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Zusammenfassung
Diese Arbeit befasst sich mit der digitalen Komprimierung dünnbesetzter Signale aus
zwei Perspektiven: informationstheoretische Grenzen und Algorithmen basierend auf dem
Prinzip des Compressed Sensing.
Für die informationstheoretische Untersuchung wird eine Rate-Distortion-Funktion mit

individuellen Gütekriterien für verschiedene Teile des Signals sowohl für endliche als auch
für unendliche Blocklängen betrachtet. Für dünnbesetzte Signal leiten wir eine untere
Schranke der Rate-Distortion-Funktion her, welche diese für kleine Verzerrungen exakt
bestimmt. Zudem werden dezentrale Signale mit gemeinsamer dünnbesetzter Struktur
untersucht und die Menge der erreichbaren Raten wird für kleine Verzerrungen genau
charakterisiert.
Im Bereich des Compressed Sensing mit Skalarquantisierung werden zwei verschiedene

Probleme untersucht. Zunächst werden Algorithmen basierend auf Bayesian Approximate
Message Passing angewandt und die Beziehung zwischen Gesamtbitrate der quantisierten
Messungen und Verzerrung für ein oder mehrere Signale untersucht. Hier wird bestimmt,
wie weit die Gesamtbitrate durch eine verlustfreie Komprimierung der quantisierten Mes-
sungen verringert werden kann. Zudem wird dezentralisiertes Compressed Sensing mit
Ein-Bit-Quantisierung untersucht und eine Schranke für den maximalen Rekonstruktions-
fehler bewiesen. Die Ergebnisse zeigen, dass für dezentrale Messungen von Signalen mit
gemeinsamer dünnbesetzter Struktur die Messraten im Vergleich zu klassischem Com-
pressed Sensing deutlich reduziert werden können.
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Abstract
This thesis studies digital compression of sparse signals from two points of view: information-
theoretic limits and compressed sensing algorithms.
For the information-theoretic limits, a rate-distortion function with letter-based distor-

tion constraints is proposed and investigated in the infinite and finite block length regimes.
For a single sparse source, a converse bound is derived that is tight for low distortions.
A distributed compression problem for sparse sources is then studied via inner and outer
bounds on the rate-distortion region. The region is accurately characterized for low dis-
tortions.
For the compressed sensing algorithms, two different problems with scalar quantiza-

tion are considered. First, Bayesian approximate message passing algorithms are applied
to single and multi-terminal settings to study the rate-distortion trade-offs for different
quantizer depths. It is shown how much lossless compression of the quantized measure-
ments improves the trade-offs. Second, uniform approximation guarantees are derived for
distributed one-bit compressed sensing. The results show that distributed sensing can
significantly reduce the required number of measurements for jointly sparse signals.





1
Introduction
Natural signals of interest usually possess structure. In fact, it is difficult for a human
to process signals that are truly random as such signals are usually perceived as noise.
Consider, for example, the image of a zebra in Figure 1.1(a).

(a) Original image [vdM]. (b) Reconstruction using
only 1% of the discrete
cosine transform coef-
ficients.

Figure 1.1.: An image and its reconstruction from a heavily compressed version.

In many applications such as a digital camera, this structure is exploited after sensing
the signal. A typical compression algorithm (such as JPEG) transforms the digital image
into a suitable basis using, e.g., a wavelet or discrete cosine transform. The signal is now
sparse in this basis which means that most of its coefficients are close to zero and very few
carry most of the "energy". The compression algorithm can then discard the insignificant
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coefficients and only store the locations and values of the significant samples. The image
in Figure 1.1, for example, reconstructs the original image from only the largest 1% of its
discrete cosine transform coefficients. This saves a lot of memory as compared to storing
the brightness values at every pixel.
However, even this process is wasteful since the camera first acquired a large amount of

measurements (pixel brightness values) and then throws away most of them in order to store
the information more efficiently. It would be better to only acquire the information that
is actually needed. The field of Compressed Sensing (CS) has evolved from the insight
that efficiently acquiring information is possible for many classes of structured signals
[CRT06b, CRT06a, Don06]. Practically, this means that one can build a measurement
system that takes only a few measurements but then reconstruct an image with a high
resolution - even if the locations of the significant samples are unknown. This insight has
led to significant improvements for applications where taking measurements is costly or
slow, such as Magnetic Resonance Imaging [LDSP08].
This thesis studies the theory of digital compression of sparse signals from different

points of view. Consider the very basic system model in Figure 1.2. The signal, such
as a sound snippet or an image, is mapped into a finite number of bits by an encoder
which, in the above example, includes the camera acquisition system as well as the digital
compression algorithm. The bits are then stored digitally and can later be used by the
decoder to create the signal reconstruction. Usually, this encoding/decoding process causes
the reconstructed signal to be a distorted version of the original signal, and it is natural
to expect that allowing the encoder to use more bits should also lower the distortion that
occurs after the reconstruction.

Source Encoder

DecoderSink

Bits

Signal

Reconstructed
Signal

Figure 1.2.: Basic system model for digital source coding.

There are many different questions that can be posed with respect to this basic system
model. This thesis focuses on investigating variants of the following questions.
Q1) For a given fidelity criterion, what is the smallest number of bits needed among any

encoder/decoder pair?

Q2) For a specific encoder structure and a given bit rate, what is the smallest error
achievable for the best decoder?
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Q3) Suppose we have the answer to Q2, can one find a decoder with a tolerable compu-
tational complexity achieving a similar performance as the optimal decoder?

Q4) For a specific encoder/decoder structure, what is the trade-off between bit rate and
distortion?

Q1 is typically studied in the field of Information Theory, a field that was founded by
the groundbraking work of Shannon [Sha48]. In [Sha48, Sha59], he formalized Q1 in a
probabilistic setting and provided a general solution. For an overview of classical results
in information-theoretic source coding, see [Ber71,BG98]. Part I of this thesis focuses on
an information-theoretic study of sparse sources.
CS emerged from the observation that a combination of a linear encoder and a decoder
based on convex optimization techniques allows to drastically reduce the required sampling
rates compared to classical systems [CW08]. The theory of CS thus focuses on (generalized)
linear models for the encoder and aims at providing answers to the questions Q2 – Q4.
Parts II and III of this thesis investigate different settings of Quantized Compressed Sensing
(QCS).
A detailed outline is given below.

1.1. Outline & Contribution
. Chapter 2 provides a brief introduction into the information theory of digital com-
pression, CS, and the relevant literature that this thesis is built upon.

Part I studies aspects of sparse sources from an information-theoretic point of view,
adding partial answers to Q1 for single and multi-terminal sparse sources.

. Chapter 3 argues that in certain applications, it is sensible to impose several distor-
tion constraints on a signal and average each distortion function separately over parts
of the signal. In this spirit, we study compression for letter-based fidelity measures
first in the limit of large signal dimension and then for finite block lengths. As a
byproduct, we develop a new converse result for finite length lossy compression. We
evaluate our results for the binary memoryless and the Gaussian memoryless sources.

. InChapter 4, we study the Rate-Distortion (RD) function of Bernoulli-Spike sources,
a popular probabilistic model for sparse signals. We first derive a converse result for
sources with a separate distortion constraint for the nonzero elements and the zero
elements and then extend this result to the classic case of a single squared error
distortion measure. We then show that this converse result is asymptotically tight
in the small distortion regime.

. Chapter 5 extends the studies of Chapter 4 to distributed source coding with
two terminals, where two correlated Bernoulli-Gaussian spike sources are encoded
separately, but reconstructed together. For this purpose, we derive several inner
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and outer bounds and determine the achievable rate region in the limit of small
distortions at both terminals.

Part II focuses on Bayesian CS and investigates RD trade-offs for QCS systems, touch-
ing on Q2-Q4 for the setting of CS with scalar quantization.

. Chapter 6 first reviews Generalized Approximate Message Passing (GAMP), a pow-
erful signal reconstruction algorithm, for the setting of CS with scalar quantization.
We then numerically study the RD trade-off for different quantizer depths. We fur-
ther extend this algorithm to distributed QCS with two signals and compare its
performance to the results from Chapter 5. Finally, we study the RD trade-off when
compressing the quantized measurements.

Part III investigates distributed CS with one-bit quantization. Here, we provide insight
into Q2-Q3 by analyzing the worst case error for a distributed QCS system and a low
complexity decoder.

. In Chapter 7, we study a setting where many jointly sparse signals are observed
at different terminals and reconstructed together from their one-bit measurements
via hard thresholding. We provide uniform recovery guarantees for all jointly sparse
signals and show the necessary number of measurements can significantly be reduced
compared to the setting of just one signal.

Parts of the work presented in Chapters 3 – 4 are published in [PT16a,PT16b,PT16c]
and are based on joint work with Roy Timo. A part of the work presented in Chapter 6
is based on joint work with Rami Ezzine and appeared in a student research internship
report [Ezz18]. The results presented in Chapter 7 are joint work with Johannes Maly and
have been published in [MP19].

1.2. Notation
Below, we give a brief overview on notation. Here and throughout the thesis, we use :=
whenever a new quantity is introduced.
Sets

. We abbreviate [n] := {1, ..., n}. The set of real and natural numbers is denoted R
and N, respectively. Subsets of the real or natural numbers are usually written with
calligraphic font, such as B ⊂ R. The cardinality of a set is denoted with #, e.g.,
#([n]) = n.

Vectors, Matrices and Norms:

. We denote column vectors by sans serif font and scalars with regular fonts. The
length of a vector should be clear from the context. The elements of a vector are
indicated with square brackets. Random vectors and scalars are written in uppercase
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fonts and realizations in lowercase. Thus, the random vector Z ∈ Rn has a realization
z with elements z[1], . . . , z[n]. A matrix A is denoted with bold font and it should be
clear whether it is random or fixed. Idn represents the n-dimensional identity matrix
and 0 is the all zeros vector.

. We write the p-norms of vectors as ‖ · ‖p. Note that the Frobenius norm of matrices
‖·‖F corresponds to the `2-norm of the vectorization. We use the matrix norm ‖Z‖2,1
to represent the sum of the `2-norms of the columns of Z and, by abuse of notation,
we write ‖z‖2,1 = ‖Z‖2,1 if z = vec(Z) is the vectorized representation of a matrix Z.

Probability and Expectation

. The probability of an event A is denoted by Pr[A] and the probability of an event
A1 conditioned on an event A2 is denoted by Pr[A1 |A2]. The indicator function of
an event A is written 1A.

. We will consider random variables that are either discrete, continuous, or mixed
discrete-continuous. The probability distribution of a random variable X is usually
denoted by PX and it should be clear from the context whether PX is discrete,
continuous or mixed. The cumulative distribution function of X is denoted by FX .

. The expectation of a random variable Z is denoted by E[Z] and its expectation
conditioned on a second random variable Z ′ is E[Z |Z ′]. We sometimes write EZ [XZ]
to stress that an expectation is with respect to the distribution PZ . The expectation
of a random variable Z is denoted by Var[Z] and its variance conditioned on an event
A is Var[Z|A].

. The support of a probability distribution PX is denoted by supp(PX). The Gaussian
distribution with mean m and covariance matrix C is denoted byN (m,C). δ0 denotes
the probability mass function (PMF) that has probability one at zero.

Information Measures

. We use classic information measures and their conditional versions in the standard
way (see, e.g. [CT06b,PW17]). To introduce the notation, the unconditional quan-
tities are defined below. All logarithms are to the base 2.

. If X has a PMF PX on X , we denote its entropy by

H(X) :=
∑

x∈supp(PX)
PX(x) log 1

PX(x) . (1.1)

For a binary random variable with bias p, we denote its entropy by H2(p).

. If X has a probability density function (PDF) PX on X , we denote its differential
entropy by

h(X) :=
∫
x∈supp(PX)

PX(x) log 1
PX(x)dx. (1.2)
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. For a random variable X with distribution PX and a second random variable Y
induced by PY |X , the mutual information between X and Y is given by

I(X;Y ) := EXY
[
log dPY |X

dPY

]
, (1.3)

where dPY |X/dPY is the Radon-Nikodym derivative of PY |X with respect to PX
(which is equal to PY |X/PX if both X and Y are either discrete or continuous). The
information density is given by

ıX;Y (x; y) := log dPY |X=x

dPY
(x, y) (1.4)

for some (x, y) ∈ X × Y .

Complexity:

. We use the notation g(n) = O(f(n)) to state that limn→∞ g(n)/f(n) = c for some
constant c ∈ (0,∞).

. The notations ≈, ., and & are used to denote =, ≤, and ≥ up to multiplicative
constants.



2
Preliminaries

2.1. Information-Theoretic Digital Compression
In [Sha48, Sha59], Shannon considered a probabilistic variant of our basic system model,
see Figure 2.1. In this model (and throughout this thesis), the signal X is modeled as an
n-dimensional vector. Shannon assumed that the signal elements X[1], X[2], . . . , X[n] are
independent and identically distributed (iid) according to some distribution PX on the set
X and the reconstruction variables Y [1], Y [2], . . . , Y [n] take values in a (possibly different)
set Y .

Encoder DecodernR bitsX ∈ Rn

X[i] iid∼ PX

Y ∈ Rn

1
n

∑n
i=1 E

[
δ(X[i], Y [i])

]
≤ d

Figure 2.1.: Shannon’s system model for digital source coding.

Let δ : X × Y → R be a distortion function. For vectors, Shannon chose the distortion
measure ∆ to be

∆(x, y) = 1
n

n∑
i=1

δ(x[i], y[i]) (2.1)

which is separable, i.e,

∆(x, y) = 1
n

n∑
i=1

∆(x[i], y[i]). (2.2)

He then chose the overall fidelity criterion that the system is required to obey to be
the average expected distortion. An important observation by Shannon was that every
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encoder/decoder pair induces a series of test channels PY [i]|X[i] that determine the expected
distortion:

1
n

n∑
i=1

E[δ(X[i], Y [i])] =
∫ ∫

δ(x, y)
(

1
n

n∑
i=1

dPY [i]|X[i]

)
dPX . (2.3)

He then showed that it suffices to find one good test channel PY |X and generate a code
book of reconstruction signals by choosing them iid at random according to the induced
marginal distribution PY . If enough reconstruction signals are drawn at random, the code
book will contain good reconstruction signals for a subset of the source sequences that
carries most of the probability. This powerful proof technique is called random coding.
More precisely, Shannon showed that in the limit of large signal dimensions, i.e., n→∞,

the answer to Q1 is given by the Rate-Distortion (RD) function

R(d) = inf
PY |X∈P(X,d)

I(X;Y ) (2.4)

where P(X, d) is the set of PY |X that satisfy E[δ(X, Y )] ≤ d. The RD function thus
provides the smallest number of bits per source symbol needed to compress an iid signal
with known distribution subject to an average expected distortion constraint. This result
holds true also if the fidelity criterion is the Pr[∆(X,Y) > d] ≤ ε for a separable ∆ and
any ε > 0 and has been extended to cases beyond the iid source model [Ber71].
While this result provides the fundamental limit of lossy source coding for this prob-

abilistic source and distortion model, it leaves open the question of how to construct a
computationally feasible encoder/decoder pair. Implementing the random coding strategy
would require to store all generated reconstruction signals and then finding the closest one
for every signal, which has a complexity growing exponentially in the signal dimension.
The RD function is explicitly known only for very few sources and distortion measures

such as the Gaussian source with squared error distortion or the binary source with Ham-
ming distortion [Sha59]. A suitable lower bound for sources with a PDF is the Shannon
Lower Bound [Sha59] which is known to be tight in the low-distortion limit [LZ94,Koc16].
A method of numerically solving the minimization in (2.4) is the Blahut-Arimoto algo-

rithm [Bla72], [Ari72], which is given in Algorithm 2.1. This is useful to provide precise
numerical computations of the RD function, yet it provides little insight into the general
behavior of the RD function or how a good coding scheme might work.
Recently, there has been a growing interest in investigating the performance of lossy

source coding with an excess distortion criterion at finite block lengths [KV12,IK11,Kos17,
GW19]. While the two distortion criteria

E[∆(X,Y)] ≤ d and Pr[∆(X,Y) > d] ≤ ε (2.5)

yield the same coding rates for any ε > 0 whenever n → ∞, this is not true at finite
block lengths. Figure 2.2 illustrates the geometry of these two different problems in small
dimensions.
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Algorithm 2.1 Blahut-Arimoto Algorithm for R(d) [Bla72,Ari72]
1: Choose Xd and Yd as discretizations of X and Y , compute discretized P d

X , choose
initial reconstruction distribution P (0)

Y on Yd, Lagrange multiplier s > 0 and a target
precision ε > 0.

2: t← 0
3: repeat
4: t← t+ 1
5: c(t)(y)← ∑

x∈Xd

P d
X(x) exp(−sδ(x,y))∑

y′∈Yd
P

(t)
Y (y′) exp(−sδ(x,y′))

6: P
(t)
Y (y)← P

(t−1)
Y (y)c(t)(y)

7: T
(t)
UB ←

∑
y∈Yd

P
(t)
Y log c(t)(y)

8: T
(t)
LB ← max

y∈Yd
log c(t)(y)

9: until T (t)
UB − T

(t)
LB < ε

10: PY |X(y|x)← P
(t)
Y (y) exp(−sδ(x,y))∑

y′∈Yd
P

(t)
Y (y′) exp(−sδ(x,y′))

11: d← ∑
x∈Xd

∑
y∈Yd

P d
X(x)PY |X(y|x)δ(x, y)

12: R(d)← ∑
x∈Xd

∑
y∈Yd

P d
X(x)PY |X(y|x) log PY |X(y|x)

P
(t)
Y (y)

13: return PY |X , d, R(d)

−4 −2 0 2 4
−4

−2

0

2

4

(a) Average distortion setting.

−4 −2 0 2 4
−4

−2

0

2

4

(b) Excess distortion setting.

Figure 2.2.: Geometry of vector quantization in two dimensions. On the left, X is parti-
tioned into cells of different size. Individual cells may be large since a greater
distortion can be outweighed by a small probability. On the right, we focus on
a set that carries a total probability of 1− ε (light blue). In this set, all points
are within a distance of d of the reconstruction points (black). The distortion
of a signal point and its reconstruction is irrelevant as long as it is below d.
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In the excess distortion setting, Kostina and Verdú [KV12] derived various bounds for
the optimal performance of an excess distortion code at a fixed block length and excess
distortion probability. In addition (see also [IK11]), they showed that for a fixed block
length, the gap to the RD function is on the order of O(n−1/2).

