
Shallow Water Waves on a Deep Technology Stack:
Accelerating a Finite Volume Tsunami Model using
Reconfigurable Hardware in Invasive Computing

Alexander Pöppl1, Marvin Damschen2, Florian Schmaus3, Andreas Fried2,
Manuel Mohr2, Matthias Blankertz2, Lars Bauer2, Jörg Henkel2, Wolfgang

Schröder-Preikschat3, Michael Bader1

1) Technical University of Munich, Germany
2) Karlsruhe Institute of Technology, Germany

3) Friedrich-Alexander University Erlangen-Nürnberg, Germany

The 10th Workshop on UnConventional High Performance Computing 2017
August 28th, Santiago de Compostela, Spain

Motivation

• Heterogeneous Environments commonplace in HPC
– NVidia Tesla GPUs, Intel Xeon Phi, …
– New: Application-specific hardware (Google Tensor Processing Units, Microsoft

Catapult, Anton 2)

• Reconfigurable fabric commonly used in embedded scenarios
– Performance comparable to ASICs
– May be reconfigured at run time.
– Special case: Reconfigurable fabric and CPU on the same chip

19

More Efficient More Flexible

GPUs, MICsFPGAsASICs

Motivation

• Heterogeneous Environments commonplace in HPC
– NVidia Tesla GPUs, Intel Xeon Phi, …
– New: Application-specific hardware (Google Tensor Processing Units, Microsoft

Catapult, Anton 2)

• Reconfigurable fabric commonly used in embedded scenarios
– Performance comparable to ASICs
– May be reconfigured at run time.
– Special case: Reconfigurable fabric and CPU on the same chip

20

More Efficient More Flexible

GPUs, MICsFPGAsASICs i-Core

Invasive Computing

22

InvasIC Architecture
Heterogeneous Tiled
Architecture

Invasive Computing

23

InvasIC Architecture
Heterogeneous Tiled
Architecture

OctoPOS
Parallel Operating
System

Invasive Computing

24

InvasIC Architecture
Heterogeneous Tiled
Architecture

OctoPOS
Parallel Operating
System

X10i (based on libFIRM)
Invasive X10 Compiler
and Runtime

Invasive Computing

25

InvasIC Architecture
Heterogeneous Tiled
Architecture

OctoPOS
Parallel Operating
System

X10i (based on libFIRM)
Invasive X10 Compiler
and Runtime

SWE-X10 (in ActorX10)
Application utilizing i-Core
Acceleration

█ Application █ Middleware █ Hardware

The InvasIC Hardware Architecture

• Heterogeneous Multipro-
cessor System-on-Chip

• Tiled Architecture
– RISC Tiles
– i-Core Tiles
– Memory & I/O Tiles
– No inter-tile cache coherence

• Connected through
Network-on-Chip

• Heterogeneous Memory
– Tile-local Memory
– Global memory (Off-Tile, via NoC)

26

CPU CPU

CPU CPU

NA Memory

CPU CPU

CPU CPU

NA Memory

Memory
NA

CPU CPU

CPU i-Core

NA Memory
NoC
Router

NoC
Router

NoC
Router

NoC
Router

OctoPOS – The Invasive Operating System

• Parallel Operating System
tailored for systems with
1000+ cores

• Non-traditional threading
scheme: i-lets
– Run-to-Completion semantics with

cooperative scheduling
– Exclusive resource access
– Binding of i-let to execution context

only at blocking operations
– Recycling of execution contexts:

Little Overhead for creation,
scheduling and dispatch

27

InvadeX10 – The Invasive Language

• Asynchronous Partitioned Global Address Space (APGAS)
– Activities within an X10 Place may freely access objects allocated by activities

spawned in the same Place
– Global Reference to objects in other places possible
– Remote objects not accessed directly, instead creation of copies or place-shift

28

Place M Place N

• Natural fit for InvasIC
– Activities � i-lets
– Places � Tiles
– Serialization � Direct Cloning

• Invasive Compiler x10i
– Implements Resource-awareness

(invade, infect, retreat)
– Direct use of OctoPOS APIs
– Emits Assembly (SPARC, x86)

SWE-X10 – Shallow Water Equations in X10

• Proxy Application for simulation of shallow water waves
• Compute propagation of tsunamis given initial displacement
• Simulate inundation of coastal areas

29

Image: Bachelor-Lab Tsunami Simulation
http://www5.in.tum.de/wiki/index.php/Tsunami_Simulation
_-_Winter_15

SWE-X10 - Discretization

• Finite volume scheme on a Cartesian grid with piecewise
constant unknown quantities and Eulerian time step

30

Image: Bachelor-Lab Tsunami Simulation
http://www5.in.tum.de/wiki/index.php/Tsunami_Simulation
_-_Winter_15

