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Summary

Patients and doctors are interested in making informed decisions whether to perform a prostate

biopsy or not. It is therefore important to get individualized risk assessments of prostate can-

cer before biopsy, which constitutes a main focus of this thesis. The data analyzed comprises

8492 observations and stems from the ongoing US Prostate Biopsy Collaborative Group,

which gathers individual-level prostate cancer data from ten international institutes. We in-

vestigated improvements of current prediction models for prostate cancer using six estab-

lished risk factors, including age, prostate-specific antigen, digital rectal examination, African

ancestry, first degree family history, and prior negative biopsy, by incorporating cohort hetero-

geneity, enabling contemporary data and allowing for more flexible model structures.

In order to ensure a valid comparison of the new approaches with existing risk tools, this

thesis extensively discusses common validation methods. We particularly investigated their

variability structure and derived for the first time analytical confidence intervals for clinical net

benefit curves. To compare models, we implemented these validation methods using among

others a 252-permutation-based sampling plan of all ways to split the ten available sites into

five used for training a model and five for testing.

One of the main advantages of multiple cohorts is the possibility of a resultant more gener-

ally applicable risk calculator, which can reach a broader range of patients. Furthermore, the

combination of multiple cohorts reduces the overall recruitment time and can therefore ensure

contemporary data. However, patients from distinct sites may no longer be homogeneous,

due to differing clinical assessments or population types. We implemented three contempo-

rary approaches to integrate data from multiple sources for performing logistic regression.

The first approach simply pools individual-level data from all sites, the second performs a

cohort specific random effects model, and the third a traditional random effects meta-analysis

that builds models separately to each cohort. We could not identify a single method to out-

perform the other approaches. This result supports the common practice of simply pooling

data across diverse cohorts. Furthermore, meta-analyses performed equivalently with the

additional advantage of scalability: Models can be built locally at individual cohort sites with

summaries transported for centralization, making an overall data storage redundant and re-

ducing organizational workload.

The risk prediction tool of the Prostate Cancer Prevention Trial (PCPT) is available online and

widely used. However it utilized data from the 1990s and the considered observations were

thus based on six-core biopsies and outdated grading systems. We used multinomial logistic

regression, adjusted for diverse missingness structures, to investigate the benefits of updating

the PCPT risk calculator by using contemporary data. In addition to internal cross validation

within North American sites we performed external validation on selected European cohorts.

The new models showed superior performance, in particular improved calibration and clinical
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net benefit. These results stress the importance of contemporary data as these become

available.

Comparison of standard logistic regression with more flexible machine learning methods, like

k-nearest neighbor, random forests and artificial neural network approaches, showed only

small differences in the setting of merely six covariates. However, the investigation identified

random forests and artificial neural networks as suitable approaches, disregarding a shortfall

in interpretability compared to logistic regression. Whereas random forests were easier to

implement, artificial neural networks showed better calibration.

The resulting model of this thesis is a multinomial logistic regression based on 8492 obser-

vations and the covariates age, prostate-specific antigen, digital rectal examination, African

ancestry, first degree family history, and prior negative biopsy. It is used by doctors and

patients with the online risk tool available on the Memorial Sloan Kettering Cancer Center

website and the Cleveland Clinic Risk Calculator Library.
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Zusammenfassung

Fundierte Entscheidungen über eine mögliche Prostatabiopsie haben für Patienten und Ärzte

einen besonderen Stellenwert. Der Schwerpunkt dieser Arbeit liegt daher auf der individu-

ellen Risikobewertung für Prostatakrebs. Die analysierten Daten umfassen 8492 Beobach-

tungen aus der fortlaufenden US Prostate Biopsy Collaborative Group, welche von zehn

internationalen Instituten Prostatakrebsdaten auf Patientenebene sammelt. Es wurden Er-

weiterungen aktueller Vorhersagemodelle für Prostatakrebs untersucht, unter Verwendung

der sechs etablierten Risikofaktoren Alter, prostataspezifisches Antigen, digitale rektale Un-

tersuchung, afrikanische Abstammung, Familienanamnese ersten Grades und vorherige ne-

gative Biopsie. Hierfür wurde Heterogenität zwischen Kohorten einbezogen, aktuelle Daten

verwendet und flexiblere Modellstrukturen ermöglicht.

Um einen validen Vergleich der neuen Ansätze mit bestehenden Risikovorhersagen zu ge-

währleisten, wurden in dieser Arbeit konventionelle Validierungsmethoden ausführlich disku-

tiert. Es wurden insbesondere deren Variabilitätsstrukturen untersucht und erstmalig analy-

tische Konfidenzintervalle für klinische Nettonutzen-Kurven hergeleitet. Diese Validierungs-

methoden wurden zum Vergleich der Vorhersagemodelle implementiert, indem unter an-

derem ein auf 252 Permutationen basierender Stichprobenplan verwendet wurde. Dieser

teilt wiederholt die zehn verfügbaren Standorte in je fünf Standorte zum Trainieren und fünf

zum Testen eines Modells auf.

Ein Hauptvorteil bei der Verwendung mehrerer Kohorten besteht in der Möglichkeit eines

allgemeineren Risikorechners, mit welchem ein breiteres Spektrum von Patienten erreicht

werden kann. Darüber hinaus wird durch die Kombination mehrerer Standorte die Rekru-

tierungszeit insgesamt verkürzt, wodurch aktuelle Daten sichergestellt werden. Möglicher-

weise dürfen jedoch Patienten verschiedener Kohorte aufgrund unterschiedlicher klinischer

Beurteilungen oder Bevölkerungsgruppen nicht mehr als homogen betrachtet werden. Es

wurden drei Ansätze implementiert, um Daten aus mehreren Quellen für die Durchführung

der logistischen Regression zu integrieren. Der erste Ansatz fasst die Daten von allen Ko-

horten auf Patientenebene unmittelbar zusammen, der zweite führt ein standortspezifisches

Modell mit Zufallseffekten durch und der dritte eine herkömmliche Metaanalyse, bei der für

jede Kohorte ein separates Modell erstellt wird. Es konnte keine Methode identifiziert werden,

welche die anderen Ansätze signifikant übertrifft. Dieses Ergebnis unterstützt die gängige

Praxis, Daten unmittelbar über verschiedene Kohorten hinweg zusammenzufassen. Darüber

hinaus erzielten Metaanalysen gleichwertige Ergebnisse, mit dem zusätzlichen Vorteil der

Skalierbarkeit: Modelle können lokal an den jeweiligen Standorten erstellt werden, sodass

lediglich Zusammenfassungen zur Zentralisierung übertragen werden müssen. Dadurch wird

eine zentrale Speicherung der Daten auf Patientenebene überflüssig und der Arbeitsaufwand

verringert.
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Der Risikorechner des Prostate Cancer Prevention Trials (PCPT) ist online verfügbar und weit

verbreitet. Hierfür wurden Daten aus den neunziger Jahren verwendet, und somit basieren

die betrachteten Beobachtungen auf Sextantenbiopsien und veralteten Bewertungssystemen.

Um die Vorteile einer Aktualisierung des PCPT-Risikorechners mithilfe aktueller Daten zu

untersuchen, wurde in dieser Arbeit eine multinomiale logistische Regression verwendet,

welche verschiedene Strukturen an fehlenden Daten berücksichtigt. Zusätzlich zu einer in-

ternen Kreuzvalidierung innerhalb nordamerikanischer Standorte, wurde an ausgewählten

europäischen Kohorten eine externe Validierung durchgeführt. Die neuen Modelle zeigten

überlegene Ergebnisse, insbesondere eine bessere Kalibrierung und einen erhöhten klini-

schen Nettonutzen. Diese Resultate unterstreichen den Mehrwert, aktuelle Daten zu ver-

wenden, sobald diese verfügbar sind.

Der Vergleich der logistischen Standardregression mit flexibleren Methoden des maschinellen

Lernens, wie k-Nearest Neighbor Methoden, Random Forests und künstliche neuronale Netz-

werke, ergab nur geringe Unterschiede bei der Verwendung von lediglich sechs Risikofakto-

ren. Bei der Untersuchung wurden Random Forests und künstliche neuronale Netzwerke

als geeignete Ansätze ermittelt, wobei ein Mangel an Interpretierbarkeit im Vergleich zur

logistischen Regression außer Acht gelassen wurde. Während Random Forests einfacher zu

implementieren waren, zeigten künstliche neuronale Netze eine bessere Kalibrierung.

Das aus dieser Arbeit resultierende Modell ist eine multinomiale logistische Regression, die

auf 8492 Beobachtungen und den Risikofaktoren Alter, prostataspezifisches Antigen, digi-

tale rektale Untersuchung, afrikanische Abstammung, Familienanamnese ersten Grades und

vorherige negative Biopsie basiert. Dieses Modell wird von Ärzten und Patienten mit dem

Online-Risikorechner verwendet, welcher auf der Website des Memorial Sloan Kettering Can-

cer Centers und in der Cleveland Clinic Risk Calculator Library verfügbar ist.
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Objective: We prospectively gathered data from men undergoing prostate biopsy in multi-

ple diverse North American and European institutions participating in the Prostate Biopsy

Collaborative Group (PBCG) in order to build a state-of-the-art risk prediction tool.

Design, setting, and participants: We obtained data from 15 611 men undergoing 16 369

prostate biopsies during 2006–2017 at eight North American institutions for model-building

and three European institutions for validation.

Outcome measurements and statistical analysis: We used multinomial logistic regression to

estimate the risks of high-grade prostate cancer (Gleason score ≥ 7) on biopsy based on

clinical characteristics, including age, prostate-specific antigen, digital rectal exam, African

ancestry, firstdegree family history, and prior negative biopsy.We compared the PBCG model

to the PCPTRC using internal cross-validation and external validation on the European co-

XVI



horts.
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1 Introduction

Based on U.S. data from the Surveillance, Epidemiology, and End Results Program (SEER)

between 2013 and 2015, 39.3% of men and 37.7% of women had a lifetime risk of being

diagnosed with cancer (Noone et al. 2018). In 2016, cancer was the second leading cause

of death in the U.S. after heart diseases, counting for approximately one-fifth of all male

and female deaths (Heron 2018). Stratified by age, cancer constituted at least the second

most common cause for death for all groups, except for ages between 10 and 24 years.

For ages between 45 and 64 years, it was the leading cause of death. In Germany the

proportion of cancer-related deaths has remained nearly constant since the end of 1990,

with approximately 28% for men and 22% for women (Barnes et al. 2016).

Decades of cancer research has helped to gain knowledge of the disease, leading to im-

provements in diagnosis as well as treatment (Kibbe et al. 2017). The increasing amount

of cancer-related data and big data has resulted in the need for improvements in data man-

agement, analysis and interpretation. This thesis addresses in particular the use of patient

data to perform individualized risk assessments of prostate cancer based on prostate biopsy

outcomes.

1.1 Prostate Cancer

Figure 1 depicts for every country the most commonly diagnosed cancer for males in 2012

and shows the broad expansion of prostate cancer with 87 countries (Torre et al. 2016).

Whereas prostate cancer is less common in Asia, it is the leading cancer type in most coun-

Figure 1 : World map of most commonly diagnosed cancers for males in 2012 (based on Torre et al. 2016).

tries in North- and South-America and in Australia. Using SEER and the National Program

of Cancer registries data, Siegel et al. 2019 and DeSantis et al. 2019 estimate new cancer
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cases and deaths in 2019 for the U.S. male population and U.S. African Americans, respec-

tively. Figure 2 shows the estimated five most common types of cancer. The types lung and

Figure 2 : Five most common cancer types for estimated new cases and deaths in 2019 for U.S. males (based on Siegel et al.
2019, DeSantis et al. 2019). Estimates are rounded to the nearest 10 and ranking is based on modeled projections. Basal cell
and squamous cell skin cancers and in situ carcinoma except in the case of urinary bladder are excluded.

bronchus as well as colon and rectum are the estimated second and third most commonly

new diagnosed cancers. Percentages of all cancer types except for prostate are similar for

the overall U.S. population and African Americans, but the most common cancer prostate

increases from 20% to 30% in African Americans. Prostate cancer is furthermore the second

leading cause of mortality and rates also jump 5% in African Americans in comparison to

all other cancers, where it remains the same. In fact, Torre et al. 2016 state that the high-

est prostate cancer incidence rates across registries around the world are held by African

Americans, which also have the second highest mortality rates after Trinidad and Tobago.

Screening for early signs of prostate cancer has enabled earlier and therefore more effective

treatment for prostate cancer. Work by Stamey et al. 1987 on blood markers for adenocar-

cinoma of the prostate formed the basis for prostate-specific antigen (PSA) screening, intro-

duced in the U.S. in the late 1980s. This practice considerably increased detection of prostate

cancer as depicted in Figure 3 (Siegel et al. 2019). Welch and Albertsen 2009 investigated

this peak in more detail and showed the evolution of prostate cancer incidence between 1986

and 2005 relative to 1986, stratified by age groups (supplementary Figure A.1). This anal-

ysis revealed an increase in detection within younger age groups and a decrease in elderly

men after the introduction of PSA screening, which corresponds to the expectation of earlier

detection. We might explain the drops in incidence in Figure 3 around 2010 by the U.S. Pre-

ventive Service Task Force (USPSTF) recommendation statements concerning screening for

prostate cancer. In 2008 they recommended against PSA-based screening in men aged 75

years or older and adjusted their statement in 2012 to hold for all age groups (Moyer 2012).

The current recommendation from 2018 further advocates the incorporation of additional fac-

tors to assess whether PSA screening is appropriate (Grossman et al. 2018). Reasons for

these recommendations include concerns about overdiagnosis and overtreatment. Based
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Figure 3 : Rates of selected cancer types in U.S. male population from 1975 to 2015 (based on Siegel et al. 2019). Rates are
age adjusted to the 2000 U.S. standard population and adjusted for delays in reporting. * Includes intrahepatic bile duct.

on a literature review, Fenton et al. 2018 point to disadvantages, such as false positive PSA

tests, resulting in unnecessary biopsies with their accompanying hassles. The authors fur-

thermore report an increase in prostate cancer specific worries after a negative biopsy result

following an increased PSA value. However, they also summarize randomized clinical trials

that suggest prevented metastatic prostate cancer and death.

To address the problem of false positive assessments in PSA-based screening, multivariate

risk predictions incorporating both, PSA and additional risk factors have been proposed (Chiu

et al. 2017, I. M. Thompson, Leach, et al. 2014). Up to now there exists a vast amount of

different models to be further discussed in Section 4.1. An evidence report and systematic re-

view to update the USPSTF recommendation statement from 2012 in particular investigated

the Prostate Cancer Prevention Trial (PCPT) and European Randomized Study of Screening

for Prostate Cancer (ERSPC) risk calculators in 14 studies with a total of 28 cohorts and

48,234 biopsies (Fenton et al. 2018). The report found both risk tools to improve discrimina-

tion of PSA-based screening. For calibration however, underestimation and overestimation of

both risk calculators occurred in several populations.

A patient might undergo a prostate biopsy if, for instance, a previous PSA test showed in-

creased values, a physician found abnormalities during a digital rectal examination (DRE)

or due to a high predicted risk from a model based on a combination of several risk fac-

tors. During the biopsy, the doctor uses a needle to gather a number of tissue samples from

the prostate. A subsequent analysis identifies and classifies possible cancer. A systematic

review by Loeb et al. 2013 of 213 references summarizes complications arising for this proce-

dure, including bleeding, urinary tract infection, acute urinary retention, erectile dysfunction

and fever. The most common complication is bleeding, whereby the authors point to broad

3



ranges of reported rates of 10.0-84.0%, 1.1-93.0% and 1.3-45.0% for blood in urine, blood in

sperm and rectal bleeding, respectively. Reasons for these differences across studies might

include diverse definitions of bleeding, varying methods of data collection and cultural issues.

However, Bjurlin et al. 2014 note that most men undergoing biopsy do not assess bleeding

as major or even moderate events. Furthermore, Carlsson et al. 2011 and Pinsky et al. 2014

found that prostate biopsy does not significantly increase the risk of death within three centers

of the ERSPC study comprising 50,194 men and the Prostate, Lung, Colorectal and Ovarian

trial including 37,345 patients, respectively.

Following a positive prostate biopsy, several treatment options are available, whereby the

primarily employed ones are surgery and radiation (Scarpato and Albertsen 2016). Even

though Scarpato and Albertsen 2016 report an associated mortality risk reduction, these

radical methods bear several risks to consider. These include surgical complications, peri-

operative mortality, urinary incontinence and erectile dysfunction (Fenton et al. 2018). Along

with these disadvantages, many men with prostate cancer never experience any treatment-

related symptoms (Grossman et al. 2018). The same study reports that men experiencing

death from prostate cancer have a median age of 80 years and more than 66% are older than

75 years. Due to these circumstances, immediate radical treatment after positive biopsy for

less significant prostate cancers has been questioned and trends toward active surveillance

as a third treatment option have emerged (Parker 2004, Cooperberg et al. 2011). Patients

electing active surveillance undergo close monitoring with PSA, DRE, magnetic resonance

imaging (MRI) and repeated biopsies, followed by radical treatment if signs of more aggres-

sive cancer appear (Bokhorst et al. 2016). Parker 2004 suggests that two-thirds of men might

be able to avoid the harms of radical treatment without compromising their survival. More

recent prospective clinical long-term studies confirm comparable survival of active surveil-

lance and immediate radical treatment for low-risk patients (Klotz et al. 2015, Hamdy et al.

2016). In contrast to active surveillance, which aims to individualize treatment, watchful wait-

ing intends to avoid treatment in elderly men with limited life expectancy; findings from these

two approaches should not be confused (Carter 2012, Cooperberg et al. 2011, Herden and

Weissbach 2018).

Overall, several important decisions arise along the path before prostate cancer detection

until treatment. To begin, a symptomatic men may decide to undergo PSA-based screening

for prostate cancer. Current USPSTF recommendations state that men between 55 and 69

years should discuss the decision to screen, based on their background and preferences,

with their clinicians (Grossman et al. 2018). Furthermore, referral to biopsy should include

an individual assessment of benefits and harms in light of the patient’s characteristics (I. M.

Thompson, Leach, et al. 2014). The choice of an appropriate treatment option is necessary

in case of a positive biopsy result. Since there exists no consensus regarding an optimal

practice, the patient’s opinion is of particular importance (Carter 2012). Similar needs for

decisions without one correct answer arise in several medical areas and they are the fo-

cus of shared decision-making (Elwyn et al. 2017). This practice describes situations where
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physicians decide along with patients concerning the use of diagnostic tests as well as thera-

peutic interventions, and can be described with the quote "no decision about me without me"

(Ryan and Cunningham 2014). Patients are encouraged to consider diverse options, based

on consultations by responsible clinicians, and vice versa, to communicate their preferences.

Therefore, it is essential to have adequate and easy-to-understand information on harms and

benefits. In particular, respective probabilities help the patients to weight advantages and

disadvantages (Stiggelbout et al. 2012). Due to this development, it is not surprising that

studies in PubMed on clinical prediction models have notably gained interest between 1970

and 2005 (Steyerberg 2009). In this thesis we investigate in particular risk prediction tools to

support the decision concerning referral to prostate cancer biopsy.

1.2 Description of data

In this thesis prospective and retrospective data from the Prostate Biopsy Collaborative Group

(PBCG) were used to build a risk prediction model for outcomes of prostate biopsy, and

independent retrospective data from Hamburg were used for validation. Data from the PCPT

risk calculator (PCPTRC) were assessed to build the existing risk model for comparison. The

data are described in the following, with more details provided in Tables A.1 and A.2 of the

Appendix.

1.2.1 PBCG data set

The PBCG collects prostate biopsy outcomes and risk factors from several international clin-

ics with the exclusion criterion of a prior biopsy positive for prostate cancer. Patients may

contribute multiple biopsies negative for cancer. The cohorts include the tertiary referral cen-

ters Cleveland Clinic (ClevelandClinic), Mayo Clinic (MayoClinic), San Raffaele (SanRaffaele),

Zurich, Memorial Sloan Kettering Cancer Center (MSKCC), and University of California San

Francisco (UCSF); the Veterans Affairs (VA) cohorts Durham (DurhamVA) and San Juan

(SanJuanVA); and the sites Sunnybrook and UTHealth, which are consortia including main

hospitals, tertiary referral centers and associated community urology providers. SanRaffaele

and Zurich are European cohorts, whereas the remaining sites are located in North America.

Figure 4 depicts the evolution of the respective number of biopsies collected. Prospective

data collection started in 2014 and retrospective data are available between 2006 and 2014

for the cohorts MSKCC, Sunnybrook, UCSF, UTHealth and Zurich. The peak of Sunnybrook

in 2015 might be explained by some centers joining the consortium for only one year and then

dropping again.

Models analyzed in this thesis aim to support the decision of whether a patient should un-

dergo prostate biopsy. We are therefore interested in prediction of clinically relevant outcomes

of the biopsy using the standard risk factors collected in the clinic. As previously discussed,

patients with less aggressive cancer might not benefit from treatment and detection of signif-

icant cancer might be more important. As a result we are furthermore interested in assess-
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Figure 4 : Evolution of the number of patients from 2006 to 2017 for the PBCG cohorts. Data before 2014 were collected
retrospectively and from 2014 onwards, prospectively.

ment of the severity of prostate cancer in case the biopsy is positive. Several classifications

for severe prostate cancer exist and we discuss these in Section 4.1. For the analysis per-

formed in this thesis, we decided to focus on a characterization based solely on the Gleason

score as this is the most widely used in literature to date (I. M. Thompson, Ankerst, et al.

2006, Roobol et al. 2013, Chan et al. 2016).

The Gleason score is a universal grading scheme introduced by Donald Gleason in 1966

(Samaratunga et al. 2017, Gleason 1966). Several changes have been made to the originally

proposed version, with latest improvements through the International Society of Urological

Pathology consensus conferences in 2005 and 2014 (Epstein, Allsbrook, et al. 2005, Ep-

stein, Egevad, et al. 2016). The criterion rests entirely upon the tumor architecture classified

as Gleason grade one to five, summarized in Figure 5. Recommendations for reporting the

Gleason score for a needle core biopsy suggest adding the most common grade observed

across the considered cores to the highest occurring grade (Gordetsky and Epstein 2016).

Biopsies utilizing six cores, as proposed by Hodge et al. 1989, have been the most popular

biopsy method, whereby current practice predominantly utilizes eight to thirteen cores (Cey-

lan et al. 2014). Ankerst, Till, Boeck, Goodman, Tangen, Feng, et al. 2013 thereby found that

higher numbers of cores correlate with increasing risk of positive biopsies. The change in

clinical practice from six to more cores, along with its implication on the prevalence of positive

biopsies, might pose the need to update existing analyses with contemporary data, which we

further discuss in Chapter 4.

For the analyses of this thesis we define high-grade prostate cancer as Gleason score seven

or higher, and low-grade cancer otherwise, following the classification of previous publica-

tions (I. M. Thompson, Ankerst, et al. 2006, Nam et al. 2007). Figure 6 shows the resulting

prevalences of overall cancer, constituting low- and high-grade, and high-grade cancer. Visi-
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Figure 5 : The original Gleason grading system diagram (Gordetsky and Epstein 2016).

ble discrepancies are present across the diverse sites, with the highest rates for DurhamVA

and UTHealth, and the lowest observed prevalence in Zurich.

The PBCG collects several diverse variables, all of which have potential predictive value.

We concentrated on the six variables age, DRE, family history, prior biopsy, PSA and race

since they are the established risk factors used in the most highly accessed online risk tools

(Section 4.1). They incur minimal cost and inconvenience as they are routinely collected

in medical practice. More specific variables from the PBCG suffer from a high proportion

of missing values as will be shown later in the thesis. Since PBCG data acquisition is still

ongoing and the expected increased amount of overall observations might compensate for

the missing values, we delay analyses of these variables for future work. Chapter 6 discusses

possible approaches. Figures 7 and A.2 in the Appendix provide an overview of the standard

risk factors used in this thesis. These figures provide insights into heterogeneities across

cohorts with respect to their risk factor distributions and their association to high-grade and

overall cancer.

As previously discussed, PSA is a biomarker introduced for prostate cancer detection and a

common tool for prostate cancer screening and active surveillance. For the PBCG, the PSA

measurement at time of biopsy, or the closest measurement prior to biopsy, is reported and

shows an anticipated strong association with high-grade prostate cancer across all PBCG

cohorts (Figure 7). Here we have categorized patients into common PSA cutpoints of 4 and

10 ng/ml for referral to biopsy and great concern for cancer, respectively.

DRE is a procedure where the physician inserts his finger through the anus into the rectum

to examine the patient’s prostate for lumps, a subjective process depending among others

on the experience of the doctor. Even though it can not provide an exact assessment on

whether prostate cancer is present or not, Figure 7 shows a tendency for higher percentages
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Figure 6 : Prevalence of overall and high-grade cancer for individual cohorts.

of high-grade cancer for positive DRE results. The near indifference for ClevelandClinic and

SanJuanVA is anomalous and emphasizes the diversity of the sites. Several cohorts con-

tain considerable amounts of missing DRE values, whereby low prevalences of high-grade

prostate cancer for DurhamVA, MSKCC and UCSF, and high prevalences for SanJuanVA

and Sunnybrook are found for patients with missing DRE.

Increasing age is known to be associated with higher rates of prostate cancer detection

(Gupta et al. 2017, Welch and Albertsen 2009), and is confirmed in Figure 7.

Highest prostate cancer rates across the world’s population are observed for U.S. African

Americans (Torre et al. 2016, DeSantis et al. 2019). It is therefore not surprising that patients

in cohorts with higher proportions of African ancestry have higher rates of high-grade cancer.

It is, however, important to note that several sites have only very small amounts or even no

patients with African ancestry. The high rate of missing values for Sunnybrook is concerning,

in particular as its percentage of high-grade cancer is more similar to patients with African

ancestry than without, suggesting a potential biased lack of reporting.

Family history describes a prior prostate cancer diagnosis in a first-degree relative. Kiciński et

al. 2011 suggest that genetic factors, shared environment and/or similar food habits increases

the risk of prostate cancer in the index patient. Figure 7 supports an association between

family history and high-grade cancer for most cohorts. The prevalence of high-grade cancer

for DurhamVA, MSKCC and SanRaffaele is, however, similar for patients with and without

family history, and UCSF does not provide any information on family history.
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Finally, the PCPT has shown a reduced risk of a positive biopsy result for patients with a prior

negative biopsy, coinciding with the trends observed across the ten cohorts in Figure 7 (I. M.

Thompson, Ankerst, et al. 2006).

1.2.2 Additional data sources

Two additional data sources, from the Martini Klinik in Hamburg, Germany, and the North

American PCPT, are available for Chapter 4, with a detailed description in the Tables A.1 and

A.2 of the Appendix.

Data from Hamburg comprise retrospective electronic health records and thus suffer from

many missing values and potential biases. In particular, for most biopsies it was not possible

to determine whether the patient already had a prior positive biopsy or not. This was, how-

ever, an exclusion criterion of the PBCG. Furthermore, Hamburg is, with n = 7877 recorded

biopsies, almost as large as the ten other PBCG sites combined, comprising n = 8492 ob-

servations. We therefore excluded Hamburg from model building due to a potential bias and

only used it as a validation set.

To illustrate the importance of basing risk tools on contemporary data, Chapter 4 assessed

the PCPTRC. Ankerst, Hoefler, et al. 2014 describe this risk tool, with its underlying data of

n = 6664 observations, in detail. The PCPT required an age of at least 55 years, a PSA≤3

ng/ml and a normal DRE to enter the study. Annual screening of the patients proceeded

with referral to biopsy in case of an elevated PSA value ≥4 ng/ml or an abnormal DRE. The

trial included an end of study biopsy after seven years, even for patients with normal PSA

and DRE values throughout the study (I. M. Thompson, Goodman, Tangen, Parnes, et al.

2013).

The distribution of biopsy outcomes considerably differs between the PBCG collective, the

clinical site Hamburg and the heavily screened PCPT study, as demonstrated in Table 1. In

Study No cancer Low-grade cancer High-grade cancer

PBCG 49.8 17.7 32.5

Hamburg 43.3 19.8 36.9

PCPT 82.1 14.1 3.8

Table 1 : Comparison of biopsy outcome prevalences in percent.

particular, PBCG and Hamburg have considerably lower percentages of patients without can-

cer and more high-grade cancer cases than the PCPT. Figures 8 and A.3 of the Appendix

additionally provide a comparison of the standard variables with their associated biopsy out-

comes for the three data sources. The PCPT consists of more patients with small PSA values,

normal DRE results, no African ancestry and no family history, therefore showing characteris-
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tics which are considered to be associated with lower prevalences of high-grade cancer. The

clinical site Hamburg is missing 11.3%, 57.2%, 62.7% and 90.0% of the variables DRE result,

family history, race and prior negative biopsy, making it hard to make population comparisons.

Being a high-throughput referral clinic makes Hamburg more similar to the PBCG, where its

percentages are more in alignment.

1.2.3 Exclusions and missing data imputation

For the PBCG data we exclude four observations due to missing Gleason scores and one

patient with missing age. The Hamburg data exclusions were performed locally on site. For

the development of the PCPTRC by Ankerst, Hoefler, et al. 2014, observations with a PSA

value >10 ng/ml were excluded. All numbers within this thesis refer to the cleaned data sets

with the stated exclusions.
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Figure 7 displays missingness for the individual standard risk factors of the various PBCG

cohorts, and shows almost no missing values of PSA and prior negative biopsies. DRE re-

sults are missing throughout most cohorts, with DurhamVA and MSKCC showing particularly

high amounts. Race is predominantly missing for Sunnybrook. Finally family history is not

reported for UCSF at all, shows missing values for approximately half of the observations

from SanJuanVA, but is provided for most biopsies of the remaining sites.

For the models in Chapters 3 and 5 we performed median imputations, imputing a negative

DRE result, no family history, no prior biopsy, and non African-American for race. In Chap-

ter 4, the PCPTRC and the analogously developed PBCG model handle missing values for

DRE, family history and prior negative biopsy with diverse partial models. We furthermore

impute the variable race of the PBCG and Hamburg data by its median non-African American

value.

1.3 Objectives of the thesis

In light of the current developments in the field of prostate cancer and the available data, the

following aims will be addressed in this thesis.

1. Will incorporation of cohort heterogeneity improve validation of a global risk prediction

model?

2. Should existing risk models be updated as soon as contemporary data are available?

3. Can more flexible machine learning methods improve traditional regression approaches

for small sets of established risk factors?

The aims 1-3 are considered in Chapters 3-5, respectively, along with a discussion of the

existing literature and the obtained results. The methods used for evaluation of the developed

concepts are introduced in Chapter 2. At last, in Chapter 6 further approaches considered

useful for future work based on the previous findings are outlined.
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2 Methods for model evaluation

In this chapter we describe common evaluation measures for discrimination, calibration and

net benefit, as proposed by Steyerberg 2009. We comprehensively derive confidence in-

tervals (CIs) for the considered methods to enable a meaningful comparison between the

models developed in the following Chapters 3-5.

2.1 Research in context

Evaluation of risk prediction models requires performance measures. These are particularly

important for comparing models and assessing the usefulness of new markers incorporated

into existing models (Pencina, D’Agostino, and Vasan 2008, D’Agostino 2006, Greenland

and O’Malley 2005, Cook 2010). We furthermore advocate the use of CIs for the considered

methods to show the reliability of resulting model assessments.

In terms of discrimination, the area under the receiver operating characteristic (ROC) curve

(AUC) and the concordance-statistic (c-statistic), which coincide for binary outcomes, have a

long history and are commonly used for evaluation of risk models (Bamber 1975). However,

criticism is present, in particular if it is used as the only measure of performance (Cook 2007,

Pepe and Janes 2008, Vickers and Elkin 2006, Hilden 1991, Kowall et al. 2013, Pennello

et al. 2016, Wu et al. 2015, Pencina and D’Agostino 2015). The AUC equals the probability

that for a randomly chosen patient with and without the outcome, named case and control,

respectively, the considered model predicts a higher risk for the former. It is a summary

measure across all possible risk thresholds between 0 and 100%. In practice, however, only

a very restricted range of thresholds represents an area where accuracy is of concern as the

decision for further diagnostic testing based on those thresholds could go either way.

For risk prediction of prostate cancer biopsy results, as a basis to decide whether a patient

should be referred to biopsy or not, we assume the range from 5 to 25% to be relevant.

Patients with a risk prediction beneath or above these thresholds would be advised to either

not or definitely undergo further testing, respectively. The AUC might therefore be primarily

influenced by thresholds never used in practice.

A further concern is that information on consequences are not included. In practice a false

negative result might be more harmful than a false positive one. In this case, a model with

higher specificity (lower false positive rate) and slightly worse sensitivity (higher false negative

rate) across thresholds compared to another model might result in higher AUC, but can be

considered less useful. Moreover, the AUC is only based on the ordering of predicted risks,

not their actual values. As a consequence, multiplication of all probabilities with some scalar

does not change the AUC.
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Another concern with the AUC is its insensitivity with respect to additional strong predictors.

The AUC hardly improves if new markers are added to an existing model, even though the

predictive ability of the model might change. Consider for instance a change in risk prediction

from 10 to 15% and from 9 to 5% for a case and non-case patient, respectively. The order-

ing of risks among these two patients remains identical and the AUC is unlikely to change,

however, the new model might be preferred since there is a larger distance between the risks

for this case/control pair of patients. CIs for the AUC, for instance based on DeLong et al.

1988, are routinely reported for differences in AUCs of diverse models or after addition of new

markers to existing models (Gengsheng and Hotilovac 2008, Robin et al. 2011).

