guarantee human safety. Consequently, production processes are meticulously planned 

so that they last for long periods to make automation affordable. However, the ongoing trend toward 

mass customization and small-scale manufacturing requires purchasing new robots on a regular basis 

to cope with frequently changing production. Modular robots are a natural answer: Robots composed 

of standardized modules can be easily reassembled for new tasks, can be quickly repaired by 

exchanging broken modules, and are cost-effective by mass-producing standard modules usable for 

a large variety of robot types. Despite these advantages, modular robots have not yet left research 

laboratories because an expert must reprogram each new robot after assembly, rendering reassembly 

impractical. This work presents our set of interconnectable modules (IMPROV), which programs and 

verifies the safety of assembled robots themselves. Experiments show that IMPROV robots retained 

the same control performance as nonmodular robots, despite their reconfigurability. With respect to 

human-robot coexistence, our user study shows a reduction of robot idle time by 36% without 

compromising on safety using our self-verification concept compared with current safety standards. 

We believe that by using self-programming and self-verification, modular robots can transform 

current automation practices. 

Summary We effortlessly create and safely operate industrial robots from modules through self-

programming and self-verification. 

 

 

INTRODUCTION 

Robotics has transformed the manufacturing sector in recent years. However, small and medium-

sized enterprises have not yet reaped the benefits. Reasons for this are manifold: (i) Experts for 

programming and ensuring correct functionality of robotic solutions are lacking. (ii) Purchasing 

specialized robots is uneconomical for small-scale manufacturing and/or reacting flexibly to changing 

demands. Although the concept of physically assembling different robots from a collection of 

modules is not new (1), each new robot composition must be programmed by experts, which is time-
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consuming and expensive. (iii) Many production processes require that humans and robots work 

closely together; ensuring safe human-robot coexistence today requires a large separation of humans 

and robots (2, 3), making state-of-the-art solutions impractical. Still, 13,000 injuries and 60 deaths 

were caused by contact with machinery between 2014 and 2018 in the United Kingdom alone (4). If 

machines were able to verify each occurring situation by self-verification, i.e., only carry out safe 

actions in any given situation, then human error could be avoided.  

We propose to untangle the abovementioned issues in a holistic way through the concept of 

interconnectable modules for self-programming and self-verification (IMPROV), providing three 

major improvements: 

 Self-programming. After assembling standardized modules, the created robot programmed 

itself based on standardized information stored in each module (see Fig. 1A). This allowed us 

to provide out-of-the-box functionality for a given reference trajectory by generating a model 

of the robot on the fly. Self-programming of high-level tasks was not considered in this work. 

The created models were used for automatically synthesizing model-based controllers, as well 

as for the following two aspects.  

 Self-verification. To account for dynamically changing environments, the robot formally 

verified, by itself, whether any human could be harmed through its planned actions during its 

operation. A planned motion was verified as safe if none of the possible future movements of 

surrounding humans leads to a collision, as presented in Fig. 1B. Because uncountable 

possible future motions of surrounding humans exist, we bound the set of possible motions 

using reachability analysis as explained in more detail in Results. Our inherently safe approach 

renders robot cages unnecessary in many applications. 

 Optimal module composition. We automatically chose the best composition of modules for 

given robot tasks through optimization (see Fig. 1C). The main goals were to minimize cycle 

time and to reduce energy consumption of the modular robot. 

We believe that IMPROV enables users to swiftly change automation solutions without having to 

purchase new robots, to reprogram underlying controllers, and to redesign the safety concept; thus, 

flexibility is particularly improved for automation solutions that are frequently redesigned. Below, 

we review previous work on ensuring out-of-the-box functionality, human safety, and optimality for 

robotic solutions. 

Ensuring out-of-the-box functionality 

Previous approaches for controlling modular robots are decentralized; i.e., each module is controlled 

independently from other modules. A classical approach in decentralized robotic control is the use of 

proportional-integral-derivative (PID) control as presented in section 8.3 of (5); however, the 

resulting closed-loop robot dynamics is not necessarily stable. Approaches in (6, 7) enhance simple 

PID controllers for global stability, but their tuning is nontrivial because the knowledge of norm 

bounds of model terms is necessary. Given the same hardware, centralized control can always be 

made to perform equally well or better than decentralized control because a decentralized approach 

is a special case. Despite the degraded performance of decentralized control, many attempts have 

been made to mitigate its issues: fuzzy gain tuning (8), adaptive decentralized control (9, 10), 

incorporation of joint torque sensing (11), robust control (12), and virtual decomposition (13, 14).  
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Fig. 1. Self-programming, self-verification, and optimal composition of the robot. (A) Self-programming before deployment: (1) 

Each module contains its own characterization. (2) The robot is assembled from standardized modules. (3) The information from each 

module is collected to automatically build a kinematic, dynamic, and geometric model. (4) The robot fulfills a given task without 

programming by a user. (B) Self-verification during deployment: (1) An intended trajectory is planned on the basis of the most likely 

movement of the human. (2) A fail-safe trajectory is created such that the robot never intersects the reachable set predicted until the 

robot reaches the end of the fail-safe trajectory. (3) At the next point in time tk+1, the robot updates its intended trajectory. (4) In case 

the updated intended trajectory combined with a new fail-safe trajectory can be verified on time, the updated intended trajectory is 

executed; otherwise, the fail-safe trajectory is engaged. (C) Optimal module composition before deployment: Given (1) modules and 

(2) a task, we (3) compute possible compositions and (4) select the optimal composition. 

To overcome the shortcomings of decentralized control, our self-programming concept automatically 

generates a kinematic, dynamic, and geometric model of a newly assembled robot from modules. This 

not only benefits the motion control of the robot but also is needed for the self-verification concept 

presented later. So far, only isolated solutions for (semi-)automatic model generation have been 

developed. One of the seminal works in modular robotics using data stored in modules for obtaining 

the gravity vector of a robot model is (15), but it did not present details for automatically obtaining 
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the dynamics of the assembled arm. Models have been derived in (16-18) based on Lie groups and 

the product-of-exponentials formulation (19); however, these methods have not shown seamless 

applicability to arbitrarily shaped modules (20). On the other hand, our approach builds on the 

standard Denavit-Hartenberg convention (21) and is applicable to arbitrary modules. Extensions of 

the Denavit-Hartenberg notations have been previously presented, but no complete approach for out-

of-the-box operation has been presented: In (22), only revolute joints are considered; in section 2.8.2 

of (5), only special cases of consecutive joint axes are presented, and (20, 23) have not addressed the 

problem of non-uniqueness of the Denavit-Hartenberg convention. 

Ensuring human safety 

To fully use the benefits of modular robots, robots must no longer be caged, thus requiring new 

methods to ensure safety. Properties of an impact that could cause serious harm to a human were 

characterized in (24). Reactive control methods have been proposed to reduce the time of impact and 

the risk of clamping (25). Other control methods limited forces (26) or impact energy of the end 

effector (27); the performance of the robot was then limited to the low speeds that such methods 

require. Another approach to reducing the impact energy was to build soft robots (28). These robots 

can be made either from rigid links with inherent compliance in the joints or actuators (29) or from 

deformable materials (30-32).  

Our approach is different: Instead of reducing the effects of impacts, we provide a formal technique 

that proves collisions are not possible, except when the robot is at rest. Because the exact future 

behavior of surrounding humans is unknown, we computed the entire set of possible behaviors using 

reachability analysis (33-36). Inevitable collision states are alternative formal techniques (37, 38), but 

they cannot yet be extended to the high-dimensional problem of robotic manipulators.  

Alternative approaches for collision avoidance exist, but none can prove the absence of collisions, 

which is particularly important due to the apparent safety risks. A simple concept for collision 

avoidance is that of potential fields (39), where obstacles exert repulsive virtual forces on the 

manipulator. This concept has been extended in many ways: Flacco et al. (40) accounted for the 

incomplete sensing of the environment and also for the velocity of the obstacle when generating 

repulsive virtual forces as introduced earlier in (41). Safety fields (42) created repellent forces that 

depended on not only the relative position but also the relative velocity of humans and robots. Using 

quadratic programming, they maximized adherence to the desired task while minimizing this measure 

of danger (43). 

Ensuring optimality 

Another important challenge for adopting modular robots is determining the optimal combination of 

modules for given tasks. Very few previous works considered heterogeneous modules and their 

dynamic properties for the automatic synthesis of modular robots. We do not survey works on 

identical modules because robots assembled from these are typically not aimed for industrial use (1, 

44, 45). 

In (46), an algorithm was presented that enumerated all possible compositions of a robot and 

eliminated kinematically equivalent assemblies. A minimized degrees-of-freedom approach (47) 

found the task-based optimal composition of modules using the enumeration algorithm in (46). A 

composition synthesis methodology was proposed in (48), but only for kinematic task requirements, 

such as workspace volume or maximum reach, and not for dynamic task requirements, such as 

maximum payload or maximum joint velocities. To reduce the search space, Farritor et al. (49) 

presented a hierarchical synthesis approach, which grouped useful combinations of basic modules; 
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however, no dynamic task requirements were considered. Composition synthesis approaches based 

on genetic algorithms were presented in (49-53), also without dynamic task requirements.  

In contrast to previous works, we consider heterogeneous modules, dynamic task requirements, and 

an individual solution for each possible composition and present a computationally efficient 

composition synthesis algorithm, which eliminates failed compositions step by step. 

