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Early exposure to immune stimuli, including maternal infection during the perinatal period,

is increasingly recognized to affect immune predisposition during later life. This includes

exposure to not only viral and bacterial infection but also parasitic helminths which

remain widespread. Noted effects of helminth infection, including altered incidence of

atopic inflammation and vaccine responsiveness, support further research into the impact

these infections have for skewing immune responses. At the same time, despite a

sea of recommendations, clear phenotypic and mechanistic understandings of how

environmental perturbations in pregnancy and nursing modify immune predisposition

and allergy in offspring remain unrefined. Schistosomes, as strong inducers of type 2

immunity embedded in a rich network of regulatory processes, possess strong abilities

to shift inflammatory and allergic diseases in infected hosts, for example by generating

feedback loops that impair T cell responses to heterologous antigens. Based on the

current literature on schistosomiasis, we explore in this review howmaternal schistosome

infection could drive changes in immune system development of offspring and how this

may lead to identifying factors involved in altering responses to vaccination as well as

manifestations of immune disorders including allergy.

Keywords: schistosomaisis, immune regulation, developmental immune modulation, maternal infection, allergy,

vaccines

INTRODUCTION

Growing research continues to expose the delicate immunological balance at the fetomaternal
interface, its vulnerability to perturbation by maternal infections, and the subsequent effects
of such disruptions on immune development and responses later in life. Bacterial infections
such as listeriosis remain key concerns that threaten healthy pregnancy (1). Perinatal viral and
bacterial infections have been shown to impact normal development and potentially lead to
behavioral shifts in later life (2). Attention has also been given to perinatal helminth infections,
which is understandable considering that schistosome infections alone affect over 200 million
people, including pregnant women. This means that a conceivably large number of children
are born having either direct or indirect gestational exposure to helminthic parasites and their
products, or maternal mediators produced in reaction to infection such as cytokines. Throughout
human evolutionary history such infections were likely to be even more prevalent, and as such,
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are intimately linked to the pressures under which the modern
immune system evolved. More generally, the interplay between
infections and the inflammatory responses they elicit present
significant events that feed into immunological memory, and
complement genetic components providing modulatory effects
through the lifetime of immunological challenges that shape
our immune predispositions. This includes modulatory immune
processes not only induced by microbes and parasites to
ensure their survival, but also as feedback responses to dampen
inflammatory sequelae and additional damage resulting from
infection. It therefore remains important to evaluate how
these exposures may be required in instructing tolerogenic
states that appear to be lacking or imbalanced in not only
the disproportionate responses that comprise allergy (3), but
also along the axis of immune surveillance between triggering
autoimmune disease and allowing the evasive survival of cancers
(4).

Much of the epidemiological impact of helminth infections
with strong immunomodulatory effects has been extensively
reviewed in Feary et al. (5), Janssen et al. (6), Wammes
et al. (7), including the range of effects that Schistosoma
mansoni infection, or exposure to its released products, live
or dead eggs, soluble egg antigen (SEA) extracts, or even
recombinantly expressed schistosome-derived proteins have
upon inflammatory and autoimmune diseases. This current
review instead aims to place these and more recent findings
within the context of perturbations during immune ontogenesis,
where much research has thus far focused on bacterial and
viral infections. By making an overview of mechanistic lessons
learnt from such approaches using other infection modalities,
we identify avenues for future research addressing potential
immunoregulatory processes induced via exposure to helminth
infection, which may help to develop understandings of how
these may be incorporated for beneficial interventions to
fine tune cellular responses to vaccines and control immune
disease.

