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Background and Purpose: The T1-weighted dynamic contrast enhanced (DCE)-MRI

is an imaging technique that provides a quantitative measure of pharmacokinetic (PK)

parameters characterizingmicrovasculature of tissues. For the present study, we propose

a new machine learning (ML) based approach to directly estimate the PK parameters

from the acquired DCE-MRI image-time series that is both more robust and faster than

conventional model fitting.

Materials and Methods: We specifically utilize deep convolutional neural networks

(CNNs) to learn the mapping between the image-time series and corresponding PK

parameters. DCE-MRI datasets acquired from 15 patients with clinically evident mild

ischaemic stroke were used in the experiments. Training and testing were carried out

based on leave-one-patient-out cross- validation. The parameter estimates obtained by

the proposed CNN model were compared against the two tracer kinetic models: (1)

Patlak model, (2) Extended Tofts model, where the estimation of model parameters is

done via voxelwise linear and nonlinear least squares fitting respectively.

Results: The trained CNN model is able to yield PK parameters which can better

discriminate different brain tissues, including stroke regions. The results also demonstrate

that the model generalizes well to new cases even if a subject specific arterial input

function (AIF) is not available for the new data.

Conclusion: A ML-based model can be used for direct inference of the PK parameters

from DCE image series. This method may allow fast and robust parameter inference in

population DCE studies. Parameter inference on a 3D volume-time series takes only a

few seconds on a GPU machine, which is significantly faster compared to conventional

non-linear least squares fitting.

Keywords: dynamic contrast enhanced MRI, pharmacokinetic parameter inference, convolutional neural

networks, ischaemic stroke, tracer kinetic modeling, contrast agent concentration, loss function
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1. INTRODUCTION

Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) is an effective dynamic imaging technique that can be
used to study microvascular structure in vivo by tracking the
diffusion of a paramagnetic contrast agent such as gadopentate
dimeglumine (Gd-DTPA) over time (1). By collecting a series
of T1-weighted MR images at intervals of a few seconds, the
uptake and washout of the administered contrast agent can
be observed in the imaged tissue, resulting in characteristic
intensity-time curves across different tissues (2). Vascular and
cellular regularities in human body usually have a strong impact
on the local vascular perfusion and permeability. To this end,
DCE imaging has been used as a promising tool for clinical
diagnostics of brain tumors, multiple sclerosis lesions, and several
neurological disorders that lead to disruption and breakdown
of blood-brain barrier (BBB) (3–6). In DCE-MRI, changes in
contrast agent concentration are determined from changes in
signal intensity over time, and then regressed through the use
of tracer kinetic (TK) models to estimate pharmacokinetic (PK)
parameters which characterizes the vascular permeability and
tissue perfusion (7, 8).

One of the key limitations of TK modeling methods is

that they are simply based on the fitting of voxelwise PK
parameters to contrast agent concentration-time curves (9). The
fitting is usually performed using a nonlinear least squares
(NLS) approach. However, the acquired voxelwise concentration-
time curves are generally very noisy and involve only a small
number of sampling points, hence the model fitting may yield
parameter estimates with large variance as well as considerable
bias (see Figure 1 for an exemplary representation of this
limitation). Moreover, an iterative NLS solver may converge to

erroneous solutions since the NLS objective is not convex and
can have multiple local minima (10). Another major drawback is
that the voxelwise model fitting is computationally demanding
considering the thousands of voxels in a single MR slice (11).
More sophisticated approaches (10, 12) were also proposed
based on Bayesian theory of statistical inference of the DCE
parameters for the fitting of nonlinear models. Unlike the
standard NLS regression, these approaches exploit the spatial
information of the neighboring voxels and provide reduce
variability of parameters in local homogeneous regions. However,

the bottleneck is their drastically increased computation time,
usually taking hours for the estimation of parameters on a single
DCE scan.

Machine learning (ML) methods have been extensively used
in the medical imaging community for several tasks (13) such
as parameter estimation, disease classification, segmentation, so
on. Recently, a random forest regression based method (14)
was proposed to estimate accurate spectral parameters in MR
spectroscopy. Deep learning methods (15–17) have recently
gained large popularity and achieved predominantly state-of-
the-art results in the medical imaging field including various
image-to-image translation tasks (18–20). A deep neural network
based approach for perfusion parameter estimation (21) was first
proposed for dynamic susceptibility contrast (DSC)MRI without
requiring a standard deconvolution process.

To alleviate the aforementioned limitations in DCE-MRI,
we present a direct and fast PK parameter estimation method
which introduces several concepts from machine learning. Our
proposed approach can directly infer the PK parameters from
the observed signal intensity over time. In order to achieve this,
we first train a deep convolutional neural network (CNN) to
learn the underlying mapping – or relation – between intensity
image-time series and PK parameters using a large training data
consisting of millions of voxels taken from the brain DCE dataset.
In our method, the target PK parameters used in training step
can be either estimated by any existing tracer kinetic models,
or can be defined with reference values depending on a specific
biomarker or disease that has been built on one specific type
of model. Our method can intrinsically provide the following
advantages over the conventional model fitting based parameter
estimation approaches:

• The proposed method can directly estimate the corresponding
physiological perfusion parameters when only observed
signal intensities over time given, which eliminates several
intermediate computation steps of the conventional pipeline
as illustrated in Figure 2.

