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The Born–Oppenheimer approximation is the standard tool for the study of molecular systems. It is
founded on the observation that the energy scale of the electron dynamics in a molecule is larger than that of
the nuclei. Avery similar physical picture can be used to describeQCD states containing heavy quarks aswell
as light-quarks or gluonic excitations. In this work, we derive the Born–Oppenheimer approximation for
QED molecular systems in an effective field theory framework by sequentially integrating out degrees of
freedom living at energies above the typical energy scalewhere the dynamics of the heavy degrees of freedom
occurs. In particular, we compute thematching coefficients of the effective field theory for the case of theHþ

2

diatomic molecule that are relevant to compute its spectrum up toOðmα5Þ. Ultrasoft photon loops contribute
at this order, being ultimately responsible for the molecular Lamb shift. In the effective field theory the
scaling of all the operators is homogeneous, which facilitates the determination of all the relevant
contributions, an observation that may become useful for high-precision calculations. Using the above
case as a guidance, we construct under some conditions an effective field theory for QCD states formed by a
color-octet heavy quark-antiquark pair bound with a color-octet light-quark pair or excited gluonic state,
highlighting the similarities and differences between the QED and QCD systems. Assuming that the
multipole expansion is applicable, we construct the heavy-quark potential up to next-to-leading order in the
multipole expansion in terms of nonperturbative matching coefficients to be obtained from lattice QCD.

DOI: 10.1103/PhysRevD.97.016016

I. INTRODUCTION AND MOTIVATION

The discovery in the last decade of the XYZ mesons has
brought into QCD challenges enduring since the early days
of molecular physics in QED—for a recent overview, see
Ref. [1]. A great variety of possible models have been
introduced to explain the observed pattern of newmesons. A
recent proposal [2,3] (see also [4]) advocates the use of the
Born–Oppenheimer (BO) approximation [5–8], familiar to
QED molecular physics, as a starting point for a coherent
description of the new QCD structures. The rational for this
being that many of the new mesons contain a heavy quark-
antiquark pair, and the time scale for the evolution of the

gluon and light-quark fields is small compared to that for the
motion of the heavy quarks. Although the BO approxima-
tion has been used in the past to study heavy hybrids by
means of quenched lattice data for gluonic static potentials
[9–11],1the new aspect of the proposal in Refs. [2,3] is the
recognition that theBOapproximation can also be applied to
mesons with light quark and antiquark flavors when input
from lattice simulations becomes available. In the present
paper we go one step further in this proposal and develop an
effective field theory (EFT) that allows to calculate in a
systematic and controlled manner corrections to the BO
approximation for QED and QCD molecular systems.
An EFT is built by sequentially integrating out degrees of

freedom induced by energy scales higher than the energy
scale we are interested in. For QED molecules, such a
sequential process proceeds as follows: (A) integrating out
hard modes associated with the masses of the charged
particles leading to nonrelativistic QED (NRQED) [14,15],
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1Models have also been used for the determinations of the
gluonic static potentials and heavy hybrids in a BO framework,
see for example Refs. [12,13].

PHYSICAL REVIEW D 97, 016016 (2018)

2470-0010=2018=97(1)=016016(16) 016016-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.016016&domain=pdf&date_stamp=2018-01-25
https://doi.org/10.1103/PhysRevD.97.016016
https://doi.org/10.1103/PhysRevD.97.016016
https://doi.org/10.1103/PhysRevD.97.016016
https://doi.org/10.1103/PhysRevD.97.016016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(B) integrating out soft modes associated with the relative
momenta between electrons and nuclei in NRQED leading
to potential NRQED (pNRQED) [16,17], and (C) exploiting
the fact that the nuclei move much slower than the electrons
due to their heavier masses, modes associated with the
electron and photon dynamics at the electron binding energy
scale, the ultrasoft scale, can be integrated out leading to an
EFT for the motion of the nuclei only. In QED these steps
can be done in perturbation theory.
In the present paper we compute this ultimate EFT in the

simple case of a QEDmolecule formed by two heavy nuclei
and one electron, like theHþ

2 ion molecule. Because the BO
approximation emerges as the leading-order approximation
in this EFT, we call it Born–Oppenheimer EFT (BOEFT).
Furthermore we show how the EFTallows to systematically
improve on the leading-order approximation by calculating
corrections in the inverse of the mass of the nuclei as well as
electromagnetic corrections. We give explicit analytical
expressions, regularized in dimensional regularizationwhen
needed, for the different contributions to the binding energy
of the two nuclei plus one electron molecule up toOðmα5Þ.
It is at this order that the Lamb shift is generated.
The BOEFT that we construct is new, although NRQED

has been applied in atomic and molecular physics for nearly
two decades [15,18]. In particular, NRQED has been used
for computing the leading relativistic, recoil and radiative
corrections to the energy levels of the Hþ

2 molecule in
Ref. [19] and for computing higher-order corrections in
Refs. [20–24]. The new and distinctive aspect of our
approach is that we carry out the full EFT program for
the diatomic molecule, integrating out not only the hard
scale, as in NRQED, but also the soft and ultrasoft scales.
The advantage is that each term in the Lagrangian has a
unique size and the scaling of Feynman diagrams is
homogeneous. This greatly facilitates the determination
of all the relevant contributions to a given observable up to a
given precision, a feature that is particularly useful for
higher-order calculations.
An analog EFT for QCD states containing a heavy quark-

antiquark pair in a color-octet state bound with light quarks
or a gluonic color-octet state can be built following a similar
path. However, unlike QED molecules, the QCD states are
determined by nonperturbative interactions. The hard scale
set by the heavy-quark mass can always be integrated out
perturbatively, leading to nonrelativistic QCD (NRQCD)
[14,25].At short enoughdistances the relativemomentumof
the heavy quarks can also be integrated out perturbatively
resulting in potential nonrelativistic QCD (pNRQCD)
[16,26–28].2 Similarly to the diatomic molecule case, the
heavy quarksmove slower than the light degrees of freedom,

whose spectrum is assumed to appear at the scale ΛQCD.
Thus, one can construct an EFT for these QCD “molecular”
states by integrating out the scale ΛQCD. Since this is the
scale of nonperturbative physics, the matching coefficients
will be nonperturbative quantities to be determined, for
instance, by lattice calculations. When light quarks are
neglected, one regains in this way the EFT recently con-
structed for quarkonium hybrids [32].
The paper is organized as follows. In Sec. II we construct

the pNRQEDLagrangian for two nuclei and one electron. In
Sec. III we proceed with integrating out the ultrasoft scale
and constructing the molecular EFT, BOEFT. Section IV is
devoted to the power counting of the BOEFT, which we use
to assess the importance of the nonadiabatic coupling and
other corrections to themolecular energy levels. TheEFT for
the QCD analog of the diatomic molecule, quarkonium
hybrids and tetraquarkmesons built out of a heavy quark and
antiquark, is developed in Sec. V. Section VI contains the
conclusions and an outlook for future developments. The
Appendix presents a detailed calculation of the Lamb shift
for the Hþ

2 molecule.

II. pNRQED

We aim at building an EFT for a molecular system
containing heavy and light particles: the heavy particles
(nuclei) have electric chargeþZe and massM and the light
particles (electrons) have electric charge −e and mass m,
with M ≫ m. Both kinds of particles are nonrelativistic.
Such a molecular system has several well-separated energy
scales, as we will see more in detail in the following. From
the highest to the lowest one the relevant energy scales are
the masses of the heavy and light constituents (hard scales),
the typical relative momentum p ¼ jpj ∼mv between
heavy and light particles (soft scale) and the binding energy
of the light particles E ∼mv2 (ultrasoft scale). For a
Coulomb-type interaction it holds that v ∼ α with α ¼
e2=4π ∼ 1=137 the fine structure constant. Finally, specific
of molecules an extra low-energy scale appears: the binding
energy of the heavy nuclei.
The EFT suitable for describing QED bound states at the

ultrasoft scale is pNRQED. In Ref. [17] it was worked out
for the hydrogen atom, in this section we extend pNRQED
to describe systems with two nuclei and one electron. In
Sec. III we will integrate out the ultrasoft modes and build
the EFT suitable to describe the molecular states.
The Lagrangian of pNRQED can be written in terms of

the light and heavy fermion fields, ψðt; xÞ and Nðt; xÞ
respectively, and the ultrasoft-photon field, Aμðt; xÞ. The
meaning of Aμðt; xÞ being ultrasoft is that it must be
multipole expanded (e.g., about the position of the center
of mass (c.m.) of the constituents). The operators of the
pNRQED Lagrangian can be organized in an expansion in
α and m=M. In order to homogenize the counting in these
two expansion parameters, we will use that m=M is

