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Abstract

The performance of a communication channel is limited by the noise level present in the communication system.
Quantifying the impact of noise on electric circuits and systems has been the subject of numerous experimental
and theoretical studies. In network theory, noise in electric circuits can be easily modeled by equivalent noise
sources at the terminals of abstract multiport representations of physical circuit elements. In this model, the
propagation of noise through a linear network and how it is superimposed with the actual port voltages and
port currents in the frequency-domain is governed by algebraic equations. For electromagnetic fields, where
the governing equations are partial differential equations, the modeling of noise is less straightforward. From a
network-oriented perspective, a method for describing noisy electromagnetic fields with Gaussian probability
distribution has been proposed based on spatial auto-correlation and cross-correlation functions.

The intent of this work is to extend the mathematical framework for stochastic electromagnetic field modeling,
such that stochastic electromagnetic fieldswith arbitrary statistics can be treated in a unifiedway. The description
of stochastic electromagnetic fields in this thesis will be based on characteristic functionals, where propagation
rules are devised, such that one can infer the statistics of an observed electromagnetic field in space and time,
given a known random source field. In order to construct also this theoretical framework in a mathematically
sound way, the required definitions, theorems, and proofs are presented in chapter 2 of the thesis. Based on the
mathematical foundations, a theory for random fields is constructed by revisiting classical electromagnetism.
Inferring probability measures from realizations of stochastic processes with arbitrary statistics is in general

not possible. Thus, for the experimental characterization of stochastic electromagnetic fields, we will restrict
ourselves to the case of stationary ergodicGaussian systems forwhich it is shown that the characteristic functional
is uniquely determined by specifying a mean function and a correlation dyadic of the respective electromagnetic
field quantity. The previous approach, where the propagation of Gaussian stochastic electromagnetic fields was
described by correlation dyadics, is shown to be contained in our more general theory as a special case, by
prescribing a characteristic functional corresponding to Gaussian statistics. In addition, a measurement-setup
and a calibration procedure, capable of obtaining samples of random fields at pairs of distinct points in space
are presented.
Furthermore, numerical methods for the propagation of correlation information are established in the

frequency-domain and in the time-domain. Using these methods, it is shown that the spatial energy den-
sity distribution of a random electromagnetic field can be predicted. For this purpose, measured field-field
correlation data, sampled on a plane directly above an aperture, is numerically propagated to another plane
further apart from the initial measurement surface. Within this propagation example, a comparison between
two selected methods is presented.
The theory presented in this work can be applied in modeling near-field communication channels, where the

signals are perturbed by noise.
Finally, a method for data reduction for the description of stochastic electromagnetic field propagation will be

presented. Data reduction is essential, since the measurement time as well as the amount of data that needs to be
recorded for describing Gaussian random fields in terms of auto-correlation and cross-correlation functions, is
very high in general. The amount of data depends on the measurement bandwidth and especially on the number
of spatial sampling points. For a full characterization by auto-correlation and cross-correlation functions at all
pairs of spatial sampling points, the amount of data scales quadratically with the number of spatial measurement
positions. Thus, for a spatial resolution that is sufficiently fine, the size of the recorded data sets can become
unmanageable.
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Zusammenfassung

Die maximale Datenrate in einem Kommunikationskanal ist durch die im Kommunikationssystem vorhandene
Rauschleistung begrenzt. Die Untersuchung der Auswirkungen von Rauschen auf elektronische Schaltungen und
Systeme war bereits Gegenstand zahlreicher experimenteller und theoretischer Studien. In der Netzwerktheorie
wird Störrauschen mittels äquivalenter Rauschquellen an den Ein- und Ausgängen von äquivalenten Mehrtoren
modelliert, die ihrerseits vereinfachte Repräsentationen komplexer Schaltungen darstellen. In diesem Sinne
wird die Ausbreitung durch ein lineares Netzwerk, sowie die Überlagerung der Torströme und -spannungen im
Frequenzbereich, durch algebraische Gleichungen beschrieben. Die Verallgemeinerung dieses Konzeptes auf
elektromagnetische Felder, wobei die beschreibenden Systemgleichungen durch partielle Differentialgleichun-
gen gegeben sind, ist allerdings nicht so einfach. Aus einer netzwerkorientierten Perspektive wurde eineMethode
zur Beschreibung von rauschenden elektromagnetischen Feldern mit Gaußscher Wahrscheinlichkeitsverteilung
vorgeschlagen, die auf einer Charakterisierung der Felder bezüglich deren Auto- und Kreuzkorrelationen an
verschiedenen Punkten im Raum basiert.

Mit dieser Arbeit wird angestrebt, diese Methoden dahingehend zu erweitern, dass sich stochastische elektro-
magnetische Felder mit beliebiger statistischer Verteilung in einer vereinheitlichten Theorie beschreiben lassen.
Die Grundlage der theoretischen Behandlung von stochastischen elektromagnetischen Feldern in dieser Dis-
sertation bilden charakteristische Funktionale. Dabei werden Regeln zur Feldausbreitung für charakteristische
Funktionale ausgearbeitet, sodass sich von einem gegebenen Quellfeld auf die statistische Verteilung eines
beobachteten Feldes in Raum und Zeit schließen lässt. Für die Ausarbeitung eines mathematisch einwandfrei-
em theoretischen Formalismus, werden die notwendigen Definitionen, Sätze und mathematischen Beweise in
Kapitel 2 dieser Arbeit angegeben. Darauf aufbauend wird eine Theorie zur Behandlung von Zufallsfeldern
konstruiert, indem aus dem klassischen Elektromagnetismus heraus, Ausbreitungsgleichungen hergeleitet wer-
den, die im Rahmen der Wahrscheinlichkeitstheorie zur räumlichen und zeitlichen Entwicklung der statistischen
Systemparameter Anwendung finden.
Wir beschränken uns für die experimentelle Charakterisierung von stochastischen Feldern auf den Fall

stationärer ergodischer Gaußscher Zufallsprozesse. Es wird gezeigt, dass es in diesem Fall ausreichend ist,
eine Mittelwertsfunktion, bzw. einen Korrelationstensor zu spezifizieren, um charakteristische Funktionale
derartiger Zufallsprozesse eindeutig zu beschreiben. Darüber hinaus wird auch gezeigt, dass sich bestehende
Methoden, bei denen die Ausbreitung stochastischer Felder mittels räumlicher Korrelation modelliert wird als
Spezialfall der im Rahmen dieser Arbeit verallgemeinerten Theorie ergeben. Außerdem wird ein Messaufbau
sowie eineKalibrierungsmethode für dieAufnahme von Feldwerten an beliebigen Paaren von räumlich verteilten
Messpunkten gezeigt.
Methoden zur numerischen Berechnung der Ausbreitung von Korrelationsinformationen im Zeit- sowie im

Frequenzbereichwerden erarbeitet.Mittels dieserMethodenwird dieMöglichkeit derVorhersage der räumlichen
Energieverteilung eines stochastischen elektromagnetischen Feldes gezeigt. Dabei werden gemessene Feld-
Feld Korrelationen, die auf einer Ebene direkt über einer Apertur aufgenommen wurden, numerisch auf eine
andere Ebene, mit größerer Entfernung zur ursprünglichen Apertur weitergerechnet. Mittels dieses Beispiels
zur Ausbreitung stochastischer elektromagnetischer Felder, wird ein quantitativer Vergleich zweier ausgesuchter
numerischer Methoden gezogen.
Bezugnehmend auf Kommunikationssysteme werden theoretische Grundlagen sowie ein Messaufbau zur

Multiple-Input-Multiple-Output Kommunikation im Nahfeld präsentiert. Dabei kann die in dieser Arbeit entwi-
ckelte Theorie zur Modellierung des störenden Systemrauschens im Kommunikationskanal eingesetzt werden.
Abschließend wird eine Methode zur Datenreduktion im gesamten Mess- und Charakterisierungsprozess

für stochastische elektromagnetische Felder entwickelt. Ein derartiges Konzept zur Reduktion der Datenmenge
scheint essentiell zu sein, da die benötigte Messzeit, sowie die bloße Menge an Messdaten für die Beschreibung
Gaußscher ZufallsfeldermittelsAuto- undKreuzkorrelationen, imAllgemeinen sehr groß ist. Die zur Charakteri-

ix



sierung von stochastischen Feldern aufgenommene Datenmenge hängt imWesentlichen von derMessbandbreite
sowie der Anzahl der räumlichen Messpunkte ab. Da zur Berechnung aller Auto- und Kreuzkorrelationsfuntio-
nen jeweils eine Messung an jedem Paar von Punkten im Raum nötig ist, skaliert die Datenmenge annähernd
quadratisch mit der Anzahl an Messpunkten. Daher kann die Datenmenge für eine Messung, mit ausreichender
räumlicher Auflösung, schnell unhandhabbar werden.
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1 Introduction

It has been a long journey from the first spoken words over a telephone line to today’s wireless communica-
tion infrastructure. The foundations of wireless communications and electromagnetics in general have been
developed by Maxwell and are summarized in his seminal work A Treatise on Electricity and Magnetism [1]
from 1873. Contemporary wireless communication devices use electromagnetic waves in the radio frequency
regime, which carry the information from a transmitter to a receiver. The electromagnetic radio frequency wave
propagating from the transmitter to a receiver will be perturbed by noise. In digital communications, where
the task of the receiver is to decide which symbol from a set of known possible symbols has been transmitted
most probably, the ratio of the signal energy to the noise energy plays an important role. This detection should
be reliable in a sense, that the probability of a wrong decision is very low. An increase in the noise energy or
a decrease in the signal energy will increase the error rate in symbol estimation. A bound for the maximum
rate at which information can be transferred from a receiver to a transmitter in a certain bandwidth with a fixed
signal energy and under the presence of noise with a given power spectrum was derived in [2].
Already in the early days of radio communication, the impact of electromagnetic interference on the quality

of wireless RF communication links was recognized [3]. Electromagnetic interference (EMI) results in an
unintentional degradation in signal quality due to the superposition of the transmitted communication signal
and noise. The noise itself may consist of radiation due to other communication links in the range of the receiver,
or unintentional broadband noise radiated by electronic devices in close vicinity. Due to the advances in modern
electronics and the ever-growing demands in bandwidth and data rates, where the signals need to cope with
an ever-tighter power budget, design methods aware of signal integrity and electromagnetic interference effects
become more and more important [4]–[6]. In an electromagnetic interference and signal integrity aware design
process, one needs to model unintentional random radiations incident to the respective device under test, as
well as radiation that is emitted by the device’s own circuitry [7]. This even goes beyond the device level, as
simultaneous switching noise and the resulting ground level fluctuations may perturb communication between
distinct chips within a device or even communication within a single semiconductor chip [8].
Regardless of the source of the perturbing noisy electromagnetic field, one cannot predict deterministic

amplitude and phase values for the interfering signals, and hence, one needs to treat radiated electromagnetic
interference as a random process. This thesis is devoted to formulating a consistent approach in characterizing
noisy electromagnetic fields and modeling their propagation through space and time. This work should be
understood to build a bridge between the practical applications of EMI related problems to the abstract language
of probability theory, which constitutes the mathematical framework for modeling stochastic electromagnetic
fields.
The treatment of noise in active linear networks was pioneered by Hillbrand and Russer in [9], where they

developed a concept for noise analysis in linear amplifier networks. The system noise there is modeled by
equivalent noise sources, which are characterized by correlation matrices. The noise is characterized by energy
and power spectra [10]. To describe the noise properties of a circuit completely, full correlation information
of all noise sources is required. The concept of describing noise in terms of energy and power spectra has
been applied to linear microwave circuits with general topology in [11]–[14]. The first generalization of the
network concept for describing noisy electromagnetic fields has been given in [15], also from a network-oriented
perspective. The modeling of random emissions by correlation dyadics has been treated in [16]–[19].
Previous work considers electromagnetic fields which are stationary, Gaussian, and ergodic. Stationary

random processes exhibit time-independent averages while ergodic systems have the same averages over time
and over the statistical ensemble [20]. Knowledge of the correlation dyadics completely describes Gaussian
random fields, and one can formulate propagation rules for noise correlations by extending existing well known
numerical techniques [21]–[24]. The description of signals with Gaussian probability distribution by auto-
correlation functions and cross-correlation functions, completely determines the underlying random process.
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Hence, as long as the propagation of the fields is governed by linear transformations, the resulting propagated
fields will also exhibit Gaussian statistics. Thus, the theory developed in [16] provides a suitable framework
for describing Gaussian stochastic electromagnetic fields. In the first chapter, the foundations of the theory of
statistic processes are discussed. Our goal is to establish a general mathematical theory for describing stochastic
electromagnetic fields, where we want to show that the characterization and propagation of Gaussian random
fields by correlation dyadics is a special case of our general theory [25].

Within this thesis, we explicitly deal with random fields, i.e. the field is a stochastic process, and the
environment the field is propagating in is fixed. Structural variations have been modeled in [26]–[29]. The
mathematical framework, we will present in the following, is capable of also dealing with statistical variations
in the device geometry, by treating the linear propagator in terms of a random operator. More investigations
will be needed in order to combine those two approaches, where on the one hand, we have stochastic fields
but deterministic propagation and on the other hand fields are deterministic but the propagation is perturbed by
random parameter fluctuations.
Although we develop a more general concept for describing stochastic electromagnetic fields in chapters 2

and 3, we will restrict ourselves to the case of stationary ergodic Gaussian fields for implementations of
numerical propagators as well as for the experimental characterization. If the underlying random processes
were not stationary and ergodic, one could not, in general, infer statistical parameters from samples of the
stochastic electromagnetic fields, which makes a practical assessment difficult. An extension to cyclostationary
electromagnetic fields is given in [30]–[36], with preliminarywork summarized in [37]. There are obstacleswhen
considering an experimental characterization of Gaussian fields by determining auto-correlation functions and
cross-correlation functions. As one needs to measure field samples at all possible pairs of points simultaneously,
themeasurement time and also the amount of recorded data can be very large. The sheer amount of data necessary
for describing correlation functions and correlation spectra motivated researchers to find intelligent ways for
reducing complexity in the recorded data while retaining as much information as possible. Preliminary work
related to data reduction for stochastic electromagnetic fields is given in [38]–[41].
In chapter 2, we present the mathematical fundamentals this work is based upon. In chapter 3, we start

with formulating a general model for random fields, where a random field could be any random function
specified over a volume, which is varying with time. We investigate linear transformations of random fields
and discuss the implications of stationarity and cyclostationarity. Then, classical electromagnetism based on
Maxwell’s equations is introduced. We also discuss concepts for solving Maxwell’s equations and provide some
fundamental theorems, which will be important for formulating propagation rules for stochastic electromagnetic
fields. In section 3.6, the model for general random fields is refined to the case of stochastic electromagnetic
fields. Chapter 4 deals with the characterization of stochastic electromagnetic fields. Here, we discuss concepts
for measuring random electromagnetic radiation in the near-field and we present some first measurement and
simulation results. In chapter 5, we discuss methods that have been developed for propagating stochastic
electromagnetic fields from a source to an observed random field. A particularly interesting application for
stochastic electromagnetic fields is given in terms of complex communication scenarios, which are perturbed
by noise. In chapter 6, we introduce the concept of multiple-input-multiple-output communication in the near-
field, where the theory of stochastic electromagnetic fields can deal with both, the modeling of noise in the
system, as well as assessing the propagation of information in the wireless communication links themselves.
Chapter 7 discusses a method for reducing the amount of data, which is necessary in order to describe stochastic
electromagnetic fields. The method and the algorithm we present is based on principal component analysis and
is capable of reducing the amount of data considerably. We conclude the work in chapter 8 and provide an
outlook on yet unsolved problems related to the characterization and propagation of stochastic electromagnetic
fields.
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2 Mathematical Preliminaries

2.1 Introduction

In the following, we discuss the mathematical fundamentals for the theoretical framework of stochastic electro-
magnetic fields, to be developed in this work. We are going to follow a bottom-up approach, where we start
with the mathematical foundations and preliminaries, on which we later construct a theory describing stochastic
electromagnetic fields. The terms and theorems used later in this thesis, when constructing the theoretical
framework, all further results are based upon are introduced here. We will first identify and define some
important mathematical objects, discuss their properties, and prove some important theorems, that will be used
in the remainder of this thesis. The definitions, theorems, and proofs presented in this chapter are directly taken
from the literature, however, the results are presented in a notation that is consistent with the rest of the thesis,
which should aid the reader in quickly referencing later results.

2.2 Linear Algebra, Topology and Functional Analysis

A fundamental concept in mathematics is given in terms of sets, which are collections of distinct elements.
Different ideas and measures regarding sets have been developed over the years [42]. One important idea is the
notion of distance between two elements of a specific set [43]. In order to introduce this notion of distance, one
needs to extend the concept of a simple set to the concept of metric spaces. A metric on a set A is given in
terms of a distance function d on two elements of the set A, which fulfills certain properties. These properties
are summarized in the following definition [43].

Definition 2.1 (Metric Space). Let A be a set. The set A is called metric space, if there is a function
d : A×A→ R on A, such that for any x, y, z ∈ A it holds

d (x, y) ≥ 0 ,

d (x, y) = 0⇔ x = y ,

d (x, y) = d (y, x) ,

d (x, z) ≤ d (x, y) + d (y, z) .

As soon as there is a notion of distance introduced on a set, one can define topological properties, such as
open and closed subsets of a metric space A [43]. The distinction between open and closed sets will be used in
several of the following definitions and theorems, hence, we want to introduce them rigorously here.

Definition 2.2 (Open and Closed Sets). Let A be a metric space with metric d. A subset U ⊂ A is called open
set, if for all x ∈ U , there exist ε > 0, such that the set of points {y ∈ A : d (x, y) < ε} is a subset of U , i.e.

∀x ∈ U : ∃ε > 0 : {y ∈ A : d (x, y) < ε} ⊆ U .

A subset V is called closed, if the complement A \ V is open, i.e.

∀x ∈ A \ V : ∃ε > 0 : {y ∈ A : d (x, y) < ε} ⊆ A \ V .

The concept of open and closed sets is relevant for sequences in metric spaces. A sequence is an enumerated
collection of members of a certain subset U ⊆ A of a metric spaceAwith metric d. In principle, a sequence is a
mapping I ⊆ N→ U ⊆ A, such that each element of the index set n ∈ I is mapped to an element x ∈ U ⊆ A.
The mapping does not need to be bijective, i.e. several indices might be mapped to the same element. There is
a special class of sequences, called Cauchy sequences, which are defined by the following property [44].
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Definition 2.3 (Cauchy Sequence). Let A be a metric space with metric d and let xn with n ∈ N be a sequence
of elements inA. The sequence (xn)n∈N is called Cauchy sequence if for all ε > 0 there exists an indexN ∈ N,
such that ∀n,m ≥ N we have

d (xn, xm) < ε .

Note that convergence of a sequence (xn)n∈N to an element x ∈ A is definedwith respect to Cauchy sequences
according to Definition 2.3, in a sense that (xn)n∈N → x, if ∀ε > 0, ∃N ∈ N, such that

d (xn, x) < ε , ∀n ≥ N . (2.1)

With the notion of convergent sequences, we can introduce the notion of completeness of metric spaces by the
following definition [43].

Definition 2.4 (Completeness). Let A be a metric space with metric d. We call A complete, with respect to the
metric d if every Cauchy sequence (xn)n∈N, xn ∈ A converges to an element x ∈ A.

For any set, we can define mathematical operations, like e.g. addition, subtraction, multiplication, etc. For
a general set, it is not granted that e.g. the sum of two elements still fulfills the defining property to be part
of the set, i.e. it is not granted that the sum of two elements of a set belongs to the set. Hence, it is useful to
introduce an algebraic structure, such that a set is closed under certain mathematical operations. Vector spaces
are algebraic structures, which are closed under linear operations, i.e. summation and scalar multiplication [44].

Definition 2.5 (Vector Space). Let A be a set, and let x, y ∈ A. The set A is called vector space over a field K,
where K can be e.g. R or C, if

λx ∈ A ,
x+ y ∈ A ,

for all λ ∈ K and for all x, y ∈ A.

The vector addition operation and the scalar multiplication in Definition 2.5 are defined according to a number
of requirements. Those axioms for vector addition and scalar multiplication are given as follows [44]. For all
x, y, z ∈ A and for all constants λ, µ ∈ K it holds

x+ (y + z) = (x+ y) + z , (2.2)
x+ y = y + x , (2.3)
∃0 ∈ A : x+ 0 = x , (2.4)

∃ (−x) ∈ A : x+ (−x) = 0 , (2.5)
λ (µx) = (λµ)x , (2.6)

1x = x , (2.7)
λ (x+ y) = λx+ λy , (2.8)
(λ+ µ)x = λx+ µx . (2.9)

In many situations, we want to assign a size or a length property to a vector. This is especially important when
one is interested in whether one vector is smaller or larger than another. The assignment of a length property
to a vector can be done in terms of a functional, which maps each vector of a vector space to a positive real
number. In Definition 2.6, we define this mapping, called the norm of a vector [43].

Definition 2.6 (Normed Space). Let A be a vector space over a field K. We call A a normed vector space, if
there is a mapping ‖·‖ : A→ R+ with the following properties. For all x, y ∈ A and for all λ ∈ K

‖x‖ = 0⇒ x = 0 ,

‖λx‖ = |λ| ‖x‖ ,
‖x+ y‖ ≤ ‖x‖+ ‖y‖ .
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Note here, that a norm defined on a vector space A implicitly defines a metric d on that vector space, given
by d (x, y) = ‖x− y‖. It can be easily verified that ‖x− y‖ fulfills all requirements given in Definition 2.1.
In addition to the length of a vector and the distance between two vectors, the fraction of one vector that

points in the same direction as another vector has proven to be an important property. Obtaining this fraction
is done by generalizing the norm to a sesquilinear form, taking two vectors as an input. This generalization is
called an inner product, which assigns a number to any two vectors it is applied to. With an inner product, one
can define a basis for a vector space, where each element of a vector space can be given by scalar multiples
of the basis elements, respectively. The scalar weights can be determined by applying the inner product to the
vector with each basis element. Let us now define the inner product rigorously by its properties [43].

Definition 2.7 (Inner Product). Let A be a vector space over a field K. We define an inner product as a
sesquilinear form 〈·, ·〉 : A × A → K, satisfying the following set of axioms. For all x, y, z ∈ A and for all
λ ∈ K it holds

〈y, x〉 = 〈x, y〉∗ ,
〈y, λx〉 = λ 〈y, x〉 ,

〈z, x+ y〉 = 〈z, x〉+ 〈z, y〉 ,
〈x, x〉 ≥ 0 ,

〈x, x〉 = 0⇔ x = 0 .

Note that our definition here differs from the standard definition as given in [43] such that the sesquilinear
form in Definition 2.7 is linear in the second argument and antilinear in the first argument. In a natural way,
the inner product induces a norm, and hence, a metric on a vector space, by ‖x‖ =

√
〈x, x〉. It can be easily

verified that this assignment of a norm to an inner product fulfills the requirements of Definition 2.6, and thus
yields a valid norm.
Compiling what we have established so far, we can finally define a Hilbert space, which has a lot of desirable

properties and thus serves as a mathematical framework for a lot of theories in physics and engineering. A
Hilbert space can be defined as follows [43], [45]–[47].

Definition 2.8 (Hilbert Space). LetH be a vector space. The vector spaceH is called Hilbert space if there is
an inner product 〈·, ·〉 defined onH, andH is complete with respect to the norm induced by the inner product.

We will use Hilbert spaces when we discuss the numerical propagation of stochastic electromagnetic fields
with the method of moments in chapter 5. Hilbert spaces are also important for us in the following when we
will propose the use of characteristic functionals for describing random fields.

2.3 Probability Theory

In probability theory, the most basic term considered is a random experiment. In the literature, one finds
examples like the flip of a coin or the roll of a die, all representing realizations of random experiments [48],
[49]. Regardless of the actual realization of a random experiment, we are looking for a structured framework
in which we are able to describe probabilistic experiments. We shall first define a sample space in terms of a
simple set, which represents the most basic element of our probabilistic model [50], [51].

Definition 2.9 (Sample Space). A sample space Ω is the set of all possible outcomes of a random experiment.

This definition is motivated by [52], where each possible outcome of a random experiment represents an
element of a sample space Ω. In general, it is more convenient to consider events, rather than single outcomes
of random experiments. This will be illustrated by a simple example. Take for instance the tossing of a coin
twice. The possible outcomes of this basic random experiment are all possible 2-tuples containing heads (H)
and tails (T) [50], [51]. Thus the sample space Ω is given by

Ω = {(H,H) , (H,T) , (T,H) , (T,T)} . (2.10)
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The elements ω ∈ Ω are referred to as elementary events [48]. It is obvious that the elementary events are not
the only events one could be interested in assigning probabilities to. Take for example the event A, given by
obtaining the same side of a coin twice after two tosses, regardless whether it is both heads or both tails. The
event A is given by the set

A = {(H,H) , (T,T)} . (2.11)

Such an event will be called a compound event, as it consists of several elementary events. Of course, it
must be also possible to assign probabilities to the complementary event Ω \ A, which is the event of tossing
different sides of the coin for the first and the second toss, regardless whether the first toss yielded heads or
tails. Probabilities may be assigned to all possible subsets A ⊆ Ω of interest to a certain probabilistic model.
Therefore, we introduce a σ-algebra [52], [53], representing the set of all possible events, i.e. the set of subsets
of the sample space Ω.

Definition 2.10 (σ-Algebra). Let Ω be a non-empty set and let F be a set of subsets An ⊆ Ω. Then F is called
σ-algebra if it satisfies the following criteria:

1. F contains the set Ω, i.e. Ω ∈ F ,

2. F is closed under complements, i.e. let A ∈ F , then the complement Ω \A ∈ F ,

3. F is closed under countable unions, i.e. An ∈ F , ∀n ∈ N, the countable union
∞⋃
n=1

An ∈ F .

For each event A ∈ F we say that A occurred if for the result ω ∈ Ω of a random experiment it holds that
ω ∈ A [50], [51]. Although the structure of a probabilistic model is now well defined, we are still lacking an
essential ingredient for describing probabilities of elementary and compound events. This is the association of a
probability P , such that the probability that an event A ∈ F occurs is assigned a so-called probability measure.
A probability measure is a function mapping each event to the interval [0, 1], i.e. it assigns a probability to each
event in a σ-algebraF [50], [51]. A sample space, a corresponding σ-algebra and a probability measure together
form a probability space, which forms the mathematical construct for modeling random experiments [52].

Definition 2.11 (Probability Space). A probability space is given by the triple (Ω,F , P ). Here, Ω is a sample
space, F is a σ-algebra of all events of interest on Ω, i.e. all possible combinations of outcomes of interest of a
random experiment performed on the probability space, and P are probability measures assigned to each event
in F . A probability measure is a function mapping P : F → [0, 1]. Furthermore the function P satisfies the
following criteria

1. For all A ∈ F , P (A) ≥ 0,

2. P (Ω) = 1,

3. For all An ∈ F with Am ∩An = ∅, ∀m,n ∈ N it holds

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P (An) .

From the definition of the probability space, especially from the definition of the probability measures P , it
directly follows that for any event A ∈ F , the probability P (A) is bounded by

0 ≤ P (A) ≤ 1 . (2.12)

The lower bound follows directly by Definition 2.11-1. The upper bound can be easily verified by considering
the complementary event, Ω \A ∈ F , which must exist by Definition 2.10-2. By Definition 2.11-2 and 2.11-3

P (A ∪ (Ω \A)) = P (Ω) = 1 = P (A) + P (Ω \A) , (2.13)
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since A ∩ Ω \ A = ∅. This shows that P (A) ≤ 1 since P (Ω \A) ≥ 0 by Definition 2.11-1. With the same
argument, we can show that the probability P (∅) assigned to the empty set ∅ is zero, i.e.

P (∅) = 0 . (2.14)

So far, we have constructed a mathematical framework in which we can model random experiments, like for
example the tossing of a coin, as we have seen previously. Yet, the sets describing random events are rather
general, like heads and tails for the coin-tossing example. In order to get a mathematical structure to the
formalism developed so far, it would be beneficial to assign numeric values to uncertain events. Thus, let us
introduce a random variable [50], [51], which is a function mapping outcomes of random experiments, like the
tossing of a coin or the roll of a die, to numeric values.

Definition 2.12 (RandomVariable). Let (Ω,F , P ) be a probability space and let (E,Σ) be a measurable space.
Furthermore, let X be a function X : Ω → E. Then X maps each element ω ∈ Ω to an element X (ω) ∈ E,
ω 7→ X (ω) ∈ R. The function X is called random variable if the inverse image of every subset S ⊂ E that is
measurable with respect to the σ-algebra Σ, S ∈ Σ, is an element of the σ-algebra of events F , i.e.

X−1 (S) ∈ F , ∀S ∈ Σ .

In the case where the measurable space is the real line R equipped with the Borel σ-algebra of open sets, the
definition of a random variable can be simplified to a function X : Ω → R [50], [51], such that the inverse
image of each semi-closed interval (−∞, a] is an element of the σ-algebra of events F , i.e.

X−1 ((−∞, a]) ∈ F , ∀a ∈ R .

The definition of a random variable in terms of semi-closed intervals directly leads to a description of the
random variable itself. As for each x ∈ R, the inverse image X−1 ((−∞, x]) ∈ F , we can assign probabilities
to each semi-closed interval (−∞, x]. This is, the probability that a realization of the random variable X lies
in the interval (−∞, x] exist, and is given by P

(
X−1 ((−∞, x])

)
= P ({X ≤ x}). We call the collection of

probabilities P ({X ≤ x}) for all x ∈ R of a random variable X the probability distribution of X. This becomes
clear with the following definition [50], [51].

Definition 2.13 (Probability Distribution). Let (Ω,F , P ) be a probability space and let X be a random variable.
Then the function

F (x) = P ({X (ω) ≤ x})

for ω ∈ Ω and x ∈ R is called probability distribution of the random variable X.

A probability distribution is a function of a continuous variable x 7→ [0, 1], which yields the probability that
the random variable is smaller or equal to x. From this definition, we can directly derive a list of important
properties for probability distributions, which are given in the following [54].

Properties 2.1 (Probability Distribution). Let F be a probability distribution, then the following properties
hold:

1. The limit of F (x) for x→ −∞ is 0, i.e.

lim
x→−∞

F (x) = 0 .

2. The limit of F (x) for x→∞ is 1, i.e.
lim
x→∞

F (x) = 1 .

3. The probability distribution F is a non-decreasing function, i.e.

F (x1) ≤ F (x2) , ∀x1 < x2 .
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4. The probability distribution F is a right-continuous function, i.e.

lim
h→0+

F (x+ h) = F (x) .

Proof. We prove each of the properties 1-4 separately.

1. Letxnwithn ∈ N be a decreasing sequencewithxn → −∞. The sets of allX ∈ RwithX ≤ xn, denoted
by {X ≤ xn}, form a decreasing sequence of sets, i.e. {X ≤ xm} ⊂ {X ≤ xn} form > n. Asxn ↓ −∞,
the countable intersection

⋂∞
n=1 {X ≤ xn} = ∅, thus the sets themselves converge to the empty set,

{X ≤ xn} → ∅. By Definition 2.13 the probability distribution F (xn) = P ({X ≤ xn})→ P (∅) = 0,
i.e. F (xn)→ 0.

2. The proof of property 2 is similar to the proof of property 1 but with an increasing sequence xn with
n ∈ N and xn → ∞. The desired property then follows by noticing that the sets {X ≤ xn} → R with
P (R) = 1 and F (xn) = P ({X ≤ xn})→ P (R) = 1, i.e. F (xn)→ 1.

3. Let a, b ∈ R, with a < b. Furthermore, let us define the sets A = {X ≤ a} and B = {X ≤ b}. Notice
that A ⊂ B. Hence, we can construct

B = (B \A) ∪A , (B \A) ∩A = ∅ .

By Definition 2.11-3, we have
P (B) = P (B \A) + P (A) ,

with P (A) , P (B \A) ≥ 0. Thus, it follows

P (A) ≤ P (B) ,

P ({X ≤ a}) ≤ P ({X ≤ b}) ,
F (a) ≤ F (b) ,

which is the desired property.

4. The concept involved in proving property 4 is also very similar to the proof of property 1. Let hn with
n ∈ N be a decreasing sequence with hn → 0. Furthermore, ∀x ∈ R it holds that {X ≤ (x+ hm)} ⊂
{X ≤ (x+ hn)} for m > n. As hn ↓ 0, the countable intersection given by

⋂∞
n=1 {X ≤ (x+ hn)} =

{X ≤ x}, thus the sets themselves converge to the set {X ≤ (x+ hn)} → {X ≤ x}. From this it
follows that P ({X ≤ (x+ hn)}) → P ({X ≤ x}) and finally F (x+ hn) → F (x) from the right,
which completes the proof.

The concept of random variables and probability distributions can easily be generalized to multivariate
random variables and multivariate probability distributions [48]. This is done by extending the definition of a
random variable as a function, such that the inverse image of any interval (−∞, a] for all a ∈ R is measurable
with respect to the defining σ-algebra F , to a multidimensional function such that the inverse image of all sets
B ⊆ Rn with n ≥ 1 is measurable. The multivariate probability distribution of a multivariate random variable
X is then given by

F (x) = P (X ∈ B (x)) , (2.15)

where for any given x ∈ Rn the set B (x) is the Borel set B (x) = {b ∈ Rn : b ≤ x, componentwise} [48].
For a random variable X with continuous probability distribution F (x), it can be beneficial to have a look at

the derivative of the probability distribution, given by the probability density function [48].
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Definition 2.14 (Probability Density Function). Let X be a random variable on the probability space (Ω,F , P )
with distribution function F (x). As long as F (x) is continuous the probability density function f (x) exists
and is defined by

f (x) =
dF (x)

dx
=

dP ({X ≤ x})
dx

,

such that

F (x) =

x∫
−∞

f (ξ) dξ .

The conditions for the existence of a probability density are given in detail in [52]. There, a generalization to
arbitrary measures is given in terms of the Radon-Nikodym theorem. Probability densities are extremely useful
when calculating expected values of random variables, which are formally defined in the following [52].

Definition 2.15 (Expected Value). Let X be an random variable defined on a probability space (Ω,F , P ). The
expected value of the random variable X, denoted by 〈〈X〉〉 is defined by

〈〈X〉〉 =

∫
R
x dF (x) ,

where F (x) is the probability distribution of X.

If there exists a probability density function f (x) according to Definition 2.14, the expected value can be
evaluated in terms of the integral

〈〈X〉〉 =

∞∫
−∞

xf (x) dx , (2.16)

according to Theorem 16.11 of [52]. Probability distributions are given in terms of set functions, i.e. we
assign a probability to a set {X ≤ x} for each x ∈ R. Probability densities, however, describe probabilistic
properties in terms of point functions, which are easier to handle using known mathematical tools [55]. The
simplification from set functions to point functions, given in terms of probability densities comes with the price,
that a probability density f determines a probability distribution F only up to an additive constant. This means
that a probability density f corresponds to a whole set of probability distributions, given by F + c, since it is
defined as a derivative. This ambiguity can be avoided by introducing characteristic functions [55].

Definition 2.16 (Characteristic Function). Let X be a random variable on a probability space (Ω,F , P ). The
characteristic function ϕ : R→ C is given by the expected value

ϕ (u) =
〈〈

eiuX〉〉 =

∫
R

eiux dF (x) .

Note that the characteristic function is (almost) equal to the Fourier transform of the probability density
function [56]. The characteristic function has some important properties [53], [54], [57], [58], which are listed
and proved in the following.

Properties 2.2 (Characteristic Function). Let ϕ be a characteristic function, then the following properties hold:

1. The characteristic function ϕ is non-vanishing at zero, i.e.

ϕ (0) = 1 .

2. The characteristic function ϕ is bounded by 1, i.e.

|ϕ (u)| ≤ 1 .
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3. The characteristic function ϕ is uniformly continuous, i.e.

∀ε > 0, ∃δ > 0 : ∀u, v ∈ R : |u− v| < δ ⇒ |ϕ (u)− ϕ (v)| < ε .

4. The characteristic function ϕ is Hermitian (see Definition 2.34), i.e.

ϕ (−u) = ϕ∗ (u) .

5. For any N ∈ N, any zn ∈ C and any un ∈ R with n ≤ N it holds that

N∑
m,n=1

ϕ (um − un) zmz
∗
n ≥ 0 .

Proof. We prove each of the properties 1-5 separately.

1. This directly follows by inserting u = 0 into the definition of the characteristic function, given in
Definition 2.16. We have

ϕ (0) =
〈〈

ei0X〉〉 =

∫
R

ei0·x dF (x) =

∫
R

dF (x) = 1 .

2. The boundedness of the characteristic functional also directly follows fromDefinition 2.16 and the triangle
inequality,

|ϕ (u)| =
∣∣∣∣∫

R
eiux dF (x)

∣∣∣∣ ≤ ∫
R

∣∣eiux
∣∣ dF (x) =

∫
R

dF (x) = 1 ,

since
∣∣eiux

∣∣ = 1 for all u, x ∈ R.

3. For proving uniform continuity, we consider u ∈ R and v = u+ h ∈ R. Then we have

|ϕ (u+ h)− ϕ (u)| =
∣∣∣〈〈ei(u+h)X〉〉− 〈〈eiuX〉〉∣∣∣ =

∣∣∣〈〈eiuX
(

eihX − 1
)〉〉∣∣∣ .

Using Property 2.2-2, we can then argue that

|ϕ (u+ h)− ϕ (u)| =
∣∣∣〈〈eiuX

(
eihX − 1

)〉〉∣∣∣ ≤ 〈〈∣∣∣eihX − 1
∣∣∣〉〉 .

It can be easily verified that the last expression tends to 0 as h→ 0, which proves the property.

4. The Hermitian property is also easily shown as

ϕ∗ (u) =
(〈〈

eiuX〉〉)∗ =
〈〈(

eiuX)∗〉〉 =
〈〈

e−iuX〉〉 = ϕ (−u)

5. Finally, we have for the fifth property

N∑
m,n=1

ϕ (um − un) zmz
∗
n =

N∑
m,n=1

zmz
∗
n

∫
R

eiumxe−iunx dF (x)

=

∫
R

(
N∑
m=1

zmeiumx

)(
N∑
n=1

z∗ne−iunx

)
dF (x)

=

∫
R

(
N∑
m=1

zmeiumx

)(
N∑
n=1

zneiunx

)∗
dF (x)

=

∫
R

∣∣∣∣∣
N∑
m=1

zmeiumx

∣∣∣∣∣
2

dF (x) ≥ 0 .
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Since all properties 1-5 have been shown to hold individually, this concludes the proof.

It is also important to note that, conversely, by Bochner’s theorem [58], any function satisfying Properties 2.2
is a characteristic function corresponding to some probability measure µ.
Another important concept in probability theory is given in terms of independence of two events A,B ∈ F ,

where F is a σ-algebra on a probability space (Ω,F , P ). Intuitively, independence means that knowledge
about the occurrence of an event B does not imply anything about the occurrence of an event A. Hence, the
probability that both events occur simultaneously, i.e. P (A ∩B), relative to the probability P (B) is equal to
the probability P (A). Thus, the following definition [54] of independence makes sense.

Definition 2.17 (Independence). Let (Ω,F , P ) be a probability space. Two events A,B ∈ F are called
independent if and only if their joint probability, i.e. the probability of the event A ∩ B ∈ F is equal to the
product of the probabilities of A and B, i.e.

