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Based on the nonrelativistic QCD factorization theorem, we resum QCD corrections to the inclusive
decay rate of ηc and ηb in the large-nf limit using bubble chain resummation. By employing dimensional
regularization, we show explicitly the cancellation of the infrared renormalon ambiguity in the factorization
formula at leading order in v in the large-nf limit, where v is the typical heavy quark velocity inside the
meson. We also make predictions of the ratio of the inclusive decay rate to the decay rate into two photons.
By comparing our results with a fixed-order calculation we conclude that resummation of QCD corrections
is crucial in making an unambiguous prediction. We also find significant corrections beyond the large-nf
limit for the decay of ηc, which may imply that QCD corrections need to be resummed beyond the large-nf
limit to make an accurate prediction of the decay rate.
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I. INTRODUCTION

Nowadays there is much experimental effort devoted to
investigating the nature of heavy quarkonium states.
Precision measurements of the properties of heavy quar-
konia such as their masses, decays or transitions can be
done at future and ongoing experiments like Belle II,
BESIII, and LHCb at CERN. A good understanding of the
nature of heavy quarkonium states is essential in exploring
other processes that involve heavy quarkonia such as their
production in high energy collisions. Following the sub-
stantial success of the B factories [1], the Belle II experi-
ment at KEK in Japan is going to collect 50 times more data
of what Belle obtained and will be able to investigate the
properties of pseudoscalar bottomonium ηb state and the
corresponding charmonium ηc state.
One of the basic observables regarding heavy quarko-

nium is its inclusive decay rate. Theoretical predictions of
the inclusive decay rate of ηc and ηb have long been
pursued using nonrelativistic QCD (NRQCD), which is an
effective theory providing a factorization formalism that

separates the perturbative short-distance contributions from
the nonperturbative long-distance ones [2]. The NRQCD
factorization formula for the decay rate of a heavy
quarknoium is a sum over products of NRQCD long-
distance matrix elements (LDMEs) and the corresponding
short-distance coefficients (SDCs). The NRQCD power
counting attributes to the LDMEs a specific scaling with v,
where v is the relative velocity between the heavy quark
and the heavy antiquark in the quarkonium. The SDCs may
be computed in perturbation theory. Therefore, the sum
in the NRQCD factorization formula is an expansion in
powers of v and αs.
There are two major obstacles in achieving theoretical

predictions of the decay rates of ηc and ηb with high
accuracy. First, even though the expressions for the SDCs
that contribute to the decay rates are available through order
v7 (relative order v4) [3,4],1 the NRQCD LDMEs are
generally not known very well beyond the one at leading
order in v. Second, the perturbative corrections to the
SDCs, which are currently known to next-to-next-to-
leading order (NNLO) in the strong coupling constant
αs, are uncomfortably large, hinting at a possible failure of
the convergence of the perturbation series. Especially, the
nonconvergence of the perturbation series may correspond
to renormalon ambiguities that arise when computing
diagrams in dimensional regularization and resumming
the perturbation series by using the Borel transform.
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These difficulties can be partially overcome by consid-
ering R, the ratio of the inclusive decay rate to the
electromagnetic decay rate to two photons. A considerable
simplification occurs in R: not only it is independent of
the leading-order LDME, but also the correction of relative
order α0sv2 cancels in R. The NRQCD factorization scale
dependence, which arises in the corrections of relative
order α2s and αsv2, also cancel in R. Finally, the renormalon
ambiguities associated with the loop corrections to the
initial heavy quark-antiquark states also cancel in the ratio
up to relative order v2. Nevertheless, the renormalon
ambiguities associated with the final-state gluons in the
inclusive decay rate survive in R, so the perturbation series
for R still suffers from nonconvergence.
In this paper, we consider the resummation of perturba-

tive corrections to the ratio R that are associated with the
chain of vacuum-polarization bubbles in the final-state
gluons in the inclusive decay rate of ηQ, where Q ¼ c or b.
In Ref. [5], the resummation has been performed by
imposing an infrared cutoff in the calculation of perturba-
tive QCD corrections, which allows one to avoid renor-
malon ambiguities that appear in the resummation if
dimensional regularization is used instead. In this work,
we employ dimensional regularization to compute correc-
tions in perturbative QCD in the limit of large number of
active quark flavors nf and show explicitly in this limit the
appearance of renormalon ambiguities in the perturbative
QCD amplitude. We also show, by computing the pertur-
bative corrections in NRQCD, that perturbative NRQCD
reproduces exactly the large nf leading renormalon ambi-
guity in perturbative QCD, and therefore, the NRQCD
factorization formula is free of this kind of renormalon
ambiguities. We argue that, due to the limited knowledge
on NRQCD LDMEs of higher orders in v, using a hard
cutoff instead of dimensional regularization to regularize
the ultraviolet divergences in NRQCD leads to an expres-
sion for the decay rate of ηQ that is more useful for
phenomenological applications. We also combine our
resummed calculation with the perturbative calculation
of R, which is currently known to NNLO in αs and provide
updated numerical results for both ηc and ηb.
The paper is organized as follows. In Sec. II we consider

the resummation of vacuum-polarization bubble chains in
the ηQ decay rate and obtain a resummed expression for R.
We also combine the resummed result with the perturbative
calculation of R. In Sec. III we present our numerical results
for the ratioR and compare them to experimental data [6].We
conclude in Sec. IV.

II. RESUMMATION OF
VACUUM-POLARIZATION
BUBBLE CHAINS IN R

In this section, we present the SDCs that contribute to the
inclusive decay rate of ηQ. To this end, we first shortly
discuss the NRQCD factorization formula for the decay

rate of ηQ. Then we use the factorization formula to compute
the decay rate of a perturbativeQQ̄ state in perturbativeQCD
and perturbative NRQCD. Finally, the SDCs are obtained by
comparing the expressions for the decay rate computed in
QCD and NRQCD.

A. NRQCD factorization for the decay rate of ηQ
The NRQCD factorization formula for the decay rate of

ηQ, valid through relative order v3, reads [3]

ΓηQ ¼ 2Im

�
f1ð1S0Þ
m2

�
hηQjO1ð1S0ÞjηQi

þ 2Im

�
g1ð1S0Þ
m4

�
hηQjP1ð1S0ÞjηQi

þ 2Im

�
f8ð3S1Þ
m2

�
hηQjO8ð3S1ÞjηQi; ð1Þ

where m is the pole mass of the heavy quark Q. The four-
quark operatorsO1ð1S0Þ, P1ð1S0Þ andO8ð3S1Þ are given by

O1ð1S0Þ ¼ ψ†χχ†ψ ; ð2aÞ

P1ð1S0Þ ¼
1

2

�
ψ†χχ†

�
−
i
2
D
↔
�

2

ψ þ ψ†
�
−
i
2
D
↔
�

2

χχ†ψ

�
;

ð2bÞ

O8ð3S1Þ ¼ ψ†Taσiχχ†Taσiψ : ð2cÞ

Here, ψ and χ are the Pauli spinor field operators that
annihilates a heavy quark and creates a heavy antiquark,

respectively. The operator D
↔

is the difference between the
covariant derivative acting on the spinor to the right and on

the spinor to the left, so that χ†D
↔
ψ ¼ χ†Dψ − ðDχ†Þψ .

The LDMEs hηQjO1ð1S0ÞjηQi, hηQjP1ð1S0ÞjηQi, and
hηQjO8ð3S1ÞjηQi are nonperturbative quantities that corre-
spond to the probabilities to find QQ̄ pairs in specific color
and angular-momentum states in the ηQ state. According to
the power counting of Ref. [2], hηQjO1ð1S0ÞjηQi, which
scales like v3, is the LDME at leading order in v;
hηQjP1ð1S0ÞjηQi is suppressed by v2 compared to the
leading-order LDME [the suppression comes from the
two powers of derivatives in the operator P1ð1S0Þ] and
scales like v5; hηQjO8ð3S1ÞjηQi, which scales like v6, is
suppressed by v3 compared to hηQjO1ð1S0ÞjηQi. The
suppression of the LDME hηQjO8ð3S1ÞjηQi occurs because
the operator O8ð3S1Þ annihilates and creates QQ̄ in a color-
octet state through a spin-flip process [2].
Power counting rules that are more conservative than

those of Ref. [2] have been suggested in Refs. [7,8]. In that
power counting, which assumes ΛQCD to be larger than
mv2, the LDME hηQjP1ð1S0ÞjηQi scales like before, i.e.,
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like m2v5, while hηQjO8ð3S1ÞjηQi scales like v3Λ2
QCD=m

2.
Moreover, there are two additional color-octet LDMEs
that scale like v3Λ2

QCD=m
2 and Λ2

QCDv
3 respectively, which

are given by hηQjO8ð1S0ÞjηQi ¼ hηQjψ†Taχχ†Taψ jηQi and
hηQjO8ð1P1ÞjηQi ¼ hηQjψ†ð− i

2
D
↔ÞTaχ · χ†ð− i

2
D
↔ÞTaψ jηQi.

Therefore, if we adopt the power counting rules in
Refs. [7,8], Eq. (1) should include the above matrix
elements to be valid through relative order Λ2

QCD=m
2.

Considering, however, that in our numerical results, we
will ignore the contribution from the color-octet LDME
hηQjO8ð3S1ÞjηQi and account for its effect only in the
uncertainties, and that the additional color-octet LDMEs
ignored in Eq. (1) do not affect the calculation
of the renormalon ambiguities that we consider in this
paper, we conclude that we may consistently neglect also
the additional color-octet LDMEs hηQjO8ð1S0ÞjηQi and
hηQjO8ð1P1ÞjηQi, whose effect is included in the uncer-
tainties. This is equivalent to assuming mv ≫ ΛQCD and
restricting our calculation to a precision of relative order v2.
The imaginary parts of the SDCs 2Im½f1ð1S0Þ=m2�,

2Im½g1ð1S0Þ=m4� and 2Im½f8ð3S1Þ=m2� can be computed
in perturbation theory. A general method to compute the
SDCs is to consider Eq. (1) with the nonperturbative meson
state replaced by the perturbative QQ̄ state with definite
color and angular momentum,

ΓQQ̄ðnÞ ¼ 2Im

�
f1ð1S0Þ
m2

�
hQQ̄ðnÞjO1ð1S0ÞjQQ̄ðnÞi

þ 2Im

�
g1ð1S0Þ
m4

�
hQQ̄ðnÞjP1ð1S0ÞjQQ̄ðnÞi

þ 2Im

�
f8ð3S1Þ
m2

�
hQQ̄ðnÞjO8ð3S1ÞjQQ̄ðnÞi: ð3Þ

Here, n denotes the color and angular momentum state of
the QQ̄. We can compute the ΓQQ̄ on the left-hand side in
perturbative QCD and compute the LDMEs on the right-
hand side in perturbative NRQCD for the QQ̄ states in
various color, spin and orbital angular momentum states.
Then, the SDCs can be determined by comparing the
expressions on the left- and right-hand sides. In fixed-order
perturbation theory, all SDCs in Eq. (1) appear from order
α2s [2]. The SDC 2Im½f1ð1S0Þ=m2� at leading order (LO)
and next-to-leading order (NLO) in αs has been computed
in Refs. [9,10], and the corrections at next-to-next-to-
leading order (NNLO) in αs have been calculated recently
in Ref. [11]. The SDC 2Im½g1ð1S0Þ=m4� at LO in αs has
been computed in Ref. [12], and the corrections at NLO
in αs have been calculated in Ref. [13]. The SDC
2Im½f8ð3S1Þ=m2� has been computed up to NLO accuracy
in αs in Ref. [14].

