
Technische Universität München
Lehrstuhl für Automatisierung und Informationssysteme

Diagnosis and Handling of Inconsistencies in
Heterogeneous Models of Automated

Production Systems

Dipl.-Ing. (Univ.) Stefan Feldmann

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Markus Zimmermann
Prüfende der Dissertation: 1. Prof. Dr.-Ing. Birgit Vogel-Heuser

2. Prof. Dr. Helmut Krcmar
3. Prof. Dr.techn. Gertrude Kappel

Die Dissertation wurde am 13.06.2019 bei der Technische Universität München eingereicht
und durch die Fakultät für Maschinenwesen am 05.09.2019 angenommen.

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar.

Diagnosis and Handling of Inconsistencies in Heterogeneous Models of Automated Production Systems

Autor:
Stefan Feldmann

ISBN 13: 978-3-96548-053-7 (Print)
ISBN 13: 978-3-96548-054-4 (E-Book)

1. Auflage 2019

Copyright
© sierke VERLAG
Friedländer Weg 54
37085 Göttingen
Tel.: +49 (0)551 5036647

Coverdesign: sierke MEDIA

Alle Rechte vorbehalten. Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt.
Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung
des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen,
Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Acknowledgements

Writing and finalizing a dissertation would not have been possible without the tremendous support
of great people.
First of all, I would like to thank Professor Birgit Vogel-Heuser for her support, guidance and

understanding during the last years. I would also like to thank the members of my doctoral commit-
tee, Professor Gertrude Kappel and Professor Helmut Krcmar, for investing the effort for finalizing
this dissertation. In addition, I would like to thank the Deutsche Forschungsgemeinschaft (DFG)
for the financial support within the Collaborative Research Centre (CRC) 768 “Managing Cycles
in Innovation Processes – Integrated Development of Product-Service Systems Based on Technical
Products”.
I would also like to thank the colleagues and members of the Institute of Automation and Infor-

mation Systems for their friendship, fruitful discussions and support. In particular, I would like to
thank Susanne Rösch, Konstantin Kernschmidt, Sebastian Rehberger, Daniel Schütz, Jens Folmer,
Dorothea Pantförder, Gennadiy Koltun and Felix Ocker.
In addition, both researchers and industry partners with whom I had the pleasure to work with

during the course of joint research, workshops, conferences or projects shaped the results of this
dissertation. In particular, I would like to thank Sebastian J.I. Herzig and Ahsan Qamar as well as
their adviser, Professor Christiaan J.J. Paredis. Moreover, I would like to thank Professor Manuel
Wimmer. In a similar manner, I would like to thank Sebastian Diehm and Michael Schwarz from
Schneider Electric Automation GmbH for great discussions regarding practical applications and
implementations.
Finally, I would like to thank my family. Thank you for all your love and trust – thank you for

always believing in me – thank you for everything.

I

Abstract

Companies in the automated production systems domain are more and more forced to manufacture
individualized goods in order to remain globally competitive. Thereby, the rapidly changing prod-
uct and system requirements impose an ever-increasing complexity on the engineering of automated
production systems. One opportunity to reduce this complexity and to support engineers in devel-
oping automated production systems is the use of models. However, due to the manifold disciplines
involved in the engineering process – mechanical, electrical/ electronic and software engineering to
name only a few – and the disparate stakeholders participating in this process, manifold heteroge-
neous models are created during engineering. To make things worse, these models heavily differ –
for instance, in their degree of formality, with regard to their level of abstraction or regarding their
viewpoint on the system. In addition, the models overlap – they incorporate elements, which refer
to common aspects of the system under investigation. As a consequence, inconsistencies – namely
states of conflicts within the models – are likely to occur. Whereas in the current state of practice,
a number of commercially available software tools already provide the means for checking the com-
pliance to syntactical or well-formedness constraints, none of these tools support the overarching
management of inconsistencies within engineering models of automated production systems. To
address these issues, manifold approaches have been developed in the related research, which focus
on the diagnosis of inconsistencies but not on the handling of inconsistencies in engineering models
of automated production systems. It is therefore inevitable to provide an approach, which allows
to diagnose inconsistencies within the multitude of models created during engineering and, in case
an inconsistency is diagnosed, to support engineers in choosing appropriate handling actions.
In this dissertation, based on the different heterogeneous types of models and inconsistencies in

the automated production systems domain, requirements to be fulfilled by an inconsistency man-
agement approach are derived. Furthermore, a knowledge-based approach to diagnose and handle
inconsistencies by means of Semantic Web technologies – in particular the Resource Description
Framework (RDF) and the SPARQL Protocol and RDF Query Language (SPARQL) – is presented.
Inconsistency diagnosis rules are therein described by means of graph patterns (SPARQL Query
Language), which are matched against a graph-based representational formalism (RDF triples) that
contains the involved models. Analogously, inconsistency handling rules are described by means of
respective graph manipulation rules (SPARQL Update Language) and executed to handle diag-
nosed inconsistencies by either ignoring, tolerating or resolving them. To keep the inconsistency
management approach as flexible as possible, semantic abstraction mechanisms are provided by
means of mediations to vocabularies, which allow for incorporating not only the different disciplines
involved during engineering, but also discipline-spanning concepts and background knowledge that
are common to multiple disciplines. Hence, instead of creating a “world model” of automated pro-
duction systems, models are mediated to a common model that represents only the elements that
are required for inconsistency management purposes.
For the purpose of validating the approach, a prototypical implementation is realized by means of

standard implementations within the fields of Model-based Engineering (Eclipse Modeling Frame-
work (EMF)) and Semantic Web technologies (Apache Jena). The overall feasibility of the approach
is evaluated by means of a laboratory automated production system. In addition, the approach is
compared to another inconsistency management approach, which relies on Model-based Engineering
technologies (EMF). Finally, in order to assess benefits and limitations of the approach, an evalua-
tion at the hand of application examples that are inspired from industrial application is provided.

III

Zusammenfassung

Um global wettbewerbsfähig zu bleiben, müssen Unternehmen im Bereich automatisierter Pro-
duktionssysteme immer mehr individualisierte Güter fertigen können. Die sich schnell ändernden
Produkt- und Systemanforderungen stellen dabei immer komplexere Anforderungen an das Engi-
neering automatisierter Produktionssysteme. Eine Möglichkeit, diese Komplexität zu beherrschen
und Ingenieure bei der Entwicklung automatisierter Produktionssysteme zu unterstützen, ist der
Einsatz von Modellen. Aufgrund der vielfältigen Disziplinen des Engineering-Prozesses – beispiel-
sweise mechanische, elektrische/elektronische und Software-Entwicklung – und der unterschiedlichen
Akteurinnen und Akteure, die an diesem Prozess beteiligt sind, entstehen während des Engineerings
vielfältige heterogene Modelle. Erschwerend kommt hinzu, dass sich diese Modelle stark unterschei-
den – zum Beispiel in ihrem Formalitätsgrad, in Bezug auf ihren Abstraktionsgrad oder in Bezug auf
ihre Sicht auf das System. Darüber hinaus überlappen sich die Modelle – sie enthalten Elemente, die
sich auf gemeinsame Aspekte des untersuchten Systems beziehen. Infolgedessen ist es wahrschein-
lich, dass Inkonsistenzen – d.h. Konfliktzustände innerhalb der Modelle – auftreten. Im aktuellen
Stand der Technik existieren zwar bereits eine Reihe kommerziell erhältlicher Software-Tools, die
syntaktische oder Wohlgeformtheits-Regeln überprüfen können; keines dieser Tools unterstützt je-
doch das übergreifende Management solcher Inkonsistenzen innerhalb von Engineering-Modellen
automatisierter Produktionssysteme. Zur Adressierung der Problematik wurden bereits einige An-
sätze entwickelt, die sich auf die Diagnose von Inkonsistenzen konzentrieren, jedoch nicht auf die
Handhabung in den Modellen automatisierter Produktionssysteme. Daher ist es essenziell, Inge-
nieurinnen und Ingenieure bei der Diagnose und Handhabung von Inkonsistenzen zu unterstützen.
In dieser Dissertation werden zunächst basierend auf den unterschiedlichen heterogenen Modellen

und Inkonsistenzen im Bereich der automatisierten Produktionssysteme Anforderungen abgeleitet,
die von einem Inkonsistenzmanagement-Ansatz erfüllt werden müssen. Darüber hinaus wird ein
wissensbasierter Ansatz zur Diagnose und Handhabung von Inkonsistenzen mit Hilfe von Semantic
Web-Technologien vorgestellt – insbesondere mittels RDF und SPARQL. Regeln zur Diagnose von
Inkonsistenzen werden darin mittels Graph-Muster (SPARQL Query Language) beschrieben, die
gegen einen graphenbasierten Repräsentationsformalismus ausgeführt werden (RDF-Tripel), welcher
die jeweiligen Modelle abbildet. Analog dazu werden Regeln zur Handhabung von Inkonsistenzen
mit Hilfe entsprechender Regeln zur Manipulation der Graphen (SPARQL Update Language) for-
muliert und ausgeführt, um diagnostizierte Inkonsistenzen zu handhaben, indem sie entweder ignori-
ert, toleriert oder behoben werden. Darüber hinaus werden semantische Abstraktionsmechanismen
durch Mediation eingesetzt, um den Inkonsistenzmanagement-Ansatz so flexibel wir möglich zu hal-
ten – beispielsweise durch die Abbildung fachübergreifender Konzepte und Hintergrundwissen. Um
hierbei kein “Weltmodell” zu erstellen, werden die Modelle auf eine gemeinsame, semantische Ebene
gehoben, welche nur die Elemente beinhaltet, die für das Inkonsistenzmanagement erforderlich sind.
Zur Validierung des Ansatzes wird eine prototypische Implementierung mittels Standardimple-

mentierungen in den Bereichen Model-based Engineering (EMF) und Semantic Web Technologies
(Apache Jena) bereitgestellt. Die Anwendbarkeit des Ansatzes wird anhand der Modelle eines ex-
emplarischen Produktionssystems bewertet. Darüber hinaus wird der Ansatz mit einem anderen
Inkonsistenzmanagement-Ansatz verglichen, der ausschließlich auf modellbasierten Engineering-
Technologien basiert (EMF). Abschließend wird eine Bewertung anhand von Anwendungsbeispielen,
die sich an der industriellen Anwendung orientieren, vorgenommen, um die Vor- und Nachteile des
Ansatzes abzuschätzen.

V

List of published publications in the context of
this dissertation

Journal Articles

Feldmann, S., Kernschmidt, K., and Vogel-Heuser, B. “Konzept eines wissensbasierten
Frameworks zur Spezifikation und Diagnose von Inkonsistenzen in mechatronischen Modellen”.
German. In: at – Automatisierungstechnik, vol. 64, no. 3 (2016), pp. 199–215. doi: 10.1515/auto-
2015-0081.

Feldmann, S., Kernschmidt, K., Wimmer, M., and Vogel-Heuser, B. “Managing Inter-
Model Inconsistencies in Model-based Systems Engineering: Application in Automated Produc-
tion Systems Engineering”. In: Journal of Systems and Software, vol. 153 (2019), pp. 105–134.
doi: 10.1016/j.jss.2019.03.060.

Feldmann, S. and Vogel-Heuser, B. “Interdisciplinary Product Lines to Support the Engineering
in the Machine Manufacturing Domain”. In: International Journal of Production Research (2016).
doi: 10.1080/00207543.2016.1211343.

Vogel-Heuser, B., Fuchs, J., Feldmann, S., and Legat, C. “Interdisziplinärer Produktlinien-
ansatz zur Steigerung der Wiederverwendung”. German. In: at – Automatisierungstechnik, vol. 63,
no. 2 (2015), pp. 99–110. doi: 10.1515/auto-2014-1140.

Conference Papers

Feldmann, S., Hauer, F., Ulewicz, S., and Vogel-Heuser, B. “Analysis Framework for Eval-
uating PLC Software: An Application of Semantic Web Technologies”. In: IEEE International
Symposium on Industrial Electronics. Santa Clara, CA, USA, 2016.

Feldmann, S., Wimmer, M., Kernschmidt, K., and Vogel-Heuser, B. “A Comprehensive
Approach for Managing Inter-Model Inconsistencies in Automated Production Systems Engineer-
ing”. In: IEEE International Conference on Automation Science and Engineering. Fort Worth, TX,
USA, 2016.

Feldmann, S., Fuchs, J., and Vogel-Heuser, B. “Modularity, Variant and Version Manage-
ment in Plant Automation – Future Challenges and State of the Art”. In: International Design
Conference. Dubrovnik, Croatia, 2012, pp. 1689–1698. url: https://www.designsociety.org/
publication/32138/modularity_variant_and_version_management_in_plant_automation_
%E2%80%93_future_challenges_and_state_of_the_art (visited on 05/20/2019).

Feldmann, S., Hauer, F., Pantförder, D., Pankratz, F., Klinker, G., and Vogel-Heuser,
B. “Management of Inconsistencies in Domain-Spanning Models – An Interactive Visualiza-
tion Approach”. In: 19th International Conference on Human-Computer Interaction. Vancouver,
Canada, 2017.

VII

https://doi.org/10.1515/auto-2015-0081
https://doi.org/10.1515/auto-2015-0081
https://doi.org/10.1016/j.jss.2019.03.060
https://doi.org/10.1080/00207543.2016.1211343
https://doi.org/10.1515/auto-2014-1140
https://www.designsociety.org/publication/32138/modularity_variant_and_version_management_in_plant_automation_%E2%80%93_future_challenges_and_state_of_the_art
https://www.designsociety.org/publication/32138/modularity_variant_and_version_management_in_plant_automation_%E2%80%93_future_challenges_and_state_of_the_art
https://www.designsociety.org/publication/32138/modularity_variant_and_version_management_in_plant_automation_%E2%80%93_future_challenges_and_state_of_the_art

List of published publications in the context of this dissertation

Feldmann, S., Herzig, S. J. I., Kernschmidt, K., Wolfenstetter, T., Kammerl, D., Qa-
mar, A., Lindemann, U., Krcmar, H., Paredis, C. J. J., and Vogel-Heuser, B. “A Com-
parison of Inconsistency Management Approaches Using a Mechatronic Manufacturing System
Design Case Study”. In: IEEE International Conference on Automation Science and Engineering.
Gothenburg, Sweden, 2015, pp. 158–165. doi: 10.1109/CoASE.2015.7294055.

Feldmann, S., Herzig, S. J. I., Kernschmidt, K., Wolfenstetter, T., Kammerl, D., Qa-
mar, A., Lindemann, U., Krcmar, H., Paredis, C. J. J., and Vogel-Heuser, B. “Towards
Effective Management of Inconsistencies in Model-Based Engineering of Automated Production
Systems”. In: 15th IFAC Symposium on Information Control Problems in Manufacturing. Ottawa,
Canada, 2015, pp. 916–923. doi: 10.1016/j.ifacol.2015.06.200.

Feldmann, S., Kernschmidt, K., and Vogel-Heuser, B. “Combining a SysML-based Modeling
Approach and Semantic Technologies for Analyzing Change Influences in Manufacturing Plant
Models”. In: CIRP Conference on Manufacturing Systems. Ontario, Canada, 2014, pp. 451–456.
doi: 10.1016/j.procir.2014.01.140.

Feldmann, S., Legat, C., Kernschmidt, K., and Vogel-Heuser, B. “Compatibility and Coali-
tion Formation: Towards the Vision of an Automatic Synthesis of Manufacturing System Designs”.
In: IEEE International Symposium on Industrial Electronics. Istanbul, Turkey, 2014, pp. 1712–
1717. doi: 10.1109/ISIE.2014.6864873.

Feldmann, S., Legat, C., Schütz, D., Ulewicz, S., and Vogel-Heuser, B. “Automatic Rule-
Based Inference of Control Software Capabilities Considering Interdisciplinary Aspects”. In: In-
ternational Conference on Production Research. Iguassu Falls, Brazil, 2013.

Feldmann, S., Legat, C., and Vogel-Heuser, B. “An Analysis of Challenges and State of the Art
for Modular Engineering in the Machine and Plant Manufacturing Domain”. In: IFAC Conference
on Embedded Systems, Computational Intelligence and Telematics in Control. Maribor, Slovenia,
2015, pp. 87–92. doi: 10.1016/j.ifacol.2015.08.113.

Feldmann, S., Legat, C., and Vogel-Heuser, B. “Engineering Support in the Machine Manu-
facturing Domain through Interdisciplinary Product Lines: An Applicability Analysis”. In: IFAC
Symposium on Information Control Problems in Manufacturing. Ottawa, Canada, 2015, pp. 211–
218. doi: 10.1016/j.ifacol.2015.06.083.

Feldmann, S., Loskyll, M., Rösch, S., Schlick, J., Zühlke, D., and Vogel-Heuser, B.
“Increasing Agility in Engineering and Runtime of Automated Manufacturing Systems”. In: IEEE
International Conference on Industrial Technology. Cape Town, South Africa, 2013, pp. 1303–
1308. doi: 10.1109/ICIT.2013.6505861.

Feldmann, S., Rösch, S., Legat, C., and Vogel-Heuser, B. “Keeping Requirements and Test
Cases Consistent: Towards an Ontology-based Approach”. In: IEEE International Conference on
Industrial Informatics. Porto Alegre, Brazil, 2014, pp. 726–732. doi: 10.1109/INDIN.2014.
6945603.

Feldmann, S., Rösch, S., Schütz, D., and Vogel-Heuser, B. “Model-Driven Engineering and
Semantic Technologies for the Design of Cyber-Physical Systems”. In: IFAC Workshop on Intel-
ligent Manufacturing Systems. São Paulo, Brazil, 2013, pp. 210–215. doi: 10.3182/20130522-3-
BR-4036.00050.

Fuchs, J., Feldmann, S., and Vogel-Heuser, B. “Modularität im Maschinen- und Anlagen-
bau – Analyse der Anforderungen und Herausforderungen im industriellen Einsatz”. German. In:
Entwurf komplexer Automatisierungssysteme. Magdeburg, Germany, 2012, pp. 307–316.

Fuchs, J., Feldmann, S., Legat, C., and Vogel-Heuser, B. “Identification of Design Patterns
for IEC 61131-3 in Machine and Plant Manufacturing”. In: IFAC World Congress. Cape Town,
South Africa, 2014, pp. 6092–6097. doi: 10.3182/20140824-6-ZA-1003.01595.

VIII

https://doi.org/10.1109/CoASE.2015.7294055
https://doi.org/10.1016/j.ifacol.2015.06.200
https://doi.org/10.1016/j.procir.2014.01.140
https://doi.org/10.1109/ISIE.2014.6864873
https://doi.org/10.1016/j.ifacol.2015.08.113
https://doi.org/10.1016/j.ifacol.2015.06.083
https://doi.org/10.1109/ICIT.2013.6505861
https://doi.org/10.1109/INDIN.2014.6945603
https://doi.org/10.1109/INDIN.2014.6945603
https://doi.org/10.3182/20130522-3-BR-4036.00050
https://doi.org/10.3182/20130522-3-BR-4036.00050
https://doi.org/10.3182/20140824-6-ZA-1003.01595

Book Sections

Kellner, A., Weingartner, L., Friedl, M., Hehenberger, P., Ahrens, M., Kernschmidt,
K., Feldmann, S., Vogel-Heuser, B., and Zeman, K. “Challenges in Integrating Require-
ments in Model Based Development Processes in the Machinery and Plant Building Industry”.
In: IEEE International Symposium on Systems Engineering. Edinburgh, Scotland, 2016.

Koltun, G. D., Feldmann, S., Schütz, D., and Vogel-Heuser, B. “Model-Document Cou-
pling in aPS Engineering: Challenges and Requirements Engineering Use Case”. In: 18th IEEE
International Conference on Industrial Technology. 2017. doi: 10.1109/ICIT.2017.7915529.

Legat, C., Seitz, C., Lamparter, S., and Feldmann, S. “Semantics to the Shop Floor: Towards
Ontology Modularization and Reuse in the Automation Domain”. In: IFAC World Congress. Cape
Town, South Africa, 2014, pp. 3444–3449. doi: 10.3182/20140824-6-ZA-1003.02512.

Legat, C., Steden, F., Feldmann, S., Weyrich, M., and Vogel-Heuser, B. “Co-evolution and
Reuse of Automation Control and Simulation Software: Identification and Definition of Modifica-
tion Actions and Strategies”. In: Annual Conference of the IEEE Industrial Electronics Society.
Dallas, TX, USA, 2014, pp. 2525–2531. doi: 10.1109/IECON.2014.7048861.

Vogel-Heuser, B., Fischer, J., Rösch, S., Feldmann, S., and Ulewicz, S. “Challenges for
Maintenance of PLC-Software and its Related Hardware for Automated Production Systems:
Selected Industrial Case Studies”. In: IEEE International Conference on Software Maintenance
and Evolution. Bremen, Germany, 2015, pp. 362–371. doi: 10.1109/ICSM.2015.7332487.

Book Sections

Feldmann, S., Kernschmidt, K., and Vogel-Heuser, B. “Applications of Semantic Web Tech-
nologies for the Engineering of Automated Production Systems – Three Use Cases”. In: Semantic
Web Technologies in Intelligent Engineering Applications. Ed. by Biffl, S. and Sabou, M.
Berlin, Heidelberg, Germany: Springer, 2016.

Feldmann, S. and Vogel-Heuser, B. “Diagnose von Inkonsistenzen in heterogenen Engineering-
daten”. German. In: Industrie 4.0 in Produktion, Automatisierung und Logistik. Ed. by Bauern-
hansl, T., ten Hompel, M., and Vogel-Heuser, B. Berlin, Heidelberg, Germany: Springer,
2016, pp. 1–21. doi: 10.1007/978-3-662-45537-1_91-1.

IX

https://doi.org/10.1109/ICIT.2017.7915529
https://doi.org/10.3182/20140824-6-ZA-1003.02512
https://doi.org/10.1109/IECON.2014.7048861
https://doi.org/10.1109/ICSM.2015.7332487
https://doi.org/10.1007/978-3-662-45537-1_91-1

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Research Objectives . 2
1.3 Outline of the Dissertation . 3

2 Field of Investigation 5
2.1 Automated Production Systems . 5

2.1.1 Definitions . 5
2.1.2 Engineering and Operation of Automated Production Systems 7

2.2 Model-Based (Systems) Engineering . 9
2.2.1 Definitions . 10
2.2.2 Model-Based (Systems) Engineering in the Automated Production Systems

Domain . 12
2.3 Inconsistencies and Inconsistency Management . 12

2.3.1 Definitions . 12
2.3.2 Dimensions of consistency . 14
2.3.3 Classification of inconsistencies . 16

2.4 Knowledge-Based Systems . 16
2.4.1 Definitions . 16
2.4.2 Knowledge Representation . 17
2.4.3 Knowledge Processing . 20

2.5 Summary . 21

3 Requirements and Simplifying Assumptions 23
3.1 Requirements . 23

3.1.1 Requirements Regarding the Model Knowledge Base 24
3.1.2 Requirements Regarding the Support to Diagnose Inconsistencies 25
3.1.3 Requirements Regarding the Support to Handle Inconsistencies 26
3.1.4 Requirements Regarding the Support to Measure and Assess Diagnosed In-

consistencies and Handling Actions . 26
3.1.5 Requirements Regarding the Operationalization 27

3.2 Simplifying Assumptions . 28
3.3 Summary . 29

4 Related Work 31
4.1 Approaches to Integrate Heterogeneous Models . 31

4.1.1 Integrated Modelling Languages and Formats 31
4.1.2 Model Mappings and Linking Support . 37
4.1.3 Synopsis . 39

4.2 Approaches to (Semi-)Automated Inconsistency Management 40
4.2.1 Logical Reasoning and Theorem Proving . 40
4.2.2 Rule- and Pattern-Based Inconsistency Management 42
4.2.3 Model Synchronizations . 45

XI

Contents

4.2.4 Synopsis . 46
4.3 Existing Software Tools on Inconsistency Management 47

4.3.1 Commercial Tool Suites . 47
4.3.2 Open-Source Tools . 47
4.3.3 Synopsis . 48

4.4 Summary . 48

5 Concept: Diagnosis and Handling of Inconsistencies 49
5.1 Stakeholder-centred Overview of the Concept . 50
5.2 Model Management: Representation of Models . 52

5.2.1 RDF as the representational formalism for models 52
5.2.2 Engineering Model Representation . 53
5.2.3 Background Knowledge Model Representation 62
5.2.4 Linking the Models . 63

5.3 Mediation: Mediation Between Heterogeneous Models 65
5.3.1 Rules and mediating vocabularies as the basis for effective management of

inconsistencies . 65
5.3.2 Mechatronics vocabulary and common vocabulary: Representing common

concepts . 70
5.3.3 Mediation rules: Mediating between the vocabularies 72

5.4 Diagnosis and Handling: Diagnosis and Handling of Inconsistencies 73
5.4.1 Structuring the Inconsistency Diagnosis and Handling Problem 74
5.4.2 Specifying Intra-model Inconsistencies . 75
5.4.3 Specifying Inter-model Inconsistencies . 77
5.4.4 Specifying, Diagnosing and Handling of Different Types of Inconsistencies . . 79

5.5 Summary . 80

6 Evaluation: Assessment and Comparison of the Applicability 83
6.1 Prototypical Software Implementation . 84
6.2 Introduction to the Case Study: The Pick-and-Place Unit 85
6.3 Evaluation Stage 1: Evaluation of the Feasibility for a Lab-Scale Application Example 86

6.3.1 Overview of the Incorporated Models . 86
6.3.2 Diagnosing and Handling the Inconsistencies 87
6.3.3 Synopsis . 90

6.4 Evaluation Stage 2: Evaluation of the Feasibility for an Industry-Style Application
Example . 90
6.4.1 Overview of the Incorporated Models . 91
6.4.2 Diagnosing and Handling the Inconsistencies 93
6.4.3 Synopsis . 95

6.5 Evaluation Stage 3: Comparison with Another Inconsistency Management Approach 95
6.5.1 Overview of the Incorporated Models . 95
6.5.2 Mediation Between the Resulting Vocabularies 96
6.5.3 Diagnosing and Handling the Inconsistencies 97
6.5.4 Comparison of the Two Approaches . 98
6.5.5 Synopsis . 100

6.6 Assessment of the Performance and Scalability . 100
6.7 Summary . 101

7 Discussion of the Results 105
7.1 Assessing the Fulfilment of the Requirements . 105
7.2 Strengths of the Proposed Framework . 106

XII

Contents

7.3 Limitations of the Proposed Framework . 106

8 Conclusions and Outlook 109

Bibliography 111

List of Figures 129

List of Tables 131

List of Listings 133

List of Symbols and Abbreviations 135

A Inconsistencies 137
A.1 Inconsistencies for Evaluation Stage 1 . 137

A.1.1 Intra-model Inconsistencies . 137
A.1.2 Inter-model Inconsistencies . 139

A.2 Inconsistencies for Evaluation Stage 2 . 141
A.3 Inconsistencies for Evaluation Stage 3 . 142

A.3.1 Intra-model Inconsistencies . 142
A.3.2 Inter-model Inconsistencies . 143

XIII

Chapter 1.

Introduction

This dissertation is motivated by the ever-increasing complexity of the engineering process in the
automated production systems domain. In particular, it is aimed at providing a framework that
supports engineers in better diagnosing and handling inconsistencies that are likely to occur during
such an interdisciplinary process. Hence, the need for inconsistency management in heterogeneous
models in the automated production systems domain is motivated further in this chapter. Specifi-
cally, Section 1.1 details the context and motivation of this dissertation. In Section 1.2, the research
objectives are presented. Finally, in Section 1.3, the outline of the dissertation is introduced.

1.1. Context and Motivation

Industrial production processes have been and are currently evolving, especially due to the increas-
ing need to rapidly react to changes in the product or system requirements [LCK15; ElM06]. These
changes mainly result from drivers such as the increasing globalization of companies, the resulting
need to compete in global markets, fluctuating market dynamics and from adaptations in the con-
sumer behaviour. Consequently, companies in the industrial production domain are confronted with
an increasing complexity of industrial production processes and with the growing need to improve
effectiveness and efficiency during engineering and operation of their systems. As a consequence,
the engineering of automated production systems increases steadily, making appropriate support
during engineering necessary [VH16].
However, the challenges for engineering in the automated production systems domain are mani-

fold: Different stakeholders from diverse disciplines are involved during this process [Vog+15], e.g.
from mechanical, electrical and software engineering, but also from additional disciplines such as
requirements and project engineering. To address the complexity of automated production systems
in an appropriate fashion, the involved stakeholders work in different, interdisciplinary teams and,
therefore, use different notational formalisms, abstraction levels and software tools to address their
specific concerns [Gau+09; Bro+10]. Hence, a multitude of heterogeneous models is created con-
currently. Although these disparate models address different perspectives within the engineering,
they are not completely disjoint – instead, they overlap at some points. As a result, it is likely that
inconsistencies, namely a conflict or contradiction between these models [SZ01], arise. It is essential
to cope with these by continuously diagnosing and handling them.
Some inconsistencies can lead to severe consequences. Popular examples in engineering projects

are the Mars Climate Orbiter [NAS00], whose mission failed due to a mismatch in the applied unit
system, and the Denver International Airport baggage system [Neu94], in which underestimation of
the system’s complexity and missing coordination in between interdisciplinary teams lead to costly
delays in system delivery. Nevertheless, inconsistencies can also have less serious outcomes, which
lead to delays or increased costs throughout the engineering of automated production systems. For
instance, the commissioning of automated production systems is often a time-critical process, in
which design decisions are poorly revised. As a consequence, the personnel on site implements “quick
hacks”, which may lead to a technical debt [VR15] – namely extra development time and costs that
arise when refraining from applying the optimal solution. Especially in parallel, interdisciplinary

1

Chapter 1. Introduction

engineering, in which the effects of changing one discipline-specific part of the solution to other
disciplines are often not captured explicitly [VR15], it is most likely that inconsistencies and, hence,
technical debt arise.
Motivated by this ever-increasing demand of companies to improve their engineering processes,

this dissertation aims at providing a framework for managing inconsistencies – that is: for continu-
ously diagnosing and handling inconsistencies throughout the interdisciplinary engineering process
of automated production systems. Whereas in the current state of practice, a number of commer-
cially available software tools already provide the means for checking the compliance to syntactical
or well-formedness constraints, none of these tools support the overarching management of incon-
sistencies within engineering models of automated production systems. To address these issues,
manifold approaches have been developed in the related research, which focus on the diagnosis
of inconsistencies but not on the handling of inconsistencies in engineering models of automated
production systems. It is therefore assumed that a flexible, knowledge-based approach is required,
which (1) captures the engineering models of automated production systems within a central knowl-
edge base and allows to (2) diagnose inconsistencies within the multitude of models created during
engineering as well as, in case an inconsistency is diagnosed, (3) to support engineers in choosing
appropriate handling actions to be taken. This assumption is the basic hypothesis, which will be
validated throughout the remainder of this dissertation.

1.2. Research Objectives

In order to achieve such an inconsistency management framework, this dissertation answers the
overall research questions on how inconsistencies in engineering models of automated production
systems can be diagnosed and handled. Therein, it is not aimed at a fully automatic solution to
diagnose and handle inconsistencies; rather, it is aimed at supporting the responsible stakeholders,
e.g., discipline-specific engineers, to decide, which handling action must be taken in case of an
inconsistency. Consequently, this dissertation aims at an interactive inconsistency management
framework that should not be seen as a fully automatic tool – but rather as a supporting framework
for domain experts in the automated production systems domain. Hence, the central research
question answered in this dissertation can be formulated as follows.

Central Research Question — How can inconsistencies in engineering models of auto-
mated production systems be managed (that is: diagnosed and handled) (semi-)automatically?

From this overall research question, several dedicated research questions can be derived. First,
the question arises, which typical strategies for inconsistency management exist in both the related
state of practice and research. Consequently, the related research as well as commercially avail-
able frameworks that aid domain experts in managing inconsistencies in the automated production
systems domain are compared in this dissertation.

Research Question 1 — What are typical strategies to diagnose and handle inconsistencies?
What are the strengths and limitations of current inconsistency diagnosis and handling approaches?

Second, as a multitude of models is created throughout the interdisciplinary engineering process
of automated production systems, the question arises, what the content of engineering models
of automated production systems is that needs to be incorporated in inconsistency management.
Hence, a set of dedicated metamodels is formulated to explicitly capture the content that stems from
the typical engineering disciplines – e.g., from the mechanical, electrical and software engineering
disciplines, or from further disciplines such as hydraulics or pneumatics. Therein, it is not focused
on specific tools that are typically used for discipline-specific viewpoints of the engineering, but
rather on the information content that is created throughout the engineering.

2

1.3. Outline of the Dissertation

Research Question 2 — How can the content of typical models in the engineering of the
automated production systems domain be captured for the purpose of inconsistency management?

Third, based on the essential information content created during the interdisciplinary engineering
of automated production systems, appropriate mechanisms to diagnose and handle inconsistencies
can be put in place. However, the question arises, to what extent typical inconsistencies in engineer-
ing models of automated production systems can be diagnosed and handled in a (semi-)automatic
manner. Therefore, a framework is presented throughout this dissertation, that allows for diag-
nosing and handling typical inconsistencies in the engineering of automated production systems
domain.

Research Question 3 — To what extent can typical inconsistencies in engineering models of
automated production systems be diagnosed and handled (semi-)automatically by an inconsistency
management framework?

1.3. Outline of the Dissertation

To answer the previously formulated research questions, the remainder of this dissertation is struc-
tured as follows. In the next chapter, terms and definitions that are used throughout this dissertation
are defined, and the context for the following chapters is given in Chapter 2. Subsequently, the re-
quirements to be fulfilled by an inconsistency management framework for engineering models in the
automated production systems domain as well as the simplifying assumptions for this dissertation
are derived in Chapter 3. In Chapter 4, related works in research and practice are discussed and
compared to the objectives of this dissertation. Chapter 5 introduces the overall concept for an
inconsistency management framework in the automated production systems domain. By means of
distinct case studies, the applicability and feasibility of the inconsistency management framework
are validated in Chapter 6. The main findings and results that can be derived from this dissertation
are discussed in Chapter 7. Finally, a conclusion of this dissertation as well as an outlook on future
research are given in Chapter 8.

3

Chapter 2.

Field of Investigation

This chapter provides an overview of the terms and definitions used in this dissertation. First,
the domain of automated production systems is introduced, which is in the focus of this disser-
tation (Section 2.1). The current trend to overcome the complexity of engineering and operation
of automated production systems is to shift from a document-centric view on the overall system
towards using models [Sch06]. Hence, second, background knowledge on the field of model-based
(systems) engineering as well as the respective technologies and methods in this field are given (Sec-
tion 2.2). Third, the terms inconsistency and inconsistency management are defined (Section 2.3).
Fourth, as the management of inconsistencies requires a highly flexible system that allows for speci-
fying, diagnosing and handling inconsistencies, the notion of knowledge-based systems is introduced
(Section 2.4). A conclusion of the findings provided in this chapter is given in Section 2.5.

2.1. Automated Production Systems

The following sections provide an overview of the domain of automated production systems. Therein,
the term automated production system is elaborated first, followed by a discussion of the engineering
and operation of automated production systems.

2.1.1. Definitions

Industrial production processes are and will be performed more and more by automated production
systems, especially as the level of automation in such systems increases steadily [Str+09]. Therein,
automation aims at equipping technical systems to perform technical processes entirely or partly
without the help of human work. Consequently, the degree of automation, according to IEC 60050-
351 refers to the “proportion of automatic functions to the entire set of functions” [IEC13a, ref.
351-42-31] within the system and indicates, to which degree a technical process is realized in an au-
tomatic manner. Automation can therein reflect both process automation and product automation.
Whereas process automation reflects processes that are performed on complex technical plants (e.g.,
power plants, manufacturing systems), product automation refers to processes that are performed
on technical products (e.g., vehicles, consumer products) [LG99]. Although not limited to, this
dissertation focusses on process automation.
The term automation consequently describes an interdisciplinary subject, which mainly focuses

on the automation of systems. A system, according to IEC 60050-351, refers to a “set of interre-
lated elements [...] considered in a defined context as a whole and separated from their environ-
ment” [IEC13a, ref. 351-42-08]. A technical process performed on a technical system is specified
as the “complete set of operations in a plant” [IEC13a, ref. 351-42-34] and, therefore, refers to all
actions in a system that transform, transport or store material, energy or information [IEC13a,
ref. 351-42-33]. Such technical processes can according to ISA 95 further be classified into discrete,
continuous and batch processes [ISA10] as well as respective hybrid processes. Hence, a technical
system describes the equipment that is needed to perform the respective technical process [LG99].
The relations between the technical process and the technical system are illustrated in Figure 2.1.

5

Chapter 2. Field of Investigation

Definition 1 (Technical system) — A technical system refers to the equipment that is
needed to perform a technical process. Therein, a technical system contains the “set of interre-
lated elements [...] considered in a defined context as a whole and separated from their environ-
ment” [IEC13a, ref. 351-42-08].

Technical System
Material, energy or

information input flow

Technical process
Process

input values

Process

output values

Process control

information

Process result

information

Material, energy or

information output flow

Actuator

signals

Sensor

signals

Figure 2.1. Relation between technical process and technical system [based on LG99, p. 4]

As can be seen from Figure 2.2, both technical system and technical process are essential parts
of an automated production system. Automated production systems consist of “mechanical parts,
electrical and electronic parts (automation hardware) and software, all closely interwoven, and thus
represent a special class of mechatronic systems” [Vog+15]. Hence, automated production systems
reflect, according to Lauber and Göhner [LG99], the composition of:

• a human-process communication part, which serves as the interface between the user (e.g.,
end user, operator) and the automated production system,

• an information processing and communication system part, which reflects the processing hard-
ware and software,

• the sensors and actuators contained in the technical system as well as

• the technical process, which is performed in the technical system.

Therein, the measured sensor values describe the current state of an automated production sys-
tem, which is, in turn, controlled by the respective actuators. Consequently, knowledge on the
technical system and the technical process is essential for both engineering and operation of such
automated production systems.

Definition 2 (Automated production system) — Systems in the automated produc-
tion systems domain consist of “mechanical parts, electrical and electronic parts (automation hard-
ware) and software, all [parts] closely interwoven, and thus represent a special class of mechatronic
systems” [Vog+15], .

Furthermore, as can be seen from the structure of technical processes and systems as well as of
automated production systems, the engineering and operation of automated production systems is
a highly interdisciplinary process. Besides “classical” engineering activities that are common to any
mechatronic system (e.g., mechanical, electrical and software engineering) as indicated in VDI 2206
[VDI04], further activities such as marketing, commissioning and maintenance need to be considered
for automated production systems [Vog+15].

6

2.1. Automated Production Systems

Automated production

system

Information processing and communication system

User

Human-process communication

Program #1

Hardware #1

Program #n

Hardware #n

...

...

I 1 I 2 I 3 I m O
1

O
2

O
3

O
o... ...

Technical process within a technical system

Sensors Actuators

Figure 2.2. Basic structure of an automated production system [based on LG99, p. 53]

2.1.2. Engineering and Operation of Automated Production Systems

Engineering in the automated production systems domain is a concurrent process and involves the
different participating disciplines, e.g., mechanical, electrical and software engineering [FFV12].
One common engineering process model that is mostly applied in the mechatronic systems do-
main [VDI04] is the so-called V model, which is illustrated in Figure 2.3. Therein, requirements on
the system form the starting point for the engineering process and, at the same time, serve as mea-
sures against which the mechatronic product is to be assessed. A cross-domain solution concept is
developed during system design, followed by a discipline-specific design, in which discipline-specific
detailed solutions are developed. Throughout the system integration, these discipline-specific solu-
tions are integrated into a holistic discipline-spanning design. During the assurance of properties
stage, the design process is continuously checked against the requirements defined beforehand – i.e.,
the fulfilment of the requirements is verified. The modelling and model analysis phase accompanies
the entire engineering process, thereby describing the actions to create, manipulate and evaluate
the documents and models being used by the discipline engineers.
In order to increase engineering efficiency and decrease the system’s complexity, it is inevitable

to re-use system components as much as possible [Vog+15]. Therefore, to reduce engineering time,
engineers aim at separating the engineering process into project-independent and project-related en-
gineering activities [MJ12; VDI10]. Project-independent engineering activities focus on increasing
the reuse of available parts of the engineering solution to shorten project durations and reduce engi-
neering costs. Accordingly, project-related engineering activities aim at identifying the appropriate
composition of these parts to fulfil the customer’s needs. This separation is illustrated in Figure 2.4.
During project-independent engineering activities, following an analysis of the solution elements that
are required for possible systems, the requirements on the solution element are specified in a first

7

Chapter 2. Field of Investigation

Discipline-specific design

Mechanical engineering

Electrical engineering

Software engineering

...

Modelling and model analysis

Requirements Product

Assurance of

properties

Figure 2.3. Overview of the V model [based on VDI04, p. 29]

step. Subsequently, the solution element is developed, tested/ approved and finally registered in a
solution element repository. Using the solutions within the repository, customer-specific projects
can take into account the solution elements during the phases of system and detail design (dashed
arrows in Figure 2.4).

Repository

Project-independent engineering activities

Reuse registered

solution elements

from repository

Solution element

registration

Detail

design

Solution element

design

Solution element

specification

Requirement

specification

Solution element

test/ approval

Solution element

integration

Detail realization

Requirement

specification
...

System

specification

System

design

Detail

design

Detail

realization

System

integration

System

delivery

System

handover
...

Project-dependent engineering activities

Project

completion

Opera-

tion

Figure 2.4. Separation into project-independent and project-related engineering activities [based
on VDI10; Vog+15]

Whereas during the system design and integration phases, company- and/or project-specific for-
malisms and software tools are used to specify and integrate the system-level solution, discipline
engineers mostly apply heterogeneous formalisms, abstraction mechanisms and software tools for the
discipline-specific design of the automated production system. For instance, mechanical engineering
incorporates a part-oriented design of the physical system and, hence, structural and/or geometrical

8

2.2. Model-Based (Systems) Engineering

data of the entire system are in focus of component lists, CAD drawings, etc. Contrary, the electrical
engineering discipline aims at selecting the respective information processing and communication
system of the automated production system, as well as the necessary sensors and actuators that are
required to realize the technical process. Therefore, electrical circuit diagrams, terminal connection
tables as well as electrical part lists are used to define the electrical subsystem. In the automated
production systems domain, mostly Programmable Logic Controllers (PLCs) that are compliant
to the IEC 61131 Standard [IEC03a] and that are characterized through a cyclic data processing
behaviour, are and, according to the ARC Advisory Group [ARC15], will be state of the industrial
practice for the next decades.

Finally, the objective of software engineering in the automated production systems domain is
the implementation of the logical parts of the system, thereby defining the sequence of operations
to be implemented for the technical process. For the software engineering discipline, the IEC
61131-3 Standard [IEC03b] is mostly state of the art in industry [TF11]. These signal-oriented
programming languages impose – due to their monolithic structure – several restrictions regarding
maintainability and, despite efforts towards including object-oriented programming aspects within
IEC 61131-3 [IEC13b], the standard in its current version has not yet been fully established in
industry. As a consequence, most of the machines and plants that are currently in operation are
implemented (and, hence, maintained) in its older version or in vendor-specific implementations
of the standard. Furthermore, although novel approaches such as multi-agent systems are being
developed for IEC 61131-3 in research, they are not yet broadly accepted for software development
in industry [Lei13]. IEC 61499 [Vya11; IEC12] provides improved maintainability as it increases the
ability for software modularization and reuse by means of a component-based approach. However,
“IEC 61499 has [still] a long way in order to be seriously considered by the industry” [Thr12].

The IEC 61131-3 [IEC13b] defines five programming languages – therein containing three graphi-
cal languages as well as two textual languages. The graphical programming languages are Function
Block Diagram (FBD), which describes networks of connected logical or arithmetic expressions, Lad-
der Diagram (LD), which is similar to electrical circuit diagrams, and Sequential Function Chart
(SFC), which allows the graphical description of a sequence of steps that are connected via directed
transitions. The textual languages of IEC 61131-3 comprise Structured Text (ST), a language
similar to the high-level programming language PASCAL, and Instruction List (IL), a low-level
assembler-like programming language. The use of these languages is strongly dependent on a multi-
tude of factors, e.g., customers’ requirements, programmers’ background, application context (FBD,
LD and IL are appropriate for bit logic and often used for implementing, e.g., device drivers; ST
is especially used for complex arithmetic, array or string operations and SFC is mainly applied
for sequential operations and to structure the first level of a process to be implemented) as well
as acceptance in destination country. Besides the IEC 61131-3 standard itself, huge effort is done
within the Technical Committees of PLCopen, a vendor- and product-independent worldwide asso-
ciation, towards defining standardized exchange formats within PLCopen XML [PLC09b], towards
certification of IEC 61131-3 environments [PLC09a] as well as, most recently, towards identifying
common coding conventions for IEC 61131-3 [PLC16].

2.2. Model-Based (Systems) Engineering

Within the subsequent sections, the terms related to model-based (systems) engineering are elabo-
rated deeply. First, common definitions in this field are shown. Second, both the software perspec-
tive (model-based engineering) and the systems perspective (model-based systems engineering) are
discussed for the automated production systems domain.

9

Chapter 2. Field of Investigation

2.2.1. Definitions

Due to the rising complexity of automated production systems, appropriate engineering processes
are necessary that support engineers in developing their systems more rapidly and efficiently. Con-
sequently, the use of models, easing the software and system development, became a key issue to
develop and handle complex systems. A model therein is often referred to as an abstraction of
reality, which focuses on a certain point of interest.
According to the Model-Driven Architecture (MDA) introduced by the Object Management

Group (OMG), a model is “[...] information selectively representing some aspect of a system based
on a specific set of concerns” [Obj14]. Respectively, two essential parts can be found in this defini-
tion: First, information in models is selective: models reduce the reality to a subset of information
that is believed to be interesting for the respective scope. Second, a specific set of concerns is the
foundation for creating a model – consequently, models are created according to a specific objective.
According to the MDA [Obj14], such models are subject to a specific system under investigation,
respective rules that must be followed by that system as well as the meaning of the terms used for
the model. Especially in the domain of automated production systems, “[m]odels are required for
the conceptual design, implementation, testing, optimization and diagnosis” [Vog+14a].

Definition 3 (Model) — A model refers to an abstraction of reality, which focuses on a cer-
tain point of interest. Models are, hence, created according to a specific objective and subject to a
specific system under investigation [Obj14].

Accordingly, to be useful for the respective stakeholders, any model needs to be represented in
“a way that communicates information about a system among involved stakeholders [...]” [Obj14] –
hence, allowing for correct interpretation of what has been modelled. In order to achieve such
a common interpretation, the terms and rules to be followed by the models must be captured
within a modelling language. Commonly known modelling languages are, e.g., the Unified Modeling
Language (UML) for software development, the Systems Modeling Language (SysML) for systems
engineering as well as the Business Process Model and Notation (BPMN) for business process
modelling. Therein, both the syntax and semantics of a model constitute the modelling language.
Syntax refers to the structure of the modelling languages, describing the elements to be used within
that language. Therein, it can be distinguished between the abstract syntax, describing the essential
parts of the language, and the concrete syntax, defining what these parts look like. In contrast,
semantics is about the meaning of the modelling language, i.e., the definition of what the model
elements mean in the context of the model.

Definition 4 (Modelling language) — A modelling language refers to the terms and
rules to be followed by a model. Essential parts of such a modelling language are its syntax and
semantics: Whereas the syntax refers to the structure of the modelling language (i.e., defining
the elements to be used in that language (abstract syntax) as well as their (visual) representation
(concrete syntax)), its semantics describe their context-specific meaning.

Consequently, essential to formulate such modelling languages is the abstract syntax, which defines
the elements to be used within the modelling language, as well as the rules to combine these elements
to a valid model. In the following, the term metamodel is used for these two parts.

Definition 5 (Metamodel) — A metamodel refers to the model of a model, which represents
the formal definition of a modelling language. Essential to the metamodel is the abstract syntax
of the modelling language, describing the structural elements as well as the rules to combine these
elements to valid models.

The most popular and commonly accepted standard to define such metamodels is the Meta Ob-
ject Facility (MOF) [OMG15a] defined by the OMG. Therein, the MOF is part of the MDA and

10

2.2. Model-Based (Systems) Engineering

provides the means to define the abstract syntax of a modelling language through a simplification
of UML’s class modelling capabilities. Through MOF, interchangeable models can be created using
the Extensible Markup Language (XML) Metadata Interchange (XMI) [Obj15] standard, and ad-
ditional capabilities are provided such as model-to-model transformations [Obj16] or model-to-text
transformations [Obj08]. The layered architecture of MOF is illustrated at the example of UML
2.5 [OMG15c] in Figure 2.5. Therein, the four meta layers of UML 2.5 are illustrated: Whereas the
M0 layer refers to the actual object (e.g., runtime instances), the M1 layer refers to the model of
the reality – in the example, to the UML model. The M2 layer above the model layer represents
the metamodel layer, in which the modelling language’s metamodel is defined (i.e., the UML 2.5
metamodel). Finally, the M3 layer refers to the metametamodel – which is, in the case of UML,
MOF. However, although it is often referred to a “four-layered architecture”, MOF is not restricted
to a certain maximum number of layers – according to the standard [OMG15a], any number of
layers that is greater than or equal to two is supported.

M3: Metametamodel layer

MOF 2.5

M2: Metamodel layer

e. g. UML 2.5 metamodel

M1: Model layer

e. g. UML model

M0: Information layer

e. g. runtime instances

Class

Attribute Class InstanceSpecification

Sensor

+ name : String

+ id : integer

ThroughputSensor : Sensor

+ name = "Throughput Sensor"

+ id = 1

aSensor

classifier

Class

Attribute Class InstanceSpecification

Sensor

+ name : String

+ id : integer

ThroughputSensor : Sensor

+ name = "Throughput Sensor"

+ id = 1

aSensor

classifier

«instanceOf» «instanceOf» «instanceOf»

«instanceOf» «instanceOf» «instanceOf» «instanceOf»

«instanceOf»

Figure 2.5. Illustration of the Meta Object Facility (MOF) [based on OMG15a] meta-layer archi-
tecture at the example of UML 2.5 [OMG15c]

Especially due to the manifold support in the field of modelling, models rapidly became an
appropriate way in developing and maintaining (software) systems. Consequently, from a software
perspective, Model-Based Engineering (MBE) serves as the basis to develop integrated models for
the purpose of, e.g., analysis, code generation, etc. According to the International Council on
Systems Engineering (INCOSE), Model-Based Systems Engineering (MBSE) is “[...] the formalized
application of modelling to support system requirements, design, analysis, verification and validation
activities [...]” [INC07]. Hence, instead of using documents (e.g., mechanical Computer-Aided Design
(CAD) drawings, electrical circuit diagrams, etc.), a model-centric approach is envisioned, in which
integrated models are used to establish an interdisciplinary engineering process. As a consequence,
MBSE is seen as a life cycle-spanning process, which starts in early requirements analysis phases
and allows for a fully integrated and consistent application of models until late engineering phases.

