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Propagation-based phase-contrast tomography
of a guinea pig inner ear with cochlear implant
using a model-based iterative reconstruction
algorithm
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Abstract: Propagation-based phase-contrast computed tomography has become a valuable
tool for visualization of three-dimensional biological samples, due to its high contrast between
materials with similar attenuation properties. However, one of the most-widely used phase-
retrieval algorithms imposes a homogeneity assumption onto the sample, which leads to artifacts
for numerous applications where this assumption is violated. Prominent examples are biological
samples with highly-absorbing implants. Using synchrotron radiation, we demonstrate by the
example of a guinea pig inner ear with a cochlear implant electrode, how a recently developed
model-based iterative algorithm for propagation-based phase-contrast computed tomography
yields distinct benefits for such a task. We find that the model-based approach improves the
overall image quality, removes the detrimental influence of the implant and accurately visualizes
the cochlea.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
OCIS codes: (100.5070) Phase retrieval; (170.6960) Tomography.
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1. Introduction

Phase-contrast x-ray imaging (PCI) is a method that is sensitive to the refraction of x-rays
in matter, yielding distinct advantages for the visualization of details with similar attenuation
properties like those often encountered in biology and medicine. By extending PCI to computed
tomography (CT), it has become a widely used imaging method in laboratory and preclinical
studies as it allows for high-contrast three-dimensional visualization at high spatial resolution [1].

Several techniques have emerged to exploit and visualize phase contrast [2,3]. The experimen-
tally most intuitive technique is referred to as propagation-based phase-contrast imaging. It solely
relies on a sufficiently coherent x-ray wavefield transversing a sample and propagating sufficiently
far to the detector. Thereby, the phase shifts induced by the sample lead to distinct interference
effects in the measured intensities [4, 5]. From these interference effects, the phase-shifting
properties of the sample can be reconstructed from a single image if certain assumptions are
imposed onto the sample [6-8].

The two most common assumptions are either that the absorption is constant and thus can
be neglected [7] or that absorption and phase are coupled, which is usually referred to as the
homogeneity assumption and results in the single-material phase-retrieval algorithm of Paganin
et al. [8]. However, for the presented sample, the attenuation has a crucial influence and cannot
be neglected, therefore we restrict ourselves to the second approach.

Due to the benefits of PCI and the ease of implementation, propagation-based PCI methods
have yielded distinct benefits for numerous applications [1]. One of the most prominent applica-
tions is the investigation of biological samples [9]. However, additional materials that violate
the homogeneity assumption degrade the reconstruction quality significantly, which remains
the most considerable drawback of this imaging technique. Different approaches have been
developed to alleviate this problem: A generalization of Paganin’s algorithm is able to accurately
reconstruct known materials that are embedded in another medium. This method requires multiple
reconstructions, which are obtained for each pair of materials sharing an interface, to be spliced
together manually [10-12]. In terms of the streak artifacts, which play a predominant role in the
presented application, this generalization would thus not change the overall behaviour and is
therefore not applied in this case. Another approach relies on multiple images being acquired at
multiple distances for every angle. This enables the reconstruction of heterogeneous samples, but
makes the experimental setup more cumbersome [13, 14].

In the following, we discuss the reconstruction of a guinea pig cochlea with implant as depicted
in Fig. 1(a) as an example of the examination of a biological sample with foreign objects that
violate the homogeneity assumption. We show how recently developed model-based iterative
reconstruction algorithms for this imaging technique [15] can improve image quality of such tasks
and account for the detrimental influence of the implant compared to the conventional two-step
reconstruction approach consisting of a phase retrieval prior to tomographic reconstruction [6].

The study of animal cochleae with implants is particularly interesting because the insertion of
the electrode array into the narrow turns of the cochlea often causes subtle damage, which can
result in wide variations in experimental results. Sometimes, the electrode touches or penetrates
the basilar membrane and disrupts the organ of Corti, which lies on top. In chronic experiments,
trauma caused by inserting the electrode often triggers soft tissue growth. In all these cases
it would be extremely valuable to assess the state of the implanted cochleae as precisely as
possible. However, metal parts of the electrodes usually cause large imaging artifacts. These
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Fig. 1. In (a) a photograph of the guinea pig cochlea is depicted. A flat-field corrected
intensity measurement is shown in (b). The homogeneous character of the cochlea can be
seen as well as the position of the strongly absorbing implant. The trace recovered by the
single-material phase-retrieval algorithm applied to the corrected intensity measurement in
(b) is depicted in (c).

artifacts mask the delicate structures of the inner ear, especially close to the electrode, where
damage is most likely to occur and where the highest resolution would be required. In theory, the
cochlear implant electrode could be retracted from the cochlea, but this procedure is likely to
cause additional damage. Therefore, in-situ imaging of the cochlea with the inserted implant is
highly desirable [16-18].