P (A ∩B) = P (A)P (B) .

For random variables X and Y, described by the probability distributions FX (x) and FY (y), the notion
of independence has direct consequences for their joint probability distribution FXY (x, y). According to
Definition 2.13, the probability distributions FX (x) and FY (y) are given by the probabilities of the events
{X ≤ x} and {Y ≤ y}. If for every x, y ∈ R the two events {X ≤ x} and {Y ≤ y} are independent, i.e.

P ({X ≤ x} ∩ {Y ≤ y}) = P ({X ≤ x})P ({Y ≤ y}) , (2.17)

the two random variables X and Y are called independent. Their joint probability distribution FXY (x, y) is given
by

FXY (x, y) = FX (x)FY (y) . (2.18)

In probability theory, one is typically concerned with identifying simple relationships between realizations
of random variables, such that one is able to construct probabilistic models for the probability distributions
governing random processes [59]. There is a huge set of different classes of probability distributions, charac-
terizing a random variable, however, there is one that stands out. This outstanding class of random variables is
given in terms of Gaussian probability distributions, as defined in the following [54].

Definition 2.18 (Gaussian RandomVariable). Let X be a random variable over the probability space (Ω,F , P ).
We call X a Gaussian random variable, if the characteristic function ϕ associated with the probability measure
P on F has the form

ϕ (u) = eiuµ− 1
2
u2σ2

.

For a Gaussian random variable X, there exists a probability density function, given by

f (x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

By complex integration [60], it is easy to show that the two parameters µ and σ2 are given by

µ = 〈〈X〉〉 , (2.19)
σ2 =

〈〈
X2
〉〉
− 〈〈X〉〉2 . (2.20)

As µ and σ2 are the only parameters in the characteristic function and the probability density function of a
Gaussian random variable, specifying those two parameters is sufficient for fully characterizing the random
variable. Gaussian random variables are very important, as the Gaussian distribution is the limiting distribution
of a combination of many independent and identically distributed random variables. Thus, we will give special
emphasis on Gaussian statistics in the remainder of this thesis. Before we can formalize why Gaussian statistics
are given as the limiting case for an ensemble of independent and identically distributed random variables, let
us first define a notion of convergence in a probability theoretic sense [59].
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Definition 2.19 (Convergence). Let X (ω) and Xn (ω) with n ∈ N be random variables on a probability space
(Ω,F , P ).

1. The sequence Xn (ω) converges to X (ω) with probability 1, i.e. lim
n→∞

Xn (ω) = X (ω), if

lim
n→∞

P

({
sup
m≥n
|Xm (ω)− Xn (ω)| ≥ ε

})
= 0 , ∀ε > 0 .

2. The sequence Xn (ω) converges to X (ω) stochastically, i.e. p lim
n→∞

Xn (ω) = X (ω), if

lim
n→∞

P ({|Xn (ω)− X (ω)| ≥ ε}) = 0 , ∀ε > 0 .

3. The sequence Xn (ω) converges to X (ω) in distribution, i.e. it converges weakly, if

lim
n→∞

P ({Xn ≤ x}) = P ({X ≤ x}) , ∀x ∈ R

Equipped with the notion of convergence in distribution, we can now formally prove the central limit
theorem [53], which states that the sum of a large collection of independent and identically distributed random
variables will behave according to Gaussian statistics.

Theorem 2.1 (Central Limit Theorem). Let Xn with n ∈ N be independent and identically distributed random
variables over the same probability space (Ω,F , P ) with finite mean and finite variance. Then the probability
distribution of the sum ofM random variables Xn converges to a Gaussian random variable in distribution, as
M →∞.

Proof. Let SM be the sum ofM independent and identically distributed random variables, i.e.

SM =
M∑
m=1

Xm = X1 +X2 + . . .+ XM .

The mean and variance of the random variable, generated by the sum over Xm are given by

〈〈SM 〉〉 =

〈〈
M∑
m=1

Xm

〉〉
=

M∑
m=1

〈〈Xm〉〉 = M〈〈Xm〉〉 ,

〈〈S2
M 〉〉 − 〈〈SM 〉〉

2 =

M∑
m=1

M∑
n=1

〈〈Xm Xn〉〉 −
M∑
m=1

M∑
n=1

〈〈Xm〉〉〈〈Xn〉〉 = M
(
〈〈X2

m〉〉 − 〈〈Xm〉〉
2
)
.

The last step holds because the random variables are independent and identically distributed. Let us now define
an auxiliary random variable ZM with zero mean and unit variance by standardization, given by

ZM =
SM −M〈〈Xm〉〉√

M
(
〈〈X2

m〉〉 − 〈〈Xm〉〉
2
) .

We can express ZM in terms of the original independent random variables Xm by

ZM =

M∑
m=1

Xm − 〈〈Xm〉〉√
M
(
〈〈X2

m〉〉 − 〈〈Xm〉〉
2
) =

1√
M

M∑
m=1

Ym ,

where we introduced another set of auxiliary random variables Ym with zero mean and unit variance, given by

Ym =
Xm − 〈〈Xm〉〉√(
〈〈X2

m〉〉 − 〈〈Xm〉〉
2
) .
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Now let ϕZM be the characteristic function of the sum ZM , which can, by Definition 2.16, be written as

ϕZM (u) =
〈〈

eiuZM
〉〉

=

M∏
m=1

〈〈
e

iuYm√
M

〉〉
=
〈〈

e
iuYm√

M

〉〉M
.

Let us now perform a Taylor expansion of the exponential term

〈〈
e

iuYm√
M

〉〉M
=

(
1 +

iu〈〈Ym〉〉√
M

+

〈〈
(iuYm)2〉〉

2!M
+

〈〈
(iu〈〈Ym〉〉)3〉〉

3!M
3
2

+ . . .

)M
=

(
1− u2

2M
+O

(
u2

M

))M
,

whereO
(
u2

M

)
implies that the remaining error terms tend to zero faster than by quadratic order for u2M → 0 [61].

Furthermore, we have used that theYm have all zeromean and unit variance. Hence, we have for the characteristic
functionϕZM in the limiting case for a large numberM →∞ of independent and identically distributed random
variables YM

lim
M→∞

ϕZM (u) = lim
M→∞

(
1− u2

2M
+O

(
u2

M

))M
= e−

1
2
u2 .

By Definition 2.18, the last term is equal to the characteristic function of a Gaussian random variable, which by
Bochner’s theorem [58] and Levy’s continuity theorem [61] implies convergence in distribution to a Gaussian
random variable.

This theorem emphasizes the importance of Gaussian random variables for modeling a whole variety of
practically relevant physical processes. In nature, random processes often arise due to a lack of knowledge
of the state of large ensembles of individual parameters. Hence, Gaussian statistics seems to be a suitable
first-order assumption for modeling such processes by the central limit theorem.
A natural extension to the concept of a random variable is given in terms of a random process, which in turn

is given by performing a random experiment repeatedly. Let us assume a random process with index set T ,
which is given in terms of a random variable Xt0 for each t0 ∈ T . For different t0 ∈ T , the random variable Xt0
might behave differently, i.e. it may be described by a different probability distribution. Therefore, it is useful
to extend the definition of a random variable, which takes the outcome ω ∈ Ω of a probabilistic experiment and
maps it to a real number. This extension of a random variable is done by introducing a second variable, such that
a random process is mapping the outcome of a random experiment to a real number, depending on an element
of the index set T [25]. The index set T can be chosen to be an arbitrary set. For a general N -dimensional
index set T , we introduce a random field in the following definition [25].

Definition 2.20 (Random Field). Let (Ω,F , P ) be a probability space and let Xt be a family of random variables
indexed by some t ∈ T , where T is any arbitrary index set. For every t0 ∈ T and ω ∈ Ω, Xt0 is a random
variable

Xt0 : Ω→ Rn ,
ω 7→ Xt0 (ω) .

Such a family Xt = X (ω, t) of random variables is called random field.

We distinguish between random fields and random processes, where a random process is a random field with
index set T ⊆ R [25]. A random field may be indexed by any multidimensional index set T ⊆ Rn with n ∈ N.
Depending on the cardinality of the index set T ⊆ R, one further distinguishes between random sequences
and random processes [54]. For a finite or countable infinite index set T we call a process Xt with t ∈ T a
discrete parameter process or random sequence. If the index set T is an interval, i.e. an index set with more than
countable infinitely many elements, then we call Xt = X (ω, t) with t ∈ T a continuous parameter process [62].

The probability distribution for each random variable Xt0 with t0 ∈ T is given by

Ft0 (x) = P ({Xt0 (ω) ≤ x}) . (2.21)
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Thus, we can construct the finite dimensional joint probability distributions [59] for the process Xt by

Ft1,t2,...,tn (x1, x2, . . . , xn) = P ({Xt1 (ω) ≤ x1,Xt2 (ω) ≤ x2, . . . ,Xtn (ω) ≤ xn}) . (2.22)

Assuming continuity of Ft1,t2,...,tn (x1, x2, . . . , xn) for all n, we can obtain the finite dimensional joint proba-
bility density functions [25]

ft1,t2,...,tn (x1, x2, . . . , xn) =
∂nFt1,t2,...,tn (x1, x2, . . . , xn)

∂x1∂x2 . . . ∂xn
, (2.23)

similar to Definition 2.14.
There are two different ways of interpreting a random field. The first way was illustrated above, where a

stochastic process or a random field is seen as a collection of random variables, where for each element of the
index set T , the random variable is described by a certain probability distribution. The probability distribution
for each individual random variable can be extracted from the family of finite dimensional joint probability
distributions by marginalization [48]. However, the finite dimensional joint probability distributions do not
only contain information about the marginal probability distribution of each random variable but also how those
random variables are interrelated. Obviously, the finite dimensional joint probability distributions, describing
the random field, need to be mutually consistent [59]. The conditions for consistency are summarized in
Definition 2.21.

Definition 2.21 (Compatibility Conditions). Let Ft1,t2,...,tn (x1, x2, . . . , xn) for n ≥ 1 be a family of finite
dimensional joint probability distributions. The finite dimensional joint probability distributions are said to be
consistent if

Ft1,t2,...,tm (x1, x2, . . . , xm) = lim
xj→∞,j≥m+1

Ft1,t2,...,tn (x1, x2, . . . , xm, xm+1, . . . , xn) ,

and for eachm < n,

Ft1,t2,...,tn (x1, x2, . . . , xn) = Ftπ(1),tπ(2),...,tπ(n)
(
xπ(1), xπ(2), . . . , xπ(n)

)
,

where π (·) is an arbitrary permutation, i.e. a bijective mapping of indices.

It has been shown in [50], [51], that these conditions are sufficient in order to derive a measure in function
space from a prescribed family of finite dimensional joint probability distributions. This fact is also given in
terms of Kolmogorov’s theorem in Theorem 2.2.
The second way of describing random fields is probably less intuitive. Previously, we introduced a random

field as a two-parameter mapping of a random outcome ω ∈ Ω and an element t0 ∈ T of an index set. The first
approach corresponds to fixing the index t0, and looking at each index position individually, where we have a
random variable, mapping ω 7→ Xt0 (ω). In the second approach, also called sample-function or trajectory [63]
of a random process, we fix a random outcome ω0 ∈ Ω and observe a function mapping t 7→ X (ω0, t). In
this view, for each random outcome ω0 ∈ Ω, there is a realization of a sample-function X (ω0, t), where we
can assign probabilities to each measurable set of sample-functions. A helpful construction of such a set of
measurable functions is given in terms of cylindrical sets [50], [51].

Definition 2.22 (Cylindrical Set). Let Xt = X (ω, t), ω ∈ Ω be a random field over the probability space
(Ω,F , P ) mapping t ∈ T into some measurable space (Y,B). The set of functions X (ω, t) for which the point
[X (ω, t1) ,X (ω, t2) , . . . ,X (ω, tn)] ∈ Y n belongs to Bn ∈ Bn, i.e. the set

Ct1... tn (Bn) = {X (ω, ·) : [X (ω, t1) ,X (ω, t2) , . . . ,X (ω, tn)] ∈ Bn}

is called cylindrical set in Ω with basis Bn over the coordinates t1, t2, . . . , tn.

The concept of cylindrical sets was introduced in order to construct a σ-algebra, generated by cylindrical sets
in function space. Such a σ-algebra, generated by cylindrical sets has interesting properties, which are shown
in [64]. With this formal definition of a cylindrical set, we can give the statement of Kolmogorov’s construction
theorem, which is among the most fundamental theorems when considering probabilities in function spaces, as
it ensures the existence of a probability measure, given a consistent family of finite dimensional joint probability
distributions [65].
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Theorem 2.2 (Kolmogorov). Let X be the space of all fields Xt mapping an index set T to some measurable
space (Y,B), and let H be the minimum σ-algebra containing all the cylindrical sets of X . Any system of
finite dimensional joint probability distributions satisfying the compatibility conditions from Definition 2.21
determines a probability measure µ onH.

Proof. The proof of this fundamental theorem is a bit lengthy and will not be presented here. It can be found
in the original work by Kolmogorov [50], [51] and in a different form in [54].

Already in the original work from 1933, Kolmogorov noticed that difficulties arise if the index set has an
uncountable number of entries [50], [51]. In [58], [66], it was pointed out that special care must be taken when
discussing probabilities of random processes for a more than countable index set. In 1947, Doob proposed to
impose a restriction on the class of random fields, depending on a continuous index set, called separability [59],
[65]. This restriction is given in terms of separable random fields, which will be defined in the following.

Definition 2.23 (Separability). Let (Ω,F , P ) be a probability space. A random field X (ω, t) on (Ω,F , P ) with
index set T is called separable with respect to a class of sets A if there exists a countable subset T1 ⊆ T and
there is a set Λ ⊂ F with P (Λ) = 0, such that for any A ∈ A and for any open set I ⊂ T one has

{X (ω, t) ∈ A,∀t ∈ I ∩ T1} , {X (ω, t) ∈ A,∀t ∈ I ∩ T} ,

differ at most on a subset of Λ. This is,⋂
t∈I∩T1

{X (ω, t) ∈ A} \
⋂

t∈I∩T
{X (ω, t) ∈ A} ⊆ Λ .

The smallest classA for which the concept of separability of a random process is useful is the class of all finite
or infinite closed intervals [59]. For random fields, the class of closed sets is an important special case. In [59],
Doob has not only shown that the problem of finding probabilities for sample functions to be e.g. continuous,
or integrable can not be given consistently can be resolved for the class of separable processes, but also that
separability does not pose a restriction on a random process at all. This is known in terms of Doob’s theorem,
which will be stated in the following [59].

Theorem 2.3 (Doob). LetXt = X (ω, t), ω ∈ Ω, t ∈ T be a random field over the probability space (Ω,F , P ),
with linear parameter set T . Then there is a random field X̃t = X̃ (ω, t), defined on the same probability space,
which is separable relative to the class of closed sets, with the property

P
(
X (ω, t) = X̃ (ω, t)

)
= 1 , t ∈ T .

Proof. We refrain from giving a proof for Doob’s theorem here since we have not yet developed the complete
setting necessary for proving the theorem, which is beyond the scope of this thesis. Nevertheless, the complete
proof can be found in the original work by Doob from 1953 [59].

With the theorems by Kolmogorov (Theorem 2.2) and Doob (Theorem 2.3), the existence of a consistent
measure µ on function space, given by the family of finite dimensional joint probability distributions is ensured.
It has been shown in [54], that for an existing measure µ on a measurable function space X , there exists a
characteristic functional, which is an extension of the definition of a characteristic function for random variables
to the case of random fields in function space. The characteristic functional is a complete description of the
underlying random field and will be formally defined in the following [54].

Definition 2.24 (Characteristic Functional). Let Xt = X (ω, t) be a random field over (Ω,F , P ) in the spaceX
of all fields mapping an index set T to a measurable space (Y,B). We define the characteristic functional of the
random field Xt = X (ω, t), χ : X → C for all fields x ∈ X by

χ (l) =

∫
X

eil(x) µ (dx) ,

where µ is the probability measure over the minimal σ-algebra H with respect to which all the functions in X
are measurable.
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Similar as for characteristic functions of random variables, the characteristic functional must be continuous
in the sense that for a sequence of linear functionals ln ∈ L, where L is the space of linear functionals on X ,
with ln (x) → l (x) for all x ∈ X , χ (ln) → χ (l) as ln → l. For a characteristic functional it must also hold
that for arbitrary N ∈ N, any linear functional ln ∈ L and any complex numbers zn ∈ C,

N∑
m,n=1

χ (lm − ln) zmz
∗
n ≥ 0 . (2.24)

This is true since by Definition 2.24 we have

N∑
m,n=1

χ (lm − ln) zmz
∗
n =

∫
X

∣∣∣∣∣
N∑
m=1

zmeilm(x)

∣∣∣∣∣
2

µ (dx) . (2.25)

It was shown in [54] that the probability measure µ is completely described by the characteristic functional χ (l).
Thus, it is equivalent to describe a separable random field by a family of finite dimensional joint probability
distributions or by a characteristic functional.
Now let X , i.e. the space of fields mapping the index set T to the measurable space Y be a Hilbert space.

The following theorem [67] will be useful.

Theorem 2.4 (Riesz Representation Theorem). LetX be a Hilbert space and L = X ′ the dual space. Then for
each continuous linear functional l ∈ L, there exists a unique z ∈ X such that

l (x) = 〈z, x〉 , ∀x ∈ X ,

where 〈·, ·〉 denotes an inner product on X .

We are going to prove this theorem in several steps. Let us first prove the following lemma [67].

Lemma 2.1. Let X be a Hilbert space and let T : X → C be a linear map (linear functional). Then T is
continuous if and only if kerT is closed.

Proof.
(⇒) Suppose T is continuous. Then there exists a sequence xn → xwith xn, x ∈ X , such that T (xn)→ T (x).
Now let xn ∈ kerT and xn → x. Then T (xn) = 0, and by continuity

T (x) = lim
n→∞

T (xn) = 0 .

Hence x ∈ kerT and thus kerT is closed.
(⇐) Now suppose T is not continuous. Then there exists a bounded sequence xn ∈ X with ‖xn‖ ≤ 1 such that
|T (xn)| → ∞ as n→∞. Let a /∈ kerT and let us define a sequence x′n by

x′n = a− T (a)

T (xn)
xn .

It is clear that T (x′n) = 0 and thus x′n ∈ kerT . Furthermore x′n → a and a /∈ kerT . Thus kerT is not
closed.

For proving thr Riesz representation theorem, we will also make use of another lemma, which is directly
contained in the proof of [67].

Lemma 2.2. LetX be a Hilbert space and let A ⊆ X be a closed subspace. Then the orthogonal complement
of A, denoted by A⊥, is closed and

X = A⊕A⊥ .
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Proof. Let xn → x0 with xn ∈ A⊥ be a sequence converging to an element x0 ∈ X , then

〈x0, a〉 =
〈

lim
n→∞

xn, a
〉

= lim
n→∞

〈xn, a〉 = 0 , ∀a ∈ A ,

which implies that x0 ∈ A⊥ and thus A⊥ is a closed subspace. Furthermore, ∀x ∈ X , there exists a best
approximation of x in A, denoted by a0 ∈ A, that satisfies (x− a0) ∈ A⊥. Thus, we can write x as

x = a0 + (x− a0) ,

which implies
X = A+A⊥ .

Additionally, if y ∈ A ∩A⊥, then 〈y, y〉 = 0, which means that y = 0 and thus,

A ∩A⊥ = {0} .

Equipped with Lemma 2.1 and Lemma 2.2, we are now ready for proving Riesz Representation Theo-
rem 2.4 [67].

Proof of Riesz Representation Theorem 2.4.
Existence - If l = 0 we can take z = 0 and thereby have l (x) = 0 = 〈0, x〉, ∀x ∈ X . Suppose now l 6= 0,
i.e. ker l 6= X . Recall that, since l is continuous ker l is a closed subspace of X by Lemma 2.1. It then follows
from Lemma 2.2 that

X = ker l ⊕ (ker l)⊥ ,

and as ker l 6= X , we can find a y ∈ (ker l)⊥ such that ‖y‖ = 1. From the linearity of l we have

(l (x) y − l (y)x) ∈ ker l , ∀x ∈ X .

Since y ∈ (ker l)⊥,

0 = 〈y, l (x) y − l (y)x〉
= l (x) 〈y, y〉 − l (y) 〈y, x〉
= l (x) ‖y‖2 − 〈l∗ (y) y, x〉
= l (x)− 〈l∗ (y) y, x〉 ,

which implies
l (x) = 〈l∗ (y) y, x〉 .

The theorem follows by taking z = l∗ (y) y.
Uniqueness - Suppose there were z1, z2 ∈ X such that for all x ∈ X ,

l (x) = 〈z1, x〉 = 〈z2, x〉 .

Then 〈z1 − z2, x〉 = 0 for every x ∈ X . Taking x = z1 − z2 we obtain

‖z1 − z2‖2 = 0 ,

which implies z1 = z2.
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As a result of this theorem, the characteristic functional of a random process Xt = X (ω, t) on a Hilbert space
X of functions can be written in terms of an inner product by

χ (z) =

∫
X

ei〈z,x〉 µ (dx) . (2.26)

This is a very important result, not only for characteristic functionals. When describing stochastic electromag-
netic fields in the remainder of this thesis, we will exclusively assume the Hilbert space property (Definition 2.8)
and hence describe random fields by characteristic functionals, given by inner products of field variables.
Similar to random variables, we can characterize a random process according to the probability distributions

involved. The most important family of random fields is again governed by Gaussian statistics, with a similar
argument as before, when considering random variables. A Gaussian random field is uniquely described by the
form of the characteristic functional, which will be defined in the following [54].

Definition 2.25 (Gaussian Random Field). Let Xt = X (ω, t) be a separable random field with index set T
over the probability space (Ω,F , P ) on the Hilbert space of fields X , taking on values in a measurable space
(Y,B). LetH denote the minimum σ-algebra to which all fields on the spaceX are measurable, and let µ define
the probability measure on H. The random field Xt = X (ω, t) is called a Gaussian field if the characteristic
functional associated with the measure µ has the form

χ (z) = exp

(
i 〈z,mX〉 −

1

2

〈
z, Γ̂Xz

〉)
,

for all z ∈ X . Here,mX is called the mean value function and Γ̂X is referred to as correlation kernel operator.

For any finite set of elements {t1, t2 . . . , tn}, the finite dimensional joint probability density function
ft1,t2,...,tn (x1, x2, . . . , xn) exists and has the form given in Definition 2.18, if Γ̂X is non-singular. Some
authors even define Gaussian random fields by prescribing a multinormal Gaussian probability density, as it is
the case in [25].
The first statistical moment of a random field is given in terms of a mean value function, that is described in

terms of a so-called ensemble average. Ensemble averages shall be defined in the following [48].

Definition 2.26 (Ensemble Average). Let X (ω, t) be a random field over a probability space (Ω,F , P ) with
ω ∈ Ω and t ∈ T with some index set T . Let us now keep the index parameter t = tn fixed. The integral

〈〈X (ω, tn)〉〉 =

∞∫
−∞

xn dFtn (xn)

over the random variable Xtn with fixed tn ∈ T is called ensemble average of the random variable Xt at index
tn.

The second order moments of a random process, i.e. correlation functions or kernel operators, in turn, describe
the interrelation of the realization of a random field at one index tm with the realization at another index tn.
Correlation functions are also used as a measure of energy in random fields, which makes them an important
concept when considering electromagnetic compatibility [16]. Let us define them according to sets of second
order joint probability distributions [54].

Definition 2.27 (Correlation Function). Let X (ω, t) be a random field over a probability space (Ω,F , P ) with
ω ∈ Ω and t ∈ T with some index set T . For any arbitrary pair of indices tm, tn ∈ T the integral

〈〈X (ω, tm)X † (ω, tn)〉〉 =

∞∫
−∞

∞∫
−∞

xmx
†
n dFtm,tn (xm, xn)

is called correlation function of the random field at indices tm and tn.
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In general, the n-th order statistical moment of a random field can also be directly obtained from the
characteristic functional, fully describing the random field, by the n-th order functional derivative of the
characteristic functional, invoking an n-th order tensor product [68].
An important special case of a random field or a random process is if the statistics do not change over at

least one dimension of the parameter space T , where typically time is considered. This means that for such a
process, which is called a stationary process, the statistical properties remain constant over time. Stationarity
also imposes shift-invariance for the moments of the random field, along the dimension which is considered
stationary. Let us now formally define stationary according to [69].

Definition 2.28 (Stationarity). A stochastic process Xt = X (ω, t) with index set T is called stationary if for
any arbitrary collection of indices t1, t2, . . . , tn with n ≥ 1, the associated finite dimensional joint probability
distribution

Ft1,t2,...,tn (x1, x2, . . . , xn) = Ft1+τ,t2+τ,...,tn+τ (x1, x2, . . . , xn) ,

for all τ such that tk + τ ∈ T for any tk ∈ T .

When considering stationary random fields, one is interested in the shift-invariance property for the first and
second order statistical moments. Thus, a weaker definition of stationarity in terms of the following definition
was proposed [69], [70].

Definition 2.29 (Wide-Sense Stationarity). A second order stochastic process Xt = X (ω, t) ∈ L2 with index
set T is called stationary in the wide sense if for the first and second moment

〈〈X (ω, t)〉〉 = 〈〈X (ω, t+ τ)〉〉 = µ = const. ,

and
〈〈X (ω, s)X † (ω, t)〉〉 = 〈〈X (ω, s+ τ)X (ω, t+ τ)〉〉 ,

for any s, t, τ ∈ T .

If a random process is subjected to a repetitive operation, the resulting random process will usually exhibit
statistical properties that vary periodically in time [70]. Such random processes are often encountered when
considering digital signals which always operate using a certain clock. These periodically correlated or
cyclostationary random processes will hence be useful for describing stochastic electromagnetic fields, emitted
by digital signal sources [36]. However, let us first formally introduce cyclostationarity as a property of a
random process [69].

Definition 2.30 (Cyclostationarity). A stochastic process Xt = X (ω, t)with index set T is called cyclostationary
with periodicity T0 if for any arbitrary collection of indices t1, t2, . . . , tn with n ≥ 1, the associated finite
dimensional joint probability distribution

Ft1,t2,...,tn (x1, x2, . . . , xn) = Ft1+T0,t2+T0,...,tn+T0 (x1, x2, . . . , xn) ,

such that every tk + T0 ∈ T for any tk ∈ T .

Similar as for stationary random fields, one is interested in the periodic shift-invariance, introduced by
cyclostationarity. Thus, we will introduce a weaker definition of cyclostationarity for second order processes in
terms of wide-sense cyclostationarity [69].

Definition 2.31 (Wide-Sense Cyclostationarity). A second order stochastic process Xt = X (ω, t) ∈ L2 with
index set T is called cyclostationary in the wide sense with periodicity T0 if for the first- and second moment

〈〈X (ω, t)〉〉 = 〈〈X (ω, t+ T0)〉〉 ,

and
〈〈X (ω, s)X (ω, t)〉〉 = 〈〈X (ω, s+ T )X (ω, t+ T )〉〉 ,

for any s, t ∈ T .
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In general, it is easy to show that strict stationarity implies wide-sense stationarity. The same holds for cyclo-
stationarity, as strict cyclostationarity implies wide-sense cyclostaitonarity. The converse is in general not true,
i.e. wide-sense stationarity or cyclostationarity does not necessarily imply strict stationarity or cyclostationarity,
respectively [69]. However, note that for Gaussian random fields, the converse holds, as Gaussian random fields
are fully described by specifying the first and second order moments.
For a strictly stationary random field Xt = X (ω, t) over a probability space (Ω,F , P ), according to Defini-

tion 2.28, the family of finite dimensional joint probability distributions does not depend on the absolute indices
t1 and t2, but rather on the index difference τ = t1 − t2. One way of constructing a strictly stationary random
field is by considering a transformation S : Ω → Ω [54]. Let Xt0 = X (ω, t0) be a random variable. Then the
transformation S transforms the random variable Xt0 into another random variable S Xt0 with

SX (ω, t0) = X
(
S−1ω, t0

)
= X (ω, t1) . (2.27)

Let S now be a measure preserving map, i.e. P
(
S−1A

)
= P (A), ∀A ∈ F . From this property it follows that

P
(
S−1ω

)
= P (ω), such that the random variables Xt0 and S Xt0 have the same probability distributions. The

same holds for arbitrary powers Sn Xt0 . Thus, with the group St of measure preserving transformations S, one
can construct a strictly stationary random field by [54]

Xt = X (ω, t) = StX (ω, t0) = X (S−tω, t0) = X (ω, t0 + t) . (2.28)

In terms of the group St of measure preserving transformations S, we can define the concept of ergodicity for
stationary random fields [54].

Definition 2.32 (Ergodicity). Let Xt = X (ω, t) be a random field over a probability space (Ω,F , P ) with
ω ∈ Ω and t ∈ T with some index set T . Furthermore, let S : Ω → Ω be a measure preserving map, i.e.
P
(
S−1 (A)

)
= P (A), ∀A ∈ F . The random field Xt is called ergodic with respect to the transformation S,

if for every random variable Xt0 : Ω → R with S Xt0 = X
(
S−1ω, t0

)
= Xt0 , Xt0 converges to a constant with

probability 1.

By Birkhoff’s ergodicity theorem [59], [71], if Xn is ergodic with respect to S, we have for the ensemble
average

〈〈X (ω, tn)〉〉 =

∞∫
−∞

xn dFtn (xn) = lim
N→∞

1

N

N∑
k=1

Sk−1x (t0) , (2.29)

where x (tk) is a realization of the field Xt at t = tk. For continuous parameter random fields with a group St
of measure preserving transformations S we have

〈〈X (ω, tn)〉〉 =

∞∫
−∞

xn dFtn (xn) = lim
T→∞

1

2T

T∫
−T

Stx (t0) dt , (2.30)

thus, ensemble averages can be replaced with time-averages for ergodic random fields. This makes it possible
to infer statistical parameters of a random field from field samples. For characterizing random fields by field
measurements, as we will discuss in chapter 4, ergodicity is an essential property.

2.4 Vector Calculus

Maxwell’s equations have been formulated in a whole variety of different notations. Among those, exterior
differential forms [72], quaternions and Clifford algebras [73] are probably the most advanced concepts. In
a recent work, electromagnetics has also been formulated using Dirac matrices by exploiting an isomorphism
between Clifford algebra and Pauli algebra in three-dimensional space [74]. In relativistic electrodynamics, the
typical mathematical framework is given in terms of tensor analysis in four-dimensional space-time [75]. For
stochastic electromagnetic fields in particular, we have derived a representation in the framework of differential
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forms [76]. Besides all these advanced formulations of electrodynamics, the by far most common formalism
for writing down Maxwell’s equations in physics and engineering is given in terms of vector calculus, which
was developed by Gibbs [77] and Heaviside [78] in the late 19th century. In this section, we will prove some
important results from vector calculus, which are necessary in order to formulate electromagnetism within an
axiomatic setting.

Let us start with the definition of a radially convex set, which is an important construction for proving
Poincaré’s lemma later on. A radially convex set, or star domain, can be thought of as a set, where there exists
a point x0 from which all other points in the set are directly visible, i.e. there is a straight line connecting any
point of the set with x0 where all points on the straight line belong to the set itself. Formally, this is given by
the following definition [79].

Definition 2.33 (Radially Convex Set). A set U ⊆ Rn is called radially convex set, if ∃x0 ∈ U , such that
∀x ∈ U ,

{x0 + t (x− x0) : t ∈ [0, 1]} ⊆ U .

The set of points x0 ∈ U is referred to as star center of the radially convex set U .

As mentioned before, Definition 2.33 can be seen as a starting point for proving the lemma of Poincaré, which
will turn out to be fundamental in an axiomatic approach to electromagnetism [75], which we will develop in
section 3.5 in the following chapter. The general version of Poincaré’s lemma applies to exterior differential
forms and states that on a radially convex set, each closed differential form is exact [80]. We do not give any
detailed definitions on closed and exact differential forms here, as differential forms are beyond the scope of
this thesis. Nevertheless, the interested reader is referred to [80] for further details. Lindell annotated the
correspondence of the implications of Poincaré’s lemma in differential form to the vector calculus analogies
in [81]. In the following, we will state the lemma and prove it using vector calculus notation [79].

Lemma 2.3 (Poincaré’s Lemma). Let U ⊆ R3 be a radially convex set and let v : U → R3 be a smooth vector
field and f : U → R be a smooth scalar field defined on U . Then the following relations hold.

1. If ∇×v = 0 then there exists a scalar field g, such that

v (r) = ∇ g (r) .

2. If∇·v = 0 then there exists a vector field u , such that

v (r) = ∇×u (r) .

3. For any scalar field f on U there exists a vector field u such that

f (r) = ∇·u (r) .

Proof. We proof each statement separately.

1. Let us parametrize a line segment from a star center point r0 ∈ U to any point r ∈ U of the radially
convex set U and consider the scalar field in terms of the integral

g (r) =

1∫
0

v (r0 + t (r − r0)) · (r − r0) dt .
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The x-component of the gradient of above integral is given by

∂

∂x
g (r) =

∂

∂x

1∫
0

(vx (r0 + t (r − r0)) (x− x0) + vy (r0 + t (r − r0)) (y − y0)

+vz (r0 + t (r − r0)) (z − z0)) dt

=

1∫
0

(
∂vx (r0 + t (r − r0))

∂x
t (x− x0) + vx (r0 + t (r − r0))

+
∂vy (r0 + t (r − r0))

∂x
t (y − y0) +

∂vz (r0 + t (r − r0))

∂x
t (z − z0)

)
dt ,

which is by the fundamental theorem of calculus given by

∂

∂x
g (r) = vx (r) +

1∫
0

[(
∂vy (r0 + t (r − r0))

∂x
− ∂vx (r0 + t (r − r0))

∂y

)
t (y − y0)

+

(
∂vz (r0 + t (r − r0))

∂x
− ∂vx (r0 + t (r − r0))

∂z

)
t (z − z0)

]
dt ,

The two other components follow equally. Thus, we have

∇ g (r) = v (r) +

1∫
0

t (r − r0)×∇×v (r0 + t (r − r0)) dt .

This proves the first relation since

v (r) = ∇ g (r) +

1∫
0

∇×v (r0 + t (r − r0))× t (r − r0) dt ,

and as∇×v (r) = 0 the statement follows.

2. Let us again parametrize a line segment from a star center point r0 ∈ U to any point r ∈ U of the radially
convex set U and consider now the vector field in terms of the integral

u (x) = −
1∫

0

t (r0 + (r − r0))× v (r0 + t (r − r0)) dt .

The x-component of the curl of the vector field u is given by

−
1∫

0

[
∂

∂y
(t (x− x0) vy (r0 + t (r − r0))− t (y − y0) vx (r0 + t (r − r0)))

− ∂

∂z
(t (z − z0) vx (r0 + t (r − r0))− t (x− x0) vz (r0 + t (r − r0)))

]
dt

= −
1∫

0

[
t2
(
∂vy (r0 + t (r − r0))

∂y
+
∂vz (r0 + t (r − r0))

∂z

)
(x− x0)− 2vx (r0 + t (r − r0))

−t2∂vx (r0 + t (r − r0))

∂y
(y − y0)− t2∂vx (r0 + t (r − r0))

∂z
(z − z0)

]
dt .
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Adding and subtracting t2 ∂vx(r0+t(r−r0))
∂x (x− x0), where the remaining components follow analogously,

yields for the whole expression

∇×u (r) = −
1∫

0

(
t2 (r − r0)∇·v (r0 + t (r − r0))− 2tv (r0 + t (r − r0))

−t2 d

dt
v (r0 + t (r − r0))

)
dt

−
1∫

0

t2 (r − r0)∇·v (r0 + t (r − r0)) dt+

1∫
0

d

dt

(
t2v (r0 + t (r − r0))

)
dt .

Finally we have by the fundamental theorem of calculus

∇×u (r) = v (r)−
1∫

0

t2 (r − r0)∇·v (r0 + t (r − r0)) dt .

This proves the second part of the theorem since

v (r) = ∇×u (r) +

1∫
0

t2 (r − r0)∇·v (r0 + t (r − r0)) dt .

and as∇·v (r) = 0 the statement follows.

3. For the third relation, let us again parametrize a line segment from a star center point r0 ∈ U to any point
r ∈ U of the radially convex set U and consider now the vector field u in terms of the integral

u (r) =

1∫
0

t2 (r − r0) f (r0 + t (r − r0)) dt .

The divergence of u is given by

∇·u (r) =

1∫
0

t2
[
∂

∂x
((r − r0) f (r0 + t (r − r0))) +

∂

∂y
((r − r0) f (r0 + t (r − r0)))

+
∂

∂z
((r − r0) f (r0 + t (r − r0)))

]
dt

=

1∫
0

[
3t2f (r0 + t (r − r0)) + t3 (r − r0) · ∇ f (r0 + t (r − r0))

]
dt

=

1∫
0

d

dt

(
t3f (r0 + t (r − r0))

)
dt

= f (r) ,

which proves the statement and thereby concludes the proof.

In vector calculus notation, electrodynamics is formulated in such away, thatwe describe electric andmagnetic
fields and their corresponding source densities in terms of vector fields. In the classical three-dimensional case,
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a vector field is a mapping R3 × R → R3, where we assign a three-dimensional field vector to each point
in space at a certain time or frequency, respectively. Especially the source and flux terms in electromagnetic
theory are described by surface or volume densities, i.e. they are quantities that might be integrated over some
volume or some area. Even the fields themselves may be integrated over curves in space. Hence, it is useful
to develop some important statements regarding integrals over scalar and vector fields within the framework
of vector calculus. In the following, we will state and prove Green’s theorem [79], [82], which will serve as a
lemma for proving Gauss’s divergence theorem and Stoke’s theorem, which are fundamental in an axiomatic
development of the theory of electromagnetism [75].

Theorem 2.5 (Green’s Theorem). Let u : R2 → R2 be a vector field and let S ⊂ R2 be a region with positively
oriented, piecewise smooth, closed boundary curve ∂S. Then it holds that∫

∂S
u (r) · dr =

∫∫
S

(
∂uy (x, y)

∂x
− ∂ux (x, y)

∂y

)
dx dy .

Proof. Let us rewrite the expression for the line integral over ∂S of the vector field u in component notation,∫
∂S
u (r) · dr =

∫
∂S
ux (x, y) dx+

∫
∂S
uy (x, y) dy .

It suffice to prove Green’s theorem for convex regionsS ⊂ R2 since every non-convex region can be decomposed
into a sum of convex regions and due to linearity, the integrals of the regions will sum up. For a convex
region S, we can find parameterizations S =

{
[x, y]T : a ≤ x ≤ b, f1 (x) ≤ y ≤ f2 (x)

}
and similarly S ={

[x, y]T : g1 (y) ≤ x ≤ g2 (y) , c ≤ y ≤ d
}
. Thus, we can write for the line integral

∫
∂S
ux (x, y) dx+

∫
∂S
uy (x, y) dy =

b∫
a

[ux (x, f1 (x))− ux (x, f2 (x))] dx

+

d∫
c

[uy (g2 (y) , y)− uy (g1 (y) , y)] dy .