Definition 6 (Model-Based Systems Engineering) — MBSE refers to “[...] the for-
malized application of modelling to support system requirements, design, analysis, verification and
validation activities [...]” [INC07].

11

Chapter 2. Field of Investigation

2.2.2. Model-Based (Systems) Engineering in the Automated Production
Systems Domain

This section discusses the different MBSE approaches that are currently emerging for the engineering
of automated production systems1.
Motivated by the example of classical computer science, MBE approaches were adopted rapidly

for software development in the automated production systems domain. Therein, the UML is one
of the most wide-spread languages used for software development. In its current version, UML
2.5 [OMG15c] specifies both structure and behavior diagrams to aid in developing software. Adop-
tions in the automated production systems domain are, among others, available for software gener-
ation [WV11] as well as for automated test case generation [RV17] – especially due to the fact that
UML can increase comprehensibility and flexibility for software development [Vog15].
In order to support the interdisciplinary development of systems, hence incorporating further dis-

ciplines such as the electrical and mechanical engineering disciplines, SysML is increasingly applied
for the automated production systems domain [Bas+11; KV13; Thr13]. Additionally to the dia-
grams available in UML, SysML allows to specify the interdisciplinary system with its overall and
internal structure. Moreover, diagrams to model requirements as well as parametric dependencies
are supported, thereby putting more emphasis on the entire system. Adoptions to the automated
production systems domain have been made, e.g., to support overall systems engineering while inte-
grating simulation aspects [BFB14], for an integrated view on the entire mechatronic system [KV13]
as well as for developing software agent knowledge bases [Sch+13b].

2.3. Inconsistencies and Inconsistency Management

Whereas the previous sections focuses on the introduction of the terms related to the automated
production systems domain as well as to Model-Based (Systems) Engineering, the arising need
to address potentially occurring inconsistencies and, hence, the management of inconsistencies
are discussed in the following. First, the terms inconsistency and inconsistency management are
discussed to provide a basic understanding of this field. Second, different dimensions and types of
inconsistencies that can occur in the automated production systems domain are elaborated to set
the framework of this dissertation.

2.3.1. Definitions

In related research works, the term consistency is often defined using its antonym inconsistency : A
model (or a set of models) is said to be inconsistent, if two assertions in a model (or a set of models)
are not jointly satisfiable [SZ01], therefore leading to a situation “in which a set of descriptions does
not obey some relationship that should hold between them” [NER00]. If no known contradictions
can be identified, the model (or the set of models) is identified to be consistent. Although a multitude
of different definitions of inconsistencies exists, all these definitions “share a common property: that
a state of conflict, marked by the presence of a contradiction, illogical statement or disharmony
exists” [Her15]. One may argue that the occurrence of an inconsistency necessarily leads to an
error during engineering – however, “[i]nconsistencies may have both positive and negative effects
on the system development life-cycle” [SZ01]. According to Spanoudakis and Zisman [SZ01], on
the negative side of inconsistencies are increased engineering time and cost as well as difficulties
in maintaining the system, whereas positive effects are, e.g., to indicate aspects that need further
elaboration or to simplify the evaluation of system alternatives.

Definition 7 (Inconsistency) — An inconsistency refers to “a state of conflict, marked by
the presence of a contradiction, illogical statement or disharmony” [Her15]. Hence, inconsistencies

1A detailed discussion of different MBSE approaches can be found in Chapter 4.

12

2.3. Inconsistencies and Inconsistency Management

lead to a situation “in which a set of descriptions does not obey some relationship that should hold
between them” [NER00].

Inconsistencies are mostly the result of collaborative work between different stakeholders from
different domains. Consequently, in Mens et al. [MSD06], the following four reasons for incon-
sistencies being introduced during model-based (systems) engineering are identified: (1) parallel
development of disparate models by different persons, (2) poor understanding of interdependencies
between models, (3) unclear or ambiguous requirements at an early stage during engineering, and (4)
incomplete models due to still unknown, but essential information. As a consequence, the need to
cope with inconsistencies arises, if models are created and maintained independently within collab-
orative projects [HEZ10]. Especially as different stakeholders from different disciplines are involved
during engineering, they use different formalisms, models and tools in order to express their view on
the system under consideration – and hence, form “separate, but interdependent models” [Gau+09].
Therefore, the resulting models overlap: they “incorporate elements which refer to common aspects
of the system under development” [SZ01]. Consequently, all these reasons of inconsistencies are
mainly related to overlapping information; such overlaps are especially important for inconsistency
management.

Definition 8 (Overlap) — Overlaps are defined as statements that are made in disparate
models, but, according to Spanoudakis and Zisman [SZ01] “incorporate elements which refer to com-
mon aspects of the system under development”. Consequently, such overlaps are especially important
for inconsistency management.

Within Finkelstein et al. [Fin+94], it is argued that the occurrence of inconsistencies is inevitable,
yet acceptable for engineering. As a consequence, the need to manage such inconsistencies is iden-
tified [Fin+94]. In Nuseibeh et al. [NER00], an inconsistency management framework is introduced
(cf. Figure 2.6), which involves six distinct steps: After monitoring for inconsistencies, a detected
inconsistency is diagnosed. The diagnosis of inconsistencies therein involves their location (What
elements are inconsistent?), identification (What is the cause for an inconsistency?) and classifica-
tion (What kind of inconsistency occurred? What is its expected impact?). In order to diagnose
inconsistencies, expected impacts need to be measured. After an inconsistency is diagnosed, the
handling step begins. Therein, according to Nuseibeh et al. [NER00], either ignoring, tolerating
or resolving are appropriate strategies to handle an inconsistency. The respective handling actions
need to be analysed regarding their impact and risk. If a stakeholder (i.e., the person responsible
for managing inconsistencies) selects a handling action, the consequences of this action need to be
monitored. Consequently, four important parts can be derived: (1) the incorporation of different
types of inconsistencies, (2) the definition and identification of overlaps between models, (3) the
diagnosis of inconsistencies, and (4) the handling of diagnosed inconsistencies. Hence, these steps
are considered as essential for inconsistency management throughout this dissertation.

Definition 9 (Inconsistency management) — Based on the results of Nuseibeh et al.
as well as Spanoudakis and Zisman [NER00; SZ01], it can be concluded that inconsistency man-
agement incorporates four essential components: (1) the incorporation of different types of incon-
sistencies, (2) the definition and identification of overlaps between models, (3) the diagnosis of
inconsistencies, and (4) the handling of diagnosed inconsistencies.

In order to manage inconsistencies, different strategies can be employed. Among others2, one
commonly employed strategy is rule-based inconsistency management. Therein, consistency rules
refer to constraints that need to be fulfilled by the models under investigation to consider them as
consistent – hence, the models are said to be inconsistent if the consistency rule is not satisfied by

2A detailed discussion of different inconsistency management strategies can be found in Chapter 4.

13

Chapter 2. Field of Investigation

Consistency

checking rules

Diagnose

Locate

Identify

Classify

Handle

Ignore

Tolerate

Resolve

Defer

Circumvent

Ameliorate

M
o

n
it

o
r

c
o

n
s

e
q

u
e

n
c

e
s

 o
f

h
a

n
d

li
n

g
 a

c
ti

o
n

s

M
o

n
it

o
r

fo
r

in
c

o
n

s
is

te
n

c
y

Measure

inconsistency
Analyze impact and risk

Apply rules Apply rules

Refine rulesRefine rules

Apply rules

Apply rules

In
c
o
n

si
s
te

n
c
y

d
e

te
c
te

d

In
c
o
n

si
s
te

n
c
y

c
h
a
ra

c
te

ri
ze

d

In
c
o
n

si
s
te

n
c
y

h
a

n
d

le
d

Figure 2.6. Overview of the building blocks of an inconsistency management framework [adapted
from NER00]

the models [SZ01]. Accordingly, “[c]entral to [...] [an inconsistency management] framework is the
explicit use of a set of consistency rules” [NER00].

Definition 10 (Consistency rule) — A consistency rule refers to constraints that need
to be fulfilled by the models under investigation – hence, the models are said to be inconsistent if the
consistency rule is not satisfied by the models [SZ01]. Accordingly, “[c]entral to [...] [an inconsistency
management] framework is the explicit use of a set of consistency rules” [NER00].

However, one special property of technical systems is that it is impossible to ensure full consis-
tency – “the main reason is that we lack perfect knowledge about the processes and the phenomena
in nature” [Her+11]. Consequently, only a small portion of inconsistencies can be managed for tech-
nical systems – that is, only known inconsistencies can be identified. One can think of these known
inconsistencies as patterns, which define the conditions for the existence of an inconsistency [Her+11].
Using such inconsistency patterns, models can be queried and, by means of pattern matching, in-
consistencies can be diagnosed. Once an inconsistency has been identified, the inconsistent part of
the models can be handled by ignoring, tolerating or resolving the inconsistent part.

Definition 11 (Inconsistency pattern) — An inconsistency pattern describes the con-
ditions for the existence of an inconsistency [Her+11]. Using such inconsistency patterns, models
can be queried for defined inconsistency patterns and, by means of pattern matching, inconsistencies
can be diagnosed. Once an inconsistency has been identified, the inconsistent part of the models can
be handled by ignoring, tolerating or resolving the inconsistent pattern.

2.3.2. Dimensions of consistency

In the related literature, different dimensions of consistency can be found, which are discussed in
the following.

14

2.3. Inconsistencies and Inconsistency Management

Intra-model and inter-model consistency. In Huzar et al. [Huz+05], intra-model and inter-
model consistency are identified as important aspects in UML models. For instance, intra-model
inconsistencies result from many artefacts that describe different aspects of a system, but are incon-
sistent, e.g., due to “the imprecise semantics of the UML” [Huz+05]. Such intra-model inconsisten-
cies are especially expected between structural and behavioural aspects of the system. In contrast,
inter-model inconsistencies arise between different models, e.g., in case of refinements between mod-
els. Whereas intra-model inconsistencies are often managed by existing software tools (e.g., Eclipse
Papyrus [Ecl15] and NoMagic MagicDraw [NoM16] in case of UML and SysML), inter-model incon-
sistencies are especially challenging due to the heterogeneous nature of models in the automated
production systems domain (cf. Section 2.1).

Metamodel, model and instance consistency. Following the layered architecture of OMG’s
MOF, consistency can also be identified in these different modelling layers as discussed in Section 2.2,
namely within metametamodels, metamodels, models as well as instances. For the software engi-
neering domain, inconsistencies can arise on the model level, between the model and instance level
or at the instance level [Van+03]. Further potential inconsistencies may analogously arise between
the metamodel and the model as well as on each respective layer of the MOF. However, whereas
consistency is mostly ensured between layer Li of the MOF and its child layer Li−1 by means of com-
mon software tools such as the Eclipse Modeling Framework (EMF), it is inevitable to incorporate
inconsistencies between disparate but heterogeneous models (cf. inter-model consistency).

Intensional and extensional consistency. Based on the notion of metamodel, model and in-
stance consistency, it can be concluded that, from the specification of a metamodel (respectively
model and instance), the constraints that need to be fulfilled to ensure an inherent (i.e., intensional)
consistency can be derived. In the related literature on inconsistency management, this intensional
consistency is often refereed to as well-formedness constraints that define the correspondences be-
tween types of model elements [RJV09]. However, besides this intensional consistency, further
constraints can be defined that result, e.g., from domain- or company-specific assumptions. These
constraints are referred to as extensional consistency constraints that are defined as correspondences
between particular model elements [RJV09].

Structural and behavioural consistency. With the terms structural and behavioural consis-
tency, either structural or behavioural aspects of software models are described [Van+03]. Struc-
tural or behavioural inconsistencies, hence, arise “when the structure of the system is incomplete,
incompatible or inconsistent with respect to existing behaviour” [Van+03]. For instance, structural
inconsistencies refer to missing instance definitions within software models, whereas behavioural
inconsistencies arise if incompatible behaviour definitions are observed.

Horizontal and vertical consistency. In Van Der Straeten et al. [Van+03], the notion of hor-
izontal, vertical and evolution consistency is introduced. Therein, similar to inter-model and intra-
model consistency, horizontal consistency refers to “consistency between different models within the
same version” [Van+03]. Vertical consistency is used to describe the relations between one model
and its refinements, which describes more details of this model. Evolution consistency, analogously,
refers to the consistency between different versions of the model.

External and internal consistency. In Herzig et al. [Her+11], it is concluded that internal and
external consistency exist. Whereas internal consistency relates to axiomatic systems (e.g., math-
ematical consistency, consistency to logic systems), external consistency requires the models to be
consistent to reality. It is moreover concluded that, whereas internal consistency is well understood

15

Chapter 2. Field of Investigation

and, hence, can be managed, external consistency often refers to poorly understood (e.g., physical)
phenomena, which can hardly be managed by an inconsistency management framework [Her+11].

2.3.3. Classification of inconsistencies

Orthogonal to the dimensions of inconsistencies, different types of inconsistencies can be distin-
guished. For instance, well-formedness, description identity, application domain, development com-
patibility and development process compliance rules are, according to Spanoudakis and Zisman
[SZ01], important for the software engineering domain. Whereas well-formedness rules must be
fulfilled by the models to be legitimate models of the respective modelling language, description
identity rules demand that totally overlapping elements must have identical descriptions. Applica-
tion domain rules refer to relations that must hold between individuals in the specific application
domain. Development compatibility rules refer to “rules which require that it must be possible to
construct at least one model that develops further two or more other models or model elements and
conforms to the restrictions which apply to both of them” [SZ01]; hence, these rules do not demand
total but partial overlap between respective model entities. Finally, development process compliance
rules describe practices, guidelines or standards that need to be followed by the models.
Similarly, in Nuseibeh et al. [NER00], notation definitions, development methods, development

process models, local contingencies and application domains are defined as essential sources for
consistency rules. Whereas notation definitions are sources for well-formedness rules, and develop-
ment methods and development process models are essential to construct development compatibility,
description identity and development process compliance rules, application rules, finally, lead to
application domain rules. Interestingly, local contingencies refer to a rather weak descriptions of
inconsistencies, which are not necessarily predetermined by the relationship, but by background
knowledge such as synonym definitions.
Based on these different types of inconsistency rules, it can be derived that four essential types of

inconsistencies can be identified for the automated production systems: (1) notational rules refer to
syntactic integrity constraints of notations, (2) conventional rules refer to common practices that
must be followed during engineering and (3) correspondence rules define, how entities in disparate
models must relate to each other. Finally, (4) domain-specific rules refer to inconsistency rules
that must not be violated in a specific application domain, e.g., the automated production systems
domain. These types of inconsistencies are focused on in this dissertation.

2.4. Knowledge-Based Systems

As discussed in the previous section, especially in the automated production systems domain, the
different types of inconsistencies that must be incorporated for inconsistency management can be
manifold. Consequently, it is inevitable to provide appropriate means for flexibly specifying, diag-
nosing and handling inconsistencies. One means to provide such a flexible mechanism is the usage
of knowledge-based systems, which are introduced in the following.

2.4.1. Definitions

An exclusively procedural software system requires to explicitly include the knowledge about the
structure and semantics of a variety of models as well as inconsistencies in the software code.
However, maintaining and evolving such a software system – for instance, for the purpose of in-
corporating additional types of inconsistencies, or additional types of models – is costly due to the
sheer complexity. Any practical implementation of an inconsistency management framework for
heterogeneous models, therefore, requires a high degree of flexibility and extensibility. Hence, a
knowledge-based system is envisioned to be used for inconsistency management in this dissertation.

16

2.4. Knowledge-Based Systems

According to Akerkar and Sajja [AS10, pp. 18-19], a knowledge-based system “is a computer-based
system that uses and generates knowledge from data, information and knowledge”. By that, such
a system is able to understand the information to be processed (e.g., by means of diagnosing in-
consistencies) and to decide upon which action to be taken (e.g., by means of generating possible
handling actions).

Definition 12 (Knowledge-based system) — A knowledge-based system, according to
Akerkar and Sajja [AS10, pp. 18-19], “is a computer-based system that uses and generates knowledge
from data, information and knowledge”.

Knowledge-based systems consist of five essential parts (cf. Figure 2.7): The knowledge base
together with the inference engine form the main component of a knowledge-based system and
serve as the knowledge repository. Knowledge-based systems can either be updated automatically
or manually by means of the self-learning component. The explanation and reasoning part provides
information on what conclusions are drawn from the knowledge base. A user interface is essential
to provide the user with an appropriate interface to the knowledge-based system.

Knowledge

Base

Inference

Engine

User Interface

Explanation

and Reasoning
Self-learning

Figure 2.7. Essential parts of a knowledge-based system [adapted from AS10, p. 20]

As can be seen from Figure 2.7, the most important parts for a knowledge-based system are
the knowledge base itself as well as the inference engine. The knowledge base consists of both a
procedural and a declarative component [AS10, p. 33]. Declarative knowledge, hence, serves as
the descriptive representation of knowledge, which consists of factual statements and information
(i.e., facts and rules). In the context of inconsistency management, the facts refer to the knowledge
specified in the different models, whereas the rules represent the rules (respectively: patterns) for
inconsistency diagnosis and handling. Procedural knowledge, in turn, consists of common-sense and
heuristic knowledge. For inconsistency management, this procedural knowledge consists of, e.g., the
knowledge on how and what inconsistency diagnosis or handling results are presented to the user.
The inference engine refers to the knowledge base, manipulates the knowledge and makes decisions
on actions to be taken [AS10, p. 36]. By that, new facts are drawn from the rules and known facts
in the knowledge base.

2.4.2. Knowledge Representation

As argued beforehand, essential to a knowledge-based system is its knowledge base. Consequently,
it is essential to find an appropriate knowledge representation formalism that is capable of capturing
the necessary modelled knowledge in the knowledge base.

Resource Description Framework (RDF). One formal language used to describe structured
information and, hence, to represent knowledge in the context of Semantic Web Technologies is
the RDF standardized by the World Wide Web Consortium (W3C) in [W3C14b]. RDF includes
a suite of recommendations, which allow for representing information in the web. Originally, the
goal of RDF is to allow applications to “exchange data on the Web while preserving their original
meaning” [HKR10]. Hence, the original intention of RDF is close to the challenge of heterogeneous

17

Chapter 2. Field of Investigation

models – to describe heterogeneous knowledge in a common representational formalism. Therein,
RDF is similar to conceptual modelling approaches such as class diagrams in that it allows for
statements to be made about entities, e.g., cylinder is a module and consists of a valve and a
switch. Such statements about entities are formulated by means of subject – predicate – object
triples (e.g., cylinder – is a – module, cylinder – consists of – switch), thereby forming a directed,
labelled graph. Such an exemplary RDF graph is visualized in Figure 2.8.

voc:Entity

voc:Module

voc:Valve voc:Switch

voc:Component

voc:Cylinder

"Cylinder1"

"2"^^xsd:int

"1"^^xsd:int_:b0

ex:Cylinder1

_:b1

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf rdfs:subClassOf

rdf:type rdf:type rdf:type

voc:name

voc:contains

voc:contains

voc:quantity

voc:quantity

RDF

Vocabulary

RDF Graph

Legend RDF Resource RDF Literal RDF Property

Figure 2.8. Exemplary RDF graph

To leave no room for ambiguities, RDF makes use of so-called Uniform Resource Identifiers (URIs)
as unique names for entities (e.g., for the resources such as voc:Module and ex:Cylinder1 as well
as for the properties such as voc:contains). The different URIs being used in the RDF graph
are moreover organized by means of namespaces, which predefine the URIs. For instance, in the
example illustrated in Figure 2.8, the predefined vocabularies ex and voc contain the URIs to be
used within the RDF graph.
The subject – predicate – object triples used within the RDF graph are, according, to the RDF

specification [W3C14b], restricted as follows:

• subjects are either URI references or a blank node,

• predicates are URI references, and

• objects are either URI references, literals or blank nodes.

Therein, literals refer to either plain literals, which have a lexical form and an optional language
tag (cf. literal "Cylinder1" in Figure 2.8), or to typed literals, which have a lexical form and a
datatype URI (cf. literal "1"^^xsd:int in Figure 2.8). Blank nodes refer to RDF resources, for
which no URI or literal is given, e.g., for _:b0 and _:b1 in Figure 2.8. These blank nodes are often
used for, e.g., reification, complex attributes, etc. In the cylinder example, the blank nodes serve
for describing the cardinality of contained components.
For the purpose of serializing RDF graphs, the W3C recommendation provides the common

serialization formats Turtle, N-Triples, N-Quads, JSON-LD, N3 and RDF/XML. For the purposes
of this dissertation, a graphical representation of RDF graphs as illustrated in Figure 2.8 will be
used together with the Turtle syntax [W3C14c]. The Turtle representation of the exemplary RDF
graph as illustrated in Figure 2.8 is given in Listing 2.1.

18

2.4. Knowledge-Based Systems

1 @prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#>.
2 @prefix rdfs: <http://www.w3.org /2000/01/rdf -schema# >.
3 @prefix xsd: <http://www.w3.org /2001/ XMLSchema# >.
4 @prefix ex: <http://www.example.org/ns/example# >.
5 @prefix voc: <http://www.example.org/ns/vocabulary# >.
6
7 # RDF Vocabulary - Classes
8 voc:Entity rdf:type rdfs:Class .
9 voc:Module rdfs:subClassOf voc:Entity .
10 voc:Component rdfs:subClassOf voc:Entity .
11 voc:Cylinder rdfs:subClassOf voc:Module .
12 voc:Valve rdfs:subClassOf voc:Component .
13 voc:Switch rdfs:subClassOf voc:Component .
14
15 # RDF Vocabulary - Properties
16 voc:name rdf:type rdf:Property .
17 voc:contains rdf:type rdf:Property .
18 voc:quantity rdf:type rdf:Property .
19
20 # RDF Graph
21 ex:Cylinder1 rdf:type voc:Cylinder ;
22 voc:name "Cylinder1" ;
23 voc:contains [
24 rdf:type voc:Valve ;
25 voc:quantity "1"^^ xsd:int] ;
26 voc:contains [
27 rdf:type voc:Switch ;
28 voc:quantity "2"^^ xsd:int] .

Listing 2.1 Exemplary RDF Turtle representation

RDF Schema (RDFS). As argued beforehand, RDF vocabularies represent collections of URIs
with a clearly defined meaning. For such a meaning to be described in a machine-interpretable
manner, besides specifying knowledge on instances (i.e., assertional knowledge), the RDF recom-
mendation allows for specifying background information (i.e., terminological knowledge) by means
of RDFS [W3C14d]. RDFS provides language constructs to formulate simple graphs containing
class and property hierarchies as well as property restrictions. With its formal semantics, RDFS
leaves no room for interpretation of what conclusions can be drawn from a given graph, thereby
providing standard inference mechanisms for any RDFS-compliant graph. For instance, as in the
cylinder example, a cylinder is specified to be a specialized class of module (i.e., voc:Cylinder
rdfs:subClassOf voc:Module), each instance of cylinder will, hence, be classified to be a module
instance as well. By that, simple inference is possible by means of RDFS.
RDFS can, hence, be used as a language to model simple ontologies, but provides limited ex-

pressive means and is not suitable to formulate more complex knowledge [HKR10]. Examples for
knowledge that cannot be formulated in RDFS are phrases such as Each Module consists of at least
one component and Components are either actuators or sensors.

Web Ontology Language (OWL). One possibility to formulate such more complex knowledge
are rules that can be used to draw conclusions from a premise statement, i.e., by applying rules in
the form of IF premise THEN conclusion. Another way to formulate complex knowledge is the use
of the OWL [W3C12], which provides further language constructs defined with description logics

19

Chapter 2. Field of Investigation

based semantics. OWL moreover contains two sub-languages3 to provide a choice between different
degrees of expressivity, scalability and decidability – namely OWL Full and OWL DL. Therein,
OWL DL enables maximum expressivity while maintaining decidability [HKR10]. The OWL DL
formal (description logics based) semantics allow to define what conclusions can be drawn from an
OWL DL ontology. However, for the purpose of managing inconsistencies in heterogeneous models
of automated production systems, this dissertation will use the sufficient expressivity of RDFS.

2.4.3. Knowledge Processing

A set of specifications, which provide the means to retrieve and manipulate information repre-
sented in RDF, RDFS (or OWL, respectively) is the SPARQL Protocol and RDF Query Language
(SPARQL). The primary components of the standard are the SPARQL Query Language [W3C13a]
as well as the SPARQL Update Language [W3C13b]. SPARQL is in many regards similar to the
well-known Structured Query Language (SQL), which is supported by most relational database
systems.

SPARQL Query Language. The SPARQL Query Language provides the capabilities for query-
ing required and optional graphs along with their conjunctions and disjunctions. A query consists
of three major parts: namespace definitions being used within the query, a clause identifying the
type of the query and a pattern to be matched against the RDF data. SPARQL is highly expressive
and allows for the formulation of required and optional patterns, negative matches, basic inference
(e.g., property paths to enable transitive relations), conjunctions and disjunctions of result sets as
well as aggregates, i.e., expressions over groups of query results. Four disparate query types can be
used in SPARQL:

• SELECT queries return values for variable identifiers, which are retrieved by matches to a
particular pattern against the RDF graph,

• ASK queries return a Boolean variable that indicates whether or not some result matches the
pattern,

• CONSTRUCT queries allow for substituting the query results by a predefined template for
the RDF graph to be created, and

• DESCRIBE queries return a single RDF graph containing the relevant data about the re-
sult set. As the “relevance” of data is strongly depending on the specific application context,
SPARQL does not provide normative specification of the output being generated by DE-
SCRIBE queries.

An exemplary SELECT query is illustrated in Listing 2.2. Therein, each instance ?i of the class
voc:Entity is retrieved. Moreover, the optional pattern ?i voc:name ?iName is queried against
the graph – hence, the names of all entities are retrieved and (if applicable) bound to the variable
?iName. Finally, the Boolean comparison bound(?iName) checks whether ?iName is bound (i.e.,
whether a name is available for the entity) and binds the result to the variable ?hasName. In the
exemplary RDF graph, it can hence, be retrieved, whether all entities have an assigned name or
not – the blank nodes _:b0 and _:b1 can be identified to not have a name.

3Note that, in addition to OWL DL and OWL Full, there are three profiles for a variety of applications – namely
OWL EL, QL and RL – which, however, are out of the scope of this dissertation.

20

2.5. Summary

1 PREFIX rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#>
2 PREFIX ex: <http://www.example.org/ns/example#>
3 PREFIX voc: <http://www.example.org/ns/vocabulary#>
4
5 SELECT ?i ?iName ?hasName
6 WHERE {
7 ?i rdf:type voc:Entity .
8 OPTIONAL { ?i voc:name ?iName } .
9 BIND (bound(? iName) AS ?hasName) .
10 }

Listing 2.2 Exemplary SPARQL SELECT query

SPARQL Update Language. The SPARQL Update Language makes use of a syntax derived
from the SPARQL Query Language and allows for performing update operations on an RDF graph.
Therein, it provides the means to update, create and remove RDF triples. Hence, five distinct
update operations can be used in SPARQL:

• INSERT DATA operations allow for adding triples into the RDF graph,

• DELETE DATA operations provide the means to delete triples from the RDF graph,

• DELETE/INSERT operations allow for pattern-based manipulation of RDFgraphs,

• LOAD operations provide the means to load an RDF graph into a graph store, and

• CLEAR operations provide the means to remove all triples from a graph.

An exemplary INSERT operation is illustrated in Listing 2.3. Therein, based on the previously
introduced SELECT query, for each instance ?i that does not have an associated name, the name
"NewName" is initialized. Hence, after executing this update operation, the blank nodes _:b0 and
_:b1 receive an associated name.

1 PREFIX rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#>
2 PREFIX ex: <http://www.example.org/ns/example#>
3 PREFIX voc: <http://www.example.org/ns/vocabulary#>
4
5 INSERT { ?i voc:name "NewName" . }
6 WHERE {
7 ?i rdf:type voc:Entity .
8 OPTIONAL { ?i voc:name ?iName } .
9 BIND (bound(? iName) AS ?hasName) .
10 FILTER (!? hasName) .
11 }

Listing 2.3 Exemplary SPARQL INSERT operation

2.5. Summary

As discussed within this chapter, the automated production systems domain is a highly inter-
disciplinary domain. Although model-based (systems) engineering techniques are more and more
used in this domain, especially due to the manifold modelling languages, abstraction levels as well

21

Chapter 2. Field of Investigation

as software tools, inconsistencies (that is: conflicts between the models) are likely to occur in
these overlapping models, making an appropriate approach for inconsistency management neces-
sary. However, in order to provide such an inconsistency management, a high degree of flexibility
and extensibility is necessary and, therefore, a knowledge-based system is envisioned to be used
for inconsistency management in this dissertation. In order to provide appropriate technologies to
realize such an inconsistency management, RDF/RDFS is used to represent the knowledge encoded
within models, together with SPARQL to query and manipulate the knowledge.

22

Chapter 3.

Requirements and Simplifying Assumptions

Today’s engineering of automated production systems involves a multitude of disciplines. As a
consequence, collaborative effort of different stakeholders – among others, mechanical engineers,
electrical engineers and software engineers – is essential for the success of an engineering project
in this domain. As discussed in Chapter 2, this collaborative process increases the probability
that inconsistencies are introduced in the interdisciplinary engineering models and documents. In
contrast, as shown by industry surveys such as the one performed by Schmidt et al. [Sch+14],
automated inconsistency management is up to now “[...] barely implemented in current [engineering]
tools, but must be available in the next two years”.
The overall aim of this dissertation is to develop a framework for (semi-)automated inconsis-

tency management, thereby supporting the different discipline-specific experts in the domain of
automated production systems appropriate in specifying, diagnosing and handling inconsistencies.
Consequently, the inconsistency management process must be automated as much as possible to
decrease the engineering effort. However, a completely automated inconsistency management pro-
cess is neither possible nor desirable [Her+11]. Rather, it is aimed at benefiting from managing
inconsistencies by (1) showing stakeholders the hot spots in their engineering models to early iden-
tify potential ambiguities and errors and (2) supporting stakeholders by indicating, which parts of
the engineering models need further elaboration for the purpose of simplifying the evaluation of
engineering alternatives.
While developing the inconsistency management framework, the proposal in [NER00] is followed,

in which the incorporation of different types of inconsistencies, the definition and identification of
overlaps between models, the diagnosis of inconsistencies and the handling of inconsistencies as
essential parts of the inconsistency management process (see Definition 9 in previous Chapter 2)
are described. However, as argued beforehand, it is not possible, neither desirable to ensure full
consistency of engineering models [Her+11]. As a consequence, the best one can do is to specify
known inconsistencies, and search for those in the respective engineering models. Consequently, a
pattern-based inconsistency management approach is followed, which makes use of inconsistency
patterns (see Definition 11 in Chapter 2), that are matched against the engineering models.
The requirements that need to be fulfilled by such a pattern-based inconsistency management

approach (Section 3.1) as well as the simplifying assumptions imposed for the purpose of developing
the approach (Section 3.2) are described in the following. These requirements are mostly based on
the related literature and have been refined during discussions with several researchers in this field
within previous research work [Fel+15b; Fel+15a; Fel+16c]. A summary of this chapter is given
in Section 3.3.

3.1. Requirements

In the following, the requirements that must be fulfilled by an inconsistency management approach
for the automated production systems domain are described. First, requirements are introduced that
need to be fulfilled by a model knowledge base, which contains all the models under consideration
for an engineering project (Section 3.1.1). Subsequently, the requirements regarding the diagnosis

23

Chapter 3. Requirements and Simplifying Assumptions

(Section 3.1.2) and handling of inconsistencies (Section 3.1.3) are introduced. As the means to
measure diagnosed inconsistencies and to assess the impact of handling actions is essential to support
stakeholders in identifying the correct procedure, the requirements regarding measurement and
assessment capabilities are introduced in Section 3.1.4. Finally, the requirements that result from the
operationalization of an inconsistency management approach in the automated production systems
domain are discussed in Section 3.1.5.

3.1.1. Requirements Regarding the Model Knowledge Base

During the engineering of automated production systems, a multitude of different stakeholders from
different disciplines is involved [Vog+15]. These stakeholders make use of different modelling for-
malisms, languages and tools [Gau+09; Bro+10]: e.g., whereas mechanical engineers make use of
Computer-Aided Design (CAD) systems focusing on the physical structure of an automated pro-
duction system, electrical engineers work with electrical circuit diagrams and software engineers
implement the system’s logic within IEC 61131-3. Moreover, as the amount of available informa-
tion necessary to select or reject system alternatives changes during the life-cycle of an engineering
project (see discussions in Section 2.1), these stakeholders not only make use of different notations,
but also of different levels of abstraction to express their concerns [Jäg+12]. For instance, during
requirements engineering of automated production systems, less information is available than dur-
ing systems design – consequently, the level of detail grows throughout the engineering process.
The resulting heterogeneity of engineering models poses a major challenge [Gau+09; Bro+10], as
the composition of the different models is difficult if not impossible. Some authors even argue that
this heterogeneity “make[s] collaboration more difficult and more risky” [WB12]. As a consequence,
a common model knowledge base must form the basis to allow for inconsistency management in
the multitude of heterogeneous models in automated production systems engineering (see Require-
ment 1). Contrary to related research works, which focus on automated extraction of models from
existing engineering documents [Arr+16], in this dissertation, it is focused on the information con-
tent within the engineering documents, namely on the engineering models behind these documents.

Requirement 1 (Model knowledge base) — An approach for inconsistency manage-
ment in the automated production systems domain must provide a respective model knowledge base;
that is, it must allow for processing across heterogeneous models.

In order for such a model knowledge base to be applicable for inconsistency management, there
are typically two alternatives that can be aimed at: First, synchronizations between models can be
created in order to ensure that the models are free of inconsistencies. However, the creation and
maintenance of these synchronisations requires huge efforts, as for n models, either n · (n− 1) uni-
directional synchronisations or n · (n − 1)/2 bi-directional synchronisations are necessary. Second,
an integrated knowledge base can be used, which captures the modelled entities to be considered
for inconsistency management. Consequently, it is essential to provide a common syntax (see Re-
quirement 1.1) for the models under consideration. By means of such a common syntax, a common
representational formalism is ensured, which (1) reduces the amount of necessary synchronisations
to n bi-directional synchronisations between the model-specific formalisms and the common repre-
sentational formalisms and (2) allows one to query the models for diagnosing inconsistencies as well
as to manipulate the models for the purpose of handling inconsistencies in the common formalism.

Requirement 1.1 (Common syntax) — A common syntax must be provided to allow for
symbolically processing across heterogeneous models.

If the involved models were available in a common representational formalism, respective mech-
anisms to manage inconsistencies in these models could be put in place. However, as discussed
in Chapter 2, the respective models are subject to commonalities. For instance, a sensor introduced

24

3.1. Requirements

to the mechanical subsystem of an automated production system has its respective representation
in the electrical subsystem as well as in the respective control software. Hence, the different mod-
els share common concepts. In case of inconsistency patterns applicable for each of the involved
disciplines, one would have to specify the respective patterns for each discipline. For instance, if
each representation of the sensor must follow a given naming convention, this naming convention
would need to be specified for each of the involved disciplines. Accordingly, a common semantics
of the involved models is necessary (see Requirement 1.2) – first, to capture the concepts that are
relevant for the discipline and, second, to capture the discipline-spanning concepts of the models.
By that, the sensor would have its representation as a sensor concept in the mechanical, electrical
and software discipline as well as in a common mechatronic discipline.

Requirement 1.2 (Common semantics) — A common semantics must be provided to (1)
allow for capturing discipline-specific concepts of the involved models and (2) allow for capturing
the discipline-spanning concepts of the involved models.

By means of a common syntax and semantics of the models under consideration (see Require-
ments 1.1 and 1.2), the involved models can be put into a common representational formalism that
allows the description of common concepts of the respective models. However, in order to capture
the overlaps between the entities in the disparate models [SZ01], an explicit representation of the
links between the model entities is necessary (see Requirement 1.3). By that, a user can specify
that the sensor entity in the mechanical model is said to be equivalent to the respective entity in
the electrical and software models.

Requirement 1.3 (Links between entities) — Links between entities in disparate mo-
dels must be captured, thereby explicitly defining the overlap between the models.

3.1.2. Requirements Regarding the Support to Diagnose Inconsistencies

If a common knowledge base, which contains the models under investigation, is available (i.e., Re-
quirement 1 is fulfilled), respective mechanisms to manage inconsistencies can be put in place. One
essential property to be fulfilled by an inconsistency management approach, according to [NER00],
is the diagnosis of inconsistencies (see Requirement 2). As described in Chapter 2, essential to
inconsistency management is the incorporation of different types of inconsistencies that can occur
during engineering of automated production systems. Especially as such inconsistencies can be
specific to companies and/or projects, its extensibility towards identifying, locating and classifying
company- or project-specific inconsistencies is required.

Requirement 2 (Inconsistency diagnosis) — An approach for inconsistency manage-
ment in the automated production systems domain must provide the (semi-)automated means to
diagnose different types of inconsistencies; that is, it must allow for identifying, locating and classi-
fying [NER00] company- and/or project-specific inconsistencies.

As different types of inconsistencies can occur during engineering of automated production sys-
tems, it is essential that these can be specified by an inconsistency management approach (see Re-
quirement 2.1). Hence, an appropriate formalism must be found to define the inconsistency pattern
to be matched against the knowledge base as well as to characterize the respective inconsistency
(e.g., by defining to which category the inconsistency belongs). By that, the different types of
inconsistencies discussed in Chapter 2 can be captured.

Requirement 2.1 (Specify) — The means to specify – that is, to define and characterize –
different types of inconsistencies must be provided.

25

Chapter 3. Requirements and Simplifying Assumptions

For realizing the diagnosis of inconsistencies, an appropriate mechanism to allow for – according
to [NER00] – identifying, locating and classifying (see Requirement 2.2) the inconsistency is required.
Given that such a mechanism is available, the specified inconsistencies can be matched against the
model knowledge base and, based on the characterization of the inconsistency, the inconsistent
model elements can be identified, located and classified.

Requirement 2.2 (Identify, locate, classify) — The means to (semi-)automatically
identify, locate and classify the specified inconsistencies must be provided.

3.1.3. Requirements Regarding the Support to Handle Inconsistencies

In case an inconsistency was identified in the set of models, respective actions to handle the in-
consistency must be derived (see Requirement 3). Similarly to the diagnosis of inconsistencies
(see Requirement 2), it is crucial to allow for specifying different types of handling actions in case
an inconsistency is diagnosed [NER00]. These handling actions may, on the one hand, include pre-
defined actions that result from the type of inconsistency diagnosed in the models (e.g., a violation
of a naming convention can be resolved by renaming the entity according to the convention). On
the other hand, the definition of custom actions is necessary to provide the user with the flexibility
to specify user-defined handling actions.

Requirement 3 (Inconsistency handling) — An approach for managing inconsisten-
cies in the automated production systems domain must provide the (semi-)automated means to
handle different types of inconsistencies; that is, it must allow for either ignoring, tolerating or
resolving [NER00] different types of inconsistencies.

Crucial element to handle inconsistencies is the specification of handling actions (see Require-
ment 3.1). Therefore, an appropriate formalism must be found to define the inconsistency handling
action to be performed on the knowledge base as well as to characterize the respective action (e.g.,
by defining to which category the handling action belongs).

Requirement 3.1 (Specify) — The means to specify – that is, to define and characterize –
handling actions for different types of inconsistencies must be provided.

Typical inconsistency handling actions involve ignoring, tolerating or resolving a detected incon-
sistency (see Requirement 3.2). Consequently, an appropriate mechanism must be found that allows
for handling a diagnosed inconsistency. For traceability purposes, if an inconsistency is ignored or
tolerated, it is essential to capture the reason for ignoring or tolerating the inconsistency as well
as to document the stakeholder that decided to ignore or tolerate the inconsistency. For resolution
strategies, it is, on the one hand, essential to predefine typical resolution actions for typical types
of inconsistencies and, on the other hand, to allow users to execute user-specific resolutions.

Requirement 3.2 (Ignore, tolerate, resolve) — The (semi-)automated means to ig-
nore, tolerate or resolve the diagnosed inconsistencies must be provided.

3.1.4. Requirements Regarding the Support to Measure and Assess Diagnosed
Inconsistencies and Handling Actions

Assuming that an inconsistency management approach for the automated production systems do-
main is capable of diagnosing (cf. Requirement 2) and handling (cf. Requirement 3) inconsistencies,
it is inevitable to provide users with the means to measure and assess both the impact of a diag-
nosed inconsistency and the effort to handle the respective inconsistency (see Requirement 4). This
is especially essential, as a multitude of different inconsistencies can occur, with different degrees
of severity and disparate impact on the quality of the engineering solution. For instance, whereas

26

3.1. Requirements

a violation of a naming convention (e.g., for a respective software variable) may be undesired, its
impact on the quality of the overall solution can be neglected. However, if inconsistencies provide
users (e.g., domain experts or discipline engineers) with potentially false information, erroneous
decisions can be made. Therefore, it is essential to allow users to measure the impact of diagnosed
inconsistencies as well as to asses the impact of potential handling actions.

Requirement 4 (Measurement and assessment capabilities) — An approach for
managing inconsistencies in the automated production systems domain must allow users to measure
the impact of diagnosed inconsistencies and to assess the impact of respective handling actions.

As discussed beforehand, the means to measure inconsistencies must be provided (see Require-
ment 4.1). For one, this includes the identification of the expected impact of an inconsistency. For
instance, a warning (e.g., as a consequence of the violation of a naming convention) will have less
severe impact on the overall quality of the engineering solution; an error (e.g., as a consequence
of erroneous or contradicting information) could potentially lead to wrong decisions within the
engineering process. Moreover, it is essential to conclude on the necessary stakeholders that are
responsible to handle the diagnosed inconsistency. With this information, it can be determined who
will need to decide upon inconsistency handling actions.

Requirement 4.1 (Measure) — The means to measure the diagnosed inconsistencies must
be provided. This includes (1) the identification of the expected impact of an inconsistency (e.g.,
inconsistency corresponds to an error, a warning or an information) as well as (2) the identification
of the respective stakeholders that are responsible to handle the inconsistency.

If an inconsistency is diagnosed, respective handling actions can be determined. However, in
most cases it is not possible nor desirable to automate the execution of potential handling actions –
rather, the responsible stakeholders must be able to decide, which handling action must be taken.
Consequently, in order to support these stakeholders in their decision, it must be possible to assess
the impact of handling actions (see Requirement 4.2) (e.g., by giving an estimation of the time to
resolve an inconsistency). After having executed a handling action, stakeholders must be able to
re-evaluate, whether the inconsistency has been handled appropriately or not.

Requirement 4.2 (Assess) — The means to assess the impact of a handling action must
be provided. This includes (1) to estimate the cost of a handling action (e.g., time to resolve the
inconsistency) and (2) to re-evaluate whether the inconsistency has been appropriately handled or
not.

3.1.5. Requirements Regarding the Operationalization

Whereas the previous Requirements 1 to 4 focused on the technical perspective of an inconsistency
management approach, it is essential to also incorporate the means to operationalize (see Require-
ment 5) the approach in the automated production systems domain. On the one hand, this includes
the applicability of the approach in industrial settings of automated production systems, in which the
appropriateness of the approach for, e.g., domain experts such as mechanical, electrical and software
engineers, must be considered. On the other hand, extensions towards company-/project-specific
requirements must be considered. Finally, an approach for inconsistency management depends on
its scalability and performance, which are – especially for industry-scale systems that often consist
of thousands of components – essential to real-world applications.

Requirement 5 (Operationalization) — For an approach to manage inconsistencies in
the automated production systems domain, the applicability for domain experts, i.e., the discipline-
specific engineers participating in the engineering process, in industrial settings must be ensured.

27

Chapter 3. Requirements and Simplifying Assumptions

A first aspect of operationalization of the inconsistency management approach for industrial au-
tomated production systems is its extensibility (see Requirement 5.1), e.g. for project- or company-
specific applications. On the one hand, such extensions require the means to incorporate project- or
company-specific models, inconsistencies as well as handling actions. Hence, the mechanisms, con-
cepts and tools used for inconsistency management must support the incorporation of such project-
or company specific documents. On the other hand, it is essential to ensure that an inconsistency
management approach can be adapted to project- or company specific tool chains and set-ups. It
is only then that manufacturers in the automated production systems domain will be able to adapt
and apply the approach for their purposes. As a consequence, the technologies being used by an
inconsistency management approach must rely upon accepted standards.

Requirement 5.1 (Extensibility) — The mechanisms and tools being used for inconsis-
tency management must be extensible for project- or company-specific applications. This includes
the means to adapt and extend the approach towards project- or company-specific models, inconsis-
tencies as well as handling actions.

A second aspect that refers to the operationalization of the inconsistency management approach is
its comprehensibility for potential users (see Requirement 5.2). Potential users of such an approach
include domain experts and discipline engineers. Therefore, the mechanisms and tools being used
by these users must be appropriate for them.

Requirement 5.2 (Comprehensibility) — The mechanisms and tools being used for in-
consistency management must be comprehensible for users (e.g., for domain experts).

Finally, the operationalization of an inconsistency management approach also demands its appli-
cability for real-world industry-scale applications with regard to scalability and performance (see Re-
quirement 5.3). As industry-scale systems often contain thousands of components and, hence, the
models describing these system often comprise hundreds of thousands of entities, the mechanisms
and tools being used for the purpose of inconsistency management must be scalable and with ade-
quate performance to incorporate these kinds of systems.

Requirement 5.3 (Scalability and performance) — The mechanisms and tools be-
ing used for inconsistency management must be applicable for industry-scale applications.

3.2. Simplifying Assumptions

As discussed within the previous sections, manifold considerations must be made for the develop-
ment of an inconsistency management approach in the automated production systems domain. To
reduce the investigation to a manageable scope, a number of simplifying assumptions underlie this
dissertation. These assumptions are as follows.

Assumption 1 (Focus on engineering) — Conclusions are drawn from engineering in-
formation. Inconsistencies during operation of automated production systems are not considered.

Assumption 2 (Focus on models) — Conclusions are drawn from models, i.e., from the
information content within discipline-specific engineering models. Textual, fuzzy information is not
considered for inconsistency management.

Assumption 3 (Focus on static data) — Conclusions are drawn from static information
and knowledge. It is not focused on executing, e.g., software or analysis models.

28

3.3. Summary

Assumption 4 (Focus on technical realization) — It is focused on the technical re-
alization of an inconsistency management approach. Although part of the considerations throughout
this dissertation (see Requirement 5), the means to introduce the inconsistency management ap-
proach in an industrial (project or company) setting goes beyond the scope of this dissertation.

Assumption 5 (Neglect of managing variants and versions) — It is focused on
the current version and variant of the models under consideration. Although not limited to, variant
and version management of models is neglected within the context of this dissertation.

3.3. Summary

Within the preceding sections, the requirements and assumptions according to the different parts of
an inconsistency management approach in the automated production systems domain are deducted.
All of the requirements and assumptions were given short names, which will be referred to in the
following chapters.

29

Chapter 4.

Related Work

This chapter compares the different approaches in the related literature, which provide concepts
that are related to inconsistency management in the automated production systems domain. First,
approaches are introduced that aim at integrating the heterogeneous models into a single language
or format (Section 4.1). Second, approaches in the field of inconsistency management are dis-
cussed (Section 4.2). Finally, software tools that are available for the engineering of automated
production systems are discussed regarding their feasibility for inconsistency management (Sec-
tion 4.3). The chapter is concluded in Section 4.4.

4.1. Approaches to Integrate Heterogeneous Models

The increasing complexity in the automated production systems domain is often faced by means
of introducing appropriate modelling languages that abstract the view on the technical system,
thereby reducing complexity and providing the user with adequate means to rapidly comprehend the
system under consideration. However, introducing modelling languages arises the need to cope with
inconsistencies that potentially arise in between or within the models. In order to cope with these
inconsistencies, mainly two approaches can be identified: For one, integrated modelling languages or
formats are used, which aim at integrating the different models in the automated production systems
domain into one overarching language, thereby reducing the potentially occurring inconsistencies.
These integrated modelling languages and formats are discussed in Section 4.1.1. Moreover, model
mappings and links are used to explicitly capture the dependencies between disparate models. These
approaches are discussed in Section 4.1.2. An overview of the discussed approaches can be found
in Tables 4.1 and 4.2; a conclusion of the findings is given in Section 4.1.3.

4.1.1. Integrated Modelling Languages and Formats

As discussed beforehand in Section 2.2, the use of models serves the purpose of abstraction, thereby
focusing on certain points of interest in order to handle the complexity of the system under inves-
tigation. Consequently, Model-Based Engineering (MBE) approaches rapidly became the standard
development paradigm for complex software by focusing on the (software) system instead of on the
computing concepts and environments [Sch06] – hence, “[...] shifting much of the focus away from
program code” [TF11]. By means of MBE, domain-specific modelling languages can be constructed
through metamodels for the purpose of building applications that are tailored to the specific do-
main, as well as transformation engines and generators to analyse and synthesize certain modelling
aspects [Sch06]. Several graphical modelling languages have, thus, been developed to provide an
intuitive, graphical development process.