2.2. Compressed Sensing
The field of CS emerged from the following basic question: Given some unknown and
high-dimensional signal x ∈ Rn, what is the smallest number m of linear measurements

z = Ax (2.6)

needed to uniquely determine x, where A ∈ Rm×n. From basic linear algebra we require
m ≥ n in general.
Motivated by the discussion in Chapter 1, suppose that x is s-sparse, i.e., x has at most

s ≤ n entries that are not equal to zero, and let supp(x) = {i ∈ [n] : x[i] 6= 0} ⊂ [n] be
the support of x. Knowing supp(x), only m ≥ s measurements suffice to uniquely identify
x from z (assuming that every choice of s different columns of A is linearly independent).
If s � n, this yields a considerable improvement in the number of measurements. In
practice, however, the support of x is unknown.
The seminal works [CRT06b,CRT06a,Don06] lay foundations of CS by showing that if

the matrix A is suitably chosen, then one can uniquely identify all s-sparse x from a number
of linear measurements that is much smaller than the signal dimension n. Moreover,
efficient recovery is possible by means of convex optimization. A sufficient condition for
A to allow this is the so-called Restricted Isometry Property (RIP). A linear operator A
satisfies the Restricted Isometry Property (RIP) of order s with RIP-constant δ ∈ (0, 1) if

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 (2.7)

for all s-sparse x, i.e., A embeds the set of s-sparse n-dimensional vectors almost isomet-
rically into Rm (see [CRT06b], [CT06a]). Though no deterministic construction of RIP
matrices has been discovered so far for less than m = O(s2) measurements (cf. [FR13, Ch
6]), several classes of randomly generated matrices satisfy the RIP with exceedingly high
probability if

m ≥ Cs log
(
en

s

)
(2.8)

where C > 0 is a constant independent of s,m, and n (see [CT06a], [RV08]). Hence, up to
the log-factor, O(s) measurements suffice to capture all information in the n-dimensional
signal x. Moreover, the bound (2.8) is robust to noise on the measurements.
However, there are more difficulties to overcome than just noise. In particular, real-

valued measurements z[i] ∈ R cannot not be stored with infinite precision on a digital
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system. The idealistic measurement model presented in (2.6) should be extended by a
quantizer Q that maps the real-valued measurement vector Ax to a finite alphabet. To
stick to the common paradigm of low-complexity measurements in CS, we consider scalar
quantizers that quantize the measurements individually. The extreme case is to choose Q
as the sign function acting componentwise on Ax leading to the one-bit CS model first
studied in [BB08]

q = sign(Ax) (2.9)

i.e., q[k] is 1 if 〈ak, x〉 ≥ 0 and −1 if 〈ak, x〉 < 0, where ak is the transposed k-th row of A.
One-bit sensing is of great interest for applications because single bit measurement devices
are cheap to produce and use. From a geometric point of view, this single bit expresses
on which side of the hyperplane Hak (defined by the normal vector ak) the signal x lies. A
different interpretation is that x is a linear classifier in the signal space that clusters the
measurements into two categories. These two interpretations are shown in Figure 2.3.

a1

a2

x

(a) Half spaces.

a1

a3a5

a2

a4

a6

x q[k] > 0
q[k] < 0

(b) Classifier.

Figure 2.3.: Geometry of one-bit CS.

Note that the operation (2.9) is blind to scaling and we can only hope to approximate
the direction of x (this issue can be tackled by, e.g., adding a random dither to the mea-
surements before quantization and thus shifting the hyperplanes away from the origin,
see [KSW16,BFN+17,DM18]).
It turns out that for one-bit quantization, a bound similar to (2.8) defines a sufficient

number of measurements to approximate all s-sparse x of unit norm:

m ≥ Cδ−αs log
(
en

s

)
. (2.10)

In this case, approximating means that one cannot recover x from z exactly but one can
bound the worst case error (in, e.g., `2 norm) of certain reconstruction algorithms. The
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difference between the required measurements for (2.6) and (2.9) lies in the approximation
quality captured by δ−α: the expected worst-case error δ is much better (possibly zero if
there is no noise) with unquantized CS. For practical purposes, it is, of course, desirable
to have α > 0 as small as possible in order to achieve a small m for a fixed accuracy
0 < δ < 1.
One suitable reconstruction method for one-bit measurements (2.9) is the linear pro-

gram [PV13a]

min
y∈Rn
‖y‖1 subject to sign(Ay) = q and ‖Ay‖1 = m (2.11)

and another method is a hard thresholding procedure [Fou16]

y = Hs

(
ATq

)
(2.12)

where Hs only keeps the s largest coefficients. More elaborate iterative hard thresholding
methods are analyzed in, e.g., [JDV13].
It is worth to stress that these models and results are different from classic information-

theoretic approaches to source coding in several ways:

. No prior knowledge about the stochastic distribution of x is assumed. The only
assumption is that x lies in some predefined signal set, such as all s-sparse signals.

. Once the measurement matrix A is fixed, we would ideally like to recover or approx-
imate all signals x. In contrast to that, information theoretic-studies often require
reconstruction with high probability or with small average error.

. A specific decoder structure is investigated in order to ensure a computationally
tractable reconstruction procedure.

2.3. Probabilistic Compressed Sensing

In probabilistic (or Bayesian) CS, the setting is more similar to the information theoretic
approach. In particular, the signal is modeled as stochastic and its distribution may be
known to the decoder. Further, the fidelity criterion is often taken as the expected error
(e.g., Mean Squared Error (MSE)).
The fundamental limits of analog probabilistic CS have been investigated information-

theoretically by Wu and Verdú [WV12b]. For linear encoders such as (2.6), they considered
continuous and Lipschitz-continuous decoders to ensure a certain robustness to measure-
ment noise. Further, they allowed the decoder to use the probability distribution PX of
the stochastic signal X and demanded to recover the signal with probability 1 − ε for an
arbitrary ε > 0. They found that the fundamental limit of the number of samples m is
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the information dimension which, for a real-valued random variable X, is given by

d(X) = lim
k→∞

H(bkXc)
log k . (2.13)

As an example, if the elements of X are iid with distribution PX and

PX = (1− p)δ0 + pPcont (2.14)

where δ0 is the point mass at zero and Pcont is a continuous probability distribution, then

m > s (2.15)

measurements suffice in order to reconstruct the signal X with high probability from m
linear measurements. These results also extend to the case of noisy measurements.
A powerful reconstruction algorithm that can exploit the prior distribution of the sig-

nal is Approximate Message Passing (AMP) [DMM09]. AMP comes with many benefits
such as much smaller computational complexity than convex optimization methods and
tools to asymptotically analyze its performance [JM13]. While AMP does not achieve
the information theoretic limit (2.15) for the popular choice of dense iid Gaussian matri-
ces [KMS+12a,KMS+12b], AMP combined with spatially coupled sensing matrices closely
approaches this fundamental limit [KMS+12a,DJM13,BSK15].
An important extension of AMP applies to Generalized Linear Models (GLMs) [Ran11,

SRF16] of the form:

Zk = Pout

( 1√
n
〈Ak,X〉

)
, 1 ≤ k ≤ m (2.16)

where Ak is the transposed kth row of A and Pout represents an output channel that may
include noise, but can also represent a deterministic function. Taking Pout as a quantiza-
tion function, the GLM (2.16) includes the setting of QCS, which was investigated from
this point of view in [KGR12]. Recently, Barbier et al. [BKM+19] derived the fundamen-
tal limits of information and estimation in GLMs, which we will heavily make use of in
Chapter 6.
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Rate-Distortion Theory for Multiple
Constraints and Sparse Sources
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3
Compression for Letter-Based
Fidelity Measures
Typically, RD theory has focused on the compression of sources with respect to a single
average distortion or excess distortion constraint. In applications such as CS, however, the
important information is manifested in a few significant samples of the signal while most
samples are either zero or close to zero and can be discarded [WV12a]. In this case it seems
reasonable to impose a distortion constraint that is averaged over only those significant
samples and another constraint that is averaged over the insignificant samples. Motivated
by this observation, we define the letter-based RD function in Section 3.1 and investigate
it in the limit of larger block lengths. In Section 3.1, we review existing finite block
length bounds and extend those to the setting of our new multiple distortion measures.
Section 3.3 then applies the results from the previous sections to the case of a binary
memoryless source.
This chapter is based on joint work with Roy Timo. Part of the results presented in this

chapter have been published in [PT16a,PT16b].

3.1. Infinite Block Length
Not all data is created equal. In network security, a packet’s header is often more important
than its body; in image compression, a wavelet transform concentrates useful information
in a fraction of its coefficients; and in fraud detection, abnormal credit card transactions
made overseas are more important than ones made at your local shops. Thus, there is often
a need to identify and separately process particular data events that are ‘more important’
for the end application. This chapter is motivated by such situations, and, to this end, we
consider the problem of lossy compression with multiple letter-based distortion constraints.
Consider a memoryless source that creates the output sequence X with each X[i], 1 ≤

i ≤ n, being distributed according to PX on some alphabet X . A lossy source code consists
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of a pair

f : X n → {1, 2, . . .M} and g : {1, 2, . . .M} → Yn (3.1)

where the encoder f maps the source sequence to an index T := f(X) and the decoder g
maps this index to a reconstruction sequence Y := g(T ). Let δ : X × Y → [0,∞) be a
distortion function, and let I = {I1, I2, . . . , IL} with L <∞ be a partition of X such that
Pr[X ∈ I`] > 0 for all ` ∈ [L]. For every I` ∈ I, we define two different n-letter distortion
measures:

(i) Normalization based on actual occurrences:

∆a
`(x, y) =


1

N(I`|x)

n∑
i=1

1{x[i]∈I`}δ(x[i], y[i]), if N(I`|x) ≥ 1

0, otherwise
(3.2)

where N(I`|x) := ∑n
i=1 1{x[i]∈I`}. Normalizing the distortion this way averages the

distortion for each ` properly, irrespective of how many source symbols fall into I`.
This fair normalization comes at the cost of an unseparable distortion measure, that
is, we have ∆a

`(x, y) 6= 1
n

∑n
i=1 ∆a

`(x[i], y[i]).

(ii) Normalization based on expected occurrences:

∆e
`(x, y) = 1

nPr[X ∈ I`]

n∑
i=1

1{x[i]∈I`}δ(x[i], y[i]). (3.3)

This distortion measure is separable. The fixed normalization, however, means that
statistical variations of the number of symbols observed in every I` change the allowed
average distortion for those symbols.

Given some ε > 0 and a vector d = (d1, . . . , dL) of distortion constraints with respective
distortion measures ∆a or ∆e, we define a lossy source code with respect to an excess
distortion or average distortion constraint as follows.

Definition 3.1 (Excess-Distortion Code). An (n,M, d, ε,∆) code for a memoryless source
with distribution PX outputting X ∈ X n consists of an encoder f : X n → {1, . . . ,M} and
a decoder g : {1, . . . ,M} → Yn satisfying

Pr
[ ⋃
`∈[L]

{
∆`

(
X, g(f(X))

)
> d`

}]
≤ ε. (3.4)

Accordingly, we define the smallest codebook size for a set of parameters as

(i) M?
a (n, d, ε) = min{M : ∃ (n, d,M, ε,∆a) code},

(ii) M?
e (n, d, ε) = min{M : ∃ (n, d,M, ε,∆e) code}.
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Definition 3.2 (Expected-Distortion Code). An (n,M, d,∆) code for a memoryless source
with distribution PX outputting X ∈ X n consists of an encoder f : X n → {1, . . . ,M} and
a decoder g : {1, . . . ,M} → Yn satisfying

E
[
∆`

(
X, g(f(X))

)]
≤ d` (3.5)

for all ` ∈ [L]. Accordingly, we define the smallest codebook size for a set of parameters as

(i) M?

a(n, d) = min{M : ∃ (n, d,M,∆a) code}

(ii) M?

e(n, d) = min{M : ∃ (n, d,M,∆e) code}.

Definition 3.3 (Letter-Based RD Function). We define the Letter-Based Rate-Distortion
(RDL) function as

RL(d) = inf
PY |X∈P(X,d)

I(X;Y ) , (3.6)

where P(X, d) is the set of all conditional probability distributions from X to Y that satisfy

E[δ(X, Y ) |X ∈ I`] ≤ d` for 1 ≤ ` ≤ L. (3.7)

The RDL function inherits several useful properties from the usual RD function:

. 0 ≤ RL(d) ≤ H(X).

. RL is non-increasing.

. RL is convex in d.

. RL is continuous on [0,∞)`.

Further, we can recover the usual RD function from the RDL function via

R(d) = min
d:
∑L

`=1 Pr[X∈I`] d`≤ d
RL(d). (3.8)

Before presenting the main theorem of this section, we make the assumption that our
distortion measure does not grow too fast (see [PW17, Ch. 25.3]).

Assumption 3.1. There is some p > 1 such that dp <∞, where

dp := sup
n≥1

inf
y∈Yn

max
`∈[L]

E[∆a
`(X, y)p]1/p . (3.9)

This assumption is slightly stronger than requiring a finite average distortion at zero rate
(p = 1), but it is not too restrictive. It will help us to control the distortions via Hölder’s
inequality.
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Next, we state the main theorem of this section, which characterizes the smallest achiev-
able coding rate in the limit of large block lengths.

Theorem 3.1 (Asymptotic RDL Coding Rate). Let X iid∼ PX , L < ∞ and suppose that
there is some p > 1 such that Assumption 3.1 is satisfied. Then, we have

RL(d) = lim
ε↓0

lim sup
n→∞

1
n

logM?
e (n, d, ε) = lim sup

n→∞

1
n

logM?

e(n, d) (3.10)

= lim
ε↓0

lim sup
n→∞

1
n

logM?
a (n, d, ε) = lim sup

n→∞

1
n

logM?
a(n, d) (3.11)

We remark that Pinkston briefly discussed the extension of classical RD theory to multi-
ple separable distortion constraints in [Pin67, Sec. 2.6]. By rescaling the distortion function
∆e, equality in (3.10) can be deduced. However, the same does not apply to (3.11) since
the function ∆a is not a separable distortion measure. We present a proof of Theorem 3.1
that is based on the proof of the standard RD theorem in [PW17, Chap. 25-26], with some
additional effort to control the distortions.

3.1.1. Proof of the Coding Theorem (Theorem 3.1)

We prove Theorem 3.1 using a sequence of three lemmas. The first lemma shows that for
an expected distortion constraint, the rate is lower bounded by RL.

Lemma 3.2 (Converse for Average Distortion). Suppose that Assumption 3.1 is satisfied.
Then, we have

lim sup
n→∞

1
n

logM?

a(n, d) ≥ RL(d). (3.12)

Next, we show that we can build a good code for an expected distortion constraint from
a good code for an excess distortion constraint.

Lemma 3.3 (Excess to Average Distortion). Suppose that Assumption 3.1 is satisfied.
Then, we have

lim
ε↓0

lim sup
n→∞

1
n

logM?
a (n, d, ε) ≥ lim sup

n→∞

1
n

logM?

a(n, d). (3.13)

Finally, we show achievability.

Lemma 3.4 (Achievability for Excess Distortion).

RL(d) ≥ lim
ε↓0

lim sup
n→∞

1
n

logM?
a (n, d, ε). (3.14)
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Proof of Theorem 3.1. Lemma 3.2 – 3.4 together imply that

lim
ε↓0

lim sup
n→∞

1
n

logM?
a (n, d, ε) = lim sup

n→∞

1
n

logM?

a(n, d) = RL(d) (3.15)

which establishes Theorem 3.1. �

The remainder of this section is dedicated to proving Lemmas 3.2, 3.3 and 3.4.

Proof of Lemma 3.2: Converse for Expected Distortion

For the memoryless source PX , suppose we are given a sequence of optimal RDL-codes.
Observe that the encoder, decoder and the number of code words depend on n, but for
simplicity we refer to (f, g) and the code book size M without an index n. For every n,
(f, g) satisfies

E[∆a
`(X, g(f(X))] ≤ d`, for ` ∈ [L]. (3.16)

Let Y = g(f(X)). We start with the usual converse steps

1
n

logM ≥ 1
n
H(f(X)) = 1

n
I(X; f(X)) ≥ 1

n
I(X; Y) ≥ 1

n

n∑
i=1

I(X[i];Y [i]) . (3.17)

Now, for every i ∈ [n] and ` ∈ [L], we define the average conditional distortion achieved
by the coding scheme as

d`[i] = E[δ(X[i], Y [i]) |X[i] ∈ I`] (3.18)

and recall that P(X, d) is the set of PY |X that satisfy the distortion constraints

E[δ(X, Y ) |X ∈ I`] ≤ d` for ` ∈ [L]. (3.19)

We proceed from (3.17) with

1
n

n∑
i=1

I(X[i];Y [i]) ≥ 1
n

n∑
i=1

inf
PY |X∈P(X,(d1[i],...,dL[i]))

I(X[i];Y [i])

= 1
n

n∑
i=1

RL
(
d1[i], . . . , dL[i]

)
≥ RL

( 1
n

n∑
i=1

d1[i], . . . , 1
n

n∑
i=1

dL[i]
)
,

(3.20)

where the last inequality follows since RL is convex due to the convexity of mutual in-
formation [CT06b, Thm. 2.7.4]. To complete the converse, we show that E[∆a

`(X,Y)]
concentrates around 1

n

∑n
i=1 d`[i] (which is trivial for a separable distortion measure). De-
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fine the ε-letter typical set

Tε :=
{

x ∈ X n :
∣∣∣∣ 1nN(I`|x)− Pr[X ∈ I`]

∣∣∣∣ ≤ εPr[X ∈ I`], for ` ∈ [L]
}

(3.21)

and note that Hoeffding’s inequality [Ver18, Thm. 2.2.6] and the union bound imply

Pr[X 6∈ Tε] ≤ 2 · L · e−2n(εmin` Pr[X∈I`])2 n→∞−→ 0. (3.22)

To proceed, we use the following lemma which establishes that the distortion measured by
∆e for the atypical sequences of a good code is small.