The ROC-curve represents the more transparent graphic behind the AUC, as the latter equals

the integrated area beneath the ROC-curve, resulting in a single summary value. Like the

AUC itself, it is commonly used and diverse papers also discuss estimates of corresponding

CIs, for instance based on bootstrap or empirical likelihood methods (Su et al. 2009, Zhou

and Qin 2005, Demidenko 2012, Hall et al. 2004, Martínez-Camblor et al. 2018, Lahiri and

Yang 2017). The ROC-curve plots sensitivity versus 1-specificity of all possible thresholds

between zero and one. It is typically non-transparent in regards to thresholds of the risk model

corresponding to the values of sensitivity and specificity as these are not usually displayed

on the graph. As discussed for the AUC, most thresholds are irrelevant for use in prostate

cancer clinical prediction. We therefore analyze sensitivity and specificity individually, by plots

for thresholds between 5 and 25% and corresponding CIs based on variance estimates for

proportions. In contrast to other approaches, we do not assume the number of cases and

controls to be fixed, but rather adjust for their variation across cohort.

It is reasonable to augment analysis of discrimination by other evaluation methods, like as-

sessment of model calibration. Calibration describes how well observed and predicted values

agree. The Hosmer-Lemeshow statistic (HLS) compares these within groups of patients, of-

ten defined by deciles of predicted risk (Hosmer and Lemeshow 1980). For more detailed

visualization of observed outcomes versus predicted risks smoothing techniques enable cal-

ibration curves over the full range of predicted risks (Austin and Steyerberg 2014). Cleveland

1979 and Cleveland and Devlin 1988 discuss variation and resulting t-based approximate CIs

for the smoothing technique of locally weighted regression, which we use in this thesis.

Net benefit curves, introduced by Vickers and Elkin 2006, are a rather new method to eval-

uate clinical usefulness of a risk prediction model. Several researchers already make use

of them for model evaluation and comparison (Augustin et al. 2012, Pulleyblank et al. 2013,

Allyn, Ferdynus, et al. 2016, Allyn, Allou, et al. 2017, Zastrow et al. 2015, Kondo et al. 2018).

Requiring only the test data set and no additional information, they incorporate clinical con-

sequences, and therefore address one of the criticisms of the AUC. They serve as a decision

tool for whether to use a prediction model at all or which of several models to choose. Fol-

lowing the decision-theoretic justifications of Claxton 1999, Vickers, Cronin, et al. 2008 argue

that CIs attached to the net benefit curves have only limited use for choosing between mod-
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els. They recommend that the model with the best expected outcome should be selected,

independently of statistical significance of difference in net benefit compared to other models.

However, the authors acknowledge exceptions, such as when comparing a new method with

current clinical practice or evaluating whether further research is of value. Simple bootstrap

solutions are used to calculate CIs (Vickers, Cronin, et al. 2008, Talluri and Shete 2016, Kerr,

Brown, et al. 2016). However, we develop analytic pointwise asymptotic CIs using that net

benefit curves are a function of the prevalence of disease, and sensitivity and specificity of

the risk tool.

A single evaluation method cannot address the multiple ways a model can fail to perform ade-

quately in a new population. It is therefore useful to employ several measures to address dif-

ferent aspects of model validation. We use sensitivity and specificity, along with the summary

measure AUC, for discrimination, calibration curves and the HLS summary for calibration,

and net benefit curves for clinical utility. However, many further established measures ex-

ist, new methods constantly emerge and previous techniques evolve over time (Hilden 1991,

Shapiro 1977, Tjur 2009, Nagelkerke 1991, Billheimer et al. 2014, Baker et al. 2009, Pen-

nello et al. 2016, Steyerberg et al. 2010, Paul et al. 2013). They are introduced and adjusted

to meet specific validation aspects of interest and to address disadvantages of former mea-

sures. Broadly known statistics include the Brier score, calculated as the mean of squared

differences between the true outcomes and their respective predicted values, the discrimina-

tion slope, defined as the absolute difference in average risk prediction between cases and

non-cases, and calibration-in-the-large and calibration slopes as quantitative enhancements

to the graphical calibration curve (Brier 1950, Yates 1982, Cox 1958, Steyerberg et al. 2010).

Recent developments are, for instance, predictiveness curves discussed by Pepe, Feng, Y.

Huang, et al. 2008 and Y. Huang et al. 2007 to simultaneously display predictiveness and

classification performance of risk markers or models. An extension to the net benefit curve

is the weighted area under the net benefit curve, introduced by Talluri and Shete 2016 as

a summary measure using an estimated distribution of threshold probabilities. Furthermore,

Pencina, D’Agostino, and Vasan 2008 propose two new methods to evaluate the usefulness

of an additional marker, the net reclassification improvement and the integrated discrimina-

tion improvement. These are broadly discussed and further developed in diverse literature

sources (Pepe, Feng, and W. Gu 2008, Greenland 2008, Ware and Cai 2008, Cook 2008,

Kerr, McClelland, et al. 2011, Z. Huang et al. 2016, Pencina, D’Agostino, and Steyerberg

2011, Pencina, D’Agostino, and Demler 2012 and Li et al. 2013).

2.2 Discrimination

Discrimination describes how well a risk prediction model differentiates between individuals

with and without the outcome. In this thesis we primarily consider the outcome of high-grade

cancer versus no or low-grade cancer. Discrimination is usually measured by sensitivity,

specificity and the resulting ROC-curve along with its summary statistic, the AUC, and will be

done so here.
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For sensitivity, alternatively called the true positive rate (TPR), we consider all patients with

the outcome high-grade cancer and report the proportion of patients that are correctly identi-

fied to have the outcome. However, a risk prediction model does not group patients into the

categories with and without the outcome, but assigns them risks between zero and one. Sen-

sitivity therefore depends on a threshold c that classifies all patients with predicted risk > c

as cases and ≤ c as controls:

psens(c) = TPR(c) = P (predicted risk > c|high− grade cancer)

=
P (predicted risk > c and high− grade cancer)

P (high− grade cancer)
. (2.1)

Due to its definition as a probability, psens(c) takes values between zero and one, whereby

high values are desirable. Let ntotal, ncases and ncases,predicted risk>c be the total number

of patients, the number of patients with high-grade cancer and the number of patients with

high-grade cancer and predicted risk > c, respectively. With these we estimate psens(c) by

Sens(c) =

ncases,predicted risk>c
ntotal
ncases
ntotal

=
ncases,predicted risk>c

ncases
. (2.2)

In order to report CIs for psens(c), centered at the observed sensitivity Sens(c), we have to

derive the corresponding variance V ar(Sens(c)). Let pprev denote the true prevalence of the

outcome. We assume that the total sample size ntotal is fix and the number of patients with

the outcome, ncases, is random and follows a binomial distribution:

ncases ∼ Bin(ntotal, P (high− grade cancer))

⇔ ncases ∼ Bin(ntotal, pprev), (2.3)

E(ncases) = ntotalpprev, (2.4)

V ar(ncases) = ntotalpprev(1− pprev). (2.5)

With this the observed prevalence, Prev = ncases
ntotal

, has mean

E(Prev) = E

(
ncases
ntotal

)
=

1

ntotal
E(ncases)

(2.4)
=

1

ntotal
ntotalpprev = pprev (2.6)

and variance

V ar(Prev) = V ar

(
ncases
ntotal

)
=

(
1

ntotal

)2

V ar(ncases)

(2.5)
=

1

n2
total

ntotalpprev(1− pprev) =
pprev(1− pprev)

ntotal
. (2.7)

We use the binomial distribution conditioned on ncases to describe the number of patients with
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high-grade cancer and a risk prediction greater than the considered threshold:

ncases,predicted risk>c|ncases ∼ Bin(ncases, P (predicted risk > c|high− grade cancer))

⇔ ncases,predicted risk>c|ncases ∼ Bin(ncases, psens(c)), (2.8)

E(ncases,predicted risk>c|ncases) = ncasespsens(c), (2.9)

V ar(ncases,predicted risk>c|ncases) = ncasespsens(c) (1− psens(c)) . (2.10)

This results in the following conditional mean and variance for the observed sensitivity:

E (Sens(c)|ncases) = E

(
ncases,predicted risk>c

ncases

∣∣∣∣ncases)
=

1

ncases
E (ncases,predicted risk>c|ncases)

(2.9)
=

1

ncases
ncasespsens(c) = psens(c), (2.11)

V ar(Sens(c)|ncases) = V ar

(
ncases,predicted risk>c

ncases

∣∣∣∣ncases)
=

1

n2
cases

V ar(ncases,predicted risk>c|ncases)

(2.10)
=

1

n2
cases

ncasespsens(c) (1− psens(c))

=
psens(c)(1− psens(c))

ncases
. (2.12)

For calculating the unconditional variance of the observed sensitivity, we use the law of total

variance to get

V ar(Sens(c)) = V ar (E(Sens(c)|ncases)) + E (V ar(Sens(c)|ncases))
(2.11),(2.12)

= V ar(psens(c)) + E

(
psens(c)(1− psens(c))

ncases

)
= 0 +

psens(c)(1− psens(c))
ntotal

E

(
ntotal
ncases

)
=
psens(c)(1− psens(c))

ntotal
E

(
1

Prev

)
=
psens(c)(1− psens(c))

ntotal

1

pprev
, (2.13)

which we estimate by V̂ ar(Sens(c)) = Sens(c)(1−Sens(c))
ncases

. In the last step we approximate

E( 1
Prev ) by 1

pprev
based on the following considerations. The binomial distributed random
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variable ncases can be rewritten as the sum of ntotal independent bernoulli trials:

ncases =

ntotal∑
i=1

Xi, (2.14)

Xi ∼ Ber(pprev) i.i.d, (2.15)

E(Xi) = pprev, (2.16)

V ar(Xi) = pprev(1− pprev). (2.17)

By the central limit theorem the mean of Xi, i = 1, ..., n converges in distribution to a normal

distribution for n→∞:

√
n

((
1

n

n∑
i=1

Xi

)
− E(Xi)

)
d→ N (0, V ar(Xi)), (2.18)

√
n

((
1

n

n∑
i=1

Xi

)
− pprev

)
d→ N (0, pprev(1− pprev)), (2.19)

where d→ denotes convergence in distribution. By assuming ntotal large enough and pprev
and (1 − pprev) bounded away from 0 and 1, Prev = 1

ntotal

∑ntotal
i=1 Xi has approximately

a normal distribution with mean pprev and variance pprev(1−pprev)
n . Let f(x) = 1

x with existing

continuous derivative ∂f(x)
∂x = − 1

x2
6= 0 for x > 0. Since pprev and pprev(1 − pprev) are finite

and assumed non-zero, we can apply the delta rule to approximate f(Prev) = 1
Prev by a

normal distribution with mean

E

(
1

Prev

)
= f(pprev) =

1

pprev
(2.20)

(Boos and Stefanski 2013).

A further basic discrimination metric is given by the specificity for the threshold c, which is

defined similarly to the sensitivity to be

pspec(c) = P (predicted risk ≤ c|no high− grade cancer)

=
P (predicted risk ≤ c and no high− grade cancer)

P (no high− grade cancer)
. (2.21)

Given a patient without high-grade cancer, specificity describes the probability of categorizing

him correctly as not having high-grade cancer. Set ncontrols to be the number of patients

without high-grade cancer, and ncontrols,predicted risk≤c to be the number of patients without

high-grade cancer and with predicted risk ≤ c. The observed specificity becomes

Spec(c) =

ncontrols,predicted risk≤c
ntotal

ncontrols
ntotal

=
ncontrols,predicted risk≤c

ncontrols
. (2.22)

An alternative to the specificity is the false positive rate (FPR), describing the proportion of
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patients without high-grade cancer that are incorrectly predicted to have the outcome:

FPR(c) = P (predicted risk > c|no high− grade cancer) = 1− pspec(c). (2.23)

Replacing pprev, Prev, psens(c), Sens(c), ncases,predicted risk>c and ncases in (2.3)-(2.13) with

(1− pprev), (1− Prev), pspec(c), Spec(c), ncontrols,predicted risk≤c and ncontrols results in the

variance estimate for specificity:

V̂ ar(Spec(c)) =
Spec(c)(1− Spec(c))

ncontrols
. (2.24)

We display discrimination graphically by separate curves for Sens(c) and Spec(c), with the

threshold c on the x-axis and approximate corresponding pointwise 95%-CIs by Sens(c) ±
2 ∗
√
V̂ ar(Sens(c)) and Spec(c)± 2 ∗

√
V̂ ar(Spec(c)), respectively. The ROC-curve, plots

TPR(c) = Sens(c) on the y-axis versus FPR(c) = (1 − Spec(c)) on the x-axis for all

possible thresholds c ∈ [0, 1] and forms the basis for the AUC. However, with this combined

display of both measures we lose insights about individual thresholds.

Graphical evaluations are not always feasible, in particular, if several curves have to be sum-

marized or compared at once. Therefore we integrate the area underneath the ROC-curve,

resulting in the AUC. This statistic summarizes the previously discussed discrimination mea-

sures and takes values between zero and one. A good predictive model has low FPR(c), as

well as high TPR(c), for all cutoffs c. We therefore favor values in the upper left corner of the

ROC-curve, and a resulting high AUC. For a non-informative model that predicts the outcome

no better than by 50:50 chance, the ROC-curve equals the diagonal line from (0,0) to (1,1),

which leads to an AUC value of 0.5. For an intuitive interpretation we consider a randomly

chosen patient with the outcome and another one without the outcome. The AUC equals the

probability that the patient with the outcome has a higher predicted risk than the other patient.

As for all evaluation methods, it is important to not merely report the point estimate itself, but

also the corresponding CI. Therefore we use the estimated variance of the AUC derived by

DeLong et al. 1988, based on theory of U-statistics by Hoeffding 1948. In the following we

comprehensively outline the derivation of this estimation approach, which is implemented in

the R package pROC using the algorithm proposed by Sun and W. Xu 2014 (Robin et al.

2011).

Let Xi, i = 1, ..., ncases and Yj , j = 1, ..., ncontrols be the predicted risks for patients with

and without high-grade cancer, respectively. Assume the Xi and Yj are all independent

with respective distributions F and G. Let ck, k = 1, ...,K and ck 6= cl for k 6= l de-

note the ordered set of all unique values of Xi and Yj . Define c0 to be an arbitrary value

smaller than c1. For every ck the corresponding point on the observed ROC-curve is given by(
Number of Yj>ck

ncontrols
, Number of Xi>ckncases

)
. The resulting curve ranges from (1, 1) for c0 to (0, 0) for

cK . Figure 9 shows an example for K = 5 diverse cutoffs. In order to calculate the observed

AUC with the trapezoidal rule, we first calculate the area of the individual trapezoids Ak for all
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Figure 9 : Schematic representation of ROC-curve for K = 5 diverse ck.

k = 1, ...,K:

Ak =
1

2

(
Number of Yj > ck−1

ncontrols
− Number of Yj > ck

ncontrols

)
·
(
Number of Xi > ck−1

ncases
+
Number of Xi > ck

ncases

)
=

1

2
· Number of Yj = ck

ncontrols

·
(
Number of Xi > ck

ncases
+
Number of Xi = ck

ncases
+
Number of Xi > ck

ncases

)
=
Number of Yj = ck

ncontrols
· Number of Xi > ck

ncases

+
1

2
· Number of Yj = ck

ncontrols
· Number of Xi = ck

ncases

=
1

ncontrolsncases

ncontrols∑
j=1

IYj=ck

ncases∑
i=1

IXi>ck

+
1

2ncontrolsncases

ncontrols∑
j=1

IYj=ck

ncases∑
i=1

IXi=ck

=
1

ncontrolsncases

ncontrols∑
j=1

ncases∑
i=1

(
IYj=ckIXi>ck +

1

2
IYj=ckIXi=ck

)
, (2.25)

with Ix =

1 if x

0 else
denoting the indicator function for a logical expression x. The observed
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AUC, denoted by ÂUC, is the sum of all trapezoids:

ÂUC =
K∑
k=1

Ak

=
K∑
k=1

1

ncontrolsncases

ncontrols∑
j=1

ncases∑
i=1

(
IYj=ckIXi>ck +

1

2
IYj=ckIXi=ck

)

=
1

ncontrolsncases

ncontrols∑
j=1

ncases∑
i=1

(
K∑
k=1

IYj=ckIXi>ck +
1

2

K∑
k=1

IYj=ckIXi=ck

)

=
1

ncontrolsncases

ncontrols∑
j=1

ncases∑
i=1

(
IXi>Yj +

1

2
IYj=Xi

)

=
1

ncasesncontrols

ncases∑
i=1

ncontrols∑
j=1

Ψ (Xi, Yj) , (2.26)

where

Ψ(X,Y ) =


1 Y < X

0.5 Y = X

0 Y > X

. (2.27)

With this we get that E
(
ÂUC

)
= P (Y < X) + 0.5P (Y = X) = AUC, which reduces to

E
(
ÂUC

)
= P (Y < X) for variables with continuous distributions, as is the case here. This

corresponds to the intuitive explanation of the AUC given previously.

In order to calculate CIs for the observed AUC, we derive an estimate of V ar
(
ÂUC

)
, which

is given by:

V ar
(
ÂUC

)
= V ar

 1

ncasesncontrols

ncases∑
i=1

ncontrols∑
j=1

Ψ(Xi, Yj)


=

1

n2
casesn

2
controls

ncases∑
i=1

ncontrols∑
j=1

ncases∑
i′=1

ncontrols∑
j′=1

Cov
(
Ψ(Xi, Yj),Ψ(Xi′ , Yj′)

)
.

(2.28)

Define

Ψ00 = E
(
Ψ(Xi, Yj)) = AUC, (2.29)

Ψ11(xi, yj) = E
(
Ψ(Xi, Yj)

∣∣Xi = xi, Yj = yj
)

= Ψ(xi, yj), (2.30)

Ψ10(xi) = E
(
Ψ(Xi, Yj)

∣∣Xi = xi
)
, (2.31)

Ψ01(yj) = E
(
Ψ(Xi, Yj)

∣∣Yj = yj
)
, (2.32)
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and note that all these functions have expectation AUC:

E(Ψ00) = E(AUC) = AUC, (2.33)

E
(
Ψ11(Xi, Yj)

)
= E

(
E
(
Ψ(Xi, Yj)

∣∣Xi, Yj
))

= E
(
Ψ(Xi, Yj)

)
= AUC, (2.34)

E
(
Ψ10(Xi)

)
= E

(
E
(
Ψ(Xi, Yj)

∣∣Xi

))
= E

(
Ψ(Xi, Yj)

)
= AUC, (2.35)

E
(
Ψ01(Yj)

)
= E

(
E
(
Ψ(Xi, Yj)

∣∣Yj)) = E
(
Ψ(Xi, Yj)

)
= AUC. (2.36)

Furthermore let

σ2
00 = V ar(Ψ00) = V ar(AUC) = 0, (2.37)

σ2
11 = V ar

(
Ψ11(Xi, Yj)

)
= V ar

(
E
(
Ψ(Xi, Yj)

∣∣Xi, Yj
))

= V ar
(
Ψ(Xi, Yj)

)
, (2.38)

σ2
10 = V ar

(
Ψ10(Xi)

)
= V ar

(
E
(
Ψ(Xi, Yj)

∣∣Xi

))
, (2.39)

σ2
01 = V ar

(
Ψ01(Yj)

)
= V ar

(
E
(
Ψ(Xi, Yj)

∣∣Yj)). (2.40)

With this we get for i, i′ in 1, ..., ncases and j, j′ in 1, ..., ncontrols:

Cov
(
Ψ(Xi, Yj),Ψ(Xi′ , Yj′)

)
= σ2

c1,c2 , (2.41)

whereby c1 =

1 i = i′

0 i 6= i′
, and c2 =

1 j = j′

0 j 6= j′
. To show Equation (2.41), we first consider

the case c1 = c2 = 1:

Cov
(
Ψ(Xi, Yj),Ψ(Xi′ , Yj′)

)
= Cov

(
Ψ(Xi, Yj),Ψ(Xi, Yj)

)
= V ar

(
Ψ(Xi, Yj)

)
= σ2

11.

(2.42)

For c1 = c2 = 0, the terms Ψ(Xi, Yj) and Ψ(Xi′ , Yj′) are independent by definition, we

therefore get Cov
(
Ψ(Xi, Yj),Ψ(Xi′ , Yj′)

)
= 0 = σ2

00. At last, we have for c1 = 1, c2 = 0,

and therefore i = i′ as well as j 6= j′,

Cov
(
Ψ(Xi, Yj),Ψ(Xi′ , Yj′)

)
= Cov

(
Ψ(Xi, Yj),Ψ(Xi, Yj′)

)
= E

([
Ψ(Xi, Yj)− E

(
Ψ(Xi, Yj)

)][
Ψ(Xi, Yj′)− E

(
Ψ(Xi, Yj′)

)])
= E

([
Ψ(Xi, Yj)−AUC

][
Ψ(Xi, Yj′)−AUC

])
= E

(
E
([

Ψ(Xi, Yj)−AUC
][

Ψ(Xi, Yj′)−AUC
]∣∣∣Xi

))
= E

([
E
(
Ψ(Xi, Yj)

∣∣Xi

)
−AUC

][
E
(
Ψ(Xi, Yj′)

∣∣Xi

)
−AUC

])
= E

([
Ψ10(Xi)−AUC

][
Ψ10(Xi)−AUC

])
= V ar

(
Ψ10(Xi)

)
= σ2

10, (2.43)
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whereby we used that, conditioned on Xi, the terms Ψ(Xi, Yj) and Ψ(Xi, Yj′) are indepen-

dent. Analogously we obtain for c1 = 0, c2 = 1

Cov
(
Ψ(Xi, Yj),Ψ(Xi′ , Yj′)

)
= Cov

(
Ψ(Xi, Yj),Ψ(Xi′ , Yj)

)
= σ2

01. (2.44)

In a next step we consider the number of possibilities nc1=1,c2=1, nc1=0,c2=0, nc1=1,c2=0, and

nc1=0,c2=1 to get the various combinations of c1 and c2 for i, i′ in 1, ..., ncases and j, j′ in

1, ..., ncontrols. For c1 = 1, c2 = 1 we have ncases possibilities to choose i and ncontrols to

choose j. Since i′ = i and j′ = j, the overall amount is given by nc1=1,c2=1 = ncasesncontrols.

For c1 = 0, c2 = 0 it follows nc1=0,c2=0 = ncasesncontrols(ncases−1)(ncontrols−1), since there

remain (ncases−1) choices for i′ after having chosen i, for j′ analogously. For nc1=1,c2=0, and

analogously nc1=0,c2=1, we get ncasesncontrols(ncontrols − 1) and ncasesncontrols(ncases − 1)

possibilities. With this we get the variance of ÂUC to be:

V ar
(
ÂUC

)
=

1

n2
casesn

2
controls

ncases∑
i=1

ncontrols∑
j=1

ncases∑
i′=1

ncontrols∑
j′=1

Cov
(
Ψ(Xi, Yj),Ψ(Xi′ , Yj′)

)
=

1

n2
casesn

2
controls

(
nc1=1,c2=1σ

2
11 + nc1=0,c2=0σ

2
00 + nc1=1,c2=0σ

2
10 + nc1=0,c2=1σ

2
01

)
=

1

n2
casesn

2
controls

(
ncasesncontrolsσ

2
11 + ncasesncontrols(ncases − 1)(ncontrols − 1) · 0

+ncasesncontrols(ncontrols − 1)σ2
10 + ncasesncontrols(ncases − 1)σ2

01

)
=

1

ncasesncontrols
σ2

11 +
ncontrols − 1

ncasesncontrols
σ2

10 +
ncases − 1

ncasesncontrols
σ2

01. (2.45)

Assume σ2
11 <∞ and ncases

ntotal

ntotal→∞−−−−−−→ prev ∈ (0, 1). As ntotal becomes large, we get

V ar
(
ÂUC

)
ntotal→∞−−−−−−→ 0 · σ2

11 +
1

ncases
σ2

10 +
1

ncontrols
σ2

01 (2.46)

and

√
ntotal

(
ÂUC −AUC

)
d−→ N

(
0, ntotal

(
1

ncases
σ2

10 +
1

ncontrols
σ2

01

))
. (2.47)

In order to show this asymptotic normality, define

θ̂∗1 =
1

ncases

ncases∑
i=1

(
Ψ10(Xi)−AUC

)
, (2.48)

θ̂∗2 =
1

ncontrols

ncontrols∑
j=1

(
Ψ01(Yj)−AUC

)
. (2.49)

Since Ψ10(Xi) − AUC are independent and independent and identically distributed (i.i.d.)

with mean 0 and variance σ2
10, the central limit theorem implies

√
ncasesθ̂

∗
1

d−→ N
(
0, σ2

10

)
,

analogously for θ̂∗2. The sum of these two approximately normal distributed random variables

θ̂∗ = θ̂∗1 + θ̂∗2 is again approximately normal with mean 0 and variance 1
ncases

σ2
10 + 1

ncontrols
σ2

01.
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It remains to show that
√
ntotalθ̂

∗ and
√
ntotal

(
ÂUC −AUC

)
are asymptotically equivalent

and therefore have the same limiting distribution. For this we show

E

((√
ntotalθ̂

∗ −
√
ntotal

(
ÂUC −AUC

))2
)

ntotal→∞−−−−−−→ 0 : (2.50)

E

((√
ntotalθ̂

∗ −
√
ntotal

(
ÂUC −AUC

))2
)

= ntotalE

((
θ̂∗
)2
)

+ ntotalE

((
ÂUC −AUC

)2
)
− 2ntotalE

(
θ̂∗
(
ÂUC −AUC

))
,

(2.51)

with

E

((
θ̂∗
)2
)

= V ar
(
θ̂∗
)

+ E
(
θ̂∗
)2

=
1

ncases
σ2

10 +
1

ncontrols
σ2

01, (2.52)

E

((
ÂUC −AUC

)2
)

= E
(
ÂUC

2)
− 2AUC · E

(
ÂUC

)
+AUC2

= E
(
ÂUC

2)
− E

(
ÂUC

)2

= V ar
(
ÂUC

)
ntotal→∞−−−−−−→ 1

ncases
σ2

10 +
1

ncontrols
σ2

01, (2.53)

and

E
(
θ̂∗
(
ÂUC −AUC

))
= E

(
θ̂∗
)
E
(
ÂUC −AUC

)
+ Cov

(
θ̂∗, ÂUC

)
= 0 · (AUC −AUC) + Cov

(
θ̂∗1 + θ̂∗2, ÂUC

)
= Cov

 1

ncases

ncases∑
k=1

(
Ψ10(Xk)−AUC

)
,

1

ncasesncontrols

ncases∑
i=1

ncontrols∑
j=1

Ψ(Xi, Yj)


+ Cov

 1

ncontrols

nconrols∑
l=1

(
Ψ01(Yl)−AUC

)
,

1

ncasesncontrols

ncases∑
i=1

ncontrols∑
j=1

Ψ(Xi, Yj)


=

1

n2
casesncontrols

ncases∑
k=1

ncases∑
i=1

ncontrols∑
j=1

Cov
(
Ψ10(Xk),Ψ(Xi, Yj)

)
+

1

ncasesn2
controls

ncontrols∑
l=1

ncases∑
i=1

ncontrols∑
j=1

Cov
(
Ψ01(Yl),Ψ(Xi, Yj)

)
=
ncasesncontrols
n2
casesncontrols

σ2
10 +

ncasesncontrols
ncasesn2

controls

σ2
01

=
1

ncases
σ2

10 +
1

ncontrols
σ2

01. (2.54)

We have used that the covariance of Ψ10(Xk) and Ψ(Xi, Yj) is 0 if Xk 6= Xi, and σ2
10 other-

wise. For a fixed k there remain ncontrols possibilities for Ψ(Xi, Yj) so that Xk = Xi. Since

there are ncases possibilities of choosing k, we have a total of ncasesncontrols terms unequal
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to 0. Analogously we get Cov
(
Ψ01(Yl),Ψ(Xi, Yj)

)
=

0 Yl 6= Yj

σ2
01 Yl = Yj

with ncasesncontrols

possibilities to get Yl = Yj . With this the convergence of (2.50) is shown.

To get an estimator for V ar
(
ÂUC

)
, we consider σ2

10 in more detail:

σ2
10 = V ar

(
Ψ10(Xi)

)
= V ar

(
E
(
Ψ(Xi, Yj)

∣∣Xi

))
, (2.55)

whereby we estimate E
(
Ψ(Xi, Yj)

∣∣Xi

)
by ψ(Xi) = 1

ncontrols

∑ncontrols
j=1 Ψ(Xi, Yj). With this

we get the estimate

σ̂2
10 =

1

ncases − 1

ncases∑
i=1

(
ψ(Xi)− ψ̄(Xi)

)2
, (2.56)

with ψ̄(Xi) being the mean of ψ(Xi), given by

ψ̄(Xi) =
1

ncases

ncases∑
i=1

1

ncontrols

ncontrols∑
j=1

Φ(Xi, Yj) = ÂUC. (2.57)

Analogously we estimate σ2
01 by

σ̂2
01 =

1

ncontrols − 1

ncontrols∑
j=1

(
1

ncases

ncases∑
i=1

Ψ(Xi, Yj)− ÂUC

)2

(2.58)

to get the overall estimate V̂ ar
(
ÂUC

)
= 1

ncases
σ̂2

10 + 1
ncontrols

σ̂2
01. Since we have shown an

approximate normal distribution for ÂUC, we get the resulting 95%-CI

ÂUC ± z0.975

√
V̂ ar

(
ÂUC

)
, (2.59)

with z0.975 = 1.96 the 0.975 quantile of the standard normal distribution.

2.3 Calibration

Calibration of a model indicates to which extent predicted and observed risks agree. We con-

sider the HLS as a summarizing measure, and the calibration curve for a graphical display.

For the HLS we group patients by decile of their predicted probabilities, leading to 10 groups

of patients ranging from low to high risk. Any other grouping is possible, but less common

and derived analogously. Denote the number of patients in group i by ni, and the average

predicted risk in i by p̄i. This leads to an expected number of patients with and without high-

grade cancer of ey=1,i = nip̄i and ey=0,i = ni(1− p̄i), respectively, for i = 1, ..., 10. We then

compare the expected with the observed numbers of high-grade and no high-grade cancer

patients in each group, denoted by oy=1,i and oy=0,i = ni − oy=1,i. The HLS equals the sum

over the squared differences between the expected and observed values, standardized by
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the expected values:

HLS =
1∑
j=0

10∑
i=1

(ey=j,i − oy=j,i)
2

ey=j,i
=

10∑
i=1

(
(ey=1,i − oy=1,i)

2

ey=1,i
+

(ey=0,i − oy=0,i)
2

ey=0,i

)

=
10∑
i=1

(
(nip̄i − oy=1,i)

2

nip̄i
+

(
ni(1− p̄i)− (ni − oy=1,i)

)2
ni(1− p̄i)

)
(2.60)

=

10∑
i=1

(oy=1,i − nip̄i)2

nip̄i(1− p̄i)
. (2.61)

With this measure we can compare the predicted risks of different models for the same test

set, whereby smaller HLS values indicate better fit. However, we avoid comparisons across

different test sets, as the HLS is sensitive to the underlying sample size (Kramer and Zim-

merman 2007).

For a graphical display of the HLS, we plot the mean predicted risks p̄i on the x-axis versus the

corresponding observed average risks oy=1,i

ni
on the y-axis. We use the central limit theorem

to approximate the proportion of observed cases by a standard normal distribution and get

the pointwise 95%-CIs oy=1,i

ni
± z0.975 ∗

√
V̂ ar

(
oy=1,i

ni

)
, with z0.975 = 1.96 the 0.975 quantile

of the standard normal distribution. For the derivation of V̂ ar
(
oy=1,i

ni

)
, we assume the group

size ni fixed, and model the observed number of patients with high-grade cancer in group i

by

oy=1,i ∼ Bin(ni, pprev,i), (2.62)

with pprev,i as the true prevalence of high-grade cancer in group i. With this, the observed

average risk in group i, oy=1,i

ni
, has variance

V ar

(
oy=1,i

ni

)
=

1

n2
i

V ar(oy=1,i) =
1

n2
i

nipprev,i(1− pprev,i) =
pprev,i(1− pprev,i)

ni
, (2.63)

which can be estimated by V̂ ar
(
oy=1,i

ni

)
=

oy=1,i
ni

(
1−

oy=1,i
ni

)
ni

.

In order to get a more detailed visualization, we use calibration plots, which show all indi-

vidual risk predictions on the x-axis instead of group averages. However, the corresponding

observed outcomes, to be plotted on the y-axis, are either zero or one. We therefore use

locally weighted regression to get a smoothed line through the binary results. This approach

is based on Cleveland 1979 and implemented in R with the command loess of the R Stats

Package. The idea is to build a weighted regression for every risk prediction, based on ob-

servations with similar predicted risk.

First, we consider a single observation i with outcome yi ∈ {0, 1} and predicted risk pi ∈
[0, 1]. For a given smoothing parameter α ∈ (0, 1], we define the neighborhood size r to be

α times the overall sample size n, rounded to the next integer. The r predicted risks closest
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to pi, including pi itself, are the neighborhood of pi. Set hi = max(|pi − pk|), with pk in the

neighborhood of pi. So hi is the maximal distance of pi to one of its neighbors. With this we

define weights for every observation k = 1, ..., n, depending on the considered observation

i:

wk(pi) =


(

1−
∣∣∣pi−pkhi

∣∣∣3)3 ∣∣∣pi−pkhi

∣∣∣ < 1

0
∣∣∣pi−pkhi

∣∣∣ ≥ 1

. (2.64)

This weight function has the properties that

1. weights for observations in the neighborhood of pi are greater than zero,

2. weights for observations depend only on their distance to pi, not their exact location,

3. weights get smaller for observations that are further away from pi and

4. weights are zero for observations outside the neighborhood of pi.

For observation i, we estimate regression coefficients β̂j(pi), j = 0, ..., d, of a polynomial

regression of degree d of the outcomes yk ∈ {0, 1}, k = 1, ..., n on the predicted risks

pk ∈ [0, 1], k = 1, ..., n. These are fitted by weighted least squares with weights as defined

in Equation 2.64, by minimizing

n∑
k=1

wk(pi)
(
yk − β0(pi)− β1(pi)pk − β2(pi)p

2
k − ...− βd(pi)pdk

)2
. (2.65)

For the considered pair of predicted risk and observed outcome, (pi, yi), we get the smoothed

point (pi, ŷi), with

ŷi =
d∑
j=0

β̂j(pi)p
j
i , (2.66)

the fitted value of the regression at pi. Note that the smoothed outcome ŷi can be outside

the interval [0, 1]. This leads to the commonly observed problem of calibration curves for risk

models falling outside the range of values reasonable for risks.