The analogous NRQCD factorization formula for the
decay of ηQ into two photons, valid through relative order
v3, reads2

ΓηQ→γγ ¼ 2Im

�
fEMð1S0Þ

m2

�
hηQjOEMð1S0ÞjηQi

þ 2Im

�
gEMð1S0Þ

m4

�
hηQjPEMð1S0ÞjηQi; ð4Þ

where the electromagnetic operators OEMð1S0Þ and
PEMð1S0Þ are given by

OEMð1S0Þ ¼ ψ†χj0ih0jχ†ψ ; ð5aÞ

PEMð1S0Þ ¼
1

2

�
ψ†χj0ih0jχ†

�
−
i
2
D
↔
�

2

ψ

þ ψ†
�
−
i
2
D
↔
�

2

χj0ih0jχ†ψ
�
: ð5bÞ

Here, j0i is the QCD vacuum. The SDC 2Im½fEMð1S0Þ=m2�
have been computed up to NNLO in αs in fixed-order
perturbation theory [9,15,16], and 2Im½gEMð1S0Þ=m4� is
available up to NLO in αs [12,13,17]. The electromagnetic
LDMEs hηQjOEMð1S0ÞjηQi and hηQjPEMð1S0ÞjηQi can be
related to the color-singlet LDMEs hηQjO1ð1S0ÞjηQi and
hηQjP1ð1S0ÞjηQi by using the vacuum-saturation approxi-
mation, which holds up to corrections of relative order v4 [2],

hηQjOEMð1S0ÞjηQi ¼ hηQjO1ð1S0ÞjηQi½1þOðv4Þ�; ð6aÞ

hηQjPEMð1S0ÞjηQi ¼ hηQjP1ð1S0ÞjηQi½1þOðv4Þ�: ð6bÞ

Putting Eqs. (1) and (4) together, the NRQCD expression
for the ratio R, valid up to relative order v3, is

R ¼ Im½f1ð1S0Þ=m2�
Im½fEMð1S0Þ=m2�

�
1þ

�
Im½g1ð1S0Þ=m4�
Im½f1ð1S0Þ=m2�

−
Im½gEMð1S0Þ=m4�
Im½fEMð1S0Þ=m2�

� hηQjP1ð1S0ÞjηQi
hηQjO1ð1S0ÞjηQi

�

þ Im½f8ð3S1Þ=m2�
Im½fEMð1S0Þ=m2�

hηQjO8ð3S1ÞjηQi
hηQjO1ð1S0ÞjηQi

; ð7Þ

where the second term in the square brackets corresponds
to the correction at relative order v2, and the last term on the
right-hand side gives the order-v3 contribution. The order-
v2 correction to R vanishes at LO in αs; this is because the
tree-level Feynman diagrams for QQ̄ → gg and QQ̄ → γγ
are same. The order-αsv2 correction to R can be obtained

2This expression is also valid, up to relative orders v2 and
Λ2
QCD=m

2, in the more conservative power counting of Refs. [7,8].
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from the order-αsv2 corrections to ΓηQ and ΓηQ→γγ . The
correction at order αsv2 is numerically small for both ηc and
ηb, and it is comparable to the nominal size of the order-v3

correction, which is often neglected (and included in the
uncertainties) because the color-octet matrix element
hηQjO8ð1S0ÞjηQi is not known. We will follow this
approach also here when providing numerical results
(see Sec. III), but we will keep the color-octet matrix
element hηQjO8ð1S0ÞjηQi when discussing the renormalon
cancellation in the rest of this section.
It is known from fixed-order calculations that the NLO

and NNLO corrections to the SDCs Im½f1ð1S0Þ=m2� and
Im½fEMð1S0Þ=m2� are large. Especially, there are large
corrections that are associated with the running of αs,
where a factor of αs is accompanied by a factor of the QCD
beta function. One way to resum (partially) such correc-
tions is to consider chains of vacuum-polarization bubbles,
which reproduce fixed-order perturbation theory in the
limit where the number of active quark flavors nf is large
[18–20]. In the ratio Im½f1ð1S0Þ=m2�=Im½fEMð1S0Þ=m2�,
the perturbative corrections at large nf that arise from
initial-state virtual gluons cancel [5]. Therefore, in R, it
suffices to consider only the perturbative corrections to
Im½f1ð1S0Þ=m2� at large nf that arise from the final-state
gluons. In the next part, we resum the QCD corrections to
2Im½f1ð1S0Þ=m2� that are associated with the final-state
gluons in the large nf limit.
The series for QCD corrections corresponding to bubble-

chain diagrams in general do not converge. If one attempts
to make use of the Borel transform to carry out the
resummation of such series, the nonconvergence manifests
itself through singularities in the Borel plane. The inverse
Borel transform becomes ill-defined when the singularities
reside on the positive axis of the Borel plane. This gives rise
to the so-called renormalon ambiguity in the resummed
series. The origin of the problem is that loop integrals
contain contributions from regions of small gluon momenta
where perturbation theory breaks down (for QCD) [21].
In the factorization formula [Eq. (3)], loop integrals are
partitioned so that contributions from small loop momenta
are contained in the LDMEs. Therefore, the SDCs are free
of infrared renormalon ambiguities if all possible LDMEs
are included in the factorization formula. In practice, since
we truncate the factorization formula at some orders in v,
exact cancellations of renormalon ambiguities in the
calculation of the SDCs through the matching will occur
through the order in v at which the factorization formula
is valid, and there will be remaining ambiguities that are
suppressed by powers of v. We shall demonstrate the
cancellation of leading renormalon ambiguities in the
explicit calculation of 2Im½f1ð1S0Þ=m2�.
Following Ref. [5], we employ two methods to carry out

the bubble-chain resummation. One method is naïve non-
Abelianization (NNA), where we consider corrections to

the gluon propagator from nf light quark loops, and we
promote the light-quark part of the one-loop QCD beta
function to the full one-loop QCD beta function β0 ¼
ð33=2 − nfÞ=ð6πÞ [22]. That is, we make the following
replacement in the gluon propagator:

1

k2 þ iε
→ KðxÞ; ð8Þ

where x≡ k2=ð4m2Þ, KðxÞ ¼ P∞
n¼0 K

ðnÞðxÞ and

KðnÞðxÞ ¼ ðαsβ0Þn½d − logð−x − iεÞ�n
4m2ðxþ iεÞ : ð9Þ

Here, d is given by

d ¼ log
μ2

4m2
− C; ð10Þ

where, in the MS renormalization scheme, C ¼ −5=3 and μ
is the renormalization scale. The strong coupling constant
αs is also computed in the MS scheme at the scale μ.
Another method is the background-field gauge (BFG)
method, where the corrections to the gluon propagator
from the gluon and the ghost loops that are gauge
dependent are also taken into account [23]. In the BFG
method in the Rξ gauge, d is given by

d ¼ log
μ2

4m2
þ 1

β0π

�
67

12
−

5

18
nf −

3

4
ðξ2 − 1Þ − 5

3
− C

�
;

ð11Þ

where ξ is the gauge-fixing parameter. The choice ξ ¼ 1

corresponds to the Feynman gauge. If we set ξ2 ¼ 7=3, we
reproduce the NNA method. Hence, the NNA expression
for the gluon propagator may be interpreted as a special
case of the BFG expression for ξ2 ¼ 7=3. In order to
examine the dependence on the gauge-fixing parameter ξ,
we employ both the NNA method, which is equivalent to
the BFG method for ξ2 ¼ 7=3, and the BFG method in the
Feynman gauge (ξ ¼ 1).
In the bubble-chain resummation, the left-hand side

of Eq. (3) occurs from order αs through the decay into a
single bubble-chain gluon. In order to decay into a virtual
gluon, the QQ̄ pair must be in a color-octet state.
If we take the QQ̄ pair to be in the color-octet spin-triplet
state and take the relative momentum between the Q
and the Q̄ to vanish, the matrix element hQQ̄8ð3S1Þ
jO8ð3S1ÞjQQ̄8ð3S1Þi occurs from order α0s, and the matrix
elements hQQ̄8ð3S1ÞjO1ð1S0ÞjQQ̄8ð3S1Þi and hQQ̄8ð3S1Þ
jP1ð1S0ÞjQQ̄8ð3S1Þi vanish through order α0s. Hence,
the SDC 2Im½f8ð3S1Þ=m2� occurs form order αs, while
the SDCs 2Im½f1ð1S0Þ=m2� and 2Im½g1ð1S0Þ=m4� vanish
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through order αs. The SDC 2Im½f8ð3S1Þ=m2� has been
computed in bubble-chain resummation in Ref. [5] as

2Im

�
f8ð3S1Þ
m2

�
¼ −8παsIm½Kð1Þ�: ð12Þ

In order to compute the SDC 2Im½f1ð1S0Þ=m2�, we consider
the left-hand side of Eq. (3) at order α2s. At this order, ΓQQ̄ðnÞ
occurs through the decay into two bubble-chain gluons.
If we take theQQ̄ pair to be in the color-singlet spin-singlet
S-wave state, the matrix element hQQ̄1ð1S0ÞjO1ð1S0ÞjQQ̄1

ð1S0Þi occurs from order α0s, while the matrix element
hQQ̄1ð1S0ÞjO8ð3S1ÞjQQ̄1ð1S0Þi occurs from order αs. If we
take the relative momentum q between the Q and the Q̄ to
be zero, the matrix element hQQ̄1ð1S0ÞjP1ð1S0ÞjQQ̄1ð1S0Þi
vanishes through order α0s. Since the SDCs 2Im½f1ð1S0Þ=m2�
and 2Im½g1ð1S0Þ=m4� appear from order α2s, while the SDC
2Im½f8ð3S1Þ=m2� occurs fromorderαs, the contribution from
the LDME hQQ̄1ð1S0ÞjP1ð1S0ÞjQQ̄1ð1S0Þi to the right-hand
side of Eq. (3) vanishes at order α2s when q ¼ 0. This implies
that if we take the QQ̄ state to be in the color-singlet 1S0
state with q ¼ 0, the SDC 2Im½g1ð1S0Þ=m4� does not appear
from the right-hand side of Eq. (3) at order α2s, and the right-
hand side of Eq. (3) involves at order α2s the SDCs
2Im½f1ð1S0Þ=m2� and 2Im½f8ð3S1Þ=m2�. Then, we can deter-
mine the SDC 2Im½f1ð1S0Þ=m2� by comparing ΓQQ̄1ð1S0Þ
[left-hand side of Eq. (3)] with the right-hand side of Eq. (3),
where the LDMEs hQQ̄1ð1S0ÞjO1ð1S0ÞjQQ̄1ð1S0Þi and
hQQ̄1ð1S0ÞjO8ð3S1ÞjQQ̄1ð1S0Þi are computed in perturba-
tion theory. The SDC 2Im½f1ð1S0Þ=m2� has been computed
in bubble-chain resummation in Ref. [5] by regulating the
infrared divergences using a hard infrared cutoff on the
virtuality of the final-state gluons. While using such an
infrared cutoff effectively removes renormalon ambiguities
in 2Im½f1ð1S0Þ=m2� by excluding contributions from arbi-
trarily soft gluonmomenta, the cancellationof the renormalon
ambiguities in the factorization formula becomes obscure.
The appearance of the renormalon ambiguity in ΓQQ̄ðnÞ

and the cancellation of the ambiguity in the SDC
2Im½f1ð1S0Þ=m2� can be seen explicitly by computing

the SDC in dimensional regularization. In this section,
we compute the SDC 2Im½f1ð1S0Þ=m2� using bubble-chain
resummation, by considering Eq. (3) where the QQ̄ is in
the color-singlet spin-singlet S-wave state with vanishing
relative momentum between the Q and the Q̄. We regulate
the infrared divergence using dimensional regularization.

B. Computation in perturbative QCD

We compute the decay rate of a QQ̄ pair in the color-
singlet 1S0 state into two bubble-chain gluons. We use
nonrelativistic normalization for the QQ̄ states. We set the
momentum of the Q and the Q̄ to be p. To project the QQ̄
pair onto the color-singlet spin-singlet state, we replace the
spinors by

uðpÞv̄ðpÞ → Π1ðp; pÞΛ1; ð13Þ

where Π1ðp; pÞ and Λ1 are the spin-singlet and color-
singlet projectors, respectively [24,25],

Π1ðp; pÞ ¼ −
1

2
ffiffiffi
2

p
m
ðpþmÞγ5; ð14aÞ

Λ1 ¼
1ffiffiffiffiffiffi
Nc

p : ð14bÞ

Here, 1 is the SUðNcÞ unit matrix. A straightforward
calculation of the diagrams in Fig. 1 gives

ΓQQ̄1ð1S0Þ ¼
1

2

Z
d4k
ð2πÞ4 θðk0Þ

Z
d4l
ð2πÞ4 θðl0Þð2πÞ4δð4Þ × ð2p − k − lÞ2Im½KðxÞ�2Im½KðyÞ�

×

����tr
��

ð−igγνTbÞ i
p − =k −mþ iε

ð−igγμTaÞ þ ð−igγμTaÞ i
−pþ =k −mþ iε

ð−igγνTbÞ
�

× Π1ðp; pÞΛ1

	����
2

; ð15Þ

where k and l are the momenta of the final-state gluons, g ¼ ffiffiffiffiffiffiffiffiffiffi
4παs

p
, x≡ k2=ð4m2Þ, y≡ l2=ð4m2Þ, and the trace is over

the color and gamma matrices. Even though we employ dimensional regularization, it suffices to work in four dimensions
because in the current calculation, we encounter no divergences that require regularization. Then,

FIG. 1. Feynman diagrams that contribute to ΓQQ̄1ð1S0Þ at
leading order in αs in perturbative QCD. Curly lines with filled
circles represent bubble-chain gluons and the dashed lines
represent final-state cuts.
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ΓQQ̄1ð1S0Þ ¼
CF