REGULATION THROUGH “IMMUNE
EDUCATION”: MICROBIAL EXPOSURES
AND OTHER IMMUNOLOGICAL
CHALLENGES DURING KEY PHASES OF
EARLY LIFE

The latter half of the 20th century was marked by a dramatic
rise in the incidence of immune disorders and diseases of
chronic inflammation. Whether autoimmune conditions, such
as type 1 diabetes or multiple sclerosis, or allergic conditions
such as asthma, atopy, and atopic dermatitis (eczema), or
chronic pathologies like type 2 diabetes, metabolic syndromes or
inflammatory bowel disease, these conditions are tied through
shared underlying inflammatory processes (8) and the loss of
immune regulation, such as mediated through regulatory T cells
(9). This stark upsurge over such a relatively short time period,
evolutionarily, implicates environmental factors in the etiology,
which include dietary changes, psychosocial stress, xenobiotics
and pollutants, alterations to the commensal microbiome, and

changes to infectious burden (10, 11). Concerning the latter,
sanitary practices have led to a strong decrease in gastrointestinal
and fecal-oral parasitic infections, and the association of this with
hyperactive immune responses led to the formation of the so-
called “hygiene hypothesis” (12). The “old friends” expansion of
this theory supposes that human evolution under the burden
of such infectious agents, many of which dampen the immune
system in order to ensure their survival within their host,
produced a hypervigilant immune system, which, lacking these
dampening checkpoints in its more urbanized, sanitized form,
is free to cause immune-mediated pathology (13). The question
then arises whether the mechanisms used by these organisms,
parasites, for example, to dampen the immune system, can
inform us not only about the etiology of immune-mediated
diseases, but also perhaps provide potential avenues through
which to modulate the immune system, prevent overly reactive
states, and cool-down inflammatory predispositions.

Much work over the past decades has explored this
interplay between infection and immune disorders. Specific
immunoregulatory agents such as bacteria and other microbes
have been found in farming environments, supporting inverse
associations between early life farm exposure and allergy (14).
Transgenerational effects from maternal exposures include the
case of Acinetobacter lwoffii F78, a high LPS content, atopy-
protective bacterium from farming environments (15), which
was shown to upregulate suppressor molecules in lung epithelial
cells through a negative feedback loop and thus to dampen
airway inflammation, an effect also recreated by LPS exposure
alone (16). Perinatal application of this bacterium in mouse
models has been shown to render offspring hyporesponsive to
experimental airway inflammation, mediated at least in part
through providing increased maternal Toll-like receptor (TLR)
stimuli (17). Follow-up work identified epigenetic alterations to
the T cell compartment in such perinatally-exposed offspring,
where robust permissive signatures on IFN-γ promoters in
helper T cell populations inhibit experimentally-induced allergic
airway inflammation (17, 18). In another recently published
model, maternal infection withHelicobacter pylori also decreased
offspring responsiveness to experimental airway inflammation
induction, here mediated through induction of a regulatory T cell
phenotype in the offspring and recreated through transmaternal
application of the key H. pylori immunomodulatory compound
VacA (19). Increased interferon (IFN)-γ levels, one outcome
of typical viral or bacterial exposures, have been shown in a
mouse model through direct, controlled administration during
pregnancy to interrupt the progression of allergic phenotypes
(20). However, much work on the effects of viral infection during
pregnancy have highlighted the deleterious effects potentially
played by such maternal immune activation. Mouse models of
viral infection during gestation using poly I:C as an analog
for viral double stranded (ds)RNA have demonstrated mostly
adverse effects on offspring behavior triggered by the increase
in pro-inflammatory cytokines, such as IL-6 and IL-17A (21).
More recently, these effects in offspring were also replicated
using preconception microbiota transfer from such poly I:C
exposed mice, highlighting a role for microflora in regulating and
mediating these effects (22).
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Exposure to a range of environmental factors, such as
maternal and paternal stress, diet, and other practices
(such as antibiotic usage) that effect microbiota during
early life, have demonstrated impact on the development of
conditions including immune disorders, allergy, as well as
neurodevelopmental disorders such as autism and schizophrenia
(23, 24). Maternal factors beyond infection, including toxins,
stress, and obesity, can impact inflammation and have been
implicated in altered immune and behavioral outcomes in
offspring (25). In general terms of immune development, the
impressionable time window of the prenatal period and the first
“1,000 days” presents numerous challenges to the developing
immune system that can either push it toward the development of
non-communicable diseases (such as inflammatory conditions)
or toward increased states of maturation associated with healthy
responses (26). In fact, such alterations to maturation of the
immune system are associated with switches in immune response
that highlight the age and life-stage specificity of appropriate
immune responses. For example, although increased IL-13 is
a hallmark of allergic and atopic conditions, faulty or reduced
fetal and neonatal mitogen-induced IL-13 responses upon
stimulation of cord blood mononuclear cells were associated
with a family history of atopy, with increased responses
therefore taken as a potential indicator of healthy immune
maturation (27). However, increased IL-13 production from
stimulated CD4+ T cells isolated from cord blood has also
been associated with increased rates and severity of atopy and
eczema (28). Additionally, following early life farm exposure,
lower incidence of allergy was associated with increased levels
of FoxP3+ regulatory T cells (Tregs) in peripheral blood at
4.5 years of age, and yet with decreased levels of such Tregs
by 6 years of age (29), indicating age-related fluctuations in
these features. These signify the dynamic processes involved in
healthy immunoregulation, and the complexity of regulatory
processes that probably underlie immune phenomena resulting
from altered maternal exposures. The following sections review
studies on how perinatal helminth infection can serve to induce
similar end-point shifts in allergic responses in offspring as
seen with protective microbial exposures, most likely also
through complex networks of immunological feedback. What
sets helminth infections apart from bacterial and viral infections,
however, is that they induce predominantly type 2 immune
responses and employ complex strategies to avoid clearance
and attain chronicity. So, while such studies bear similarities
to modalities of microbial exposure-induced regulation, and
potentially similar effects to the disrupting immunological
stimulation evoked by viral infection, there are also important
points of difference.