We repeat the previous steps of finding the neighborhood, setting weights and fitting a weighted

regression, for all observations i = 1, ..., n. Finally we plot the smoothed points (pi, ŷi) with

connecting lines in between.

In order to add pointwise CIs, we use estimated variances of the ŷi based on Cleveland 1979.

Consider the relation

yi = f(pi) + εi, i = 1, ..., n, (2.67)

where we assume εi ∼ N (0, σ2) i.i.d. Let f : R → R be a smooth function that is estimated
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by ŷi at the points pi:

f̂(pi) = ŷi =
d∑
j=0

β̂j(pi)p
j
i , i = 1, ..., n. (2.68)

Cleveland 1979 express ŷi in Equation (2.68) in terms of a linear combination of the yk, k =

1, ..., n and coefficients ri,k, which do not depend on yk, k = 1, ..., n:

ŷi =
n∑
k=1

ri,kyk, i = 1, ..., n. (2.69)

The derivation is not straightforward and omitted here. Let R be the n× n matrix with (i, k)th

entry ri,k ∈ R, ŷ = (ŷ1, ...ŷn)′ ∈ [0, 1]n and y = (y1, ..., yn)′ ∈ {0, 1}n with n-variate

normal distribution, y ∼ Nn(f(p), σ2I). Furthermore let p = (p1, ..., pn)′ ∈ Rn, f(p) =(
f(p1), ..., f(pn)

)′ ∈ Rn, I ∈ Rn×n the identity matrix of size n and ε = (ε1, ..., εn)′ ∈ Rn.

With this we obtain

ŷ = Ry =


r1,1 . . . r1,n

...
. . .

rn,1 . . . rn,n




y1

...

yn


, (2.70)

which follows a multivariate normal distribution with mean

E(ŷ) = E(Ry) = E
(
R(f(p) + ε)

)
= RE(f(p)) +RE(ε) = Rf(p), (2.71)

and covariance matrix

Cov(ŷ) = Cov(Ry) = RCov(y)R′ = R(σ2I)R′ = σ2RR′, (2.72)

since E(ε) = (E(ε1), ..., E(εn))′ = (0, ..., 0)′. Here we used that the expectation of a vector

is defined as the vector of expectations of its components. Define furthermore,

ε̂ = y − ŷ = y −Ry = (I −R)y, (2.73)

which follows a multivariate normal with covariance matrix

Cov(ε̂) = Cov(y − ŷ) = Cov(y −Ry) = Cov
(
(I −R)y

)
= (I −R)Cov(y)(I −R)′

= (I −R)σ2I(I −R)′ = σ2(I −R)(I −R)′. (2.74)

We estimate σ2 by

σ̂2 =
1

tr
(
(I −R)(I −R)′

) n∑
i=1

ε̂2i =
1

tr
(
(I −R)(I −R)′

) ε̂′ε̂, (2.75)
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with tr(X) the trace of a matrix X. To prove that σ̂2 is an approximate unbiased estimate of

σ2, we use that the expectation of a matrix is the matrix of expectations of individual elements,

the following properties of the trace

tr(AB) = tr(BA), A ∈ Rm×n, B ∈ Rn×m, (2.76)

tr(c) = c, c ∈ R, (2.77)

tr(cA+B) = ctr(A) + tr(B), c ∈ R, A,B ∈ Rn×n, (2.78)

and the resulting equality

E(tr(A)) = tr(E(A)), A ∈ Rn×n. (2.79)

We consider

E
(
σ̂2
)

=
1

tr
(
(I −R)(I −R)′

)E(ε̂′ε̂), (2.80)

with

E(ε̂′ε̂) = E
((

(I −R)y
)′

(I −R)y
)

= E
(
y′(I −R)′(I −R)y

)
(2.77)

= E
(
tr
(
y′(I −R)′(I −R)y

)) (2.76)
= E

(
tr
(
(I −R)′(I −R)yy′

))
(2.79)

= tr
(
E
(
(I −R)′(I −R)yy′

)) (2.78)
= tr

(
(I −R)′(I −R)E(yy′)

)
. (2.81)

We obtain

E(yy′) = E
((
f(p) + ε

)(
f(p) + ε

)′)
= E

(
f(p)f(p)′ + f(p)ε′ + εf(p)′ + εε′

)
= E

(
f(p)f(p)′

)
+ E

(
f(p)ε′

)
+ E

(
εf(p)′

)
+ E

(
εε′
)

= f(p)f(p)′ + σ2I, (2.82)

since E (f(p)ε′) = f(p)E (ε′) = f(p)(0, ..., 0) = 0n,n ∈ Rn×n, a n× n-matrix with all entries

equal 0, similarly for E (εf(p)′), and E(εε′) =


E(ε21) . . . E(ε1εn)

...
. . .

E(εnε1) . . . E(ε2n)


= σ2I, as the εi are

i.i.d. with E(εi) = 0 and V ar(εi) = σ2. With this Equation (2.81) becomes

E(ε̂′ε̂) = tr
(
(I −R)′(I −R)E(yy′)

)
= tr

(
(I −R)′(I −R)(f(p)f(p)′ + σ2I)

)
(2.78)

= tr
(
(I −R)′(I −R)f(p)f(p)′

)
+ σ2tr

(
(I −R)′(I −R)

)
= tr

(
(I −R)′(If(p)−Rf(p))f(p)′

)
+ σ2tr

(
(I −R)′(I −R)

)
. (2.83)

The authors assume negligible bias in the fitted values, discussed in Cleveland and Devlin

1988, therefore assuming f(p) = E(ŷ) = Rf(p). We approximate Equation (2.83) with

E(ε̂′ε̂) ≈ 0 + σ2tr
(
(I −R)(I −R)′

)
, (2.84)
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and by inserting into Equation (2.80), obtain

E(σ̂2) ≈ 1

tr ((I −R)(I −R)′)
E(ε̂′ε̂) =

1

tr ((I −R)(I −R)′)
σ2tr

(
(I −R)(I −R)′

)
= σ2,

(2.85)

so that σ̂2 is approximately unbiased for σ2.

We obtain the estimated variance

V̂ ar(ŷi) = σ̂2(RR′)i,i = σ̂2
(
ri,1, ..., ri,n

)(
ri,1, ..., ri,n

)′
= σ̂2

n∑
k=1

r2
i,k. (2.86)

Using a t-based approximation as argued in Cleveland and Devlin 1988 and implemented in

the employed R package, we obtain the approximate 95%-CI for ŷi:

ŷi ± t0.975,df

√
V̂ ar(ŷi) = ŷi ± t0.975,df

√√√√σ̂2

n∑
k=1

r2
i,k, (2.87)

with t0.975,df the 0.975 quantile of a t distribution with df degrees of freedom, given by

df =

(
tr
(
(I −R)(I −R)′

))2

tr
((

(I −R)(I −R)′
)2) . (2.88)

Calibration curves should be close to the diagonal line from (0,0) to (1,1), as this indicates

similar predicted and observed risks. If the calibration curve is, for instance, beneath this

reference line, the predicted risks are higher than the actual observed ones.

2.4 Net benefit

Decision curve analysis takes into account weighting of true positive and false positive clas-

sifications and was introduced by Vickers and Elkin 2006. In this section we again consider

predictions of the risk of high-grade cancer diagnosis on prostate biopsy. Based on this risk, a

patient, or the respective doctor, will decide whether the patient is referred to biopsy. Decision

analysis is now based on the benefit of this referral. The decision tree in Figure 10 shows the

four possible outcomes for a patient with respective values e, f, g, and h. The authors refer

to h− f as the harm of being referred unnecessarily, so the consequence of a false positive.

It consists of the missed benefits h > 0 and the harm f < 0. They further define e− g as the

consequence of avoiding referral if high-grade cancer is present, so for a false negative. The

expected net benefit of the decision policy to refer a patient with a predicted risk greater than
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Figure 10 : Binary decision tree for referral to biopsy and diagnosis with high-grade cancer.

some threshold c is defined as

(e− g)P (predicted risk > c and high− grade cancer)

− (h− f)P (predicted risk > c and no high− grade cancer)

=(e− g)psens(c)pprev − (h− f)(1− pspec(c))(1− pprev)

=(e− g)
(
psens(c)pprev −

(h− f)

(e− g)
(1− pspec(c))(1− pprev)

)
, (2.89)

where we used the definition of sensitivity and specificity of Section 2.2. If we consider this

quantity to be measured in units of (e− g), this expression simplifies to

psens(c)pprev −
(h− f)

(e− g)
(1− pspec(c))(1− pprev), (2.90)

however, this further complicates the interpretation of the final net benefit measure. Decision

theory postulates that the optimal risk threshold c would weight the two potential outcomes of

high-grade versus no high-grade cancer equally whether referred to biopsy or not:

ce+ (1− c)f = cg + (1− c)h

⇔ c(e− g) = (1− c)(h− f)

⇔ (h− f)

(e− g)
=

c

1− c
(2.91)

(Kerr, Brown, et al. 2016). This reformulation leads to the definition of net benefit as given in

Vickers and Elkin 2006:

net benefit(c) = psens(c)pprev −
c

1− c
(
1− pspec(c)

)
(1− pprev). (2.92)

Note that Equation 2.92 does not explicitly include the value of referral, but implicitly accounts

for it with the threshold c. This necessitates the assumption that c is chosen rationally, and

therefore reflects benefit and harm of referral as in Equation (2.91). Kerr, Brown, et al. 2016

note an additional critical assumption that expected consequences do not depend on the
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predicted risks. We estimate the net benefit by

NetBen(c) = Sens(c)Prev − c

1− c
(
1− Spec(c)

)
(1− Prev), (2.93)

and obtain estimated net benefit values for every possible threshold c ∈ (0, 1), resulting in a

net benefit curve. Since it remains difficult to interpret units of net benefit(c) for a specific

risk prediction model, we compare net benefit curves to two other decision rules. The first

is the strategy of referring all patients to biopsy independently of their predicted risk. This

effectively corresponds to a threshold c = 0, psens(0) = 0, pspec(0) = 1, and hence to a net

benefit of

net benefit all(c) = psens(c)pprev −
c

1− c
(
1− pspec(c)

)
(1− pprev)

= 1 · pprev −
c

1− c
· 1 · (1− pprev), (2.94)

estimated from the validation set as NetBenAll(c) = Prev − c
1−c(1 − Prev). Despite that

Vickers and Elkin 2006 effectively assume the threshold c = 0 for psens and pspec, the net

benefit of this rule is still a function of c to capture the relative size of the consequences of a

false positive and false negative result. Analogously, we consider the decision rule of referring

no patients to biopsy, corresponding to a threshold c = 1:

net benefit no(c) = psens(c)pprev −
c

1− c
(
1− pspec(c)

)
(1− pprev)

= 0 · pprev −
c

1− c
· 0 · (1− pprev)

= 0. (2.95)

For a visual analysis, we plot the net benefit for a considered model and the two simple

decision rules on the y-axis, versus all possible cutoffs c ∈ (0, 1) on the x-axis. Vickers

and Elkin 2006 model has clinical value if it has higher net benefit than the strategies of

biopsying all or no patients in the range of thresholds reasonable for the considered disease.

Analogously, we can compare two models in terms of their net benefit curves.

As for previous validation measures, it is useful to include CIs for net benefit curves. We

apply the law of total variance to derive the variance of the observed net benefits, whereby

we condition the interior moments on the observed prevalence:

V ar
(
NetBen(c)

)
= V ar

(
E
(
Netben(c)

∣∣Prev))+ E
(
V ar

(
Netben(c)

∣∣Prev)). (2.96)

For the conditional expectation we obtain

E
(
NetBen(c)|Prev

)
= E

(
Sens(c)Prev − c

1− c
(
1− Spec(c)

)
(1− Prev)

∣∣∣∣Prev)
= E

(
Sens(c)Prev

∣∣Prev)− c

1− c
E
((

1− Spec(c)
)
(1− Prev)

∣∣∣Prev)
= Prev · psens(c)−

c

1− c
(1− Prev)(1− pspec) (2.97)
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by linearity and the expectations for Sens(c) and Spec(c) from Section 2.2. Furthermore we

use that, if conditioned on prevalence, sensitivity and specificity are independent:

V ar
(
NetBen(c)

∣∣Prev)
= V ar

(
Sens(c)Prev − c

1− c
(
1− Spec(c)

)
(1− Prev)

∣∣∣∣∣Prev
)

= Prev2V ar
(
Sens(c)

∣∣Prev)+

(
− c

1− c

)2

(1− Prev)2V ar
(
1− Spec(c)

∣∣Prev)
= Prev2 psens(c)

(
1− psens(c)

)
ntotalPrev

+

(
c

1− c

)2

(1− Prev)2 pspec(c)
(
1− pspec(c)

)
ntotal(1− Prev)

=
psens(c)

(
1− psens(c)

)
ntotal

Prev +

(
c

1− c

)2

(1− Prev)
pspec(c)

(
1− pspec(c)

)
ntotal

. (2.98)

With these we compute

V ar
(
E
(
NetBen(c)

∣∣Prev))
= V ar

(
Prev · psens(c)−

c

1− c
(1− Prev)

(
1− pspec(c)

))
= V ar

(
Prev

(
psens(c) +

c

1− c
(
1− pspec(c)

))
− c

1− c
(
1− pspec(c)

))
=

(
psens(c) +

c

1− c
(
1− pspec(c)

))2

V ar(Prev)

=

(
psens(c) +

c

1− c
(
1− pspec(c)

))2 pprev(1− pprev)
ntotal

, (2.99)

and

E
(
V ar

(
NetBen(c)

∣∣Prev))
= E

(
psens(c)

(
1− psens(c)

)
ntotal

Prev +

(
c

1− c

)2

(1− Prev)
pspec(c)

(
1− pspec(c)

)
ntotal

)

=
psens(c)

(
1− psens(c)

)
ntotal

E(Prev) +

(
c

1− c

)2 (
1− E(Prev)

)pspec(c)(1− pspec(c))
ntotal

=
psens(c)

(
1− psens(c)

)
ntotal

pprev +

(
c

1− c

)2

(1− pprev)
pspec(c)

(
1− pspec(c)

)
ntotal

. (2.100)

Overall, we get the variance

V ar
(
NetBen(c)

)
= V ar

(
E
(
NetBen(c)

∣∣Prev))+ E
(
V ar

(
NetBen(c)

∣∣Prev))
=

(
psens(c) +

c

1− c
(
1− pspec(c)

))2 pprev(1− pprev)
ntotal

+
psens(c)

(
1− psens(c)

)
ntotal

pprev +

(
c

1− c

)2

(1− pprev)
pspec(c)

(
1− pspec(c)

)
ntotal

(2.101)
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with its estimate

V̂ ar
(
NetBen(c)

)
=

(
Sens(c) +

c

1− c
(
1− Spec(c)

))2 Prev(1− Prev)

ntotal

+
Sens(c)

(
1− Sens(c)

)
ntotal

Prev +

(
c

1− c

)2

(1− Prev)
Spec(c)

(
1− Spec(c)

)
ntotal

=

(
Sens(c) +

c

1− c
(
1− Spec(c)

))2

V ar(Prev)

+ V ar
(
Sens(c)

)
Prev2 +

(
c

1− c

)2

V ar
(
Spec(c)

)
(1− Prev)2. (2.102)

It is straightforward to calculate the variance of the observed net benefit for the strategy of

referring all patients to biopsy by

V ar
(
NetBenAll(c)

)
= V ar

(
Prev − c

1− c
(1− Prev)

)
= V ar

(
1

1− c
Prev − c

1− c

)
=

(
1

1− c

)2 pprev(1− pprev)
ntotal

, (2.103)

along with the estimate V̂ ar
(
NetBenAll(c)

)
=
(

1
1−c

)2
Prev(1−Prev)

ntotal
.

With the derived variances, we can display clinical usefulness in terms of net benefit for all

thresholds c ∈ (0, 1), with the corresponding approximated pointwise 95%-CIs NetBen(c)±
2 ∗
√
V̂ ar

(
NetBen(c)

)
. For the decision rules of referring all or no patients to biopsy, we

obtain NetBenAll(c)± 2 ∗
√
V̂ ar

(
NetBenAll(c)

)
and 0, respectively.
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3 Optimal Integration of Heterogeneous Cohorts for
Global Prostate Cancer Risk Assessment

The PBCG data set consists of information from several different cohorts. Integration of the

data from individual patients across multiple cohorts can bring several advantages for the

development of a generally applicable risk prediction model. Nevertheless there also arise

difficulties by this diversity. This chapter focuses on different methods to predict the risk

of high-grade cancer, whereby all available cohorts are incorporated, and also deals with

the challenges arising from the clustered nature of the PBCG data. With this the chapter

addresses the first aim of this thesis to assess the benefits of incorporating cohort hetero-

geneity.

3.1 Research in context

One of the goals of the PBCG consortium is to develop a statistical model that predicts the risk

of having a positive biopsy for high-grade prostate cancer by evaluating the observed patient

characteristics. A reliable assessment of individual patient risk may reduce the amount of

unnecessary prostate biopsies, which is desirable as such examinations are accompanied by

high distress for patients (Chapter 1). Models that assess the risk of having a specific disease

can be characterized as diagnostic, and their development as well as validation play a pivotal

role in medical research (Debray, Riley, et al. 2015).

The PBCG data set combines individual patient data (IPD) from several international cohorts.

While most IPD were prospectively collected, some participating cohorts provided additional

retrospective data (Section 1.2). This multi-cohort study design can be compared to a primar-

ily prospective IPD meta-analysis (Riley, Lambert, et al. 2010). Even though his chapter fo-

cuses on diverse cohorts, the results can be applied analogously to various types of clusters.

As Debray, Moons, Ahmed, et al. 2013 discuss, prediction research in general, and there-

fore also international collaborations such as the PBCG, have become more popular. Hence,

adequate risk prediction methods that integrate diverse data are increasingly needed.

3.1.1 Advantages and disadvantages of multi-cohort studies

One of the main advantages of a multi-cohort data structure is the enhanced generalizability

of the resulting model (Wynants et al. 2016, Sprague et al. 2009, Debray, Moons, Ahmed,

et al. 2013). As the PBCG data comprise patients from ten cohorts from several countries, a

broader range of risk factors is included in the study, as shown in Figure 7. The proportion

of patients with African ancestry, for instance, exceeds 40% for DurhamVA, whereas other

cohorts, such as MayoClinic, SanRaffaele, and Zurich, have at most two patients with African

ancestry. Furthermore, cancer prevalence varies between the institutions, as illustrated in
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Figure 6. Reasons for this diversity include differences in the biopsy procedure, such as

the number of cores taken as well as the subjective assessments of resulting specimens by

the local physicians. Typically more participating surgeons and clinical sites increase the

generalizability to new patient populations (Sprague et al. 2009). However, this does not

always hold. In particular many multi-cohort studies comprise data from several cohorts with

exclusively Caucasian patients. In this case even a very high number of cohorts does not

help for predicting minorities like African American or Hispanic patients.

Similar to traditional meta-analysis, the multi-cohort approach has the additional positive ef-

fect of an increased sample size (Sprague et al. 2009). Single studies for clinical trials can be

too small, whereby meta-analysis is a possibility to overcome this problem (DerSimonian and

Laird 1986). Advantages of combining several cohorts are not restricted to the increase in

number of patients, but also often include a resulting decrease in recruitment time (Wynants

et al. 2016, Sprague et al. 2009). This ensures contemporary data, a crucial component for

valid risk prediction to be discussed in Chapter 4.

One important issue in conventional meta-analysis is the use of aggregate data, which might

decrease power (Tierney et al. 2015). This problem can be dealt with by the use of IPD and

the resulting IPD meta-analysis. However, a further disadvantage of meta-analyses, IPD or

otherwise, is potential diversity in the study design as well as in the applied methods (DerSi-

monian and Laird 1986, Riley, Lambert, et al. 2010). Tierney et al. 2015 show that variation

in quality across cohorts may also negatively effect reliability of results. These issues are

negligible here, since the PBCG is a primarily prospective study. This ensures consistency

across the different sites, including standardized assessment of outcomes, homogeneous

recording of data and near identical collected variables. Overall, prospectively planned IPD

meta-analysis maximize the power of meta-analyses (Riley, Lambert, et al. 2010).

Nevertheless the challenge of clustered data remains in multi-cohort studies due to varying

clinical assessments or population types across the different sites (Bouwmeester, Twisk, et

al. 2013, Pavlou et al. 2015, Wynants et al. 2016). Debray, Moons, Ahmed, et al. 2013 de-

scribe how heterogeneity in study populations primarily manifests in varying baseline risks,

measured by the outcome prevalences, or in the association of the outcome with the covari-

ates. Even though we have tried to explain the prevalence differences, shown in Figure 6,

by the collected variables, it must be assumed that there remains unexplained clustering in

the PBCG data set. Also, differing prevalences of patient characteristics across the various

cohorts might have an influence on heterogeneity of the outcome prevalences.

3.1.2 Incorporation of cohort heterogeneity

A systematic review by Bouwmeester, Zuithoff, et al. 2012 showed that regression techniques

integrating clustering were not commonly used for prediction models. It is therefore of interest,

whether heterogeneity, as present in the PBCG data, can be ignored for the development of
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a general risk calculator. Several papers agree that the clustered nature of data should be

taken into account, whereby different methods for an optimal integration of multiple studies

or cohorts are considered (Abo-Zaid et al. 2013, Riley, Lambert, et al. 2010, DerSimonian

and Laird 1986, Wynants et al. 2016, Debray, Moons, Ahmed, et al. 2013). Models ignoring

heterogeneity of the data might provide attenuated effect estimates, which could even result in

missing important diagnostic markers (Burke et al. 2017, Abo-Zaid et al. 2013). Inconsistent

model performance as well as reduced generalizability are further possible problems (Debray,

Moons, Ahmed, et al. 2013). In addition Pavlou et al. 2015 draw attention to the possibility

of resulting incorrect standard errors for the coefficient estimates. In order to incorporate the

clustering, various meta-analysis methods will be applied in this chapter and compared to a

standard logistic regression model that ignores cohort heterogeneity.

3.1.3 Comparison of two- and one-stage meta-analyses

There are two general approaches for performing a meta-analysis of IPD, termed two- and

one-stage meta-analyses. The traditional two-stage approach analyzes data from each co-

hort separately in a first step. Depending on the type of data, appropriate statistical methods

produce aggregate data for each cohort individually. For the resulting summary statistics tra-

ditional meta-analysis methods are applied in the second stage to synthesize the available

information. In general, the two-stage analyses can be also applied to combine several stud-

ies, for which only aggregate data are available. It is therefore not only a possible approach

to perform an IPD meta-analysis, but it also represents the standard method for a traditional

meta-analysis based on literature search. One of the main advantages is the resulting good

documentation (Burke et al. 2017, Riley, Lambert, et al. 2010). Moreover, it is less complex

for non-statisticians to use and understand these methods, especially since they are already

broadly applied and therefore well known (Riley, Lambert, et al. 2010). The attractiveness of

this approach is further enhanced as IPD need not leave the local site where it is analyzed,

only aggregate summaries are forwarded for a central analysis. Experience shows that the

process of centrally collecting data is time consuming and can be complicated even more

by comprehensive data nondisclosure agreements. Since contemporary data are crucial, as

discussed in Chapter 4, it is desirable to shorten this process if possible. However, this sim-

plification bears the need for good statisticians at the individual cohorts. It also eliminates

the possibility of an overall data cleaning and quality check, therefore increases the diversity

across cohorts. An other disadvantage rises in case of imbalanced risk factor distributions.

As some cohorts might have the same value of a covariate across all patients or do not report

a risk factor at all, no estimates can be obtained for this cohort.

In contrast to this traditional approach, the availability of IPD also enables the possibility to

analyze the data of all sites at once, whereby the clustered nature of the data has to be

accounted for. This is called a one-stage meta-analysis. It uses a more exact statistical ap-

proach, which is especially important if only few studies are given, the number of observations

within a study is small, or rare events are present (Abo-Zaid et al. 2013, Burke et al. 2017,
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Debray, Moons, Abo-Zaid, et al. 2013). In these cases, unstable estimates can occur for the

two-stage approach, as the normal assumptions might not be appropriate (Abo-Zaid et al.

2013, Burke et al. 2017, Debray, Moons, Abo-Zaid, et al. 2013, Tierney et al. 2015). Never-

theless Burke et al. 2017 also refer to computational intensity and convergence problems of

the one-stage meta-analysis.

Overall, it is commonly agreed, that both methods mostly produce comparable results, par-

ticularly when a large number of cohorts and observations are included or single treatment

effects are estimated (Abo-Zaid et al. 2013, Burke et al. 2017, Debray, Moons, Abo-Zaid,

et al. 2013, Riley, Lambert, et al. 2010, Tierney et al. 2015). However, there can be varying

results, whereby Burke et al. 2017 emphasize that the origin of these differences lies mostly

in varying model assumptions made for the two approaches. Nevertheless it is advisable

to either specify the used methods beforehand or to report the results of both approaches

(Burke et al. 2017, Tierney et al. 2015).

3.1.4 Predictions with random effects in one-stage meta-analysis

As previously discussed, two-stage meta-analysis methods are already broadly used and well

documented. However, one-stage analyses of IPD lack detailed guidance to date. Methods

to incorporate the clustered nature of a data set can be marginal, using for example general-

ized estimation equation (GEE) methods, which are robust to distribution mis-specifications,

or conditional, such as mixed effects models, which require assumption of a normal distri-

bution (Bouwmeester, Twisk, et al. 2013). Both approaches are commonly used, whereby

the use of GEEs is less suitable for the prediction of individual patient risks (Pavlou et al.

2015, Bouwmeester, Twisk, et al. 2013). Random intercept models, which incorporate het-

erogeneous baseline risks for the different cohorts, are the simplest version of mixed effects

methods, requiring one additional parameter to be estimated compared to a standard regres-

sion model. Random intercept models are discussed for modeling in the presence of clusters

in several papers and they are also used in this chapter for comparison (Bouwmeester, Twisk,

et al. 2013, Wynants et al. 2016, Debray, Moons, Ahmed, et al. 2013).

In order to get predictions from a random intercept model, one has to distinguish whether

the predicted value is for a member of an existing, new or unknown cluster. In the first

case it is straightforward to use the estimates for the fixed as well as the random effects

(Bouwmeester, Twisk, et al. 2013). Even though a more accurate approach is to integrate over

the posterior distribution of the random effects, both methods for existing cluster perform very

similarly (Skrondal and Rabe-Hesketh 2009, Pavlou et al. 2015). Debray, Moons, Ahmed,

et al. 2013 focus on risk prediction in new study populations, whereby information on new

cohorts are incorporated. However, as the models in this thesis should be suitable as a global

risk calculator, we concentrate on risk estimation for a patient from an unknown cohort. In

practice these risks are often obtained by median predictions that set the random effects to

zero, so assuming an average random cohort effect (Wynants et al. 2016). Pavlou et al.
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2015 emphasizes that this simplification is technically incorrect to get marginal predictions

and proper values are calculated by integrating over the distribution of the random effects,

resulting in mean prediction for the population of clusters. However, the mis-calibration will be

minor for weakly clustered data, as is often the case for different cohorts. In the subsequent

analysis median and mean risk prediction methods for individuals of an unknown cohort are

applied and compared to each other.

3.2 Methods for covariate selection

In this chapter only the standard variables PSA, first-degree family history, prior negative

biopsy, race, age and DRE, as well as corresponding two way interactions are considered, as

we focus on incorporating multiple cohorts rather than on choosing appropriate risk factors.

For covariate selection a standard multiple logistic regression model is fit to each combination

of 5 cohorts pooled together. In addition, it is built on each of the ten cohorts separately as

well as to all cohorts pooled together. For each training set a stepwise selection algorithm

based on the measure Bayesian information criterion (BIC) is used in order to choose covari-

ates from the given standard variables and all their corresponding two way interactions.

3.2.1 Bayesian information criterion

The BIC compares models based on their fit to the given data, thereby penalizing for their

complexity. It is analog to the Schwarz Criterion and the following derivation is based on Bhat

and Kumar 2010 (Schwarz 1978). In this chapter we focus on a set of models Mm, m =

1, ...,M , which differ in their included covariates. We consider the inclusion of six risk factors

and the resulting 15 possible two-way interactions, therefore a total of 21 covariates. Includ-

ing an intercept for every model, the number of parameters to be estimated, pm, for model

Mm therefore ranges between 1 and 22. In order to choose a suitable model among all

candidates, we consider the posterior probability of a model, given the observed outcomes of

high-grade cancer y = (y1, ..., yn) for i = 1, ..., n patients:

P (Mm|y) =
P (y|Mm)P (Mm)

P (y)
, (3.1)

by Bayes’ theorem. We assume all models equally likely, and therefore use a uniform prior

over models, so that P (Mm) is constant. Similarly P (y) is constant with respect to the model

choice, so that both terms can be deleted for the purpose of model selection. The remaining

term is given by

P (y|Mm) =

∫
Rpm

f(y|θm)gm(θm)dθm =

∫
Rpm

exp(log(f(y|θm)))gm(θm)dθm, (3.2)

where θm ∈ Rpm is the vector of parameters in the modelMm, f(y|θm) the density function

of the data given parameters θm, and gm(θm) denotes a prior on θm given the modelMm.

Next we approximate the log-likelihood log(f(y|θm)) by its second order Taylor expansion
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about its maximum θ̂m:

log(f(y|θm)) ≈ log(f(y|θ̂m))+(θm−θ̂m)′
∂log(f(y|θm))

∂θm

∣∣∣∣
θm=θ̂m

+
1

2
(θm−θ̂m)′Hm(θm−θ̂m),

(3.3)

with Hm the Hessian matrix, evaluated at the maximum likelihood estimate θ̂m, with resulting

elements (Hm)ij = ∂2logf(y|θm)
∂(θm)i∂(θm)j

∣∣∣
θm=θ̂m

. Since θ̂m maximizes log(f(y|θm)), the second term

of Equation (3.3) vanishes, and Hm is negative definite. Let Fm = −Hm be the observed

Fisher information matrix. With this Taylor approximation we get

P (y|Mm) ≈
∫
Rpm

exp(log(f(y|θ̂m))− 1

2
(θm − θ̂m)′Fm(θm − θ̂m))gm(θm)dθm

=f(y|θ̂m)

∫
Rpm

exp

(
−1

2
(θm − θ̂m)′Fm(θm − θ̂m)

)
gm(θm)dθm. (3.4)

It is defensible to use the non-informative prior gm(θm) = 1 (Neath and Cavanaugh 2012).

With this assumption the integral in Equation (3.4) simplifies to∫
Rpm

exp

(
−1

2
(θm − θ̂m)′Fm(θm − θ̂m)

)
dθm, (3.5)

for which we substituteX = θm−θ̂m. Since ∂(X+θ̂m)
∂X = 1 we get

∫
Rpm exp(−

1
2X
′FmX)dX.

The observed Fisher information matrix Fm is symmetric and can therefore be diagonalized

by Fm = S′∆S, with ∆ a diagonal matrix with the eigenvalues λj of Fm. Thereby all λj
are positive as Fm is positive definite and S is a orthogonal matrix satisfying S′ = S−1

and |det(S′)| = 1. We use these properties for the substitution X = S′U , as the resulting

Jacobian matrix is given by S′:∫
Rpm

exp

(
−1

2
X ′S′∆SX

)
dX =

∫
Rpm

exp

(
−1

2
U ′∆U

)
|det(S′)|dU

=

∫
Rpm

exp

−1

2

pm∑
j=1

λjU
2
j

 dU

=

pm∏
j=1

∫
R
exp

(
−1

2
λjU

2
j

)
dUj . (3.6)

The resulting integrals are Gaussian integrals with the solutions
√

2π
λj

. With this the approxi-

mated posterior distribution gets

P (y|Mm) ≈f(y|θ̂m)(2π)pm/2
1∏pm

j=1 λj

=f(y|θ̂m)(2π)pm/2
1

det(Fm)1/2
. (3.7)

In a last step we further investigate the single entries of the observed Fisher information
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matrix Fm:

(Fm)i,j =− ∂2logf(y|θm)

∂(θm)i∂(θm)j

∣∣∣∣
θm=θ̂m

=−
∂2
∑n

k=1 logf(yk|θm)

∂(θm)i∂(θm)j

∣∣∣∣
θm=θ̂m

=−
∂2 1

n

∑n
k=1 nlogf(yk|θm)

∂(θm)i∂(θm)j

∣∣∣∣∣
θm=θ̂m

=− ∂2E(nlogf(yk|θm))

∂(θm)i∂(θm)j

∣∣∣∣
θm=θ̂m

=− n ∂2E(logf(y1|θm))

∂(θm)i∂(θm)j

∣∣∣∣
θm=θ̂m

= n(F̃m)i,j , (3.8)

with F̃m the Fisher information matrix for a single observation yk. We have applied the weak

law of large numbers on the random variable nlogf(yk|θm), assuming i.i.d. outcomes yk, k =

1, ..., n, as well as large n. Taking the logarithm of Equation (3.7) and multiplying it with minus

two we now get:

−2log(P (y|Mm)) ≈− 2log(f(y|θ̂m))− pm
2
log(2π) + log(det(Fm))

=− 2log(f(y|θ̂m))− pm
2
log(2π) + log(npmdet(F̃m))

=− 2log(f(y|θ̂m))− pm
2
log(2π) + pmlog(n) + log(det(F̃m))

≈− 2log(f(y|θ̂m)) + pmlog(n) = BIC(Mm). (3.9)

Assuming large n, we disregard all terms without n in the last step. Since the logarithm is

a strictly monotone increasing function, choosing a model with minimal BIC is equivalent to

choosing a model with largest approximate posterior probability P (y|Mm).