2

g4

2

Z
d4k
ð2πÞ4 θðk0Þ

Z
d4l
ð2πÞ4 θðl0Þð2πÞ4δð4Þð2p − k − lÞ2Im½KðxÞ�2Im½KðyÞ� 16

m2

ðk · pÞ2 −m2k2

ðk2 − 2k · pþ iεÞ2 : ð16Þ

We change the integration variables k0, l0 to x and y, so
that from x ¼ ðk20 − k2Þ=ð4m2Þ and y ¼ ðl2

0 − l2Þ=ð4m2Þ,
we obtain dk0 ¼ 2m2dx=k0 and dl0 ¼ 2m2dy=l0. Using
the three-momentum components of the delta function to
eliminate the integral over l, we replace l with k, and we
obtain

ΓQQ̄1ð1S0Þ ¼ m4
CF

2

g4

2

Z
1

0

dx
π

Z
1

0

dy
π

Z
d3k
ð2πÞ3

× 2πδð2m − k0 − l0Þ
θðl0Þ
l0

θðk0Þ
k0

× 2Im½KðxÞ�2Im½KðyÞ� 16
m2

ðk · pÞ2 −m2k2

ðk2 − 2k · pþ iεÞ2 :

ð17Þ

Here, k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2xþ k2

p
and l0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2yþ k2

p
. The

lower limits of the integrals over x and y are set by the
fact that the imaginary parts of KðxÞ and KðyÞ vanish for
negative values of x and y, respectively. The upper limits of
the integrals over x and y are set by the fact that the
maximum invariant mass of a final-state particle is equal to
the invariant mass of the QQ̄ in the initial state. Since we
have chosen a root of the square root function such that
k0 > 0 and l0 > 0, we can drop θðk0Þ and θðl0Þ. The
remaining delta function in Eq. (17) constrains k2 to be
m2½1 − 2ðxþ yÞ þ ðx − yÞ2� and 1 −

ffiffiffi
x

p
− ffiffiffi

y
p ≥ 0; we

then obtain

ΓQQ̄1ð1S0Þ ¼
2πCFα

2
s

m2

X∞
n1¼0

X∞
n2¼0

Z
1

0

dx
2π

Z
1

0

dy
2π

× 2Im½4m2Kðn1ÞðxÞ�2Im½4m2Kðn2ÞðxÞ�
× fðx; yÞθð1 − ffiffiffi

x
p

−
ffiffiffi
y

p Þ; ð18Þ
where

fðx; yÞ ¼ ½1 − 2ðxþ yÞ þ ðx − yÞ2�3=2
ð1 − x − yÞ2 : ð19Þ

The sum over n1 and n2 corresponds to insertions of n1 and
n2 vacuum polarization bubbles to the two final-state gluon
lines. If we use the relation

X∞
n¼0

Z
1

0

dx
2π

Im½4m2KðnÞðxÞ�Fðx; yÞ

¼
X∞
n¼0

ðαsβ0Þn
�
d
dt

�
n
etd

Z
1

0

dx
2π

Im

�
x−teiπt

xþ iε

�
Fðx; yÞjt¼0;

ð20Þ

which is valid for a generic function Fðx; yÞ, we obtain

ΓQQ̄1ð1S0Þ ¼
2πCFα

2
s

m2

X∞
n1¼0

X∞
n2¼0

ðαsβ0Þn1þn2

�
d
dt

�
n1
�
d
dτ

�
n2

× edðtþτÞTðt; τÞjt¼τ¼0; ð21Þ

where

Tðt; τÞ ¼ 1

π2

Z
1

0

dx
Z

1

0

dyIm

�
x−teiπt

xþ iε

�
Im

�
y−τeiπτ

yþ iε

�

× fðx; yÞθð1 − ffiffiffi
x

p
−

ffiffiffi
y

p Þ: ð22Þ

We compute Tðt; τÞ in the Appendix. The summation in
Eq. (21) can be rewritten in integral form by using the Borel
summation formula: the Borel sum of

P∞
n¼0 anx

n is given
by the integral

Z
∞

0

dt
x
e−t=xϕðtÞ; ð23Þ

where ϕðxÞ ¼ P∞
n¼0 anx

n=n!. Using this formula, we re-
write Eq. (21) as

ΓQQ̄1ð1S0Þ ¼
2πCFα

2
s

m2

1

ðαsβ0Þ2
Z

∞

0

dt
Z

∞

0

dτe−wðtþτÞTðt; τÞ;

ð24Þ

where

w ¼ 1

αsβ0
− d: ð25Þ

Note that w depends on the scale μ through dependence on
αsðμÞ and d. This dependence, however, cancels at the level
of one-loop running of αsðμÞ. The prefactor 2πCFα

2
s=m2

corresponds to ΓQQ̄1ð1S0Þ at leading order in αs in fixed-order
perturbation theory.
The function Tðt; τÞ is regular for 0 ≤ t < 1 and

0 ≤ τ < 1. For t ≥ 1 and τ ≥ 1, there are singularities in
Tðt; τÞ that make the value of the integral in Eq. (24)
ambiguous. The singularities in Tðt; τÞ that occur for the
smallest values of t or τ are at t ¼ 1 or τ ¼ 1,

lim
t→1

ð1 − tÞTðt; τÞ ¼ −
3

π
sinðπτÞ; ð26aÞ

lim
τ→1

ð1 − τÞTðt; τÞ ¼ −
3

π
sinðπtÞ; ð26bÞ

BRAMBILLA, CHUNG, and KOMIJANI PHYS. REV. D 98, 114020 (2018)

114020-6



see Eqs. (A20) and (A21). These singularities give the
leading renormalon ambiguities in ΓQQ̄1ð1S0Þ.
One way to estimate the size of the leading renormalon

ambiguity is to inspect the difference between the results
for the integral over t and τ when the integration contour is
above the renormalon singularity and below the renormalon
singularity [21]. From the residue theorem, the estimated
ambiguity in ΓQQ̄1ð1S0Þ that arises from the leading renor-
malon singularity in Tðt; τÞ is

δΓQQ̄1ð1S0Þ∼
����2 × 2πi ×

2πCFα
2
s

m2

1

ðαsβ0Þ2

×
Z

∞

0

dte−wð1þtÞ 3
π
sinðπtÞ

����
¼ 2πCFα

2
s

m2

12π

1 − 2αsβ0dþ ðαsβ0Þ2ðπ2 þ d2Þ e
−w:

ð27Þ

For the case of ηc, the numerically estimated size of the
leading renormalon ambiguity is of relative order one
compared to ΓQQ̄1ð1S0Þ at leading order in αs in fixed-order
perturbation theory. This implies that for ηc, the value of the
perturbation series ΓQQ̄1ð1S0Þ has an ambiguity of order one.
Even for the case of ηb, the estimated ambiguity can be of
relative order 10−1, which is comparable to the nominal size
of the order-v2 corrections to the decay rate. Therefore, in

order to make an accurate theoretical prediction of the ηQ
decay rate, it is crucial to have a factorization formula
where such ambiguities are absent.
The renormalon ambiguities that arise from the singu-

larities in Tðt; τÞ are located at t ¼ t0 or τ ¼ t0 with t0 ¼ 1
being the smallest and involves a factor e−t0w. If we
consider only the one-loop running of αs, this factor can
be written as

e−t0w ≈ et0d
�Λ2

QCD

μ2

�t0
: ð28Þ

Therefore, renormalon ambiguities that arise from the
singularities in Tðt; τÞ that are located at larger values of
t or τ are suppressed by powers of ΛQCD=μ. We can
estimate the renormalon ambiguity from the first sublead-
ing singularities in Tðt; τÞ which are located at t ¼ 3=2 or
τ ¼ 3=2,

lim
t→3=2

ð3=2 − tÞTðt; τÞ ¼ 2ð1 − 2τÞ
π

sinðπτÞ; ð29aÞ

lim
τ→3=2

ð3=2 − τÞTðt; τÞ ¼ 2ð1 − 2tÞ
π

sinðπtÞ: ð29bÞ

The estimated renormalon ambiguity in ΓQQ̄1ð1S0Þ from
the first subleading singularities is

δΓQQ̄1ð1S0Þ∼
����2 × 2πi ×

2πCFα
2
s

m2

1

ðαsβ0Þ2
Z

∞

0

dte−wð3=2þtÞ 2ð1 − 2tÞ
π

sinðπtÞ
����

¼ 2πCFα
2
s

m2

8π½1 − 2αsβ0ð2þ dÞ þ ðαsβ0Þ2ðπ2 þ d2 þ 4dÞ�
½1 − 2αsβ0dþ ðαsβ0Þ2ðπ2 þ d2Þ�2 e−

3
2
w: ð30Þ

This ambiguity is of relative order 10−1 for ηc and is of
relative order 10−3 for ηb. For ηc, the ambiguity is
comparable to the nominal size of the order-v4 correction
to the decay rate, and for ηb, the ambiguity is smaller than
the nominal size of the order-v4 correction. Hence, the
ambiguity from the subleading renormalon singularities in
Tðt; τÞ can be neglected at the current level of accuracy.

C. Computation in perturbative NRQCD

The renormalon ambiguities in the perturbation series of
ΓQQ̄1ð1S0Þ originate from integrations near zero loop momen-
tum. In the NRQCD factorization formula [Eq. (3)], the
contributions from small momentum degrees of freedom
are completely contained in the LDMEs. Hence, we expect
the loop corrections to the NRQCD LDMEs in the right-
hand side of Eq. (3), combined with the SDCs, to reproduce
the same renormalon ambiguities in ΓQQ̄1ð1S0Þ. In this
section, we compute the NRQCD LDMEs in Eq. (3).

Because we set the relative momentum between the Q
and the Q̄ to be zero, on the right-hand side of Eq. (3), only
the matrix element hQQ̄1ð1S0ÞjO1ð1S0ÞjQQ̄1ð1S0Þi appears
at order α0s. At order αs, the matrix element hQQ̄1ð1S0Þ
jO8ð3S1ÞjQQ̄1ð1S0Þi appears too. Since we only consider
the NRQCD operators of the lowest mass dimensions, the
contributions from the right-hand side of Eq. (3) will only
reproduce the leading renormalon ambiguity in Eq. (24).
At leading order in αs, the color-singlet LDME is

given by

hQQ̄1ð1S0ÞjO1ð1S0ÞjQQ̄1ð1S0Þi ¼ 2Nc: ð31Þ

The color-octet matrix element vanishes at order α0s, but it
receives contributions at order αs from the insertion of
the σ · B vertices to the quark and antiquark lines. The
corresponding Feynman diagrams are shown in Fig. 2.
The sum of the diagrams gives
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hO8ð3S1ÞiQQ̄1ð1S0Þ ¼ I × hO1ð1S0ÞiQQ̄1ð1S0Þ þOðα2sÞ; ð32Þ

where

I ¼ 4g2
CF

2Nc

Z
d4k
ð2πÞ4 iKðxÞ

�
1

−k0 − k2
2m þ iε

�
2 k2

2m2
: ð33Þ

Here, we use the following shorthand notation
hQQ̄1ð1S0ÞjO1ð1S0ÞjQQ̄1ð1S0Þi ¼ hO1ð1S0ÞiQQ̄1ð1S0Þ and
hQQ̄1ð1S0ÞjO8ð3S1ÞjQQ̄1ð1S0Þi ¼ hO8ð3S1ÞiQQ̄1ð1S0Þ. If we
rewrite KðxÞ as

iKðnÞðxÞ ¼ −iðαsβ0Þn
�
d
dt

�
n ð4m2Þtetd
ð−k2 − iεÞ1þt

����
t¼0

; ð34Þ

we can deform the contour for the integration over k0 so
that

I ¼ 8g2
CF

2Nc

X∞
n¼0

ðαsβ0Þn
�
d
dt

�
n πð4m2Þtetd
Γð−tÞΓð1þ tÞ

×
Z

d3k
ð2πÞ3

Z
∞

jkj

dk0
2π

1

ðk20 − k2Þ1þt

×

�
1

−k0 − k2
2m þ iε

�
2 k2

2m2

����
t¼0

: ð35Þ

We first integrate over k0. The result is

Z
∞

jkj

dk0
2π

1

ðk20 − k2Þ1þt

�
1

−k0 − k2
2m þ iε

�
2

¼ 1

2πjkj3þ2t J

�
t;
jkj
2m

�
; ð36Þ

where

Jðt; zÞ ¼ z
ð1 − z2Þtþ2

Γðtþ 2ÞΓð−tÞ þ Γð−tÞΓðtþ 3
2
Þ

Γð1
2
Þ

× F

�
1; tþ 3

2
;
1

2
; z2

�
: ð37Þ

Here, Fða; b; c; zÞ is the hypergeometric function.
Because we are matching QCD with NRQCD, we expand
in 1=m and keep only the contribution at leading power in
1=m [2],