Using the fundamental theorem of calculus, it turns out that

b∫
a

[ux (x, f1 (x))− ux (x, f2 (x))] dx+

d∫
c

[uy (g2 (y) , y)− uy (g1 (y) , y)] dy

=

d∫
c

g2(y)∫
g1(y)

∂uy (x, y)

∂x
dx dy −

b∫
a

f2(x)∫
f1(x)

∂ux (x, y)

∂y
dy dx ,

and since both integral boundaries are different parameterizations of the same region S,∫
∂S
u (r) · dr =

∫∫
S

(
∂uy (x, y)

∂x
− ∂ux (x, y)

∂y

)
dx dy ,

which proves the theorem.

Equipped with Green’s theorem, we are ready to prove Stoke’s theorem, which relates the surface integral of
the curl of a vector field to a line integral along the surface’s oriented closed boundary curve of the vector field
itself. In section 3.5, we will make use of Stoke’s theorem for deriving Faraday’s law from implications of the
experimental observation of the induction principle. The theorem is stated as follows [82].
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Theorem 2.6 (Stokes’ Theorem). Let u : R3 → R3 be a vector field and let S ⊂ R3 be a two dimensional
surface with positively oriented, piecewise smooth, closed boundary curve ∂S. Then it holds that∫∫

S
∇×u (r) · dA =

∫
∂S
u (r) · dr .

Proof. Again, we show the theorem for convex surfaces S ⊂ R3, since every non-convex set can be decomposed
into convex subsets and by linearity, the integrals will sum up to the integral of the total surface. Expressing
the line integral in terms of the x-, y-, and z-components of the vector field, we have∫

∂S
u (r) · dr =

∫
∂S
ux (x, y, z) dx+

∫
∂S
uy (x, y, z) dy +

∫
∂S
uz (x, y, z) dz .

Since we consider convex surfaces S ⊂ R3 we can find parameterizations

S =
{

[x, y, z]T : f1 (y (t) , z (t)) , y (t) , z (t) , t0 ≤ t ≤ t1
}
,

S =
{

[x, y, z]T : x (t) , f2 (x (t) , z (t)) , y (t) , t0 ≤ t ≤ t1
}
,

S =
{

[x, y, z]T : x (t) , y (t) , f3 (x (t) , y (t)) , t0 ≤ t ≤ t1
}
.

Thus we have for the integrals respectively

∫
∂S
u (r) · dr =

t1∫
t0

ux (f1 (y (t) , z (t)) , y (t) , z (t))
dx

dt
dt

+

t1∫
t0

uy (x (t) , f2 (x (t) , z (t)) , y (t))
dy

dt
dt

+

t1∫
t0

uz (x (t) , y (t) , f3 (x (t) , y (t)))
dz

dt
dt ,

which is equal to∫
∂S
u (r) · dr =

∫
∂S
ux (f1 (y, z) , y, z)

∂f1 (y, z)

∂y
dy +

∫
∂S
ux (f1 (y, z) , y, z)

∂f1 (y, z)

∂z
dz

+

∫
∂S
uy (x, f2 (x, z) , z)

∂f2 (x, z)

∂z
dz +

∫
∂S
uy (x, f2 (x, z) , z)

∂f2 (x, z)

∂x
dx

+

∫
∂S
uz (x, y, f3 (x, y))

∂f3 (x, y)

∂x
dx+

∫
∂S
uz (x, y, f3 (x, y))

∂f3 (x, y)

∂y
dy .

By Green’s theorem (see Theorem 2.5) we can now argue that the line integrals can be converted to surface
integrals with∫

∂S
u (r) · dr =

∫∫
S

(
∂ux (f1 (y, z) , y, z)

∂y
· ∂f1 (y, z)

∂z
− ∂ux (f1 (y, z) , y, z)

∂z
· ∂f1 (y, z)

∂y

)
dy dz

+

∫∫
S

(
∂uy (x, f2 (x, z) , z)

∂z
· ∂f2 (x, z)

∂x
− ∂uy (x, f2 (x, z) , z)

∂x
· ∂f2 (x, z)

∂z

)
dz dx

+

∫∫
S

(
∂uz (x, y, f3 (x, y))

∂x
· ∂f3 (x, y)

∂y
− ∂uz (x, y, f3 (x, y))

∂y
· ∂f3 (x, y)

∂x

)
dx dy .

The surface normal n for each surface integral is different. It can be calculated for each parameterization
separately by means of the partial derivatives of the parameter functions fi for i ∈ {1, 2, 3}. Since each
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parameterization parameterizes the same surface S ⊂ R3 the surface elements can be combined into a single
element dA. With the appropriate surface normal for each integral, we can identify an integral over a vector
field ∫

∂S
u (r) · dr =

∫∫
S


∂uz(x,y,z)

∂y − ∂uy(x,y,z)
∂z

∂ux(x,y,z)
∂z − ∂uz(x,y,z)

∂x
∂uy(x,y,z)

∂x − ∂ux(x,y,z)
∂y

 · dA =

∫∫
S
∇×u (r) · dA ,

which proves the theorem.

The next important result from vector calculus we want to prove here is given in terms of Gauss’s divergence
theorem [82]. The divergence theorem relates the volume integral over the divergence of a vector field to the
surface integral of the vector field along the closed boundary surface, enclosing the volume. Gauss’s theorem
will be later used for deriving Ampére-Maxwell’s law from the continuity equation, i.e. from the conservation
of charges [75].

Theorem 2.7 (Gauss’s Divergence Theorem). Let V ⊂ R3 be a volume bounded by a surface ∂V , and let
u : R3 → R3 be a vector field. Then it holds that∫∫∫

V
∇·u (r) dV =

∫∫
∂V
u (r) · dA .

Proof. Let us rewrite the expression of the volume integral over V of the vector field u in terms of the
components of u by∫∫∫

V
∇·u (r) dV =

∫∫∫
V

(
∂ux (x, y, z)

∂x
+
∂uy (x, y, z)

∂y
+
∂uz (x, y, z)

∂z

)
dx dy dz .

Again, it suffice to show the theorem for convex volumes V ⊂ R3, since a non-convex volume can always be
decomposed in a set of convex volumes and the integrals will sum up by linearity. Since we are dealing with a
convex volume V , consider three different parameterizations, given by

V =
{

[x, y, z]T : f1 (y, z) ≤ x ≤ f2 (y, z) , [y, z]T ∈ Dx

}
,

V =
{

[x, y, z]T : g1 (x, z) ≤ y ≤ g2 (x, z) , [x, z]T ∈ Dy

}
,

V =
{

[x, y, z]T : h1 (x, y) ≤ x ≤ h2 (x, y) , [x, y]T ∈ Dz

}
.

Using these parameterizations, we can write for the volume integral

∫∫∫
V
∇·u (r) dV =

∫∫
∂V

f2(y,z)∫
f1(y,z)

∂ux (x, y, z)

∂x
dx dy dz +

∫∫
∂V

g2(x,z)∫
g1(x,z)

∂uy (x, y, z)

∂y
dy dz dx

+

∫∫
∂V

h2(x,y)∫
h1(x,y)

∂uz (x, y, z)

∂z
dz dx dy .

By the fundamental theorem of calculus we then have∫∫∫
V
∇·u (r) dV =

∫∫
Dx

ux (f2 (y, z) , y, z) dy dz −
∫∫

Dx

ux (f1 (y, z) , y, z) dy dz

+

∫∫
Dy

uy (x, g2 (x, z) , z) dz dx−
∫∫

Dy

uy (x, g1 (x, z) , z) dz dx

+

∫∫
Dz

uz (x, y, h2 (x, y)) dx dy −
∫∫

Dz

uz (x, y, h1 (x, y)) dx dy .
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Note that the surface normals at f1, g1, and h1 point in the opposite direction as the surface normals at f2,
g2, and h2. Hence, the minus sign can be absorbed into the surface normal dA since all parameterizations
parameterize the same volume V ⊂ R3, and we have∫∫∫

V
∇·u (r) dV =

∫∫
∂V
u (r) · dA ,

which proves the theorem.

2.5 Fourier Analysis

Fourier analysis has found widespread application within science and engineering. Physical processes are
typically time-dependent, i.e. a process evolves as time goes on. More generally, time can be replaced by any
parameter of an abstract function. The dependency on this parameter can be arbitrarily complex. In terms of
Fourier analysis, one is concerned with a special kind of time-dependence, given by an oscillatory harmonic
time variation. Fourier analysis deals with the decomposition of functions into a harmonic time basis, where one
is interested in the contributions of sinusoidal functions with certain harmonic frequencies to a time-varying
signal. In the case of electromagnetic theory, the governing equations, i.e. Maxwell’s equations are linear,
which, as we will see later, leads to the simplification that field solutions can be constructed by superposition
of harmonic contributions [83]. In the following, we want to prove an interesting property related to Fourier
analysis, which is, that the Fourier transform of a real function is Hermitian [84]. This fact has particular
implications on the structure of the spectral components we need to consider when dealing with stochastic
electromagnetic fields. Furthermore, this property also gives implications on the structure of frequency-domain
correlation matrices, which we will be dealing with numerically when considering the propagation of stationary
Gaussian random fields. For proving the statement that the Fourier transform of a real function is Hermitian,
let us first introduce the notion of Hermitian functions [84].

Definition 2.34 (Hermitian Function). Let f : R → C be a complex function. The function f is called
Hermitian, if

f (−t) = f∗ (t) ,

where the asterisk ∗ indicates complex conjugation.

For the proof, we also need to distinguish between even and odd functions. Let us now rigorously define the
terms even and odd function [85].

Definition 2.35 (Even and Odd Functions). A function f : R→ C is called even, if

f (t) = f (−t) .

Furthermore, the function f is called odd, if

f (t) = −f (−t) .

As we have defined what is understood when talking about an even and an odd function, we prove a short
lemma on how to decompose an arbitrary function f into an even part fe and an odd part fo [85].

Lemma 2.4. Let f : R→ R be an arbitrary real-valued function. Then f can be written as a sum of even and
odd functions,

f (t) = fe (t) + fo (t) ,

where fe denotes the even part and fo denotes the odd part.

Proof. The proof is based on adding an artificial zero, given by f (−t)− f (−t), to the following equation,

f (t) =
1

2
[f (t) + f (t)] =

1

2
[f (t) + f (−t)− f (−t) + f (t)] .
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By regrouping the terms in above equation, one obtains

f (t) =
1

2
[f (t) + f (−t)] +

1

2
[f (t)− f (−t)] .

The first term is identified as fe and the second term as fo, so

fe (t) =
1

2
[f (t) + f (−t)]

fo (t) =
1

2
[f (t)− f (−t)] .

Now it remains to be shown that fe is even and fo is odd, which can immediately be seen, since

fe (t) =
1

2
[f (t) + f (−t)] =

1

2
[f (−t) + f (t)] = fe (−t)

and
fo (t) =

1

2
[f (t)− f (−t)] = −1

2
[f (−t)− f (t)] = −fo (−t) .

This completes the proof, as we have shown that f (t) = fe (t) + fo (t).

An interesting observation is now given in the following lemma. This is, that the integral of the product of
an even and an odd function over the definition space where both functions are non-vanishing is always equal
to zero. This result can greatly simplify calculations in certain situations. We will now state and prove the
lemma [84].

Lemma 2.5. Let fe ∈ L1 be an even absolutely integrable function and let fo ∈ L1 be an odd absolutely
integrable function. Then

∞∫
−∞

fe (t) fo (t) dt = 0 .

Proof. The integral can be split into two parts, one from −∞ to 0, and the other from 0 to∞. This yields

∞∫
−∞

fe (t) fo (t) dt =

0∫
−∞

fe (t) fo (t) dt+

∞∫
0

fe (t) fo (t) dt .

In the first integral above, we substitute, t by −t, and consequently the differential dt is replaced by −dt and
the limits are adjusted accordingly. Thus, we obtain

∞∫
−∞

fe (t) fo (t) dt = −
0∫
∞

fe (−t) fo (−t) dt+

∞∫
0

fe (t) fo (t) dt

=

∞∫
0

[fe (−t) fo (−t) + fe (t) fo (t)] dt .

Using the defining properties of even and odd functions, given in Definition 2.35, we can substitute fe (−t) for
fe (t) and −fo (−t) for fo (t), which yields

∞∫
−∞

fe (t) fo (t) dt =

∞∫
0

[fe (−t) fo (−t)− fe (−t) fo (−t)] dt = 0 .

The whole integral is equal to zero, since we have shown that the term under the integral vanishes, which
completes the proof.
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Finally, we have all the necessary tools to show that the Fourier transform of a real function is Hermitian [84].
The proof makes use of the definitions of even and odd functions, where both, the real function f , as well as the
complex exponential in the Fourier transform are decomposed into their even and odd components.

Theorem 2.8. Let f ∈ L1 be a real-valued absolutely integrable function, and let F be its Fourier transform.
Then the Fourier transform F of the real-valued function f is Hermitian, i.e.

f (t) = f∗ (t)⇔ F (−ω) = F ∗ (ω) .

Proof. The Fourier transform F of f is given by

F (ω) =

∞∫
−∞

f (t) e−iωt dt =

∞∫
−∞

f (t) cos (ωt) dt− i

∞∫
−∞

f (t) sin (ωt) dt .

The second equality follows for real-valued functions f from Euler’s formula. By Lemma 2.4, the real-valued
function f can be decomposed into even and odd components. Hence, we obtain

F (ω) =

∞∫
−∞

fe (t) cos (ωt) dt+

∞∫
−∞

fo (t) cos (ωt) dt

− i

∞∫
−∞

fe (t) sin (ωt) dt− i

∞∫
−∞

fo (t) sin (ωt) dt .

Since cos (ωt) is an even function and sin (ωt) is clearly an odd function, the second and third integral vanish
due to Lemma 2.5. It follows that

F (ω) =

∞∫
−∞

fe (t) cos (ωt) dt− i

∞∫
−∞

fo (t) sin (ωt) dt .

It is now clear that, since f is real-valued, the even component fe of f gives rise to the real part of the Fourier
transform F and the odd component fo is responsible for the imaginary part. Changing the sign for the angular
frequency variable ω then yields

F (−ω) =

∞∫
−∞

fe (t) cos (ωt) dt+ i

∞∫
−∞

fo (t) sin (ωt) dt = F ∗ (ω) ,

due to Definition 2.35.
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3 Stochastic Electromagnetic Fields

3.1 General Stochastic Field Model

The overall objective of this chapter is to introduce and establish a mathematical framework for modeling
noisy electromagnetic fields. Thus, after introducing the necessary mathematical preliminaries in chapter 2,
the general model for describing stochastic fields will be introduced in the following. At first, a general
framework will be introduced, without making any assumptions on the probability measures involved. As for
many situations, the generality of the model needs to be traded for applicability in particular situations. In this
sense, it is desirable to be as general as possible but still as applicable as needed. After the general model is
established, it will be applied to several different scenarios that one encounters in a broad range of applications.

3.1.1 Mathematical Framework

The general scenario is as follows. A random field according to Definition 2.20, specified on a volume V ′ ⊆ R3,
varying with time t ∈ R is prescribed. Note that the random field may model any physical quantity, scalar or
vector valued, defined over a volume V ′ in space and varying with time. This general description is independent
of the physical quantity to be described. Depending on whether the underlying quantity is scalar or vector
valued, we define a measurable image space Y , which is either a subset of the real line R for scalar fields
or a subset of the Euclidean space R3 for vector fields. Random fields Xs = X (ω, s) : Ω × T ′ → Y with
index set T ′ ⊆ R4, defined on a probability space (Ω,F , P ) are considered. For the elements s of the index
set T ′, we write s =

[
rT, t

]T, where r = [x, y, z]T ∈ V ′ ⊆ R3 represents spatial coordinates in Euclidean
space, and t represents time. For a fixed ω0 ∈ Ω, the realization X (ω0, s) is a function mapping T ′ → Y .
Thus, for all random parameters ω0 ∈ Ω, we have a random variable Xs mapping the random event ω0 to a
function X (ω0, s) : T ′ → Y . We will describe the random field by means of finite dimensional joint probability
distributions. Let Bn ⊂ Y with n ≥ 1 be measurable Borel sets and Fs1,s2,...,sn (x1, x2, . . . , xn) be a family of
finite dimensional joint probability distributions, given by

Fs1,s2,...,sn (x1, x2, . . . , xn) = P ({Xs1 ∈ B (x1) ,X2 ∈ B (x2) , . . . ,Xsn ∈ B (xn)}) , (3.1)

where each xj gives rise to an F-measurable [52] set B (xj), which is in the general vector valued case given
by

B (xj) =
{
b ∈ R3 : bx ≤ xj , by ≤ yj , bz ≤ zj

}
. (3.2)

According to Kolmogorov’s existence theorem [50], [51] (see Theorem 2.2), there is a measure P̃ on the
measurable space (X,H) of fields Xs : T ′ → Y , with the σ-algebra H containing all cylindrical sets C ⊂ X ,
defined over the probability space (Ω,F , P ). The measure P̃ is completely determined by the family of finite
dimensional joint probability distributions (3.1) of the random field Xs = X (ω, s). For any C ∈ H, the
probability that a certain function X (ω, ·) belongs to the cylindrical set C is given by

P ({X (ω, ·) ∈ C}) = P ({ω ∈ Ω : X (ω, s0) ∈ C,∀s0 ∈ T}) , (3.3)

which determines the distribution function F (C) = P ({X (ω, ·) ∈ C}). If the family of finite dimensional
joint probability distributions Fs1,s2,...,sn (x1, x2, . . . , xn) is prescribed, all properties of the resulting random
process can be deduced from those finite dimensional distributions [54], [59].
The set of functions X : T ′ → Y can be any set of functions [54]. One could, for example, restrict oneself

to everywhere continuous functions or functions with finite L2-norm, or to band-limited functions.
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We consider the expectation value of the random field Xs = X (ω, s) given for any index sj ∈ T ′ by the
ensemble average (see Definition 2.26) as

µX (sj) =
〈〈
X (ω, sj)

〉〉
=

∫
Y
xj dFsj (xj) . (3.4)

For the correlations of the fields at different locations and times si and sj , as introduced in Definition 2.27, we
have

ΓX (si, sj) =
〈〈
X (ω, si)XT (ω, sj)

〉〉
=

∫
Y

∫
Y
xix

T
j dFsi,sj (xi, xj) . (3.5)

Typically, we will consider random processes which have finite second-order moments, i.e. processes with finite
energy, which are a very realistic "down-to-earth class" of random processes [62]. By assuming that the finite di-
mensional joint probability distributions Fs1,s2,...,sn (x1, x2, . . . , xn) of the process Xs = X (ω, s) are absolutely
continuous, there is a family of finite dimensional joint probability density functions fs1,s2,...,sn (x1, x2, . . . , xn),
given by

fs1,s2,...,sn (x1, x2, . . . , xn) =
∂nFs1,s2,...,sn (x1, x2, . . . , xn)

∂x1∂x2 . . . ∂xn
. (3.6)

Specifying a family of finite dimensional joint probability density functions is equivalent up to a constant to
specifying the finite dimensional joint probability distribution as [25]

Fs1,s2,...,sn (x1, x2, . . . , xn) =

∫
B(x1)

∫
B(x2)

· · ·
∫
B(xn)

fs1,s2,...,sn (x1, x2, . . . , xn) dx1 dx2 . . . dxn , (3.7)

with the sets B (xj) as defined above. Thus, an absolutely continuous random process is completely defined by
the family of finite dimensional joint probability density functions.
The expectation and the correlation function of the stochastic process Xs = X (ω, s) with respect to the finite

dimensional joint probability density functions fs1,s2,...,sn (x1, x2, . . . , xn) are given by

µX (sj) =
〈〈
X (ω, sj)

〉〉
=

∫
Y
xjfsj

(
xsj
)

dxj . (3.8)

ΓX (si, sj) =
〈〈
X (ω, si)XT (ω, sj)

〉〉
=

∫
Y

∫
Y
xix

T
j fsi,sj (xi, xj) dxi dxj . (3.9)

3.1.2 Linear Transformation of Random Fields

The random field Xs = X (ω, s) assigns a random vector in the measurable space Y to each coordinate s. Now
suppose that the random vectors in Y , determined by the field Xs = X (ω, s) give rise to a new transformed
random field Yr = Y (ω, r) with indices r ∈ T , defined in a volume V ⊂ R3, also varying with time. Hence,
Yr = Y (ω, r) with index set T ⊆ R4 is a mapping Yr = Y (ω, r) : Ω× T → Z where Z ⊆ R3 is a measurable
space of outcomes of the random field Yr = Y (ω, r). The fields Xs = X (ω, s), giving rise to the transformed
fields Yr = Y (ω, r) are referred to as source fields, while the transformed fields Yr = Y (ω, r) will be called
observed fields. The transformation itself may be modeled as a linear transformation operator M̂ r,s : Y → Z,
taking a random source field Xs = X (ω, s) defined over an index s ∈ T ′ to a transformed random observed
field Yr = Y (ω, r), defined over an index r ∈ T , such that

Y (ω, r) = M̂ r,sX (ω, s) . (3.10)

Here, M̂ r,s can be an integral transformation operator or any other linear mapping. Note that the linear
transformation operator M̂ r,s may also be a random operator in the most general case. The randomness
in the operator is governed by random fluctuations in the linear transformation, which means that there is a
certain probability that M̂ r,s maps a function Xr to a function Yr. This general problem with stochastic linear
transformation operators is beyond the scope of this thesis. Instead of source fields and observed fields, one
can also consider the source field as an input to a distributed linear system, giving rise to an output field,
i.e. the observed field after the linear transformation. The linear transformation depends on the system itself,
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while the randomness in the transformation operator arises from uncertainties in the structures comprising
the linear system. In the case of electromagnetic fields, the linear system is the propagation environment for
electromagnetic waves. Uncertainties in the environment or deliberate perturbations to the geometric structures
give rise to a random linear transformation operator M̂ r,s. A random operator M̂ r,s in the electromagnetic
case is used in particular for modeling reverberation chambers, where a deterministic source field is transformed
into a stochastic observed field through a random linear transformation [86]. Throughout this work, only
deterministic transformations will be considered, although, interesting work has been done in the areas of
random matrix theory [86], [87]. For investigating the influence of random parameters on electromagnetic
systems, polynomial chaos expansion and stochastic collocation techniques [88]–[90] have been successfully
applied. Electromagnetic wave propagation through randomly varying wave-guides has been modeled in [91]
using stochastic differential equations, which are a generalization to the Telegrapher’s equations.
Let a family of finite dimensional joint probability distributions Fs1,s2,...,sn (x1, x2, . . . , xn) of a random

source field Xs = X (ω, s) be prescribed. It would now be interesting to ask the question of how the finite
dimensional joint probability distributions Fr1,r2,...,rn (y1, y2, . . . , yn) of the observed field Yr = Y (ω, r) look
like, depending on the prescribed distributions of the source field. In general, the finite dimensional joint
probability distributions of the observed random field Yr = Y (ω, r) are given by

Fr1,r2,...,rn (y1, y2, . . . , yn) = P ({Yr1 ∈ B (y1) ,Yr2 ∈ B (y2) , . . . ,Yrn ∈ B (yn)}) , (3.11)

where the sets B (xj) for j ≥ 1 are defined as above. As long as the linear transformation operator M̂ r,s

is deterministic and suffice certain regularity conditions, the probability distribution of the observed field is
completely determined by the probability distribution of the source field. The finite dimensional joint probability
distributions of the random field Yr = Y (ω, r) can be obtained from the finite dimensional joint probability
distributions of the source field Xs = X (ω, s) by

Fr1,...,rn (y1, . . . , yn) =P

({
ω ∈ Ω : X (ω, ·) ∈

{
x (s) ∈ X :

(
M̂ r,sx (s)

)∣∣∣
r=r1

∈ B (y1)

}
∩ . . .

. . . ∩
{
x (s) ∈ X :

(
M̂ r,sx (s)

)∣∣∣
r=rn

∈ B (yn)

}})
, (3.12)

for any n ≥ 1, whereX is the P̃ -measurable set of source fields. The resulting family of finite dimensional joint
probability distributions also needs to satisfy the compatibility conditions from Definition 2.21. This is the most
general description for the probability distributions of the observed field, using the probability measure induced
by the known family of finite dimensional joint probability distributions of the source field. This method is,
however, very impractical, as it involves for each index j ∈ N : 1 ≤ j ≤ n to evaluate the set of functions
x (s) ∈ X for which the linear transformation M̂ r,sx (s) at a certain index rj is an element of the set B (yj)
and finding the measure of the n-fold intersection of those sets. The first and second order statistical moments,
i.e. the expectation value and the correlation function of the resulting field Yr = Y (ω, r) need to be taken as
ensemble averages over the resulting probability distributions, i.e.

µY (rj) =
〈〈
Y (ω, rj)

〉〉
=

∫
Z
yj dFrj (yj) . (3.13)

ΓY (ri, rj) =
〈〈
Y (ω, ri)YT (ω, rj)

〉〉
=

∫
Z

∫
Z
yiy

T
j dFri,rj (yi, yj) . (3.14)

If the finite dimensional joint probability distributions of the resulting process are absolutely continuous, finite
dimensional joint probability density functions of the random field Yr = Y (ω, r) can be obtained by the
derivative

fr1,r2,...,rn (y1, y2, . . . , yn) =
∂nFr1,r2,...,rn (y1, y2, . . . , yn)

∂y1∂y2 . . . ∂yn
. (3.15)

As discussed in chapter 2, it is equivalent to describe a random field by means of characteristic functionals [54].
Suppose that instead of a family of finite dimensional joint probability distributions, a certain characteristic
functional χX (z) with z ∈ X is prescribed. Let the characteristic functional

χX (z) =

∫
X

ei〈z,x〉µ (dx) , (3.16)
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for a given measure µ on the Hilbert space of random fields mapping Ω× T ′, defined over some volume V ′ to
a measurable Hilbert space X be given. As previously, when we discussed finite dimensional joint probability
distributions, we are interested in a random field Yr, resulting from a linear operation M̂ r,s on the source field
Xs. Again, the linear operation is assumed to be deterministic. As the observed random field is given by
Yr = M̂ r,s Xs, we have for the characteristic functional

χY (z) =

∫
X

ei〈z,y〉µ (dy) =

∫
X

ei〈z,M̂r,sx〉µ (dx) =

∫
X

e
i
〈
M̂
†
r,sz,x

〉
µ (dx) , (3.17)

with the adjoint operator M̂ †
r,s. Thus, it follows [54]

χY (z) = χX

(
M̂
†
r,sz
)
. (3.18)

This gives a simple mapping rule for characteristic functionals of random source fields to characteristic func-
tionals of observed random fields. Characteristic functionals are, hence, a suitable candidate to be used as a
fundamental description of random fields for the sake of propagation in space and time.
In the following, we will consider some special cases, i.e. what happens when we propagate a random field

with Gaussian statistics, and also the implications of stationary and cyclostationary random fields on deriving
second-order statistics.

3.2 Gaussian Random Fields

A Gaussian random field Xs = X (ω, s) on a Hilbert space of random fields X is characterized by the charac-
teristic functional

χX (z) = exp

(
i 〈z,mX〉 −

1

2

〈
z, Γ̂Xz

〉)
, (3.19)

according to Definition 2.25. From (3.18) it follows that the characteristic functional of a linear transformed
Gaussian random field Yr = M̂ r,s Xs is given by

χY (z) = exp

(
i
〈
M̂
†
r,sz,mX

〉
− 1

2

〈
M̂
†
r,sz, Γ̂XM̂

†
r,sz
〉)

= exp

(
i
〈
z,M̂ r,smX

〉
− 1

2

〈
z,M̂ r,sΓ̂XM̂

†
r,sz
〉)

. (3.20)

This shows that a linear transformation of a Gaussian random field Xs yields a Gaussian random field Yr with
transformed parameters Γ̂Y = M̂ r,sΓ̂XM̂

†
r,s and mY = M̂ r,smX. Hence it suffice to consider only those

parameters for Gaussian fields, as they completely determine the assigned probability measures.
The parameters mX, mY, Γ̂X, and Γ̂Y are given as the expectation value functions and the correlation

operators of the processes X and Y, respectively. For the continuous case, where the index sets T ′ and T have
more than countably many elements, the correlations need to be treated as integral kernels, where the operator
multiplication Γ̂Xz is given by the integral

Γ̂Xz =

∫
T ′

ΓX (s1, s2) z (s2) ds2 . (3.21)

Assume that for every s ∈ T ′ and for every s1, s2 ∈ T ′ the ensemble average mX (s) and the correlation
dyadic ΓX (s1, s2) of the Gaussian random field Xs = X (ω, s) are known. Then the resulting random field
Yr = Y (ω, r), after the linear transformation M̂ r,s, is again Gaussian with transformed parameters

mY (r) = M̂ r,smX (s) , (3.22)

ΓY (r1, r2) = M̂ r1,s1ΓX (s1, s2)M̂
†
r2,s2 . (3.23)
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The characteristic functional of the random field Y is then completely determined by the new parameters. We
have hence devised a simple propagation scheme for Gaussian random fields, where it is sufficient to calculate
the linear transformation of the first and second order statistical moment in order to have a full characterization
of the random measure on function space. For a general Gaussian random source field, it is very difficult to
infer the statistical parameters of the underlying Gaussian process without any a-priori knowledge of the mean
value function and the correlation kernel. Thus it is also difficult to propagate these parameters if they are not
well known. For practical reasons, one often assumes that the random fields are stationary, in order to be able
to calculate the statistical parameters of the source fields more easily. Stationarity has direct implications on the
probability measures involved, and hence also simplifies the evaluation of the statistical moments, as we will
see in the following section.

3.3 Stationary Random Fields

Dealing with the most general description of random fields in terms of finite dimensional joint probability
distributions is practically not applicable as even for Gaussian statistics, it is hard to infer the mean and
correlation of the source field.
Let us now consider strictly stationary random fields. The notion of stationarity was introduced in Defini-

tion 2.28, such that the family of finite dimensional joint probability distributions does not depend on an absolute
index t, but only on the relative difference of two indices τ = t1 − t2.
For a stationary random field Xs = X (ω, s) depending on a four-dimensional index s =

[
rT, t

]T ∈ T ′, we
consider temporal stationarity only. Thismeans, wewrite the randomprocessXs = X (ω, s) asXr,t = X (ω, r, t),
where the finite dimensional joint probability distributions are given by

F(r1,t1),(r2,t2),...,(rn,tn) (x1, x2, . . . , xn) = F(r1,t1+τ),(r2,t2+τ),...,(rn,tn+τ) (x1, x2, . . . , xn) , (3.24)

for all τ such that tj + τ ∈ T ′. From here it follows for the expectation value

mX (rj , tj) =
〈〈
X (ω, rj , tj)

〉〉
=

∫
Y
xj dF(rj ,tj) (xj) =

∫
Y
xj dF(rj ,tj+τ) (xj) . (3.25)

Since (3.25) needs to be true for any τ such that tj + τ ∈ T ′, the probability distribution F(rj ,tj) (xj) does not
explicitly depend on time. Therefore, we have for the expectation value

mX (rj , tj) =
〈〈
X (ω, rj , tj)

〉〉
=

∫
Y
xj dFrj (xj) = mX (rj) . (3.26)

For the correlation functions, we have accordingly

ΓX (ri, ti, rj , tj) =
〈〈
X (ω, ri, ti)XT (ω, rj , tj)

〉〉
=

∫
Y

∫
Y
xix

T
j dF(ri,ti),(rj ,tj) (xi, xj)

=

∫
Y

∫
Y
xix

T
j dF(ri,ti+τ),(rj ,tj+τ) (xi, xj) . (3.27)

Again, since (3.27) needs to be satisfied for all τ such that tj + τ ∈ T ′, we can set one time-argument to zero,
without loss of generality. The resulting correlation function is only dependent on the time difference τ , such
that

ΓX (ri, ti, rj , ti + τ) =
〈〈
X (ω, ri, ti)XT (ω, rj , ti + τ)

〉〉
=

∫
Y

∫
Y
xix

T
j dF(ri,ti),(rj ,ti+τ) (xi, xj) = ΓX (ri, rj , τ) . (3.28)

Stationarity in the wide sense, as given by Definition 2.29 has similar implications for the mean value function
and for the correlation kernel. Therefore, wide-sense stationarity and stationarity in the strict sense are equivalent
in the case of Gaussian statistics, as the second order statistics completely describe the Gaussian measure. The
importance of these results must not be underestimated, as stationarity combined with ergodicity will enable
the characterization of stochastic electromagnetic fields by measurement, as we will see in chapter 4.
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3.4 Cyclostationary Random Fields

The concept of cyclostationarity and cyclostationarity in the wide sense was mathematically introduced in
Definitions 2.30 and 2.31. An extensive review of cyclostationary processes in general is given in [37]. Early
definitions and properties of cyclostationary processes have been given in the PhD thesis of Gardner [70]
and in [69]. For a strictly cyclostationary random process Xs = X (ω, s) = X (ω, r, t) we have for the finite
dimensional joint probability distributions

F(r1,t1),(r2,t2),...,(rn,tn) (x1, x2, . . . , xn) = F(r1,t1+T0),(r2,t2+T0),...,(rn,tn+T0) (x1, x2, . . . , xn) , (3.29)

for a certain periodicity T0. Consequently, it follows for the expectation value function that

mX (rj , tj) = 〈〈X (ω, rj , tj)〉〉 =

∫
Y
xj dF(rj ,tj) (xj) =

∫
Y
xj dF(rj ,tj+T0) (xj) = mX (rj , tj + T0) .

(3.30)
This means that the mean value function is periodic with the cyclic period T0. Something similar holds for the
correlation kernel function, as

ΓX (ri, ti, rj , tj) =
〈〈
X (ω, ri, ti)XT (ω, rj , tj)

〉〉
=

∫
Y

∫
Y
xix

T
j dF(ri,ti),(rj ,tj) (xi, xj)

=

∫
Y

∫
Y
xix

T
j dF(ri,ti+T0),(rj ,tj+T0) (xi, xj) = ΓX (ri, ti + T0, rj , tj + T0) . (3.31)

We define the time difference τ = ti − tj . Since the time difference is not affected by a periodic shift with T0

and (3.31) must be valid for arbitrary ti and tj , we can furthermore write

ΓX (ri, rj , t, t− τ) = ΓX (ri, rj , t+ T0, t+ T0 − τ) . (3.32)

This implies that the correlation kernel function depends on the time shift and depends on the absolute time
periodically. Due to this fact, one can now think of expanding the correlation kernel function into a Fourier
series in the direction of the absolute time t [31]. The Fourier series expansion is given by

ΓX (ri, rj , t, t− τ) =
∞∑

n=−∞
ΓX,n (ri, rj , τ) e

i2π n
T0
t
. (3.33)

The Fourier coefficients are then given by

ΓX,n (ri, rj , τ) =
1

T0

T0
2∫

−T0
2

ΓX (ri, rj , t, t− τ) e
i2π n

T0
t
. (3.34)

For all n ∈ Z, the Fourier coefficients ΓX,n (ri, rj , τ) are referred to as cyclic auto-correlation functions and
the frequencies n

T0
are called cyclic frequencies [37]. Wide-sense cyclostationary random fields have the same

implications for their mean and correlation functions, but do not require all sets of the finite dimensional joint
probability distributions to be periodic.

In real-world applications, cyclostationary random signals play an important role when considering random
fields originating from digital data signals on contemporary electronic devices. As with digital data transmission
andmanipulation, there is typically a strict, repetitive clock timing involved, the EMI radiated from these devices
needs to be treated as a cyclostationary random process [92].
For stochastic electromagnetic fields, the notion of stationary Gaussian random fields has been extended to the

cyclostationary case theoretically in [31], [32]. Correlation measurements on cyclostationary electromagnetic
fields have been performed in [34], [36] and deeper experimental characterization of the underlying signals
and processes was described in [33], where cyclic auto-correlation cumulant functions have been proposed for
describing spatially resolved cyclostationary processes. Finally, cyclic cross-correlation cumulant functions
have been used in [35] for separating signals from different sources out of a single field measurement by
exploiting their cyclic behavior.

36



3.5 Electromagnetic Fields

In the theory of electromagnetic fields, one is concerned with states in space and time, that occur due to the
presence of an electric charge [93]. Electric charge is a property of matter, such that the respective object
carrying the property will experience a force when placed close to another object carrying the property of
charge. The interaction between these two objects will be repelling if the value of the number assigned to the
charge property of both objects has the same sign. If the signs of the numbers assigned to the charge property
of two objects are unlike, there will be an attractive force between them. An electric field is now considered as
the condition in space that results due to the presence of a charged object. Consider a single charged object in
space. Due to the presence of the single charge, there will be a force acting on any other charged object that
is brought close to the single charge, described by the Coulomb force [93]. In that way, there will be a certain
force with a certain direction assigned to all points in space. By removing the actual charge but keeping the
condition that we assign a certain force to all points in space, acting on other charges, the electric field is defined
as exactly these forces in space. In an abstract mathematical way, the electric field is an assignment of a vector
E ∈ R3 to all points r = [x, y, z]T ∈ R3. The electrical force vector F ∈ R3 is then given by

F = qE . (3.35)

The mathematical quantity assigned to the property of charge is just a number. There is no information on the
spatial distribution of charges involved, as for now, charge is assumed as a simple property of matter. But since
for the electric field, only the presence of charges and the dielectric properties of the space are important, charge
as a property can be directly assigned to points in space without considering the actual objects that carry the
charge property. This is done in terms of a volume charge density ρ. The total charge property of an object in
space is then given by the volume integral of the charge density ρ over the volume occupied by the object. The
total charge q in a volume V ⊆ R3 is given by

q (t) =

∫∫∫
V
ρ (r, t) d3r . (3.36)

3.5.1 Maxwell’s Equations

The complete fundamental set of equations describing electromagnetism has been formulated by Maxwell in
1873 [1]. We will postulate Maxwell’s equation in an axiomatic setting [75], where we will make use of
various results from vector calculus, as presented in section 2.4. Gauss’s law will be derived purely by applying
Lemma 2.3 and the way we describe charges in space. Maxwell’s theory will be constructed in such a way, that
the continuity equation, i.e. the conservation of charges and the phenomenological observation of induction are
naturally contained as physical inputs.
The charge density ρ is a scalar field. If the space U ⊆ R3, where the charge ρ is defined on, fulfills certain

topological conditions, i.e. U must be a radially convex set according to Definition 2.33, then ρ can be expressed
in terms of a vector fieldD with

∇·D (r, t) = ρ (r, t) , (3.37)

by the lemma of Poincaré (see Lemma 2.3-3) [75]. The vector fieldD is called electric displacement field and
equation (3.37) is known as Gauss’s law in differential form. The electric displacement field D describes the
distribution of the electric field passing through an area ∂V surrounding a volume V where a charge density ρ
is defined. Equation (3.37) solely follows by the fact that the charge density is modeled by a scalar field on R3.
Charge is an inherent property of matter and is thus conserved, i.e. it cannot be created or destroyed. The

total charge q inside a volume V can only change if there is a flux of charge, i.e. an electrical current through
the surface ∂V enclosing V . The rate of change of the total charge is given by

dq (t)

dt
+

∫∫
∂V
J (r, t) · dA = 0 , (3.38)
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where J is a vector field describing the electric current density. By (3.36) and by Gauss’s divergence theorem
(Theorem 2.7), (3.38) can be brought to differential form

∂ρ (r, t)

∂t
+∇·J (r, t) = 0 . (3.39)

Using Gauss’s law from equation (3.37) and the linearity of the derivative, the continuity equation (3.39) can
be rewritten as

∇·
(
∂D (r, t)

∂t
+ J (r, t)

)
= 0 . (3.40)

This means that the resulting vector field from the sum ∂D
∂t + J is free of divergence. Consequently, again by

Lemma 2.3-2, there exists a vector fieldH such that

∇×H (r, t) =
∂D (r, t)

∂t
+ J (r, t) . (3.41)

The vector fieldH is the magnetic field and (3.41) is known as Ampére-Maxwell’s law. According to this law,
there is a magnetic field specified in space, originating from electric current densities and temporal changes of
the electric displacement field. The only axiomatic input used here for deriving Ampére-Maxwell’s law was the
conservation of charges. The existence of the magnetic field follows by the lemma of Poincaré.