IMMUNOMODULATION THROUGH
Schistosoma mansoni INFECTION

The “old friends” expansion of the hygiene hypothesis includes
parasitic helminth infections within the range of exposures which
can alter inflammatory disease and allergy. The strong type
2 responses which characterize chronic Schistosoma mansoni

infections are largely stimulated by the parasite eggs and
their soluble molecules, that also induce strong autoregulation
to dampen inflammatory responses (30–33). Such chronic
infections have a demonstrated effect on suppressing bystander
immune responses which has been extensively reviewed (34–
36). Some of the strongest data for associations between
helminth infection in humans and immunomodulation pertain
to reduced allergic skin-prick testing responses. For example,
a Brazilian study of people with heavy S. mansoni infections
were on average 5-fold less reactive to skin-tests with allergens
compared to matched uninfected individuals from the same
region (37), further assessed in Feary et al. (5). More recently,
a study on Ethiopian rural migrants moving to urbanized
areas in Israel found they had less allergy if they harbored
an S. mansoni infection, and displayed significant increases in
allergy if they underwent antihelminthic treatment (38). On a
mechanistic level, responses to Derp1 (a major dust allergen)
in S. mansoni-infected asthmatics, compared to uninfected
asthmatics, showed reduced allergen-induced IL-4 and IL-5 levels
from PBMCs, while the allergen-induced IL-10 production was
higher from these infected individuals (39, 40). Murine studies
also support observations that S. mansoni reduces severity of
pathology resulting from co-infections such as malaria, including
progression to cerebral malaria (41), as well as inflammation
from autoimmune processes (42).

Concerning the underlying mechanisms of such interactions
in immunological terms, the classical paradigm of imbalanced
type 1/type 2 immune responses might not be applicable to
the effects that schistosome infection have on allergic type 2
responses, possibly due to their very dynamic immune phases
and presentations. Indeed, the strong suppressive effects of
helminth infection upon allergy appear to be in chronic phases
where type 1 responses have largely subsided, and instead are
replaced by an immune state characterized by modified type
2 immune processes coupled to suppressive, regulatory aspects
such as regulatory and IL-10-producing T and B cells (31,
43). As such, rather than simply modifying the type 1/type 2
balance, the persistent challenge with immune stimuli, such as
a broad spectrum of diverse microbiota, infections, and parasites,
induces a regulatory network that is more equipped or primed
to effectively manage challenge with novel stimuli, such as
potential allergens. The apparent paradox of helminths, as strong
type 2 stimuli, reducing atopic inflammation, despite association
with increased sensitization to allergens such as allergen-
specific IgE levels (44), but with the presence of increased IL-
10 levels, invites investigation into regulatory feedback loops
induced by schistosomes that overshoot to suppress wider
inflammatory responses to other antigens (45). Studies on
infected mice have found reduced cytokine production and
lowered T cell proliferation to heterologous antigens to be largely
dependent on parasite infection-related increased IL-10 levels
(46). Further, these effects are associated with the induction
of regulatory phenotypic changes in immune cells, including
alternative activation of macrophages, induction of myeloid
derived suppressor cells, tolerogenic phenotypes in dendritic
cells, and regulatory IL-10 producing T and B cells, as reviewed
in Wammes et al. (7).
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EFFECTS OF MATERNAL
SCHISTOSOMIASIS ON VACCINE
EFFICACY IN OFFSPRING