• Ourmethod serves as a high-level parameter estimationmodel
such that we can train a network from which we expect to
yield parameter estimates as close as the target values that are
obtained using any optimization approach, e.g., standard NLS
fitting, regularized Bayesian estimation methods, etc.

• Due to its strong generalization ability, this method shows
increased robustness to signal noise and outliers, and it
can significantly mitigate the effect of irregularity and
discontinuity problem which is quite apparent in the
parameter maps estimated by conventional NLS fitting.

• The parameter estimates obtained by the proposed approach
yields improved statistically significant differences between
different tissue types, which can ultimately allow better
discrimination of normal and pathological regions in stroke
analysis.

• Compared to conventional fitting methods, the PK parameter
inference with our ML based approach is computationally
faster, taking only seconds on an entire 3D DCE-MRI volume.

2. MATERIALS AND METHODS

2.1. Dataset and Preprocessing
2.1.1. Patients

Fifteen patients were recruited for this study. The patient cohort
presents first clinically evident mild (i.e., expected to be non-
disabling) ischaemic stroke from the local stroke service. The
patients were over 18 years old and had a definite diagnosis of
ischaemic stroke. They were able to consent themselves, had an
MRI scan at diagnosis and weremedically stable enough to return
for a DCE-MRI scan at between 1 and 3months post-stroke and a
follow-up after 1 year. All patients underwent clinical assessment
by a stroke physician, diagnostic MR imaging and cognitive
testing at presentation. An expert panel of stroke physicians and
neuro-radiologists assessed each case in order to confirm the
diagnosis of ischaemic stroke and classify the ischaemic stroke
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FIGURE 1 | Effect of signal noise on the resulting parameters with conventional fitting models. (A) an examplary DCE image (left) displaying two neighboring voxels

(marked by red and blue circles) in the stroke region, and the corresponding Ktrans maps (right), (B) resulting fitted contrast agent concentration curves for these two

voxels using Extended Tofts model. Although the neighboring voxels are spatially very close to each other (only 1-pixel away), the observed concentration data are

different due to the excessive signal noise. Eventually, there is a substantial difference in the fitted concentration curves and parameter values

(Ktrans = 6.18× 10−3 min−1 for voxel 1, and Ktrans = 2.48× 10−3 min−1 for voxel 2).

FIGURE 2 | The conventional pipeline of pharmacokinetic parameters for DCE-MRI. Our proposed machine learning (ML) model allows to directly infer the parameters

from the acquired DCE image time series. To this end, the intermediate computational steps—i.e., conversion to contrast concentration, extraction of AIF, and fitting to

a tracer kinetic (TK) model—can be eliminated when applied on a test data. We note that in our approach a specific TK model can be still used to estimate target

parameter values during training.

subtype. DCE-MRI was performed a minimum of 1 month after
the stroke in order to avoid acute effects of the stroke on the
local BBB (22). This study was approved by the Lothian Ethics of
Medical Research Committee (REC 09/81101/54) and the NHS
Lothian R + D Office (2009/W/NEU/14), and all patients gave
written informed consent.

2.1.2. MRI Acquisition

MR imaging was performed on a 1.5 T MRI scanner (Signa
HDxt, General Electric (GE), Milwaukee,WI) using an 8-channel

phased-array coil. Structural MR images for diagnostic purpose
were acquired at first including axial T2-weighted (T2W; TR/TE
= 6000/90 ms, FoV = 240 × 240 mm, acquisition matrix =
384 × 384, 1.5 averages, 28 × 5 mm slices, 1 mm slice gap),
and axial fluid-attenuated inversion recovery (FLAIR; TR/TE/TI
= 9000/153/2200 ms, FoV= 240× 240 mm, acquisition matrix =
384× 224, 28× 5 mm slices, 1 mm slice gap).

DCE image series were acquired using a 3D T1W spoiled
gradient echo sequence (TR/TE = 8.24/3.1 ms, flip angle = 12◦,
FoV = 240 × 240 mm, acquisition matrix = 256 × 192, slice
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FIGURE 3 | A representative MRI image and corresponding tissue

segmentations. FLAIR image (left) and tissue masks superimposed on FLAIR

image (right). NAWM, normal-appearing white matter; WMH, white matter

hyperintensities; DGM, deep gray matter; RSL, recent stroke lesion.

thickness = 4 mm, 42 slices). Two pre-contrast acquisitions were
carried out at flip angles of 2◦ and 12◦ to calculate pre-contrast
longitudinal relaxation times (T10). An intravenous bolus
injection of 0.1 mmol/kg of gadoterate meglumine (Gd-DOTA,
Dotarem, Guerbet, France) was administered simultaneously
with the start of 20 acquisitions with 12◦ flip angle and a temporal
resolution of 73 seconds. The total acquisition time for DCE-MRI
was approximately 24 minutes.