Consider a charge q moving with velocity v. It is known from experiment that the total force exerted on the
charge q is given by

F = q (E + v ×B) , (3.42)

where B is known as the magnetic field or magnetic flux density. Also by experiment, it is known that a
time-varying magnetic field through a surface S gives rise to an electric field along the boundary path ∂S. This
fact is reflected by ∫

∂S
E (r, t) · dr = −

∫∫
S

∂

∂t
B (r, t) · dA . (3.43)

By Stokes’ theorem (Theorem 2.6), (3.43) can be brought to differential form [75], given by

∇×E (r, t) = −∂B (r, t)

∂t
, (3.44)

which is known as Faraday’s law of induction. By applying the divergence operator to (3.44) we obtain

∇·∇×E (r, t) +
∂

∂t
∇·B (r, t) = 0 . (3.45)

It can be easily verified that ∇·∇×E = 0 for every vector field E, and hence, ∇·B does not vary with time.
This implies that ∇·B is only a function of spatial coordinates ∇·B = f (x, y, z). On the other hand, the
divergence∇·B does not depend on the coordinates and thus

∇·B (r, t) = 0 . (3.46)

The electric field and the electric displacement field are interrelated by the constitutive relation

D (r, t) = ε (r, t)E (r, t) , (3.47)

where ε is the permittivity tensor, which in general depends on space and time and is non-diagonal for anisotropic
media. In a similar manner, the magnetic fieldH and the magnetic flux densityB are related by the constitutive
relation

B (r, t) = µ (r, t)H (r, t) , (3.48)

with the permeability tensor µ.

38



3.5.2 Potential Theory

Equation (3.46) poses a condition on the magnetic field, i.e. the magnetic field is free of divergence. Com-
paring (3.46) to Gauss’s law in (3.37) yields the conclusion, that there are no magnetic charges or magnetic
monopoles. Exploiting the fact that the magnetic field is free of divergence, we can use Poincaré’s lemma
(Lemma 2.3-2) to express the magnetic field in terms of a vector potentialA by

B (r, t) = ∇×A (r, t) . (3.49)

Inserting (3.49) into Faraday’s law of induction (3.44), we have

∇×
(
E (r, t) +

∂A (r, t)

∂t

)
= 0 , (3.50)

and again by Poincaré’s lemma (Lemma 2.3-1), there exists a scalar function Φ such that

E (r, t) = −∇Φ (r, t)− ∂A (r, t)

∂t
, (3.51)

where the negative sign of Φ was chosen due to the physical convention in the definition of potentials [83]. In
the following, we assume vacuum, i.e. the permittivity tensor ε and the permeability tensor µ become scalars,
ε (r, t) = ε0 and µ (r, t) = µ0, that are neither space nor time dependent. Inserting (3.49) and (3.51) into
Ampére-Maxwell’s law (3.41) and using the Lorenz gauge condition

∇·A (r, t) + ε0µ0
∂Φ (r, t)

∂t
= 0 , (3.52)

results in the wave equation for the vector potential

∆A (r, t)− 1

c2
0

· ∂
2A (r, t)

∂t2
= −µ0J (r, t) , (3.53)

where we have defined the vector Laplace operator ∆A = ∇ (∇·A) − ∇× (∇×A) and c0 = 1√
ε0µ0

is the
speed of light. A similar equation can be derived for the scalar potential Φ by inserting (3.51) into Gauss’s
law (3.37) and using the Lorenz gauge (3.52), yielding

∆ Φ (r, t)− 1

c2
0

· ∂
2Φ (r, t)

∂t2
= −ρ (r, t)

ε0
, (3.54)

with the scalar Laplace operator ∆ Φ = ∇·∇Φ. General solutions to the wave equations for the vector
potential (3.53) and the scalar potential (3.54) are known [94] for free space, and given in terms of

A (r, t) =
µ0

4π

∫∫∫
V ′

∞∫
−∞

J (r′, t′)

‖r − r′‖
δ

(
t− t′ − ‖r − r

′‖
c0

)
dt′ d3r′ , (3.55)

Φ (r, t) =
1

4πε0

∫∫∫
V ′

∞∫
−∞

ρ (r′, t′)

‖r − r′‖
δ

(
t− t′ − ‖r − r

′‖
c0

)
dt′ d3r′ . (3.56)

The magnetic fieldH can be obtained from the magnetic vector potential by

H (r, t) =
1

µ0
∇×A (r, t) =

∫∫∫
V ′

∞∫
−∞

GHJ

(
r − r′, t− t′

)
J
(
r′, t′

)
dt′ d3r′ , (3.57)

with the free space dyadic Green’s functionGHJ given by

GHJ (r, t) =
1

4π
r × 1

[
1

c0 ‖r‖2
δ′
(
t− ‖r‖

c0

)
− 1

‖r‖3
δ

(
t− ‖r‖

c0

)]
, (3.58)
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with the identity matrix 1, the Dirac delta distribution δ (·), ‖r‖ =
√
x2 + y2 + z2, the free space velocity of

light c0, and

r × 1 =

 0 −z y
z 0 −x
−y x 0

 . (3.59)

A similar result can be obtained in terms of Jefimenko’s equations [95]–[97]. The solution for the corresponding
electric field can be given in terms of

E (r, t) =
1

ε0
∇×

t∫
−∞

H
(
r, t′

)
dt′ , (3.60)

The solution for the electric field in free space can be reformulated in terms of a Green’s dyadic GEJ by the
integral

E (r, t) =

∫∫∫
V ′

∞∫
−∞

GEJ

(
r − r′, t− t′

)
J
(
r′, t′

)
dt′ d3r′ . (3.61)

According to [98] a solution for the free space Green’s dyadicGEJ of the electric field can be found to be

GEJ (r, t) =
1

4π

√
µ0

ε0

(1− 3
rrT

‖r‖2

)δ
(
t− ‖r‖c0

)
− c0δ (‖r‖)

‖r‖2
+
c0U (c0t− ‖r‖)− c0U (−‖r‖)

‖r‖3


− rrT

‖r‖2

δ′
(
t− ‖r‖c0

)
+ c0δ

′ (‖r‖)

‖r‖

+ 1

δ′
(
t− ‖r‖c0

)
‖r‖

 , (3.62)

with the step function U (·) and with

rrT =

xx xy xz
yx yy yz
zx zy zz

 . (3.63)

3.5.3 Hertz Potentials

Now suppose that an electric field is applied to a dielectric medium. The atoms in the lattice of the dielectric
material respond to the applied fields by forming microscopic electric dipoles [83]. The positively charged
nuclei move a tiny bit in the direction of the field while the associated electrons move in the opposite direction.
This tiny movement of charges produces a macroscopic bound charge in the material. This macroscopic bound
charge within a material can be described by the polarization density P e. A similar effect takes place with
microscopic currents, associated with the angular momentum of the electrons within a certain material. By
applying a magnetic field, eddy currents are created around the surface of the material. These eddy currents
can be described analogously to the polarization densities for the electric field by a magnetic polarization Pm.
The electric and magnetic polarization densities P e and Pm are related to the electric and magnetic fields by

D (r, t) = ε (r, t)E (r, t) + P e (r, t) , (3.64)
B (r, t) = µ (r, t)H (r, t) + Pm (r, t) . (3.65)

Let us now consider a source-free region of space, i.e. J = 0 and ρ = 0, in an isotropic dielectric medium with
permittivity ε, and let us express the electric displacement fieldD in terms of equation (3.64) and the magnetic
flux density byB = µ0H . Then we have the following system of equations to solve [99]

∇·E (r, t) = −1

ε
∇·P e (r, t) , ∇×E (r, t) = −µ0

∂H (r, t)

∂t
,

µ0∇·H (r, t) = 0 , ∇×H (r, t) = ε
∂E (r, t)

∂t
+
∂P e (r, t)

∂t
.
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By the lemma of Poincaré (Lemma 2.3-2), there is a magnetic vector potential A with ∇×A = µ0H and
analogous to (3.50) and (3.51) there is a scalar potential Φ such that with (3.52) we have

∆A (r, t)− 1

c2
· ∂

2A (r, t)

∂t2
= −µ0

∂P e (r, t)

∂t
, (3.66)

∆ Φ (r, t)− 1

c2
· ∂

2Φ (r, t)

∂t2
=

1

ε
∇·P e (r, t) . (3.67)

The Lorenz gauge condition (3.52) is fulfilled if A and Φ are derived from a single vector field Πe [83], such
that

A (r, t) = εµ0
∂Πe (r, t)

∂t
, (3.68)

Φ (r, t) = −∇·Πe (r, t) . (3.69)

By inserting (3.68) into (3.66) or (3.69) into equation (3.67), we arrive at a wave equation for the so called
electric Hertz potential Πe [83], given by

∆ Πe (r, t)− 1

c2
· ∂

2Πe (r, t)

∂t2
= −1

ε
P e (r, t) , (3.70)

where the sources of the electric Hertz vector are given in terms of electric polarizations. The solution to (3.70)
in a free space region V ′ can be given in terms of [83], [99]

Πe (r, t) =
1

4πε

∫∫∫
V ′

∞∫
−∞

P e (r′, t′)

‖r − r′‖
δ

(
t− t′ − ‖r − r

′‖
c0

)
dt′ d3r′ . (3.71)

The magnetic fieldH can be recovered from the electric Hertz vector Πe by

H (r, t) = ε∇× ∂Πe (r, t)

∂t
. (3.72)

Hence, we can interrelate the magnetic fieldH to an exciting electric polarization P e by means of the dyadic
Green’s functionGHPe by [7]

H (r, t) =

∫∫∫
V ′

∞∫
−∞

GHPe

(
r − r′, t− t′

)
P e

(
r′, t′

)
dt′ d3r′ , (3.73)

whereGHPe is given in free space by [94], [100]

GHPe (r, t) =
1

4π
r × 1

[
1

‖r‖3
δ′
(
t− ‖r‖

c0

)
− 1

c0 ‖r‖2
δ′′
(
t− ‖r‖

c0

)]
. (3.74)

The solution for the corresponding electric field can be given in terms of

E (r, t) =
1

ε0
∇×

t∫
−∞

H
(
r, t′

)
dt′ . (3.75)

A solution to the integral equation

E (r, t) =

∫∫∫
V ′

∞∫
−∞

GEPe

(
r − r′, t− t′

)
P e

(
r′, t′

)
dt′ d3r′ , (3.76)
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is given for free space by the Green’s dyadic [7]

GEPe (r, t) =
µ0

4π

√
µ0

ε0

(1− 3
rrT

‖r‖2

)c0δ
′
(
t− ‖r‖c0

)
‖r‖2

+
c2

0δ (c0t− ‖r‖)
‖r‖3


+

(
1− rrT

‖r‖2

)δ′′
(
t− ‖r‖c0

)
‖r‖

 . (3.77)

In case of a magnetically polarizable isotropic medium with permeability µ in a source-free region, where the
magnetic flux density is expressed in terms of (3.65), andD = ε0E, Maxwell’s equations are given by

∇·H (r, t) = − 1

µ
∇·Pm (r, t) , ∇×H (r, t) = ε0

∂E (r, t)

∂t
,

ε0∇·E (r, t) = 0 , ∇×E (r, t) = −µ∂H (r, t)

∂t
− ∂Pm (r, t)

∂t
.

With ∇· (ε0E) and Poincaré’s lemma (Lemma 2.3-2), there exists an electric vector potential F , and similar
to (3.50) and (3.51), there is a scalar magnetic potential Ψ, given by ∇×F = −ε0E andH = −∇Ψ − ∂F

∂t .
With a modified Lorenz gauge condition ∇·F + µε0

∂Ψ
∂t = 0, one can derive wave equations for the electric

vector potential F and the scalar potential Ψ resulting in

∆F (r, t)− 1

c2
· ∂

2F (r, t)

∂t2
= −ε0

∂Pm (r, t)

∂t
, (3.78)

∆ Ψ (r, t)− 1

c2
· ∂

2Ψ (r, t)

∂t2
=

1

µ
∇·Pm (r, t) . (3.79)

The modified Lorenz gauge condition∇·F + µε0
∂Ψ
∂t = 0 is satisfied by choosing F and Ψ, such that

F (r, t) = µε0
∂Πm (r, t)

∂t
, (3.80)

Ψ (r, t) = −∇·Πm (r, t) . (3.81)

Inserting (3.80) into (3.78) or (3.81) into (3.79), yields a wave equation for the magnetic Hertz potential Πm,
given by

∆ Πm (r, t)− 1

c2
· ∂

2Πm (r, t)

∂t2
= − 1

µ
Pm (r, t) , (3.82)

A solution to the wave equation in (3.82) in a free space region V ′ is given in terms of

Πm (r, t) =
1

4πµ

∫∫∫
V ′

∞∫
−∞

Pm (r′, t′)

‖r − r′‖
δ

(
t− t′ − ‖r − r

′‖
c0

)
dt′ d3r′ , (3.83)

with the magnetic polarization Pm as source term of the magnetic Hertz vector Πm. The electric field E can
be recovered from the magnetic Hertz vector Πm by

E (r, t) = −µ∇× ∂Πm (r, t)

∂t
. (3.84)

The electric field E can be related to an exciting magnetic polarization Pm by means of the dyadic Green’s
functionGEPm by [7]

E (r, t) =

∫∫∫
V ′

∞∫
−∞

GEPm

(
r − r′, t− t′

)
Pm

(
r′, t′

)
dt′ d3r′ , (3.85)
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whereGEPm is given by [94], [100]

GEPm (r, t) =
1

4π
r × 1

[
1

c0 ‖r‖2
δ′′
(
t− ‖r‖

c0

)
− 1

‖r‖3
δ′
(
t− ‖r‖

c0

)]
. (3.86)

The solution for the corresponding magnetic field can be given in terms of

H (r, t) = − 1

µ0
∇×

t∫
−∞

E
(
r, t′

)
dt′ . (3.87)

A solution to the integral equation

H (r, t) =

∫∫∫
V ′

∞∫
−∞

GHPm

(
r, r′, t, t′

)
Pm

(
r′, t′

)
dt′ d3r′ , (3.88)

is given for free space by the Green’s dyadic [7]

GHPm (r, t) =
1

4π

√
ε0

µ0

(1− 3
rrT

‖r‖2

)δ′
(
t− ‖r‖c0

)
‖r‖2

+
δ (c0t− ‖r‖)
µ0 ‖r‖3


+

(
1− rrT

‖r‖2

)δ′′
(
t− ‖r‖c0

)
c0 ‖r‖

 . (3.89)

3.5.4 Time-Harmonic Fields

Consider a field quantity F that is space depended but has a harmonic time-dependence, e.g. with frequency
f0. This means it can be written as

F (r, t) =

Fx (r) cos (2πf0t+ ϕx (r))
Fy (r) cos (2πf0t+ ϕy (r))
Fz (r) cos (2πf0t+ ϕz (r))

 . (3.90)

Using complex phasors [83], [101], the time-harmonic field vector can be represented by

F (r, t) = Re
{
F (r) ei2πf0t

}
, (3.91)

with the complex vector phasor

F (r) =

Fx (r) eiϕx(r)

Fy (r) eiϕy(r)

Fz (r) eiϕz(r)

 . (3.92)

Note that the time derivative of a time-harmonic field F is given by

∂F (r, t)

∂t
=

∂

∂t
Re
{
F (r) ei2πf0t

}
= Re

{
i2πf0F (r) ei2πf0t

}
. (3.93)

Since all the information about the field distribution is contained within the space dependent vector phasor F ,
it suffices to consider only complex phasors for time-harmonic fields. In that sense, we can rewrite Maxwell’s
equations for the vector phasors E,H ,D, andB of a time-harmonic field to

∇·D (r) = ρ (r) , (3.94)
∇×H (r) = i2πf0D (r) + J (r) , (3.95)
∇×E (r) = −i2πf0B (r) , (3.96)
∇·B (r) = 0 , (3.97)
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where the actual field quantities can be retained by means of equation (3.91).
In terms of the Fourier transformation, any integrable complex function s : R → C can be represented by a

superposition of complex exponential functions, where the amplitude and phase relations are determined by a
frequency-dependent complex phasor Sf . The superposition is given by

s (t) =

∞∫
−∞

Sf (f) ei2πft df . (3.98)

The complex phasor Sf is obtained by means of the Fourier transformation. In this context, the real function s
is projected onto the complex exponentials with a suitable inner product by

Sf (f) =

∞∫
−∞

s (t) e−i2πft dt . (3.99)

As time-domain field quantities are real, it is easy to show that for any real function g : R→ R we can write

g (t) = g∗ (t) = Re {g (t)} = Re


∞∫
−∞

G (f) ei2πft df

 =

∞∫
−∞

|G (f)| cos (2πft+ ϕg (f)) df , (3.100)

where |G| is the magnitude of the complex phasor G, and ϕg is the associated phase. An important property of
the Fourier transform of a real-valued function has been shown in section 2.5 by Theorem 2.8. Thus, for any
arbitrary real field F , a complex vector phasor F can be associated by means of the Fourier transformation

F (r, f) =

∞∫
−∞

F (r, t) e−i2πft dt , (3.101)

where the original field can be reconstructed by the inverse Fourier transformation

F (r, t) =

∞∫
−∞

F (r, f) ei2πft df =

∞∫
−∞

Fx (r, f) cos (2πft+ ϕx (r, f))
Fy (r, f) cos (2πft+ ϕy (r, f))
Fz (r, f) cos (2πft+ ϕz (r, f))

 df . (3.102)

We introduce a change of variables ω = 2πf , i.e. we switch from frequency f to angular frequency ω. This
will introduce an additional scaling factor of 1

2π in the inverse Fourier transformation. Thus we have

S (ω) =

∞∫
−∞

s (t) e−iωt dt , (3.103)

for the Fourier transformation, and

s (t) =
1

2π

∞∫
−∞

S (ω) eiωt dω , (3.104)

for the inverse Fourier transformation. Note that the two complex functions Sf and S are not equal. It holds
that S (ω) = Sf

(
ω
2π

)
. In the following, we will not explicitly distinguish between complex phasors obtained in

terms of Sf or S, but it will be clear which transformation to use whether the phasors depend on f or on ω.
Since Maxwell’s equations are linear, and so is the Fourier transformation, we can consider each frequency

component independently in terms of the associated complex phasors. Later, we can inverse Fourier transform
the resulting complex phasors in order to obtain the time-domain field solutions. Thus, Maxwell’s equations for
each angular frequency component ω can be written as

∇·D (r, ω) = ρ (r, ω) , (3.105)
∇×H (r, ω) = iωD (r, ω) + J (r, ω) , (3.106)
∇×E (r, ω) = −iωB (r, ω) , (3.107)
∇·B (r, ω) = 0 . (3.108)
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Similar to the time-domain, one can define vector and scalar potentials A and Φ such that B = ∇×A and
E = −∇Φ − iωA, respectively. By enforcing the frequency-domain version of the Lorenz gauge condition,
one obtains the so called Helmholtz equations for the vector and scalar potentials

∆A (r, ω) + ω2A (r, ω) = −µ0J (r, ω) , (3.109)

∆ Φ (r, ω) + ω2Φ (r, ω) = −
ρ (r, ω)

ε0
. (3.110)

Let us now consider a current density vector J , describing the source of the electromagnetic field. The magnetic
vector potentialA, originating from J in free space, as a solution to equation (3.109), can be given by

A (r, ω) =
µ0

4π

∫
V ′

J (r′, ω)

‖r − r′‖
e
−iω
‖r−r′‖
c0 d3r . (3.111)

The magnetic fieldH fromA can be obtained by

H (r, ω) =
1

µ0
∇×A (r, ω) , (3.112)

and thus directly from J by

H (r, ω) =

∫
V ′
GHJ

(
r − r′, ω

)
J
(
r′, ω

)
d3r′ , (3.113)

whereGHJ is the Green’s dyadic of the system under consideration, relating the excited magnetic fieldH to the
source current density J . The total Green’s dyadic for free space, also accounting for the near-field contributions
is given by [16], [102]

GHJ (r, ω) =
1

4π
r × 1

c0 + iω ‖r‖
c0 ‖r‖3

e
−iω

‖r‖
c0 . (3.114)

The corresponding electric field E can be obtained by

E (r, ω) =
1

iωε0
∇×H (r, ω) , (3.115)

and directly from J by
E (r, ω) =

∫
V ′
GEJ

(
r − r′, ω

)
J
(
r′, ω

)
d3r′ , (3.116)

where GEJ is the Green’s dyadic of the system under consideration, relating the excited electric field E to the
source current density J . The free space Green’s dyadic for the electric field, excited by an electric current
density is given by [16], [102]

GEJ (r, ω) = − i

4π

√
ε0

µ0

[(
ω

c0 ‖r‖
+

i

‖r‖2
− c0

ω ‖r‖3

)
1−

(
ω

c0 ‖r‖3
+

3i

‖r‖4
− 3c0

ω ‖r‖5

)
rrT

]
e
−iω

‖r‖
c0 .

(3.117)
Using theGreen’s dyadics (3.114) and (3.117), one can solve electromagnetic field propagation problems directly
in the frequency-domain.

3.5.5 Uniqueness Theorem and Equivalence Principle

Let us assume we have electric and magnetic sources J andM , respectively. Furthermore, we assume that J
and M are non-vanishing only in a closed volume V ′, bounded by the surface ∂V ′. A very elegant way for
denoting this property [103] is by introducing the indicator function 1V : R3 → {0, 1}. The indicator function
is given by

1V (r) =

{
1 for r ∈ V,
0 for r /∈ V. (3.118)
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With this definition, we can write

J (r, t) = 1V ′ (r)J (r, t) , (3.119)
M (r, t) = 1V ′ (r)M (r, t) . (3.120)

The electromagnetic field in the volume V = R3 \ V ′ is then given by multiplying Maxwell’s equations with
the indicator function 1V for the volume V . Thus, we have

1V (r)∇×E (r, t) = −1V (r)
∂B (r, t)

∂t
, (3.121)

1V (r)∇×H (r, t) = 1V (r)
∂D (r, t)

∂t
. (3.122)

where 1V J = 0 and 1VM = 0, since 1V ′ (r) 1V (r) = 0 for V ∩ V ′ = ∅. By the product rule for partial
derivatives, we have

∇×EV (r, t) = −∂BV (r, t)

∂t
+∇1V (r)×E (r, t) , (3.123)

∇×HV (r, t) =
∂DV (r, t)

∂t
+∇1V (r)×H (r, t) , (3.124)

where the subscript V denotes multiplication of the quantity with the indicator function 1V , i.e. only the part of
the quantity that lies in the region V . Consider an arbitrary integrable vector field F . Then we have∫∫∫

R3

∇1V · F (r, t) d3r =

∫∫∫
R3

∇· [1V F (r, t)] d3r −
∫∫∫

R3

1V ∇·F (r, t) d3r

= −
∫∫∫

V
∇·F (r, t) d3r =

∫∫
∂V ′

F (r, t) · dA′ , (3.125)

where the first integral vanishes as by Gauss’s theorem (Theorem 2.7) it corresponds to a surface integral at
infinity, where the vector field F must vanish. The last step follows by applying Gauss’s theorem again for the
second integral. The surface normal vector dA points outwards of V , and thus into V ′. Therefore, the sign was
changed accordingly when switching from dA to dA′. Let now n denote the normal vector, perpendicular to
∂V ′ pointing outwards of V ′ into V . Then,∇1V can be interpreted as [103]

∇1V = n (r) δ∂V ′ (r) , (3.126)

where δ∂V ′ (r) is the Dirac delta distribution, defined on the surface ∂V ′, given by

δ∂V ′ (r) = δ (r − a) , ∀a ∈ ∂V ′ . (3.127)

For the fields in the source-free region V , equations (3.123) and (3.124) resemble Maxwell’s equations when
considering electric and magnetic sources by replacing

J (r, t) = n (r)×H (r, t) δ∂V ′ (r) , (3.128)
M (r, t) = −n (r)×E (r, t) δ∂V ′ (r) . (3.129)

This is well known as equivalence principle [83], [104] or Huygens’ principle [103]. The uniqueness theorem
now assures that the solution in a source free region V is uniquely determined by specifying the tangential field
components of either n×H or −n×E.

Theorem 3.1 (Uniqueness Theorem). The electromagnetic field in a source-free region V is determined in a
unique way, if the tangential components of either the electric field or the magnetic field are known on the
boundary ∂V ′.

Proof. We refrain here from a rigorous proof of the uniqueness theorem, as it involves the concept of losses,
which was not introduced so far. Proofs for the uniqueness theorem can be found in the literature, e.g. in [83],
[101], [102].
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The converse of the theorem is, however, not true. There is an infinite number of possible source distributions
in V ′ that yield the same field distribution in V . Reconstruction of the actual sources in V ′ is in general not
possible in an exact manner. The problem of finding equivalent sources on ∂V ′ can, however, still be formulated
in terms of an estimation problem, as we will see in section 4.4. The uniqueness theorem and the equivalence
principle are fundamental for propagating and characterizing stochastic electromagnetic fields in chapters 4
an 5.

3.6 Stochastic Model for Electromagnetic Fields

The aim of this section is to adopt the general stochastic field model, which is valid for any field quantity, e.g.
sound waves, etc., to the specific field concept of electromagnetism. In that sense, this section should provide
a bridge between the general model, developed and outlined in section 3.1, and the fundamental concepts of
electromagnetic fields from section 3.5. Special emphasis is given to the identification of the corresponding
quantities and transformations involved.

3.6.1 Propagation of Statistical Parameters for Electromagnetic Fields

We consider a source current density field J , where the spatial and temporal distribution of the field is subjected
to random fluctuations. It is assumed, that J is vanishing outside a certain volume V ′ ⊂ R3, that is, the
source field is confined within a certain region of space. According to the general stochastic field model from
section 3.1, the source field can be described as a random field J : Ω× (V ′ × R)→ R3 over a probability space
(Ω,F , P ). Now let X be the space of all possible fields j : V ′ × R→ R3 and let H be the minimal σ-algebra
containing all cylindrical sets C ⊂ X . According to Theorem 2.2, there is a probability measure P̃ defined on
the measurable space (X,H) that is completely determined by the family of finite dimensional joint probability
distributions of the random field J . Thus, the random process for the source field is completely determined by
specifying the distributions

F J
(r1,t1),...,(rn,tn) (j1, . . . , jn) = P ({J (r1, t1) ∈ B (j1) , . . . ,J (rn, tn) ∈ B (jn)}) , (3.130)

where each jk gives rise to a set B (jk), given by

B (jk) =
{

[bx, by, bz]
T ∈ R3 : bx ≤ jx,k, by ≤ jy,k, bz ≤ jz,k, jk = [jx,k, jy,k, jz,k]

T
}
. (3.131)

Because it is known that for the finite dimensional probability distributions F J
(r1,t1),··· ,(rn,tn) (j1, · · · , jn), there

exists a probability measure P̃ on the function space X by Theorem 2.2, it is more convenient to consider
characteristic functionals χJ, associated with the measure P̃ , instead of finite dimensional distributions. The
characteristic functional χJ for z ∈ X is given by

χJ (z) =

∫
X

ei〈z,j〉 P̃ (dj) . (3.132)

For general random processes with arbitrary finite dimensional distributions, it is hard to make any predictions,
as an infinite amount of distributions needs to be specified. In studying the propagation of stochastic electro-
magnetic fields, it is of great interest to determine the random electric and magnetic fields E andH in some
volume V ⊂ R, generated by the random source field J . Since the exciting field is totally random, it does not
make sense to determine explicit values for the emerging electric and magnetic fields. We are rather interested
in how to infer the statistics of the propagated fields from the statistics of the source field. We assume for now,
that the statistics of the source field J are known, i.e. there is a known characteristic functional χJ, completely
describing the random field. From section 3.5, we know that the magnetic fieldH due to a current density J is
given by

H (r, t) =

∫∫∫
V ′

∞∫
−∞

GHJ

(
r − r′, t− t′

)
J
(
r′, t′

)
dt′ d3r′ . (3.133)
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For our stochastic model, this means that every possible realization j ∈ X of the random field J gets mapped
to a certain realization h of the random fieldH , by the linear integral transformation with kernelGHJ. Let Y
denote the space of all possible propagated magnetic fields h : V × R→ R3. Thus, we can identify the linear
transformation operator M̂ : X → Y to be the integral transformation with kernel GHJ. The characteristic
functional χH of the propagated fieldH can be obtained according to section 3.1.2 by

χH (z) = χJ

(
M̂
†
z
)
. (3.134)

Since the time-domainGreen’s dyadics are real, the adjoint of the integral operatorM̂ † is obtained by exchanging
the role of the primed and unprimed arguments of the integral kernel, given by the dyadic Green’s function [105].
Obtaining the adjoint operator M̂ † in the time-domain poses some difficulties for the retarded time-domain
Green’s dyadics, as given for free space in section 3.5. It is obvious that for exchanging the spatial arguments r
and r′ we haveGHJ (r′ − r, t− t′) = G†HJ (r − r′, t− t′) since (r × 1)† = −r×1. For exchanging the time
arguments t and t′, however, the direction of propagation would be reversed, leading to non-causal solutions.
In [98], the time-domain dyadic Green’s function was derived using the so called propagator method [106].
There, the Green’s function was defined as

GHJ

(
r, t, r′, t′

)
= U

(
t− t′

)
KHJ

(
r, t, r′, t′

)
, (3.135)

with the propagator KHJ and the Heaviside step function U . Using this definition, and then exchanging
the role of t and t′, it is obvious that the dyadic Green’s function is self-adjoint in the time argument, i.e.
GHJ (r − r′, t− t′) = GT

HJ (r − r′, t′ − t). In case of the definition from [98], the sign of the propagation
direction gets reversed for both, the retarded, as well as the advanced components of the propagatorKHJ. But
since the sign of the argument of the Heaviside function U is also changed, the former retarded components
are rejected and only the advanced components remain, with a reversed propagation direction. As KHJ is
symmetric for both, retarded and advanced components, the adjoint solution is equivalent to the original dyadic
Green’s function. A similar argument can be made, as for obtaining the retarded solution in [94], the advanced
components have been suppressed in order to obtain a causal solution. By reversing the time coordinate, the
condition on causality also changes accordingly, yielding a similar result.
Thus, one can infer the statistics of the excited random fieldH from the characteristic functional χJ of the

random source field J by means of the characteristic functional χH, given by

χH (z) =

∫
Y

exp

i

∫∫∫
V

∞∫
−∞

zT (r, t)h (r, t) dt d3r

 P̃ (dh) ,

=

∫
Y

exp

i

∫∫∫
V

∞∫
−∞

∫∫∫
V ′

∞∫
−∞

zT (r, t)GHJ

(
r − r′, t− t′

)
j
(
r′, t′

)
dt′ d3r′ dtd3r

 P̃ (dj) .

(3.136)

3.6.2 Gaussian Stochastic Electromagnetic Fields

Let us now assume that the statistics of the random source field J are essentially governed by a Gaussian
probability distribution, as described in section 3.2. This assumption is widely justified in practice by the central
limit theorem (Theorem 2.1), which states that as long as the number of independent, identically distributed
source fields is large enough, the superimposed source field will converge to a Gaussian distributed field,
regardless of the individual, identical source distributions. As the number of statistical sources in practical
electronic circuits is typically very large, a Gaussian probability distribution of a random field, emitted by
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such circuits seems to be a legit assumption. The characteristic functional of the source field J is completely
determined by the field’s expectation value functionmJ and by the correlation dyadic ΓJ. It is given by

χJ (z) = exp

i

∫∫∫
V ′

∞∫
−∞

zT
(
r′, t′

)
mJ

(
r′, t′

)
dt′ d3r′

×
× exp

−1

2

∫∫∫
V ′

∞∫
−∞

∫∫∫
V ′

∞∫
−∞

zT
(
r′1, t

′
1

)
ΓJ

(
r′1, r

′
2, t
′
1, t
′
2

)
z
(
r′2, t

′
2

)
dt′2 d3r′2 dt′1 d3r′1

 ,

(3.137)

for all z ∈ X . By applying (3.134) where the propagation operator is given by the integral transformation with
kernel GHJ, we have found a propagation rule for the characteristic functional of the source field χJ to the
characteristic functional of the observed field χH. This relation is given by

χH (z) = exp

i

∫∫∫
V

∞∫
−∞

∫∫∫
V ′

∞∫
−∞

zT (r, t)GHJ

(
r − r′, t− t′

)
mJ

(
r′, t′

)
dt′ d3r′ dt d3r

×
× exp

−1

2

∫∫∫
V

∞∫
−∞

∫∫∫
V

∞∫
−∞

∫∫∫
V ′

∞∫
−∞

∫∫∫
V ′

∞∫
−∞

zT (r1, t1)GHJ

(
r1 − r′1, t1 − t′1

)

× ΓJ

(
r′1, r

′
2, t
′
1, t
′
2

)
GT

HJ

(
r2 − r′2, t2 − t′2

)
z (r2, t2) dt′2 d3r′2 dt′1 d3r′1 dt2 d3r2 dt1 d3r1

 ,

(3.138)

for all z ∈ Y . Hence, as the characteristic functional χJ transforms to χH by (3.134), the statistical parameters
mJ and ΓJ of the Gaussian source field transform like

mH (r, t) =

∫∫∫
V ′

∞∫
−∞

GHJ

(
r − r′, t− t′

)
mJ

(
r′, t′

)
dt′ d3r′ , (3.139)

ΓH (r1, r2, t1, t2) =

∫∫∫
V ′

∞∫
−∞

∫∫∫
V ′

∞∫
−∞

GHJ

(
r1 − r′1, t1 − t′1

)
ΓJ

(
r′1, r

′
2, t
′
1, t
′
2

)
×

×GT
HJ

(
r2 − r′2, t2 − t′2

)
dt′2 d3r′2 dt′1 d3r′1 . (3.140)

In order to have a complete description of the observed random field, it is thus sufficient to propagate the
expectation value function and the correlation dyadic of the Gaussian random source field using electromagnetic
dyadic Green’s functions. The resulting observed random field will again exhibit a Gaussian distribution with
the transformed parameters given in (3.139) and (3.140).
The use of characteristic functionals thus generalizes the treatment of stochastic electromagnetic fields, and it

was shown that the theoretical concept that was developed earlier for stationary ergodic Gaussian random fields
in [7], [15], [16] is actually contained as a special case in the general framework introduced here.

3.6.3 Stochastic Electromagnetic Fields in the Frequency-Domain

Assigning probability measures to stochastic electromagnetic fields in the frequency-domain is indeed not a
trivial task, as it involves Fourier transforms of randomly fluctuating fields, which do not exist in general,
especially if one considers stationary random fields, where the field amplitudes do not sufficiently decay as
t → ∞. Let us, for now, assume that the space of all random source fields X ⊆ L2, such that all realizations
of the random field J are square integrable and form a Hilbert space. Furthermore, let us denote the space of
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Fourier transformed realizations j byX . Then we can define measures on the Fourier transformed random field
in terms of characteristic functionals in the same way as for other linear transformations. Let us consider the
temporal Fourier transformation F of a realization j ∈ X of the random field J , given by

j (r, ω) = F (j (r, t)) =

∞∫
−∞

j (r, t) e−iωt dt . (3.141)

Now suppose that every realization j is assigned a differential probability measure P̃ (dj). The same probability
measure should be assigned to the Fourier transform j of the realization j. In terms of characteristic functionals,
this is expressed by

χJ (z) = χJ

(
F−1z

)
, (3.142)

for all z ∈ X . Thus we have

χJ (z) =

∫
X

ei〈z,j〉P̃
(
dj
)

=

∫
X

ei〈F−1z,j〉P̃ (dj) =

∫
X

ei〈z,Fj〉P̃ (dj) , (3.143)

For Gaussian random source fields, as given in section 3.2, where the space of all realizations of the source field
X ⊆ L2, the characteristic functional of the Fourier transformed source field is given by

χJ (z) = exp

i

∫∫∫
V ′

∞∫
−∞

∞∫
−∞

z†
(
r′, ω

)
mJ

(
r′, t′

)
e−iω′t′ dt′ dω′ d3r′

×
× exp

−1

2

∫∫∫
V ′

∞∫
−∞

∫∫∫
V ′

∞∫
−∞

∞∫
−∞

∞∫
−∞

z†
(
r′1, ω

′
1

)
e−iω′1t

′
1ΓJ

(
r′1, r

′
2, t
′
1, t
′
2

)
eiω′2t

′
2 ×

× z
(
r′2, ω

′
2

)
dt′2 dt′1 dω′2 d3r′2 dω′1 d3r′1
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For convenience, we define the frequency-domain expectation value and the frequency-domain correlation
dyadic

mJ

(
r′, ω′

)
=

∞∫
−∞

mJ

(
r′, t′

)
e−iω′t′ dt′ , (3.145)

ΓJ
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′
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′
1, ω
′
2

)
=
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∞∫
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ΓJ

(
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′
2, t
′
1, t
′
2

)
e−iω′1t

′
1eiω′2t

′
2 dt′2 dt′1 . (3.146)

By the linearity of the expectation value, one can immediately see thatmJ is the expectation value of the Fourier
transformed process, i.e.

mJ

(
r′, ω′

)
= 〈〈J

(
r′, ω′

)
〉〉 . (3.147)

The same holds for the correlation dyadics, i.e.

ΓJ

(
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′
2, ω
′
1, ω
′
2

)
=
〈〈
J
(
r′1, ω

′
1

)
J†
(
r′1, ω

′
1

)〉〉
, (3.148)

The rule for propagating means and correlation dyadics in the frequency-domain is similar to equations (3.139)
and (3.140), using frequency-domain Green’s dyadics, as given in (3.114). The propagation scheme is governed
by

mH (r, ω) =

∫∫∫
V ′
GHJ

(
r − r′, ω

)
mJ

(
r′, ω

)
d3r′ , (3.149)

ΓH (r1, r2, ω1, ω2) =

∫∫∫
V ′
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V ′
GHJ

(
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)
ΓJ

(
r′1, r

′
2, ω1, ω2

)
G†HJ

(
r2 − r′2, ω2

)
d3r′2 d3r′1 .

(3.150)
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For the case of stationary fields, which are clearly not contained in L2, one can think of time-windowing the
time-domain realizations, such that the Fourier integral converges for finite window lengths T and then taking
the limit of T →∞ [107].