2A strongly-coupled version of pNRQCD for the case when
the soft scale is nonperturbative has been worked out in [29–31]
In this case, the matching coefficients are written in terms of
gauge invariant Wilson loops with field insertions.
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numerically similar to ∼α3=2. Then, the pNRQED
Lagrangian relevant to compute the spectrum up to order
Oðmα5Þ reads

LpNRQED ¼ −
1

4

Z
d3xFμνðxÞFμνðxÞ

þ
Z

d3xfψ†ðt; xÞ½i∂t − heðt; xÞ�ψðt; xÞ

þ N†ðt; xÞ½i∂t − hZeðt; xÞ�Nðt; xÞg

−
Z

d3xd3y½ψ†ðt; xÞψðt; xÞVZeðx − y; σÞ

þ N†ðt; xÞNðt; xÞVZZðx − yÞ�N†ðt; yÞNðt; yÞ;
ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ and all photons are ultrasoft.
Moreover we have used

heðt; xÞ ¼ eA0ðt; xÞ −
D2

−eðt; xÞ
2m

−
D4

−eðt; xÞ
8m3

; ð2Þ

hZeðt; xÞ ¼ −ZeA0ðt; xÞ −
D2

Zeðt; xÞ
2M

; ð3Þ

where Dq is the covariant derivative, with q ¼ −e for the
electron and q ¼ þZe for the nuclei:

iDqðt; xÞ ¼ i∇x − qAðt; xÞ: ð4Þ

The electron-nucleus potential VZeðx; σÞ is given by

VZeðx; σÞ ¼ VLO
Ze ðxÞ þ VNLO

Ze ðx; σeÞ; ð5Þ

where LO (leading order) and NLO (next-to-leading order)
refer to the order mα2 and mα4 contributions to the
spectrum respectively. The LO potential is the Coulomb
potential

VLO
Ze ðxÞ ¼ −

Zα
jxj ; ð6Þ

while the NLO one is the sum of a contact and spin-orbit
interaction

VNLO
Ze ðx; σeÞ ¼ Vct

ZeðxÞ þ VSO
Ze ðx; σeÞ; ð7Þ

with

Vct
ZeðxÞ ¼ −

Zα
m2

�
−
cD
8

þ 4d2

�
4πδðxÞ; ð8Þ

VSO
Ze ðx; σeÞ ¼ −icS

Zα
4m2

σe ·

�
x
jxj3 ×∇x

�
; ð9Þ

where cD, cS and d2 are matching coefficients that up to
order α read

cD ¼ 1þ α

π

�
8

3
log

m
μ

�
; cS ¼ 1þ α

π
; d2 ¼

α

60π
:

ð10Þ

The coefficient cD has been renormalized in the MS
scheme. The scale μ is the dimensional regularization scale
that in the case of cD acts as an infrared factorization scale.
Finally, the VZZ potential in Eq. (1) contains the LO
nucleus-nucleus Coulomb potential:

VZZðxÞ ¼
Z2α

jxj : ð11Þ

Further contributions to (5) and (11), which can be found in
Ref. [33], are beyond our accuracy.
Next, we project the Lagrangian in Eq. (1) on the

subspace of one electron and two nuclei. This is similar
to the pNRQED bound state calculations for the hydrogen
atom [16,17], but since the projection for one light and two
heavy particles with different charges has not been done so
far in the literature, we present the procedure with some
detail. The subspace of one electron and two nuclei is
spanned by Fock-space states of the form

jφðtÞi ¼
Z

d3xd3y1d3y2φðt; x; y1; y2Þ

× ψ†ðt; xÞN†ðt; y1ÞN†ðt; y2ÞjUSi; ð12Þ
where φðt; x; y1; y2Þ is the wave function of the system and
jUSi is the Fock-space state containing no hard particles
(electrons or nuclei) and an arbitrary number of ultrasoft
ones (photons). The corresponding projected Lagrangian,
adequate for calculating the spectrum up to Oðmα5Þ, is

LpNRQED ¼ −
1

4

Z
d3xFμνðxÞFμνðxÞ

þ
Z

d3xd3y1d3y2φ†ðt; x; y1; y2Þ½i∂t − heðt; xÞ

− hZeðt; y1Þ − hZeðt; y2Þ − VZeðx − y1; σÞ
− VZeðx − y2; σÞ − VZZðy1 − y2Þ�φðt; x; y1; y2Þ;

ð13Þ
where we have promoted φðt; x; y1; y2Þ to a tri-local field.
To ensure that the photon fields Aμ are ultrasoft one may

multipole expand them about the c.m. of the system. The
task is facilitated by defining an appropriate c.m. and
relative coordinates. The c.m. coordinate R of the system is
given by

R ¼ mxþMðy1 þ y2Þ
mþ 2M

: ð14Þ

To describe the motion of the electron relative to the
positions y1 and y2 of the nuclei we use
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z ¼ x −
y1 þ y2

2
; ð15Þ

and for the relative coordinate of the nuclei

r ¼ y1 − y2: ð16Þ

The multipole expansion spoils manifest gauge invari-
ance. It is important, however to recall that we have an EFT
for ultrasoft gauge fields, hence gauge transformations
must not introduce into the EFT gauge fields with large-
momentum components; that is, the allowed gauge trans-
formations are those that produce fields that still are within
the EFT. One can recover manifest (ultrasoft) gauge
invariance at least for charge neutral systems by introduc-
ing the field redefinition:

φðx; y1; y2; tÞ ¼ U−eðx;R; tÞUþZeðy1;R; tÞUþZeðy2;R; tÞ
× Sðt; x; y1; y2; tÞ; ð17Þ

where Uq is the Wilson line

Uqðx;R; tÞ ¼ eiq
R

R

x
dx0·Aðx0;tÞ: ð18Þ

Under a gauge transformation A0ðt;RÞ → A0ðt;RÞ −∂tθðt;RÞ and Aðt;RÞ → Aðt;RÞ þ ∇Rθðt;RÞ, the field
Sðt;R; r; zÞ transforms as

Sðt;R; r; zÞ → e−ietotθðt;RÞSðt;R; r; zÞ; ð19Þ

where etot is the total charge:

etot ¼ −eð1 − 2ZÞ; ð20Þ

For a charge-neutral system, etot ¼ 0, and the field
Sðt;R; r; zÞ is gauge invariant.
The Lagrangian in terms of the field S is given by

LpNRQED¼−
1

4

Z
d3xFμνðxÞFμνðxÞ

þ
Z

d3Rd3rd3zS†ðt;R;r;zÞ
�
i∂tþ

∇2
R

2Mtot

þetotA0ðt;RÞþeeffz ·Eðt;RÞ

−h0ðr;zÞþ
∇2
r

M
−VLO

ZZðrÞþ
∇2
z

4M
þ ∇4

z

8m3

−VNLO
Ze ðzþr=2;σÞ−VNLO

Ze ðz−r=2;σÞ
�
Sðt;R;r;zÞ;

ð21Þ

where

h0ðr; zÞ ¼ −
∇2
z

2m
þ VLO

Ze ðzþ r=2Þ þ VLO
Ze ðz − r=2Þ; ð22Þ

with Mtot being the total mass

Mtot ¼ mþ 2M; ð23Þ

Eðt;RÞ ¼ −∂tAðt;RÞ − ∇RA0ðt;RÞ is the electric field and
eeff is the effective charge:

eeff ¼ 2e
M þ Zm
mþ 2M

¼ eþOðα2Þ: ð24Þ

The sizes of the different terms that appear in the
Lagrangian (21) are as follows.
(1) Relative electron-nuclei momentum −i∇z and in-

verse relative distance 1=jzj have size mα.
(2) Photon fields, derivatives acting on photon fields,

the time derivative, and c.m. momentum, −i∇R,
acting on S have size mα2.

(3) As we shall discuss in Sec. IV, the inverse relative
nuclei-nuclei distance is 1=r ∼mα, whereas the
radial part of the derivative ∇r ∼ ðM=mÞ1=4mα ∼
mα5=8 when acting on the nuclei, but ∇r ∼mα when
acting on the electron cloud. This implies that the
kinetic energy associated with the relative motion of
the nuclei is −∇2

r=M ∼mα2
ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
∼mα11=4.

