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We investigate electromagnetic corrections to the rare B-meson leptonic decay Bs;d → μþμ− from scales
below the bottom-quark mass mb. Contrary to QCD effects, which are entirely contained in the B-meson
decay constant, we find that virtual photon exchange can probe the B-meson structure, resulting in a
“nonlocal annihilation” effect. We find that this effect gives rise to a dynamical enhancement by a power of
mb=ΛQCD and by large logarithms. The impact of this novel effect on the branching ratio of Bs;d → μþμ− is
about 1%, of the order of the previously estimated nonparametric theoretical uncertainty, and four times the
size of previous estimates of next-to-leading order QED effects due to residual scale dependence. We
update the standard model (SM) prediction to B̄ðBs → μþμ−ÞSM ¼ ð3.57� 0.17Þ × 10−9.
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Rare leptonic decays Bq → lþl− of neutral B mesons
(q ¼ d, s and l ¼ e, μ, τ) provide important probes of
flavor-changing neutral currents, since the decay rate in the
standard model (SM) is predicted to be helicity and loop
suppressed. Both suppressions can be lifted, for example, in
models with extended Higgs sectors, in which case the
leptonic decays constrain the scalar masses far above
current direct search limits.
Only the muonic decay Bs → μþμ− has been observed to

date [1,2]. The most recent measurement of the LHCb
experiment for the untagged time-integrated branching
ratio finds B̄ðBs → μþμ−ÞLHCb ¼ ð3.0þ0.7

−0.6Þ × 10−9 [3],
compatible with the SM prediction [4]

B̄ðBs → μþμ−ÞSM ¼ ð3.65� 0.23Þ × 10−9: ð1Þ

With higher experimental statistics and improvement in the
knowledge of SM parameters, the accuracy of both results
is expected to increase in the future, eventually providing
one of the most important precision tests in flavor physics.
The neutral B-meson leptonic decays are, indeed, well

suited for precision physics, because long-distance strong-
interaction (QCD) effects, which cannot be computed with
perturbative methods, are under exceptionally good control.
This follows from the purely leptonic final state and the fact
that the decay is caused by the effective local interaction

Q10 ¼
αem
4π

ðq̄γμPLbÞðl̄γμγ5lÞ; PL ≡ 1 − γ5
2

: ð2Þ

The strong interaction effects are, therefore, confined to the
matrix element

h0jq̄γμγ5bjB̄qðpÞi ¼ ifBq
pμ; ð3Þ

which defines the B-meson decay constant. fBq
can be

computed nonperturbatively with few percent accuracy
within the framework of lattice QCD [5].
In this Letter, we report on an investigation of electro-

magnetic (QED) quantum corrections to the leptonic decay
which even at the one-loop order reveals a surprisingly
complex pattern. As a consequence, the suppression of the
correction due to the small electromagnetic coupling is
partially compensated by a powerlike enhancement in the
ratio of the B-meson mass mB ≈ 5 GeV and the strong
interaction scale ΛQCD ≈ 200 MeV. While logarithmic
enhancements due to collinear and soft radiation are
well-known in QED and also appear in the process under
consideration, the powerlike enhancement arises due to a
dynamical mechanism that, to our knowledge, has not been
observed before. A virtual photon exchanged between the
final-state leptons and the light spectator antiquark q̄ in the
B̄q meson effectively acts as a weak probe of the QCD
structure of the B meson. The scattering “smears out” the
spectator–b-quark annihilation over the distance
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBΛQCD

p
inside the B meson, as opposed to the local

annihilation through the axial-vector current in Eq. (3).
This provides power-enhancement and also shows that, at
first order in electromagnetic interactions, the strong
interaction effects can no longer be parametrized by fBq

alone. Our calculation below shows that the effect is of the
same order as the nonparametric theoretical uncertainty
previously assumed to obtain Eq. (1).
Before discussing the main result, we briefly review the

computations and theoretical uncertainties entering Eq. (1),
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referring to Ref. [4] for further details. The general
framework employs the effective weak interaction
Lagrangian, which generalizes the Fermi theory to the full
SM, includes all short-distance quantum effects systemati-
cally by matching, and sums large logarithms between the
scale mW of theW-boson mass and μb ∼mb of the order of
the bottom-quark mass,mb. The SM prediction (1) includes
next-to-leading order (NLO) electroweak [6] and next-to-
next-to-leading order QCD [7] corrections and the resum-
mation of large logarithms lnðμW=μbÞ due to QCD and
QED radiative corrections by means of the renormalization-
group evolution [8,9] down to μb at the same accuracy.
Relevant to this work is the observation that unlike QCD
effects, which are contained in fBq