Additionally, the suppressive bystander effects from the type
2 and regulatory immune responses present during chronic
helminth infections are associated with altered vaccine efficacy,
including effects of chronic schistosomiasis on reducing
protective type 1 responses raised against tetanus vaccines
(47) and Hepatitis B (48), reflecting the dampening effects of
Trichuris trichiura on antibody titers obtained from anti-malarial
vaccines (49). As such, discovery of effective vaccines therefore
continues to be a particular concern for communities where
helminths are endemic (50). Murine models have also displayed
reduced vaccine efficacy following schistosoma infection, for
example, againstMycobacterium tuberculosis (51), reducing type
1 responses typified by IFN-γ and instead increasing type 2
responses. Recently, experimental murine S. mansoni infection
inhibited effective cellular and antibody responses against novel
HIV vaccines, with even the presence of schistosoma eggs
alone (as a result from de-worming) able to reduce humoral
vaccine responses (52). Nevertheless, effects of antihelminthic
treatment on vaccine efficacy in human cohorts remains unclear
(53, 54). Further, there are indications that modified responses
to vaccines may be transferred to the newborn children of
infected mothers (55, 56). Cohort studies, for example, have
shown that developmental exposure to maternal helminth
infection, with measurable effects on offspring immune priming
including altered IL-10 levels in cord blood, can reduce levels of
protective IgG in response to vaccination against Haemophilus
influenzae type B and Diphtheria (57, 58). A further sign of
transgenerational immunomodulation is the observation that
infantile eczema is low in children of S. mansoni-infected
mothers, and can increase upon anti-helminth treatment of
mothers (59). There is also evidence that maternal schistosomes
can sensitize human offspring in utero through altered total and
schistosome-specific IgE levels, and increased signs ofmaturation
in B cells (60, 61). As such, maternal exposures driving altered
responses to homologous (i.e., schistosome) antigens could
represent an effect of antigen-specific maternal tolerization,
already demonstrated in mice using model antigen ovalbumin
(OVA) (62). Schistosome antigens and antibodies can transfer to
and persist in offspring (63, 64), and such pre-sensitization via
prior exposure to acutely infected mothers was shown to alter
susceptibility to subsequent infection of murine offspring (65–
67). Here, acute maternofetal exposure to S. mansoni attenuated
the pathogenesis of schistosomiasis in adult age offspring (66)
indicating potential adaptive immune mechanisms of antigenic
transfer to the fetus and neonates and subsequent sensitization.

MECHANISMS OF IMMUNOMODULATION
THROUGH MATERNAL INFECTION

Maternal parasitic infection history has in particular been shown
to have a range of potential stimulatory effects on the maturation
of the developing immune system, one outcome of which is

