Wireless Sensor to Cloud Delay: A Network
Hardware and Processing Perspective for
Industrial Internet of Things

H. Murat Giirsu, Samuele Zoppi, Wolfgang Kellerer
Chair of Communication Networks
Technical University of Munich, Germany
Email:murat.guersu @tum.de

Abstract—Internet of things applications require lower
and lower delay to enable different applications such as
healthcare monitoring. Most of the prior work focuses
on enabling this through upcoming and expensive 5G
communications. Another alternative to realize a solution
is the ever-existing wireless sensor networks. The real-time
communication through sensors has been of interest for
industrial applications and is currently available for scales
down to 100 ms. When we are interested in delays of
two orders of magnitude lower, low processing power of
sensors and internal hardware delay becomes significant.
In this work we analyse existing sensor networks for
mostly neglected delay contributors in a real testbed. We
demonstrate that even the existing and cheap hardware can
potentially meet the real-time requirements. These results
are further utilized to provide discussions for an optimized
medium access control delay.

I. INTRODUCTION

The industrial internet of things (IIoT) are being
extended to lower delay requiring applications such
as patient health monitoring [1]. Such time-sensitive
applications also with the scale of the sensors pose
new research challenges. The main research effort fo-
cuses answering these challenges for 5G under 3GPP
framework. But, another direction is to optimize the
already existing IEEE 802.15.4 based devices, that we
will refer to as Wireless Sensor Networks (WSN), for
similar capabilities [2].

The accepted delay guarantees in WSN is mostly
around 100 ms [3]. The main challenge is to enable low
latency for multi-hop communication through synchro-
nized coordination. Nevertheless, the IIoT requires tens
of ms order delay which is even challenging for a single
hop WSN. On the other hand it is not impossible. We be-
lieve that investigation of limitations of the standard and
available implementations, can lead to cheap solutions
for some use-cases of IIoT.

A. Contribution

In this work we provide a detailed sensor to cloud
delay analysis for a single hop network. Our main contri-
bution is providing hardware and processing aspects for
communication delay under IIoT scope. In order to do so
we provide a general Interface-Processing framework

Switch 2

Switch 1

Fig. 1: The switch timings diagram for general delay calculation.
in Sec. II. A sensor to cloud delay measurement
with different sensor boards in a testbed are shared with
insights in Sec. III. Finally, we relate the effect of these
delays to Medium Access Control (MAC) and possible
future work.

II. INTERFACE-PROCESSING FRAMEWORK

There are multiple contributors to the delay of a
single packet that is transmitted through a wireless sensor
network device. In general, the delay is defined as
the time that is required from the generation of the
packet, until the reception of the packet at the end point.
A general framework [4] to model a layer 2 switch
delay is illustrated in Fig. 1. The delay 7" per hop is
t = tour +tamac +1ts +tp + tproes where touf is the
queuing delay, ty; ¢ is the average MAC waiting delay,
ts sending delay, ¢, is the propagation delay and ¢,
and the L2 processing delay.

The 4 is well investigated in the WSN literature and
t, is negligible in short distance wireless communica-
tion. But, ¢, is not negligible for sensor networks that
use i.e., 8 MHz processors, where processing delay may
be in the order of 1 ms.

A wireless sensor operation is decomposed into pro-
cesses tproc, and interfaces ?;,;,. Each layer function-
ality is defined as separate processes and the communi-
cation between each process as an interface as seen in
Fig. 2 and summarized as:

« Application Process interrupts the other processes
to read the sensor data and forwards the readings in
a packet format to the communication stack through
an interface called Northbound interface.

¢ Communication Stack Process appends headers
for networking purposes to the packet and forwards
it either (1) over the SouthWbound interface to

App. 1 App. 2

] 7]

— >

I — Interface

o SouthEastbound
Communication Stack Interface
/ Eastbound

]
e

External *H” External

Interface

Westbound
Interface

e —— Interface

Radio [y Wireless
MAC

'
<

MAC [< Comm.