A similar frequently used criterion for model selection is given by the Akaike information cri-

terion (AIC), defined as

AIC(Mm) = −2log(f(y|θ̂m)) + 2pm. (3.10)

The BIC includes a larger penalty of complex models for n > e2 ≈ 7.4, a model selection

based on the BIC therefore tends to choose simpler models compared to the AIC. As Hastie

et al. 2009 point out, the BIC is asymptotically consistent: In case the true model is included

in the set of candidate models Mm, pm of the true model is finite and remains fixed as n

increases, the probability of the BIC choosing this model approaches one as n → ∞. In

contrast, in this setting the AIC tends to choose models that are too complex. However, if one

of the assumptions is violated, it is difficult to assess consistency and it might be preferred to

consider efficiency for some loss function like the mean squared error (MSE) (Vrieze 2012).

Then the AIC might be preferred as selection criterion as it is asymptotically efficient. Overall

the choice of one of these two selection criteria over the other is based on the situation at
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hand and for the scope of this thesis we will use the BIC (Shao 1997).

3.2.2 Stepwise selection algorithm

As we consider six risk factors along with their two-way interactions for inclusion, we have

a total of 21 possible covariates that we can either include or not. This results in 221 =

2, 0097, 152 candidate models. This number slightly reduced, as we require the main effects

to be included in case a corresponding interaction term is used. However, it stays resource

intensive to calculate the BIC of all possible models and then choose the one with the smallest

BIC. Therefore we use a forward-backward stepwise selection algorithm to reduce the number

of considered models.

The algorithm starts with the model that includes all possible covariates and calculates the

corresponding BIC. In every step it first considers all models that include one additional co-

variate which is not part of the current model. If there exists at least one model with a lower

BIC than the current one, the model with the lowest BIC is chosen, so that the corresponding

covariate gets included in the current model. Next all currently incorporated covariates are

considered for exclusion. The algorithm therefore calculates the BIC for all models with one

covariate removed. If there exists a model with improved BIC, the covariate corresponding to

the model with lowest BIC is excluded from the current model. As long as the BIC improves

more than a given threshold, this step of considering all single covariates for either inclusion

or exclusion is repeated. If the BIC does not change remarkably any more, the current model

is considered optimal (Algorithm 1).

Algorithm 1 Stepwise selection

1: procedure STEP(full model)
2: M ← full model . model including all possible covariates
3: c← empty vector
4: ε← small threshold, e.g.: 0.1
5: while |BIC(M∗∗)−BIC(M)| > ε do
6: calculate BIC for all models containing one covariate in c added to M
7: if at least one BIC < BIC(M) then
8: M∗ ← model with minimum BIC
9: c← c without the covariate added for model M∗

10: elseM∗ ←M

11: calculate BIC for all models containing one covariate in M∗ removed from M∗

12: if at least one BIC < BIC(M∗) then
13: M∗∗ ← model with minimum BIC
14: c← c with the covariate removed for model M∗∗

15: elseM∗∗ ←M∗

16: return M∗∗
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3.3 Methods for modeling data from multiple cohorts

Using a suitable set of covariates, chosen according to 3.2, the following models are built and

evaluated.

3.3.1 Standard multiple logistic regression model

As the simplest model a standard multiple logistic regression is used. This naive approach

pools all cohorts together and an overall model is built on the whole data. Therefore the

clustering of patients in different cohorts is ignored. Let yji denote the binary outcome, high-

grade cancer versus low-grade cancer or no cancer, and Xji = (1, x1ji, ..., xKji)
′ is the

(K + 1) × 1 covariate vector for the ith observation of the jth cohort, i = 1, .., nj and j =

1, ..., J . The logistic regression model can be written as:

yji ∼ Bernoulli(pji)

log

(
E(yji|Xji)

1− E(yji|Xji)

)
= log

(
pji

1− pji

)
= βstandard0 +

K∑
k=1

βstandardk xkji =
(
βstandard

)′
Xji,

(3.11)

where E(.) is the expectation, pji the individual risks for high-grade cancer and βstandard =(
βstandard0 , ..., βstandardK

)′ the regression parameters. For the estimates β̂standard of the re-

gression coefficients maximum log-likelihood estimates are used. In the following the su-

perscripts of the coefficients are neglected to ensure readability. The log-likelihood for the

standard logistic regression is given by:

l(β) =
J∑
j=1

nj∑
i=1

log

[(
eβ
′Xji

1 + eβ
′Xji

)yji (
1

1 + eβ
′Xji

)1−yji
]

=

J∑
j=1

nj∑
i=1

log

[
eβ
′Xjiyji

1 + eβ
′Xji

]

=
J∑
j=1

nj∑
i=1

[
yjiβ

′Xji − log
(

1 + eβ
′Xji
)]
. (3.12)

In order to maximize Equation (3.12), its derivative has to be set to zero:

∂l(β)

∂β
=

J∑
j=1

nj∑
i=1

[
yjiXji −

eβ
′Xji

1 + eβ
′Xji

Xji

]
= 0. (3.13)
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In this thesis the solutions to theseK+1 equations are approximated by the Newton-Raphson

algorithm. Therefore the coefficient estimates get iteratively updated by the following rule:

βnew = βold −

[(
∂2l(β)

∂β∂β′

)−1
∂l(β)

∂β

]∣∣∣∣∣
β=βold

= βold −

 J∑
j=1

nj∑
i=1

− e(β
old)

′
Xji(

1 + e(β
old)

′
Xji
)2XjiX

′
ji



−1

J∑
j=1

nj∑
i=1

[
yjiXji −

e(β
old)

′
Xji

1 + e(β
old)

′
Xji

Xji

]
.

(3.14)

The algorithm specified by the updating rule 3.14 can be rewritten as an iteratively reweighted

least squares algorithm, which is used in this thesis and implemented in the R statistical

package (Hastie et al. 2009). As a starting value β = 0 can be used and due to the concave

form of the log-likelihood convergence is very likely.

One obtains the corresponding estimated covariance matrix
∑̂

of the parameter estimates β̂

by the negative inverse of the second derivative of the corresponding log-likelihood, evaluated

at β̂ (Hosmer, Lemeshow, and Sturdivant 2013):

∑̂
=



V̂ ar
(
β̂0

)
Ĉov

(
β̂0, β̂1

)
. . . Ĉov

(
β̂0, β̂K

)
Ĉov

(
β̂0, β̂1

)
V̂ ar

(
β̂1

)
. . . Ĉov

(
β̂1, β̂K

)
...

...
. . .

...

Ĉov
(
β̂0, β̂K

)
Ĉov

(
β̂1, β̂K

)
. . . V̂ ar

(
β̂K

)


=

(
−∂

2l (β)

∂β∂β′

)−1
∣∣∣∣∣
β=β̂

=

 J∑
j=1

nj∑
i=1

 eβ̂
′Xji(

1 + eβ̂
′Xji
)2XjiX

′
ji



−1

. (3.15)

Algorithm 2 Standard multiple logistic regression model

1: procedure STANDARD(IPD)
2: myData← pool all cohorts of IPD together . cohort information is ignored
3: fit standard multiple logistic regression on myData via Newton-Raphson approxima-

tion
4: β̂standard ← resulting coefficient estimates β̂standard0 , ..., β̂standardK

5: V̂ ar(β̂standard)← resulting variances . diagonal elements of
∑̂

6: return β̂standard, V̂ ar(β̂standard)
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It is now straightforward to obtain the risk predictions p̂standardji by

p̂standardji =

exp

((
β̂standard

)′
Xji

)
1 + exp

((
β̂standard

)′
Xji

)
=

1

1 + exp

(
−
(
β̂standard

)′
Xji

) . (3.16)

Algorithm 3 Prediction for standard multiple logistic regression model

1: procedure PREDICT_STANDARD(β̂standard, X)
. β̂standard: output of Algorithm 2

. X: covariate vector of individual patient
2: p̂standard ← 1

1+exp(−(β̂standard)′X)

3: return p̂standard

3.3.2 Random intercept model

Whereas the previous method ignored the clustered nature of the data, it is now accounted

for by introducing a random intercept. This one-stage meta-analysis is the simplest version of

a mixed effects logistic regression model and is suitable in case the heterogeneity between

different cohorts is only due to varying outcome frequencies (Debray, Moons, Ahmed, et al.

2013). In this setting only one additional parameter has to be estimated: the random intercept

variance ρ2
βrandom0

. Thereby the distribution of the random intercept is assumed to be normal

with mean 0. The resulting model for the binary outcome yji is given by

yji ∼ Bernoulli(pji),

log

(
E(yji|Xji)

1− E(yji|Xji)

)
= log

(
pji

1− pji

)
= βrandom0 + βrandom0j +

K∑
k=1

βrandomk xkji, (3.17)

βrandom0j ∼ N
(

0, ρ2
βrandom0

)
.

Similar to the standard logistic regression model, estimation of the fixed regression coef-

ficients βrandom =
(
βrandom0 , ..., βrandomK

)
of this random intercept model, as well as the

between-cohort variance in intercept, ρ2
βrandom0

, is performed via maximum likelihood. In the

following derivation of the log-likelihood for the random intercept model, the superscripts are

again neglected for readability. In a first step a single cohort j is considered. For a given

random intercept β0j , the individual patients can be assumed independent, yielding the con-
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ditional probability of (yj1, ..., yjnj ) by

nj∏
i=1

(
eβ
′Xji+β0j

1 + eβ
′Xji+β0j

)yji (
1

1 + eβ
′Xji+β0j

)1−yji

= exp

[ nj∑
i=1

(
yji
(
β′Xji + β0j

)
− log

(
1 + e(β′Xji+β0j)

))]
. (3.18)

In the next step the distribution of the random intercept β0j is incorporated, obtaining the

marginal probability of (yj1, ..., yjnj ):∫
R
exp

[ nj∑
i=1

(
yji
(
β′Xji +RI

)
− log

(
1 + e(β′Xji+RI)

))] 1√
2πρβ0

e
− 1

2ρ2
β0

RI2

dRI. (3.19)

Finally the log-likelihood of the random intercept model is obtained by summarizing over the

logarithm of the marginal probabilities of all cohorts:

l (β, ρβ0) =

J∑
j=1

log

∫
R
exp

[ nj∑
i=1

(
yji
(
β′Xji +RI

)
− log

(
1 + e(β′Xji+RI)

))] 1√
2πρβ0

e
− 1

2ρ2
β0

RI2

dRI.

(3.20)

Since the integral in Equation (3.20) does not have a closed form solution, it is approximated

by an order one Gauss-Hermite quadrature, which is equivalent to a Laplace approximation.

This approximation is then maximized in order to obtain the maximum likelihood estimates

β̂random =
(
β̂random0 , ..., β̂randomK

)
and ρ̂βrandom0

. In this thesis the fitting of the random inter-

cept model is performed in the R package lme4 (Bates et al. 2015).

Algorithm 4 Random intercept model

1: procedure RANDOM(IPD)
2: myData← pool all cohorts of IPD together, keep cohort information
3: fit random intercept regression on myData via Laplace approximation
4: β̂random ← resulting coefficient estimates β̂random0 , ..., β̂randomK

5: ρ2
βrandom0

← resulting estimate of random intercept variance

6: return β̂standard, ρ2
βrandom0

As already discussed in Section 3.1, the focus of the introduced models is on risk predictions

for individuals from unknown cohorts, where it is not possible to use coefficient estimates

for random intercepts, since these are specific to cohorts used in the analysis. In a simple,

but nevertheless widely used approach, one sets the random effects to their median value

0 and performs the prediction analogously to standard logistic regression. Since the inverse

of the logistic link h−1(x) = 1
1+exp(−x) is a monotonic function, inserting the median of the

random intercept, βrandom0j = 0, results in the predicted median response for the population
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of clusters:

p̂random zero
ji = Median(yji|Xji) =

1

1 + exp

(
−
(

0 +
(
β̂random

)′
Xji

)) . (3.21)

Algorithm 5 Median prediction for random intercept model

1: procedure PREDICT_RANDOM_ZERO(β̂random, X)
. β̂random: output of Algorithm 4

. X: covariate vector of individual patient
2: p̂random zero ← 1

1+exp(−(β̂random)′X)

3: return p̂random zero

We compare this simple approach to population-average prediction, which is the correct cal-

culation under the principle of squared error loss. We obtain the risks by integrating over the

distribution of the random effects (Skrondal and Rabe-Hesketh 2009, Pavlou et al. 2015):

p̂random integration
ji = E (yji|Xji) = E

(
E
(
yji|Xji, β

random
0j

))

= E

 1

1 + exp

(
−
((

β̂random
)′
Xji + βrandom0j

))


=

∫ ∞
−∞

1

1 + exp

(
−
((

β̂random
)′
Xji +RI

))f (RI) dRI, (3.22)

f (RI) =
1√

2πρ̂βrandom0

exp

−1

2

(
RI

ρ̂βrandom0

)2
 ,

whereby we used the rule for double expectation. We compute the mean predictions

p̂random integration
ji via numerical integration based on Gauss-Kronrod quadrature implemented

in the R package stats.

Algorithm 6 Mean prediction for random intercept model

1: procedure PREDICT_RANDOM_INTEGRATION(β̂random, ρ2
βrandom0

, X)

. β̂random, ρ2
βrandom0

: output of Algorithm 4
. X: covariate vector of individual patient

2: calculate p̂random integration via numerical integration
3: return p̂random integration

3.3.3 Two-stage IPD meta-analysis

In a two-stage approach, individual logistic regression models are built for every cohort sep-

arately and then traditional meta-analysis methods combine the results for an overall model.

In the first step, a standard multiple logistic regression model, as described in Section 3.3.1,
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is fit to each of the available cohorts separately:

yji ∼ Bernoulli(pji)

log

(
E(yji|Xji)

1− E(yji|Xji)

)
= log

(
pji

1− pji

)
= β0j +

K∑
k=1

βkjxkji,
(3.23)

where yji is 1 or 0 for patient i = 1, ..., nj from cohort j = 1, ..., J with or without a

positive diagnosis for high-grade cancer, respectively, and pji is the corresponding risk.

The unknown regression coefficients βkj , k = 0, ...,K are estimated for each cohort by

β̂j = (β̂0j , β̂1j , ..., β̂Kj) and the corresponding estimated within-cohort covariance matrix
∑̂

j

gets:

∑̂
j

=

(
−∂

2l (βj)

∂βj∂β′j

)−1
∣∣∣∣∣∣
βj=β̂j

=

 nj∑
i=1

eβ̂
′
jXji(

1 + eβ̂
′
jXji

)2XjiX
′
ji


−1

. (3.24)

In the second step the estimates are incorporated in a multivariate random-effects model,

which combines the regression coefficients from the various cohorts, thereby accounting for

their correlation. It is assumed, that the model parameters follow a multivariate normal dis-

tribution across the cohorts, which accounts for between- and within-cohort variability (van

Houwelingen et al. 2002, Jackson, White, and S. G. Thompson 2010, Debray, Moons, Abo-

Zaid, et al. 2013):

β̂0j

β̂1j

...

β̂Kj


∼ NK+1





βtwo stage0

βtwo stage1

...

βtwo stageK


,



τ2
β0

τβ0β1 . . . τβ0βK

τβ0β1 τ2
β1

. . . τβ1βK

...
...

. . .
...

τβ0βK τβ1βK . . . τ2
βK


+



V ar
(
β̂0j

)
Cov

(
β̂0j , β̂1j

)
. . . Cov

(
β̂0j , β̂Kj

)
Cov

(
β̂0j , β̂1j

)
V ar

(
β̂1j

)
. . . Cov

(
β̂1j , β̂Kj

)
...

...
. . .

...

Cov
(
β̂0j , β̂Kj

)
Cov

(
β̂1j , β̂Kj

)
. . . V ar

(
β̂Kj

)




(3.25)

⇔ β̂j ∼ NK+1

(
βtwo stage, T +

∑
j

)
, (3.26)

where the unknown average regression coefficients are denoted as βtwo stage0 to βtwo stageK ;

τ2
βk

and τβkβl , k = 1, ...,K and l = 1, ...,K are also unknown and describe the heterogeneity
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between cohorts and the between-cohort covariances, respectively. Superscripts have been

neglected for readability at places. For our further considerations we substitute the within-

cohort covariance matrix with its estimation
∑̂

j from step one of the meta-analysis (Equation

3.24) and assume it to be the true covariance structure. This simplification is performed, as

incorporating uncertainty resulting from the use of
∑̂

j instead of
∑

j is behind the scope of

this thesis. Therefore the following analyses get conditioned on this commonly used simplifi-

cation (Jackson, White, and S. G. Thompson 2010, Kacker 2004).

This general model requires many parameter estimations. In particular for meta-analysis

based on published studies rather than IPD it is typically not feasible to fit this model, since

within-cohort covariances are rarely reported. Even when they are given, or can be calculated

in case of available IPD, it remains difficult to estimate between-cohort covariances. Riley,

Abrams, et al. 2007 discuss that the corresponding between-cohort correlations,

Corr
(
β̂kj , β̂lj

)
=

Cov
(
β̂kj , β̂lj

)
√
V ar

(
β̂kj

)√
V ar

(
β̂lj

) , (3.27)

are often estimated as 1 or -1, therefore at the edge of their parameter spaces. Due to these

estimation difficulties, within- and between-cohort covariances are often assumed to be zero,

whereby the above model simplifies to a univariate model for each parameter β̂0j , ..., β̂Kj :

β̂kj ∼ N
(
βtwo stagek , τ2

βk
+ V̂ ar(β̂kj)

)
, k = 0, ...,K (3.28)

⇔ β̂kj ∼ N
(
βkj , V̂ ar(β̂kj)

)
βkj ∼ N

(
βtwo stagek , τ2

βk

)
, k = 0, ...,K. (3.29)

In order to obtain overall estimates β̂two stagek , it is possible to assume the regression coeffi-

cients are either fixed or random across the cohorts. This is equivalent to assuming τ2
βk

to be

either zero or not.

For the random effects two-stage IPD meta-analysis, Model (3.29) is used without simplifica-

tions. Therefore the regression coefficients of the individual cohorts βkj are assumed nor-

mally distributed about an average effect βtwo stage randomk with variance τ2
βk

. Consequently

the true coefficients are allowed to vary across cohorts and the estimates β̂two stage randomk

can be interpreted as the estimated averages of their distributions (Burke et al. 2017).

Most researchers use the inverse variance method to obtain estimates β̂two stage randomk , in

order to control for different levels of precision across cohorts. With the notation given in

Equation (3.28), it is straightforward to get the weights for each cohort and regression coeffi-

cient as the inverse of their corresponding variances:

wkj =
1

τ̂2
βk

+ V̂ ar(β̂kj)
. (3.30)
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With these the β̂two stage randomk are calculated as the weighted average:

β̂two stage randomk =

∑J
j=1 β̂kjwkj∑J
j=1wkj

, (3.31)

V ar
(
β̂two stage randomk

)
=

1∑J
j=1wkj

. (3.32)

The estimated variances V̂ ar(β̂kj) and regression coefficients β̂kj are known from step one

of the meta-analysis for every cohort j and covariate k. In this thesis the between-cohort

variances τ2
βk

are estimated by the DerSimonian and Laird method, whereby their calcula-

tions are implemented in R with the package metafor (Kacker 2004, DerSimonian and Laird

1986, Viechtbauer 2010). The DerSimonian and Laird approach is based on method-of-

moments estimates. We consider for every covariate k the quantity bk =
∑J
j=1 akj β̂kj∑J
j=1 akj

with

akj = 1

V̂ ar(β̂kj)
. For the expression

∑J
j=1 akj(β̂kj − bk)2 we get the expected value

E

 J∑
j=1

akj(β̂kj − bk)2

 =

J∑
j=1

akjE
(

(β̂kj − bk)2
)

=
J∑
j=1

akj

[
V ar(β̂kj − bk)−

(
E(β̂kj − bk)

)2
]

=
J∑
j=1

akj

[
V ar(β̂kj) + V ar(bk)− 2Cov(β̂kj , bk)−

(
E(β̂kj)− E(bk)

)2
]

=
J∑
j=1

akj

[
V ar(β̂kj) + V ar

(∑J
j=1 akj β̂kj∑J
j=1 akj

)
− 2Cov

(
β̂kj ,

∑J
j=1 akj β̂kj∑J
j=1 akj

)

−

(
E(β̂kj)− E(

∑J
j=1 akj β̂kj∑J
j=1 akj

)

)2


=

J∑
j=1

akj

V ar(β̂kj) +

∑J
j=1 a

2
kjV ar(β̂kj)(∑J
j=1 akj

)2 − 2

∑J
l=1 aklCov(β̂kj , β̂kl)∑J

j=1 akj

−

(
E(β̂kj)−

∑J
j=1 akjE(β̂kj)∑J

j=1 akj

)2


=
J∑
j=1

akj

V ar(β̂kj) +

∑J
j=1 a

2
kjV ar(β̂kj)(∑J
j=1 akj

)2 − 2
akjV ar(β̂kj)∑J

j=1 akj
−
(
E(β̂kj)− E(β̂kj)

)2


=

J∑
j=1

akjV ar(β̂kj) +

∑J
j=1 a

2
kjV ar(β̂kj)∑J
j=1 akj

− 2

∑J
j=1 a

2
kjV ar(β̂kj)∑J
j=1 akj

=

J∑
j=1

akjV ar(β̂kj)−
∑J

j=1 a
2
kjV ar(β̂kj)∑J
j=1 akj
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=
J∑
j=1

akj

(
τ2
βk

+ V̂ ar(β̂kj)
)
−

∑J
j=1 a

2
kj

(
τ2
βk

+ V̂ ar(β̂kj)
)

∑J
j=1 akj

= τ2
βk

J∑
j=1

akj +

J∑
j=1

akj V̂ ar(β̂kj)− τ2
βk

∑J
j=1 a

2
kj∑J

j=1 akj
−
∑J

j=1 a
2
kjV̂ ar(β̂kj)∑J
j=1 akj

= τ2
βk

 J∑
j=1

akj −
∑J

j=1 a
2
kj∑J

j=1 akj

+

 J∑
j=1

akj V̂ ar(β̂kj)−
∑J

j=1 a
2
kj V̂ ar(β̂kj)∑J
j=1 akj

 . (3.33)

For the method-of-moments step we now equate the term
∑J

j=1 akj(β̂kj−bk)2 with its expec-

tation given by Equation 3.33. Solving for τ2
βk

results in the DerSimonian and Laird estimate

τ̂2
βk

:

τ̂2
βk

=

(∑J
j=1 akj(β̂kj − bk)2

)
−
(∑J

j=1 akj V̂ ar(β̂kj)−
∑J
j=1 a

2
kj V̂ ar(β̂kj)∑J
j=1 akj

)
(∑J

j=1 akj −
∑J
j=1 a

2
kj∑J

j=1 akj

) . (3.34)

Since τ2
βk

is a variance and therefore non-negative, its estimate is set to zero in case its

computation given by Equation 3.34 gets negative:

τ̂2
βk

= max

0,

(∑J
j=1 akj(β̂kj − bk)2

)
−
(∑J

j=1 akj V̂ ar(β̂kj)−
∑J
j=1 a

2
kj V̂ ar(β̂kj)∑J
j=1 akj

)
(∑J

j=1 akj −
∑J
j=1 a

2
kj∑J

j=1 akj

)
 ,

(3.35)

with akj = 1

V̂ ar(β̂kj)
.

Algorithm 7 Random effects two-stage IPD meta-analysis

1: procedure 2_STAGE_IPD_MA(IPD)
2: fit standard multiple logistic regression model for each cohort separately

. compare Algorithm 2
3: β̂j ← resulting coefficient estimates of cohort j
4: V̂ ar(β̂j)← resulting within-cohort variances of cohort j
5: calculate estimated between-cohort variances τ̂2

βk
via DerSimonian and Laird method

6: wkj ← 1

V̂ ar(β̂kj)+τ̂2βk

. weight for cohort j and covariate k

7: β̂two stage randomk ←
∑J
j=1 β̂kjwkj∑J
j=1 wkj

8: return β̂two stage random = β̂two stage random0 , ..., β̂two stage randomK

With these estimates, we obtain the resulting risk predictions through

ptwo stage randomji =
1

1 + exp

(
−
(
β̂two stage random

)′
Xji

) . (3.36)

For the fixed effects meta-analysis the between-cohort variance components τ2
βk

are set to

51



Algorithm 8 Predictions for random effects two-stage IPD meta-analysis

1: procedure PREDICT_TWO_STAGE_FIXED(β̂two stage random, X)
. β̂two stage fixed: output of Algorithm 7

. X: covariate vector of individual patient
2: p̂two stage random ← 1

1+exp(−(β̂two stage random)′X)

3: return p̂two stage random

zero, therefore common regression coefficients βtwo stage fixedk are assumed across all co-

horts. Equation (3.28) reduces to

β̂kj ∼ N
(
βtwo stage fixedk , V̂ ar(β̂kj)

)
, k = 0, ...,K (3.37)

and the formulas from the inverse variance method are simplified to become

w∗kj =
1

V̂ ar(β̂kj)
, (3.38)

β̂two stage fixedk =

∑J
j=1 β̂kjw

∗
kj∑J

j=1w
∗
kj

, (3.39)

V ar
(
β̂two stage fixedk

)
=

1∑J
j=1w

∗
kj

. (3.40)

Algorithm 9 Fixed effects two-stage IPD meta-analysis

1: procedure 2_STAGE_IPD_MA(IPD)
2: fit standard multiple logistic regression model for each cohort separately

. compare Algorithm 2
3: β̂j ← resulting coefficient estimates of cohort j
4: V̂ ar(β̂j)← resulting within-cohort variances of cohort j
5: w∗kj ←

1

V̂ ar(β̂j)
. weight for cohort j and covariate k

6: β̂two stage fixedk ←
∑J
j=1 β̂kjw

∗
kj∑J

j=1 w
∗
kj

7: return β̂two stage fixed = β̂two stage fixed0 , ..., β̂two stage fixedK

The resulting risk prediction is given by:

p̂two stage fixedji =
1

1 + exp

(
−
(
β̂two stage fixed

)′
Xji

) . (3.41)

Algorithm 10 Predictions for fixed effects two-stage IPD meta-analysis

1: procedure PREDICT_TWO_STAGE_FIXED(β̂two stage fixed, X)
. β̂two stage fixed: output of Algorithm 9

. X: covariate vector of individual patient
2: p̂two stage fixed ← 1

1+exp(−(β̂two stage fixed)′X)

3: return p̂two stage fixed
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3.4 Methods for evaluation of model fit

In order to compare the several model-based risks introduced in the previous Section 3.3,

objective criteria are necessary to evaluate their operating characteristics for predicting the

binary outcome of high-grade cancer versus no or low-grade cancer on biopsy. Therefore the

methods discussed in Chapter 2 are used for thresholds ranging from 5-25%, and smoothing

of resulting curves is done via locally weighted regression as described in Section 2.3.

We are interested in optimizing the accuracy of predictions for new patients rather than the

question of how good the model fits a given dataset. Therefore, it is important not to fit

and evaluate the model on the same data, but to split the data into a training and separate

test set. As we are interested in the performance of the model when it is used for a new

or unknown study population, we perform cross validation across cohorts: All patients of

one cohort will be assigned to either the test or the training set. With this approach it is

possible to evaluate whether the model derived on the cohorts in the training set leads to

good predictions in independent cohorts. However, it is important to maximize the amount

of data used for developing as well as for validating the model. This is accomplished by

repeatedly splitting the data, fitting a model on the training set and evaluating this model on

the test set. In this thesis, we apply two different methods of splitting the data, as both have

some specific advantages.

First, we perform leave-one-cohort-out cross validation, for which each cohort is left out once

as a test set. The logistic model is fit to the data of the remaining 9 cohorts, and predictions

are made for the hold out test set. We perform this repeatedly for every cohort in our data

set, and pool predictions for the 10 cohorts as hold out set for graphical displays.

Second, we consider a permutation-based validation, whereby all 252 possibilities of splitting

the 10 cohorts into two sets, each containing five cohorts, are used. This has the advantages

that the test set does not consist of one single cohort, which might be quite different to the

remaining ones and it allows a bigger test set with cohort heterogeneity. However, this val-

idation method prevents the efficient use of visual evaluation methods, such as sensitivity-,

specificity-, calibration-, and net benefit-curves. Nevertheless, we utilize the AUC and HLS

values of the 252 cross validation in order to support and extend results from the leave-one-

cohort-out cross validation.

The considered cross validations are used to evaluate the model fit and to compare it between

the different model approaches. Once an approach is chosen and validated, a final model is

derived by the use of all available data at once.
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3.5 Results

In this section, we compare the results of the models from Section 3.3 using the validation

metrics of Chapter 2. We first determine the relevant covariates, which will be used for all

models, and then compare the different model types using the same set of variables.

3.5.1 Underlying data

The data used for this analysis are from the ten PBCG cohorts ClevelandClinic, MayoClinic,

SanRaffaele, Zurich, MSKCC, UCSF, DurhamVA, SanJuanVA, Sunnybrook and UTHealth,

comprising 8492 biopsies from 8247 patients. A detailed description of this data can be

found in Section 1.2.1 and Tables A.2 and A.1 of the appendix. Figure 11 illustrates the

heterogeneity between cohorts in terms of prevalence of individual risk factors and their cor-

responding odds ratios for high-grade cancer. Zurich is amongst the cohorts with lowest

prevalence of patients with PSA greater than 4, abnormal DRE, age greater than 65, African

ancestry and positive family history, respectively, and highest prevalence of patients with prior

negative biopsy. Therefore Zurich comprises a group of patients with characteristics in favor

of no high-grade cancer, which aligns with its overall low proportion of high-grade cancer (6).

However, its unique distribution of risk factors might rise the need for models incorporating

cohort heterogeneities.

In general, individual cohorts potentially cause problems in the standard pooling approach, if

they are an outlying cohort in terms of prevalence or odds ratio for one of the considered risk

factors. For DRE SanJuanVA is an outlier in both dimensions, having a proportion of 59.2%

abnormal DRE results compared to 21.5-39.5% , and a corresponding univariate odds ratio

of 1.1 compared to 1.5 for ClevelandClinic and 2.4-4.0 for the other cohorts. The odds ratio

of all cohorts combined is pulled towards the low values of ClevelandClinic and SanJuanVA,

however, since both outlying cohorts have small sample sizes of 299 and 550 patients, their

influence might not be problematic.

With a proportion of 63.2%, in contrast to 0-16.3%, DurhamVA is an outlying cohort in terms of

prevalence of patients with African ancestry. However, its odds ratio aligns with the estimates

of the two other cohorts UTHealth and SanJuanVA (1.0-1.3), whereby none of these were

significant. For the remaining three cohorts that had enough patients with African ancestry to

calculate odds ratios, the results are significant and range from 2.0-2.3. The univariate odds

ratio for all cohorts combined is given by 1.7, therefore between both clusters.

For the covariate family history Zurich is an outlier in terms of prevalence, 2.8% compared

to 16.7-33.1%, and univariate odds ratio, 3.2 compared to 0.9-1.8. Due to Zurichs big sam-

ple size the overall prevalence and odds ratio is heavily influenced by this individual cohort.

This influential outlier potentially causes problems in risk prediction methods ignoring cohort

heterogeneities, it might be even reasonable to exclude Zurich for model fitting. This will be
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Figure 11 : Univariate odds ratios for individual risk factors plotted against their proportions. Continuous variables PSA and
age are dichotomized for comparability, and significance at the 5% level is indicated in bold. Overall displays all cohorts pooled
together. Data not shown for African ancestry for Zurich, SanRaffaele, MayoClinic and UCSF as numbers of patients with this
risk factor were too low for reliable estimates of the odds ratios. Furthermore family history for UCSF is not shown as this risk
factor is not reported for UCSF. Missing values have been excluded for calculation of univariate odds ratios and proportions.
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further investigated in the following analysis.

For the other risk factors no cohort can be identified as an outlier and the odds ratio estimates

for all cohorts pooled fall mainly in the middle of the individual cohort estimates.

For improving stability of the model-fitting algorithms, some transformations have been per-

formed, which are used throughout this section. The variable PSA is log base two trans-

formed, denoted by lpsa2. The continuous variables lpsa2 and age are then rescaled for the

model implementations by subtraction of the corresponding mean values and division by the

respective standard deviations. This is done for the whole data set at once, so the same

transformation is used for all splits in training and test set.

Missing values are imputed by their corresponding median, resulting in non African ancestry

for race, normal for DRE, and no for prior biopsy and family history.

3.5.2 Covariate selection

For covariate selection the approach discussed in Section 3.2 is utilized. Figure 12 displays

the selected covariates for the 252 possibilities for choosing 5 out of 10 cohorts, and Figure

13 shows the resulting covariate selection for every single cohort as well as for all cohorts

pooled together. The variables age, DRE, family history, lpsa2 and prior biopsy are chosen in

age:lpsa2

race:lpsa2

race:famhistory

priorbiopsy:dre

age:famhistory

priorbiopsy:famhistory

age:race

age:priorbiopsy

dre:lpsa2

age:dre

race

famhistory

age

priorbiopsy

dre

lpsa2

0 25 50 75 100

Percent of models using specific covariate

Figure 12 : Variables and interaction terms that have been selected at least once among the 252 training sets are shown, along
with their frequency of selection. Frequency of at least 5% is indicated in blue in contrast to less than 5% in red.

most of the 252 possible combinations (Figure 12). Even though the variable race is chosen

in less than half of the possible models, it has historically been a significant predictor (Ankerst,
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terms that have been selected at least once are shown.

Hoefler, et al. 2014, Nam et al. 2007). The reason for the low percentage here is that some

cohorts have almost no patients with African ancestry.

In order to select among the remaining suggested effects, we further investigated the four

interaction terms chosen in at least 5% of the considered models. The interactions of age and

DRE, DRE and lpsa2, age and prior biopsy, and age and race are selected by 17.1%, 13.9%,

8.7% and 7.9% of the 252 combinations, respectively. Whereas the interaction between age

and prior biopsy is not chosen for any of the single cohorts nor for all combined (Figure 13),

the other three interactions at least appear for all cohorts together. Therefore, the interaction

term for age and prior biopsy is eliminated.