 

RESULTS 

Following Fig. 1, we first present our results for self-programming and then our self-verification 

procedure. Last, we present how we obtained optimal compositions for a given task. 

Self-programming of the robot 

A key concept of our approach is that the assembled robot is aware of the parts it consists of. For this 

reason, we stored the information characterizing each module in itself as illustrated in Fig. 1A. After 

assembling the robot, the central control unit collected the module data to build a kinematic, dynamic, 

and geometric model of the assembled robot. Last, the control unit automatically generated code, so 

that the motion control worked out of the box after assembly. This work considers serial kinematics 

and builds on our previous work in (54) for controller synthesis; we extended it for collision checking, 

self-verification, and composition synthesis in this work. Because of the previous work in this area, 

we kept this section concise, and refer to the Supplementary Materials for detailed information. 

A module is considered to be a rigid object that serves as a building block for composing a serial 

robot arm by means of standardized connectors. We distinguished between joint modules and link 

modules as shown in Fig. 1A, whose schematic illustration is shown in Fig. 2; joint modules add 

degrees of freedom to the robot, and link modules do not add degrees of freedom. The two parts of a 

joint module connected by a joint are referred to as the proximal and distal part, as illustrated in Fig. 

2. After assembly, we grouped all modules connecting two subsequent joints and refer to this group 

as an arm link. Note that one joint module can have more than one degree of freedom.  

One typically derives the forward kinematics for serial robot manipulators by multiplying the 

homogeneous transformation matrices relating consecutive reference frames fixed at arm links from 

the base to the end effector (5). The Denavit-Hartenberg convention provides a systematic method 

for describing these link-fixed frames (21); however, this convention is not unique, rendering an 

automatic computation of the kinematics after assembly impossible. To ensure a nonambiguous 

solution, we added additional conventions and two parameters (
ip  and 

in ) to resolve ambiguity as 

shown in Fig. 2: 

 When two consecutive z axes intersect, the 
ix  unit vector is obtained from their cross product. 

 When two consecutive z axes are parallel, the ix  unit vector is set along the common normal 

between them, and the origin io  is set at the joint connection PJi. 

 When two consecutive z axes overlap, the ix  unit vector is aligned with 1ix  , and the origin 

io  is set at the joint connection PJi. 

The parameter pi is the z coordinate of the point PJi-1 measured from 'io , and the parameter in  is the 

z coordinate of the point PJi measured from io . Using these values, the previously ambiguous values 

id  and  are now uniquely defined as i
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where 
i is an angular offset between consecutive x axes when the joint angle 

iq  is zero.  

To obtain the extended DH parameters (
ia ,

i ,
i ,

ip , and 
in ) of the assembled robot automatically, 

the central control unit gathers kinematic data between joint connections (i.e., for the generic link i , 

from 
1iPJ 
 to 

iPJ  as shown in Fig. 2). For generating the geometric model for collision checking of 

the assembled robot, we collected the geometry of each module and applied the same homogeneous 

transformations as for the kinematic model. When an object is grasped, the shape of the grasped object 

is added to the collision model. The object geometry may be known beforehand or can be 

reconstructed from sensor data. Note that our extended Denavit-Hartenberg convention is compatible 

with the standard convention so that our approaches can also be applied to existing robot platforms.  

Next, we derived the dynamic model, which requires some notation. Superscripts of matrices and 

vectors identify in which frame they are defined. Input and output frames at the connection interface 

of modules are denoted by in  and out , respectively, as shown in Fig. 2. When a connection is 

established, the in  and out frames match, and we denote the common frame by io . We demonstrate 

how to automatically obtain the dynamic parameters of an arm link composed of one or several 

modules. Obtaining the dynamic model of the fully assembled robot from arm links is well known 

(5). 

 

Fig. 2. Extended Denavit-Hartenberg notation for the ith arm link of a robot assembled from modules. Fixed connections are 

shown in gray, and rotating connections (i.e., joints) are shown in white. The distal part of joint module j-1, k-link modules, and the 

proximal part of module j+k constitute the ith arm link of the robot. 

 

To obtain the dynamic model of the assembled arm, we used the recursive Newton-Euler (N-E) 

algorithm (55-57), which requires the dynamical parameters of each arm link. Let us introduce for the 

i th arm link the mass 
im , its inertia tensor iI , and its center of mass 

ir . We first consider the 
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connection of a link module to a joint module. Using basic mechanics of rigid bodies, the dynamical 

parameters of the rigid body resulting from this auxiliary connection are 

 
, 1 , 1 , ,

, , 1 , , , 1 , ,

,

, , ,

out in

dl j dl j l j l jio out in io

a j dl j l j a j dl j l j a j

a j

m m
m m m

m

 

 


    

r r
I I I r  

where dl refers to the distal part of the joint module, l refers to the link module, and a  refers to the 

auxiliary connection (see Fig. 2). The inertia tensor expressed in the output frame using Steiner’s 

theorem is 

 , , , , , , , , , , , ,( ) ( ) ( ) ( ) ( ),( )out io T io T io io io T out out

a j out a j a j a j a j a j out a j a j a j a jm m  I R I S r S r R S r S r  

where ( )S  returns a skew-symmetric matrix so that the multiplication with a vector   equals the 

cross-product ( ( )    S ) and 
c

dR  denotes a rotation matrix of frame d  with respect to frame 

c . When another link module is added, IMPROV applies the above operations analogously. The last 

connection to be considered for an arm link is between the auxiliary distal part described above and 

the proximal part. This last connection establishes the final parameters of the arm link similarly to 

,a jm  and ,

out

a jI  :   
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1 , 1 ,, , ,
j k j k

dl out pl in

j k dl j k pldl pl io out in io

i j k j k i dl j k pl j k i

i

m m
m m m

m

    

     


    

r r
I I I r  

and  

 ( ) ( ) ( ) .( )io T io T io io io

i i i i i i im I R I S r S r R  

To obtain the dynamical model, IMPROV uses the obtained data for kinematics and dynamics of all 

arm links; the Denavit-Hartenberg parameters are stored in the table DH , and the dynamic parameters 

are stored in the table DynPar . After introducing q , 
.

q , 
..

q  as the vectors of joint positions, velocities, 

and accelerations, respectively, we obtain the dynamical model using the recursive N-E algorithm 

( )gNEA   (55): 

 
.. . . . ..

( ) ( , ) ( ) ( ) , , , , .( )gNEA   M q q c q q f q g q q q q DH DynPar  

We have implemented several motion control concepts using the automatically derived dynamic 

model. The following controllers can be automatically implemented by IMPROV: inverse-dynamics 

control [see section 8.5.2 of (5)], passivity-based control [see, e.g., section 8.4 of (58)], and passivity-

based control with adaptive friction compensation based on (59). To compute a reference trajectory 

in joint space from a desired trajectory in task space, we used the automatically generated kinematic 

model. We solved a second-order inverse kinematics scheme with quaternion feedback based on (60) 

by a damped least-squares approach (61) to circumvent singularity issues. In addition, we damped 

floating null-space motions (62) arising from redundant robot assemblies as shown in (63). 

For validating the accuracy of the automatically obtained models and the performance of the 

controllers, we have conducted several experiments whose details and plots are presented in the 

Supplementary Materials. In all cases, the same performance levels could be replicated even after 

changing the composition. Because of the self-programming of modern control concepts, the 

performance was superior to a classical PID control scheme for both tracking performance and 

stability.  
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Self-verification of the robot 

Because various robots are assembled from IMPROV, it is not feasible to verify collision avoidance 

capabilities after each new composition. Furthermore, future motions of humans in the vicinity of the 

robot are unknown. To consider these two aspects, we have developed self-verification capabilities 

that allow the robot to verify online whether its currently planned action is safe. The robot verifies 

itself that it must stop before any human can touch it. Next, we explain our concept as it applies to a 

single human, which one can trivially extend for arbitrarily many humans. To ensure that we capture 

all possible behaviors of humans, we use reachable sets. After introducing a possible trajectory of a 

human as ( ; (0), ( ))t x u  for time t , initial state (0)x , and input trajectory ( )u , we define the set of 

reachable sets for a set of initial states 
0
 and a set of possible input values  as  

 
0 0( ) { ( ; , ( )) | (0) , : ( ) }.t t x u t t    x u  

The reachable set of a time interval  is defined as 
0 1

0 1

[ , ]

([ , ]) ( )
t t t

t t t


 . For subsequent 

discussions, we also introduce the area operator ( ( ))tx , returning the occupancy of the robot for a 

given state vector ( )tx  and the reachable occupancy as  

 0 1 0 0 1([ , ]) { ( ( ; , ( ))) | ( ; (0), ( )) ( ), [ , ]}.t t t x u t t t t t t t    x u  

Our self-verification concept uses the principle of induction. We first present the base case (prove 

that the specification holds initially) followed by the inductive step (prove that, if the statement holds 

for step k, then the statement holds for k + 1).   

Base case for the first time interval [t0,t1]. The robot can only be started if it is initially at rest. 

Before time 0t , we plan an intended trajectory, plan a fail-safe maneuver one time interval into this 

intended trajectory (i.e., at time 
1t ), and verify that the robot does not intersect the reachable 

occupancy of the human, during neither the first part of the intended trajectory nor the fail-safe 

trajectory, as presented in Fig. 1B, 1 and 2. The trajectory is only executed at 0t  if this is verified. 