2. Methods

In the following, the underlying assumptions around the image formation process are briefly
addressed. Next, the conventional two-step reconstruction approach is described. Afterwards,
the model-based iterative reconstruction algorithm is formulated. Fig. 2 illustrates the different
approaches.

2.1. Image formation and assumptions

In general, for small propagation distances, the phase and attenuation properties of the sample
cannot be recovered independently from a single measurement. Therefore, we employ the widely
used homogeneity assumption [8], which couples the intensity to the phase of the wavefield. If
the complex refractive index of the sample is known, the measured x-ray wavefield behind the
sample can provide the sample thickness, which is usually referred to as the trace of the sample.
The propagation of the x-ray wavefield exiting the sample to the detector is modelled here
by the transport-of-intensity equation (TIE) [19]. In addition, one assumes small propagation
distances, such that the intensity evolves linearly with the propagation distance [8,20].

2.2. Conventional two-step reconstruction

The conventional approach as illustrated by the blue arrows in Fig. 2 consists of two steps. The
first step is the single-material phase-retrieval filter by Paganin et al. (PAG) [8], which recovers
the trace t of the objects from the flat-field corrected intensities y under every angle independently.
It is derived from TIE [8] with the assumptions described previously. This phase-retrieval step

can be written as
1
t=—1In|F"

) 1
u 1 ey
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Fig. 2. Illustration of the two reconstruction approaches using the example of a simulated
cylinder. Conventionally, for every projection the trace is recovered by means of the
single-material phase-retrieval algorithm of Paganin et al. (PAG) [8]. The volume is then
reconstructed using the filtered back-projection (FBP) algorithm. In comparison, we use a
model-based iterative reconstruction algorithm (MBIR) [15], which recovers the volume
directly from the measured intensities. Thereby, the whole image formation is modeled,
including the statistical properties of the x-rays, attenuation, phase-shifts, propagation and
prior knowledge about the sample.

where the propagation distance is given by z, the linear attenuation coefficient of the material is
denoted by p, and ¢ is the real part of the deviation of the complex refractive index from unity.
In addition, ¥, denotes the two-dimensional Fourier transform along the spatial dimensions
perpendicular to the propagation distance and k are the corresponding Fourier frequencies.
This filter is a regularized low-pass filter, which removes the edge-enhancement effects on the
measurements and increases the contrast [8]. Due to the design of the filter, noise is reduced as it
is predominantly present in the high frequency components.

The second step of the conventional approach is a filtered back-projection (FBP) of the
recovered traces, which can be denoted as

x = FBP[t] (2)

and yields the three-dimensional density distribution x of the sample. Thereby, the conversion
from intensities to line integrals is already performed within the phase-retrieval step.

2.3. Model-based iterative reconstruction

Various model-based iterative reconstruction algorithms have been reported for conventional
absorption tomography that directly recover the three-dimensional density distribution of the
linear attenuation coefficients from the measured intensities, yielding distinct advantages in terms
of image quality [21,22]. In these, one models the entire image formation process and finds the
optimal solution based on a statistical optimization problem. Built upon the success of these
methods, recently this approach was extended to propagation-based computed tomography with
the assumptions presented above [15]. Fig. 2 illustrates in orange how this approach aligns with
the previously discussed two-step approach.

Thereby, the forward model, which estimates the expected intensities y directly from the
three-dimensional density distribution of the sample x, can be written as

y=D [e*/““] (1 + z6LAX), 3)

where D denotes a diagonal matrix with the vector in brackets on its diagonal. The exponential
function is to be understood element-wise. The matrix A denotes the forward projection operation
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and the matrix L denotes the Laplacian operator using a five-point stencil finite-difference
method. Consequently, the first part of this forward model, denoted by the diagonal matrix,
accounts for the attenuation of the x-rays inside the sample and coincides with the models for
conventional absorption imaging. The second part in brackets models the interference effects due
to the phase-shifts induced by the sample, which is the dominant contribution for the contrast in
propagation-based PCI.