UML-based Modelling Approaches

For the software development, the Unified Modeling Language (UML) [OMG15c] has evolved as the
de facto standard [SBF07] and, hence, its application for control software development seems obvi-
ous. UML pursues an object-oriented approach and allows for encapsulating and reusing entities by

31

Chapter 4. Related Work

Table 4.1. Overview of the related work in the field of integration of heterogeneous models: inte-
grated modelling languages and formats

Requirements

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5

Name Domain C
om

m
on

sy
nt

ax
(1

.1
)

C
om

m
on

se
m

an
ti

cs
(1

.2
)

L
in

ks
b
et

w
ee

n
en

ti
ti

es
(1

.3
)

S
p
ec

if
y

(2
.1

)

Id
en

ti
fy

,
lo

ca
te

,
cl

as
si

fy
(2

.2
)

S
p
ec

if
y

(3
.1

)

Ig
n
or

e,
to

le
ra

te
,

re
so

lv
e

(3
.2

)

M
ea

su
re

(4
.1

)

A
ss

es
s

(4
.2

)

E
xt

en
si

b
il
it
y

(5
.1

)

C
om

p
re

h
en

si
-

b
il
it
y

(5
.2

)

S
ca

la
b
il
it
y

an
d

p
er

fo
rm

an
ce

(5
.3

)

Integrated Modelling Languages and Formats (Section 4.1.1)

[BGT05;
SW10; GS13]

Mechatronics G# G# G# # # n/a n/a n/a

[Bas+11;
BFB14;
SBF07]

Manufacturing G# G# G# G# # # n/a n/a G#

[Thr05; Thr10;
Thr13]

Mechatronics G# G# G# G# # # n/a n/a n/a

[KV13;
Ker+13;
Ker+14]

Mechatronics G# G# # # # # n/a n/a n/a

[SSP09;
CLP11;
Sha+12]

Systems G# G# # # n/a n/a G#

[KP09; KP10] Systems # # # # # n/a n/a n/a

[Lin+15a;
Lin+15b]

Production G# G# # G# G# # G# n/a n/a

[EMO07;
Mar+09]

Control G# G# G# G# # # n/a n/a G#

[Dra10; IEC14] Control G# G# n/a n/a n/a n/a n/a n/a G#

[EM12] Control G# G# G# # # n/a n/a G#

[Ber+16] Production G# # # # # # n/a n/a G#

[Car+16] Production G# G# # # # # n/a n/a G#

[Fay+17] Production G# # # # # n/a n/a #

[BSZ09;
Mos+11;
MB12]

Production # G# n/a G# n/a n/a n/a G#

[Mor+12;
Bif+14b]

Production G# # G# # G# n/a n/a G#

[MSD10] Production G# # # # # n/a n/a G#

[Eka+17] Systems n/a n/a n/a n/a n/a n/a n/a n/a n/a

Legend: – in focus of this work, G# – partially in focus of this work, # – not in focus of this work, n/a – not applicable

32

4.1. Approaches to Integrate Heterogeneous Models

means of classes. The value in applying UML for complex software systems especially is in improved
comprehensibility and, thus, higher reliability and flexibility in control software system design and
maintenance [SBF07; TF11]. Although object-orientation is not yet state of the art in industrial
practice – even if an object-oriented extension of IEC 61131-3 has recently been proposed – control
software developers are already familiar with the general concept of object-orientation [Wer09] ow-
ing to the concept of Function Blocks (FBs) instantiation. In addition, experiments have shown that
– although imposing several restrictions on teaching of UML compared to IEC 61131-3 [Vog+13]
– UML can increase comprehensibility and flexibility for control software development [Vog15].
Model-to-model transformations as well as model-to-text transformations for the purpose of gen-
erating control software from UML diagrams have already been developed [WV11]. In addition,
design patterns were defined to further ease the development of control software [BFS13]. However,
although UML is appropriate for representing the control software discipline of an automated pro-
duction system, there is no inherent support for capturing other discipline aspects, e.g., from the
electrical or mechanical engineering discipline (cf. Requirement 1).
In order to integrate such additional aspects into MBE, the UML provides the means to extend

existing diagrams by means of so-called profiles. Several profiles have been proposed to incorporate
diverse aspects, e.g., UML-RT [Sel98] for incorporating real-time aspects or MARTE [OMG11] for
model-driven development of Real-time Embedded Systems. However, both UML-RT and MARTE
focus on the software aspect of the automated production system and do not incorporate aspects
from other disciplines such as mechanical engineering or electrical engineering (cf. Requirement 1).
In Burmester et al. [BGT05], MechatronicUML is proposed, which focuses on the real-time be-
haviour of complex, distributed systems. Therein, both a structural view and a behavioural view
are provided, which allow to flexibly define the reusable components of a mechatronic system. Ap-
plications of MechatronicUML were illustrated, e.g., in the railway domain [SW10; GS13] with
a special focus on verification of self-optimizing mechatronic systems. Although both a common
syntax and semantics for mechatronic systems is enabled by means of a UML profile (cf. Require-
ment 1), inconsistency management is not in focus of these works (cf. Requirements 2 to 4). In
Secchi et al. [SBF07], the UML-RT is applied together with bond graphs in order to describe the
structure and behaviour of both the control software and the physical system. However, although
these profiles incorporate the interdisciplinary aspects that are necessary for the respective applica-
tion, the different engineering documents from the different disciplines are not yet included in these
languages (cf. Requirement 1).

SysML-based Modelling Approaches

Contrary to MBE for the software perspective of automated production systems, Model-Based
Systems Engineering (MBSE) constitutes the shift from a document-centric development process
of systems towards the usage of integrated models for requirements, design, analysis, verification
and validation [DM13]. Therein, the Systems Modeling Language (SysML) [OMG15b] has become
one of the most wide-spread languages and extends the software-centric UML towards are more
system-centric, graphical modelling language. SysML is “[a]n important extension of the UML [...]
for systems engineering” and “adds stereotypes to the UML as well as new diagram types [...] while
leaving out some UML diagrams” [RP11] for the purpose of systems engineering.
Various research work has been carried out on MBSE using SysML, putting the focus on different

modelling purposes and development phases. Bassi et al. [Bas+11] as well as Barbieri et al. [BFB14]
aim at an integrated modelling process, in which “SysML models are adopted as high-level abstrac-
tions of the system under design” [Bas+11]. By that, a hierarchy of models is created to support
three levels of modelling [Bas+11] – including a detail level (e.g., domain-specific models to describe
internal system dynamics), a global level (i.e., a model that describes the global system dynamics)
and a high-level model for the purpose of management between the involved models. Similarly,

33

Chapter 4. Related Work

Barbieri et al. [BFB14] propose a hierarchical approach to link the conceptual system design with
executable simulation models. The resulting model hierarchy provides a high degree of flexibility
as modellers can integrate their domain-specific modelling languages into a common SysML-based
syntax (cf. Requirement 1.1) – the semantic concepts used within the different modelling languages
as well as the links between these concepts are, however, not described formally and limited to the
expressiveness of the SysML syntax and semantics (cf. Requirements 1.2 and 1.3). Although the
intended development process also involves a validation phase to avoid errors and inconsistencies
during system design, these checks are limited to simple syntactic validation checks and value com-
parisons. A sophisticated specification, diagnosis and handling of complex inconsistencies is not yet
supported (cf. Requirements 2 and 3).
Model-Integrated-Mechatronics [Thr05] introduces a component-based approach, in which differ-

ent layers are used in order to describe the mechatronic components. Of essential importance to
the overall concept is the mechatronic layer, which is “projected into three dimensions representing
the application [layers], the resource [layer] and the mechanical [layer] [...]” [Thr05]. By that, en-
gineers combine mechatronic components in the mechatronic layer including their already existing
descriptions in the detailed layers. Besides the segmentation into vertical layers, Model-Integrated-
Mechatronics also supports model evolution as it divides the engineering process into analysis,
design and implementation. Therein, Model-Integrated-Mechatronics foresees a flexible develop-
ment process, in which engineers can work both “horizontally and vertically, either top-down or
bottom-up” [Thr10]. By means of SysML, mechatronic components can be modelled and combined
according to the Model-Integrated-Mechatronics paradigm [Thr05]. Consequently, a SysML model
serves as the basic, synchronizing model, which provides the respective links to further, domain-
specific models, e.g., in the application, resource or mechanical layer. By relying on a common
syntax and semantics provided by the proposed SysML 3+1 view-model, the knowledge base is
formed in an unambiguous manner (cf. Requirement 1). Nevertheless, the diagnosis and handling
of inconsistencies in this work is limited to syntactical compliance checks to the central SysML view,
which supports, e.g., traceability between the different modelling artefacts [Thr13] – the means to
specify, diagnose and resolve user-specific inconsistencies as demanded in Requirements 2 and 3 is
not supported.
SysML4Mechatronics is the modelling language introduced by Kernschmidt et al. [KV13]. The

authors extend the SysML metamodel using a profile for the purpose of modelling discipline-specific
components of the system under development as well as discipline-specific ports in between these
components. By means of SysML4Mechatronics, an increased reuse of system components is envi-
sioned, as mechatronic modules can be combined out of discipline-specific components. Different
mechanisms have been proposed in order to extend the modelling language, e.g., for the purpose of
analysing change situations [Ker+14] as well as for integrating SysML4Mechatronics with further
modelling languages [Ker+13] within a common syntax (Requirement 1.1). Nevertheless, although
a comprehensive, interactive visualization of the system under investigation can be achieved by
SysML4Mechatronics (Requirement 5), diagnosis and handling of inconsistencies within heteroge-
neous models is not in focus of their work (Requirements 2 and 3).
A similar approach that aims at applying SysML as a unifying language is presented in Shah et

al. [SSP09]. Therein, at the example of two views – namely a system-level view in SysML and
a domain-specific electrical view in EPLAN P8 – the authors illustrate their mapping approach.
Further examples for integrating SysML with domain-specific models can be found, e.g., for the
purpose of simulation [CLP11] and optimization [Sha+12]. Domain-specific metamodels are, in a
first step, created to formally define the involved domains. Subsequently, the SysML metamodel is
customized by means of SysML profiles to allow for domain-specific modelling. Finally, the views
are integrated by means of a mapping between the domain-specific metamodel and the SysML
profile. By that, contrary to implementing a multitude of bidirectional mappings between domain-
specific languages, SysML can serve as common, multi-purpose language to capture the dependencies

34

4.1. Approaches to Integrate Heterogeneous Models

between different domains in a common system view [Sha+10]. Consequently, the common concepts
are captured in a SysML-based syntax and semantics as demanded in Requirements 1.1 and 1.2
and dependencies between the different views are considered explicitly (see Requirement 1.3) and
in an extensible and comprehensible manner (Requirement 5). However, “a major research question
involves determining an effective way [to] maintain consistency [...]” [Sha+10]. As a consequence,
further research is needed for the purpose of diagnosing and handling inconsistencies that are likely
to occur between the different domain-specific models (Requirements 2 and 3).
Kerzhner et al. [KP10] make use of SysML for the purpose of model management. Three essential

parts are introduced in a SysML model to define the systems engineering problems: requirements
that should be met by the system, experiments to analyse, whether the requirements are fulfilled,
and system topologies that are potential candidates to fulfil the requirements. By that, a first step
towards an automatic search for valid and appropriate system alternatives as suggested in Kerzhner
et al. [KP09] is provided. The central SysML model allows for capturing the information that is
needed for evaluation of design alternatives (Requirement 1). However, inconsistency management
between the different models involved during engineering is not in the focus of this work (cf. Re-
quirements 2 and 3).
Lin et al. [Lin+15a] present a SysML-based approach for change request management. Therein,

SysML diagrams are used to support the decision management in case changes are made to the
automated production system. Therein, a workflow is proposed that allows for identifying the model
elements to be replaced, integrating the novel elements to the engineering solution and identifying
the model elements that are affected by the change request. Besides the workflow, a technological
basis is provided by means of a SysML profile [Lin+15b]. Although the presented workflow and
modelling support aids engineers in managing change requests to the engineering solution, it is not
focused on managing inter-model inconsistencies (cf. Requirements 2 and 3).

Exchange Formats

To address the challenge of interoperability, several approaches aim at providing respective ex-
change formats that allow for a generic description of the system architecture. For one, Estévez
et al. [EMO07] introduce a generic markup language for defining both the software and hardware
architecture of industrial control systems. By means of the markup language, two essential benefits
can be obtained: First, consistency between hardware and software architectures can be checked
by means of an Extensible Markup Language (XML) schema as well as XML Schematron rules.
Second, the IEC 61131-3-compliant automation projects can be generated. The authors argue that
the main benefit in using XML is in the power of additional XML technologies. Besides validat-
ing the compliance to lexical and syntactical constraints defined in the XML schema, a multitude
of technologies such as Extensible Stylesheet Language (XSL) Transformation (XSLT) as well as
respective standardized interfaces to generate or manipulate XML documents exists [Mar+09]. As
a consequence, the proposed markup language captures the necessary elements from software and
hardware architectures (cf. Requirement 1) to ensure simple syntactical and lexical constraints
(cf. Requirement 2) – however, more complex, user-defined inconsistencies cannot be specified and
resolved by the approach (cf. Requirements 2 and 3), making additional support for specification,
diagnosis and handling of user-defined inconsistencies necessary.
One upcoming standard in the automated production systems domain is Automation Markup

Language (AutomationML), which aims at “support[ing] the data exchange in a heterogeneous
engineering tools landscape” [IEC14]. Therein, the objective of AutomationML is to intercon-
nect different discipline-specific engineering tools such as Programmable Logic Controller (PLC)
programming tools, mechanical engineering tools, electrical engineering tools, etc. [Dra10; IEC14]
AutomationML makes use of Computer Aided Engineering Exchange (CAEX) [IEC16] as the basis
to connect the different data formats – hence, CAEX serves as the top-level format being used

35

Chapter 4. Related Work

within AutomationML. Discipline-specific XML formats – among the Collaborative Design Activ-
ity (COLLADA) and PLCopen XML [PLC09b] format, which are currently included in Automa-
tionML, further discipline-specific XML formats can be used – are then interconnected by means
of the CAEX capabilities. By that, tool vendors can export their tool-specific documents into the
AutomationML format, thereby providing the basis for engineering data exchange between different
discipline-specific tools and formats. Although AutomationML gains more and more importance
in various fields in the automated production systems domain and appropriate semantic mappings
can be represented in AutomationML [Bif+14a], sophisticated support for linking of engineering
artefacts (cf. Requirement 1) is not available inherently [Bif+15] – but, nonetheless, an essential
prerequisite for inconsistency management (cf. Requirements 2 and 3).

As a basis to overcome this drawback, Estévez et al. [EM12] suggest the use of AutomationML
combined with Mathematical Markup Language (MathML) [W3C14a] – a markup language to
encode mathematical content – to ensure the correctness of AutomationML documents. By that,
design errors can be identified in the syntax and static semantics of the respective documents.
Although these simple validations are essential to provide correct models to engineers working with
the documents, complex semantic inconsistencies cannot be described easily (cf. Requirements 1
and 2). Furthermore, support for handling identified inconsistencies (cf. Requirement 3) is not in
focus of this work.

Within the approach presented by Berardinelli et al. [Ber+16], an integration between Automa-
tionML and SysML is envisioned, thereby bridging the gap between exchange formats and model-
driven engineering technologies. By such an integration, the SysML model serves as visual rep-
resentation of the knowledge contained within AutomationML. To realize such a transformation,
the authors formulate a SysML profile, which allows for extending the SysML modelling constructs
towards AutomationML-specific ones. By means of a model-to-model transformation formulated us-
ing the ATLAS Transformation Language (ATL) [Jou+08], the transformation between the SysML
profile and the AutomationML files is specified. As a consequence, the data modelled in the SysML
model can be transformed into the standardized syntax and semantics of AutomationML (Require-
ments 1.1 and 1.2). The benefit in applying such transformations between a priori decoupled tech-
nologies is in using the benefits of both – for instance, Kovalenko et al. [Kov+15] identify the benefit
in transforming between AutomationML and Web Ontology Language (OWL) for the purpose of
reasoning and querying on the AutomationML data. However, neither of the proposed approaches
aims at the management of inconsistencies in between different, heterogeneous engineering mod-
els (Requirements 2 and 3).

The approach presented by Carlsson et al. [Car+16] proposes a plant description format for in-
creased interoperability of engineering tools. By means of this approach, an exchange format is
proposed “for the exchange of engineering data which does not force all systems to use the same
standard or required full compatibility between all relevant standards” [Car+16]. Rather, a basic
structure is provided to represent plant descriptions from different engineering tools and formats.
However, although an essential knowledge base is created by means of the presented format (Re-
quirements 1.1 and 1.2), inconsistency management is not in focus of their work (Requirements 2
and 3).

Within the research project SemAnz4.0, a concept for modelling technical systems in a model-
and lifecycle-spanning manner is created [Fay+17]. Therein, during engineering, a holistic system
information model is created by means of a system and a property model. The system model rep-
resents the technical system from the different discipline-specific modelling perspective. By means
of the property model, system properties can be described in a machine-interpretable manner for
further (semi-)automatic interpretation. For both models, standardized metamodels are envisioned.

36

4.1. Approaches to Integrate Heterogeneous Models

Data and information hubs

As one means to simplify the interdisciplinary engineering, some approaches aim at providing a
central information system, which captures the heterogeneous engineering data in a common rep-
resentation. By that, all participating stakeholders and disciplines can work on this central data or
information hub.
An example for such an information hub is the Automation Service Bus [BSZ09], which aims at

systematically integrating systems engineering software tools by means of common concepts within
an Engineering Knowledge Base [Mos+11; MB12]. According to Moser et al. [MB12], typical ap-
plication examples of such a hub within the automation systems domain are, e.g., tool-crossing
data exchange, consistency checking as well as end-to-end analyses. Although, with the concep-
tual approach presented in Moser et al. [MB12], an essential basis for inconsistency management
is laid – namely, a common syntax and semantics for integrating different engineering models (Re-
quirements 1.1 and 1.2), the authors do not specify, how the actual inconsistency management
process should be realized and integrated (Requirements 2 and 3).
Such an Automation Service Bus can serve as the basis to realize a multitude of use cases – e.g.,

dashboards [Bif+14b] to aid in identifying and tracing interdisciplinary dependencies and parameters
(Requirement 1.3) as well as interactive navigators [Mor+12] to support navigation across different
engineering tools (Requirement 5.2). Moreover, the applicability of the Automation Service Bus
for synchronization processes was successfully validated by comparing the approach with manual
synchronization processes [WB15], therein especially focusing on a comprehensible synchronization
process for identifying defects between the engineering data (Requirement 2) and supporting their
resolution (Requirement 3).
A concept for a semantic integration of disparate models within the domain of mechatronic sys-

tems is presented by Muehlhause and Diedrich [MSD10]. Therein, Semantic Web Technologies
are used to represent the models in a common representational formalism with a common seman-
tics (Requirement 1) – however, inconsistency management (Requirements 2 and 3) is not in focus
of their work.
A comprehensive survey of ontology-based data integration approaches can be found in [Eka+17].

Therein, the authors argue that 4 stereotypes of such approaches can be found. For one, the
authors distinguish between single-ontology approaches and multiple-ontology approaches. Single-
ontology approaches assume one single global vocabulary to integrate all data sources. Multiple-
ontology approaches allow for multiple local ontologies being used for different data sources and
respective semantic mappings to integrate them. A hybrid ontology approach allows for a shared
vocabulary to be used and extended by the different data sources. Finally, a global-as-view approach
assumes a global ontology with no extension through local ontologies. Consequently, instead of the
need to redefine local ontologies (as is the case for the hybrid ontology approach), local ontology
definitions can be preserved. Together with this classification, Ekaputra et al. [Eka+17] propose a
decision tree to select for the best approach based on the concrete use case. Nevertheless, a concrete
implementation framework or guidance is not in scope of their work (Requirement 5).

4.1.2. Model Mappings and Linking Support

As discussed beforehand, an essential basis for inconsistency management is to establish and formally
capture the links between overlapping model entities (see Requirement 1.3). Several approaches have
been developed in the related literature that focus on these mapping between modelling languages
and formally capture the links between semantically overlapping model entities.
As a basis for different purposes, e.g., (in-)consistency management, versioning, tool integration

and transformation, Qamar et al. [Qam+12] analyse the need to formally model dependencies (that
is: semantic overlaps or links) between different model entities. As a basis for their work, they dis-
tinguish between so-called Synthesis Dependencies, which represent the choice made by an engineer

37

Chapter 4. Related Work

or parametric function within an engineering problem, and Analysis Dependencies, which represent
mathematical relationships between a set of dependencies. By means of these dependencies, the
authors propose the formulation of a network of dependencies as a basis for, e.g., inconsistency
management [Qam+12]. To allow for formulating these dependencies for modelling languages such
as SysML, the authors make use of a Domain-specific Language (DSL) for dependency modelling.
By means of this graphical language, for one, links can be captured between different model entities.
Moreover, the network of dependencies can, e.g., be visualized as a graph. A prototypical imple-
mentation of the suggested dependency modelling language is presented in Qamar et al. [QWD15].
Although dependency modelling by means of a DSL is an essential basis for inconsistency manage-
ment (see Requirements 1.1 and 1.3), the semantics of these dependencies must be captured (Re-
quirement 1.2) in order to (semi-)automatically check whether the dependencies are held or not,
and to (semi-)automatically propagate changes along these dependencies (Requirements 2 and 3).
An approach that envisions to formally capture so-called engineering effect links – that is, rela-

tions, which result from, e.g., decisions during the engineering workflow – is introduced in Schröck
et al. [Sch+13a]. Therein, the authors aim at an engineering process that (1) captures a set of view-
points covered throughout the engineering as well as (2) allows for establishing such engineering
effect links throughout the engineering of a machine or plant. Later, the authors evolve the term
effect link towards engineering relations, which allow to capture different classes of relations among
engineering disciplines [Sch+15]. As a consequence, using these engineering relations, a multitude
of views on the system under development (e.g., a functional view and a variant view) can be com-
bined. The engineering relations then not only serve as the basis to ensure consistency among the
different views in a formal way, but also to support engineers in reusing discipline-specific docu-
ments [SFJ15]. A prototypical tool support is provided by Schröck et al. [Sch+15] at the example
of pure::variants [pur16] and COMOS [Sie16]. However, although the authors discuss the need to
provide a standardized way to capture these engineering relations, neither a formalism to capture
these links as well as the linked model entities (Requirement 1.1) nor the means to formally capture
the (static and operational) semantics of links (Requirement 1.2) are proposed. These are yet to
be defined, especially for inconsistency management for heterogeneous models in the automated
production systems domain.
The need to support links between AutomationML files and engineering data is highlighted in Biffl

et al. [Bif+14a; Bif+15]. Therein, Biffl et al. [Bif+15] formulate an AutomationML metamodel as
the basis to provide tool support for this purpose. Links between disparate AutomationML files
are then represented in a model-based manner. Furthermore, the authors make use of the Object
Constraint Language (OCL) for the purpose of formulating and executing simple inconsistency
rules on the link model. Tool support is provided by means of the Eclipse Modeling Framework
(EMF) [Ecl16c] as well as the Eclipse Epsilon Framework [Ecl16b], which together provide the means
to formulate respective metamodels for AutomationML as well as for links in between these models.
Although by means of the proposed concept, an initial support towards linking AutomationML with
engineering data is provided in a common syntax (Requirements 1.1 and 1.3), future research needs
to investigate usable and comprehensible means, e.g., for inconsistency management [Bif+15] – and
hence, for supporting the diagnosis and handling of inconsistencies (Requirements 2 and 3).
Lüder et al. [LPW18] present such an approach that makes use of OCL for the purpose of checking

inconsistencies on links within AutomationML. Within their research, a conceptual approach is
introduced, which is yet subject to further research for practical applications (Requirement 5).
For the domain of product-service systems, an ontological approach to couple the different dis-

ciplines is presented in Zou et al. [Zou+19]. Therein, by means of ontological background knowl-
edge (Requirement 1), a basis for the means of inconsistency management can be formed. Although
analogously, Kattner et al. [Kat+19] introduced an approach to capture the dependencies between
the different disciplines explicitly, a standardized and common mechanism to define and measure
inconsistencies (Requirement 2) or handling actions (Requirement 3) has not been discussed.

38

4.1. Approaches to Integrate Heterogeneous Models

Konersmann et al. [KG12; Kon18] propose an approach for explicitly integrating architectural
software models with program code to ensure consistency between both. Although the approach pro-
poses an intermediate language to capture the modelled/programmed knowledge (Requirement 1)
as well as well-defined transformations that ensure that both models and program code are free of
inconsistencies (Requirement 2), the authors put their focus on the domain of software systems.
Hence, the interdisciplinary engineering models of automated production systems are not in focus
of their work (Requirement 5).

Table 4.2. Overview of the related work in the field of integration of heterogeneous models: model
mappings and linking support

Requirements

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5

Name Domain C
om

m
on

sy
nt

ax
(1

.1
)

C
om

m
on

se
m

an
ti

cs
(1

.2
)

L
in

ks
b
et

w
ee

n
en

ti
ti

es
(1

.3
)

S
p
ec

if
y

(2
.1

)

Id
en

ti
fy

,
lo

ca
te

,
cl

as
si

fy
(2

.2
)

S
p
ec

if
y

(3
.1

)

Ig
n
or

e,
to

le
ra

te
,

re
so

lv
e

(3
.2

)

M
ea

su
re

(4
.1

)

A
ss

es
s

(4
.2

)

E
xt

en
si

b
il
it
y

(5
.1

)

C
om

p
re

h
en

si
-

b
il
it
y

(5
.2

)

S
ca

la
b
il
it
y

an
d

p
er

fo
rm

an
ce

(5
.3

)

Model Mappings and Linking Support (Section 4.1.2)

[Qam+12;
QWD15]

Mechatronics G# # # # # n/a n/a G# G#

[Sch+13a;
Sch+15; SFJ15]

Production G# G# # # # # n/a n/a G# G#

[Bif+14a; Bif+15] Production G# G# # # # n/a n/a G# G#

[LPW18] Production G# G# # # # n/a n/a n/a n/a

[Zou+19;
Kat+19]

Product-service
systems

 G# # # # # # G# n/a n/a

[KG12; Kon18] Software G# G# # G# # n/a n/a G# n/a n/a

Legend: – in focus of this work, G# – partially in focus of this work, # – not in focus of this work, n/a – not applicable

4.1.3. Synopsis

A multitude of modelling languages – e.g., UML for the control software development and SysML
for a systems engineering perspective on the automated production systems – is available for the
purpose of comprehensibly and extensibly model the knowledge on the system under investigation
(cf. Requirements 1 and 5). Furthermore, AutomationML is an upcoming standard that gains more
and more importance for exchanging engineering data between different discipline-specific engineer-
ing tools. However, although some approaches to diagnose simple syntactical inconsistencies exist,
neither the aforementioned modelling languages nor standards such as AutomationML inherently
support the means to diagnose and handle complex inconsistencies (cf. Requirements 2 and 3).
Therein, especially the description of the common semantics of modelled entities as well as the links
between these entities (Requirements 1.2 and 1.3) are essential for inconsistency management.

39

Chapter 4. Related Work

4.2. Approaches to (Semi-)Automated Inconsistency Management

Whereas the previously discussed research works focus on the integration of heterogeneous modelling
languages and formats, it is essential to ensure that these heterogeneous models and documents are
free of inconsistencies. Consequently, this section is dedicated to inconsistency management ap-
proaches. These approaches can broadly be classified into three different categories: Approaches
that make use of logical reasoning and theorem proving aim at a formal knowledge base in terms of
a set of axioms, from which the (in-)consistency of a set of models can be formally concluded (Sec-
tion 4.2.1). Within rule- and pattern-based inconsistency management approaches, (in-)consistency
rules and patterns are used to describe the circumstances under which a model is (in-)consistent
(Section 4.2.2). By means of model synchronization approaches, it is aimed at avoiding inconsis-
tencies through synchronizations between the models under investigation (Section 4.2.3). These
different approaches are compared in Table 4.3 – the findings are concluded in Section 4.2.4.

4.2.1. Logical Reasoning and Theorem Proving

Within approaches that make use of logical reasoning and theorem proving, a well-defined formal
system is used, in which inconsistencies can be identified.
Finkelstein et al. [Fin+94] make use of first-order logic to diagnose inconsistencies within multi-

view software models such as class diagrams, sequence diagrams, etc. In order to capture the
links between the different entities within the models, they manually add statements to the mod-
els. Whether an inconsistency occurs or not is inferred by an automated theorem prover. By
means of domain-specific rules, which are specified in temporal logic, inconsistencies can be re-
solved. By that, the approach of Finkelstein et al. [Fin+94] allows for specifying, diagnosing and
resolving inconsistencies within software models as demanded in Requirements 2 and 3 – however,
heterogeneous models of automated production systems are not in focus of their work (cf. Require-
ment 1). Moreover, the use of first-order logic formalism hampers the potential application of the
approach due to insufficient availability of respective experts in the field of automated production
systems (Requirement 5).
Within the work of Schätz et al. [Sch+03], a first-order propositional logic similar to OCL is

used to formulate consistency conditions and, by that, to describe the underlying formal model.
Therein, they argue that consistency conditions exist at three distinct levels – namely, an invariant
conceptual level, in which consistency conditions hold invariantly during the development, a variant
conceptual level, which may be relaxed during certain development phases, and a semantic level. The
latter refer to those consistency conditions, which result due to abstractions between the different
models – e.g., vertically in case different granularities are described by the models or horizontally in
case different, but overlapping aspects of the system are described. Although disparate aspects of the
entire development process are focussed on by Schätz et al. [Sch+03], their approach is restricted to
their underlying formal modelling language in the domain of embedded systems – further, discipline-
specific languages and formats are not yet supported (Requirement 1). Moreover, measuring and
assessing (Requirement 4) as well as handling inconsistencies (Requirement 3) is not in focus of
their investigations.
UML models, in particular class diagrams, state charts and sequence diagrams, are in focus of

Van Der Straeten et al. [Van+03]. In their work, a UML profile is introduced to express both
consistency between models within the same version (horizontal consistency) and between different
versions of the same model (evolution consistency). By means of Description Logics (DLs), dif-
ferent types of consistency can be checked within the UML profile, e.g., structural inconsistencies
between class, sequence and class diagrams such as classless instances or dangling references as well
as incompatible behaviour definitions between state charts and sequence diagrams. A rule-based
inconsistency resolution approach can, based on the identified inconsistencies, be used to support

40

4.2. Approaches to (Semi-)Automated Inconsistency Management

Table 4.3. Overview of the related work in the field of inconsistency management

Requirements

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5

Name Domain C
om

m
on

sy
nt

ax
(1

.1
)

C
om

m
on

se
m

an
ti

cs
(1

.2
)

L
in

ks
b
et

w
ee

n
en

ti
ti

es
(1

.3
)

S
p
ec

if
y

(2
.1

)

Id
en

ti
fy

,
lo

ca
te

,
cl

as
si

fy
(2

.2
)

S
p
ec

if
y

(3
.1

)

Ig
n
or

e,
to

le
ra

te
,

re
so

lv
e

(3
.2

)

M
ea

su
re

(4
.1

)

A
ss

es
s

(4
.2

)

E
xt

en
si

b
il
it
y

(5
.1

)

C
om

p
re

h
en

si
-

b
il
it
y

(5
.2

)

S
ca

la
b
il
it
y

an
d

p
er

fo
rm

an
ce

(5
.3

)

Logical Reasoning and Theorem Proving (Section 4.2.1)

[Fin+94] Software G# G# G# G# G# # n/a n/a G# # n/a

[Sch+03] Embedded G# G# G# G# # # # # G# G# n/a

[Van+03; VD06;
MVS05]

Software G# G# G# G# G# # # G# # n/a

Rule- and Pattern-Based Inconsistency Management (Section 4.2.2)

[Egy11; Egy+18;
RE12; Dem+16]

Software G# G# n/a # G# # G#

[HEZ10] Mechatronics G# G# # # # n/a n/a

[MSD06;
Van+03]

Software G# G# G# G# G# G# n/a

[Heg+11] Software G# # G# n/a G# n/a

[HP14; HQP14;
Her15]

Systems G# G# # # # n/a G# n/a

[Kov+14a;
Kov+14b;
Kov+15]

Production G# G# # # G# n/a

[Wol+18; Wol19] Product-service
systems

 G# # n/a # n/a n/a n/a n/a

[Abe+13] Production # G# # # # n/a # #

[RF11; Gla+15;
GF16]

Production G# # G# # # # n/a n/a G#

[Ahm+17] Assembly G# G# G# # # # n/a # G#

[ZV17; ZLV18] Production n/a n/a G# G# G# n/a G# #

Model Synchronizations (Section 4.2.3)

[GW06; GW09] Software # G# G# # # #

[Gau+07;
Gau+09; Rie+12]

Mechatronics G# G# G# # # G#

[KBL13; Kra+15;
Kra17; ABS18;
Ana+18]

Software G# G# G# G# G# G# # G# G#

Legend: – in focus of this work, G# – partially in focus of this work, # – not in focus of this work, n/a – not applicable

41

Chapter 4. Related Work

for (semi-)automatic resolution of inconsistencies [VD06; MVS05]. Whereas both diagnosing and
handling inconsistencies is addressed by the authors (Requirements 2 and 3), their work is currently
focussed on UML (software) models. Consequently, the extensibility of their work towards hetero-
geneous models of automated production systems (Requirements 1 and 5) – especially with regard
to comprehensiveness of a DL-based approach for industry experts – needs to be evaluated in future
works.

4.2.2. Rule- and Pattern-Based Inconsistency Management

Similarly to approaches that make use of logical reasoning and theorem proving, rule-based incon-
sistency management aims at applying a rule base that describes either the sufficient conditions that
a model must satisfy for it to be considered consistent [HEZ10] – that is, rules are used as positive
constraints – or as negative constraints, which represent the sufficient conditions that indicate an
inconsistency [HQP14]. However, what makes the approaches different from logical reasoning and
theorem proving is that, instead of targeting a pre-defined, complete and consistent formal system,
the knowledge base in rule-based approaches is always incomplete [NER00]: Rules can be added
and/ or removed without the need to rethink (and – in a worst case – adapt) the entire knowledge
base.

Positive Constraints

Egyed et al. [Egy11] aim at diagnosing and tracking inconsistencies within software engineering mod-
els. What makes this approach unique compared to other inconsistency management approaches is
that the authors do not restrict their inconsistency management to certain languages for defining
and executing inconsistency diagnosis rules. Rather, they allow for any language to be used – the
types of inconsistencies that can be identified depend on the language being used, more specifically
on the consistency rule evaluator that needs to be implemented for the language. Furthermore,
the authors argue that “[i]nstant feedback [...] is a fundamental best practice in the software en-
gineering process” – as a consequence, they aim at incrementally checking the consistency of the
models under consideration. As an example to exemplify their approach and to validate its scala-
bility and performance, a multitude of UML models have been used – ranging from small models
to large, industry-scale models. In addition, their approach has been "[successfully] applied [...] to
models with more than 100,000 artefacts [...]" [Egy+18]. Moreover, initial augmentation mecha-
nisms were developed to repair inconsistencies [RE12]. However, although first efforts were made
to integrate the approach with industrial tool suited to check for inconsistencies with electrical and
software models [Dem+16], no method for formulating consistency rules for heterogeneous models
of automated production systems is given (Requirement 1). To overcome this drawback, mecha-
tronic system models are focused on in Hehenberger et al. [HEZ10]. By means of a unifying and
domain-spanning mechatronic ontology, model elements are tagged to implicitly specify the links
between different models (Requirement 1.3) in a common, well-defined syntax and semantics (Re-
quirements 1.1 and 1.2). Whereas the approach has been validated for large-scale software design
models in Egyed [Egy11; Egy+18], the appropriateness for industrial automated production systems
engineering has not yet been investigated (Requirement 5).

Negative Constraints

One representative for a rule-based inconsistency management approach that makes use of negative
constraints is the work of Mens et al. [MSD06]. The authors investigate consistency of UML class
diagrams and protocol state machines, therein analysing mainly structural inconsistencies such as
dangling type references, classless instances as well as instantiations of abstract entities. Contrary

42

4.2. Approaches to (Semi-)Automated Inconsistency Management

to their earlier works, in which DLs have been used for the purpose of managing behavioural in-
consistencies [Van+03], graph transformation rules are used to formulate inconsistency diagnosis
and handling rules. By means of critical pair analysis, Mens et al. [MSD06] are able to identify
both parallel and sequential dependencies between resolution rules, i.e., whether the rules are mu-
tually exclusive (parallel dependency) and whether the rules have causal dependencies (sequential
dependency). The results of the analysis provide a basis to present appropriate resolution rules
to the users. Although restricted to the domain of software engineering, more precisely to UML
class diagrams and protocol state machines (cf. Requirement 1), the presented approach provides
an adequate basis to diagnose and handle a multitude of inconsistencies (Requirements 2 and 3).
Besides, the critical pair analysis allows for pre-selecting a subset of existing resolution rules that
reduce the available inconsistency resolutions to meaningful ones (Requirement 4). However, the
applicability of the presented approach to more complex, industrial settings of heterogeneous models
of automated production systems needs to be evaluated (Requirement 5).

Pattern-based Approaches

Within Hegedüs et al. [Heg+11], so-called quick fixes are suggested as the means to diagnose and
resolve inconsistencies in domain-specific languages. Quick fixes originate from the domain of soft-
ware engineering, and are “[...] a very popular feature of integrated development environments [...],
which aid programmers in quickly repairing problematic source code segments” [Heg+11]. Hence,
the authors aim at identifying inconsistencies within models by defining graph patterns, which are
matched against the respective models. Additionally, graph transformations are used to specify
actions to be taken in case an inconsistency is diagnosed. These actions are then visualized to the
user as quick fixes – the best of which have been prioritized by means of a state-space exploration
approach. In their work, Hegedüs et al. [Heg+11] exemplify their approach by means of Business
Process Model and Notation (BPMN) – a graphical notation for specifying business process models
– and integrate their concept within the Viatra2 framework [BV06]. Nevertheless, applications
to further modelling languages are enabled through the generic representation of inconsistency pat-
terns and handling actions (cf. Requirement 1). By means of the graph pattern matching and
transformation rules, a multitude of inconsistencies can be diagnosed and handled (Requirements 2
and 3) as well as prioritized (Requirement 4). However, whether the approach is suitable to the
domain of automated production systems, in which a multitude of heterogeneous models are being
used, needs to be evaluated (Requirement 5).
Herzig et al. [HP14; HQP14] propose a framework for the diagnosis of inconsistencies, in which

graph patterns are used to define inconsistency diagnosis rules. In particular, they make use of
Resource Description Framework (RDF) for representing models in a common representational
formalism (Requirement 1) and SPARQL Protocol and RDF Query Language (SPARQL) for the
purpose of specifying inconsistency diagnosis patterns and of matching them against the models
(Requirement 2). Additionally, they support in (semi-)automatically identifying semantic overlaps
between models (Requirement 1.3) by means of a probabilistic learning approach [Her15]. Neverthe-
less, assessing and measuring the impact of a diagnosed inconsistency (Requirement 4) or handling
inconsistencies (Requirement 3) goes beyond the scope of their work. Furthermore, additional in-
vestigations need to be done in order to verify the applicability of their approach for the domain of
automated production systems (Requirement 5).
A approach based on Semantic Web Technologies is envisioned by Kovalenko et al. [Kov+14a].

Therein, they aim at an ontology-based cross-disciplinary defect detecting concept, in which differ-
ent ontologies are being used for the purpose of defining the concepts specific to the participating
disciplines (Requirement 1). In particular, they exemplify their approach at the hand of a hardware,
a control systems as well as a project configuration ontology. Finally, by means of SPARQL graph
patterns, inconsistencies are diagnosed within the models (Requirement 2). Whereas by means of

43

Chapter 4. Related Work

the introduced concept, a multitude of different inconsistencies can be diagnosed, the authors do
not focus on handling the respective inconsistencies (Requirement 3). The need for and benefit of
implementing a causal analysis of defects is discussed in [Kov+14b]. With their application within
an industrial settings (Requirement 5), Kovalenko et al. [Kov+14a] illustrate that Semantic Web
Technologies such as RDF and SPARQL are not far from being applied within industrial settings –
especially when combining these technologies with Model-Driven Engineering (MDE) approaches or
standardized data formats such as AutomationML, their full potentials can be explored [Kov+15].
This is also supported by the fact that database systems, which support the use of Semantic Web
Technologies, are more and more available, with appropriate performance and usability character-
istics [Ser+13]. Consequently, more and more software prototypes are being developed through
applying Semantic Web Technologies; e.g., for the purpose of applying these technologies to Au-
tomationML, an analyser has recently been developed by Sabou et al. [Sab+16]. Furthermore,
investigations regarding the applicability of such database systems (e.g., [MSB15; Mor+14]) show
that – depending on the particular application scenario – appropriate software architectures exist
for integrating heterogeneous models for the purpose of managing inconsistencies in between them.
Wolfenstetter et al. [Wol+18; Wol19] present a model integration framework and software proto-

type that represents models by means of RDF. Through this common representational formalism,
a common knowledge base (Requirement 1) is provided and models can be filtered, e.g., according
to the stakeholders’ roles that are interacting with the models. In addition, the authors present
distinct features that allow for easily importing, manipulating and exporting models. Although
with RDF, the basis for inconsistency management is laid, inconsistency diagnosis (Requirement 2)
or handling (Requirement 3) are not in scope of their work.
By means of Semantic Web Technologies, in particular OWL and SPARQL, Abele et al. [Abe+13]

aim at validating CAEX files regarding pre-defined well-formedness constraints (Requirement 2).
Such constraints comprise, e.g., uniqueness of identifiers, compatibility of links as well as compati-
bility of roles. For the purpose of performing these checks, the authors formulate an OWL ontology
that comprises of the necessary semantic elements to be considered by the check (Requirements 1.1
and 1.2). However, their approach is limited to CAEX and has not yet been tested for the het-
erogeneous models in the automated production systems domain, as well as links in between these
models (Requirement 1.3). Furthermore, handling of identified validations of the well-formedness
constraints (Requirement 3) is not in focus of Abele et al. [Abe+13].
Similarly, Runde et al. [RF11] make use of the capabilities of OWL for supporting requirements

engineering in the building automation systems domain. Therein, OWL ontologies are used together
with Semantic Query-Enhanced Web Rule Language (SQWRL) rules to formulate configuration
knowledge. By means of this configuration knowledge, room templates can be generated based on
the modelled requirements. The combination of CAEX and OWL for a knowledge-based automation
systems engineering approach is aimed at by Glawe et al. [Gla+15; GF16]. In particular, the authors
extend the expressiveness of OWL by means of Semantic Web Rule Language (SWRL) rules to allow
for combining the knowledge modelled in CAEX with security knowledge in an OWL ontology.
By means of an interactive visualization concept, the rules are automatically created – hence,
comprehensibility (Requirement 5.2) for non-experts in the field of Semantic Web Technologies is
increased. However, inconsistency management (Requirements 2 and 3) is not in focus of their work.
Analogously, Ahmad et al. [Ahm+17] make use of pattern matching for the purpose of “[...]

ensuring that machine program logic is consistent with process planning requirements”. Therein,
product, process and resource domain ontologies are used together with a skill model in order to
identify, whether logical planning sequences are consistent with a system’s program logic. Whereas
behavioural inconsistencies in the assembly system domain are in scope of their work, Ahmad
et al. [Ahm+17] do not consider a holistic view of the heterogeneous models in the automated
production systems domain.

44

4.2. Approaches to (Semi-)Automated Inconsistency Management

A conceptual approach to inconsistency resolution that makes use of feature diagrams is proposed
in [ZV17]. Therein, it is shown that, by means of feature diagrams, “common features of various
resolution approaches from different domains [can be generalized]”; however, the authors argue that
the “challenging part of the approach lies in the resolution optimization”. Hence, an optimization
approach to resolving inconsistencies optimally is proposed in [ZLV18]. Therein, genetic algorithms
are being applied in order to allow for automated inconsistency resolution. Nevertheless, as of yet
the approach is limited to simple inconsistencies (Requirement 5) and does not introduce the means
to represent the heterogeneous types of models within a common knowledge base (Requirement 1),
which is nevertheless essential for identifying and resolving inconsistencies.

4.2.3. Model Synchronizations

Contrary to logical reasoning and theorem proving approaches, in which a formal system needs to
be formulated as the basis to manage inconsistencies, as well as rule- or pattern-based approaches,
which make use of a flexible set of rules or patterns, model synchronizations aim at unidirectional or
bidirectional transformations between the models involved in the engineering process. Consequently,
in such approaches, transformation rules are formulated that capture, how entities in one model are
related to entities in another model. An inconsistency can then be regarded as a state of conflict
that results from executing a synchronization rule. Therefore, synchronization-based approaches
are similar to rule-based approaches as a set of rules forms the basis for the purpose of managing
inconsistencies between heterogeneous models.
One example for such synchronizational approaches is the concept of Giese et al. [GW06; GW09].

The authors make use of so-called Triple Graph Grammars (TGGs) to specify bidirectional syn-
chronizations between models – hence, these TGGs capture the links between model elements
formally (Requirement 1.3). Such TGGs contain three essential parts: a left-side pattern, a right-
side pattern and a correspondence pattern [Sch94]. By means of respective tags for creating novel
model elements, TGG rules can be formulated – therefore, “[a] graph grammar rule is applied by
substituting the left-hand side with the right-hand side if the pattern of the left-hand side can be
matched to a graph” [GW06] (that is: if a match can be found for the left-hand side, all objects
tagged with a special create tag are created). By means of this formalism, a multitude of appli-
cation scenarios can be identified according to [Sch94] such as forwards transformation between a
source (left-hand side) and target (right-hand side) model, backwards transformation between a tar-
get (right-hand side) and source (left-hand side) model as well as analyses of the correspondences,
e.g., for the purpose of diagnosing inconsistencies. Consequently, with the formalism of Giese et
al. [GW06; GW09], a multitude of correspondences can be formulated and, hence, respective rules
to diagnose and handle potential inconsistencies between the models can be defined (Requirements 2
and 3). However, whereas transformation rules between individual (software) models are simple to
create and maintain, a variety of necessary correspondence rules is expected for the multitude of
engineering models in the automated production systems domain (Requirement 1) – consequently,
the effort to create and maintain these rules increases with the number of model types that need
to be considered. Therefore, although appropriate performance of the presented approach can be
expected as incremental model synchronizations are used, the effort to create and maintain these
synchronizations for applications in the automated production systems domain must be analyzed
and verified (Requirement 5).
To overcome this drawback, Gausemeier et al. [Gau+07] extend the approach presented by Giese

et al. [GW06] towards consistency management in heterogeneous models of mechatronic systems.
Therein, the authors aim at synchronizing domain-specific models with a domain-spanning so-called
principle solution, which captures all entities that are relevant to the different involved domains.
Their aim is twofold: (1) to detect changes in one domain that are inconsistent to other domains and
(2) to propagate changes to the principle solution and to other domains. Consequently, instead of

45

Chapter 4. Related Work

providing n× (n− 1)/2 bidirectional synchronizations for n models, the effort is reduced towards n
necessary bidirectional synchronizations with the principle solution, leading to a decreased effort in
creating and maintaining the transformation rules (Requirement 5). Using the TGG-based formal-
ism, an engineering workflow can be identified that involves four essential application scenarios: (1)
forward transformation to create an initial version of a target model as well as the correspondence
model from a given source model, (2) backward transformation to identify changes in one model,
(3) propagation to update changes from one model to another model and (4) synchronization in
order to maintain consistency between the semantically related models. The models that can be
addressed by that approach are hierarchical, structural models of the mechatronic systems. Rieke et
al. [Rie+12] extend this approach towards managing consistency between behavioral models of the
mechatronic system. In particular, they exemplify their concept at the hand of software engineering
models (modeled in MechatronicUML) that need to be synchronized with control engineering mod-
els (specified in MATLAB/Simulink Stateflow) via the principle solution. Whereas the presented
approach allows for diagnosing and handling a multitude of inconsistencies (Requirements 2 and 3)
within various models of the mechatronic system (Requirement 1), there is currently a lack in appro-
priate support of the workflow for managing inconsistencies in heterogeneous engineering models. In
particular, the presented concept essentially relies on the modelling approach presented by Gause-
meier et al. [Gau+07] – consequently, an integration into existing applications requires tremendous
effort for synchronizing engineering models with this principle solution (Requirement 5). Further-
more, what yet needs to be done is to provide appropriate user interaction to support users in
identifying critical inconsistencies and appropriate handling actions (Requirement 4).

Kramer et al. [KBL13; Kra17] introduce another approach that makes use of model synchroniza-
tions for the purpose of maintaining consistency between models. In addition, in [Kra+15], they
introduce the means to propagate changes incrementally between distinct architectural software
models. Accordingly, they implement a prototype of their concept using the Vitruvius [KBL13]
framework and evaluated it by means of use cases in the software systems domain Requirement 5.
Vitruvius has also been applied for the purpose of maintaining consistency within AutomationML
models [ABS18] as well as for model variants and versions [Ana+18]. Nevertheless, the heteroge-
neous models of automated production systems are not in focus these works Requirement 1.

4.2.4. Synopsis

As discussed beforehand, a multitude of different approaches in the field of inconsistency man-
agement within heterogeneous engineering models can be found. Most of the approaches originally
stem from the software engineering discipline and can be broadly classified into logical reasoning and
theorem proving approaches, rule- and pattern based approaches as well as model synchronization
approaches. Whereas logical reasoning and theorem proving approaches require a formal system
in order to formally derive whether the set of models is consistent or not, rule- and pattern-based
as well as synchronization approaches make use of (inconsistency management or synchronization)
rules for diagnosing and handling inconsistencies (cf. Requirements 2 and 3). Although being less
formal, such rules tend to be more flexible, as rules can be removed and/or added without revising
the entire formal system. In terms of extensibility as well as effort to maintain the knowledge base
as well as inconsistency management rules (cf. Requirement 5), it can be identified that model
synchronizations need a tremendous set of synchronization rules to capture all the correspondences
between involved models, whereas describing the situations, in which inconsistencies may occur
(e.g., inconsistency patterns), provide an appropriate means to efficiently and flexibly specify the
inconsistencies.

46

4.3. Existing Software Tools on Inconsistency Management

4.3. Existing Software Tools on Inconsistency Management

Whereas in the preceding paragraphs, mainly related research has been discussed, this section
discusses the different available software tools in the field of inconsistency management. For one,
commercial tool suites that offer different aspects within the context of inconsistency management
are discussed (Section 4.3.1). Second, open-source tools in the field of MBSE and inconsistency
management are described in Section 4.3.2. Section 4.3.3 discusses the main findings.

4.3.1. Commercial Tool Suites

In order for any of these aforementioned approaches to be applicable for industrial settings (Require-
ment 5), tool support is an essential factor. Within MBSE, most of the commonly known modelling
tools is MagicDraw [NoM16]. Therein, MagicDraw supports the means to create and edit models
using modelling languages such as UML and SysML. Further on, the means to create custom DSLs
is supported – e.g., by means of the profiling mechanisms of UML and SysML. Although support for
defining constraints by means of the OCL is provided, managing inconsistencies (Requirements 2
and 3) is not focused on in MagicDraw.
For simplifying the development of industrial automated production systems, a multitude of

domain-specific tools is available. For one, the CODESYS Application Composer [3SS16] aims at
increasing efficiency during development of IEC 61131-3 applications. However, the overall focus
is put on the software development of automated production systems – further discipline-specific
engineering models are currently not supported. Integrated, interdisciplinary engineering solutions
are, moreover, provided by means of the EPLAN Engineering Configuration tool suite [EPL16] as
well as the Siemens COMOS Platform [Sie16]. Although in these tools, it is possible to create
interdisciplinary engineering models within a common knowledge base (Requirement 1), thereby
establishing the links in between the different, discipline-specific models, inconsistencies are mostly
managed either through proprietary rule languages or implicitly. A holistic approach for specifying
and diagnosing inconsistencies (Requirement 2) as well as for handling these inconsistencies (Re-
quirement 3) is not in focus of these works. Moreover, although tool providers in the field of Product
Lifecycle Management (PLM) such as PTC with its Integrity Modeler [PTC16] more and more start
to integrate capabilities to create models by means of, e.g., UML and SysML, a holistic, industrial
solution for predefining, configuring and executing inconsistency diagnosis and handling rules (Re-
quirements 2 and 3) within a common knowledge base (Requirement 1) is – to the best knowledge
of the author of this dissertation – not yet available.

4.3.2. Open-Source Tools

Especially applied within an academic context, but nevertheless gaining more and more importance
for industrial applications, are open-source tool suites. One of the most well-known frameworks in
the field of MBSE is the EMF [Ecl16c]. With its extensions – e.g., for the purpose of UML and
SysML modelling by means of the Papyrus plug-in [Ecl15] – the EMF supports a multitude of tasks in
the fields of MBE and MBSE. Especially as a multitude of standards is supported, such as the Meta
Object Facility (MOF) for metamodelling, OCL for constraint specification and evaluation, as well
as standards for model-to-model [Obj16] and model-to-text transformations [Obj08], EMF finds its
application for manifold use cases. However, also the starting point is made by means of these tools,
there is no common concept available for the purpose of inconsistency management (Requirements 2
and 3). One novel framework that extends the EMF for – among others – the purpose of validating
models, is the Epsilon Framework [Ecl16b]. Therein, novel languages are provided that allow
additional expressiveness compared to OCL – therefore, the formulation and evaluation of inter-
model constraints is allowed (Requirements 2 and 3). However, although this framework provides an
essential basis and has already been tested for exemplary models of automated production systems

47

Chapter 4. Related Work

in prior work [Fel+16c], an interdisciplinary model knowledge base for engineering models of the
automated production systems domain has not yet been developed (Requirement 1).
AutoFocus [for16] puts an essential focus for developing and verifying embedded software systems.