Because the fail-safe maneuver is constructed so that the robot is stationary at the end, we verify that 

the robot is not moving when touched by a human.  

Inductive step from time interval [tk-1,tk] to [tk,tk+1]. The next step ([tk,tk+1]) of the intended 

trajectory is only executed if it, together with a fail-safe maneuver starting at tk+1, can be verified as 

safe before tk (see Fig. 1B4). If so, the intended trajectory is followed at tk. Otherwise, because the 

fail-safe maneuver starting at tk of the previous time interval ([tk-1,tk]) has already been verified in the 

previous time step, this fail-safe maneuver is executed. 

To focus on the interaction between motion planning and reachability analysis, we assumed that a 

long-term plan for the robot considering the most likely movement of the human exists [see, e.g., (64-

67)]. To improve efficiency, one can use planners that anticipate the future movement of surrounding 

humans (68-70). The fail-safe motions are computed on much shorter time scales and require very 

efficient implementations. We used path-consistent fail-safe trajectories because they are expected to 

be more predictable for the user, and predictability increases trust (71). 

A remarkable property of our approach is that only the intended trajectory and fail-safe maneuver 

must be stored in the robot memory. In addition, even if the computer hardware for computing new 

trajectories breaks down, the robot remains safe because the default path is the fail-safe maneuver. In 

the event that a fail-safe trajectory is triggered, one need not follow the fail-safe maneuver until the 

robot is stationary. During the fail-safe trajectory, one can already compute a recovery maneuver 

branching off a fail-safe maneuver to recover to the original plan. 

0 1[ , ]t t
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To ensure that the fail-safe maneuver is rarely engaged, we required very fast motion planning and 

verification. Considering the motion planner, we used the approach in (72); because no fast algorithm 

for predicting over-approximative human occupancy has been developed elsewhere, we present our 

approach below. In trials, an update frequency of 500 Hz was found to be practical. To meet these 

high computational demands, we used two quick-to-compute approaches in parallel, as shown in Fig. 

3A. The joint-space approach considers that distances between joints are constant because of the 

bones of the human body. However, this approach is subject to singularities so that we additionally 

predict the occupancy in task space. Predictions of both methods are over-approximative; i.e., the 

obtained predictions account for all possible movements (73). Thus, even if only one prediction is 

verified as safe, the actual movement of the human will not intersect with the occupancy of the robot, 

and the robot is verified as safe. This parallelization concept is important because none of the 

presented approaches is superior in all cases. We first present the occupancies for a single human arm 

and later extend the results for the entire human body. 

Self-verification in joint space. Our joint-space approach computes the reachable set of joint angles 

for a kinematic model of the human and maps these to occupancy in task space. The initial set of joint 

angles 
0
 is obtained by fitting a kinematic model to the human and adding an uncertain set capturing 

measurement uncertainties (as shown in the upper half of Fig. 3A). To obtain tight over-

approximations, we considered joint values, joint velocities, and joint accelerations limited for 

humans. These constraints can be modeled by hybrid systems (74); however, computing reachable 

sets of hybrid systems is computationally demanding (35). Instead, we added moderate 

conservativeness by computing with models obtained from basic kinematics for maximum joint 

angles, joint velocities, and joint accelerations in parallel and then intersecting the results: 

 Zeroth-order model of maximum joint position:  
(1) [ , ]q inf sup q q , 

 First-order model of maximum joint velocity (Minkowski sum: 

{ | , }    a b a b ):  
(2) ( ) (0) [ , ]q inf supt t  q q , 

 Second-order model of maximum joint accelerations [ conv()  returns the convex hull]:  

2.
(3) ( ) conv (0), (0) (0) ,

2
[ ]q inf sup

t
t t

 
   

 
q q . 

The input bounds infq , supq , infq , supq , infq , and supq  have been validated using an established 

database of human motion and a high-fidelity simulator, as described later. Intersecting the partial 

results returns an over-approximation of the reachable set:  

  
3

( )

1

( ) ( )i

q q

i

t t


 . 

On the basis of the reachable set in joint space ( )q t , we obtain the reachable occupancy in task 

space ( )t  using sphere-swept volumes (75). A sphere-swept volume is the Minkowski sum of a 

convex hull of a set of points 1 2{ , , , }lP P P   and a ball of radius r, denoted by ( )r :

conv( ) ( ).r   

For the task-space approach described below, we also require capsules, which are a special case of a 

sphere-swept volume, where conv( )  is a line segment. At singularities of the human arm (5), we 

only use the self-verification in task space. 
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Self-verification in task space. The task-space approach computes the reachable occupancies 

directly in the task space as sets of capsules, avoiding problems with singularities in the kinematic 

models. The intersection of capsules is computationally expensive. However, capsule-to-capsule 

intersection checks are fast, as presented in section 4.5 of (76), which we exploit by only checking 

for intersection with the robot for each model: If one model does not cause a collision, the trajectory 

of the robot is still safe.  

 

Fig. 3. Online verification using reachable occupancies. (A) Two verification concepts are used in parallel: The upper part shows 

the verification procedure in joint space, and the lower one directly computes results in the task space. (B) Occupancy of the human 

arm using the task-space method. 

After introducing the initial position of a point on the human body as (0)y , its measurement 

uncertainties y  and y  for position and velocity, respectively, and its maximum velocity ,y maxv  and 
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acceleration ,y maxa , the reachable position of a point mass using a first- and second-order model can 

be bounded using basic kinematics by  

 
(1)

,( ) (0) ( ) ( )y y maxt B y B v t   y , 

 
,max(2) 2( ) (0) ( ) (0) ( )
2

y

y

a
t B y t B y t B t 

 
        

 
y y . 

The reachable set of a single point on the arm is used to assemble capsules enclosing possible future 

occupancies of the entire arm as shown in Fig. 3B. The reachable sets of the i th order model of the 

shoulder 
( ) ( )i

S t , the elbow 
( ) ( )i

E t , and the wrist 
( ) ( )i

W t  are obtained using 
(1) ( )y t  and 

(2) ( ).y t   

We further require the radius 
sr  of the capsule enclosing the upper arm and forearm. The forearm, 

upper arm, and hand are enclosed by the following capsules: 

 forearm: ( ) conv( ( ), ( )) ( )F E W St t t B r  , 

 upper arm: ( ) conv( ( ), ( )) ( )U S E St t t B r   ,  

 hand: ( ) ( ) ( )H W Ht t B r  . 

Combining the occupancies of different body parts results in the overall occupancy  

 
(2) (2) (2) (1) (1) (1)( ) ( ) ( ) ( ), ( ) ( ) ( ) ( )acc F U H vel F U Ht t t t t t t t      . 

The occupancy of the zeroth-order model is simply a ball whose radius is that of an outstretched arm 

and whose center expands with the maximum velocity of the shoulder using the notations from Fig. 

3B:  

 ,max(0) ( (0) (0) (0) (0) )pos S S S E E W HB v t y r        x x x x x‖ ‖ ‖ ‖ . 

Because we directly obtain the reachable sets in the task space, the reachable set equals the occupancy 

[ ( ) ( )t t  ] so that we do not have to transform the reachable states as presented for the joint-space 

approach. 

The prediction of the full body is done analogously, with the only difference that we do not use the 

joint-space approach for the other body parts. The reason is that the arms are typically more important 

compared with the other body parts when working close to a robot, so it suffices to use just the task-

space approach for the rest of the body. 

Example. We demonstrate the self-verification in Fig. 4. Let us introduce the scaling parameter c , 

which is the ratio between actual and planned velocity and thus ranges between zero and one. As long 

as the human is sufficiently far away (until At t ), all trajectories are verified as safe, and the robot 

runs at full speed (scaling parameter 1c  ). At Bt t , the human is approaching the robot fast so that 

the self-verification (“verified?”-signal turns to “no”) initiates a fail-safe maneuver. While stopping, 

the robot repeatedly tries to recover the original trajectory, which is indicated by the verification 

signal chattering between “yes” and “no”. The recovery/fail-safe maneuvers are planned such that the 

jerk (derivative of acceleration) and acceleration at each joint are bounded and that acceleration, 

velocity, and position are continuous at the transition from fail-safe to recovery maneuver and vice 

versa. In practice, this results in the robot organically finding a safe equilibrium speed. At Ct t , the 

hand is in close proximity to the robot, not allowing the robot to move at all ( 0c  ). Once the human 

is moving away ( Dt t ), safe-verified recovery trajectories are found, and the robot starts to move 

again. A similar scenario is also demonstrated in movie S1, where one can also see the self-

verification for a reconfigured robot. The computation time for both the computation of the human 
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reachable occupancies and their verification against the intended trajectory and fail-safe maneuver is 

typically around 124 µs for the joint-space approach and 4 µs for the task-space approach (not 

including image processing from sensors and communication delays). 

 

Fig. 4. Self-verification of the robot. (A) time At , (B) time Bt , (C) time Ct , and (D) time Dt . The graphs show the axes positions, 

the trajectory scaling, the distances between the hand and the gripper, and the verification results. Snapshots of four interesting points 

in time are shown above and are indicated on the graphs below with dashed vertical lines.  
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User study  

To demonstrate the usefulness of self-verification compared with static safety regions, we performed 

a user study in which participants worked alongside the robot. We chose 30 healthy individuals (14 

male and 16 female) aged between 22 and 30 years old. The task was to assemble a simple jigsaw 

puzzle on a table outside of the robot workspace, whereas the pieces for the puzzle were in the robot 

workspace as shown in Fig. 5. None of the participants had worked with the robot of the user study 

before. To account for accustomization to the robot (77, 78), participants had three sessions with the 

robot, spread over the course of up to 8 days; during each session, the participants completed the task 

alongside the moving robot four times. To focus on the benefits of self-verification, we did not 

reassemble the robot in between the trials.  