[ransceiver USB Controller

Sensor Device
he—

Separation of Processes and Interfaces

Fig. 2: A wireless sensor system on chip decomposed to interfaces
for possible parallelization of a packet processing and avoiding any
pipeline queuing.
the Wireless MAC process, or through the SouthE-
bound interface to the external MAC process (.e.g.,
USB or Ethernet).

o Wireless MAC Process decides the right time to
forward the packet over the Westbound interface to
the radio transceiver circuit.

« Radio Process converts the digital information to
analog among other PHY processes over the Wire-
less interface.

« External MAC Process forwards the packet to the
external communication circuit through Eastbound
interface.

ITI. SENSOR TO CLOUD DELAY

1) Scenario: In this work we consider a single hop
wireless transmission from a sensor to a gateway that
is forwarded over a USB connection to a cloud. To
investigate the sensor to cloud delay in a practical way
in the following sections, we provide measurements over
two different wireless sensor set-up, with Zolertia 1 [5]
and OpenMote [6]. These platform are selected for a
WSN proof of concept due to their popularity. Both of
the sensors support IEEE 802.15.4 PHY communication.
The higher layer implementation is from OpenWSN
[7] for TSCH and we adapted the for MAC layer as
discussed in the Sec. IV. The transmission takes place
over the non-interfered channel 26.

The delay is calculated from the generation of the
packet until it reaches the cloud. The scenario is sum-
marized in Fig 3 as a 10 process-interface chain. We
will investigate the delay in three main parts: as sensor,
gateway and cloud.

On the cases where our testbed network lacks the
interface or the mentioned process we share the state of
the art results or possible modifications as a theoretical
perspective.

A. Sensor Delay

We start with investigating the initiation of the data in
the sensor.

1) Application Process: We do not want to constrain
ourselves to any sensor/network application. We abstract
this with general processing delay. For instance in [8] it
is shown that just processing of a tactile signal can take

up to 15 ms in an Arduino based set-up. Of course this
depends heavily on hardware, implementation and the
application type. One way to optimize this is through
definition of efficient function blocks as investigated for
actuators in International Electrotechnical Commission
(IEC) 61499. A recent work has investigated implemen-
tation of these blocks to increase re-usability [9].

2) Northbound Interface: Even though a general
standardization for IIoT northbound interface is lacking,
separate communities have started working on this inter-
face for their use-case. For instance, IEEE Standard for
a Smart Transducer Interface for Sensors and Actuators
Network Capable Application Processor (NCAP) Infor-
mation Model IEEE 21451 introduces a Network Ab-
straction Logical Interface Specification. An exemplary
implementation can be found in [10] where dynamic
implementation of sensor applications are enabled.

3) Communication Stack Process(1): The high layer
processing of the packet is composed of transport layer
and networking layer In our specific example we con-
sider a UDP packet.

In order to investigate the effect of the payload size,
we vary it from 1 to a maximum of 77 bytes. As the
maximum packet size is 133 bytes in IEEE 802.15.4, we
have to take into account the 56 Bytes added on NET,
MAC and PHY layers. In Fig. 4 the y-axis depicts delay
in (ms) while the x-axis shows the varying payload in
bytes.

The delay in on average around 0.94 ms for ZI
and 0.36 for OM and a small overhead is added with
increasing payload that is 39 us for Z1 and 0.39 us for
OM. The delay difference is not directly reflected by the
clock speed of the microprocessor that is 16 MHz for
Z1 and 32 MHz for OM.

The results demonstrate the performance of the trans-
port plus networking stack from OpenWSN and could
be optimized for specific scenarios.

4) SouthWbound Interface: The Wireless MAC can
be implemented on a separate microcontroller to get rid
off delay due to processing. However, this separation to
get rid of the processing queuing delay will translate
into an interface delay. In our exemplary set-up we do
not have this interface.

In state of the art similar interface delays can be ob-
served in [11] where a MAC accelerator is implemented
on FPGA and the added interface delay can be clearly
observed. In [12] a multi-radio and multi-processor gate-
way is implemented such that communication stack has
to use a bus based interface to separate the packets to
each MAC process. The separation of processes results in
a fixed delay overhead. Thus, even though the interfaces
come with a delay cost it also provides determinism
and thus should be the selected solution for real-time
requiring applications.