Besides requirements specification and analysis, AutoFocus puts emphasis on modelling and simu-
lation, formal verification, design space exploration, code generation as well as testing of software-
intensive systems. Although extensions towards additional aspects from the automated production
systems domain have been created [Leg+14] with a special focus on interface behaviour modelling,
AutoFocus does not focus on the means to manage inter-model inconsistencies among the multitude
of models that are involved during engineering of automated production systems (Requirement 1).

4.3.3. Synopsis

The presented software tools address various aspects of the requirements introduced in Chapter 3 –
e.g., for the purpose of modelling the multitude of discipline-specific engineering models (Require-
ment 1). Especially proprietary, commercial tool suites exist, that aim at improving efficiency during
engineering of automated production systems. However, a tool suite that incorporates the differ-
ent engineering models in the automated production systems domain and that allows for defining,
diagnosing and resolving inconsistencies (Requirements 2 to 4) is not yet available.

4.4. Summary

Summarizing the related research work, a multitude of different approaches can be found – both
in the fields of MBE and MBSE as well as in the field of inconsistency management. Whereas
approaches that focus an integrated, model-based systems engineering envision integrated and/or
linked models in order to provide a consistent knowledge base (Requirement 1), concepts in the field
of inconsistency management put emphasis on the technical perspective of inconsistency manage-
ment, thereby providing the means to specify inconsistency diagnosis and handling rules (Require-
ments 2 and 3) and assessing the impact of inconsistencies (Requirement 4). Moreover, manifold
tool support can be found, that provides extensible and scalable means and, hence, the basis to de-
velop frameworks for inconsistency management (Requirement 5) – both in industry and academia.
However, to the best knowledge of the author of this dissertation, an appropriate approach that
allows for managing inconsistencies in the heterogeneous models of automated production systems
is not yet available.
Hence, in order to fill this research gap, an appropriate model knowledge base (Requirement 1)

must be found, which incorporates the various disciplines that are involved during the engineering
of automated production systems. By means of this knowledge base, a framework for managing
inconsistencies within and among these models can be provided (Requirements 2 and 3), which sup-
ports engineers in identifying and handling potentially occurring inconsistencies (Requirement 4).
However, when developing such a framework, the typical constraints within the automated produc-
tion systems domain – among others, the complexity of these systems as well as the knowledge of
experts in this domain – must be considered (Requirement 5).

48

Chapter 5.

Concept: Diagnosis and Handling of
Inconsistencies

This chapter introduces the concept for an approach to diagnose and handle inconsistencies in
the automated production systems domain. The concept follows the suggestions in [NER00] as
discussed in Chapter 2 and builds on the requirements and assumptions derived in Chapter 3. An
architectural overview of the concept is given in Figure 5.1.

Knowledge Base

(RDF/RDFS)

Mediation rule

(Jena Rule)
Mediation rule

(Jena Rule)

Integration Framework

Inconsistency Management

Mediation rule

(Jena Rule)

Inconsistency

diagnosis rule

(SPARQL

Query)

Inconsistency

diagnosis rule

(SPARQL

Query)

Inconsistency

diagnosis rule

(SPARQL

Query)

Inconsistency

handling rule

(SPARQL

Update)

Inconsistency

handling rule

(SPARQL

Update)

Inconsistency

handling rule

(SPARQL

Update)

Model Management

Model

#1

Model

#2
...

Model

#m

5.2

Mediation Diagnosis and Handling

5.3 5.4

Figure 5.1. Architectural overview of the concept for diagnosing and resolving inconsistencies in
heterogeneous models of the automated production systems domain [extended from
Fel+15b]

As discussed in Chapter 2, a fully automatic inconsistency management approach for the auto-
mated production systems domain is neither possible nor desirable, as engineers make and revise
their decisions throughout the entire system life cycle. As a consequence, a concept for inconsis-
tency management in the automated production systems domain must incorporate the different
stakeholders that are involved during the engineering of the system under consideration. Conse-
quently, a stakeholder-centred overview of the inconsistency diagnosis and handling approach is
given in Section 5.1, which describes the different parts of the concepts as well as their relations
to the stakeholders involved during engineering. The model management part of the inconsistency
management approach is introduced in Section 5.2, therein describing the different knowledge rep-
resentations for the disparate, heterogeneous models. Besides discipline-specific engineering models,
in many cases, further background information such as knowledge on dependencies between physical
units, etc., is necessary in order to draw conclusions on whether an inconsistency occurs or not.
As appropriate abstraction techniques are necessary to not only ensure a common syntax, but also

49

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

common semantics to be used for inconsistency management, respective mediation techniques are
necessary to mediate between the disparate models (cf. Section 5.3). Based on these components,
the means to diagnose and handle inconsistencies (cf. Section 5.4) are introduced.
All these components of the concept have been selected based on the requirements introduced

in Chapter 3.

5.1. Stakeholder-centred Overview of the Concept

An overview of the concept for diagnosing and handling inconsistencies in between heterogeneous
models of an automated production system is, from a stakeholder’s point of view, illustrated in Fig-
ure 5.2. Therein, distinct engineering models are created – such as component lists from a mechan-
ical engineering perspective, electric circuit diagrams in the field of electrical engineering as well as
control software. For creating and maintaining each of these engineering models, discipline-specific
engineers are responsible. At the same time, background knowledge exists – which is, up to now,
rarely considered explicitly in current engineering processes. A knowledge engineer is envisioned
to be responsible for creating and maintaining these background engineering models, which com-
prise of, e.g., unit conversions, device taxonomies, etc. Certainly, all these models are persisted
in a domain- or tool-specific format, thereby using language-specific concepts – namely, a syntax
and semantics that are common to the respective language being used to capture the models. For
instance, whereas in mechanical engineering, it is focused on the physical structure of the entire
system, electrical engineers focus on a device-oriented structure and software engineers define the
functional architecture of the system under investigation [FFV12].
As described in Chapter 3, for the means to manage inconsistencies within and between these

models, it is essential to provide a common knowledge base (Requirement 1), which captures the
different models within a common syntax and semantics. Therefore, instead of working directly
on the language-specific modelling constructs, so-called virtual models are used, which are created
out of the persisted models by means of model transformations. These virtual models allow (1) to
capture the modelled entities and relations within a common syntax (Requirement 1.1), (2) to
define common semantics (Requirement 1.2) for the purpose of inconsistency management and (3)
to establish the links in between the respective models (Requirement 1.3). Consequently, instead
of applying the language-specific concepts being used within the models, graphs are used that are
generated from the respective models. As the common representational, graph-based formalism for
these graphs, the Resource Description Framework (RDF) is used – hence, the starting point for
the inconsistency management framework is a graph-based representation of all involved models.
In order to define the structure and concepts to be used for this graph-based model representation,

it is essential to define the discipline-specific concepts that are captured in the discipline-specific
graphs – e.g., the mechanics graph, the electrics graph and the software graph. As the basis to
specify these concepts, RDF Schema (RDFS) vocabularies are used. These vocabularies specify the
entities to be used within the different disciplines – e.g., Program Organization Units (POUs) within
the software graph or parts within the mechanics graph. Consequently, the entities contained in
the graph are specified by means of the vocabularies and, therefore, any inconsistency (diagnosis or
handling) rule can be defined by means of these vocabularies.
However, defining the individual inconsistencies that may occur between the models can be time-

consuming and error-prone: For each discipline to be considered within the inconsistency manage-
ment framework, respective (possible) inconsistencies in relation to the other disciplines must be
specified. Hence, in order to align the diverse, discipline-specific and heterogeneous models and,
by that, to allow for defining inconsistency (diagnosis or handling) rules on a more abstract level,
a mediation mechanism is used to synchronize these graphs with domain-specific concepts – i.e.,
concepts that are shared by the domain of automated production systems within a mechatronics
graph. By that, the concepts that overlap in the respective mechatronic disciplines (i.e., mechanical

50

5.1. Stakeholder-centred Overview of the Concept

B
a

c
k
g

ro
u

n
d

 K
n

o
w

le
d

g
e

M
o

d
e

ls

G
ra

p
h

-b
a
s
e

d
 R

e
p

re
s
e

n
ta

ti
o

n
a
l
F

o
rm

a
li
s
m

V
ir

tu
a
l
m

o
d

e
ls

P
e
rs

is
te

d
 m

o
d

e
ls

..
.

S
o
ft

w
a
re

g
ra

p
h

E
le

c
tr

ic
s

g
ra

p
h

M
e
c
h
a
n
ic

s

g
ra

p
h

E
n

g
in

e
e
ri

n
g

 M
o

d
e
ls

M
e
c
h
a
n
ic

s
 m

o
d
e
ls

(e
.
g

.
c
o
m

p
o
n
e
n
t

lis
ts

)

N
a

m
e

P
a
re

n
t

ID

M
o

d
u

le
1

1

C
o

m
p

o
n

e
n

t1
M

o
d
u

le
1

2

..
.

..
.

..
.

P
ro

je
c
t
m

o
d
e
ls

(e
.

g
.

S
y
s
M

L
)

B
lo

c
k
1

+
 p

ro
p
1
 :

 t
y
p

e

+
 p

ro
p
2
 :

 t
y
p

e

B
lo

c
k
2

+
 p

ro
p
1
 :

 t
y
p

e

+
 p

ro
p
2
 :

 t
y
p

e

+
 r

e
f1

0
..
*

E
le

c
tr

ic
s
 m

o
d
e
ls

(e
.
g

.
c
ir
c
u
it
 d

ia
g

ra
m

s
)

+ -

S
o
ft

w
a
re

 m
o
d
e

ls

(e
.
g
.

IE
C

 6
1
1
3
1

-3
 s

o
ft
w

a
re

)

&

1

..
.

P
ro

je
c
t

g
ra

p
h

P
ro

je
c
t

g
ra

p
h

re
p
re

s
e
n
ta

ti
o
n

M
e
c
h
a
n
ic

s
 g

ra
p
h

re
p
re

s
e
n
ta

ti
o
n

E
le

c
tr

ic
s
 g

ra
p
h

re
p
re

s
e
n
ta

ti
o
n

S
o
ft

w
a
re

 g
ra

p
h

re
p
re

s
e
n
ta

ti
o
n

..
.

M
e
c
h
a
tr

o
n
ic

s

g
ra

p
h

C
o

m
m

o
n

g
ra

p
h

D
is

c
ip

li
n

e
-s

p
e
c

if
ic

c
o

n
c
e
p

ts

D
o

m
a

in
-s

p
e
c

if
ic

c
o

n
c
e
p

ts

C
o

m
m

o
n

c
o

n
c
e
p

ts

L
a
n

g
u

a
g

e
-s

p
e
c

if
ic

c
o

n
c
e
p

ts

D
ia

g
n

o
s

is
 o

f

In
c

o
n

s
is

te
n

c
ie

s

H
a

n
d

li
n

g
 o

f

In
c

o
n

s
is

te
n

c
ie

s

In
c
o
n
s
is

te
n
c
y

d
ia

g
n
o
s
is

 r
u
le

#
1

In
c
o
n
s
is

te
n
c
y

d
ia

g
n
o
s
is

 r
u
le

#
1

In
c
o
n
s
is

te
n
c
y

d
ia

g
n
o
s
is

 r
u
le

#
1

In
c
o
n
s
is

te
n
c
y

h
a
n
d
lin

g
 r

u
le

#
1

In
c
o
n
s
is

te
n
c
y

h
a
n
d
lin

g
 r

u
le

#
1

In
c
o
n
s
is

te
n
c
y

h
a
n
d
lin

g
 r

u
le

#
1

P
ro

je
c
t

m
a
n
a
g
e
r

M
e
c
h
a
n
ic

s

e
n
g
in

e
e
r

E
le

c
tr

ic
s

e
n
g
in

e
e
r

S
o
ft

w
a
re

e
n
g
in

e
e
r

..
.

In
c
o
n
s
is

te
n
c
y

h
a
n
d
le

r

In
c
o
n
s
is

te
n
c
y

d
ia

g
n
o
s
e
r

C
o

m
m

o
n
 k

n
o
w

le
d
g
e
 m

o
d
e
ls

(e
.
g

.
u
n
it
 c

o
n
v
e
rs

io
n

)

D
o

m
a
in

 k
n

o
w

le
d
g
e
 m

o
d

e
ls

(e
.

g
.

d
e
v
ic

e
 t
a
x
o
n
o
m

y
)

S
p
e

c
if
ic

 k
n
o
w

le
d
g
e
 m

o
d
e
ls

(e
.

g
.
s
u
p
p
lie

rs

d
e
v
ic

e

c
a
ta

lo
g
u

e
s
)

..
.

K
n
o

w
le

d
g
e

e
n
g
in

e
e
r

C
o

m
m

o
n

k
n
o
w

le
d
g

e
 g

ra
p
h

re
p
re

s
e
n
ta

ti
o
n

D
o

m
a
in

k
n
o
w

le
d
g

e
 g

ra
p
h

re
p
re

s
e
n
ta

ti
o
n

S
p
e

c
if
ic

k
n
o
w

le
d
g

e
 g

ra
p
h

re
p
re

s
e
n
ta

ti
o
n

..
.

B
a
c
k
g

ro
u
n

d
 k

n
o

w
le

d
g
e

g
ra

p
h

F
ig
u
re

5.
2.

St
ak
eh
ol
de
r-
ce
nt
re
d
ov
er
vi
ew

of
th
e
co
nc

ep
t
fo
r
di
ag

no
si
ng

an
d
ha

nd
lin

g
in
co
ns
is
te
nc

ie
s
in

he
te
ro
ge
ne
ou

s
m
od

el
s
in

th
e
au

to
m
at
ed

pr
od

uc
ti
on

sy
st
em

s
do

m
ai
n

51

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

engineering, electrical engineering and software engineering) are captured in a mechatronics vocab-
ulary. Moreover, some concepts such as attributes, classes, etc., are common to all involved models.
Aligning the graphs with common concepts allows to capture a so-called common graph. By means
of this mediation mechanism, inconsistencies can be diagnosed and handled in an efficient manner.
The diagnosis (Requirement 2) and handling (Requirement 3) of inconsistencies is realized by

means of a rule-based mechanism that accesses, interprets and manipulates the respective graphs.
In order to specify these rules, the SPARQL Protocol and RDF Query Language (SPARQL) stan-
dard is applied – in particular the query language for the means to specify inconsistency diagnosis
rules and the update language to define inconsistency handling rules. From a stakeholder’s per-
spective, individual people are intended to create, maintain and execute these rules – e.g., within
the roles of inconsistency diagnosers and inconsistency handlers. These stakeholders are, accord-
ingly, responsible for diagnosing the inconsistencies, for identifying possible handling actions and
for measuring and assessing the respective impact of an inconsistency as well as its handling action
(Requirement 4).
As the concept builds upon well-established standards and technologies – namely the RDF and

SPARQL – its applicability is not limited to a single domain such as the domain of automated
production systems, but can also be applied to further domains or extended towards company- or
project-specific purposes (Requirement 5).

5.2. Model Management: Representation of Models

This section introduces the representational formalism to be used within the inconsistency man-
agement framework. First, the design rationale for introducing a representational formalism for
inconsistency management is discussed in Section 5.2.1. Subsequently, the different vocabularies
for representing the engineering models (Section 5.2.2), the background knowledge models (Sec-
tion 5.2.3) as well as the links in between these models (Section 5.2.4) are introduced.

5.2.1. RDF as the representational formalism for models

As discussed in Chapter 3, an essential basis for inconsistency management is the use of a knowledge
base, which allows to capture the respective, heterogeneous models to be considered within a com-
mon syntax (Requirement 1.1). Moreover, it is essential to provide the means to specify the concepts
that are similar to various of the models within common semantics (Requirement 1.2). Finally, the
links between the different model instances must be captured (Requirement 1.3). Consequently,
an appropriate formalism is required, that allows to transform existing engineering models into a
common, representational formalism.
One way to achieve this is the RDF introduced in Chapter 2. The original intention of RDF – to

improve the exchange of data on the Web without losing their original meaning [HKR10] – is similar
to the challenge of heterogeneous models: Different, heterogeneous data must be represented in a
common formalism. Consequently, RDF is envisioned to be used as the formalism to represent the
models to be considered for inconsistency management within a central knowledge base.
However, to allow for defining inconsistency diagnosis and handling rules, it is essential to specify

the concepts to be used within the RDF graph – that is, to specify the structure of the respective
graph. As a consequence, for each model (or discipline) to be considered within the inconsistency
management framework, a respective vocabulary is needed (see Chapter 2). This vocabulary specifies
the entities and relations to be used within the respective graph – hence, the structure of the graph
to be created is pre-defined. Consequently, this vocabulary is, with regard to a specific graph that
uses this vocabulary, similar to a metamodel for a specific model instance. These discipline-specific
vocabularies provide the starting point of the inconsistency management framework – that is, each
modelling language or tool to be integrated into such an inconsistency management framework must

52

5.2. Model Management: Representation of Models

support the transformation of modelled data into a graph that uses the pre-defined vocabulary.
However, instead of capturing all entities within the respective disciplines, it is focused on the ones
that are considered as important for inconsistency management – hence, it is not aimed at defining
a world model, which captures all possible entities of the disciplines in the automated production
systems domain.
An example of such a vocabulary is illustrated in Figure 5.3. Therein, within a Unified Modeling

Language (UML) class diagram (Figure 5.3a), the concepts Module and Component inherit from the
base concept Entity, which specifies a name property to be used for all instances. Moreover, Modules
can contain Components via the respective compositional relation component. Finally, the Module
Cylinder with its property diameter as well as the Components Valve and Switch are specified. By
means of this vocabulary, the concepts to be used by each specific model instance are defined. The
RDF representation of this graph is illustrated in Figure 5.3b. As can be seen, the concepts within
the UML class diagram are represented as RDFS classes – the respective properties are defined as
RDF properties. For the purpose of clarity and simplicity, the Unique Name Assumption (UNA)
is to be used for the vocabularies within the framework – that is, each entity and property being
defined have a unique name.

(a) UML class diagram

sample:Entity

sample:Module

sample:Valve sample:Switch

sample:Component

sample:Cylinder

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf rdfs:subClassOf

Legend RDF Resource RDF Literal RDF PropertyRDF PropertyLegend RDF Resource RDF Literal RDF Property

rdfs:Class

rdf:type

rdf:Property

sample:name

sample:component

sample:diameter

rdf:type

(b) RDF graph

Figure 5.3. Sample vocabulary represented as a UML class diagram and as an RDF graph

For the purpose of clarity and simplicity, UML class diagrams are used to illustrate the different
vocabularies in the following.

5.2.2. Engineering Model Representation

Within the following, the respective vocabularies for capturing the entities within the different
engineering models are introduced.

Project vocabulary: Specifying the project’s structure

The project vocabulary serves as the basis to capture the information that is related to an engineering
project – similarly to the resource model presented in [MSD10]. Therein, the customer- and supplier-
related data is captured and the bill of material is formed in order to identify the material that is
necessary for the engineering project. Consequently, typical sources for the information captured
within the specific project graph can be extracted from, e.g., Enterprise Resource Planning (ERP)
systems.
An overview of the project vocabulary is given in Figure 5.4. Therein, the ProjectModel repre-

sents the entry point into the vocabulary – and is the root element of any instance of the project
vocabulary. Within the ProjectModel, different CompanyIndices can be specified – e.g., in order

53

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

to capture any information on relevant customers, suppliers or similar stakeholders. Each Compa-
nyIndex consists of a set of Companies, which are used to specify, e.g., the customer of a Project
or the manufacturer of a specific Material. Accordingly, a MaterialLibrary is used to capture all
available Material that can be used within the BillOfMaterial.

Figure 5.4. Overview of the project vocabulary

Each specific Project within the ProjectModel consequently consists of two essential parts: First,
the BillOfMaterial specifies Entries, in which the Material to be ordered for the engineered system
is captured. These Entries – besides the Materials to be used – hold the respective quantity as
well as the quantityType to be ordered for the project. Second, the Documentation to be created
and maintained for the Project is defined – e.g., in the form of a MechanicalDocumentation, an
ElectricalDocumentation or a SoftwareDocumentation.
Consequently, with this project-related data, the main information regarding a specific engineering

project is collected.

Mechanics vocabulary: Specifying the system’s physical layout

Contrary to the project vocabulary, which serves as the basis to define an engineering project’s
structure, the mechanics vocabulary aims at defining the physical structure of the system under
investigation. Consequently, for the mechanics vocabulary, three essential purposes are envisioned:
(1) to specify the parts list from a mechanical perspective, which also defines the composition of
the entire system, (2) to define the (material, energy and signal) interfaces between the different
mechanical parts and (3) to identify the mechanical functions to be performed by the entire system.
Therefore, the information contained within the specific mechanics graph can be extracted from,
e.g., typical Computer-Aided Design (CAD) systems. As a basis for defining the interfaces and
functions within the mechanics vocabulary, the previous investigations by the National Institute
of Standards and Technology (NIST) [Hir+02], which include both flow (i.e., interface/connector)
definitions and typical functions, were included within the mechanics vocabulary.
Similar to the project vocabulary, themechanics vocabulary (see Figure 5.5) involves a root element

PartsModel, which includes the entities relevant to the specific engineering project. By means of

54

5.2. Model Management: Representation of Models

this PartsModel, for one, a MaterialList is defined, which includes all Materials that are available
to the PartsModel.

Figure 5.5. Overview of the mechanics vocabulary

To specify the physical composition of the system, a PartsList comprises its respective Parts.
Parts can, in turn, consist of nestedParts, which represent their child elements – thereby forming
the physical hierarchy of the system. Moreover, Parts can be further specified by means of their
Function – which can, according to [Hir+02] represent, e.g., a Branch, Convert or Channel Func-
tion. Analogously, Interfaces can be specified in terms of MaterialInterfaces, EnergyInterfaces or
SignalInterfaces. These Interfaces can be further detailed, e.g., by means of the flows defined by
Hirtz et al. [Hir+02] – however, these definitions go beyond the scope of this dissertation. Finally,
Connections can be associated to Parts in order to denote a Connection between a set of source
and target interfaces.
By means of the mechanics vocabulary, the information related to the physical decomposition of

an automated production system is captured.

Electrics vocabulary: Defining the devices and their connections

Within the electrics vocabulary, it is focused on the electrical architecture of the system under in-
vestigation. Due to the variety of possible actuators and sensors, also depending on the respective
manufacturers of these devices, it is impossible to capture all possible device types in the respec-
tive vocabulary. Consequently, it is aimed at a basic framework, which captures (1) devices from
an abstract perspective, therefore allowing to unambiguously define different device types and (2)
extend the vocabulary according to project- or company-specific purposes in an efficient manner.
As a consequence, different sources to acquire the information within the electrics vocabulary are
possible, such as the eCl@ss classification [eCl16] as well as respective standards and recommen-

55

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

dations such as the Namur NE 100 Recommendation [NAM10]. Hence, in order to provide such
a vocabulary for the purpose of inconsistency management, these different sources of information
have been aggregated and condensed to capture the information that is necessary for inconsistency
management – meaning that this vocabulary makes no claim to completeness and should rather be
seen as a first working vocabulary.
It should be noted that the creation, evaluation and continued evolution of the electrics vocabu-

lary were conducted as part of a Semester Thesis at Technische Universität München – a detailed
documentation of the electrics vocabulary is published in [Fis16].

Overview of the electrics vocabulary. As this vocabulary aims at capturing information from
typical electric circuit diagrams, the root element of the electrics vocabulary is the ElectricCircuit
(see Figure 5.6). The circuit diagram consists of various electric elements – hence, an ElectricCircuit
consists of instances of the class AutomationHardware – which represents the superclass of all further
elements. Essentially, an AutomationHardware instance is defined through typical properties such
as its name, its id as well as a (manufacturer-specific) orderNumber. Further on, Interfaces (e.g.,
power supply or electrical ports) as well as Connections (i.e., wirings from a source to a target
interface) can be added to the AutomationHardware. Analogously, a Signal can be added to an
Interface in order to specify, what kind of signal is to be expected at the respective interface. The
Signal ’s specification is made by properties such as the respective voltage, current and frequency.
AutomationHardware elements can further be classified into the classes PLC, which represents a

Programmable Logic Controller (PLC) instance, Terminal, which stands for an input or output ter-
minal within the ControlCabinet, Couplers that represent bus couplers and Devices, which represent
actual field devices such as Sensors, Actuators or SignalAdjustment devices.

pkg electrics)

ElectricCircuit

name : String

0

pie,
PLC Terminal 0 .. \ automation Hardware

V
/ maximumNumberOflnterfaces : int

O .. * AutomationHardware Interface Signal

I I name : String interface name : String signal voltageValue : float
t)

,... ' ,... '

I I id : String, /
..... / voltageUnit : VoltageUnit

orderNumber : String O .. * 0 .. 1 currentValue : float
Control Cabinet Coupler Device manufacturer : String currentUnit : CurrentUnit

maximumNumberOfParticipants : int ◄► /\ /\ currentType : CurrentType
◄► ◄ ►

coupler If' o .. *
II\ 6 from 1 to 1 frequencyValue : float

device O .. * frequencyUnit : FrequencyUnit
Connector

connector name : String ' <<enum>> <<enum>>
lengthValue : float

CurrentUnit VoltageUnit O .. * lengthUnit : LengthUnit
Sensor Actuator SignalAdjustment diameterValue : float A V

measuredValueName : String controlledValuedName : String diameterUnit : LengthUnit mA mV

measuringPrinciple : String controllingPrinciple : String

measuringAccuracy : float controllingAccuracy : float
<<enum>> <<enum>> <<enum>>

FrequencyUnit Length Unit CurrentType

Hz m DC
mHz cm AC
... dm

. ..

Figure 5.6. Overview of the electrics vocabulary

Devices in the electrics vocabulary. As introduced beforehand, Devices can further be clas-
sified into Sensors, Actuatorsand SignalAdjustment devices (see Figure 5.7). For Sensors and Ac-
tuators, the main classifying properties are the respective names of the values that are measured or
controlled (see measuredValueName and controlledValueName), the respective principles that are
used for measuring or controlling (see measuringPrinciple and controllingPrinciple) as well as the
accuracy that can be expected for the devices (see measuringAccurary and controllingAccuracy).
Additionally, Sensors and Actuators can be further classified into binary and analogue devices –

56

5.2. Model Management: Representation of Models

hence, the classes BinarySensor, AnalogueSensor, BinaryActuator and AnalogueActuator are in-
troduced as subclasses of Sensor and Actuator. In order to allow for specification of the values
being measured or controlled by analogue devices, the value range can be specified – both for the
actual value (see measuredMinimumValue, measuredMaximumValue, controlledMinimumValue and
controlledMaximumValue) and the transmitted value (see transmittedMinimumValue and transmit-
tedMaximumValue). Further on, the unit for the measured and controlled values are defined by
means of the properties measuringUnit and controllingUnit. Finally, conversionFactors and offsets
can be specified to denote the conversion between the actual and the transmitted values.
Within the electrics vocabulary illustrated in Figure 5.7, different exemplary Sensor and Actuator

types are included – which can, according to the needs of the respective device types, be extended by
further, device-specific properties. Accordingly, exemplary SignalAdjustment devices are illustrated,
such as CurrentConverters, FrequencyConverters and VoltageConverters.

Figure 5.7. Overview of the devices within the electrics vocabulary

Signals and interfaces in the electrics vocabulary. Especially important to the electrics
domain, and hence included in the electrics vocabulary, are Interfaces and Signals. For instance,
Terminals can be broadly classified into InputTerminals and OutputTerminals. Respective InputIn-
terfaces and OutputInterfaces can be defined for these Terminals. Moreover, if a bus system is
used for the respective device, BusInterfaces can be specified – in the excerpt of the electrics vo-
cabulary illustrated in Figure 5.8, some exemplary bus interfaces such as the EtherCATInterface,
ProfinetInterface and ProfibusInterface are illustrated. Finally, DigitalSignal and AnalogueSignal
are specified as subclasses of the Signal metaclass.

57

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

Figure 5.8. Overview of the signals and interfaces within the electrics vocabulary

Software vocabulary: Representing the logical control software architecture

In order to capture the necessary model information from the control software discipline, a software
vocabulary is introduced in the following. However, in contrast to exchange formats such as PLCopen
XML [PLC09b], the software vocabulary aims at capturing the dependencies within IEC 61131-3
software projects. By means of these dependencies, inconsistencies that, e.g., stem from software
guidelines can be specified and identified. Hence, in addition to structural information that is
captured in exchange formats such as PLCopen XML, the software vocabulary must be enriched
by dependencies that are not always available from the (static) project itself, but are generated,
e.g., during the compilation process. Among others, these dependencies result from calls between
POUs, read or write processes from or to variables, etc. By including this information within the
software vocabulary, the necessary data for specifying and diagnosing important inconsistencies,
which result from, e.g., company- or project-specific coding conventions or guidelines such as the
ones investigated by the PLCopen Promotional Committee 2 [PLC16], can be captured [Fel+16a].
As a consequence, the software vocabulary can be seen as a dependency model that not only

captures the structural elements of an IEC 61131-3 project, but also the dependencies between
these elements. It is therefore not focused on the actual control code that is implemented within the
software, but on the structural entities that form the logical control code architecture. Consequently,
this software vocabulary was mainly created according to the IEC 61131-3 standard in its current
version [IEC13b], extended by the concepts behind PLCopen [PLC09b] as well as the dependencies,
which are necessary for an appropriate structural analysis of the control code [Fel+16a; Fel+16b].
The creation, evaluation and continued evolution of the software vocabulary were conducted as

part of a joint research effort together with Schneider Electric Automation GmbH and Technische
Universität München – initial results of the joint work are published in [Fel+16a; Fel+16b].

Overview of the software vocabulary. The root element of the software vocabulary is a De-
pendencyModel, which captures both the structural entities of an IEC 61131-3 software project and
the dependencies in between these entities (see Figure 5.9). In such Projects – which can either
represent an IEC 61131-3 Library or Application – the respective Configuration as well as Types
are captured. In addition, according to the IEC 61131-3 standard [IEC13b], Namespaces can be
used in order to structure the respective Types. Configurations, in turn, define available Resources
(e.g., a PLC), on which Tasks are defined. Furthermore, POUInstances are defined (e.g., a Program
instance) and assigned to the Tasks that run these instances. According to the IEC 61131-3 stan-
dard [IEC13b], the Types that can be defined are either DataTypes such as elementary data types
or POUs such as Programs, Functions and Function Blocks.

58

5.2. Model Management: Representation of Models

Figure 5.9. Overview of the software vocabulary [enlarged from Fel+16a]

As discussed beforehand, besides these structural entities, (implicit and explicit) dependencies
between these entities exist. Such (explicit) dependencies can, for one, result from the relation-
ships and properties that occur within the control software architecture (e.g., a Function Block
that extends another Function Block). Besides, (implicit) dependencies result from the actual im-
plementation of the respective entities (e.g., a Function Block that calls another Function Block).
These dependencies are represented by a Dependency within the software vocabulary. In addition
to CallDependencies (i.e., a POU calls another POU) as well as Read- or WriteDependencies (i.e.,
a Variable is read or written by a POU), further dependencies exist such as ExtendDependencies
(e.g., a Function Block extends another Function Block), ImplementDependencies (e.g., a Function
Block implements an Interface) as well as UseDependencies (e.g., a Type uses a Namespace). As
the Dependency element can point to any object, the Dependencies can be extended and used for
any relation between elements of the software vocabulary.

Data types in the software vocabulary. A more detailed overview of the DataTypes available
in the software vocabulary is provided in Figure 5.10. As can be seen from this Figure, IEC
61131-3 defines three basic DataTypes: ElementaryTypes represent a set of (pre-defined) elementary
data types – e.g., boolean (BOOL), integers (INT). GenericTypes define additional DataTypes,
which can be applied to represent hierarchies of DataTypes – e.g., ANY or ANY_ELEMENTARY.
UserDefinedTypes aim at defining user-defined DataTypes – e.g., EnumTypes, StructTypes.
Consequently, respective classes are introduced within the software vocabulary, which represent

these different DataTypes and which can be used to define the DataTypes of Variables being used
within the software graphs. For instance, in order to represent the base types used by a Variable
that is typed by means of a Generic- or ElementaryTypes, enumerations (Elementary and Generic)
are available in the software vocabulary. As StructTypes are defined by a set of Variables to be
used for the structure, a compositional relation to the Variable class is available. An EnumType is
defined through a set of EnumValues, which allow to pre-define a set of names literals within the
enumeration. Types that require the definition of a Range – e.g., SubrangeType and ArrayType –
are defined through a lower and an upper value. Finally, the DerivedType meta class defines a base
type it is derived from.

59

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

Figure 5.10. Overview of the DataTypes within the software vocabulary [enlarged from Fel+16a]

POU types in the software vocabulary. Analogously to the DataTypes, a detailed overview
of the POUTypes that are available within IEC 61131-3 is given in Figure 5.11. Therein, three
basic, ClassicalPOUTypes are defined by the early standard of IEC 61131-3 [IEC03b]: Functions
define non-persistent POUs and yield the calculation of a result value based on given input values.
Programs define the entry POUs into an IEC 61131-3 Application. FunctionBlocks define persistent
POUs and calculate output values based on input and persistent internal values.
In order to represent these ClassicalPOUTypes as well as their dependencies, data structures

and variables, respective elements are introduced in the software vocabulary. For instance, respec-
tive compositional relations to define the Variables within a POU are defined – e.g., to represent
input variables (VAR_IN, inputVariable), output variables (VAR_OUT, outputVariable) or tem-
poral Variables (VAR_TEMP, temporalVariable). In addition, as FunctionBlocks, according to the
currently available IEC 61131-3 standard [IEC13b] can extend other FunctionBlocks, a respective
extension reference (extendsFunctionBlock) is available in the software vocabulary.
Analogously to the ClassicalPOUTypes, Figure 5.11 introduces the additional, object-oriented

OOPOUTypes that are specified in the current IEC 61131-3 standard [IEC13b]: Classes support
the object-oriented paradigm, e.g., through inheritance and interface implementations. Interfaces
serve the purpose of representing contracts between modular control software units by separating the
actual implementation from the specification of a software functionality. Methods define operations
that can be executed on class instance data.
Similarly to the definition of ClassicalPOUTypes, respective meta classes are specified in the

software vocabulary. As the object-oriented extension of IEC 61131-3 also introduces the concept of
inheritance, respective properties are available in the vocabulary that specify, e.g., a FunctionBlock
or Class that extends another class (extendsClass), a Class that implements an Interface (imple-
mentsInterface) or an Interface that extends another Interface (extendsInterface). Abstract classes
or methods are denoted through the abstract property; if a Method overrides another Method, the
overrides property is used.

Variables in the software vocabulary. The specification of Variables in the software vocabu-
lary is illustrated in Figure 5.12. Within IEC 61131-3, three distinct types of variables are avail-

60

5.2. Model Management: Representation of Models

Figure 5.11. Overview of the POUTypes within the software vocabulary [enlarged from Fel+16a]

able. For one, ConfigVariables (VAR_CONFIG) allow for defining instance-specific location defi-
nitions for symbolic variables. These can both be defined within a Project or a Program; respective
instance-specific paths can be defined through the instancePathAndName property. AccessVari-
ables (VAR_ACCESS) allow for defining communication services, e.g., via remote access to the
PLC. Consequently, in addition to their instancePathAndName property, a respective accessType
property is defined for these variables, which can be defined in Configurations and Programs. Fi-
nally, a Variable defines variables to be used, e.g., within respective POUs. The retain (RETAIN),
non_retain (NON_RETAIN) and constant (CONSTANT) properties can additionally be defined
for variables, if used within the control software.
Furthermore, each of the defined variable types can be enriched with Addresses, which represent

the physical addresses of the respective variables. These Addresses are defined through their ad-

Figure 5.12. Overview of the variables within the software vocabulary [enlarged from Fel+16a]

61

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

dressType (Input (I), Output (Q) or Memory (M)), their addressMemory (e.g., Single Bit (X) or
Byte (B)) as well as through their addressValue, which specifies the respective (relative or absolute)
address.

5.2.3. Background Knowledge Model Representation

Additionally to the aforementioned vocabularies that are specific to certain disciplines of the engi-
neering within the automated production systems domain, there exists background knowledge that
is needed for the purpose of inconsistency management. Such background knowledge can involve,
e.g., common knowledge such as the knowledge on unit systems, domain knowledge such as device
taxonomies as well as specific knowledge such as a supplier’s device catalogue. As RDF is used as
the formalism to represent models within a common syntax and semantics, in principle any knowl-
edge model can be included within the inconsistency management framework. Hence, by means of
additional vocabularies that capture this specific information, such background knowledge can be
included for the purpose of inconsistency management.
One typical example is the knowledge on the unit system to be used for inconsistency manage-

ment. As engineering projects in the automated production systems domain is an interdisciplinary
process that is often distributed spatially (e.g., one development team in Europe and another one
in Asia), different unit systems are used in a single engineering project. Especially with regard to
inconsistency management, it is essential to ensure a consistent use of units – a popular example for
the consequences of a lack of inconsistency management with regard to the used unit system is the
Mars Climate Orbiter, in which a unit mismatch caused severe monetary consequences [NAS00].
As a basis to provide a standardized means to define such units, the so-called Quantity, Unit, Di-

mension and Type (QUDT) vocabulary is continuously developed and maintained by TopQuadrant
and the National Aeronautics and Space Administration (NASA). This collection of ontologies de-
fines “base classes, properties and instances for modelling physical quantities, units of measure, and
their dimensions in various measurement systems” [NAS16]. Hence, by means of this vocabulary, it
is envisioned to provide an interoperable system that allows for specification and use of such units
not only by humans, but also by machines.
Within the context of this dissertation, an excerpt of the QUDT ontologies is used (see Fig-

ure 5.13). In particular, for the purposes of this dissertation, it is focused on one-dimensional

Figure 5.13. Overview of the QUDT vocabulary [excerpt according to NAS16])

62

5.2. Model Management: Representation of Models

Legend RDF Resource RDF Literal RDF PropertyRDF PropertyLegend RDF Resource RDF Literal RDF Property

qudt:AngularVelocity

qudt:QuantityKind

rdf:type

qudt:RadianPerSecond

qudt:Unit

"rad/s"

0.0

0.0

true

false

true

qudt:abbreviation

qudt:conversion
Offset

qudt:conversion
Multiplier

qudt:isSI
Unit

qudt:isNonSI
Unit

......

qudt:isDerived
Unit

qudt:DegreePerSecond

"°/s"

0.0

0.0174...

false

true

true

qudt:abbreviation

qudt:conversion
Offset

qudt:conversion
Multiplier

qudt:isSI
Unit

qudt:isNonSI
Unit

......

qudt:isDerived
Unit

qudt:quantityKind

qudt:quantityKind

rdf:type

rdf:type

"omega"

qudt:symbol

Figure 5.14. Exemplary application of the QUDT vocabulary for the QuantityKind AngularVe-
locity within an RDF graph

quantities and units, therein neglecting unit dimensions that incorporate more than one dimension.
QUDT makes use of two main classes: the SystemofQuantities class defines the Quantities to be
used; the SystemOfUnits class defines the available Units. Consequently, a QuantityKind refers to
any observable property, which can be quantified in a numerical manner, e.g., length, mass, etc.
A Quantity is the actual measurement of a QuantityKind and, hence, must always be related to
a certain thing or value to be measured. A QuantityValue therefore represents the certain value
measured for a Quantity. Accordingly, Units represent a unit of measure, which has been chosen as
the scale to measure a quantity, e.g., meters, kilograms, etc. Consequently, Units are characterised,
in addition to to their symbol and abbreviation, by a conversionMultiplier and a conversionOffset.
An example applying the QUDT vocabulary for the QuantityKind AngularVelocity with its ac-

cording units RadianPerSecond and DegreePerSecond is illustrated in Figure 5.14. Given that
RadianPerSecond is the basic non-SI unit to be used for the QuantityKind AngularVelocity, a con-
version between DegreePerSecond and RadianPerSecond can be defined by the conversionMultiplier
0.0174... – as illustrated in Figure 5.14. Hence, using the RDF graph in Figure 5.14, the respective
relations between the two Units can be defined.
As discussed beforehand, further, domain-, company- or project-specific vocabulary can be intro-

duced depending on the envisioned application of the inconsistency management framework – the
QUDT is solely a simple example for such background knowledge models.

5.2.4. Linking the Models

Given that a multitude of disparate models is involved during engineering of automated production
systems, it is obvious that semantic overlaps exist between the different models (see Chapter 2). As
a basis to explicitly capture these semantic overlaps, a links vocabulary is introduced.
It should be noted that the creation, evaluation and continued evolution of the links vocabulary

were conducted as part of a joint research effort together with Technische Universität Wien and
Technische Universität München – the results were published in [Fel+16c].

63

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

An overview of the links vocabulary is given in Figure 5.15. This vocabulary describes a LinkModel,
which consists of multiple LinkGroups. Therein LinkGroups describe a set of Links between two
distinct Models – a leftModel representing the source of a LinkGroup and a rightModel defining the
target of a LinkGroup. Consequently, the general Link concept is used to describe links between a
leftEntity (that is: the source of a link) and a rightEntity (that is: the target of a link). The general
Link concept is further refined by means of different link types. By means of these different link
types, different semantics for the dependency between two elements can be described:

• An EquivalentToLink refers to the equivalence of two model entities. Therein, equivalence is
meant to demand the equality of certain properties such as names, identifiers, etc.

• A DependsOnLink is used to declare a general (non-specified) dependency between two enti-
ties.

• A SpecializesLink refers to one element specializing another element. Its opposite link, the
GeneralizesLink, refers to one element that generalizes another element. This link type is
similar to the generalization concept that is used in a multitude of Domain-specific Languages
(DSLs).

• A RefinesLink aims at specifying a refinement between two entities. Accordingly, its opposite,
the AbstractsLink refers to the abstraction between two entities. This link type is to be used in
a similar manner to the refines relation in Systems Modeling Language (SysML) requirement
diagrams.

• A SatisfiesLink, similar to satisfy relations in SysML requirement diagrams, refers to one
element satisfying, e.g., a requirement.

• Further, company- or project-specific links can be added to the links vocabulary.

Figure 5.15. Overview of the links vocabulary [extended from Fel+16c]

By means of the links vocabulary, a multitude of semantic overlaps between disparate models of
the automated production system can be captured. Based on these links, inter-model inconsistencies
can be diagnosed and handled.

64

5.3. Mediation: Mediation Between Heterogeneous Models

5.3. Mediation: Mediation Between Heterogeneous Models

Whereas RDF serves as the basis to represent heterogeneous models within a common representa-
tional formalism, the multitude of disparate engineering models within the automated production
systems domain demands for a mechanism that simplifies the specification, diagnosis and handling
of inconsistencies. In particular, it can be argued that some entities modelled in disparate models
are semantically overlapping – leading to similar or identical entities and properties being modelled
in the different languages, but referring to common semantic concepts (Requirement 1.2).
A comprehensive example is the naming attribute: A multitude of applications demand naming

conventions (such as medial capitals for compound identifiers – namely, the UpperCamelCase style).
In order to ensure that such a naming convention is not violated within n disparate models, n dis-
tinct inconsistency diagnosis (and according handling) rules need to be specified. This complexity
increases when investigating the links between the respective models. An example is the demand
for identical names of entities that are linked to each other: If n heterogeneous models were con-
sidered for this inconsistency, 2 · n inconsistency diagnosis (and according handling) rules would be
needed to ensure all possible cases. It is, therefore, inevitable to provide an appropriate abstraction
mechanism that allows for unifying the distinct vocabularies – at least to some degree. Especially
as similarities exist between the different vocabularies – such as the concept of classes and their
respective instances, as well as the existence of properties – common concepts between the differ-
ent disciplines can be found. By formulating respective mappings between the discipline-specific
vocabularies and the more general ones, graphs that use the previously defined vocabularies can be
mapped to more abstract vocabularies. These mappings are formulated by means of rules, which
are henceforth referred to as mediation rules.
Within the following, the design rationale for introducing additional mediating vocabularies and

for using rules for mediating between multiple vocabularies is presented (Section 5.3.1). Subse-
quently, the two mediating vocabularies that are used within the context of this dissertation, namely
the mechatronics and the common vocabulary, are introduced (Section 5.3.2), followed by the spec-
ification of the rules for mediating between the different vocabularies (Section 5.3.3).

5.3.1. Rules and mediating vocabularies as the basis for effective management
of inconsistencies

In order for any inconsistency management framework to be efficient, it is essential to provide a
mechanism for abstracting the multitude of involved models into a common “denominator” – that is,
to capture the common semantic elements (Requirement 1.2) that are similar to all of the involved
modelling languages. It can be argued that – at least at some level of (semantic) abstraction –
there exist concepts that are common to a specific domain (such as the automated production
systems domain) or even common to all domains. Popular examples for such commonalities are the
concepts of instantiation or properties such as values or names. Consequently, using more abstract
vocabularies, inconsistencies among and between multiple, disparate models can be managed.
Clearly, the definition of such common concepts may not always require the full expressiveness;

thus, those more abstract vocabularies are semantically much weaker than discipline-specific ones.
The concept of mediating between disparate vocabularies is illustrated in Figure 5.16. As can be
seen from the Figure, for the purpose of inconsistency management in the automated production
systems domain, it can be distinguished between three distinct types of vocabularies. For one,
discipline vocabularies (such as the ones introduced beforehand) capture the information that is
relevant to a particular discipline, e.g., mechanics or electrics. These specific vocabularies make
use of the full expressiveness of the respective discipline. However, it can be argued that, due to
semantically overlapping fields (Chapter 2), concepts can be found that are relevant to an entire
domain – hence, resulting into domain vocabularies. An example is the mechatronics domain,

65

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

Common

vocabulary
Domain

vocabulary

#1

Domain

vocabulary

#2

Domain

vocabulary

#n

Discipline

vocabulary

#1

Discipline

vocabulary

#1.k

...

Discipline

vocabulary

#2.1 ...

Discipline

vocabulary

#2.m

Discipline

vocabulary

#3.1

...

Discipline

vocabulary

#3.o

Legend

Common vocabulary

Domain vocabulary

Discipline vocabulary

Mediation

Legend

Common vocabulary

Domain vocabulary

Discipline vocabulary

Mediation

Figure 5.16. Semantic mediation between discipline, domain and common vocabulary [extended
from FKV16])

which incorporates, for instance, the concept of a mechatronic component or module. Such domain
vocabularies are semantically weaker than discipline vocabularies, as they do not need the full
extent of expressiveness of the involved disciplines. Certainly, overlaps between multiple domains
can exist; therefore, there may also exist mediations from one single discipline vocabulary to a set of
domain vocabularies. Finally, it is obvious that some concepts are relevant to all domains – this is
represented through a common vocabulary in Figure 5.16. Such common concepts involve, e.g., the
concept of a class-instance relationship (i.e., instantiation) or the concept of an object’s property.
Therefore, the expressiveness of such a common vocabulary will be exceptionally weak, as it only
includes the concepts that are common to all domains.
The benefits in applying such a mediation concept are manifold. As the more abstract (domain

and common) vocabularies represent semantically overlapping concepts, these vocabularies ideally
remain unchanged when incorporating additional disciplines or modelling languages within an in-
consistency management framework. Hence, said process will only need (1) an appropriate RDF
representation of the respective discipline or language and (2) the adequate set of mediation rules
for mediating between the novel discipline or language and the dependent vocabularies.
An illustrative example of such a mediation is illustrated in Figure 5.17. Therein, two dis-

tinct modelling languages (i.e., discipline vocabularies), namely the vocabularies sampleA (Fig-
ure 5.17a) and sampleB (Figure 5.17b), are illustrated together with a sample common vocabu-
lary (Figure 5.17c) that should be used as the common “denominator” between these languages –
for this illustrative example, a domain vocabulary is omitted. Within the example, the sampleA
vocabulary aims at defining a Type Taxonomy. Therein a hierarchical assignment of nestedTypes is
made and, with the massInKg attribute, further annotated with additional information. Similarly,
the sampleB vocabulary provides the means to formulate a Hierachy of Entities, which are either
Modules or Components. Accordingly, nestedEntities are defined for Modules, thereby forming the
hierarchy of the entire system. By means of the MassProperty, the mass values of each Module or
Component are defined. Certainly, both vocabularies have semantically overlapping elements and,
hence, are mediated with the sampleCommon vocabulary. Within this common vocabulary, the
hierarchies are aligned by means of the Element class, which contains nested Elements (property
containsElement) as well as Properties.
To allow for mediating between the distinct vocabularies, mediation rules are formulated. These

mediation rules are similar to graph transformation rules, as they extend the existing graph with
additional information according to the given rule. Within the following mediation rules, the vocab-
ularies are denoted by means of indicators: A for sampleA, B for sampleB and C for sampleCommon.

66

5.3. Mediation: Mediation Between Heterogeneous Models

As denoted in Equations (5.1) and (5.2) Taxonomy and Type instances in the sampleA vocabulary
are mediated with Element instances in the sampleCommon vocabulary.

TaxonomyA(x)→ ElementC(x) (5.1)
TypeA(x)→ ElementC(x) (5.2)

Accordingly, the id, name, type and nestedType properties (Equations (5.3) to (5.6)) are mediated
with according properties in the sampleCommon domain. For the mass property (Equation (5.7)),
an according Property is created in the sampleCommon domain. As mediation rules are unidirec-
tional, traceability between the mediated property as well as the original triple that produced the
property must be ensured – hence, the triple is bound to originalTriple.

(a) sampleA vocabulary (b) sampleB vocabulary

(c) sampleCommon vocabulary

Figure 5.17. Exemplary mediation use case: mediation between two sample vocabularies sampleA
and sampleB with a common vocabulary sampleCommon

67

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

idA(x, i)→ idC(x, i) (5.3)
nameA(x, n)→ nameC(x, n) (5.4)
typeA(x, t)→ containsElementC(x, t) (5.5)

nestedTypeA(x, t)→ containsElementC(x, t) (5.6)
massInKgA(x, v)→ PropertyC(p) ∧ propertyC(x, p)

∧ valueC(p, v)
∧ nameC(p, “Mass”)

∧ typeC(p, “kg”)
∧ originalV alueTripleC(p, triple)
∧ subject(triple, x)
∧ predicate(triple,massInKgA)
∧ object(triple, v) (5.7)

Analogously, mediation rules are formulated for the sampleB vocabulary. The main metaclasses
in the sampleB vocabulary – namely Hierachy, Entity and MassProperty – are mediated to the
according metaclasses Element and Property in the sampleCommon vocabulary by means of the
mediation rules in Equations (5.8) to (5.10).