To find the optimal density distribution X, which coincides best with the acquired measurements
y according to their statistical properties as well as prior knowledge about the sample, an objective
function is established and optimized according to

1
%= argmxini(y—)")T K,'D[w](y - ) + BR,, @)

where the first summand denotes the data-fidelity term and the second summand denotes the
regularization term. The data-fidelity term introduces two weighting functions. The first term
K, = D[y] is the covariance matrix [23], which accounts for the reliability of the acquired
measurements with respect to noise and arises from the generation of x-rays following a Poisson
distribution and individual x-rays not being correlated. Its inverse is denoted by Ky 1. The second
term D[w] is a measure for the reliability of the established forward model excluding therefore
rays, where the homogeneity assumption is violated. Lastly, the regularization term favors smooth
solutions while preserving edges inside the volume. It consists of a coupling parameter 3, which
has to be chosen accordingly and a Huber potential R, given by

1 X; — Xn . 1/2y)* fort <
I RS A VALC

iy [t] —y/2 else

where y is the transition parameter between the quadratic and linear penalty [24]. In this
formulation the indices refer to specific entries of the vectors, thereby i runs over all voxels and
n over the next neighbors of i. The neighborhood N; therefore holds 26 voxels. The different
distances to the neighbors are taken into account by the additional factors A, ,, € {1,2'/2,31/2}.

The objective function given by Eq. (4) cannot be solved analytically and a full representation
of the operators (especially the projection matrices) is not feasible due to memory limitations.
Therefore, gradient-based iterative optimization routines are employed. For the current estimate
of x, the gradient of the objective function with respect to x is calculated to provide information
about the subsequent search direction. Employing a line-search routine that provides the step
size along the search direction, the new estimate of x is defined and the procedure is repeated
iteratively.

2.4. Preparation, scan and reconstruction setup

To prepare the cochlea for the measurement, the sample was boiled out and bleached with
hydrogen peroxide. Afterwards, the implant was deployed into the sample. The custom made
guinea pig electrodes from MED-EL GmbH are made from Platinum and the wire material
consists of Platinum-Iridium embedded in Silicon. The implant is with the exception of its size
identical to cochlear implant electrodes used in patients.

The measurements of the cochlea sample were acquired at the micro-tomography end-station
of the imaging beam-line PO5 at PETRA III at DESY (Hamburg, Germany) operated by the
Helmholtz-Zentrum Geesthacht. The experimental setup is described in [25]. The provided CCD
camera system with 12.0 um pixel size was used with a magnification factor of approximately
4.96 for the visible light optics, giving an effective pixel size of around 2.42 um. The energy
of the incoming monochromatic photons was set to 35 keV. Due to the limited field-of-view of
7.2 mm in horizontal direction, an off-axis tomography was performed. As the illumination in
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the vertical direction is limited to approximately 2 mm, two measurements were performed at
different height levels. The propagation distance between the sample and the camera was set to
be 1 m. The exposure time was set to 0.1 s.

Due to fluctuations of the monochromator, the intensity distribution of the incident beam
changed over time. For each projection, the corresponding flat-field image for the empty-beam
correction was therefore chosen by minimizing the variance to all available flat-fields in a
sample-free region. To correct for a slight rotation of the detector around the beam-axis with
respect to the tomographic axis, a cross-correlation of overlapping data in the off-axis tomography
was performed. The information obtained by this procedure was also used for calculating the
number of overlapping pixels for the stitching procedure which allowed to create a virtual
half-scan of the whole sample. The stitching of the two tomographies at different height levels
was performed by maximizing the variance of sum of the overlapping regions. Finally, the data
was cropped and binned by a factor of four. The resulting dimensions were 1434 x 450 pixels for
the 1500 virtual projections with a pixel size of 9.68 um. An example of such a preprocessed
virtual projection image is depicted in Fig. 1(b).

When selecting the qualitative parameters for sharp phase retrieval, we set the ratio 6 /u = 107,
which defines the strength of the phase retrieval filter. To avoid any scaling, we thereby set
u=1m™"

All algorithms were executed on a heterogeneous compute server with two Intel Xeon CPUs
(E5-2690 v4), 1 TB of DDR3 RAM and four Nvidia Titan Xp (12 GB GDDRY).

3. Results and discussion

Fig. 3. Comparison of the two reconstruction approaches for a zoomed region of a tomographic
slice. The positions of these views are depicted by the red rectangles in the small previews of
the whole slices in the upper right corner. The density values - not quantitative on an absolute
scale - are displayed using a linear grayscale. The result of the conventional approach is
depicted in (a), whereas the iterative approach yields the result depicted in (b).