5) Wireless MAC Process: Our aim here is to extract
main processes such as selecting the wireless carrier,

App.

N

Communication Stack

SW SW

Communication Stack

SE

Wireless
Wireless
MAC

Wireless [~
MAC

Radio |1~ Radio

External

Externat - -2 224 > External I~ Cloud Sensor Controller

MAC

FanscaIver

USB Controller. USB Controller

Fig. 3: The sensor to cloud delay with processes and interfaces. The scenario depicted here is a one-hop, one-user communication. Without loss

of generality this can be extended to many.
1 : : : : :

0.95
M ((5TE
O oy

0.9 (R C

— 0.85

.
U

71 slope = 0.039474 ms / byte
OM slope = 0.00039474 ms / byte

035 [+
031 () Zolertiat
OpenMote

0.25 ‘ ‘ ‘
0 10 20 30 40 50 60 70 80
Payload Size (byte)

Delay (ms

Fig. 4: Communication Stack Processing delay on OpenWSN for UDP
packet creation until forwarding to the MAC layer. The processing time
is intrapolated with the line plots and the measurements are given with
markers.

duplicating packet for re-transmissions and measure the
delay impact for OpenWSN.

For Z1 the Rx Processing delay is 330 us and the Tx
Processing delay is 210 ps. For OM, the Rx Processing
delay is 180 us which is almost half due to increased
processing speed. However, the TX Processing delay
is 30 us, as the packet duplication benefits from the
sharing the same memory between wireless chip and
the microcontroller. The Wireless MAC reception delay
includes the cyclic redundancy check for error detection
and thus higher in both sensors. Wireless MAC delay
did not change with changing the packet size so it stems
mostly due to fixed header operations.

6) Westbound Interface: The radio process is usually
implemented on a separate chip than the MAC processes.
This is due to distinctive delay requirements of the two
processes. Thus, how this interface between these two
process is implemented can create a bottleneck in terms
of minimum delay.

The OM has the CC2538 chip that is composed of the
radio chip and the ARM microcontroller. The Z1 has the
CC2520 chip and a separate microcontroller MSP430.
For Z1 the inter-radio-microcontroller communication is
handled via Serial Peripheral Interface (SPI) protocol.
The radio chip and the microcontroller has separate
memories and the packet has to be copied between to
memory of each chip, before the chip can access it. The
CC2538 solves this problem by allowing the radio chip
to read the memory of the microcontroller.

The measured interface delay is evaluated In Fig. 5

0.8 - 7

— Z1 Rx Westbound
g Z1 Tx Westbound
[] OM Rx Westbound
-+ OM Tx Westbound

Delay (ms)

0.4 | 1
Z1 slope = 0.31507 ms / byte

OM slope = 0.031781 ms / byte

50 60 70 80 90 100 110 120
Payload Size (byte)

0.2

Fig. 5: Westbound transmission and reception delay

with x-axis depicting the packet size varies from 50 bytes
to 122 bytes and y-axis depicting the delay in ms. With a
a payload of 120 bytes for the Z1 the delay surpasses 1.2
ms while for OM it is at maximum 150 ps. This result, as
reflected with an order of magnitude difference in delay,
showcases the importance of interface delay.

7) Radio Process: The radio chip transmission pro-
cess delay is fixed to 0.6 ms in both sensors with all
payload sizes. This includes the radio turn on time and
is also non-negligible and necessary for long battery life
for sensors.

8) Wireless Interface: The transmission delay incor-
porates the data-rate provided by the transceiver and the
packet size. A packet of 50 byte that is transmitted with
a 250 kbps results in 1.6 ms delay and increases to 4.2
ms with maximum payload.

B. Gateway Delay

There radio chip reception delay is negligible with
varying payload. The Westbound Interface delay is al-
most same as the Tx delay. The Wireless MAC, SW
interface and Communication Stack is discussed in
Sec. III-AS5 and in not repeated here.