2.1.3. Image Processing

For image preprocessing, we mainly followed the steps described
in Heye et al. (22). First, all structural and DCE MR images
were coregistered to the 12◦ pre-contrast image using rigid-
body registration to correct for bulk patient movement. All
small vessel features were determined according to agreed
STRIVE standards (23). We employed a multispectral MRI
data fusion and minimum variance quantization method
(24) for the segmentation of white matter hyperintensities
(WMH) and normal-appearing white matter (NAWM), and the
resulting masks were manually refined. We used the “Region of
Interest” tool of Analyze 11.0TM (AnalyzeDirect, KS) to semi-
automatically outline the old stroke lesions and recent stroke
lesion (RSL) boundaries separately. Stroke lesion masks were
checked for precision by a neuroradiologist; all other tissue
masks were checked visually for accuracy and manually edited
by an expert if necessary. Moreover, subcortical/deep gray matter
(DGM) masks were generated automatically using a software
pipeline as described in Heye et al. (22). In order to minimize
any residual contamination of the DGM, the resulting mask was
eroded by one voxel. Figure 3 depicts a representative FLAIR
image and corresponding tissue segmentation.

2.2. DCE-MRI Analysis
Data collected at multiple flip angles were first used to calculate
the T10 map based on the variable flip angle method proposed in
Brookes et al. (25), given by

1

T10
=

1

TR
ln

(

SRsinαbcosαa − sinαacosαb

SRsinαb − sinαa

)

, (1)

where SR = Sa/Sb with Sa and Sb denoting the signal intensities
of the two pre-contrast acquisitions with flip angles αa = 2◦ and
αb = 12◦, and TR is the repetition time.

Dynamic DCE image series S(t) are converted to contrast
agent concentration Ct(t) through the steady-state spoiled
gradient echo (SGPR) signal equation (26),

S(t) =
M0sinαb(1− e−(K+L))

1− cosαbe−(K+L)
+

(

S(0)−
M0sinαb(1− e−K)

1− cosαbe−K

)

,

(2)
where K = TR/T10, L = r1Ct(t)TR, r1 is the contrast agent
relaxivity taken as 4.2 s−1mM−1, S(0) is the baseline (pre-
contrast) image intensity, and T10 andM0 are respectively the T1

relaxation and equilibrium longitudinal magnetization that are
calculated from a pre-contrast T1 mapping acquisition.

For each subject, we extracted a vascular input function
(VIF) from a region located on the superior sagittal sinus (SS)
because partial volume effects and inflow artifact were reduced
at this location compared to obtaining the arterial input function
(AIF) from a feeding artery (22); the delay between arterial and
venous responses is expected to be very small compared with
the temporal resolution of our acquired data. Instead of selecting
only a single voxel, we determined a 3 × 3 patch inside the
SS region and estimated the VIF by averaging the time-signal
intensities over the voxels within the patch. This enabled us to
obtain more smooth variations in the DCE-MRI time course.
We converted the whole-blood concentration Cb(t) measured
in the SS to plasma concentration using the formula Cp(t) =

Cb(t)/(1 − Hct) where Hct is the blood hematocrit measured in
large arteries and assumed to be Hct = 0.45 as previously used in
literature (22, 26, 27).

2.2.1. Tracer Kinetic Models

Tracer kinetic modeling (28) is applied in DCE-MRI to provide
a link between the contrast agent concentration and the
physiological or so-called pharmacokinetic parameters, including
the fractional plasma volume (vp), the fractional interstitial
volume (ve), the volume transfer rate (Ktrans) at which contrast
agent (CA) is delivered to the extravascular extracellular space
(EES) from plasma space.

In this study, we fitted the following two models to the tissue
concentration curves Ct(t): (i) the extended Tofts model, (ii) the
Patlak model. A schematic overview of the two models and their
relationship is illustrated in Figure 4.

The extended Tofts (eTofts) model (29) mainly describes a
highly perfused (Fp = ∞) two- compartment tissue model
considering bidirectional transport between the blood plasma
and EES. The concentration of contrast agent in the tissue is
determined by,

Ct(t) = vpCp(t)+ Ktrans

∫ t

0
Cp(τ )e

−kep(t−τ )dτ , (3)
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FIGURE 4 | Illustration of two tracer kinetic models: Extended Tofts (left) and Patlak (right) model. Target parameters of DCE-MRI modeling are the contrast agent

transfer rate from plasma space to tissue space Ktrans, the fractional plasma volume vp, the fractional interstitial volume ve, and transfer constant from the tissue

space to the blood plasma kep. Patlak model is related to Extended Tofts model through the assumption Cp >> Ce such that the backflux from the EES into the

plasma space is negligible.

where kep = Ktrans/ve represents the transfer constant from the
EES back to the blood plasma. For the fitting of eTofts model, we
used limited-memory Broyden-Fletcher Goldfarb-Shannon (l-
BFGS) method for nonlinear minimization of the sum of squared
residuals. The algorithm was run till convergence for a maximum
of 30 iterations.