3.7 Ensemble Averages and Sample Averages

In real-life applications, we typically do not know the exact parameters of a random field. Thus, those parameters
need to be reconstructed by recorded samples of the actual field in a data post-processing step. A required
assumption for being able to recover the statistical parameters from samples of a random field is ergodicity (see
Definition 2.32). Note that ergodicity implicitly requires the random field to be stationary, as otherwise, one
cannot infer statistical parameters from sampled data. Let now J be a Gaussian random source field which
is stationary and ergodic in the time argument. Motivated by the Birkhoff-Khinchin theorem [59], [71] for
ergodic random fields, the ensemble averages for the parametersmJ and ΓJ can be replaced by time averages.
Therefore, the parameters are given by

mJ

(
r′
)

= 〈〈J
(
r′, t′

)
〉〉 = lim

T→∞

1

2T

T∫
−T

j
(
r′, t′

)
dt′ , (3.151)

ΓJ

(
r′1, r

′
2, τ
)

= 〈〈J
(
r′1, t
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1

2T
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j
(
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′) j† (r′2, t′ − τ) dt′ , (3.152)

where j is a realization of the random field J . The mean value functionmH and the correlation dyadic ΓH of
the observed Gaussian random fieldH are similarly given in terms of the realization h by

mH (r) = 〈〈H (r, t)〉〉 = lim
T→∞

1

2T

T∫
−T

h (r, t) dt , (3.153)

ΓH (r1, r2, τ) = 〈〈H (r1, t)H
† (r2, t− τ)〉〉 = lim

T→∞

1

2T

T∫
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h (r1, t)h
† (r2, t− τ) dt . (3.154)

By expressing the resulting observed random fieldH in terms of an integral over a dyadic Green’s function, as
in (3.57), one obtains for the mean valuemH
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For the correlation dyadic of the observed field ΓH, we have accordingly [108]
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These results are similar to the results obtained for non-stationary and non-ergodic Gaussian random fields in
section 3.6. Nevertheless, these results are equally important, as they have been obtained in a completely different
way. This approach was also used in previous work by Russer, Haider, and Russer [7], [15], [16] for introducing
propagation of stationary ergodic Gaussian random fields from samples obtained by near-field scanning. On the
one hand, this is a very practical approach, as all statistical parameters needed are self-consistently obtained from
known field samples. On the other hand, it is rather difficult to generalize this approach to arbitrary statistics.
For stationary ergodic random fields, we can infer the statistical parameters directly from sampled data, where
the ensemble averages can be replaced by time averages. Thus, the results in equations (3.155) and (3.156)
give an important practical guideline on how to propagate statistical parameters of sampled Gaussian ergodic
fields. Anyway, we must assume ergodicity for considering practical measurements, when there is no a-priori
knowledge about the characteristic functionals of the random fields. Hence, in the practical setting, where the
statistics of the sources are unknown, we must assume a statistical model, e.g. Gaussian statistics, to be able
to estimate the statistical parameters from ergodic field samples. The mean value, which is constant in the
temporal coordinate, as well as the correlation dyadic of the source field, can be calculated from a sufficiently
long recorded sample of the random field at each point, or at each pair of points in space, respectively. Practical
examples of stochastic electromagnetic field propagation are presented in chapter 5.
The correlation dyadics for the source field and for the observed field are given in terms of a R3×R3×R→

R3 × R3 dyadic function. The components of the dyadic represent the correlations between the different field
components. In component notation, the correlation dyadics for the source field and for the observed field are
given by

ΓJ (r1, r2, τ) =

ΓJxx (r1, r2, τ) ΓJxy (r1, r2, τ) ΓJxz (r1, r2, τ)
ΓJ yx (r1, r2, τ) ΓJ yy (r1, r2, τ) ΓJ yz (r1, r2, τ)
ΓJ zx (r1, r2, τ) ΓJ zy (r1, r2, τ) ΓJ zz (r1, r2, τ)

 , (3.157)

and

ΓH (r1, r2, τ) =

ΓHxx (r1, r2, τ) ΓHxy (r1, r2, τ) ΓHxz (r1, r2, τ)
ΓH yx (r1, r2, τ) ΓH yy (r1, r2, τ) ΓH yz (r1, r2, τ)
ΓH zx (r1, r2, τ) ΓH zy (r1, r2, τ) ΓH zz (r1, r2, τ)

 , (3.158)

respectively.
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4 Characterization of Stochastic Electromagnetic
Fields

4.1 Near-Field Scanning

In chapter 3, the theoretical framework for describing stochastic electromagnetic fields in space and time has
been introduced. If the characteristic functional, i.e. the measure on the probability space associated with
the random field is known, we have shown a way how to propagate this statistical information through space
and time, using Maxwell’s equations. The last section 3.7 of the previous chapter introduced the concept
of ergodicity, which is essential for an experimental characterization of stochastic electromagnetic fields. In
real-world applications, however, there is generally no a-priori knowledge of the characteristic functional, i.e.
the probability model of the emitted random field. The stochastic model needs to be chosen according to the
observed fields. In general, one can argue by the central limit theorem (see Theorem 2.1), that there should be
a Gaussian probability distribution of the source field, close to a device under test, as long as the total number
of actual independent sources is large enough, where the total source field is given by a superposition of the
individual independent fields. The statistical parameters, in the Gaussian case the mean value and the correlation
dyadic, need to be determined from recorded ergodic field samples, in order to give a complete description of
the random electromagnetic field.

By the uniqueness theorem (Theorem 3.1), and by the equivalence principle (see section 3.5), the fields in a
source-free region V ⊂ R3 are uniquely determined, if the tangential field components at the boundary ∂V are
known. These tangential field components can then be converted to equivalent Huygens sources, according to
equations (3.128) and (3.129). Similar to actual source distributions, the equivalent sources may be propagated
either analytically or numerically, in order to determine the probability measure of the randomfield in the source-
free region V . It is, therefore, possible to completely characterize the probability distributions of the random
field in V , as long as the characteristic functional, or a parametric description of the characteristic functional
of the tangential electromagnetic field components at the boundary ∂V is known. With the assumption that the
underlying statistics are stationary and ergodic, a parametric description of the probability distribution can be
given by measuring the tangential electromagnetic field components at the boundary surface ∂V and computing
the mean value and correlation dyadic from the ergodic field samples according to section 3.7. As for stationary
signals, the mean value of the source field is a constant in time, we will focus on the second-order moments, i.e.
the correlation dyadics for giving a complete characterization of the stochastic electromagnetic field in V .
The tangential field components of the electromagnetic field at the boundary surface ∂V , radiated from a

device under test can be obtained by near-field scanning. Near-field scanning is a well-established technique
for antenna measurements [109], [110] and for assessing the field radiated by electronic components in terms
of electromagnetic interference (EMI) and electromagnetic compatibility (EMC) [111]. While in the antenna
measurement scenario one is primarily interested in the resulting far-field pattern, which can be determined from
near-field scanning of the antenna aperture, where the antenna under test is excited with a known deterministic
source signal, the main interest in terms of EMI/EMC related scenarios is to identify spatially resolved hot-spots
of noisy electromagnetic emissions. For the measurement of electromagnetic emissions in the frequency range
of 0.1 MHz to 6 GHz, there is an international IEC standard [111], describing the measurement procedure by
the so-called surface scan method. The standard proposes an automated software-controlled probe positioning
system with an accuracy that is greater than the minimum step size of the desired measurement grid, while
the measurement grid size, the grid spacing, and the probe height are not further specified and depend on
the actual application. Furthermore, the standard specifies near-field probes and calibration strategies for
measuring electric, magnetic or combined electromagnetic near-field components. For recording the probe
signals, frequency-domain measurement equipment, e.g. a spectrum analyzer, an EMI receiver, or a vector
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Figure 4.1 Block Diagram of an EMI Receiver.

network analyzer, with a resolution bandwidth of 9 kHz or 10 kHz and a video bandwidth of at least three times
the resolution bandwidth, is proposed. The RF measurement instrument should be configured to use a peak
detector. The dwell time for each measurement point should be long enough to cover at least six iterations
of the main code loop of the test firmware programmed to the device under test. In the standard [111] it
is also mentioned that the amount of data recorded for a complete scan may be extensive, while the overall
measurement time depends on the number of frequencies, the number of scan locations and the capability of
the data collection system.
It is pretty obvious that the setting of the standard [111] does not fit the scenario of propagating the statistical

parameters obtained from recorded samples of the tangential field components of the electromagnetic field on
a boundary surface ∂V into the volume V . Indeed, the standard focuses on creating color-enhanced heat-maps
of electromagnetic emissions, and thus disregards phase information, which is inevitable for field propagation.
Though it is suggested that one can also obtain phase information by putting a second reference probe for phase
synchronous measurements, the main focus of the standard is clearly the identification of EMI sources, rather
than a prediction of the field distribution away from the scan plane. Additionally, the peak detector, which
neglects the average behavior in favor of the maximum values measured, cannot be used for obtaining accurate
time averages. Hence, we propose some amendments to the standard, which are outlined in the following.

4.1.1 Time-Domain Measurements

Since noise is inherently broadband, a characterization over a wide frequency range is desirable. For frequency-
domain measurements, this means that the overall dwell time at each scanning location will be multiplied
by the number of frequency bands considered. Therefore, ultra-broadband measurements probably won’t
be feasible using standard frequency-domain measurement devices. Compared to the measurement procedure
outlined in [109] or [111] using frequency-domain measurement equipment, time-domain measurements [112]–
[115] can effectively reduce the overall measurement time by a reported factor of 8000 [107], [116], [117].
Traditionally, broadband measurements were carried out using superheterodyne receivers in the context of
characterizing EMI. The operation principle of an EMI receiver will be outlined in the following. A variable
local oscillator within the EMI receiver provides a known reference frequency. The measurement signal, as
well as the reference signal, generated by the local oscillator, are mixed and thus transferred to a lower fixed
intermediate frequency. The mixing of signals with two different frequencies, which generates a bunch of new
signals, e.g. one with the difference and one with the sum of the two input frequencies is referred to as the
superheterodyne principle. A block diagram depicting the working principle of a superheterodyne EMI receiver
is given in Figure 4.1. The signal picked up by the measurement probe is fed into the input of the EMI receiver
and is then filtered by the first tuneable band-pass filter Band-Pass 1. This RF preselection band-pass filter at
the input limits the input signal to a frequency range around the desired measurement frequency. The signal
may be amplified by a low noise amplifier (LNA), in order to have a signal amplitude which is higher than the
mixer’s noise level. In the next stage, a local oscillator reference frequency signal is mixed with the band-pass
filtered input signal, generating signals at the sum of input and reference frequency, and at the difference of the
input and reference frequencies, through the non-linearity of the mixer. The mixer may also produce signals at
higher-order harmonics. The second band-pass filter Band-Pass 2 then removes all frequency components but
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the desired intermediate frequency. This filter also determines the bandwidth of the signal recorded by the EMI
receiver. In the demodulator, the signal is rectified and further processed in terms of a selected detector mode.
The output may be attached to the input of a digital data collection system. As for each frequency, the dwell
time can be several seconds depending on the characteristics of the device under test, a broadband measurement
run can consume an extensive amount of time.
The enormous time-saving potential of time-domain measurement solutions as reported in [107], [116],

[117], along with other benefits, suggests that a time-domain measurement strategy is more promising for
characterizing statistical parameters of inherently broadband noisy electromagnetic fields [107], [118], [119].
Figure 4.2 shows a block diagram highlighting the operation principle of a time-domain measurement system,
that can be used for characterizing stochastic electromagnetic fields. The probe signal is fed into a low-pass
filter (Input-Filter) that limits the input bandwidth of the probe signal in order to suppress aliasing effects in
the subsequent analog to digital converter block (ADC). The ADC samples the signal at a given sampling rate
FS = 1

TS
and quantizes the sampled signal to a digital output with a certain resolution. The digital signal

is further processed by a real-time digital signal processor, Real-Time DSP, which computes the fast Fourier
transform (FFT) from the digital samples for providing information on, e.g. the amplitude spectrum of the
original probe signal. It is also possible to directly store the sampled digital signals, where any possible signal
processing can be done at a later time, which is a great advantage over frequency-domain measurements. For the
overall dwell time, it is also sufficient to consider only a few main loop cycles of the test firmware programmed
to the device under test, in order to have enough ergodic data samples for appropriate time averaging. The
sampling process of a time-continuous signal s can be described by a multiplication of the signal s with a
periodic sampling series [107],

XS (t) =
∞∑

n=−∞
δ (t− nTS) =

1

TS

∞∑
k=−∞

e
i2πk t

TS . (4.1)

The last equality holds sinceXS is periodic with period TS and can thus be expanded into a Fourier series with
constant coefficients ck = 1

TS
, ∀k ∈ Z. The Fourier transform of the sampling seriesXS is given by

XS (f) =
1

TS
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−∞
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)
.

(4.2)
The sampled time-domain signal s (n∆TS) at integer multiples of the sampling period TS is given by

s′ (t) = s (t) ·XS (t) . (4.3)

The Fourier transform of the sampled signal is given by the convolution of the individual spectra of the time-
domain signal s and of the sampling series XS. Using (4.2), it is clear that the spectrum s′ of the periodically
sampled time-domain signal s′ is a continuous function of the signal frequency f , and is equal to

s′ (f) =

∞∑
n=−∞

∞∫
−∞

s
(
f − f ′

)
δ

(
f ′ − k

TS

)
df ′ =

∞∑
n=−∞

s

(
f − k

TS

)
. (4.4)

Therefore, ideal time-sampling corresponds to infinitely reproducing the spectrum of the original, time-
continuous signal at multiples of the sampling frequency FS = 1

TS
.
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This correspondence provides us with a criterion on how to choose the sampling rate and how to design the
input filter in Figure 4.2, according to the desired frequency range of the input signal that is to be characterized
by time-domain sampling. This criterion is given by the following theorem [120], [121].

Theorem 4.1 (Nyquist–Shannon Sampling Theorem). Let s ∈ L1 be a band-limited signal with band-limit B,
i.e. the spectrum S (f0) = 0 for f0 > B, where we denote the Fourier transform of s by S. Then the original
signal s can be perfectly reconstructed from the discrete values s (kTS) for k ∈ Z, if

1

TS
> 2B .

Proof. The band-limited signal s can be represented by the inverse Fourier transform

s (t) =

∞∫
−∞

S (f) ei2πft df =

B∫
−B

S (f) ei2πft df .

The last step holds, since the signal is band-limited with band-limit B by assumption, i.e. the spectrum S
vanishes outside the interval f ∈ [−B,B]. We define the periodic continuation S̃ of the signal spectrum by
S̃ (f) = S̃ (f +B) and S̃ (f) = S (f) for |f | ≤ B. The periodic continuation s̃ can be represented as a Fourier
series by

S̃ (f) =

∞∑
k=−∞

ck exp

(
i2πkf

2B

)
,

where the coefficients ck are given by

ck =
1

2B
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S̃ (f) exp

(
− i2πkf
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)
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2B
s

(
− k

2B

)
.

The last step has been interpreted as an inverse Fourier transform with respect to −f . Since the integral is
evaluated over the interval [−B,B], the resulting signal is given by the original signal s, evaluated at single
points k

2B . Hence, the periodic continuation spectrum S̃ (f) can be represented by

S̃ (f) =
∞∑

k=−∞

1

2B
s

(
− k

2B

)
exp

(
i2πkf

2B

)
.

The original signal s (t) can now be obtained by an inverse Fourier transform, restricted to the interval [−B,B].
This already proves the theorem, since an absolutely integrable function is completely characterized by its
Fourier transform. Nevertheless, one can further derive a closed method for obtaining the original band-limited
time-continuous signal s from only a discrete set of signal samples. The inverse Fourier transform of S̃ is given
by

s (t) =

∫ B

−B

( ∞∑
k=−∞

1

2B
s

(
− k

2B

)
exp
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ei2πft df .

After some rearrangement, we obtain
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The last statement is a discrete convolution of the discrete samples s
(
k

2B

)
with the so-called sinc-kernel, which

reproduces the original signal.
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The input filter in Figure 4.2 needs to limit the measured signal to a maximum frequency of FS
2 as otherwise

there will be aliasing effects, i.e. artifacts that occur due to spectral overlaps of the frequency-shifted spectral
components, according to (4.4).

4.1.2 Measurement Setup

Characterizing stochastic electromagnetic fields slightly differs from both cases introduced above, from the
near-field antenna scanning case, where one is primarily interested in the far-field radiation pattern, and also
from the near-field EMI characterization case, where the focus is on the identification of radiation hot-spots.
However, one can use existing literature [109], [110], [122] and existing standards [111] as a starting point
and as a guideline for developing a near-field scanning system for characterizing stochastic electromagnetic
fields [118].
In contrast to EMI hot-spot identification, phase information is relevant in order to be able to propagate the

statistical parameters measured at the scan-plane ∂V into the source-free volume V above ∂V . In addition,
as already mentioned, one cannot simply specify phase values and amplitudes for stochastic electromagnetic
fields, as those quantities are random fields that follow certain distributions. Also a stationary phase reference,
as suggested in [111], [123] is not sufficient for characterizing noisy electromagnetic fields. For a complete
characterization of the statistics of stochastic electromagnetic radiation, one needs to obtain enough information
for a parametric estimation of a pre-assigned characteristic functional of the random field at the scan plane.
Reconstruction of statistical parameters is only possible for stationary, ergodic random fields, as discussed in
section 3.7. Nevertheless, if a full statistical characterization is not necessary, statements regarding the spatial
energy distribution of random fields, given in terms of spatial auto-correlation functions can be made for the
broader class of wide-sense stationary random fields (see Definition 2.29). For Gaussian random fields, wide-
sense stationarity implies stationarity in the strict sense, and thus, a complete statistical characterization of the
probability distribution of the field is possible by characterizing first and second order moments. For obtaining
second order moments, i.e. spatial correlation functions, one needs to synchronously obtain field samples at
each pair of points on the scan plane, and subsequently calculate auto- and cross-correlation functions.
For obtaining field samples simultaneously at each pair of points on the scan plane, an automated two-

probe near-field scanning system has been proposed in [124], [125]. In such a system, near-field probes are
automatically positioned on a predefined measurement grid and the probe signal is sampled time-synchronized,
using a multi-channel digital time-domain oscilloscope. Now suppose we have a predefined measurement grid
of N spatial sampling points. The number of multi-channel measurements, required for calculating spatial
correlation functions is given by the number of possible point pairs of the measurement grid. Since correlation
functions of pairs (m,n) can be obtained from the same data as correlation functions for points (n,m), the total
number of point pairs to be measured is given by

Npairs =
N (N − 1)

2
. (4.5)

For a complete characterization, one needs to take into account cross-correlation functions between all possible
field orientations, i.e. xx, xy, yx, and yy. Thus, four measurements need to be taken for each spatial point
pair, in order to be able to compute all components of the spatial correlation matrix. Thus, the total number of
measurements scales with O

(
N2
)
, which yields extensive measurement times and data storage requirements.

A possible strategy for data reduction of sampled stochastic electromagnetic fields will be discussed in chapter 7.

The two-probe scanning system, as proposed in [118], [124], [125] is schematically depicted in Figure 4.3.
Thereby, two magnetic near-field loop probes, Field Probe 1 and Field Probe 2 are precisely positioned
according to a software-defined measurement grid by the positioning elements Positioning Element 1 and
Positioning Element 2. As suggested in [111], the accuracy of the spatial positioning must be larger than the
desired spatial resolution, which needs to be chosen according to the Device under Test. Depending on the
number of channels, that can be measured synchronously, one might need a Switch, in order to be able to
record field samples simultaneously for all vectorial field components. The probe signals are low-pass filtered
by Channel Filter 1 and Channel Filter 2 for avoiding aliasing effects and are then digitized by the ADCs.

57



Channel 1:
Filter

Channel 2:
Filter

ADC

ADC

Central Processing
and Control Unit

Storage
Output
Display

Device under Test

Scan Plane

Field Probe 2

Positioning
Element 2Field Probe 1

Positioning
Element 1

Switch

y

z

x

Figure 4.3 Near-field scanning Measurement System (adopted from [124]).

The whole measurement process is controlled by the Central Processing and Control Unit. The recorded
field samples can either be processed directly after sampling, or one can choose to store the raw data for later
post-processing.
For experimentally characterizing stochastic electromagnetic fields, such a near-field scanning solution has

been implemented. Figure 4.4 depicts the realization of an automated two probe measurement system. The
scanner is mainly composed of plastic in order to not interfere with the radiated electromagnetic fields. The
system uses four stepper motors coupled to trapezoidal threads for two independent probe holders in x- and
y-direction, respectively. The steppers are controlled using commercially available iSMT stepper drivers from
ELV. A stepper control software has been implemented in MATLAB for positioning the probes on a predefined
measurement grid. Having two probes moving independently poses the risk of collision between moving
parts in the scanning system. This can be avoided, by designing the control system in such a way, that the
software is aware of a possible collision for given probe paths and can take the required countermeasures. A
collision detection system can be based on detecting overlaps between oriented bounding boxes around the probe
geometry [126]. Fast intersection methods, based on the separating axis theorem have been proposed in [127].

4.2 Probe Characterization

For themeasurement procedure described so far, ultra-widebandmagnetic field probes for scanning the tangential
magnetic field in a plane above the device under test have been proposed. To eliminate the influence of the probes
and other parts of the measurement setup, the measurement results have to be de-embedded [128], [129]. Based
on the measurement results of the probes on a standardized test structure [111], the transfer function of a probe
can be determined. The inverse transfer function of the probe can be used to transform the measured signal, such
that themeasurement error due to the effects of the probes can be eliminated. Typically, microwavemeasurement

58



Figure 4.4 3D model of in-house built two probe near-field scanning Measurement System.

setups are described in terms of S-parameters, hence, it is advantageous to formulate possible de-embedding
strategies in terms of ratios of transmitted and reflected wave amplitudes in the frequency-domain [129]–[131].
Nevertheless, as we have proposed time-domain measurements for determining the statistical parameters of
random electromagnetic fields, also the time-domain transfer function, i.e. the impulse response of the probes
is important for us in order to perform a deconvolution of the obtained measurement results.

4.2.1 Frequency-Domain Characterization

For determining the frequency-domain characteristics of a magnetic near-field probe, it is proposed in Annex C
of the IEC standard 61967-3 [111] to use a measurement setup similar to the one shown in Figure 4.5. The setup
consists of a two-layer PCB with a microstrip line structure with a characteristic impedance of 50Ω, which is
on the one side connected to port 1 of a Keysight E5063A VNA and terminated with a matched load on the
other side. Note that the standard suggests using a spectrum analyzer or receiver along with a signal generator
with an output power of 0 dBm, instead of a VNA. The output power Pout of the VNA at port 1 is set to 0 dBm,
to meet this condition. The measurement cables, connecting port 1 of the VNA to the PCB, and port 2 to the
magnetic field probe have been calibrated out, such that we know the voltages and currents at the input ports of
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Figure 4.5 Block diagram of the frequency-domain measurement setup for obtaining probe characteristics (adopted
from [129]).

both, PCB and magnetic loop probe. The voltages and currents can be obtained from the incident and reflected
power waves, aν and bν respectively, by

V ν =
√
Z0 (aν + bν) , (4.6)

Iν =
1√
Z0

(aν − bν) , (4.7)

where ν ∈ {1, 2}, and with [
b1
b2

]
=

[
S11 S12

S21 S22

] [
a1

a2

]
. (4.8)

As the input power, and thus |a1| is known, we can determine voltages and currents from the S-parameters,
measured by the VNA. The measured magnitudes and phases obtained according to the measurement setup, as
given in Figure 4.5, can be seen in Figure 4.6. From the magnitude of S22 in Figure 4.6a, one can see that the
probe itself, connected to port 2, has almost flat frequency characteristics over the whole band from 0 GHz to
10 GHz. As also shown in [129], the measured phase-characteristics in Figure 4.6b reveal a significant delay
between the signals transmitted at port 1 and received at port 2 of the VNA. From the voltages and currents at
port 1 and port 2 of the VNA, we can calculate the correction factor according to [132]. Figure 4.7 shows the
correction factor obtained by measurement, as well as the correction factor that the manufacturer provides in
the datasheet of the probes [133]. Considering the slightly different measurement setup, the results are in good
agreement. Note that we use a slightly different convention for denoting the calibration factor, compared to the
standards [111], [132] and compared to the datasheet of the Langer probes [133]. In the standard, the probe
calibration factor is regarded as a multiplicative factor, that transforms the voltage measured at the instrument
to the actual magnetic field, which induces the voltage in the loop probe. However, we use the convention, that
we treat the loop probe together with the transmission line and the free-space propagation in the measurement
setup described in Figure 4.5 as a linear time-invariant (LTI) system, and we regard the correction factor in
Figure 4.7 as a frequency-domain impulse response, characterizing the whole system.

4.2.2 Time-Domain Characterization

For time-domain measurements, as proposed in section 4.1, it is often not sufficient to have only the magnitudes
of the probe correction factors, as described in the previous section and given by Figure 4.7. For a full time-
domain de-embedding procedure, we need to have the complete time-domain impulse response, describing the
LTI system, formed by the magnetic near-field probes. The magnetic fields through the loop of the near-field
probe, or the currents in the transmission line, respectively, can then be obtained by a de-convolution of the
measurement results with the respective impulse response of the system. There are several possibilities to
obtain the time-domain impulse response of the system. One could e.g. use the frequency-domain S-parameter
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Figure 4.6 Magnitude and phase of the measured S-parameters of the measurement setup, described in Figure 4.5.

measurements from Figure 4.6b and perform an inverse Fourier transform in order to extract the time-domain
characteristics. This approach, nevertheless, has some shortcomings as highlighted in [134]. It is clear from the
transmission parameter shown in Figure 4.6 that the frequency-domain response has not sufficiently decayed
at a frequency of 10 GHz, and as a consequence, there are some variations in the reconstructed time-domain
impulse response. Furthermore, the inverse Fourier transformation might also violate the causality principle.
Hence, for obtaining the time-domain impulse response directly, we propose a measurement setup as depicted
in Figure 4.8 [129]. We use a Hewlett-Packard 8133A pulse generator that excites the transmission line. For
measuring the probe signal, and also the input signal through a power divider, we use a LeCroy SDA-813-
A high-speed digital oscilloscope. Furthermore, the probe signal is amplified using a Langer EMV-Technik
PA 203 SMA pre-amplifier. As mentioned before, we are modeling the whole structure, including the PCB with
the microstrip transmission line and the near-field probe itself as an LTI system. Now let vin be the signal, fed
into the transmission line by the pulse generator. The probe voltage vP measured by the oscilloscope can then
be described by the convolution

vP (t) =

∞∫
−∞

hP (t− τ) vin (τ) dτ + η (t) , (4.9)

where hP is the impulse response of the probe, including the whole signal path between the output of the pulse
generator and the input of the oscilloscope, and η is a random process with zero-mean, modeling the thermal
and environmental additive noise. The input signal vin, provided by the pulse generator, can be modeled as a
periodic rectangular pulse, with constant amplitude A, period T and pulse width ∆. Hence, the signal is given
by

vin (t) =
∞∑

n=−∞
A · rect

(
t− nT

∆

)
, (4.10)

where rect (x) is a rectangular unit pulse, defined by

rect (x) =

{
1 for |x| ≤ 1

2 ,
0 for |x| > 1

2 .
(4.11)
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Figure 4.7 Calibration Curve for Langer EMV-Technik RF-R50-1 near-field magnetic loop probe [133].

In order to reduce the influence of the additive zero-mean noise η, which corrupts our system, we perform cyclic
averaging. The synchronously registered averaged probe voltage vP for a single period T is given by [129]

〈〈vout (t)〉〉 ≈ 1

M

M∑
m=1

vout (t−mT ) , for 0 ≤ t < T , (4.12)

where M is the number of periods with length T , recorded by the oscilloscope. The cyclic average over the
duration of one period of the response to the rectangular pulse, generated by the pulse generator, is given in
Figure 4.9. The pulse duration of the input pulse is equal to ∆ = 5 ns, the period T = 80 ns and the amplitude
A = 5 V.
From Figure 4.9, one can see that the pulse duration of the averaged response is approximately 2 ns which

is smaller than the pulse duration of the input pulse. Hence, it can be reasonably argued that the averaged
response from Figure 4.9 actually represents the step response of the system when only taking the first pulse up
to t = 5 ns into account. It is well known that we can extract the impulse response of the system by taking the
temporal derivative of the step response [129]. This fact is denoted by the following short theorem.

Theorem 4.2. Let H be the step response of a linear time-invariant system. The impulse response h of the
system can then be obtained by

h (t) =
dH (t)

dt
.

Proof. The step response H of a linear time-invariant system with impulse response h can be written as

H (t) =

∞∫
−∞

h (τ)U (t− τ) dτ ,

where U (x) is the Heaviside unit step function. Now taking the temporal derivative on both sides yields

dH (t)

dt
=

d

dt

∞∫
−∞

h (τ)U (t− τ) dτ =

∞∫
−∞

h (τ)
d

dt
U (t− τ) dτ =

∞∫
−∞

h (τ) δ (t− τ) dτ = h (t) ,

where we have used that the derivative of the Heaviside function is given by the Dirac delta function and that
the Dirac delta function is an identity under the convolution. This completes the proof.
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Figure 4.8Block diagram of the time-domain measurement setup for obtaining probe characteristics (adopted from [129]).

According to Theorem 4.2, we take the numerical derivative of the step response, given in Figure 4.9 and
obtain the impulse response, which is depicted in Figure 4.10. The impulse response itself is a dimensionless
quantity, as it relates voltages at the input side to voltages at the output of the LTI system. In order to compare
both, time-domain and frequency-domain approaches, we have calculated the Fourier transform of the impulse
response. The magnitude and phase of the Fourier transformed linear time-invariant system can be seen in
Figure 4.11. Comparing Figure 4.11a, to the probe correction factors obtained in the frequency-domain from
the previous subsection, we can see that the agreement between the two curves is reasonably good. Additionally,
we have also plotted the phase distribution over frequency in Figure 4.11b, which can also provide valuable
information for the de-embedding strategy.

4.3 On the Spatial Distribution of Spectral Energy

The spatial distribution of the spectral energy density using principal components is discussed in [135]1. We
consider a setup given by a two-dimensional array consisting of p = m′ × n′ Hertzian dipoles of length l,
oriented in x-direction. The currents {Ij}pj=1 in the dipoles are governed by Gaussian random processes with

zero mean and are described by the correlation matrixCI [16]. The location
(
x′j , y

′
j

)
of the j-th dipole on the

source-plane z′ = 0 is

x′j = x′0 +

⌊
j − 1

m′

⌋
∆x′ , (4.13)

y′j = y′0 +
[
(j − 1) mod n′

]
∆y′ , (4.14)

with j ∈ {1, . . . , p}. Here, b·c denotes the floor operation, i.e. the next smaller integer number, and a mod b is
the modulo division of a and b. In order to investigate the propagation of stochastic electromagnetic fields, we
define a sampling grid, consisting of q = m× n observations on a plane at a distance of z = h from the source
plane. The spatial location (xj , yj) of the j-th observation point is analogous to (4.13) and (4.14), where the
location of the initial point (x0, y0) and the horizontal and vertical grid-spacing ∆x and ∆y may differ from
the source-grid parameters.
After choosing a finite set of source and observation points, the method of moments (see section 5.1.1) can

be applied to transfer the field problem to a network problem [136]. The mapping information obtained in form
of the moment matrix also provides the information how to transform the correlation information describing
1The results presented in this section have been published under IEEE copyright in M. Haider, J. A. Russer, A. Baev, et al., “Principal
component analysis applied in modeling of stochastic electromagnetic field propagation”, in 47th European Microwave Conference
(EuMC), Oct. 2017, pp. 1–4. The content (text and figures) is reproduced with permission of IEEE.
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Figure 4.9Measured step response of theLanger EMV-TechnikRF-R50-1 near-fieldmagnetic loop probewith PA203SMA
amplifier.

stationary stochastic EM fields. For our considerations, we use the free-space dyadic Green’s function, also
accounting for the near-field contributions, togetherwith point-matching [137] to obtain a generalized impedance
matrixZ (ω) relating the vector of generalized source currents IT (ω) to a vector of generalized voltagesV T (ω)
on the observation plane [16]. The subscript T denotes the time-windowed signal for which a spectrum can be
defined (see section 3.6.3). The (m,n)-th element Zmn of the generalized impedance matrix Z (ω), relating
the n-th source-current to them-th observation, is given by

Zmn (h, k) =
lZ0

4πk
e−ik
√

(xm−x′n)2+(ym−y′n)2+h2
[
g1

(
xm − x′n, ym − y′n, h, k

) (
xm − x′n

)2
+ g2

(
xm − x′n, ym − y′n, h, k

)]
, (4.15)

where Z0 is the free space wave impedance and k = 2πf/c0 is the wave number, c0 is the speed of light in
vacuum. In (4.15), we use g1 and g2 given by

g1 (x, y, z, k) = − 3i

‖r‖5
− 3k

‖r‖4
+

ik2

‖r‖3
, (4.16)

g2 (x, y, z, k) = − ik2

‖r‖
+

k

‖r‖2
+

i

‖r‖3
, (4.17)

with ‖r‖ =
√
x2 + y2 + z2. In the following, let us consider uncorrelated currents at a single frequency with

unit variance. Using the generalized impedance matrixZ assembled from (4.15), we can propagate the electric
field generated by the source dipole currents to observation-planes at different heights hi. The observations are
related to the sources by

V hi
T (ω) = Z (hi, ω/c0) IT (ω) . (4.18)

The subscript T denotes the spectrum of the time-windowed signals. Figure 4.12 shows the amplitudes of the
propagated electric field at different heights hi for a single realization of the stochastic source currents IT. To
compute the stochastic field, an ensemble average of the propagation of different realizations of IT has to be
formed.
Stochastic EM fields with Gaussian probability distribution can be described by second-order statistics, as

shown in chapter 3. We calculate auto- and cross-correlation spectra of fields at different heights using a method
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amplifier, obtained by taking the numerical derivative of the measured step response, given in Figure 4.9.

of moments based propagation scheme for correlation matrices utilizing the deterministic impedance matrix,
assembled from (4.15). Correlation matrices for generalized voltages V T and generalized currents IT, as
defined in [16], can be obtained by the ensemble averages

CI (ω) = lim
T→∞

1

2T

〈〈
IT (ω) I†T (ω)

〉〉
, (4.19)

CV (ω) = lim
T→∞

1

2T

〈〈
V T (ω)V T (ω)

〉〉
. (4.20)

Using (4.18), (4.19) and (4.20), we obtain a propagation rule for the correlation matrices [16], given by

Chi
V (ω) = Z (hi, ω/c0)CI (ω)Z† (hi, ω/c0) . (4.21)

For CI (ω) is equal to unity, which is the case for completely uncorrelated source currents Im, we get

Chi
V (ω) = Z (hi, ω/c0)Z† (hi, ω/c0) . (4.22)

Using (4.15), the elements of the correlation matrix Chi
V (ω) can be calculated by

ChiV,mn (ω) =
N∑
ν=1

Zmν (hi, ω/c0)Z∗νn (hi, ω/c0) . (4.23)

Using a cumulative percentage of total variance criterion, as specified in [138] and later on in 7, we can evaluate
the number of principal components to retain for different heights hi and different frequencies ω = 2πf for the
proposed setup.

4.3.1 Required Principal Components and Energy Considerations

We specify an array of source points, modeled by Hertzian dipoles oriented in x-direction, on an m′ = 8 by
n′ = 8 grid with a grid point spacing of ∆x′ = ∆y′ = 1 cm. With all source dipole currents chosen to be
uncorrelated, the correlation matrix describing these sources is a 64×64 matrix of full rank. Hence, we require
64 principal components to account for 100% of the variance. In the following, we investigate how the number
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Figure 4.11Magnitude and phase of the Fourier transformed impulse response, obtained by measurement.

of principal components necessary to explain 99% of the total variance changes, if we consider sampling grids
of the same size and spacing as the source grid, i.e. ∆x = ∆y = ∆x′ = ∆y′ = 1 cm and m = m′ = 8 and
n = n′ = 8, at various heights hi above the source plane where the Ex-field was sampled. Figure 4.13 shows
the estimated numbers of principal components to retain in order to explain 99% of total variance for each height
for source excitations at 1 GHz and 10 GHz. To perform this estimate on the number of principal components,
we consider the total EM field energy in each observation plane at z = hi. For this estimation, we numerically
propagate the field correlations of the noisy sources and use a finely resolved grid on the observation plane
which considerably exceeds the 7× 7 cm2 area used for the sources at z = h0, such that effectively all energy
radiated into the observation plane at hi is also sampled. The spectral energy density (SED) is closely related
to the auto-correlation spectrum for each field sampling point on the observation plane. The EM field energy
obtained by integrating the energy density over the 7× 7 cm2 area of interest at z = hi is compared to the total
energy on the observation plane z = hi. This ratio between the energy on the 7× 7 cm2 area to the total energy
in the plane, gives a proper estimate for the number of principal components to retain, in order to account for
99% of total variation for each height hi.
Figure 4.13 also shows the actual number of PCs which need to be retained in order to account for 99% of

the variance, and hence also for 99% of the SED of the stochastic EM field, obtained by performing principal
component analysis on the matrices Chi

V , given by (4.22). Here, we consider sampling grids of the same size
and resolution as the source grid. For terminating the algorithm after a certain percentage of total variation we
use the cumulative percentage of total variance (CPTV) criterion from [138], which will be later on described
in chapter 7.

4.3.2 Transverse Coherence

With increasing distance from the source plane, which can be considered an aperture, the number of principal
components required to explain the variance on a sampling grid of constant size decreases, while at the same
time the spatial angle observed, and hence, the number of transverse modes to be resolved, decreases as well.
To estimate the number of principal components required for explaining 99.9% of the variance at sampling
grids at a height z = hi and at height z = h0, we give an estimate on how many transverse modes we can
resolve on the given sampling point grid. The EM field is originating from an aperture As. This is a worst-case
estimate, i.e. indicating how many principal components we will need at most to give an accurate description
of the correlation matrix. The estimate will be good in the far-field and we assume the transverse component
of the propagation vector k to be small in magnitude compared to its overall wave number k0. The space angle
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Figure 4.12 Electric field magnitudes of the propagated EM field for a single realization, normalized within each
observation plane, at heights h0 = 0 mm, h1 = 10 mm, h2 = 30 mm, and h3 = 55 mm. The sources are modeled as 64
small dipole antennas, excited by uncorrelated currents, radiating in free space (from [135]).

containing one emitted mode is given by Ωc = λ2
0/As, where λ0 = 2π/k0 and, for our case, As = 7× 7cm2.

The number of transverse modesNtr which can be resolved in a distance r from the aperture on an area As will
be

Ntr =
A2

s

r2λ2
0

. (4.24)

For our numerical example, where only the Ex-field is sampled, the number of transverse modes to be detected
is Ntr/2. Hence, at a distance r, the number of principal components required for a full description of our
correlation matrix is given byNtr/2 while at the same time the number of principal components in our estimate
cannot exceed the maximum rank of the correlation matrix, which is in our example 64. The function

min

(
Ntr

2
, 64

)
, (4.25)

provides a qualitative good estimate for the maximum number of principal components required. At lower
frequencies, when the far-field assumption is less justified, the number of PCs required may exceed the number
from this estimate based on counting transverse modes.