Using this counting, and disregarding operators that
produce emission or absorption of photons that contribute
only in loops, the leading-order operators in Eq. (21) are
h0ðr; zÞ þ VLO

ZZðrÞ, which are of Oðmα2Þ. Since the kinetic
energy associated with the relative motion of the two
nuclei, −∇2

r=M, is of Oðmα11=4Þ, at leading order the
nuclei are static and VLO

ZZðrÞ is just a constant. Therefore, at
leading order, the Euler–Lagrange equation from the
Lagrangian (21) is nothing else than a Schrödinger equa-
tion for the electronic energy levels with Hamiltonian
h0ðr; zÞ. Corrections to these energy levels can be obtained
in perturbation theory. Parametrically, the first of such
corrections is given by the recoil term, ∇2

z=4M, which is
Oðmα7=2Þ, and the second one by ∇4

z=8m3 þ VNLO
Ze , which

starts at Oðmα4Þ. The Oðmα5Þ corrections include the
Lamb shift, and originate from ultrasoft photon loops and
subleading contributions to the NLO potentials.
To obtain the molecular energy levels we need to solve

the dynamics of the r coordinate. In principle we could do
this by adding subleading terms to the Hamiltonian,
h0ðr; zÞ þ ∇2

r=M þ VLO
ZZðrÞ þ � � �, and solving the corre-

sponding Schrödinger equation. However, in this paper,
following the logic of EFTs, we will integrate out from
pNRQED the ultrasoft degrees of freedom to obtain an EFT
at the energy scale of the two-nuclei dynamics. The Euler–
Lagrange equation of this EFT provides a Schrödinger
equation for the molecular energy levels. We will develop
this EFT, which we call BOEFT, in the following section.
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Since the c.m. motion does not affect the internal
dynamics of the molecule, we can simply work in the
c.m. frame and ignore the dependence on R of the field S.
We also use the notation A0ðt; 0Þ and Eðt; 0Þ to indicate
quantities defined at the origin of the coordinate system,
i.e., R ¼ 0.

III. BORN–OPPENHEIMER EFT
FOR DIATOMIC MOLECULES

Our purpose is to build the BOEFT, an EFT for the
diatomic molecule at the energy scale of the two-nuclei
dynamics. This EFT is obtained by integrating out the
ultrasoft scale, mα2, from pNRQED for two nuclei and
one electron given in Sec. II. We will include effects that
contribute to the binding energy of the molecule up
to Oðmα5Þ.
Since the electron dynamics occurs at the ultrasoft scale,

integrating out this scale entails that all the electronic
degrees of freedom are integrated out. Moreover, also
ultrasoft photons are integrated out. Therefore, the degrees
of freedom of the BOEFT are nuclei and photons with
energies of Oðmα11=4Þ or smaller.
The tree-level matching contributions can be easily

obtained by expanding the field Sðt; r; zÞ in the
pNRQED Lagrangian of Eq. (21) in eigenfunctions of
the leading-order Hamiltonian h0ðr; zÞ of Eq. (22). This
corresponds in expanding the field Sðt; r; zÞ as

Sðt; r; zÞ ¼
X
κ

Ψκðt; rÞϕκðr; zÞ; ð25Þ

where ϕκðr; zÞ ¼ hzjr; κi satisfy the electronic eigenvalue
equation

h0ðr; zÞϕκðr; zÞ ¼ V light
κ ðrÞϕκðr; zÞ: ð26Þ

The eigenvalues V light
κ ðrÞ are the static energies, with κ

representing the set of quantum numbers specifying the
electronic state for a fixed separation r of the nuclei. The r
in the state vector jr; κi emphasizes that eigenvalues labeled
by κ refer to a given nuclei separation r. The eigenfunctions
ϕκðr; zÞ are orthonormal:Z

d3zϕ�
κðr; zÞϕκ0 ðr; zÞ ¼ δκκ0 : ð27Þ

The static electronic energies V light
κ ðrÞ scale like mα2.

The set of quantum numbers κ is familiar from molecular
physics and corresponds to representations of the symmetry
group of a diatomic molecule [34]: the eigenvalue λ ¼
0;�1; � � � of the projection of the electron angular momen-
tum on the axis joining the two nuclei, r̂, traditionally
denoted by Λ ¼ jλj and conventionally labeled by
Σ;Π;Δ;… for Λ ¼ 0; 1; 2;…; the total electronic spin S,
with the number of states (multiplicity) for a given S being
2Sþ 1, and indicated with an index, like 2Sþ1Σ;

additionally, for the Σ state, there is a symmetry under
reflection in any plane passing through the axis r̂, the
eigenvalues of the corresponding symmetry operator being
�1 and indicated as Σ�; and, in the situation of identical
heavy nuclei, the eigenvalues �1 of the parity operator of
reflections through the midpoint between the two nuclei,
denoted by g ¼ þ1 and u ¼ −1.3 In this way, a possible
ground state is denoted by κ ¼ 1Σþ

g .
The tree-level matching is sufficient up to terms in the

Lagrangian of Oðmα4Þ. Ultrasoft photon loops start con-
tributing at Oðmα5Þ and are responsible for the Lamb shift
of the diatomic molecule. We detail the calculation of the
leading ultrasoft loop in Appendix.
The BOEFT Lagrangian up to Oðmα5Þ reads

LBOEFT ¼ −
1

4

Z
d3xFμνðxÞFμνðxÞ

þ
Z

d3r
X
κκ0

Ψ†
κðt; rÞf½i∂t þ etotA0ðt; 0Þ

−Hð0Þ
κ ðrÞ − δEκðrÞ�δκκ0 − Cnad

κκ0 ðrÞgΨκ0 ðt; rÞ:
ð28Þ

The photon fields carry energies and momenta of

Oðmα11=4Þ or smaller. The operator Hð0Þ
κ is the leading-

order nuclei-nuclei Hamiltonian:

Hð0Þ
κ ðrÞ ¼ −

∇2
r

M
þ VLO

ZZðrÞ þ V light
κ ðrÞ; ð29Þ

and δEκðrÞ is the sum of the tree-level and second order
recoil, Breit–Pauli corrections as well as the one-loop
ultrasoft one:

δEκðrÞ ¼ δrecEκðrÞ þ δrec;2EκðrÞ þ δNLOEκðrÞ þ δUSEκðrÞ:
ð30Þ

The counting of Hð0Þ
κ will be justified in the next section,

but we have already anticipated that the eigenvalues ofHð0Þ
κ

scale like mα2
ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
∼mα11=4.

The different contributions to δEκðrÞ read

δrecEκðrÞ ¼
Z

d3zϕ�
κðr; zÞ

�
−

∇2
z

4M

�
ϕκðr; zÞ

¼ hr; κjð−∇2
zÞ=ð4MÞjr; κi; ð31Þ

which is of order mα2m=M ∼mα7=2,

δrec;2EκðrÞ ¼
X
κ̄≠κ

jhr; κjð−∇2
zÞ=ð4MÞjr; κ̄ij2

V light
κ ðrÞ − V light

κ̄ ðrÞ ; ð32Þ

3In the heavy quark-antiquark case that we will discuss in
Sec. V, the parity operator is replaced by the CP operator.
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which is of order mα2ðm=MÞ2 ∼mα5,

δNLOEκðrÞ ¼
Z

d3zϕ�
κðr; zÞ

�
VNLO
Ze ðzþ r=2; σÞ

þ VNLO
Ze ðz − r=2; σÞ − ∇4

z

8m3

�
ϕκðr; zÞ; ð33Þ

which starts at order mα4, and

δUSEκðrÞ¼−
e2

6π2

�
−
Ze2

2m2

�
log

�
μ

m

�
þ5

6
− logð2Þ

�
ρκðrÞ

þ
X
κ̄≠κ

jhr;κjvzjr; κ̄ij2ðV light
κ ðrÞ

−V light
κ̄ ðrÞÞ log

�
m

jV light
κ ðrÞ−V light

κ̄ ðrÞj

��
; ð34Þ

where vz ¼ −i∇z=m, hr; κjvzjr; κ̄i is the matrix element

hr; κjvzjr; κ̄i ¼
Z

d3zϕ�
κðr; zÞvzϕκ̄ðr; zÞ; ð35Þ

and ρκðrÞ is the electron density at the positions of the
nuclei

ρκðrÞ ¼ jϕκðr; z ¼ r=2Þj2 þ jϕκðr; z ¼ −r=2Þj2: ð36Þ

The ultrasoft contribution is of order mα5 logðαÞ and mα5.
Note that the ultrasoft contribution has been renormalized
in the MS scheme and its μ dependence cancels against that
one of the matching coefficient cD [see Eq. (10)] in the
NLO potential of Eq. (33).
Finally, Cnad

κκ0 ðrÞ is the nonadiabatic coupling [8,35]:

Cnad
κκ0 ðrÞ ¼

Z
d3zϕ�

κðr; zÞ½−∇2
r=M;ϕκ0 ðr; zÞ�

¼
Z

d3zϕ�
κðr; zÞ

�
−
∇2
r

M
ϕκ0 ðr; zÞ

�

þ 2

M

Z
d3zϕ�

κðr; zÞð−i∇rϕκ0 ðr; zÞÞð−i∇rÞ: ð37Þ

The first integral in the second line is the matrix element
of the kinetic energy operator of the relative motion of the
nuclei, it is of order mα2m=M ∼mα7=2, and the second
integral involves the momentum of their relative motion, it
is of order mα2ðm=MÞ3=4 ∼mα25=8. When the ϕκ’s are real
and κ ¼ κ0, the second integral vanishes.
We conclude by commenting on some general features of

the BOEFT. First, we would like to notice that there is no
extra approximation by writing Sðt; r; zÞ as in Eq. (25),
since the eigenfunctions ϕκðr; zÞ form a complete set and
the Ψκðt; rÞ play the role of time-dependent expansion
coefficients. However, as it is well-known in treatments

employing the Born–Oppenheimer approximation, this is
useful in practice only when the dynamics of the heavy
degrees of freedom (with mass M) is much slower than the
dynamics of the light degrees of freedom (with mass m), a
feature that permits to define an adiabatic dynamics for the
heavy particles and to treat departure from adiabaticity
using perturbation theory in the small parameterm=M ≪ 1,
as we have done above. Otherwise, when M ≃m, the
concept of adiabatic motion for one of the particles loses
sense and an expansion like Eq. (25) would be useless. A
way to see this is by noticing that mixing terms in the
energy levels of the BOEFT would count like mα2, a fact
that would prevent the separation of the electron from the
nuclei dynamics.
Under the adiabatic assumption the molecular energy

levels are distributed as sketched in Fig. 1. Electronic
excitations define for each nuclei separation a potential
V light
κ ðrÞ. These potentials are separated by large gaps of

ordermα2. For each electronic excitation, the nuclei motion
induces smaller excitations of order mα2

ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
. We can

compute these smaller excitations in the BOEFT for each
electronic potential V light

κ ðrÞ. They are at leading order the

eigenvalues ofHð0Þ
κ . It is astounding that the wave functions

of these nuclear vibrational modes can not only be
computed but experimentally directly visualized: for the
Hþ

2 ground state potential V light
0 ðrÞ see [36].

IV. POWER COUNTING IN THE BOEFT

In this section we examine in detail the power counting
of the BOEFT that we have just developed. The main aim is
to substantiate the starting assumption in the construction
of the BOEFT, namely that the kinetic term −∇2

r=M ≪
mα2. Also of interest is the size of the nonadiabatic
coupling.
The derivative ∇r can act on the nuclei fields Ψκðt; rÞ as

well as on the electronic wave functions ϕκðr; zÞ. The size
of the derivative turns out to be different for nuclei and
electrons. In the case of ∇r acting on ϕκðr; zÞ, it scales like
∼mv. Since the electron is bound to the nuclei through

FIG. 1. Sketch of the energy levels of a Hþ
2 -like molecule.
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Coulomb interactions, we have that v ∼ α. In the case that
the derivative acts on Ψκðt; rÞ, it scales like ∼Mw, where w
is the relative velocity of the nuclei. Therefore, our goal is
to asses the size of w.
Since the system is bound, the nuclei will have a stable

equilibrium arrangement and oscillate around an average
separation r0. Without the electron the two nuclei would
not form a bound state, hence r0 is an emergent scale,
whose size needs to be determined. Let us consider the
ground-state electron energy (κ ¼ 0) and expand the total
potential VðrÞ ¼ VLO

ZZðrÞ þ V light
0 ðrÞ around the equilibrium

position r0 (we have adjusted the potential so that its
minimum is zero):

VðrÞ ≈ 1

2
K0ðr − r0Þ2; where K0 ¼ ∇2

r0Vðr0Þ: ð38Þ

The Hamiltonian of the relative motion is that of a
harmonic oscillator. The ground-state energy E0 is given by

E0 ¼ 3

ffiffiffiffiffiffiffi
K0

2M

r
: ð39Þ

The equilibrium position r0 of the nuclei is determined
from

∇r0Vðr0Þ ¼ ∇r0

�
αZ2

r0
þ V light

0 ðr0Þ
�

¼ 0: ð40Þ

Because V light
0 ðr0Þ is the ground state energy of Eq. (26), it

is of order mα2 (OðZ2Þ ∼ 1). Hence Eq. (40) implies

r0 ∼
1

mα
: ð41Þ

That is, the average size of the nuclei separation is of the
same order as the electron-nucleus separation. Clearly, this
is a particular feature of the Coulomb interaction between
the nuclei; for a different r dependence of the nucleus-
nucleus interaction, r0 may be not of the order of the Bohr
radius.
From the above result it follows that

K0 ¼ ∇2
r0Vðr0Þ ∼m3α4; ð42Þ

and that the ground-state vibrational energy is

E0 ∼
�
m3α4

M

�
1=2

¼ mα2
ffiffiffiffiffi
m
M

r
: ð43Þ

Transitions between low-lying vibrational states are also of
order mα2

ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
. We note that the scaling behavior of E0

implies a large cancellation between VLO
ZZðrÞ and V light

0 ðrÞ
near the equilibrium position, since each of these two
potentials scales like mα2.
The virial theorem for the harmonic oscillator relates the

expectation value of the kinetic energy with the total
energy,

2hΨ0j
∇2
r

M
jΨ0i ¼ E0; ð44Þ

from where the size of the kinetic-energy operator acting on
Ψ follows

∇2
r

M
∼mα2

ffiffiffiffiffi
m
M

r
: ð45Þ

Our initial assumption was that the kinetic energy asso-
ciated with the relative motion of the nuclei is small
compared to the ultrasoft scale, from there we integrated
out the latter and matched pNRQED to the BOEFT. The
above analysis shows that the energy scale associated with
the relative motion of the nuclei is indeed largely sup-
pressed by a factor

ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
∼ α3=4 ≈ 0.025 with respect to

the ultrasoft scale, which justifies the initial assumption.
The size of ∇r acting onΨ and the relative velocity of the

nuclei follows from (45):

∇r ∼mα

�
M
m

�
1=4

; ð46Þ

w ∼ α

�
m
M

�
3=4

: ð47Þ

A more detailed look reveals, however, that the counting of
Eq. (46) applies only to the radial component of ∇r. Indeed,
in spherical coordinates we have ∇r ¼ ð∂r; ∂θ=r; ∂ϕ=
ðr sin θÞÞ, and since the angles are dimensionless variables,
the size of the last two components is determined by
r ∼ r0 ∼ 1=ðmαÞ. This implies also that the counting (45)
is appropriate for the radial part of the kinetic energy,
whereas −2=ðMrÞ∂=∂r ∼mα2ðm=MÞ3=4 and the angular
part L2=ðMr2Þ scales like mα2ðm=MÞ.
The size of the kinetic term in Eq. (45) sets the energy

scale for the BOEFT. Hence it determines the scaling of
photon fields and derivatives acting on them. The last
ingredient to complete the counting rules for the BOEFT is
the scaling of ∇z ∼ 1=z ∼mα, which is inherited from
pNRQED of Sec. II. The molecular energy scales are
summarized in Fig. 2.
We apply now the counting rules to the nonadiabatic

coupling CnadðrÞ defined in (37). The largest contribution
comes from the radial piece of the second term, which is of
Oðmα2ðm=MÞ3=4Þ, while the first term and the angular
piece of the second one are Oðmα2ðm=MÞÞ. Therefore, at
leading order the nonadiabatic coupling can be neglected
and the equation of motion for the field Ψκðt; rÞ reads

i∂tΨκðt; rÞ ¼ Hð0Þ
κ ðrÞΨκðt; rÞ; ð48Þ

which is nothing else than the Schrödinger equation that
describes the motion of the heavy particles in the Born–
Oppenheimer approximation [5–7]. Equation (48) produ-
ces the leading-order energy eigenvalues for the diatomic
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molecule, but it does not describe well the angular wave
functions [8]. This is a consequence of the angular piece of
the kinetic term being of the same size as the angular parts
of Cnad

κκ . The adiabatic approximation [8,35] corresponds to
including in the above Schrödinger equation the diagonal
term Cnad

κκ ðrÞ

i∂tΨκðt; rÞ ¼ ½Hð0Þ
κ ðrÞ þ Cnad

κκ ðrÞ�Ψκðt; rÞ: ð49Þ

One can use an iterative procedure to solve the problem:
starting from the zeroth-order solution in which the non-
adiabatic coupling Cnad is neglected, one can treat Cnad as a
perturbation [37] since its contribution to the energy is
suppressed by an amount ðm=MÞ1=4 ≈ 0.15 with respect to
the zeroth-order energy. We emphasize again that this relies
on the Coulomb nature of the nucleus-nucleus interaction

and on the smallness of the ratio m=M. Let Ψð0Þ
κn ðrÞ ¼

hrjκnið0Þ be the eigenfunctions of the leading-order

Hamiltonian Hð0Þ
κ ðrÞ with eigenvalues Eð0Þ

κn , then the cor-

rections to Eð0Þ
κn can be computed in perturbation theory, so

that

Eκn ¼ Eð0Þ
κn þ Eð1Þ

κn þ Eð2Þ
κn þ � � � : ð50Þ

The leading-order correction Eð1Þ
κn comes from the diagonal

nonadiabatic coupling and reads

Eð1Þ
κn ¼ ð0ÞhκnjCnad

κκ jκnið0Þ; ð51Þ

where

ð0ÞhκnjOjκ̄ n̄ið0Þ ¼
Z

d3rΨð0Þ�
κn ðrÞOðrÞΨð0Þ

κ̄ n̄ðrÞ: ð52Þ

It is of order mα2ðm=MÞ3=4 ∼mα25=8. The nondiagonal
nonadiabatic coupling provides mixing with different

electronic excitations. The first contribution appears at
order mα2ðm=MÞ3=2 ∼mα17=4 and reads