Lemma 3.5. Under Assumption 3.1, every sequence of optimal encoder/decoder pairs
satisfies

lim
n→∞

max
`∈[L]

E
[
1{X 6∈Tε}∆e

`(X,Y)
]

= 0. (3.23)

Proof. Suppose that (3.23) does not hold for some ` ∈ [L], i.e., the right hand side (RHS)
is larger than zero. We construct a simple modification to the coding scheme that uses the
same rate and achieves a smaller error and thus a better RD trade-off. We define the new
RD code (f ∗, g∗) via:

f ∗(x) =
{
f(x), x ∈ Tε
M + 1, x 6∈ Tε

and g∗(t) =
{
g(t), 1 ≤ t ≤M

y0, t = M + 1
(3.24)

where y0 = (y0, . . . , y0) satisfies

E
[
∆a
`(X, y0)p

]1/p
≤ dp <∞ (3.25)

for all ` ∈ [L] as guaranteed by Assumption 3.1. After this modification, the asymptotic
rate lim

n→∞
1
n

log(M+1) = lim
n→∞

1
n

logM does not change. For ` ∈ [L], the expected distortion
for the atypical sequences of new our code is

E
[
1{X 6∈Tε}∆e

`(X,Y)
]

= E
[
1{X 6∈Tε}∆e

`(X, y0)
]

a
≤ 1

Pr[X ∈ I`]
E
[
1{X 6∈Tε}∆a

`(X, y0)
]

b
≤ 1

Pr[X ∈ I`]
E
[
∆a
`(X, y0)p

]1/p
Pr[X 6∈ Tε]1−1/p

c
≤ dp

Pr[X ∈ I`]
· Pr[X 6∈ Tε]1−1/p

n→∞−→ 0

(3.26)

where we used the fact that ∆e
`(x, y) ≤ ∆a

`(x, y)/Pr[X ∈ I`] in (a), Hölder’s inequality in
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(b), and (3.25) in (c). Thus, if (3.23) does not hold, we can construct a coding scheme
with the same asymptotic rate and a lower average distortion. We conclude that (3.23)
must hold for an optimal sequence of codes. �

Now, we can bound

E[∆a
`(X,Y)]

= E
[

1
N(I`|X)

n∑
i=1

1{X[i]∈I`}δ(X[i], Y [i])
]

≥ E
[
1{X∈Tε}

1
N(I`|X)

n∑
i=1

1{X[i]∈I`}δ(X[i], Y [i])
]

≥ 1
nPr[X ∈ I`](1 + ε)E

[
1{X∈Tε}

n∑
i=1

1{X[i]∈I`}δ(X[i], Y [i])
]

= 1
nPr[X ∈ I`](1 + ε)

 n∑
i=1

E
[
1{X[i]∈I`}δ(X[i], Y [i])

]

−
n∑
i=1

E
[
1{X 6∈Tε}1{X[i]∈I`}δ(X[i], Y [i])

]
= 1
n(1 + ε)

n∑
i=1

d`[i]−
1

1 + ε
E
[
1{X 6∈Tε}∆e

`(X,Y)
]

a
≥ 1
n(1 + ε)

n∑
i=1

d`[i]− ε′ (3.27)

where we used Lemma 3.5 for an arbitrary ε′ > 0 and large enough n in (a). Combin-
ing (3.27) and (3.16), we see that

1
n

n∑
i=1

d`[i] ≤ (1 + ε)
(
E[∆a

`(X,Y)] + ε′
)

= (1 + ε)(d` + ε′) (3.28)

for all ` ∈ [L]. Since RL is non-increasing and continuous, we can let ε, ε′ ↘ 0 as n → ∞
to conclude that

RL

( 1
n

n∑
i=1

d1[i], . . . , 1
n

n∑
i=1

dL[i]
)
≥ RL

(
(1 + ε)(d + ε′)

)
n→∞−→ RL(d), (3.29)

which completes the converse proof. �

Excess to Average Distortion

Lemma 3.3 is a consequence of the following lemma which is adapted from [PW17, Thm
25.5].
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Lemma 3.6. Fix ε > 0 and a distortion tuple d. Suppose that Assumption 3.1 is valid
and that we have an RDL code (f, g) of size M satisfying

Pr
[ ⋃
`∈[L]
{∆a

`(X, g(f(X))) > d`}
]
≤ ε. (3.30)

Then we can find a new RDL code (f̂ , ĝ) of size M + 1 whose average distortion satisfies

E
[
∆a
`

(
X, ĝ(f̂(X))

) ]
≤ d` + dp · ε1−1/p (3.31)

for all ` ∈ [L].

Proof. We define the new RDL code (f̂ , ĝ) via:

f̂(x) =
{
f(x), ∆a

`(x, g(f(x))) ≤ d` for all ` ∈ [L]
M + 1, otherwise

(3.32)

g∗(t) =
{
g(t), 1 ≤ t ≤M

y0, t = M + 1.
(3.33)

Let Y = g(f(X)) and Ŷ = ĝ(f̂(X)). The distortion can be bounded for all ` ∈ [L]:

E
[
∆a
`(X, Ŷ)

]
= E

[
∆a
`(X, Ŷ)

(
1{∆a

`
(X,Y)≤d`} + 1{∆a

`
(X,Y)>d`}

)]
= Pr

[
∆a
`(X,Y) ≤ d`

]
E
[
∆a
`(X, Ŷ)

∣∣∣∆a
`(X,Y) ≤ d`

]
+ E

[
∆a
`(X, y0)1{∆a

`
(X,Y)>d`}

]
a
≤ d` + E

[
∆a
`(X, y0)p

]1/p
Pr[∆a

`(X,Y) > d`]1−1/p (3.34)
b
≤ d` + dp ε

1−1/p

where (a) follows from Hölder’s inequality and (b) from Assumption 3.1 and the excess
distortion probability (3.30). �

To prove Lemma 3.3, observe that applying Lemma 3.6 to a sequence of optimal codes
with sizes M?

a (n, d, ε) gives

lim
ε↓0

lim sup
n→∞

E
[
∆a
`(X, Ŷ)

]
≤ d` (3.35)

for all ` ∈ [L] and thus

lim sup
n→∞

1
n

logM?

a(n, d) ≤ lim
ε↓0

lim sup
n→∞

1
n

log(M?
a (n, d, ε) + 1)

= lim
ε↓0

lim sup
n→∞

1
n

logM?
a (n, d, ε)

(3.36)
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which concludes the proof. �.

Achievability for Excess Distortion

To prove the achievability result of Lemma 3.4, we start from the following theorem.

Theorem 3.7 (Theorem 26.4 in [PW17]). For all PW |U and γ > 0, there exists a code
U → T → g(T ) with T ∈ [M ] and

Pr[∆(U, g(T )) > d] ≤ e−M/γ + Pr[ıX;Y (U ;W ) > log γ] + Pr[∆(U,W ) > d]. (3.37)

An inspection of the proof of Theorem 3.7 reveals that we can replace the event {∆(·, ·) >
d} by ⋃`∈[L]{∆a

`(·, ·) > d`} and similarly on the RHS. Fix a small ε′ > 0 and choose PY |X
such that E[δ(X, Y ) |X ∈ I`] = d`−ε′ for all ` ∈ [L] with d` > 0 and E[δ(X, Y ) |X ∈ I`] = 0
if d` = 0. We choose (U,W ) = (X,Y) with

PU = PX

PW |U =
n∏
i=1

PY |X

logM = n(I(X;Y ) + 2ε′)
log γ = n(I(X;Y ) + ε′)

{∆(U,W ) > d} =
⋃
`∈[L]
{∆a

`(X,Y) > d`}

(3.38)

for a fixed ` ∈ [L] and apply the union bound over our L distortion constraints to get

Pr
[ ⋃
`∈[L]

{
∆a
`

(
X, g(f(X))

)
> d`

}]

≤ e−M/γ + Pr[ıX;Y (X; Y) > log γ] +
L∑
`=1

Pr[∆a
`(X,Y) > d`]. (3.39)

To prove Lemma 3.4, we show that each of the three summands on the RHS of (3.37) goes
to zero as n→∞. For the first one, we have

e−M/γ = e−e
n(I(X;Y )+2ε′)−n(I(X;Y )+ε′) = e−e

nε′ n→∞−→ 0 (3.40)

for any ε′ > 0. Next, since the pair (X[i], Y [i]) is iid, the weak law of large numbers tells
us that

Pr[ıX;Y (X; Y) > log γ] = Pr
[ 1
n

n∑
i=1

ıX;Y (X[i];Y [i]) > I(X;Y ) + ε′
]
n→∞−→ 0. (3.41)

For the third summand in (3.37), first note that if d` = 0, then E[δ(X, Y ) |X ∈ I`] = 0
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and thus Pr[∆a
`(X,Y) > 0] = 0 as well. For d` > 0, we define the ε′′-letter typical set (with

ε′′ to be specified later) as follows;

Tε′′(`) :=
{

x ∈ X n :
∣∣∣∣ 1nN(I`|x)− Pr[X ∈ I`]

∣∣∣∣ ≤ εPr[X ∈ I`]
}
. (3.42)

By Hoeffding’s inequality [Ver18, Thm. 2.2.6], we have Pr[X 6∈ Tε′′(`)] ≤ 2e−n(ε′′ Pr[X∈I`])2 .
The probability of exceeding the `th distortion constraint is then

Pr[∆a
`(X,Y) > d`]

= Pr
[

1
N(I`|X)

n∑
i=1

1{X[i]∈I`}δ(X[i], Y [i]) > d`

]

= Pr
[

1
N(I`|X)

n∑
i=1

1{X[i]∈I`}δ(X[i], Y [i]) > d`,X ∈ Tε′′(`)
]

+ Pr[X 6∈ Tε′′(`)] Pr
[

1
N(I`|X)

n∑
i=1

1{X[i]∈I`}δ(X[i], Y [i]) > d`

∣∣∣∣∣X 6∈ Tε′′(`)
]

≤ Pr
[

1
nPr[X ∈ I`]

n∑
i=1

1{X[i]∈I`}δ(X[i], Y [i]) > d`(1− ε′′),X ∈ Tε′′(`)
]

+ Pr[X 6∈ Tε′′(`)]

≤ Pr
[

1
nPr[X ∈ I`]

n∑
i=1

1{X[i]∈I`}δ(X[i], Y [i]) > d`(1− ε′′)
]

+ 2e−n(ε′′ Pr[X∈I`])2
. (3.43)

Now note that

E
[

1
nPr[X ∈ I`]

n∑
i=1

1{X[i]∈I`}δ(X[i], Y [i])
]

= 1
n

n∑
i=1

E
[
δ(X[i], Y [i])

∣∣∣X[i] ∈ I`
]

= d` − ε′.

(3.44)

Choosing ε′′ = ε′/(2d`), we ensure that the first probability in (3.43) approaches zero by
the weak law of large numbers. Combining this with (3.40) and (3.41), we conclude that

Pr
[ ⋃
`∈[L]
{∆a

`(X,Y) > d`}
]

n→∞−−−→ 0 (3.45)

for all PY |X with E[δ(X, Y ) |X ∈ I`] ≤ max(d` − ε′, 0) and

lim sup
n→∞

1
n

logM?
a (n, d, ε) ≤ I(X;Y ) . (3.46)

Optimizing over PY |X , letting ε′ → 0 as n→∞, and using the continuity of RL completes
the proof.
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3.2. Finite Block Length

This section builds on the work by Kostina and Verdú [KV12], who derived general con-
verse results that, together with Shannon’s random coding technique, tightly characterize
the finite length RD behavior of memoryless sources with respect to an excess distortion
criterion. In this section, we first review the concept of d-tilted information, which plays a
central role in finite length lossy compression. We then review existing bounds and add to
this a new converse result which establishes an ordering between previous results. Finally,
we evaluate our new converse for the binary memoryless and Gaussian sources with a single
distortion constraint. An application to finite length coding rates with multiple distortion
constraints follows in Chapter 3.3.

3.2.1. d-tilted Information

In [KV12], the d-tilted information is a key random variable to evaluate the performance
of finite-length lossy compression. Based on the statistical variations of this quantity, one
can derive bounds and approximations of the optimal coding rates at finite block length.
For (x, y) ∈ X × Y , recall that

ıX;Y (x; y) = log dPY |X=x

dPY
(x, y) (3.47)

is the information density, which is a key quantity of interest in finite-length almost loss-
less compression [Kos13]. Csiszár [Csi74] revisits Shannon’s [Sha59] usual RD optimiza-
tion problem (2.4) with one distortion constraint d for a single random variable and de-
rives conditions that the optimal joint distribution P ?

XY must satisfy. It is known (see
also [Gra11, Ch. 9.5] for a more accessible treatment) that the RD function can be written
as

R(d) = inf
PY |X :

E[δ(X,Y )]≤d

E[ıX;Y (X;Y )]

= max
s≥0

(
inf
PY |X

E
[
ıX;Y (X;Y ) + sδ(X, Y )

]
− sd

)
(3.48)

= max
s≥0

(
inf
PY

EX
[
− log EY

[
e−sδ(X,Y )

]]
− sd

)
(3.49)

where the minimization in (3.48) is unconstrained over all PY |X and the minimization
in (3.49) is over all Y -marginals on Y with both expectations being unconditional. For
a fixed d, the maximizing value is given by s? := ∂R(d̂)

∂d̂

∣∣∣
d̂=d

. We will assume that the
RD function is achieved by a unique reconstruction variable Y?. This assumption is not
essential (see [KV12, Sec. V], [Csi74]), but it simplifies the presentation. Using Y?, the
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d-tilted information is defined as [KV12]

X(x, d) := − log EY?
[
es
?(d−δ(x,Y?))

]
(3.50)

and (3.49) can be written as

R(d) = EX
[
X(X, d)

]
. (3.51)

We next derive a similar characterization for the RDL function (3.6). Following along
the same lines as [Csi74,Gra11], we introduce the vector s of length L with nonnegative
elements to write

RL(d) = inf
PY |X∈P(X,d)

E[ıX;Y (X;Y )]

≥ max
s≥0

inf
PY |X∈P(X,d)

{
E[ıX;Y (X;Y )] +

L∑
`=1

s`E
[

1{X∈I`}δ(X, Y )
Pr[X ∈ I`]

]
−

L∑
`=1

s`d`

}
.

(3.52)

For a fixed s, varying d parameterizes a hyperplane (d, ϕ(s, d)) described by the functional

ϕ(s, d) := inf
PY |X∈P(X,d)

E
[
ıX;Y (X;Y ) +

L∑
`=1

s`
1{X∈I`}δ(X, Y )

Pr[X ∈ I`]

]
−

L∑
`=1

s`d`

= c(s)−
L∑
`=1

s`d`.

(3.53)

Now fix an arbitrary d̂. By the convexity of RL in d, there is a vector s? = −∇RL(d̂)
∣∣∣
d̂=d

such that (d, ϕ(s?, d)) passes through (d̂,RL(d̂)) and has no point above RL(d). This is
illustrated in Figure 3.1. With this choice of s?, equality holds in (3.49) [Csi74, Cf. Lemma
1.2]. Continuing along the lines of [Gra11, Cor. 9.3], we rewrite (3.49) as

RL(d) = max
s≥0

inf
PY |X∈P(X,d)

{
EX
[
− log EY

[
exp

(
L∑
`=1

1{X∈I`}δ(X, Y )
Pr[X ∈ I`]

)]]
−

L∑
`=1

s`d`

}
= E[X(X, d)]

(3.54)

where we define the d-tilted information for multiple constraints via

X(x, d) := − log EY?
[
exp

(
−

L∑
`=1

s?`∆e
k(X, Y )

)]
−

L∑
`=1

s?`d` (3.55)

where Y? is a reconstruction random variable that achieves the RDL function, and where
s? = ∂RL(d)

∂d`
for all ` ∈ [L].

We later identify a single random variable and its d-tilted information with a string of
n letters. To this end, note that the RDL function of X as defined in (3.6) is n times
the RDL function of X. Thus, the slope of the n-letter RDL function is s?n and we can
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Figure 3.1.: Illustration of (d,RL(d)) (gray) and (d, ϕ(s, d)) (blue) for two distortion
constraints.

calculate

X(x, d) := − log EY?

[
exp

(
−

L∑
`=1

ns?`∆e
`(x,Y)

)]
−

L∑
`=1

ns?`d`

=
n∑
i=1

X(x[i], d).
(3.56)

3.2.2. Previous Finite-Length Bounds
In [KV12], two general converse bounds for the smallest codebook size of a lossy source
code with excess distortion probability ε are derived. The first one [KV12, Thm. 7] is
rather simple and depends only on the d-tilted information, but also seems to be relatively
loose. The second bound [KV12, Thm. 8] is based on a hypothesis testing argument and
is more general. Consequently, the latter bound may be tight but needs to be relaxed for
computation as it involves the supremization over n-letter (probability) measures.
Before stating the bounds, we make a few remarks.

. The bounds are derived in a one-shot setting, i.e., for a single random variable X.
In order to apply them do a memoryless source with block length n, we identify X
with an n-letter iid random variable and compute the bound.

. Since the bounds are one-shot, there are no restrictions with respect to the distortion
measure and the results carry over to a non-separable distortion measure.

. Thus, the extension of the bounds to multiple distortion constraints is straightfor-
ward. One simply replaces the requirement of satisfying one distortion constraint by
the requirement of satisfying multiple distortion constraints.
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For simplicity, we will therefore state the bounds in terms of distortion balls:

B(X, d) =
{
y ∈ Y : all distortion constraints with

limits given by dare satisfied
}

(3.57)

where the number of constraints and the distortion measure should be clear from the con-
text. To avoid cumbersome notation, we will drop the block length and type of distortion
measure and simply refer to an (M, d, ε)-code for now. First, let us restate the converse
bounds.

Theorem 3.8 (Kostina & Verdú [KV12]). An (M, d, ε)-code satisfies

ε ≥ sup
γ≥0

(
Pr[X(X, d) ≥ logM + γ]− e−γ

)
. (3.58)

For the second converse, which is also called meta-converse in the literature, let

βα(p, q) = min
PW |X :

Pr[W=1]≥α

Q[W = 1] (3.59)

denote the optimal performance achievable among all randomized tests PW |X : X → {0, 1}
between probability distributions PX an QX where W = 1 indicates that the test chooses
PX , and where Q[·] is the probability of an event if X has distribution QX .

Theorem 3.9 (Kostina & Verdú [KV12]). An (M, d, ε)-code satisfies

M ≥ sup
QX

inf
y∈Y

β1−ε(PX , QX)
Q[y ∈ B(X, d)] (3.60)

where the supremum is over all σ-finite measures (see [KV12, Rem. 5]).

For an achievability result, note that we "simply" need a d-cover for any set of probability
1 − ε (recall Figure 2.2). Depending on the geometry of X , however, finding precise
covering numbers can be difficult. For Euclidean space and MSE (or distance) distortion,
for example, one can use the results from [Rog63,VG05] to derive an achievability result,
as done for the Gaussian memoryless source in [KV12, Thm. 39].
A general achievability result that has proved to be extremely useful is the finite length

version of Shannon’s random coding bound:

Theorem 3.10 (Shannon [Sha59]). For any probability measure PY on Y , there is an
(M, d, ε)-code satisfying

ε ≤ inf
PY

E
[(

1− PY (B(X, d))
)M]

≤ inf
PY

E
[

exp
(
−M · PY (B(X, d))

)] (3.61)

where the second bound is useful for numerical stability, see [KV12, Thm. 9-10].
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3.2.3. New Converse Bound

We add to Theorems 3.8 and 3.9 a third converse bound that is computable but tighter
than Theorem 3.8. After deriving this bound, we realized that it can also be deduced
from [KV12, Thm. 8] which establishes a connection between the two converse bounds
in [KV12] and shows that the hypothesis testing bound is always tighter. In hindsight, we
can state the following converse bound as a corollary of Theorem 3.9 and present its proof
via a specific choice of QX as a σ-finite measure.