HierarchyB(x)→ ElementC(x) (5.8)
EntityB(x)→ ElementC(x) (5.9)

MassPropertyB(x)→ PropertyC(x) (5.10)

Similarly, the rules in Equations (5.11) to (5.14) are formulated to mediate the identifier, name,
nestedEntity and massProperty properties with according ones in the sampleCommon vocabulary.
For the massProperty (Equation (5.15)), an according property relation is generated within the
sampleCommon vocabulary. Accordingly, the originalTriple captures the initial triple that produced
the newly created property in the common vocabulary.

identifierB(x, i)→ idC(x, i) (5.11)
nameB(x, n)→ nameC(x, n) (5.12)
entityB(x, t)→ containsElementC(x, t) (5.13)

nestedEntityB(x, t)→ containsElementC(x, t) (5.14)
massPropertyB(x, p) ∧ valueB(p, v) ∧ typeB(p, t)→ PropertyC(p) ∧ propertyC(x, p)

∧ valueC(p, v)
∧ nameC(p, “Mass”)

∧ typeC(p, t)
∧ originalV alueTripleC(p, triple)
∧ subject(triple, p)
∧ predicate(triple, valueB)
∧ object(triple, v) (5.15)

An example of the mediation between the sampleA and sampleB vocabularies as well as the
sampleCommon vocabulary is illustrated in Figure 5.18. As can be seen from the Figure, both

68

5.3. Mediation: Mediation Between Heterogeneous Models

exemplary model graphs represent a Crane module with its according Potentiometer using the
disparate concepts of the sampleA and sampleB vocabularies. By means of the mediation rules
discussed above, the common vocabulary is used to describe the different concepts within the
graphs using the common concepts Property and Entity as well as the respective properties. An
according link model describes the relations between the two exemplary graphs.

Consequently, by means of the mediation from the two distinct discipline vocabularies with the
common vocabulary, involved models can be brought to a common abstraction level, thereby not
only using a common syntactical formalism (Requirement 1.1), but also common semantic concepts
(Requirement 1.2), that are identical or similar to both disciplines. For the purpose of inconsistency
management, the benefits of such a mediation can already be observed for the illustrative example
in Figure 5.18: Without the sampleCommon vocabulary, an inconsistency (diagnosis or handling)
rule that refers to the mass values specified in both vocabularies would require at least two distinct
formulations – one for the sampleA vocabulary and one for the sampleB vocabulary. However, after
mediating both vocabularies with the sampleCommon vocabulary, the necessary formulations are
reduced to one single inconsistency (diagnosis or handling) rule, which refers to the sampleCom-
mon vocabulary and, hence, is independent from other vocabularies. Consequently, the mediation
mechanism is especially helpful when incorporating a set of distinct, heterogeneous (discipline or
domain) vocabularies for the involved engineering models – as is the case for the engineering in the
automated production systems domain.

sampleA:

taxonomy1

"Sample

Taxonomy"

sampleA:

crane1

sampleA:

potentiometer

sampleA:

Taxonomy

sampleA:

Type

"Potentio-

meter"

"Crane"

0.5

sampleA:
nestedType

common:
contains

rdf:type

rdf:type

sampleA:
name

sampleA:
type

common:
contains

sampleA:
name

common:
name

sampleA:
name

sampleA:
massInKg

common:
name

"Mass" "kg"

common:

Property
rdf:type

common:
valuecommon:

property

common:
name

common:
type

rdf:type

common:

Entity
rdf:type

rdf:type

rdf:type

(a) Exemplary sampleA graph

sampleB:

hierachy1

"Sample

Hierarchy"

sampleB:

crane1

sampleB:

potentiometer

sampleB:

Hierarchy

sampleB:

Module

"Crane"
sampleB:

nestedEntity
common:
contains

rdf:type

rdf:type

sampleB:
name

sampleB:
entity

common:
contains

sampleB:
name

common:
name

sampleB:
name

common:
name

sampleB:

MassProperty

"Potentio-

meter"

sampleB:

Component
rdf:type

sampleB:

craneProperty

"lbs"

rdf:type

1.4

sampleB:
massProperty

common:
Property

common:

Property
rdf:type

common:
type

sampleB:
type

common:
value

sampleB:
value

common:

Entity

rdf:type

rdf:type

rdf:type

"Mass"

common:
name

(b) Exemplary sampleB graph

link:
EquivalentToLink

link:
link1

link:
link2

sampleA:
taxonomy1

sampleA:
crane1

sampleB:
hierarchy1

sampleB:
crane1

link:
leftEntity

link:
leftEntity

link:
rightEntity

link:
rightEntity

link:
EquivalentToLink

rdf:type

rdf:type

(c) Exemplary link graph

Figure 5.18. Mediation between exemplary graphs using the sampleA and sampleB vocabularies
and the sampleCommon vocabulary (inferred information is denoted in dashed lines)

69

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

5.3.2. Mechatronics vocabulary and common vocabulary: Representing
common concepts

This section introduces the two mediating vocabularies used within this dissertation – namely, the
vocabulary for the domain of mechatronics as well as a common vocabulary.

Mechatronics vocabulary: Capturing common mechatronic concepts

Within the mechatronics vocabulary, the focus lies on mediating between the disciplines of the
mechatronic engineering domain, i.e., between the mechanical, electrics and software disciplines.
Consequently, it is essential to capture the common concepts from the previously introduced me-
chanics, electrics and software vocabularies.
As the basis to develop such a mechatronics vocabulary, the prior work of Kernschmidt et

al. [Ker+14] is used, which envisions an integrated model-based engineering process for mechatronic
production systems. A first draft of a metamodel for such an integrated, mechatronic modelling
language was published in [FKV16] – the continuous evaluation and improvement is unpublished
up to the date of writing this dissertation, but will be published in the near future in [Ker17]. This
metamodel serves as the basis for the mechatronics vocabulary described in the following.

Figure 5.19. Overview of the mechatronics vocabulary [according to FKV16; Ker17]

Within the mechatronics vocabulary (see Figure 5.19), mechatronic Elements are described –
namely either mechatronicModules that can comprise of further Elements or discipline-specific Com-
ponents. Such Components refer to respective discipline-specific elements and are, hence, further
divided into MechanicalComponents, ElectricalComponents and SoftwareComponents. By means of
these basic concepts, a distinction between the different discipline-specific entities can be made.
Further on, Elements can be described by means of Attributes, Functionality and Interfaces.

Therein, Attributes refer to a name – value – type combination and represent any particular attribute
that describes an Element, e.g., a mass attribute, a velocity, etc. In turn, Functionality refers to
the respective function intended to be performed by an Element. Respective Interfaces define the
discipline-specific of a mechatronic Element, e.g., a form closure from a mechanical perspective, a
bus interface from an electrical viewpoint and a certain operation from a software point of view.
Respective Connections from and to these Interfaces represent, e.g., wirings, pipes, etc. Accordingly,
the discipline-specific vocabularies can be mediated with the mechatronics vocabulary.
Obviously, this mechatronics vocabulary, as discussed beforehand, does not allow for the full

expressiveness of the discipline-specific ones. Rather, it aims at capturing the necessary information
that is overlapping in the involved discipline vocabularies – namely, the mechanics, electrics and

70

5.3. Mediation: Mediation Between Heterogeneous Models

software vocabulary. Accordingly, such a domain vocabulary can be adapted to the specific needs of
a company or project – thereby putting emphasis on the concepts that are relevant for inconsistency
management.

Common vocabulary: Capturing concepts that are common to all disciplines

Whereas the mechatronics vocabulary addresses the concepts from specific disciplines, the com-
mon vocabulary aims at a generic framework to consider the concept from all disciplines. As a
consequence, such a common vocabulary comprises the concepts that are common to all involved
disciplines – similar to property modelling approaches such as the one proposed by Hadlich and
Diedrich [HD13].
The common vocabulary used within this dissertation resulted from a cooperation between the

Georgia Institute of Technology and different institutes at the Technische Universität München.
The principal results of this joint research work were published in [Fel+15b; Fel+15a] and have been
extended in [Her15; FKV16]. These prior works serve as the basis for the common vocabulary used
throughout this dissertation.

Figure 5.20. Overview of the common vocabulary

As the basis for the common vocabulary, the metaclass Concept is defined. This metaclass also
serves as the root for further classes, which inherit from the Concept. Concepts are specified through
their name and respective type. By that, Concepts within the common vocabulary can basically
represent any existing thing or entity within the involved engineering models.
Concepts are further divided into four main classes: Entities – which are either Elements (i.e.,

physical or software elements) or Interfaces to the environments. Relationships denote either Proper-
ties that describe Entities or Connections between Interfaces. Constraints represent (mathematical,
logical, etc.) conditions that are imposed, e.g., on a Property. Among others, typical Constraints
are EqualityConstraints (i.e., value must be equal to constrained value), GreaterThanConstraints
(i.e., value must be greater than constrained value), etc. As they are not used throughout this
dissertation, Predictions are not specified further.
By means of this common vocabulary, in principle any discipline or domain can be represented

semantically. In the context of this dissertation, mediation rules allow for mediating the discipline-
specific vocabularies via the mechatronics vocabulary with the common vocabulary.

71

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

5.3.3. Mediation rules: Mediating between the vocabularies

In order to mediate in between the involved vocabularies, respective mediation rules need to be
employed. Within the following, the mediation between the involved discipline, domain and common
vocabularies is discussed. Subsequently, it is discussed how additional mediation can be used, e.g.,
in order to apply background knowledge to the involved models.

Mediation between discipline, domain and common vocabularies

For the purpose of inconsistency management, it is essential to mediate between the different types
of vocabularies used throughout the engineering process. Within the context of this dissertation,
the set relations between the vocabularies being used can, according to Figure 5.16, be illustrated
as shown in Figure 5.21. As can be seen from this Figure, the vocabularies for the disciplines
mechanics, electrics and software are mediated to the common vocabulary. Accordingly, a set of
mediation rules allows for mediating from the mechatronics vocabulary to the common vocabulary
as well as from the respective project and QUDT vocabularies to the common vocabulary.

Common

vocabulary

Mechatronics

vocabulary

Mechanics

vocabulary

Software

vocabulary

Electrics

vocabulary

Project

vocabulary

Legend

Common vocabulary

Domain vocabulary

Discipline vocabulary

Mediation

QUDT

vocabulary

Figure 5.21. Semantic mediation between vocabularies that are focused on in this dissertation

As introduced in Section 5.3.1, the mediation between the respective vocabularies can be defined
by means of a set of graph transformation rules. These rules define a mapping between the entities
in the specialized vocabularies and the ones in the respective general vocabularies, thereby mapping
the concepts from more detailed ones (e.g., discipline-specific concepts) to more general ones (e.g.,
domain-specific concepts).

Background knowledge mediation

Additionally to applying the concept of mediation for the purpose of mapping between distinct
vocabularies, further use cases can be identified. Especially for the purpose of incorporating back-
ground knowledge for the respective dependent models, the mediation concept can be applied.
One example for such a background knowledge mediation is the application of configuration rules.

If one of the involved background knowledge models comprises of knowledge that is relevant to the
consistency of configurations in another domain, mediation rules can be applied for this purpose.
Another example is the mediation between different units being used in disparate engineering mod-
els. As the QUDT vocabulary defines a conversion factor and offset that defines how one unit is
transformed into another one, respective mediation rules can be formulated to mediate all units
into a common unit system. Consequently, as can be seen from Equation (5.16), for each Quan-
tityValue q, the according Unit u is identified. By means of the underlying QuantityKind k, the
respective basic SI unit nU is retrieved and, based on the conversionOffset o and conversionMulti-
plier m, the new value v ·m+ o is inferred for the newly created mediatedValue with the according
mediatedUnit.

72

5.4. Diagnosis and Handling: Diagnosis and Handling of Inconsistencies

QuantityV alueQ(q) ∧ unitQ(q, u) ∧ value(q, v)

∧ conversionOffsetQ(u, o)
∧ conversionMultiplierQ(u,m)

∧ quantityKindQ(u, k) ∧ quantityKindQ(nU, k)

∧ isSIUnitQ(nU, “true”)→ QuantityV alueQ(nQ)

∧ mediatedUnitQ(nQ, nU)

∧ mediatedV alueQ(nQ, v ∗m+ o) (5.16)

An exemplary application of this mediation rule within an RDF graph is illustrated in Figure 5.22.
Two QuantityValues value1 and value2 are defined, either with the unit Kilogram or Pound, and
with according values. By means of the mediation rule defined in Equation (5.16) as well as the RDF
graph shown in Figure 5.22, the mediatedValues can be inferred for both QuantityValues value1 and
value2.

qudt:QuantityValue

qudt:Kilogram

qudt:value1qudt:value2

"value1"

0.5

"value2"

1.4

qudt:Pound

qudt:value

qudt:name

qudt:value

qudt:name

rdf:type rdf:type

0.50.635...
qudt:

mediated

Value

qudt:

mediated

Value

qudt:unitqudt:unit
qudt:

mediated

Unit

qudt:

mediated

Unit

Figure 5.22. Mediation within an exemplary graph using the qudt vocabulary (inferred informa-
tion is denoted in dashed lines)

5.4. Diagnosis and Handling: Diagnosis and Handling of
Inconsistencies

Given that RDF is used as the common representational formalism for the models, appropriate
means to diagnose and handle inconsistencies can be put in place. Accordingly, the aim of this
section is to introduce the means to specify, diagnose and handle inconsistencies by means of the
SPARQL Query and Update Languages. First, the conceptual basis for specifying and executing in-
consistency diagnosis and handling rules is introduced in the following (Section 5.4.1). As discussed
in Chapter 2, four distinct types of inconsistencies are envisioned to be handled by the inconsistency
management approach: notational, conventional, correspondence as well as domain-specific incon-
sistencies. Consequently, it is shown how intra-model inconsistencies can be diagnosed and handled
by the inconsistency management framework (Section 5.4.2)- Subsequently, it is shown how inter-
model inconsistencies are incorporated in the approach (Section 5.4.3). Finally, the different types
of inconsistencies to be considered for the distinct engineering models of automated production
systems are introduced in Section 5.4.4

73

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

5.4.1. Structuring the Inconsistency Diagnosis and Handling Problem

As discussed in Chapter 3, using a respective knowledge base that captures all the different models
used throughout the engineering of automated production systems, a support for specifying and
diagnosing different types of inconsistencies (Requirement 2) as well as to handle these inconsisten-
cies (Requirement 3) is necessary. Moreover, to support domain experts – namely, discipline-specific
engineers – in identifying the hot spots in their system, the means to assess and measure potentially
occurring inconsistencies and their handling actions is required (Requirement 4).
In order to structure the inconsistency management problem, an inconsistency vocabulary was

formulated in a joint research effort together with Technische Universität Wien and Technische Uni-
versität München – the results were published in [Fel+16c]. The extended vocabulary is illustrated
in Figure 5.23.

Figure 5.23. Overview of the inconsistency management vocabulary [extended from Fel+16c]

Therein, an InconsistencyManagementModel structures the entire inconsistency management
problem. Within a DiagnosisGroup, a group of inconsistency DiagnosisRules is defined with an
according name and severity (e.g., Error, Warning or Information). Accordingly, a DiagnosisRule
is represented through a name, a messagePattern, which defines what the message to be displayed
to the user is, and a ruleBody that includes the actual inconsistency diagnosis rule. Additionally
to diagnosing inconsistencies, handling them is supported by HandlingRules – which can either be
ResolveHandlingRules, TolerateHandlingRules or IgnoreHandlingRules. Accordingly, HandlingRules
are specified through their name, an according messagePattern and an optional guard. Based on
such a guard, it is decided whether or not a HandlingRule is applicable to the diagnosed inconsis-
tency or not.

74

5.4. Diagnosis and Handling: Diagnosis and Handling of Inconsistencies

Whereas the previously discussed components describe how the DiagnosisRules and Handlin-
gRules are specified, the inconsistency vocabulary also includes a specification of ValidationRuns.
These ValidationRuns represent executions of the specified rules against the engineering models-
Hence, a DiagnosisGroup results into a DiagnosisResultGoup in a ValidationRun; a DiagnosisRule
results into a DiagnosisResult, which defines whether a pattern match resulted into a match that
isInconsistent or not and which defines the current status of a diagnosed inconsistency; a Handlin-
gRule is represented through a HandlingAction. Consequently, the user selects a HandlingAction
from the possibleHandlingActions, which is to be executed during the next ValidationRun.
By means of that inconsistency vocabulary, the entire inconsistency management problem is also

represented as an RDF graph – hence, it is also part of the model knowledge base. Consequently,
any software program (e.g., a discipline-specific engineering tool) that accesses the knowledge base
can also diagnose and handle the respective inconsistencies in the models. Hence, by means of the
inconsistency vocabulary, an interactive approach is enabled that allows users to decide on how to
react on diagnosed inconsistencies as well as to document the decisions being made.
In order to specify inconsistency diagnosis rules as well as inconsistency handling rules, we make

use of the SPARQL Query and Update Languages. Consequently, inconsistency diagnosis rules can
be expressed by means of patterns that are matched against the knowledge base (Query Language).
Accordingly, inconsistency handling rules are either defined (1) as a resolve handling rule, which
replaces the inconsistent pattern (Update Language), (2) as a tolerate handling rule that tolerates
the diagnosed inconsistency until a specific date and (3) as an ignore handling rule, which ignores
the diagnosed inconsistency.

5.4.2. Specifying Intra-model Inconsistencies

Intra-model inconsistencies refer to inconsistencies that occur within a single model. Hence, links
between distinct models are not incorporated in these types of inconsistencies. A typical example
for such an intra-model inconsistency is illustrated in Figure 5.24 and refers to the demand that
mass values must not be negative. Therein, the inconsistency pattern is illustrated graphically
to denote, which graph elements are potential candidate for the inconsistency. Furthermore, the
inconsistency condition describes, what condition must hold to consider the graph elements as
inconsistent. Further on, respective meta information is visualized such as the intended scope of
the inconsistency, its expected severity as well as a message that should be generated in case an
inconsistency is diagnosed. Accordingly, different handling actions are listed. This example is
used throughout the following to illustrate, how SPARQL is used to specify, diagnose and handle
intra-model inconsistencies.

Negative mass values

Inconsistency pattern

Name

?value < 0Inconsistency

condition

Common vocabulary (intra-model)Scope

ErrorSeverity

ConventionType

Mass property ?p must not be negative

(value is ?value).

Message

A) Enter user-defined value for property

B) Delete property

C) Ignore inconsistency

D) Tolerate inconsistency until defined date

Possible

handling

actions

?p : sample

Common::Property

name = "Mass"

value = ?value

type = ?type

Figure 5.24. Intra-model inconsistency in the sampleCommon vocabulary

75

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

Diagnosing Intra-model Inconsistencies

As discussed beforehand, the SPARQL Query Language is used to specify intra-model inconsistency
diagnosis rules. Consequently, the affected entities can be retrieved by an inconsistency pattern,
which specifies, what conditions must be met in order for an inconsistency to be present. The
respective SPARQL query makes use of the vocabularies, in which the inconsistency is assumed
to occur. The inconsistency diagnosis rule that can be derived from the example in Figure 5.24 is
introduced in Figures 5.17 and 5.18. This query makes use of the mediated information to identify,
which mass properties have negative values. From this diagnosis rule, the basic structure of an
inconsistency diagnosis rule formulated by means of the SPARQL Query Language is apparent: For
one, the variables defined in the SPARQL SELECT Query include (1) the entities that are involved
within the inconsistency, and (2) an isInconsistent variable that returns whether an inconsistency
occurs (TRUE) or not (FALSE). Moreover, such a SPARQL query includes an inconsistency pattern
part, which defines the pattern to be matched against the RDF graph. In the example illustrated in
Listing 5.1, the pattern matches any PropertyC with its according valueC and typeC that is named
“Mass”. If the pattern finds a match, the result of the mathematical comparison ?value < 0 is
bound to the variable isInconsistent – by that, it can be concluded whether the mass property is
inconsistent or not.

1 PREFIX sampleCommon: <http: //www.example.org/sampleCommon#>
2
3 SELECT ?entity ?property ?value ?type ?isInconsistent WHERE {
4 #Inconsistency pattern
5 ?entity sampleCommon:property [
6 a sampleCommon:Property ;
7 sampleCommon:name "Mass" ;
8 sampleCommon:value ?value ;
9 sampleCommon:type ?type

10] .
11
12 #Inconsistency condition
13 BIND ((?value < 0) AS ?isInconsistent) .
14 }

Listing 5.1 Exemplary inconsistency diagnosis rule to ensure that all mass properties have
positive values formulated as SPARQL SELECT query

Handling Intra-model Inconsistencies

In order to resolve the diagnosed inconsistency, as denoted in Figure 5.24, the user can (besides
tolerating and ignoring the inconsistency) either define a new value for an inconsistent property or
delete the inconsistent value. Hence, two distinct resolution rules are defined – one for introducing
a new, user-defined value (see Listing 5.2) and one for deleting the value (see Listing 5.3). As these
handling actions are generated for specific inconsistency diagnosis results – i.e., for each inconsis-
tency that has been diagnosed from the respective diagnosis rule – they actions must be regarded
as templates. Hence, for each identified inconsistent entity, a possible handling action is generated
and the place-holders for, e.g., the entity’s Uniform Resource Identifier (URI) (see $?entity$) and
the user-defined value (see $?newValue$) are replaced. Throughout the originalValueTriple, it can
be identified, which value must be changed in order to replace the original (non-mediated) value.
Although not illustrated here, respective additional information can be added to the handling rules.
For instance, names and severity values can be given according to Figure 5.23 in order to support
users in identifying the respective appropriate handling actions. Further on, message patterns are

76

5.4. Diagnosis and Handling: Diagnosis and Handling of Inconsistencies

defined accordingly, which make use of the attributes in the SPARQL queries, and are, therefore,
automatically generated during the execution process.

1 PREFIX sampleCommon: <http: //www.example.org/sampleCommon#>
2
3 DELETE {
4 ?subject ?predicate ?object .
5 } INSERT {
6 ?subject ?predicate $?newValue$.
7 } WHERE {
8 $?entity$ sampleCommon:property ?property .
9 ?property sampleCommon:originalValueTriple [
10 sampleCommon:subject ?subject ;
11 sampleCommon:predicate ?predicate ;
12 sampleCommon:object ?object
13] .
14 }

Listing 5.2 Exemplary inconsistency handling rule that allows users to enter user-defined
values formulated as SPARQL Update action

1 PREFIX sampleCommon: <http: //www.example.org/sampleCommon#>
2
3 DELETE {
4 ?subject ?predicate ?object .
5 } INSERT {
6
7 } WHERE {
8 $?entity$ sampleCommon:property ?property .
9 ?property sampleCommon:originalValueTriple [
10 sampleCommon:subject ?subject ;
11 sampleCommon:predicate ?predicate ;
12 sampleCommon:object ?object
13] .
14 }

Listing 5.3 Exemplary inconsistency handling rule that deletes inconsistent values formulated
as SPARQL Update action

5.4.3. Specifying Inter-model Inconsistencies

Whereas intra-model inconsistencies incorporate a single model to draw conclusions on whether
an inconsistency occurs or not, inter-model inconsistencies refer to correspondence rules that in-
corporate two or more models. Hence, links between distinct models must be incorporated for
these types of inconsistencies. A typical example for such an inter-model inconsistency is illustrated
in Figure 5.25. Therein, EquivalentToLinks between different Entities are taken into consideration.
If both entities that are said to be equivalent to each other have a mass property, both of them must
be equivalent (or in this case: they must not deviate from each other by more than 10%). This
example is used throughout the following to illustrate, how SPARQL is used to specify, diagnose
and handle inter-model inconsistencies.

Diagnosing Inter-model Inconsistencies

Analogously to intra-model inconsistencies, SPARQL queries are used for the purpose of specifying
inter-model inconsistency diagnosis rules. Accordingly, an inconsistency pattern is used to retrieve

77

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

Inequivalence of mass values

Inconsistency pattern

Name

| ?value1 - ?value2 | /

(?value1 + ?value2) > 10%

Inconsistency

condition

Common vocabulary (inter-model)Scope

WarningSeverity

CorrespondenceType

Properties ?p1 and ?p2 are defined to be

equivalent, but values are not identical

(values were ?value1 and ?value2).

Message

A) Enter user-defined value for properties

B) Propagate value from left to right

C) Propagate value from right to left

D) Ignore inconsistency

E) Tolerate inconsistency until defined date

Possible

handling

actions

?e1 : sample

Common::Entity

name = "Mass"

mediatedValue =

?value1

mediatedUnit = ?unit

?e2 : sample

Common::Entity

name = "Mass"

mediatedValue =

?value2

mediatedUnit = ?unit

?l : link::

EquivalentToLink

leftEntity rightEntity

?p1 : sample

Common::Property

?p2 : sample

Common::Property

property property

Figure 5.25. Inter-model inconsistency in the sampleCommon vocabulary

the potentially inconsistent parts of the graph. In contrast to the previous intra-model inconsistency,
this inconsistency diagnosis rule must incorporate the mediated values and units of the respective
properties, as linked entities may initially have different units. The resulting mediated values value1
and value2 are retrieved and, by means of the mathematical formula |value1− value2|/(value1 +
value2) it is determined, whether the values have a deviation that is greater than 10% or not.
Accordingly, any result of executing this SPARQL query for which isInconsistent is determined to
be true is considered to be inconsistent.
1 PREFIX sampleCommon: <http: //www.example.org/sampleCommon#>
2 PREFIX qudt: <http://www.example.org/qudt#>
3 PREFIX link: <http://www.example.org/link#>
4
5 SELECT ?link ?left ?right ?value1 ?value2 ?isInconsistent WHERE {
6 #Inconsistency pattern
7 ?link a link:EquivalentToLink ;
8 link:leftEntity [link:entityReference ?left] ;
9 link:rightEntity [link:entityReference ?right] .

10
11 ?left sampleCommon:property [sampleCommon:name "Mass" ;

qudt:mediatedValue ?value1 ; qudt:mediatedUnit ?unit] .
12 ?right sampleCommon:property [sampleCommon:name "Mass" ;

qudt:mediatedValue ?value2 ; qudt:mediatedUnit ?unit] .
13
14 #Inconsistency condition
15 BIND ((ABS(? value1 - ?value2) / (?value1 + ?value2) > 0.1) AS ?

isInconsistent) .
16 }

Listing 5.4 Exemplary inconsistency diagnosis rule to ensure that all entities said to be
equivalent to each other have similar mass values formulated as SPARQL SELECT
query

Handling Inter-model Inconsistencies

As illustrated in Figure 5.24, besides tolerating and ignoring the diagnosed inconsistencies, there are
three strategies to resolve the inconsistency: (1) to replace the values of both linked entities with

78

5.4. Diagnosis and Handling: Diagnosis and Handling of Inconsistencies

a user-defined one, (2) to propagate the left entity’s value to the right one, and (3) to propagate
the right entity’s value to the left one. However, all of these three strategies can be covered by a
single handling action that must be configured accordingly (see Listing 5.5). Therein, the WHERE
part of the SPARQL Update action not only identifies the originalValueTriples of the respective
properties, but also the original units being used for these values. By means of these units, it can
be calculated, which value needs to be bound to which entity – hence, the user chooses the correct
handling action based on the mediated values and the initial values are updated accordingly. If
values should be propagated from one entity to another, the $userValue$ place-holder is replaced
accordingly.

1 PREFIX sampleCommon: <http: //www.example.org/sampleCommon#>
2 PREFIX qudt: <http: //www.example.org/qudt#>
3 PREFIX link: <http: //www.example.org/link#>
4
5 DELETE {
6 ?subjectLeft ?predicateLeft ?objectLeft .
7 ?subjectRight ?predicateRight ?objectRight .
8 } INSERT {
9 ?subjectLeft ?predicateLeft ?newLeft .
10 ?subjectRight ?predicateRight ?newRight .
11 } WHERE {
12 $?left$ sampleCommon:property ?propertyLeft .
13 ?propertyLeft sampleCommon:originalValueTriple [
14 sampleCommon:subject ?subjectLeft ;
15 sampleCommon:predicate ?predicateLeft ;
16 sampleCommon:object ?objectLeft] ;
17 sampleCommon:type ?leftUnit .
18 ?leftQudtUnit qudt:symbol ?leftUnit ; qudt:conversionOffset ?

leftOffset ; qudt:conversionMultiplier ?leftMultiplier .
19 $?right$ sampleCommon:property ?propertyRight .
20 ?property sampleCommon:originalValueTriple [
21 sampleCommon:subject ?subjectRight ;
22 sampleCommon:predicate ?predicateRight ;
23 sampleCommon:object ?objectRight] ;
24 sampleCommon:type ?rightUnit .
25 ?rightQudtUnit qudt:symbol ?rightUnit ; qudt:conversionOffset ?

rightOffset ; qudt:conversionMultiplier ?rightMultiplier .
26 BIND ($?userValue$ AS ?newValue) .
27 BIND (((?newValue - ?leftOffset) / ?leftMultiplier) AS ?newLeft

) .
28 BIND (((?newValue - ?rightOffset) / ?rightMultiplier) AS ?

newRight) .
29 }

Listing 5.5 Exemplary inconsistency handling rule that allows users to enter user-defined
values formulated as SPARQL Update action

5.4.4. Specifying, Diagnosing and Handling of Different Types of
Inconsistencies

As discussed in Chapter 2, four types of inconsistency rules are to be distinguished, which are
introduced in the following for the different engineering models in the automated production systems
domain.

79

Chapter 5. Concept: Diagnosis and Handling of Inconsistencies

Notational inconsistency rules

Notational inconsistency rules refer to inconsistencies that result from the definition of the mod-
elling language that is used for the respective model. Although not specifically emphasized in this
dissertation, especially as most modelling tools already support the diagnosis and handling of no-
tational inconsistency rules, these notational inconsistency rules can be specified by means of the
presented formalism. Examples for such notational inconsistency rules are, e.g., definitions on what
entity is to be used for a certain attribute or value restrictions for certain properties. In most cases,
the resolution of those notational inconsistency rules involves, e.g., adding user-defined attributes
or deleting certain relations in the models.

Conventional inconsistency rules

Conventional inconsistency rules involve common conventions that cannot be captured explicitly
within the modelling language’s abstract syntax. Such common conventions comprise, e.g., naming
conventions or conventions on which entities or types must be used under specific circumstances.
Consequently, these conventions can often be derived from, e.g., company- or project-specific design
guidelines and heuristics. No common resolution rule can be given for such conventional rules –
in some cases, changing an attribute’s value (e.g., a name) to a user-specific one can resolve the
inconsistency.

Correspondence inconsistency rules

Correspondence inconsistency rules refer to rules that specify, how different entities in disparate
models must relate to each other. Hence, these correspondence inconsistency rules refer to how
disparate models are related to each other by means of the link vocabulary.
In case such a correspondence inconsistency is diagnosed, three distinct cases can be distinguished:

• Link is valid : In case the link between the entities is valid, no handling action must be taken
into account.

• Link is not valid : In case the two entities are linked, but the link is not valid (e.g., because
the entities are not named equivalently), respective handling actions to improve the link are
generated.

• Link does not exist : In case the two entities are not linked, a respective link must be estab-
lished. In this case, either the user must select the two entities to be linked, or a handling
action is taken to generate a link based on a pre-defined heuristic (e.g., equivalently named
entities).

Domain-specific inconsistency rules

Domain-specific inconsistency rules refer to rules that are applicable for a specific domain, e.g. for
the automated production systems domain. These domain-specific inconsistency rules often involve
background knowledge models, which are applied to the engineering models, e.g., regarding unit
conversions or certain configurations.

5.5. Summary

In this chapters, the framework for managing inconsistencies – that is, for diagnosing and handling
inconsistencies – in engineering models of the automated production systems domain is presented.

80

5.5. Summary

By means of a knowledge base that incorporates both the engineering models and background knowl-
edge models, formulated by means of RDF, a common representational formalism is given (Require-
ment 1.1). The rule-based mediation mechanism allows for transforming between this knowledge
base and common semantic concepts (Requirement 1.2), that result, e.g., from links in between these
models (Requirement 1.3). Finally, it is shown how the SPARQL Query and Update Languages are
used for the purpose of specifying inconsistency diagnosis and handling actions (Requirements 2
and 3), which can be executed against the central knowledge base.
As these diagnosis and handling rules are further annotated with information such as the severity

as well as involved entities of an inconsistency, a basis to assess the hot spots within the engineering
models is given (Requirement 4). While developing the framework, solely standard technologies
from the Semantic Web initiative, namely RDF, RDFS and SPARQL, are applied. Consequently,
the means to extend the entire framework towards further domains and applications is given (Re-
quirement 5).

81

Chapter 6.

Evaluation: Assessment and Comparison of the
Applicability

To validate, whether the presented framework is capable of managing inconsistencies in engineering
models of automated production systems, this chapter aims at assessing the basic feasibility and
performance of the approach based on the requirements specified in Chapter 3.
The evaluation is structured into several parts to validate the feasibility of the proposed incon-

Table 6.1. Overview of the evaluation strategy in this dissertation

Req. Name Evaluation Strategy Sect.

1 Model knowledge
base

The knowledge base is evaluated by applying the approach
to the disparate models of two distinct application exam-
ples – a lab-scale and an industry-style one – and by vali-
dating, whether the models can be represented by means of
the model knowledge base.

6.3, 6.4

2 Inconsistency di-
agnosis

For the application examples, the different types of inconsis-
tencies are introduced by means of representative examples.
It is validated, whether all types of inconsistencies can be
diagnosed by means of the inconsistency management ap-
proach.

6.3, 6.4

3 Inconsistency
handling

For the application examples, the different types of handling
actions that serve the purpose of handling the diagnosed in-
consistencies are introduced by means of representative ex-
amples. It is validated, whether all types of handling actions
can be executed by means of the inconsistency management
approach.

6.3, 6.4

4 Measurement and
assessment capa-
bilities

For validating, whether the approach is able to measure the
diagnosed inconsistencies and assess the impact of the dif-
ferent handling actions, the approach is applied to the two
application examples.

6.3, 6.4

5 Operationa-
lization

For the purpose of gaining insights into the operationaliza-
tion of the inconsistency management approach, it is com-
pared to another inconsistency management approach. Fur-
thermore, by means of insights into the performance and
scalability of the approach, its applicability to larger mod-
els is estimated.

6.5, 6.6

83

Chapter 6. Evaluation: Assessment and Comparison of the Applicability

sistency management framework (see Table 6.1). As a basis to perform these different steps, a
prototypical software implementation of the proposed concept is introduced in Section 6.1. At the
hand of a central case study (Section 6.2) and two according application examples – a lab-scale one
(Section 6.3) that illustrates how the types of inconsistencies described in Chapter 5 are managed
and an industry-style one (Section 6.4) that illustrates how typical background knowledge in the
automated production systems domain can be considered for inconsistency management – the fea-
sibility of the concept is evaluated. Moreover, a comparison of the proposed framework with the
one presented in [Fel+16c] is done at the hand of representative engineering models (see [Fel+15a])
in Section 6.5. With the intent to assess the capability to operationalize the approach within
practical applications, the performance and scalability that can be achieved with the proposed
framework is discussed in Section 6.6. The results obtained from the evaluation are summarized
in Section 6.7. An overview of the evaluation strategy, especially with regard to the requirements
specified in Chapter 3, is given in Table 6.1.

6.1. Prototypical Software Implementation

To perform the different evaluation stages, a prototypical software implementation is provided. It
should be noted that the conception, implementation and evaluation of this software prototype were
conducted as part of a Master’s Thesis at Technische Universität München – a detailed documen-
tation of the software prototype is published in [Hau16; Fel+17].

Knowledge Base

(RDF/RDFS)

Apache Jena Fuseki

Mediation rule

(Jena Rule)
Mediation rule

(Jena Rule)

Integration Framework

Eclipse Java Plug-In

Inconsistency Management

Mediation rule

(Jena Rule)

Inconsistency

diagnosis rule

(SPARQL

Query)

Inconsistency

diagnosis rule

(SPARQL

Query)

Inconsistency

diagnosis rule

(SPARQL

Query)

Inconsistency

handling rule

(SPARQL

Update)

Inconsistency

handling rule

(SPARQL

Update)

Inconsistency

handling rule

(SPARQL

Update)

Model Management

Eclipse Modeling Framework

Model

#1

Model

#2
...

Model

#m

Mediation Diagnosis and Handling

Figure 6.1. Assignment of the architectural components of the concept to respective software
components

Figure 6.1 shows the different software components that are used to realize the different parts of
the entire inconsistency management framework. As a basis for the entire framework, the Eclipse
Modeling Framework (EMF) [Ecl16c] is used. Specifically, for each of the involved vocabularies of
the presented concept, a respective metamodel was formulated by means of Ecore – a pragmatic im-
plementation of the Meta Object Facility (MOF) [OMG15a] that allows for creating and maintaining
metamodels as well as respective model instances. Respectively, for each of the exemplary models,
Extensible Markup Language (XML) Metadata Interchange (XMI) model instances can be specified
by means of this framework. The mapping between both the Ecore metamodels and XMI model

84

6.2. Introduction to the Case Study: The Pick-and-Place Unit

instances as well as Resource Description Framework (RDF)/RDF Schema (RDFS) is done through
MOF Model To Text (MOFM2T) transformations specified in the respective standard [Obj08] and
executed by means of the Eclipse Acceleo plug-in [Ecl16a]. The central integration framework is
realized as an Eclipse Java plug-in, which coordinates the respective dependent software compo-
nents. To allow for capturing the knowledge base, the Apache Jena Fuseki triple store [Apa16] is
applied, which also serves as the endpoint to execute the inconsistency diagnosis and handling rules
by means of SPARQL Protocol and RDF Query Language (SPARQL).

6.2. Introduction to the Case Study: The Pick-and-Place Unit

To evaluate the feasibility of the presented inconsistency management framework, a case study is
used throughout the following. In particular, the so-called Pick and Place Unit (PPU) [Vog+14b] is
used – a lab-scale case study that is developed and maintained at Technische Universität München.
Therein, the PPU is not only a physical automated production systems, but rather stands for a set
of scenarios that describe the evolution of an automated production system, specifying the changes
that are applied throughout the parallel or sequential evolution of an automated production system.
In particular, within the evaluation part of this dissertation, the change from scenario 12 to scenario
13 is investigated, which – from an inconsistency management perspective – describes an appropriate
basis for evaluation [Fel+15a].
The PPU consists of typical parts of an automated production system and is controlled by a

single Programmable Logic Controller (PLC). An overview of the PPU is given in Figure 6.2.
Therein, white and black plastic as well as metallic work pieces (WPs) are processed. In the Stack
module, WPs are stored and then pushed separately to the handover position of a Crane. The
Crane picks the WP with a vacuum gripper, lifts them, and rotates them – depending on the WP
type – either to an outlet Ramp, which is located at an angle of 90◦ to the handover position or
to a Stamp module, which is located at an angle of 180◦ to the handover position. In the Stamp
module, metallic WPs are labelled by putting a specific pressure on the WP using a stamping
cylinder. Within the outlet Ramp, WPs are stored. Although the PPU represents only a fraction
of an industrial automated production system, it contains a multitude of mechanical, electrical and
software components and, thus, has an appropriate level of complexity for the purpose of describing
different application examples in the context of evaluating an inconsistency management framework.

Stack

Stamp

Ramp

Crane

Figure 6.2. Overview of the PPU case study (excerpt from [Vog+14b])

85

Chapter 6. Evaluation: Assessment and Comparison of the Applicability

Within the case study, a special emphasis is put on the Crane module. As depicted in Figure 6.3,
the Crane module consists of a Lifting Cylinder to raise and lower WPs, a Vacuum Gripper that
allows to grip and release WPs as well as a Turning Table for turning WPs from one module to
another. In an initial scenario 12, five Micro Switches are attached to the bottom of the Turning
Table – three of them for detecting the current positions of the Crane at the Modules Stack, Ramp
and Stamp as well as two of them to detect the End Positions of the Module. Although these
Micro Switches are sufficient for an initial scenario, they do not provide the means to, e.g., stop
the Crane module at a position in between the distinct Micro Switches. Consequently, in scenario
13, a Potentiometer allows for measuring the current angular position of the Crane – and, hence,
provides the means to stop the module at any angular position. This evolutionary transition from
allowing a sole discrete positioning of WPs to enable a continuous positioning is investigated as one
example for inconsistency management throughout this section.

Lifting cylinder

Vacuum
gripper

Turning
table

Motor

Switch
at Stack

Switch at
Stamp

Switch at
Ramp

Switch
End 1

Switch
End 2

(a) Crane in scenario 12

Lifting cylinder

Vacuum
gripper

Turning
table

Motor

Potentio-
meter

(b) Crane in scenario 13

Figure 6.3. Overview of the crane in the PPU case study (excerpt from [Vog+14b])

6.3. Evaluation Stage 1: Evaluation of the Feasibility for a
Lab-Scale Application Example

To validate the feasibility of the proposed framework for managing inconsistencies in heterogeneous
models of automated production systems, this evaluation stage makes use of the information pro-
vided in [Vog+14b] and maps the respective information to the metamodels and models introduced
in Chapter 5. Based on the resulting models, the introduced inconsistencies are diagnosed and
handled. In the following, the incorporated models are described in Section 6.3.1. Subsequently,
the different inconsistencies to be diagnosed and handled are described in Section 6.3.2. The results
of this evaluation stage are summarized in Section 6.3.3.

6.3.1. Overview of the Incorporated Models

As a basis for the lab-scale application example, the respective models using the vocabularies in-
troduced in Chapter 5 are created:

• A project model defines the overall project set-up of the PPU case study. Therein, besides the
overall project data, the for the overall example is defined (see Figure 6.4a).

• The mechanics model defines the physical structure of the PPU. Besides the mechanical parts
being used for the project, interfaces between the respective parts are specified (see Fig-
ure 6.4b).

86

6.3. Evaluation Stage 1: Evaluation of the Feasibility for a Lab-Scale Application Example

• Within the electrics model, the electrical wirings between the controller, respective bus termi-
nals and the electrical parts are specified (see Figure 6.4c).

• A software model specifies the software dependency model for the PPU (see Figure 6.4d).

Please note that the models denoted in Figure 6.4 serve illustrative purposes and do not follow
a standard notation. All of these models are specified based on the technical documentation that
is available for the PPU case study in [Vog+14b]. Within this section, it is focused on the Crane
module of the PPU.

6.3.2. Diagnosing and Handling the Inconsistencies

For the lab-scale evaluation example, a set of intra-model and inter-model inconsistencies is in-
vestigated through this evaluation stage. Certainly, these types of inconsistencies do not cover all
possible inconsistencies that can exist in the distinct heterogeneous models – however, these inconsis-
tencies are regarded to be sufficient for the purpose of evaluating the feasibility of the inconsistency
management framework. In particular, inconsistencies in the different categories that are relevant
to inconsistency management are defined – namely notational, conventional, correspondence and
domain-specific inconsistencies – and introduced in the following. For simplicity reasons, only a
rough description of the different inconsistencies is illustrated in the following – a detailed overview
of all inconsistencies can be found in Appendix A.

Intra-model inconsistencies

To show the feasibility of the inconsistency management framework for identifying and handling
intra-model inconsistencies, 11 distinct types of inconsistencies are defined (see Table 6.2). Therein,
besides conventional inconsistencies that describe naming conventions on the common vocabulary
level (see inconsistencies 1.1 and 1.2 in Table 6.2) as well as on the mechatronics vocabulary level
(see inconsistencies 1.3 and 1.4 in Table 6.2), further intra-model inconsistencies that are specific for
single domains are formulated. For the project vocabulary, it is demanded that – from a notation
perspective – start and end dates are consistently defined (see inconsistency 1.5). Analogously, for
the mechanics vocabulary, is is ensured that all parts’ IDs are consistently defined (see inconsis-
tency 1.6) – that is: they must be unique, be consecutive and reflect the part hierarchy. For the
electrics vocabulary, inconsistencies are specified to ensure that interfaces are wired correctly (see
inconsistency 1.7) and according to the maximum number of participants specified for the respec-
tive couplers and terminals (see inconsistency 1.8). Analogously, within the software vocabulary, is
is demanded that naming conventions are met (see inconsistency 1.9) and a tree call hierarchy is
used (see inconsistency 1.10). Finally, within the evaluation example, global variables are used for
mapping sensors and actuators to respective hardware addresses – hence, to ensure that all sensors
and actuators are considered within the software programme, it is ensured that all sensors are read
(respectively: actuators are written) at least once within the software programme (see inconsistency
1.11).

Inter-model inconsistencies

Accordingly, to evaluate the feasibility of the presented inconsistency management framework re-
garding its capability to identify and handle inter-model inconsistencies, 4 distinct types of incon-
sistencies are defined in Table 6.3. Therein, it is defined that each documentation specified in the
project vocabulary must be linked to an according model in the mechanics, electrics, and software
vocabularies. By means of this inconsistency, it is ensured that a holistic specification is available
for the engineering project. Moreover, to ensure that all parts in the mechanics vocabulary as well
as all automation hardware in the electrics vocabulary are appropriately documented in the Bill of

87

Chapter 6. Evaluation: Assessment and Comparison of the Applicability

Manufacturer 1

Manufacturer 2

Manufacturer 2

Manufacturer 2

Manufacturer 2

Manufacturer 2

Manufacturer 2

Manufacturer 2

Manufacturer 2

Manufacturer 2

Manufacturer 2

Manufacturer 2

Manufacturer 3

Manufacturer 3

Manufacturer 3

Manufacturer 3

1.5

1.5.E1

1.5.E2

1.5.S8

1.5.S9

1.5.S10

1.5.M1

1.5.B5

1.5.B6

1.5.B7

1.5.A1

1.5.A2/3

1.5.DI1

1.5.DI2

1.5.DO1

1.5.DO2

Manufacturer 11.5.1

Manufacturer 11.5.2

Manufacturer 11.5.3

Crane

E1

E2

S8

S9

S10

M1

B5

B6

B7

A1

A2/3

DI1

DI2

DO1

DO2

Crane Body

Lifting Cylinder

Turning Table

Vacuum Gripper Manufacturer 11.5.4

Crane module

Crane at minimum position (micro switch)

Crane at maximum position (micro switch)

Crane at stack / 0 degrees (micro switch)

Crane at ramp / 90 degrees (micro switch)

Crane at ramp / 180 degrees (micro switch)

Crane motor (rotary drive)

Vacuum on (micro switch)

Crane in upper position (reed switch)

Crane in lower position (reed switch)

Move crane down (impulse valve)

Turn vacuum on / off (impulse valve)

Digital input terminal with 4 slots

Digital input terminal with 4 slots

Digital output terminal with 4 slots

Digital output terminal with 4 slots

Crane's body

Crane's lifting cylinder

Crane's rotary platform

Crane's vacuum gripper

Description ManufacturerIDName

Bill of Material

Customer

Start

Project name PPU project

Customer 1

01/01/2017

12/31/2017End

Environment
humidity [%]

80

Environment
temperature
[°C]

35

Project overview

(a) Illustrative excerpt of the project model

Crane (id = 1.5)

M

Turning Table
(id = 1.5.3)

E

E

Lifting
Cylinder

(id = 1.5.2)
E E

Vacuum
Gripper

(id = 1.5.4)
E

Crane
Body (id =

1.5.1)
EE

E

M

Material interface
for work pieces

Energy interface
for screw
connection

(b) Illustrative excerpt of the mechanics model

PLC

Profibus
Coupler

Digital Input
Terminal 1

Digital Input
Terminal 2

Digital Output
Terminal 3

Digital Output
Terminal 4

M
ic

ro
 S

w
itc

h
E

1

M
ic

ro
 S

w
itc

h
E

2

M
ic

ro
 S

w
itc

h
S

8

M
ic

ro
 S

w
itc

h
S

10

M
ic

ro
 S

w
itc

h
B

5

R
ee

d
S

w
itc

h
B

6

R
ee

d
S

w
itc

h
B

7

Im
pu

ls
e

V
al

ve
 A

1

Im
pu

ls
e

V
al

ve

A
2/

A
3

D
ig

ita
l R

ot
ar

y
D

riv
e

M
1

D
I1

.1

D
I1

.2

D
I1

.3

D
I1

.4

D
I2

.1

D
I2

.2

D
I2

.3

D
I2

.4

D
I3

.1

D
I3

.2

D
I3

.3

D
I3

.4

D
I4

.1

D
I4

.2

D
I4

.3

D
I4

.4

M
ic

ro
 S

w
itc

h
S

9

Back plane bus
connection between
PLC and bus coupler

Profibus connection
between bus coupler
and terminals

Terminal connections
between devices and
terminals

(c) Illustrative excerpt of the electrics model

Call hierarchy

PRG_Main

FB_Stack

FB_Crane

FB_Stamp

FB_Crane
bPositionMinimum (BOOL)

bPositionMaximum (BOOL)

bPositionStack (BOOL)

bPositionRamp (BOOL)

bPositionStamp (BOOL)

bVacuumOn (BOOL)

bLevelUpper (BOOL)

bLevelLower (BOOL)

bMoveDown (BOOL)

bTurnVacuumOff (BOOL)

bTurnVacuumOn (BOOL)

bTurnCW (BOOL)

bTurnCCW (BOOL)

(d) Illustrative excerpt of the software model

Figure 6.4. Illustrative overview of the models incorporated in the lab-scale evaluation of the PPU
case study

Material (BOM), inconsistencies 1.13 and 1.14 demand that such links are available in the models.
Finally, to ensure that electrical sensors and actuators are appropriately reflected in the software
vocabulary, inconsistency 1.15 in Table 6.3 demands that each wired terminal interface must be
represented by a corresponding global software variable.

88

6.3. Evaluation Stage 1: Evaluation of the Feasibility for a Lab-Scale Application Example

Table 6.2. Intra-model inconsistencies investigated in evaluation stage 1

No. Type Description Vocabulary Reference

1.1 Convention Each entity in any vocabulary must follow
a pre-defined naming convention – only
letters, numbers, or an underscore (’_’)
should be used.

Common Figure A.1

1.2 Convention Each property in any vocabulary must
follow a pre-defined naming convention –
only letters, numbers, or an underscore
(’_’) should be used.

Common Figure A.2

1.3 Convention Each Element in the mechatronics vocab-
ulary must be named in UpperCamelCase
convention.

Mechatronics Figure A.3

1.4 Convention Each Attribute in the mechatronics vo-
cabulary must be named in LowerCamel-
Case convention.

Mechatronics Figure A.4

1.5 Convention A project’s start and end dates must be
consistent to each other – that is: the end
date must lie after the start date.

Project Figure A.5

1.6 Convention A part’s ID must (i) be unique, (ii) be
consecutive, and (iii) reflect the part hi-
erarchy – that is: if partA has ID A, its
child part partB must have an ID similar
to A_B.

Mechanics Figure A.6

1.7 Convention Interfaces must be wired correctly – that
is: (i) in case of “simple” interfaces they
must be wired from in- to out-interfaces or
vice versa and (ii) in case of “complex” bus
interfaces they must be wired to interfaces
with a consistent type.

Electrics Figure A.7

1.8 Convention For terminals and bus couplers, the max-
imum number of connectible participants
must not be violated.

Electrics Figure A.8

1.9 Convention Software variables must follow the Hun-
garian notation – e.g., iName for inte-
ger variables and bName for Boolean vari-
ables.