Emix
κn ¼

X
κ̄≠k;n̄

jð0ÞhκnjCnad
κκ̄ jκ̄ n̄ið0Þj2

Eκn − Eκ̄ n̄
: ð53Þ

More important than the mixing with states belonging to
different electronic excitations is the mixing with states in
the same one. The mixing is in this case suppressed by a
mere factor ðm=MÞ1=4 ∼ α3=8. We will not display here
explicitly this kind of contributions that follow straight-
forwardly from time-independent quantum-mechanical
perturbation theory. We add that the recoil corrections to
the electronic levels (31) and (32) contribute first at order
mα2ðm=MÞ ∼mα7=2 and mα2ðm=MÞ2 ∼mα5 respectively.
Finally, the NLO corrections to the electronic levels (33)
contribute first at order mα4, while the ultrasoft corrections
(34) contribute first at order mα5 logðαÞ and mα5.
Let us now summarize the steps necessary for a

numerical evaluation of the molecular energy levels using
the BOEFT. First, the electronic static energies V light

κ and
wave functions ϕκ are obtained by solving the eigenvalue
equation (26) (see, for example, Ref. [38]). The BOEFT
matching coefficients in Eqs. (31)–(34) and (37) can then

be evaluated. The nuclei wave functions Ψð0Þ
κn and eigene-

nergies Eð0Þ
κn are obtained by solving Eq. (48), which

requires the input of V light
κ computed in the first step.

The final values for the molecular energy levels are

obtained by adding to Eð0Þ
κn in standard perturbation theory

the corrections given by considering the higher-order
operators in the Lagrangian of Eq. (28).

V. THE BOEFT FOR QCD: HEAVY HYBRIDS
AND ADJOINT TETRAQUARK MESONS

In the context of QCD, it exists a system analog to the
QED diatomic molecule. It is the system formed by a heavy
quark-antiquark pair and some light degrees of freedom
that can be either gluonic or light quark in nature. Similarly
to the QED bound state, the QCD system develops three
well separated energy scales: the heavy-quark mass M
(hard scale), the relative momentumMw (soft scale), where
w is the heavy-quark relative velocity, and the binding
energyMw2. Furthermore, there is the scale associated with
nonperturbative physics, ΛQCD that plays the role of the
ultrasoft scale in the hadronic case. Restricting ourselves to
the case Mw ≫ ΛQCD, we can use weakly-coupled
pNRQCD [16,27] to describe the heavy quark-antiquark
pair, which is called quarkonium if bound, pretty much in
the sameway as pNRQED, described in Sec. II, can be used
to describe electromagnetic bound states. However, a
situation that has no analog in pNRQED, the heavy
quark-antiquark fields can appear in pNRQCD either in
a color-octet or in a color-singlet configuration.

FIG. 2. Energy scales for a Hþ
2 -like molecule.
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At energies of the order ofΛQCD, the spectrum of QCD is
formed by color-singlet hadronic states that are nonpertur-
bative in nature. An interesting case it that one of exotic
hadrons made of a color-octet heavy quark-antiquark pair
bound with light degrees of freedom. Such a system can be
studied similarly to the QED diatomic molecules. The
heavy quarks play the role of the nuclei and the gluons and
light quarks play the role of the electrons.
In a diatomic molecule the electrons are non-relativistic

with energies of the order of the ultrasoft scale, mα2,
whereas, as we have seen, the nuclei have a smaller energy
due to their heavier mass. In a hadron made of a color-octet
heavy quark-antiquark pair, the light degrees of freedom are
relativistic with a typical energy and momentum of order
ΛQCD. This implies that the typical size of the hadron is of
the order of 1=ΛQCD. If the mass of the heavy quarks is
much larger than ΛQCD, there may be cases where also the
typical momentumMw of the heavy quarks in the hadron is
larger than ΛQCD. The scaling of the typical distance of the
heavy quark-antiquark pair depends on the details of the
full inter-quark potential, which has a long-range non-
perturbative part and a short-range Coulomb interaction. It
may therefore happen that the heavy quark and antiquark
are more closely bound than the light degrees of freedom.
This situation is interesting because the hadron would
present a hierarchy between the distance of the quark-
antiquark pair and the typical size of the light degrees of
freedom that does not exist in the diatomic molecular case
where the electron cloud and the two nuclei have the same
size. A consequence of this is that while the molecule is
characterized by a cylindrical symmetry, the symmetry
group of the hadron would be a much stronger spherical
symmetry at leading order in a (multipole) expansion in the
distance of the heavy quark-antiquark pair. This modifies
significantly the power counting of the hadronic BOEFT
with respect to the molecular one leading to new effects. In
order to emphasize the difference between the hadronic and
molecular case, we will assume in the following that the
typical distance between the heavy quark and antiquark is
of order 1=ðMwÞ.
The kinetic energy associated with the relative motion of

the quark-antiquark pair scales like Mw2. If we look at
hadrons that are in the ground state or in the first excited
states only, we may require thatMw2 ≪ ΛQCD. As we have
seen discussing the diatomic molecule, in order for a Born–
Oppenheimer picture to emerge and for the BOEFT to
provide a valuable theory it is crucial that the excitations
between the heavy particles happen at an energy scale that
is smaller than the energy scale of the light degrees of
freedom. In summary, we will require the following
hierarchy of energy scales to hold true: Mw ≫ ΛQCD ≫
Mw2 [27]. The different energy scales are shown in Fig. 3.
After integrating out the hard and soft scales from QCD

and projecting on quarkonium states, one arrives at the
pNRQCD Lagrangian in the weakly-coupled regime,

which at leading order in 1=M and at OðrÞ in the multipole
expansion is (we neglect the light-quark masses and higher-
order radiative corrections to the dipole operators)

LpNRQCD ¼
Z

d3R

�
−
1

4
Ga

μνGμνa þ
Xnf
i¼1

q̄ii=Dqi

þ
Z

d3r

�
Tr½S†ði∂0 − hsÞSþO†ðiD0 − hoÞO�

þ gTr½O†r · ESþ S†r · EO�

þ g
2
Tr½O†r · EOþO†Or · E�

��
; ð54Þ

where S and O are the heavy quark-antiquark color-singlet
and color-octet fields respectively normalized with respect
to color. They depend on t, r, the relative coordinate, and R,
the c.m. position of the heavy quark-antiquark pair. All the
fields of the light degrees of freedom in Eq. (54) are
evaluated at R and t; in particular, Gμν a ¼ Gμν aðR; tÞ, qi ¼
qiðR; tÞ and iD0O ¼ i∂0O − g½A0ðR; tÞ; O�. The field E is
the chromoelectric field, Gμνa the gluonic field strength
tensor and qi are light-quark fields appearing in nf flavors.
The singlet and octet Hamiltonians read (in the c.m. frame)

hs ¼ −
∇2
r

M
þ VsðrÞ; ð55Þ

ho ¼ −
∇2
r

M
þ VoðrÞ; ð56Þ

where VsðrÞ ¼ −4αs=ð3rÞ þ � � � and VoðrÞ ¼ αs=ð6rÞ þ
� � � are the color-singlet and color-octet potentials respec-
tively; αs is the strong coupling.
The Lagrangian (54) is the analog of the Lagrangian (21)

for diatomic molecules. The difference is that in the
Lagrangian (54) the number of gluons and light quarks
is not fixed as the number of electrons is in (21). This stems
from the fact that the electrons are nonrelativistic, which
implies that their number is conserved at the low energy of
pNRQED, while gluons and light quarks are massless
relativistic particles and thus their creation and annihilation
are still allowed in the Lagrangian (54).