I ¼ 8g2
CF

2Nc

X∞
n¼0

ðαsβ0Þn
�
d
dt

�
n
ð4m2Þt−1etd Γðtþ 3

2
Þ

Γð1þ tÞΓð1
2
Þ

×
Z

d3k
ð2πÞ3

1

jkj1þ2t

����
t¼0

¼ 32παs
CF

2Nc

1

αsβ0

Z
∞

0

dte−wtð4m2Þt−1 Γðtþ 3
2
Þ

Γð1þ tÞΓð1
2
Þ

×
Z

d3k
ð2πÞ3

1

jkj1þ2t : ð38Þ

In dimensional regularization, the integral over k is
scaleless, and hence vanishes,

Z
d3k
ð2πÞ3

1

jkj1þ2t ¼
Z

d3k
ð2πÞ3

1

jkj1þ2t ¼
1

2π2

Z
1

0

djkjjkj1−2t

þ 1

2π2

Z
∞

1

djkjjkj1−2t

¼ 1

4π2

�
1

1 − t
−

1

1 − t

�
; ð39Þ

where in the second equality we split the integral over jkj
so that the first (second) integral corresponds to the region
where jkj is small (large). The first (second) integral is
finite only when t < 1 (t > 1). After integrating over jkj,
we use analytical continuation to extend the region of t
to the whole complex plane. Since the first term in the
parenthesis comes from the region where jkj is small,
and the second term originates from the region where jkj
is large, the first and second terms in the parenthesis
correspond to the IR and UV renormalon singularities of
the LDME hO8ð3S1ÞiQQ̄1ð1S0Þ, respectively. Then, we can
write the right-hand side of Eq. (3) as

2Im
�
f1ð1S0Þ
m2

�
hO1ð1S0ÞiQQ̄1ð1S0Þ þ 2Im

�
f8ð3S1Þ
m2

�

× hO8ð3S1ÞiQQ̄1ð1S0Þ

¼ 2Nc × 2Im

�
f1ð1S0Þ
m2

�
þ 2Nc ×

πCFα
2
s

Ncm2

1

ðαsβ0Þ2

×
Z

∞

0

dt
Z

∞

0

dτe−wðtþτÞTDR
8 ðt; τÞ; ð40Þ

FIG. 2. Feynman diagrams that contribute to hO8ð3S1ÞiQQ̄1ð1S0Þ at leading order in αs in perturbative NRQCD. Curly lines with filled
circles represent bubble-chain gluons and the filled squares represent the operator O8ð3S1Þ.
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where

TDR
8 ðt; τÞ ¼ −

3

π
sinðπτÞ

�
1

ð1 − tÞIR
−

1

ð1 − tÞUV

�

−
3

π
sinðπtÞ

�
1

ð1 − τÞIR
−

1

ð1 − τÞUV

�
: ð41Þ

The subscripts IR and UV denote the origins of the IR
and UV renormalon singularities, respectively. Note that
to derive Eq. (40) we rewrote Eq. (12) as

2Im
�
f8ð3S1Þ
m2

�
¼ −

2g2

4m2αsβ0

Z
∞

0

dτe−wτ sinðπτÞ; ð42Þ

and symmetrized in t and τ. By comparing Eq. (40) with
Eq. (24), we can see that the infrared renormalon singu-
larities in TDR

8 ðt; τÞ [terms proportional to 1=ð1 − tÞIR and
1=ð1 − τÞIR] reproduce the leading renormalon singular-
ities in Tðt; τÞ at t ¼ 1 or τ ¼ 1, and, therefore, Eq. (40)
reproduces the leading renormalon ambiguity in Eq. (24).
Then, the SDC 2Im½f1ð1S0Þ=m2�, given by

2Im

�
f1ð1S0Þ
m2

�
¼ πCFα

2
s

Ncm2

1

ðαsβ0Þ2
Z

∞

0

dt
Z

∞

0

dτe−wðtþτÞ

× ½Tðt; τÞ − TDR
8 ðt; τÞ�; ð43Þ

is free of the leading infrared renormalon ambiguity.
On the other hand, the UV renormalon singularities in
TDR
8 ðt; τÞ [terms proportional to 1=ð1 − tÞUV and

1=ð1 − τÞUV] has no counterpart in perturbative QCD
[Eq. (24)]; therefore, the SDC 2Im½f1ð1S0Þ=m2� has a
UV renormalon ambiguity. Since the UV renormalon
ambiguity is absent in Eq. (24), the UV renormalon
ambiguities in the SDC 2Im½f1ð1S0Þ=m2� and the
LDME hO8ð3S1ÞiQQ̄1ð1S0Þ cancel in the factorization
formula Eq. (3). Since the UV renormalon ambiguities
are of ultraviolet origin, the nonperturbative LDME
hηQjO8ð3S1ÞjηQi has the same UV renormalon ambiguities
as the perturbative LDME hO8ð3S1ÞiQQ̄1ð1S0Þ, with the
perturbative QQ̄ states replaced by the nonperturbative
meson state. Therefore, the ambiguity is absent in the
factorization formula for the inclusive decay rate of ηQ
[Eq. (1)].
Even though the UV renormalon ambiguities cancel in

the factorization formula, it is still necessary to define the
SDC 2Im½f1ð1S0Þ=m2� and the LDME hηQjO8ð3S1ÞjηQi
unambiguously in order to compute the inclusive decay
rate. An unambiguously defined LDME will lead to an
expression for 2Im½f1ð1S0Þ=m2� that is free of UV renor-
malon ambiguities; however, different definitions will lead
to different expressions for the SDC 2Im½f1ð1S0Þ=m2� and
the LDME hηQjO8ð3S1ÞjηQi. Especially, the differences

between different definitions of the LDME can be of
the size of the UV renormalon ambiguity, which can
be estimated from the UV renormalon singularity of
hO8ð3S1ÞiQQ̄ð1S0Þ as

hηQjO1ð1S0ÞjηQi ×
����2 × 2πi

6αs
π

CF

2Nc

1

αsβ0
e−w

����
¼ 16

3β0
e−whηQjO1ð1S0ÞjηQi: ð44Þ

We note that the renormalon ambiguity scales like
ðΛQCD=μÞ2, which is different from velocity-scaling rules
of the LDMEs [21]. Hence, there is a possibility that the
renormalon ambiguity in the LDMEs can spoil the expan-
sion in powers of v in case the renormalon ambiguity of an
LDME exceeds its nominal size.
We can define NRQCD LDMEs so that the LDMEs are

free of UV renormalon ambiguities and also respect the
velocity-scaling rules by regulating the UV divergences
using a cutoff regulator. In perturbative calculations, it is
most convenient to apply a hard cutoff Λ on the size of the
spatial momentum of the gluon. The cutoff Λ should be
large enough so that it encompasses the relevant momen-
tum regions in NRQCD, whileΛ < m so that the expansion
in powers of 1=m is valid. Hence, it is customary to choose
Λ ∼mv. While the NRQCD LDMEs in hard-cutoff regu-
larization are free of renormalon ambiguities, they depend
on the cutoff Λ.
If we regularize the UV divergences in NRQCD with a

hard cutoff Λ for the spatial momentum of the gluon, the
integral over k in Eq. (39) now becomes
Z

Λ d3k
ð2πÞ3

1

k1þ2t ¼
4π

ð2πÞ3
Z

Λ

0

djkjjkj1−2t ¼ 1

4π2
Λ2−2t

1 − t
;

ð45Þ
which yields

IðΛÞ ¼ 8αs
π

CF

2Nc

1

αsβ0

Z
∞

0

dte−wt
Γðtþ 3

2
Þ

Γð1þ tÞΓð1
2
Þ

×

�
Λ
2m

�
2−2t 1

1 − t
: ð46Þ

Here, the superscript (Λ) denotes that a UV cutoff was
used. Then, the right-hand side of Eq. (3) reads

2Im
�
f1ð1S0Þ
m2

�
hO1ð1S0ÞiQQ̄1ð1S0Þ þ 2Im

�
f8ð3S1Þ
m2

�

× hO8ð3S1ÞiQQ̄1ð1S0Þ

¼ 2Nc × 2Im

�
f1ð1S0Þ
m2

�
þ 2Nc ×

πCFα
2
s

Ncm2

1

ðαsβ0Þ2

×
Z

∞

0

dt
Z

∞

0

dτe−wðtþτÞTðΛÞ
8 ðt; τÞ; ð47Þ
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where

TðΛÞ
8 ðt; τÞ ¼ sinðπτÞ

π

−4Γðtþ 3
2
Þ

Γð1þ tÞΓð1
2
Þ
�

Λ
2m

�
2−2t 1

1 − t

þ sinðπtÞ
π

−4Γðτ þ 3
2
Þ

Γð1þ τÞΓð1
2
Þ
�

Λ
2m

�
2−2τ 1

1 − τ
:

ð48Þ

As we have discussed in Sec. II A, the SDC
2Im½g1ð1S0Þ=m4� does not appear in Eq. (47) because
the contribution from the LDME hQQ̄1ð1S0ÞjP1ð1S0Þj
QQ̄1ð1S0Þi to the right-hand side of Eq. (3) vanishes at
order α2s if the QQ̄ is in the color-singlet 1S0 state and
the relative momentum between the Q and the Q̄ is zero.

The singularities of TðΛÞ
8 ðt; τÞ at t ¼ 1 or τ ¼ 1 are given by

lim
t→1

ð1 − tÞTðΛÞ
8 ðt; τÞ ¼ −

3

π
sinðπτÞ; ð49aÞ

lim
τ→1

ð1 − τÞTðΛÞ
8 ðt; τÞ ¼ −

3

π
sinðπtÞ; ð49bÞ

which reproduce the leading renormalon singularities in
Tðt; τÞ at t ¼ 1 or τ ¼ 1. It is clear that, from the expression

for TðΛÞ
8 ðt; τÞ, these are the only singularities at t > 0 and

τ > 0. Therefore, we define the NRQCD LDME with a UV
cutoff Λ to obtain unambiguous expressions for the
SDC 2Im½f1ð1S0Þ=m2�.

D. Summary of results

Here we summarize our result for the SDC
2Im½f1ð1S0Þ=m2�. The left-hand side of Eq. (3), computed
in perturbative QCD for the QQ̄ in the color-singlet spin-
singlet S-wave state, is given in Eq. (24). The right-hand
side computed in perturbative NRQCD is given in Eq. (40),
when dimensionally regularized, and in Eq. (47), when a
hard cutoff is employed. We continue with the latter, which
does not require any further subtraction of UV renormalons
in perturbative NRQCD. Then, by comparing Eq. (24) with
Eq. (47), we obtain

2Im

�
f1ð1S0Þ
m2

�
¼ πCFα

2
s

Ncm2

1

ðαsβ0Þ2
Z

∞

0

dt
Z

∞

0

dτe−wðtþτÞ

× ½Tðt; τÞ − TðΛÞ
8 ðt; τÞ�: ð50Þ

Since the functions Tðt; τÞ and TðΛÞ
8 ðt; τÞ have same

singularities at t ¼ 1 or τ ¼ 1 [Eqs. (26), (49)], those

singularities cancel in Tðt; τÞ − TðΛÞ
8 ðt; τÞ. Therefore, the

leading renormalon ambiguities in ΓQQ̄1ð1S0Þ that originate
from the singularities at t ¼ 1 or τ ¼ 1 are absent in the
SDC 2Im½f1ð1S0Þ=m2�.