1) SouthEbound Interface: In case the external inter-
face needs to be heavily used, as would be the case in a
gateway, the handling of the external interface MAC on a
separate microcontroller is necessary. This is commonly
used in Wi-Fi routers that has separate processors for
dealing with backbone data forwarding. The separation
of these processes impose an interface delay that is
investigated in state of the art [12].

i

+

1E) 26 3(; 46 56 66 7(; 86 96 160 11‘[) 12‘0
Payload (byte)

Fig. 6: USB chip processing delay combined for PC and Sensor

2) External MAC Process: The external MAC pro-
cess is responsible for setting timings and creating the
UART packet. The UART packet is transferred to the
External Interface chip. We have investigated the Open-
WSN, external MAC process implementation that is the
OpenBridge. The resulting delay is below 30 us thus
negligible.

3) Eastbound Interface: On the Eastbound inter-
face, the microcontroller sends UART messages to the
CP2102 chip and the chip receives and converts these
to USB messages and sends it to the connected interface
with the USB 2.0 protocol. The UART protocol is simple
and it is limited to the baudrate settings of the chip. The
protocol is not protected with any error detection code so
increasing the baudrate may increase error probabilities.
For this reason we set the baudrate to 115200 bauds per
second. This results in 11.02 ms delay for 127 bytes and
4.42 ms for 51 bytes.

4) USB Process: The Z1 chip contains the CP2102
that has an embedded 156 us timeout to form a USB
packet out of the UART reception. This timeout based
packet forming can add additional delay and it can vary
from 0 to 156 us. We did not measure this separately but
we observed the variation caused by it. The OM on the
other hand has FT232R USB UART IC that is connected
through FTDI that has a 16 ms timeout which creates a
delay bottleneck.

In order to characterize the chip processing delay we
measured the end-to-end delay of a packet transmitted
from the PC to the sensor and back. We used an
echo application at the sensor. The driver at the PC
acknowledges the USB packet after the transmission and
this can be sniffed through Wireshark. We can measure
the time from the transmission of the packet until its
acknowledgement, this includes one-way transmission.
If we subtract this value and the UART delay from the
end-to-end delay measurement, we get the USB chip
transmission and the PC processing delay since the echo
application at the sensor takes negligible time. The re-
sulting delay in pus with varying payload is illustrated in
Fig. 6. Interestingly, the delay decreases with increased
packet size, which is unexpected. We project that this

—————y 4

> L
= i
Q 8or I
|

60 |

|

40 ¢ |

|

|

|

|

1

T | |
1 1 1 1 1 1 +
50 60 70 80 90 100 110 120
Payload (byte)

Fig. 7: Cloud USB delay due to polling slots of USB 2.0

is stemming from faster UART transmission speed than
advertised.
C. Cloud

The cloud, the end point for the data collection, is
abstracted here as an edge cloud that provides low
delay high processing power capabilities to the sensor
applications.

1) Cloud USB Process: The USB controller chip
we have on the laptop that is an Intel Corporation 8
Series/C220 Series Chipset Family USB EHCI. It runs
USB 2.0 specification [13]. There is also processing
delays stemming from this chip. We have measured the
delay by sniffing the USB message exchange on the chip
and there is a consistent 10 us delay between the packet
reception on the chip and the ACK transmission to the
USB chip on the sensor.

2) Cloud Eastbound Interface: The USB interface
is controlled via a bus controller that implements a
polling based communication. The polling slots can be
decreased to 125 us for USB 2.0. The polling slots are
for various devices connected to the bus. The generation
time of the packet can result in a waiting time if it
does not match the polling slot. To measure this waiting
time 10000 packets are generated and forwarded to the
USB controller over the bus. The measured minimum
delay out of all the measurements is selected as the
lucky packet that is generated at the exact instance of
a polling slot. Thus, the minimum delay only consists
of the constant processing delay. We removed this value
from all measurements to reflect only the delay due to
waiting time of polling slots as shown in Fig. 7. We see
that the delay varies between 200 us and O such that the
bus controller has a polling slot each 2 slots for the USB
communication