In order to further justify the selection of covariates, the four interaction effects are displayed

in Figure 14. For the interaction term age and prior biopsy no interaction can be seen in

Figure 14, therefore we permanently exclude it from the final model. For the interaction of

age and DRE, the difference in the risk of high-grade cancer between patients with normal

and abnormal DRE results becomes smaller for older patients. For abnormal DRE results,

the difference in lpsa2 values for patients with and without high-grade cancer is higher than

for normal DRE. Finally the risk of high-grade cancer for patients with no African ancestry

strongly depends on age. Whereas the risk for a positive biopsy for high-grade cancer is

overall higher for men with African ancestry, it does not depend as much on the age. This

relation can also be seen in the corresponding boxplots, whereby the age distribution for

African ancestry barely differ between cancer and no cancer patients. In contrast patients

without African ancestry have higher risks of high-grade cancer for increasing age. With
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these considerations the interactions age and DRE, DRE and lpsa2, and age and race are

chosen as covariates.

In order to check that the static model based on the previously determined covariates is as

good as individualized models, we perform the 252 cross validation of all choices of five co-

horts for training versus the remaining five for testing. Thereby, the model fit for a static model

including the six main effects and the three interaction terms is compared to an individual-

ized one. For the individualized model, the basic variables and all corresponding two-way

interaction terms are considered, whereby the covariates are chosen for every combination

of cohorts individually by a stepwise algorithm based on the BIC. The resulting AUC and HLS

values are shown in Figure 15. In terms of the AUC the static multivariate regression performs

equally well or better in every single test set. In most test sets the HLS is the same for both

methods and the small deviations of the individualized model from the static one is in either

direction. As the model with the previously selected terms is simpler and performs at least

equally well as the individualized ones, this choice of covariates is used for the subsequent

sections.

3.5.3 Comparison of models for multiple cohorts

We are interested in the differences between the considered models, in particular in the

question whether one model dominates the others and should therefore be used to integrate

multiple cohorts. The previous section briefly discussed the choice of covariates, which will

be now used to fit the models.

An advantage of the leave-one-cohort-out over the 252 cross validation is the possibility of

displaying the overall results in terms of net benefit, sensitivity, specificity and calibration

curves. As explained in Chapter 2, these curves display the fit of a model by considering the

predicted probabilities. These predictions have been calculated for every cohort separately,

based on the model built on the remaining 9 cohorts. Afterwards the probabilities of all cohorts

were pooled, so that a single curve can be established for every method. The resulting curves

are displayed in Figure 16. All curves are shown for the threshold range of 5 to 25%, as these

are reasonable cutoff points for which a patient is usually referred to a biopsy. CIs of the

diverse methods are overlapping for all metrics and are neglected for readability.

In terms of net benefit all methods outperform the strategy of biopsying nobody and for all

values above the threshold of about 6% they also show a higher net benefit than treating all

patients. Corresponding CIs show that this superiority is statistically significant for threshold

values higher than 16%. Therefore all methods show a clinical usefulness, however the in-

dividual models do not show any detectable differences. Even by considering every cohort

separately, only very small differences between the modeling techniques can be seen (Figure

A.4(a)). However, the clinical net benefit varies in the differing test sets. Whereas for some

cohorts, like MSKCC and Zurich, the net benefit of the prediction models exceeds the one of
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regression curves for the probability of high-grade cancer dependent on the respective covariate are shown along with corre-
sponding boxplots. The graphs are based on the data of all cohorts combined and without rescaling the continuous variables.
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Figure 15 : AUC and HLS values for static and individualized multivariate regressions.

the reference strategy of biopsying all patients for most relevant thresholds, UTHealth does

not show superior net benefit up to a cutoff of 20%. These results align with the prevalences

of high-grade cancer in the individual cohorts. Zurich has by far the lowest prevalence with

17.7%, followed by ClevelandClinic and MSKCC with 27.1 and 29.2%, respectively. There-

fore the strategy of biopsying all patients independent of their individual risks is not optimal

for these cohorts. As opposed to this, for UTHealth the highest prevalence of 38.7% is re-

ported.

For the calibration curves, small variations can be detected (Figure 16(b)). The standard

model is slightly better calibrated than the other methods, however, corresponding CIs are

overlapping. Calibration curves of all methods are close to the diagonal line, indicating good

calibration throughout all relevant thresholds. Differences between the methods are also ne-

glectable for the individual cohorts (Figure A.4(b)). Taking CIs into account, deviations from

the diagonal line are significant only for UTHealth and Zurich, indicating poor calibration. For

the high prevalence cohort UTHealth, predicted risks of all methods are too low for thresholds

higher than 10%. Whereas the calibration curves for Zurich lie significantly beneath the diag-

onal line for predicted probabilities greater than 18%, which indicates that the risk predictions

are higher than the actual risks in this Swiss cohort, which is not surprising, as Zurich has a

very low prevalence of high-grade cancer compared to all other sites.

Similar results can be observed for the metrics sensitivity and specificity, which indicate over-

all good discrimination, but it is not possible to determine a significantly superior model, as

all CIs are overlapping. Small deviations occur for the standard method, which tends to

have lower predicted risks than the other modeling techniques and therefore lower values for
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Figure 16 : (a) Net benefit, (b) calibration, (c) sensitivity and (d) specificity curves of the leave-one-cohort-out cross validation.

sensitivity and higher values for specificity for all considered thresholds. Differences in the

prediction methods in terms of sensitivity and specificity can not be found in any individual

cohort either (Figure A.5).

As the differences between the methods are very small and therefore difficult to detect in the

graphical evaluations, we also consider the summarizing statistics AUC and HLS. The AUC

for all cohorts pooled together ranges from 77.1% (95%-CI: 76.0%-78.2%) for the standard

model to the slightly better 77.2% (95%-CI: 76.1%-78.3%) for the random intercept integration

model. The HLS varies between 11.3 for the standard regression model and 23.9 for the two-

stage random meta-analysis, whereby low values are preferred for this measure. However,

for both measures these differences are marginal.

In Figure 17 AUC and HLS values are displayed for each cohort separately. As described

in Section 3.4, for the leave-one-cohort-out cross validation each model is trained on nine
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Figure 17 : AUC and HLS values for leave-one-cohort-out cross validation for each of the ten cohorts after prediction based on
the remaining nine cohorts. For the AUC values 95%-CIs are included.

cohorts and tested on a single one. Since the cohorts are heterogeneous, it is possible

that the test set differs significantly from the remaining training cohorts. For this reason the

AUC values vary across the cohorts. Nevertheless, performances of the different models

for a single cohort are near identical. Direct comparisons of the HLS across test sets can

not be performed, as the HLS depend on the sample sizes of the test set. Therefore it is

only possible to compare models within one test set. It is of particular interest that no model

under- or outperforms the other models for all test sets, neither in terms of the AUC nor HLS.

Furthermore, differences between the models are negligible under consideration of the CIs.

For the 252 cross validation we concentrate on the AUC and HLS values of the 252 different

test sets, whereby summarizing boxplots are shown in Figure 18. The AUC values range

from 74.1% to 78.8%, they are therefore less extreme than for the leave-one-cohort-out cross

validation (Figure 17). This is due to the fact that five cohorts are combined in the test set,

heterogeneous cohorts have therefore less influence in the overall evaluation of the corre-

sponding test set. In terms of the AUC only small differences are detectable, in particular

the two two-stage methods as well as the two random intercept models have almost identical

results, whereby the latter ones show the least variability. The standard approach performs

worst. For the HLS the random integration method has the lowest values and it is less variable

than all other approaches. Even though all prediction models perform similarly, the random

intercept integration model can be therefore determined as the slightly best model in terms of

the AUC and HLS, thereby supporting Pavlou et al. 2015 that said it was most correct. There-

fore, the random integration model is compared to the remaining methods in more detail in

Figure 19. In terms of the AUC, the meta-analysis models two-stage fixed and two-stage
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Figure 18 : Boxplots for the AUC (left) and HLS (right) values for the 252 cross validation for all prediction models.

random are slightly better for some test sets and worse for others. Overall no method can be

determined to be superior. The random zero method is near identical to the random integra-

tion model. The standard multiple logistic regression model performs slightly worse than the

random intercept integration model in terms of the AUC and all methods perform worse for

the HLS. However, the differences are negligible.

3.5.4 Influence of single cohorts

As for the leave-one-cohort-out cross validation, the 252 cross validation did not reveal any

considerable differences between the five different risk prediction methods. However, it is

possible to further investigate the modeling results in order to determine the influence of

single cohorts. Especially since we are focused on the optimal integration of different cohorts

in an overall model, this might be of interest. We investigate the influences of individual sites

on the different methods and whether it might be even reasonable to exclude very distinct

cohorts. The approach of removing dissimilar cohorts was chosen for instance by the winning

team of an online challenge on modeling and predicting prostate cancer results (Pölsterl et

al. 2016). In this section, we focus on the evaluation measure AUC, as the HLS depends on

the sample size and is therefore inappropriate for the following considerations. Similar to the

previous results for the 252 cross validation, the graphical evaluations are not feasible for the

following applications.

In order to investigate the influence of large cohorts, Figure 20 displays AUC values sample

sizes of the test sets. As expected by the previous analysis, the different risk models show

the same behavior. AUC values appear to be overall higher and less spread for larger test
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Figure 19 : AUC (left) and HLS (right) values of the methods two-stage fixed, two-stage random, random zero and standard for
all 252 test sets are compared to the AUC and HLS values of the method random integration. The test sets are sorted by the
AUC and HLS values of the random integration method.

sets. However, as indicated by the color coding, the relationship can be explained by the two

largest cohorts, Sunnybrook (n=1721) and Zurich (n=1863). The best results are obtained if

Zurich is part of the test set, indicating that the overall size of the test set does not influence

the performance as much as the specific cohort composition. Similar conclusions hold for

the clusters of test sets where only Sunnybrook or none of the two big cohorts is included.

The worse performance for small test sets might be explained by bias due to inclusion of

Zurich and Sunnybrook in the training set. This might be especially problematic for Zurich,

as in addition to its large size, it also comprises patients with very different characteristics

and biopsy results (Table A.2). Later we exclude this cohort in order to further understand its

influence on model performance.

The behavior of model performance versus specific cohorts in the test set is further inves-

tigated in Figure 21. The results are similar to the leave-one-cohort-out cross validation in

Figure 17, with the main difference the smaller range of AUC values for the 252 cross val-

idation, as the influence of a single cohort is smoothed by the other four sites in the test

set. The most extreme deviation from the overall median is given by the Zurich cohort. Its

inclusion in the test set leads to highest AUC and lowest variability, the latter of which is due

to its large size relative to others. Medians of MayoClinic and MSKCC are above the overall

median as well, which is not surprising, as these cohorts have a very high AUC for the leave-

one-cohort-out cross validation (Figure 17). The worst results are obtained for SanJuanVA

and UTHealth. It is interesting that the best results are obtained for Zurich in the test set,

which has the lowest prevalence of high-grade cancer with 17.7%. In comparison the worst

discrimination is provided by UTHealth, whereby 38.7% of its patients have high-grade can-
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Figure 20 : AUC values for the 252 cross validation, sorted by the sample size of the test sets. Color coding illustrates whether
the two largest cohorts, Sunnybrook and Zurich, are included in the test set.

cer, which is the highest percentage of all cohorts. SanJuanVA, however, has a very average

prevalence of high-grade cancer and a similar bad performance as UTHealth. The percent-

ages of high-grade cancer patients of the sites MayoClinic and MSKCC are similarly close

to the average. An explanation for the different performance relative to cohort risk factors or

sample sizes remains lacking, see Figure 6 and 7 in Section 1.2.

As already discussed in Section 1.2, the cohorts differ in terms of their sample sizes, preva-

lences of high-grade cancer, and patients characteristics. For that reason, the performance

of the risk models are influenced by the presence of specific cohorts in the training or test

set. It is therefore also of interest whether the model fit improves by leaving individual cohorts

out of the training as well as the test set. We performed a permutation analysis comparing

differences in AUC values of the 252 cross validation including all cohorts and sequentially

excluding each cohort. The resulting differences are given in Figure 22, whereby negative

values correspond to an improvement in AUC for excluding the respective cohort. It can be

seen that across all cohorts except DurhamVA, the standard method is among the methods

with highest values. Exclusion of individual cohorts is therefore less attractive for this method

as for the more complicated random intercept and two-stage approaches. However, by taking

the percentile intervals into account, these variations are negligible, especially since the total

range spans only less than 4% points.
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Figure 21 : AUC values for 252 cross validation sorted by cohorts included in the test set. Each boxplot summarizes the AUC
values of one method for the 126 test sets in which the considered cohort was in the test set. Horizontal lines correspond to the
median of the respective method.

Exclusion of ClevelandClinic, DurhamVA, SanJuanVA as well as UTHealth improved the re-

sulting AUC, whereby SanJuanVA achieved the largest negative difference. The AUC de-

creased for excluding either MayoClinic, MSKCC or Zurich, whereby exclusion of the latter

cohort resulted in highest absolute differences and widest percentile intervals. Interestingly,

even though Zurich is different to all other cohorts in terms of its prevalence of risk factors

as well as proportion of patients with high-grade cancer, an exclusion leads to a drop in AUC

(Figures 6, 11 and 22). Overall, none of the exclusions significantly improved the perfor-

mance of the different models in terms of the AUC, as the corresponding percentile intervals

all cover zero. We further investigated calibration and net benefit curves for the two most ex-

treme cohorts SanJuanVA and Zurich to compare leave-one-cohort-out cross validations with

and without the respective cohort. These comparisons showed no significant differences.

As a final measure, we investigate whether a model built on any single cohort, performs

consistently better than a model integrating all cohorts. To this purpose a standard multiple

logistic regression model is fit to each of the cohorts and evaluated on every remaining cohort.

The results are compared to the simplest of the previously discussed methods, the standard

model, which pools all sites together without accounting for heterogeneity. For the latter

method leave-one-cohort-out cross validation is used in order to get reliable results. The
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Figure 22 : Median estimates and 95% percentile intervals of permutation analysis for differences in AUC values comparing
the 252 cross validation with all cohorts included and the 252 cross validation with the indicated cohort excluded from either the
training or test set. Differences are given in percent.

corresponding AUC and HLS values are given in Figure 23. In terms of the AUC the combined

model is one of the best methods for every test set, except for SanJuanVA. For this cohort,

three individual-cohort models outperform the pooled approach. Nevertheless, none of the

models built on single cohorts has a better AUC than the combined method throughout all

considered test sets. Similarly, the pooling method has consistently low HLS values, whereas

the performance of single models varies across test cohorts. The corresponding net benefit,

calibration, sensitivity and specificity curves confirm these observations (Figures A.6, A.7, A.8

and A.9): For single test sets, individual models might outperform the combined approach in

terms of calibration and net benefit, but nevertheless, none of them performs consistently

better across all test cohorts. The model built on UTHealth shows best sensitivity for all test

set, it has, however, lowest specificity. Vice versa, Zurich and MayoClinic perform worst in

terms of sensitivity, but achieve high specificity.

3.5.5 Coefficients of the different models

As explained in Section 3.4, in order to derive the final models, all available data are used for

estimating the coefficients and their 95%-CIs, whereby the results are shown in Figure 24.

The coefficients of standard logistic regressions based on the individual cohorts are colored

in red. These are the basis of the two-stage meta-analysis models and it is interesting to

compare them to the resulting summarizing models. The two random intercept risk prediction

methods have the same coefficients of the fixed effects and are therefore listed only once.

Even though the coefficients of the individual cohorts are quite diverse, the summarizing

models are very similar, whereby the two-stage models have wider CIs than the one stage
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Figure 23 : AUC and HLS values for models built on individual cohorts. Leave-one-cohort-out cross validation results for
standard multiple logistic regression are given for comparison in black. For the AUC values; 95%-CIs are included.

methods random intercept and standard.

For the standardized continuous variable age the coefficients range between 0.36 and 0.97,

implicating an increased risk of high-grade cancer for older patients. The coefficient most

diverse from the other cohorts is given for DurhamVA. However, since this coefficient has a

large CI its influence on summary models can be considered marginal. DurhamVA is fur-

thermore the only cohort with a positive coefficient for the interaction of age and DRE. For

the other cohorts, age is less influential for patients with an abnormal DRE. For most cohorts

the coefficients for age are further reduced for patients with African ancestry. Exceptions are

UCSF and Sunnybrook, both cohorts with low prevalences of patients with African ancestry

(2.7% and 4.2%, respectively), resulting in wide CIs including 0.
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Figure 24 : Coefficients for every individual cohort in red and for the summarizing models in blue. Coefficients for race and
the interaction of race and age are not included for Zurich, SanRaffaele and MayoClinic, as there are no or only 2 patients with
African Ancestry in these cohorts. Furthermore the coefficient for family history is excluded for UCSF.

69



A positive DRE is related with an increased risk of high-grade cancer for all cohorts. The

smallest coefficient is predicted for SanJuanVA, which is an outlier in terms of proportion of

abnormal DRE results (Figure 11). Despite its high prevalence of this risk factor, DRE is no

significant covariate for SanJuanVA.

The biggest differences for the summarizing models, even though these are also marginal,

can be observed for the covariate family history. For this variable, the coefficient for Zurich

is higher than for the other cohorts. Zurich was identified as an outlying cohort for the vari-

able family history in terms of prevalence and univariate odds ratio in Figure 11, and since

Zurich is the largest cohort in the data set, this outlying coefficient influences the prediction

of coefficients of the summarizing models. It hast the most influence on the standard logistic

regression model, followed by the two-stage approaches. The random intercept method is

most robust for this outlier.

As for age, the coefficients of lpsa2 are given for the standardized covariate, so for a change

in lpsa2 by one standard deviation, given by 1.3. The resulting estimates are in the range of

0.56-1.51, with the lowest value for ClevelandClinic, and the highest for MayoClinic. The in-

teraction between lpsa2 and DRE shows mostly positive coefficients, leading to an increased

effect of PSA for patients with an abnormal DRE result.

A prior negative biopsy significantly reduces the risk of high-grade cancer for most cohorts.

Only MayoClinic includes 0 in the CI which can be explained by its overall small sample size

(n=323).

Except UCSF all cohort, for which a coefficient could be calculated, have positive coeffi-

cients for the covariate African ancestry, implying that patients with African ancestry have

higher risks for high-grade cancer. However, the only cohort with a significant coefficient is

DurhamVA, which has the highest prevalence of patients with African Ancestry with 63.1%

(Figure 11). In contrast UCSF has a low prevalence of 2.7%, resulting in a wide CI, under-

mining the influence of this negative coefficient.

3.6 Discussion

One goal of the PBCG is to derive a global risk calculator to predict the risk of high-grade

prostate cancer on biopsy. In order to obtain a general valid tool, several different cohorts

were included and the optimal integration of the diverse centers was covered in this chap-

ter. The simplest approach of a standard logistic regression model was compared to one-

and two-step meta-analyses, with results validated by internal-external cross validation tech-

niques, and found not to perform less adequately. This is an appealing result, since simple

pooling is routinely performed for multi-site clinical trials (Stephan et al. 2002, Yanke et al.

2006): The PCPTRC pooled data from 221 study sites, and has been repeatedly used, val-

idated and updated, ensuring reliability (I. M. Thompson, Goodman, Tangen, Lucia, et al.
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2003, I. M. Thompson, Ankerst, et al. 2006, Ankerst, Hoefler, et al. 2014, Ankerst, Boeck,

et al. 2012, Grill, Fallah, Leach, I. M. Thompson, Freedland, et al. 2015, Trottier et al. 2011,

van den Bergh et al. 2008).

The results of this analysis also support the validity of two-stage methods. This introduces

several advantages for big collaborations like the PBCG, as the initial model building as well

as consecutive updates of an existing risk prediction tool can be simplified. It becomes re-

dundant to gather the IPD of all cohorts at a central location, as logistic regression models

can be built locally at individual sites with only the summary statistics transported for cen-

tralization. Analogously it gets easier to include updates of single cohorts, as it is sufficient

to use the updated summaries of the respective cohorts and repeat the second step of the

meta-analysis. Furthermore it enables easy inclusion of additional published studies for which

only data summaries are provided, which would allow further generalization of the given risk

prediction tool. With this external enhancement of the data set, the advantages of prospec-

tively designed multi-cohort collaborations become diminished and the resulting challenges of

standard meta-analysis have to be addressed, including publication bias as well as poor and

selective reporting (Riley, Lambert, et al. 2010, Burke et al. 2017, Debray, Moons, Abo-Zaid,

et al. 2013).

An interesting finding of the PBCG analysis was the influence of individual cohorts, in par-

ticular the European cohort Zurich. Whereas this site was very different compared to the

remaining ones in terms of the large sample size, low baseline risk, and absence of patients

with African ancestry, removal of Zurich worsened the overall model fit. Similarly, the exclu-

sion of other cohorts did not improve the model fit noticeably. This leads to the conclusion

that in our case it might be useful to include all possible data, which is desirable after the

efforts of data collection and in light of the fact that the resulting risk tool should be applied

to patients with a broad range of diverse characteristics. In general however, we advise to

examine the exclusion of all outlying cohorts. Individual cohorts can be characterized as out-

liers in terms of unique prevalences of the outcome, which can not be explained by the risk

factors, or in terms of the distributions of single risk factors themselves. Pölsterl et al. 2016

argue that model training based on data similar to the test set might be crucial, as for their ap-

plication a model based on data excluding an outlying cohort outperformed a broad range of

other approaches. Also in traditional meta-analysis it is common to include only comparable

studies, as otherwise the particular inclusion criteria vary across studies, resulting in differ-

ent findings (Sigman 2011, Petrosino 2016, Kang et al. 2012, Tabak et al. 1991). Therefore

meta-analysis guidelines recommend a detailed documentation (Jain et al. 2012, Moher et al.

2009). We advocate a description of inclusion criteria also for individual cohorts in the field of

multi-cohort studies, in particular if cohorts are removed to improve model performance.

Finally, the PBCG analysis supports the conclusion of Pavlou et al. 2015 that median and

mean prediction does not vary much in the context of clustering within hospitals. As integra-

tion over the random intercept can be omitted for the median prediction, this method is easier
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to implement and also commonly used (Debray, Moons, Ahmed, et al. 2013, Bouwmeester,

Twisk, et al. 2013). It might be interesting to investigate the inclusion of more random effects,

as the heterogeneity across cohorts might not be restricted to the baseline risk. On the other

hand, more random effects lead to more parameters to be estimated and a more complex

structure of the model. The added value to the PBCG model performance might be small, as

the clustering in this data set was not extreme and one- and two-stage models had similar

results (Section 3.1).
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4 Development of a contemporary prostate cancer
risk prediction model and comparison to the
current standard

The PCPTRC is a widely used online prostate cancer risk assessment tool. However, the

underlying model is based on data from the 1990s, which might not be representative for to-

day’s population. Thus, a model based on recent data might be a considerable improvement.

In this chapter, which is based on Ankerst, Straubinger, et al. 2018, the PCTPRC is validated

on patient data from 2006 to 2017 and compared to an updated risk model developed analo-

gously to the PCPTRC for a fair comparison. In the following analyses the second objective

of this thesis, whether existing risk tools should get updated as soon as contemporary data

are available, is discussed.

4.1 Research in context

Prostate cancer risk prediction models can help clinicians, as well as their patients, to objec-

tively decide whether or not a prostate biopsy should be performed. This enables the possibil-

ity of reducing the overall amount of biopsies. An incorrect model, however, can cause severe

harm, as patients with a high risk of prostate cancer might decide against a biopsy, due to an

unreliable low risk assessment. Alternatively, an incorrectly calculated high risk might lead to

unnecessary distress caused by the biopsy. For these reasons it is indispensable to repeat-

edly validate commonly used risk prediction tools in order to detect and, if possible, correct

unreliable models.

The need to update existing risk assessment tools is evident in a broad range of medical ar-

eas. DeFilippis et al. 2015 consider the widely used Framingham risk tool for cardiovascular

disease risk predictions by Wilson et al. 1998, as well as some of its updates over the years.

The authors name possible reasons for a systematic overestimation by these risk scores

in recent cohorts. Thereby they discuss changes between older and contemporary study

populations, including differences in the significance of individual risk factors and the use of

preventive pharmacotherapies. In the area of coronary artery disease, Genders et al. 2011

furthermore reveal limited benefit of the Diamond-Forrester model for current use, as overes-

timation is evident in contemporary cohorts (Diamond and Forrester 1979). Even though this

model is about 40 years old, the authors refer to guidelines that have still included it (Gibbons

et al. 2002, Hendel, Berman, et al. 2009, Hendel, Patel, et al. 2006). Another example is the

discussion of temporal validation of prediction models in Austin, van Klaveren, et al. 2016 and

Austin, van Klaveren, et al. 2017, applied to mortality within 30 days and one year of hospi-

talization for congestive heart failure. The authors compare data from the time periods 1999

to 2001 and 2004 to 2005, collected at the same hospitals. They detected a lower probability
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of death in the contemporary data, but mostly comparable influence of the predictor variables

in both time periods. In the field of quality of care assessment in intensive care units, Minne

et al. 2012a and Minne et al. 2012b emphasize the need to recalibrate prognostic models in

time. They furthermore state that corresponding validations should be performed repeatedly

over time. The authors identify possible reasons as drifts in population, resulting in differ-

ences in patient mix, technologies, and treatment policies. Strobl, Vickers, et al. 2015 and

Strobl, I. M. Thompson, et al. 2015 demonstrate the benefit of annual recalibration of prostate

cancer risk prediction models for improving accuracy, but less so for discrimination.

Several papers also discuss methods and benefits of updating risk tools with new predictor

variables as their influence get discovered or as they become more available (Skates et al.

2001, Raji et al. 2010, Pencina, D’Agostino, and Vasan 2008, K. M. Anderson et al. 1991,

T. J. Wang et al. 2006, Ridker et al. 2007, W. Gu and Pepe 2009). Amongst these, Chatter-

jee et al. 2016, Grill, Ankerst, et al. 2017 and Cheng, Taylor, Vokonas, et al. 2018 illustrate

diverse methods to combine information from previous models based on large data sources

with information on new risk factors from a single cohort or case-control study. Therefore

they enable likelihoood ratio approaches and more general constrained maximum likelihood

methods. Applications of model updates using new covariates are for instance in the field

of bone lead levels (Cheng, Taylor, Vokonas, et al. 2018). Furthermore, Ankerst, Groskopf,

et al. 2008 and Ankerst, Koniarski, et al. 2012 consider integration of the urine marker PCA3,

free PSA percentage and [-2]proenzyme PSA into the prostate cancer risk calculator by I. M.

Thompson, Ankerst, et al. 2006. Grill, Fallah, Leach, I. M. Thompson, Hemminki, et al. 2015

and Grill, Fallah, Leach, I. M. Thompson, Freedland, et al. 2015 furthermore integrate sin-

gle nucleotide polymorphisms (SNPs) and detailed family history into the updated prostate

cancer model by Ankerst, Hoefler, et al. 2014. For breast cancer, Tyrer et al. 2004 advocate

combining the risk factors from the broadly used Gail model by Gail, Brinton, et al. 1989 with

genotype information as investigated in Claus et al. 1994 and Parmigiani et al. 1998. How-

ever, Gail 2009 and Wacholder et al. 2010 find only modest improvements by incorporating

seven and ten SNPs, respectively, into the Gail model. Similarly, inclusion of mammographic

density shows modest gain in discriminatory power (Chen et al. 2006).

Like model updates for contemporary data, model adjustments for the population at hand can

improve risk predictions (J. Liu et al. 2004, D’Agostino et al. 2001, Hense 2003, Janssen,

Moons, et al. 2008, Janssen, Vergouwe, et al. 2009). For instance in predicting invasive

breast cancer, Gail, Costantino, et al. 2007, Matsuno et al. 2011, Banegas et al. 2012, Kaur

et al. 2004, Marrugat et al. 2003 and Pastor-Barriuso et al. 2013 modify the Gail model and

its update in S. J. Anderson et al. 1992 to fit African American, Asian and Pacific Islander

American, Hispanic American, American Indian and Alaska Native, and Spanish women,

respectively.

Extensive research is performed in the development of prostate cancer risk prediction mod-

els, covering model choice, outcome specification, predictors, and underlying population.
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Regarding model choice, logistic regression is most commonly employed (Eastham et al.

1999, I. M. Thompson, Ankerst, et al. 2006, Williams et al. 2012, J. Xu et al. 2009, Zheng

et al. 2012, Liang et al. 2011, Kranse et al. 2008, Kuo et al. 2013, Lilja et al. 2011, Lindström

et al. 2012, Optenberg et al. 1997, Nomura et al. 2012, Gregorio et al. 2007). Extensions to

multinomial logistic regression are utilized by Roobol et al. 2013 and Ankerst, Hoefler, et al.

2014, whereas ordinal regression is used by Nam et al. 2007. Both binary and multinomial

logistic regression are extended with likelihood ratio analysis for incorporation of specific risk

factors by Ankerst, Koniarski, et al. 2012, Ankerst, Hoefler, et al. 2014, Grill, Fallah, Leach,

I. M. Thompson, Hemminki, et al. 2015 and Grill, Fallah, Leach, I. M. Thompson, Freedland,

et al. 2015. Furthermore, segregation analysis is implemented by Macinnis et al. 2011.

In most prostate cancer risk papers the outcome is focused on the current prostate cancer

status, distinguishing between a positive and negative biopsy (Eastham et al. 1999, Kranse

et al. 2008, Kuo et al. 2013, Lindström et al. 2012, Nomura et al. 2012, Optenberg et al.

1997, Liang et al. 2011, Zheng et al. 2012, Gregorio et al. 2007). In addition to or instead

of this analysis, the outcome of aggressive prostate cancer might be compared to the com-

bined classification of no or non-aggressive cancer. In I. M. Thompson, Ankerst, et al. 2006,

aggressive cancer is thereby defined by a Gleason score of seven or higher and in Williams

et al. 2012 by a Gleason score of seven or higher, more than three positive cores, or at least

50% tumor involvement in any individual core. Further definitions are given in Lilja et al. 2011

by a clinical stage greater than or equal to T3 or radiographic evidence of bone metastases

at diagnosis and in J. Xu et al. 2009, by a Gleason score of eight or higher, a PSA value

higher than 50 ng/ml, clinical stage T3/4, N+, or M+. Binary analyses of outcome by Gleason

grade are combined in a multinomial outcome of no, non-aggressive and aggressive cancer,

whereby the latter two options are defined by Gleason scores smaller than, and higher than or

equal to seven, respectively, by Ankerst, Hoefler, et al. 2014 and Nam et al. 2007. In Roobol

et al. 2013 the distinction of the two cancer classifications in a multinomial model is defined

by Gleason score seven or higher, a PSA of 10ng/ml or higher or a clinical stage greater than

T2b. Finally, instead of current cancer status, outcomes are also defined as screening results

after 4 or 20-30 years (Roobol et al. 2013, Lilja et al. 2011).

Most variation across prostate cancer risk studies can be found in terms of considered pre-

dictors. In most models diverse subsets of the risk factors age, race, PSA value, suspicious

DRE, prostate volume, and family history of prostate and other cancers are utilized, whereby

most of them are already routinely collected in the clinic (Ankerst, Hoefler, et al. 2014, East-

ham et al. 1999, Grill, Fallah, Leach, I. M. Thompson, Hemminki, et al. 2015, Grill, Fallah,

Leach, I. M. Thompson, Freedland, et al. 2015, I. M. Thompson, Ankerst, et al. 2006, Kranse

et al. 2008, Kuo et al. 2013, Lilja et al. 2011, Lindström et al. 2012, Macinnis et al. 2011,

Nam et al. 2007, Nomura et al. 2012, Optenberg et al. 1997, Roobol et al. 2013, Williams

et al. 2012, J. Xu et al. 2009, Liang et al. 2011, Gregorio et al. 2007). These common pre-

dictors are augmented with information about urinary symptoms by Nam et al. 2007, obesity

in terms of body mass index by Williams et al. 2012, geographic regions by J. Xu et al. 2009,
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detailed family history by Grill, Fallah, Leach, I. M. Thompson, Freedland, et al. 2015 and

prior negative prostate biopsies by Roobol et al. 2013, Ankerst, Hoefler, et al. 2014, and I. M.

Thompson, Ankerst, et al. 2006. Variations of the risk factor PSA and additional serum mark-

ers are given by PSA density, free PSA percentage, [-2]proenzyme PSA, neuroendocrine

marker, Dickkopf-1 und human kallikrein 2 (Nam et al. 2007, Gregorio et al. 2007, Williams

et al. 2012, Liang et al. 2011, Lilja et al. 2011, Kuo et al. 2013, Ankerst, Koniarski, et al.

2012, Ankerst, Hoefler, et al. 2014). Considerations concerning the prostate transition zone,

in terms of transition zone volume and PSA transition zone density, are included by Gregorio

et al. 2007. The relation of prostate cancer and SNPs is investigated in other models (Zheng

et al. 2012, Grill, Fallah, Leach, I. M. Thompson, Hemminki, et al. 2015, Lindström et al. 2012,

Macinnis et al. 2011, J. Xu et al. 2009, Grill, Fallah, Leach, I. M. Thompson, Freedland, et al.

2015).

Analyses are furthermore varied in the underlying study population. They might be limited by

specific geographical units, like Sweden, China, Japan, Brazil, Europe or North America, as

well as by specific inclusion requirements, such as a given PSA level, age and DRE result

(J. Xu et al. 2009, Lilja et al. 2011, Kuo et al. 2013, Zheng et al. 2012, Gregorio et al. 2007,

Nomura et al. 2012, Kranse et al. 2008, Williams et al. 2012, Ankerst, Hoefler, et al. 2014). As

previously discussed, the time frame in which the biopsies have been performed is a relevant

characteristic of the study population. For instance, the analyses of Optenberg et al. 1997

and Eastham et al. 1999 are based on biopsies from 1991-1995 and 1990-1997, respectively,

and might therefore be considered outdated.

Among this broad range of models, we identified the PCPTRC and the ERSPC risk calcu-

lator as the most commonly used, freely available and user-friendly risk tools (Kranse et al.