Together with our results for 2Im½f1ð1S0Þ=m2� and the
perturbative expression for 2Im½fEMð1S0Þ=m2� at LO in αs
[2], we obtain the resummed expression for R at leading
order in v including resummed QCD corrections in the
large nf limit,

RResum ¼ R0½1þOðv2Þ� × 1

ðαsβ0Þ2
Z

∞

0

dt
Z

∞

0

dτe−wðtþτÞ

× ½Tðt; τÞ − TðΛÞ
8 ðt; τÞ�; ð51Þ

where

R0 ¼
CFα

2
s

2Ncα
2e4Q

: ð52Þ

Here eQ is the fractional electric charge of the heavy quark
Q. As previously discussed, the order-v2 correction to R
vanishes at LO in αs. We neglect the correction at order
αsv2 that was computed in fixed-order perturbation theory,
because it was found to be small numerically [13,17]
and is of comparable size to the contribution of order v3.
The order-v3 contribution to R can be written as

R8 ¼ −2Im½4m2Kð1Þ�R0

Nc

αsCF

hηQjO8ð3S1ÞjηQi
hηQjO1ð1S0ÞjηQi

: ð53Þ

Since it is not known how to compute the color-octet
LDME hηQjO8ð3S1ÞjηQi reliably, we ignore R8 and instead
consider its effects in the uncertainties.
We can combine our results for RResum with fixed-order

calculations of R, so that the corrections at NLO and
NNLO in αs are valid beyond the large nf limit. By using
the expressions for ΓηQ and ΓηQ→γγ valid to NNLO in αs,
we obtain [11,15,16]

RPert ¼ R0

�
1þ αs

π

�
2π

�
β0 −

nH
6π

�
log

μ2

4m2
þ R̂ð1Þ

�

þ
�
αs
π

�
2
�
3π2

�
β0 −

nH
6π

�
2

log2
μ2

4m2
þ R̂ð2Þ

þ
�
2π2β1 −

19

12
nH þ 3π

�
β0 −

nH
6π

�
R̂ð1Þ

�
log

μ2

4m2

�

þOðα3s ; αsv2; v3Þ
	
; ð54Þ

where R̂ð1Þ ¼ ð199
18

− 13π2

24
ÞCA − 8

9
nf −

2nH
3
log 2, β1 ¼ 1

ð4πÞ2
ð34
3
C2
A − 20

3
CATRnf − 4CFTRnfÞ, and nH is the number

of heavy quark flavors. R̂ð2Þ is known as a function of nf
for the case nH ¼ 1 only. R̂ð2Þ ¼ 117.144 for nf ¼ 3 and

R̂ð2Þ ¼ 86.421 for nf ¼ 4. The large nf limit of R̂ð2Þ is given
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in Ref. [11] as limnf→∞R̂
ð2Þ=n2f ¼ 0.37581ð3Þ. The full nf

dependence of R̂ð2Þ can be obtained from Refs. [11,16] as

R̂ð2Þ ¼ 191.3 − R̂ð2Þ
lbl − 25.07nf þ 0.3758n2f; ð55Þ

where R̂ð2Þ
lbl ¼0.7313×CF×

P
fðef=eQÞ2þ0.6470×CFnH

is the “light by light” contribution to the two-photon decay
rate that occurs through QQ̄ → gg → γγ via a light quark
loop. Here, the sum is over nf light quark flavors, and ef is
the fractional charge of a light quark of flavor f.
When nH ¼ 1, the heavy quark Q contributes to the

renormalization scale dependence of αs, which cancels the
explicit renormalization scale dependence of RPert from
the logarithms of μ=m. It is possible to decouple the heavy
quark Q from the running of αs by using the decoupling
relations between αs for nf and nf þ 1 active quark flavors
[26], so that the heavy quark Q does not affect the
renormalization scale dependence of RPert for μ < m. By
using Eq. (25) of Ref. [26], we decouple the heavy quark,
and then we obtain

RPert ¼R0

�
1þαs

π

�
2πβ0 log

μ2

4m2
þ R̂0ð1Þ

�

þ
�
αs
π

�
2
�
3π2β20log

2
μ2

4m2
þ R̂0ð2Þ

þð2π2β1þ3πβ0R̂
ð1ÞÞ log μ2

4m2

�
þOðα3s ;αsv2;v3Þ

	
;

ð56Þ

where R̂0ð1Þ ¼ ð199
18

− 13π2

24
ÞCA − 8

9
nf and R̂

0ð2Þ ¼ R̂ð2Þ þ 7
12
þ

19
6
log 2 − 1

3
log2 2þ log 2R̂0ð1Þ. We use this expression for

RPert when μ < m.
The expression for RPert in Eq. (54) is obtained from the

electromagnetic and inclusive decay rates of ηQ that were
calculated in the MS renormalization scheme. In order to
make Eq. (54) compatible with the expression for RResum in
Eq. (51), it is necessary to convert Eq. (54) to the hard
cutoff scheme. It is possible to perform a finite renormal-
ization of the NRQCD LDMEs from the MS scheme to the
cutoff scheme. At leading order in v, the finite renormal-
ization only involves the color-singlet LDME, and the finite
renormalization cancels trivially in the ratio R. Even if
we include contributions from the order-v2 LDME, which
contributes to hηQjO1ð1S0ÞjηQi at order αs, the expression
in Eq. (54) remains unchanged if the corrections of order
α2sv2 and of order v4 are ignored.
Because Eq. (54) is computed by using dimensional

regularization, all power divergences are absent in
Eq. (54). In the fixed-order perturbation theory calculation
using the cutoff-regularization scheme, the color-singlet
contribution to R receives power-divergent contribution

from the one-loop correction to the color-octet LDME,
which is of relative order αsΛ2=m2. If we set Λ ∼mv, this
contribution is of relative order αsv2. For αs ∼ v, this is the
same size as the color-octet contribution to R, whose
relative size is of order v3; for αs ∼ v2, the power-
divergent contribution is of relative order v4. Therefore,
such power-divergent contributions in RPert can be ignored
at the current level of accuracy.
In order to combine the perturbative expression

[Eq. (54)] with the resummed result [Eq. (51)], we need
to subtract from RResum the contributions that are already
included in the perturbative expression RPert in order to
avoid double counting. Since, in the perturbative
calculation, the contribution from the color-octet matrix
element is not included, we only need to consider the
contribution from Tðt; τÞ. From the series expansion of
Tðt; τÞ at t ¼ τ ¼ 0 we find

δRResum ¼ R0

�
1þ 2ð1þ dÞαsβ0 þ

�
3d2 þ 6dþ 5

−
2π2

3
þ g2

�
ðαsβ0Þ2 þOðα3sÞ

�
; ð57Þ

where g2 is defined by the integral

g2 ¼ −
Z

1

0

dx
x
ð1 − xÞ

Z
1

0

dy
y
ð1 − yÞθð ffiffiffi

x
p þ ffiffiffi

y
p

− 1Þ

þ
Z

1

0

dx
x

Z
1

0

dy
y
½fðx; yÞ − ð1 − xÞð1 − yÞ�

× θð1 − ffiffiffi
x

p
−

ffiffiffi
y

p Þ: ð58Þ

We evaluate this integral numerically to find g2 ¼
−3.22467022ð9Þ. It can be seen that the bubble-chain
resummation reproduces the fixed-order perturbation
series in the large nf limit by comparing the coefficients
of ðαsnfÞn for n ¼ 1 and 2 in Eqs. (56) and (57).
Equation (57) also reproduces the leading logarithmic

contributions in Eq. (56) in the form ðαsβ0 log μ2

4m2Þn for
n ¼ 1 and 2. In Eq. (56), there is an order-by-order
cancellation of the renormalization-scale dependence from
the two-loop running of αs with nf active quark flavors and
the explicit logarithms of μ. On the other hand, in Eq. (57),
the cancellation only occurs between the one-loop running

of αs and the leading logarithms ðαsβ0 log μ2

4m2Þn for n ¼ 1

and 2. Hence, Eq. (57) reproduces the subleading logarithm

α2s log
μ2

4m2 in Eq. (56) only in the large nf limit.
Our combined result for the ratio R, where the resummed

result and the fixed-order calculation up to NNLO in αs are
combined, is

RResumþΔNNLO ¼ RResum þ RPert − δRResum; ð59Þ
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where RResum, RPert, and δRResum are given in Eqs. (51),
(54), and (57), respectively. For μ < m, we use Eq. (56)
instead of Eq. (54) to compute RPert. We also define
RResumþΔNLO, which is the same as RResumþΔNNLO, except
in RResumþΔNLO, RPert and δRResum are computed to NLO
in αs.
Now we discuss the improvement of the perturbative

convergence of the combined result RResumþΔNNLO com-
pared to the fixed-order calculation RPert. While RResum is
valid to all orders in αs in the large nf limit, RResumþΔNNLO

receives radiative corrections from RPert − δRResum. Then,
the perturbative convergence of RResumþΔNNLO is closely
related to the agreement between RPert and δRResum. If we
set μ ¼ m, we obtain for the fixed-order perturbative
calculation for ηc,

RPert
ηc ¼ R0

�
1þ ð9.50 − 0.427nfÞ

αs
π
þ ð32.9 − 6.73nf

− 0.0802n2fÞ
�
αs
π

�
2

þOðα3sÞ
�
: ð60Þ

This expression is valid for an arbitrary number of light
quark flavors nf, except that we only consider three light
quark flavors for the contribution to “light by light”
contribution to the two-photon decay rate at NNLO in
αs that occurs through QQ̄ → gg → γγ via a light quark
loop, which is proportional to the sum of squares of light
quark fractional charges [16]. For the decay of ηb, where we
consider four light quark flavors in the light by light
contribution, we obtain

RPert
ηb ¼ R0

�
1þ ð9.50 − 0.427nfÞ

αs
π
þ ð24.6 − 6.73nf

− 0.0802n2fÞ
�
αs
π

�
2

þOðα3sÞ
�
: ð61Þ

On the other hand, δRResum gives, for both ηc and ηb,

δRResum
NNA ¼R0

�
1þð7.04−0.427nfÞ

αs
π
þð−21.8

þ2.65nf−0.0802n2fÞ
�
αs
π

�
2

þOðα3sÞ
�
; ð62aÞ

δRResum
BFG ¼ R0

�
1þ ð9.04 − 0.427nfÞ

αs
π
þ ð2.30þ 1.37nf

− 0.0802n2fÞ
�
αs
π

�
2

þOðα3sÞ
�
: ð62bÞ

Here, we chose the gauge-fixing parameter in the BFG
method to be ξ ¼ 1, which corresponds to the Feynman
gauge. As expected, δRResum reproduces RPert only in the
large nf limit. While it is not at all surprising that δRResum

does not reproduce RPert beyond the large nf limit, the size
of the coefficients of order α2snf and α2sn0f are quite large in
RPert. If the large nf limit does not provide a good
approximation to the fixed-order calculation, the perturba-
tive convergence of RPert − δRResum can be spoiled. To
inspect the agreement between RPert and δRResum explicitly,
we consider the perturbation series of RPert and δRResum

with nf ¼ 3 and 4 light quark flavors for the case of ηc and
ηb, respectively. For the decay of ηc with nf ¼ 3, we obtain

RPert
ηc ¼ R0

�
1þ 8.22

αs
π
þ 12.0

�
αs
π

�
2

þOðα3sÞ
�
; ð63aÞ

δRResum
ηc;NNA

¼ R0

�
1þ 5.76

αs
π
− 14.6

�
αs
π

�
2

þOðα3sÞ
�
;

ð63bÞ

δRResum
ηc;BFG

¼ R0

�
1þ 7.76

αs
π
þ 5.67

�
αs
π

�
2

þOðα3sÞ
�
:

ð63cÞ

For the decay of ηb with nf ¼ 4, we obtain

RPert
ηb ¼ R0

�
1þ 7.80

αs
π
− 3.61

�
αs
π

�
2

þOðα3sÞ
�
; ð64aÞ

δRResum
ηb;NNA

¼ R0

�
1þ 5.33

αs
π
− 12.5

�
αs
π

�
2

þOðα3sÞ
�
;

ð64bÞ

δRResum
ηb;BFG

¼ R0

�
1þ 7.33

αs
π
þ 6.48

�
αs
π

�
2

þOðα3sÞ
�
:

ð64cÞ

In all cases, agreement between RPert and δRResum is poor
at NNLO in αs, even though the difference vanishes in the
large nf limit. Hence, perturbative corrections may not still
be in control because of the large radiative corrections in
RResumþΔNNLO beyond the large nf limit.