 

 

Fig. 5. Setup of the user study. (A) Beginning of the task. (B) The participant moves toward the robot to fetch a piece of the puzzle. 

(C) The participant picks a piece from the puzzle. (D) The participant places the piece on the other table. (E) Template movements of 

the robot: Away from the base in the y direction for 1.7 s and back again for 1.7 s, at three different starting positions, between which 

the robot moves randomly. 

We compared our method with the safety-rated monitored stop from International Organization for 

Standardization (ISO) 13855 (2) and ISO 10218-1 (3), where the robot stops when the human enters 

the workspace of the robot; details are described in Materials and Methods. The participants were 

assigned at random to either the implementation using self-verification or the implementation using 

the static safety zone; the participants did not know which group they belonged to.  

Whereas the humans were given a specific task, the goal for the robot was to follow its tasks with as 

little idle time as possible. Both human time to completion and idle time of the robot improved as the 

human became accustomed to the robot. In each case, the idle time of the robot was significantly 

lower using self-verification than with static safety regions, as shown in Fig. 6. The percentage 

reduction in idle time is 38% ( ; the p-value is the probability that we mistakenly reject the 

null hypothesis) for the first four trials and 37% ( ) for the last trials; for all trials, it was 36%. 

 

510p 
510p 
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Fig. 6. Results of the user study. (A) The idle time of the robot is significantly reduced when using our self-verification scheme. The 

idle time remains rather constant over the different trials. (B) The time to completion for humans is not affected by the safety concept. 

It can be seen that humans became faster at solving the jigsaw puzzle due to training effects. 

 

Determining optimal compositions 

To fully exploit the potential of modular robots, users are interested in finding the best composition 

of modules to fulfill a desired task. A selection of our modules and a possible composition is shown 

in Fig. 7A. As an example, we consider a pick-and-place task, where the robot end effector should 

move as fast as possible from start (position S) to goal (position G) while avoiding surrounding 

obstacles. Our implementation returns to the user the order in which certain modules have to be 

assembled to obtain the optimal composition.  

Let us define the set of compositions as 1 2{ , , , }NC C C  , where iC  is the i th composition and N  

is the number of considered compositions. Our cost function for finding the optimal composition 

considers the duration  ,f it  to reach the goal position and the required energy consumptions by the 

motors. We denote the weight for time optimality by 
tw and the weight for energy optimality by 

ew . 

To exclude effects from varying energy efficiency of the motors used in different robots, we assume 

that no energy losses occur in the motors. After introducing the motor torque vector ( )i tu , the joint 

velocity vector ( )i tq , and the time to reach the goal ,f it , all for composition iC , we can formulate 

the optimization problem as: 

 
,

,
0

min , | ( ) | | ( ) |
f i

i

t
T

C t f i e i i i iw t w E E t t dt    u q  

subject to ,[0, ]f it t   

( ) [ , ]i ii
t q q q  (joint limits), (1) 

( ) [ , ]iii t u u u  (torque limits), (2) 

( ( ))i i t q  (composition iC  stays within the obstacle-free space ℱ), (3) 

where ( ( ))i i tq  returns the occupancy of the robot as introduced before and  is the space free of 

obstacles. The torques for each composition are evaluated using our self-programming approach and 

the N-E algorithm (55). 
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Fig. 7. Determining the optimal module composition out of available modules. (A) Available modules and a possible composition. 

(B) Task description of tasks 1 and 2, which consists of start and goal points (S and G), the desired gripper orientation, and obstacles. 

(C) Optimal compositions for tasks 1 and 2. 

A brute force approach (46) computing the cost function over all possible compositions is subject to 

the curse of dimensionality because the number of compositions grows exponentially with the number 
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of modules. In this work, we mitigated this problem by reducing the search space and through step-

by-step elimination of assemblies that could not fulfill the given task. 

Search space reduction. We reduced the search space by restricting certain combinations of 

modules; e.g., it does not make sense to first combine all joint modules and then all link modules. To 

alternate between joint and link modules in a reasonable manner, we restricted the number of link 

modules in between joint modules by three. In addition, we did not allow connections of joint modules 

solely established by link extensions because this typically results in distances between joints that are 

too small and thus limits the freedom of movement of each joint. Last, for a fair comparison with the 

other six-degree-of-freedom robots, we restricted the degrees of freedom of the assembled robot to 

six. 

Step-by-step elimination. To reduce computation time, we discarded infeasible assemblies by 

performing simple satisfiability checks of constraints (1)-(3) first, followed by more computationally 

expensive satisfiability checks. As a consequence, the more complicated checks only have to be 

performed on the remaining feasible compositions. We performed feasibility tests in the following 

order: 

1. Can the composition reach the start and goal positions (S and G in Fig. 7B)? 

2. Are joint and torque limits met at the start and goal positions? This is checked by applying 

constraints (1) and (2) to positions S and G. 

3. Are joint and torque limits met between the start and goal positions? This is checked by 

applying constraints (1) and (2) to the entire trajectory. 

4. Does a collision-free path between the start and goal composition exist (including self-

collision)? This is checked by applying constraint (3) to the entire trajectory. 

The third and fourth checks require a trajectory of the robot from the start (position S) to the goal 

(position G). Several techniques for motion planning exist, and all of them can be embedded in our 

approach. For the study presented here, we computed a trapezoidal trajectory in joint space as 

presented in section 4.2 of (5). 

Comparison. We show the advantage of using optimized module compositions for frequently 

changing tasks by comparing the IMPROV modules (see Fig. 7A) to a standard-configured Schunk 

LWA 4p, a KUKA LWR 4+, and a Stäubli TX90 in simulation. The robots have to fulfill two different 

tasks, in each of which the robot has to move from start point S to goal point G while avoiding an 

obstacle, as shown in Fig. 7B. A spherical obstacle is used because it is easier to understand and 

reproduce results when using simple geometries; however, our software uses a collision-checking 

library for arbitrary shapes (79). We assumed that the position of the robot base was fixed at 

0, 0, 0x y z    and that the base could be rotated about the z axis. Furthermore, we assumed 

1[ / ]maxq rad s  and 
21[ / ]maxq rad s  for all joints of all robots. To demonstrate how the choice of 

the cost function affects the solution, we used three different settings: 

 Balanced: 1tw  , 0.2ew   

 Time-optimal: 1tw  , 0ew   

 Energy-optimal: 0tw  , 1ew   

Fig. 7C shows the optimal compositions obtained using our approach, and Table 1 compares the 

results with the previously introduced robots. For task 1, we observed that the robot composed of 

IMPROV modules avoided the obstacle, whereas trapezoidal trajectories computed in joint space 

could not return collision-free trajectories for the other robots. For task 2, the KUKA robot is the 
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fastest but only by a small margin compared with the fastest IMPROV composition, which, in turn, 

is vastly more energy efficient. Gravity has a large influence on the joint whose movement causes 

other joints to primarily move in the direction of gravity. For typical industrial robots, this is usually 

the second joint. In our solution, however, the axis primarily affected by gravity is the fourth axis (see 

Fig. 7C), so that fewer remaining parts of the robot are strongly affected by gravity. We also observe 

for task 2 that the IMPROV compositions are better in terms of overall cost. Simulation videos for 

this comparison are provided in movie S2. 

 
Table 1. Results of comparison between IMPROV modules and other robots. We abbreviate “no solution” by n. s. and “no 

collision-free trajectory” by n. c. t. Collisions include collisions with other obstacles and self-collisions. The best results in each 

category are shown in bold. 

Robot Task 1:  

ft  [s] 

Task 1: 

iE  [J] 

Task 1: 
Cost [-] 

Task 2: 

ft  [s] 

Task 2: 

iE  [J] 

Task 2: 
Cost [-] 

Schunk LWA4p n. s. n. s. n. s. 3.38 21.71 7.72 

KUKA LWR4+ n. c. t. n. c. t. n. c. t. 2.17 18.58 5.89 

Stäubli TX90 n. c. t. n. c. t. n. c. t. n. c. t. n. c. t. n. c. t. 

 Balanced IMPROV 3.49 30.89 9.67 2.23 10.01 4.23 

Time opt. IMPROV 3.33 39.76 11.28 2.21 22.71 6.75 

Energy opt. 

IMPROV 
5.70 23.20 10.34 2.75 9.86 4.72 

 

DISCUSSION 

Effortless creation of robotic manipulators can only realize its full potential when combining self-

programming and self-verification. When only realizing self-programming, the created robot would 

have to be caged, so that several benefits of a customized solution are lost: For example, designing a 

cage for a particular robot is not economical in small-scale manufacturing, which is exactly the 

targeted application scenario. The second lost benefit is that a customized robot can be optimally 

integrated into its environment, but a cage would separate the robot from the objects it should 

manipulate. Other approaches for ensuring safety require demonstrating a sufficiently low risk for the 

user in case of impact (e.g., considering the power and force limiting of ISO/TS 15066); this, however, 

requires a dedicated analysis of each different application so that flexibility is lost. We next discuss 

the advantages of our system regarding programming, conventional safety solutions, and performance 

compared with standard robots. 