to any order, QED
corrections below the bottom mass scale μb have not been
fully considered even at NLO.
The largest uncertainties in the SM prediction are of

parametric origin: 4% from the Bs meson decay constant
fBs

, 4.3% from the quark-mixing element Vcb [10], and
1.6% from the top-quark mass. These uncertainties will
reduce as lattice QCD calculations and measurements of SM
parameters improve. Nonparametric uncertainties are due to
the omission of higher-order corrections α3s , α2em, αsαem in
the QCD and QED couplings αs and αem, respectively, and
also m2

b=m
2
W from higher-dimension operators in the weak

effective Lagrangian. Altogether, the nonparametric uncer-
tainties have been estimated to be about 1.5% [4]. Among
these, the renormalization scale dependence of B̄ðBq →
lþl−Þ due to higher-order QED corrections accounts for
only 0.3%. In view of such extraordinary precision, it is
necessary to exclude the existence of unaccounted theoreti-
cal effects at the level of 1%.
Although NLO electromagnetic effects above the b-

quark mass scale μb are completely included in Eq. (1), this
is not the case for photons with energy or virtuality below
this scale. Since the decay involves electrically charged
particles in the final state, only a suitably defined decay rate
ΓðBq → lþl−Þ þ ΓðBq → lþl− þ nγÞcut including pho-
ton radiation and virtual photon corrections is infrared
finite and well-defined. Energetic photons are usually
vetoed in the experiment and accordingly neglected on
the theory side. Soft-photon emission from the final-state
leptons is accounted for by experiments [1–3]. Initial-state
soft radiation has been estimated to be very small based on
heavy-hadron chiral perturbation theory [11]. The quoted
measured branching fraction is corrected for soft emission
and actually refers to the nonradiative branching ratio [12],

as does Eq. (1). For the purpose of the SM prediction [4], it
was assumed that other NLO QED corrections below μb
can not exceed the natural size of αem=π ∼ 0.3%. However,
as we discuss now, the true size of so far neglected QED
effects is substantially larger and, in fact, of the same order
as the nonparametric theoretical uncertainty of 1.5%.
The primary challenge of NLO QED computations

below μb consists in the reliable computation of nonlocal
matrix elements. For example, a virtual photon connecting
the spectator quark with one of the final-state leptons
involves the QCD matrix element

h0j
Z

d4xTfjQEDðxÞ;LΔB¼1ð0ÞgjB̄qi; ð4Þ

where jQED ¼ Qqq̄γμq is the electromagnetic quark current
and LΔB¼1 denotes the (QCD part of the) weak effective
Lagrangian for ΔB ¼ 1 transitions. This matrix element
bears close resemblance to the hadronic tensor that contains
the strong-interaction physics of Bþ → lþνlγ decay, which
is known to be highly nontrivial (for example, Ref. [13])
despite its apparently purely nonhadronic final state.
The two-body kinematics and QCD dynamics of Bq →

lþl− also determine the scales relevant for the QED
corrections. The lepton energies scale as mb ≫ ml,
ΛQCD, and the QCD bound-state dynamics implies that
the momentum of the light quark scales like ΛQCD. In the
following, we focus on the muonic final state μþμ−, which
allows us to count the muon mass mμ and spectator quark
mass mq as mμ ∼mq ∼ ΛQCD ≪ mb. We have analyzed
the complete NLO electromagnetic corrections below the
bottom mass scale μb and employ the hierarchy of the
above scales allowing us to organize the calculation in an
expansion in ΛQCD=mb. Then, we find that the electro-
magnetic correction to the decay amplitude is enhanced by
one power of mB=ΛQCD compared to the pure-QCD
amplitude. In the following, we discuss only this formally
dominant power-enhanced contribution, leaving the
analysis of the complete QED correction to a separate
publication. Note that the standard collinear and soft
electromagnetic logarithms belong to these further, non-
power-enhanced terms, and are, therefore, not dis-
cussed here.
We, then, find that the leading-order B̄q → lþl− decay

amplitude plus the electromagnetic correction can be
represented as

iA ¼ mlfBq
NC10l̄γ5l

þ αem
4π

QlQqmlmBfBq
N l̄ð1þ γ5Þl ×

�Z
1

0

duð1 − uÞCeff
9 ðum2

bÞ
Z

∞

0

dω
ω

ϕBþðωÞ
�
ln
mbω

m2
l
þ ln

u
1 − u

�

−QlCeff
7

Z
∞

0

dω
ω

ϕBþðωÞ
�
ln2

mbω

m2
l
− 2 ln

mbω

m2
l
þ 2π2

3

��
þ � � � ; ð5Þ
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where the overall factor