Software Figure A.9

1.10 Convention The call hierarchy of a Program must fol-
low a tree structure.

Software Figure A.10

1.11 Domain-specific Global software variables with an as-
signed address (either input or output)
must be read or written at least once.

Software Figure A.11

89

Chapter 6. Evaluation: Assessment and Comparison of the Applicability

Table 6.3. Inter-model inconsistencies investigated in evaluation stage 1

No. Type Description Vocabulary Reference

1.12 Correspondence Each project documentation must be re-
fined by a respective model in the mechan-
ics, electrics, or software vocabularies.

Project,
mechanics,
electrics,
and soft-
ware

Figure A.12

1.13 Correspondence Each mechanic part must be represented
by an equivalent entry in the bill of mate-
rial.

Mechanics
and project

Figure A.13

1.14 Correspondence Each electric automation hardware must
be represented by an equivalent entry in
the bill of material.

Electrics
and project

Figure A.14

1.15 Correspondence Each wired interface of a terminal should
be represented by a corresponding global
software variable – that is: variable type
and address must match.

Electrics
and soft-
ware

Figure A.15

Results of inconsistency management

By means of the previously introduced inconsistency diagnosis and handling rules, the models can
be analysed accordingly. Especially for the transition from scenario 12 in the PPU case study to
scenario 13, an additional sensor potentiometer is added to the electrics model. By means of the
specified inconsistencies, it can be identified, whether the potentiometer is wired correctly (incon-
sistency 1.7) to the respective bus terminals. Moreover, it can be analysed, whether appropriate
entries have been added to the bill of material in the project model (inconsistency 1.14) – in case no
entry is available, a new entry can be generated. Inconsistency 1.15 ensures that for the newly added
sensor, a respective software variable is defined and linked. Hence, by means of the inconsistency
rules, it can be ensured that the potentiometer is integrated correctly in the engineering models.

6.3.3. Synopsis

Through the basic inconsistencies used within this evaluation stage, it can be deducted that the
presented inconsistency management approach is capable of specifying, diagnosing and handling
simple inconsistencies in structural engineering models. However, the inconsistency diagnosis and
handling rules used throughout evaluation stage 1 are of a basic nature – hence, more complex
inconsistencies are focus of the evaluation stage 2.

6.4. Evaluation Stage 2: Evaluation of the Feasibility for an
Industry-Style Application Example

Whereas the previous section illustrates the basic applicability of the proposed concept to engineer-
ing models in the automated production systems domain for the purpose of managing the basic in-
consistencies introduced in Chapter 5, this section illustrates how additional background knowledge
can be incorporated to draw conclusions on more complex inconsistencies. Therefore, additional

90

6.4. Evaluation Stage 2: Evaluation of the Feasibility for an Industry-Style Application Example

models are incorporated for this section, which are introduced in Section 6.4.1 – namely background
models that describe additional information on the configuration of modules in the automated pro-
duction systems domain. The required inconsistency diagnosis and handling rules that are needed
to draw the correct conclusions from the additional models are introduced in Section 6.4.2. The
findings of this evaluation stage are summarized in Section 6.4.3.

6.4.1. Overview of the Incorporated Models

During engineering of automated production systems, besides the knowledge modelled explicitly
in engineering models, a multitude of different background knowledge exists and must, hence, be
taken into account. For one, such background knowledge incorporates, e.g., knowledge resulting from
physical theories and laws. In addition, such knowledge may result from, e.g., manufacturers’ device
catalogues or heuristics that are not explicitly captured but implicitly available as configuration
knowledge that influences, how the engineering solution of an automated production system looks
like. Moreover, engineers use a multitude of different specification formalisms to not only capture
the structure of an automated production system, but also its functional behaviour. Especially
in the automated production systems domain, functional specifications such as adaptations of the
Unified Modeling Language (UML) Timing Diagram are applied [Rös16].
As a consequence, this section investigates how the presented inconsistency management frame-

work can be used to incorporate such additional knowledge. Therefore, two additional types of
knowledge are incorporated in the following: First, configuration knowledge is used to identify,
whether certain modules can be used under given environmental conditions or not. By means of
this configuration knowledge, it is illustrated, how complex inconsistencies can be specified and
diagnosed to support engineers in developing the overall engineering solution. Second, UML Tim-
ing Diagrams are investigated as one additional model type to capture functional specifications of
engineering solutions.

Capturing configuration knowledge: Module degradation

As argued beforehand, one essential source of knowledge to be incorporated during inconsistency
management is configuration knowledge. Such configuration knowledge provides background in-
formation – often formulated in terms of heuristics – that is essential to ensure that an overall
engineering solution is consistent. Within the context of this section, background knowledge on
module degradation is considered. Specifically, it is assumed that, due to environmental condi-
tions such as high temperature and humidity, modules degrade and, hence, cannot be used in these
conditions.
In particular, the two cases illustrated in Figure 6.5 are considered in the following: A matrix-

based criticality identification of device degradation due to humidity and temperature (see Fig-
ure 6.5a) and a function-based identification of coupler degradation due to temperature (see Fig-
ure 6.5b).
In a first case (Figure 6.5a), devices are classified according to a predefined critical (Tcritical)

and maximum temperature (Tmaximum) as well as a predefined critical (φcritical) and maximum
humidity (φmaximum). By means of a matrix-based classification of devices, it can be identified
whether the environment conditions are acceptable (T ≤ Tcritical and φ ≤ φcritical), critical but still
acceptable (Tcritical < T ≤ Tmaximum or φcritical < φ ≤ φmaximum) or inconsistent (T > Tmaximum

and φ > φmaximum). For each device type, such critical and maximum parameters can be defined
and used to identify, whether a certain device is acceptable under given environmental conditions
or not.
The second case (Figure 6.5b) aims at identifying, which percentage of the maximum number of

participants can be used for a bus coupler based on the current environment temperature. As with
increasing temperature, the number of connectible participants decreases due to power degradation,

91

Chapter 6. Evaluation: Assessment and Comparison of the Applicability

Te
m
p
e
ra
tu
re

Tmaximum

0°C

0% Φmaximum

Humidity

Tcritical

Φcritical

Critical (but
acceptable)

Inconsistent

Acceptable
Critical (but
acceptable)

(a) Matrix-based identification of device
degradation

Number of
participants

100%

Temperature

50%

0%

75%

25%

TcriticalTcritical, 25Tcritical, 50

Linear degradation Quadratic degradation Step-wise degradation

(b) Function-based identification of coupler degradation
due to temperature

Figure 6.5. Incorporating configuration knowledge to identify module degradation

this degradation needs to be captured explicitly for the purpose of inconsistency management. In
the given case, three distinct types of degradations are possible: A linear degradation, in which
the number of connectible participants decreases linearly, a cubic degradation, for which a cubic
fall in number of connectible participants is observed, and a step-wise degradation, which aims at
classifying the number of connectible participants in subsequent steps. Hence, using the respective
parameters, the actual number of participants that can be connected to the coupler is determined
based on the current temperature.
In order to capture such configuration knowledge explicitly, a dedicated model is required. Hence,

a degradation vocabulary is introduced, which allows for modelling the respective information needed
for inconsistency management (see Figure 6.6). In this vocabulary, a DegradationModel introduces
respective DeviceDegradations, in which such degradation parameters are bound to manufacturer-
specific orderNumber. Hence, each DeviceDegradation is applicable for any device, which is identified
according to the orderNumber. In order to capture the information necessary for the matrix-based
classification of the device degradation according to temperature and humidity, both a Humidity-
Value and a TemperatureValue can be assigned to the degradation with their accoding criticalValues
and maximumValues. Additionally, if a CouplerDegradation is applied for the respective orderNum-
ber, the modeller can assign a LinearDegradation, a CubicDegradation, or a StepWiseDegradation
to denote the module’s behaviour under high temperature.
In an exemplary modelling set-up, 4 different device types with their according order number are

considered: three Profinet couplers (order numbers A-01-123, B-01-123, and C-01-123) as well as a
micro switch (order number D-01-123). As indicated in Table 6.4, different values are given for the
respective degradation parameters and different types of coupler degradations are defined for the
respective device types. By means of this information, all necessary input is defined for the purpose
of identifying, whether a device can be use under given environment conditions or not.
It should be noted that the illustrated cases are used for illustrative purposes and do not reflect

real-world behaviour. Rather, these examples serve the purpose of illustrating, how more complex
information can be incorporated within the inconsistency management framework.

Capturing functional specifications: UML Timing Diagrams

In addition to the configuration knowledge introduced previously, functional specifications are often
used in order to specify the system’s intended behaviour. One of such functional specifications is
the UML Timing Diagram, which is often used for domain-specific adaptations in the automated
production systems domain [Rös16].

92

6.4. Evaluation Stage 2: Evaluation of the Feasibility for an Industry-Style Application Example

Figure 6.6. Vocabulary to describe device degradation parameters

Table 6.4. Exemplary degradation model for devices and couplers in a tabular notation

Order no. Description Tcrit Tmax φcrit φmax Coupler degradation

A-01-123 Profinet coupler 40◦C 55◦C 90% 95% Linear degradation (Tcrit = 40◦C)

B-01-123 Profinet coupler 35◦C 45◦C 80% 90% Cubic degradation (Tcrit = 35◦C)

C-01-123 Profinet coupler 35◦C 45◦C 80% 90% Step-wise degradation (Tcrit = 35◦C,
Tcrit,25 = 30◦C), Tcrit,50 = 25◦C

D-01-123 Micro switch 50◦C 60◦C 95% 100% n/a

An example for such a Timing Diagram is illustrated in Figure 6.7. Therein, two distinct so-called
Interactions are defined: One for the demand that the crane stops at end position 1 when turning
clockwise and one for the demand that the crane stops at end position 2 when turning counter-
clockwise. As can be seen from the Figure, Lifelines are used to specify the different variables’
StateInvariants. For instance, the Lifelines bCraneAtEnd1 and bCraneAtEnd2 correspond to the
respective software variables in the control program. By means of the specifications in the Timing
Diagram, the intended behaviour of these variables is defined. Therefore, it must be ensured that
each Lifeline in a Timing Diagram corresponds to an appropriate software variable.

6.4.2. Diagnosing and Handling the Inconsistencies

To diagnose the previously introduced potential inconsistencies, a couple of inconsistency diagnosis
rules must be formulated (see Table 6.5). These inconsistencies are captured by means of 3 incon-
sistency rules. For simplicity reasons, only a rough description of the different inconsistencies is
illustrated in the following – a detailed overview of all inconsistencies can be found in Appendix A.
A first rule is used to identify, whether any device (identified through its order number) is used

although its specified critical humidity or temperature are exceeded under the given environment
conditions (see inconsistency 2.1 in Table 6.5). Hence, by means of the matrix-based device classifi-
cation introduced in Figure 6.5a, it can be identified, whether any device should be replaced or not.
A second inconsistency rule identifies, whether the number of connections to a bus coupler meets
the allowed number of connections considering power degradation (see inconsistency 2.2). By means

93

Chapter 6. Evaluation: Assessment and Comparison of the Applicability

bC
ra

ne
T

ur
nC

W
cC

ra
ne

A
tE

nd
1

true

false

true

false

0..0.5ssd Crane must stop when at End1

bC
ra

ne
T

ur
nC

C
W

cC
ra

ne
A

tE
nd

2

true

false

true

false

0..0.5ssd Crane must stop when at End2

Figure 6.7. UML Timing Diagrams as the basis to specify module behaviour

of this rule, the different degradation patterns introduced in Figure 6.5 can be identified. Finally,
a third rule identifies, whether all lifelines in a UML Timing Diagram correspond to respective
variables in the software vocabulary (see inconsistency 2.3). Hence, it is ensured that the functional
specification is consistent to the respective software model in the engineering project as introduced
in Figure 6.7.

Table 6.5. Inconsistencies investigated in evaluation stage 2

No. Type Description Vocabulary Reference

2.1 Correspondence Devices (identified through their
order number) should not be used
if critical temperature or critical
humidity are exceeded under cur-
rent environment conditions.

Project and
degradation

Figure A.16

2.2 Correspondence Bus couplers’ (identified through
their order number) number
of connections must match the
degradation pattern (linear,
cubic, or step-wise degradation).

Electrics
and degra-
dation

Figures A.17 to A.19

2.3 Correspondence Each software variable should be
equivalent to a respective UML
lifeline (that is: a link must ex-
ist and the types of both software
variable and UML lifeline must
match).

Electrics
and UML

Figure A.20

As a consequence, by means of the introduced inconsistencies, more complex knowledge can be
incorporated during inconsistency management. For instance, depending on the type of Profinet bus
coupler used within the PPU models, the number of connectible bus terminals varies under the given
environment conditions. Especially as adding the potentiometer to the models requires an additional
analogue input terminal, it must be decided whether the Profinet coupler is sufficient or whether an
additional coupler is needed for the purpose of integrating the potentiometer (inconsistency 2.2).

94

6.5. Evaluation Stage 3: Comparison with Another Inconsistency Management Approach

Moreover, by means of analysing, whether the potentiometer’s software variable is used within the
Timing Diagram or not, it can be ensured whether or not a functional specification is made for the
potentiometer’s behaviour (inconsistency 2.3).

6.4.3. Synopsis

The inconsistencies defined in this evaluation stage verify that also complex background knowledge
can be incorporated in the presented inconsistency management framework – e.g., configuration
knowledge that uses information on environment conditions to analyse whether or not a system’s
configuration is consistent. Moreover, through establishing links to behaviour models such as Tim-
ing Diagrams, inconsistencies between structure models and behaviour models can be specified,
diagnosed and handled. However, the presented inconsistency management framework is limited
to structural inconsistencies – that is: to inconsistencies that can be drawn from a structure or
behaviour model without actually executing the model.

6.5. Evaluation Stage 3: Comparison with Another Inconsistency
Management Approach

Following the evaluation of the basic applicability of the proposed inconsistency management frame-
work in Sections 6.3 and 6.4, this evaluation stage compares the proposed framework with the one
proposed in [Fel+16c], which makes use of solely Model-Driven Engineering (MDE) technologies
within the EMF [Ecl16c] as well as the Eclipse Epsilon Framework [Ecl16b]. As a basis to per-
form the evaluation, the models and inconsistencies described in [Fel+15a; Fel+16c] are taken into
account and, based on these models and inconsistencies, the feasibility and performance of both
approaches while managing these inconsistencies are compared.
In the following, the investigated engineering models are introduced in Section 6.5.1 with their

according mediation rules (Section 6.5.2). Subsequently, the distinct types of inconsistencies that
are considered as a basis to compare both approaches are described in Section 6.5.3. Based on these
findings, the approaches are compared in Section 6.5.4 – the results of this evaluation stage are
summarized in Section 6.5.5.

6.5.1. Overview of the Incorporated Models

As a basis to compare the two inconsistency management frameworks, three distinct engineering
models are taken into account, which can be mapped to distinct categories of modelling languages:

• A planning modelling language uses the Function-Behaviour-Structure modelling approach
and was developed by Kammerl et al. [Kam+15] to select upon structural modules (Structure)
based on the functional requirements on the system (Function) and the intended behaviour
that can be derived from these requirements (Behaviour).

• The Systems Modeling Language (SysML) is used to detail the structure from the planning
model and provides a detailed, logical architecture of the system under investigation within a
system model.

• Within a MATLAB/Simulink simulation model, it is aimed at verifying, whether the system’s
properties defined in the system model can satisfy the requirements demanded in the planning
model.

A detailed overview of the models under investigation can be found in Figure 6.8 as well as
in [Fel+15a]. As can be seen from the Figure, there are certain links in between these different

95

Chapter 6. Evaluation: Assessment and Comparison of the Applicability

models. Therein, RefinesLinks are expected between the Modules being selected in the planning
model as well as the Blocks defined in the system model (see 1 in Figure 6.8). Accordingly,
EquivalentToLinks (see 2) are expected between properties defined in the system model as well as
Constants in the simulation model. Finally, SatisfiesLinks refer to Displays in the simulation model
that must satisfy the Requirements that have been defined in the planning model (see 3).

SysML Model

bdd [Package] PPU Configuration [PPUConfigurationDiagram]

«block»

PickAndPlaceAssembly

parts

components : PickAndPlaceComponent [2..*] { union }

controlUnit : ControlUnit [1]

proxy ports

workpieces : ~WorkpieceIF

finishedGoods : FinishedGoodIF

«block»

SpecificPickAndPlace

Assembly

values

…

«block»

Crane

parts

gripper : Gripper [1]

boom : Boom [1]

rotatingPlatform : TurningTable [1]

vacuumGripper : VacuumGripper [1]

{ subsets gripper }

values

currentVelocity : rad/s = 0.7

{ unit = radiansPerSecond }

«block»

Ramp

values

…

«block»

Stamp

values

…

«block»

Stack

values

…

crane 1

{ subsets components }

ramp 1

{ subsets components }

stamp 1

{ subsets components }

stack 1

{ subsets components }

Planning Model

The current position

needs to be detected.Transport

work pieces

Detect position

The system shall be

able to transport work

pieces.

Electrical

contact
Resistive

Micro

switch
Potentiometer

The system shall

be able to provide

and store work

pieces.

Provide

work

pieces

Stack Stamp

The system shall

be able to stamp

work pieces.

Stamp

work

pieces

Store work

pieces

Ramp

Crane

Turning Table

PPU

Legend

Requirement

Function

Technology

Component

Module

Relation Alternatives

The system shall be

able to process at

least 5 work pieces

per minute.

MATLAB/Simulink Model

Legend

1 Refines-Link

2 EquivalentTo-Link

3 Satisfies-Link

«satify» «refine»

1

23

«
re

fi
n
e
»

Figure 6.8. Models for the comparison (from [Fel+15a; Fel+16c])

Certainly, these links must be regarded from a metamodel view as they, from an inconsis-
tency management perspective, must be described for the different metamodel elements. Con-
sequently, Figure 6.9 shows the different metamodels for these engineering models as well as the
links that are expected to exist between them.

6.5.2. Mediation Between the Resulting Vocabularies

As discussed in Chapter 5, crucial to an efficient inconsistency management is an abstraction mecha-
nism that reduces the number of necessary inconsistency diagnosis and handling rules to be defined.
Consequently, the respective modelling languages introduced for the comparison are mediated with
the respective common vocabulary as illustrated in Figure 6.10. Therein, as can be seen from the Fig-
ure, all three modelling languages – that is, the planning, the SysML, and the MATLAB/Simulink
modelling languages – are mediated with the common vocabulary. Accordingly, the Quantity, Unit,
Dimension and Type (QUDT) vocabulary is being used to define the respective units being used
throughout the modelling example.

96

6.5. Evaluation Stage 3: Comparison with Another Inconsistency Management Approach

planningpkg

+ name : String

Model

+ isUsed : boolean
+ name : String

LinkableElement Relation+ relation

0..*

+ target

1

Module Function Requirement

+ linkableElement0..*

+ maxValue : Object
+ minValue : Object
+ defaultValue : Object
+ name : String

Property

+ property

0..*

+ name : String

Type

+ type

0..*

+ type 1

+ nestedType0..*

...

simulinkpkg

+ name : String
+ id : String

Port

Line

+ name : String

ModelWorkingDirectory

OutputPort

InputPort

+ line

0..*

+ model

0..*

SubsystemDisplay Constant

+ value : Object

ValueSpecification

+ name : String

Block

+ block
0..*

+ outputPort

0..*

+ inputPort

0..*

+ targetPort

1..*

+ sourcePort

1

+ nestedBlock

0..*+ value 1+ displayedValue1

...

sysmlpkg

uml::Class uml::Property
+ ownedAttribute+ class

*0..1

sysml::Block sysml::Requirement

uml::ValueSpecification

+ defaultValue

+ owningProperty

0..1

0..1

uml::LiteralSpecification

+ value : real

uml::LiteralReal

+ value : integer

uml::LiteralInteger

+ value : boolean

uml::LiteralBoolean...

Legend

1
Refines-
Link

2
EquivalentTo-
Link

3
Satisfies-
Link

1

2
3

Figure 6.9. Metamodels for the comparison (from [Fel+15a; Fel+16c])

Common

vocabulary

Planning

vocabulary

MATLAB/

Simulink

vocabulary

SysML

vocabulary

Legend

Common vocabulary

Domain vocabulary

Discipline vocabulary

Mediation

QUDT

vocabulary

Figure 6.10. Semantic mediation between vocabularies that are focused on in the comparison

6.5.3. Diagnosing and Handling the Inconsistencies

For the comparison of both approaches, a set of intra-model and inter-model inconsistencies is
regarded. Certainly, these inconsistencies do not cover all possible inconsistencies that can exist in
heterogeneous engineering models, but, however, these inconsistencies are regarded as sufficient for
the purpose of comparing both approaches as they stem from all inconsistency categories relevant to
inconsistency management – namely notational, conventional, correspondence and domain-specific
inconsistencies. The different inconsistencies considered for the comparison are introduced in the
following.

Intra-model inconsistencies

In order to compare both approaches regarding their capability to identify and handle intra-model
inconsistencies, 4 distinct inconsistencies are defined (see Table 6.6). Within a first inconsistency
(see inconsistency 3.1 in Table 6.6), it is demanded that all entities that are mediated to Elements in
the common vocabulary follow the UpperCamelCase naming convention – that is, the inconsistency

97

Chapter 6. Evaluation: Assessment and Comparison of the Applicability

defines a particular regular expression to be followed by all candidate elements. Accordingly, a
second inconsistency (see inconsistency 3.2) demands that all entities mediated to Properties in the
common vocabulary follow the lowerCamelCase naming convention. Further on, a domain-specific
inconsistency 3.3 demands that all mass properties in the entire set of models are greater than or
equal to zero. Finally, a fourth inconsistency 3.4 demands a maximum hierarchy level – that is,
Elements in the common vocabulary must not have 4 or more transitive contains relations.

Table 6.6. Intra-model inconsistencies investigated in evaluation stage 3

No. Type Description Vocabulary Reference

3.1 Convention Each element in any vocabulary must be
named in UpperCamelCase style.

Common Figure A.21

3.2 Convention Each property in any vocabulary must be
named in lowerCamelCase style.

Common Figure A.22

3.3 Domain-specific Each mass property in any vocabulary must
not be negative.

Common Figure A.23

3.4 Convention Each element in any vocabulary must not
have more than 3 transitive contains rela-
tions – hence, a maximum hierarchy level
of 3 must not be violated.

Common Figure A.24

Inter-model inconsistencies

Accordingly, to compare both approaches regarding their capability to identify and handle inter-
model inconsistencies, 4 inconsistencies are defined (see Table 6.7). Inconsistencies 3.5 and 3.6
in Table 6.7 identify, whether all Modules in the planning vocabulary are refined by respective
Blocks in the sysml vocabulary. Therein, it is checked whether all of these linked Blocks have
identical names a the respective Modules. Moreover, it is ensured that the hierarchy of Modules is
equivalent to the hierarchy of Blocks (i.e., whether for each relation in the planning vocabulary,
a respective ownedAttribute can be identified). Moreover, respective inconsistencies to identify,
whether all top-level simulink Displays (inconsistency 3.7) and Constants (inconsistency 3.8) are
linked appropriately are defined. For these inconsistencies, it is checked whether all of these entities
have values that are consistent to each other – for the sake of simplicity, the mediation to the qudt
vocabulary is not illustrated in the respective figures.

Results of inconsistency management

By means of the previously introduced inconsistency diagnosis and handling rules, the models can
be analysed accordingly. When adding the potentiometer to the engineering models, it can be
ensured that the additional module is not only added to the planning model, but also refined
by the respective SysML model (inconsistencies 3.5 and 3.6). Hence, it can be ensured that the
potentiometer is integrated appropriately in the engineering models.

6.5.4. Comparison of the Two Approaches

As shown by the inconsistency diagnosis and handling rules introduced in this evaluation stage,
further engineering models can be investigated by the presented inconsistency management frame-

98

6.5. Evaluation Stage 3: Comparison with Another Inconsistency Management Approach

Table 6.7. Inter-model inconsistencies investigated in evaluation stage 3

No. Type Description Vocabulary Reference

3.5 Correspondence Each planning Module should be refined by
an equivalently named SysML Block.

Planning
and SysML

Figure A.25

3.6 Correspondence Each planning Module hierarchy should be
refined by an equivalent SysML hierarchy –
that is: each Module with a child Module
should have a corresponding Block with a
child Block.

Planning
and SysML

Figure A.26

3.7 Correspondence Each top-level simulink Display should sat-
isfy a planning Property – that is: the Dis-
play’s displayedValue must be in the range
of the Property’s minValue, maxValue, and
defaultValue.

Simulink
and plan-
ning

Figure A.27

3.8 Correspondence Each top-level simulink Constant should be
equivalent to a respective SysML Property
– that is: the Constant’s value must be
equivalent to the Property’s defaultValue.

Simulink
and SysML

Figure A.28

work. An alternative implementation of an inconsistency management framework that makes use of
the Eclipse Epsilon Framework [Ecl16b], in particular of the Epsilon Validation Language (EVL),
is presented in [Fel+15a; Fel+16c]. Although both frameworks – the inconsistency management
framework presented in this dissertation and the one presented in [Fel+15a; Fel+16c; Fel+19] –
are capable of managing the inconsistencies formulated in this evaluation stage, there are essential
differences in their operationalization.
For one, the use of mediation techniques allows for abstracting the complexity for managing

intra- and inter-model inconsistencies. For instance, inconsistencies in several model types can
be managed by specifying exactly one inconsistency diagnosis and handling rule on the common
vocabulary (see naming inconsistency 3.1). In contrast, approaches such as the EVL require to
specify one inconsistency diagnosis and handling rule per model type. In the presented example
in this evaluation stage, diagnosing and handling a naming convention for all entities in all models
would require 3 disparate diagnosis and handling rules. Analogously, mediation of, e.g., physical
units to the QUDT vocabulary allow for analysing type and value consistency of properties on a
more general level. Hence, it can be argued that by means of mediating the distinct engineering
models, the effort in creating and maintaining rules is decreased. This is especially important for
integrating such an approach for industry settings, in which a high degree of flexibility is required.
However, whereas approaches such as the EVL rely on well-established standards and tools in

MDE, especially as EVL is based on the well-known Object Constraint Language (OCL), the use
of Semantic Web Technologies such as RDF/RDFS and SPARQL is relatively new to MDE. As a
consequence, two main factors can be expected when applying the different frameworks to real-world
scenarios: (1) experts in the field of MDE are not yet familiar with Semantic Web Technologies
and (2) integrated tools such as the Eclipse Epsilon Framework are not yet available to leverage
Semantic Web Technologies for MDE and must be created. Especially the additional need to
transform models from modelling tools such as the EMF to Semantic Web-based technologies must
be overcome through appropriate integrated standards and tools.

99

Chapter 6. Evaluation: Assessment and Comparison of the Applicability

One means to overcome this challenge and to further increase operationalizability is to provide
graphical means to model inconsistencies as suggested in [Fel+19]. As could be shown in by means
of experiments conducted together with different experts in the field of MDE, graphically modelled
inconsistency patterns can help in specifying as well as maintaining different inconsistency types.
Hence, this type of modelling can help engineers in managing inconsistencies.
In summary, it can be argued that both an inconsistency management framework based on

Semantic Web Technologies such as the one presented in this dissertation and frameworks based on
solely MDE technologies such as the one presented in [Fel+15a; Fel+16c; Fel+19] provide valuable
benefits. It is therefore essential to bring the best of both together in order to create appropriate
inconsistency management support for engineers in the automated production systems domain.

6.5.5. Synopsis

The model and inconsistency types used throughout this evaluation stage illustrate that the pre-
sented inconsistency management framework is able to incorporate distinct modelling languages such
as domain-specific languages, standard modelling languages and tool-specific languages. Moreover,
the comparison with a framework based on the EVL revealed that several benefits (e.g., decreased
complexity through mediation techniques) and limitations (e.g., experts not yet familiar with Se-
mantic Web Technologies) can be observed. It is, hence, inevitable to benefit from the best of both
in order to create appropriate inconsistency management approaches for real-world scenarios.

6.6. Assessment of the Performance and Scalability

The practical feasibility of the proposed inconsistency management framework strongly depends on
its computational performance for industry-scale systems. Such systems often contain thousands of
entities and relations. In fact, the engineers, who are using the proposed inconsistency management
approach, expect feedback within an adequate response time. Consequently, the aim of the assess-
ment of the framework’s performance and scalability is to estimate, how the approach performs for
industry-scale model.
In order to identify the performance and scalability of the inconsistency management framework,

two distinct experiments are performed for the three evaluation stages introduced beforehand. Both
experiments are performed on a standard office PC (Intel(R) Core(TM) i7-6600U CPU @ 2.60 GHz
2.70 GHz, with 16 GB of physical memory on a Windows 8.1 Enterprise 64 bit operating system)
with the Java Virtual Machine in its version 1.8.0. As the basis for performing the experiments,
the prototypical software implementation introduced in Section 6.1 is used, in particular by means
of the Eclipse Neon.3 Release 4.6.3 for creating and maintaining the involved models as well as the
Apache Jena Fuseki Release 2.6.0, which serves as the SPARQL endpoint.
In a first experiment (see Figure 6.11), the time to transfer the modelled information to the

inconsistency management server is measured. Therein, the transfer time is measured for different
numbers of instances of the involved models (from 0 to 300 model instances). For each number of
model instances, 10 transfer runs were performed and the average of all runs was used for comparison.
As can be seen from the results in Figure 6.11a, the transfer time increases linearly with an increasing
number of model instances. As the models of the evaluation stage 2 (Section 6.4) are more complex
than the ones of stages 1 (Section 6.3) and 3 (Section 6.5), the highest transfer time can be identified
for the models in evaluation stage 2. However, with a transfer time of approximately 29.9 seconds
for 300 model instances, it can be argued that the model transfer scales appropriately also for
complex models. In addition, it can be argued that transferring all model instances at the same
time is not a primary use case. Rather, engineers incrementally change and extend models – hence,
model fragments will be transferred to the server for inconsistency management purposes step by
step. As can be seen from Figure 6.11b, the time to transfer a single model to the server is nearly

100

6.7. Summary

independent from the number of model instances that is currently captured in the server. Therefore,
independent from the size of the entire model, model fragments can be added to the server in short
transfer times.

0

20,0

25,0

15,0

30,0

10,0

5,0

Number of model instances [–]

Comparison
(stage 3)

Average time to transfer all models to server [Seconds]

275250225 300

Lab-scale
(stage 1)

Industry-style
(stage 2)

175150125755025 1000 200

(a) Average time to transfer all models

0,15

0,20

0,30

0,10

0,25

0,05

0

Average time to transfer single model to server [Seconds]

25 175150

Number of model instances [–]

Comparison
(stage 3)

1007550 2750

Lab-scale
(stage 1)

200 250

Industry-style
(stage 2)

225 300125

(b) Average time to transfer a single model

Figure 6.11. Results of the transfer time analysis

A second experiment (see Figure 6.12) analyses the query times for the different inconsistencies
and evaluation stages. In particular, the query time is measured for different numbers of instances
of the involved models (from 0 to 300 model instances). For each number of model instances and
inconsistency, 10 query runs were performed and the average of all runs was used for comparison
purposes. As can be seen from the results, the query time for the different inconsistencies strongly
varies with the complexity of the respective inconsistency and, at the same time, with the complex-
ity of the involved types of models. For instance, the analysis for the models of evaluation stage
1 illustrate that inconsistencies, which depend on mediations to other vocabularies such as nam-
ing inconsistencies that are analysed in the common or mechatronics vocabulary (see Figure 6.12a,
approximately 3.6 seconds to analyse property naming conventions in 300 model instances in in-
consistency 1.2) require longer query executions than inconsistencies that are analysed in a spe-
cific discipline (see Figure 6.12b, approximately 0.3 seconds to analyse software variable naming
conventions in 300 model instances in inconsistency 1.9). This is especially due to the fact that
inconsistencies depending on mediations require mediation rules to be performed – inconsistencies
in a specific discipline do not require the execution of mediation rules. Moreover, the analyses
reveal that complex inconsistency definitions (e.g., inconsistencies 1.7, 1.8 and 1.15 require count
operations to, e.g., identify the number of currently wired hardware elements) also require longer
execution times. A high complexity of the inconsistency query can be observed for the call tree
inconsistency (inconsistency 1.10 in Figure 6.12c), which requires to iterate over all call dependency
in the respective software dependency model for each individual call dependency. Further examples
of such complex inconsistency definitions are the hardware degradation inconsistency in stage 2 (in-
consistency 2.1 in Figure 6.12e) as well as the hierarchy level inconsistency in stage 3 (inconsistency
3.4 in Figure 6.12f).
All in all, it can be argued that appropriate query times for diagnosing inconsistencies can be

achieved. Further on, instead of providing feedback on inconsistency diagnosis results instantly,
the inconsistency management approach could also be integrated, e.g., in continuous integration
processes. In such cases, the actual time to query for an inconsistency becomes less important, as
inconsistency diagnosis can be performed, e.g., over night.

6.7. Summary

Summarizing the evaluation of the presented inconsistency management framework, it can be de-
duced that both simple and complex inconsistency diagnosis and handling rules can be specified

101

Chapter 6. Evaluation: Assessment and Comparison of the Applicability

4,0

3,5

1,5

0,5

1,0

2,5

0

3,0

2,0

Average query time per inconsistency (stage 1, intra-model, part 1) [Seconds]

0 17525 275

Entity names
(1.1)

Property names
(1.4)

15050

Number of model instances [–]

200 300125 250

Entity names
(1.3)

Property names
(1.2)

100 22575

(a) Average query time per inconsistency (stage 1,
intra-model inconsistencies, part 1)

0,5

1,0

1,5

0
1000 50 7525 150125

Average query time per inconsistency (stage 1, intra-model, part 2) [Seconds]

250200

Number of model instances [–]

Part ids (1.6)

300275

Project dates (1.5)

Electrical terminals/
couplers (1.8)

Electrical interfaces
(1.7)

225175

(b) Average query time per inconsistency (stage 1,
intra-model inconsistencies, part 2)

0

2

4

8

16

6

12

14

10

150

Number of model instances [–]

225

Software global
variables (1.11)

Average query time per inconsistency (stage 1, intra-model, part 3) [Seconds]

Software call
tree (1.10)

300250200 27525 750 17510050

Software variables
names (1.9)

125

(c) Average query time per inconsistency (stage 1,
intra-model inconsistencies, part 3)

0,5

0,3

0,7

0,1

0

0,2

0,6

0,4

300275

BOM electric parts
links (1.14)

BOM mechanic parts
links (1.13)

Project documentation
links (1.12)

Electric interfaces
links (1.15)

Average query time per inconsistency (stage 1, inter-model) [Seconds]

Number of model instances [–]

0 125755025 175150 250100 225200

(d) Average query time per inconsistency (stage 1,
inter-model inconsistencies)

2,0

3,0

4,0

0

7,0

6,0

5,0

1,0

300

Terminal and coupler
degradation (2.2)

275250225175150250 50

Hardware
degradation (2.1)

75 100 200

Average query time per inconsistency (stage 2) [Seconds]

Number of model instances [–]

Timing Diagram
links (2.3)

125

(e) Average query time per inconsistency (stage 2,
intra- and inter-model inconsistencies)

0,5

0,4

0

0,7

0,6

0,3

0,2

0,1

Average query time per inconsistency (stage 3, intra-model) [Seconds]

125 150500

Property names (3.2)

300

Mass values (3.3)

200

Element names (3.1)

Hierarchy levels (3.4)

275250

Number of model instances [–]

2251751007525

(f) Average query time per inconsistency (stage 3,
intra-model inconsistencies)

0

0,5

0,3

0,4

0,1

0,7

0,2

0,6

250

Average query time per inconsistency (stage 3, inter-model) [Seconds]

275175125 150 22520010075500

Number of model instances [–]

SysML-Planning
link (3.5)

SysML-Planning
link hierarchy (3.6)

25

Simulink-SysML
link (3.8)

Simulink-Planning
link (3.7)

300

(g) Average query time per inconsistency (stage 3,
inter-model inconsistencies)

Figure 6.12. Results of the query time analysis

102

6.7. Summary

and executed by means of the approach. By comparing the presented framework with an alternative
implementation, several benefits and limitations can be derived. A basis performance and scala-
bility evaluation reveals that the presented inconsistency management framework is appropriately
scalable, also for more complex real-world scenarios. A detailed discussion of the evaluation results
with regard to the requirements introduced in Chapter 3 can be found in the next chapter.

103

Chapter 7.

Discussion of the Results

Based on the results of the evaluation (Chapter 6), this chapter is devoted to discussing the strengths
and limitations of the presented framework. First, it is assessed, whether the concept addresses the
requirements that are introduced in Chapter 3 to a sufficient degree (Section 7.1). Second, the
strengths (Section 7.2) and limitations (Section 7.3) are elaborated in detail.

7.1. Assessing the Fulfilment of the Requirements

Based on the evaluation results (Chapter 6), this section aims at assessing, whether the proposed
inconsistency management framework addresses the requirements introduced in Chapter 3.
As can be seen from both application examples (Sections 6.3 and 6.4), the inconsistency manage-

ment framework allows for representing the different engineering models within Resource Description
Framework (RDF), thereby providing a common, syntactical formalism for all of the involved models
(see Requirement 1.1). Accordingly, by means of the mediation mechanism, the discipline-specific
entities are transformed to more abstract concepts that are common to multiple disciplines (see
Requirement 1.2). In addition, respective link models are created to explicitly define the links in
between the different entities in the models (see Requirement 1.3). As a consequence, Requirement 1
“Model knowledge base” is evaluated to be fully fulfilled.
For evaluating, whether the proposed inconsistency management framework is capable of diagnos-

ing and handling the typical types of inconsistencies (Chapter 2) – namely, notational, conventional,
correspondence and domain-specific inconsistency rules – representative samples are introduced for
both application examples (Sections 6.3 and 6.4). As indicated for both, all types of inconsisten-
cies are specified by means of the SPARQL Protocol and RDF Query Language (SPARQL) Query
Language (see Requirement 2.1), and, when executed against the model knowledge base, are iden-
tified, located and classified as expected (see Requirement 2.2). Accordingly, handling rules can be
specified (see Requirement 3.1) and used (see Requirement 3.2) by means of the SPARQL Update
Language. Therefore, Requirement 2 “Inconsistency diagnosis” and Requirement 3 “Inconsistency
handling” are also evaluated to be fulfilled.
According to Requirement 4, it is essential to provide the means to measure diagnosed incon-

sistencies (see Requirement 4.1) and to assess, what the impact of a handling action is (see Re-
quirement 4.2). By means of the metadata (e.g., severity of an inconsistency, role of an involved
entity), stakeholders are provided with the basis to identify the importance of a particular incon-
sistency. Accordingly, as handling actions are presented to stakeholders with the related entities
that are involved while handling the inconsistency, the responsible stakeholder can decide upon the
handling action to be taken. However, sophisticated impact analysis models are out of scope of this
dissertation and must be identified for the specific context in which the inconsistency management
framework is employed. Therefore, Requirement 4 “Measurement and assessment capabilities” is
evaluated to be fulfilled partly.
As discussed in Chapter 3, essential to the success of an inconsistency management approach

is its support to be operationalized in industrial settings. For one, as the proposed framework
incorporates technologies from the Semantic Web initiative, which are standardized by the World

105

Chapter 7. Discussion of the Results

Wide Web Consortium (W3C), its extensibility, e.g., to incorporate additional types of models
or inconsistencies within company- or project-specific settings, is enabled (see Requirement 5.1).
However, regarding its comprehensibility (see Requirement 5.2), especially with regard to experts
in the automated production systems domain, which are mostly not familiar with such technolo-
gies, the proposed concept has its limitations – in particular in comparison to techniques from the
Model-Based Systems Engineering (MBSE) domain (Section 6.5), which experience better accep-
tance. Nevertheless, when analysing the proposed framework’s performance and scalability, it can
be concluded that also large-scale models can be managed (see Requirement 5.3). Consequently,
Requirement 5 “Operationalization” is identified to be fulfilled mostly.

7.2. Strengths of the Proposed Framework

In this section, the strengths that can be derived for the proposed inconsistency management frame-
work are discussed.
As discussed in Chapter 4, inconsistency management approaches can be broadly divided into

logical reasoning and theorem proving (Section 4.2.1), rule- and pattern-based (Section 4.2.2) as
well as model synchronization approaches (Section 4.2.3). The proposed inconsistency management
framework can be assigned to the group of rule-based approaches, which makes use of inconsistency
patterns that describe the conditions for the existence of an inconsistency. Accordingly, the proposed
framework allows for flexibly extending and reducing the knowledge base – and, hence, adoptions
for project- or company-specific purposes can be implemented easily. In addition, as the framework
makes use of Semantic Web Technologies (namely RDF and SPARQL), which are standardized by
the W3C, additional model types and disciplines can be integrated easily. Consequently, by means of
the proposed framework, an extensible, yet efficient concept for inconsistency management approach
is enabled.
Especially when comparing the framework to other common approaches, the benefits can be

obtained: Instead of synchronizing models in a bi- or uni-directional way (cf. Section 4.2.3), the
proposed framework aims at linking the models at the points, where inconsistencies are believed
to occur frequently. Hence, instead of using an integrated modelling language or formats in terms
of a “world model” for the automated production systems domain (Section 4.1.1), which implies
the application of a single modelling language or format for the entire engineering process, existing
models can be integrated for the purpose of managing inconsistencies within or in between them –
as long as they are represented in RDF. Accordingly, semantic mediation techniques can be put in
place to decrease the specification effort, as the amount of necessary inconsistency (diagnosis and
handling) rules is lowered.

7.3. Limitations of the Proposed Framework

Although a huge step towards managing inconsistencies within and in between heterogeneous engi-
neering models of automated production systems is made with the proposed framework, it is subject
to several limitations, which are discussed in this section.
One essential limitation of the proposed framework is that all models to be considered for in-

consistency management must have a precise syntax and semantics – that is: they must comply
to the Object Management Group (OMG)’s Meta Object Facility (MOF) [OMG15a]. Although
this assumption is valid for a multitude of common modelling languages such as Unified Modeling
Language (UML) and Systems Modeling Language (SysML) as well as for most Domain-specific
Languages (DSLs) in the field of MBSE, there certainly exists a multitude of additional model
types that cannot be addressed by the proposed framework. For one, non-technical models such as
the ones from socio-technical or psychological disciplines often comprise theories or statistical data.

106

7.3. Limitations of the Proposed Framework

These models are essential when incorporating a holistic perspective on the engineering process,
thereby also incorporating aspects of, e.g., how engineering teams interact with each other. In ad-
dition to models, engineering documents are often used within the automated production systems
domain – especially if technicians or non-trained personnel are involved, which makes use of, e.g.,
instruction lists for commissioning or maintenance tasks. These types of models and documents,
which are often represented in a (textual or graphical) unstructured format, are not incorporated
within the framework presented in this dissertation. First efforts towards integrating, e.g., textual
documents with manual annotations are proposed in [Kol+17] – these efforts must be integrated
into inconsistency management frameworks in future research.
A further aspect that is not considered within this dissertation is the additional knowledge that is

needed to employ the inconsistency management framework. Especially with regard to the Semantic
Web Technologies, which are used as the basic technology throughout the entire framework, it is
obvious that additional experts are required to employ such an inconsistency management framework
in industrial practice. Consequently, it is essential to find abstraction mechanisms that allow non-
experts in this field to efficiently and effectively specify, diagnose and handle inconsistencies. One
means to overcome this challenge is to provide a visual specification formalism for inconsistency
diagnosis and handling rules – e.g., by means of the triple graph pattern-based specification language
presented in [Gue+13] and used in [Fel+16c; Fel+19] for a first, interactive inconsistency management
approach. Hence, inconsistency diagnosis and handling rules are defined through visual modules
– stakeholders do not need to understand the formalism behind these models. A first study that
has been performed together with experts in the Model-Driven Engineering (MDE) domain showed
that such graphically modelled patterns can simplify the inconsistency management process as well
as increase efficiency [Fel+19]. In addition to the specification of inconsistency rules, the amount
of inconsistencies that are diagnosed and, hence, need to be handled in large-scale models can
be tremendous – especially as industrial systems consist of thousands of entities. Consequently,
appropriate visualization techniques such as the one proposed in [Bas+15] are needed to condense the
information to the necessary amount. First efforts towards integrating inconsistency management
within visualization techniques were made in [Fel+17]; however, their applicability for real-world
use cases must be verified in the future.
Furthermore, inconsistencies in the proposed framework are specified by means of graph patterns

(i.e., SPARQL queries). One limiting factor is, hence, the type of inconsistencies that can be
managed. For one, inconsistencies that are subject to uncertainties, which is often the case for
physical automated production systems, are currently investigated in the framework. Additional
mechanisms such as the ones proposed in [Her15] can, due to the extensibility of standards such as
RDF, easily be integrated for this purpose. In addition, this dissertation focuses on static data – i.e.,
although able to incorporate both structure and behavioural models, the dynamics of an automated
production system cannot be analysed. As a consequence, expansions by statistical simulation and
formal verification techniques (e.g., [Bec+15]) are necessary to address this purpose.
Finally, one essential question to be answered in future research must address the source for the

distinct inconsistency rules to be maintained during inconsistency management. Although compa-
nies in the automated production systems domain more and more start to specify the rules they
need to obey during engineering (e.g., regarding coding conventions [PLC16]), the essential sources
for inconsistency diagnosis and handling rules must be identified. Although systems engineering
is gaining more and more importance in the automated production systems domain [KV13] and
systems engineers become candidates for the role of inconsistency managers, such roles must be
defined and established in the future to ensure an integrated inconsistency management process
throughout the entire engineering of automated production systems.

107

Chapter 8.

Conclusions and Outlook

The ever-increasing complexity of automated production systems arises the need to provide appro-
priate methods to improve the efficiency and effectiveness of the engineering. To overcome this
challenge, Model-Based Systems Engineering (MBSE) provides a suitable way by means of models,
which abstract the reality, thereby focusing on a certain point of interest. However, the multitude
of disciplines involved during engineering leads to manifold, heterogeneous models that are created
and maintained throughout this process. As these models overlap – that is, they refer common
aspects of the system under investigation – it is likely that inconsistencies within or in between
these models occur. Especially for automated production systems engineering, these inconsistencies
can cause severe consequences if they are not diagnosed and handled in a proper way.
This dissertation analyses the requirements to be fulfilled by an inconsistency management ap-

proach that allows for diagnosing and handling inconsistencies within and in between heteroge-
neous engineering models of automated production systems (Chapter 3). Based on these findings
and a comparison of the related work (Chapter 4), a knowledge-based inconsistency management
framework is suggested (Chapter 5), which makes use of Semantic Web Technologies – in par-
ticular the Resource Description Framework (RDF) and the SPARQL Protocol and RDF Query
Language (SPARQL) – for the purpose of specifying, diagnosing and handling inconsistencies in
a (semi-)automatic manner. Besides typical engineering models, e.g., from the mechanical, elec-
trical and software engineering disciplines, the framework is capable of incorporating additional
background knowledge which results from, e.g., configuration knowledge. Moreover, to keep the
inconsistency management problem as flexible as possible, semantic abstraction mechanisms are
provided by means of mediations to vocabularies that capture common semantic concepts for, e.g.,
the domain of mechatronic systems. Hence, instead of envisioning a point-to-point mapping or
synchronization of models, which requires to implement bi- or uni-directional model transforma-
tions, or an integrated system model or exchange formats in terms of a “world model” of automated
production systems, which requires the different discipline-specific models to be integrated into a
common modelling language or exchange format, the presented framework allows for coupling the
models flexibly at the points where inconsistencies are likely to occur.
An evaluation (Chapter 6) of the proposed framework is presented at two distinct application

examples: For one, a lab-scale application example is used to show the feasibility of the presented
approach (Section 6.3). Based on this application example, the principle applicability for disparate,
but linked models of automated production systems is shown. Moreover, an industry-style applica-
tion example exemplifies, how additional background knowledge is incorporated in the framework
(Section 6.4). Nevertheless, the latter also indicated the framework’s limitations – whereas struc-
ture models are easily manageable with the presented framework, it lacks in support of behavioural
models and inconsistencies. For such dynamic analyses, which require, e.g., the execution of models
or a formal verification of the system’s dynamics, verification or simulation techniques such as the
ones proposed in [Bec+15] are envisioned to be used. A comparison of the proposed inconsistency
management approach with another one from the related literature reveals that, while facing im-
plementation challenges as tool support is not as sophisticated as within the “traditional” MBSE
domain, the concept proposed in this dissertation implies several benefits. First, the incorporation

109

Chapter 8. Conclusions and Outlook

of background knowledge allows for drawing additional conclusions on potential inconsistencies,
which are not yet considered in traditional MBSE approaches. Second, the semantic mediation
from (more specific) discipline vocabularies to (more abstract) domain or common vocabularies
decreases the specification effort, as the amount of necessary inconsistency rules can be lowered.
Finally, an assessment of the performance and scalability of the proposed framework reveals that,
with the computing capabilities of current Personal Computers (PCs), results can be achieved within
appropriate computing times.
Although, with the proposed framework, a huge step towards managing inconsistencies in het-

erogeneous models of automated production systems is made, the discussion of its strengths and
limitations (Chapter 7) reveals that a lot of research effort is still required to apply such a frame-
work to industrial application. One aspect that needs to be addressed is the additional expert
knowledge that is necessary, e.g., in the field of Semantic Web Technologies, which hampers appli-
cations in industrial practice. To overcome this drawback, appropriate techniques to specify the
multitude of inconsistency diagnosis and handling rules more easily, e.g., by means of graphical
patterns (see [Gue+13; Fel+16c]), as well as for managing the multitude of different types of incon-
sistencies, e.g., by means of supporting model dependency visualization techniques (see [Bas+15]),
are required. Such visualization approaches are envisioned to be complimentary to an inconsistency
management framework, thereby aiding stakeholders in specifying inconsistency (diagnosis and/or
handling) rules, as well as identifying and understanding the inconsistent parts of the engineering
solution. Another aspect that is not in focus of this dissertation is the need to incorporate engi-
neering documents. Whereas models certainly simplify the engineering of automated production
systems, they cannot entirely replace the documents that are used, e.g., by technicians during com-
mission or maintenance. Consequently, appropriate mechanisms and frameworks must be employed
that allow for ensuring the consistency between these documents and the respective engineering
models. Finally, the essential restriction of the proposed framework is its focus on models that are
compliant to the Meta Object Facility (MOF) [OMG15a]. Accordingly, additional model types that
stem from non-technical disciplines such as socio-technological or psychological sciences, cannot be
considered in the framework’s current form. These aspects, which are essential factors to be consid-
ered for innovation processes in the automated production systems domain, must be investigated
and included in inconsistency management frameworks in future research efforts.

110

Bibliography

[3SS16] 3S-Smart Software Solutions GmbH. CODESYS Application Composer. Online.
2016. url: https://www.codesys.com/products/codesys-engineering/application-
composer.html (visited on 10/06/2016).