FIG. 3. Energy scales of a quarkonium hybrid or tetraquark.
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The Hamiltonian density corresponding to the light
degrees of freedom at leading order in 1=M and in the
multipole expansion is

h0ðRÞ ¼
1

2
ðEaEa þ BaBaÞ −

Xnf
f¼1

q̄fiD · γqf: ð57Þ

It plays the same role as the Hamiltonian density of Eq. (22)
does for the diatomic molecule. As anticipated, the sym-
metry groups of the two Hamiltonians are, nevertheless,
different: the Hamiltonian density in Eq. (22) has a
cylindrical symmetry, while Eq. (57) has a spherical
symmetry. The color-octet Gia

κ ðRÞ operators that generate
the eigenstates of h0ðRÞ

h0ðRÞGia
κ ðRÞjUSi ¼ ΛκGia

κ ðRÞjUSi; ð58Þ

form a basis of octet light degrees of freedom operators,
labeled by the light-flavor f and JPC quantum numbers,

κ ¼ fJPC; fg; ð59Þ

and an extra label i for states belonging to the same JPC

representation. Note that the energy eigenvalue Λκ is in
general a complex number, whose imaginary part accounts
for the possible decay of the state.
If we introduce the states (O ¼ ffiffiffi

2
p

OaTa)

jκi ¼ Oa†ðr;RÞGia
κ ðRÞjUSi; ð60Þ

which are eigenstates of the octet sector of the pNRQCD
Hamiltonian at leading order in the multipole expansion
with eigenvalues ho þ Λκ, we can now project the
Lagrangian of (54) onto the Fock subspace spanned by

Z
d3rd3R

X
iκ

jκiΨi
κðt; r;RÞ: ð61Þ

This step is the equivalent for the hadronic system to the
projection on the state of Eq. (12) and the expansion (25)
for the diatomic molecule.
Using Eq. (61) and integrating out light degrees of

freedom of energy of order ΛQCD we derive the BOEFT
Lagrangian that describes the heavy quark-antiquark pair
physics at the scale Mw2. Since we are interested in bound
states we will not consider sectors of the Lagrangian that
describe transitions between states with different κ and
decays into singlet states. Up to next-to-leading order in the
multipole expansion the Lagrangian reads

LBOEFT ¼
Z

d3Rd3r
X
κ

Ψi†
κ ðt; r;RÞ

�
ði∂t − ho − ΛκÞδij

−
X
λ

Pi
κλbκλr

2Pj†
κλ þ � � �

�
Ψj

κðt; r;RÞ; ð62Þ

where Pi
κλ are projection operators along the heavy-quark

axis of the light degrees of freedom operator (an implicit
sum is understood over repeated i, j indices). There is one
projection operator for each −jjj ≤ λ ≤ jjj. These operators
select different polarizations of the wave function Ψiκ. For
example, in the case of J ¼ 1 the operators are given by

Pl
10 ¼ r̂l; ð63Þ

Pl
1�1 ¼ ðθ̂l � iϕ̂lÞ=

ffiffiffi
2

p
; ð64Þ

with

r̂ ¼ ðsinðθÞ cosðϕÞ; sinðθÞ sinðϕÞ; cosðθÞÞT;
θ̂ ¼ ðcosðθÞ cosðϕÞ; cosðθÞ sinðϕÞ;− sinðθÞÞT;
ϕ̂ ¼ ð− sinðϕÞ; cosðϕÞ; 0ÞT: ð65Þ

For higher J the projection operators can be built by
multiplying jjj powers of (63) and (64) with appropriate
symmetrization of the indices (see also [39]). The projec-
tion operators are necessary to organize the states in
Eq. (60) according to the quantum numbers of the exotic
hadron. In particular they project the light degrees of
freedom operator onto the heavy quark-antiquark axis.
The quantum numbers of the exotic hadron are the same as
the ones of the diatomic molecule presented in Sec. III plus
charge conjugation: as we discussed, at leading order in the
multipole expansion the symmetry of the hadron is spheri-
cal, hence the projectors commute with the eigenstates of
h0 (the equivalent statement is not true in the molecular
case), but higher-order terms break this symmetry to the
original cylindrical one. In Eq. (62), the next-to-leading
order term in the multipole expansion is Pi

κλbκλr
2Pj†

κλ,
whereas the dots stand for higher-order terms.
The specific value of the next-to-leading-order term,

Pi
κλbκλr

2Pj†
κλ, depends on nonperturbative physics and is

unknown, however some of its characteristics can be
determined on general grounds. This term has its origin
in the chromoelectric dipole interactions of Eq. (54), which
couple the light degrees of freedom operatorGia

κ to the octet
field giving corrections to the (static) energy of the system.
That this kind of corrections shows up for the static energy
is a specific feature of QCD [26,27], however, for nonstatic
nuclei dipole interactions are also responsible for the Lamb
shift of the diatomic molecule, as we have seen. The r2

dependence arises from the necessity of having at least two
chromoelectric dipoles in order to conserve the JPC

quantum numbers ofGia
κ . Cylindrical symmetry and charge

conjugation also imply bκλ ¼ bκ−λ ¼ bκΛ. In Fig. 4 we
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show static potentials for the case of quarkonium hybrids,
that is, for the case in which the considered light degrees of
freedom are purely gluonic. The potentials correspond to
κ ¼ 1þ− and are compared to the static energies computed
on the lattice in the quenched approximation. The values of
bκλ are fitted to the lattice data for r≲ 0.5 fm.
Defining the projected wave function as

Ψκλ ¼ Pi†
κλΨi

κ; ð66Þ

and using

Ψi
κ ¼

X
λ

Pi
κλΨκλ; ð67Þ

we can rewrite Eq. (62) as

LBOEFT ¼
Z

d3Rd3r
X
κλλ0

Ψ†
kλðt; r;RÞ

�
½i∂t − VoðrÞ − Λκ

− bκλr2 þ � � ��δλλ0 þ Pi†
κλ

∇2
r

M
Pi
κλ0

�
Ψκλ0 ðt; r;RÞ:

ð68Þ

The last term can be split into a kinetic operator acting on
the heavy quark-antiquark field and a nonadiabatic cou-
pling

Pi†
κλ

∇2
r

M
Pi
κλ0 ¼

∇2
r

M
þ Cnad

κλλ0 ; ð69Þ

with

Cnad
κλλ0 ¼ Pi†

κλ

�
∇2
r

M
; Pi

κλ0

�
; ð70Þ

being the nonadiabatic coupling analog to Eq. (37) for the
diatomic molecule.
At this point it is important to review the sizes of the

different terms appearing in Eq. (68). All dimensional
quantities that arose from integrating out ΛQCD are of order
ΛQCD to their dimension. Hence Λκ is of order ΛQCD and
bκλ is of order Λ3

QCD. The temporal derivative, the kinetic
term and the potential up to the constant shift Λκ are of
order Mw2. Unlike in the diatomic molecule case, ∇r has
the same size for radial and angular pieces, because
the momentum of the heavy quark is taken to scale like
the inverse of the distance, r, between the quark and the
antiquark. For the nonadiabatic coupling Cnad

κλλ0 , the radial
piece of the derivative ∇r acting on the projection operators
Pi
κλ0 vanishes, since they do not depend on jrj. According to

our counting, the size of the angular piece ½L2=ðMr2Þ; Pi
κλ0 �

isMw2, i.e., of the same order as the kinetic operator of the
heavy quarks. This is different from the diatomic molecu-
lar case.
The equations of motion for the fields Ψκλðt; r;RÞ that

follow from the Euler–Lagrange equation at leading order
are nothing else than a set of coupled Schrödinger equa-
tions

i∂tΨκλðt; r;RÞ ¼
��

−
∇2
r

M
þ VoðrÞ þ Λκ þ bκλr2

�
δλλ0

−
X
λ0
Cnad
κλλ0

�
Ψκλ0 ðt; r;RÞ: ð71Þ

By solving them we obtain the eigenvalues EN that give the
masses MN of the states as
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FIG. 4. Comparison of the hybrid quarkonium static energies
generated by the lowest mass gluelump (κ ¼ 1þ−) computed on
the lattice in Refs. [40] (red squares) and [41] (green dots)
compared to the BOEFT static potential up to next-to-leading-
order (solid black line), Vκλ ¼ VoðrÞ þ Λκ þ bκλr2. The octet
potential is taken in the renormalon subtracted (RS) scheme and
up to α3s . The mass of lowest laying gluelump is computed also in
the RS scheme ΛRS

1þ− ¼ 0.87 GeV [40]. The bκλ coefficients are
fitted to the lattice data for r ≲ 0.5 fm yielding the values b10 ¼
1.112 GeV=fm2 and b1�1 ¼ 0.110 GeV=fm2. For lattice deter-
minations higher laying gluelump masses and static energies see
Refs. [9,10,41–47].
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MN ¼ 2M þ EN: ð72Þ

In summary, the spectrum of exotic hadrons that are
sufficiently tightly bound that our hierarchy of scales, and in
particular the multipole expansion, applies is similar to that
one of diatomicmolecules illustrated in Fig. 1. The quantum
number κ identifies, through different shifts Λκ, different
excitations of the light degrees of freedom. The gap between
different excitations is (at least for the lower states) of order
ΛQCD. In the case of the diatomic molecule the different
electronic excitations are separated by a gap of order mα2.
For each BO potential the vibrational modes of the heavy
quark-antiquark pair generate a fine structure of levels, EN ,
separated for fixed κ by small gaps of orderMw2. Similarly,
in the molecular case the vibrational modes of the nuclei
induce small splittings of order mα2

ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
. There are,

however, also noteworthy differences. In the hadronic case,
if the size of the hadron is much larger than the distance
between the heavy quark and antiquark, then κ labels
spherically symmetric states. Because the symmetry of
the hadron is cylindrical, this means that at short distances
some excitations of the light degrees of freedom turn out to
be degenerate. As a consequence the equations ofmotion are
the coupled Schrödinger equations of Eq. (71) that mix
different excitations, labeled by λ, λ0, with the same κ. The
mixing happens through the nonadiabatic coupling, which
under our assumptions counts like the quark-antiquark

kinetic energy. A physical consequence of the mixing is
the so-called Λ-doubling, i.e., a lifting of degeneracy
between states with the same parity [32]. In the molecular
case, the size of the molecule and the typical distance
between the nuclei is of the same order. Because there is no
special hierarchy between these two lengths there is neither a
special symmetry at short distance nor a corresponding
degeneracy pattern. The equation of motion for the molecu-
lar case is the simple Schrödinger equation (48) [or (49) in
the adiabatic approximation]. In this case, different elec-
tronic excitations do not mix at leading order. Moreover, the
nonadiabatic coupling is subleading with respect to the
relative kinetic energy of the nuclei.
The masses for heavy hybrid states have been obtained in

Ref. [32] following the method just described. There, the
light-quark part of h0 was omitted. In Fig. 5 we reproduce
the results of Ref. [32] compared with an updated list of
possible experimental candidates. Tetraquarks were dis-
cussed in Ref. [3] in the context of the BO approximation
(see also [39]). In [3], preliminary estimates for their
masses were given assuming that the tetraquark static
energies have the same shape as the hybrid ones and using
values for Λκ from Ref. [48]. One major difficulty is the
lack of knowledge of the static energies carrying light-
quark flavor quantum numbers. One expects that lattice
QCD will soon provide results on these and other crucial
nonperturbative matrix elements to be used in the BOEFT
developed here.
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H1'

DD Threshold

DsDs Threshold

Y 4008 1 Y 4220 1 Y 4230 1 Y 4260 1 X 4160 ??+ X 4140 1 X 4270 1 X 4500 0 X 4350 0 2 X 4360 1 X 4630 1 Y 4660 1
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FIG. 5. Comparison of the mass spectrum of neutral exotic charmonium states with the mass spectrum of charmonium hybrids
computed in Ref. [32] using the BOEFT. The experimental states are plotted in solid blue lines with error bars corresponding to the
average of the lower and upper mass uncertainties. Results of Ref. [32] are given in terms of spin-symmetry multiplets corresponding to
solutions of the coupled Schrödinger equations (71) for different angular momentum, l, and parity. The spin-symmetry multiplets are
labeled H1 (l ¼ 1, positive parity), H2 (l ¼ 1, negative parity), H3 (l ¼ 0, positive parity), H4 (l ¼ 2, positive parity) and H0

1 (first
radially excited state with l ¼ 1 and positive parity). The multiplets have been plotted with error bands corresponding to a gluelump
mass uncertainty of 0.15 GeV.
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VI. CONCLUSIONS AND PERSPECTIVES

The Born–Oppenheimer approximation is the usual tool
for solving the Schrödinger equation of molecules. It relies
on the movement of the nuclei being much slower than that
of the electrons, a circumstance that allows to study the
electronic eigenstates and energy levels for fixed positions
of the nuclei, the so-called static energies. The wave
functions of the molecule can then be expanded in terms
of these electronic eigenfunctions resulting in a
Schrödinger equation describing the molecular energy
levels. We have used this hierarchy of scales to build an
EFT that systematically describes the energy levels of the
simplest diatomic molecule, Hþ

2 .
Our starting point has been an EFT of QED for the

ultrasoft scale, pNRQED, adapted to the case of two nuclei
and one electron. Since pNRQED for two heavy and one
light particle has not been presented in the literature before,
we have worked out its derivation in some detail. Particular
care has been put in including all the relevant operators
suppressed in powers of m=M, where m and M are the
electron and nuclei masses respectively. Counting m=M ∼
α3=2 we have derived the pNRQED Lagrangian relevant to
compute the spectrum up to Oðmα5Þ.
The assumption that the nuclei move slower than the

electrons, which is at the basis of the Born–Oppenheimer
approximation, is equivalent to take the kinetic term of the
nuclei to be of a smaller size than the energy scale of the
electron dynamics, the ultrasoft scale. Being these two
scales well separated, it is natural in an EFT framework to
integrate out the ultrasoft degrees of freedom in order to
obtain an EFT that describes the molecular degrees of
freedom only. We have carried out this integration
obtaining a molecular EFT that we have named Born–
Oppenheimer EFT (BOEFT). Up to Oðmα4Þ it is sufficient
to match pNRQED and BOEFT at tree level, or equiv-
alently, to expand the matter field in the pNRQED
Lagrangian in eigenfunctions of the leading-order
Hamiltonian for the electron, as it is done in the Born–
Oppenheimer approximation of the Schrödinger equation.
Loop diagrams involving ultrasoft photons start contribut-
ing at Oðmα5Þ, the first of such contributions being
responsible for the Hþ

2 molecular Lamb shift. We have
computed the leading ultrasoft loop and obtained the
BOEFT Lagrangian relevant to compute the spectrum up
to Oðmα5Þ.
The precise size of the nuclei kinetic operator has been

obtained using the virial theorem to relate it to the potential
acting on the nuclei. At leading order this potential is
formed by the repulsive Coulomb potential between the
nuclei and the attractive electronic static energies. Since the
system is bound, the nuclei do not move over the whole size
of the molecule, but oscillate around the minimum of the
potential. The size of the kinetic operator of the nuclei is of
the order ofmα2

ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
, which is smaller than the ultrasoft

scale mα2. This is consistent with the original statement
that the two nuclei dynamics occurs at a lower energy scale
than the electronic one. The size of the nonadiabatic
coupling could also be assessed resulting in the conclusion
that for diatomic molecules its contribution to the energy
levels is suppressed by a factor ðm=MÞ1=4.
In the present paper we have derived the BOEFT

Lagrangian for the Hþ
2 molecule up to operators relevant

for the spectrum up to Oðmα5Þ. This can be systematically
improved by including higher-order operators in the power
counting detailed in Sec. IV, and computing their corre-
sponding matching coefficients. Similarly, all the relevant
contributions up to a certain precision to a specific
observable can be determined with the help of the power
counting, which may be of crucial importance to handle
high-precision calculations.
Having set the general framework for constructing the

BOEFT in QED, we have analyzed systems in QCD analog
to the diatomic molecule. These are systems made of a
heavy quark-antiquark pair, which plays the role of the
heavy degrees of freedom, bound with light-quarks or
excited gluonic states, playing the role of the light degrees
of freedom. In particular, we have studied the case in which
the quark-antiquark pair appears in a color-octet state. In
the short distance regime, r ≪ 1=ΛQCD, the multipole
expansion is applicable and the system can be described
using weakly-coupled pNRQCD.
The energy scale of the leading-order light degrees of

freedom dynamics is ΛQCD, while, as in the molecular case,
the heavy degrees of freedom dynamics, in this case that of
the heavy quark-antiquark pair, takes place at the lower
energy scale Mw2. We have identified the leading-order
Hamiltonian in the multipole and 1=M expansions for the
light degrees of freedom, h0, and defined a basis of color-
octet light degrees of freedom operators, which, together
with the heavy quark-antiquark octet field, generate had-
ronic (color-singlet) eigenstates of the pNRQCD
Hamiltonian. The ΛQCD scale has been integrated out
and pNRQCD matched into a QCD version of the
BOEFT. At LO in the multipole expansion the matching
can be done by just projecting the octet sector of the
pNRQCD Lagrangian on the basis of eigenstates of h0. At
NLO the matching requires a full nonperturbative compu-
tation, nevertheless, some constraints on the form of the
NLO term can be obtained from the multipole expansion
itself and the cylindrical symmetry that the system pos-
sesses at finite separation between the heavy quarks. As in
the diatomic molecular case, a nonadiabatic coupling
between the heavy quarks and the light degrees of freedom
arises from the matching procedure, however, unlike in the
molecular case, this does not need to be suppressed with
respect to the kinetic operator. Furthermore, the nonadia-
batic coupling mixes states that in the short distance limit
have degenerate potentials, therefore the mixing has to be
taken into account when solving the set of Schrödinger
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equations that result from the Euler–Lagrange equations of
the BOEFT. As a result the phenomenon known as Λ-
doubling in molecular physics [34] is more prominent in
the QCD case [32].
The BOEFT has been used to obtain the masses of the

quarkonium hybrids in Ref. [32] (see also [49]).
Preliminary studies on quarkonium tetraquarks using a
similar framework based on the BO approximation were
carried out in Ref. [3]. A further analysis is in preparation
[39]. The EFT presented here could be straightforwardly
extended to describe any system made of two heavy quarks
bound adiabatically with some light degrees of freedom.
An example are doubly heavy baryons, i.e., states with two
heavy quarks and one light-quark. Experimentally, doubly
heavy baryons have been first observed at the LHCb [50].
For a study of this system in the framework of pNRQCD,
we refer to [51]. Another example are pentaquark states
made of two heavy quarks and three light-quarks.
Candidates have been observed at the LHCb [52], but a
pNRQCD based study of these systems is still to be done.
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APPENDIX: THE LAMB SHIFT
IN THE H +