Corollary 3.11. An (M, d, ε) code satisfies

M ≥ sup
γ∈R

 Pr[X(X, d) ≥ γ]− ε
sup
y∈Y

Pr
[
X(X, d) ≥ γ, y ∈ B(X, d)

]
 . (3.62)

Proof. Fix some γ ∈ R. Let σ(X) denote the σ-algebra generated by X and choose

Q[X ∈ F ] = Pr
[
X ∈ F , X(X, d) ≥ γ

]
(3.63)

for all F ∈ σ(X). An optimal randomized test between PX and QX is

PW |X(1|x) =


1, if X(X, d) < γ

Pr[X(X, d) ≥ γ]− ε
Pr[X(X, d) ≥ γ] , if X(X, d) ≥ γ.

(3.64)

The probability that this test succeeds under PX is

Pr[W = 1] = Pr[X(X, d) < γ] Pr[W = 1 |X(X, d) < γ]
+ Pr[X(X, d) ≥ γ] Pr[W = 1 |X(X, d) ≥ γ]

= 1− ε
(3.65)

and the measure of the event {W = 1} under QX is

Q[W = 1] = Pr[W = 1, X(X, d) ≥ γ]

= Pr[X(X, d) ≥ γ]Pr[X(X, d) ≥ γ]− ε
Pr[X(X, d) ≥ γ]

= Pr[X(X, d) ≥ γ]− ε. (3.66)

Inserting (3.63) and (3.66) into (3.60) and taking the supremum over γ completes the
proof. �

We next show that Corollary 3.11 gives a better converse bound than Theorem 3.8 for
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` = 1. To this end, it is helpful to rewrite (3.62) as a lower bound on ε:

ε ≥ sup
γ∈R

(
Pr[X(X, d) ≥ γ]−M sup

y∈Y
Pr[X(X, d) ≥ γ, δ(X, y) ≤ d]

)
. (3.67)

Now choose γ = logM + γ̃. Following along the lines of the proof of [KV12, Thm. 7], we
have

M sup
y∈Y

Pr[X(X, d) ≥ logM + γ̃, δ(X, y) ≤ d]

= M sup
y∈Y

E
[
1{ 1

M
eX (X,d)−γ̃≥1,es?(d−δ(X,y))≥1}

]
≤M sup

y∈Y
E
[ 1
M
eX(X,d)−γ̃1{es?(d−δ(X,y))≥1}

]
(i)
≤ e−γ̃ sup

y∈Y
E
[
eX(X,d)+s?(d−δ(X,y))

]
≤ e−γ̃

(3.68)

where (i) applies the next lemma from [Csi74].

Lemma 3.12 (Eq. (1.22) [Csi74]). For all y ∈ Y , we have

E
[
eX(X,d)+s?(d−δ(X,y))

]
≤ 1 (3.69)

with equality for PY ?-almost all y.

�

3.2.4. Binary Memoryless Source with Hamming Distortion
In this section, we evaluate Corollary 3.62 for the special case of a Binary Memoryless
Source (BMS) with one Hamming distortion constraint. Let X be a string of n iid instances
of X with Pr[X = 1] = 1− Pr[X = 0] = p, and choose the distortion function as

∆(x, y) = 1
n

n∑
i=1

1{x[i]6=y[i]}.

We have the following corollary.

Corollary 3.13 (BMS). Fix p ∈ (0, 1/2) and d ∈ [0, p). An (n,M, d, ε) code satisfies

M ≥ max
0≤b≤n

∑n
k=b

(
n
k

)
pk(1− p)n−k − ε
αn,d,p(b)

 (3.70)

where
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αn,d,p(b) = max
n̂1

bndc∑
k=0

k∑
j=0

(
n̂1

j

)(
n− n̂1

k − j

)
· pn̂1+k−2j(1− p)n−n̂1−k+2j1{n̂1+k−2j≥b} (3.71)

and the maximization is taken over all n̂1 ∈ N satisfying

max
{

0, b− bndc
}
≤ n̂1 ≤ min

{
n, b+ bndc

}
.

Note that Corollary 3.13 does not weaken Corollary 3.11; i.e., the RHSs of (3.62)
and (3.70) are equal for the BMS with Hamming distortions.

Remark 3.1. For p = 1/2, X(x, d) does not depend on x [KV12, Example 1]. In this case,
Corollary 3.13 coincides with [KV12, Thm. 20] which is derived from the meta-converse
bound.

Figure 3.2 compares our converse with the previously existing bounds. We see that in
this example, our bound is slightly better except for very short block lengths.
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Figure 3.2.: BMS with p = 2/5, d = 0.11, ε = 0.01.

Proof of Corollary 3.13. Fix p ∈ (0, 1/2), d ∈ [0, p) and γ ∈ R. We have [KV12, Eqn. (21)]

X(x, d) = N(1|x) log 1
p

+ (n− N(1|x)) log 1
1− p − nH2(d) .
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Since p ∈ (0, 1/2), it follows that p < 1 − p and X(x, d) grows linearly in N(1|x) for fixed
n. Let

b := min
{
n′ ∈ [n] : n′ log 1

p
+ (n− n′) log 1

1− p − nH2(d) ≥ γ

}
and note that {

x ∈ X n : X(x, d) ≥ γ
}

=
{
x ∈ X n : N(1|x) ≥ b

}
. (3.72)

Hence, we have

Pr[X(X, d) ≥ γ] = Pr
[
N(1|X) ≥ b

]
=

n∑
k=b

(
n

k

)
pk(1− p)n−k. (3.73)

Now consider the denominator of Corollary 3.11. Let n̂1 := N(1|y). Using Vandermonde’s
identity, the number of binary sequences in a Hamming ball of size bndc centered at a
sequence of Hamming weight n̂1 is given by

bndc∑
k=0

(
n

k

)
=
bndc∑
k=0

k∑
l=0

(
n̂1

l

)(
n− n̂1

k − l

)
(3.74)

where
(
n̂1
l

)(
n−n̂1
k−l

)
is the number of sequences of Hamming weight n̂1 + k− 2l. We can thus

write

sup
y∈Yn

Pr
[
X(X, d) ≥ γ,∆(X, y) ≤ nd

]
(i)= max

n̂1
Pr
[
N(1|X) ≥ b,∆(X, y) ≤ nd

]
= max

n̂1

∑
x

Pr[X = x]1{N(1|x)≥b,∆(x,y)≤nd}

= max
n̂1

bndc∑
k=0

k∑
l=0

(
n̂1

l

)(
n− n̂1

k − l

)
pn̂1+k−2l · (1− p)n−n̂1−k+2l1{n̂1+k−2l≥b} (3.75)

where (i) follows since, by symmetry, the probability depends on y only through n̂1.
To complete the proof, we show that it suffices to consider b − bndc ≤ n̂1 ≤ b + bndc

for the maximization. The lower bound is immediate because for n̂1 < b− bndc, we have
1{n̂1+k−2l≥b} = 0 for all summands. For n̂1 > b + bndc, we have 1{n̂1+k−2l≥b} = 1 for all
summands, but the sum is monotonically decreasing in n̂1 as we shall show next. Consider
two length-n sequences a, b ∈ {0, 1}n with a[j] = 0, b[j] = 1 for some j ∈ [n] and a[i] = b[i]
for all i 6= j, i.e., a and b differ at only at the j-th position. Let BH(a, d) be the Hamming
ball of radius bndc around a:

BH(a, d) :=
{

x ∈ {0, 1}n :
n∑
i=1

1{x[i] 6=a[i]} ≤ bndc
}
. (3.76)



3.2. Finite Block Length 35

If we can show that

Pr
[
X ∈ BH(a, d)

]
≥ Pr

[
X ∈ BH(b, d)

]
(3.77)

then we can infer by induction that

Pr
[
X ∈ BH(c, d)

]
≥ Pr

[
X ∈ BH(ĉ, d)

]
(3.78)

holds for all c, ĉ ∈ {0, 1}n with N(1|c) < N(1|ĉ), since the probabilities on the left hand
side and RHS depend only on N(1|·) for fixed p, n, d. We first note that

Pr
[
X ∈ BH(a, d)

]
= Pr

[
X ∈ BH(a, d) ∩ BH(b, d)

]
+ Pr

[
X ∈ BH(a, d) ∩ Bc

H(b, d)
]

Pr
[
X ∈ BH(b, d)

]
= Pr

[
X ∈ BH(a, d) ∩ BH(b, d)

]
+ Pr

[
X ∈ Bc

H(a, d) ∩ BH(b, d)
]
.

(3.79)

Hence, to prove (3.77) it suffices to show that

Pr
[
X ∈ BH(a, d) ∩ Bc

H(b, d)
]
≥ Pr

[
X ∈ BH(b, d) ∩ Bc

H(a, d)
]
. (3.80)

Fix a sequence x0 ∈ BH(a, d) ∩ Bc
H(b, d). Since x0 ∈ BH(a, d), but x0 6∈ BH(b, d), x0 differs

from a at most at d positions and from b at least at d+ 1 positions. Since a and b are the
same except at position j, x0 must be different from b at position j and thus x0[j] = 0.
Next, we can define x1 via

x1[k] = x0[k], k ∈ [n], k 6= j

x1[j] = 1.
(3.81)

Clearly, we have

x1 ∈ BH(b, d) ∩ Bc
H(a, d) and Pr[X = x0] > Pr[X = x1] (3.82)

since N(1|x0) < N(1|x1) and p < 1 − p. Since x0 ∈ BH(a, d) ∩ Bc
H(b, d) was arbitrary,

we constructed a unique x1 ∈ BH(b, d) ∩ Bc
H(a, d) for every such x0. Furthermore, as any

Hamming ball of a fixed radius has the same number of elements, we constructed a one-to-
one correspondence between each two elements in BH(a, d)∩Bc

H(b, d) and BH(b, d)∩Bc
H(a, d)

where (3.82) holds for each pair. We can thus conclude that (3.80) holds.

�
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3.2.5. Gaussian Memoryless Source with Squared Error
Distortion

Let X be a string of n iid instances of X ∼ N (0, 1), and consider squared error distortions

∆(x, y) = 1
n

n∑
i=1

(x[i]− y[i])2.

A slight weakening of Corollary 3.11 for this setting yields the next corollary for the
Gaussian Memoryless Source (GMS). Here fχ2

n
(·) denotes the χ2

n PDF.

Corollary 3.14. Fix d ∈ (0, 1). An (n,M, d, ε) code satisfies

M ≥ sup
γ≥nd

 ∫∞
γ fχ2

n
(w)dw − ε

1
2Ind/γ

(
n−1

2 , 1
2

) ∫ γ?
γ fχ2

n
(w)dw

 (3.83)

where I(·)(·, ·) is the regularized incomplete beta function and

γ? :=
[

2(nd)n/2

Ind/γ
(
n−1

2 , 1
2

) + γn/2
]2/n

. (3.84)

For a numerical example, let d = 0.25, σ2 = 1 and ε = 10−2. Figure 3.3 plots the bound
in (3.83) and, for comparison, the converse bound [KV12, Theorem 36], which can be
derived from the meta converse (Theorem 3.9). Our result is tighter for n ≥ 12. We also
included the Gaussian approximation [KV12, Theorem 40]. Here, choosing small values for
d shifts the crossing point to larger n whereas varying ε does not seem to have a significant
influence.

Proof of Corollary 3.14. The d-tilted information for the GMS with d < σ2 = 1 is given
by [KV12, Example 2]

X(x, d) = n

2 log 1
d

+ ‖x‖
2
2 − n
2 log e

which grows linearly in ‖x‖2
2. Hence, we can rewrite (3.62) as

M ≥ sup
γ≥0

 Pr
[
‖X‖2

2 ≥ γ
]
− ε

sup
y∈Rn

Pr
[
‖X‖2

2 ≥ γ,∆(X, y) ≤ d
]
. (3.85)

We will lower bound (3.85) using a geometric argument for the denominator. By the
circular symmetry of the GMS, we need to consider only those y ∈ Rn for the supremum
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Figure 3.3.: GMS, d = 0.25, σ2 = 1, ε = 0.01.

that lie on an arbitrary straight line through the origin. Define

A :=
{
x ∈ Rn : ‖x‖2

2 ≥ γ
}

B2(y, d) :=
{
x ∈ Rn : ‖x − y‖2

2 ≤ nd
} (3.86)

and observe that

sup
y∈Rn

Pr
[
‖X‖2

2 ≥ γ,∆(X, y) ≤ d
]

= sup
y∈Rn

Pr
[
X ∈ A ∩ B2(y, d)

]
= sup

y∈L
Pr
[
X ∈ A ∩ B2(y, d)

]
(3.87)

where L denotes the set of points lying on an arbitrary straight line through the origin,
see Figure 3.4(a).
Denote the surface area of an n-dimensional sphere of radius r by Sn(r) and the surface

area of a n-dimensional spherical cap of radius r and half angle θ by An(r, θ). The following
relation holds [Li11]:

An(r, θ) := 1
2Sn(r)Isin2(θ)

(
n− 1

2 ,
1
2

)
(3.88)

where I(·)(·, ·) is the regularized incomplete beta function. Using the law of sines and taking
γ > nd, we can determine the half angle θd such that An(√γ, θd) is the largest spherical
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cap at radius √γ contained in some B2(y, d):

θd = sin−1
√
nd/γ. (3.89)

Let Cn(θd) be the n-dimensional infinite cone of half angle θd that passes throughAn(√γ, θd).
Clearly, A∩B2(y, d) ⊂ Cn(θd) for any y ∈ L. This setup is visualized in Figure 3.4. Next,

L
A

√
γ

Sn(√γ)

An(√γ, θd)

θd

Cn(θd)

B2(y, d)

(a) Intersection of A ∩ Cn(θd) with possible
distortion balls that are centered on the
straight line L.

A

√
γ

Sn(√γ)

A
n ( √
γ, θ

d )

2θd
Cn(θd)

B2(y, d)

K?

(b) Geometry of K? (gray area).

Figure 3.4.: Illustration of the geometry of the converse bound for the GMS.

denote the volume of B2(y, d) for any y ∈ Rn by

Vn
(√

nd
)

:= πn/2

Γ
(
n+2

2

)(nd)n/2 (3.90)

where Γ(·) is the gamma function. To upper bound (3.87), we consider the largest proba-
bility of any set in A∩Cn(θd) (the shaded area in Figure 3.4(a)) that has the same volume
as a distortion ball. We denote this set by

K? := arg max
K⊂A∩Cn(θd):

Vol(K)=Vn(
√
nd)

Pr
[
X ∈ K

]
. (3.91)

The geometry of the arg max problem is depicted in Figure 3.4(b). By the circular sym-
metry, K? is the slice of the cone Cn(θd) that lies on the surface of Sn

(√
γ, θd

)
and has

volume Vn
(√
nd
)
. More precisely, we can describe K? as the difference between spherical

sectors of half angle θd whose volumes differ by exactly Vn(
√
nd), see Figure 3.4(b).
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The volume of a hypershperical sector of half angle θ and radius r is given by [Li11]

V sec
n (r, θ) := 1

2Vn(r)Isin2(θ)

(
n− 1

2 ,
1
2

)
.

Let γ? be the solution to

V sec
n (
√
γ?, θd)− V sec

n (√γ, θd) = Vn(
√
nd) (3.92)

which, using sin2(θd) = nd/γ, can be rewritten as (3.84). Finally, we can use the tools
developed in (3.87)–(3.92) to bound

sup
y∈L

Pr
[
X ∈ A ∩ B2(y, d)

] (a)
≤ Pr

[
X ∈ K?

]
(b)= Pr

[
γ ≤ ‖X‖2 ≤ γ?,X ∈ Cn(θd)

]
(c)= Pr

[
γ ≤ ‖X‖2 ≤ γ?

]
Pr
[
X ∈ Cn(θd)

]
,

(d)= Pr
[
γ ≤ ‖X‖2 ≤ γ?

]An(√γ, θd)
Sn(√γ)

= 1
2Ind/γ

(
n− 1

2 ,
1
2

)∫ γ?

γ
fχ2

n
(w)dw (3.93)

where (a) follows from the definition of K? (3.91), (b) follows from the definition of γ? (3.92)
and the geometry of K?; and (c)–(d) are a result of the circular symmetry of the multi-
variate Gaussian. Combining (3.93) and (3.85) yields (3.83).

�

3.3. Binary Memoryless Source with Letter-Based
Distortions

This section applies the ideas and results of Section 3.1 and Section 3.2 to a BMS with
two individual Hamming distortion constraints. We have X = Y = {0, 1}, PX(0) =
1− PX(1) = p and

δ(x, y) = 1{x 6=y}. (3.94)

We first study the asymptotic RDL function for the BMS with two individual Hamming
distortion constraints in Section 3.3.1. Then, Section 3.3.2 uses the tools from Section 3.2
to study finite length bounds for this source for both distortion measures ∆a and ∆e.
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3.3.1. Infinite Block Length

Recall the standard RD function of the BMS with a single Hamming distortion constraint.

Proposition 3.15. If p ≤ 1/2 and d > 0 then [CT06b, Thm. 10.3.1]

R(d) =
{
H2(p)−H2(d) , if 0 ≤ d ≤ p

0, otherwise.
(3.95)

Now let RBMS
L (d0, d1) be the RDL function for the BMS with two Hamming distortion

constraints as defined in Def. 3.3, i.e., we choose L = 2, I0 = {0} and I1 = {1}.

Theorem 3.16. Let q = (1− p)d0 + p(1− d1). Then, we have

RBMS
L (d0, d1) =

{
H2(q)− (1− p)H2(d0)− pH2(d1) if d0 + d1 < 1
0, otherwise.

(3.96)

Figure 3.3.1 plots the RDL function for p = 0.35.
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Figure 3.5.: An illustration of RBMS
L (d0, d1) with p = 0.35 and Hamming distortions.

Proof. We wish to minimize I(X;Y ) over all test channels
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PX

1− p

p

X Y

0

1

0

0

1− ε0

1− ε1

ε0

ε1

subject to 0 ≤ ε` ≤ max{d`, 1} for ` = 0, 1. We can write

I(X;Y ) = H((1− p)ε0 + p(1− ε1))− (1− p)H2(ε0)− pH2(ε1) . (3.97)

If d0 + d1 ≥ 1, we simply choose ε0 = 1 − ε1 to get I(X;Y ) = 0. For d0 + d0 < 1, note
that also ε0 + ε1 < 1. Therefore, we have ε0 ≤ q ≤ 1 − ε1 and I(X;Y ) is monotonically
decreasing in both ε0 and ε1 since

∂I(X;Y )
∂ε0

= (1− p) log (1− q)ε0

q(1− ε0) > 0

∂I(X;Y )
∂ε1

= −p log (1− q)(1− ε1)
qε1

> 0.
(3.98)

The minimum is thus attained by choosing ε0 = d0 and ε1 = d1 whenever d0 + d1 < 1. �

3.3.2. Finite Block Length
Next, we particularize Corollary 3.11 and Theorem 3.10 to the BMS with two Hamming
distortion constraints in order to study its finite block length RDL tradeoffs.
For the d-tilted information, we compute

s?0 = ∂RL(d0, d1)
∂d0

= (1− p) log
(

q

1− q
1− d0

d0

)

s?1 = ∂RL(d0, d1)
∂d1

= p log
(

1− q
q

1− d1

d1

) (3.99)

and inserting this into (3.56) yields

X(x, d) = N(0|x) log 1− d0

1− q + N(1|x) log 1− d1

q

− n(1− p)d0 log
(

q

1− q
1− d0

d0

)
− npd1 log

(
1− q
q

1− d1

d1

)
.