4.4 Source Localization

Source localization has been treated extensively in [139]2. In the design process of a system, noisy fields can
be characterized by measurement and subsequent evaluation of correlation spectra of the EM field in a chosen
scanning plane of a device under test. The correlation spectra may be propagated in the source-free volume
2The results presented in this section have been published under IEEE copyright in M. Haider and J. A. Russer, “Equivalent source
localization for stochastic electromagnetic fields”, in International Conference on Electromagnetics in Advanced Applications
(ICEAA), Sep. 2017, pp. 1486–1489. doi: 10.1109/ICEAA.2017.8065563. The content (text and figures) is reproduced with
permission of IEEE.
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window. (from [135]).

above the scan plane, and hence, the noise energy can be computed for close-by components. However, it is
also of interest to obtain exact locations of noise sources that gave rise to the noisy field characterized in the
aforementioned scanning plane. In this way, insight is gained to the actual sources of EMI and strategies to
avoid or suppress disturbances can be devised. A simplified model can be established, based on equivalent point
sources, where the locations of these sources are calculated from data obtained by e.g. near-field scanning of
the device under test [140]. This helps in identifying hot-spots of concentrated radiated energy on the device
under test. To achieve a reliable localization of sources of electromagnetic interference, the spatial correlations
of the field observations at some distance of the actual device under test must be considered. This problem,
i.e. estimating the locations of radiating EMI sources, is strongly related to the problem of direction of arrival
estimation. There are well established algorithms available [141], [142], performing very efficiently under
far-field conditions. Direction of arrival estimation has been also considered using neural networks for noisy
EM fields in [143]. Another interesting approach is given in [144], where the authors perform a characterization
of noisy electromagnetic fields by a cross spectral density eigenvalue analysis. Work on source identification
for stochastic electromagnetic fields has been done in [134], [145]–[148]. The problem of finding locations
of equivalent dipoles can be split into four steps. First, find an appropriate Green’s function for a dense grid
of potential source points giving rise to an EM field at all specified observation points. Also for complex
geometries appropriate numerical Green’s functions can be found by using full-wave numerical EM modeling
tools. The second step is to form an inverse-propagator for the known Green’s function. With this, the stochastic
EM fields, described by spatial correlations, can be propagated back to the source plane. In the third step, an
estimation of the model order needs to be performed [30]. Finally, equivalent sources are identified based on
the data obtained by the inverse-propagation.

We discuss a method for source localization by obtaining inverse-propagation operators for arbitrary geome-
tries and present a numerical propagator for free-space, based on the discretization of the free-space Green’s
dyadic for the EM field. Based on the back-propagated data, a two-dimensional optimization problem is
formulated for finding the locations of equivalent dipole sources. Finally, a numerical example is presented.

Numerical EM field solvers can provide numerical Green’s functions for arbitrary structures. Here, we use
a numerical near-field propagator for free-space based on the free-space Green’s dyadic relating the current
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density in a source region to the excited magnetic fields. The magnetic fieldH (r, ω) due to a current density
J (r′, ω) is given by

H (r, ω) =

∫∫∫
V ′
GHJ

(
r, r′, ω

)
J
(
r′, ω

)
d3r′ . (4.26)

For free space, we know an analytic expression for the magnetic field Green’s dyadic, given by [16]

GHJ (r, ω) =
β2

4π
x× 1

1 + iβ ‖r‖
β2 ‖r‖3

e−iβ‖r‖ , (4.27)

with the unit dyadic 1, ‖r‖ =
√
x2 + y2 + z2, the phase coefficient β = ω/c0, and the free-space speed of light

c0. We can decompose the magnetic field as well as the current density into a set of basis functions um (r),

H (r, ω) =

No∑
m=1

I(o)
m (ω)um (r) , (4.28)

J (r, ω) =

Ns∑
n=1

I(s)
n (ω)un (r) , (4.29)

whereNo,Ns denotes the number of expansion functions for the observation and source plane, respectively, and
the expansion coefficients are termed as generalized currents In. A superscript o or s denotes the association
of the expansion function with points on the observation or source plane, respectively. We use Dirac delta
distributions for both, weighting and testing functions, which corresponds to the point-matching scheme for the
method of moments (MoM), hence

H (r, ω) =

No∑
n=1

I(o)
m (ω) δ (r − rm) , (4.30)

J (r, ω) =

Ns∑
n=1

I(s)
n (ω) dirac (r − rn) . (4.31)

Inserting (4.30) and (4.31) into (4.26) and applying an inner product with δ (r − rm), we obtain

I(o)
m (ω) =

Ns∑
n=1

GHJ

(
rm − r′n, ω

)
I(s)
n (ω) . (4.32)

In the following, we assume that observation and source plane are oriented in xy-direction while the distance
between source and observation plane h = (z − z′) is fixed, and we obtain basis function expansions in the
xy-plane for (4.32) with a fixed frequency ω by

I(o)
m,x =

N∑
n=1

M̃
(
rm, r

′
n

) [
I(s)
n,z

(
ym − y′n

)
− I(s)

n,yh
]
, (4.33)

I(o)
m,y =

N∑
n=1

M̃
(
rm, r

′
n

) [
I(s)
n,xh− I(s)

n,z

(
xm − x′n

)]
. (4.34)

Here, we have introduced the function

M̃
(
rm, r

′
n

)
=
β2

4π

1 + iβ ‖rm − r′n‖
β2 ‖rm − r′n‖

3 e−iβ‖rm−r′n‖ . (4.35)

For the equivalent source localization, planar structures radiating EMI are assumed, i.e. I(s)
n,z = 0. The frequency

dependent correlations between generalized currents can be obtained by

C
(o)
ij,mn = lim

T→∞

1

2T

〈〈
I

(o)
m,iI

(o)∗
n,j

〉〉
, (4.36)

C
(s)
ij,mn = lim

T→∞

1

2T

〈〈
I

(s)
m,iI

(s)∗
n,j

〉〉
, (4.37)

69



h

x′

y′

z′

x

y

z

(a) Near-field scanning scheme.

h

x′

y′

z′

x

y

z

(b) Source estimation based on scanned data.

Figure 4.14Near-field sampling on a plane above theDUT (a) and source estimation based on sampled data (b) (from [139]).

with i, j ∈ {x, y}. These correlations can be summarized in the matrices C(o)
ij and C(s)

ij . With Mmn =

h · M̃ (rm, rn) we find

C(o)
xx,mn =

Ns∑
k=1

Ns∑
l=1

MmkMnlC
(s)
yy,kl , (4.38)

C(o)
xx,mn =

Ns∑
k=1

Ns∑
l=1

MmkMnlC
(s)
xx,kl . (4.39)

This can be re-formulated in matrix-vector notation as

C(o)
xx = MC(s)

yy M
† , C(o)

yy = MC(s)
xxM

† . (4.40)

4.4.1 The Inverse Problem

With a suitable matrix inverseM−1, we can obtain

M−1C(o)
xx

(
M †

)−1
= M−1MC(s)

yy M
†
(
M †

)−1
, (4.41)

M−1C(o)
yy

(
M †

)−1
= M−1MC(s)

xxM
†
(
M †

)−1
. (4.42)

In general, the transformation matrixM ∈ CNo×Ns is not a square matrix, i.e. the number of observations is
different from the number of sources. Thus, the existence of a matrix inverseM−1 is not granted. Now, a dense
grid in the observation plane can be defined, where the matrix elements ofM are calculated for each (x′n, y

′
n)

and all the known observation points. The inverse problem is then solved by calculating the Moore-Penrose
pseudo inverseM+, defined by [149]

MM+M = M , M+MM+ = M+ , (4.43)(
MM+

)†
= MM+ ,

(
M+M

)†
= M+M . (4.44)

We can therefore find an optimal solution to the inverse problem by means of the Moore-Penrose pseudo inverse

C(s)
xx = M+C(o)

yy

(
M †

)+
, C(s)

yy = M+C(o)
xx

(
M †

)+
. (4.45)
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Figure 4.15 Result of the inverse problem for numerical back-propagation in Matlab (from [139]).

4.4.2 Equivalent Source Localization

The actual equivalent source localization poses an optimization problem. Given the correlation matrix in the
source plane as the solution of the inverse problem, the hot-spots of radiated energy need to be identified. This
can be done by finding the locations (x′, y′), such that the energy, given by the diagonal elements of C(s)

xx and
C

(s)
yy is maximized. The first equivalent source location is given by the largest maximum. In order to find the

total number of sources, wemust employ a criterion for estimating the model order. We use principal component
analysis, with a predefined cumulative percentage of total variance criterion [38], as we will later introduce in
chapter 7. The number of dominant principal components corresponds to the number of independent sources
and hence gives a good estimate of the model order. The two-dimensional local maxima can be identified in
terms of the two-dimensional optimization problem

(
x′, y′

)
=
(
x′n, y

′
n

)
, n ≤ N

∣∣∣∣∣ arg max
n≤N

(
C

(s)
ii,nn

)
. (4.46)

With all local maxima known, the largestN extrema are chosen, whereN corresponds to the result of the model
order estimation, based on principal component analysis. Figure 4.14 illustrates the scheme for sampling the
field originating from the device under test and subsequent source localization.

4.4.3 Numerical Example

Based on the free-space numerical propagator, given by (4.35), we investigate a numerical example. Numerical
propagators can be obtained for arbitrary geometries from full-wave analysis. We chose a known set of sources in
free-space on the source plane and propagated the stochastic magnetic field correlation matrix to the observation
plane. In order to resemble a real measurement, Gaussian noise is added to the observed signals. Subsequently,
we assume that the locations of the sources are unknown. Figure 4.15 shows the sampling points in the xy-
observation plane and noisy sources in the x′y′-plane, with currents oriented in x-direction. A dense grid of
possible source points is created on the source plane, where we calculate the necessary matrix elements of the
numerical propagator for each single grid point. Afterwards, we form the Moore-Penrose pseudo inverse and
pre- and post-multiply it to the noisy observation correlation matrix according to (4.45). In this way, we obtain
an estimate for the energy distribution in the source plane. By performing a principal component analysis, we
obtain a measure for the model order and can identify the locations of equivalent dipole sources. Results shown
in Figure 4.15 demonstrate an accurate source localization.
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5 Propagation of Stochastic Electromagnetic Fields

5.1 Frequency-Domain Propagation

5.1.1 The Method of Moments (MoM)

The method of moments is a very general procedure for turning field problems into network problems, i.e.
algebraic equations that can be solved numerically [136], [137]. The method of moments has been used to
generalize a whole subset of frequently used numerical methods, such as FDTD [150] and TLM [151]. As
both methods mentioned are indeed time-domain methods, one should note that the method of moments is
not exclusively a frequency-domain method, but a general concept for obtaining discretized field equations.
We decided to introduce the method of moments in the frequency-domain propagation chapter, because in
electromagnetics the method of moments is primarily, but not exclusively used in the frequency-domain [137].
LetH be a Hilbert space according to Definition 2.8. The most general formulation of a linear equation relating
elements of the Hilbert space H is given in terms of a linear operator L : H → H. The linear operator L can
be applied to a function f ∈ H, which yields a new function g ∈ H,

Lf = g . (5.1)

If there is one unique function f ∈ H for all g ∈ H under the action of L, then (5.1) constitutes a bijective
mapping and there exists an inverse operator L−1 with

f = L−1g . (5.2)

Any analytic function f can be expanded into a series of basis functions un with n ∈ {1, . . . , N}, as given in

f =

∞∑
n=1

anun , (5.3)

where the limit of the sum may be truncated after a finite index N for numerical feasibility. Anyway, we can
assumeN to be finite, and treat the finite series expansion as an arbitrarily precise approximation to the analytic
function f . Inserting the series expansion from (5.3) into the linear equation (5.1), we have

Lf = L

(
N∑
n=1

anun

)
=

N∑
n=1

anLun = g . (5.4)

Also the resulting function g can be expanded into a set of testing functions wm with m ∈ {1, . . . ,M}, such
that

g =
M∑
m=1

bmwm . (5.5)

If the set of testing functions {wm}Mm=1 spans the Hilbert space H, the coefficients bm of the function g, with
respect to the series expansion in (5.5), can be determined by an inner product

bm = 〈wm, g〉 . (5.6)

By applying the inner product to the series expansion of the linear equation in (5.4), we obtain a set of algebraic
equations, relating the expansion coefficients an of the analytic function f ∈ H to the expansion coefficients
bm of the function g ∈ H. The set of linear algebraic equations expressing this relation is given by [45]〈

wm,

N∑
n=1

anLun

〉
=

N∑
n=1

an 〈wm, Lun〉 = 〈wm, g〉 = bm . (5.7)
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The linear set of algebraic equations, given in terms of (5.7), can be written in matrix-vector form as

La = b , (5.8)

with the coefficient vectors a and b of the series expansions, and the matrix L, representing the expansion of
the linear operator L. The result of this matrix-vector multiplication is given element-wise by

〈w1, Lu1〉 〈w1, Lu2〉 · · · 〈w1, LuN 〉
〈w2, Lu1〉 〈w2, Lu2〉 · · · 〈w2, LuN 〉

...
... . . . ...

〈wM , Lu1〉 〈wM , Lu2〉 · · · 〈wM , LuN 〉



a1

a2
...
aN

 =


〈w1, g〉
〈w2, g〉

...
〈wM , g〉

 =


b1
b2
...
bM

 . (5.9)

Although the method of moments found widespread applications in solving problems in electromagnetics [137],
it is a very general mathematical procedure to approximate analytic equations by a finite set of algebraic
equations, which can be solved numerically, as mentioned before.

5.1.2 Stochastic Field Propagation by the Method of Moments

The general idea of propagating a stochastic field, as described in section 3.1, is first constructing a probability
measure on the space of fields X , representing the possible realizations of the random source field by means
of the family of all finite dimensional probability distributions, using Theorem 2.2. By requiring separability,
Theorem 2.3 ensures the existence of a probability measure also for continuous index sets. For any probability
measure P̃ , we can construct a characteristic functional χ on X with respect to P̃ , which carries all statistical
information and thus uniquely determines the random field. The second step is to model the propagation of
the field by a linear operator that maps the random source field to the observed random field. We discussed
the transformation of characteristic functionals under linear operators in section 3.1.2 and the special case
of the linear transformation of Gaussian random fields in section 3.2. In the general case, as can be seen
from equation (3.18), the transformation of the characteristic functional of the random source field to the
characteristic functional of the observed field is not linear, as the adjoint linear operator in (3.18) appears in
the argument of the functional χX. This renders the direct numerical propagation of characteristic functionals a
very difficult problem, as it involves solving non-linear equations. However, for Gaussian random fields, which
we will consider in the following, the characteristic functionals only depend on two statistical parameters, i.e.
mean function and correlation dyadic, which transform linearly. Thus, we can restrict ourselves to solving
linear equations for propagating those statistical parameters. Also for other than Gaussian statistics, it seems
to be beneficial to investigate the transformation of statistical parameters instead of propagating characteristic
functionals themselves. For now and in the following, we consider an electromagnetic random source field
which is assumed to be stationary, ergodic, and Gaussian distributed. The characteristic functional χJ of the
random source current density is given in the frequency-domain by the parametersmJ (r′) and ΓJ (r′1, r

′
2, ω).

Without loss of generality we setmJ (r′) to zero for all r′. The propagation of the stochastic electromagnetic
field is modeled by a linear integral operator with integral kernelGHJ (r, r′, ω), given by the Green’s function
of the spatial region under consideration. Hence we have

ΓH (r1, r2, ω) =

∫∫∫
V ′

∫∫∫
V ′
GHJ

(
r1 − r′1, ω

)
ΓJ

(
r′1, r

′
2, ω
)
G†HJ

(
r2 − r′2, ω

)
d3r′1 d3r′2 . (5.10)

We expand the source correlation dyadic ΓJ into a series of orthogonal spatial basis functions uk (r′1) and
ul (r

′
2), such that

ΓJ

(
r′1, r

′
2, ω
)

=
N∑
k=1

N∑
l=1

CJ kl (ω)uk
(
r′1
)
u†l
(
r′2
)
. (5.11)

Also the observed correlation dyadic ΓH is expanded into a series of orthogonal testing functionswm (r1) and
wn (r2), which is given by

ΓH (r1, r2, ω) =

M∑
m=1

M∑
n=1

CHmn (ω)wm (r1)w†n (r2) . (5.12)
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Inserting the series expansions (5.11) and (5.12) into the propagation equation for the correlation dyadic (5.10)
yields

M∑
m=1

M∑
n=1

CHmn (ω)wm (r1)w†n (r2) =
N∑
k=1

N∑
l=1

CJ kl (ω)

∫∫∫
V ′

∫∫∫
V ′
GHJ

(
r1 − r′1, ω

)
uk
(
r′1
)
u†l
(
r′2
)
×

×G†HJ

(
r2 − r′2, ω

)
d3r′1 d3r′2 .

(5.13)

By applying two inner products, one withwp (r1) and one withw†q (r2), and by using the orthogonality of the
testing functions, we obtain

CHmn (ω) =
N∑
k=1

N∑
l=1

CJ kl (ω)

∫∫∫
V

∫∫∫
V

∫∫∫
V ′

∫∫∫
V ′
w†m (r1)GHJ

(
r1 − r′1, ω

)
uk
(
r′1
)
u†l
(
r′2
)
×

×G†HJ

(
r2 − r′2, ω

)
wn (r2) d3r′1 d3r′2 d3r1 d3r2 .

(5.14)

Thus we have

CHmn (ω) =

N∑
k=1

N∑
l=1

CJ kl (ω)Mmk (ω)M∗ln (ω) , (5.15)

with
M ij (ω) =

∫∫∫
V

∫∫∫
V ′
w†i (r)GHJ

(
r − r′, ω

)
uj
(
r′
)

d3r′ d3r . (5.16)

The series expansions of the source and observation correlation dyadics yielded an algebraic equation, relating
discrete correlation matrices of frequency-dependent expansion coefficients using an expansion of the Green’s
dyadic. Finally, equation (5.16) can be written in matrix notation as

CH (ω) = M (ω)CJ (ω)M † (ω) . (5.17)

This method is very powerful in propagating correlation information, which shall be illustrated by a numerical
example. The accuracy of the solutions generated by the method of moments is dependent on the choice of
basis and testing functions [137]. For complex problems, it is desirable to obtain approximate solutions by
using subsectional basis functions, i.e. basis functions that are non-vanishing only on a finite subsection of
the source-domain V ′. The same holds for the testing functions. In the following numerical example, we use
three-dimensional unit step functions as basis functions, and Dirac delta distributions as testing functions, which
corresponds to the point-matching approximation [137], [152].

5.1.3 Numerical Example

Numerical studies on the near-field to far-field propagation of correlation information have been performed
in [152]1. As a device under test (DUT), we consider an Atlys Spartan-6 board, which is programmed to send
a Gaussian pseudo-random bit sequence along a transmission line on the printed circuit board (PCB)). For a
complete characterization of the radiated EMI of the DUT, we need knowledge of the tangential electromagnetic
field components on all possible pairs of measurement points simultaneously, according to section 3.2. Even for
moderate numbers of sampling points, this would result in a very large number of measurements and hence, in
an immense amount of data. Techniques for reducing the amount of data for two-probe near-field measurements
have been discussed in [38] and will be presented in chapter 7.
1The numerical example presented in this section was published under IEEE copyright in M. Haider, A. Baev, Y. Kuznetsov, et
al., “Near-field to far-field propagation of correlation information for noisy electromagnetic fields”, in 48th European Microwave
Conference (EuMC), Sep. 2018, pp. 1190–1193. doi: 10.23919/EuMC.2018.8541636. The content (text and figures) is reproduced
with permission of IEEE.
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Figure 5.1 Near-field scan plane above Atlys Spartan-6 Board (from [152]).

With the following numerical example, we want to compare correlation data of the sampled electromagnetic
far-field obtained by measurement, and far-field correlation data obtained by numerical propagation of the
near-field scan data, by means of the method of moments. To this end, we prepared a test case by propagating a
defined pseudo-random bit sequence along one signal transmission line of the PCB. This well-defined scenario
allows us to keep the reference probe stationary and hence reduces the number of measurements required. The
data signal propagating on the PCB can be written as

sT (t) =

N−1∑
n=0

an · rect

(
t− n∆

∆

)
, (5.18)

where rect
(
t−n∆

∆

)
are rectangular pulses with duration ∆ and the coefficients an ∈ {±1} are given by a pseudo

random M-sequence with delta-correlation properties [153].
The time-domain near-field measurement setup comprises two RF-R 50-1H-field probes from Langer EMV

Technik, which are connected to port 1 and port 3 of a Lecroy SDA-813-Zi-A high sampling rate digital
oscilloscope. We used our in-house scanning system, described in section 4.1.2, to spatially scan the DUT on a
rectangular 20× 23 measurement grid with a 5 mm horizontal and vertical spacing at a height of about 2 mm.
The measurement grid relative to the DUT can be seen in Figure 5.1. Figure 5.2 shows the concept of near-field
scanning above the DUT. We define the correlation function cij(τ, t) of two random signals si(t) and sj(t) by

cij (τ, t) = 〈〈si (t) sj (t− τ)〉〉 , (5.19)

where cii is the auto-correlation function, cij with i 6= j is the cross-correlation function (CCF), and the
brackets 〈〈. . .〉〉 denote the forming of an ensemble average [20]. If the mean values of two signals 〈〈si (t)〉〉,
〈〈si (t)〉〉 and their correlation functions 〈〈si (t) sj (t− τ)〉〉 are periodic with a period T0, the signals si and sj
are second-order cyclostationary in the wide sense, according to Definition 2.31.
The magnetic field excited by a certain current distribution is given through convolution with a dyadic Green’s

function. For free space, the dyadic Green’s function for the magnetic field is given by [102]

GHJ (r, ω) =
1

4π
r × 1

c0 + iω ‖r‖
c0 ‖r‖3

e
−iω

‖r‖
c0 , (5.20)

with

r × 1 =

 0 −z y
z 0 −x
−y x 0

 , (5.21)
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Figure 5.2 Near-field scanning scheme for a DUT at measurement height h (from [152]).

where ‖r‖2 = x2 + y2 + z2, and c0 as the free-space velocity of light. In the context of the MoM, we expand
the current density J (r′, ω) and the magnetic field H (r, ω) into orthogonal basis functions {un}Nn=0 and
{wm}Mm=0,

J
(
r′, ω

)
=

N∑
n=1

IJn (ω)un
(
r′
)
, (5.22)

H (r, ω) =

M∑
m=1

IHm (ω)wm (r) . (5.23)

Note that the expansion functions un (r′) and wm (r) are solely space dependent, while the expansion coef-
ficients IJn (ω) and IHm (ω) only depend on frequency. With this, and with a suitable inner product, we can
write (3.113) as

IHm (ω) =
N∑
n=1

IJn (ω)

∫∫∫
V

∫∫∫
V ′
w†m (r)GHJ

(
r − r′, ω

)
un
(
r′
)

d3r′ d3r , (5.24)

according to section 5.1.1. We summarize the expansion coefficients for the source current density in the vector
IJ (ω), the coefficients for the observed magnetic field in the vector IH (ω), and the numerical propagator in
the matrixM (ω). With this, the relation in (5.24) can be simplified to

IH (ω) = M (ω) IJ (ω) . (5.25)

For any discrete set of source points in V ′ on a grid with x-spacing∆′x and y-spacing∆′y, we use the subsectional
expansion functions

un
(
r′
)

=

{
1

∆′x∆′y
for r′ ∈ Un

0 otherwise
, (5.26)

where Un is the neighborhood around a grid point r′n ∈ V ′ defined by

Un =

{
r′ ∈ R3, r′n ∈ V ′ : x′n −

∆′x
2
≤ x′ ≤ x′n +

∆′x
2
∧ y′n −

∆′y
2
≤ y′ ≤ y′n +

∆′y
2
∧ z′ = 0

}
. (5.27)

For a discrete set of observation points in V , we use Dirac delta distributions as expansion functions, i.e.

wm (r) = δ (r − rm) , ∀rm ∈ V , (5.28)
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Figure 5.3 Far-field propagation of measured data (from [152]).

which corresponds to the point-matching approximation [137]. Thus, we obtain a free-space numerical Green’s
propagator M (ω) by inserting the expression for GHJ (r − r′, ω) from (5.20) into (5.24) and solving the
integrals

Mmn (ω) =
1

4π∆′x∆′y

∫∫∫
Un

[(
rm − r′

)
× 1
] c0 + iω ‖rm − r′‖

c0 ‖rm − r′‖3
e
−i ω

c0
‖rm−r′‖ d3r′ . (5.29)

Using (5.24) and (5.29), we can calculate the magnetic field at each observation point rm ∈ Um. The
correlation dyadics of the source currents ΓJ (r′1, r

′
2, ω) and the field-field correlation dyadic of the magnetic

field ΓH (r1, r2, ω) are given by [16]

ΓJ

(
r′1, r

′
2, ω
)

=
〈〈
J
(
r′1, ω

)
J†
(
r′2, ω

)〉〉
, (5.30)

ΓH (r1, r2, ω) =
〈〈
H (r1, ω)H† (r2, ω)

〉〉
. (5.31)

The correlation dyadic for the observation points r1 and r2 (5.31) can be obtained from the correlation dyadic
of the source currents (5.30) according to (3.150) for ergodic fields by

ΓH (r1, r2, ω) =

∫∫∫
V ′

∫∫∫
V ′
GHJ

(
r1 − r′1, ω

)
ΓJ

(
r′1, r

′
2, ω
)
G†HJ

(
r2 − r′2, ω

)
d3r′1 d3r′2 . (5.32)

With the numerical propagator from (5.29) and with (5.11) to (5.17), we can calculate the correlations of the
magnetic field at the observation points by

CH (ω) = M (ω)CJ (ω)M † (ω) , (5.33)

with CH (ω) =
〈〈
IH (ω) I†H (ω)

〉〉
and CJ (ω) =

〈〈
IJ (ω) I†J (ω)

〉〉
.

By introducing a Huygens surface at the scan plane z = 0, the measured near-field data is propagated using
the numerical MoM propagator from (5.29), which was implemented in Matlab. The time-domain near-field
data is first Fourier transformed and then propagated to a spherical grid of observation points in the far-field
at a distance of r = 3 m. The Fourier transform is necessary since the numerical propagator is given in
the frequency-domain, whereas we have recorded time-domain samples. The Fourier transform is calculated
according to

IHm (ω) = lim
T→∞

1

2T

T∫
−T

IHm (t) eiωt dt . (5.34)

A pure time-domain free-space Green’s propagator has been described in [7], [98], and was applied in [7]
for propagating correlation information solely in time-domain. We will show an example for time-domain
numerical propagation in 5.2. The sample points in the plane z = 0 are given by r = 3 m, ϑ =

[
−π

2 ,
π
2

]
in

5° steps, and ϕ = 0°. The numerical Green’s function is evaluated for each source integral and all observation
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Figure 5.4 The device under test on a rotating table in an anechoic chamber, together with the receiving an-
tenna (from [152]).

points in the frequency-domain, for 131,073 frequency steps. The spatial arrangement of the observation points
for the numerical propagation can be seen in Figure 5.3.
The frequency-domain data of the propagated, synchronized, and averaged near-field is then inversely Fourier

transformed and correlated with the initial pseudo-random bit sequence. The correlation is given by

CsT ,IHm (τ) =

∞∫
−∞

IHm (t) sT (t− τ) dt . (5.35)

For comparison, far-field measurements at 3 m distance are performed inside an anechoic chamber where the
DUT is mounted on a rotating table. Figure 5.4 shows the DUT in the anechoic chamber. The angle between
the normal to the surface of the PCB and the antenna’s axis is rotated from −90° to 90° while a reference
probe is situated on the opposite side of the PCB. Correlation data which was obtained thereby is shown in
Figures 5.5a, 5.5c and 5.5b, 5.5d for horizontal and vertical polarization. One can see good agreement between
the correlation coefficients of the measured and the numerically propagated field data. In Figures. 5.5a and 5.5c
one can see the angular dependency for the horizontal field component, while in Figures 5.5b and 5.5d no strong
angular dependence can be observed.

5.2 Time-Domain Propagation

5.2.1 Time-Domain Green’s Functions

In section 3.5, we have introduced the concept of time-domain Green’s functions for propagating a known source
distribution in a volume V ′ to an observed field at points in a volume V . We consider electric polarization
densities P e as sources and we observe a magnetic field H at distinct points of interest. The relationship
between source polarization density and observed magnetic field is given in terms of a Green’s dyadic GHPe .
For propagating correlation dyadics, describing stationary ergodic Gaussian stochastic electromagnetic fields,
we consider equation (3.156) in component notation

ΓHµν (r1, r2, τ) =
∑

κ∈{x,y,z}

∑
λ∈{x,y,z}

∫∫∫
V ′

∫∫∫
V ′

∞∫
−∞

∞∫
−∞

GHPe µκ

(
r1 − r′1, τ ′′

)
×

× ΓPe κλ

(
r′1, r

′
2, τ − τ ′

)
GHPe νλ

(
r2 − r′2, τ ′ − τ ′′

)
dτ ′ dτ ′′ d3r′2 d3r′1 . (5.36)
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(a) Propagated far-field CCF for horizontal polarization.
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(b) Propagated far-field CCF for vertical polarization.
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(c) Measured far-field CCF for horizontal polarization.
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(d) Measured far-field CCF for vertical polarization.

Figure 5.5Angular distributions of propagated and measured CCF at a distance of 3 m for both polarizations (from [152]).

At least for (wide-sense) stationary fields, where the correlation dyadic is only dependent on the time difference
τ , as we described in 3.3, we can define a single rank-4-tensor KHPe µκλν , describing the propagation of
correlation dyadics [7]. We refer to the rank-4-tensor as Green’s correlation tensor, which relates the correlation
dyadic ΓHµν of the observed field to the correlation dyadic of the source fields ΓPe µν . Note that only a single
temporal convolution with the rank-4-tensor KHPe µκλν is necessary in order to propagate from the source
correlations to the correlation dyadic of the observed field. The Green’s correlation tensor is defined by

KHPe µκλν (r1, r2, τ) =

∞∫
−∞

GHPe µκ

(
r1, τ

′)GHPe νλ

(
r2, τ − τ ′

)
dτ ′ . (5.37)
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Figure 5.6 Planar array of N = 5 stochastic sources sampled at a sampling plane parallel to the source plane (from [7]).

Inserting equation (5.37) into (5.36) results in a correlation propagation scheme exhibiting only a single temporal
convolution

ΓHµν (r1, r2, τ) =
∑

κ∈{x,y,z}

∑
λ∈{x,y,z}

∫∫∫
V ′

∫∫∫
V ′

∞∫
−∞

KHPe µκλν

(
r1 − r′1, r2 − r′2, τ ′

)
×

× ΓPe κλ

(
r′1, r

′
2, τ − τ ′

)
dτ ′ d3r′2 d3r′1 . (5.38)

In the following, we consider three examples from [7], which are chosen to demonstrate the time-domain
propagation of correlation information, based on Green’s functions for polarization densities.

5.2.2 Near-Field Distribution Excited by Sources in a Plane

Figure 5.6 shows an arrangement of N = 5 random dipole sources S1 . . . S5 located in the plane z = 0 at
positions rν = [xν , yν , 0]T with ν = 1 . . . N . Impressing an electric current iν (t) into the ν-th dipole with a
small length lν , we can calculate the electric polarization pe ν of the ν-th dipole by

pe ν (t) = lν

t∫
0

iν
(
t′
)

dt′ . (5.39)

Assuming a spherical coordinate system, the orientation of each dipole is characterized by the azimuth and
elevation angles ϕν and ϑν , respectively, with respect to the z-axis. The electric polarization density P e (r, t)
of all dipoles is given by the sum

P e (r, t) =

N∑
ν=1

pe ν (t) Ωνδ (r − rν) , (5.40)

where δ (r) is the three-dimensional Dirac delta distribution. The normalized orientation vector Ων , given by

Ων =

sinϑν cosϕν
sinϑν sinϕν

cosϑν

 , (5.41)

describes the angular orientation of the ν-th dipole.
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The time-domain correlation dyadic ΓPe (r1, r2, τ) of the stochastic electric polarization density vectors at
the locations r1 and r2 is given by

ΓPe (r1, r2, τ) =

N∑
µ=1

N∑
ν=1

cpe µν (τ) ΩµΩ
T
ν δ (r1 − rµ) δ (r2 − rν) , (5.42)

with the correlation matrix elements of the electric dipole moments

cpe µν (τ) = 〈〈peµ (t) pe ν (t− τ)〉〉 . (5.43)

Consider an even simpler example with only two point-like electric dipole sources located at r− = [−a, 0, 0]T

and r+ = [a, 0, 0]T. Let both dipoles be oriented in y-direction such that ϑν = ϕν = π/2. In this case we
obtain Ων = [0, 1, 0]T for ν ∈ {±}, and hence, the source polarization dyadic ΓPe (r1, r2, τ) exhibits the
single component

ΓPe yy (r1, r2, τ) =
∑
µ∈{±}

∑
ν∈{±}

cpe µν (τ) δ (r1 − rµ) δ (r2 − rν) . (5.44)

It is easy to prove that cpe νµ (τ) = cpe µν (−τ), by reversing the indices in equation (5.43). For propagating the
correlation dyadic of the electric source polarization density ΓPe to arbitrary observation points, we consider
a propagation scheme as given in (5.38). The resulting electric and magnetic field correlation dyadics are thus
obtained by

ΓHµν (r1, r2, τ)=

∫∫∫
V ′

∫∫∫
V ′

∞∫
−∞

KHPe µyyν

(
r1 − r′1, r2 − r′2, τ ′

)
ΓPe yy

(
r′1, r

′
2, τ − τ ′

)
d3r′1 d3r′2 dτ ′ ,

(5.45)

ΓEµν (r1, r2, τ)=

∫∫∫
V ′

∫∫∫
V ′

∞∫
−∞

KEPe µyyν

(
r1 − r′1, r2 − r′2, τ ′

)
ΓPe yy

(
r′1, r

′
2, τ − τ ′

)
d3r′1 d3r′2 dτ ′ ,

(5.46)

where the non-vanishing Green’s Correlation rank-4-tensor components of (5.45) and (5.46) are given by

KHPe µyyν (r1, r2, τ) =

∞∫
−∞

GHPe µy

(
r1, τ

′)GHPe νy

(
r2, τ − τ ′

)
dτ ′ , (5.47)

KEPe µyyν (r1, r2, τ) =

∞∫
−∞

GEPe µy

(
r1, τ

′)GEPe νy

(
r2, τ − τ ′

)
dτ ′ . (5.48)

The Green’s functions in equations (5.47) and (5.48) are given by equations (3.74) and (3.77) for free space. In
component notation, these are given by

GHPe µκ (r, τ) =
1

4π

∑
ν∈{x,y,z}

εµκνrν

[
1

‖r‖3
δ′
(
τ − ‖r‖

c0

)
− 1

c0 ‖r‖2
δ′′
(
τ − ‖r‖

c0

)]
, (5.49)

GEPe µκ (r, τ) =
µ0

4π

√
µ0

ε0

(δµκ − 3
rµrκ

‖r‖2

)c0δ
′
(
τ − ‖r‖c

)
‖r‖2

+
c2

0δ (c0τ − ‖r‖)
‖r‖3


+

(
δµκ −

rµrκ

‖r‖2

)δ′′
(
τ − ‖r‖c0

)
‖r‖

 , (5.50)
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where εµκν is the Levi-Civita complete antisymmetric tensor exhibiting the value +1 if µκν is an even
permutation of {x, y, z}, the value −1 if µκν is an odd permutation of {x, y, z} and the value 0 if at least two
indices are identical.
In the following, we focus on the magnetic field correlations only. Inserting (5.49) into (5.47) and applying

the relation
∞∫
−∞

δ(m)
(
t′
)
δ(n)

(
t− t′

)
dt′ = δ((m+n) (t) (5.51)

for the convolution of them-th with the n-th derivative of the Dirac delta distribution, we obtain for the Green’s
correlation rank-4-tensor of the magnetic field

KHPe µyyν (r1, r2, τ) =
∑

κ∈{x,z}

∑
λ∈{x,z}

εµyκενyλr1κr2λ

16π2 ‖r1‖3 ‖r2‖3

[
δ(2)

(
τ − |‖r1‖ − ‖r2‖|

c0

)

− ‖r1‖+ ‖r2‖
c0

δ(3)

(
τ − |‖r1‖ − ‖r2‖|

c0

)
+
‖r1‖ ‖r2‖

c2
0

δ(4)

(
τ − |‖r1‖ − ‖r2‖|

c0

)]
.

(5.52)

Inserting (5.44) and (5.52) into (5.45) yields

ΓHµν (r1, r2, τ) =

∫∫∫
V ′

∫∫∫
V ′

∞∫
−∞

∑
κ∈{x,z}

∑
λ∈{x,z}

εµyκενyλ (r1κ − r′1κ) (r2λ − r′2λ)

16π2 ‖r1 − r′1‖
3 ‖r2 − r′2‖

3 ×

×
[
δ(2)

(
τ ′ − |‖r1 − r′1‖ − ‖r2 − r′2‖|

c0

)
− ‖r1 − r′1‖+ ‖r2 − r′2‖

c0
δ(3)

(
τ ′ − |‖r1 − r′1‖ − ‖r2 − r′2‖|

c0

)
+
‖r1 − r′1‖ ‖r2 − r′2‖

c2
0

δ(4)

(
τ ′ − |‖r1 − r′1‖ − ‖r2 − r′2‖|

c0

)]
×

×
∑
ξ∈{±}

∑
η∈{±}

cpe ξη

(
τ − τ ′

)
δ
(
r′1 − rξ

)
δ
(
r′2 − rη

)
d3r′1 d3r′2 dτ ′ . (5.53)

Performing the integration over the primed spatial coordinates r′1 and r′2, we obtain

ΓHµν (r1, r2, τ) =
∑

κ∈{x,z}

∑
λ∈{x,z}

∑
ξ∈{±}

∑
η∈{±}

εµyκενyλ (r1κ − rξ κ) (r2λ − rη λ)

16π2 ‖r1 − rξ‖3 ‖r2 − rη‖3
×

×
∞∫
−∞

[
δ(2)

(
τ ′ −

|‖r1 − rξ‖ − ‖r2 − rη‖|
c0

)

−
‖r1 − rξ‖+ ‖r2 − rη‖

c0
δ(3)

(
τ ′ −

|‖r1 − rξ‖ − ‖r2 − rη‖|
c0

)
+
‖r1 − rξ‖ ‖r2 − rη‖

c2
0

δ(4)

(
τ ′ −

|‖r1 − rξ‖ − ‖r2 − rη‖|
c0

)]
×

× cpe ξη

(
τ − τ ′

)
dτ ′ . (5.54)
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Table 5.1 Cases of Correlation

Fully correlated in-phase cpe−+ (τ) = cpe+− (−τ) = cpe++ (τ)

Fully correlated anti-phase cpe−+ (τ) = cpe+− (−τ) = −cpe++ (τ)

Uncorrelated cpe−+ (τ) = cpe+− (τ) = 0

The resulting correlation dyadic of the magnetic field is finally obtained by performing the integration over τ ′.
This yields

ΓHµν (r1, r2, τ) =
∑

κ∈{x,z}

∑
λ∈{x,z}

∑
ξ∈{±}

∑
η∈{±}

εµyκενyλ (r1κ − rξ κ) (r2λ − rη λ)

16π2r3
ξ 7→1r

3
η 7→2

×

×
[
c

(2)
pe ξη

(
τ −
|rξ 7→1 − rη 7→2|

c0

)
−
rξ 7→1 + rη 7→2

c0
c

(3)
pe ξη

(
τ −
|rξ 7→1 − rη 7→2|

c0

)
+
rξ 7→1rη 7→2

c0
c

(4)
pe ξη

(
τ −
|rξ 7→1 − rη 7→2|

c0

)]
, (5.55)

with the propagation distance functionals rξ 7→1 = ‖r1 − rξ‖ and rη 7→2 = ‖r2 − rη‖. Due to the sparsity of
the resulting matrices, the sums over the Levi-Civita symbols can be simplified to∑

κ∈{x,z}

∑
λ∈{x,z}

εµyκενyλ (r1κ − rξ κ) (r2λ − rη λ) = δµxδµx (r1x − rξ x) (r2x − rη x)

− δµxδµz (r1x − rξ x) (r2 z − rη z)
− δµzδµx (r1 z − rξ z) (r2x − rη x)

+ δµzδµz (r1 z − rξ z) (r2 z − rη z) . (5.56)

With this, we can now write equation (5.55) in matrix-vector notation as

ΓH (r1, r2, τ) =
∑
ξ∈{±}

∑
η∈{±}

1

16π2r3
ξ 7→1r

3
η 7→2

[
c

(2)
pe ξη

(
τ −
|rξ 7→1 − rη 7→2|

c0

)

−
rξ 7→1 + rη 7→2

c0
c

(3)
pe ξη

(
τ −
|rξ 7→1 − rη 7→2|

c0

)
+
rξ 7→1rη 7→2

c0
c

(4)
pe ξη

(
τ −
|rξ 7→1 − rη 7→2|

c0

)]
×

×

 (r1x − rξ x) (r2x − rη x) 0 − (r1x − rξ x) (r2 z − rη z)
0 0 0

− (r1 z − rξ z) (r2x − rη x) 0 (r1 z − rξ z) (r2 z − rη z)

 . (5.57)

Let us assume both sources to be Gaussian noise sources. We will consider three cases of correlation between
the two sources according to Table 5.1. Using equation 5.57 on the correlation matrices of two Gaussian noise
processes, one for each source at r±, we can compute ΓH (r1, r2, τ) numerically. The expectation value of the
magnetic energy density is given by the trace of ΓH (r1, r2, τ) as

〈〈Wmag (τ)〉〉 =
µ

2

〈〈
H2 (r, t)

〉〉
=
µ

2
Tr (ΓH (r, r, τ)) . (5.58)

The angular distribution of the auto-correlation functions of the field observed in this numerical example is
plotted in Figure 5.7. Here it was assumed that a = 2.5 cm, and the field was observed over the azimuth angle
θ at a distance of r = 15 cm from the origin (see also Figure 5.6). The source field is generated by Gaussian
noise which was sampled at a sampling rate of 10 GS s−1. As expected, values for the auto-correlation function
exhibit a maximum for τ = 0, θ = 0° for the case of fully in-phase correlated noise, a minimum for the case of
anti-phase correlated sources, and an intermediate value for uncorrelated sources.
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Figure 5.7 Angular distribution of the auto-correlation function at a distance of 15 cm for the case of correlated in-phase,
correlated anti-phase, and uncorrelated sources (from [7]).