For the conventional reconstruction approach, the traces were recovered with the single-material
algorithm in Eq. (1). As an example, the recovered trace of the corrected intensity measurement
shown in Fig. 1(b) is depicted in Fig. 1(c). The subsequent tomographic reconstruction was
performed with the filtered back-projection algorithm according to Eq. (2). A part of areconstructed
slice is depicted in Fig. 3(a), with its position marked by a red rectangle in the overview slice at the
upper right corner. One finds strong streak-like artifacts arising from the implant. In addition, both
the single-material phase-retrieval as well as the analytic tomographic reconstruction introduce
additional blurring, which reduces the spatial resolution significantly. One possible answer to the
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loss in resolution are post-processing techniques. For instance, qualitative information from a
reconstruction without phase-retrieval can be manually merged to improve the resolution at the
edges again [26].

The model-based iterative reconstruction approach omits the intermediate step of recovering the
traces from the intensity measurements. This step is directly performed as part of the tomographic
reconstruction inside a statistical optimization problem given by Eq. (4). Since our model in
Eq. (3) does not describe the metal implant, we chose the weights D[w] such that pixels in the
projection images, where the metal implant is present, do not contribute to the reconstruction
by simple thresholding. For this, the projection images are directly reconstructed by a filtered
backprojection. The thresholding is then performed on the volume and the obtained binary
mask is dilated to also account for the edge-enhancement. Subsequently, the binary weights are
obtained by selecting all values which are zero after forward projecting the binary mask of the
volume. The reason for applying the thresholding to the volume and not directly on the projection
measurements is that this approach is less prone to noise and the mask is then tomographically
consistent. The transition parameter y = 5 of the regularizer was estimated from the background
noise of the conventional reconstruction approach. The strength of the regularization was set to
B =5-1073. As an optimization routine, an unmodified L-BFGS algorithm [27] was used with
2000 iterations ensuring converged estimates. As the conventional reconstruction is corrupted
by streak artifacts, it is not suitable as an initial guess for the MBIR algorithm. Therefore,
we perform additional 250 iterations of the MBIR algorithm initialized with zeros and a very
strong regularization parameter of 8 = 1073 to obtain the low-frequency components. The same
reconstructed slice as for the conventional approach is depicted in Fig. 3(b). Due to the masking
of the weights, the implant is removed in the tomographic reconstruction, therefore omitting
any artifacts from the implant. In addition to the weighting of remaining data points according
to their noise properties, the regularization suppresses noise while maintaining the resolution
at the edges. Finally, by directly integrating the propagation of the x-rays into the tomographic
reconstruction, the phase retrieval of different projections is coupled by the regularization in the
volume and weighted according to the noise properties.

In Fig. 4, renderings created by using Avizo Fire 8.1 (Thermo Fisher Scientific, USA) from the
two reconstruction approaches are depicted. As the implant gives strong attenuation contrast, as
seen on the measured intensities in Fig. 1(b), its position within the volume can be segmented by
thresholding a conventional attenuation-based FBP reconstruction. This information is depicted in
red in Fig. 4. Due to the streak artifacts arising from the implant in the conventional reconstruction
approach, the cochlea itself cannot be accurately recovered. Furthermore, the position of the
implant within the cochlea cannot be visualized precisely as seen in Fig. 4(a) and indicated by
the insert and the blue arrows. In contrast, when taking the model-based reconstruction as a basis
for the rendering of the cochlea, an artifact-free rendering can be obtained and the position of
the implant can be accurately depicted within the volume, as seen in Fig. 4(b). Especially, the
regions around the cochlear implant can be accurately visualized.

4. Conclusion

We examined an animal cochlea with a strongly absorbing implant, using propagation-based
phase-contrast tomography at a synchrotron facility, discussing the challenges arising from such
implants that violate the homogeneity assumption. Thereby, we compared the conventional
two-step reconstruction approach to a novel model-based iterative reconstruction algorithm,
which is applied to synchrotron radiation for the first time. The image quality was improved
overall in terms of resolution and the artifacts (streaks etc.) arising from the metal implant were
addressed and removed by the iterative approach. For the presented cochlea sample, this is for
instance beneficial to evaluate whether the electrode array has penetrated the basilar membrane.