III. NUMERICAL RESULTS

We now discuss our numerical results, based on our
expression of R in Eq. (59). We first describe our numerical
inputs. We take the heavy-quark mass m to be 1.5 GeV for
the charm quark, and 4.6 GeV for the bottom quark. These
values are numerically close to the one-loop pole mass. We
have a freedom in choosing the values of the heavy-quark
mass due to the ambiguity in the pole mass that is of the
order of ΛQCD. The quantity RResum depends on the heavy-

quark mass only through log μ2

4m2. Hence, the dependence
on the choice of the value of the heavy-quark mass m is
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beyond our accuracy. We take the number of light quark
flavors to be nf ¼ 3 for ηc and nf ¼ 4 for ηb. In evaluating
RResum, we consider both the NNA and the BFG method.
The NRQCD cutoff Λ must be chosen between mv and m,
where v2 ∼ 0.3 for ηc and v2 ∼ 0.1 for ηb. Accordingly, we
set the central value for the NRQCD cutoff to be 1 GeV for
ηc, and 2 GeV for ηb. We take the central value for μ to be
the heavy-quark mass. We compute αs in the MS renorm-
alization scheme using the Mathematica package
RunDec [26]. We use α ¼ 1=137.036. In the BFG method,
we set ξ ¼ 1, which corresponds to the Feynman gauge.
The choice ξ ¼ 1 also minimizes the size of the fixed-order
corrections RPert − δRResum [see Eqs. (63), (64)]. In evalu-
ating RPert, we use the expression in Eq. (54) for μ ≥ m and
use the expression in Eq. (56) for μ < m.
We list the sources of uncertainties that we consider. We

vary Λ by �25% of its central value. We vary μ between
1 and 2 GeV for ηc, and between 2 and 6 GeV for ηb.
Because our expression for R in Eq. (59) only depends on

the heavy-quark mass through log μ2

4m2, where μ is the
renormalization scale in the MS scheme, the dependence
of R on m is very mild. Also, the change in R from varying
m is equivalent to the change in R from varying μ. Since we
already take into account the uncertainty from the depend-
ence on μ, we ignore the uncertainty from the dependence
on m. Finally, we estimate the color-octet LDME by using
the perturbative estimate given in Ref. [5],

hηQjO8ð3S1ÞjηQi
hηQjO1ð1S0ÞjηQi

∼
v3CF

πNc
; ð65Þ

where we choose v2 ¼ 0.3 for ηc, and v2 ¼ 0.1 for ηb. The
uncertainty from ignoring the color-octet contribution is
then estimated by �jR8j, where R8 is given by Eq. (53).
Note that the color-octet matrix element hηQjO8ð3S1ÞjηQi
depends on Λ; hence, there is a correlation between errors
from varying Λ and ignoring the color-octet matrix
element. We, however, ignore the correlation and add
the uncertainties in quadrature.

A. Decay of ηc
We first present our numerical results for the ratio R for

ηc. In Fig. 3, we show the dependence on the renormaliza-
tion scale μ of RResum, RResumþΔNLO and RResumþΔNNLO at
Λ ¼ 1 GeV. For both the NNA and BFG methods, RResum

has some dependence on μ because the renormalization
scale dependence in RResum only cancels at the one-loop
level. For the case of NNA, RResumþΔNLO develops a
stronger dependence on μ from the fixed-order corrections
of relative order αs in RPert − δRResum. In RResumþΔNNLO, the
renormalization scale dependence is slightly worse than
RResumþΔNLO, because of the subleading logarithm of the

form α2s log
μ2

4m2 in RPert − δRResum. For μ > m, there are also
uncanceled leading logarithms in RPert − δRResum that are
proportional to nH. For the case of the BFG method,
RResum, RResumþΔNLO and RResumþΔNNLO all depend on μ
very mildly. This is because in the BFG method in the
Feynman gauge, there is almost exact cancellation in the
fixed-order corrections RPert − δRResum, which contain most
of the dependence on μ.
In Fig. 4 we show the dependence on the NRQCD cutoff

Λ of RResum, RResumþΔNLO and RResumþΔNNLO at μ ¼ m. In
all cases, the dependence on Λ is mild, and the numerical
values of R rise slowly with increasing Λ. As we will see
later, the uncertainty estimated from varying Λ is smaller
than the estimated uncertainty from neglecting the color-
octet contribution.
For μ ¼ m, the fixed-order corrections in RPert − δRResum

are positive for both the contributions of relative order αs
and order α2s. In NNA, RResumþΔNLO is larger than RResum by
about 16% of the central value of RResumþΔNNLO, and
RResumþΔNNLO is larger than RResumþΔNLO by about 20% of
the central value of RResumþΔNNLO. In the BFG method,
RResumþΔNLO is larger than RResum by about 4% of the
central value of RResumþΔNNLO, and RResumþΔNNLO is larger
than RResumþΔNLO by about 6% of the central value of
RResumþΔNNLO. While the effects of the fixed-order correc-
tions appear less dramatic than the effects of the radiative
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FIG. 3. The renormalization scale dependence of RResum (dotted line), RResumþΔNLO (dashed line) and RResumþΔNNLO (black line) for ηc
and Λ ¼ 1 GeV, for the NNA (left) and the BFG method (right).
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corrections in the fixed-order calculation in Ref. [11], the
fact that the corrections are larger at NNLO than at NLO in
αs implies that the perturbative corrections may still not be
under control. As discussed in the previous section, this is
related to the large perturbative corrections in the fixed-
order corrections that go beyond the large nf limit; because
the treatment of the renormalon ambiguities in this work is
only valid in the large nf limit, we have little or no control
over the convergence of the perturbation series beyond the
large nf limit.
We estimate the uncertainties by varying μ between

1 and 2 GeV, and by varyingΛ between 0.75 and 1.25 GeV.
We also include the uncertainty for ignoring the color-octet
contribution. For NNA, we obtain

RResumþΔNNLO
ηc ðNNAÞ ¼ ð4.28þ1.29

−0.53 � 0.27� 0.41Þ × 103

¼ ð4.28þ1.38
−0.72Þ × 103; ð66Þ

where the first uncertainty is from μ, the second from Λ,
and the third uncertainty is from the neglected color-octet
contribution. For BFG, we obtain

RResumþΔNNLO
ηc ðBFGÞ ¼ ð3.39þ0.06þ0.39

−0.18−0.40 � 0.47Þ × 103

¼ ð3.39þ0.61
−0.64Þ × 103; ð67Þ

where the uncertainties are as in NNA. Our numerical
results for the NNA and the BFG methods are compatible
within uncertainties. We note that RResumþΔNNLO in the
NNA method has a large uncertainty from its strong
renormalization-scale dependence for small μ.
In estimating the uncertainties in our numerical results

we have neglected the possibility that the convergence
of the fixed-order corrections in RPert − δRResum may not
be in control. We roughly estimate the uncertainty from
this nonconvergence by comparing our numerical results
for R with the series expansion of Brðηc → γγÞ ¼
1=RResumþΔNNLO

ηc in powers of αs through NNLO accuracy.
For NNA, we obtain BrNNAðηc → γγÞ ¼ ð5.51 × 103Þ−1,

and for BFG, we obtain BrBFGðηc→γγÞ¼ð3.44×103Þ−1.
These values are in agreement with our numerical results
in Eqs. (66) and (67) within uncertainties. Therefore, at
the current level of accuracy, the uncertainty from the
possible nonconvergence of the fixed-order corrections in
RPert − δRResum may not exceed our estimated uncertainties.
We can compare our numerical results with measure-

ments. PDG reports two values for the ηc branching ratio to
two photons [6]. The first PDG value Brðηc → γγÞ ¼
ð1.59� 0.13Þ × 10−4 is from a constrained fit of partial
widths. If we take the inverse, we obtain Rexp

fit ¼
ð6.29þ0.56

−0.48Þ × 103. The second PDG value is from an
average of measurements, which gives Brðηc → γγÞ ¼
ð1.9þ0.7

−0.6Þ × 10−4. Taking the inverse gives Rexp
average ¼

ð5.3þ2.4
−1.4Þ × 103. The two PDG values are compatible with

each other due to the large uncertainties in Rexp
average. The

uncertainty in Rexp
fit is smaller than the uncertainty in Rexp

average

or the uncertainties in our numerical results for R. Note that
Rexp
average is compatible with our results for R in Eqs. (66) and

(67). There is, however, a tension between Rexp
fit and our

numerical results. We also note that our calculation of R
also applies for the ηcð2SÞ state as well. The PDG value
for the ηcð2SÞ branching ratio to two photons is
Brðηcð2SÞ → γγÞ ¼ ð1.9� 1.3Þ × 10−4, which is compat-
ible with the PDG values for the Brðηc → γγÞ and our
results for R in Eqs. (66) and (67).

B. Decay of ηb
We now present our results for ηb. In Fig. 5, we show the

dependence on the renormalization scale μ of RResum,
RResumþΔNLO and RResumþΔNNLO at Λ ¼ 2 GeV. Just like
for the case of ηc, RResum has some dependence on μ
because the renormalization scale dependence in RResum

only cancels at the one-loop level. For the case of NNA,
RResumþΔNLO develops a stronger dependence on μ from
the fixed-order corrections of relative order αs in
RPert − δRResum. This dependence is partially canceled by
the corrections of relative order α2s, which contain logarithms
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FIG. 4. The NRQCD cutoff dependence of RResum (dotted line), RResumþΔNLO (dashed line) and RResumþΔNNLO (black line) for ηc and
μ ¼ m for the NNA (left) and the BFG method (right).
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of μ, and RResumþΔNNLO depends on μ mildly. For the case
of the BFGmethod,RResum,RResumþΔNLO andRResumþΔNNLO

all depend on μ mildly. This is again because the choice
ξ ¼ 1 minimizes the size of the fixed-order corrections
RPert − δRResum, which contain most of the dependence on μ.
In Fig. 6 we show the dependence on the NRQCD cutoff

Λ of RResum, RResumþΔNLO and RResumþΔNNLO at μ ¼ m, and
1.5 GeV ≤ Λ ≤ 2.5 GeV. In all cases, the dependence on
Λ is mild, and the numerical values of R rise very slowly
with increasing Λ. Just like for the case of ηc, the
uncertainty estimated from varying Λ is smaller than the
estimated uncertainty from neglecting the color-octet
contribution.
For NNA at μ ¼ m and Λ ¼ 2 GeV, the fixed-order

corrections in RPert − δRResum are positive for both the
contributions of relative order-αs and order-α2s . In NNA,
RResumþΔNLO is larger than RResum by about 11% of the
central value of RResumþΔNNLO, and RResumþΔNNLO is larger
than RResumþΔNLO by about 3% of the central value of
RResumþΔNNLO. In the BFG method, at μ ¼ m and
Λ ¼ 2 GeV, RResumþΔNLO is larger than RResum by about
2% of the central value of RResumþΔNNLO, and
RResumþΔNNLO is smaller than RResumþΔNLO by about 3%

of the central value of RResumþΔNNLO. The effects of the
fixed-order corrections are much less dramatic than the
corrections to the ηc decay rate, thanks to the smaller size
of αs and larger nf.
We estimate the uncertainties by varying μ between 3

and 6 GeV, and by varying Λ between 1.5 and 2.5 GeV. We
also include the uncertainty for ignoring the color-octet
contribution. For NNA, we obtain

RResumþΔNNLO
ηb ðNNAÞ ¼ ð2.32þ0.02

−0.05 � 0.04� 0.06Þ × 104

¼ ð2.32þ0.08
−0.09Þ × 104; ð68Þ

where the first uncertainty is from μ, the second from Λ,
and the third uncertainty is from the neglected color-octet
contribution. For BFG, we obtain

RResumþΔNNLO
ηb ðBFGÞ ¼ ð2.41þ0.00þ0.06

−0.05−0.05 � 0.07Þ × 104

¼ ð2.41þ0.09
−0.10Þ × 104; ð69Þ

where the uncertainties are as in NNA. Our numerical
results for the NNA and the BFG methods are compatible
within uncertainties.
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Even though the fixed-order corrections in RPert −
δRResum are not as large as the corrections to the ηc decay
rate, our results may still suffer from nonconvergence.
We again roughly estimate the uncertainty from this
possible nonconvergence by comparing our numerical
results for R with the series expansion of Brðηb → γγÞ ¼
1=RResumþΔNNLO

ηb in powers of αs through NNLO accuracy.
For NNA, we obtain BrNNAðηb → γγÞ ¼ ð2.34 × 104Þ−1,
and for BFG, we obtain BrBFGðηb → γγÞ ¼ ð2.41 × 104Þ−1.
These values are in good agreement with our numerical
results in Eqs. (68) and (69). This may imply that the
uncertainty from the possible nonconvergence of the fixed-
order corrections in RPert − δRResum is not significant for the
case of ηb.
It is not yet possible to compare our results in Eqs. (68)

and (69) with measurements because the partial width
Γηb→γγ has not been observed yet. In Ref. [27], the authors
made use of the heavy-quark spin symmetry to extract ηb
LDMEs from the Υ LDMEs and made the prediction
Γηb→γγ ¼ 0.512þ0.096

−0.094 keV. If we multiply this result to our
results for R, we obtain Γηb ¼ 11.9þ2.3

−2.2 MeV for NNA, and
Γηb ¼ 12.4þ2.4

−2.3 MeV for the BFG method. Reference [28]
makes use of the ratio of the leptonic decay rate of the Υ to
the decay rate of ηb into two photons in the potential
NRQCD effective field theory to predict Γηb→γγ from the
measured value for ΓΥ→eþe−. The prediction in Ref. [28] is
given by Γηb→γγ ¼ 0.54� 0.15 keV, which is compatible
with the prediction in Ref. [27]. If we use this prediction,
we obtain Γηb ¼ 12.5� 3.5 MeV for NNA and Γηb ¼
13.0� 3.7 MeV for the BFG method. These predictions
for the ηb decay rate are compatible with the PDG value for
the ηb decay width, which is given by Γηb ¼ 10þ5

−4 MeV.