The Patlak Model (30) can be considered as a special case of
the eTofts model, where the backflux from the EES into the blood
plasma compartment is negligible. To this end, this model only
allows measurement of the two parameters Ktrans and vp given
by,

Ct(t) = vpCp(t)+ Ktrans

∫ t

0
Cp(τ )dτ , (4)

An attractive feature of Patlak model is that the model equation
in (4) is linear and model parameters can be fitted using linear
least squares which has a closed-form solution, hence parameter
estimation is fast (9).

2.3. Deep Learning for Pharmacokinetic
Parameter Estimation
In this study, we consider the PK parameter inference in DCE-
MRI as a mapping problem between intensity image-time series
and parameter maps where the underlying mapping can be
efficiently learned using deep CNNs. The proposed CNN aims
at learning data-driven features with the use of convolutional
feature filters to effectively detect the local spatio-temporal
characteristics of the DCE time series. The extracted spatio-
temporal features are desired to represent the underlying relation
between the input and output of the network as much as possible.

Specifically, our CNN is trained to learn a mapping between
S(t) and θ to output an estimate of PK maps θ̃ ; θ̃ = f(S(t)|w),
where f denotes the forward mapping of the CNN with the
learned set of filter weights w. We note that set of parameters
are represented by θ = {Ktrans, vp} for Patlak model and θ =

{Ktrans, kep, vp} for eTofts model.

2.3.1. Loss Function

To learn the network weights (w) during training, we need to
define an objective function (or loss function) to be minimized.
In addition to the standard mean squared error (MSE) loss
between the true PK parameter values θ and the estimated
values θ̃ which enforces high fidelity in parameter reconstruction,
we simultaneously seek the fitted contrast agent concentrations
of the PK parameters to be sufficiently close to the observed
concentrations, Ct(t). To this end, we formulate a new loss
function which jointly incorporates these two loss criteria. Given
a large number of training samples D of input-output pairs
(S(t), θ), we train a CNNmodel that minimizes the following loss,

L(w) =
∑

(S(t),θ)∈D

(

‖θ − θ̃‖22 + ‖Ct(t)− ftk(θ̃)‖
2
2

)

, (5)

where ftk is the tracer kinetic model equation of either eTofts
or Patlak model as formulated by Equation (3) or Equation (4),
respectively.

2.3.2. Network Architecture

We illustrate the network structure used in this study in Figure 5.
The network takes DCE image-time series as input with a
patch size of 24 × 24 × 21, where time frames are stacked as
input channels. The first convolutional layer applies 2D filters to
each channel individually to extract low-level temporal features
which are aggregated over frames via learned filter weights to
produce a single output per voxel. Inspired by the work on
brain segmentation (31) and denoising in arterial spin labeling
(32), our network consists of parallel dual pathways to efficiently
capture multi-scale information after the first layer. The local
pathway focuses on extracting details from the local image
regions while the global pathway is designed to incorporate
more contextual global information. The global pathway consists
of 3 dilated convolutional layers with dilation factors of 2, 4,
and 8, indicating increased receptive field sizes. Zero-padding is
applied before every convolution operation to keep the spatial
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dimensions of the output equal to the input. The filter size of
each convolutional layer including dilated convolutions is chosen
as 4 × 4. The rectified linear units (ReLU) activation function
(f (x) = max(0, x)) is applied after each convolution to introduce
non-linearity into the mapping. Local and global pathways are
then concatenated to form a multi-scale feature set. Following
this, two fully-connected layers of 256 and 128 hidden nodes
are used to determine the best possible feature combination that
can accurately map the input to output of the network. Finally,
the last fully-connected layer outputs the parameter estimates
of a patch size 24 × 24 × n, where n is the number of kinetic
model parameters. We emphasize that as our proposed network
was structured to estimate outputs for every single voxel of the
input patch, it is essential to keep the spatial dimensions of the
input and output same throughout the network. Therefore, in
our network we can consider a fully-connected (FCN) layer as
a convolutional (CONV) layer with 1× 1 convolutions.

2.3.3. Network Training

Among all the follow-up scans we only selected one DCE-MRI
scan per subject in our experiments. All these scans were acquired
at between 1-3 months post-stroke. For each patients data, we
neglected the first and last 5 image slices due to insufficient
brain coverage. Among the remaining slices of each patient we
randomly selected 20 slices to be considered in analysis. We
note that these are the central 20 slices that contain most of
the brain regions in overall. Following to this, each 2D DCE
image slice was divided into overlapping patches of size 24 × 24
voxels with step size of 6 voxels. This resulted in a collection
of approximately 12, 000 patches for every patients data. We
applied the same procedure on contrast agent concentration
data and target parameter maps required for network
training.