Our approach can be transferred to similar imaging tasks that involve biological samples with
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Fig. 4. Rendering of the cochlea for the two reconstruction approaches. The position of the
implant is segmented from a conventional FBP reconstruction on the measured intensities
and depicted in red. In (a) the rendering of the cochlea is performed for the conventional
reconstruction and (b) uses the model-based iterative approach. The inserts show zoomed
excerpts detailing the degradation caused by the artifacts arising from the phase-retrieval
step of the conventional approach.

additional features that violate the homogeneity assumption, such as metal implants or bones.
Thereby, the high phase contrast between materials with similar attenuation properties can be
utilized without being diminished in the vicinity of highly absorbing features.

The metal streak artifacts examined in this study are predominantly related to the violation of
the homogeneity assumption and thus are not present in a direct reconstruction of the measured
intensities without performing any phase retrieval. Also, in purely attenuation-based tomography,
there are numerous sources that lead to similar metal streak artifacts, which potentially influence
the artifacts. The most prominent underlying effects are beam hardening, noise from low
photon counts (photon starvation), scattering, motion artifacts and nonlinear partial volume
effects (NLPV, also known as exponential edge-gradient effects). Accounting for these effects is
especially crucial in medical applications [28-31]. Due to the monochromaticity of the source,
beam hardening should be negligible, although some contamination with higher harmonics can
occur. With sufficient transmission seen even behind the implants, the artifacts are also not
attributed to beam starvation, although the presented approach could naturally account for beam
starvation in the same way it accounts for the violation of the homogeneity assumption [15]. The
relatively large sample-to-detector distance in propagation-based imaging should also reduce
the effect of scattering sufficiently. The inanimate sample should also not introduce motion
artifacts. Lastly, NLPV can indeed influence the image quality for our application. Traditional
model-based iterative reconstruction approaches may alleviate these artifacts by a finer sampling
of the image volume, but this increases computational cost. However, recent model-based
iterative reconstruction algorithms have been developed that tackle this problem by including
prior knowledge of the implant into the tomographic reconstruction [31]. Closely related are
under-sampling artifacts (aliasing), if the Nyquist theorem for tomography [32]

T
Nprojections 2 5 X Ncolumns (6)
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is not fulfilled. Due to regularization techniques, iterative reconstruction can however account for
this sparsity extremely well [33,34]. An overview of additional sources for artifacts in synchrotron
microtomography, not necessarily restricted to metal streak artifacts, can be found in [35].

In general, there are several components of our MBIR algorithm that improve the image quality
compared to the conventional reconstruction approach. Firstly, the introduction of the weights
D[w], which we introduced in this paper as a measure for the reliability of our forward model,
enables us to exclude all data that is not described by our forward model. Secondly, apart from
being able to handle different types of artifacts, iterative methods in general, which employ a
statistical noise model and regularization techniques, have proven to increase the overall image
quality in terms of resolution and noise and especially regarding dose requirements [36, 37].
Although the weights D[w] are the crucial components for the removal of the streak artifacts
arising otherwise from the violation of the homogeneity assumption of the forward model, the
regularization alone would still mitigate the influence of these artifacts.

With current computer hardware, iterative approaches can be applied even to large data sets.
There are two main components that increase the total computational time. Firstly, the most
time-consuming operations are the projection operations. In each iteration, two projections are
performed: one forward projection in the forward model given by Eq. (3) and one backprojection
in the evaluation of the gradient of the objective function given by Eq. (4) with respect to x.
However, using state-of-the-art graphic cards, individual projection and backprojection operations
for this data set took only 3 — 5 s. Implementation details of the projection operations can be found
in [38]. The projection operations and thus the computational time scales roughly linearly with
the number of voxels times the number of acquired projections. Secondly, the total computational
time is directly proportional to the number of iterations. Solving the objective function in Eq. (4)
in fewer iterations is challenging, due to the non-linear forward model of Eq. (3). However, some
progress has recently been made in this respect for the optimization of non-linear models for
attenuation-based computed tomography [22]. Furthermore, if a sufficiently accurate analytical
reconstruction is available as a starting guess, the number of iterations and thus the computational
time decreases significantly and the MBIR approach can be thought of as a refinement step.

The versatility of model-based approaches allows for arbitrary extensions [37]. As an example,
models for the source or the detector may be introduced in the forward model [22] or more
advanced regularization techniques might be used, which have proven beneficial for multi-distance
propagation-based PCI applications [14].
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