Comparison with standard programming approaches 

Modular robots are not used in manufacturing today because reprogramming costs exceed installation 

costs by a large margin (80) despite many efforts toward simplifying programming of robots (81). 

This issue becomes even more important when programming robots for safety-critical applications in 

human-robot coexistence, as discussed in this paper. According to Regan and Hamilton (82), around 

50 software defects remain in 1000 lines of newly written uncommented code, around 10 defects can 

be found in thoroughly tested code, and still around 1 defect is found after extreme measures of 

additional testing. This can lead to hazardous behavior considering the number of lines of codes in 

software written today. This was well documented during the Defense Advanced Research Projects 

Agency Robotics Challenge for disaster response applications, where a number of teams failed due 
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to programming errors despite good engineering practices and extensive testing (83, 84). Thus, self-

programming capabilities drastically reduce the probability of incorrectly working software. 

Comparison with static safety zones 

Our self-verification approach is more efficient compared with static safety zones because, with our 

approach, the robot only needs to alter its movement if the human is directly in danger of collision, 

whereas when using static safety zones, the robot stops as soon as the human appears in its workspace. 

With practice, the human participants became more efficient and faster at their tasks and spent less 

time in the workspace of the robot as a result, explaining the improvement in time to completion 

shown in Fig. 6B over time. Because users gain confidence after time due to the formally correct 

safety verification, self-verification has a lot of potential, due to the significantly reduced idle time 

compared with static safety zones.  

Comparison with non-modular robots 

Modular robots have many obvious advantages with respect to flexibility, maintenance, and cost 

efficiency compared with standard robots. (i) Flexibility: Modular robots can be easily adapted to 

current needs and enable flexible manufacturing (44, 85, 86). (ii) Maintenance: Flexible robots are 

easier to maintain because broken modules can be easily replaced (1, 44). (iii) Cost efficiency: 

Modular robots are more cost-effective for two reasons. First, one does not require general-purpose 

machines for flexible manufacturing, creating capital waste; instead, the robots are only assembled to 

meet their current purpose [see section 2 of (85)]. Second, modular robots can be more cost-effective 

because one only requires a few modules to assemble many different robots and thus modules can be 

mass-produced (1, 44).  

Finding optimal assemblies 

Providing custom robotic solutions for a given task can provide substantial advantages. As an 

illustrative example, consider a pick-and-place task without any obstacles. There always exists a point 

with the same distance r  between the start and the goal positions. By choosing this point as the 

position of the base, it suffices to have a robot with a single degree of freedom and a link that has 

length r . Obviously, for environments with obstacles and tasks where the orientation of the end 

effector is important, this most simple design is not possible. Typically, the number of possible 

assemblies is too vast to be evaluated by a human. By evaluating tens of thousands of assemblies, one 

obtains solutions that a human designer—with preconceptions of how a robot should look—might 

not have considered. An example of such a robot is the one found for task 2 in Fig. 7C, which has a 

nonstandard kinematics that is not available for purchase. This shows us that there is an untapped 

potential for nonstandard kinematics, particularly for special tasks and obstacle-laden environments.  

Realization of results 

One of the main obstacles to bringing the presented approach into practice is the typically long process 

of safety certification. Although many industries have established formal methods to a certain 

degree—see, e.g., avionics (87), railway systems (88), and ground vehicles (89)—formal methods for 

robotic manufacturing systems are still in their infancy. However, this makes our proposed approach 

especially appealing to certification agencies: Instead of certifying each robot anew, one only has to 

certify the software for self-verification once to ensure safe operation with respect to human-robot 

contact. The software for self-verification could be verified using theorem proving, as it has already 

been done for reachability analysis (90). 



 

 

19 

 

Further applications 

Our presented approach can be used in principle for many other applications. We could extend our 

approach to robots with parallel kinematics. Our approach also works for compliant joints by 

replacing the controller generation with those for compliant joints (91-93), which could be 

particularly useful in non-industrial settings. In addition, the safety concept could be used for service 

robots in households once human poses can be reliably tracked. Our online verification concept has 

also been applied to predict pedestrians for mobile robots (94) and automated vehicles (95). 
 

MATERIALS AND METHODS 

Validation of human models and their occupancy prediction 

We have evaluated the models of adults used according to the requirements that the occupancy 

prediction of these models must be over-approximative, tight, and quick to compute. Our validation 

did not consider children because they are not allowed to work in factories. The degree of 

conservatism was tested twofold: We performed extensive conformance checking (96), and we 

explored the space of physically possible movements using a biomechanical model (97).  

The data we used for validation were from the publicly available motion-capture database of the 

Carnegie Mellon University Graphics Lab. Movements include everyday movements—e.g., 

construction work, machining work, manipulating objects, and stumbling—as well as sports-related, 

dance-related, and acrobatic movements. Because sports, dance, and acrobatic movements are 

forbidden in a factory, we excluded them from our analysis. To try to find extreme movements not 

present in recorded data for the joint-space models in (73), we used the high-fidelity biomechanical 

model in (97) to systematically explore the state space using rapidly exploring random trees (98), 

which explore previously unexplored regions more efficiently compared with random testing (99). 

For each movement in the database, we computed the occupancy for the duration of the recorded 

movement starting from its initial state. All behaviors of the dataset and from (98) are enclosed by 

our predicted occupancy. To demonstrate that our results are not overly conservative, we reduced the 

parameters for maximum velocity and maximum acceleration in half, which resulted in behaviors that 

were not enclosed.  

Setup of the robot in the user study 

The predefined long-term plans of the robot were three template movements, where the robot moved 

outward (in the y direction) for 1.7 s and inward again for 1.7 s, at three different x-axis locations, as 

shown in Fig. 5. The robot executed these movements in random order, moving between the start 

positions of the three template movements randomly and continuously until the human had finished 

his or her task.  

Two possible modes of safe operation permitted in ISO 10218-1 (3) are the safety-rated monitored 

stop and speed and separation monitoring. The response of the robot to the human entering its 

workspace was one of the following:  

 Safety-rated monitored stop: The robot stops when any part of the human enters a static safety 

zone. 

 Speed and separation monitoring: The robot performs self-verification as described above, 

reducing or recovering its speed as a result of being verified unsafe or safe, respectively. 
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Static safety zone. A static safety zone is a standard approach in industry: When a human enters the 

workspace of the robot, it stops immediately. The workspace is enclosed by an axis-aligned bounding 

box enclosing the entire possible occupancy of the robot during the programmed movements. This 

box is extended in each direction by ,max humanv T C , taken from ISO 13855 (2), where max,humanv  is the 

maximum velocity of the human, taken as 2 m/s as in (2); T  is total time the robot requires to come 

to a stop, including the latency and communications delay in the sensing loop and the calculation 

time; and C  is the penetration distance of the sensing technology before a human is detected (e.g., 

penetration due to resolution of light curtain; because we used infrared markers, C  is zero). 

Self-verification. The static safety zone is based on the assumption that the human moves no faster 

than a maximum speed max,humanv . For a fair comparison, the self-verification is based on the first-

order model 
(1)

,( ) (0) ( ) ( )y y maxt B y B v t   y  as introduced previously with the maximum speed 

of the human also taken as 2 m/s, as stated in ISO 13855.  

Statistical methods for user study 

To test that the robot was significantly faster in the self-verification approach, we took the mean robot 

idle times for each participant over the last four trials, the first four trials, and over all trials and tested 

the data for normality with the Shapiro-Wilk test (100). The assumption of normality did not apply 

to the robot times of the last four trials (  that the data are normally distributed); thus, to 

ensure validity of the results, we used the Kruskal-Wallis H test (101).  

Supplementary Materials 

Supplementary Text 

Movie S1. Interplay of self-programming and self-verification. 

Movie S2. Comparison of optimal IMPROV compositions with commercial robots. 

Data File S1. Robot hardware. 
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Data file S3. User study evaluation. 
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Text 

In this supplementary text, we present in more detail the hardware used, the self-programming of 

the robot, and the experimental data of the user study. 

Hardware 

The basis of IMPROV are modules of the Schunk Powerball Lightweight Arm LWA 4P. These 

modules have been modified such that none of the original position control schemes are used 

anymore and we only use the mechanical parts of the robot of which we know the parameters. In 

this subsection, we describe the robot, how we designed new link modules, and how we sensed 

the human pose. The overall setup is shown in Fig. S1 and in the schematic in Fig. S2. 

 

 
Fig. S1. Experimental setup. 
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Fig. S2. Schematic diagram of the experimental setup. 

 

Schunk Powerball Lightweight Arm LWA 4P 

The robot used in our experiments is a heavily modified Schunk Powerball Lightweight Arm 

LWA 4P. The robot has six degrees of freedom, and we attached the PG70 gripper from Schunk 

to it. Although the robot has modular mechanics, it cannot be used as a modular robot since 

changing the configuration requires manually reprogramming the robot, which is not possible 

since the software is closed source. How we modified the robot so that it can program itself is 

described in the section Software for Self Programming. Further data is summarized in Table S1. 

 
Table S1. Technical data of Schunk Powerball Lightweight Arm LWA 4P. 