All experiments were performed in a leave-one-subject-out
fashion, i.e., 30 different networks were trained in total based
on both Patlak and eTofts model parameters. Randomly chosen
10, 000 overlapping patches of each subject were split into
training (80%) and validation (20%) sets. The networks were
trained using the Adam optimizer with a learning rate of 10−3

and a decay rate of 10−4 for maximum number of 200 epochs
and a mini-batch size of 1000 patches. Early stopping was applied
to prevent poor generalization performance when the validation
loss stopped improving within consecutive 15 epochs. In Figure 6
we provide two exemplary plots depicting the changes in training
and validation loss over epochs for CNN trained on Patlak and
eTofts models. Both losses show a decreasing trend and converge
to a minimum. We implemented our code using Keras library
with TensorFlow (33) backend, and experiments were run on a
NVIDIA GeForce Titan Xp GPU with 12 GB RAM.

2.3.4. Testing

Once the network is trained and network parameters are learned,
DCE image-time series data of a test subject can be fed into
the network to directly predict the PK parameters. Since the
predictions are processed in a patch-wise manner, all overlapping
16 predictions of a neighborhood are averaged to obtain a final
value for every individual voxel.

3. RESULTS

3.1. Comparison of Pharmacokinetic Maps
We compare the qualitative PK parameter maps obtained by
Patlak model fitting, eTofts model fitting and CNN model
trained by either Patlak or eTofts model. Figures 7B,C shows
PK parameter maps of an exemplary slice of a patients data.
In overall, the parameter maps by CNN model looks very
similar with the Patlak model fitting. However, the CNN
model produces higher estimates of Ktrans in especially small
RSL region as marked on the DCE image in Figure 7A.
Moreover, the RSL region is more distinctive and can be
discriminated well with respect to other tissues in both the
parameter maps of CNN model. For numerical evaluation
of output parameter maps, we used two evaluation metrics
calculated within the entire brain region: Structural similarity
index (SSIM) and normalized root mean square error (nRMSE).
These values were calculated by considering the output maps
of Patlak model as reference, shown in Figures 7B,C. For
Ktrans, we obtain a high SSIM of 0.991 and a low nRMSE
of 0.0144. For vp, SSIM is calculated as 0.973 and nRMSE is
0.0168.

Figures 8B,C demonstrates PK parameter maps of an
exemplary slice of an another patients data fitted by eTofts model.
The parameter estimates significantly match each other (for CNN
and eTofts) in many of the tissue regions except NAWM as
depicted on theDCE image in Figure 8A. As shown in Figure 8C,
CNN model yields lower vp values in comparison to eTofts
model in NAWM. Hence, the discrimination of the NAWM
with respect to WMH is more prominent. Quantitatively,
when compared against the parameter maps obtained by eTofts
model, CNN maps yield a SSIM score of 0.998 and 0.961
for Ktrans and vp, respectively, while nRMSE is 0.0073 and
0.0156.

3.2. Fitting to the Observed
Concentration -Time Series
We evaluate the accuracy of the fitting to the observed
concentration-time series data. The fitted contrast agent
concentration-time series were estimated via (3) and (4) by using
the parameter estimates of Patlak, eTofts, and CNN models
separately.

Table 1 demonstrates the quantitative comparison of the
fitting to the observed contrast agent concentration time series
data for different models in terms of nRMSE and SSIM. The
metric values were calculated for every 2D slice of a subject’s
volume, and statistical values (mean ± std) were obtained
using all 15 subject’s data. The results indicate that standard
Patlak and eTofts model can fit the data better compared
to the CNN model trained with these models separately.
However, the difference is not substantial that CNN model still
achieves high accuracy with less than an average %2 fitting
error.

Figures 9A,B shows the fitting of contrast concentration
(in mM) for the NAWM and RSL regions in a single
patient data. In general, the CNN model trained by either
Patlak or eTofts model parameters can fit the data similarly
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FIGURE 5 | Illustration of the deep learning architecture used for the estimation of PK parameter maps given the DCE image patch-time series as input. All

convolutional layers except concatenation layer learn 32 filters whereas concatenation layer learns 64 filters. Every convolutional layer involves a filter size of 4× 4.

ReLU is used as a non-linear activation function after each convolutional and fully connected layer. The size of the outputs from each layer operation [e.g., input,

convolution and full connection (FCN)] are also displayed at the bottom of each layer.