often induced tolerance, particularly regarding the homologous
pathogen itself (68). For example, early-life exposure can yield
tolerance to parasites such as malaria, which may also lead
to increased susceptibility to the same infection in later life
through suppression of antigen-presenting cell function and T
cell responses (69). Interestingly, cord blood cells from neonates
from geographical locations highly endemic for helminth and
malarial infections show many signs of immunological maturity,
including lower proportions of B cells expressing the immaturity
marker CD5, and lower expression of CD27 and CD28 on
CD4+ T cells, indicating downregulation through antigen-
experience (70). Mouse models have shown that alongside the
tolerogenic effects of reduced allergic inflammation severity for
infected hosts during patent chronic infection, characterized
by IL-10 production (33), this chronic infection in dams
imprints a regulatory phenotype of suppressed allergic responses
upon exposed but uninfected adult offspring (71). Multiple
sources show indications thatmaternal schistosomiasis inmurine
systems reduces adaptive immune responses to antigens, but
these are highly dependent upon the specific modes and time
points of exposure to maternal infection during pregnancy.
There are however conflicting reports of an altogether opposite
effect (increased humoral response) contributed by breastmilk
(72, 73) of schistosome infected murine mothers, although
the effects of this may be dependent on the specific models
used and timepoints employed. In fact, mating infected female
mice during early patent infection (as opposed to the late
chronic phase), where there is a strong increase in type 2
cytokines, yields increased allergic responsiveness in offspring
(71). This strongly implicates a mechanistic role for the
divergent effects of maternal cytokines and immune cell profiles
during these distinct immune phases, which remains to be
explored.

Although complete descriptions of the underlying changes
involved in these processes are lacking, there are indications that
lasting modifications modify the behavior of key immune cells
involved in mounting adaptive immune responses. This includes
a report of altered antigen presentation, with altered expression
of co-stimulatory molecules CD40, CD80, and CD86 during
vaccination-based sensitization in adulthood, although these are
further complicated by divergent effects (increased or decreased
co-stimulatory signaling) from in utero exposure vs. through
nursing (74). On the other hand, initial reports indicate that
the T cell compartment itself may be modified, including altered
production of type 2 cytokines IL-4 and IL-5, coupled with more
repressive histone acetylation patterns upon the promoters of
those effector cytokines on CD4+ T cells from murine offspring
exposed to this schistosome-induced regulatory environment in
utero and during nursing (75), as already demonstrated to reduce
responsiveness to airway inflammation (71). Consequently,
bystander modulatory effects of schistosome exposures on
responses to heterologous antigens (such as the ability to modify
immune disease, vaccination responses, or the effects of model
allergen ovalbumin in animal models) remain a key area of active
investigation. The effect of maternal schistosomiasis in humans
upon the effective development of antibody titres remains
unclear, for example, following Hepatitis B vaccination (76), as
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is the role of any antibody-mediated effect in experimentally-
induced allergy models (71). Similarly, its impact upon vaccine
efficacy in children remains inconsistent, with recent studies
contrasting previous results by showing no effect regarding
diphtheria and tetanus, but reduced measles vaccine responses
(77). The regulatory networks induced by S. mansoni infection
can also impact response to viral infections, with infected
mice having impaired clearance of vaccinia virus (78), and this
increased persistence appears mediated by suppression of CTL

activity by a macrophage-like cell induced by schistosomiasis
that operates through soluble factors (79), a potential pathway
that could operate in transgenerational modulation of offspring
but remains unexamined. Table 1 summarizes the major
findings from models exploring immunomodulation through
transmaternal parasite exposure, with a focus on helminth
infection.

Mechanistically, cross-reactivity between antibodies raised
against S. mansoni egg antigens and allergic plants [notably

TABLE 1 | Overview of immunomodulation through maternal parasite infection.

Parasite and model Study design Outcome of transmaternal exposure References

Human maternalWuchereria bancrofti

or Schistosoma haematobium

In vitro infant peripheral

blood mononuclear cell

(PBMC) assessment 10–14

months after BCG

vaccination at birth

Reduced type 1 cytokine responses and increased type

2 responses to vaccine antigen

(56)

Human maternal malaria and/or

multiple helminth infections

36-months follow-up after

infant vaccination

Reduced IgG responses to Haemophilus influenzae type

B and Diphtheria vaccinations

(57)

Human maternal malaria and/or

multiple helminth infections

30-months follow-up after

infant vaccination

Increased in vitro cord blood mononuclear cell (CBMC)

IL-10 responses to parasite-antigen (schistosome and

filaria) and later reduced vaccine-induced IgG

(58)

Human maternal Schistosoma

mansoni

Anthelminthic treatment

during pregnancy, follow-up

medical assessment

Untreated antenatal infection is associated with

decreased risk of infantile eczema, but anthelminthic

treatment increased risk

(59)