5.2.3 Plane Wave Incident on a Circular Sensor Array

As our next example, we consider a plane wave incident on a circular array of m = 6 sensors, denoted by
A1 . . . Am as depicted in Figure 5.8. This example is similar to the one presented in [154]. Figures 5.9a and 5.9b
show the auto-correlation spectrum and the auto-correlation function of a stationary Gaussian noise wave with
the spectrum centered around the frequency f0 and the variances σtf0 = 2 and σtf0 = 10, respectively. For
the spectrum of the Gaussian random process, we assume a Gaussian-shaped spectrum centered around the
frequency f0, which can be described by the auto-correlation spectrum and by the auto-correlation function

CExx (f) =
1

2

√
πσtC0

[
e−(f−f0)2σ2

t + e−(f+f0)2σ2
t

]
, (5.59)

cExx (τ) = C0 cos (2πf0τ) e
−τ2

σ2t . (5.60)

Antenna diagrams for an incident harmonic plane wave with frequency f0 = c0/a and incident Gaussian noise
plane waves with center frequency f0 = c0/a and variable spectral width are shown in Figure 5.10. In the
remainder of this example, the radius of the circular sensor array is chosen to a = 60 cm. The incident wave
represents a random wireless data transmission at a center frequency of 2.4 GHz. A QPSK modulated random
bit sequence, representing the payload data, is combined with a deterministic frame header and transmit-filtered
with a root raised cosine pulse-shape filter to form the transmit data stream [155]. A signal source is modeled as a
point source at a distance of 1000 m from the array center, where the polarization density of the point source is the
up-converted data streamwith normalized signal amplitude. Two realizations of the QPSK-modulated, transmit-
filtered and up-converted data stream are depicted in Figure 5.11. The sensed electromagnetic signals at the
elements of the circular array are computed by equation (3.73), and the signal correlations by equation (3.156),
respectively. The signals smT (t) at the sensors are summarized in a signal vector sT (t). The index T denotes
time-windowing of the signal [107], as discussed earlier in subsection 3.6.3.
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Figure 5.8 Circular antenna array with m = 6 sensors. The sensors are organized in a hexagonal shape, where the outer
radius is given by a. Plane waves are incident to the array at an angle of ϕ0.

We implement a time-domain steering vector matrix as [154]

a (t, ϕ1, . . . , ϕm) =


δ (t− τ11) δ (t− τ12) · · · δ (t− τ1m)
δ (t− τ21) δ (t− τ22) · · · δ (t− τ2m)

...
... . . . ...

δ (t− τn1) δ (t− τn2) · · · δ (t− τnm)

 , (5.61)

where τµν = τa (cosϕµ − cosϕν), τa = a/c0, ϕµ is the steering angle, and ϕν is the angle attributed to the
m-th sensor element. With this steering matrix implemented, we obtain an antenna output vector

vT (t) =

∞∫
−∞

a (t− τ, ϕ1, . . . , ϕm) sT (τ) dτ . (5.62)

The correlation function of the antenna signals vνT (t) and vκT (t) is given by

cv νκ (τ) = lim
T→∞

1

2T

∞∫
−∞

vνT (t) vκT (t− τ) dt , (5.63)
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Figure 5.9 Auto-correlation spectrum and auto-correlation function of a Gaussian noise wave. Both, spectrum and
correaltion function are plotted for variances of σtf0 = 0.5, σtf0 = 1, and σtf0 = 2 (from [7]).

and the time-domain steering vector matrix is given by

a (t, ϕ1, . . . , ϕm) = [a1 (t, ϕ1) , . . . ,am (t, ϕm)] , (5.64)

with the time-domain steering vectors

aµ (t, θµ) =


δ (t− τa (cosϕµ − cosϕ1))
δ (t− τa (cosϕµ − cosϕ2))

...
δ (t− τa (cosϕµ − cosϕn))

 . (5.65)

In two example cases, a single QPSK source, located at an angle of 120°, is excited, or two QPSK sources
with different, independent data streams, located at the angles 45° and 270°, are excited. The observed auto-
correlation function according to equation (5.63), for changing steering angles ϕµ, is assessed. The maximum
of the auto-correlation function shows the direction of arrival of the incident wave, as shown in Figure 5.12. It is
shown that the maximum in the auto-correlation function over all steering angles clearly identifies the direction
of the source.

5.2.4 Propagation of Field Correlation

In an experimental setup, we have computed cross-correlations pertaining to the far-field from experimental
near-field scanning data of a digital circuit board under test, an Atlys Spartan-6 board, and compared it to cross-
correlations obtained from measurements performed directly in the far-field. Measurements for the far-field
were taken in an anechoic chamber [152]. The presented time-domain propagator for field correlations has
been applied to the scanned near-field data, in order to predict the measured far-field cross-correlations. For
the far-field measurements in the anechoic chamber, a reference probe was placed close to the device under test
(DUT) for obtaining a synchronization signal of the cyclostationary process occurring on the board. Using this
reference signal, we can synchronize the obtained far-field measurement curves and perform cyclic averaging
with the cycle period of the underlying cyclostationary process. Cross-correlations are formed with a known
pseudo-random bit sequence governing the data transfer process on the device under test. Figure 5.13 shows
the angular dependence of the cross-correlation function (CCF) obtained from numerically propagated far-field
observations with the reference pseudo-random bit sequence and cross-correlations obtained with measured
far-field data. Both, the measured and the numerically propagated CCFs plotted show a qualitatively good
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Figure 5.10 Antenna diagrams of an incident plane wave with frequency f0 = c0/a, and incident Gaussian noise plane
waves with Gaussian spectrum, centered around the frequency f0 = c0/a with spectral widths σtf0 = 2, σtf0 = 1, and
σtf0 = 0.5.

agreement, while their magnitudes deviate, which may be attributed to the fact that cables have not been de-
embedded and probe compensation for the logarithmic periodic sensing antenna has not been taken into account
in these measurements.

5.2.5 Correlation Transmission Line Matrix Method (CTLM)

The correlation transmission line matrix (CTLM) method for numerical propagation of stochastic electromag-
netic fields is an extension to the discrete-time transmission line matrix (TLM) method [21], [22], which is
a well established numerical method for solving Maxwell’s equations [156]. The TLM method relies on the
analogy between electromagnetic fields, propagating in space and time, and voltages and currents propagating
through a mesh of transmission lines [157]. Based on this analogy, the TLM method has been first proposed
in [158]. It has been shown in [151], that the TLM method can be derived by expanding Maxwell’s equations
at the boundary surfaces into a set of triangular basis functions for the time coordinate and for the tangential
spatial coordinates, and into step functions for the perpendicular spatial coordinate, respectively. Field samples
can be taken in the center of the boundary surface, which is referred to as finite difference approximation, or
by taking an average over a certain surface area, which is called finite integration approximation [83]. For
simplicity, we assume free-space propagation in the following, although the TLM scheme is general enough to
treat arbitrary geometries with different material parameters. Material parameters and losses are incorporated
by loading each TLM node with a certain load impedance Z and modifying the scattering matrix S in each
node accordingly [156].
The three-dimensional condensed node [151], used in TLM, is depicted in Figure 5.14. In TLM, one

considers twelve wave-amplitudes, incident at each node, summarized in a vector a, and twelve scattered wave-
amplitudes, summarized in a vector b. The wave-amplitudes are mapped to the electric and magnetic field
vectors using the cell-boundary-mapping introduced in [151]. The cell-boundary-mapping ensures a bijective
one-to-one mapping between the twenty-four tangential electric and magnetic field components sampled at the
six boundary surfaces of a TLM cell and the twenty-four wave pulse amplitudes incident on the respective TLM
node and scattered from it.
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Figure 5.11 Two realizations of the incident QPSK modulated signals, generated from pseudo-random bit sequences. The
first signal is incident at an angle of 1

4π and the second signal generates an incident wave at an angle of 9
6π (from [7]).

Now let x [n] denote a discrete-time signal given by the sampled values of the signal at time instances nTS,
where TS is the sampling rate of the sampled real signal s. The correlation function of two time-discrete signals
xi [n] and xj [n] is given by

cxij [n, n+m] = 〈〈xi [n]xj [n+m]〉〉 . (5.66)

For stationary ergodic processes, as we will consider in the following, the correlation function cxij [n, n+m] is
independent of the absolute time argument nTs, as can be easily verified as a consequence of Definition 2.28.
For ergodic processes (Definition 2.32), the ensemble average is identical to the time average of a finite sequence
of time samples. Hence we can write

cxij [m] = 〈〈xi [n]xj [n+m]〉〉 = lim
N→∞

1

2N − 1

N∑
n=−N

xi [n]xj [n+m] . (5.67)

For a time-discrete linear shift invariant (LSI) system, the output signal yi [n] is obtained from the input signal
xj [n] by discrete convolution with the impulse response hij [n]. Hence, correlations of the signals at the output
side are obtained from correlations at the input boundary by means of the correlation transfer function [21]

kypq rs [l] =

∞∑
k=−∞

hpr [k]hqs [l + k] . (5.68)

The propagation of correlation information between two arbitrary spatial nodes p and q is then obtained from
the correlations at the boundary nodes r and s by

cypq [m] =
∞∑

l=−∞
kpq rs [l] cxrs [m− l] . (5.69)

In terms of the TLM method, these correlation transfer functions kpq rs can be obtained by a numerical
propagation of wave pulses in a Cartesian mesh of nodes similar, to Figure 5.14. The incident wave pulses on
all faces of all nodes can be summarized in a Hilbert space vector k|a〉, given by [159]

k|a〉 =

∞∑
l=−∞

∞∑
m=−∞

∞∑
n=−∞

k[a1, a2, . . . , a12]Tl,m,n k|l,m, n〉 , (5.70)
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Figure 5.12 Auto-correlation function for changing steering angles. The black curve shows the direction of arrival of
a single random QPSK-modulated signal in the direction of 120°. The blue curve shows the obtained auto-correlation
functions for two random sources, located at 45° and 270° (from [7]).

where k represents the time step, and l, m, and n represent three-dimensional spatial node indices [159].
Similarly, one can define Hilbert space vectors for all scattered waves at all nodes k|b〉, given by

k|b〉 =
∞∑

l=−∞

∞∑
m=−∞

∞∑
n=−∞

k[b1, b2, . . . , b12]Tl,m,n k|l,m, n〉 , (5.71)

The spatial connection of neighboring nodes is modeled by a connection operator Γ, which connects the
scattered waves at one node to the incident waves of the adjacent nodes. The scattering process itself is given by
the scattering operator S, which models the transformation of incident waves into scattered waves in each TLM
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Figure 5.13 Angular distributions of propagated and measured CCF at 3 m distance for horizontal polarization (from [7]).
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node, depending on the respective material parameters. Altogether, the TLM propagation scheme can thus be
written as

k+1|b〉 = S k|a〉 , (5.72)

k|a〉 = Γ k|b〉 . (5.73)

The propagation of pulses of wave amplitudes through the TLM mesh yields a discrete Green’s function, also
called John’s matrix, which relates the wave pulses a [ni; k

′] incident on a boundary port ni, at time k′ to
scattered wave pulses b [l,m, n; k], observed at arbitrary observation points given by the spatial node indices l,
m, n at time k [160]. Here,B = {n1, n2, . . . , nN} is a set ofN boundary nodes, each described by node indices
l′, m′, n′. The discrete-time auto-correlation and cross-correlation functions are obtained similar to (5.68),
and are furthermore related to each other through the CTLM method [21] via discrete-time correlation Green’s
functionsKij rs [p] by

cbij [q] =
∑

nr,ns∈B

∞∑
p=−∞

Kij rs [p] cars [q − p] , (5.74)

with the correlation Green’s functionKij pq, given as

Kij pq [k] =
∞∑

k′=−∞
Gi p

[
k′
]
Gj q

[
k′ + k

]
. (5.75)

5.3 Phase-Space Approach

5.3.1 Phase-Space Representation of Electromagnetic Fields

Another interesting approach for propagating correlation information of wide-sense stationary stochastic elec-
tromagnetic fields (according to Definition 2.29) is given in terms of Wigner distribution functions in phase-
space [17], [161]. Using Wigner distribution functions for propagating correlation information of stochastic
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electromagnetic fields was first proposed by Gradoni, Creagh, Tanner, et al. [17], and proved to be a good
approximate method for predicting correlations on different observation planes in the ray-tracing limit [23].
Nevertheless, onemust treat thismethod as an approximate one, as evanescent componentsmay be included by

a leading order approximation of the phase-space diffusion [162], whereas a MoM-based numerical propagator
directly provides a solution including all the near-field contributions. Also, a numerical propagator based on
numerical Green’s functions, obtained by the generalized Moments method can be easily computed for arbitrary
geometries and materials. However, the phase-space method can be used to reveal directional information on
the propagation of electromagnetic energy, which is an added value in the analysis of stochastic electromagnetic
fields.
So far, our goal was to find a parametric description of ergodic wide-sense stationary random fields in terms

of mean value functions and correlation dyadics. This was done by specifying the tangential field components of
radiated electromagnetic fields at a boundary surface ∂V close to a device under test, and thus, by Theorem 3.1
being able to reconstruct the field distribution, and hence the statistical parameters, in the source-free volume V ,
excluding the source region, i.e. the device under test. For the phase-space approach, we consider only planar
boundary surfaces of infinite extent, where we investigate how the correlation information will propagate to
other observation planes parallel to the source plane. We implicitly made the assumption of distinct parallel
source and observation planes in section 4.4, but the phase-space method explicitly makes use of the fact that
correlations are only measured on parallel planes from a theoretical point of view. Suppose that we have field
samples of a random magnetic field H , given in frequency-domain, measured on a two-dimensional spatial
sampling grid at locations r ∈ R2 in a plane at height z = 0. The spatial correlations on any z-plane are given
by

ΓH (r1, r2, z, ω) =
〈〈
H (r1, z, ω)H† (r2, z, ω)

〉〉
. (5.76)

The magnetic fieldH at an arbitrary plane z > 0 can be represented in phase-space by a partial spatial Fourier
transform [17]

H̃ (p, z, ω) =

∫∫
A

e−ikp·rH (r, z, ω) · dr , (5.77)

where k =
√
k2
x + k2

y is the wave number. The respective partial inverse Fourier transform, to retrieve the fields
from the phase-space representation is given by

H (r, z, ω) =

(
k

2π

)2 ∫∫
A

eikp·rH̃ (p, z, ω) · dp . (5.78)

In the plane-wave limit, where no evanescent components are present, we can calculate a momentum represen-
tation of the magnetic field H̃ from the boundary conditions, given in terms of measured field samples on the
plane z = 0 at any distance z by

H̃ (p, z, ω) = eikzT (p)H̃ (p, 0, ω) , (5.79)

with

T (p) =


√

1− |p|2 for |p|2 ≤ 1

i
√
|p|2 − 1 for |p|2 > 1

. (5.80)

Note that the case |p| > 1 corresponds to evanescent propagation, which does not have a contribution to the
far-field and vanishes in the ray-tracing approximation.

5.3.2 Wigner Functions

In semiclassical quantum mechanics, the Wigner function for an ensemble of single particles describes a quasi-
probability distribution of finding a particle in a certain state in phase space [163]. Using the Wigner transform,
which is mathematically given by a coordinate transform and a partial Fourier transform with respect to the
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transformed variables, positional as well as directional properties can be extracted from the correlation dyadic
ΓH [17], [23]. For a given correlation dyadic ΓH, the Wigner functionWH can be obtained by

WH (r,p, z, ω) =

∫∫
A

e−ikp·sΓH

(
r +

s

2
, r − s

2
, z, ω

)
· ds , (5.81)

where k is the wave number and r and s are the transformed spatial variables. The transformed variable r
represents the average position of two distinct sampling points r1 and r2 on a plane, and the transformed variable
s is given as the difference vector pointing from r2 to r1, i.e.

r =
r1 + r2

2
, (5.82)

s = r1 − r2 . (5.83)

The conjugate momentum vector p = [px, py]
T can be interpreted as the normalized components of the wave

vector, parallel to the source plane

px = sinϑ cosϕ , (5.84)
py = sinϑ sinϕ , (5.85)

with |p| = sinϑ, where ϑ is the angle of a ray with respect to the outward normal [23]. In that sense, a notion
of the average direction of propagation is assigned to each position r. The respective inverse transform, for
recovering the correlation dyadic from the Wigner function is given by

ΓH

(
r +

s

2
, r − s

2
, z, ω

)
=

(
k

2π

)2 ∫∫
A

eikp·sWH (r,p, z, ω) dp . (5.86)

With respect to the partial spatial Fourier transform in equation (5.77), one can define the momentum represen-
tation Γ̃H of the correlation dyadic ΓH by the double spatial partial Fourier transform

Γ̃H (p1,p2, z, ω) =

∫∫
A

∫∫
A

e−ik(p1·r1−p2·r2)ΓH (r1, r2, z, ω) dr1 dr2 . (5.87)

It can be easily verified, that position and momentum variables enter theWigner transform symmetrically. Thus,
the Wigner transform from (5.81) can also be obtained in momentum representation by

WH (r,p, z, ω) =

(
k

2π

)2 ∫∫
A

eikr·qΓ̃H

(
p+

q

2
,p− q

2
, z, ω

)
· dq , (5.88)

with the average momentum variable p and the difference momentum q, given according to

p =
p1 + p2

2
, (5.89)

q = p1 − p2 . (5.90)

The respective inverse transform, for getting back the momentum representation of the correlation dyadic from
the Wigner function is given by

Γ̃H

(
p+

q

2
,p− q

2
, z, ω

)
=

∫∫
A

e−ikr·qWH (r,p, z, ω) dr . (5.91)

5.3.3 Propagation of Correlation Information Using Wigner Function

Similar to equation (5.79), correlation information on an arbitrary plane can be calculated by propagating
boundary data, given at z = 0 along the normal direction with

Γ̃H (p1,p2, z, ω) = eikz[T (p1)−T ∗(p2)]Γ̃H (p1,p2, 0, ω) , (5.92)
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Figure 5.15Measured spatial energy distribution at the source plane z′ = 10 mm.

where T is given according to (5.80). By inserting (5.92) into (5.88), a transport equation for the Wigner
function can be found [17], [23]. It is given by

WH (r,p, z, ω) =

∫∫
A

∫∫
A
G
(
r,p, r′,p′, z, ω

)
WH

(
r′,p′, 0, ω

)
dr′ dp′ , (5.93)

with the dyadic kernel propagator

G
(
r,p, r′,p′, z, ω

)
=

(
k

2π

)2

δ
(
p− p′

)
1

∫∫
A

eik(r−r′)·q+ikz(T(p+ q
2 )−T ∗(p− q

2 )) dq , (5.94)

for free-space propagation of plane-wave solutions. An approximation to the dyadic propagator can be found
by a series expansion of the exponential in (5.94) [23], which yields a Dirac delta distribution

G
(
r,p, r′,p′, z, ω

)
≈ δ

(
r − r′ − zp

T (p)

)
δ
(
p− p′

)
1 , (5.95)

for propagating waves, and exponential damping

G
(
r,p, r′,p′, z, ω

)
≈ e−2kz

√
|p|2−1δ

(
p− p′

)
1 . (5.96)

for the evanescent components. Inserting the approximate propagators (5.95) and (5.96) into the integral
equation (5.93) yields an approximate transport scheme for the Wigner functionWH at the boundary z = 0 to
any arbitrary plane z > 0, given by

WH (r,p, z, ω) ≈

 WH

(
r − zp

T (p) ,p, 0, ω
)

for |p| < 1

WH (r,p, 0, ω) e−2kz
√
|p|2−1 for |p| > 1

. (5.97)

5.4 Comparison of Different Propagation Schemes

In the following, we consider a given near-field scan of the y-component of the magnetic field on a boundary
surface at z′ = 10 mm. The data set is the same as in [23], [161]. It was obtained using a Langer EMV-Technik
RF R50-1 near field probe, scanning above a cavity-backed aperture on a spatial grid of 60 × 60 points, with
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Figure 5.16Measured spatial energy distribution at the observation plane z = 100 mm.

a step size of ∆ = 5 mm in both, x- and y-direction. The probe was connected to an Agilent E5062A vector
network analyzer, which also provided the excitation for the cavity-backed aperture. Since the excitation signal
in the VNA is known, a single probe scan is sufficient. The cavity features a mechanical mode stirrer with 36
different paddle positions. Measurements were taken for each paddle position at a fixed frequency of 3 GHz.
From this data, with the known phase reference, all spatial correlations have been calculated. The obtained
spatial energy density at the source plane is given in Figure 5.15.

The same measurements were performed in a plane at z = 100 mm in order to obtain a reference for bench-
marking our propagation schemes. The spatial energy distribution for z = 100 mm can be seen in Figure 5.16.
The source correlation matrix, obtained by measurement, is numerically Wigner transformed by equation (5.81)
using implementations of the fast Fourier transform in MATLAB. The numerical Wigner transform of the
source correlations is then propagated according to (5.97), using phase-space propagation techniques, discussed
in section 5.3. The resulting propagated Wigner transform is then inverse-Wigner-transformed according
to (5.86), in order to obtain an approximation for the phase-space propagated correlation matrix at a distance
of z = 100 mm. The spatial energy distribution for the Wigner-propagated correlation matrix is given in
Figure 5.17.

For our measurements, we only consider the y-component of the tangential magnetic field. Thus, by
J = n ×H from the equivalence principle in section 3.5.5, the equivalent surface current only exhibits an
x-component. Therefore, we only need to consider the following part of the total dyadic Green’s functionGHJ

of the magnetic field

GyxHJ

(
r − r′, ω

)
= − 1

2π

(
z − z′

) c0 − iω ‖r − r′‖
c0 ‖r − r′‖3

e
−iω
‖r−r′‖
c0 , (5.98)

where a factor of 2 was introduced by image theory since we only consider magnetic field components [102].
We apply the method of moments in order to obtain a set of algebraic equations that can be solved numerically
from the analytic equation

ΓyH (r1, r2, ω) =

∫∫∫
V ′

∫∫∫
V ′
GyxHJ

(
r1 − r′1, ω

)
ΓxJ
(
r′1, r

′
2, ω
)
Gyx †HJ

(
r2 − r′2, ω

)
d3r′1 d3r′2 . (5.99)
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Figure 5.17 Propagated spatial energy distribution at the observation plane z = 100 mm, using the Wigner function
propagation method.

We expand the magnetic field Hy and the equivalent source currents Jx into a set of basis functions, given by

Hy (r, ω) =

M∑
m=1

IHm (ω) δ (r − rm) , (5.100)

Jx
(
r′, ω

)
=

N∑
n=1

IJn (ω)un
(
r′
)
. (5.101)

The basis functions un used for expanding the source field Jx are given in terms of two-dimensional spatial unit
pulse functions as

un
(
r′
)

=

{
1

∆2 for r′ ∈ Un
0 otherwise , (5.102)

where the set Un is the neighborhood of a measurement grid point in the source plane z = 10 mm, given as

Un =

{
r′ ∈ R3, r′n ∈ V ′ : x′n −

∆

2
≤ x′ ≤ x′n +

∆

2
∧ y′n −

∆

2
≤ y′ ≤ y′n +

∆

2
∧ z′ = 10 mm

}
. (5.103)

Hence, the basis functions un are orthonormal, i.e.∫∫∫
V ′
u∗m
(
r′
)
un
(
r′
)

d3r′ = δmn . (5.104)

Applying the method of moments according to section 5.1.1, we obtain algebraic equations for the expansion
coefficients IHm and IJn. Inserting the series expansions (5.100) and (5.101) into equation (3.113) yields

IHm (ω) =
N∑
n=1

IJn (ω)

∫∫∫
V ′
GyxHJ

(
rm − r′, ω

)
un
(
r′
)

d3r′ . (5.105)

With this discretization scheme, one can define correlation matrices for the expansion coefficients IHm and IJn

in terms of the ergodic expectation values

CyHmn (ω) = 〈〈IHm (ω) I∗Hn (ω)〉〉 , (5.106)
CxJmn (ω) = 〈〈IJm (ω) I∗Jn (ω)〉〉 . (5.107)
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Figure 5.18 Propagated spatial energy distribution at the observation plane z = 100 mm, using the Method of Moments
propagation method.

The discretized correlation matrices can also be directly obtained from the correlation dyadics using

CyHmn (ω) =

∫∫∫
V

∫∫∫
V
δ (r1 − rm) ΓH (r1, r2, ω) δ (r2 − rn) d3r1 d3r2 = ΓH (rm, rn, ω) , (5.108)

CxJmn (ω) =

∫∫∫
V ′

∫∫∫
V ′
u∗m
(
r′1
)
ΓJ

(
r′1, r

′
2, ω
)
un
(
r′2
)

d3r′1 d3r′2 . (5.109)

Finally, we obtain a numerical propagator similar to (5.29), relating

CyHmn (ω) =

N∑
k=1

N∑
l=1

Mmk (ω)CxJ kl (ω)M∗ln (ω) (5.110)

with

Mmn (ω) =

∫∫∫
∂V ′

GyxHJ

(
rm − r′, ω

)
un
(
r′
)

d3r′

= − 1

2π∆2

∫∫∫
Un

(
zm − z′

) c0 − iω ‖rm − r′‖
c0 ‖rm − r′‖3

e
−iω
‖rm−r′‖

c0 d3r′ . (5.111)

Figure 5.18 shows the spatial energy distribution, i.e. the diagonal elements of the correlation matrix CyHmn,
which is a numerically propagated version of themeasured source correlationmatrixCxJmn using the propagation
scheme given in equations (5.110) and (5.111).
Both methods compared here show good agreement, qualitatively and quantitatively. TheWigner propagation

method needed some post-treatment in order to obtain the correct quantitative values, which, however, can be
explained by errors in the numerical implementation. A more detailed comparison of e.g. selected parts of the
correlation matrices and computational cost is given in the original paper [23].

5.5 Computer Aided Modelling

The noisy electromagnetic field in the vicinity of an electronic device consists of a superposition of the
radiated emissions of all deterministic and random sources present on the device. Hence, field correlations, as
well as spatial correlations of the noise sources play an important role in the analysis of signal integrity and
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Figure 5.19Spatial energy distribution 5 mm above a PCBwith two transmission lines excitedwith in-phase fully correlated
signals (a), anti-phase fully correlated signals (b), and completely uncorrelated signals (c) at 2.4 GHz, propagated in CST
Microwave Studio.

electromagnetic compatibility, as their characteristics allow a description of how one part of a device influences
another. The correlation function of two stationary random processes si and sj is given by [120]

cs ij (τ) = 〈〈si (t) sj (t− τ)〉〉 , (5.112)

where the brackets 〈〈. . .〉〉 denote the ensemble average. For ergodic random processes, the ensemble average
can be substituted by the time average, such that

cs ij (τ) = lim
T→∞

1

2T

T∫
−T

si (t) sj (τ − t) dt . (5.113)

Let us now consider a PCB withN transmission lines, excited with either pairwise correlated, pairwise partially
correlated, or uncorrelated stationary ergodic Gaussian random signals. The degree of correlation for all pairs
of stochastic signals si and sj is given by the correlation cs ij . The whole PCB and the surrounding free-space
region form a linear time-invariant (LTI) system, which can be described by an impulse response Z (x, t).
The impulse response describes the propagation from each port exciting a transmission line on the PCB to all
observation points, summarized in the vector x, located on a virtual plane close to the surface of the PCB [120].
With a CAD model of the PCB available, one can calculate these impulse responses numerically. If multiple
signal lines are excited with either correlated or uncorrelated signals, we can observe the field-field correlations
for all pairs of observation points specified on a mesh grid on a virtual plane above the surface of the PCB. The
elements of the field-field correlation matrix for the magnetic field are given by [16]

cHpmn (τ) = lim
T→∞

1

2T

T∫
−T

Hp (xm, t)Hp (xn, t− τ) dt , (5.114)

where Hp (x, t) is the magnetic field at position x with polarization p ∈ {x, y}. Also field cross-polarization
correlations may be considered. We evaluate the spectral energy density for a grid of observation points, based
on the computed impulse responses for arbitrary signal correlations. The magnetic field at each observation
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Figure 5.20 Impulse response over time, along x = 35 mm for different y-positions. For these simulations, only port 1
has been excited.

point, excited by a superposition ofN random signals propagating along transmission lines on the PCB, is given
by the convolution [120]

Hp (x, t) =

N∑
i=1

∞∫
−∞

si (τ)ZHp i (x, t− τ) dτ , (5.115)

where si (t) is the signal propagating along the i-th transmission line. The field-field correlations are given by

cHpmn (τ) = lim
T→∞

1

2T

N∑
i=1

N∑
j=1

T∫
−T

∞∫
−∞

∞∫
−∞

ZHp i

(
xm, t

′′) si (t) sj
(
t′ − t

)
ZHp j

(
xn, τ − t′ − t′′

)
dt dt′ dt′′ .

(5.116)

With the correlation information cs ij of the i-th and the j-th signal from equation (5.113), we can simplify
equation (5.116) and obtain

cHpmn (τ) =
N∑
i=1

N∑
j=1

∞∫
−∞

∞∫
−∞

ZHp i

(
xm, t

′′) csij (τ − t′)ZHp j

(
xn, t

′ − t′′
)

dt′ dt′′ . (5.117)

This equation relates the auto-correlation and cross-correlation functions of the stochastic signals propagating
along transmission lines on the PCB to the auto-correlations and cross-correlations of the magnetic fields at all
pairs of observation points. The spectral energy density at each observation point xm can be obtained by the
Fourier transform of the auto-correlations cHpmm (τ). It is given by

Wmag (ω) =
µ0

2

∞∫
−∞

cHpmm (τ) eiωτ dτ . (5.118)

Let us now consider an example of an actual PCB, modeled in CSTMicrowave Studio. There are two high-speed
signal lines close to each other on the PCB.
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Weare interested in the radiatedEMI due to these two transmission lines, under consideration of the correlation
between the stochastic data signals propagating along the lines. In Figure 5.19, the normalized spectral energy
densities for a frequency of 2.44 GHz in a plane 5 mm above the PCB are shown, if the transmission lines are
excited with either correlated or uncorrelated signals.
In order to model the correlation matrices at this plane, both transmission lines are excited with Gaussian

pulses using discrete ports in CSTMicrowave Studio. The impulse responses of the magnetic fields are recorded
on a rectangular 9×20 observation grid in a plane parallel to the PCBwith 5 mm grid spacing in both directions.
Figure 5.20 shows the impulse responses ZHx 1 (xm, t) for the x-polarized magnetic field at the observation
points along the line x = 35 mm, which is closest to the excited transmission lines. These impulse responses
were obtained for only the first transmission line excited.
By a superposition of the impulse responses of both individual transmission lines, one can reconstruct field-

field correlations for arbitrary points in space, even in very complex environments. In this way, we have been
able to give the spatial energy distribution in Figure 5.19, in terms of the diagonal elements of the propagated
correlation matrices, using the impulse responses obtained from CST Microwave Studio. The propagated
correlation matrix can be calculated for arbitrary source correlations by means of equation (5.117).
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6 Near-Field Communication

6.1 Near-Field MIMO Communication

Stochastic random fields also play an important role in wireless communication scenarios. Ivrlač and Nossek
stressed in [164], that we need a physics-based model in wireless communication in order to model noise
correctly. Furthermore in [165], the same authors write “Information theory serves well as the mathematical
theory of communication. However, it contains no provision that makes sure its theorems are consistent with the
physical laws that govern any existing realization of a communication system.”. They proposed a circuit theoretic
noise model to overcome these limitations. The theoretical framework of stochastic electromagnetic fields can
bridge this gap and provide a proper noise model, i.e. information about a random process received at an antenna
if one assumes a certain stochastic noise source in free space. In wireless communication, the information-
carrying signal needs to be modeled in terms of a stochastic process, as there is no a-priori knowledge of the data
while the signals propagate along the communication paths. Thus, the concept of stochastic electromagnetic
fields, as introduced in chapter 3, can be also applied in modeling modulated information-carrying signals in
complex environments. In the remainder of this chapter, we want to give an outlook on an application of random
field noise models to near-field MIMO communication. In this sense, we first establish a circuit model for
the MIMO communication link. Let us consider a noiseless wireless communication scenario, as depicted in
Figure 6.1. Two antenna arrays, a transmit antenna array, withN antenna elements, and a receive antenna array
withM antenna elements are modeled by an impedance matrix Z ∈ C(N+M)×(N+M), such that[

V T

V R

]
=

[
ZT ZTR

ZRT ZR

] [
IT

−IR

]
, (6.1)

whereZ is partitioned in four blockmatrices, the transmitmatrixZT ∈ CN×N , the receivematrixZR ∈ CM×M
and the two transimpedance matrices ZTR ∈ CN×M and ZRT ∈ CM×N .
Suppose now that we have a vector signal generator, with inner impedance matrix ZG directly connected to

theN transmit antennas, and a load with impedance matrixZL connected to theM output antenna arrays. Our
goal is to transfer maximum power from the generator to the load, through the given antenna multiport Z. The
impedance the vector signal generator sees at its output is given by the antenna multiport connected to the load
impedance. The load impedanceM -port at the receive side can be described by the relation

V R = ZLIR . (6.2)

Inserting this into (6.1) yields the description

V T = ZTIT −ZTRIR , (6.3)
ZLIR = ZRTIT −ZRIR . (6.4)

We express the received current IR from equation (6.4) as

IR = (ZL +ZR)−1ZRTIT , (6.5)

and insert it into equation (6.3) and obtain

V T =
[
ZT −ZTR (ZL +ZR)−1ZRT

]
IT . (6.6)

So the total impedance, as seen by the generator is given by ZT − ZTR (ZL +ZR)−1ZRT. In order to
maximize the total power transmitted from the generator to the load, the generator impedance ZG must be the
complex conjugate transpose of the total impedance, seen by the generator [166]. Thus, we have

Z†G = ZT −ZTR (ZL +ZR)−1ZRT . (6.7)
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Figure 6.1 Multiport Model of a near-field MIMO communication link.