Max. payload load [kg] 6 

Repeat accuracy [mm] ±0.15 

Position feedback Pseudo-absolute position measuring 

Drives Brushless servomotors with permanent-magnet brake 

Pan-tilt unit flange Flat tool changer with free lines and power supply 

Installation direction Any 

Dead weight [kg] 15 

IP class [IP] 40 

Power supply 24 V DC / avg. 3 A / max. 12 A 

Interface CANopen (CiA DS402:IEC61800-7-201) 

Axes Max. speed with nominal load [deg/s] Range [deg] 

Axis 1 72 ±170 

Axis 2 72 ±170 

Axis 3 72 ±155.5 

Axis 4 72 ±170 

Axis 5 72 ±170 

Axis 6 72 ±170 
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CAD Files of Newly Developed Links  

For IMPROV, we have used existing modules from Schunk and modules that we have produced 

ourselves. A selection of modules used and a possible assembly is shown in Fig. S3. 

 

 
Fig. S3. Selection of modules (left) and a possible assembly (right). 

 

The link modules that we produced ourselves fulfill the following specifications:  

 Mechanical robustness: For arbitrary assemblies, the parts do not fail mechanically under 

the assumption that the assembled robot is movable given the torque limits of the motors. 

 Stiffness: The stiffness of the links is comparable to the ones from Schunk to avoid too 

large a positioning error at the end effector.  

 Full functionality: The extension has to allow for complete signal transmission and power 

supply.   

 Protection of electrical connections: The extensions provide physical protection to the 

signal and power cables as well as to any other connecting elements, such as PCBs.   

An example of a mechanical test for one of our developed links is shown in Fig. S4. 

 

 
Fig. S4. Link module and its finite element analysis to test mechanical strength. 

 

Central Control Unit 

The central control unit that implements the presented framework is a Speedgoat Real-Time 

target PC, equipped with an Intel Core i7-3770K clocked at 3.5 GHz and 4 GB of RAM. The 

communication with the robot is done via CAN-bus. The communication bus limits the sampling 

rate that can be used for centralized control to 500Hz when assembling a six-axes robot. The 

controller has been developed using MATLAB/Simulink 2015b and has been implemented on 



the target machine via automatic code generation with MATLAB Coder, Simulink Coder, and 

Simulink Real-Time toolboxes. 

Tracking System 

The human is tracked by a six-camera Vicon Vero 1.3 motion capture system, operating at 

250Hz. The cameras operate by shining infrared light on the workspace, which is reflected by 

clusters of retroreflective markers on the objects to be tracked. The six cameras are connected via 

a Power over Ethernet (PoE) switch to a Dell Precision Tower 3620 with an Intel Xeon E3-

1270v5 processor (3.6GHz), 16GB RAM, and NVIDIA Quadro K620 Graphics card running 

Windows 10. The camera data is processed by Vicon Tracker 3.5 software on this machine to 

triangulate the positions of the marker clusters; these are then sent via User Datagram Protocol 

(UDP), at 1kHz, to the real-time target machine. The marker clusters on the human body are 

shown in Fig. S5. 

 

In the experiments with the replanning of trajectories, we also have a visualization in a virtual 

environment created in Coppelia V-REP and receive information in real time from the target 

machine via UDP at a rate of 20Hz. 

 

The processing of the data in Tracker 3.5 is the only non-real-time part of the system; to the best 

of the authors’ knowledge, no tracking system with deterministic latencies near comparable to 

the latencies of the Vicon system exist. According to the information from the developers1, the 

Tracker 3.5 software has a computation time of 1.5ms for five objects and 2.8ms for ten objects. 

As we had seven or eight objects on the human (depending on whether the marker on the lower 

back was used), we took the latency at a conservative 5ms, plus the frame rate of the cameras 

and the cycle time of the UDP connection, which were 4ms and 1ms respectively, i.e., 10ms 

overall. 

 
Fig. S5. Marker cluster positions on a human participant. 

 

Software for Self-Programming 

 

Deactivation of Internal Control Circuits 

                                                           
1 www.vicon.com/products/software/tracker, accessed 2.1.2018 



The joint modules used are the commercially available Schunk Powerballs. These actuation 

modules are natively controlled with a cascaded proportional-integral-derivative scheme. 

Unfortunately, details of the native schemes are not publicly available.  

 

In order to be able to deploy our automatically generated model-based controllers, without any 

interference from the built-in controllers, all built-in controllers were deactivated. This was 

achieved by setting the gain associated with the velocity error feedback to zero. After disabling 

the built-in decentralized controllers, we enabled a feedforward term from the actuators control 

unit, which allows one to directly set current commands to the driver of the motors. 

 

Implementation of Self-Programming 

Automatic deployment of both joint space and task space controllers is performed automatically 

using collected module data (ModRob) using the architecture in Fig. S6. Assembled robot 

descriptions, both for kinematics (DH) and dynamics (DynPar), are generated automatically 

using the two MATLAB functions “ModRob2DH” and “ModRob2DynPar”, which are provided 

in the data file S2. 

The central control unit uses the obtained models to self-program model-based control methods. 

The MATLAB code used for self-programming after each new assembly has been included in 

the data file S2.  

 

In addition to the blocks of kinematic and joint-space control as in a classical structure (see e.g., 

(5)), the blocks for processing the module data are added to deliver the assembled-robot data. 

This combination enables the automatic generation of the control of the arm, once the robot is 

assembled and ModRob is created. This architecture is simple: it allows tracking of task space 

trajectories by solving the inverse kinematic problem online (using closed-loop inverse-

kinematics schemes) to obtain the reference trajectories in joint space ( dq , 
.

dq , 
..

dq ) that are 

tracked by means of a joint-space tracking controller. Both the kinematic control and joint-space 

Fig. S6. Modular robot control architecture with self-programming capabilities. 



control are automatically deployed using the automatically generated robot description. The 

following subsections detail how the kinematic and joint-space control are implemented. 

 

 
 
 
Joint-Space Control 
 

We have implemented self-verification for two of the most effective model-based joint space 

controllers: inverse dynamics control (see e.g., Sec. 8.5.2 of (5)) and passivity-based control (see 

e.g., Sec. 8.4 of  (58)). To properly handle assembly-dependent friction model uncertainties, we 

have also implemented a version of the passivity-based tracking controller with adaptive friction 

compensation. We demonstrate the effectiveness of these self-programmed controllers below. 

 

Inverse dynamics control 
 

The inverse dynamics control exploits the model knowledge to directly cancel couplings through 

feedback and obtain a linear and decoupled system from a new auxiliary control input variable 
.y  The inverse dynamics control law is implemented using 

        ,ID    u M q y c q q f q g q ,  

which provides 
..

q y . A typical choice of  y  is 

 
.

,D Pd  y q K e K e  

 

providing 

 
.. .

,D P  e K e K e 0  

where PK , DK  are diagonal positive definite gain matrices of proper dimensions. By using our 

automatically generated robot description, the inverse dynamics controller is efficiently 

implemented as follows: 

 
. .

( ) ( , ) ( ) ( ) , , , , .( )ID gNEA    u M q y c q q f q g q q q y DH DynPar  

The tuning of the above controller is rather simple. The control parameters 
2

P nK I  and 

2D nK I  are set by a user-defined natural frequency n  and damping ratio  . 

 

Passivity-based control 
 

Contrary to the inverse dynamics control scheme, passivity-based tracking controllers do not rely 

on the complete cancellation of all couplings through feedback so that this approach is typically 

more robust to model uncertainties compared to inverse dynamics control. Our passivity-based 

tracking controller is implemented using 

 ( ) ( , ) ( ) ( ) ,
PB a a
    u M q q C q q q f q g q Λr  (1) 

with 
.

d ra  q q K e , 
.

r r e K e , and where Λ  and rK  are diagonal positive definite matrices 

of proper dimensions. By applying the passivity-based control law in (1) to the system  



        ,   M q q C q q q f q g q u , (2) 

the following closed-loop system is obtained:  

 
. .

( ) ( , ) .  M q r C q q r Λr 0  

The derivation of global stability is presented in (58). As for the inverse-dynamics controller, the 

passivity-based controller is implemented using the recursive Newton-Euler algorithm as 

presented in the paper. However, ( )gNEA L has to be slightly modified according to (57) since 

it cannot compute 
. .

( , ) aC q q q . The modified version is denoted by *( )gNEA L  and together with 

DH  and DynPar , our approach automatically computes the following passivity-based controller: 

 
.. . . . ..

*
( ) ( , ) ( ) ( ) , , , , , .( )a a a aPB gNEA      u M q q C q q q f q g q Λr q q q q DH DynPar Λr  

 

 

Passivity-based control with adaptive friction compensation 
 

The load at the joints affects the friction. We address this aspect by introducing an adaptive term 

to the passivity-based feedback control law. Let us introduce the friction model 

 
. . .

( ) sign( ),v c f q β q β q  

with viscous vβ  and static cβ  friction coefficients, and assuming that only nominal parameters 

0 ,v i  and 0 ,c i  for the ith joint are available for control, the passivity-based control command with 

adaptive friction compensation is computed as 

 ˆ( ) ( , ) ( ) ( ) ,PBAFC a a    u M q q C q q q f q g q Λr  (3) 

where 

 , ,
ˆ ˆ ˆ( ) ( ) ( )sign( ), {1, , }i i v i i c i if q t q t q i N       

and , 0 ,
ˆ (0)v i v i  , , 0 ,

ˆ (0)c i c i  . Using (3) in (2), it can be shown that  

 
.