[Abe+13] Abele, L., Legat, C., Grimm, S., and Müller, A. W. “Ontology-based validation
of plant models”. In: 2013 11th IEEE International Conference on Industrial Informat-
ics (INDIN). 2013, pp. 236–241. doi: 10.1109/INDIN.2013.6622888.

[Ahm+17] Ahmad, M., Ahmad, B., Harrison, R., Ferrer, B. R., and Lastra, J. L. M.
“Ensuring the consistency between assembly process planning and machine control soft-
ware”. In: IEEE International Conference on Industrial Informatics. Emden, Germany,
2017. doi: 10.1109/INDIN.2017.8104923.

[AS10] Akerkar, R. and Sajja, P. Knowledge-based Systems. Burlington, MA, USA: Jones
& Bartlett Learning, 2010.

[ABS18] Ananieva, S., Burger, E., and Stier, C. “Model-Driven Consistency Preservation in
AutomationML”. In: 2018 IEEE 14th International Conference on Automation Science
and Engineering (CASE). IEEE, 2018. doi: 10.1109/coase.2018.8560343.

[Ana+18] Ananieva, S., Klare, H., Burger, E., and Reussner, R. “Variants and Versions
Management for Models with Integrated Consistency Preservation”. In: Proceedings of
the 12th International Workshop on Variability Modelling of Software-Intensive Systems
- VAMOS 2018. ACM Press, 2018. doi: 10.1145/3168365.3168377.

[Apa16] Apache Jena. Fuseki: serving RDF data over HTTP. Online. 2016. url: https:
//jena.apache.org/documentation/serving_data/ (visited on 11/11/2016).

[ARC15] ARC Advisory Group. Programmable Logic Controllers (PLCs) and PLC-based Pro-
grammable Automation Controllers (PACs). Online. 2015. url: http://www.arcweb.
com/market-studies/pages/plcs-programmable-logic-controllers.aspx (visited
on 04/10/2016).

[Arr+16] Arroyo, E., Hoernicke, M., Rodríguez, P., and Fay, A. “Automatic derivation of
qualitative plant simulation models from legacy piping and instrumentation diagrams”.
In: Computers & Chemical Engineering, vol. 92 (2016), pp. 112–132. doi: 10.1016/j.
compchemeng.2016.04.040.

[BV06] Balogh, A. and Varró, D. “Advanced Model Transformation Language Constructs
in the VIATRA2 Framework”. In: ACM Symposium on Applied Computing. Dijon,
France, 2006, pp. 1280–1287. doi: 10.1145/1141277.1141575.

[BFB14] Barbieri, G., Fantuzzi, C., and Borsari, R. “A Model-based Design Methodology
for the Development of Mechatronic Systems”. In: Mechatronics, vol. 24, no. 7 (2014),
pp. 833–843. doi: 10.1016/j.mechatronics.2013.12.004.

[Bas+15] Basole, R. C., Qamar, A., Park, H., Paredis, C. J. J., and McGinnis, L. F.
“Visual Analytics for Early-Phase Complex Engineered System Design Support”. In:
IEEE Computer Graphics and Applications, vol. 35, no. 2 (2015), pp. 41–51. doi:
10.1109/MCG.2015.3.

111

https://www.codesys.com/products/codesys-engineering/application-composer.html
https://www.codesys.com/products/codesys-engineering/application-composer.html
https://doi.org/10.1109/INDIN.2013.6622888
https://doi.org/10.1109/INDIN.2017.8104923
https://doi.org/10.1109/coase.2018.8560343
https://doi.org/10.1145/3168365.3168377
https://jena.apache.org/documentation/serving_data/
https://jena.apache.org/documentation/serving_data/
http://www.arcweb.com/market-studies/pages/plcs-programmable-logic-controllers.aspx
http://www.arcweb.com/market-studies/pages/plcs-programmable-logic-controllers.aspx
https://doi.org/10.1016/j.compchemeng.2016.04.040
https://doi.org/10.1016/j.compchemeng.2016.04.040
https://doi.org/10.1145/1141277.1141575
https://doi.org/10.1016/j.mechatronics.2013.12.004
https://doi.org/10.1109/MCG.2015.3

Bibliography

[Bas+11] Bassi, L., Secchi, C., Bonfe, M., and Fantuzzi, C. “A SysML-Based Methodology
for Manufacturing Machinery Modeling and Design”. In: IEEE/ASME Transactions
on Mechatronics, vol. 16, no. 6 (2011), pp. 1049–1062. doi: 10.1109/TMECH.2010.
2073480.

[Bec+15] Beckert, B., Ulbrich, M., Vogel-Heuser, B., and Weigl, A. “Regression Verifi-
cation for Programmable Logic Controller Software”. In: International Conference on
Formal Engineering Methods. 2015, pp. 234–251. doi: 10.1007/978-3-319-25423-
4_15.

[Ber+16] Berardinelli, L., Biffl, S., Lüder, A., Mätzler, E., Mayerhofer, T., Wimmer,
M., and Wolny, S. “Cross-disciplinary engineering with AutomationML and SysML”.
In: Automatisierungstechnik (at), vol. 64, no. 4 (2016), pp. 253–269. doi: 10.1515/
auto-2015-0076.

[Bif+14a] Biffl, S., Kovalenko, O., Lüder, A., Schmidt, N., and Rosendahl, R. “Semantic
mapping support in AutomationML”. In: IEEE International Conference on Emerging
Technology and Factory Automation. Barcelona, Spain, 2014, pp. 1–4. doi: 10.1109/
ETFA.2014.7005276.

[Bif+15] Biffl, S., Maetzler, E., Wimmer, M., Lüder, A., and Schmidt, N. “Linking
and versioning support for AutomationML: A model-driven engineering perspective”.
In: IEEE International Conference on Industrial Informatics. Cambridge, UK, 2015,
pp. 499–506. doi: 10.1109/INDIN.2015.7281784.

[BSZ09] Biffl, S., Schatten, A., and Zoitl, A. “Integration of heterogeneous engineering
environments for the automation systems lifecycle”. In: 2009 7th IEEE International
Conference on Industrial Informatics. 2009, pp. 576–581. doi: 10.1109/INDIN.2009.
5195867.

[Bif+14b] Biffl, S., Winkler, D., Mordinyi, R., Scheiber, S., and Holl, G. “Efficient mon-
itoring of multi-disciplinary engineering constraints with semantic data integration in
the Multi-Model Dashboard process”. In: IEEE International Conference on Emerg-
ing Technology and Factory Automation. 2014, pp. 1–10. doi: 10.1109/ETFA.2014.
7005211.

[BFS13] Bonfé, M., Fantuzzi, C., and Secchi, C. “Design Patterns for Model-based Au-
tomation Software Design and Implementation”. In: Control Engineering Practice,
vol. 21, no. 11 (2013), pp. 1608–1619. doi: 10.1016/j.conengprac.2012.03.017.

[Bro+10] Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., and Ratiu, D.
“Seamless Model-Based Development: From Isolated Tools to Integrated Model Engi-
neering Environments”. In: Proceedings of the IEEE, vol. 98, no. 4 (2010), pp. 526–545.
doi: 10.1109/JPROC.2009.2037771.

[BGT05] Burmester, S., Giese, H., and Tichy, M. “Model-Driven Development of Recon-
figurable Mechatronic Systems with Mechatronic UML”. In: Model-Driven Architec-
ture. Ed. by Aßmann, U., Aksit, M., and Rensink, A. Vol. 3599. Lecture Notes
in Computer Science. Berlin, Heidelberg, Germany: Springer, 2005, pp. 47–61. doi:
10.1007/11538097_4.

[CLP11] Cao, Y., Liu, Y., and Paredis, C. J. “System-level model integration of design and
simulation for mechatronic systems based on SysML”. In: Mechatronics, vol. 21, no. 6
(2011), pp. 1063–1075. doi: 10.1016/j.mechatronics.2011.05.003.

112

https://doi.org/10.1109/TMECH.2010.2073480
https://doi.org/10.1109/TMECH.2010.2073480
https://doi.org/10.1007/978-3-319-25423-4_15
https://doi.org/10.1007/978-3-319-25423-4_15
https://doi.org/10.1515/auto-2015-0076
https://doi.org/10.1515/auto-2015-0076
https://doi.org/10.1109/ETFA.2014.7005276
https://doi.org/10.1109/ETFA.2014.7005276
https://doi.org/10.1109/INDIN.2015.7281784
https://doi.org/10.1109/INDIN.2009.5195867
https://doi.org/10.1109/INDIN.2009.5195867
https://doi.org/10.1109/ETFA.2014.7005211
https://doi.org/10.1109/ETFA.2014.7005211
https://doi.org/10.1016/j.conengprac.2012.03.017
https://doi.org/10.1109/JPROC.2009.2037771
https://doi.org/10.1007/11538097_4
https://doi.org/10.1016/j.mechatronics.2011.05.003

[Car+16] Carlsson, O., Vera, D., Delsing, J., Ahmad, B., and Harrison, R. “Plant
descriptions for engineering tool interoperability”. In: 2016 IEEE 14th International
Conference on Industrial Informatics (INDIN). 2016, pp. 730–735. doi: 10.1109/
INDIN.2016.7819255.

[Dem+16] Demuth, A., Kretschmer, R., Egyed, A., and Maes, D. “Introducing Traceabil-
ity and Consistency Checking for Change Impact Analysis across Engineering Tools
in an Automation Solution Company: An Experience Report”. In: IEEE International
Conference on Software Maintenance and Evolution. 2016. doi: 10.1109/icsme.2016.
50.

[DM13] Dickerson, C. E. and Mavris, D. “A Brief History of Models and Model Based Sys-
tems Engineering and the Case for Relational Orientation”. In: IEEE Systems Journal,
vol. 7, no. 4 (2013), pp. 581–592. doi: 10.1109/JSYST.2013.2253034.

[Dra10] Drath, R., ed. Datenaustausch in der Anlagenplanung mit AutomationML. Berlin,
Heidelberg, Germany: Springer, 2010. doi: 10.1007/978-3-642-04674-2.

[eCl16] eCl@ss e.V. The eCl@ss standard: Classification and product description. Online.
2016. url: http://www.eclass.eu/eclasscontent/standard/index.html.en
(visited on 10/31/2016).

[Ecl15] Eclipse Foundation. Papyrus Modeling Environment. Online. 2015. url: https:
//eclipse.org/papyrus/ (visited on 04/10/2016).

[Ecl16a] Eclipse Foundation. Acceleo Model To Text (M2T). Online. 2016. url: http://www.
eclipse.org/acceleo/ (visited on 11/11/2016).

[Ecl16b] Eclipse Foundation. Eclipse Epsilon Framework. Online. 2016. url: http://www.
eclipse.org/epsilon/ (visited on 10/06/2016).

[Ecl16c] Eclipse Foundation. Eclipse Modeling Framework. Online. 2016. url: http://www.
eclipse.org/modeling/emf/ (visited on 10/06/2016).

[Egy11] Egyed, A. “Automatically Detecting and Tracking Inconsistencies in Software Design
Models”. In: IEEE Transactions on Software Engineering, vol. 37, no. 2 (2011), pp. 188–
204. doi: 10.1109/TSE.2010.38.

[Egy+18] Egyed, A., Zeman, K., Hehenberger, P., and Demuth, A. “Maintaining Con-
sistency across Engineering Artifacts”. In: Computer, vol. 51, no. 2 (2018), pp. 28–35.
doi: 10.1109/mc.2018.1451666.

[Eka+17] Ekaputra, F. J., Sabou, M., Serral, E., Kiesling, E., and Biffl, S. “Ontology-
Based Data Integration in Multi-Disciplinary Engineering Environments: A Review”.
In: Open Journal of Information Systems, vol. 4, no. 1 (2017), pp. 1–26.

[ElM06] ElMaraghy, H. A. “Flexible and Reconfigurable Manufacturing Systems Paradigms”.
In: International Journal of Flexible Manufacturing Systems, vol. 17, no. 4 (2006),
pp. 261–276. doi: 10.1007/s10696-006-9028-7.

[EPL16] EPLAN Software & Service GmbH & Co. KG. EPLAN Engineering Configura-
tion. Online. 2016. url: http://www.engineeringconfiguration.com/en/eec-home
(visited on 12/02/2016).

[EM12] Estévez, E. and Marcos, M. “Model-Based Validation of Industrial Control Sys-
tems”. In: IEEE Transactions on Industrial Informatics, vol. 8, no. 2 (2012), pp. 302–
310. doi: 10.1109/TII.2011.2174248.

113

https://doi.org/10.1109/INDIN.2016.7819255
https://doi.org/10.1109/INDIN.2016.7819255
https://doi.org/10.1109/icsme.2016.50
https://doi.org/10.1109/icsme.2016.50
https://doi.org/10.1109/JSYST.2013.2253034
https://doi.org/10.1007/978-3-642-04674-2
http://www.eclass.eu/eclasscontent/standard/index.html.en
https://eclipse.org/papyrus/
https://eclipse.org/papyrus/
http://www.eclipse.org/acceleo/
http://www.eclipse.org/acceleo/
http://www.eclipse.org/epsilon/
http://www.eclipse.org/epsilon/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
https://doi.org/10.1109/TSE.2010.38
https://doi.org/10.1109/mc.2018.1451666
https://doi.org/10.1007/s10696-006-9028-7
http://www.engineeringconfiguration.com/en/eec-home
https://doi.org/10.1109/TII.2011.2174248

Bibliography

[EMO07] Estévez, E., Marcos, M., and Orive, D. “Automatic Generation of PLC Au-
tomation Projects from Component-based Models”. In: The International Journal of
Advanced Manufacturing Technology, vol. 35, no. 5 (2007), pp. 527–540. doi: 10.1007/
s00170-007-1127-4.

[Fay+17] Fay, A., Scholz, A., Hildebrandt, C., Schröder, T., Diedrich, C., Dubovy,
M., Wiegand, R., Eck, C., and Heidel, R. Semantische Inhalte für Industrie
4.0: Modellierung technischer Systeme in kollaborativen Umgebungen. German. In: atp
edition – Automatisierungstechnische Praxis, vol. 59, 7–9 (2017), pp. 34–43.

[Fel+16a] Feldmann, S., Hauer, F., Ulewicz, S., and Vogel-Heuser, B. “Analysis Frame-
work for Evaluating PLC Software: An Application of Semantic Web Technologies”.
In: IEEE International Symposium on Industrial Electronics. Santa Clara, CA, USA,
2016.

[Fel+19] Feldmann, S., Kernschmidt, K., Wimmer, M., and Vogel-Heuser, B. “Man-
aging Inter-Model Inconsistencies in Model-based Systems Engineering: Application in
Automated Production Systems Engineering”. In: Journal of Systems and Software,
vol. 153 (2019), pp. 105–134. doi: 10.1016/j.jss.2019.03.060.

[Fel+16b] Feldmann, S., Ulewicz, S., Diehm, S., and Vogel-Heuser, B. Strukturelle Code-
analyse: Analyseframework mittels Semantic-Web-Technologien. German. In: atp edi-
tion, vol. 58, 9 (2016), pp. 42–51.

[Fel+16c] Feldmann, S., Wimmer, M., Kernschmidt, K., and Vogel-Heuser, B. “A Com-
prehensive Approach for Managing Inter-Model Inconsistencies in Automated Produc-
tion Systems Engineering”. In: IEEE International Conference on Automation Science
and Engineering. Fort Worth, TX, USA, 2016.

[FFV12] Feldmann, S., Fuchs, J., and Vogel-Heuser, B. “Modularity, Variant and Ver-
sion Management in Plant Automation – Future Challenges and State of the Art”.
In: International Design Conference. Dubrovnik, Croatia, 2012, pp. 1689–1698. url:
https://www.designsociety.org/publication/32138/modularity_variant_and_
version_management_in_plant_automation_%E2%80%93_future_challenges_and_
state_of_the_art (visited on 05/20/2019).

[Fel+17] Feldmann, S., Hauer, F., Pantförder, D., Pankratz, F., Klinker, G., and
Vogel-Heuser, B. “Management of Inconsistencies in Domain-Spanning Models –
An Interactive Visualization Approach”. In: 19th International Conference on Human-
Computer Interaction. Vancouver, Canada, 2017.

[Fel+15a] Feldmann, S., Herzig, S. J. I., Kernschmidt, K., Wolfenstetter, T., Kam-
merl, D., Qamar, A., Lindemann, U., Krcmar, H., Paredis, C. J. J., and
Vogel-Heuser, B. “A Comparison of Inconsistency Management Approaches Using a
Mechatronic Manufacturing System Design Case Study”. In: IEEE International Con-
ference on Automation Science and Engineering. Gothenburg, Sweden, 2015, pp. 158–
165. doi: 10.1109/CoASE.2015.7294055.

[Fel+15b] Feldmann, S., Herzig, S. J. I., Kernschmidt, K., Wolfenstetter, T., Kam-
merl, D., Qamar, A., Lindemann, U., Krcmar, H., Paredis, C. J. J., and
Vogel-Heuser, B. “Towards Effective Management of Inconsistencies in Model-Based
Engineering of Automated Production Systems”. In: 15th IFAC Symposium on Infor-
mation Control Problems in Manufacturing. Ottawa, Canada, 2015, pp. 916–923. doi:
10.1016/j.ifacol.2015.06.200.

114

https://doi.org/10.1007/s00170-007-1127-4
https://doi.org/10.1007/s00170-007-1127-4
https://doi.org/10.1016/j.jss.2019.03.060
https://www.designsociety.org/publication/32138/modularity_variant_and_version_management_in_plant_automation_%E2%80%93_future_challenges_and_state_of_the_art
https://www.designsociety.org/publication/32138/modularity_variant_and_version_management_in_plant_automation_%E2%80%93_future_challenges_and_state_of_the_art
https://www.designsociety.org/publication/32138/modularity_variant_and_version_management_in_plant_automation_%E2%80%93_future_challenges_and_state_of_the_art
https://doi.org/10.1109/CoASE.2015.7294055
https://doi.org/10.1016/j.ifacol.2015.06.200

[FKV16] Feldmann, S., Kernschmidt, K., and Vogel-Heuser, B. “Applications of Seman-
tic Web Technologies for the Engineering of Automated Production Systems – Three
Use Cases”. In: Semantic Web Technologies in Intelligent Engineering Applications. Ed.
by Biffl, S. and Sabou, M. Berlin, Heidelberg, Germany: Springer, 2016.

[Fin+94] Finkelstein, A. C. W., Gabbay, D., Hunter, A., Kramer, J., and Nuseibeh,
B. “Inconsistency Handling in Multiperspective Specifications”. In: IEEE Transactions
on Software Engineering, vol. 20, no. 8 (1994), pp. 569–578. doi: 10.1109/32.310667.

[Fis16] Fischer, J. Development, Application and Evaluation of an Inconsistency Manage-
ment Approach for Interdisciplinary Engineering with a Special Focus on Electrical
Engineering. Technical University of Munich, 2016.

[for16] fortiss GmbH. AF3 – Seamless Model-based Development – From requirements analy-
sis to platform. Online. 2016. url: http://af3.fortiss.org/ (visited on 10/25/2016).

[Gau+07] Gausemeier, J., Giese, H., Schäfer, W., Axenath, B., Frank, U., Henkler, S.,
Pook, S., and Tichy, M. “Towards the design of self-optimizing mechatronic systems:
Consistency between domain-spanning and domain-specific models”. In: ASME Inter-
national Design Engineering Technical Conferences & Computers and Information in
Engineering Conference. 2007, pp. 1141–1148.

[Gau+09] Gausemeier, J., Schäfer, W., Greenyer, J., Kahl, S., Pook, S., and Rieke,
J. “Management of Cross-Domain Model Consistency During the Development of Ad-
vanced Mechatronic Systems”. In: International Conference on Engineering Design.
Palo Alto, CA, USA, 2009, pp. 1–12.

[GS13] Giese, H. and Schäfer, W. “Model-Driven Development of Safe Self-optimizing
Mechatronic Systems with MechatronicUML”. In: Assurances for Self-Adaptive Sys-
tems. Ed. by Cámara, J., Lemos, R., Ghezzi, C., and Lopes, A. Vol. 7740. Lec-
ture Notes in Computer Science. Berlin, Heidelberg, Germany: Springer, 2013, pp. 152–
186. doi: 10.1007/978-3-642-36249-1_6.

[GW06] Giese, H. and Wagner, R. “Incremental Model Synchronization with Triple Graph
Grammars”. In: International Conference on Model Driven Engineering Languages and
Systems. Genova, Italy, 2006, pp. 543–557. doi: 10.1007/11880240_38.

[GW09] Giese, H. and Wagner, R. “From model transformation to incremental bidirectional
model synchronization”. In: Software & Systems Modeling, vol. 8, no. 1 (2009), pp. 21–
43. doi: 10.1007/s10270-008-0089-9.

[GF16] Glawe, M. and Fay, A. “Wissensbasiertes Engineering automatisierter Anlagen unter
Verwendung von AutomationML und OWL”. In: Automatisierungstechnik (at), vol. 64,
no. 3 (2016), pp. 186–198. doi: 10.1515/auto-2015-0077.

[Gla+15] Glawe, M., Tebbe, C., Fay, A., and Niemann, K.-H. “Knowledge-based Engi-
neering of Automation Systems using Ontologies and Engineering Data”. In: Interna-
tional Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowl-
edge Management. 2015, pp. 291–300. doi: 10.5220/0005614502910300.

[Gue+13] Guerra, E., Lara, J. de, Wimmer, M., Kappel, G., Kusel, A., Retschitzeg-
ger, W., Schönböck, J., and Schwinger, W. “Automated Verification of Model
Transformations based on Visual Contracts”. In: Autom. Softw. Eng. Vol. 20, no. 1
(2013), pp. 5–46.

[HD13] Hadlich, T. and Diedrich, C. “Using properties in systems engineering”. In: 2013
IEEE 18th Conference on Emerging Technologies Factory Automation (ETFA). 2013.
doi: 10.1109/ETFA.2013.6647979.

115

https://doi.org/10.1109/32.310667
http://af3.fortiss.org/
https://doi.org/10.1007/978-3-642-36249-1_6
https://doi.org/10.1007/11880240_38
https://doi.org/10.1007/s10270-008-0089-9
https://doi.org/10.1515/auto-2015-0077
https://doi.org/10.5220/0005614502910300
https://doi.org/10.1109/ETFA.2013.6647979

Bibliography

[Hau16] Hauer, F. Development of a Framework and an Interactive Visualization Approach
for Supporting the Identification and Resolution of Inconsistencies in Domain-spanning
Models. Technical University of Munich, 2016.

[Heg+11] Hegedüs, Á., Horváth, Á., Ráth, I., Branco, M. C., and Varró, D. “Quick
fix generation for DSMLs”. In: IEEE Symposium on Visual Languages and Human-
Centric Computing. Pittsburgh, PA, USA, 2011, pp. 17–24. doi: 10.1109/VLHCC.
2011.6070373.

[HEZ10] Hehenberger, P., Egyed, A., and Zeman, K. “Consistency Checking of Mecha-
tronic Design Models”. In: ASME International Design Engineering Technical Confer-
ences & Computers and Information in Engineering Conference. Montreal, Quebec,
Canada, 2010, pp. 1141–1148. doi: 10.1115/DETC2010-28615.

[Her15] Herzig, S. “A Bayesian Learning Approach to Inconsistency Identification in Model-
based Systems Engineering”. Ph.D. Dissertation. Atlanta, Georgia, USA: Georgia Insti-
tute of Technology, 2015. url: https://smartech.gatech.edu/bitstream/handle/
1853/53576/HERZIG-DISSERTATION-2015.pdf (visited on 04/10/2016).

[Her+11] Herzig, S., Qamar, A., Reichwein, A., and Paredis, C. “A Conceptual Frame-
work for Consistency Management in Model-based Systems Engineering”. In: ASME
International Design Engineering Technical Conferences & Computers and Informa-
tion in Engineering Conference. Washington, DC, USA, 2011, pp. 1329–1339. doi:
10.1115/DETC2011-47924.

[HP14] Herzig, S. J. and Paredis, C. J. “A Conceptual Basis for Inconsistency Management
in Model-based Systems Engineering”. In: CIRP Design Conference. Milano, Italy,
2014, pp. 52–57. doi: 10.1016/j.procir.2014.03.192.

[HQP14] Herzig, S. J., Qamar, A., and Paredis, C. J. “An Approach to Identifying Incon-
sistencies in Model-based Systems Engineering”. In: Conference on Systems Engineering
Research. Redondo Beach, CA, USA, 2014, pp. 354–362. doi: 10.1016/j.procs.2014.
03.044.

[Hir+02] Hirtz, J., Stone, R. B., McAdams, D. A., Szykman, S., and Wood, K. L. A
Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts.
Tech. rep. NIST Technical Note 1447. National Institute of Standards and Technology,
2002. url: https://www.nist.gov/node/742436 (visited on 12/02/2016).

[HKR10] Hitzler, P., Krötzsch, M., and Rudolph, S. Foundations of Semantic Web Tech-
nologies. Boca Raton, FL, USA: CRC Press, 2010.

[Huz+05] Huzar, Z., Kuzniarz, L., Reggio, G., and Sourrouille, J. L. “Consistency Prob-
lems in UML-Based Software Development”. In: UML Modeling Languages and Ap-
plications. Ed. by Jardim Nunes, N., Selic, B., Rodrigues da Silva, A., and
Toval Alvarez, A. Vol. 3297. Lecture Notes in Computer Science. Berlin, Heidelberg,
Germany: Springer, 2005, pp. 1–12. doi: 10.1007/978-3-540-31797-5_1.

[IEC03a] IEC. Programmable Controllers – Part 1: General Information. IEC Standard IEC
61131-1:2003. 2003.

[IEC03b] IEC. Programmable Controllers – Part 3: Programming Languages. IEC Standard IEC
61131-3:2003. 2003.

[IEC12] IEC. Function Blocks – Part 1: Architecture. IEC Standard IEC 61499-1:2012. 2012.

[IEC13a] IEC. International Electrotechnical Vocabulary – Part 351: Control Technology. IEC
Standard IEC 60050-351. 2013.

116

https://doi.org/10.1109/VLHCC.2011.6070373
https://doi.org/10.1109/VLHCC.2011.6070373
https://doi.org/10.1115/DETC2010-28615
https://smartech.gatech.edu/bitstream/handle/1853/53576/HERZIG-DISSERTATION-2015.pdf
https://smartech.gatech.edu/bitstream/handle/1853/53576/HERZIG-DISSERTATION-2015.pdf
https://doi.org/10.1115/DETC2011-47924
https://doi.org/10.1016/j.procir.2014.03.192
https://doi.org/10.1016/j.procs.2014.03.044
https://doi.org/10.1016/j.procs.2014.03.044
https://www.nist.gov/node/742436
https://doi.org/10.1007/978-3-540-31797-5_1

[IEC13b] IEC. Programmable Controllers – Part 3: Programming Languages. IEC Standard IEC
61131-3:2013. 2013.

[IEC14] IEC. Engineering Data Exchange Format for Use in Industrial Automation Systems
Engineering – Automation Markup Language – Part 1: Architecture and General Re-
quirements. IEC Standard IEC 62714-1. 2014.

[IEC16] IEC. Representation of Process Control Engineering – Requests in P&I Diagrams
and Data Exchange Between P&ID Tools and PCE-CAE Tools. IEC Standard IEC
62424:2016. 2016.

[INC07] INCOSE. Systems Engineering Vision 2020. Tech. rep. INCOSE-TP-2004-004-02.
2007. url: http : / / oldsite . incose . org / ProductsPubs / pdf / SEVision2020 _
20071003_v2_03.pdf (visited on 12/02/2016).

[ISA10] ISA. Enterprise-Control System Integration – Part 1: Models and Terminology. ISA
Standard ANSI/ISA-95.00.01-2010. 2010.

[Jäg+12] Jäger, T., Fay, A., Wagner, T., and Löwen, U. “Comparison of engineering results
within domain specific languages regarding information contents and intersections”. In:
International Multi-Conference on Systems, Signals and Devices. 2012, pp. 1–6. doi:
10.1109/SSD.2012.6197913.

[Jou+08] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. “ATL: A model transfor-
mation tool”. In: Science of Computer Programming, vol. 72, no. 1-2 (2008), pp. 31–39.
doi: 10.1016/j.scico.2007.08.002.

[Kam+15] Kammerl, D., Malaschewski, O., Schenkl, S. A., and Mörtl, M. “Decision Un-
certainties in the Planning of Product-Service System Portfolios”. In: 5th International
Conference on Research into Design. 2015, pp. 39–48.

[Kat+19] Kattner, N., Bauer, H., Basirati, M., Zou, M., Vogel-Heuser, B., Böhm, M.,
Krcmar, H., Reinhart, G., and Lindemann, U. “Inconsistency management in
heterogeneous models – an approach for the identification of model dependencies and
potential inconsistencies”. In: International Conference on Engineering Design. 2019.

[Ker17] Kernschmidt, K. “Interdisciplinary Structural Modeling of Mechatronic Production
Systems Using SysML4Mechatronics”. Dr.-Ing. Dissertation. Munich, Germany: Tech-
nical University of Munich, 2017.

[KV13] Kernschmidt, K. and Vogel-Heuser, B. “An Interdisciplinary SysML Based Mod-
eling Approach for Analyzing Change Influences in Production Plants to Support the
Engineering”. In: IEEE International Conference on Automation Science and Engineer-
ing. Madison, WI, USA, 2013, pp. 1113–1118. doi: 10.1109/CoASE.2013.6654030.

[Ker+13] Kernschmidt, K., Wolfenstetter, T., Münzberg, C., Kammerl, D., Goswami,
S., Lindemann, U., Krcmar, H., and Vogel-Heuser, B. “Concept for an integration-
framework to enable the crossdisciplinary development of product-service systems”. In:
2013 IEEE International Conference on Industrial Engineering and Engineering Man-
agement. 2013, pp. 340–345. doi: 10.1109/IEEM.2013.6962430.

[Ker+14] Kernschmidt, K., Behncke, F., Chucholowski, N., Wickel, M., Bayrak, G.,
Lindemann, U., and Vogel-Heuser, B. “An Integrated Approach to Analyze Change-
situations in the Development of Production Systems”. In: CIRP Conference on Manu-
facturing Systems. Vol. 17. 2014, pp. 148–153. doi: 10.1016/j.procir.2014.01.081.

[KP09] Kerzhner, A. A. and Paredis, C. J. J. “Using Domain Specific Languages to Cap-
ture Design Synthesis Knowledge for Model-Based Systems Engineering”. In: ASME
International Design Engineering Technical Conferences and Computers and Informa-
tion in Engineering Conference. 2009. doi: 10.1115/DETC2009-87286.

117

http://oldsite.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf
http://oldsite.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf
https://doi.org/10.1109/SSD.2012.6197913
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1109/CoASE.2013.6654030
https://doi.org/10.1109/IEEM.2013.6962430
https://doi.org/10.1016/j.procir.2014.01.081
https://doi.org/10.1115/DETC2009-87286

Bibliography

[KP10] Kerzhner, A. A. and Paredis, C. J. J. “Model-Based System Verification: A For-
mal Framework for Relating Analyses, Requirements, and Tests”. In: ACM/IEEE 19th
International Conference on Model Driven Engineering Languages and Systems. 2010.
doi: 10.1007/978-3-642-21210-9_27.

[Kol+17] Koltun, G. D., Feldmann, S., Schütz, D., and Vogel-Heuser, B. “Model-
Document Coupling in aPS Engineering: Challenges and Requirements Engineering
Use Case”. In: 18th IEEE International Conference on Industrial Technology. 2017.
doi: 10.1109/ICIT.2017.7915529.

[Kon18] Konersmann, M. “Explicitly Integrated Architecture: An Approach for Integrating
Software Architecture Model Information with Program Code”. PhD thesis. Universität
Duisburg-Essen, 2018.

[KG12] Konersmann, M. and Goedicke, M. “A Conceptual Framework and Experimen-
tal Workbench for Architectures”. In: Software Service and Application Engineering.
Springer Berlin Heidelberg, 2012, pp. 36–52. doi: 10.1007/978-3-642-30835-2_4.

[Kov+15] Kovalenko, O., Wimmer, M., Sabou, M., Lüder, A., Ekaputra, F. J., and
Biffl, S. “Modeling AutomationML: Semantic Web technologies vs. Model-Driven En-
gineering”. In: IEEE Conference on Emerging Technologies Factory Automation. Lux-
embourg, 2015, pp. 1–4. doi: 10.1109/ETFA.2015.7301643.

[Kov+14a] Kovalenko, O., Serral, E., Sabou, M., Ekaputra, F. J., Winkler, D., and Biffl,
S. “Automating Cross-Disciplinary Defect Detection in Multi-disciplinary Engineering
Environments”. In: International Conference on Knowledge Engineering and Knowledge
Management. Linköping, Sweden, 2014, pp. 238–249. doi: 10.1007/978-3-319-13704-
9_19.

[Kov+14b] Kovalenko, O., Winkler, D., Kalinowski, M., Serral, E., and Biffl, S. “Engi-
neering Process Improvement in Heterogeneous Multi-disciplinary Environments with
Defect Causal Analysis”. In: European Conference on Systems, Software and Services
Process Improvement. 2014, pp. 73–85. doi: 10.1007/978-3-662-43896-1_7.

[KBL13] Kramer, M. E., Burger, E., and Langhammer, M. “View-centric engineering
with synchronized heterogeneous models”. In: Proceedings of the 1st Workshop on View-
Based, Aspect-Oriented and Orthographic Software Modelling - VAO ’13. ACM Press,
2013. doi: 10.1145/2489861.2489864.

[Kra+15] Kramer, M. E., Langhammer, M., Messinger, D., Seifermann, S., and Burger,
E. “Change-Driven Consistency for Component Code, Architectural Models, and Con-
tracts”. In: ACM SIGSOFT Symposium on Component-Based Software Engineering.
ACM Press, 2015. doi: 10.1145/2737166.2737177.

[Kra17] Kramer, M. E. “Specification Languages for Preserving Consistency between Models
of Different Languages”. en. In: (2017). doi: 10.5445/ir/1000069284.

[LG99] Lauber, R. and Göhner, P. Prozessautomatisierung 1. 3rd ed. Berlin, Heidelberg,
Germany: Springer, 1999. doi: 10.1007/978-3-642-58446-6.

[Leg+14] Legat, C., Mund, J., Campetelli, A., Hackenberg, G., Folmer, J., Schütz,
D., Broy, M., and Vogel-Heuser, B. “Interface Behavior Modeling for Automatic
Verification of Industrial Automation Systems’ Functional Conformance”. In: at – Au-
tomatisierungstechnik, vol. 62, no. 11 (2014), pp. 815–825. doi: 10.1515/auto-2014-
1126.

118

https://doi.org/10.1007/978-3-642-21210-9_27
https://doi.org/10.1109/ICIT.2017.7915529
https://doi.org/10.1007/978-3-642-30835-2_4
https://doi.org/10.1109/ETFA.2015.7301643
https://doi.org/10.1007/978-3-319-13704-9_19
https://doi.org/10.1007/978-3-319-13704-9_19
https://doi.org/10.1007/978-3-662-43896-1_7
https://doi.org/10.1145/2489861.2489864
https://doi.org/10.1145/2737166.2737177
https://doi.org/10.5445/ir/1000069284
https://doi.org/10.1007/978-3-642-58446-6
https://doi.org/10.1515/auto-2014-1126
https://doi.org/10.1515/auto-2014-1126

[Lei13] Leitão, P. “Multi-agent Systems in Industry: Current Trends & Future Challenges”. In:
Beyond Artificial Intelligence. Ed. byKelemen, J., Romportl, J., and Zackova, E.
Vol. 4. Topics in Intelligent Engineering and Informatics. Berlin, Heidelberg, Germany:
Springer, 2013, pp. 197–201. doi: 10.1007/978-3-642-34422-0_13.

[LCK15] Leitão, P., Colombo, A. W., and Karnouskos, S. “Industrial Automation Based
on Cyber-physical Systems Technologies: Prototype Implementations and Challenges”.
In: Computers in Industry (2015). doi: 10.1016/j.compind.2015.08.004.

[Lin+15a] Lin, H. Y., Sierla, S., Papakonstantinou, N., Shalyto, A., and Vyatkin, V.
“Change request management in model-driven engineering of industrial automation
software”. In: 2015 IEEE 13th International Conference on Industrial Informatics (IN-
DIN). 2015, pp. 1186–1191. doi: 10.1109/INDIN.2015.7281904.

[Lin+15b] Lin, H. Y., Sierla, S., Papakonstantinou, N., and Vyatkin, V. “A SysML profile
supporting change orders in model driven engineering”. In: 2015 IEEE International
Conference on Automation Science and Engineering (CASE). 2015, pp. 1054–1059.
doi: 10.1109/CoASE.2015.7294238.

[LPW18] Lüder, A., Pauly, J., and Wimmer, M. “Modelling consistency rules within pro-
duction system engeering”. In: 14th International Conference on Automation Science
and Engineering. 2018, pp. 664–667. doi: 10.1109/COASE.2018.8560537.

[MJ12] Maga, C. and Jazdi, N. “Interdisciplinary Modularization in Product Line Engi-
neering: A Case Study”. In: IEEE International Conference on Automation Quality
and Testing Robotics. Cluj-Napoca, Romania, 2012, pp. 179–184. doi: 10.1109/AQTR.
2012.6237699.

[Mar+09] Marcos, M., Estévez, E., Perez, F., and Wal, E. V. D. “XML Exchange of
Control Programs”. In: IEEE Industrial Electronics Magazine, vol. 3, no. 4 (2009),
pp. 32–35. doi: 10.1109/MIE.2009.934794.

[MSD06] Mens, T., Straeten, R., and D’Hondt, M. “Detecting and Resolving Model Incon-
sistencies Using Transformation Dependency Analysis”. In: International Conference on
Model Driven Engineering Languages and Systems. Genova, Italy, 2006, pp. 200–214.
doi: 10.1007/11880240_15.

[MVS05] Mens, T., Van Der Straeten, R., and Simmonds, J. “A Framework for Managing
Consistency of Evolving UML Models”. In: Software Evolution with UML and XML.
Idea Group Publishing, 2005.

[Mor+12] Mordinyi, R., Moser, T., Winkler, D., and Biffl, S. “Navigating between tools
in heterogeneous Automation Systems Engineering landscapes”. In: Annual Conference
on IEEE Industrial Electronics Society. 2012, pp. 6178–6184. doi: 10.1109/IECON.
2012.6389070.

[MSB15] Mordinyi, R., Schindler, P., and Biffl, S. “Evaluation of NoSQL graph databases
for querying and versioning of engineering data in multi-disciplinary engineering en-
vironments”. In: IEEE International Conference on Emerging Technologies Factory
Automation. 2015, pp. 1–8. doi: 10.1109/ETFA.2015.7301486.

[Mor+14] Mordinyi, R., Serral, E., Winkler, D., and Biffl, S. “Evaluating software archi-
tectures using ontologies for storing and versioning of engineering data in heterogeneous
systems engineering environments”. In: Proceedings of the 2014 IEEE Emerging Tech-
nology and Factory Automation (ETFA). 2014, pp. 1–10. doi: 10.1109/ETFA.2014.
7005237.

119

https://doi.org/10.1007/978-3-642-34422-0_13
https://doi.org/10.1016/j.compind.2015.08.004
https://doi.org/10.1109/INDIN.2015.7281904
https://doi.org/10.1109/CoASE.2015.7294238
https://doi.org/10.1109/COASE.2018.8560537
https://doi.org/10.1109/AQTR.2012.6237699
https://doi.org/10.1109/AQTR.2012.6237699
https://doi.org/10.1109/MIE.2009.934794
https://doi.org/10.1007/11880240_15
https://doi.org/10.1109/IECON.2012.6389070
https://doi.org/10.1109/IECON.2012.6389070
https://doi.org/10.1109/ETFA.2015.7301486
https://doi.org/10.1109/ETFA.2014.7005237
https://doi.org/10.1109/ETFA.2014.7005237

Bibliography

[MB12] Moser, T. and Biffl, S. “Semantic Integration of Software and Systems Engineering
Environments”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 42, no. 1 (2012), pp. 38–50. doi: 10.1109/TSMCC.
2011.2136377.

[Mos+11] Moser, T., Biffl, S., Sunindyo, W., and Winkler, D. “Integrating Production
Automation Expert Knowledge Across Engineering Domains”. In: International Journal
of Distributed Systems and Technologies, vol. 2, no. 3 (2011), pp. 88–103. doi: 10.4018/
jdst.2011070106.

[MSD10] Muehlhause, M., Suchold, N., and Diedrich, C. “Application of semantic tech-
nologies in engineering processes for manufacturing systems”. In: IFAC Workshop on
Intelligent Manufacturing Systems. Lisbon, Portugal, 2010. doi: 10.3182/20100701-
2-PT-4011.00011.

[NAM10] NAMUR. Use of Lists of Properties in Process Control Engineering Workflows. NA-
MUR Recommendation NE 100 Version 3.2. 2010.

[NAS00] NASA. Report on Project Management in NASA: Phase II of the Mars Climate Or-
biter Mishap Report. 2000. url: ftp://ftp.hq.nasa.gov/pub/pao/reports/2000/
MCO_MIB_Report.pdf (visited on 10/31/2016).

[NAS16] NASA. Quantities, Units, Dimensions and Types Catalog Release 1.1. Online. 2016.
url: http://www.linkedmodel.org/catalog/qudt/1.1/ (visited on 10/31/2016).

[Neu94] Neufville, R. de. “The baggage system at Denver: prospects and lessons”. In: Journal
of Air Transport Management, vol. 1, no. 4 (1994), pp. 229–236. doi: 10.1016/0969-
6997(94)90014-0.

[NoM16] NoMagic, Inc.MagicDraw. Online. 2016. url: http://www.nomagic.com/products/
magicdraw.html (visited on 04/10/2016).

[NER00] Nuseibeh, B., Easterbrook, S., and Russo, A. “Leveraging Inconsistency in
Software Development”. In: IEEE Computer, vol. 33, no. 4 (2000), pp. 24–29. doi:
10.1109/2.839317.

[Obj08] Object Management Group. MOF Model To Text Transformation Language Ver-
sion 1.0. Online. 2008. url: http://www.omg.org/spec/MOFM2T/1.0/ (visited on
11/03/2016).

[Obj14] Object Management Group. Model Driven Architecture (MDA) – MDA Guide 2.0.
Online. 2014. url: http://www.omg.org/cgi-bin/doc?ormsc/14-06-01 (visited on
11/03/2016).

[Obj15] Object Management Group. XML Metadata Interchange (XMI) Specification Ver-
sion 2.5.1. Online. 2015. url: http://www.omg.org/spec/XMI/2.5.1 (visited on
11/03/2016).

[Obj16] Object Management Group. MOF 2.0 Query/View/Transformation Specification
Version 1.3. Online. 2016. url: http://www.omg.org/spec/QVT/1.3/ (visited on
11/03/2016).

[OMG11] OMG. UML Profile For MARTE: Modeling And Analysis Of Real-Time Embedded
Systems Version 1.1. Online. 2011. url: http://www.omg.org/spec/MARTE/1.1/
(visited on 04/10/2016).

[OMG15a] OMG. Meta Object Facility (MOF) Version 2.5. Online. 2015. url: www.omg.org/
spec/MOF/2.5/ (visited on 04/10/2016).

[OMG15b] OMG. Systems Modeling Language Version 1.4. Online. 2015. url: http://www.omg.
org/spec/SysML/1.4/ (visited on 04/10/2016).

120

https://doi.org/10.1109/TSMCC.2011.2136377
https://doi.org/10.1109/TSMCC.2011.2136377
https://doi.org/10.4018/jdst.2011070106
https://doi.org/10.4018/jdst.2011070106
https://doi.org/10.3182/20100701-2-PT-4011.00011
https://doi.org/10.3182/20100701-2-PT-4011.00011
ftp://ftp.hq.nasa.gov/pub/pao/reports/2000/MCO_MIB_Report.pdf
ftp://ftp.hq.nasa.gov/pub/pao/reports/2000/MCO_MIB_Report.pdf
http://www.linkedmodel.org/catalog/qudt/1.1/
https://doi.org/10.1016/0969-6997(94)90014-0
https://doi.org/10.1016/0969-6997(94)90014-0
http://www.nomagic.com/products/magicdraw.html
http://www.nomagic.com/products/magicdraw.html
https://doi.org/10.1109/2.839317
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/spec/XMI/2.5.1
http://www.omg.org/spec/QVT/1.3/
http://www.omg.org/spec/MARTE/1.1/
www.omg.org/spec/MOF/2.5/
www.omg.org/spec/MOF/2.5/
http://www.omg.org/spec/SysML/1.4/
http://www.omg.org/spec/SysML/1.4/

[OMG15c] OMG. Unified Modeling Language Version 2.5. Online. 2015. url: http://www.omg.
org/spec/UML/2.5/ (visited on 04/10/2016).

[PLC16] PLCopen Promotional Committee 2. PLCopen Promotional Committee Training:
Coding Guidelines. 2016. url: http://www.plcopen.org/pages/pc2_training/
(visited on 04/10/2016).

[PLC09a] PLCopen Technical Committee 3. PLCopen Guideline: Compliance Testing &
Certification. 2009. url: http://www.plcopen.org/pages/tc3_certification/
(visited on 04/10/2016).

[PLC09b] PLCopen Technical Committee 6. XML Formats for IEC 61131-3 V2.01. 2009.
url: http://www.plcopen.org/pages/tc6_xml/ (visited on 04/10/2016).

[PTC16] PTC. PTC Integrity Modeler. Online. 2016. url: https://www.ptc.com/model-
based-systems-engineering/integrity-modeler (visited on 11/03/2016).

[pur16] pure-systems GmbH. pure::variants: Variant Management with pure::variants. On-
line. 2016. url: https://www.pure-systems.com/products/pure-variants-9.html
(visited on 10/10/2016).

[Qam+12] Qamar, A., Paredis, C., Wikander, J., and During, C. “Dependency Model-
ing and Model Management in Mechatronic Design”. In: Journal of Computing and
Information Science in Engineering, vol. 12, no. 4 (2012). doi: 10.1115/1.4007986.

[QWD15] Qamar, A., Wikander, J., and During, C. “Managing dependencies in mechatronic
design: a case study on dependency management between mechanical design and system
design”. In: Engineering with Computers, vol. 31, no. 3 (2015), pp. 631–646. doi: 10.
1007/s00366-014-0366-x.

[RE12] Reder, A. and Egyed, A. “Computing repair trees for resolving inconsistencies
in design models”. In: Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering - ASE 2012. ACM Press, 2012. doi: 10.1145/
2351676.2351707.

[RP11] Reichwein, A. and Paredis, C. “Overview of Architecture Frameworks and Model-
ing Languages for Model-Based Systems Engineering”. In: ASME International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference. Washington, US-DC, 2011. doi: 10.1115/DETC2011-48028.

[Rie+12] Rieke, J., Dorociak, R., Sudmann, O., Gausemeier, J., and Schäfer, W.
“Management of cross-domain model consistency for behavioral models of mechatronic
systems”. In: International Design Conference. Dubrovnik, Croatia, 2012, pp. 1781–
1790.

[RJV09] Romero, J. R., Jaen, J. I., and Vallecillo, A. “Realizing Correspondences in
Multi-viewpoint Specifications”. In: IEEE International Enterprise Distributed Object
Computing Conference. Auckland, New Zealand, 2009, pp. 163–172. doi: 10.1109/
EDOC.2009.23.

[Rös16] Rösch, S. “Model-based testing of fault scenarios in production automation”. PhD
thesis. Technical University of Munich, 2016.

[RV17] Rösch, S. and Vogel-Heuser, B. “A Light-Weight Fault Injection Approach to
Test Automated Production System PLC Software in Industrial Practice”. In: Control
Engineering Practice, vol. 58 (2017), pp. 12–23. doi: 10.1016/j.conengprac.2016.
09.012.

121

http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
http://www.plcopen.org/pages/pc2_training/
http://www.plcopen.org/pages/tc3_certification/
http://www.plcopen.org/pages/tc6_xml/
https://www.ptc.com/model-based-systems-engineering/integrity-modeler
https://www.ptc.com/model-based-systems-engineering/integrity-modeler
https://www.pure-systems.com/products/pure-variants-9.html
https://doi.org/10.1115/1.4007986
https://doi.org/10.1007/s00366-014-0366-x
https://doi.org/10.1007/s00366-014-0366-x
https://doi.org/10.1145/2351676.2351707
https://doi.org/10.1145/2351676.2351707
https://doi.org/10.1115/DETC2011-48028
https://doi.org/10.1109/EDOC.2009.23
https://doi.org/10.1109/EDOC.2009.23
https://doi.org/10.1016/j.conengprac.2016.09.012
https://doi.org/10.1016/j.conengprac.2016.09.012

Bibliography

[RF11] Runde, S. and Fay, A. “Software Support for Building Automation Requirements
Engineering – An Application of Semantic Web Technologies in Automation”. In: IEEE
Transactions on Industrial Informatics, vol. 7, no. 4 (2011), pp. 723–730. doi: 10.1109/
TII.2011.2166784.

[Sab+16] Sabou, M., Ekaputra, F., Kovalenko, O., and Biffl, S. “Supporting the en-
gineering of cyber-physical production systems with the AutomationML analyzer”.
In: 2016 1st International Workshop on Cyber-Physical Production Systems (CPPS).
IEEE, 2016. doi: 10.1109/cpps.2016.7483919.

[SW10] Schäfer, W. and Wehrheim, H. “Model-Driven Development with Mechatronic
UML”. In: Graph Transformations and Model-Driven Engineering. Ed. by Engels, G.,
Lewerentz, C., Schäfer, W., Schürr, A., and Westfechtel, B. Vol. 5765. Lecture
Notes in Computer Science. Berlin, Heidelberg, Germany: Springer, 2010, pp. 533–554.
doi: 10.1007/978-3-642-17322-6_23.

[Sch+03] Schätz, B., Braun, P., Huber, F., and Wisspeintner, A. “Consistency in Model-
based Development”. In: IEEE International Conference and Workshop on the Engi-
neering of Computer-Based Systems. 2003, pp. 287–296. doi: 10.1109/ECBS.2003.
1194810.

[Sch06] Schmidt, D. C. “Guest Editor’s Introduction: Model-Driven Engineering”. In: IEEE
Computer, vol. 39, no. 2 (2006), pp. 25–31. doi: 10.1109/MC.2006.58.

[Sch+14] Schmidt, N., Lüder, A., Steininger, H., and Biffl, S. “Analyzing requirements
on software tools according to the functional engineering phase in the technical systems
engineering process”. In: IEEE International Conference on Emerging Technology and
Factory Automation. 2014, pp. 1–8. doi: 10.1109/ETFA.2014.7005144.

[SFJ15] Schröck, S., Fay, A., and Jäger, T. “Systematic interdisciplinary reuse within the
engineering of automated plants”. In: IEEE International Systems Conference. 2015,
pp. 508–515. doi: 10.1109/SYSCON.2015.7116802.

[Sch+15] Schröck, S., Zimmer, F., Fay, A., and Jäger, T. “Systematic reuse of interdisci-
plinary components supported by engineering relations”. In: 2015, pp. 1545–1552. doi:
10.1016/j.ifacol.2015.06.306.