(3.100)

Note that since N(0|x) = n−N(1|x), the term X(x, d) is increasing in N(1|x) if 1−d1
q

> 1−d0
1−q ,

it is constant if equality holds, and it is decreasing otherwise. A direct evaluation of
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Corollary 3.11 leads to the following result.

Corollary 3.17 (Converse BMS with two Hamming constraints). Fix p ∈ (0, 1) and
d = (d0, d1) ≥ 0 such that d0 + d1 < 1 and 1−d1

q
> 1−d0

1−q . An (n,M, d, ε,∆)-code satisfies

M ≥ max
0≤b≤n

n∑
k=b

(
n
k

)
pk(1− p)n−k − ε

α
(·)
n,d,p(b)

(3.101)

where depending on the choice of the distortion function we have

αa
n,d,p(b) = max

0≤n̂1≤n

bnd0c∑
j=0

bnd1c∑
l=0

(
n̂1

j

)(
n− n̂1

l

)
pn̂1+j−l(1− p)n−n̂1−j+l

· 1{b≤n̂1+j−l≤n}1{j≤b(n−n̂1−j+l)d0c}1{l≤b(n̂1+j−l)d1c} (3.102)

for ∆a or

αe
n,d,p(b)

= max
0≤n̂1≤n

bn(1−p)d0c∑
j=0

bnpd1c∑
l=0

(
n̂1

j

)(
n− n̂1

l

)
pn̂1+j−l(1− p)n−n̂1−j+l1{b≤n̂1+j−l≤n} (3.103)

for ∆e.

We would like to compare Corollary 3.17 with a bound derived from the meta-converse.
Choosing QX as the uniform distribution in (3.60) leads to tight bounds for the BMS with
a single average Hamming distortion constraint, see [KV12, Thm. 20]. Making the same
choice for two constraints, we get the following numerically simpler converse bound.

Corollary 3.18. Fix p ∈ (0, 1) and d = (d0, d1) such that d0 + d1 < 1. An (n,M, d, ε,∆)
code satisfies

M ≥

r∗∑
k=1

(
n

k

)
+ β∗

(
n

r∗ + 1

)
α

(·)
n,d,1/2(0)

(3.104)

where α(·)
n,d,1/2(0) is given as in Corollary 3.17,

r∗ := max
{
r :

r∑
k=1

(
n

k

)
pk(1− p)n−k ≤ 1− ε

}
(3.105)

and β∗ ∈ [0, 1) is the solution to

r∗∑
k=1

(
n

k

)
pk(1− p)n−k + β∗

(
n

r∗ + 1

)
pr
∗+1(1− p)n−r∗−1 = 1− ε. (3.106)



3.3. Binary Memoryless Source with Letter-Based Distortions 43

We next apply the random coding bound, Theorem 3.10, to our setting. Here, we choose
PY = ∏n

i=1 PY to be the product distribution with PY (0) = 1 − PY (1) = q (which is the
RDL achieving reconstruction distribution) for each symbol.

Corollary 3.19 (Random Coding BMS). There exists an (n,M, d, ε,∆a)-code with

ε ≤
n∑
k=1

(
n

k

)
pk(1− p)n−k

exp
(
−M

bkd1c∑
j=1

b(n−k)d0c∑
l=1

(
k

j

)(
n− k
l

)
qk−j+l(1− q)n−k+j−l

)
(3.107)

and an (n,M, d, ε,∆e)-code with

ε ≤
n∑
k=1

(
n

k

)
pk(1− p)n−k

· exp
(
−M

bnpd1c∑
j=1

bn(1−p)d0c∑
l=1

(
k

j

)(
n− k
l

)
qk−j+l(1− q)n−k+j−l

)
. (3.108)

Numerical Examples

In Figure 3.6, we evaluate the bounds for the distortion measure ∆a (normalization with
N(I`|X)) for p = 2/5, d0 = d1 = 0.11 and ε = 0.01. Comparing the two converse results,
we observe that Corollary 3.17 gives a better bound than Corollary 3.18. The former also
seems to vary less for similar block lengths.
A comparison for the distortion measure ∆e (normalization with nPr[X ∈ I`]) with the

same parameters is given in Figure 3.7. Observe that the bounds oscillate much more with
the block length as compared to using ∆a.
In Figure 3.8, we give an example of a sparse binary source where the zeros are to

be reconstructed perfectly and we allow some distortion for the ones. We choose p =
0.11, d0 = 0, d1 = 0.1 and ε = 0.01. In this case, we observe that the converse from
Corollary 3.18 is useless except for very small block lengths. This is because if we choose
QY as the uniform distribution, infy∈Y

1
Q[y∈BH(X,d)] is related to the number of elements in

the largest distortion ball around some y. This leads to a good bound if all distortion balls
are of the same size. In this case, however, the size of the distortion ball greatly varies
with the number of ones in X.
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Figure 3.6.: Example with p = 2/5, d0 = d1 = 0.11 and ε = 0.01 for ∆a.
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Figure 3.7.: Example with p = 2/5, d0 = d1 = 0.11 and ε = 0.01 for ∆e.
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Figure 3.8.: Example with p = 0.11, d0 = 0, d1 = 0.1 and ε = 0.01 for ∆a.





4
Bernoulli Spike Sources
In this chapter, we study the (letter-based) RD function of the memoryless Bernoulli Spike
Source (BSS) in the limit of large block lengths. The BSS emits an iid sequence X1, X2, . . .
of real-valued random variables characterized by the relation

X = B · Z, (4.1)

where B has Pr[B = 1] = 1 − Pr[B = 0] = p, Z has a PDF PZ , and B and Z are
independent. The probability distribution of X is given by

PX = (1− p) · δ0 + p · PZ . (4.2)

This source model serves as a simple iid model for the sparse sources that are of interest
in CS or transform coding [WV12a]. It is often used as a basic probabilistic source model
for CS systems, see, e.g., [VS11,WV12b,DJM13,BKM+19]. An example of a string of iid
outputs from this source is shown in Figure 4.1.
Previous studies have focused on a single squared error distortion measure. Unfortu-

nately, a closed-form solution of the RD function has, as is the case except for very few

Figure 4.1.: A typical signal sampled from a BSS.
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combinations of sources and distortion measures, not been found. For a first insight, two
very simple bounds can be made for the RD functions of such sources. Using the Shannon
Lower Bound, we can lower bound

inf
PY |X :

E[(X−Y )2]≤d
I(X;Y ) ≥ inf

PY |X :
E[(X−Y )2]≤d

pI(X;Y |B = 1) ≥ p
(
h(Z)− 1

2 log(2πed/p)
)
, (4.3)

which corresponds to a coding scheme where a genie provides the value of B as side
information. On the other extreme, one could first code the variable B losslessly and then
use a good codebook for the continuous part Z of the source. Choosing Y = Z +Nd with
Nd ∼ N (0, d/p) independent of Z, we get the upper bound

inf
PY |X

E[(X−Y )2]≤d
I(X;Y ) ≤ H(B) + p

(
h(Z +Nd)−

1
2 log(2πed/p)

)
. (4.4)

Comparing (4.3) and (4.4), we notice a gap of at least H(B) which can be quite substantial
for small p. One might, of course, employ numerical methods such as the Blahut-Arimoto
algorithm to compute the rate distortion function for a specific setting. These methods,
however, provide little insight into the general RD behavior of sparse signal sources and
good coding schemes for them. Precisely this is the goal of previous and our information-
theoretic studies via upper and lower bounds as well as asymptotic considerations.
Rosenthal and Binia [RB88] and later György, Linder and Zeger [GLZ99] studied the RD

function of such mixed discrete-continuous sources under a squared-error fidelity criterion.
Particularized to the BSS model (4.1), their results provide an asymptotically exact (d ↓ 0)
approximation R0(d) of the RD function

lim
d↓0

{
R0(d)− R(d)

}
= 0 (4.5)

where

R0(d) := H2(p) + p
(
h(Z)− 1

2 log(2πed/p
)

(4.6)

provided that the continuous random variable Z has finite second moment.
Weidmann and Vetterli [WV12a] studied several classes of sparse and compressible

sources. In particular, they derived an upper bound for the RD function of spike sources
that seems to be close to optimal for both high and small distortions. The idea is to dis-
tinguish between significant samples (i.e., those with a high magnitude) and insignificant
samples. The insignificant samples are set to zero while the positions of the significant
samples are stored and their amplitudes are coded with a Gaussian codebook. This yields
the following upper bound.
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Theorem 4.1 (Weidmann & Vetterli [WV12a]). For a squared error distortion constraint,
the RD function of a BSS is upper bounded by

R(d) ≤ inf
τ≥0

H2(Pr[|X| > τ ]) + Pr[|X| > τ ]
2 log

E
[
X21{|X|>τ}

]
d− E

[
X21{|X|≤τ}

]
. (4.7)

It is worth noting that this coding scheme always reconstructs the zero elements perfectly,
i.e., all the incurred distortion is on the nonzero elements of X.
Chang [Cha10] derived a lower bound for the RD function of a BSS with a Gaussian Z

using a channel coding argument. For small values of d, this bound exhibits a constant
gap of −(1− p) log(1− p) to the best upper bound.
In this chapter, we first consider the RDL function of BSSs with two constraints: Ham-

ming distortion for the zeros, squared error distortion for the nonzeros, and derive upper
and lower bounds for the RDL function.
Further, we leverage the bounds for the RDL function to derive a new lower bound for a
single squared error distortion measure. We then show that this bound is asymptotically
tight in the small distortion regime, thereby closing the gap left by Chang [Cha10] and,
using a result by Koch [Koc16], extending the tightness result (4.5) to the broadest possible
class of random variables Z, namely those whose discrete entropy of the integer part is
finite.
The work presented in this chapter is based on joint work with Roy Timo and parts of

it are published in [PT16c].

4.1. Converse for Two Distortions

Motivated by the previous discussion, we wish to investigate the RD behavior of a BSS
with separate distortion constraints for the zeros and the nonzero samples:

. Hamming distortion constraint of the zero event:

∆a
0(x, y) = 1

N({0}|x)

n∑
i=1

1{x[i]=0}1{y[i]6=0} (4.8)

. MSE distortion of the nonzero event:

∆a
S(x, y) = 1

N({0}c|x)

n∑
i=1

1{x[i] 6=0}(x[i]− y[i])2 (4.9)

Thus, the asymptotic letter-based RD function (3.6) is given by
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RBSS
L (d0, dS) = min

PY |X
I(X;Y ) subject to Pr[Y 6= 0 |X = 0] ≤ d0 (4.10a)

E[(X − Y )2 |X 6= 0] ≤ dS. (4.10b)

Since Theorem 4.1 provides a coding scheme that has numerically been demonstrated
to be very close to the RD function and achieves E[∆a

0(X,Y)] = 0, we focus on deriving a
converse result.
We prove the following lower bound.

Theorem 4.2. For all 0 ≤ d0 ≤ 1 and dS ≥ 0, we have

RBSS
L (d0, dS) ≥ RBMS

L (d0, d1) + p
(
h(Z)− 1

2 log(2πedS)
)

(4.11)

where d1 is given by Lemma 4.3 and RBMS
L (d0, d1) is given by (3.96).

Proof. We wish to minimize I(X;Y ) over all conditional distributions PY |X from X to Y
satisfying (4.10a) and (4.10b). Since B can be computed from X (with probability one),
B −X − Y forms a Markov Chain. We write

I(X;Y ) = I(B,X;Y ) = I(B;Y ) + pI(X;Y |B = 1) (4.12)

since I(X;Y |B = 0) = 0. Now consider

I(X;Y |B = 1) = h(X|B = 1)− h(X|Y,B = 1)
a
≥ h(Z)− h(X − Y |B = 1)
b
≥ h(Z)− 1

2 log 2πeE[(Y − Z)2 |B = 1]
c
≥ h(Z)− 1

2 log 2πedS

(4.13)

where (a) follows from the translation invariance of differential entropy [CT06b, Thm.
8.6.3] and because conditioning does not increase entropy [CT06b, Thm 8.6.1], (b) follows
since given B = 1, (X − Y ) has finite second moment due to the distortion constraint and
the maximum entropy property of Gaussian random variables [CT06b, Thm 17.2.3], and
(c) uses the distortion constraint (4.10b) again.
To complete the proof, we need to show that I(B;Y ) is lower bounded by RBMS

L (d0, d1)
for every PY |X satisfying (4.10a) – (4.10b). To this end, we determine equivalent Hamming
distortions d0 and d1 such that I(B;Y ) can be compared to the RDL function of the binary
memoryless source B.
Denote B̂ = 1{Y 6=0}. From (4.10a), we have

d0 ≥ Pr[Y 6= 0 |X = 0] = Pr[B̂ = 1 |B = 0]. (4.14)
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Now consider (4.10b):

dS ≥ E[(Y −X)2 |B = 1]
≥ E[(Y −X)21{B̂=0} |B = 1]

≥ E
[
X21{B̂=0}

∣∣∣B = 1
]
. (4.15)

Next, denote the set of conditional distributions satisfying (4.15) by

Q(dS) :=
{
PY |X : E

[
X21{B̂=0}

∣∣∣B = 1
]
≤ dS

}
(4.16)

and define

d1 := sup
PY |X∈Q(dS)

Pr[B̂ = 0 |B = 1]. (4.17)

By (4.14) and (4.17), the distribution PY |X satisfies

I(B;Y ) ≥ I
(
B; B̂

)
≥ min

PB̂|B :
E[1{B̂=1} |B=0]≤d0

E[1{B̂=0} |B=1]≤d1

I
(
B; B̂

)
= RBMS

L (d0, d1) . (4.18)

To complete the proof, it remains to determine d1. This is given by the following lemma.

Lemma 4.3. Let QZ2 be the quantile function of Z2, i.e.,

QZ2(q) := inf {w ∈ R : q ≤ FZ2(w)} . (4.19)

d1 is the solution to

E
[
Z21{Z2≤QZ2 (d1)}

]
= dS. (4.20)

Denote the cumulative distribution function of the chi-squared distribution with k degrees
of freedom by Fχ2

k
and its inverse by F−1

χ2
k
. If Z is a standard Gaussian random variable,

then

d1 = Fχ2
3

(
F−1
χ2

1
(dS)

)
. (4.21)

Lemma 4.3 basically quantifies how much of X can be classified as insignificant sam-
ples without immediately violating the distortion constraint for the spikes. The proof of
Lemma 4.3 is given in Appendix A.1. �
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Simple LB (4.3)
UB Thm. 4.1
LB Thm. 4.2, d0 = 0
LB Thm. 4.2, d0 = 0.01
LB Thm. 4.2, d0 = 0.05

Figure 4.2.: Comparison of upper and lower bounds for p = 0.1.

Numerical Example

Figure 4.2 shows an evaluation of the different bounds with p = 0.1 for Z ∼ N (0, 1). In
this case, the upper bound (4.4) can easily be improved to H2(p) + p

2 log(1/dS) so that it
exhibits a constant gap ofH2(p) to the lower bound. The straight lines represent the simple
upper and lower bound discussed in (4.3) and (4.4), which leave a gap of H2(p) ≈ 0.47 bits
that is significant even at low distortions. We see that for d0 = 0, our lower bound from
Theorem 4.2 is very close to the upper bound (4.7). An interesting question is whether
one can find an achievability scheme that benefits from having nonzero distortion on the
zeros.

4.2. Converse for Squared Error Distortions
In this section, we will leverage the results for the RDL function to derive a general converse
result for spike sources with just one MSE distortion constraint. The key idea is to split
the single squared error distortion constraint into two separate constraints - one for the
zeros and one for the nonzeros. We can express the RD function as

R(d) = inf
PY |X :

E[(X−Y )2]≤d
I(X;Y ) = min

d′0,d
′
S:

(1−p)d′0+pd′S≤d

RBSS,mse
L (d′0, d′S) (4.22)
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where we defined the RDL function with two squared error distortion constraints as

RBSS,mse
L (d0, dS) = min

PY |X
I(X;Y ) subject to E[(X − Y )2 |X = 0] ≤ d0 (4.23a)

E[(X − Y )2 |X 6= 0] ≤ dS. (4.23b)

Introducing these new constraints adds a certain structure we can exploit to investigate
the zeros and nonzeros separately in a way similar to Theorem 4.2. Before stating the
converse bound for R(d), we need to introduce a few definitions.
For some γ > 0 with Pr[|Z| > γ] > 0, let

W := (|Z| − γ)21{|Z|≥γ}. (4.24)

We are interested in the cumulative distribution function of W conditioned on the event
Z := {|Z| > γ}, which is given by

FW |Z(w) =


Pr
[
|Z| ∈ (γ, γ +

√
w]
]

Pr[|Z| > γ] , if w > 0

0, otherwise
(4.25)

and we denote the quantile function of W conditioned on Z by QW |Z : [0, 1]→ R:

QW |Z(q) := inf
{
w ∈ R : q ≤ FW |Z(w)

}
. (4.26)

Further, let

gW |Z(q) := E
[
W1{W≤QW |Z(q)}

∣∣∣Z, B = 1
]

(4.27)

and denote by g−W |Z the inverse of gW |Z . Finally, define qγ : [0,∞) → [0, 1] to be the
(strictly increasing) function given by

qγ(dS) := Pr[Z, B = 1]g−W |Z
(

dS

Pr[Z, B = 1]

)
+ Pr[Zc, B = 1]. (4.28)

We can now state our converse result.

Theorem 4.4. We have R(d) ≥ RBSS,mse
LB (d) for all d > 0, where

RBSS,mse
LB (d) := sup

γ≥0
min
d0,dS:

(1−p)d0+pdS≤d

(
RBMS

L

(
d0/γ

2, qγ(dS)
)

+ p
(
h(Z)− 1

2 log(2πedS)
))
. (4.29)

The proof of Theorem 4.4 uses similar ideas to the proof of Theorem 4.2, but keeps track
of a few more details. We thus defer it to Appendix A.2.