C. Comparison with previous results

We now compare our numerical results with previous
results for R. In Ref. [5], the authors also considered
resummation of bubble-chain contributions to R for the
decay of ηc. The results of Ref. [5] are equivalent to
RResumþΔNLO, except that in Ref. [5], the SDC was
computed by imposing a hard IR cutoff which affects both
the virtuality and the spacial momentum of the gluon in the
perturbative QCD calculation [Eq. (18)]. The authors of
Ref. [5] identified the contribution from the momentum
region that was neglected in the perturbative QCD calcu-
lation as the contribution from perturbative NRQCD which
is regulated by a hard UV cutoff on the gluon momentum.
The hard cutoff that was used in Ref. [5] is given by k2 ≤
4m2δ and k2 ≤ m2ð2 ffiffiffi

δ
p

− δÞ2, where k is a gluon momen-
tum, and δ ¼ 0.1. If we take m ¼ 1.5 GeV, we obtain k2 ≤
0.9 GeV2 and jkj ≤ 0.8 GeV. Numerically, the hard cutoff
imposed on jkj is similar to the hard UV cutoff Λ that we
have employed in this paper, although in this work, there is
no cutoff on the virtuality of the gluon. The main advantage

of this work compared to Ref. [5] is that in this work, the
appearance and the cancellation of renormalon ambiguities
are explicitly shown by employing dimensional regulari-
zation to regulate infrared divergences. In the numerical
results, we have retained the dependence on the hard cutoff
Λ, whereas the authors of Ref. [5] only considered a
fixed value of the cutoff. We also include the fixed-
order corrections at NNLO accuracy in αs. The authors
of Ref. [5] obtained Rηc ¼ ð3.01� 0.30� 0.34Þ × 103 for
NNA, and Rηc ¼ ð3.26� 0.31� 0.47Þ × 103 for the BFG
method in the Feynman gauge. The result for the BFG
method is compatible with our result in Eq. (67), while the
result for NNA in Ref. [5] is smaller than our result in
Eq. (66) by about 30%. This difference can be understood
from the large positive correction at NNLO in αs from
RPert − δRResum that we have included in this paper.
The authors of Ref. [11] presented their numerical results

for Brðηc → γγÞ, which is equal to R−1, based on their
fixed-order calculation of the inclusive decay rate of ηc and
the decay rate of ηc into two photons in Ref. [16] to NNLO
accuracy in αs. The result in Ref. [11] is based on the
perturbation expansion of Brðηc → γγÞ ¼ R−1 to NNLO in
α2s . By varying the renormalization scale μ from 1 GeV to 3
times the charm quark mass, the authors of Ref. [11]
obtained Brðηc → γγÞ ¼ ð3.1–3.3Þ × 10−4, which gives
Rηc ¼ ð3.0–3.2Þ × 103. This result is compatible with our
result in Eq. (67) in the BFGmethod, but is smaller than our
result in Eq. (66) in NNA. Also, the uncertainty in the result
in Ref. [11] is smaller than the uncertainties in our results,
due to the cancellation of the renormalization-scale depend-
ence at the two-loop level in the fixed-order calculation.
Moreover, the uncertainty from the color-octet contribution
at relative order v3 has been neglected in Ref. [11]. One can
obtain a different numerical result if one considers the
perturbation series of Rηc ¼ ½Brðηc → γγÞ�−1, which is
given by Eq. (54). If we use Eq. (54) we obtain Rηc ¼
4.9 × 103 at μ ¼ m. This disagrees with the numerical
results in Ref. [11], and the discrepancy is much larger than
the uncertainties estimated in Ref. [11] by varying the
renormalization scale μ. The difference between the
numerical results based on the perturbation series of Rηc
and the one based on the perturbation series of Brðηc → γγÞ
shows that the nonconvergence of the perturbation series
generates a sizable ambiguity. This is consistent with our
estimate of the leading renormalon uncertainty in Eq. (27).
Our results in Eqs. (66) and (67) also suffer from non-
convergence of the fixedorder corrections inRPert − δRResum,
because we have no control over the convergence of the
perturbation series beyond the large nf limit. We have
roughly estimated the uncertainty from this nonconvergence
by comparing our numerical results with the series expansion
of Brðηc → γγÞ ¼ 1=RResumþΔNNLO

ηc in powers of αs through
NNLO accuracy. We have found that our rough estimate
of the uncertainty from the nonconvergence does not exceed
the uncertainties in our numerical results.
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In Ref. [11], the authors also presented their numerical
results based on the perturbative expression of Brðηb → γγÞ
to NNLO accuracy. They obtained Brðηb → γγÞ ¼
ð4.8� 0.7Þ × 10−5. If we take the inverse we obtain
Rηb ¼ ð2.1þ0.4

−0.3Þ × 104, which is compatible with our
numerical results in Eqs. (68) and (69) within uncertainties.
The uncertainties in Eqs. (68) and (69) are much smaller
than the result in Ref. [11] because the bubble-chain
resummation reduces the dependence on the renormaliza-
tion scale μ compared to the fixed-order calculation. If we
use the perturbative expression of R in Eq. (54), which is
valid to NNLO accuracy in αs, we obtain Rηb ¼ 2.39 × 104

at μ ¼ m, which agrees with the numerical result in
Ref. [11] within uncertainties. The relative discrepancy
between the numerical result from the perturbative expres-
sion of the branching ratio into two photons and the
numerical result from the perturbative expression of R is
smaller in the case of ηb compared to the case of ηc. This
can be understood from our estimate of the leading
renormalon ambiguity [Eq. (27)]: since the decay of ηb
occurs at a higher energy scale than the decay of ηc, the
renormalon ambiguity is suppressed compared to the case
of ηc. Nevertheless, the ambiguity is still sizable compared
to the estimated uncertainties in our numerical results in
Eqs. (68) and (69). Therefore, even for the case of ηb,
resumming large perturbative corrections is crucial in
obtaining a reliable theoretical prediction.
In Ref. [29], the authors applied the principle of maximal

conformality (PMC), which is a method for choosing the
renormalization scale μ for a given perturbation series, to
the perturbative expression for R to NLO accuracy. The
authors of Ref. [29] claim that, by applying the PMC, the β
function appearing in the perturbation series, which are
associated with the running of αs, is absorbed into the
running coupling, and the convergence of the perturbation
series is improved. When they include the relative order-αs
and order-αsv2 corrections to R, they obtain, after applying
the PMC, R ¼ ð6.09þ0.21þ0.58

−0.19−0.52 Þ × 103. This result is very
different from our results in Eqs. (66) and (67), which
include explicitly the leading-logarithmic corrections of the

form ðαsβ0 log μ2

4m2Þn to all orders in αs. It is worth noting
that, unlike the expressions for R at LO and NLO
accuracies, the perturbative expression for R at NNLO
accuracy no longer suffers from the severe dependence on
the renormalization scale [11]. Even if we consider a wide
range of the renormalization scale, as the authors of
Ref. [11] have done, it is not possible to obtain a value
of R that is close to the result of Ref. [29] if one uses the
expression for R at NNLO accuracy. Shortcomings of the
PMC approach have been discussed in Ref. [30].

IV. SUMMARY AND DISCUSSION

In this paper we have presented an analysis of the ratio R
of the inclusive decay rate of the ηQ meson to the partial

decay rate into two photons, where Q ¼ c or b. In the
calculation of the short-distance coefficients, we resum
large perturbative corrections in the form ðαsβ0Þn to all
orders in αs by including contributions from bubble chain
insertions in the gluon propagator. This bubble-chain
resummation reproduces fixed-order perturbative calcula-
tions in the large nf limit. This resummation has been done
in Ref. [5] by imposing an infrared cutoff in the perturba-
tive calculations. In this work, we regulate the infrared
divergences using dimensional regularization, so that the
appearance of the renormalon ambiguity in the perturbative
QCD calculation and the cancellation of the ambiguity in
the factorization formula can be seen explicitly. We use
naïve non-Abelianization and the background-field gauge
method to carry out the resummation, which are unam-
biguous procedures for resumming bubble chains.
We confirmed that, by using the factorization formula

valid to relative order v3, the leading renormalon ambiguity
of infrared origin that arises from the perturbative QCD
calculation is reproduced in the perturbative NRQCD
calculation, and therefore, the short-distance coefficients
are free of infrared renormalon ambiguities. We also
showed that, if we use dimensional regularization to
regulate the ultraviolet divergences in NRQCD, the
color-octet LDME suffers from renormalon ambiguities
of ultraviolet origin, but the ambiguity cancels in the
factorization formula. Since it is not known how to
compute the color-octet LDME reliably, and it is known
that the color-octet LDME is suppressed by v3 compared to
the leading-order color-singlet LDME, the color-octet
contribution is often neglected in the factorization formula.
However, in a resummed calculation, the neglect of the
color-octet contribution results in a sizable ambiguity in the
factorization formula. We argued that, for phenomenologi-
cal applications, we obtain a more useful factorization
formula if we use hard-cutoff regularization to regulate the
ultraviolet divergences in NRQCD where such ambiguity
no longer appears.
Our result for the resummed calculation of R is shown in

Eq. (51). We combine our result with the calculation in
fixed-order perturbation theory to next-to-next-to-leading
order accuracy in αs [Eq. (54)] [9–11,15,16]. The expres-
sion for the combined result is shown in Eq. (59). We use
the expression in Eq. (59) in our numerical analysis.
In our numerical analysis, we estimated uncertainties by

varying the renormalization scale and the NRQCD ultra-
violet cutoff. We also included the effect of the color-octet
contribution by estimating the size of the uncalculated
color-octet LDME. Our numerical results for the ratio R for
the decay of ηc are given in Eqs. (66) and (67), which are
computed in the naïve non-Abelianization and the back-
ground-field gauge method in the Feynman gauge, respec-
tively. The results in Eqs. (66) and (67) agree within
uncertainties. Our numerical results for ηc are compatible
with the PDG value for Brðηc → γγÞ that was obtained
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by taking averages of measurements. However, our results
disagree with the PDG value for Brðηc → γγÞ that was
obtained from constrained fits. For the decay of ηb, our
numerical results for the ratio R are given in Eqs. (68) and
(69), which are computed in the naïve non-Abelianization
and the background-field gauge method in the Feynman
gauge, respectively. Again, the numerical results in
Eqs. (68) and (69) agree within uncertainties. Since the
decay of ηb into two photons is yet to be measured, we
cannot compare our results for R directly with measure-
ments for the case of ηb. By using predictions of Γηb→γγ

in Refs. [27,28], we have obtained predictions of Γηb that
is compatible with the current measurement of the ηb
decay rate.
We have compared our numerical results with previous

calculations of R in Ref. [5], where the authors also
considered bubble-chain resummation, and the results
based on fixed-order perturbation theory in Ref. [11]. In
Ref. [5], the authors made predictions of R for the decay of
ηc by combining the resummed result, which was computed
by using a fixed infrared cutoff, with the fixed-order
calculation valid to next-to-leading order in αs. Our
numerical results agree with the results in Ref. [5] for
the background-field gauge method [Eq. (67)], but there is
tension in the result in naïve non-Abelianization [Eq. (66)].
This discrepancy is mostly from the inclusion of the fixed-
order corrections RPert − δRResum at next-to-next-to-leading
order in αs [Eq. (59)]. While the authors of Ref. [5]
included the effect of the color-octet contribution in the
uncertainties, the uncertainty from the dependence on the
infrared cutoff was neglected. The numerical results for R
for ηc in Ref. [11] is also compatible with our results in the
background-field gauge method [Eq. (67)], but disagrees
with our results in naïve non-Abelianization [Eq. (66)]. The
uncertainties in the result of Ref. [11] is smaller than the
uncertainties in our results because in the fixed-order
calculation, the dependence on the renormalization scale
cancels at two-loop accuracy, and the uncertainty from the
uncalculated color-octet contribution is neglected. Also,
the fixed-order calculation in Ref. [11] suffers from a
sizable uncertainty from the nonconverging perturbation
series, which, for the case of ηc, can be of relative order one.
The authors of Ref. [11] also made a prediction of R for the
decay of ηb, which agrees with our results in Eqs. (68) and
(69) within uncertainties. The uncertainties in our results
are smaller than the uncertainty in the prediction from
fixed-order perturbation theory in Ref. [11]. Although in
the case of ηb, the estimated renormalon ambiguity in the
perturbation series for R is smaller than the case of ηc, our
estimate of the ambiguity is larger than the uncertainties in
our numerical results in Eqs. (68) and (69). Therefore, we
conclude that resummation is necessary in order to obtain
an accurate prediction of R for the decay of ηb.
In Ref. [29], the authors applied the principle of maximal