[Sch+13a] Schröck, S., Zimmer, F., Holm, T., Fay, A., and Jäger, T. “Principles, view-
points and effect links in the engineering of automated plants”. In: Annual Conference
of the IEEE Industrial Electronics Society. 2013, pp. 6940–6945. doi: 10.1109/IECON.
2013.6700283.

[Sch94] Schürr, A. “Specification of graph translators with triple graph grammars”. In: In-
ternational Workshop on Graph-Theoretic Concepts in Computer Science. Herrsching,
Germany, 1994, pp. 151–163. doi: 10.1007/3-540-59071-4_45.

[Sch+13b] Schütz, D., Wannagat, A., Legat, C., and Vogel-Heuser, B. “Development of
PLC-Based Software for Increasing the Dependability of Production Automation Sys-
tems”. In: IEEE Transactions on Industrial Informatics, vol. 9, no. 4 (2013), pp. 2397–
2406. doi: 10.1109/TII.2012.2229285.

[SBF07] Secchi, C., Bonfe, M., and Fantuzzi, C. “On the Use of UML for Modeling Mecha-
tronic Systems”. In: IEEE Transactions on Automation Science and Engineering, vol. 4,
no. 1 (2007), pp. 105–113. doi: 10.1109/TASE.2006.879686.

[Sel98] Selic, B. “Using UML for modeling complex real-time systems”. In: Languages, Com-
pilers, and Tools for Embedded Systems. Ed. by Mueller, F. and Bestavros, A.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 250–260. doi: 10 . 1007 /
BFb0057795.

122

https://doi.org/10.1109/TII.2011.2166784
https://doi.org/10.1109/TII.2011.2166784
https://doi.org/10.1109/cpps.2016.7483919
https://doi.org/10.1007/978-3-642-17322-6_23
https://doi.org/10.1109/ECBS.2003.1194810
https://doi.org/10.1109/ECBS.2003.1194810
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/ETFA.2014.7005144
https://doi.org/10.1109/SYSCON.2015.7116802
https://doi.org/10.1016/j.ifacol.2015.06.306
https://doi.org/10.1109/IECON.2013.6700283
https://doi.org/10.1109/IECON.2013.6700283
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1109/TII.2012.2229285
https://doi.org/10.1109/TASE.2006.879686
https://doi.org/10.1007/BFb0057795
https://doi.org/10.1007/BFb0057795

[Ser+13] Serral, E., Mordinyi, R., Kovalenko, O., Winkler, D., and Biffl, S. “Evalua-
tion of semantic data storages for integrating heterogenous disciplines in automation
systems engineering”. In: Industrial Electronics Society, IECON 2013 - 39th Annual
Conference of the IEEE. 2013, pp. 6858–6865. doi: 10.1109/IECON.2013.6700268.

[Sha+12] Shah, A., Paredis, C., Burkhart, R., and Schaefer, D. “Combining Mathematical
Programming and SysML for Automated Component Sizing of Hydraulic Systems”. In:
Journal of Computing and Information Science in Engineering, vol. 12, no. 4 (2012).
doi: 10.1115/1.4007764.

[SSP09] Shah, A., Schaefer, D., and Paredis, C. “Enabling Multi-View Modeling With
SysML Profiles and Model Transformations”. In: International Conference on Product
Lifecycle Management. 2009.

[Sha+10] Shah, A. A., Kerzhner, A. A., Schaefer, D., and Paredis, C. J. J. “Multi-view
Modeling to Support Embedded Systems Engineering in SysML”. In: Graph Trans-
formations and Model-Driven Engineering: Essays Dedicated to Manfred Nagl on the
Occasion of his 65th Birthday. Ed. by Engels, G., Lewerentz, C., Schäfer, W.,
Schürr, A., and Westfechtel, B. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 580–601. doi: 10.1007/978-3-642-17322-6_25.

[Sie16] Siemens AG. COMOS at a glance. Online. 2016. url: http://w3.siemens.com/
mcms/plant-engineering-software/en/comos-overview/ (visited on 10/06/2016).

[SZ01] Spanoudakis, G. and Zisman, A. “Inconsistency Management in Software Engi-
neering: Survey and Open Research Issues”. In: Handbook of Software Engineering &
Knowledge Engineering: Fundamentals. Ed. by Chang, S. K. Vol. 1. Singapore: World
Scientific Publishing Co Pte. Ltd., 2001, pp. 329–380.

[Str+09] Strasser, T., Rooker, M., Hegny, I., Wenger, M., Zoitl, A., Ferrarini, L.,
Dede, A., and Colla, M. “A Research Roadmap for Model-driven Design of Em-
bedded Systems for Automation Components”. In: IEEE International Conference on
Industrial Informatics. Cardiff, UK, 2009, pp. 564–569. doi: 10.1109/INDIN.2009.
5195865.

[Thr05] Thramboulidis, K. “Model-integrated Mechatronics – Toward a New Paradigm in
the Development of Manufacturing Systems”. In: IEEE Transactions on Industrial In-
formatics, vol. 1, no. 1 (2005), pp. 54–61. doi: 10.1109/TII.2005.844427.

[Thr10] Thramboulidis, K. “The 3+1 SysML View-Model in Model Integrated Mechatron-
ics”. In: Journal of Software Engineering and Applications, vol. 3, no. 2 (2010), pp. 109–
118. doi: 10.4236/jsea.2010.32014.

[Thr12] Thramboulidis, K. “IEC 61499 as an Enabler of Distributed and Intelligent Au-
tomation: A State-of-the-art Review – A Different View”. In: Journal of Engineering,
vol. 2013 (2012). doi: 10.1155/2013/638521.

[TF11] Thramboulidis, K. and Frey, G. “Towards a Model-Driven IEC 61131-Based De-
velopment Process in Industrial Automation”. In: Journal of Software Engineering and
Applications, vol. 4, no. 4 (2011), pp. 217–226. doi: 10.4236/jsea.2011.44024.

[Thr13] Thramboulidis, K. “Overcoming Mechatronic Design Challenges: The 3+1 SysML-
view Model”. In: Journal of Computing Science and Technology, vol. 1, no. 1 (2013),
pp. 6–14. url: http://researchpub.org/journal/cstij/number/vol1-no1/vol1-
no1-1.pdf (visited on 04/10/2016).

[VD06] Van Der Straeten, R. and D’Hondt, M. “Model Refactorings Through Rule-based
Inconsistency Resolution”. In: ACM Symposium on Applied Computing. SAC ’06. Dijon,
France: ACM, 2006, pp. 1210–1217. doi: 10.1145/1141277.1141564.

123

https://doi.org/10.1109/IECON.2013.6700268
https://doi.org/10.1115/1.4007764
https://doi.org/10.1007/978-3-642-17322-6_25
http://w3.siemens.com/mcms/plant-engineering-software/en/comos-overview/
http://w3.siemens.com/mcms/plant-engineering-software/en/comos-overview/
https://doi.org/10.1109/INDIN.2009.5195865
https://doi.org/10.1109/INDIN.2009.5195865
https://doi.org/10.1109/TII.2005.844427
https://doi.org/10.4236/jsea.2010.32014
https://doi.org/10.1155/2013/638521
https://doi.org/10.4236/jsea.2011.44024
http://researchpub.org/journal/cstij/number/vol1-no1/vol1-no1-1.pdf
http://researchpub.org/journal/cstij/number/vol1-no1/vol1-no1-1.pdf
https://doi.org/10.1145/1141277.1141564

Bibliography

[Van+03] Van Der Straeten, R., Mens, T., Simmonds, J., and Jonckers, V. “Using
Description Logic to Maintain Consistency between UMLModels”. In: UML 2003 – The
Unified Modeling Language. Modeling Languages and Applications. Ed. by Stevens, P.,
Whittle, J., and Booch, G. Vol. 2863. Lecture Notes in Computer Science. Berlin,
Heidelberg, Germany: Springer, 2003, pp. 326–340. doi: 10.1007/978-3-540-45221-
8_28.

[VDI04] VDI. Design Methodology for Mechatronic Systems. VDI Guideline VDI 2206. 2004.

[VDI10] VDI. Engineering of industrial plants – Evaluation and optimization – Part 2: Subject
Processes. VDI Guideline VDI 3695-2. 2010.

[Vog15] Vogel-Heuser, B. “Usability Experiments to Evaluate UML/SysML-Based Model
Driven Software Engineering Notations for Logic Control in Manufacturing Automa-
tion”. In: Journal of Software Engineering and Applications, vol. 11, no. 7 (2015),
pp. 943–973. doi: 10.4236/jsea.2014.711084.

[Vog+14a] Vogel-Heuser, B., Diedrich, C., Fay, A., Jeschke, S., Kowalewski, S., and
Wollschläger, M. “Challenges for Software Engineering in Automation”. In: Journal
of Software Engineering and Applications, vol. 7, no. 5 (2014). doi: 10.4236/jsea.
2014.75041.

[VH16] Vogel-Heuser, B. and Hess, D. “Guest Editorial Industry 4.0 – Prerequisites and
Visions”. In: IEEE Transactions on Automation Science and Engineering, vol. 13, no. 2
(2016), pp. 411–413. doi: 10.1109/TASE.2016.2523639.

[Vog+13] Vogel-Heuser, B., Obermeier, M., Braun, S., Sommer, K., Jobst, F., and
Schweizer, K. “Evaluation of a UML-Based Versus an IEC 61131-3-Based Software
Engineering Approach for Teaching PLC Programming”. In: IEEE Transactions on
Education, vol. 56, no. 3 (2013), pp. 329–335. doi: 10.1109/TE.2012.2226035.

[VR15] Vogel-Heuser, B. and Rösch, S. “Applicability of Technical Debt as a Concept to
Understand Obstacles for Evolution of Automated Production Systems”. In: Systems,
Man, and Cybernetics (SMC), 2015 IEEE International Conference on. 2015, pp. 127–
132. doi: 10.1109/SMC.2015.35.

[Vog+15] Vogel-Heuser, B., Fay, A., Schaefer, I., and Tichy, M. “Evolution of Software
in Automated Production Systems: Challenges and Research Directions”. In: Journal
of Systems and Software, vol. 110 (2015). doi: 10.1016/j.jss.2015.08.026.

[Vog+14b] Vogel-Heuser, B., Legat, C., Folmer, J., and Feldmann, S. Researching Evo-
lution in Industrial Plant Automation: Scenarios and Documentation of the Pick and
Place Unit. Ed. by Institute of Automation and Information Systems. Online.
2014. url: https://mediatum.ub.tum.de/node?id=1208973 (visited on 04/10/2016).

[Vya11] Vyatkin, V. “IEC 61499 as Enabler of Distributed and Intelligent Automation: State-
of-the-art Review”. In: IEEE Transactions on Industrial Informatics, vol. 7, no. 4
(2011), pp. 768–781. doi: 10.1109/TII.2011.2166785.

[W3C12] W3C. Web Ontology Language (OWL) 2 – Structural Specification and Function-Style
Syntax. 2012. url: http://www.w3.org/TR/owl-syntax (visited on 04/10/2016).

[W3C13a] W3C. SPARQL Protocol and RDF Query Language (SPARQL) 1.1 Query Language.
2013. url: https://www.w3.org/TR/sparql11-query/ (visited on 04/10/2016).

[W3C13b] W3C. SPARQL Protocol and RDF Query Language (SPARQL) 1.1 Update. 2013. url:
https://www.w3.org/TR/sparql11-update/ (visited on 04/10/2016).

[W3C14a] W3C. Mathematical Markup Language (MathML) Version 3.0. 2014. url: https:
//www.w3.org/TR/MathML3/ (visited on 04/10/2016).

124

https://doi.org/10.1007/978-3-540-45221-8_28
https://doi.org/10.1007/978-3-540-45221-8_28
https://doi.org/10.4236/jsea.2014.711084
https://doi.org/10.4236/jsea.2014.75041
https://doi.org/10.4236/jsea.2014.75041
https://doi.org/10.1109/TASE.2016.2523639
https://doi.org/10.1109/TE.2012.2226035
https://doi.org/10.1109/SMC.2015.35
https://doi.org/10.1016/j.jss.2015.08.026
https://mediatum.ub.tum.de/node?id=1208973
https://doi.org/10.1109/TII.2011.2166785
http://www.w3.org/TR/owl-syntax
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/

[W3C14b] W3C. Resource Description Framework (RDF) 1.1 Concepts and Abstract Syntax.
2014. url: https://www.w3.org/TR/rdf11-concepts/ (visited on 04/10/2016).

[W3C14c] W3C. Resource Description Framework (RDF) 1.1 Turtle – Terse RDF Triple Lan-
guage. 2014. url: https://www.w3.org/TR/turtle/ (visited on 04/10/2016).

[W3C14d] W3C. Resource Description Framework (RDF) Schema 1.1. 2014. url: https://www.
w3.org/TR/rdf-schema/ (visited on 04/10/2016).

[Wer09] Werner, B. “Object-oriented Extensions for IEC 61131-3”. In: IEEE Industrial Elec-
tronics Magazine, vol. 3, no. 4 (2009), pp. 36–39. doi: 10.1109/MIE.2009.934795.

[WB12] Winkler, D. and Biffl, S. “Improving Quality Assurance in Automation Systems
Development Projects”. In: InTech, 2012. doi: 10.5772/33487.

[WB15] Winkler, D. and Biffl, S. “Focused Inspections to Support Defect Detection in Au-
tomation Systems Engineering Environments”. In: International Conference on Product-
Focused Software Process Improvement. 2015, pp. 372–379. doi: 10.1007/978-3-319-
26844-6_27.

[WV11] Witsch, D. and Vogel-Heuser, B. “PLC-Statecharts: An Approach to Integrate
UML-Statecharts in Open-Loop Control Engineering – Aspects on Behavioral Se-
mantics and Model-Checking”. In: IFAC World Congress. Milano, Italy, 2011. doi:
10.3182/20110828-6-IT-1002.02207.

[Wol19] Wolfenstetter, T. “Model Integration and Traceability for Product Service Systems
Engineering”. PhD thesis. Technische Universität München, 2019.

[Wol+18] Wolfenstetter, T., Basirati, M. R., Böhm, M., and Krcmar, H. “Introducing
TRAILS: A tool supporting traceability, integration and visualisation of engineering
knowledge for product service systems development”. In: Journal of Systems and Soft-
ware, vol. 144 (2018), pp. 342–355. doi: 10.1016/j.jss.2018.06.079.

[Zou+19] Zou, M., Basirati, M., Bauer, H., Kattner, N., Reinhart, G., Lindemann,
U., Böhm, M., Krcmar, H., and Vogel-Heuser, B. “Facilitating Consistency of
Business Model and Technical Models in Product-Service- Systems Development: An
Ontology Approach”. In: IFAC Conference on Manufacturing Modelling, Management
and Control. 2019.

[ZLV18] Zou, M., Lu, B., and Vogel-Heuser, B. “Resolving Inconsistencies Optimally in the
Model-Based Development of Production Systems”. In: IEEE International Conference
on Automation Science and Engineering. 2018, pp. 1064–1070.

[ZV17] Zou, M. and Vogel-Heuser, B. “Feature-based systematic approach development for
inconsistency resolution in automated production system design”. In: IEEE Conference
on Automation Science and Engineering. 2017, pp. 687–694. doi: 10.1109/COASE.
2017.8256183.

125

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://doi.org/10.1109/MIE.2009.934795
https://doi.org/10.5772/33487
https://doi.org/10.1007/978-3-319-26844-6_27
https://doi.org/10.1007/978-3-319-26844-6_27
https://doi.org/10.3182/20110828-6-IT-1002.02207
https://doi.org/10.1016/j.jss.2018.06.079
https://doi.org/10.1109/COASE.2017.8256183
https://doi.org/10.1109/COASE.2017.8256183

List of Figures

2.1 Relation between technical process and technical system [based on LG99, p. 4] . . . 6
2.2 Basic structure of an automated production system [based on LG99, p. 53] 7
2.3 Overview of the V model [based on VDI04, p. 29] . 8
2.4 Separation into project-independent and project-related engineering activities [based

on VDI10; Vog+15] . 8
2.5 Illustration of the Meta Object Facility (MOF) [based on OMG15a] meta-layer ar-

chitecture at the example of UML 2.5 [OMG15c] . 11
2.6 Overview of the building blocks of an inconsistency management framework [adapted

from NER00] . 14
2.7 Essential parts of a knowledge-based system [adapted from AS10, p. 20] 17
2.8 Exemplary RDF graph . 18

5.1 Architectural overview of the concept for diagnosing and resolving inconsistencies in
heterogeneous models of the automated production systems domain [extended from
Fel+15b] . 49

5.2 Stakeholder-centred overview of the concept for diagnosing and handling inconsisten-
cies in heterogeneous models in the automated production systems domain 51

5.3 Sample vocabulary represented as a Unified Modeling Language (UML) class diagram
and as an RDF graph . 53

5.4 Overview of the project vocabulary . 54
5.5 Overview of the mechanics vocabulary . 55
5.6 Overview of the electrics vocabulary . 56
5.7 Overview of the devices within the electrics vocabulary 57
5.8 Overview of the signals and interfaces within the electrics vocabulary 58
5.9 Overview of the software vocabulary [enlarged from Fel+16a] 59
5.10 Overview of the DataTypes within the software vocabulary [enlarged from Fel+16a] . 60
5.11 Overview of the POUTypes within the software vocabulary [enlarged from Fel+16a] . 61
5.12 Overview of the variables within the software vocabulary [enlarged from Fel+16a] . . 61
5.13 Overview of the Quantity, Unit, Dimension and Type (QUDT) vocabulary [excerpt

according to NAS16]) . 62
5.14 Exemplary application of the QUDT vocabulary for the QuantityKind AngularVe-

locity within an RDF graph . 63
5.15 Overview of the links vocabulary [extended from Fel+16c] 64
5.16 Semantic mediation between discipline, domain and common vocabulary [extended

from FKV16]) . 66
5.17 Exemplary mediation use case: mediation between two sample vocabularies sampleA

and sampleB with a common vocabulary sampleCommon 67
5.18 Mediation between exemplary graphs using the sampleA and sampleB vocabularies

and the sampleCommon vocabulary (inferred information is denoted in dashed lines) 69
5.19 Overview of the mechatronics vocabulary [according to FKV16; Ker17] 70
5.20 Overview of the common vocabulary . 71
5.21 Semantic mediation between vocabularies that are focused on in this dissertation . . 72

127

List of Figures

5.22 Mediation within an exemplary graph using the qudt vocabulary (inferred information
is denoted in dashed lines) . 73

5.23 Overview of the inconsistency management vocabulary [extended from Fel+16c] . . . 74
5.24 Intra-model inconsistency in the sampleCommon vocabulary 75
5.25 Inter-model inconsistency in the sampleCommon vocabulary 78

6.1 Assignment of the architectural components of the concept to respective software
components . 84

6.2 Overview of the Pick and Place Unit (PPU) case study (excerpt from [Vog+14b]) . . 85
6.3 Overview of the crane in the PPU case study (excerpt from [Vog+14b]) 86
6.4 Illustrative overview of the models incorporated in the lab-scale evaluation of the PPU

case study . 88
6.5 Incorporating configuration knowledge to identify module degradation 92
6.6 Vocabulary to describe device degradation parameters 93
6.7 UML Timing Diagrams as the basis to specify module behaviour 94
6.8 Models for the comparison (from [Fel+15a; Fel+16c]) 96
6.9 Metamodels for the comparison (from [Fel+15a; Fel+16c]) 97
6.10 Semantic mediation between vocabularies that are focused on in the comparison . . . 97
6.11 Results of the transfer time analysis . 101
6.12 Results of the query time analysis . 102

A.1 Inconsistency 1.1: Naming inconsistency for elements (common vocabulary) 137
A.2 Inconsistency 1.2: Naming inconsistency for properties (common vocabulary) 137
A.3 Inconsistency 1.3: Naming inconsistency for elements (mechatronics vocabulary) . . . 137
A.4 Inconsistency 1.4: Naming inconsistency for properties (mechatronics vocabulary) . . 137
A.5 Inconsistency 1.5: Inconsistency regarding project’s start and end dates 138
A.6 Inconsistency 1.6: Inconsistency regarding mechanic parts’ IDs 138
A.7 Inconsistency 1.7: Inconsistency regarding electrical interfaces 138
A.8 Inconsistency 1.8: Inconsistency regarding terminals and bus couplers (shown at the

example of terminals) . 138
A.9 Inconsistency 1.9: Software variable naming conventions 139
A.10 Inconsistency 1.10: Inconsistency regarding software call hierarchy 139
A.11 Inconsistency 1.11: Inconsistency regarding reading and writing global variables . . . 139
A.12 Inconsistency 1.12: Inconsistency for refinement between project documentation and

discipline-specific model . 139
A.13 Inconsistency 1.13: Inconsistency for refinement between mechanical part and entry

in the project’s Bill of Material (BOM) . 140
A.14 Inconsistency 1.14: Inconsistency for refinement between electrical automation hard-

ware and entry in the project’s BOM . 140
A.15 Inconsistency 1.15: Inconsistency for dependency between terminal interface and

software variable . 140
A.16 Inconsistency 2.1: Inconsistency for device degradation 141
A.17 Inconsistency 2.2a: Inconsistency for linear coupler degradation 141
A.18 Inconsistency 2.2b: Inconsistency for cubic coupler degradation 141
A.19 Inconsistency 2.2c: Inconsistency for step-wise coupler degradation 142
A.20 Inconsistency 2.3: Inconsistency for equivalence between UML Lifeline and software

Variable . 142
A.21 Inconsistency 3.1: Naming inconsistency for elements 142
A.22 Inconsistency 3.2: Naming inconsistency for properties 143
A.23 Inconsistency 3.3: Negative mass value inconsistency 143

128

List of Figures

A.24 Inconsistency 3.4: Maximum hierarchy level inconsistency 143
A.25 Inconsistency 3.5: Inconsistency for refinement between Systems Modeling Language

(SysML) Block and Planning Module . 143
A.26 Inconsistency 3.6: Inconsistency for refinement between SysML Block hierarchy and

Planning Module hierarchy . 144
A.27 Inconsistency 3.7: Inconsistency for satisfaction between top-level MATLAB/Simulink

Display and Planning Property . 144
A.28 Inconsistency 3.8: Inconsistency for equivalence between top-level MATLAB/Simulink

Constant and UML Property . 145

129

List of Tables

4.1 Overview of the related work in the field of integration of heterogeneous models:
integrated modelling languages and formats . 32

4.2 Overview of the related work in the field of integration of heterogeneous models:
model mappings and linking support . 39

4.3 Overview of the related work in the field of inconsistency management 41

6.1 Overview of the evaluation strategy in this dissertation 83
6.2 Intra-model inconsistencies investigated in evaluation stage 1 89
6.3 Inter-model inconsistencies investigated in evaluation stage 1 90
6.4 Exemplary degradation model for devices and couplers in a tabular notation 93
6.5 Inconsistencies investigated in evaluation stage 2 . 94
6.6 Intra-model inconsistencies investigated in evaluation stage 3 98
6.7 Inter-model inconsistencies investigated in evaluation stage 3 99

131

List of Listings

2.1 Exemplary RDF Turtle representation . 19
2.2 Exemplary SPARQL SELECT query . 21
2.3 Exemplary SPARQL INSERT operation . 21

5.1 Exemplary inconsistency diagnosis rule to ensure that all mass properties have posi-
tive values formulated as SPARQL SELECT query 76

5.2 Exemplary inconsistency handling rule that allows users to enter user-defined values
formulated as SPARQL Update action . 77

5.3 Exemplary inconsistency handling rule that deletes inconsistent values formulated as
SPARQL Update action . 77

5.4 Exemplary inconsistency diagnosis rule to ensure that all entities said to be equivalent
to each other have similar mass values formulated as SPARQL SELECT query . . . 78

5.5 Exemplary inconsistency handling rule that allows users to enter user-defined values
formulated as SPARQL Update action . 79

133

List of Symbols and Abbreviations

ATL ATLAS Transformation Language
AutomationML Automation Markup Language

BOM Bill of Material
BPMN Business Process Model and Notation

CAD Computer-Aided Design
CAEX Computer Aided Engineering Exchange

COLLADA Collaborative Design Activity
CRC Collaborative Research Centre

DFG Deutsche Forschungsgemeinschaft
DL Description Logic

DSL Domain-specific Language

EMF Eclipse Modeling Framework
ERP Enterprise Resource Planning
EVL Epsilon Validation Language

FB Function Block
FBD Function Block Diagram

IL Instruction List
INCOSE International Council on Systems Engineering

LD Ladder Diagram

MathML Mathematical Markup Language
MBE Model-Based Engineering

MBSE Model-Based Systems Engineering
MDA Model-Driven Architecture
MDE Model-Driven Engineering
MOF Meta Object Facility

MOFM2T MOF Model To Text

NASA National Aeronautics and Space Administration
NIST National Institute of Standards and Technology

OCL Object Constraint Language
OMG Object Management Group
OWL Web Ontology Language

PC Personal Computer

135

List of Symbols and Abbreviations

PLC Programmable Logic Controller
PLM Product Lifecycle Management
POU Program Organization Unit
PPU Pick and Place Unit

QUDT Quantity, Unit, Dimension and Type

RDF Resource Description Framework
RDFS RDF Schema

SFC Sequential Function Chart
SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language
SQWRL Semantic Query-Enhanced Web Rule Language

ST Structured Text
SWRL Semantic Web Rule Language
SysML Systems Modeling Language

TGG Triple Graph Grammar

UML Unified Modeling Language
UNA Unique Name Assumption
URI Uniform Resource Identifier

W3C World Wide Web Consortium
WP work piece

XMI XML Metadata Interchange
XML Extensible Markup Language
XSL Extensible Stylesheet Language

XSLT XSL Transformation

136

Appendix A.

Inconsistencies

A.1. Inconsistencies for Evaluation Stage 1

A.1.1. Intra-model Inconsistencies

Element naming convention

Inconsistency pattern

Name

!regex(?eName,

"^[a-zA-Z0-9_]*$")

Inconsistency

condition

Common vocabulary (intra-model)Scope

WarningSeverity

ConventionType

Element ?eName must contain only letters,

numbers and underscores.

Message

A) Enter user-defined name

B) Delete name

C) Ignore inconsistency

D) Tolerate inconsistency until defined date

Possible

handling

actions

?e :

common::Element

name = ?eName

1.1ID

Figure A.1. Inconsistency 1.1: Naming inconsistency for elements (common vocabulary)

Property naming convention

Inconsistency pattern

Name

!regex(?pName,

"^[a-zA-Z0-9_]*$")

Inconsistency

condition

Common vocabulary (intra-model)Scope

WarningSeverity

ConventionType

Property ?pName must contain only letters,

numbers and underscores.

Message

A) Enter user-defined name

B) Delete name

C) Ignore inconsistency

D) Tolerate inconsistency until defined date

Possible

handling

actions

?p :

common::Property

name = ?pName

1.2ID

Figure A.2. Inconsistency 1.2: Naming inconsistency for properties (common vocabulary)

Element naming convention

Inconsistency pattern

Name

!regex(?eName,

"^([A-Z]{1}[a-z]+)+$")

Inconsistency

condition

Mechatronics vocabulary (intra-model)Scope

WarningSeverity

ConventionType

Element ?eName must be named in

UpperCamelCase style.

Message

A) Enter user-defined name

B) Delete name

C) Ignore inconsistency

D) Tolerate inconsistency until defined date

Possible

handling

actions

?e :

mechatronics::Element

name = ?eName

1.3ID

Figure A.3. Inconsistency 1.3: Naming inconsistency for elements (mechatronics vocabulary)

Property naming convention

Inconsistency pattern

Name

!regex(?pName,

"^[a-z]{1}[A-Za-z]+$")

Inconsistency

condition

Mechatronics vocabulary (intra-model)Scope

WarningSeverity

ConventionType

Property ?pName must be named in

lowerCamelCase style.

Message

A) Enter user-defined name

B) Delete name

C) Ignore inconsistency

D) Tolerate inconsistency until defined date

Possible

handling

actions

?p :

mechatronics:Attribute

name = ?pName

1.4ID

Figure A.4. Inconsistency 1.4: Naming inconsistency for properties (mechatronics vocabulary)

137

Appendix A. Inconsistencies

Project’s start and end dates

Inconsistency pattern

Name

?startDate >= ?endDateInconsistency
condition

Project vocabulary (intra-model)Scope

WarningSeverity

ConventionType

End date ?endDate must lie after start date
?startDate.

Message

A) Switch start and end dates
B) Enter user-defined dates
C) Ignore inconsistency
D) Tolerate inconsistency until defined date

Possible
handling
actions

?p : project:Project

start = ?startDate
end = ?endDate

1.5ID

Figure A.5. Inconsistency 1.5: Inconsistency regarding project’s start and end dates

Mechanic part IDs

Inconsistency pattern

Name

��?id does not start with
?parentId

��?id is not unique
��?id is greater than 1 and there

exists no predecessor id �

Inconsistency
condition

Mechanics vocabulary (intra-model)Scope

WarningSeverity

ConventionType

Part ID ?id must start with parent part’s ID, be
unique and consecutive.

Message

A) Enter user-defined ID
B) Ignore inconsistency
C) Tolerate inconsistency until defined date

Possible
handling
actions

1.6ID

?p :
mechanics:Part

id = ?id

?parent :
mechanics:Part

id = ?parentId

nestedPart

Figure A.6. Inconsistency 1.6: Inconsistency regarding mechanic parts’ IDs

Connectors between electric interfaces

Inconsistency pattern

Name

��Connector does not point from input to
output interface or vice versa

��Connector does not point from bus
interface to compatible bus interface

Inconsistency
condition

Electrics vocabulary (intra-model)Scope

WarningSeverity

ConventionType

Interface ?from must point to compatible
interface.

Message

A) Change type of ?from interface
B) Change type of ?to interface
C) Remove connector
D) Ignore inconsistency
E) Tolerate inconsistency until defined date

Possible
handling
actions

1.7ID

?t :
electrics:Interface

?c : electrics:
Connector

?f :
electrics:Interface

from to

Figure A.7. Inconsistency 1.7: Inconsistency regarding electrical interfaces

Number of terminal connections

Inconsistency pattern

Name

��Maximum number of connected
interfaces is exceeded

Inconsistency
condition

Electrics vocabulary (intra-model)Scope

WarningSeverity

ConventionType

Maximum number of participants for terminal
?t must not be exceeded.

Message

A) Ignore inconsistency
B) Tolerate inconsistency until defined date

Possible
handling
actions

?t : electrics:Terminal

maximumNumberOf
Interfaces = ?maximum

1.8ID

Figure A.8. Inconsistency 1.8: Inconsistency regarding terminals and bus couplers (shown at the
example of terminals)

138

A.1. Inconsistencies for Evaluation Stage 1

Software variable names

Inconsistency pattern

Name

(?typeName = "INT" &&

!regex(?vName, "^i([A-Z]{1}[a-z]+)+$")) ||

(?typeName = "BOOL" &&

!regex(?vName, "^b([A-Z]{1}[a-z]+)+$")) ||

...

Inconsistency

condition

Software vocabulary (intra-model)Scope

WarningSeverity

ConventionType

Software variable ?vName must follow the

Hungarian notation.

Message

A) Auto-generate exemplary name

B) Enter user-defined name

C) Ignore inconsistency

D) Tolerate inconsistency until defined date

Possible

handling

actions

1.9ID

?v : software:Variable

name = ?vName

?t : software:

ElementaryType

baseType = ?typeName

type

Figure A.9. Inconsistency 1.9: Software variable naming conventions

Call tree

Inconsistency pattern

Name

 ?c1 != ?c2Inconsistency

condition

Software vocabulary (intra-model)Scope

WarningSeverity

ConventionType

?p is called twice – hence, the call tree is

violated.

Message

A) Ignore inconsistency

B) Tolerate inconsistency until defined date

Possible

handling

actions

1.10ID

?c1 : software:

CallDependency

target

?c2 : software:

CallDependency

?p :

software:

POU

target

Figure A.10. Inconsistency 1.10: Inconsistency regarding software call hierarchy

Global variables with addresses

Inconsistency pattern

Name

 Global variables with an assigned

address is neither read nor written

Inconsistency

condition

Software vocabulary (intra-model)Scope

WarningSeverity

ConventionType

Software variable ?v must be read or written

at least once

Message

A) Ignore inconsistency

B) Tolerate inconsistency until defined date

Possible

handling

actions

1.11ID

?v : software:Variable

name = ?vName

?a : software:Address

address

Figure A.11. Inconsistency 1.11: Inconsistency regarding reading and writing global variables

A.1.2. Inter-model Inconsistencies

Refinement between project

documentation and discipline model

Inconsistency pattern

Name

 ?mName != ?dName

 ?m is not a mechanic part list, an

electric circuit model or a software

dependency model

Inconsistency

condition

Project and discipline vocabularies

(inter-model)

Scope

WarningSeverity

CorrespondenceType

Project documentation ?dName must be

refined by a discipline model

Message

A) Create discipline model with according

link

B) Propagate name from left to right

C) Propagate name from right to left

D) Ignore inconsistency

E) Tolerate inconsistency until defined date

Possible

handling

actions

1.12ID

?d : project:

Documentation

name = ?dName

?l : link::

RefinesLink

?m :

common:Element

name = ?mName

leftEntity rightEntity

Figure A.12. Inconsistency 1.12: Inconsistency for refinement between project documentation and
discipline-specific model

139

Appendix A. Inconsistencies

Refinement between entry in BOM and

mechanic parts

Inconsistency pattern

Name

 ?pName != ?dNameInconsistency

condition

Project and mechanics vocabularies

(inter-model)

Scope

WarningSeverity

CorrespondenceType

BOM entry ?eName must be refined by a

respective mechanic part.

Message

A) Create refining part with according link

B) Propagate name from left to right

C) Propagate name from right to left

D) Ignore inconsistency

E) Tolerate inconsistency until defined date

Possible

handling

actions

1.13ID

?e : project:Entry

name = ?eName

?l : link::

RefinesLink

?p :

mechanics:Part

name = ?pName

leftEntity rightEntity

Figure A.13. Inconsistency 1.13: Inconsistency for refinement between mechanical part and entry
in the project’s BOM

Refinement between entry in BOM and

electric automation hardware

Inconsistency pattern

Name

 ?hName != ?dNameInconsistency

condition

Project and electrics vocabularies

(inter-model)

Scope

WarningSeverity

CorrespondenceType

BOM entry ?eName must be refined by a

respective electric part.

Message

A) Create refining part with according link

B) Propagate name from left to right

C) Propagate name from right to left

D) Ignore inconsistency

E) Tolerate inconsistency until defined date

Possible

handling

actions

1.14ID

?e : project:Entry

name = ?eName

?l : link::

RefinesLink

?h : electrics:

AutomationHardware

name = ?hName

leftEntity rightEntity

Figure A.14. Inconsistency 1.14: Inconsistency for refinement between electrical automation hard-
ware and entry in the project’s BOM

Dependence between electric interface

and software variable

Inconsistency pattern

Name

 Software variable is not a global

variable

 Software address defines input, but

electric interface is output

 Software address defines output, but

electric interface is input

 Address value does not match

interface

 Software variable type does not match

signal type

Inconsistency

condition

Electrics and software vocabularies (inter-

model)

Scope

WarningSeverity

CorrespondenceType

Interface ?i must be consistent to linked

software variable ?v.

Message

A) Create software variable with according

link

B) Ignore inconsistency

C) Tolerate inconsistency until defined date

Possible

handling

actions

1.15ID

?v :

software:Variable

?l : link::

DependsOn

Link

?i :

electrics::Interface

name = ?iName

leftEntity rightEntity

?t :

electrics:Terminal

interface

?a :

software:Address

addressType =

?addType

addressValue =

?addValue

defaultValue

?vT : software:

ElementaryType

baseType = ?varType

variableType

?s :

electrics:Signal

signal

Figure A.15. Inconsistency 1.15: Inconsistency for dependency between terminal interface and
software variable

140

A.2. Inconsistencies for Evaluation Stage 2

A.2. Inconsistencies for Evaluation Stage 2

Matrix-based device degradation

classification

Inconsistency pattern

Name

?humidity >= ?criticalHum ||

?temperature >= ?criticalTemp

Inconsistency

condition

Project and degradation vocabularies

(inter-model)

Scope

ErrorSeverity

CorrespondenceType Device ?h (order number ?oNr) should not be

used under current environment conditions.

Message

2.1ID

?p : project::Project

environmentTemperature

InCelsius = ?temperature

environmentHumidity

InPercent = ?humidity

leftEntity

?d : project::Electrical

Documentation

?l : link::

RefinesLink

?m :

electrics::

ElectricCircuit

?h : electrics::

Automation

Hardware

orderNumber = ?oNr

rightEntity

documentation

automationHardware

?deg :

degradation::Device

Degradation

orderNumber = ?oNr

?temp : degradation::

TemperatureValue

criticalValue = ?criticalTemp

maximumValue = ?maximumTemp

?hum : degradation::

HumidityValue

criticalValue = ?criticalHum

maximumValue = ?maximumHum

degradationValue

degradationValue

Figure A.16. Inconsistency 2.1: Inconsistency for device degradation

Linear coupler degradation

Inconsistency pattern

Name

?actual > (?max * (1 – 1 / ?critTMax *

?temp))

Inconsistency

condition

Project and degradation vocabularies

(inter-model)

Scope

ErrorSeverity

CorrespondenceType Coupler ?c has ?actual connections, but must

not exceed maximum connections under

environment conditions.

Message

2.2aID

?p : project::Project

environmentTemperature

InCelsius = ?temp

environmentHumidity

InPercent = ?hum

leftEntity

?d : project::Electrical

Documentation

?l : link::

RefinesLink

?m :

electrics::

ElectricCircuit

?h : electrics::

BusCoupler

orderNumber = ?oNr

maximumNumberOf

Participants = ?max

rightEntity

documentation

automationHardware

?deg :

degradation::Device

Degradation

orderNumber = ?oNr

?coupDeg : degradation::

LinearDegradation

criticalTemperatureMaximum =

?critTMax

coupler

Degra-

dation

Figure A.17. Inconsistency 2.2a: Inconsistency for linear coupler degradation

Cubic coupler degradation

Inconsistency pattern

Name

?actual > (?max * (1 – 1 / ?critTMax^2 *

?temp^2))

Inconsistency

condition

Project and degradation vocabularies

(inter-model)

Scope

ErrorSeverity

CorrespondenceType Coupler ?c has ?actual connections, but must

not exceed maximum connections under

environment conditions.

Message

2.2bID

?p : project::Project

environmentTemperature

InCelsius = ?temp

environmentHumidity

InPercent = ?hum

leftEntity

?d : project::Electrical

Documentation

?l : link::

RefinesLink

?m :

electrics::

ElectricCircuit

?h : electrics::

BusCoupler

orderNumber = ?oNr

maximumNumberOf

Participants = ?max

rightEntity

documentation

automationHardware

?deg :

degradation::Device

Degradation

orderNumber = ?oNr

?coupDeg : degradation::

CubicDegradation

criticalTemperatureMaximum =

?critTMax

coupler

Degra-

dation

Figure A.18. Inconsistency 2.2b: Inconsistency for cubic coupler degradation

141

Appendix A. Inconsistencies

Step-wise coupler degradation

Inconsistency pattern

Name

?actual > (IF (?temp > ?critTmax)

THEN 0 ELSE IF (?temp > ?critT25)

THEN 0.25*?max ELSE IF (?temp >

?critT50) THEN 0.5*?max)

Inconsistency

condition

Project and degradation vocabularies

(inter-model)

Scope

ErrorSeverity

CorrespondenceType Coupler ?c has ?actual connections, but must

not exceed maximum connections under

environment conditions.

Message

2.2cID

?p : project::Project

environmentTemperature

InCelsius = ?temp

environmentHumidity

InPercent = ?hum

leftEntity

?d : project::Electrical

Documentation

?l : link::

RefinesLink

?m :

electrics::

ElectricCircuit

?h : electrics::

BusCoupler

orderNumber = ?oNr

maximumNumberOf

Participants = ?max

rightEntity

documentation

automationHardware

?deg :

degradation::Device

Degradation

orderNumber = ?oNr

?coupDeg : degradation::

StepWiseDegradation

criticalTemperatureMaximum =

?critTMax

criticalTemperature50 = ?critT50

criticalTemperature25 = ?critT25

coupler

Degra-

dation

Figure A.19. Inconsistency 2.2c: Inconsistency for step-wise coupler degradation

Equivalence between UML Lifeline and

Software Variable

Inconsistency pattern

Name

?llName != ?vName || !(?vBaseType =

"BOOL" && LiteralBoolean(?llSpec)) ||

!(?vBaseType = "INT" &&

LiteralInteger(?llSpec))

Inconsistency

condition

UML and software vocabularies

(inter-model)

Scope

WarningSeverity

CorrespondenceType Software Variable ?vName should be further

specified by respective consistent UML

Lifeline.

Message

2.3ID

rightEntity

?ll : uml::Lifeline

name = ?llName

?l : link::

Equivalent

ToLink

?v :

software::Variable

name = ?vName

leftEntity

?vT : software:

ElementaryType

baseType =

?vBaseType

type

?llInv :

uml::StateInvariant

?llSpec :

uml::Literal

Specification

coveredByspecification

Figure A.20. Inconsistency 2.3: Inconsistency for equivalence between UML Lifeline and software
Variable

A.3. Inconsistencies for Evaluation Stage 3

A.3.1. Intra-model Inconsistencies

Element naming convention

Inconsistency pattern

Name

!regex(?eName,

"^([A-Z]{1}[a-z]+)+$")

Inconsistency

condition

Common vocabulary (intra-model)Scope

WarningSeverity

ConventionType

Element ?eName must be named in

UpperCamelCase style.

Message

A) Enter user-defined name

B) Delete name

C) Ignore inconsistency

D) Tolerate inconsistency until defined date

Possible

handling

actions

?e :

common::Element

name = ?eName

3.1ID

Figure A.21. Inconsistency 3.1: Naming inconsistency for elements

142

A.3. Inconsistencies for Evaluation Stage 3

Property naming convention

Inconsistency pattern

Name

!regex(?pName,

"^[a-z]{1}[A-Za-z]+$")

Inconsistency

condition

Common vocabulary (intra-model)Scope

WarningSeverity

ConventionType

Property ?pName must be named in

lowerCamelCase style.

Message

A) Enter user-defined name

B) Delete name

C) Ignore inconsistency

D) Tolerate inconsistency until defined date

Possible

handling

actions

?p :

common::Property

name = ?pName

3.2ID

Figure A.22. Inconsistency 3.2: Naming inconsistency for properties

Negative mass values

Inconsistency pattern

Name

?value < 0Inconsistency

condition

Common vocabulary (intra-model)Scope

ErrorSeverity

Domain-specificType

Mass property ?p must not be negative

(value is ?value).

Message

A) Enter user-defined value for property

B) Delete name

C) Ignore inconsistency

D) Tolerate inconsistency until defined date

Possible

handling

actions

3.3ID

?k : qudt::Quantity

Kind

name = "Mass"

?u :

qudt::Unit

?p :

common::Property

name = ?pName

value = ?vValue

type quantityKind

Figure A.23. Inconsistency 3.3: Negative mass value inconsistency

Maximum hierarchy level

Inconsistency pattern

Name

?e has 4 or more transitive

contains relations

Inconsistency

condition

Common vocabulary (intra-model)Scope

WarningSeverity

ConventionType

Element ?e has 4 or more transitive contains

relationships – maximum hierarchy level

exceeded.

Message

A) Ignore inconsistency

B) Tolerate inconsistency until defined date

Possible

handling

actions

?e :

common::Element

name = ?eName

3.4ID

Figure A.24. Inconsistency 3.4: Maximum hierarchy level inconsistency

A.3.2. Inter-model Inconsistencies

Refinement between SysML

Blocks and Planning Modules

Inconsistency pattern

Name

?mName != ?bNameInconsistency

condition

Planning and SysML vocabularies

(inter-model)

Scope

WarningSeverity

CorrespondenceType

Module ?m must be refined by equivalently

named Block ?b.

Message

A) Create refining block with according link

B) Propagate name from left to right

C) Propagate name from right to left

D) Ignore inconsistency

E) Tolerate inconsistency until defined date

Possible

handling

actions

3.5ID

?m :

planning::Module

name = ?mName

?l : link::

RefinesLink

?b :

sysml::Block

name = ?bName

leftEntity rightEntity

Figure A.25. Inconsistency 3.5: Inconsistency for refinement between SysML Block and Planning
Module

143

Appendix A. Inconsistencies

Refinement between SysML Child Blocks

and Planning Child Modules

Inconsistency pattern

Name

?childMName != ?childBNameInconsistency

condition

Planning and SysML vocabularies

(inter-model)

Scope

WarningSeverity

CorrespondenceType

Child Module ?childM must be refined by

equivalently named child Block ?childB.

Message

A) Create refining block with according link

B) Propagate name from left to right

C) Propagate name from right to left

D) Ignore inconsistency

E) Tolerate inconsistency until defined date

Possible

handling

actions

3.6ID

?m :

planning::Module

name = ?mName

?l : link::

RefinesLink

?b :

sysml::Block

name = ?bName

leftEntity rightEntity

?childM :

planning::Module

name = ?childM

Name

?childB :

sysml::Block

name = ?childB

Name

?r :

planning::Relation

?childL : link::

RefinesLink

?p :

uml::Property

leftEntity rightEntity

type

ownedAttribute

target

relation

Figure A.26. Inconsistency 3.6: Inconsistency for refinement between SysML Block hierarchy and
Planning Module hierarchy

Satisfaction between top-level Simulink

Display and Planning Property

Inconsistency pattern

Name

?vVal < ?minVal || ?vVal > ?maxVal ||

?vVal != ?dVal

Inconsistency

condition

Planning and Simulink vocabularies

(inter-model)

Scope

WarningSeverity

CorrespondenceType

Display ?d (value ?vVal) must satisfy

respective Property ?p (defaultValue ?dVal,

minValue ?minVal, maxValue ?maxVal).

Message

A) Create property with according link

B) Ignore inconsistency

C) Tolerate inconsistency until defined date

Possible

handling

actions

3.7ID

?p :

planning::Property

name = ?pName

defaultValue = ?dVal

minValue = ?minVal

maxValue = ?maxVal

?l : link::

SatisfiesLink

?d :

simulink::Display

name = ?dName

leftEntity rightEntity

?m :

simulink::Model

block

?v : simulink::

ValueSpecification

value = ?vVal

displayedValue

Figure A.27. Inconsistency 3.7: Inconsistency for satisfaction between top-level MAT-
LAB/Simulink Display and Planning Property

144

A.3. Inconsistencies for Evaluation Stage 3

Equivalence between top-level Simulink

Constant and SysML Property

Inconsistency pattern

Name

?vVal != ?pValInconsistency

condition

SysML and Simulink vocabularies

(inter-model)

Scope

WarningSeverity

CorrespondenceType

Constant ?c (value ?cVal) must be equivalent

to respective Property ?p (defaultValue

?pVal).

Message

A) Create property with according link

B) Ignore inconsistency

C) Tolerate inconsistency until defined date

Possible

handling

actions

3.8ID

?p :

uml::Property

?l : link::

Equivalent

ToLink

?c :

simulink::Constant

name = ?cName

leftEntity rightEntity

?m :

simulink::Model

block

?v : simulink::

ValueSpecification

value = ?vVal

value

?l : uml::Literal

Specification

value = ?pVal

defaultValue

Figure A.28. Inconsistency 3.8: Inconsistency for equivalence between top-level MAT-
LAB/Simulink Constant and UML Property

145

	Introduction
	Context and Motivation
	Research Objectives
	Outline of the Dissertation

	Field of Investigation
	Automated Production Systems
	Definitions
	Engineering and Operation of Automated Production Systems

	Model-Based (Systems) Engineering
	Definitions
	Model-Based (Systems) Engineering in the Automated Production Systems Domain

	Inconsistencies and Inconsistency Management
	Definitions
	Dimensions of consistency
	Classification of inconsistencies

	Knowledge-Based Systems
	Definitions
	Knowledge Representation
	Knowledge Processing

	Summary

	Requirements and Simplifying Assumptions
	Requirements
	Requirements Regarding the Model Knowledge Base
	Requirements Regarding the Support to Diagnose Inconsistencies
	Requirements Regarding the Support to Handle Inconsistencies
	Requirements Regarding the Support to Measure and Assess Diagnosed Inconsistencies and Handling Actions
	Requirements Regarding the Operationalization

	Simplifying Assumptions
	Summary

	Related Work
	Approaches to Integrate Heterogeneous Models
	Integrated Modelling Languages and Formats
	Model Mappings and Linking Support
	Synopsis

	Approaches to (Semi-)Automated Inconsistency Management
	Logical Reasoning and Theorem Proving
	Rule- and Pattern-Based Inconsistency Management
	Model Synchronizations
	Synopsis

	Existing Software Tools on Inconsistency Management
	Commercial Tool Suites
	Open-Source Tools
	Synopsis

	Summary

	Concept: Diagnosis and Handling of Inconsistencies
	Stakeholder-centred Overview of the Concept
	Model Management: Representation of Models
	RDF as the representational formalism for models
	Engineering Model Representation
	Background Knowledge Model Representation
	Linking the Models

	Mediation: Mediation Between Heterogeneous Models
	Rules and mediating vocabularies as the basis for effective management of inconsistencies
	Mechatronics vocabulary and common vocabulary: Representing common concepts
	Mediation rules: Mediating between the vocabularies

	Diagnosis and Handling: Diagnosis and Handling of Inconsistencies
	Structuring the Inconsistency Diagnosis and Handling Problem
	Specifying Intra-model Inconsistencies
	Specifying Inter-model Inconsistencies
	Specifying, Diagnosing and Handling of Different Types of Inconsistencies

	Summary

	Evaluation: Assessment and Comparison of the Applicability
	Prototypical Software Implementation
	Introduction to the Case Study: The Pick-and-Place Unit
	Evaluation Stage 1: Evaluation of the Feasibility for a Lab-Scale Application Example
	Overview of the Incorporated Models
	Diagnosing and Handling the Inconsistencies
	Synopsis

	Evaluation Stage 2: Evaluation of the Feasibility for an Industry-Style Application Example
	Overview of the Incorporated Models
	Diagnosing and Handling the Inconsistencies
	Synopsis

	Evaluation Stage 3: Comparison with Another Inconsistency Management Approach
	Overview of the Incorporated Models
	Mediation Between the Resulting Vocabularies
	Diagnosing and Handling the Inconsistencies
	Comparison of the Two Approaches
	Synopsis

	Assessment of the Performance and Scalability
	Summary

	Discussion of the Results
	Assessing the Fulfilment of the Requirements
	Strengths of the Proposed Framework
	Limitations of the Proposed Framework

	Conclusions and Outlook
	Bibliography
	List of Figures
	List of Tables
	List of Listings
	List of Symbols and Abbreviations
	Inconsistencies
	Inconsistencies for Evaluation Stage 1
	Intra-model Inconsistencies
	Inter-model Inconsistencies

	Inconsistencies for Evaluation Stage 2
	Inconsistencies for Evaluation Stage 3
	Intra-model Inconsistencies
	Inter-model Inconsistencies