2008, Ankerst, Hoefler, et al. 2014). Both are based on large prospective trials, based on a

heavily screened population, whereby the ERSPC study includes European centers and the

PCPTRC utilizes North American data. The PCPT study required a PSA level of 4 ng\mL or

lower, a minimum of 55 years and a normal DRE result for patients to enter the trial. Further-

more, the PCPT required an end-of-study biopsy for all men who had not been diagnosed

with prostate cancer within the seven years of the trial.

Since the PBCG data include several North American cohorts with a considerable amount

of patients with African ancestry, we chose to validate the PCPTRC on the contemporary

PBCG data and compare it with a newer model developed on the PBCG data using cross

validation to adjust for overfitting as well as a hold-out PBCG test set. The ERSPC risk tool

is less suitable as it comprises a near exclusively white population and previous work has

found African ancestry to be a significant risk factor for prostate cancer (Ankerst, Hoefler,

et al. 2014, Nam et al. 2007, Yanke et al. 2006).

The PCPTRC is based on data from the 1990’s and changes in clinical practice have since

then occurred, raising the question as to whether it should be updated or replaced. In the
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PCPT, clinicians have primarily utilized six cores as mandated by the protocol, whereas in

contemporary practice, such as in the PBCG cohorts, twelve-core biopsies are predominant.

A higher number of cores correlates with increased cancer detection on biopsy, thus, this shift

in clinical practice may reduce the value of the PCPTRC for contemporary patients (Ankerst,

Till, Boeck, Goodman, Tangen, and I. M. Thompson 2013, Ankerst, Till, Boeck, Goodman,

Tangen, Feng, et al. 2013, Babayan and Katz 2016, Bjurlin et al. 2014). A further relevant fac-

tor is a change in the prostate cancer grading system based on the Gleason score for which

the International Society of Urological Pathology first made revisions in 2005, and more re-

cently in 2014 (Kryvenko and Epstein 2016). Several researchers have detected an upwards

shift in Gleason grading of prostate cancer (Ghani et al. 2005, Smith et al. 2002, Zareba et al.

2009). Danneman et al. 2015 further suggested that this shift predated the grading system

revisions of 2005, and just became more obvious afterwards. This development precipitated

an increased assessment of prostate cancer as high-grade disease.

4.2 Methods

This chapter is motivated by the importance of contemporary data and the consequential

need for risk model updates. A new risk tool is developed analogously to the PCPTRC to

guarantee a fair comparison, with concentration solely on the influence of new data rather

than different modeling techniques. The PCPTRC is based on a multinomial logistic regres-

sion, in which the risk of high- versus low-grade versus no prostate cancer is predicted using

the risk factors PSA (logarithmically transformed), first-degree family history, prior negative

biopsy, race, age and DRE. In order to match the PCPTRC, high-grade cancer is defined

as Gleason grade greater than or equal to seven, not differentiating between Gleason score

4+3 and 3+4. For model building all cohorts are pooled together, which is current practice

for multi-center clinical studies and proves to have no disadvantages for the purpose of risk

prediction (Chapter 3).

4.2.1 Multinomial logistic regression

Multinomial logistic regression is an extension of the standard multiple logistic regression

model for binary outcomes, discussed in Section 3.3.1. With this modification it is possible

to model a nominal outcome with more than two levels. We explain the theoretical concept

via the example of a three level outcome. An extension to more categories is straightforward

and mainly a matter of notation. In this chapter the outcome corresponds to the biopsy result

with the three levels no, low-grade and high-grade prostate cancer, coded as 0, 1 and 2,

respectively. Let yi denote the outcome of patient i = 1, ..., n, with Xi = (1, x1i, ..., xKi)
′ the

corresponding covariate vector and n the total number of biopsies within the pooled data set.

We assume the yi are independent for i = 1, ..., n.

In order to specify the required logit functions, one of the outcome categories has to be

chosen as reference value. An intuitive choice is given by the biopsy result of no cancer,
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corresponding to y = 0. As a result, the two cancer levels low- and high-grade are compared

to the baseline of no cancer. A multinomial distribution is assumed for yi, with probabilities

p0i, p1i, p2i ∈ (0, 1) for the outcomes 0, 1 and 2, respectively. The multinomial logistic

regression model is then expressed by

log

(
p1i

p0i

)
= β10 +

K∑
k=1

β1kxki = β′1Xi and (4.1)

log

(
p2i

p0i

)
= β20 +

K∑
k=1

β2kxki = β′2Xi, (4.2)

whereby βj = (βj0, βj1, ..., βjK)′ , j = 1, 2 are the vectors of regression parameters. A

comparison of the cancer categories y = 2 and y = 1 is given by the difference between

Equation (4.2) and (4.1):

log

(
p2i

p1i

)
= log

(
p2i

p0i

)
− log

(
p1i

p0i

)
=
(
β′2 − β′1

)
Xi. (4.3)

For an easy representation of the log-likelihood function, the multinomial outcome with three

categories is recoded with three binary variables:

yi = 0 : y0i = 1, y1i = 0, y2i = 0

yi = 1 : y0i = 0, y1i = 1, y2i = 0

yi = 2 : y0i = 0, y1i = 0, y2i = 1.

For the new variables y0i, y1i, and y2i, the equation
∑2

j=0 yji = 1 holds for all i = 1, ..., n.

With this it is possible to formulate the log-likelihood as

l(β) =
n∑
i=1

log

[(
1

1 + eβ
′
1Xi + eβ

′
2Xi

)y0i ( eβ
′
1Xi

1 + eβ
′
1Xi + eβ

′
2Xi

)y1i (
eβ
′
2Xi

1 + eβ
′
1Xi + eβ

′
2Xi

)y2i]

=

n∑
i=1

log

[
eβ
′
1Xiy1ieβ

′
2Xiy2i(

1 + eβ
′
1Xi + eβ

′
2Xi
)y0i+y1i+y2i

]

=
n∑
i=1

log

[
eβ
′
1Xiy1ieβ

′
2Xiy2i

1 + eβ
′
1Xi + eβ

′
2Xi

]

=

n∑
i=1

[
y1iβ

′
1Xi + y2iβ

′
2Xi − log

(
1 + eβ

′
1Xi + eβ

′
2Xi
)]
. (4.4)

The maximum likelihood estimate β̂ of the coefficient vector β = (β′1, β
′
2)′ is obtained by

setting the partial derivatives of Equation (4.4) to zero:

∂l(β)

∂βj
=

n∑
i=1

[
yjiXi −

eβ
′
jXi

1 + eβ
′
1Xi + eβ

′
2Xi

Xi

]
= 0, j = 1, 2. (4.5)

Under regularity conditions, the likelihood function is globally convex, and the resulting max-

imum likelihood estimate β̂ unique (Hasan et al. 2016). Analogously to the binary case, the
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Newton-Raphson algorithm is used to approximate the solutions of the 2(K + 1) equalities

specified in Equation (4.5). The updating rule of this iterative process becomesβ
new
1

βnew2

 =

β
old
1

βold2

−


∂2l(β)
∂β1∂β′1

∂2l(β)
∂β1∂β′2

∂2l(β)
∂β2∂β′1

∂2l(β)
∂β2∂β′2


−1 

∂l(β)
∂β1

∂l(β)
∂β2



∣∣∣∣∣∣∣∣∣
β1=βold1 ,β2=βold2

=

β
old
1

βold2

+ ∆,

(4.6)

with

∂2l(β)

∂β1∂β′1
=

n∑
i=1

− eβ
′
1Xi(1 + eβ

′
2Xi)

1 + eβ
′
1Xi + eβ

′
2Xi

XiX
′
i,

∂2l(β)

∂β2∂β′2
=

n∑
i=1

− eβ
′
2Xi(1 + eβ

′
1Xi)

1 + eβ
′
1Xi + eβ

′
2Xi

XiX
′
i,

∂2l(β)

∂β1∂β′2
=

∂2l(β)

∂β2∂β′1
=

n∑
i=1

eβ
′
1Xieβ

′
2Xi(

1 + eβ
′
1Xi + eβ

′
2Xi
)2XiX

′
i,

and ∆ set to the negative product of the inverse of the matrix of second derivatives times

the vector of first derivatives, evaluated at βold. This algorithm is implemented in R with the

package mnlogit (Hasan et al. 2016). In case of l(βnew) < l(βold), the previous step is

modified to add ∆
2 instead of ∆. This bisecting is repeated until the log-likelihood value of

the updated βnew is greater than or equal to the value at βold. The original Newton-Raphson

algorithm is continued with this modified version of βnew. With this procedure the Newton-

Raphson iterations converge (Hasan et al. 2016). Using the resulting parameter estimates,

the risk predictions p̂0i, p̂1i and p̂2i are given by

p̂0i =
1

1 + eβ̂
′
1Xi + eβ̂

′
2Xi

, (4.7)

p̂ji =
eβ̂
′
jXi

1 + eβ̂
′
1Xi + eβ̂

′
2Xi

, j = 1, 2. (4.8)

4.2.2 Missing values

For the PCPTRC missing values are allowed for the variables DRE, family history and prior

negative biopsy. This is achieved by fitting marginal models for any combination of missing

one, two or all of these covariates. The same procedure for missing values is used to en-

sure a fair comparison between the existing risk tool PCPTRC and the new model built on

the contemporary PBCG data. However, in the PBCG, missing values are also present for

the characteristic race, which are imputed by their median non-African ancestry. This impu-

tation is used for building the PBCG model and for validation of both the PBCG model and

PCPTRC.
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Algorithm 11 Multinomial logistic regression model and its prediction

1: procedure MULTINOMIAL(IPD)
2: Data← pool all cohorts of IPD together . cohort information is ignored
3: fit multinomial logistic regression on Data via Newton-Raphson approximation
4: β̂1 ← resulting coefficient estimates for low-grade cancer compared to no cancer
5: β̂2 ← resulting coefficient estimates for high-grade cancer compared to no cancer
6: return β̂1, β̂2

7: procedure PREDICT_MULTINOMIAL(β̂1, β̂2, X)
. X: covariate vector of individual patient

8: p̂0 ← 1
1+exp(β̂′1X)+exp(β̂′2X)

9: p̂1 ←
exp(β̂′1X)

1+exp(β̂′1X)+exp(β̂′2X)

10: p̂2 ← 1− p̂0 − p̂1

11: return p̂ = (p̂0, p̂1, p̂2)

4.2.3 Validation

The models are evaluated by the validation methods described in Chapter 2. The discrimi-

nation ability is graphically shown with sensitivity and specificity curves, and summarized by

AUC values. Calibration is quantified by the HLS and displayed in calibration plots. To show

clinical utility, net benefit curves are used. As these validation metrics are developed exclu-

sively for binary outcomes, solely results of high-grade cancer versus no or low-grade cancer

are discussed in detail. Results for overall cancer, with high- and low-grade cancer combined,

versus no cancer are shown in the appendix.

The PCPTRC is a risk tool based on data from North America, whereas the PBCG combines

eight North American and three European cohorts. The European sites include less than 1%

of patients with African ancestry, and in Hamburg, African ancestry information is missing

altogether on 63% of men. For fair comparisons with the PCPTRC, we decided to build the

new model on North American data only. With this partition it is furthermore possible to im-

plement two levels of model validation for the PBCG model: internal-external cross validation

within the North American cohorts, and external validation on the remaining European sites.

To validate the PBCG model on the individual north American cohorts, we use leave-one-

cohort-out cross validation, as described in Section 3.4. For the external validation on the

three European cohorts, we use the final PBCG model that is fit on all North American data

pooled together. Since the PCPTRC is an external risk tool, it can be directly applied to all

cohorts.

4.3 Results

We fit a new multinomial logistic regression model on contemporary North American data and

compare its results to the broadly used online available PCPTRC.
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4.3.1 Multinomial logistic regression model

The final model is built on all eight cohorts in North America pooled together, comprising

5,992 biopsies. Analogously to the PCPTRC, which was built on 6664 biopsies, marginal

models for every combination of missing variables prior negative biopsy, family history and

DRE result are fit. Corresponding R-code is given in the appendix Section A.2. Odds ratios

for the model with no missing variables, which is based on 4,286 biopsies, are shown in

Figure 25 for each of the comparisons high- versus low-grade cancer, high-grade versus no

cancer, and low-grade versus no cancer, with further data in Table A.3.
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Figure 25 : Comparison between odds ratios of PCPTRC and PBCG for multinomial logistic regression models with no missing
data (based on Ankerst, Straubinger, et al. 2018). The PBCG model is built on all eight North American cohorts pooled
together. Odds ratios are given for endpoints reported to the left versus reference levels to the right of headers, along with
95%-CIs. Sample size for the PCPT is given by n=6664, with proportions of 82.1% no, 14.1% low-grade and 3.8% high-grade
cancer, and for the PBCG by n=4286, with proportions of 47.6%, 18.0% and 34.3%, respectively.

Coefficients for the continuous predictors PSA and age are broadly similar across both stud-

ies. Family history and DRE have higher coefficients’ values for the PBCG, except for the

comparison of low-grade and no cancer. The risk factor prior negative biopsy shows great

discrepancies between the studies, thereby having higher values for the PCPT. At last, both

studies associate African ancestry with higher cancer risk. Whereas the PCPT finds race to

distinguish high- and low-grade cancer, but not low-grade and no cancer, the results of the
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PBCG suggest the opposite direction.

Overall, the CIs for the PCPTRC are wider for the endpoint high-grade cancer. This is due

to the fact that only 3.8% of the underlying patients have a high-grade cancer diagnosis. In

comparison, the PBCG model has smaller CIs, as one third of the biopsy results are high-

grade disease.

4.3.2 Model validation

In order to compare performance of the PCPTRC with the newly developed risk tool based

on data of the PBCG, two levels of model validation are applied. Separate validations on

North American cohorts with 5,992 biopsies, and European cohorts with 10,377 biopsies, are

performed (Tables A.2 and A.1). Internal-external cross validation is thereby used to validate

the PBCG model on the North American cohorts, and external validation for the European

data and the PCPTRC (Section 4.2.3). Results are only shown for high-grade cancer versus

the two other outcomes combined. Similar results are obtained for overall versus no cancer,

which are shown in the appendix, along with single cohort analyses.

Table 2 summarizes AUC values of both methods, separated by validation set. They show

AUC (CI) PCPTRC AUC (CI) PBCG P-value

North American cohorts (n=5,992) 72.3% (70.9-73.7%) 75.5% (74.2-76.8%) <0.0001

European cohorts (n=10,377) 69.7% (68.7-70.8%) 72.9% (71.8-73.9%) <0.0001

P-value 0.0037 0.0019

Table 2 : AUC values for high-grade versus low-grade and no cancer with corresponding 95% Delong CI for the PCPTRC and
PBCG models. P-values by the Delong test for two correlated ROC-curves are used to compare the PCPTRC and PBCG models
(bottom row), and for two uncorrelated ROC-curves to compare the North American and European cohorts (last column). Risk
predictions for the North American cohorts by the PBCG model are calculated by leave-one-cohort-out cross validation.

that discrimination is better for North American in comparison to European cohorts and that

the PBCG model significantly outperforms the PCPTRC. Also for all individual cohorts, the

PBCG achieves higher AUC values compared to the PCPTRC (Figure 26). CIs for all cohorts,

except Hamburg, are overlapping due to their smaller sample sizes. The overall inferior per-

formance of the European cohorts is mainly driven by Hamburg, which comprises 75.9% of

the European data. With an AUC of 70.3% (CI: 69.1-71.5%) for the PBCG model, it has

the worst performance across all cohorts, and with 67.4% (CI: 66.2-68.6%) for the PCPTRC,

Hamburg is underperformed only by SanJuanVA with 66.1% (CI: 61.2-71.0%).

The HLS is also consistently lower for the PBCG in all test cohorts, suggesting better cali-

bration for this model (Figure 26). Calibration curves for the North American and European

cohorts, shown in Figure 27, further confirm this result. The PBCG model is well calibrated in

the clinical relevant range, only slightly underestimating risk for thresholds greater than 10%.
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Figure 26 : AUC and HLS values for high-grade cancer of PBCG and PCPT by site. (a) Results of the internal cross validation
of the North American cohorts, (b) external validation on the European sites. The HLS for the PCPTRC applied to the Hamburg
cohort is neglected as it exceeds 4,000. For AUC higher values are better, while for HLS lower values are preferred. Sample
sizes are given by 299 for ClevelandClinic, 669 for DurhamVA, 323 for MayoClinic, 1,010 for MSKCC, 550 for SanJuanVA, 1,721
for Sunnybrook, 521 for UCSF, 899 for UTHealth, 7,877 for Hamburg, 637 for SanRaffaele and 1,863 for Zurich.
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Figure 27 : (a) Net benefit, (b) calibration, (c) sensitivity, and (d) specificity curves for high-grade cancer comparing the PBCG
and PCPT models. Results of the internal cross validation of the North American cohorts (left) and external validation with the
European sites (right). Strategies of referring all men or none to biopsy are provided in (a) for comparison, pointwise 95%-CIs
are shown with shading and black lines in (b) show where predicted risks equal observed risks.
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In comparison, the PCPTRC underestimates risk up to about 20% across the whole range of

5-25% in both data sets.

On both data sets, clinical net benefit of the PBCG model exceeds the strategy of biopsying

all patients for thresholds of around 10% and higher, with non-overlapping CIs for thresholds

higher than about 20% (Figure 27a). Both the PBCG and the strategy of biopsying all patients

have superior net benefit to the PCPTRC for all clinically relevant thresholds. Similarly, for

all cohorts individually, the PBCG performs at least as well as biopsying all patients in terms

of net benefit, even though corresponding CIs often overlap due to smaller sample sizes.

Furthermore, the PCPTRC typically has less net benefit than the PBCG and the strategy of

biopsying all patients, whereby CIs for the PCPTRC and PBCG methods do not overlap for

most cohorts. Zurich is the exception with the highest net benefit for the PCPTRC for thresh-

olds above 20%. Zurich is furthermore the only cohort for which the strategy of biopsying

none outperforms another method in terms of net benefit in the range of clinically relevant

thresholds. In this case the strategy of biopsying all has a negative net benefit for thresholds

of around 17% and higher.

Whereas the PBCG model shows higher sensitivity, the PCPTRC outperforms in terms of

specificity for all thresholds between 5 and 25% (Figure 27c, d). This was expected as the

model based on the PBCG predicts higher risks than the PCPTRC. CIs of corresponding

curves do not overlap and show similar trends for all individual cohorts (Figures A.12 and

A.13).

4.4 Discussion

The considered cohorts comprise diverse populations, as described in Section 1.2. Discrep-

ancies in risk tool operating characteristics therefore relate to the difference in cohort designs

and inclusion criteria, as well as to changes in clinical practice. Resulting superior perfor-

mance on the contemporary PBCG data of the newly developed risk tool thereby suggests

use of the contemporary risk calculator in modern clinical practice.

The PCPT was a screening study that required a PSA less than or equal to 4 ng/ml and

a normal DRE to enter, and then had a mandatory end-of-study biopsy after seven years

of annual screening. The resulting risk calculator is therefore based on a predominantly

healthy population. In contrast the PBCG considers patients who have undergone biopsy

after clinical referral. Consequently, the PBCG model is tailored for men for whom urologists

strongly consider a biopsy. In addition, changes in clinical practice have been present as

discussed in Section 4.1. The number of cores taken in a biopsy has risen from six to primarily

twelve and grading of prostate cancer has shifted towards high-grade assessments. These

developments have led to a higher proportion of high-grade cancer in the PBCG study.

The influence of individual risk factors differed between the PCPTRC and PBCG. Odds ratios
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for prior negative biopsy were lower in the PBCG risk tool, especially for the comparison

of high-grade versus no cancer and always less than one, indicating reduction of risk for a

patient with a prior negative biopsy. Whereas a prior negative biopsy was always significant

for the PBCG model, the PCPTRC found a significant influence only for low-grade versus

no cancer, where the odds ratio was also less than one. We assume the number of cores

used in the corresponding prior biopsies to be higher for the PBCG cohorts than the PCPT

cohorts, which predominantly used 6 cores. An increasing number of biopsy cores relates

with a higher prostate cancer detection rate (Ankerst, Till, Boeck, Goodman, Tangen, and

I. M. Thompson 2013, Ankerst, Till, Boeck, Goodman, Tangen, Feng, et al. 2013, Babayan

and Katz 2016, Bjurlin et al. 2014). As a result, a prior negative assessment could reduce

risk more for contemporary data, since it would be more accurate for detecting no disease.

PSA had a significant effect throughout all comparisons and for both methods. The odds

ratio for the PBCG model was lower than the PCPTRC for the category low-grade versus no

cancer and higher for the two other categories, especially for high- versus low-grade cancer.

In 2012 more selective than purely PSA-based biopsy recommendations have been adopted

(Moyer 2012). This might have led to the increased association of PSA values with high-

grade cancer for the PBCG, which primarily comprises biopsies after this date. Furthermore

the PCPT required a PSA value of less than or equal to 4 ng/ml to enter the study, and

excluded patients exceeding a PSA value of ten, which impacts the estimates of odds ratios

compared to the PBCG, which has PSA values ranging from 0.03 to 7275.09 ng/ml. The

PCPT comprises 13.7% of patients with a PSA exceeding four, compared to 83.0% for the

PBCG (Tables A.2 and A.1).

Neither method found DRE to be a significant predictor for comparing low-grade and no can-

cer. In the two other categories the PBCG risk tool estimated a higher association between

positive DRE results and high-grade cancer, which might be due to a change in practice

standards. Contemporary DREs are more likely to be performed by urologists specialized on

prostate cancer instead of general urologists, resulting in more accurate assessments and

corresponding higher odds ratios.

The variable family history showed similar significant odds ratios for low-grade versus no can-

cer between both methods. For the pairs high- versus low-grade and high-grade versus no

cancer, family history was not significant in the PCPTRC, but positively associated and signif-

icant in the PBCG. Family history is recorded binary, yes if father, brother or son had prostate

cancer and no otherwise, and hence does not distinguish aggressiveness of prostate cancer

in the first degree relative. The PCPT required documented family history as part of the pro-

tocol, but no such routine reporting was implemented across the diverse PBCG sites. PCPT

participants thus may have been more likely to report less aggressive prostate cancer in a

relative compared to the PBCG, where patients may have only reported aggressive cancers

or nothing at all. This might explain the higher odds ratios for the PBCG and advocates the

inclusion of cancer aggressiveness in family members to refine the influence of this risk factor.
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For instance, Grill, Fallah, Leach, I. M. Thompson, Freedland, et al. 2015 discuss an exten-

sion of the binary recording of family history in the PCPTRC by incorporating the number, age

and family degree of the relatives in question, and the PBCG already collects these extended

family history data in a fraction of sites (Chapter 6).

At last, the coefficients for African ancestry showed great discrepancies between both mod-

els. Whereas the odds ratios for comparing high-grade and no cancer were significant for

each method, the PCPTRC found race to distinguish between the two cancer groups, but

not between low-grade and no cancer. For the PBCG model it was the other way around,

implying that race is an important risk factor to predict cancer, but less suitable to distinguish

between low- and high-grade disease. The wide CIs for African ancestry of the PCPTRC

reflect the small proportion of patients with African ancestry in the underlying data.
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5 Comparison of standard logistic regression to
more flexible machine learning approaches

Over the last decades the use of machine learning methods has risen in biomedical science

and Shariat et al. 2009 summarize various applications in the field of prostate cancer pre-

diction tools (Jensen and Bateman 2011). In this chapter we investigate the performance of

three machine learning approaches, namely random forests (RFs), k-nearest neighbor (KNN)

methods and artificial neural networks (ANNs). We apply these concepts for risk prediction of

prostate cancer biopsy results and compare them with the logistic regression implemented in

Chapter 3. For a fair comparison and to address the third aim of this thesis, we merely con-

sider the six standard risk factors used for the logistic regression. Recognizing that a strength

of machine learning is in high number of covariates, this small set of predictors furthermore

enables a better understanding of the individual steps underlying the machine learning ap-

proaches. With this we anticipate to explore whether "off-the-shelf"-methods are generally

suitable to predict the risk of high-grade cancer outcome in prostate biopsy. Subsequently

we discuss their application for a larger data set as we identify the inclusion of additional

predictors as a potential focus of further research in the PBCG (Chapter 6).

5.1 Research in context

For parametric logistic regression it is necessary to completely and correctly specify all impor-

tant variables, interactions and higher order terms to avoid problems of model misspecification

and potentially biased probability estimation (Kruppa, Y. Liu, et al. 2014). Machine learning

methods, on the other hand, are often nonparametric and therefore more robust in terms of

model specification. Kruppa, Ziegler, et al. 2012 give an overview of popular approaches,

along with recommended literature.

The development of most machine learning methods has focused on classification tasks.

However, instead of asking "Is the patient more likely to have high-grade prostate cancer than

not?", we are more interested in the question "What is the probability the patient has high-

grade prostate cancer?", as it provides additional information. In particular, a patient most

probably appreciates the difference in risk prediction of 90% compared to 55%, instead of a

simple "Yes, you are more likely to have cancer than not". Due to their focus on classification,

it is of particular importance to assess considered machine learning approaches with respect

to their performance in probability estimation. J. D. Malley, Kruppa, et al. 2012 reformulate

probability estimation problems as nonparametric regressions applied to binary outcomes.

This connection enables the derivation of properties already known for the latter. The authors

consider the targeted estimate of the conditional probability P (Y = 1|X = x), with the

binary outcome Y ∈ 0, 1 and predictors X ∈ Rd, and express it by P (Y = 1|X = x) =

E(Y |X = x) = f(x), a regression estimation problem. As a result, statistical learning
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machines, which perform well for nonparametric regression, are also suitable for probability

risk estimation. In particular, consistency has been proven for several statistical learning

approaches, and hence can be deduced for probability predictions (Györfi et al. 2002).

An estimate is consistent if it converges to the estimated quantity as the sample size in-

creases. Györfi et al. 2002 thereby distinguishes between weak and strong, as well as be-

tween universal and non-universal, consistency. However, Devroye et al. 1996 state that

weak and strong consistency are equivalent for most well-behaved rules. Even though ma-

chine learning techniques have evolved over the past decades, thereby potentially increasing

the advantage of distinction, many researchers refer to weak consistency only or do not differ-

entiate between weak and strong consistency at all (Kruppa, Ziegler, et al. 2012, J. D. Malley,

Kruppa, et al. 2012, Biau et al. 2008, Mease and Wyner 2008, Breiman 2004). Similarly, in

this thesis we merely focus on weak consistency, in the following referred to as consistency.

Let (X,Y ), (Xi, Yi), i = 1, ..., n i.i.d. random variables, Dn = {(X1, Y1), ..., (Xn, Yn)}
the training set, and f̂n(x,Dn) an estimate of the regression function f(x) = E(Y |X = x).

Consider the random variable En =
∫

(f̂n(x,Dn)− f(x))2µ(dx), with µ the distribution of X

and f̂n(x,Dn) depending on the data Dn. Györfi et al. 2002 calls the sequence {f̂n} consis-

tent for a specified distribution of (X,Y ) if E (limn→∞En) = 0, with E the expectation with

respect to the training set Dn. A sequence is universally consistent if it is consistent for all

distributions of (X,Y ). This generalization is of particular relevance for the assessment of

machine learning methods, as a major advantage of these is that no prior information about

the distribution of (X,Y ) is required.

Whereas the non-parametric approaches investigated in this chapter largely show universal

consistency under general conditions, logistic regressions are only consistent for fully and

correctly specified models (Kruppa, Y. Liu, et al. 2014). Stone 1977 proves universal consis-

tency of the KNN approach for kn →∞ and kn
n → 0, with n the total sample size and kn the

number of considered neighbors (Györfi et al. 2002, Devroye et al. 1996). The modification

of KNN with bootstrap aggregation also shows consistency under general conditions (J. D.

Malley, Kruppa, et al. 2012, Kruppa, Ziegler, et al. 2012). Biau et al. 2008, Breiman 2004

and Meinshausen 2006 prove consistency for certain RFs. Driving forces thereby include a

connection to adaptive nearest neighbor methods reported by Lin and Jeon 2006. However,

as pointed out by Breiman 2004, RFs are difficult to analyze and are therefore statistically not

fully understood. In addition to universal consistency of ANN classifiers, Györfi et al. 2002

also discuss regression ANNs with one hidden layer (Devroye et al. 1996, Farago and Lugosi

1993). They are universally consistent as well, given some constraints on the weights and

free parameters of the ANN. For kn the number of hidden units corresponding to the sample

size n, and wi the weights between the hidden layer and the output, the discussed theorem in

Györfi et al. 2002 depends upon kn →∞,
∑kn

i=0 |wi| ≤ βn, βn →∞, and knβ4
nlog(knβ

2
n)

n → 0.

Even though universal consistency of the general technique was required in the following

application, final consistency properties are not further elaborated.
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5.2 Methods

Let (y1, x1), ..., (yn, xn) be a sample of i.i.d. random pairs, with yi = 1 for the biopsy result of

high-grade cancer, yi = 0 for a negative or low-grade cancer assessment, and xi ∈ Rp the

vector of covariates for patient i. We will not require the random variables to follow a specific

distribution.

To compare the different machine learning approaches applied to the PBCG data, we first

discuss and analyze each method independently. We thereby select tuning parameters for

the individual methods based on the discrimination measure AUC. Subsequently we compare

the resulting models with each other and in addition with a standard logistic regression, using

the validation metrics of Chapter 2. For all evaluations we implement leave-one-cohort-out

cross validations.

For the analysis of this chapter we enable the ten PBCG cohorts ClevelandClinic, DurhamVA,

MayoClinic, MSKCC, SanJuanVA, SanRaffaele, Sunnybrook, UCSF, UTHealth and Zurich,

resulting in n = 8492 observations (Tables A.1 and A.2). As previously discussed, we merely

include the six standard risk factors family history, prior biopsy, DRE, African ancestry, age

and PSA with median imputations for missing values.

5.2.1 Random forest

Breiman 2001 introduces the definition of RFs as a collection of tree-structured classifiers

based on i.i.d. random vectors. Even though this definition comprises some previously de-

veloped methods, the common usage of the expression RF refers to the algorithm developed

by Breiman 2001. The initial introduction focuses on classification, but modifications for re-

gression, as used in this thesis, are straightforward (Hastie et al. 2009, J. D. Malley, Kruppa,

et al. 2012). However we describe both approaches as they might get easily confused for risk

predictions of binary outcomes. In particular the implementation of the enabled function in R

differs merely in the assigned data type of the response variable.

The regression RF is implemented with the R package randomForest, which is based on

Breiman 2001, and summarized in Algorithm 12. Thereby the values of the flexible parame-

ters mtry, B and nnode_min are chosen to match the following detailed description.

A single regression or classification tree of a RF is grown by successively splitting the data into

two subsets. Each split is performed according to one of the covariates and called decision

node. A schematic representation of an exemplary regression tree is given in Figure 28. At

the starting node a, called root, all observations are considered. The data is now divided

into two subsets, named daughter nodes, according to the covariate which minimizes a given

impurity function (IF). In the example given in Figure 28, all observations with a log base two

transformed PSA value, named lpsa2, smaller than 4.1 are included in the left side of the root
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Algorithm 12 Regression and classification random forest (RF)

1: procedure RF(training data, x)
2: n← size of training data
3: p← number of covariates
4: mtry ← 2 = max(1, p3) rounded to next smallest integer
5: B ← 500 number of required bootstrap samples
6: nnode_min ← 150
7: for i in 1 to B do
8: bi ← bootstrap sample of size n drawn with replacement from training data
9: Ti ← regression tree grown on bi by recursively repeating the following steps for

each terminal node.
10: loop
11: Randomly select mtry covariates
12: For each selected covariate choose best split-point by minimizing the MSE
13: Choose best covariate, with respective split-point, by minimizing the MSE
14: Consider to split terminal node into two daughter nodes according to chosen

covariate and split-point
15: STOP if the node size of a daughter node falls below nnode_min
16: Set the two daughter nodes to be new terminal nodes
17: pi,ji ← proportion of high-grade cancer cases in each terminal node ji

18: ci,ji ←

{
1 pi,ji ≥ 0.5

0 pi,ji < 0.5
dominant class in each terminal node ji

19: riskregression ← 1
B

∑B
i=1 pi,ji with ji the resulting terminal node for x in tree Ti

20: riskclassification ← 1
B

∑B
i=1 ci,ji with ji the resulting terminal node for x in tree Ti

21: return riskregression, riskclassification

Figure 28 : Schematic representation of a single tree. Split points are chosen arbitrarily and not based on the data.
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node and the remaining ones get allocated to the right side. The nodes b and c are called

temporary terminal nodes after the first splitting level. For each temporary terminal node a

new splitting criteria is chosen, which minimizes the IF based on the data related with this

node. For instance, all observations with a lpsa2 smaller than 4.1 are included for node b,

resulting in the optimal splitting criteria "age<71". This step is repeated for each temporary

terminal node until the chosen split would result into a daughter node with a smaller number

of records than an initially determined value nnode_min. In this case the node does not get

partitioned and is called terminal node. Whereas the partition according to a binary covariate,

such as DRE in node c into normal and abnormal, is performed straightforward, an optimal

split point has to be selected for continuous variables. This is also performed by minimizing

the considered IF. Note that a continuous predictor, such as lpsa2 in the example, can get

chosen several times with different splitting thresholds.

In order to obtain a prediction for a new observation, this observation is dropped down the tree

and the proportion of high-grade cancer cases in the respective terminal node is considered.

For a probability prediction of a regression tree this proportion is reported directly, whereas

in a classification tree the class with the highest proportion is returned. In the example of

Figure 28, a patient with lpsa2 smaller than 4.1 and an age greater than or equal to 71 will

get associated to the terminal node e.