FIGURE 6 | Training and validation loss over epochs obtained by training a CNN model using (A) Patlak and (B) eTofts model parameters. Gradual decrease in the

loss indicates the efficiency of the network for learning useful representations related to the underlying mapping between the input and output.

well when compared with Patlak and eTofts model. An
interesting observation in Figure 9B is that the eTofts model

does not fit the observed data well whereas the fitting

obtained by CNN model trained on eTofts parameters is more

accurate.

3.3. Statistical Analysis of PK Parameter
Estimation
We perform statistical analysis of the parameter estimates on
different tissues. A comparison between tissue types is shown
in Figure 10. We assessed the statistical significance of the
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FIGURE 7 | Comparison of qualitative PK parameter maps from a slice of a stroke patient data. (A) a DCE image slice on which the tissue masks are superimposed

(WMH: green, RSL: red), (B) Ktrans and (C) vp parameter maps obtained by CNN model and Patlak fitting.

FIGURE 8 | Comparison of qualitative PK parameter maps from a slice of a patient data with white matter hyperintensities. (A) a DCE image slice on which the tissue

masks are superimposed (NAWM: blue, WMH: green, DGM: yellow), (B) Ktrans and (C) vp parameter maps obtained by CNN model and eTofts fitting. We remark that

WMH represents the WM tissue associated with increased risk of dementia and cognitive decline.
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TABLE 1 | nRMSE (%) and SSIM statistics (mean ± std) obtained from concentration-time series data fitting. The SSIM value can vary between –1 and 1, where 1

indicates perfect similarity.

Models

Metric Patlak eTofts CNN: Patlak trained CNN: eTofts trained

nRMSE (%) 1.1200 ± 0.5225 1.0575 ± 0.5744 1.6398 ± 0.6878 1.7360 ± 0.7408

SSIM 0.9812 ± 0.0141 0.9835 ± 0.0127 0.9750 ± 0.0138 0.9719 ± 0.0162

differences using the paired Wilcoxon signed rank test. For
Patlak and eTofts model, all differences between tissue types were
significant (p < 0.001) except for Ktrans in DGM andWMH, and
vp in WMH and RSL. For CNN model trained on Patlak model
parameters, all differences of Ktrans between tissue types were
significant including the difference between WMH and DGM
(p = 3.4 × 10−4). The difference between WMH and RSL for
vp is again statistically significant with p = 1.6× 10−5. The CNN
model trained on Patlak generally tends to overestimate theKtrans

and vp parameters compared to either Patlak or eTofts model.
The difference between them are significant with p < 0.001,
and this is valid for all tissue types except DGM (p = 0.021
for Ktrans). On the other hand, the CNN model trained with
eTofts parameters yield underestimated Ktrans and overestimated
vp values when compared against either Patlak or eTofts model.
The underestimation of Ktrans by CNN is statistically significant
for all tissue types except WMH (p = 0.317). The overestimation
of vp by CNN is significant for all tissue types (p < 0.001).

Figure 11 depicts the Bland-Altman plots of Ktrans values
in three different tissues (DGM, WMH, RSL) obtained from a
patient’s data. As can be observed in Figure 11A, when compared
against the Patlak model, CNN model trained with Patlak tends
to slightly underestimate the Ktrans in DGM and overestimate the
values in WMH and RSL. Figure 11B indicates that Ktrans are
underestimated by CNN trained with eTofts in DGM and RSL.
The values in WMH highly match with Patlak fitting showing
no systematic difference. In general, the results in Bland-Altman
plots agree with the statistical results as shown in Figure 10,
meaning that systematic differences are observable between
the estimates of CNN and model fitting although concordance
correlation coefficients (CCCs) indicate a strong agreement.

4. DISCUSSION

The results of this study show that a CNN based ML model can
yield PK parameter estimates that are comparable to traditional
model fitting. As depicted in Figures 7, 8, the qualitative
parameter maps estimated by CNN models match highly with
the ones obtained by conventional TK model fitting methods.
Moreover, ML based models can enable better discrimination of
different brain tissues. As can be seen in Figure 7, small stroke
lesion is more visible with higher Ktrans values assigned to this
region. In addition to this, the discontinuities of parameter values
arising especially at highly perfused regions (i.e., vessels) can be
mitigated by CNN model, and more smoother local areas are
produced in these regions as shown in Figures 7, 8.

Statistical analysis in Figure 10 indicate that significant
differences between tissue types can be achieved by CNN model
whereas both Patlak and eTofts model fail in quantitatively
differentiating some of the tissues pairwise including WMH-
DGM. Especially higher Ktrans values are generally assigned to
stroke regions i.e., RSL, allowing better discrimination of these
areas against non-stroke regions. To this end, the proposed ML
model can be an appropriate parameter inference model for
quantification of subtle BBB disruption where measuring low-
level BBB permeability is vital in several diseases, including
cerebral small vessel disease, lacunar stroke and vascular
dementia. Another interesting observation is that the plasma
volume vp values estimated by CNN model in WMH are
considerably greater than in normal-appearing WM areas. This
may result in improved identification of the hyperintensity
areas from the surrounding normal appearing WM tissue. WM
hyperintensities are usually regarded as surrogates of small vessel
disease and frequently seen in elderly people (34).