Remark 4.1. One might ask about the usefulness of bounds such as Theorem 4.4, given
that numerical methods [Bla72,Ari72] are available that can compute the RD function pre-
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cisely. Our answer to this question is threefold. First, such bounds give analytical insight
into the problem. We will, e.g., use Theorem 4.4 to show that the approximation (4.6) is
asymptotically accurate (as d ↓ 0) for all variables Z for which the Shannon lower bound
is tight (see [Koc16]). Second, we can leverage this bound in situations in which numerical
methods do not exist or are computationally costly, such as the distributed source coding
setting discussed in Section 5. Here, there is no known general expression for the optimum
coding rates which means that one must resort to upper and lower bounds. Theorem 4.4
can be applied in this case, too. Third, bounds can be useful if they are computationally
simpler than existing numerical methods. While Theorem 4.4 itself is not numerically very
simple to compute, we remark that it can be relaxed by choosing a specific γ (choosing
γ ∼ d1/3 works well for a Gaussian Z) or by relaxing it to Corollary 4.5, which is stated
below.

Observe that from (1−p)d0+pdS ≤ d, we may upper bound d0 ≤ d/(1−p) and dS ≤ d/p.
Since RBMS

L is non-increasing in d0 and d1 and qγ is strictly increasing, we can immediately
relax Theorem 4.4 to the following simpler bound.

Corollary 4.5. For all d > 0, we have R(d) ≥ RBSS,mse
LB (d) ≥ R̃BSS,mse

LB (d), where

R̃BSS,mse
LB (d) := sup

γ>0
RBMS

L

(
d

(1− p)γ2 , qγ(d/p)
)

+ p
(
h(Z)− 1

2 log(2πed/p)
)
. (4.30)

The next result shows that the approximation (4.6) is asymptotically accurate in the
small distortion regime.

Theorem 4.6. Let Z be such that |h(Z)| < ∞ and H(bZc) < ∞. Then, R0(d) is
asymptotically accurate, that is

lim
d↓0
{R0(d)− R(d)} = 0. (4.31)

Proof of Theorem 4.6. Recall that by Corollary 4.5 and (4.4), we have

sup
γ>0

RBMS
L

(
d

(1− p)γ2 , qγ(d/p)
)

+ p
(
h(Z)− 1

2 log(2πed/p)
)

≤ R(d) ≤ H(B) + p
(
h(Z +Nd)−

1
2 log(2πed/p)

)
(4.32)

where Nd ∼ N (0, d/p) is independent of Z. In [Koc16, Theorem 2], it is shown that

lim
d↓0

(
h(Z)− h(Z +Nd)

)
= 0 (4.33)

whenever |h(Z)| < ∞ and H(bZc) < ∞. Thus, we only need to show that the first term
in (4.30) converges to H2(p) as d→ 0. This technical part is done in Appendix A.3. �
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Numerical Example

Figure 4.3 shows Theorem 4.4 and Corollary 4.5 in comparison with the simple upper and
lower bounds (4.3) and (4.4) as well as the threshold coding scheme (4.7) from [WV12a]
for Z ∼ N (0, 1) and p = 0.1. Since Z is Gaussian, the upper bound (4.4) is in fact an
achievable rate and equal to R0(d). We clearly observe that the gap between the lower
bounds and R0(d) vanishes as d ↓ 0 as guaranteed by Theorem 4.6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−60

−50

−40

−30

−20
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Rate [bits]

d
[d
B]

Simple UB & R0(d) (4.4)
UB Thm. 4.1
RBSS,mse

LB (d)
R̃BSS,mse

LB (d)
Simple LB (4.3)

Figure 4.3.: Bernoulli-Gaussian Spike Source with p = 0.1.





5
Distributed Bernoulli-Gaussian Spike
Source
In this chapter, we derive RD bounds for distributed source coding for sparse sources. In
this setting, multiple sources are observed and encoded separately and decoded jointly.
Determining the optimal coding rates in lossy distributed source coding has been an open
problem for a long time and it is not clear whether a general single-letter solution exists.
Still, previous efforts have succeeded in solving several important special cases and deriving
inner and outer bounds for the optimal coding rates. Below, we list some important
previous works on distributed source coding.

. Berger [Ber78] and Tung [Tun78] derived general inner and upper bounds. They are,
however, known to be different in general (see [GK11, Ch. 12]).

. For the case of finite-alphabet sources and d1 = d2 = 0, i.e., the sources are encoded
losslessly, the coding rates were determined by Slepian and Wolf [SW73].

. Berger and Yeung [BY89] solved the case where the source alphabets are finite,
d1 = 0, and d2 is arbitrary.

. Oohama [Ooh97] solved the case of correlated Gaussian sources with squared error
distortion where only one of the two sources is reconstructed with a target distortion.

. Zamir and Berger [ZB99] considered sources with a PDF in the low distortion limit
d1, d2 → 0. In particular, they derived a multi-terminal extension of the Shannon
lower bound and showed that this is tight in the low distortion limit.

. Wagner, Tavildar and Viswanath [WTV08] solved the case of correlated Gaussian
sources with two squared error distortion constraints.
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. Wagner, Kelly and Altuğ [WKA11] showed that the Berger-Tung inner bound is sub-
optimal in general and derived an improved inner bound that incorporates common
components.

. Courtade and Weissman [CW14] solved the case of discrete sources with logarithmic
loss.

5.1. System Model
We consider Distributed Bernoulli-Gaussian Sources (DBGSs) where the support is com-
mon to both signals. To be more precise, consider the model

X1 = B · Z1

X2 = B · Z2
(5.1)

where B has Pr[B = 1] = 1 − Pr[B = 0] = p and (Z1, Z2) are jointly Gaussian with zero
mean, variances one and correlation coefficient ρ.
We assume that a distributed source emits iid copies {X1[i], X2[i]}ni=1 that are encoded

separately by the encoders

f1 : Rn →
{

1, . . . , 2nR1
}
, f2 : Rn →

{
1, . . . , 2nR2

}
(5.2)

and decoded jointly by the decoders

g1 :
{

1, . . . , 2nR1
}
×
{

1, . . . , 2nR2
}
→ Rn

g2 :
{

1, . . . , 2nR1
}
×
{

1, . . . , 2nR2
}
→ Rn.

(5.3)

We further require the reconstructions (Y1,Y2) to satisfy the distortion constraints

E
[
∆(X1,Y1)

]
≤ d1, E

[
∆(X2,Y2)

]
≤ d2. (5.4)

This system model is depicted in Figure 5.1.

Encoder f1

Decoder
g1, g2

nR1 bitsX1

Encoder f2
nR2 bitsX2

(
X1[i], X2[i]

) iid∼ PX1X2 (Y1,Y2)
E
[

1
n
‖X1 − Y1‖2

2

]
≤ d1

E
[

1
n
‖X2 − Y2‖2

2

]
≤ d2

Figure 5.1.: System model for distributed source coding.
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We say that a RD quadruple (R1,R2, d1, d2) is achievable if there exists a sequence of
coding schemes (f (n)

1 , f
(n)
2 , g

(n)
1 , g

(n)
2 ) related to (R1,R2) as given in (5.2) – (5.3) that satisfies

lim sup
n→∞

1
n

E
[
‖X1 − Y1‖2

2

]
≤ d1 and lim sup

n→∞

1
n

E
[
‖X2 − Y2‖2

2

]
≤ d2. (5.5)

As is standard in the literature [GK11], we call the closure of all (R1,R2) such that
(R1,R2, d1, d2) is achievable the rate region and denote it by R(d1, d2). Since the exact
determination of R(d1, d2) seems out of reach, our main goal of this chapter is to find good
inner and outer bounds for the DBGS.
Inner bounds for R(d1, d2) are derived in Section 5.2 and outer bounds in Section 5.3.

Section 5.4 presents numerical evaluations of the bounds in a few example settings.

5.2. Inner Bounds
This section derives inner, i.e., achievability, bounds for the DBGS based on the Quantize-
and-Bin coding scheme developed by Berger and Tung inner bound. Let us first restate
this bound.

Theorem 5.1 (Berger-Tung Inner Bound [Ber78,Tun78]). The rate pair (R1,R2) is achiev-
able with distortion pair (d1, d2) if

R1 ≥ I(X1;U1|U2)
R2 ≥ I(X2;U2|U1)

R1 + R2 ≥ I(X1, X2;U1, U2)
(5.6)

for U1−X1−X2−U2 forming a Markov chain and decoding functions g1 and g2 satisfying
E[∆(Xj, gj(U1, U2))] ≤ dj for j = 1, 2.

5.2.1. A Simple Inner Bound
We first derive a simple inner bound by first coding B and then optimally coding the
two Gaussian random variables Z1, Z2. This inner bound extends the coding scheme for a
single BSS that led to the bound (4.4) to the distributed setting.

Theorem 5.2. The rate pair (R1,R2) is an achievable rate pair for distortions (d1, d2) if

R1 ≥
p

2 log+ 1− ρ2 + ρ22−2[R2−H2(p)]+/p

d1/p
(5.7)

R2 ≥
p

2 log+ 1− ρ2 + ρ22−2[R1−H2(p)]+/p

d2/p
(5.8)

R1 + R2 ≥ H2(p) + p

2 log+ (1− ρ2)β(d1d2/p
2)

2d1d2/p2 (5.9)
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where

β(d) := 1 +

√√√√1 + 4ρ2d

(1− ρ2)2 (5.10)

and log+(x) := max{0, log(x)}.

Proof. We choose

U1 = (X1 +N1)1{X1 6=0}, N1 ∼ N (0, σ2
1)

U2 = (X2 +N2)1{X2 6=0}, N2 ∼ N (0, σ2
2)

g1 = E[X1 |U1, U2]
g2 = E[X2 |U1, U2]

(5.11)

and note that 1{X1 6=0} = 1{X2 6=0} = B with probability one. That is, (U1, U2) is zero
whenever (X1, X2) are zero and otherwise we use a distributed Gaussian test channel which
is known to be optimal for distributed jointly Gaussian sources [WTV08]. Evaluating the
Berger-Tung bound for this choice yields

R1 ≥ I(X1;U1|U2)
= I(X1;U1|B,U2)
= pI(X1;U1|U2, B = 1)
= pI(Z1;Z1 +N1|Z2 +N2, B = 1) . (5.12)

Similarly, we have

R2 ≥ pI(Z2;Z2 +N2|Z1 +N1, B = 1) . (5.13)

For the sum rate, we compute

R1 + R2 ≥ I(X1, X2;U1, U2)
= I(B,X1, X2;U1, U2)
= I(B;U1, U2) + pI(X1, X2;U1, U2|B = 1)
= H2(p) + p · I(Z1, Z2;Z1 +N1, Z2 +N2|B = 1) . (5.14)

The mutual information terms in (5.12), (5.13) and (5.14) are similar to the rates for
quadratic Gaussian distributed source coding (see the discussion in [GK11, Sec. 12.3]). To
derive the rate region, one can follow along the same lines with a few differences.

. The distortion constraints are now d1/p and d2/p for users one and two since we have

d1 ≥ E
[
(X1 − E[X1 |U1, U2])2

]
= p · E

[
(X1 − E[X1 |U1, U2])2

∣∣∣B = 1
]

d2 ≥ E
[
(X2 − E[X2 |U1, U2])2

]
= p · E

[
(X2 − E[X2 |U1, U2])2

∣∣∣B = 1
]
.

(5.15)
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. We must pay attention to the corner points (I(X1;U1|U2) , I(X2;U2)) and
(I(X1;U1) , I(X2;U2|U1)) because we have

R1 ≥ I(X1;U1) = I(X1, B;U1)
= I(B;U1) + p · I(X1;U1|B = 1)
= H2(p) + p · I(X1;U1|B = 1) , (5.16)

which means that I(X1;U1|B = 1) ≤ [R1−H2(p)]+
p

, and similarly for R2.

Continuing the derivations in [GK11, Sec. 12.3.1] using (5.7) - (5.16) completes the proof.
�

5.2.2. A Thresholding Based Inner Bound

We improve Theorem 5.2 by extending the scheme of Weidmann and Vetterli [WV12a,
Thm. 5] that is restated above as Theorem 4.1. This scheme is based on distinguishing
between significant and insignificant samples. The insignificant samples with small magni-
tude are quantized to zero whereas the significant samples are quantized with a Gaussian
codebook.
To apply this to the distributed setting, we choose thresholds τ1, τ2 > 0 and let

U1 = (X1 +N1)1{|X1|>τ1}, N1 ∼ N (0, σ2
1), (5.17)

U2 = (X2 +N2)1{|X2|>τ2}, N2 ∼ N (0, σ2
2).

Note that with this scheme, we can have U1 = 0 but U2 6= 0 and vice versa, as shown in
Figure 5.2.

X1
X2

U1
U2

Figure 5.2.: Example of signals X1, X2 and auxiliary variables U1, U2.
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U1 = 1{|X1|>τ1}(X1 +N1)
N1 ∼ N (0, σ2

1) SW 1
Decoder

LMMSE
estimator

R1 bitsX1

U2 = 1{|X2|>τ2}(X2 +N2)
N2 ∼ N (0, σ2

2) SW 2
R2 bitsX2

(
X1[i], X2[i]

) iid∼ (1− p)δ0 + p · N
(

0,
[
1 ρ

ρ 1

]) (Y1, Y2)

Figure 5.3.: The thresholding based distributed coding scheme.

We define the following events

U00 := {U1 = 0, U2 = 0}, U01 := {U1 = 0, U2 6= 0} (5.18)
U10 := {U1 6= 0, U2 = 0}, U11 := {U1 6= 0, U2 6= 0}.

To simplify our outer bound, we choose the Linear MinimumMean Squared Error (LMMSE)
decoder in the following four scenarios:

g1(u1, u2) =



0, if U00 occurs
u1

E[X1U1 | U10]
E[U2

1 | U10] , if U10 occurs
u2

E[X1U2 | U01]
E[U2

2 | U01] , if U01 occurs
uTC−1

UU|U11
CUX1|U11 , if U11 occurs.

(5.19)

g2 is chosen similarly. Here, CUX|U denotes the covariance matrix of U and X conditioned
on the event U . We denote the error of the LMMSE estimator when estimating a random
variable X from U conditioned on an event U by (cf. [Kay93, Ch. 12])

lmmse(X;U |U) := Var[X|U ]−CXU |UC−1
U |UCY U |U . (5.20)

The complete coding scheme is sketched in Figure 5.3. A relaxation of the Berger-Tung
Inner Bound for this choice yields the following rate region.
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Theorem 5.3. Fix some τ1, τ2 ≥ 0 and let B̂j := 1{|Xj |>τj} for j = 1, 2. If the rate pair
(R1,R2) satisfies

R1 ≥ H
(
B̂1

∣∣∣B̂2
)

+ Pr[U10]
2 log

(
1 + Var[X1|U10]

σ2
1

)

+ Pr[U11]
2 log

(
1 + lmmse(X1;U2|U11)

σ2
2

)
(5.21)

R2 ≥ H
(
B̂2

∣∣∣B̂1
)

+ Pr[U01]
2 log

(
1 + Var[X2|U01]

σ2
2

)

+ Pr[U11]
2 log

(
1 + lmmse(X2;U1|U11)

σ2
1

)
(5.22)

R1 + R2 ≥ H
(
B̂1B̂2

)
+ Pr[U10]

2 log
(

1 + Var[X1|U10]
σ2

1

)
+ Pr[U01]

2 log
(

1 + Var[X2|U01]
σ2

2

)

+ Pr[U11]
2 log

(
det CUU|U11

σ2
1σ

2
2

)
(5.23)

and the distortion pair (d1, d2) satisfies

d1 ≥ Pr[U00] · E[X2
1 |U00] + Pr[U01] · lmmse(X1;U2|U01)

+ Pr[U10] · lmmse(X1;U1|U10) + Pr[U11] · lmmse(X1;U1U2|U11) (5.24)

d2 ≥ Pr[U00] · E[X2
2 |U00] + Pr[U01] · lmmse(X2;U2|U01)

+ Pr[U10] · lmmse(X2;U1|U10) + Pr[U11] · lmmse(X2;U1U2|U11) (5.25)

then the rate pair (R1,R2) is achievable with distortions (d1, d2).

Detailed derivations and more specific expressions are presented in Appendix B.1.
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5.3. Outer Bounds
We next present outer (or converse) bounds for the setting depicted in Figure 5.1. For
better readability, we split our results into bounds for the individual rates and the sum-
rate. The longer proofs are deferred to the end of the section. We will make use of the
ideas leading to Corollary 4.5, and we define

RB(d) := sup
γ>0

RBMS
L

(
d

(1− p)γ2 , qγ(d/p)
)
. (5.26)

Theorem 5.4 (Sum-Rate Bound). If the rate pair (R1,R2) is achievable with distortions
(d1, d2), then it satisfies

R1 + R2 ≥ max
d∈{d1,d2}

RB(d) + p

2 log (1− ρ2)β (d1d2/p
2)

2d1d2/p2 . (5.27)

This sum-rate bound combines ideas from the single user converses in Section 4.2 and
the recently developed converse for the quadratic Gaussian source using a new entropy
power inequality [Cou18].
A much simpler sum-rate bound can be stated by allowing the encoders to cooperate,

i.e., relaxing the distributed source coding problem to joint source coding. Since joint
source coding of two sources is equivalent to simply coding one two-dimensional source,
Theorem 5.5 has the advantage that we can numerically evaluate it using the Blahut-
Arimoto algorithm.