3) Cloud Sensor Controller Process: Here we as-
sume that there is an edge cloud placed as close to the
gateway as possible. Thus, no further variable delay is
induced due to IP network. From this point on there is
also no hardware or interface delay but purely processing
delay. However, this processing delay can also surmount
to noticeable levels. In [14] authors provide an FPGA

T
[Comm Stack
[Tx MAC Proc.
[Tx Westbound
[ITransmission
[]Rx Westbound
[JRadio Proc.
[JRx MAC Proc.
[JEastbound
[T]External Proc.
[usB

[Cloud USB Proc.
Il Cloud Eastbound

Sensor to Cloud Delay (ms)

I .
OM max

OM min Z1 max
Setup

Z1 min

Fig. 8: Sensor to Cloud delay with two different sensor network types
Zolertia 1 and OpenMote. The packet size is also selected as 46 and
122 Bytes. The delay contributors are ordered in the sequential way
the packet experiences them.

implementation for a industrial sensor controller for par-
allel processing of multiple sensors at the same time that
reduces the delay 90 ms for 10 sensor applications. Thus,
a fast parallelized cloud controller can be necessary for
real-time requiring sensor applications.

D. Total Sensor to Cloud Delay

In this section we want to provide the total sensor-
to-cloud delay analysis as illustrated in the Fig. 8 with
stacked delay values for different sensors (Z1, OM) and
with different payload (46, 122 bytes).

Firstly, the eastbound delay is the biggest delay con-
tributor followed by the wireless transmission delay. The
magnitude of the eastbound delay stems from the limited
baudrate which is the serial communication between
the micro-controller and the UART to USB chip '. IoT
Gateways should consider implementing faster interfaces
to solve such problems. With decreasing packet size,
the importance of the processing delay grows, as most
processes are adding a fixed delay to all packets. Another
observation is that the PHY headers take up to 6 Bytes
and all the other layers occupy as much as 45 Bytes and
this is another problem especially for IPv6 compatibility
as it is the scope of OpenWSN to enable 6LoWPAN for
WSNE.

The delay figures represented in Fig. 8 is a minimum
sensor to cloud delay if no loss is observed and the
schedule is adjusted perfectly. Previous work [15], [17]
have investigated the effect of packet loss probabilities
on single hop networks thus we will emphasize the
scheduling aspect.

IV. DISCUSSIONS: WIRELESS MEDIUM ACCESS

CONTROL

In order to emphasize on synchronization and deter-
minism we will consider a TDMA based contention free
MAC protocols.

IThe OpenMote actually has the USB chip FT232R which comes
with 16 ms timeout to form packets, this is note illustrated in the plot
due to ease of visualization.

L= - R I

uon (o] = [= [= [= [

Multi-processor

I o o e

Multi-radio [T oo

Multi-processor [

n
n

Fig. 9: Different MAC schemes considering also the processing time

We consider 4 possible schedules: TSCH, LLDN,
multi-processor gateway and a multi-processor multi-
radio gateway as illustrated in Fig. 9. The downlink slots
are illustrated in cyan, the uplink slots are illustrated in
dark grey and the serial slots are illustrated in light grey.
The scenario illustrates a slotframe with 4 uplink users.

We start with investigating the TSCH, where 1 slot
is required for advertisement, 4 slots for transmitting
messages from 4 sensors and 4 slots for the serial
communication. In TSCH each slot is of size 9.372 and
5.52 ms for Z1 and OM respectively. Resulting in a
slotframe duration of 84.34 and 46.98 ms for Z1 and
OM respectively. Each user can transmit 11.7 and 21.2
packets per second with this slotframe duration.

In TSCH an ACK is sent directly within each slot.
However, in LLDN, instead of unicast ACKs a broadcast
GACK slot is used such that the slot size is decreased to
2.85 and 1.94 ms respectively for Z1 and OM. This gives
a slotframe duration of 28.5 and 19.4 ms respectively
for Z1 and OM. The reduction in frame size results in
35 and 52 packets per second almost tripling the rate.
LLDN implements the group acknowledgements in a star
topology, to benefit from radio switch times for each
sensor, which explains the improvement from TSCH.
It also strips the higher layer headers and leaves this
problem to the gateway for backbone forwarding.