ˆ( ) ( , ) ( ) ( ) ( ) ,


    M q r C q q r Λr f q f q Y q Δ  
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Global asymptotic stability follows from a similar argument of Sec. 8.5.4 in (5), where the main 

difference is in the choice of ( )Y q , provided that the parameters ,
ˆ ( )v i t  and ,

ˆ ( )c i t  are computed 

using the following adaptive law: 

 
.

1ˆ ( ) ( ) ,Tt





   Δ β K Y q r  



with 
K  being a positive definite matrix of proper dimensions. 

 
Kinematic Control 
 

The only missing component for generating a complete controller is the consideration of the 

solution of the inverse kinematic problem. An analytical solution of the inverse kinematic 

problem can be found only for manipulators that are sufficiently simple and have specific 

geometries (5), so that we use numerical approaches.  One of these approaches is based on using 

unit quaternions, which have unique advantages compared to Euler angles and axis-angle 

representations. This approach only requires the computation of the 6 N   geometric Jacobian 

( ) [ ( ) , ( ) ]
T T T

p 
J q J q J q  and its derivative 

. .

( , )J q q , which can be computed online by using q, q 

and the automatically obtained kinematic description of the robot. An implementation of the 

algorithm can be found in the repository in the data file S2 under “kin_fcns/dJacobian”. 

 

Closed-loop inverse kinematics schemes are usually separated into first- and second-order ones. 

First-order schemes provide the joint velocities and positions which let the end effector track a 

task-space trajectory. Drift is counteracted by employing a feedback control loop on position. 

However, for the purpose of this framework, the computation of the reference joint acceleration 

is required. In the case that a first-order scheme is employed, a practical way for computing the 

joint acceleration is via numerical differentiation. In contrast, second-order methods allow direct 

computation of the joint reference accelerations. Joint velocities and joint positions are then 

obtained through integration. In this case, drift is counteracted by employing a feedback control 

loop on both velocity and position. 

 

Hereafter, a unit quaternion is denoted by a vector of four components, e.g., 

[ , ] [ , , , ]
T T T

x y z  Q  , where   is the scalar part of the quaternion and [ , , ]T
x y z  its 

vectorial part. By considering the required trajectory of the end effector frame specified for 

positions 
3

r p , orientations 
4

[ , ]
T

r r r Q , linear velocities and accelerations (
.

rp , 
..

rp ), 

and angular velocities and accelerations ( rω , 
.

rω ), the following closed loop inverse kinematic 

scheme can be implemented: 

 
. . .

† †( ) ( , ) ( ) ( ) ,( ) ( )d d d d d dd d   q J q ν J q q q I J q J q q  (4) 

with 

 

.. . .

. .

( ( ) ) ( ( ))
.

( ( ) ) ( )

v p d p r fk dr r d

r r d o o dd

K K

K K 

 
    

 
    

p p J q q p p q
ν

ω ω J q q e q

 

In (4), †J  is the Jacobian pseudo-inverse (or damped least-squares inverse near the kinematic 

singularities);   , vK , pK , K , oK  are positive gains; ( )fk dp q  is the position of the end 

effector computed with the forward kinematics; and finally  

 ( ) ( ) ( ) ( )o fk d r r fk d r fk d   e q q S q  



is the quaternion-based orientation error feedback vector, where ( )fk d q  and ( )fk dq  are the 

components of the unit quaternion for the orientation of the end effector computed using the 

forward kinematic function and the current joint variables of the inverse kinematic solution. The 

feedback variables dq  and dq  are obtained by integrating dq . In the event that the assembled 

robot is redundant, second-order schemes suffer from floating null-space motions. To account for 

these cases, the last term on the right-hand side of (4) is added to introduce damping in the null 

space as in (63). For the considered scheme, asymptotic stability of both position and orientation 

error dynamics can be shown by Lyapunov arguments (see e.g., (60, 102)). It is worth stressing 

that in principle, no user intervention is required after reassembling the robot with this scheme, 

since the kinematic description of the robot can be automatically obtained and directly used for 

computing the geometric Jacobian. An implementation of (4) is available in the data file S2 

under “kin_fcns/invkin_2d”. 

 

To consider saturation limits of actuators, we find the appropriate time-scaling factors for the 

task-space trajectories. 

 

Validation by Experiments 
 
Fig. S7 shows some example modules used in our experiments. A complete list of the module 

data can be found in the data file S2 under “/modulesDB/IMPROV_SchunkLWA4p”. 

 
 
Fig. S7. Characterization of the modules using simple modular units. The models of the components have been derived using 

the CAD data available from the website of the robot manufacturer. 

 

Complex joint modules, as shown on the left of Fig. S7, are decomposed into two simple joint 

model units (Unit A and Unit B). To parametrize these two units, the corresponding input and 

output frames should first be placed. The required module data has been obtained from CAD 

software and the data sheets from the robot manufacturer. The data relative to the actuators, such 

as friction parameters and rotor inertia, have been estimated by performing simple identification 

of each joint module using the following model: 

 
2 2

, , sign( ) , : .m r i v i i c i i i eq m rI q q q u I I        



The parameters of the above model have been estimated by using the following regression after 

obtaining k samples from a test motion as follows: 

 
1

, ,[ , , ] ( ) ,T T T
eq v i c iI    Φ Φ Φ b  

where 

 

(1) (1) sign( (1)) (1)

, .

( ) ( ) sign( ( )) ( )

i i i i

i i i i

q q q u

q k q k q k u k

   
   

    
   
   

Φ b  

 

The acceleration was obtained from zero-phase-shift digital filtering as implemented in the 

MATLAB signal processing toolbox. The results of the identification are shown in  

Fig. S8. 

 

 
 

Fig. S8. Results of the friction identification procedure for all joint modules. This figure additionally shows the influence of 

the load for the first joint axis. 

 

Validation of the Automatically Generated Models 
 

To validate the automatically-obtained models, we let the robot follow a trajectory and compare 

the measured joint positions, velocities, and applied control torques with those of the models. We 

estimate the torque using the recursive N-E algorithm, which takes as input the automatically-

generated kinematic/dynamic description of the assembled robot, the measured joint position, 

velocity, and acceleration vector. Since the joint acceleration is typically not available, we 

processed the measured joint position data offline through numerical differentiation and zero-

phase-shift digital filtering as implemented in the MATLAB signal processing toolbox.  

 



 
 

Fig. S9. Assemblies used for tests. 

 

For validation, we use the assemblies from Fig. S9. The results of these tests are collected in  

Fig. S10 showing the comparison between the measured and the predicted torque. Overall, these 

plots show good model matching and demonstrate the effectiveness of our automatic model 

generation. 

 
Fig. S10. Experimental verification of the automatically generated models. 

 

Evaluation of the Control Performance 
 

We validate the tracking performance of different joint space controllers using the same 

trajectories and assemblies as in the previous model validation. The results of these experiments 

are presented in Fig. S11, which shows remarkable insensitivity of the tracking error with respect 

to changes of the assembly. Fig. S11 also shows that passivity-based control performs better than 



inverse dynamics control after careful tuning of the control parameters. The fair tuning is 

confirmed by similar measurement noise amplification in the torque commands as shown in  

Fig. S12. 

 
Fig. S11. Tracking performance comparison when using inverse dynamics control (ID) and passivity-based control (PB), 

for different assemblies. 

 

The performance of the adaptive friction compensation is tested by a badly-tuned version of the 

automatically generated passivity-based controller and by setting all friction parameters initially 

to zero. The results of this test in Fig. S13 show a reduction of the norm of the tracking error 

over time. In this experiment, the following gains have been used: 30V  K K I , 

K I . 

 
Fig. S12. Control torque commands required when using inverse dynamics control (ID) and passivity-based control (PB) 

for the trajectory tracking test. 

 

An additional performance comparison is presented in Fig. S14 to show the benefit of our self-

programmed controllers to a model-free approach. As a model-free approach, we use a 

distributed proportional-integral-derivative (PID) controller that is implemented in each joint 

separately. This  performance  comparison  has  been  executed for assemblies I, II, and III of  



Fig. S9. The gains of the controllers have been selected by setting 50( / )n rad s   and 0.65   

for both inverse-dynamics control and the PIDs. The passivity-based control law with adaptive 

friction compensation has been tuned such that the tracking performance with assembly I is 

comparable to the other controllers: 50K I , 50V K I , 

K I . While the tracking error 

when using assembly I was still satisfactory for the PID controllers, their performance 

dramatically decreased when changing the robot assembly without retuning as shown in         

Fig. S14. Also, instabilities were observed for the decentralized PIDs when increasing the 

degrees of freedom for the robotic assembly; however, the automatically generated model-based 

controllers show a remarkable insensitivity.  

 

 
Fig. S13. Demonstration of the adaptive friction compensation. PB denotes the standard passivity-based controller, and 

PBAFC denotes the passivity-based control law with adaptive friction compensation (54). 

 

 
 
Fig. S14. Experimental comparison of different controllers when changing the assembly of the robot. ID denotes the 

inverse dynamics controller, PBAFC the passivity-based control with adaptive friction compensation, and PID the scheme with 

decentralized PID control (54). 

 

A video showing the complete architecture of Fig. S6 in action is attached.  