Theorem 5.5 (Cooperative Sum-Rate Bound). If the rate pair (R1,R2) is achievable with
distortions (d1, d2), then it satisfies

R1 + R2 ≥ RX1X2(d1, d2) := min
PY1Y2|X1X2

I(X1, X2;Y1, Y2) (5.28)

where the minimization is over all joint test channels that satisfy

E
[
(X1 − Y1)2

]
≤ d1 and E

[
(X2 − Y2)2

]
≤ d2. (5.29)

Proof. The RHS of (5.28) is the RD function for the case where (X1,X2) are encoded
jointly, i.e., encoders 1 and 2 are allowed to cooperate. �

The Blahut-Arimoto algorithm for joint source coding is given in Algorithm 5.1. It is
worth noting that to numerically compute RX1X2(d1, d2), we need to discretize X ×X and
Y ×Y reasonably fine enough. Since we are optimizing over joint test channels PY1Y2|X1X2 ,
the computational and storage complexity scales at least with the fourth power of the
number of discretization points.
To derive rate constraints for the individual rates, we again use the ideas from Section 4.2

and [Cou18].
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Algorithm 5.1 Blahut-Arimoto Algorithm for RX1X2(d1, d2) [Bla72,Ari72]
1: Choose X 2

d and Y2
d as discretizations of X ×X and Y ×Y , compute discretized P d

X1X2 ,
choose initial reconstruction distribution P (0)

Y1Y2 on Y2
d , Lagrange multipliers s1, s2 > 0,

and a target precision ε > 0.
2: t← 0
3: repeat
4: t← t+ 1
5: c(t)(y1, y2)← ∑

(x1,x2)∈X 2
d

P d
X1X2(x1, x2) exp(−s1δ(x1,y1)−s2δ(x2,y2))∑

(y′1,y
′
2)∈Y2

d
P

(t)
Y1Y2

(y′1,y′2) exp(−s1δ(x1,y′1)−s2δ(x2,y′2))

6: P
(t)
Y1Y2(y1, y2)← P

(t−1)
Y1Y2 (y1, y2)c(t)(y1, y2)

7: T
(t)
UB ←

∑
(y1,y2)∈Y2

d

P
(t)
Y1Y2 log c(t)(y1, y2)

8: T
(t)
LB ← max

(y1,y2)∈Y2
d

log c(t)(y1, y2)

9: until T (t)
UB − T

(t)
LB < ε

10: PY1Y2|X1X2(y1, y2|x1, x2)← P
(t)
Y1Y2

(y1,y2) exp(−s1δ(x1,y1)−s2δ(x2,y2))∑
(y′1,y

′
2)∈Y2

d
P

(t)
Y (y′1,y′2) exp(−s1δ(x1,y′1)−s2δ(x2,y′2))

11: d1 ←
∑

(x1,x2)∈X 2
d

∑
(y1,y2)∈Y2

d

P d
X1X2(x1, x2)PY1Y2|X1X2(y1, y2|x1, x2)δ(x1, y1)

12: d2 ←
∑

(x1,x2)∈X 2
d

∑
(y1,y2)∈Y2

d

P d
X1X2(x1, x2)PY1Y2|X1X2(y1, y2|x1, x2)δ(x2, y2)

13: RX1X2(d1, d2)← ∑
(x1,x2)∈X 2

d

∑
(y1,y2)∈Y2

d

P d
X1X2(x1, x2)PY1Y2|X1X2(y1, y2|x1, x2)

14: · log PY1Y2|X1X2 (y1,y2|x1,x2)
P

(t)
Y1Y2

(y1,y2)

15: return PY1Y2|X1X2 , d1, d2, RX1X2(d1, d2)

Theorem 5.6 (Individual Rates). If the rate pair (R1,R2) is achievable with distortions
(d1, d2), then it satisfies

R1 ≥


RB(d1)− R2 + p

2 log 1
d1/p

, if R2 ≤ RB(d1)

p

2 log (1− ρ2) + ρ22−2(R2−RB(d1))/p

d1/p
, if R2 > RB(d1)

(5.30)

R2 ≥


RB(d2)− R1 + p

2 log 1
d2/p

, if R1 ≤ RB(d2)

p

2 log (1− ρ2) + ρ22−2(R1−RB(d2))/p

d2/p
, if R1 > RB(d2).

(5.31)

In the remainder of this section, we present proofs of Theorems 5.4 and 5.6.
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5.3.1. Proof of the Sum-Rate Bound (Theorem 5.4)
Let N(1|B) = ∑n

k=1B[i] again be the number of nonzero entries in B. Since the conditional
expectation is the optimal estimator with respect to an MSE error criterion, we assume
that Yj = E[Xj |U1,U2] for j = 1, 2. Define

d1[k] := E
[
‖X1 − E[X1 |U1,U2]‖2

2

∣∣∣N(1|B) = k
]

d2[k] := E
[
‖X2 − E[X2 |U1,U2]‖2

2

∣∣∣N(1|B) = k
] (5.32)

and denote by d1 and d2 the MSEs at terminals one and two, respectively:

d1 =
n∑
k=1

d1[k] Pr[N(1|B) = k], d2 =
n∑
k=1

d2[k] Pr[N(1|B) = k]. (5.33)

We start with the usual converse steps to get

R1 + R2 ≥
1
n
H(U1,U2)

= 1
n
I(X1,X2; U1,U2)

= 1
n
I(X1,X2,B; U1,U2)

= 1
n

(
I(B; U1,U2) + I(X1,X2; U1,U2|B)

)
= 1
n
I(B; U1,U2) + 1

n

n∑
k=1

Pr[N(1|B) = k]I(X1,X2; U1,U2|B,N(1|B) = k) . (5.34)

Let B̂1[k] := 1{Y1[k] 6=0} and B̂2[k] := 1{Y2[k] 6=0} and note that both random variables are
functions of (U1,U2). Hence, we have

I(B; U1,U2) ≥ I
(
B; B̂1, B̂2

)
≥ max

{
I
(
B; B̂1

)
, I
(
B; B̂2

)}

≥ nmax

 min
PB̂1|B

:
E[(X1−Y1)2]≤d1

I
(
B; B̂1

)
, min

PB̂2|B
:

E[(X2−Y2)2]≤d2

I
(
B; B̂2

)
≥ n max

d∈{d1,d2}
RB(d) (5.35)

where the last step follows from the standard converse steps of the RD theorem [CT06b, p.
317] and Corollary 4.5.
Now consider the second term in (5.34). We follow Courtade’s alternative proof of the
sum rate for the distributed quadratic Gaussian source coding setting using his recently
developed strong entropy power inequality [Cou18]. To this end, define XG

1 and XG
2 to be
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the nonzero elements of X1 and X2, respectively. That is, there are (with probability one)
one-to-one mappings from X1 to (B,XG

1 ) and X2 to (B,XG
2 ). If N(1|B) = k, then the average

error among the k Gaussians at terminal one is at most

1
k

E
[
‖XG

1 − E[XG
1 |U1,U2]‖2

2

∣∣∣N(1|B) = k
]
≤ d1[k]n

k
. (5.36)

Now, note that

1
k
I(X1; U1,U2|B,N(1|B) = k)

= 1
k
I
(

XG
1 ; U1,U2

∣∣∣B,N(1|B) = k
)

a= 1
k

(1
2 log(2πe)k − h

(
XG

1

∣∣∣U1,U2,B,N(1|B) = k
))

b
≥ 1
k

(1
2 log(2πe)k − 1

2 log
(
2πed1[k]n/k

)k)
= 1

2 log k/n

d1[k] (5.37)

where (a) follows since XG
1 is a k-dimensional standard Gaussian vector and (b) follows

from (5.36) and the maximum entropy property of Gaussian random variables. Similarly,
we have

1
k
I(X2; U1,U2|B,N(1|B) = k) ≥ 1

2 log k/n

d2[k] (5.38)

and thus

1
k

(
I(X1; U1,U2|B,N(1|B) = k)+I(X2; U1,U2|B,N(1|B) = k)

)
≥ 1

2 log (k/n)2

d1[k]d2[k] . (5.39)

Following the same steps that lead to the sum rate bound in Courtade’s proof [Cou18, Thm.
6] using (5.36) and (5.39), we see that

1
k
I(X1,X2; U1,U2|B,N(1|B) = k) ≥ 1

2 log
(1− ρ2)β

(
d1[k]d2[k](n/k)2

)
2d1[k]d2[k](n/k)2 (5.40)

where β is defined in (5.10). To resolve the average over N(1|B), define the typical set

Tε :=
{

b ∈ {0, 1}n : (p− ε)n ≤ N(1|b) ≤ (p+ ε)n
}

(5.41)

for some ε > 0 and note that Hoeffding’s inequality (see, e.g., [Ver18, Thm. 2.2.6]) ensures

Pr[B 6∈ Tε] ≤ 2e−ε2n =: δn (5.42)
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which in turn implies

1
n

E
[
‖X1 − E[X1 |U1,U2]‖2

2

∣∣∣B ∈ Tε] ≤ d1

1− δn
1
n

E
[
‖X2 − E[X2 |U1,U2]‖2

2

∣∣∣B ∈ Tε] ≤ d2

1− δn
.

(5.43)

We can now lower bound

1
n

k∑
k=1

Pr[N(1|B) = k]I(X1,X2; U1,U2|B,N(1|B) = k)

≥
b(p+ε)nc∑

k=d(p−ε)ne
Pr[N(1|B) = k]k

n

1
k
I(X1,X2; U1,U2|B,N(1|B) = k)

a
≥

b(p+ε)nc∑
k=d(p−ε)ne

Pr[N(1|B) = k]p− ε2 log
(1− ρ2)β

(
d1[k]d2[k]

(n/k)2

)
2d1[k]d2[k]

(n/k)2

≥ (1− δn)
b(p+ε)nc∑

k=d(p−ε)ne
Pr[N(1|B) = k |B ∈ Tε]

p− ε
2 log

(1− ρ2)β
(
d1[k]d2[k]

(p−ε)2

)
2d1[k]d2[k]

(p−ε)2

b
≥ (1− δn)p− ε2 log

(1− ρ2)(1− δn)2β
(

d1d2
(1−δn)2(p−ε)2

)
2d1d2/(p− ε)2 (5.44)

where (a) follows from (5.40) and (b) follows from the convexity of log(β(x)/x), Jensen’s
inequality and (5.43). For n → ∞, δn → 0 by (5.42) and we can combine (5.34), (5.35)
and (5.44) to obtain

R1 + R2 ≥ max
d∈{d1,d2}

RB(d) + p

2 log
(1− ρ2)β

(
d1d2
p2

)
2d1d2/p2 . (5.45)

�

Remark 5.1. In (5.35), we get the lower bound 1
n
I(B; U1,U2) ≥ maxd∈{d1,d2} RB(d) which

somehow neglects the different supports of the significant samples at both terminals. As a
consequence, we will see in Section 5.4 that this bound is loose at larger distortions. Still,
this bound is useful to determine the behavior for d1, d2 → 0, as shown in Section 5.3.3.
We remark that if one can find a better lower bound for I(B; U1,U2), then this could be
used to improve Theorem 5.4 (and Theorem 5.6).
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5.3.2. Proof of the Bound for Individual Rates (Theorem 5.6)

For the individual rate constraints, we start with

nR1 ≥ H(U1)
≥ H(U1 |U2 )
= H(U1 |U2 )−H(U1 |U2,X1 )
= I(X1; U1|U2)
= I(B,X1; U1|U2)
= I(B; U1|U2) + I(X1; U1|B,U2)
= I(B; U1,U2)− I(B; U2) + I(X1; U1|B,U2) .

(5.46)

Using the relation (5.37) in (a), we have for a fixed k that

2
2
k
I( X1;U1|U2,B,N(1|B)=k)−log k/n

d1[k]
a
≥ 2 2

k
(I( X1;U1|U2,B,N(1|B)=k)−I( X1;U1,U2|B,N(1|B)=k))

= 2− 2
k
I( X1;U2|B,N(1|B)=k)

= 2−
2
k
I(XG

1 ;U2|B,N(1|B)=k). (5.47)

We lower bound (5.47) by using the conditional version of the strong entropy power in-
equality [Cou18, Cor. 2]. Note that conditioned on B and N(1|B) = k, XG

2 can be written
as

XG
2 = ρXG

1 +
√

1− ρ2Z, Z ∼ N (0, Idk). (5.48)

Applying [Cou18, Cor. 2], we have

2
2
k(h(XG

2 |B,N(1|B)=k)−I(XG
1 ;U2|B,N(1|B)=k))

≥ 2
2
k(h(ρXG

1 |B,N(1|B)=k)−I(XG
2 ;U2|B,N(1|B)=k)) + 2

2
k
h

(√
1−ρ2Z

∣∣∣B,N(1|B)=k
)

= ρ22
2
k(h(XG

1 |B,N(1|B)=k)−I( X2;U2|B,N(1|B)=k)) + (1− ρ2)2 2
k
h( Z|B,N(1|B)=k). (5.49)

Note that XG
1 , XG

2 , and Z have the same conditional distributions and entropies, so (5.47)
and (5.49) together show that

2
2
k
I( X1;U1|U2,B,N(1|B)=k)−log k/n

d1[k] ≥ ρ22− 2
k
I( X2;U2|B,N(1|B)=k) + (1− ρ2) (5.50)

which we can rearrange to become

I(X1; U1|U2,B,N(1|B) = k) ≥ 1
2 log (1− ρ2) + ρ22− 2

k
I( X2;U2|B,N(1|B)=k)

d1[k] · n/k . (5.51)

We next resolve the average over N(1|B). Recall the definition of Tε in (5.41) and its
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probability bound (5.42). We have

1
n
I(X1; U1|U2,B)

≥ 1
n

(1− δn)I(X1; U1|U2,B,B ∈ Tε)

= (1− δn) 1
n

b(p+ε)nc∑
k=d(p−ε)ne

Pr[N(1|B) = k |B ∈ Tε]I(X1; U1|U2,B,N(1|B) = k)

a
≥ (1− δn)

b(p+ε)nc∑
k=d(p−ε)ne

Pr[N(1|B) = k |B ∈ Tε]

· k/n2 log (1− ρ2) + ρ22− 2
k
I( X2;U2|B,N(1|B)=k)

d1[k](n/k)

≥ (1− δn)
b(p+ε)nc∑

k=d(p−ε)ne
Pr[N(1|B) = k |B ∈ Tε]

· p− ε2 log (1− ρ2) + ρ22−
2

n(p+ε) I( X2;U2|B,N(1|B)=k)

d1/(p− ε)
b
≥ (1− δn)p− ε2 log (1− ρ2) + ρ22−

2
n(p+ε) I(X2;U2|B,B∈Tε)

d1/(p− ε)

≥ (1− δn)p− ε2 log (1− ρ2) + ρ22−
2
n

I( X2;U2|B)
(p+ε)(1−δn)

d1/(p− ε)
. (5.52)

Here, we used (5.51) in (a) and applied Jensen’s inequality in (b) by using the convexity
of log((1− ρ2) + ρ22−2x/k).
We can now reuse (5.35) for user 1 and insert (5.52) into (5.46) to obtain

R1 ≥
1
n

(
I(B; U1,U2)− I(B; U2) + I(X1; U1|U2,B)

)
(5.53)

≥
[
RB(d1)− I(B; U2)

]
+

+ (1− δn)p− ε2 log (1− ρ2) + ρ22−
2
n

I( X2;U2|B)
(p−ε)(1−δn)

d1/(p+ ε)

where we added the positive part [·]+ because I(B; U1,U2) ≥ I(B; U2). To tackle the
remaining mutual information terms above, the rate for user 2 can be estimated via

1
n

R2 ≥ H(U2) = H(U2)−H(U2 |X2,B) = I(U2; X2B) = I(U2; B) + I(U2; X2|B) . (5.54)

Further, note that as n→∞, we have δn → 0 for any ε > 0. We can thus reformulate the
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rate requirement for terminal 1 and n→∞ as

R1 ≥ min
R′+R′′≤R2

{[
RB(d1)−R′

]
+

+ p

2 log (1− ρ2) + ρ22−2R′′/p

d1/p

}
. (5.55)

To resolve the minimization, consider R2 ≤ RB(d1) and denote the RHS of (5.55) by Λ. In
this case, we have ∂Λ

∂R′
= −1 and

∂Λ
∂R′′

= − ρ22−2R′′/p

(1− ρ2) + ρ22−2R′′/p > −1. (5.56)

Thus, as long as R2 ≤ RB(d1), the minimum is attained by choosing R′ = R2. For
R′ ≥ RB(d1), Λ is constant in R′. Hence, the minimum is attained by choosing R′ = RB(d1)
and R′′ = R2 − RB(d1). This completes the proof. �

5.3.3. Small Distortion Regime
Using the results obtained for the single user setting, we can also determine the rate region
for the DBGS in the low distortion limit d1, d2 ↘ 0. Denote inner bound on the rate region
derived in Theorem 5.2 by

R0(d1, d2) :=

(R1,R2) :
R1 ≥ p

2 log+ 1−ρ2+ρ22−2[R2−H2(p)]+/p

d1/p

R2 ≥ p
2 log+ 1−ρ2+ρ22−2[R1−H2(p)]+/p

d2/p

R1 + R2 ≥ H2(p) + p
2 log+ (1−ρ2)β(d1,d2)

2d1d2/p2

 (5.57)

where β is defined in (5.10). Further, denote the outer bound given by Theorem 5.4 and
Theorem 5.6 by Router(d1, d2). For R1,R2 ≥ maxd∈{d1,d2} RB(d), we have

Router(d1, d2) :=


(R1,R2) :

R1 ≥ p
2 log (1−ρ2)+ρ22−2(R2−RB(d1))/p

d1/p

R2 ≥ p
2 log (1−ρ2)+ρ22−2(R1−RB(d2))/p

d2/p

R1 + R2 ≥ max
d∈{d1,d2}

RB(d) + p
2 log (1−ρ2)β(d1d2/p2)

2d1d2/p2


. (5.58)

Theorem 5.7. As d1, d2 ↘ 0, R(d1, d2) and R0(d1, d2) are asymptotically equal.

Proof. Since R0(d1, d2) is an achievable rate region, we have R0(d1, d2) ⊆ R(d1, d2) for
any d1, d2. To show that R(d1, d2) ⊆ R0(d1, d2) as d1, d2 ↘ 0, note that R(d1, d2) ⊆
Router(d1, d2) for any distortion pair. Thus, it suffices to show that Router(d1, d2) ⊆
R0(d1, d2) as d1, d2 ↘ 0. To this end, we only need to verify that

lim
d1,d2↘0

max
d∈{d1,d2}

RB(d) = H2(p) (5.59)

which is done in the proof of Corollary 4.30. We conclude that Theorem 5.7 holds. �
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5.4. Numerical Examples
We present numerical examples for the inner and outer bounds derived in Sections 5.2
and 5.3. Figure 5.4 shows an example with high correlation between the two terminals for
distortions of -20 dB and -30 dB at both terminals.
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(a) d1 = d2 = −20 dB.
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(b) d1 = d2 = −30 dB.

Figure 5.4.: Inner bound (Theorem 5.3) and outer bounds from Section 5.3 for the rate
region of the DBGS for p = 0.1 and ρ = 0.9.

In both examples, the cooperative lower bound from Theorem 5.5 (Coop. LB R1 + R2)
computed by the Blahut-Arimoto algorithm gives a better bound than Theorem 5.4 (LB
R1 + R2). This is likely because the first term in (5.27), maxd∈{d1,d2} RB(d), is a loose lower
bound for 1

n
I(B; U1,U2) which captures the amount of information about the position of

the spikes that must be stored by the encoders.
As a comparison, Figure 5.5 shows two examples where the Gaussian components are

independent, i.e., ρ = 0. We see that for d1 = d2 = −20 dB, the sum rate bound from
Theorem 5.4 is only slightly better than what is provided by the individual rate constraints.
The cooperative lower bound, however, is close to the achievable rates provided by the
distributed threshold coding scheme from Theorem 5.3. For d1 = d2 = −30 dB, the
difference between the inner and outer bounds is already negligible and the rate region is
very well approximated by the asymptotic expression given in Theorem 5.7.
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Figure 5.5.: Inner bound (Theorem 5.3) and outer bounds from Section 5.3 for the rate
region of the DBGS for p = 0.1 and ρ = 0.
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6
Quantized Compressed Sensing with
Message Passing Reconstruction
In this chapter, we study Quantized Compressed Sensing (QCS) from a statistical inference
point of view. Consider the model

Q[k] = ϕ
( 1√

n
〈Ak,X〉

)
, 1 ≤ k ≤ m (6.1)

where

. X is ouput by a memoryless source with distribution PX ,

. Ak is the transposed kth row of A ∈ Rm×n which is a dense measurement matrix
with iid N (0, 1) entries, and

. ϕ : R→ Q with #(Q) = 2b is a b-bit quantization function.