Packet rate can be doubled if a different processor
is used for external forwarding or if a faster interface
is used on the gateway processor. Then a SouthEBound
delay s; may be added to each slot to move the data
from one processor to another and serial forwarding and
wireless reception is parallelized.

On top of this a multi-radio gateway can enable
parallel reception of data from multiple sensor to de-
crease the number of slots waited until another packet
is transmitted. This is enabled with multiple processors
that communicates with multiple radios. This also comes
with the cost of SouthWBound delay so that is added
to the slots. An important reminder is the number of
orthogonal wireless channels is limited to 16 in IEEE
802.15.4 standard and this imposes a maximum number
of parallel wireless transmission.

V. RELATED WORK

Any type of delay analysis has been an interesting
topic for WSN. However, an analysis that encapsulates
all sensor-delay related details and measurements for
data to cloud integration is missing.

There are several works that investigated the topic
from different aspects. An application layer perspective
to sensor to cloud delay is taken in [19]. The authors
have taken Constrained Application Protocol (CoAP)
based measurements and provided delay insights that
investigates application protocol inefficiency. This solu-
tion has taken an on the top approach. Another work
[20] investigates the totally opposite directions for task
scheduling on sensor networks. The multi-threading pos-
sibilities for delay reduction is investigated. So neither
of the works provides the communication stack related
approach. The former deals with the application layer
and the latter is general processing.

A more communication stack focusing approach is
taken for a real-time operation system for WSN com-
munications in [21]. The abstraction layers provide re-
sources to a real time operation system RTOS. This
system runs separate communication processes such that
they interact in a real-time basis. The use of RTOS
enables right-in-time interaction between different pro-
cesses. The function abstraction enables also multi-
processor support. The multi-processor communication
over an inter-processor communication (IPC) interface.
However, any detail about this important interface, such
that which communication protocol should be used, is
not given. There, UART protocol is used, but clearly
this is only feasible for a two processor scenario. Com-
munication layer interfaces are also defined and message
exchanges are pre-set. However, variety of delays in the
interfaces are not emphasized.

VI. CONCLUSION

In this paper we have analyzed the IIoT suitability of
the IEEE 802.15.4 standard namely WSN compliant off
the shelf sensors. We investigated a scenario that takes a
IIoT sensor to cloud delay under investigation. We have
provided a Interface-Processing framework to investigate
the sub-problems separately.

We have shown that there are a lot of aspects that
are overlooked that can add significant delay for a IloT
application. Lastly we have tackled MAC delay given
the previous processing and interface delays and fore-
casted possible solutions that incorporated such delays
for scalable applications.

Future work can focus on solving these problems to
provide a IIoT enabled WSN. An additional natural ex-
tension is to have a Mobile Edge application to showcase
low delay and message sending rate to support IIoT

applications. REFERENCES

[1] J. H. Abawajy and M. M. Hassan, “Federated internet of things
and cloud computing pervasive patient health monitoring sys-
tem,” IEEE Communications Magazine, vol. 55, no. 1, pp. 48-53,
2017.

[2] P. Gallotti, A. Raposo, and L. Soares, “v-glove: A 3d virtual touch
interface,” in 2011 XIII Symposium on Virtual Reality, pp. 242—
251, May 2011.

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

C. Wu, D. Gunatilaka, M. Sha, and C. Lu, “Real-time wireless
routing for industrial internet of things,” in 2018 IEEE/ACM
Third International Conference on Internet-of-Things Design and
Implementation (IoTDI), pp. 261-266, IEEE, 2018.

V. Ballingam, K. Christensen, and F. Noel, “Analysis of
client/server transaction delay through a local area network
switch,” in Proceedings of SOUTHEASTCON’96, pp. 571-577,
IEEE, 1996.

W. Zolertia, “platform, z1 datasheet.”

X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister, “Openmote:
open-source prototyping platform for the industrial iot,” in Inter-
national Conference on Ad Hoc Networks, pp. 211-222, Springer,
2015.