N ¼ VtbV�
tq
4GFffiffiffi

2
p αem

4π
ð6Þ

contains Cabibbo-Kobayashi-Maskawa quark-mixing ele-
ments, the Fermi constant GF, and Ql ¼ −1, Qq ¼ −1=3
denote the lepton and quark electric charge, respectively.
We use the short-hands l̄ ¼ ūðpl−Þ, l ¼ vðplþÞ for the
external lepton spinors. Omitted terms are power sup-
pressed. The two terms in the electromagnetic correction in
the above equation arise from the four-fermion operator
Q9 ¼ ðαem=4πÞðq̄γμPLbÞðl̄γμlÞ and the electric dipole
operator Q7 in the effective weak interaction Lagrangian

LΔB¼1 ¼
4GFffiffiffi

2
p

X10
i¼1

CiQi þ H:c:; ð7Þ

with the effective operators Qi as defined in Ref. [14]. The
effective short-distance coefficients [15,16]

Ceff
7 ¼ C7 −

C3

3
−
4C4

9
−
20C5

3
−
80C6

9
; ð8Þ

Ceff
9 ðq2Þ ¼ C9 þ Yðq2Þ; ð9Þ

account for the quark-loop induced contributions. The
relevant Feynman diagrams are shown in Fig. 1.
An important observation on Eq. (5) is that the non-

perturbative strong-interaction physics is no longer con-
tained in the B-meson decay constant fBq

alone. Rather, the
exchange of an energetic photon between the lepton pair
and the spectator antiquark q̄ probes correlations between
the constituents in the B meson separated at large but
lightlike distances. The corresponding strong-interaction
physics is parametrized by the inverse moment of the
B-meson light-cone distribution amplitude (LCDA) λB,
introduced in Ref. [17],

1

λBðμÞ
≡

Z
∞

0

dω
ω

ϕBþðω; μÞ; ð10Þ

σnðμÞ
λBðμÞ

≡
Z

∞

0

dω
ω

lnn
μ0
ω
ϕBþðω; μÞ; ð11Þ

and the first two inverse-logarithmic moments, which we
define as in Ref. [13] with fixed μ0 ¼ 1 GeV. These
parameters have frequently appeared in other exclusive
B-meson decays. In the numerical analysis below, we shall
adopt [13] λBð1 GeVÞ ¼ ð275� 75Þ MeV, σ1ð1 GeVÞ ¼
1.5� 1, and σ2ð1 GeVÞ ¼ 3� 2. The nonlocality of q̄b
annihilation due to the photon interaction removes a
suppression factor of the local annihilation process. The
enhancement of the electromagnetic correction by a factor
mB=ΛQCD in Eq. (5) arises from

mB

Z
∞

0

dω
ω

ϕBþðωÞlnkω ∼
mB

λB
× σk: ð12Þ

There is a further single-logarithmic enhancement of order
lnmbΛQCD=m2

μ ∼ 5 for the Ceff
9 term, and even a double-

logarithmic enhancement of the Ceff
7 term.

We obtained Eq. (5) in two different ways. First, from a
standard computation of QED corrections to the four-point
amplitude with two external lepton lines, one heavy-quark
and one light-quark line, and second, from a method-of-
region computation [18] in the framework of soft-collinear
effective theory (SCET) [19,20]. The second method is
instructive as it reveals the origin of the enhancement from
the hard-collinear virtuality OðmbΛQCDÞ of the spectator-
quark propagator. A further single-logarithmic enhance-
ment arises from the contribution of both hard-collinear and
collinear (virtuality Λ2

QCD ∼m2
l) photon and lepton virtual-

ity. The double logarithm in the Ceff
7 term is caused by an

endpoint singularity as u → 0 in the hard-collinear and
collinear convolution integral for the box diagrams,
whereby the hard photon from the electromagnetic dipole
operator becomes hard collinear. The singularity is can-
celed by a soft contribution (virtuality Λ2

QCD ∼m2
l), where

the leptons in the final state interact with each other through
the exchange of a soft lepton. The relevance of soft-fermion
exchange is interesting by itself since it is beyond the
standard analysis of logarithmically enhanced terms in
QED. Therefore, we shall return to a full analysis within
SCET in a detailed separate paper.
Now, we proceed to the numerical evaluation of the

power-enhanced QED correction. Let us denote mB times
the bracket in Eq. (5) by ΔQED. Since the scalar l̄l term in
the amplitude A does not interfere with the pseudoscalar
tree-level amplitude, the QED correction can be included in
the expression for the tree-level Bs → lþl− branching
fraction [21],

FIG. 1. Feynman diagrams that contain the power-enhanced
electromagnetic correction. Symmetric diagrams with order of
vertices on the leptonic line interchanged are not displayed.
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τBq
m3