SWE-X10 - Discretization

31

B��Qi,j� 1
2

A��Qi� 1
2 ,j

A+�Qi+ 1
2 ,j

B+�Qi,j+ 1
2

SWE-X10 - Discretization

32

A��Qi� 1
2 ,j

SWE-X10 - Discretization

33

SWE-X10 - Discretization

34

SWE-X10 - Discretization

35

SWE-X10 - Discretization

36

B��Qi,j� 1
2

SWE-X10 - Discretization

37

SWE-X10 - Discretization

38

SWE-X10 - Discretization

39

i-Core

• Combination of “normal” CPU core and application-specific
accelerators (through FPGA fabric)
– Realized through Custom Instructions (CI)
– May be loaded at run time by application

40

Acceleration of SWE-X10 using i-Core

• Custom Instruction for computation of approximate solutions
of Riemann Problems (f-Wave solver)

• Pipelined Accelerators (for operations used in solver):
– FP_MAC (3-5cy),
– FP_DIV (6 cy),
– FP_SQRT (5 cy),
– FP_UTIL (3 cy)

• Performs all 54 floating point operations as single CI
– Data-flow graph with 97 nodes/operations
– 5 accelerators used: 2x FP_MAC, 1x FP_DIV, 1x FP_SQRT and 1x FP_UTIL

• Configuration at application startup

41

Adaptions in SWE-X10

44

Tile-Local Memory

Previous

Current

Next

Adaptions in SWE-X10

45

Tile-Local Memory

Previous

Current

Next

L0
L1

Adaptions in SWE-X10

46

Tile-Local Memory

Previous

Current

Next

L0
L1

H0

Adaptions in SWE-X10

47

Tile-Local Memory

Previous

Current

Next

L0
L1

H0 ⏎

Ln+1

Vn-1,n

Adaptions in SWE-X10

48

Tile-Local Memory

Previous

Current

Next

L0
L1

H0 ⏎

Ln+1

Sn-1

Vn-1,n

Hn

Adaptions in SWE-X10

49

Tile-Local Memory

Previous

Current

Next

L0
L1

H0 ⏎

Ln+1

Sn-1

Cn-1

Vn-1,n

Hn

Adaptions in SWE-X10

50

Tile-Local Memory

Previous

Current

Next

L0
L1

H0 ⏎

Ln+1

Sn-1

Cn-1

Vn-1,n

Hn

Adaptions in SWE-X10

51

Tile-Local Memory

Previous

Current

Next

L0
L1

H0 ⏎

Ln+1

Sn-1

Cn-1

Vn-1,n

Hn

Adaptions in SWE-X10

52

Tile-Local Memory

Previous

Current

Next

L0
L1

H0 ⏎

Ln+1

Sn-1

Cn-1

Vn-1,n

Hn Sn

Evaluation

• Two Potential sources of performance gain:
– Tile-local memory
– i-Core

• Single iteration on one patch with 60x60 grid cells

54

LEON GM LEON TLM i-Core GM i-Core TLM
Speedup 1 1,75 2,01 4,82
Execution time [ms] 2049 1169 1017 425

0
500
1000
1500
2000
2500

0
1
2
3
4
5
6

SP
EE

D
-U

P

Outlook

• Model HLLE Riemann solver – enable coastal flooding
• Evaluate whole-system performance benefits
• Scale to and evaluate with larger hardware configuration (e.g.

4x4 tiles with ~64 cores multiple i-Cores)

56

CPU CPU

CPU CPU

NA Memory

CPU CPU

CPU CPU

NA Memory

Memory
NA

CPU CPU

CPU i-Core

NA Memory
NoC
Router

NoC
Router

NoC
Router

NoC
Router

CPU CPU

CPU CPU

NA Memory

CPU CPU

CPU CPU

NA Memory

Memory
NA

CPU CPU

CPU i-Core

NA Memory
NoC
Router

NoC
Router

NoC
Router

NoC
Router

CPU CPU

CPU CPU

NA Memory

CPU CPU

CPU CPU

NA Memory

Memory
NA

CPU CPU

CPU i-Core

NA Memory
NoC
Router

NoC
Router

NoC
Router

NoC
Router

CPU CPU

CPU CPU

NA Memory

CPU CPU

CPU CPU

NA Memory

Memory
NA

CPU CPU

CPU i-Core

NA Memory
NoC
Router

NoC
Router

NoC
Router

NoC
Router

CPU CPU

CPU CPU

NA Memory

CPU CPU

CPU CPU

NA Memory

Memory
NA

CPU CPU

CPU i-Core

NA Memory
NoC
Router

NoC
Router

NoC
Router

NoC
Router

CPU CPU

CPU CPU

NA Memory

CPU CPU

CPU CPU

NA Memory

Memory
NA

CPU CPU

CPU i-Core

NA Memory
NoC
Router

NoC
Router

NoC
Router

NoC
Router

CPU CPU

CPU CPU

NA Memory

CPU CPU

CPU CPU

NA Memory

Memory
NA

CPU CPU

CPU i-Core

NA Memory
NoC
Router

NoC
Router

NoC
Router

NoC
Router

Thank you.

Questions?

Acknowledgements
This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research
Centre "Invasive Computing" (SFB/TR 89).

57