conformality to the perturbative expression of R for the

decay of ηc valid to next-to-leading order in αs. The authors
of Ref. [29] claimed that a resummed perturbative expres-
sion can be obtained, where the β function that is associated
with the running of αs are absorbed into the coupling, by
using the principle of maximal conformality. However, we
find that our resummed result disagrees with the result in
Ref. [29]. The result in Ref. [29] also disagrees with the
result from fixed-order perturbation theory valid to next-to-
next-to-leading order in αs in Ref. [11].
It is noticeable that the uncertainty estimated from the

neglected color-octet contribution is quite significant for
both ηc and ηb. This suggests that in order to have a more
precise prediction of R, it is necessary to include color-octet
contributions in R. Including the color-octet contribution
may also reduce the uncertainty from the NRQCD cutoff
dependence, because the dependence on the NRQCD
cutoff cancels in the factorization formula between the
color-singlet and color-octet contributions. Since currently
it is not known how to calculate the color-octet matrix
element reliably, it would be important to develop new
ideas to investigate the nature of the color-octet matrix
element in NRQCD and other effective field theories such
as potential NRQCD, which may help constrain the color-
octet contribution.
In our numerical results we included corrections from

fixed-order calculations to next-to-next-to-leading order in
αs. While the bubble-chain resummation reproduces the
fixed-order corrections in the large nf limit, the fixed-order
corrections are still found to be significant beyond the large
nf limit; even after the bubble-chain resummation, the
numerical results for R for the decay of ηc suggest non-
convergence of perturbative corrections to persist beyond
the large nf limit. Therefore, in order to gain control over
the perturbation series of R for the decay of ηc, it may be
necessary to consider renormalon ambiguities beyond the
large nf limit. By inspecting the nf-dependence of the
fixed-order corrections to the electromagnetic decay rates
Γηc→γγ and ΓJ=ψ→eþe− , which are available up to two
[9,15,16] and three loops [31–35], respectively, we find
that the fixed-order corrections are also significant beyond
the large nf limit in those electromagnetic decay rates.
Hence, the bubble-chain resummation calculations of those
decay rates in Ref. [36] seem to fail to reproduce the fixed-
order calculations.
We have examined a method that is often employed for

computing renormalon singularities in the heavy-quark
pole mass described in Refs. [37,38], where the renormalon
ambiguities that scale like powers of ΛQCD are subtracted
from the divergent perturbation series. This method has an
advantage that it does not rely on the large-nf limit. We
have found that a naïve application of the method in
Refs. [37,38] to the electromagnetic decay rates Γηc→γγ ,
ΓJ=ψ→eþe− and the inclusive decay rate of ηc lead to
estimates of the perturbative series that are in poor agree-
ment with the fixed-order corrections.
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By combining the resummed result for R and the fixed-
order calculations valid up to next-to-next-to-leading order
in αs, we have obtained precise predictions of R for the
decay of ηb with uncertainties that could be as small as
5%. Therefore, the measurement of Γηb→γγ in ongoing and
future experiments is highly anticipated. We also look
forward to improved experimental measurements for the
decay rate of ηb, as well as the total and partial decay rates
of ηc.
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APPENDIX: COMPUTATION OF T(t;τ)

In this Appendix, we calculate Tðt; τÞ defined in
Eq. (22),

Tðt; τÞ ¼ 1

π2

Z
1

0

Z
1

0

dx dyIm

�
x−teiπt

xþ iε

�
Im

�
y−τeiπτ

yþ iε

�

× fðx; yÞθð1 − ffiffiffi
x

p
−

ffiffiffi
y

p Þ;

with fðx; yÞ given in Eq. (19). We need to calculate the
derivatives of Tðt; τÞ at t ¼ τ ¼ 0. As infrared regulators
we assume τ < 0 and t < 0 so that the integral over x and y
become finite. We then drop the small iε terms, and we
write T as

Tðt; τÞ ¼ 1

π2
sinðπtÞ sinðπτÞ

Z
1

0

Z
1

0

dx dy x−t−1y−τ−1fðx; yÞ

× θð1 − ffiffiffi
x

p
−

ffiffiffi
y

p Þ: ðA1Þ

Using change of variables y ¼ ð1 − ffiffiffi
x

p Þ2z, we obtain

Tðt; τÞ ¼ 1

π2
sinðπtÞ sinðπτÞ

Z
1

0

Z
1

0

dx dz x−t−1z−τ−1

× ð1 − ffiffiffi
x

p Þ−2τfðx; ð1 − ffiffiffi
x

p Þ2zÞ: ðA2Þ

Let us now focus on fðx; yÞ, which can be written as

fðx; yÞ ¼ ½ðð1 − ffiffiffi
x

p Þ2 − yÞðð1þ ffiffiffi
x

p Þ2 − yÞ�3=2
ð1 − x − yÞ2

¼ ð1 − xÞð1 − zÞ3=2 ð1 − ξ2zÞ3=2
ð1 − ξzÞ2

¼ ð1 − xÞð1 − zÞ3=2
X∞
j;k¼0

Cjkξ
2kþjzkþj; ðA3Þ

where

ξ ¼ 1 −
ffiffiffi
x

p
1þ ffiffiffi

x
p ; ðA4Þ

Cjk ¼ ðjþ 1Þ Γðk − 3=2Þ
Γð−3=2ÞΓðkþ 1Þ : ðA5Þ

Plugging Eq. (A3) in Eq. (A2) we obtain

Tðt;τÞ¼ 1

π2
sinðπtÞsinðπτÞ

X∞
j;k¼0

Cjk

Z
1

0

dzzkþj−τ−1ð1− zÞ3=2

×
Z

1

0

dxx−t−1ð1−xÞð1− ffiffiffi
x

p Þ−2τξ2kþj

¼ 1

π2
sinðπtÞsinðπτÞ

X∞
j;k¼0

CjkB

�
5

2
;kþ j− τ

�

×
Z

1

0

dxx−t−1ð1−xÞð1− ffiffiffi
x

p Þ−2τξ2kþj

¼ 2

π2
sinðπtÞsinðπτÞ

X∞
j;k¼0

CjkB

�
5

2
;kþ j− τ

�

×
Z

1

0

dXX−2t−1ð1−XÞ2kþjþ1−2τð1þXÞ1−2k−j

¼ 2

π2
sinðπtÞsinðπτÞ

X∞
j;k¼0

CjkB

�
5

2
;kþ j− τ

�

×Bð−2t;2kþ jþ2−2τÞ
×Fð2kþ j−1;−2t;2kþ jþ2−2τ−2t;−1Þ;

ðA6Þ

with the hypergeometric function

Fðα; β; γ; zÞ ¼ 1

Bðβ; γ − βÞ
Z

1

0

dx xβ−1ð1 − xÞγ−β−1

× ð1 − zxÞ−α: ðA7Þ
Using the identities

Fðα; β; γ; zÞ ¼ Fðβ; α; γ; zÞ; ðA8Þ

Fðα; β; γ;−1Þ ¼ 2−αF

�
α; γ − β; γ;

1

2

�
; ðA9Þ
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we replace

Fð2kþ j − 1;−2t; 2kþ jþ 2 − 2τ − 2t;−1Þ → 22t

× F

�
−2t; 3 − 2t − 2τ; 2kþ jþ 2 − 2τ − 2t;

1

2

�
;

Eq. (A6) reads

Tðt; τÞ ¼ 2

π2
sinðπtÞ sinðπτÞΓð−2tÞ22t

X∞
j;k¼0

ðjþ 1Þ

×
Γðk − 3=2Þ

Γð−3=2ÞΓðkþ 1Þ
Γð5=2ÞΓðkþ j − τÞ
Γð5=2þ kþ j − τÞ

×
Γð2kþ jþ 2 − 2τÞ

Γð2kþ jþ 2 − 2τ − 2tÞ

× F

�
−2t; 3 − 2t − 2τ; 2kþ jþ 2 − 2τ − 2t;

1

2

�
:

ðA10Þ
Using Legendre’s duplication formula and Euler’s reflec-

tion formula,

Γð−2tÞ ¼ 2−2tΓð−tÞΓð1=2 − tÞ
2Γð1=2Þ ; ðA11Þ

sinðπtÞ ¼ −π
Γð1þ tÞΓð−tÞ ; ðA12Þ

we now write Eq. (A10) as

Tðt; τÞ ¼ 1

Γð1þ tÞΓð1þ τÞ
Γð1=2 − tÞ

Γð1=2ÞΓð−τÞ
X∞
j;k¼0

ðjþ 1Þ

×
Γðk − 3=2Þ

Γð−3=2ÞΓðkþ 1Þ
Γð5=2ÞΓðkþ j − τÞ
Γð5=2þ kþ j − τÞ

×
Γð2kþ jþ 2 − 2τÞ

Γð2kþ jþ 2 − 2τ − 2tÞ

× F

�
−2t; 3 − 2t − 2τ; 2kþ jþ 2 − 2τ − 2t;

1

2

�
:

ðA13Þ
Note that we have

Tðt; 0Þ ¼ Tð0; tÞ ¼ sinðπtÞ
πtð1 − tÞ : ðA14Þ

This relation immediately yields Tð0; 0Þ ¼ 1.
The expression given in Eq. (A13) contains summations

over j and k. Now we discuss how to improve the radius of
convergences of the sums by adding and subtracting some
terms that can be summed up analytically. First, instead of
using Eq. (A3), we expand f as

fðx; yÞ ¼ ð1 − xÞð1 − zÞ3=2

×

�X∞
j;k¼0

Cjk½zkþjξ2kþj − f0 − f1ðzξÞkþj�

þ f0ð1 − zÞ−1=2 þ f1
X∞
l¼0

Γðlþ 1
2
Þ

Γð1
2
ÞΓðlþ 1Þ ðzξÞ

l

	
;

ðA15Þ
where f0 and f1 can be any constants or any functions of
t and τ that are analytic in the vicinity of the origin of
the complex-t and complex-τ planes. Then, we write
Eq. (A13) as

Tðt; τÞ ¼ T0ðt; τÞ þ T1ðt; τÞ þ T2ðt; τÞ; ðA16Þ
where

T0ðt; τÞ≡ f0
−τ

Γð1þ tÞΓð1þ τÞ
Γð7

2
Þ

Γð3
2
Þ
Γð3

2
− tÞ

Γð7
2
− 2tÞ

Γð2 − 2tÞ
Γð3 − τ − 2tÞ

ðA17Þ

T1ðt; τÞ≡ 1

Γð1þ tÞΓð1þ τÞ
Γð1

2
− tÞ

Γð1
2
ÞΓð−τÞ

X∞
l¼0

×
Γðlþ 1

2
Þ

Γð1
2
ÞΓðlþ 1Þ

Γð5
2
ÞΓðl − τÞ

Γð5
2
þ l − τÞ

×

�
f1

Γðlþ 2 − 2τÞ
Γðlþ 2 − 2τ − 2tÞ

× F

�
−2t; 3 − 2t − 2τ; lþ 2 − 2τ − 2t;

1

2

�

− f0
ðl − τÞΓð5

2
þ l − τÞ

Γð7
2
þ l − τ − 2tÞ

	
ðA18Þ

T2ðt; τÞ≡ 1

Γð1þ tÞΓð1þ τÞ
Γð1

2
− tÞ

Γð1
2
ÞΓð−τÞ

X∞
j;k¼0

ðjþ 1Þ Γðk − 3
2
Þ

Γð− 3
2
ÞΓðkþ 1Þ

Γð5
2
ÞΓðkþ j − τÞ

Γð5
2
þ kþ j − τÞ

×

�
Γð2kþ jþ 2 − 2τÞ

Γð2kþ jþ 2 − 2τ − 2tÞF
�
−2t; 3 − 2t − 2τ; 2kþ jþ 2 − 2τ − 2t;

1

2

�

− f1
Γðkþ jþ 2 − 2τÞ

Γðkþ jþ 2 − 2τ − 2tÞF
�
−2t; 3 − 2t − 2τ; kþ jþ 2 − 2τ − 2t;

1

2

�

− f0
2tkΓð5

2
þ kþ j − τÞ

Γð7
2
þ kþ j − τ − 2tÞ

	
: ðA19Þ
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Setting f0 and f1 to unity, the above expression for Tðt; τÞ is convergent for all t < 1. In particular, one can verify that
Tðt; τÞ does not have any singularity at t ¼ 1

2
although it contains a factor of Γðt − 1=2Þ. One can also show that

lim
τ→1

ð1 − τÞTðt; τÞ ¼ −
3

π
sinðπtÞ; ðA20Þ

and by symmetry argument

lim
t→1

ð1 − tÞTðt; τÞ ¼ −
3

π
sinðπτÞ: ðA21Þ
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