2 MOLECULE

In this appendix we derive Eq. (34) following closely
Ref. [17]. When replacing Sðt; r; zÞ with the expansion (25)
in the Lagrangian (21), we obtain the nucleus-photon
interaction terms

LΨ−A ¼
Z

d3r
X
κκ0

Ψ†
κðt; rÞ½etotA0ðt; 0Þδκκ0

þ eEðt; 0Þ · hr; κjzjr; κ0i�Ψκ0 ðt; rÞ; ðA1Þ

where we have used that eeff ¼ eþOðα2Þ and replaced eeff
with e; hr; κjzjr; κ0i is the matrix element

hr; κjzjr; κ0i ¼
Z

d3zϕ�
κðr; zÞzϕκðr; zÞ: ðA2Þ

The correction to the energy eigenvalues of the molecule
coming from these terms can be obtained from the two-
point correlation function

iΠκðt; r; t0; r0Þ ¼ hUSjT½Ψκðt; rÞΨ†
κðt0; r0Þ�jUSi

¼
Z þ∞

−∞

dE
2π

e−iEðt−t0ÞiΠκðE; r; r0Þ: ðA3Þ

Second-order perturbation theory leads to

iΠκðE; r; r0Þ

¼ iΠð0Þ
κ ðE; r; r0Þ þ

Z
d3r̄iΠð0Þ

κ ðE; r; r̄Þ

×

�
−e2

X
κ̄

hr̄; κjzijr̄; κ̄iIijðE −Hð0Þ
κ̄ ðr̄ÞÞhr̄; κ̄jzijr̄; κi

�

× iΠð0Þ
κ ðE; r̄; r0Þ; ðA4Þ

where Πð0Þ
κ ðE; r; r0Þ is the zeroth-order two-point correla-

tion function, corresponding to the zeroth-order

Hamiltonian Hð0Þ
κ ðrÞ:

Πð0Þ
κ ðE; r; r0Þ ¼ Πð0Þ

κ ðE; rÞδ3ðr − r0Þ; ðA5Þ

with

Πð0Þ
κ ðE; rÞ ¼ 1

E −Hð0Þ
κ ðrÞ þ iη

; ðA6Þ

and IijðEÞ is the loop integral:

IijðEÞ ¼
Z

d4k
ð2πÞ4

i
k2

k2
�
δij −

kikj

k2

�
i

E − k0 þ iη
: ðA7Þ

Note that in dimensional regularization the one-loop con-
tribution induced by the vertex with the A0 field in (A1)
vanishes.
Using Eq. (A5) into Eq. (A4) and integrating over r̄, we

obtain [ΠκðE; r; r0Þ ¼ ΠκðE; rÞδ3ðr − r0Þ]

iΠκðE; rÞ ¼ iΠð0Þ
κ ðE; rÞ

þ iΠð0Þ
κ ðE; rÞ½−iΣκðE; rÞ�iΠð0Þ

κ ðE; rÞ; ðA8Þ

where
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ΣκðE; rÞ ¼ −ie2
X
κ̄

hr; κjzijr; κ̄i

× IijðE −Hð0Þ
κ̄ ðrÞÞhr; κjzjjr; κ̄i: ðA9Þ

The energy shift δUSEκðrÞ is the self-energy calculated at

Hð0Þ
κ ðrÞ. Therefore, we need to evaluate

ΣκðHð0Þ
κ ðrÞ; rÞ ¼ −ie2

X
κ̄

hr; κjzijr; κ̄i

× IijðV light
κ ðrÞ − V light

κ̄ ðrÞÞhr; κjzjjr; κ̄i:
ðA10Þ

The loop integral IijðEÞ in Eq. (A7) is ultraviolet
divergent. In dimensional regularization, it is given by
(using the convention D ¼ 4 − ϵ)

IijðEÞ ¼ −iE3
δij

6π2

�
1

ϵ
þ 1

2
logð4πÞ − γE

2

þ log

�
μ

−E − iη

�
þ 5

6
− logð2Þ

�
: ðA11Þ

The divergent part of the self-energy is then

Σdiv
κ ðHð0Þ

κ ðrÞ; rÞ

¼ −e2
δij

6π2
1

ϵ

X
κ̄

hr; κjzijr; κ̄iðV light
κ ðrÞ

− V light
κ̄ ðrÞÞ3hr; κ̄jzjjr; κi

¼ −e2
δij

6π2
1

ϵ

X
κ̄

ðV light
κ ðrÞ − V light

κ̄ ðrÞÞhr; κjziðV light
κ ðrÞ

− h0ðr; zÞÞjr; κ̄ihr; κ̄jðV light
κ ðrÞ − h0ðr; zÞÞzjjr; κi:

ðA12Þ
Now, since

hr; κjziðV light
κ ðrÞ − h0ðr; zÞÞjr; κ̄i

¼ hr; κj½h0ðr; zÞ; zi�jr; κ̄i ¼ −ihr; κjvizjr; κ̄i; ðA13Þ

where viz ¼ −i∇i
z=m. Then, Σdiv

κ ðHð0Þ
κ ðrÞ; rÞ can be written

as

Σdiv
κ ðHð0Þ

κ ðrÞ; rÞ ¼ −e2
δij

6π2
1

ϵ

X
κ̄

hr; κjvizjr; κ̄i

× ðV light
κ ðrÞ − V light

κ̄ ðrÞÞhr; κ̄jvjzjr; κi

¼ −e2
1

6π2
1

ϵ

1

2
hr; κj½viz; ½viz; h0ðr; zÞ��jr; κi:

ðA14Þ

The double commutator acts only on the heavy-light
Coulomb potentials VLO

Ze ðz� r=2Þ in h0ðr; zÞ—and the
result is

½viz; ½viz; h0�� ¼ −
1

m2
½∇i

z; ½∇i
z; h0��

¼ −
Ze2

m2
½δ3ðz − r=2Þ þ δ3ðzþ r=2Þ�: ðA15Þ

Therefore, the divergence can be absorbed by the renorm-
alization of the contact interaction term Vct

ZeðxÞ of Eq. (8).
Since the matching coefficients of the pNRQED

Lagrangian were obtained in the MS renormalization
scheme, we have to use the same scheme here; this amounts
at subtracting the term 1=ϵþ 1=2 logð4πÞ − γE=2 from
IijðEÞ. We are then left with

ΣκðHð0Þ
κ ðrÞ; rÞ

¼ −
e2

6π2

�
−
Ze2

2m2

�
log

�
μ

m

�
þ 5

6
− logð2Þ

�
ρκðrÞ

þ
X
κ̄

jhr; κjvzjr; κ̄ij2ðV light
κ ðrÞ − V light

κ̄ ðrÞÞ

× log

�
m

−V light
κ ðrÞ þ V light

κ̄ ðrÞ − iη

��
; ðA16Þ

where ρκðrÞ is the electron density at the positions of the
nuclei:

ρκðrÞ ¼ jϕκðr; z ¼ r=2Þj2 þ jϕκðr; z ¼ −r=2Þj2: ðA17Þ

The μ dependence in the second line of (A16) cancels
against the μ dependence of the matching coefficient
cD in Eq. (8). Note that the last term is zero when
V light
κ̄ ðrÞ ¼ V light

κ ðrÞ. Also, there will be an imaginary part
when V light

κ ðrÞ > V light
κ̄ ðrÞ, indicating that the level κ may

decay to the level κ̄. The energy shift of the electronic states

is given by the real part of ΣκðHð0Þ
κ ðrÞ; rÞ

δEUS
κ ðrÞ ¼ −

e2

6π2

�
−
Ze2

2m2

�
log

�
μ

m

�
þ 5

6
− logð2Þ

�
ρκðrÞ

þ
X
κ̄

jhr; κjvzjr; κ̄ij2ðV light
κ ðrÞ − V light

κ̄ ðrÞÞ

× log

�
m

jV light
κ ðrÞ − V light

κ̄ ðrÞj

��
: ðA18Þ

This is precisely Eq. (16) of Ref. [17], if one identifies
V light
κ ðrÞ with the leading-order energies of the hydrogen

atom, En, and ρeðrÞ with the electron density jϕnð0Þj2.
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