Comparison of helminth-endemic

region of Kenya compared to

non-endemic USA subjects

CBMC cells assayed in vitro

for antibody production

Spontaneous IgE production, and increased

helminth-antigen induced IgE and IgG

(60)

Human maternalWuchereria bancrofti

or Schistosoma haematobium

Assessment of cord blood

plasma and CBMCs

Increased sign of mature in B cells as well

schistosome-specific IgE

(61)

Mouse model of acute maternofetal

exposure to Schistosoma mansoni

Re-infection of offspring

from infected mothers

Presence of schistosome-specific IgG in exposed

neonates, and subsequent reduced susceptibility to

infection

(66)

Human maternal Schistosoma

mansoni

Assessment of cord blood

and later of infant urine

Schistosome-specific IgG detected in cord blood, and

schistosome antigens detected in infant urine up to 24

months

(64)

Human maternal Plasmodium

falciparum

In vitro assessment of

CBMCs

Parasite Ag-specific type 1 T cell responses reduced in

cases of active infection, and instead regulatory

responses, alongside reduced activation markers on

APCs.

(69)

Comparison between endemic region

for helminth and malaria and

non-endemic region

Surface marker assessment

of CBMCs

CBMCs from parasite-endemic regions show increased

signs of maturity in lymphocyte populations

(70)

Murine maternal Schistosoma

mansoni infection model

Offspring challenged with

experimental allergic airway

inflammation and epigenetic

analysis of T cell

compartment in steady

state

Modulation of offspring allergic response according to

maternal infection phase. Tolerogenic late chronic phase

associated with epigenetic shift in CD4+ T cells, and

subsequent cytokine production capacity

(71, 75)

Murine maternal Schistosoma

mansoni infection model, using

cross-fostering to distinguish in utero-

from nursing-derived effects

Offspring from infected

mothers challenged model

ovalbumin vaccination or

cognate (schistosome)

infection

Differential effects from schistosome exposure through

nursing (which increased humoral response) compared

to in utero exposure (which lead to IL-10-mediated

tolerizing effects, and reduced co-stimulatory signalling

from APCs)

(72–74)

Human maternal Schistosoma

mansoni

6-months assessment

following infant vaccinations

No apparent effect on antibody titres (76)

Human maternal Plasmodium

falciparum and/or Schistosoma

mansoni

2-years assessment

following infant vaccinations

Maternal schistosomiasis was associated with reduced

antibody titres in response to measles vaccine

(77)
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recently discovered for peanut (80) and grasses (81)] lend
weight to the possibility that the modified type 2 response may
induce the suppressed immunological responses to non-related
antigens with features similar to those seen in individuals treated
successfully with immunotherapy. This in turn may operate
by virtue of glycans shared between plants and helminths yet
absent from mammals, termed as cross-reactive carbohydrate
determinants (CCDs) (81). In transgenerational models, there
is the further possibility of epitopes from such antigenic
compounds being presented within the more tolerogenic
gestational context in utero, or to neonates via breastmilk,
highlighting how an increased range of antigen exposures during
this key “window of opportunity” could have direct effects
on shifting immune cell populations in offspring away from
hyperresponsiveness later in life. But again, mode, duration, and
context of exposure may be key in determining the balance
between sensitization and tolerization. For example, studies
where murine neonates (similarly within an early-life window,
but post-birth) were exposed schistosome antigens found
an increased predisposition toward increased inflammatory
sequelae, at least in regard to later secondary contact with
schistosomes (82). And yet, in other contexts, modified protocols
of schistosome egg exposures beginning at a similarly early
age were found to completely abrogate genetically-predisposed
autoimmune disease in non-obese diabetic (NOD) mouse
models (83).