 

Conformance Checking of the Full Body Model 

 

We have validated our full body model using reachset conformance checking (96). A model is 

said to be reachset conformant if all measurements lie within the reachable set of the model. As 

measurements we have used the data from the publicly available motion-capture database from 

Carnegie Mellon University Graphics Lab (mocap.cs.cmu.edu, accessed 28.02.19). The 

movements we use are grouped into four categories: 



 Everyday motions, e.g., construction work, machining work, manipulating objects, 

stumbling (96 files). 

 Sports-related motions, e.g., boxing, throwing/shooting balls and batting balls (67 files). 

 Dance-related motions, e.g., swing dance, Indian dance and modern dance (58 files). 

 Acrobatic motions, i.e., any motion where both feet are in the air simultaneously, 

including jumps, cartwheels, backflips, and swings from a trapeze (68 files). 

The everyday motions are expected to be similar to usual movements in a human-robot co-

existence scenario. We also consider sports-related, dance-related and acrobatic movements. For 

the reachset conformance checking we have used the MATLAB toolbox CORA (103). 

For each marker we have assumed the measurement uncertainty to be 0.04 y  [m] for the 

position and 0.4 y  [m/s] for the velocity. The data has been recorded with either 60 or 120 

frames per second. For each frame and each movement, we have computed the reachable set for 

a prediction horizon of 0.2 [s] since larger horizons did not return different results due to the 

quick expansion of reachable sets and since in that time any extremity of the human can be fully 

extended.  

For the full body we only use the task-space approach and only for the arms we additionally use 

the joint-space approach as arms have the biggest influence on human-robot co-existence. Since 

conformant parameters for the arms are already reported in (73), we only present the maximum 

velocity ,y maxv  and the maximum acceleration ,y maxa  required for the task-space approach. The 

maximum velocity ,y maxv is similar for many body parts; this is intuitively clear since almost all 

body parts have similar velocities when running. On the contrary, not all body parts have the 

same maximum accelerations, e.g., the torso cannot accelerate as fast as arms or legs. Some 

acrobatic and sports movements cause ground impacts. Since impacts cause very high 

accelerations, we have excluded impact accelerations, since those accelerations do not contribute 

to accelerating in free space, but are preventing body parts from penetrating the ground.  

The maximum acceleration for different body parts which ensures reachset conformance is 

presented in Table S2 and the markers belonging to the various body parts are shown in Fig. S15. 

In terms of the velocity model, , 14y maxv   [m/s] for all body parts establishes reachset 

conformance.  

Table S2. Maximum acceleration of different body parts. The positions of the markers are shown in Fig. S15. 

Body part Markers 
,y maxa in [m/s2] 

Torso LFWT, RFWT, LBWT, RBWT, CLAV, STRN, C7, T8, 

T10, NEWLBAC, RBAC, NEWRBAC 

20 

Head LFHD, RFHD, LBHD, RBHD 25 

Arm and hand LSHO, NEWLSHO, LUPA, LELB, LFRM, LWRA, 

LWRB, LFIN, LTHMB, RSHO, NEWRSHO, RUPA, 

RELB, RFRM, RWRA, RWRB, RFIN, RTHMB 

50 

Thigh and knee LTHI, LKNE, RTHI, RKNE 30 

Shin and foot LSHN, LANK, LHEE, LMT1, LMT5, LTOE, 

LRSTBEEF, RSHN, RANK, RHEE, RMT1, RMT5, 

RTOE, RRSTBEEF 

50 



 
Fig. S15. Markers of the motion-capture database from Carnegie Mellon University Graphics Lab (photos taken from 

mocap.cs.cmu.edu, accessed 28 February 2019). 

 

Experimental Data of the User Study 

 

In this subsection, we describe the user study presented in the paper in more detail. While the 

average idle time of the robot and the average time to completion of the human are presented in 

the paper, we additionally show the box and whisker plots for the first four trials and the last four 

trials in Fig. S16. In addition to measuring the idle times and the time to completion, we 

evaluated the following four hypotheses: 

 Hypothesis 1: Idle time of the robot is significantly different for self-verification and 

verification with static safety zones for a) the first four trials, b) the last four trials, and c) 

all trials. 

Test: For each subject, the mean value of the idle time was calculated for a) the first four 

trials b) the last four trials and c) all trials. Distribution of robot idle time over subjects is 

significantly different from the normal distribution in the first four trials for static safety 

zones. Kruskal-Wallis test used: p < 0.0001. The results for the different trials are  

o Set of trials a): Median robot idle time is 37.7% lower for self-verification than 

for static safety zones; 

o Set of trials b): Median robot idle time is 36.8% lower for self-verification than 

for static safety zones; 



o Set of trials c): Median robot idle time is 36.0% lower for self-verification than 

for static safety zones.  

Hypothesis confirmed. 

 Hypothesis 2: Time to completion of the human is significantly different for self-

verification and static safety zones, for a) the first four trials, b) the last four trials, and c) 

all trials. 

Test: For each subject, the mean value of time to completion was calculated for a) the 

first four trials b) the last four trials and c) all trials. Distribution of human time to 

completion over subjects is significantly different from the normal distribution in the last 

four trials using static safety zones. Kruskal-Wallis test used: p > 0.05; no significant 

difference. Hypothesis rejected. 

 Hypothesis 3: Idle time of the robot decreases with the number of trials, using a) self-

verification and b) static safety zones. 

Test: Distribution of mean robot idle time averaged over all trials is not significantly 

different from the normal distribution. Repeated-means ANOVA test used: p < 0.001. 

The results for the different trials are 

o Set of trials a): Decrease in mean idle time over 12 trials of the robot using self-

verification is 14.0%,  

o Set of trials b): Decrease in mean idle time over 12 trials of the robot using static 

safety zones is 11.3%.  

Hypothesis confirmed. 

 Hypothesis 4: Time to completion of the human decreases with the number of trials, for 

a) self-verification and b) static safety zones. 

Test: Distribution of mean human time to completion averaged over all trials not 

significantly different from normal. Repeated-means ANOVA test used: p < 0.001. The 

results for the different trials are:  

o Set of trials a): Decrease in mean time to completion over 12 trials of the human 

using self-verification is 22.5%, 

o Set of trials b): Decrease in mean time to completion over 12 trials of the human 

using static safety zones is 24.9%.  

Hypothesis confirmed. 



 

 
Fig. S16. Box and whisker plot of robot idle time. (A) First four trials. (B) Last four trials. 

 

Software for optimal module composition 

The complete software for determining the optimal module composition, computing the cost 

function of each module composition, and computing the cost function of the competing robots 

in the experiment (Schunk LWA 4p, Kuka LWR 4+. Stäubli TX90) is provided in the data file 

S2 under “/OptimalComposition” (“main_optimalComposition.m” and “otherRobots.m”) and 

requires MATLAB R2018a. The code has been written by Stefan Liu and Esra Icer 

(esra.icer@tum.de). 

For computing the cost function of all robots, their kinematic, dynamic, and geometric model are 

needed. The model of IMPROV and the standard configured Schunk LWA 4P have been 

obtained using identification experiments. The models of the KUKA and Stäubli robot have been 

obtained from (104-106) and websites2. The models for all robots are also provided within the 

repository. 

Movie S1. Interplay of self-programming and self-verification. 

This video shows the whole process from the assembly of robots from modules to self-

programming and self-verification. The first part of the video presents the set of used modules 

and how their dynamic and kinematic properties as well as their geometry are utilized for self-

programming. Next, the video shows a reconfiguration process and how the data in each module 

is collected after reconfiguration. The second part of the video explains the self-verification 

principle based on predicted occupancies of humans. Presented experiments for two different 

robot compositions with six degrees of freedom (Base–PB1–L1–PB1–L2–PB2–Gripper) and 

eight degrees of freedom (Base–PB1–L3–PB1–L4–PB1–L2–PB2) show that the robot stops in 

                                                           
2 https://github.com/CentroEPiaggio/kuka-lwr and https://www.staubli.com/en/robotics/customer-support/cad-

library/ 



time before the human reaches it. The geometric model needed for the collision checking of both 

compositions is self-programmed using the data from each module. 

Movie S2. Comparison of optimal IMPROV compositions with commercial robots. 

This video shows the experiment described in Fig. 7 of the paper and the results in Table 1 of the 

paper, which compares the performance of IMPROV modules to the commercially-available 

Schunk LWA 4p, KUKA LWR 4+, and Stäubli TX90. For both tasks, a simulation of the 

trajectories of each robot is shown, as well as the obstacles. 

Data file S1. Robot hardware. 

STL files of 3D-printed modules, and technical specification of robot and controller used for 

experiments. The provided modules enable one to recreate the modular robot presented in this 

paper. 
 

Data file S2. Software. 

Code for self-programming and optimal module composition executable on MATLAB R2018a. 

The code for self-programming creates kinematic, dynamic, and geometric models for composed 

modules. The software for optimal compositions includes software for task specification, 

collision checking, and path planning. Furthermore, software for visualization of composed 

modules is provided. 
 

Data file S3. User study evaluation. 

This code can be executed on MATLAB 2016b and requires the statistic toolbox. All code is 

from Aaron Pereira, except the functions "cronbach.m" and "swtest.m", which were written by 

Alexandros Leontitsis and Ahmed ben Saida, respectively. The file you want to execute is 

"test_hypotheses.m". Everything else is self-explanatory or explained in the functions 

themselves. 

 

 

 
 