The major advantage of ML based model is that the parameter
inference of a voxel belonging to a specific tissue type is
performed by taking into account many other training samples,
or voxels, of the same tissue type. Therefore, if the signal time
series of a target voxel is subject to high noise, it is likely that
a parameter value associated with the voxels that show similar
signal trends and located in the same tissue type can be assigned
to the target voxel. One example relevant to this observation
can be seen in Figure 9B, where the fitted concentration time
curves are provided for a ROI inside the RSL region of a patients
data. Here, the eTofts model does not provide a good fit to
the measured signal and the fitted concentration-time curve
describes more a vascular region (i.e., blood vessel). However,
the fit of the CNN model trained with eTofts model parameters
can produce significantly better fit to the observed data, and
the fit resembles more an RSL region, which is highly similar
with the fits by Patlak and CNN model trained by Patlak model
parameters. These findings reveal better generalization ability
of ML models (35) which can extract and learn important
tissue specific features from a large cohort of training examples.
However, it should be noted that the correction of misfit of
concentration time curves in Figure 9B does not point out an
unique feature of our CNN based approach, but rather shows a
specific case. The avoidance of a misfit with the CNN network
primarily depends upon the model and optimization approach
on which the network is trained.

Another observation from Figure 11 also signifies the
tendency of CNN model to produce parameter estimates
close to a mean value of parameter distribution learned from
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FIGURE 9 | Comparison of model fits to the observed patient data. Exemplary concentration-time curves for tissue regions (A) NAWM and (B) RSL. In general, the

CNN model trained by either Patlak or eTofts model parameters can fit the data similarly well when compared with fitted Patlak model. More interestingly, the CNN

model trained by eTofts is in better alignment with observed data while the fitted eTofts is not sufficient to describe the data.

FIGURE 10 | Comparison of fitted and estimated PK parameters between tissue types obtained from all subjects data. Box plots shows the distribution of (A) Ktrans

and (B) vp in NAWM, WMH, DGM, and RSL. Box plots depict the median with a colored horizontal line for every method in comparison. Remarkably, CNN model

trained on Patlak model results in Ktrans and vp values which show statistically significant differences between tissue types.

many training voxels within in a specific tissue. Here, when
compared to the standard Patlak model parameters, we observe
overestimated values in especially WMH and RSL region
where the Ktrans usually has higher values. The overestimation
in some of the voxels within these tissues is presumably
caused by the relatively lower parameter values estimated by

Patlak model due to significant signal noise and fitting to the
local minima. In this regard, systematic differences between
CNN model estimates and standard NLS fitting are inevitable
because the parameter estimates by NLS fitting is not optimal
and usually produces a parameter distribution from a high
range of values within the voxels of a specific tissue, as it
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FIGURE 11 | Bland-Altman plots of permeability Ktrans parameters in different tissues, DGM (left), WMH (middle), RSL (right). Difference (y-axis) in Ktrans values

between CNN model and (A) Patlak, and, (B) eTofts fitting is plotted against the mean values of the two (x-axis). Solid gray line indicates mean difference (mdiff ). Top

and bottom gray dashed lines correspond to upper and lower margins of 95% limits of agreement estimated by mdiff ±1.96× SD, SD = standard deviation. Units for

horizontal and vertical axes are in min−1. The computed Lin’s concordance correlation coefficient (CCC) values are displayed at top-right corner of each plot.

can be seen in Figure 10. We anticipate that more accurate
evaluation of systematic differences can be obtained using the
synthetic DCE dataset where the ground truth parameters are
known.

Asmentioned before, one of the key advantages of ourmethod
is its utility to avoid intermediate computation steps of parameter
inference in DCE-MRI by replacing it with a direct inference
model. Although we use two existing TK models to estimate the
reference parameters, based on the specific DCE application, one
can use different TK models in literature (9) to infer the PK
parameters to be used during training of the CNN network. If
available, the network can be also trained using ground truth
parameter values. In addition to this, as previously done in
Banerji et al. (36) and Bosca and Jackson (37), synthetic DCE
phantom data can be generated by simulating the signal equation

and TK model equations with the PK parameters estimated from
real patient’s data, and a CNN model can be trained based on
the synthetic data and corresponding parameter maps. With this
approach, more realistic synthetic DCE datasets can be generated
by taking into account the acquisition noise and motion artifacts.
The generated synthetic datasets may be utilized to train a
network which can be later tested on in vivo DCE dataset to
obtain less noise-sensitive parameter estimates.