In terms of altering T cell responses to heterologous antigens,
schistosome oligosaccharide Lacto-N-fucopentaose III (LNFPIII)
was able to effect co-cultures of dendritic cells and T cells by
suppressing type 1 responses (measured by IFN-γ production)
from CD4+ T cells without a drop in CD8+ activity (84).
LNFPIII was shown to program dendritic cell behavior leading
to altered CD40/CD40L-dependant effects on natural killer cell
activation, and also to drive monocytes toward an alternatively
activated phenotype (85). In utero exposure to such compounds
may warrant further investigation as potential mechanisms for
training antigen presenting cell phenotypes to drive altered T
cell responses, as would echo recently described mechanisms
for transmaternal exposure to immunomodulatory compounds
from H. pylori (19). Additionally, the gestational cytokine
environment appears to differ during allergy-protective acute
(pre-patent) and chronic maternal phases of schistosomiasis
(IFN-γ and IL-10-dominated responses, respectively) (71). Such
signals may operate through divergent mechanisms to alter
immune development, and whether their potential effects occur
directly or indirectly, remain to be disentangled, as does their
relationship to other potential specific mechanisms such as
derived from immunomodulatory schistosome compounds or
antigenic interactions, Even increased IL-10 itself can have
differential activities upon CD4+ vs. CD8+ function (86),
which may be revealed as a significant factor in, for example,
fine tuning vaccine efficacy where protective immunity can be
associated specifically with adequate amounts of memory T cell
populations.

A final mechanistic angle for transmaternal effects of
schistosomiasis that cannot be excluded at this point is
modification of the microbiome and metabolome. Schistosomes

do not inhabit the intestinal lumen, as do other helminths
such as the nematode Heligmosomoides polygyrus. However,
their relationship to gut inflammation, including as driven
by the passage of schistosome eggs through the intestinal
epithelia, warrants their discussion in driving potential changes
in microbiota, with associated shifts could have implications
for the metabolome and its influence on immune priming
(87). More generally, studies on the gut microbiome have
yielded strong data on associated changes to metabolite profiles,
including anti-inflammatory short-chain fatty acid (SCFA)
profiles greatly implicated in gut-health-associated processes
of immune tolerization (88). Direct changes to SCFA have
been shown through in utero exposure to reduce offspring
responsiveness to allergic airway inflammation, with mouse
models showing this associated with additional changes to
transcriptional profiles of Treg-relevant epigenetic pathways
in fetal lungs (89). Additionally, metabolite profiles of urine
from schistosome infected mice indicate changes driven by
altered liver function (90) which warrant further investigation
of metabolite-driven effects on offspring development, aside
from potential changes associated with microbiota. Particularly,
skewed expression of genes associated with placental production
of steroid hormones during murine schistosome infection (71),
and early evidence from a human study supporting that this
may also be the case in humans (91), suggests metabolic changes
associated with the glucocorticoid and hormonal axis that may be
implicated in driving developmental changes in offspring leading
to altered immunity.

CONCLUSION

Continued exposure to the complex sets of foreign epitopes and
antigenic stimuli present and secreted by helminths would ensure
a constant challenge to the immune system during ontogenesis,
combined with enhanced regulatory signaling via maternal
cytokines during the key early-window during development.
The resulting immune education, with the potential outcome of
a highly trained network of regulatory immune processes and
suppressive signals, may produce a pre-set, helminth specific
immune memory that might either protect against immune
sequelae of infection of offspring (e.g., schistosomiasis) or might
lead to enhanced susceptibility (e.g., filariasis) to infection.
Interestingly, the parasite would profit from either situation.
These signals may also mitigate the response to immune
challenge with, for example, otherwise strong allergens.

In terms of populations where helminth infection is endemic,
these concerns must be considered in relation to not only
interventions during and post- pregnancy, but also in the wider
trend toward personalizing medicine in understanding how
past and current microbial and parasitic exposures have led
to individualized skewing or training of the immune system.
This individual history of immunogenic exposures may be
at the root of not only idiosyncratic responses to standard
vaccine protocols, but also the appearance of inflammatory
and immune disease, meaning that practical application of
continued work in this area extends far beyond support
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of de-worming or controversial re-worming practices. As
such, deeper understanding of how schistosomes and their
compounds can manipulate the immune system could teach
us more general lessons about fine control over immune
responses. By examining these processes during the highly
vulnerable in utero and early postnatal periods, we could gain
mechanistic insight into the influence wielded by environmental
exposures and interventions during these impressionable
time points and subsequent outcomes for immune
health.
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