Bq
f2Bq

8π
jN j2 m2

l

m2
Bq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
l

m2
Bq

s
jC10j2; ð13Þ

by the substitution

C10 → C10 þ
αem
4π

QlQqΔQED: ð14Þ

We calculate the Wilson coefficients CiðμbÞ entering ΔQED

at the scale μb ¼ 5 GeV at next-to-next-to-leading loga-
rithmic accuracy in the renormalization-group evolution
from the electroweak scale, evaluate the convolution
integrals in Eq. (5) with mb ¼ 4.8 GeV, and express them
in terms of λBð1 GeVÞ, σ1ð1 GeVÞ, σ2ð1 GeVÞ specified
above. We then find

ΔQED ¼ ð33 − 119Þ þ ið9 − 23Þ; ðl ¼ μÞ; ð15Þ

where the large range is entirely due to the independent
variation of the poorly known parameters of the B-meson
LCDA. In this result, the total effect is reduced by a factor
of 3 by a cancellation between the Ceff

9 ðq2Þ and Ceff
7 terms.

With C10 ¼ −4.198, this results in a ð0.3 − 1.1Þ% reduc-
tion of the muonic Bs → lþl− branching fraction. We
update the SM prediction to

B̄ðBs → μþμ−ÞSM ¼ ð3.57� 0.17Þ × 10−9; ð16Þ

which supersedes the one from Eq. (1). To obtain this
result, we proceeded as in Ref. [4] and used the same
numerical input except for updated values of the strong

coupling αð5Þs ðmZÞ ¼ 0.1181ð11Þ and 1=Γs
H ¼ 1.609ð10Þ ps

[23], fBs
¼ 228.4ð3.7Þ MeV (Nf ¼ 2þ 1) [5], jV�

tbVts=
Vcbj ¼ 0.982ð1Þ [24] and the inclusive determination of
jVcbj ¼ 0.04200ð64Þ [25]. The parametric (�0.167) and
nonparametric non-QED (�0.043) uncertainty and the
uncertainty from the QED correction (þ0.022

−0.030) have been
added in quadrature [26]. Quite surprisingly, the QED
uncertainty (which itself is almost exclusively parametric,
from the B-meson LCDA) is now almost as large as the
nonparametric non-QED uncertainty.
The generation of a scalar l̄l amplitude in Eq. (5) leads

to further interesting effects. The time-dependent rate
asymmetry for Bs decay into a muon pair μþλ μ

−
λ in the

λ ¼ L, R helicity configuration is given by

Γ(BsðtÞ → μþλ μ
−
λ ) − Γ(B̄sðtÞ → μþλ μ

−
λ )

Γ(BsðtÞ → μþλ μ
−
λ )þ Γ(B̄sðtÞ → μþλ μ

−
λ )

¼ Cλ cosðΔMBs
tÞ þ Sλ sinðΔMBs

tÞ
coshðyst=τBs

Þ þAλ
ΔΓ sinhðyst=τBs

Þ ; ð17Þ

where all quantities are defined in Ref. [22]. For example,
the mass-eigenstate rate asymmetry Aλ

ΔΓ equals exactly þ1,
if only a pseudoscalar amplitude exists, and is, therefore,

assumed to be very sensitive to new flavor-changing
interactions, with essentially no uncertainty from SM
background. Now, we see that the SM itself generates a
small “contamination” of the observable, given by

Aλ
ΔΓ ¼ 1 − r2jΔQEDj2 ≈ 1 − 1.0 × 10−5; ð18Þ
Cλ ¼ −ηλ2rReðΔQEDÞ ≈ ηλ0.6%; ð19Þ
Sλ ¼ 2rImðΔQEDÞ ≈ −0.1%; ð20Þ

where r≡ ðαem=4πÞ½ðQlQqÞ=C10� and ηL=R ¼ �1. Present
measurements [3] set only very weak constraints on the
deviations of Aλ

ΔΓ from unity, and Cλ, Sλ have not yet
been measured, but the uncertainty in the B-meson LCDA
is, in principle, a limiting factor for the precision with
which new physics can be constrained from these
observables.
The power-enhanced QED correction reported here may

also appear relevant to the leptonic charged B-meson decay
Bþ → lþνl, but cancels due to the V − A nature of the
charged current. While we discussed only the case l ¼ μ
above, the other leptonic final states l ¼ e, τ are also of
interest. However, whereas the muon mass is numerically
of the order of the strong interaction scale, the much larger
mass of the tau lepton, and the much smaller electron mass
imply that the results are not exactly the same. Therefore,
we conclude that the systematic study of hitherto neglected
electromagnetic corrections to exclusive B decays reveals
an unexpectedly complex structure. Its further phenom-
enological and theoretical implications are currently under
investigation.
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