For a specific node, the IF gets minimized to find optimal split points for the continuous co-

variates and to subsequently choose among the available predictors with their respective split

points. For binary outcomes in a classification tree, the IF is given by

IF = nleftΨ

 1

nleft

∑
left

yi, 1−
1

nleft

∑
left

yi

+ nrightΨ

 1

nright

∑
right

yi, 1−
1

nright

∑
right

yi


= nleftΨ (ȳleft, 1− ȳleft) + nrightΨ (ȳright, 1− ȳright) , (5.1)

with
∑

left the summation over the resulting left side, nleft the number of observations and

ȳleft = 1
nleft

∑
left yi the mean value of all observations allocated to the left side of a node,

and
∑

right, nright and ȳright, defined analogously for the resulting right side of a node (De-

vroye et al. 1996). Thereby, Ψ has to be defined as a nonnegative function with the proper-

ties

1. Ψ(0.5, 0.5) ≥ ψ(ȳ, 1− ȳ) for any ȳ ∈ [0, 1],

2. Ψ(0, 1) = Ψ(1, 0) = 0 and

3. Ψ(ȳ, 1− ȳ) increasing for ȳ ∈ [0, 0.5] and decreasing for ȳ ∈ [0.5, 1].

A commonly used function for Ψ is given by the Gini index (Devroye et al. 1996, Hastie et al.
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2009, Kuhn and Johnson 2013):

Ψ(ȳ, 1− ȳ) = 2ȳ(1− ȳ). (5.2)

For a regression tree the MSE is minimized. Even though regression trees are primarily intro-

duced for continuous outcomes, the MSE can also be used for binary variables. Minimizing

the MSE can thereby be considered equivalent to the previously introduced IF combined with

the Gini index, termed IFGini:

MSE =
∑
left

(yi − ȳleft)2 +
∑
right

(yi − ȳright)2 (5.3)

=
∑
left

(y2
i − 2yiȳleft + ȳ2

left) +
∑
right

(y2
i − 2ȳright + ȳ2

right)

=
∑
left

yi −
∑
left

2yiȳleft +
∑
left

ȳ2
left +

∑
right

yi −
∑
right

2yiȳright +
∑
right

ȳ2
right

=nleftȳleft − 2nleftȳ
2
left + nleftȳ

2
left + nrightȳright − 2nrightȳ

2
right + nrightȳ

2
right

=nleftȳleft − nleftȳ2
left + nrightȳright − nrightȳ2

right

=nleftȳleft (1− ȳleft) + nrightȳright (1− ȳright) =
1

2
IFGini.

A RF is given by several regression or classification trees aggregated into an overall proba-

bility prediction model. To implement the aggregation, B bootstrap samples of the same size

as the original training data are drawn with replacement and for each bootstrap replicate an

individual tree is grown. However, instead of minimizing the IF across all possible covariates,

at each node a different random subset of size mtry of the available covariates is consid-

ered. A probability prediction for a new observation is obtained by averaging the output of

the resulting terminal nodes in the individual trees. In case of a regression RF these outputs

are given by the proportions of high-grade cancer in the respective nodes, therefore values

between zero and one. For a classification RF, however, the individual outputs are either zero

or one.

For both types of RFs, optimal values of B, mtry and nnode_min are treated as tuning param-

eters, as they depend on the data at hand. It has been shown that RFs can not be overfit by

a large value of B, however, their computational intensity increases with large B (Breiman

2001).

The performance of RFs substantially rests upon its random selection of data and predictors.

Using an independent bootstrap sample to grow each tree and subsequently aggregating the

results, called bagging, leads to improved prediction due to reduced variance (Hastie et al.

2009, Genuer 2012). Furthermore, the random choice of covariates brings advantages, as

the usefulness of a single predictor depends on all other predictors, interactions might be

present. By considering only a random subset of input variables for the split at every node
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and ultimately combining all resulting trees, we consider an average over various contexts

of a predictor (J. D. Malley, K. G. Malley, et al. 2011). A random selection of covariates

furthermore reduces correlations between single trees and with this further increases the

benefit of the initial bagging.

To determine optimal parameters for the analyzed PBCG data, Figure 29 shows AUC values

for RFs with different tuning parameters and a constant number of bootstrap samples of

B = 1000. The considered RFs achieve a maximal AUC value of 76.2% for mtry = 2,
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Figure 29 : AUC values of leave-one-cohort-out cross validation for RFs with different minimal node sizes nnode_min and
different number of considered covariates at each node, mtry. Number of bootstrap samples kept constant with B = 1000.

nnode_min = 150 and underlying regression instead of classification trees. The default value

in the statistical software R for mtry in regression RFs is the number of possible predictors

divided by three, mtry = p
3 = 6

3 = 2, so coinciding with the optimal choice. Thereby

the AUC depends only slightly on the minimal size of terminal nodes. Using mtry = 1,

equivalent to randomly choosing one predictor at each node, results in AUC values between

74.7% and 75.0%, and between 72.3% and 73.0% for regression and classification RFs,

respectively. The performance is therefore robust to the choice of nnode_min as well. This is

reasonable, as four of the six proposed predictors are binary. Thus, by randomly choosing

one predictor at each node, the probability of getting the same binary predictor twice early in
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one branch is high. In this case the branch will terminate, independent of the minimal node

size nnode_min, as one of the daughter cells would contain zero observations. Using higher

values for mtry, the performance notably improves with increasing minimal node sizes and

stagnates for regression RF for values greater than about 400. Classification RFs show best

results for values between 50 and 100.

Overall, classification RFs outperform the ones based on regression trees only for

nnode_min < 50 and mtry ∈ {5, 6}. This is reasonable as for small terminal nodes a probabil-

ity prediction based on the observed proportions of high-grade cancer becomes imprecise. In

the extreme case of only one patient per terminal node regression and classification RFs even

coincide. For smaller values of mtry, however, the chance to result in small terminal nodes

is vanishing, the benefits of regression trees therefore outweigh classification RFs even for

small nnode_min.

Furthermore, increasing the number of bootstrap samples for the optimal choices of mtry,

nnode_min and type does not further improve the AUC. Since a lower amount of samples is

less computational intensive, we stick to B = 1000.

In Figures 30 and 31 the first three splitting levels of trees grown on the PBCG data are

shown, demonstrating the effect of randomization in the RF algorithm. The first set of trees,
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Figure 30 : Trees from four bootstrap samples in a RF with mtry = 6. Only the first three splitting levels are shown, along with
resulting probabilities of high-grade cancer in temporary terminal nodes.

given in Figure 30, is grown on four bootstrap samples with the tuning parameter mtry set to
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Figure 31 : Trees from four bootstrap samples in a RF with mtry = 2. Only the first three splitting levels are shown, along with
resulting probabilities of high-grade cancer in temporary terminal nodes.

six. With this choice all predictors can be chosen at each node, resulting in similar structures

for all trees. The start is given by the predictor lpsa2, along with a splitting point close to four.

Furthermore, only the predictors lpsa2, age, DRE and prior negative biopsy are used for the

first three splits. In contrast, the trees of Figure 31 are grown for mtry = 2. Therefore both

levels of randomization in a RF are used, the bootstrap replicates and the random choice

of covariates at each node. As a result more diverse trees are constructed, in particular

all predictors are considered in the first three steps and the trees are started with diverse

covariates.

Also the size of the resulting trees can vary considerably in a RF model. Supplementary

Figure A.20 depicts the smallest tree of a RF with mtry = 2 and B = 1000, consisting of

six splitting levels and 13 terminal nodes. Whereas the largest tree, depicted in Figure A.21,

comprises 108 terminal nodes from 15 splitting levels.

5.2.2 (Bagged) k-nearest neighbors

In the KNN and bagged KNN approaches the prediction for a new observation is based on

observations in the training set similar to the new one (Kuhn and Johnson 2013). Summaries,

along with tuning parameters chosen according to the following considerations, are given in

Algorithm 13 and 14. Implementation of both methods is done with the R package caret,

which is based on the package class (Venables and Ripley 2002, Kuhn 2008).
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Algorithm 13 K-nearest neighbors (KNN)

1: procedure KNN(training data, x)
2: n← size of training data
3: k ← 160
4: training data← standardized training data
5: x← standardized x
6: for i in 1 to n do
7: di ← euclidean distance between x and observation i in training set
8: K ← neighborhood of x: subset of k observations from training set with smallest di,

including ties for kth observation
9: |K| ← number of observations in K

10: risk ← 1
|K|
∑

K yi proportion of high-grade cancer patients in neighborhood of x
11: return risk

Algorithm 14 Bagged k-nearest neighbors (BNN)

1: procedure BNN(training data, x)
2: n← size of training data
3: k ← 160
4: B ← 100 number of required bootstrap samples
5: for i in 1 to B do
6: bi ← bootstrap sample of size n drawn with replacement from training data
7: pi ← KNN(bi, x)
8: risk ← 1

B

∑B
i=1 pi

9: return risk

First the distance between the covariates of a new observation x = (x1, ..., xp) ∈ Rp and

the predictors xi = (xi,1, ..., xi,p) ∈ Rp, i = 1, ..., n of each observation in the training set

is computed. The most commonly used measure for the distance between xi of the training

set and the new observation x is given by the Euclidean distance di (Ripley 1996, Kuhn and

Johnson 2013):

di =

√√√√ p∑
j=1

(xj − xi,j)2. (5.4)

The k observations with smallest distance to the new value are included in the subset K,

named the KNN of x. In case of ties for the kth nearest observation, all tied candidates are

included in the subset K. The risk prediction p(x) is now given by the average response in

the subset K: p(x) = 1
|K|
∑

K yi, with |K| the number of observations in K, which might

exceed k in case of ties.

As this algorithm fundamentally depends on the distance between observations, the scale of

the predictors gets very influential. Covariates on large scales contribute more to the distance

calculation and get therefore more weight. To ensure similar contribution of all predictors, we
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center and scale them beforehand:

xi,j,standardized =
xi,j − x̄.,j

s.,j
, (5.5)

xj,standardized =
xj − x̄.,j
s.,j

, (5.6)

with x̄.,j and s.,j the mean and standard deviation of the predictor j in the training set. Equa-

tion (5.6) describes the standardization of a new observation x. We perform the same trans-

formation for the binary predictors, resulting in a higher influence of the variables race and

family history compared to DRE and prior biopsy. This is due to the small proportion of pa-

tients with African ancestry and a family history of prostate cancer.

This weighting of the binary predictors is quite arbitrary. In fact, a weighting based on the

influence on high-grade prostate cancer for both, continuous and binary predictors, would

be more reasonable. Finding a suitable weighting, however, is not part of the standard KNN

approach and also not implemented in the enabled R command.

Similarly, the Euclidean distance measure of Equation (5.4) might not be optimal, even though

most commonly used. Hu et al. 2016 compare its performance with KNNs based on the

cosine, Minkowsky and chi-square distance function for medical data sets containing merely

categorical or numerical predictors, as well as both types combined. Thereby none of the

measures performed consistently best over all data sets, suggesting that a selection should

be based on the data at hand. A review by Prasath et al. 2017 of 54 distance measures on

28 data sets confirms this observation.

The KNN method can be modified with bootstrap aggregating, introduced by Breiman 1996

as "bagging". For B bootstrap samples the KNN algorithm is implemented and the resulting

risk predictions are averaged to get the bagged KNN estimate. As the bagging step in the

implementation of RFs, this modification is used to reduce variance in the estimation.

The main tuning parameters of a standard KNN approach with Euclidean distance and without

weighting are the size of the neighborhood k, along with the bootstrap parameter B for the

bagged KNN. Figure 32 depicts resulting AUC values for KNNs, as well as bagged KNNs

with 5, 20 and 100 bootstrap replicates, for several values of the tuning parameter k. For

small neighborhoods the performance in terms of AUC improves with the neighborhood size

k. For values larger than 50 the effect levels off and only small variations are present. The

maximal AUC of 75.5% results within the range of 150-170 for KNN as well as bagged KNN

with B=20 and B=100. Further increasing the number of boostrap replicates in this range did

not improve the AUC. Due to additional computational effort for larger B, we use B = 100 in

the following analysis. Whereas the bagged KNN with only 5 bootstrap replicates performs

worst for most k, the difference between KNN and bagged KNN with B = 20 as well as

B = 100 decreases with growing k and becomes negligible for values greater than 50. For

the further analysis we use k = 160 along with B = 100.
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Figure 32 : AUC values of leave-one-cohort-out cross validation for KNNs with different neighborhood sizes k and number of
bootstrap replicates B for bagged KNNs.

5.2.3 Artificial neural network

ANNs, often called neural nets, are models inspired by biological neural networks of the hu-

man brain. In the last decade the use of ANNs expanded with a broad variety of applications

and modifications (Jensen and Bateman 2011, T. Huang et al. 2018). Due to the vast amount

of slightly different approaches, it is reasonable to first consider the use of simpler and earlier

models. Later developments in particular enable the use of a large amount of input variables,

necessary for instance in image or speech recognition. However, the models developed in

this thesis merely utilize six covariates. We therefore consider simple networks with only a

few hidden layers and neurons as sufficient.

Algorithm 15 summarizes the procedure of the considered ANNs, with the tuning parameters

chosen according to the subsequent discussion. In R we perform the implementation with the

package neuralnet (Günther and Fritsch 2010).

In the following the detailed mathematical background for an ANN with two hidden layers,

as depicted in Figure 33, is described. The p covariates xi,1, ..., xi,p of patient i and a bias

term with the value 1 are termed input layer and the output ŷi is given by the predicted risk

of high-grade prostate cancer. The final weights between the layers are estimated with an

iterative process. After initially assigning the weights random values, they get updated within

every step. The following considerations are given with respect to current weights in order to
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Algorithm 15 Artificial Neural Network (ANN)

1: procedure ANN(training data, x)
2: n← size of training data
3: H ← number of hidden layers
4: p(h) ← number of neurons in hidden layer h = 1, ...,H
5: α← learning rate
6: itmax ← maximum number of iterations
7: µ← lower threshold for partial derivatives
8: training data← standardized training data
9: x← standardized x

10: randomly initialize all weights
11: for i = 1, ..., n calculate all hidden neurons and the output
12: loop
13: calculate all partial derivatives for the error function cross entropy
14: STOP if the partial derivatives < µ or number of iterations > itmax
15: update all weights
16: for i = 1, ..., n update all hidden neurons and the output
17: risk ← output for the input x using the current weights
18: return risk

illustrate the updating process.

For patient i, the values of the p(1) neurons of the first layer, h(1)
i,k , k = 1, ..., p(1), are calcu-

lated by

h
(1)
i,k = g

(
u

(1)
i,k

)
, (5.7)

u
(1)
i,k = w

(I−1)
0,k +

p∑
j=1

w
(I−1)
j,k xi,j , (5.8)

with w(I−1)
0,k the weight corresponding to the bias term 1 and w(I−1)

j,k the weights from the input

j to the kth neuron of the first hidden layer. The function g(.) is called activation function and

a common choice is the logistic link, given by

g(u) =
1

1 + e−u
. (5.9)

The p(2) neurons of the second layer, h(2)
i,l , l = 1, ..., p(2), are calculated analogously:

h
(2)
i,l = g

(
u

(2)
i,l

)
, (5.10)

u
(2)
i,l = w

(1−2)
0,l +

p(1)∑
k=1

w
(1−2)
k,l h

(1)
i,k , (5.11)

with w(1−2)
0,l and w(1−2)

k,l the weights between the first and second layer. The output, in this

application a single value indicating the probability of high-grade cancer, is then calculated to
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Figure 33 : Schematic representation of a feedforward ANN with two hidden layers.

be

ŷi = g(ui), (5.12)

ui = w
(2−O)
0 +

p(2)∑
l=1

w
(2−O)
l h

(2)
i,l , (5.13)

whereby w(2−O)
0 and w

(2−O)
l are set to be the weights between the second layer and the

output.

For the error function evaluating the output, the sum of squared errors,

E =
1

2

n∑
i=1

(ŷi − yi)2, (5.14)

might be employed. The current weights get now adjusted according to their influence on

the error. This is done through backpropagation of the error by considering the derivative of

E with respect to all individual weights. The new weights are then given by the old weights
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minus the derivative multiplied by a predefined learning rate α:

w
(I−1,new)
j,k = w

(I−1)
j,k − α ∂E

∂w
(I−1)
j,k

, j = 0, ..., p, k = 1, ..., p(1) (5.15)

w
(1−2,new)
k,l = w

(1−2)
k,l − α ∂E

∂w
(1−2)
k,l

, k = 0, ..., p(1), l = 1, ..., p(2) (5.16)

w
(2−O,new)
l = w

(2−O)
l − α ∂E

∂w
(2−O)
l

, l = 0, ..., p(2). (5.17)

For the calculation of the derivatives we start with the weights closest to the output and use

the chain rule to get for l = 0, ..., p(2):

∂E

∂w
(2−O)
l

=
∂ 1

2

∑n
i=1(ŷi − yi)2

∂w
(2−O)
l

=

n∑
i=1

∂ 1
2(ŷi − yi)2

∂ŷi

∂ŷi
∂ui

∂ui

∂w
(2−O)
l

=

n∑
i=1

1

2
2(ŷi − yi)

∂g(ui)

∂ui

∂ui

∂w
(2−O)
l

=
n∑
i=1

(ŷi − yi)
∂
(

1
1+e−ui

)
∂ui

∂ui

∂w
(2−O)
l

=
n∑
i=1

(ŷi − yi)
1

1 + e−ui
e−ui

1 + e−ui
∂ui

∂w
(2−O)
l

=
n∑
i=1

(ŷi − yi)ŷi(1− ŷi)
∂ui

∂w
(2−O)
l

=
n∑
i=1

(ŷi − yi)ŷi(1− ŷi)
∂
(
w

(2−O)
0 +

∑p(2)

l=1 w
(2−O)
l h

(2)
i,l

)
∂w

(2−O)
l

=


∑n

i=1(ŷi − yi)ŷi(1− ŷi)h(2)
i,l l ≥ 1∑n

i=1(ŷi − yi)ŷi(1− ŷi) l = 0.
(5.18)

We continue with the derivatives with respect to the weights of the preceding layer and get

for k = 0, ..., p(1) and l = 1, ..., p(2):

∂E

∂w
(1−2)
k,l

=

n∑
i=1

∂ 1
2(ŷi − yi)2

∂ŷi

∂ŷi
∂ui

∂ui

∂h
(2)
i,l

∂h
(2)
i,l

∂u
(2)
i,l

∂u
(2)
i,l

∂w
(1−2)
k,l

=
n∑
i=1

(ŷi − yi)ŷi(1− ŷi)
∂
(
w

(2−O)
0 +

∑p(2)

l=1 w
(2−O)
l h

(2)
i,l

)
∂h

(2)
i,l

∂h
(2)
i,l

∂u
(2)
i,l

∂u
(2)
i,l

∂w
(1−2)
k,l

=
n∑
i=1

(ŷi − yi)ŷi(1− ŷi)w(2−O)
l

∂h
(2)
i,l

∂u
(2)
i,l

∂u
(2)
i,l

∂w
(1−2)
k,l
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=
n∑
i=1

(ŷi − yi)ŷi(1− ŷi)w(2−O)
l

∂

(
1

1+e
−u(2)

i,l

)
∂u

(2)
i,l

∂u
(2)
i,l

∂w
(1−2)
k,l

=
n∑
i=1

(ŷi − yi)ŷi(1− ŷi)w(2−O)
l

1

1 + e−u
(2)
i,l

e−u
(2)
i,l

1 + e−u
(2)
i,l

∂u
(2)
i,l

∂w
(1−2)
k,l

=

n∑
i=1

(ŷi − yi)ŷi(1− ŷi)w(2−O)
l h

(2)
i,l (1− h(2)

i,l )
∂u

(2)
i,l

∂w
(1−2)
k,l

=

n∑
i=1

(ŷi − yi)ŷi(1− ŷi)w(2−O)
l h

(2)
i,l (1− h(2)

i,l )
∂
(
w

(1−2)
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(2)
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(1)
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i=1(ŷi − yi)ŷi(1− ŷi)w(2−O)
l h

(2)
l (1− h(2)

l ) k = 0.
(5.19)

Similarly we get for the weights from the input to the first layer the derivative for j = 0, ..., p, k =

0, ..., p(1) and l = 0, ..., p(2) by

∂E

∂w
(I−1)
k,l

=
n∑
i=1

∂ 1
2(ŷi − yi)2

∂ŷi

∂ŷi
∂ui

∂ui

∂h
(2)
i,l

∂h
(2)
i,l

∂u
(2)
i,l

∂u
(2)
i,l

∂h
(1)
i,k

∂h
(1)
i,k

∂u
(1)
i,k

∂u
(1)
i,k

∂w
(I−1)
j,k

=


∑n

i=1(ŷi − yi)ŷi(1− ŷi)w(2−O)
l h

(2)
i,l (1− h(2)

i,l )w
(1−2)
k,l h

(1)
i,k (1− h(1)

i,k )xi,j j ≥ 1∑n
i=1(ŷi − yi)ŷi(1− ŷi)w(2−O)

l h
(2)
i,l (1− h(2)

i,l )w
(1−2)
k,l h

(1)
i,k (1− h(1)

i,k ). j = 0.

(5.20)

Inserting Equations (5.18)-(5.20) in the updating rules given in Equations (5.15)-(5.17), we

can calculate new weights for every iteration. As a stopping criterion we define a maximum

number of iterations, itmax, combined with a lower threshold for the partial derivatives, µ.

These are tuning parameters along with the number of hidden layers with their respective

numbers of neurons, as well as the learning rate α.

Furthermore, variations in the activation and error functions are possible. To evaluate the

error, the cross entropy, given by

C = −
n∑
i=1

(
yilog(ŷi) + (1− yi)log(1− ŷi)

)
, (5.21)

is an alternative to the sum of squared errors for risk predictions of binary outcomes (Hastie

et al. 2009, Kuhn and Johnson 2013, Bishop 1995). Figure 34 displays both error functions

in the interval [0, 1] for y and ŷ.

Minimizing the sum squared errors is equivalent to maximizing the log-likelihood by assuming
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Figure 34 : Contour map of sum squared errors on the left and cross entropy on the right.

a Gaussian distribution with variance σ2 for the outcome y:

min(E) = min

(
1

2

n∑
i=1

(ŷi − yi)2

)

= min

(
n

2
log(2πσ2) +

1

2σ2

n∑
i=1

(ŷi − yi)2

)
(5.22)

= min

(
n∑
i=1

(
1

2
log
(
2πσ2

)
+

1

2σ2
(ŷi − yi)2

))

= min

(
n∑
i=1

−log

(
1

(2πσ2)
1
2

)
− log

(
exp

(
− 1

2σ2
(ŷi − yi)2

)))

= min

(
−

(
n∑
i=1

log

(
1

(2πσ2)
1
2

exp

(
− 1

2σ2
(ŷi − yi)2

))))
= min (−(log − likelihood)) = max(log − likelihood), (5.23)

whereby we used that the constant term n
2 log(2πσ2) and factor 1

σ2 > 0 do not influence the

minimization. Bishop 1995 notes that using the sum of squared errors does not necessarily

require the outcome to be Gaussian and can be also applied for classification. Nevertheless,

for binary outcomes it might be a disadvantage compared to the cross entropy, which is

equivalent to the log-likelihood of the Bernoulli distribution and therefore directly relates to
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the parameter estimation in logistic regression as introduced in Section 3.3.1:

min(C) = min

(
−

n∑
i=1

(
yilog(ŷi) + (1− yi)log(1− ŷi)

))

= min

(
−

n∑
i=1

log
(
(ŷi)

yi(1− ŷi)1−yi
))

= min (−(log − likelihood)) = max(log − likelihood). (5.24)

Kline and Berardi 2005 point to early results finding comparable estimation accuracy of

squared errors and cross entropy. The authors suggest that as a result many researches

do not report on the employed error function in ANNs and assume that they primarily use

squared errors. A broad availability of squared errors in commercial packages might further

strengthen this practice. However, cross entropy might result in more accurate estimations of

small probabilities and might be superior to squared errors in binary classifications (Bishop

1995, Kline and Berardi 2005).

We further investigate differences in the derivatives of the two error functions, suggesting

computational advantages of the cross entropy C. Consider therefore the derivatives of C

with respect to the weights between the last hidden layer and the output for l = 0, ..., p(2):

∂C

∂w
(2−O)
l

= −
n∑
i=1

∂
(
yiln(ŷi) + (1− yi)ln(1− ŷi)

)
∂ŷi

∂ŷi
∂ui

∂ui

∂w
(2−O)
l

= −
n∑
i=1

(
yi
ŷi
− 1− yi

1− ŷi

)
∂ŷi
∂ui

∂ui

∂w
(2−O)
l

= −
n∑
i=1

yi − ŷi
ŷi(1− ŷi)

∂ŷi
∂ui

∂ui

∂w
(2−O)
l

=

−
∑n

i=1
yi−ŷi
ŷi(1−ŷi) ŷi(1− ŷi)h

(2)
i,l l ≥ 1

−
∑n

i=1
yi−ŷi
ŷi(1−ŷi) ŷi(1− ŷi) l = 0.

=


∑n

i=1(ŷi − yi)h(2)
i,l l ≥ 1∑n

i=1(ŷi − yi) l = 0.
(5.25)

The difference between these derivatives and the respective ones for the sum squared error

function, given in Equation (5.18), is the missing term ŷi(1 − ŷi). Figure 35 shows both

derivatives with respect to the bias term, as this is the basis for all other derivatives. The same

holds for the partial derivatives with respect to the remaining weights. Neglecting the term

ŷi(1− ŷi) enables faster learning, as the term gets close to zero for the output ŷi approaching

its boundaries zero or one. In the contour plots in Figure 35 this disadvantage of the sum

squared error can be clearly seen. For the extreme combinations (ŷ, y) ∈ {(0, 1); (1, 0)} we

get a derivative of zero, compared to minus one and one for the cross entropy. In case the

randomly selected initial weights result in an output close to these extremes, an ANN based
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Figure 35 : Contour map of derivatives of sum squared errors on the left and cross entropy on the right.

on the sum squared error adjusts the weights only gradually at the beginning.

As for KNN, it is important to scale the data before an ANN is implemented, whereby we can

utilize the standardization given in Equations (5.5) and (5.6).

In a preliminary analysis we found the learning rate ranges 0.000025 − 0.0002 for cross en-

tropy and 0.000025 − 0.000925 for the sum squared error function and a threshold of µ = 1

reasonable for further considerations. We furthermore assume simpler ANNs to be sufficient

as we analyze only six risk factors as input neurons. We therefore consider models with one

and two hidden layers, whereby the first layer can include up to six neurons and the second

layer up to two neurons. Figure 36 shows resulting AUC values for all possible combinations.

For every training set of the leave-one-cohort-out cross validation we enabled another set of

random starting weights. Furthermore, we trained every combination five times in order to

visualize remaining variability resulting from the choice of starting weights. Noting the differ-

ent AUC scale for the three options of layer two, we identify the ANNs with only one hidden

layer to have the smallest range of AUCs. Comparing the error functions cross entropy and

sum squared error, the latter shows more variation and overall lower AUC values. However,

training of ANNs with cross entropy did often not converge within itmax = 100000 iteration

steps for the considered learning rates and a second hidden layer. For an easier comparison

we consider the mean values in Figure 37, whereby the mean is only shown if all ANNs con-

verged. We consistently obtain best results for ANNs with cross entropy as error function and

only one hidden layer containing one neuron for considered learning rates between 0.000125
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Figure 36 : AUC values of leave-one-cohort-out cross validation for ANNs with different learning rates α and number of neurons
in the first and second hidden layers. For every combination five repetitions with random starting weights for every training set in
the leave-one-cohort-out cross validation are shown. AUC values are missing in cases of no convergence for itmax = 100000

iterations and a lower threshold of mu = 1.

and 0.0002, whereby we choose the learning rate α = 0.0002 for further analysis.

Using the same random starting weights for all training sets in the leave-one-cohort-out cross

validation, we trained 20 repetition of this ANN combination and chose the starting weights

with the highest resulting AUC. Note that the AUCs thereby range between 76.939% and

76.941%, the difference of starting weights is therefore negligible for this combination.

Finally we trained an ANN on all cohorts combined with the tuning parameters and starting

values determined in the previous considerations. Figure 38 shows the final model with all

trained weights. We obtained convergence after 8961 steps.

5.3 Results

We compare the considered machine learning approaches, along with their previously dis-

cussed optimal tuning parameters, with each other and in addition with a standard logistic

regression as discussed in Chapter 3. Figure 39 shows evaluation curves comparing all

methods. KNN and bagged KNN perform almost identical across all validation metrics, there-

fore only one of their curves is visible. In terms of net benefit all methods perform as well as

or better than the strategies of referring all or no patients to biopsies for all considered thresh-
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Figure 37 : Mean AUC values across five repetitions with random starting weights of leave-one-cohort-out cross validation for
ANNs with different learning rates α and number of neurons in first and second hidden layer. AUC values are missing in case
of no convergence for itmax = 100000 iterations and a lower threshold of mu = 1 for one of the repetitions.

Figure 38 : Schematic representation of trained ANN with one neuron in one hidden layer, learning rate α = 0.0002, cross
entropy as error function, maximum number of iterations itmax = 100000 and lower threshold µ = 1.
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methods. The strategies of referring all men or none to biopsy are given in (a) for comparison. Curves for KNN not visible, as
they are almost identical with curves for bagged KNN.

olds between 5 and 25%. Logistic regression and ANN perform very similar and slightly

better than RF and the KNN approaches, CIs, however, are overlapping. Also for all test co-

horts considered individually in the supplementary Figure A.22, the regression and machine

learning methods perform as good as the reference strategies and show overlapping CIs.

We identify the RF model to have worst calibration and the best calibrated model is the logistic

regression, however, all CIs are overlapping. Whereas the ANN slightly overpredicts small

risks and underpredicts high risks, the KNN approaches overpredict higher risks. Also for the

single cohort analysis, shown in Figure A.23, logistic regression is always amongst the best

calibrated models, even though CIs are wider and overlapping.

In terms of discrimination, RF has highest sensitivity values and lowest specificity, followed

110



by the KNN approaches. ANN and logistic regression have lowest sensitivity, whereby the re-

gression shows slightly better sensitivity for threshold values about 20% and higher. However,

these two approaches have better specificity results than RF and KNN methods. Thereby, lo-

gistic regression shows higher specificity than ANN with non-overlapping CIs for thresholds

below 10%. Figures A.24 and A.25 for individual cohorts report similar results. Whereby the

difference in specificity of logistic regression and ANNs is present in most individual cohorts,

the CIs are not overlapping only for the large cohort Zurich.

Figure 40 shows the summary statistics AUC and HLS for all test cohorts individually. They
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Figure 40 : AUC and HLS values for each of the ten cohorts to compare machine learning methods. For the AUC values
95%-CIs are included.

confirm a similar performance of logistic regression and ANN, as well as of KNN and bagged

KNN. In all cohorts, except SanRaffaele, the logistic regression and ANN achieve highest

AUC values. The differences are, however, small and CIs are overlapping. In terms of the
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calibration summary HLS, no method outperforms the logistic regression and ANN for all test

cohorts and differences are small.

At last Figure 41 depicts predicted risks and the corresponding true biopsy result for every

patient. We observe that logistic regression and the ANN predict more extreme values than

the RF and KNN approaches. This becomes particularly evident in combinations of the binary

predictors with smaller amounts of patients. Consider, for instance, the combination of having

African ancestry, a family history, no prior negative biopsy and an abnormal DRE result, coded

as 1101. For this high-risk group the patient with highest observed log based 2 PSA value of

7.99 and an age of 67 has predicted values of 99.0%, 83.1%, 65.0%, 65.6% and 96.7% for

logistic regression, RF, KNN, bagged KNN and ANN, respectively. In contrast, the lowest risk

predictions are present for a patient with log based 2 PSA value of -0.62 and age 57. The

corresponding risks comprise 12.1%, 30.3%, 31.9%, 32.7% and 11.9%.

5.4 Discussion

We compared a standard logistic regression model with diverse machine learning methods

in the case of a small set of six predictors. As expected, we found merely small differences

between the approaches in this setting. These results align with a literature review of clinical

prediction models for binary outcomes by Christodoulou et al. 2019, finding no superior per-

formance of machine learning methods compared to logistic regression. The authors report

classification trees, RFs, ANNs and support vector machines as the most common machine

learning techniques with the number of included predictors ranging from 5 to 563 with a me-

dian of 19.

Also in the field of prostate cancer prediction several researchers compared logistic regres-

sion with machine learning methods, thereby resulting in diverse conclusions. Virtanen et al.

1999, Chun et al. 2007 and Takeuchi et al. 2018, for instance, found superior performance

of logistic regression compared to ANNs. They used data from 974, 3980 and 334 patients

and enabled 7, 5 and 22 variables, respectively. Analysis by Gülkesen et al. 2010 on 750

patients and 5 predictors similarly resulted in lower AUC values for decision trees compared

to logistic regression. Interestingly, Strobl, Vickers, et al. 2015 describe a worse performance

of RFs for a data set similar to the one used in the analysis of this chapter, which differs

from our observation of similar discrimination and calibration of both methods. We might at-

tribute this discrepancy to the fact that Strobl, Vickers, et al. 2015 used classification instead

of regression RFs, which have shown low AUC values in Section 5.2.1 as well.

Alternatively, in Finne et al. 2000 an ANN with two neurons in one hidden layer, which was

trained on six predictors of 656 observations, showed better accuracy at high sensitivity levels

than a logistic regression. Similarly Boegemann et al. 2016 report ANNs containing one hid-

den layer with two and three neurons to slightly outperform logistic regression with respect to

AUC and net benefit. Training data for these models were seven predictors of 769 patients.
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The two studies support the decision to use merely one hidden layer for a small set of vari-

ables as analyzed in this chapter.

At last, Garzotto et al. 2005 and Barnholtz-Sloan et al. 2011 discuss comparable results for

classification and regression tree analysis compared to logistic regression, using 1433 and

2025 patients, respectively. Whereas the former authors analyzed seven variables, the latter

ones enabled five variables in combination with several genotype predictors. Similar to these

results, also the previous comparisons show mainly small differences between the methods.

Furthermore most of them enabled small sets of predictors, ranging from five to seven, as

well. These studies, as well as our results, therefore confirmed our initial expectations of

merely small differences between the considered approaches in the setting of only few pres-

elected variables for the prediction of prostate cancer biopsy results.