In conventional DCE-MRI analysis pipeline, subject-specific
AIF extraction from a ROI of a feeding artery is one of the
essential steps for the estimation of kinetic parameters (28, 38).
In this study, we demonstrate that CNN based ML model can
estimate PK parameters by no need of subject-specific AIF of
the test subject without introducing any significant bias in the
parameter estimation. Although this can be seen as one of the
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FIGURE 12 | Examplary subject specific vascular input functions (VIFs)

extracted from averaging a few voxels located on the superior sagittal sinus

(SS). Although the VIFs appear to have similar shapes, the peaks and steady

state signal can have varying magnitude (contrast agent concentration).

benefits of our model, we should remark that the data used in
this work is a part of a population study where the temporal
resolution and other parameters related to DCE acquisition
and contrast injection are fixed in all subjects. However, as
can be clearly seen in Figure 12, the subject-specific AIFs
of our dataset usually have varying magnitudes of the peak
and steady-state signal even though the time point where the
signal reaches the peak is similar for all subjects. The signal
pattern of the AIF curves are directly related to signal time
intensities through Equation (2), hence the trained network
can intrinsically learn the relation between the AIF and target
parameters via the mapping between the input and output of
the network and the designed loss function which takes into
account the underlying TK model through its equation. On the
other hand, the performance of proposed model on a mixed
data—ideally involving DCE image series acquired with different
acquisition parameters and protocols—can be subject to further
investigation. For parameter estimation with a model trained on
a mixed data, we anticipate that a bi-CNN input model similar
to as proposed for DSC-MRI (21) might be a good approach to
avoid bias and error in parameter estimation. In that setting,
the DCE image time series and other acquisition parameters—
including AIF—of both training and test subjects can be given to
the network as two separate inputs.

We emphasize that our CNN model is not trained on a entire
brain basis, but on individual time series. Out of the 15 patient
datasets we extract more than 160 million training samples,
i.e., number of total voxels in the training dataset. Moreover,
our network architecture is not very deep and we demonstrate
that this huge number of training samples is sufficient to
train a network that generalizes well, where the inability to

generate reproducible results is not an issue. Nevertheless, a
wider sampling of pathological cases andMRI artifacts in training
data is highly desirable and is one of the major direction for
improvements of the proposed approach. The proposed model
can—even should—be updated accordingly when applied to a
larger pool of patient datasets. In general, based on the literature
in ML, we anticipate that CNN-based ML models perform
better when there is a high correlation and similarity between
the training and test data. The dataset used in this study for
both training and testing involve voxels from different type
of tissues, e.g., healthy and pathological tissues, containing a
good mixture of different tissue characteristics. There is a high
similarity between the temporal profiles of training and test
image patches, hence, the performance of CNN is very stable and
robust. However, a poor generalization issue may usually arise in
a scenario that the training data only consists of healthy tissue
voxels whereas the unseen test data with pathological tissues is
tested using the trained model. In this scenario, since the model
is not trained with sufficient number of pathological samples, it
is quite likely that the CNN model shows a poor performance on
these test data comprised of non-healthy tissues. In principle, in
order to obtain a stable CNN model, it is necessary to constitute
a training data pool according to the demands or expectation
from such a prediction model in our specific clinical applications.
For instance, if we aim to discriminate well the acute/post-acute
stroke regions, our training data should contain high number of
voxels from both stroke and non-stroke regions.

Nevertheless, we should discuss the several limitations of
this study. First, although ML based methods can have strong
generalization ability, the bias is also inevitable when tested
on an unseen data because the model is always trained using
other subject’s data without any access to test data. Second, the
performance of our method may be improved depending on
the input patch size and filter size of the network. Moreover,
we only considered 2D convolution operations, however, 3D
convolutions may produce better results when more spatial
context information are extracted. Third, further investigation
on synthetic data is required to perform accurate assessment
of error and bias when the ground truth parameter values are
known. Lastly, our current approach is sensitive to variation
in acquisition parameters, especially temporal resolution, i.e.,
number of time points in DCE data. One feasible solution to
the variations in temporal resolution across multiple datasets is
to apply interpolation on time. In practice, we may interpolate
all training data acquired with various temporal resolutions to a
common temporal resolution so that a test data with completely
different temporal resolution can be also fed into the trained
network to produce parameter estimates.

In conclusion, this study shows that a ML based direct
inference approach can estimate PK parameters that are
comparable to the conventional model fitting in DCE-MRI.
Our results, based on a sample of mild ischaemic stroke
patients, demonstrate the efficiency of CNN model to enable
better discrimination of brain tissue types. Specifically, our
proposed ML based method has the potential to improve
the current quantitative analysis of DCE-MRI studies due
to its increased robustness to noise. Significant difference of
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permeability parameters between stroke and non-stroke regions
may ultimately effect the stroke medical decision process.
Finally, parameter inference of the proposed model on a 3D
brain volume is considerably faster than the standard NLS
fitting, demonstrating the applicability of such models in clinical
practice. Considering such faster computation time, clinical
experts may perform parameter inference using various TK
models in parallel to benefit from making more detailed analysis
between different models.
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