T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly,
Q. Wang, S. Glaser, and K. Pister, “Openwsn: a standards-
based low-power wireless development environment,” Transac-
tions on Emerging Telecommunications Technologies, vol. 23,
no. 5, pp. 480-493, 2012.

M. Aziziaghdam and E. Samur, “Real-time contact sensory
feedback for upper limb robotic prostheses,” IEEE/ASME Trans-
actions on Mechatronics, vol. 22, pp. 1786-1795, Aug 2017.
D. Kleyko, E. Osipov, S. Patil, V. Vyatkin, and Z. Pang, “On
methodology of implementing distributed function block appli-
cations using tinyos wsn nodes,” in Emerging Technology and
Factory Automation (ETFA), 2014 IEEE, pp. 1-7, IEEE, 2014.
J. A. Guevara, E. A. Vargas, A. F. Fatecha, and F. Barrero,
“Dynamically reconfigurable wsn node based on iso/iec/ieee
21451 teds,” IEEE Sensors Journal, vol. 15, pp. 2567-2576, May
2015.

T. Gomes, S. Pinto, F. Salgado, A. Tavares, and J. Cabral,
“Building ieee 802.15. 4 accelerators for heterogeneous wireless
sensor nodes,” IEEE Sensors Letters, vol. 1, no. 1, pp. 1-4, 2017.
M. Kohvakka, T. Arpinen, M. Hénnikdinen, and T. D.
Hiamaildinen, “High-performance multi-radio wsn platform,” in
Proceedings of the 2nd international workshop on Multi-hop ad
hoc networks: from theory to reality, pp. 95-97, ACM, 2006.
U. Inter-Chip, “Supplement to the usb 2.0 specification,” The
Universal Serial Bus Revision, vol. 2.

Q. Chi, H. Yan, C. Zhang, Z. Pang, and L. Da Xu, “A recon-
figurable smart sensor interface for industrial wsn in iot envi-
ronment,” [EEE Transactions on Industrial Informatics, vol. 10,
no. 2, pp. 1417-1425, 2014.

M. Giirsu, M. Vilgelm, S. Zoppi, and W. Kellerer, “Reliable
co-existence of 802.15. 4e tsch-based wsn and wi-fi in an
aircraft cabin,” in Communications Workshops (ICC), 2016 IEEE
International Conference on, pp. 663—-668, IEEE, 2016.

M. Vilgelm, M. Giirsu, S. Zoppi, and W. Kellerer, “Time slotted
channel hopping for smart metering: Measurements and analysis
of medium access,” in Smart Grid Communications (SmartGrid-
Comm), 2016 IEEE International Conference on, pp. 109-115,
IEEE, 2016.

S. Zoppi, H. M. Giirsu, M. Vilgelm, and W. Kellerer, “Reliable
hopping sequence design for highly interfered wireless sensor
networks,” in Local and Metropolitan Area Networks (LANMAN),
2017 IEEE International Symposium on, pp. 1-7, IEEE, 2017.
M. Giirsu, M. Vilgelm, W. Kellerer, and E. Fazli, “A wireless
technology assessment for reliable communication in aircraft,”
in Wireless for Space and Extreme Environments (WiSEE), 2015
IEEE International Conference on, pp. 1-6, IEEE, 2015.

C. Pereira, A. Pinto, D. Ferreira, and A. Aguiar, “Experimental
characterization of mobile iot application latency,” IEEE Internet
of Things Journal, vol. 4, pp. 1082-1094, Aug 2017.

N. Ericsson, T. Lennvall, J. Akerberg, and M. Bjorkman, “A
flexible communication stack design for time sensitive embedded
systems,” in Industrial Technology (ICIT), 2017 IEEE Interna-
tional Conference on, pp. 1112-1117, IEEE, 2017.

Z. Pang, K. Yu, J. Akerberg, and M. Gidlund, “An rtos-based
architecture for industrial wireless sensor network stacks with
multi-processor support,” in Industrial Technology (ICIT), 2013
IEEE International Conference on, pp. 1216-1221, IEEE, 2013.