For the optimal load impedance, we can proceed similarly, by investigating the total impedance the load is
connected to. This is given by the antenna multiport Z connected to the generator impedance ZG. The
generator impedance N -port can be described by the relation

V T = −ZGIT . (6.8)

A description for the total impedance, the load is connected to can be calculated by inserting (6.8) into (6.1),
and is given by

−ZGIT = ZTIT −ZTRIR , (6.9)
V R = ZRTIT −ZRIR . (6.10)

Now solving (6.9) for IT and inserting the result into (6.10) yields

IT = (ZG +ZT)−1ZTRIR , (6.11)

and
V R = −

[
ZR −ZRT (ZG +ZT)−1ZTR

]
IR . (6.12)

Hence, for maximum power transfer from the generator to the load, a second condition given by

Z†L = ZR −ZRT (ZG +ZT)−1ZTR , (6.13)

in addition to (6.7) must hold. Equations (6.7) and (6.13) are transcendental equations that do not posses a
formal algebraic solution. However, they can be solved numerically [167] by an iterative algorithm.
In a typical MIMO communication scenario, as depicted in Figure 6.1, there are N independent signal

generators, i.e. digital-to-analog converters (DACs) with subsequent mixers and power amplifiers, that transmit
the encoded messages through the channel to a number of M independent receivers, i.e. low-noise amplifiers
with mixers and analog-to-digital converters (ADCs). Each transmit channel carries the respective generator
signal, whereas all other signals superimposed on one particular channel are considered as noise, thus degrading
signal quality. Typical transmitter and receiver topologies are designed for a characteristic inner impedance of
R = 50Ω. Thus, our goal is to design a decoupling and matching network for the transmit and for the receive
side, such that power transfer from the transmitter to the receiver is maximized, and such that the respective
transmit and receive channels are decoupled. For the transmit side, we want our system of N transmitters,
modeled as voltage sources with inner impedance R = 50Ω, to be matched to the antenna’s input impedance,
described by ZG. In the same way, we want the receive side, modeled by termination resistors of R = 50Ω, to
receive maximum power, so the loads should be matched to the output resistance ZL of the antenna array.
We can describe the transmit matching network by a matrix ZMT ∈ C2N×2N given by[

V
V T

]
= ZMT

[
I
−IT

]
. (6.14)
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The condition for power-matching is given by

V T = Z†GIT , (6.15)

and the decoupling condition on the left-hand side of ZMT in Figure 6.1 is given by

V = V G −R1I , (6.16)

with the N ×N identity matrix 1. Substituting (6.15) and (6.16) with V G = 0 into (6.14) we obtain a system
of equations, describing the elements of the DMN matrix ZMT

−R1I = ZMT,11I −ZMT,12IT , (6.17)

Z†GIT = ZMT,21I −ZMT,22IT . (6.18)

Additional to equations (6.17) and (6.18), we require the decoupling and matching multiport ZMT to be linear,
lossless, and reciprocal. Linearity is accomplished by requiring the existence of a matrix ZMT, which is
a linear mapping from the port currents to the port voltages. Being lossless, requires that the impedance
matrix of the DMN is purely imaginary, i.e. Re {ZMT} = 0. Reciprocity then requires that the describing
impedancematrix is symmetric, i.e.ZMT = ZT

MT. Thus, we can write for the blockmatricesZMT,11 ∈ CN×N ,
ZMT,12 ∈ CN×N , ZMT,21 ∈ CN×N , and ZMT,22 ∈ CN×N

ZMT = i

[
XMT,11 XMT,12

XMT,21 XMT,22

]
, (6.19)

with purely real sub-matricesXMT,11 ∈ RN×N ,XMT,12 ∈ RN×N ,XMT,21 ∈ RN×N , andXMT,22 ∈ RN×N .
Inserting these additional conditions into equations (6.17) and (6.18) yields

−R1I =

[
iXMT,11 +XMT,12

(
Z†G + iXMT,22

)−1
XMT,21

]
I , (6.20)

and thus
−R1 = iXMT,11 +XMT,12

(
Re
{
Z†G

}
+ i Im

{
Z†G

}
+ iXMT,22

)−1
XMT,21 . (6.21)

Equation (6.21) can only describe a reciprocal DMN, if Z†G = Z†,TG ⇒ Z†G = Z∗G, i.e. the loaded transmit
antenna represents a reciprocal multiport. A possible solution to equation (6.21) is given by [164], [167]

ZMT = i

 0
√
R
(

Re
{
Z†G

}) 1
2

√
R
(

Re
{
Z†G

}) 1
2 − Im

{
Z†G

}
 . (6.22)

The same can be done for the load side, where the DMN is described by an impedance matrixZMR ∈ C2M×2M[
V R

V L

]
= ZMR

[
IR

−IL

]
. (6.23)

In the case of load matching, the impedance seen by the receiver DMN is given by the Hermitian conjugate of
the load impedance matrix Z†L. Hence, we have the matching condition

V R = −Z†LIR . (6.24)

The load is finally given by M independent channels, each terminated by a load resistance of R = 50Ω,
modeling the input of a typical RF receiver. Thus, the independence of the load voltages can be described by
the decoupling condition

V L = R1IL . (6.25)
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Inserting the conditions (6.24) and (6.25) into (6.23) gives a system of equations, describing the elements of the
impedance matrix ZMR of the receiver DMN, which is given by

−Z†LIR = ZMR,11IR −ZMR,12IL , (6.26)
R1IL = ZMR,21IR −ZMR,22IL . (6.27)

Similar to the transmit side, we additionally require the decoupling and matching multiport ZMR to be linear,
lossless, and reciprocal. Thus ZMR needs to be purely imaginary, i.e. Re {ZMR} = 0, and symmetric, i.e.
ZMR = ZT

MR. These conditions can be imposed by forcing the block matrix elements ZMR,11 ∈ CM×M ,
ZMR,12 ∈ CM×M , ZMR,21 ∈ CM×M , and ZMR,22 ∈ CM×M to

ZMR = i

[
XMR,11 XMR,12

XMR,21 XMR,22

]
, (6.28)

with purely real sub-matrices XMR,11 ∈ RM×M , XMR,12 ∈ RM×M , XMR,21 ∈ RM×M , and XMR,22 ∈
RM×M . Inserting the conditions for the impedance matrix to be reciprocal and lossless, given by equation (6.28)
into the system of equations (6.26) and (6.27) yields

−R1IL =

[
iXMR,22 +XMR,21

(
Z†L + iXMR,11

)−1
XMR,12

]
IL , (6.29)

and thus
−R1 = iXMR,22 +XMR,21

(
Re
{
Z†L

}
+ i Im

{
Z†L

}
+ iXMR,11

)−1
XMR,12 . (6.30)

Note that we also require here that the load impedance Z†L is reciprocal, i.e. Z†L = Z†,TL , and thus Z†L = Z∗L.
Equation (6.30) has many solutions. One possible solution is given by [164], [167]

ZMR = i

 − Im
{
Z†L

}
−
√
R
(

Re
{
Z†L

}) 1
2

−
√
R
(

Re
{
Z†L

}) 1
2

0

 . (6.31)

Let us now investigate the whole MIMO communication link, with a given antenna array, described by the
impedance matrix Z, together with transmit and receive DMN, described by impedance matrices ZMT and
ZMR, respectively. Using the power matching condition at the input, i.e. I = 1

2
V G
R , we can calculate the

transmit currents through the transmit DMN from the generator voltages V G by

IT = i
1

2
√
R

(
Re
{
Z†G

})− 1
2
V G . (6.32)

With the impedance matrix of the antenna array, we can then evaluate the received current before the receiver
DMN. The ratio between voltages and currents at the receive side is given by V R = ZLIR. Thus, we can
replace V R in (6.23), which then results in

IR = i
1

2
√
R

(ZL +ZR)−1ZRT

(
Re
{
Z†G

})− 1
2
V G . (6.33)

Finally, we can interrelate the generator voltage vector V G to the voltages V L observed at the individual load
impedances by

V L =
1

2

(
Re
{
Z†L

}) 1
2

(ZL +ZR)−1ZRT

(
Re
{
Z†G

})− 1
2
V G . (6.34)

We can summarize the MIMO communication link in a dimensionless transformation matrix D ∈ CM×N ,
describing the linear relationship between the generator voltages V G and the load voltages V L, such that

V L =
1

2
DV G , (6.35)
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with
D =

(
Re
{
Z†L

}) 1
2

(ZL +ZR)−1ZRT

(
Re
{
Z†G

})− 1
2
. (6.36)

The total transmitted power, i.e. the power that is fed into the transmit DMN, which due to the losslessness of
the DMN is equal to the power at the transmit ports of the antenna array, is given by

PT =
V †GV G

4R
, (6.37)

where we used the power matching condition I = 1
2
V G
R and V =

V G
2 . The total power at the receive side is

given by

PR =
V †LV L

R
=
Z†GD

†DV G

4R
, (6.38)

where the transfer relation of the MIMO communication link (6.35) was inserted into the expression for the
power in the load resistors R. The channel power gain G is defined as the maximal ratio of received power to
transmit power, which is given by

G = max
PR

PT
= max

V G

V †GD
†DV G

V †GV G

= µmax

(
D†D

)
, (6.39)

where µmax (. . .) denotes the maximum eigenvalue of its argument. As we are interested in multi-channel
operation, we perform a singular value decomposition [164] ofD,

D = R diag [S1, S2, . . . , SL]Q† , (6.40)

with the unitary matricesR ∈ CM×M ,Q† ∈ CN×N and theM ×N -dimensional diagonal real, non-negative
matrix given by theL = rank (D) ≤ min (M,N) singular values ofD, ordered such thatS1 ≥ S2 ≥ . . . ≥ SL.
To this end, we define new channel inputsX and new channel outputs Y by [164], [167], [168]

X =
1

2
√
R
Q†V G , Y =

1√
R
R†V L . (6.41)

Then it follows that

Y =
1√
R
R†V L =

1

2
√
R
R†DV G =

1

2
√
R
R†R diag [S1, S2, . . . , SL]Q†V G

=
1

2
√
R

diag [S1, S2, . . . , SL]Q†V G = diag [S1, S2, . . . , SL]X , (6.42)

and hence,
Y i = SiXi . (6.43)

The total transmit power in terms of the new channel inputX is given by

PT =

L∑
i=1

|Xi|
2 . (6.44)

Hence, the received power with respect to the new channel output Y is equal to

PR =

L∑
i=1

|Y i|
2 =

L∑
i=1

S2
i |Xi|

2 . (6.45)

Overall, this means that by linear signal processing one can establishL = rank (D) ≤ min (M,N) independent
channels in the information-theoretic sense. Now the question arises, how to distribute a given power budget
at the transmitter to the L independent channels, such that the channel capacity can be achieved. The channel
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Figure 6.2 Antenna arrangement for MIMO transmission scenario.

capacity, and thus, the solution of this optimization problem depends on the noise model employed in the
information-theoretic approach to the communication channel. Optimal solutions have been found for channels
with additive white Gaussian noise and intersymbol interference in terms of the water filling algorithm [169].
It is desirable to have channels of equal strength, i.e.

S2
1 ≈ S2

2 ≈ . . . ≈ S2
L , (6.46)

where Si is ideally as large as possible. This opens the possibility for multichannel operation, i.e. where we
can transmit information over L independent, equally strong channels. This scenario has been investigated
numerically in [167], [168], [170] and experimentally in [155], without considering the design and realization
of suitable DMNs.

6.2 Experimental Characterization

For an experimental study on the multistreaming capability of a given MIMO antenna arrangement, we study a
transmission scenario as depicted in Figure 6.2. There are two antenna PCBs, each equipped with two Molex
2.4 GHz SMT On-ground MID Chip Antennas, together with passive Π-matching networks, connected to a
50Ω transmission line and an SMA connector each.
The antenna PCBs are provided by NXP-Semiconductors. In this scenario, two antenna PCBs are arranged

such that they are facing each other at a distance of 50 mm. In order to determine the impedance matrix of the
antenna multiport, we connected the four ports, depicted in Figure 6.2, to a vector network analyzer to obtain
the scattering parameters. The reflection S-parameters for each of the four ports are given in Figure 6.3a. The
antennas are designed for a resonance frequency of fr = 2.4 GHz. In Figure 6.3a one can see that port 1 has
a slightly different resonance frequency, compared to the other ports. This can be explained by a defective
antenna element, that needed to be replaced before measurement. The re-soldering of the antenna affected the
matching for that port, such that there is this offset in resonance frequency.
The transmission S-parameters, i.e. the parameters measured with excitation at the transmit ports and obser-

vation at the receive ports are given in Figure 6.3b. From the measured S-Parameters, the impedance matrix of
the antenna four-port can be determined by

Z = R (1− S)−1 (1 + S) . (6.47)

for a fixed characteristic impedance R = 50Ω. With the impedance matrix Z of the antenna arrangement,
we can calculate the respective generator and load impedances, ZG and ZL. We then perform a singular
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Figure 6.3 Transmission and reflection S-Parameters for the antenna multiport as depicted in Figure 6.2. The solid blue
curve in the left figure (a) depicts S11. The dashed blue curve represents S22, while S33 and S44 are given by the solid and
dashed light blue curvess, respectively. For figure (b), the blue curves represent S-parameters with excitation at port 1,
while the light blue curves represent S-parameters with excitation at port 2.

value decomposition of the channel matrix D according to (6.40). The ratio of the second-largest singular
value s2

2 to the largest singular value s2
1 is given in Figure 6.4. Here, one can see that for this scenario, the

multistreaming capability is limited as the ratio of the channel strengths of the second strongest channel to the
strongest channel is at most 0.3 in the usable frequency band from 2.25 GHz to 2.75 GHz. It is expected that
this MIMO performance can be drastically increased by designing and implementing decoupling and matching
networks as suggested in section 6.1.
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Figure 6.4 The ratio of second-largest squared singular value s22 of the channel matrixD to the largest squared singular
value s21, as a measure for investigating multistreaming capability.
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Figure 6.5 Measurement Setup for MIMO transmission scenario.

Furthermore, it was pointed out in [167], [168] that the multistreaming capability is sensitive to the distance
of the antenna elements within transmit and receive groups, as well as between the respective transmit and
receive elements and the respective frequency, where the wireless transmission takes place. Since in our setup,
there was a fixed frequency of 2.4 GHz, and the distances of the antennas within the transmit and receive groups
were also fixed by the PCB, the only degree of freedom for optimizing MIMO capability would be tuning the
distance between the two PCBs.

6.3 MIMO Communication Setup

In the following, we consider the same antenna arrangement as given in Figure 6.1, connected to two National
Instruments USRP 2920 at the transmit side. The two USRPs are phase-synchronized using a dedicated MIMO
expansion cable. The receive antennas are connected to two of the input ports of a Teledyne LeCroy SDA
813Zi-A digital oscilloscope with a bandwidth of 13 GHz and a sampling rate of 40 GS s−1. The other two
input ports are connected to Langer EMV Technik RF-R 50-1 magnetic near-field probes, which are scanning
the tangential magnetic field on a predefined grid above the antenna arrangement. A detailed description of
the MIMO measurement setup is given in Figure 6.5. The goal of this setup is to create a model of an actual
MIMO near-field communication scenario, with QPSK modulated data at a carrier frequency of 2.4 GHz. In
order to achieve this, the NI USRPs are connected to a computer that runs the control software for the MIMO
communication scenario. A sketch of the structure of the control software is given in Figure 6.6. The data
frames for the QPSK communication scenarios consist of a 26 bit header, followed by a block of 200 bit of
scrambled payload data. For frame synchronization, a 13 bit Barker code is sent on both, the in-phase and the
quadrature component of the complex baseband signal, accounting for a total of 26 bit header. The payload data
section is scrambled using a linear feedback shift register in order to avoid a large number of consecutive zeros
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Figure 6.6 Software Setup for MIMO transmission scenario.

or ones. This is done in order to achieve an improved symbol timing recovery on the receive side. A 14 bit
deterministic frame identifier, followed by a 186 bit pseudo-random bit sequence as payload, forms the input
data fed into the scrambler. The real bit stream with a frame length of 226 bit is then modulated to I/Q symbols
by a QPSK (quadrature phase-shift keying) modulation scheme. The resulting symbols are encoded for MIMO
transmission in the space-time block coder, using the diversity scheme given in [171]. Note that we did not
employ any other linear signal processing to this end, in order to make use of individual independent channels
by preconditioning the transmit signal with the unitary matrix Q† from the singular value decomposition of
the channel matrix, as the multistreaming capability of our channel was estimated to be low, based on the
measurements in the previous section.
In this chapter, we have demonstrated the design procedure for decoupling and matching multiports according

to [164], [167]. Furthermore, we have presented measurements of a 2 × 2 near-field MIMO communication
scenario using special 2.4 GHz helical PCB antennas. For the measurements, the antennas have only been
matched to the 50Ω line impedance of the feeding waveguides using simple Π-type matching networks.
By investigating the ratio of the second-largest to the largest singular value, we can see that the multi-channel
performance of this system is not optimal. It is believed that theMIMOcapacity for the near-field communication
link could be drastically improved by introducing decoupling andmatching networks, as described in section 6.1.
Finally, a measurement setup for near-field MIMO data transmission is presented. This setup can be used to
investigate stochastic electromagnetic field propagation in near-field MIMO communication links, by applying
the theoretical framework from chapter 3.

109



110



7 Data Reduction

Data reduction is important when considering scans of stochastic electromagnetic fields, as the data recorded
can easily exceed the capabilities of current computer systems. Nevertheless, not all information recorded with
near-field scanning, as described in chapter 4, is necessary in order to have a reasonably good description of a
stationary Gaussian electromagnetic field, as we will demonstrate in the present chapter on data reduction. An
in-depth treatment of data reduction for stochastic electromagnetic fields using principal component analysis
was given in [38]1. A similar approach for data reduction for stochastic fields was discussed in [172].

7.1 Principal Component Analysis

The amount of data for a field characterization by correlation information can be enormous. In frequency-
domain, we need to store the frequency-domain auto-correlation and cross-correlation functions for each
sampling point and for each pair of sampling points, respectively. The sampling of stochastic electromagnetic
fields has been discussed in [173], as well as in chapter 4. Thereby, the number of correlation spectra over
the considered frequency range is given by N (2N − 1) if both tangential polarizations are considered in each
measurement point or 1

2N (N − 1) considering only one polarization component, where N is the number of
sampling points. The amount of data also depends linearly on the number of frequency bins considered for
further analysis. To make further numerical treatment possible, e.g. for equivalent source localization in EMI
scenarios [139] or for computationally propagating correlation spectra [16], we need to reduce the amount of
data considerably, without loosing the relevant contained information. Principal component analysis (PCA)
is well suited for this purpose [39], [173], [174]. In the following, we develop an algorithm based on PCA
for reducing the dimensionality of a given set of correlation matrices, while retaining most of the information
present in the original data. The algorithm will be flexible enough to allow for different qualities of the resulting
approximations.
Principal component analysis can reduce the dimensionality of a given data set, consisting of a large number

of interrelated variables while retaining nearly all of the contained variation. As a statistical method, Principal
component analysis was developed independently by K. Pearson and H. Hotelling and had its major applications
around the fields of psychology and education [175], [176]. Over the years, other disciplines started to use PCA
and it became a standard procedure in multivariate statistics [177]. In the context of EMC investigations, it has
been applied in [40], [41].
The principal components (PCs) are the projections of a given data set along the directions of largest variation.

For further investigations let us introduce the first- and second-order statistics of a data set, represented by some
multivariate random variableX . The mean vector µ ∈ Cn and covariance matrix C ∈ Cn×n are given by

µ = 〈〈X〉〉 , (7.1)

C =
〈〈

(X − µ) (X − µ)†
〉〉
. (7.2)

The brackets 〈〈·〉〉 denote the forming of an ensemble average and ·† indicates the Hermitian transpose. We now
try to find a linear functional 〈α1, ·〉, projecting the actual dataX on that direction, such that the variance given
by 〈〈(

α†1X −α
†
1µ
)(
α†1X −α

†
1µ
)†〉〉

= α†1Cα1 (7.3)

1The chapter on data reduction using principal component analysis was published under copyright of JohnWiley and Sons inM. Haider
and J. A. Russer, “Principal component analysis for efficient characterization of stochastic electromagnetic fields”, International
Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 31, no. 4, pp. 1–10, 2018. doi: 10.1002/jnm.2246.
The content (text and figures) is reproduced with permission of John Wiley and Sons.
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is maximized. Furthermore, we introduce a constraint, such that α1 assumes a finite value. Since we are only
interested in the direction of maximum variance, we normalize the respective direction vector α1 and thereby
define a constraint for the optimization problem

α1 = arg max
‖α1‖2=1

(
α†1Cα1

)
, (7.4)

where ‖·‖ denotes the Euclidean norm. A common approach for solving such optimization problems is the
technique of Lagrange multipliers. We rewrite the problem with a Lagrange multiplier λ1 which takes care of
the constraint and we obtain

L (α1, λ1) = α†1Cα1 − λ1

(
α†1α1 − 1

)
, (7.5)

to be maximized. Differentiation with respect to α1, and forcing the result to be zero yields

(C − λ11)α1 = 0 , (7.6)

with the identity matrix 1. Equation (7.6) is an eigenvalue problem for the covariance matrixC. The Lagrange
multiplier λ1 turns out to be an eigenvalue and α1 turns out to be an eigenvector. Recall that the quantity we
wanted to maximize was α†1Cα1. This can be reformulated in terms of eigenvalues as

α†1Cα1 = α†1λ1α1 = λ1α
†
1α1 = λ1 , (7.7)

because we restricted α1 to have unit norm. Therefore, the largest eigenvalue λ1 of C gives the factor for the
first principal component, which is itself given by the corresponding eigenvector.
The second PC α2 is then given by the eigenvector corresponding to the second largest eigenvalue λ2. In

general, the n-th PC is given by the direction of the eigenvector corresponding to the n-th largest eigenvalue.
The total number of principal components of a given covariance matrix C is determined by the rank of C.
Since the PCs {αn}Nn=1 form an orthonormal eigenvector basis, we can express C by

C =
N∑
n=1

λnαnα
†
n . (7.8)

Covariance matrices are Hermitian and therefore yield orthogonal eigenvectors, which is shown by the following
lemma.

Lemma 7.1. Let C ∈ Cn×n be a Hermitian matrix with eigenvectors α1, . . . ,αn. Then the eigenvectors of C
are orthogonal pairwise, i.e.

α†iαj = 0 ,

for i 6= j.

Proof. Let λ1 and λ2 be two different eigenvalues of C with the corresponding eigenvectors α1 and α2. Then
it holds that

α†1Cα2 = α†1 (λ2α2) = λ2α
†
1α2 . (7.9)

It also holds that
α†1C

†α2 = (Cα1)†α2 = (λ1α1)† α2 = λ1α
†
1α2 . (7.10)

For the last step, recall that a Hermitian matrix has real eigenvalues. From (7.9) and (7.10), we obtain that

λ1α
†
1α2 = λ2α

†
1α2 . (7.11)

Since we required λ1 6= λ2, this completes the proof because equation (7.11) can only hold if α†1α2 = 0. Thus
the eigenvectors of a Hermitian matrix have to be orthogonal.
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In matrix-vector notation, we can rewrite equation (7.8) as

C = AΛA† , (7.12)

where the columns of the matrix A are formed by the PCs {αn}Nn=1, while the matrix Λ is a diagonal matrix
with the respective eigenvalues on the main diagonal. Since we have normalized the eigenvectors to have unit
length, the matrixA is unitary, i.e.A† = A−1.
Now, when it comes to reducing complexity by applying PCA, the question arises, howmany PCs are required

to represent a given data set accurately. For this purpose, we can consider the cumulative percentage of total
variance (CPTV). Usually, most of the variance is preserved by considering only the first few PCs. The CPTV
provides a guideline for the number of PCs to retain, to preserve a predefined percentage of the total variance.
Let us first define the term total variance.

Definition 7.1 (Total Variance). Let C be a covariance matrix of a given multivariate data set, represented by
a random variableX . We define the total variance contained in the data set by

ctotal = Tr (C) .

The trace of a matrix C ∈ Cn×n is given by the sum of the diagonal elements of C. It is also equal to the
sum of the eigenvalues of C, which is shown by the following lemma.

Lemma 7.2. LetC ∈ Cn×n be a matrix with eigenvalues {λn}Nn=1 and corresponding eigenvectors {αn}
N
n=1.

Then the trace of C is equal to the sum of eigenvalues,

Tr (C) =

n∑
i=1

cii =

n∑
i=1

λi .

Proof. We know that we can express the matrix C in terms of

C = AΛA† ,

by equation (7.12). Thus, we can write

Tr (C) = Tr
(
AΛA†

)
= Tr

(
A†AΛ

)
= Tr (Λ) .

This holds since the trace is invariant under cyclic permutations [149], which will not be proven here, and since
the matrix A is unitary. This completes the proof, since Λ is a diagonal matrix consisting of the respective
eigenvalues of C, i.e.

Tr (C) = Tr (Λ) =
n∑
i=1

λi .

Let us now consider a matrix C ′, which is formed by equation (7.12) but with considering a reduced set of
them largest PCs. We define the CPTV pm by

pm = 100 % · Tr (C ′)

Tr (C)
= 100 % ·

m∑
i=1

λi

n∑
i=1

λi

. (7.13)

By specifying the desired value for pm, one can obtain the number of PCs necessary, in order to achieve this
value. Based on this method, an algorithm was implemented in MATLAB for reducing the complexity of
correlation spectra, describing stochastic EM fields.

113



7.2 Power Iteration

As discussed in section 7.1, PCA is about estimating the direction of largest variation, which is given by the
eigenvector corresponding to the largest eigenvalue. An efficient iterative method for calculating the dominant
eigenvector of a matrix is known by means of the power iteration algorithm [149]. This method is particularly
fast, if the largest and second-largest eigenvalues are well separated, as we shall see in the following. The
method is called power iteration since it involves matrix powers. The procedure is given by

x(k) =
Akx(0)∥∥Akx(0)

∥∥ , (7.14)

with the known square-matrixA ∈ CN×N whose dominant eigenvector is to be determined and a random initial
vector x(0) ∈ CN . The initial random vector x(0) can be expanded into a series of eigenvectors of the matrix
A,

x(0) =

N∑
i=1

αivi . (7.15)

Inserting this expansion into the iteration process (7.14) yields

x(k) =

Ak

(
N∑
i=1

αivi

)
∥∥Akx(0)

∥∥ =

N∑
i=1

αiλ
k
i vi∥∥Akx(0)
∥∥ . (7.16)

We now label the eigenvalues ofA in descending order, i.e. λ1 ≥ λ2 ≥ . . . ≥ λn. Since we are only interested
in the largest eigenvalue-eigenvector pair, we bring λ1 in front

x(k) =

λk1

[
α1v1 +

N∑
i=2

αi

(
λi
λ1

)k
vi

]
∥∥Akx(0)

∥∥ =
α1v1 + e(k)∥∥α1v1 + e(k)

∥∥ . (7.17)

Here, we introduced the residual or error vector ek as

e(k) =

N∑
i=2

αi

(
λi
λ1

)k
vi , (7.18)

where
(
λi
λ1

)
≤ 1, since λ1 ≥ λi for i = {2, . . . , N}. Hence, for the limit k →∞ the error term vanishes, i.e.

lim
k→∞

∥∥∥e(k)
∥∥∥ = 0 . (7.19)

The iterative method then converges to the first, i.e. the dominant eigenvector v1, which is determined by

lim
k→∞

x(k) =
α1v1

‖α1v1‖
=

α1v1

|α1| ‖v1‖
= v1 , (7.20)

with |·| denoting the absolute value of the complex coefficient α1. The procedure can be rewritten in an iterative
form for obtaining the eigenvector v1,

v
(k+1)
1 =

Av
(k)
1∥∥∥Av(k)
1

∥∥∥ . (7.21)

Now, the calculation of the corresponding eigenvalue remains to be done. If λ1 is the eigenvalue of a matrixA,
and v1 is the corresponding eigenvector, it holds that

Av1 = λ1v1 . (7.22)
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An eigenvector v1 of a matrix A is not rotated by the action of A. It is only scaled by a constant λ1 which is
then called the eigenvalue. Consequently, we can obtain the scaling constant by projecting our system onto the
direction of v1, using the inner product

〈v1,Av1〉 = v†1Av1 = λ1v
†
1v1 . (7.23)

Solving equation (7.23) for λ1 then finally provides us with a rule for calculating the corresponding eigenvalue,

λ1 =
v†1Av1

v†1v1

=
v†1Av1

‖v1‖2
. (7.24)

The iterative estimation for the largest eigenvalue in each round is therefore given by the Rayleigh quotient,

λ
(k)
1 =

v
(k)†
1 Av

(k)
1

v
(k)†
1 v

(k)
1

=
v

(k)†
1 Av

(k)
1∥∥∥v(k)

1

∥∥∥2 . (7.25)

On the basis of these two iterations, for v1 and λ1, we can formulate an algorithm for sequential efficient
calculation of PCs.

7.3 Efficient Approximation of Correlation Matrices

For an efficient approximation of correlation matrices, describing the sources of stochastic electromagnetic
fields, we consider a reduced set of principal components as discussed at the end of Section 7.1. The size of
the reduced set is determined by a chosen cumulative percentage of total variance p∗. This p∗ also determines
the quality of the approximation by m PCs. The algorithm for generating a reduced set of PCs which later
approximates the given correlation matrix C is outlined as follows:

• Calculate the largest eigenvalue and corresponding eigenvector using power iteration (according to section
7.2), which is the first principal component.

• Check whether the first PC already accounts for the desired cumulative percentage of total variance
(CPTV).

• If the first PC already accounts for the desired CPTV, terminate the algorithm, if not, calculate the
second-largest PC and check if the sum of first and second-largest PCs account for the desired CPTV.

• Proceed with calculating PCs until the sum of calculated PCs accounts for the desired CPTV.

To determine whether or not the sum of k PCs accounts for a previously specified CPTV, we investigate the
residual

R(k)
n =

∣∣∣∣∣Tr (C)−
k∑
i=1

λi

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

λi −
k∑
i=1

λi

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=k

λi

∣∣∣∣∣ . (7.26)

This is the absolute value of the difference between the total variance of C and the variance accounted for by
the sum of up to k PCs. The residual converges to zero as

lim
k→n

R(k)
n = lim

k→n

∣∣∣∣∣
n∑
i=1

λi −
k∑
i=1

λi

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

λi −
n∑
i=1

λi

∣∣∣∣∣ = 0 . (7.27)

For a previously specified CPTV p∗ ∈ [0, 1], we formulate the termination criterion for our algorithm by∣∣∣∣Tr (C)−
k∑
i=1

λi

∣∣∣∣
|Tr (C)|

< 1− p∗ . (7.28)
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(a) Efficient PCA Algorithm.
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(b) Power Iteration Algorithm.

Figure 7.1 Flowcharts of the Efficient PCA and Power Iteration Algorithms (from [38]).

Figure 7.1 gives the algorithmic flowcharts for the efficient PCA calculation as well as for the power iteration
method discussed in section 7.2. Calculating eigenvectors and corresponding eigenvalues using power iteration
is a rather costly computational task, which has a cost per step ofO

(
n2
)
. In the worst case, n eigenvalues have to

be calculated for a n×n covariance matrix, which results in a worst-case complexity ofO
(
n3
)
. Fortunately, the

number of independent sources, i.e. the number of dominant PCs, for practical stochastic EM field problems is
typically low compared to the number of sampling points, which results in an overall lower average complexity.

The algorithm presented above can significantly save computational cost for determining the PCs in cases,
where we have several dominant PCs. While the size of the correlation matrix is determined by the number
of measurement points, the number of dominant PCs is governed by the number of stochastically independent
sources. For testing the speed up in computation time, a 5000× 5000 matrix with three dominant eigenvalues
has been generated and has been superimposed with white noise. Due to the added noise, the matrix has full
rank, which is a typical scenario for an actual measurement. The presented efficient PCA algorithm has been
compared to a PCA based on singular value decomposition, both implemented in MATLAB on a computer with
an Intel Core i7 3930K, 3.2 GHz CPU. A script, running the algorithms sequentially evaluates the run-time
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Table 7.1 Configuration of run-time evaluation script

Parameter Value
Size of the matrix 5000× 5000
Number of dominant eigenvalues 3

Weights of the eigenvalues [10, 5, 2.5]T

Weight of noise 0.1
Cumulative percentage of total variance 0.99
Accuracy for power iteration 1 · 10−6

Table 7.2 Average run-times after ten rounds

Method Run-Time
PCA based on SVD 31.5978 s
Proposed efficient PCA 0.7202 s

for each method. Each method is performed multiple times, while the run-times are recorded. In the end, the
average of the run-times for each method is calculated. The configuration of the script, used for evaluating the
run-times is shown in Table 7.1, and average results for the run-times are listed in Table 7.2. In this specific
configuration, a speed-up in run-time by a factor of 40 could be achieved using the presented efficient PCA
algorithm over a PCA based on singular value decomposition. A measurement example demonstrating the data
reduction possible is shown in the following section.

7.4 Measurement Example

Measurements were performed with a two probe scanning system on a rectangular grid of measurement points.
The grid of size 6×6 requires measurement of 1260 point pairs, considering a single polarization only, yielding
a 36× 36 correlation matrix.
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Figure 7.2 Number of PCs over Frequency (from [38]).
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The measurement points were arranged in a uniform grid with 10 mm spacing just above a printed circuit
board (PCB) containing a test structure of two coupled microstrip lines. One microstrip line is fed with a
signal from a pseudo-random noise source, generating a pseudo-random bit sequence with a fundamental clock
rate at 180 MHz. Correlation data has been obtained in the time-domain. Correlation spectra are obtained by
Fourier transformation and cover a frequency range from DC to 1.2 GHz, resolved in about 32,000 frequency
bins. Figure 7.2 shows how much of the variance of the correlation matrix can be accounted for by the first
few dominant PCs. The plot shows the explained variance vs. frequency for the first dominant PC and the first
few dominant PCs jointly. Also the normalized spectral energy density (SED) vs. frequency is plotted. The
number of PCs required to explain a certain percentage of the variance varies over frequency. The first 10
most significant PCs account here for 70 % to almost 100 % of the variance. Over all frequencies, on average 7
PCs are required to account for more than 90 % of the variance. The amount of memory required for storing
the correlation matrix over all frequencies is shown in Figure 7.3. The graph shows the cumulative file size
from DC to the respective frequency. The original correlation matrix is a Hermitian matrix, and we can reduce
the data without any loss by storing only the upper or lower triangular matrix. The graph shows the file size
for retaining the dominant PCs accounting for 70 %, 80 %, and 90 % of the cumulative percentage of total
variance, respectively. In agreement with Figure 7.2, the cumulative file size increases slower at frequencies
between 600 MHz to 700 MHz, where fewer dominant PCs are required to account for the same percentage
of explained total variance, than at lower frequencies. In this specific example, memory requirements for
storing the correlation information up to 1 GHz can be reduced by PCA to around 55 MB, retaining 90 % of the
variance, compared to around 130 MB required for storing all data lossless. Considering this setup, however,
with the number of measurement points increased to 20 × 20 yields already 16 GB of data for the lossless
storage without PCA. Hence, the benefit of memory savings by applying PCA becomes significant as data size
increases. Furthermore, the savings become more significant, also in percentage, as the matrix size increases
due to more measuring points, while the number of dominant PCs, governed by the number of stochastically
independent sources, remains at a much lower level. Figure 7.4a shows a graphic visualization of the absolute
values of the correlation matrix at a frequency of 636 MHz with maximum SED. A graphic representation of the
reconstructed correlation matrix at this frequency obtained from the three dominant PCs is shown in Figure 7.4b.
Good agreement is found between the original and reconstructed correlation matrix, which accounts for 90 %
of the variance of the original correlation matrix.
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Figure 7.4 Visualized Original (a) and Reconstructed (b) Correlation Matrix at 635.99 MHz (from [38]).

The source correlation information may also be reconstructed from a single PC only, allowing for a separation
of the stochastically independent sources and an individual consideration of each source distribution for further
numerical processing. In this case, each source distribution represents the fully correlated case.
In summary, we have applied principal component analysis for the correlationmatrices characterizing stochas-

tic electromagnetic fields. We have shown that a substantial reduction of the required memory for storing the
frequency depended correlation matrices can be achieved while retaining the most relevant information. The
dimension of correlation matrices scales with the square of the number of measurement points, whereas the
number of dominant PCs is fixed by the number of stochastically independent sources. Thus, memory savings
become most significant for large numbers of measurement points. A reconstruction of correlation matrices
from the most significant PCs showed a good agreement with the original correlation matrix. Furthermore, we
have shown an efficient implementation of the PCA using a power iteration algorithm. This algorithm is very
suitable for the typical scenario where an eigenvalue decomposition of the correlation matrix will reveal a full
rank matrix, however, only relatively few PCs will have a significant contribution to the variance.
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8 Conclusion and Outlook

In the first chapter of this thesis, we have revisited mathematical fundamentals of linear algebra, functional anal-
ysis, probability theory, and vector calculus, relevant to this work. Based on this, we developed a mathematical
framework for describing stochastic electromagnetic fields. It was shown that this framework, where the general
description of a random field is based on characteristic functionals, can properly describe the propagation of
stochastic electromagnetic fields under linear transformations. It was also shown that the existing theory for
stationary ergodic Gaussian fields is a special case of the new theoretical framework, which is a very important
result, as it justifies several assumptions that have been made in the past.

We also discussed the characterization of the stationary Gaussian electromagnetic field, radiated from sources
in a closed environment based on the data obtained by sampling the tangential field components on a surface,
enclosing the device under test. By simultaneously sampling the field at pairs of points on the scan plane, one
is able to calculate auto-correlation and cross-correlation functions of the sampled field amplitudes in a further
post-processing step. The advantages of time-domain measurements over frequency-domain measurements,
especially for broad-band unintentionally radiated emissions have been worked out. A fully capable two-probe
near-field scanning system has been realized which was constantly improved during the course of this thesis.
For obtaining accurate quantitative measurement results it is inevitable to discuss the de-embedding of the field
probes used for sampling the stochastic electromagnetic field. We also presented a procedure for equivalent
source reconstruction, based on correlation information. In that algorithm, the obtained correlation matrix at a
certain frequency is projected to a finely resolved grid on the source plane, with an estimated inverse propagator,
which is the best fit in the least-squares sense.
The propagation of stochastic electromagnetic fields, or more precisely, the numerical propagation of corre-

lation dyadics, describing Gaussian random fields was extensively discussed. Different numerical propagation
methods, operating in both, in the frequency-domain and in the time-domain, have been introduced and revisited
carefully. We have compared measured and numerically propagated data in the near-field, using a method of
moments based scheme and a Wigner-function based numerical propagator. Both propagated results are eval-
uated with respect to experimental data, obtained in the observation plane. Good agreement with experiment
could be obtained for both results, where the exact method of moments based propagator slightly outperforms
the simpler but faster Wigner-propagator in terms of accuracy. For free-space propagation, both methods are
applicable, but for propagation in complex environments, the method of moments scheme can be adapted to a
newly computed numerical Green’s function of the complex structure, whereas the Wigner propagator is only
suitable as an approximation for free space. The integration of the stochastic field propagation mechanisms with
existing full-wave numerical field solver tools was also discussed. We have presented simulation results for the
spectral energy density above a real PCB, where we have simulated the propagation of correlation information
for different degrees of source correlations.
One key application for the theory of stochastic electromagnetic fields has been identified to be wireless

chip-to-chip communication [178]. Stochastic electromagnetic fields can be used to accurately model the
near-field noise contributions in a densely packed integrated environment. We have described the conditions
for constructing decoupling and matching networks and we presented an experimental setup for multiple-input
multiple-output communication in the near-field. In this setup, we neglected the decoupling of the different
antennas in the system, which led to a reducedMIMOgain. Nevertheless, we recorded field correlation functions
above the measurement setup experimentally, which can provide insight into the noise levels, one has to deal
with in such scenarios, after further investigations.
Data management for measured and simulated results for broad-band stochastic electromagnetic fields is key,

as the amounts of data, as well as simulation and measurement times, are in general very high if a suitable
spatial resolution is desired. We have developed an algorithm based on principal component analysis, which is
capable of effectively reducing the amount of data by only retaining those samples, which provide the largest
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share in total variance, i.e. energy of the data. As the number of independent random sources is typically much
lower than the number of spatial scanning points, it was shown that this procedure provides a good trade-off
between retaining the relevant information and data reduction.

For the industrial application of the characterization techniques developed in this thesis, e.g. in computer-aided
fabrication of electronic systems, it remains to improve the measurement and simulation runtimes, as well as the
amount of data that is captured. We suggest a study on the impact of sparse sampling, i.e. how can we predict
the field correlations on a measurement grid if only a subset of the spatially distributed point-pairs is actually
determined experimentally. There is interesting preliminary work on sparse sampling [179], [180], which could
possibly help in reconstructing the full correlation information from a reduced measurement subset, where the
measurement pairs are chosen randomly. This would be a huge advantage, as the data reduction mechanism
from [38] introduced in this thesis still requires knowledge of all correlation pairs, prior to data reduction.
Another important point is the construction of an improved measurement device, which should be capable of
recording field samples at multiple points simultaneously, as suggested in [125]. Using such an advanced device,
correlation functions can be calculated for multiple point pairs with one single measurement, which would also
drastically reduce the measurement time. Another option here would be to reduce the number of reference
points, i.e. not calculating every possible combination of point pairs. This means that one probe still scans all
grid points on a measurement grid above the device under test, while the second probe only scans at points on a
reduced grid. The loss in information, especially for the propagation of the resulting correlation dyadics needs
to be studied both, theoretically and experimentally in order to decide if such a procedure is feasible in the future.
Furthermore, there is a need for implementing a universal strategy for the case of cyclostationary random fields.
Altogether, there remain challenging and interesting problems to be solved, which makes studying stochastic
electromagnetic fields more interesting than ever for future researchers, working on that topic.
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