However, the analysis performed in this chapter illustrated the underlying mechanism and

revealed advantages as well as disadvantages to be considered in future work. We in par-

ticular assess their implementations with respect to additional risk factors, as these might

be needed to further enhance prostate cancer risk prediction. Additional predictors, as fur-

ther described in Chapter 6, are, for instance, MRI markers. Since these markers were not

included in the primary PBCG protocol, only a few cohorts collected this information and anal-

ysis is delayed to future work when data collection has ended. ANNs and RFs are already

broadly implemented for prostate cancer detection based on MRI and might also constitute

a suitable framework to combine MRI and standard risk factors (Lay et al. 2017, Qian et al.

2016, Zhu et al. 2017, Rampun et al. 2016, Song et al. 2018, Z. Wang et al. 2018).

Whereas preselection of risk factors might not be required for RFs and ANNs, we have to

correctly specify all relevant variables, interactions and higher order terms to use a logistic

regression. Therefore preprocessing the data becomes essential as the number of possible

covariates increases. In this thesis we used stepwise model selection algorithms as intro-

duced in Section 3.2 and more sophisticated methods might be necessary for data sets with

many possible predictors.

Variables that are not relevant for the outcome can also undesirably influence KNN meth-

ods. Predictions of KNNs rely on observations most similar to the patient at hand. Distance

measures assess the similarity of observations and usually do not account for the variables’

relation to the outcome. As previously discussed, weights might therefore be necessary

within the distance measure to handle irrelevant or noisy predictors. Otherwise, this noise

may cause observations to not be included in the neighborhood, even though they are similar

with respect to important features, but diverse in terms of additional covariates. However, it is

not straightforward to find optimal weights and we therefore discard this approach for further

considerations.

A disadvantage of ANNs is the presence of several tuning parameters. For instance, the
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use of a simple neural net requires optimal values for the number of hidden layers with their

respective number of neurons, as well as for the learning rate, error function, number of max-

imal iterations and lower threshold for the partial derivatives. Further variations include the

choice of an activation function and the general type of the ANN. This vast amount of options

exacerbate finding the best possible model and trying several combinations is furthermore

computational expensive. Even for the considered application with a small set of predictors

and a predefined selection of the general structure of the ANN, we found the optimal choice

of tuning parameters to be time consuming and not straightforward. RFs require specification

of less tuning parameters and logistic regression do not have tuning parameters at all.

Of the considered approaches we identified ANNs and RFs as the most promising methods

for future work, whereby ANNs showed better calibration. We in particular advocate their use

in cases where the set of variables becomes large. Whereas RFs are easier to implement,

ANNs enable an individual adjustment to diverse data due to their flexible structure. However,

we emphasize the resulting specification challenges for ANNs and encourage future work to

assess the characteristics of activation and error functions with respect to the data at hand.
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6 Conclusions

Through visualization, statistical modeling and cross validation, this thesis addressed the

three aims stated in Chapter 1, thus providing a novel comprehensive framework for develop-

ing global risk tools incorporating data from multiple heterogeneous centers.

6.1 Aim 1: Will incorporation of cohort heterogeneity improve
validation of a global risk prediction model?

Large consortiums that aggregate data for unified purposes, such as for the development of a

global risk tool as performed here, presuppose that such data are homogeneous in terms of

distribution of risk factors, outcomes, and their relations. In the spirit of interdisciplinary data

science, we therefore developed novel visualization graphs for emphasizing heterogeneity in

all aspects of data across the institutions in Chapter 1. This led to new revelations on specific

aberrations from institutions and fruitful dialogue among all clinicians. For example, Figure 7

revealed that SanJuanVA had an unusually high abnormal DRE rate (51.3%), but with only

28.7% of the abnormal DREs positive for cancer. This brought to light that SanJuanVA was

over-diagnosing lumps in the prostate, and should consider retraining urologists. Interestingly,

only by visualization and comparison to other institutions was this problem revealed.

Despite heterogeneity revealed by visualization, comparisons of five alternative methods

competing adjustment for versus ignoring center heterogeneity using a novel permutation

validation strategy in Chapter 3 found no differences in prediction performance. Reasons for

this could be the binary nature of the outcomes. When modeling discrete outcomes compared

to continuous ones, intuition would state that there is less power to detect clusters, because in

the discrete case the clusters affect only the latent normal random effects distribution, which

has only an indirect link to the binary outcome.

These results therefore support the common practice of simply pooling data across diverse

cohorts for valid risk prediction models. Additionally, meta-analysis of IPD performed as well

as other approaches, suggesting that centralized data storage, with all its compliance and

ethics regulation concerns, is not necessary. This enables the possibility to reduce organiza-

tional workload. The answer to Aim 1 for the PBCG is no.

6.2 Aim 2: Should existing risk models be updated as soon as
contemporary data are available?

Chapter 4 compared prediction models based on contemporary data from 2006 to 2017 of the

PBCG with the risk calculator of the PCPT based on biopsies from the 1990s, using internal
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cross validation within the North American cohorts and external validation on the remaining

European sites of the PBCG. This analysis showed a small but significant improvement in

AUC for the contemporary prediction tool, however, in terms of calibration and clinical net

benefit, the PBCG model clearly outperformed the PCPTRC.

The enhancement in performance occurred due to differences in patient population, as de-

scribed in Section 1.2. Cohort designs and inclusion criteria led to a predominantly healthy

population included in the PCPT, as this study required a PSA≤4 ng/ml and a normal DRE

for patients to enter the study. In contrast, in the PBCG, clinical referral preceded prostate

biopsy. In addition, changes in clinical practice necessitated contemporary data and resulting

model updates. These changes included an increase in number of biopsy cores and a shift

in prostate cancer grading towards high-grade assessments.

We therefore advocate the use of contemporary data if available, as existing risk prediction

tools might not be appropriate for current clinical practice. It is in particular desirable to

continually update risk models with new data as described by Strobl, Vickers, et al. 2015 and

Strobl, I. M. Thompson, et al. 2015. The answer to Aim 2 for the PBCG is yes.

6.3 Aim 3: Can more flexible machine learning methods improve
traditional regression approaches for small sets of
established risk factors?

Comparing more flexible machine learning methods with a standard logistic regression in

Chapter 5 showed only small differences in the PBCG setting of only six covariates. However,

we identified ANNs and RFs as suitable approaches to handle a larger number of predictors

that may arise in future work of the PBCG. Whereas RFs are easier to implement, ANNs tend

to show better calibration. The answer to Aim 3 for the current PBCG is no, but for future

analyses of more variables, potentially.

6.4 Future work incorporating new biomarkers into established
risk tools

In this thesis we only considered the variables PSA, family history, prior negative biopsy,

race, age and DRE as these are the established and routinely reported risk factors. However,

Strobl, Vickers, et al. 2015 note that new markers might be necessary to further improve dis-

crimination of risk predictions as models based on the currently employed standard covariates

might have reached their limit. The PBCG collects several additional variables, listed in Fig-

ure 42. Previous studies on prostate cancer suggest that inclusion of some of these variables

might improve model performance (Grill, Fallah, Leach, I. M. Thompson, Freedland, et al.

2015, Kranse et al. 2008, Kuo et al. 2013, Lamy et al. 2018, Beebe-Dimmer et al. 2006, Nun-
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zio et al. 2018). However, information on more rarely collected variables suffers from higher

proportions of missing values. We therefore delayed analysis of these special variables until

data acquisition has ended and the overall number of observation is maximized.

A further concern for future work is that external validation becomes problematic. Most other

studies might not collect the considered new markers and hence not be able to perform a ret-

rospective collection. Shariat et al. 2009 discuss that despite adopting smart medical records,

the use of some variables remain impractical. Future work should take these considerations

into account in case of adjusting existing risk tools to include more variables.

Many of the additional variables of the PBCG comprise detailed information on cancer history

of the patient’s family (Figure 42). Whereas all cohorts except UCSF provide information

on whether or not a first degree family member experienced prostate cancer, only the four

cohorts, DurhamVA, SanJuanVA, UTHealth and Zurich report more details. Most questions

concerning detailed family history are only relevant for patients with a present prostate cancer

history within their family, such as the age of diagnosis of the affected members. These data

are missing by design for patients with no family history and thus do not count towards the

missing data issue. The graph in Figure 42 does not reflect this distinction. However, other

variables recording presence of prostate cancer in second degree family members as well as

history of breast cancer suffer from high missingness among the four sites.

Similarly, most of the other additional variables provide more detailed information about the

risk factors already included in the model. A date and resulting days before biopsy comple-

ment PSA and DRE values. Some cohorts also provide information on whether the patient

used 5-alphaspacereductase inhibitors at PSA blood draw and information about prior PSA

measurements. Detailed race and Hispanic or Latino ethnicity supplement the binary variable

race of being African American or not. The number of prior negative biopsies specifies the

respective binary assessment of having at least one. An additional marker is prostate volume,

more accurately measured by transrectal ultrasound instead of DRE.

Finally, cohorts that performed MRI-guided biopsies additionally collected MRI markers. These

will be available at the end of data acquisition and are therefore not part of Figure 42.

For parametric methods, such as logistic regression, it is important to correctly specify all risk

predictors. This becomes particularly complicated for increasing sets of possible covariates

with unknown correlation structures. Suitable algorithms to select variables are necessary.

In this thesis we used a stepwise selection algorithm based on the BIC to determine rele-

vant terms. Alternatives are, for instance, the least absolute shrinkage and selection operator

(LASSO) introduced by Tibshirani 1996. The process selects a subset of the provided vari-

ables by shrinking the regression coefficients. The LASSO minimizes the basic regression

least squares as described in Chapters 3 and 4, while simultaneously constraining the sum

of absolute regression coefficients. Least angle regression is another approach developed by
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Efron et al. 2004 to select variables, which is similar but less greedy than traditional forward

selection methods. These methods were not used in this thesis due to the small number of

six covariates, but will represent suitable alternatives for analysis of the expanded variable

set in Figure 42.

Alternatively, nonparametric methods might be able to meet the challenge of many poten-

tial predictors with unknown correlation structure. Chapter 5 introduced some common ap-

proaches and identified ANNs and RFs to be promising as they do not rely on extensive

preprocessing of the data. However, the implementation, in particular of ANNs, is more com-

plex than standard logistic regression.

6.5 Dealing with missing values

Even for the small number of variables used in the models of Chapter 3 - 5, some observations

were missing. We imputed these with their corresponding median. With increasing variable

numbers the amount of missing values also rises (Figure 42). We in particular can not assume

the pattern of missing values to be random and dependencies to other variables are possible.

Furthermore, heterogeneities across cohorts might become problematic, as some variables

are, for instance, only available for specific sites. Overall, more sophisticated methods to

deal with missing data might improve model performance and their advantage might become

even more evident for increasing numbers of possible risk factors and increased prevalence

of structured missingness.

Schafer and Graham 2002 review general methods to deal with missing data and recom-

mend use of maximum likelihood and Bayesian multiple imputation approaches, but also

point to methods based on weighting such as weighted regression by Robins et al. 1994.

Maximum likelihood estimates might utilize the iterative algorithm described by Dempster et

al. 1977. This algorithm consists of an expectation, followed by a maximization step, therefore

called the EM algorithm. Multiple imputation, proposed by Rubin 1987, first creates several

complete data sets by estimating plausible values for the missing data. Estimates from indi-

vidual but identical analyses on these sets are finally combined. A frequently implemented

extension is the method of multivariate imputation by chained equation (Azur et al. 2011, van

Buuren and Groothuis-Oudshoorn 2011, White et al. 2011). It relies on the assumption that

missing values of one patient can be estimated by patients with similar characteristics for the

remaining variables. This approach specifies separate imputation models for each variable

with missing values based on the information of all other variables. This enables an iterative

imputation of the variables to get multiple complete data sets, which are then combined into

an overall estimate.

However, for the PBCG it remains unclear how to incorporate the clustered nature of the data,

as it is possible to either use all patients or only patients from the same cohort for imputation.

Restricting the data to a single cohort might be useful in cases where a specific variable is
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diverse across cohorts. For the covariate African ancestry, for instance, it is advisable to

separately impute missing values for patients of European cohorts, as these have an almost

exclusively Caucasian patient mix, compared to DurhamVA with over 60% of patients with

African ancestry.

At the same time it is possible that a risk factor is missing for all patients from one cohort, such

as family history for UCSF, so that imputations have to rely on patients from other cohorts.

This is a common scenario in meta-analysis and Koopman et al. 2008 discourage imputation

over trials while ignoring heterogeneity. Resche-Rigon et al. 2013 and Burgess et al. 2013 dis-

cuss combinations of multiple imputations and IPD meta-analyses, which address the prob-

lem of systematic missing values and allows for heterogeneity between studies. Jolani et al.

2015 introduce an extension to this approach, including imputation of non-continuous predic-

tors. Instead of imputation, Jackson, White, Kostis, et al. 2009 propose to model estimates of

regression coefficients from studies including all covariates and studies with less predictors

in a bivariate meta-analysis. Kovačić and Varnai 2016 extend this approach with a graphical

model to enable estimations in complex missing structures.

Furthermore, Kondofersky et al. 2016 suggest an ensemble of models to handle the situation

of missing values for a whole cohort. This approach trains different models on all possible

subsets of cohorts and afterwards averages the resulting predictions. This has the advantage

that covariates, which are not reported for a specific cohort, might be excluded from the

models which contain this cohort in the training set, but can be included in the remaining

ones.

In case only some cohorts report a specific variable, for instance information about family

history of breast cancer, alternative approaches might be appropriate. This missingness

structure resembles the situation of an existing model built on a large data set, which gets

updated by a new, potentially small, study including an additional predictor. Grill, Ankerst,

et al. 2017 and Cheng, Taylor, T. Gu, et al. 2019 assess diverse methods for this purpose

using both frequentist and bayesian approaches.

6.6 Model on demand

The described techniques for missing data use imputation, ensemble or updating methods to

use as much data as possible to get an overall model including all relevant risk predictors.

Their focus is thereby on missing variables of the training set, however, also new observations

might not have collected all features. In general, current risk tools apply to single endpoints

and specified sets of risk factors, and do not allow missing covariates or adjust to specific

interests of the user.

In light of the growing interest in shared decision making, requiring precise predictions for

diverse settings, it might therefore become an appealing goal for future work in prostate can-
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cer biopsy prediction to implement a model on demand. This model should be able to exactly

scale to the particular needs and available data of individual patients. It should be possible for

the user of a risk prediction tool to choose a specific outcome among a range of possibilities.

In particular diverse classifications of high-grade prostate cancer exist, for instance based

on the overall Gleason score, the combination of primary and secondary Gleason grade and

number or percentage of positive cores. As shown in Figure 42, the PBCG collects several

types of information on the biopsy and diverse responses might be modeled. Furthermore,

selection of predictors should be individualized, based on the available data of the patient.

We might achieve this universal approach by combining data sets of all available cohorts of

the PBCG and ideally also further institutions, even though these may report different out-

comes as well as risk factors. We could then build individual models for every requested use

of the prediction tool, enabling all data available for the required constellation and ignoring

possible heterogeneity among institutions. As we have shown in Chapter 3, simple data pool-

ing is suitable in this context. The PCPTRC, and the analogously built risk calculator based

on the PBCG data in Chapter 4 have already implemented this kind of model on demand,

as these risk tools offer separate models for diverse missingness structures. These indepen-

dent logistic regressions, built on different sets of included covariates, were straightforward to

implement and showed good performance.

A concern is, however, that for unique constellations of outcome and covariates only small

sets of training data might be available. Resulting predictions could be inaccurate and mis-

leading. In these cases it becomes particularly important to report the sample size and to

state a clear warning of the potential unreliability of the prediction tool.

This dynamic approach has the further advantage of a continuous updating process. It is

possible to implement an upper limit for the time span of included data such that every indi-

vidual model includes only the most recent data. This is appealing as Chapter 4 revealed the

necessity of contemporary data, and is destined to become state-of-the-art, as access to and

quality of electronic health records improves.
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Table A.2 : Description of North American cohorts in the PBCG. *for positive diagnosis only
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PCPTRC PBCG
Risk factor Odds

Ratio
95%-CI P-value Odds

Ratio
95%-CI P-value

High- versus low-grade cancer
Prior neg. biopsy 1.27 0.85-1.90 0.2 0.65 0.50-0.84 0.001
PSA (log base 2) 1.57 1.38-1.77 <0.0001 1.94 1.75-2.15 <0.0001
Family history 0.95 0.67-1.36 0.8 1.32 1.06-1.65 0.01
DRE 1.55 1.09-2.21 0.01 2.25 1.84-2.75 <0.0001
Age (in 10 years) 1.36 1.07-1.74 0.01 1.46 1.29-1.65 <0.0001
African ancestry 2.51 1.39-4.52 0.002 0.84 0.66-1.07 0.2

High-grade versus no cancer
Prior neg. biopsy 0.81 0.57-1.15 0.2 0.28 0.23-0.34 <0.0001
PSA (log base 2) 2.02 1.80-2.27 <0.0001 2.23 2.04-2.43 <0.0001
Family history 1.25 0.91-1.73 0.2 1.84 1.52-2.22 <0.0001
DRE 1.49 1.09-2.05 0.01 2.36 2.00-2.77 <0.0001
Age (in 10 years) 1.61 1.29-2.01 <0.0001 1.74 1.57-1.94 <0.0001
African ancestry 2.83 1.71-4.68 <0.0001 1.85 1.48-2.32 <0.0001

Low-grade versus no cancer
Prior neg. biopsy 0.63 0.51-0.79 <0.0001 0.43 0.34-0.54 <0.0001
PSA (log base 2) 1.29 1.22-1.37 <0.0001 1.15 1.05-1.26 0.004
Family history 1.31 1.10-1.57 0.003 1.39 1.13-1.72 0.002
DRE 0.96 0.79-1.17 0.7 1.05 0.86-1.27 0.6
Age (in 10 years) 1.18 1.04-1.34 0.01 1.19 1.07-1.34 0.002
African ancestry 1.13 0.77-1.67 0.5 2.20 1.73-2.79 <0.0001

Table A.3 : Comparison between odds ratios of PCPTRC and PBCG for multinomial logistic regression models with no missing
data. PBCG model is built on all eight North American cohorts pooled together. Odds ratios, CIs and p-values are given for the
reference level reported to the left versus the endpoint to the right.

AUC (CI) PCPTRC AUC (CI) PBCG P-value
North American cohorts (n=5,992) 69.9% (68.6-71.2%) 71.8% (70.5-73.1%) <0.0001
European cohorts (n=10,377) 66.4% (65.4-67.4%) 68.8% (67.8-69.8%) <0.0001
P-value <0.0001 0.0003

Table A.4 : AUC values for overall versus no cancer with corresponding 95% Delong CI for the PCPTRC and PBCG models.
P-values by the Delong test for two correlated ROC-curves are used to compare the PCPTRC and PBCG models (bottom row),
and for two uncorrelated ROC-curves to compare the North American and European cohorts (last column). Risk predictions for
the North American cohorts by the PBCG model are calculated by leave-one-cohort-out cross validation.
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A.2 Selected R code

The R calculations are based on R version R-3.4.2.

R-code for multinomial logistic regression. The variables PSA, Age and Race are
mandatory; Prior biopsy, DRE and Family history are allowed missing

##### exp lana t ion o f i npu t v a r i a b l e s

# psa : en ter pros ta te − s p e c i f i c ant igen i n ng / ml

# age : en ter age i n years

# race : en ter 1 f o r A f r i can Ancestry , 0 otherwise

# p r i o r b i o p s y : en ter 1 i f there has been one or more p r i o r b iops ies

# ( a l l negat ive f o r p ros ta te cancer ) , 0 otherwise

# dre : en ter 1 i f d i g i t a l r e c t a l examinat ion i s abnormal ( susp ic ious

# f o r p ros ta te cancer ) , 0 otherwise

# famh is to ry : en ter 1 i f there i s a f i r s t −degree f a m i l y h i s t o r y o f

# p ros ta te cancer , 0 otherwise

# psa , age and race are mandatory , p r i o rb iopsy , dre and famh is to ry

# are al lowed missing

r i s k = function ( psa , age , race , p r i o rb iopsy , dre , famh is to ry ) {

##### create persons data set

data=c (1 , log ( psa , 2 ) , age , race )

# i s p r i o r b i o p s y known?

a = as . numeric ( is . na ( p r i o r b i o p s y )==FALSE)

i f ( a==1){ data=c ( data , p r i o r b i o p s y ) }

# i s dre known?

b = as . numeric ( is . na ( dre )==FALSE)

i f ( b==1){ data=c ( data , dre ) }

# i s famh is to ry known?

c = as . numeric ( is . na ( famh is to ry )==FALSE)
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i f ( c==1){ data=c ( data , f amh is to ry ) }

##### choose c o r r e c t model

# psa , age , race , p r i o rb iopsy , dre , famh is to ry

i f ( a==1 & b==1 & c==1){

no . low=c( −2.44052108 , 0.13617244 , 0.01780617 , 0.78721039 ,

−0.83613721 , 0.04612721 , 0.33233636)

no . high=c( −6.36851856 , 0.79996510 , 0.05566536 , 0.61596975 ,

−1.27437249 , 0.85780143 , 0.61003848)

}

# psa , age , race , p r i o rb iopsy , dre

i f ( a==1 & b==1 & c==0){

no . low=c( −2.29687989 , 0.13785591 , 0.01758914 , 0.63876791 ,

−0.86200471 , 0.07193350)

no . high=c( −6.06621401 , 0.76053930 , 0.05509847 , 0.51701373 ,

−1.38390751 , 0.83442202)

}

# psa , age , race , p r i o rb iopsy , famh is to ry

i f ( a==1 & b==0 & c==1){

no . low=c( −2.64840984 , 0.13125283 , 0.02044166 , 0.81792881 ,

−0.98610357 , 0.31447017)

no . high=c( −6.70538152 , 0.77635003 , 0.06542705 , 0.52401464 ,

−1.43681965 , 0.55443478)

}

# psa , age , race , dre , famh is to ry

i f ( a==0 & b==1 & c==1){

no . low=c( −2.16147411 , 0.07409519 , 0.01322988 , 0.76131045 ,

0.05397516 , 0.29246219)

no . high=c( −5.99897055 , 0.70727793 , 0.04992968 , 0.56485952 ,

0.89154384 , 0.56910873)

}

# psa , age , race , p r i o r b i o p s y

i f ( a==1 & b==0 & c==0){

no . low=c( −2.49050385 , 0.12961272 , 0.02020429 , 0.67674970 ,

−0.97275826)

no . high=c( −6.41089002 , 0.74110558 , 0.06476911 , 0.42814591 ,

−1.50274350)

}
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# psa , age , race , dre

i f ( a==0 & b==1 & c==0){

no . low=c( −2.01851079 , 0.06745424 , 0.01263369 , 0.63938472 ,

0.08562844)

no . high=c( −5.68203352 , 0.65059244 , 0.04883786 , 0.49214793 ,

0.87421554)

}

# psa , age , race , famh is to ry

i f ( a==0 & b==0 & c==1){

no . low=c( −2.39161580 , 0.06129651 , 0.01600515 , 0.81132928 ,

0.27501639)

no . high=c( −6.42320154 , 0.67779036 , 0.06092178 , 0.50429130 ,

0.50805684)

}

# psa , age , race

i f ( a==0 & b==0 & c==0){

no . low=c( −2.23794923 , 0.05343098 , 0.01553627 , 0.69593716)

no . high=c( −6.13292904 , 0.62979529 , 0.06002002 , 0.43816016)

}

##### p r e d i c t i n g p r o b a b i l i t i e s

S1=no . low%*%data

S2=no . high%*%data

r i s k . no=1 / (1+exp (S1)+exp (S2 ) ) *100

r i s k . low=exp (S1) / (1+exp (S1)+exp (S2 ) ) *100

r i s k . high=100− r i s k . no− r i s k . low

##### outcome

r i s k . outcome=cbind ( r i s k . no , r i s k . low , r i s k . high )

dimnames ( r i s k . outcome )= l i s t (NULL, c ( ’ Chance of No Cancer ’ ,

’ Risk o f Low Grade Cancer ’ , ’ Risk o f High Grade Cancer ’ ) )

return ( r i s k . outcome )

}
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A.3 Additional Graphics

Figure A.1 : (A) absolute and (B) relative to 1986 prostate cancer incidences in the U.S. between 1986 and 2005, stratified by
age group (Welch and Albertsen 2009). Data is based on SEER program.
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Figure A.2 : Percentage of overall cancer by risk factor (x) and number of biopsies (y); 1.ClevelandClinic, 2.DurhamVA, 3.May-
oClinic, 4.MSKCC, 5.SanJuanVA, 6.SanRaffaele, 7.Sunnybrook, 8.UCSF, 9.UTHealth, 10.Zurich. NA denotes missing values.
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Figure A.4 : (a) Net benefit and (b) calibration curves for high-grade cancer of leave-one-cohort-out cross validation comparing
regression methods. They are given for each cohort separately and the strategies of referring all men or none to biopsy are
given for comparison.
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Figure A.5 : (a) Sensitivity and (b) specificity curves for high-grade cancer of leave-one-cohort-out cross validation comparing
regression methods. They are given for each cohort separately.
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Figure A.6 : Net benefit curves for models built on individual cohorts. Leave-one-cohort-out cross validation results for standard
multiple logistic regression and the strategies of referring all men or none to biopsy are given for comparison.

158



Zurich

Sunnybrook UCSF UTHealth

MSKCC SanJuanVA SanRaffaele

ClevelandClinic DurhamVA MayoClinic

5 10 15 20 25

5 10 15 20 25 5 10 15 20 25

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

Predicted Risk in %

O
bs

er
ve

d 
R

is
k 

in
 %

Cohort on which 
model is built on

all cohorts pooled

ClevelandClinic

DurhamVA

MayoClinic

MSKCC

SanJuanVA

SanRaffaele

Sunnybrook

UCSF

UTHealth

Zurich

Figure A.7 : Calibration curves for models built on individual cohorts. Leave-one-cohort-out cross validation results for standard
multiple logistic regression are given for comparison in black.
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Figure A.8 : Sensitivity curves for models built on individual cohorts. Leave-one-cohort-out cross validation results for standard
multiple logistic regression are given for comparison in black.
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Figure A.9 : Specificity curves for models built on individual cohorts. Leave-one-cohort-out cross validation results for standard
multiple logistic regression are given for comparison in black.
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Figure A.10 : Net benefit curves for high-grade cancer comparing PBCG and PCPT models. They are given for (a) each North
American and (b) European cohort separately. Strategies of referring all men or none to biopsy are provided for comparison
and pointwise 95%-CIs are shown with shading.
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Figure A.11 : Calibration curves for high-grade cancer comparing PBCG and PCPT models. They are given for (a) each
North American and (b) European cohort separately. Pointwise 95%-CIs are shown with shading and black lines show where
predicted risks equal observed risks.
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Figure A.12 : Sensitivity curves for high-grade cancer comparing PBCG and PCPT models. They are given for (a) each North
American and (b) European cohort separately and pointwise 95%-CIs are shown with shading.
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Figure A.13 : Specificity curves for high-grade cancer comparing PBCG and PCPT models. They are given for (a) each North
American and (b) European cohort separately and pointwise 95%-CIs are shown with shading.
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Figure A.14 : AUC and HLS values for overall cancer of PBCG and PCPT by site. (a) Results of the internal cross validation
of the North American cohorts, (b) external validation on the European sites. The HLS value for the PCPTRC applied to
the Hamburg cohort is neglected as it exceeds 2,000. For AUC higher values are better, while for HLS lower values are
preferred. Sample sizes are given by 299 for ClevelandClinic, 669 for DurhamVA, 323 for MayoClinic, 1,010 for MSKCC, 550
for SanJuanVA, 1,721 for Sunnybrook, 521 for UCSF, 899 for UTHealth, 7,877 for Hamburg, 637 for SanRaffaele and 1,863 for
Zurich.
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Figure A.15 : (a) Net benefit, (b) calibration, (c) sensitivity, and (d) specificity curves for overall cancer comparing the PBCG
and PCPT models. Results of the internal cross validation of the North American cohorts (left) and external validation with the
European sites (right). Strategies of referring all men or none to biopsy are provided in (a) for comparison, pointwise 95%-CIs
are shown with shading and black lines in (b) show where predicted risks equal observed risks.
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Figure A.16 : Net benefit curves for overall cancer comparing PBCG and PCPT models. They are given for (a) each North
American and (b) European cohort separately. Strategies of referring all men or none to biopsy are provided for comparison
and pointwise 95%-CIs are shown with shading.
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Figure A.17 : Calibration curves for overall cancer comparing PBCG and PCPT models. They are given for (a) each North
American and (b) European cohort separately. Pointwise 95%-CIs are shown with shading and black lines show where predicted
risks equal observed risks.
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Figure A.18 : Sensitivity curves for overall cancer comparing PBCG and PCPT models. They are given for (a) each North
American and (b) European cohort separately and pointwise 95%-CIs are shown with shading.
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Figure A.19 : Specificity curves for overall cancer comparing PBCG and PCPT models. They are given for (a) each North
American and (b) European cohort separately and pointwise 95%-CIs are shown with shading.
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Figure A.20 : Smallest tree in final RF model with resulting percentages of high-grade cancer in the terminal nodes.

172



●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

lp
sa

2<
4.

4

lp
sa

2<
2.

4

lp
sa

2<
6

P
rio

r_
bi

op
sy

P
rio

r_
bi

op
sy

P
rio

r_
bi

op
sy

P
rio

r_
bi

op
sy

lp
sa

2<
1.

9

A
ge

<
74

.7

D
R

E

A
ge

<
66

D
R

E
D

R
E

A
ge

<
61

A
ge

<
63

.6

A
ge

<
71

.2

lp
sa

2<
3

A
ge

<
68

.6

lp
sa

2<
3.

3

A
ge

<
78

.2

Fa
m

ily
_h

is
to

ry

A
ge

<
65

D
R

E

A
ge

<
78

.2

A
ge

<
53

lp
sa

2<
3

A
ge

<
76

.6

Fa
m

ily
_h

is
to

ry A
ge

<
84

.5
D

R
E Fa

m
ily

_h
is

to
ry

A
ge

<
73

.3

lp
sa

2<
0.

7

A
ge

<
64

A
ge

<
78

.5

A
ge

<
54

.7

A
ge

<
63

.7

lp
sa

2<
2

A
ge

<
69

A
ge

<
59

.9

lp
sa

2<
3.

4

R
ac

e
lp

sa
2<

2.
7 lp

sa
2<

3.
7

Fa
m

ily
_h

is
to

ry

R
ac

e

Fa
m

ily
_h

is
to

ry

R
ac

eA
ge

<
54

.8

lp
sa

2<
2.

1

lp
sa

2<
1

D
R

E

A
ge

<
55

.5

Fa
m

ily
_h

is
to

ry

Fa
m

ily
_h

is
to

ry

A
ge

<
60

lp
sa

2<
3.

3

A
ge

<
80

.9
A

ge
<

63
Fa

m
ily

_h
is

to
ry

A
ge

<
73

lp
sa

2<
0.

8

R
ac

e

lp
sa

2<
2.

1
R

ac
e

lp
sa

2<
2

Fa
m

ily
_h

is
to

ry

D
R

E

R
ac

elp
sa

2<
2.

4lp
sa

2<
2.

4

lp
sa

2<
3

lp
sa

2<
3.

5

lp
sa

2<
2.

4

R
ac

e

lp
sa

2<
1.

3

A
ge

<
76

.2
lp

sa
2<

1.
9

R
ac

e

R
ac

e

Fa
m

ily
_h

is
to

ry

lp
sa

2<
3

lp
sa

2<
2.

5

R
ac

e

Fa
m

ily
_h

is
to

rylp
sa

2<
4.

2

A
ge

<
50

.5

A
ge

<
71

.5

A
ge

<
53

.6

A
ge

<
77

.9

A
ge

<
66

R
ac

e

A
ge

<
71

lp
sa

2<
3.

1

lp
sa

2<
4.

1

A
ge

<
60

.8

lp
sa

2<
4.

3

D
R

E
R

ac
e

lp
sa

2<
3.

5

lp
sa

2<
2.

9

A
ge

<
70

.9
A

ge
<

72
A

ge
<

64

D
R

E

A
ge

<
66

.1

A
ge

<
67

45
.5

70
57

.1
67

.891
.3

95
.798

.3
17

.1
61

.5
5.

9
28

.3
73

.714
.5

5.
6

79
.5

78
.5

88
.9

12
.3

31
.8

33
0

17
.643

.1
44

.4
10

0
61

.4
46

.7
21

.1
9

28
.4

8.
3

44
.2

5.
61

00
7.

3
7.

910
.5

48
.2

41
.91

00
0

72
.34

5
11

.6
0

3.
31

.9
0

87
.5

0
4.

812
.8

19
.112

.2
48

.4
33

.3
4.

7
31

.836
.1

0
10

0
40

18
.4

12
.5

15
.2

0
72

.724
.2

18
.2

0
12

.712
.5

10
0

48
.7

18
.638

.5
44

.3
23

.1
88

.9
26

.5
7.

62
.8

10
0

0
4.

2
21

30
.3

29
.4

50
.833

.2
84

.6
39

.257
.1

10
0

41
.3

20
84

.6
25

.5
14

.928
.8

62
.534

.8
28

.353
.7

5.
1

41
.7

01
6.

2

0
25

50
75

10
0

P
er

ce
nt

ag
e 

of
 h

ig
h−

gr
ad

e 
ca

nc
er

Figure A.21 : Largest tree in final RF model with resulting percentages of high-grade cancer in the terminal nodes.
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Figure A.22 : Net benefit curves for high-grade cancer of leave-one-cohort-out cross validation comparing comparing machine
learning methods. They are given for each cohort separately and the strategies of referring all men or none to biopsy are given
for comparison.
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Figure A.23 : Calibration curves for high-grade cancer of leave-one-cohort-out cross validation comparing comparing machine
learning methods. They are given for each cohort separately.
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Figure A.24 : Sensitivity curves for high-grade cancer of leave-one-cohort-out cross validation comparing comparing machine
learning methods. They are given for each cohort separately.
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Figure A.25 : Specificity curves for high-grade cancer of leave-one-cohort-out cross validation comparing comparing machine
learning methods. They are given for each cohort separately.
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