We assume that PX , ϕ and A are known to the decoder. Based on this model, we can
form the posterior distribution

P (x|Q,A) ∝
n∏
i=1

PX(x[i])
m∏
k=1

1{
Q[k]=ϕ

(
1√
n
〈Ak,x〉

)} (6.2)

to compute the optimal estimator

YMMSE = arg min E
[
‖X − Y‖2

∣∣∣Q,A] = E[X |Q,A] (6.3)

with respect to the Minimum Mean Squared Error (MMSE)

mmse(X|Q,A) := E
[
‖X − E[X |Q,A]‖2

2

]
. (6.4)
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Unfortunately, finding the optimal estimator is computationally infeasible unless the di-
mensions are extremely small. A growing body of recent research, much of which is built
on ideas and tools from statistical physics, has been focused on developing computationally
feasible estimators that approximate the MMSE estimator (6.3) and investigates the funda-
mental limits of the optimal estimator [DMM09,BM11,Ran11,JM12,KMS+12a,KMS+12b,
JM13,BSK15,BKM+19]. We shall review some of these works below.
Our goal in this chapter is to investigate the RD trade-offs for a QCS system. To this end,

we first review the GAMP algorithm and apply it to our QCS setting in Section 6.1. There,
we also numerically compare the performance for a Bernoulli-Gaussian source with the
RD function. Section 6.2 conducts a similar study for the case of a distributed Bernoulli-
Gaussian source. There, we extend the GAMP algorithm to the two-terminal setting
and then numerically compare its RD performance to the RD limits using the results
from Chapter 5. Finally, Section 6.3 applies the recent theory developed in [BKM+19] to
compute achievable information rates for QCS systems. The information rates effectively
determine the RD performance of a QCS if one applies an optimal lossless compression
algorithm to the quantized measurements. We again compare these results to the RD
function of a Bernoulli-Gaussian source.

6.1. Bayesian Compressed Sensing via Approximate
Message Passing

Approximate Message Passing (AMP) was introduced as a computationally efficient iter-
ative thresholding algorithm for large scale CS problems by Donoho, Maleki and Monta-
nari [DMM09,DMM10a,DMM10b]. Rangan [Ran11] provided an extension to more general
signal priors and elementwise output functions and established the term Generalized Ap-
proximate Message Passing (GAMP) that is widely used. For more details regarding the
origin and different variants of AMP algorithms, see [ZK16, Sec. VI.C].
We give a brief sketch of the main ideas behind (G)AMP. For a detailed and accessible

derivation of (G)AMP, see, e.g. [ZK16] or [EK12, Ch. 9]. The starting point for the
derivation of AMP are the Belief Propagation (BP) equations corresponding to its graphical
model, see Figure 6.1. In this graphical model, the square factor nodes at the top represent
the quantizer ϕ with the observations Q, whereas the circular variable nodes represent the
signal components about which the distribution PX is known as an initial condition for
the algorithm. The BP algorithm then iteratively exchanges the available information
(called beliefs) between the variable nodes and factor nodes. Unfortunately, this exchange
of information involves tracking complicated probability measures and is unfeasible for
applications such as CS. Loosely speaking, this challenge can be tackled by exploiting the
fact that mixtures of many random variables tend to become Gaussian by the central limit
theorem. Since a Gaussian distribution is fully specified by its mean and variance, these
distributions can easily be tracked. Carefully using the central limit theorem and other
approximations, one can then reduce the BP iterations to a sequence of matrix-vector
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X

PX

ϕ, Q

Figure 6.1.: Graphical model for QCS. The light blue factor nodes represent the scalar
quantizer ϕ and the observed quantized measurements Q. The dark blue
variable nodes represent the signal components, each of which has marginal
distribution PX .

multiplications and two scalar inference problems.
We will tailor the GAMP algorithm steps to QCS, as presented in [KGR12]. The first

scalar problem is related to the factor nodes. To this end, denote µ := E[X2], let ϕ :
R→ {1, . . . , 2b} be a quantization function, (V,W ) iid∼ N (0, 1), and consider the quantizer
output

Q̃ = ϕ
(√

η · V +
√
µ− η ·W

)
(6.5)

for η ∈ [0, µ]. We interpret √ηV as side information and are interested in estimating W
from the quantized measurement. Define the two functions gPout : R→ R and hPout : R→ R
via:

gPout(q̃, v, µ− η;ϕ) = 1√
µ− η

E[W |Q̃ = q̃,
√
ηV = v] (6.6)

hPout(q̃, v, µ− η;ϕ) = 1
µ− η

(
1− Var[W |Q̃ = q̃,

√
ηV = v]

)
. (6.7)

The second inference problem is that of estimating a single X ∼ PX from a measurement
corrupted by Gaussian noise

X̃ = X +N/
√

snr (6.8)

where snr ≥ 0 and N ∼ N (0, 1) independent of X. Note that X̃ has a PDF irrespective
of whether X is discrete, continuous or mixed. We define the two functions gPX : R → R
and hPX : R→ R via

gPX (x̃, snr) = E[X |X̃ = x̃]
hPX (x̃, snr) = Var[X|X̃ = x̃].

(6.9)
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Taking vectors as inputs, the functions gPout , hPout , gPX , hPX , and (·)−1 are applied
component-wise and � denotes component-wise multiplication for vectors and matrices.
The GAMP algorithm for QCS is given in Algorithm 6.1.

Algorithm 6.1 GAMP for QCS [KGR12]
Initialize:

y0 = E[X]
v0
x = Var[X]

ŝ0 = 0
for t = 1, 2, 3, . . . do
Factor update:

vtp = 1
n
(A�A)vt−1

x

p̂t = 1√
n
Ayt−1 − vtp � ŝt−1

ŝt = gPout(q, p̂t, vtp;ϕ)
vts = hPout(q, p̂t, vtp;ϕ)

Variable update:
vtr = 1

n
(A�A)Tvts

r̂t = yt−1 + (vtr)−1 �
(

1√
n
ATŝt

)
yt = gPX (̂rt, vtr)
vtx = hPX (̂rt, vtr)

end for
return yt

An important property of (G)AMP algorithms is that their asymptotic performance (as
n,m → ∞ with m/n → α) can be predicted via the State Evolution (SE). We define
two state variables - one for each scalar inference problem (6.5) and (6.8). The SE then
iteratively recomputes the state variables via the functions hPout and hPX until convergence.
The correctness of SE for GAMP has been proved in [JM13]. The SE procedure for QCS
is given in Algorithm 6.2.

Algorithm 6.2 GAMP SE for QCS
Initialize:

µ = E[X2]
η0

SE = 0
for t = 1, 2, 3, . . . do
Factor update:

snrt = α · EV Y [hPout(Q, V, µ− ηtSE;ϕ)]
Variable update:

ηtSE = µ− EX̃
[
hPX

(
X̃, snrt

)]
end for
return MSE = µ− ηtSE
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6.1.1. Numerical Example for Bernoulli-Gaussian Signals

As an example, consider the Bernoulli-Gaussian spike source with distribution

PX = (1− p) · δ0 + p · N (0, 1). (6.10)

For this source, the estimation functions in (6.9) are

gPX (x̃, snr) = x̃

1 + (1−p)
p

√
1 + snr exp

(
− snr2x̃2

2(1+snr)

) · snr
1 + snr (6.11)

hPX (x̃, snr) = 1
1 + (1−p)

p

√
1 + snr exp

(
− snr2x̃2

2(1+snr)

)( 1
1 + snr +

( snr · x̃
1 + snr

)2
)
− gPX (x̃, snr)2.

(6.12)

The estimation functions on the quantizer side, Eq. (6.6)-(6.7), are

gPout(q̃, v, µ− η;ϕ) = 1
µ− η

(
E[Z |ϕ(Z) = q̃]− v

)
, Z ∼ N (v, µ− η) (6.13)

hPout(q̃, v, µ− η;ϕ) = 1
µ− η

(
1− Var[Z|ϕ(Z) = q̃]

µ− η

)
, Z ∼ N (v, µ− η). (6.14)

Since Z is a truncated Gaussian on the event {ϕ(Z) = q̃} for some q̃ ∈ Q, the above
expectation and variance can easily be calculated numerically in terms of the Gaussian
probability and cumulative density functions.
In Figure 6.2, we compare the SE predictions of the asymptotic MSE with the errors

empirically observed through simulations for different b and α. Here, we chose PX to be
Bernoulli-Gaussian with p = 0.1 and the signal length n = 5000. For b ≥ 2, we choose ϕ
such that each quantization interval has probability 2−b under the Gaussian measure with
mean zero and variance µ. For each b and α we plot the median MSE of 250 experiments.
We further show the critical measurement rate αcrit, at which the phase transition to

perfect recovery happens for Gaussian matrices with noiseless and unquantized measure-
ments. While the optimal estimator achieves perfect reconstruction for α > p even for
Gaussian matrices, this is not the case for AMP [KMS+12a,KMS+12b]. In this case, we
can use SE to compute αcrit ≈ 0.21.
As expected, the MSE decreases with increasing b. Further, there is a sharp decline

in the MSE for α > αcrit, which matches the phase transition in the limit of infinite
quantization rate. We conclude that the SE predictions for these parameters are very
accurate. For α� αcrit, the error decreases slowly in α as we are effectively oversampling
the signal which is known to yield an error decrease inversely proportional to the sampling
rate, see [JLBB13, Thm. 1] and [TV94,GVT98].
Figure 6.3 compares the SE predictions for different b and α but with a fixed bit budget

of bα bits per source symbol. This is compared to the RD function of the Bernoulli-
Gaussian source with MSE constraint which was computed using the Blahut-Arimoto
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Figure 6.2.: GAMP performance as predicted by SE and empirically observed for a
Bernoulli-Gaussian source with p = 0.1 with n = 5000.

algorithm (Algorithm 2.1). We observe that for a target bit rate R the RD trade-off is
best when choosing b to be the largest value under the condition bαcrit < R. Further,
there is a significant gap between the RD function and the best performing SE graph. To
investigate whether we can close this gap, we ask the following to questions.

1) When is GAMP approximately the MMSE estimator? If GAMP is suboptimal for
QCS, a better (but possibly much more complicated) reconstruction algorithm would
improve the RD trade-off.

2) How well can we compress the quantized measurements? One might guess that for
α� αcrit, the quantized measurements become statistically more dependent. In this
case, a lossless compression algorithm improves the RD trade-off.

3) Can we add helpful preprocessing? We mentioned in Chapter 4 that a good vector
quantization scheme is to code only some significant samples of a sparse signal. We
propose a similar preprocessing for QCS.
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Figure 6.3.: GAMP performance as predicted by SE and empirically observed for a
Bernoulli-Gaussian source with p = 0.1 with n = 5000. R(MSE) is the RD
function computed with the Blahut-Arimoto algorithm (Algorithm 2.1).

6.2. Two-Terminal Bayesian Quantized Compressed
Sensing

This section is based on joint work with Rami Ezzine and is presented in [Ezz18]. AMP was
first extended to a distributed setting in [Hag14a,Hag14b] for unquantized two-terminal
CS and termed Multi-Terminal Approximate Message Passing (MAMP). In this section,
we combine the GAMP and MAMP algorithms for the distributed problem that we inves-
tigated in Chapter 5. Consider the setting depicted in Figure 6.4.

Q1 = ϕ1(A(1)X1)

MGAMP

nR1 bitsX1

Q2 = ϕ2(A(2)X2)
nR2 bitsX2

(
X1[i], X2[i]

) iid∼ PX1X2

(Y1,Y2)

E
[

1
n
‖Xj − Yj‖2

2

]
≤ dj

Figure 6.4.: System model for distributed CS with two terminals.



84 Chapter 6. Information Rates in QCS

X1

PX1X2

X2

ϕ1, Q1

ϕ2, Q2

Figure 6.5.: Graphical model for two-terminal QCS. The light blue factor nodes represent
the scalar quantizers and the observed quantized measurements at each ter-
minal. The dark blue variable nodes represent the signal components of the
two terminals and the knowledge of their joint distribution.

Formally, we have two generalized linear models

Q1[k] = ϕ1

( 1√
n
〈A(1)

k ,X1〉
)
, 1 ≤ k ≤ m1

Q2[k] = ϕ2

( 1√
n
〈A(2)

k ,X2〉
)
, 1 ≤ k ≤ m2

(6.15)

where

. (X1,X2) are output by a memoryless source with distribution PX1X2 ,

. A(1) ∈ Rm1×n and A(2) ∈ Rm2×n are the measurement matrices, each with iid N (0, 1)
entries, and A(j)

k is the transposed kth row of A(j),

. ϕ1 : R → Q1 and ϕ2 : R → Q2 are two quantization functions with b1 and b2 bits,
respectively.

The graphical model for this setting is depicted in Figure 6.5. We see that the two terminals
are connected only via the knowledge of the joint distribution of the two signals. To get
the Multi-Terminal Generalized Approximate Message Passing (MGAMP) reconstruction
algorithm, we combine the GAMP and MAMP steps in an obvious way without giving any
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formal derivations. To this end, recall the two scalar channels (6.5) and (6.8). The first
channel was related to the quantization of the measurements. As this happens individually
in the two terminals, those factor updates are also done individually in the MGAMP
algorithm and we an reuse the functions gPout and hPout given in (6.6)-(6.7). For the
additive noise channel in Eq. (6.8), we now have two parallel noise channels

X̃1 = X1 + Z1/
√

snr1

X̃2 = X2 + Z2/
√

snr2
(6.16)

where (X1, X2) ∼ PX1X2 and Z1 and Z2 are independent of each other and (X1, X2), and
each have distribution N (0, 1). Define the functions g(1)

PX1X2
, g(2)

PX1X2
, h(1)

PX1X2
, and h

(2)
PX1X2

(all R2 → R) via

g
(1)
PX1X2

(x̃1, x̃2, snr1, snr2) = E[X1 |X̃1 = x̃1, X̃2 = x̃2]

g
(2)
PX1X2

(x̃1, x̃2, snr1, snr2) = E[X2 |X̃1 = x̃1, X̃2 = x̃2]

h
(1)
PX1X2

(x̃1, x̃2, snr1, snr2) = Var[X1|X̃1 = x̃1, X̃2 = x̃2]

h
(2)
PX1X2

(x̃1, x̃2, snr1, snr2) = Var[X2|X̃1 = x̃1, X̃2 = x̃2].

(6.17)

For vectors, these functions are again applied component-wise. The MGAMP algorithm
is described more precisely in Algorithm 6.3. Similarly, the behavior of MGAMP can be
predicted by its SE, which is given in Algorithm 6.4.

6.2.1. Numerical Example for Distributed Bernoulli-Gaussian
Signals

As an example, and to compare with the RD results from Section 5, we perform MGAMP
experiments and compute the SE predictions for a distributed Bernoulli-Gaussian spike
source

PX1X2 = (1− p) · δ0 + p · N
(

0,
[
1 ρ

ρ 1

])
(6.18)

for some ρ ∈ (−1, 1). The scalar quantizers ϕ1 and ϕ2 are again chosen to maximize the
entropies of their outputs, i.e., they partition the real line into intervals of equal probability
under the Gaussian measure. Let x̃ = [x̃1, x̃2]T. For this source, the estimation functions
in (6.9) can be computed to be

g
(1)
PX1X2

(x̃1, x̃2, snr1, snr2) = 1
1 + (1−p)

p
N (x̃;0,Σ0)
N (x̃;0,Σ1)

·
[
1 ρ

]
Σ−1

1 x̃ (6.19)
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Algorithm 6.3 MGAMP for QCS
Initialize: for j = 1, 2, set

µj = E
[
X2
j

]
y0
j = E[Xj]

v0
xj

= Var[Xj]
ŝ0
j = 0

for t = 1, 2, 3, . . . do
Factor update: for j = 1, 2, set

vtpj = 1
n

(
A(j) �A(j)

)
vt−1
xj

p̂t = 1√
n
A(j)yt−1

j − vtpj � ŝt−1
j

ŝtj = gPout(qj, p̂tj, vtpj ;ϕj)
vtsj = hPout(qj, p̂tj, vtpj ;ϕj)

Variable update:
Linear step: for j = 1, 2, set

vtrj = 1
n

(
A(j) �A(j)

)T
vtsj

r̂tj = yt−1
j + (vtrj)

−1 �
(

1√
n
A(j)Tŝtj

)
Nonlinear step: for j = 1, 2, set

ytj = g
(j)
PX1X2

(̂rt1, r̂t2, vtr1 , v
t
r2)

vtxj = h
(j)
PX1X2

(̂rt1, r̂t2, vtr1 , v
t
r2)

end for
return yt1, yt2

Algorithm 6.4 MGAMP State Evolution for QCS
Initialize: for j = 1, 2, set

µj = E
[
X2
j

]
η0
j = 0

for t = 1, 2, 3, . . . do
Factor update: for j = 1, 2, set

snrtj = αj EQY
[
hPout(Q, V, µj − ηtj;ϕj)

]
Variable update: for j = 1, 2, set

ηti = µj − EX̃1X̃2

[
h

(j)
PX1X2

(
X̃1, X̃2, snrt1, snrt2

)]
end for
return MSE µj − ηtj for j = 1, 2

and

h
(1)
PX1X2

(x̃1, x̃2, snr1, snr2)

=
1−

[
1 ρ

]
Σ−1

1

[
1
ρ

]
+
([

1 ρ
]

Σ−1
1 x̃

)2

1 + (1−p)
p
N (x̃;0,Σ0)
N (x̃;0,Σ1)

− g(1)
PX1X2

(x̃1, x̃2, snr1, snr2)2 (6.20)
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where
Σ0 =

[
1/snr1 0

0 1/snr2

]
and Σ1 =

[
1 + 1/snr1 ρ

ρ 1 + 1/snr2

]
. (6.21)

The functions g(2)
PX1X2

and h
(2)
PX1X2

are computed similarly. Since the functions gPout and
hPout depend only on the quantizer and are computed individually in the two terminals,
we can reuse (6.13) - (6.14).
For our experiments, we chose the measurement rates and quantizers to be the same at

both terminals. Thus, the average MSE is also the same at both terminals. Figure 6.6(a)
plots the SE and experimental results for p = 0.1, n = 5000 and the correlation coefficient
ρ = 0.9. Observe that SE again accurately predicts the experimental performance. Fig-
ure 6.6(b) compares the SE predictions for ρ = 0.9 (solid lines) and ρ = 0 (dotted lines).
Observe that for small measurement rates, a high correlation can be exploited to reduce
the estimation error. For larger rates, the performance is nearly identical in both cases.
Observe also that the phase transition is reduced to a measurement rate of approximately
αcrit ≈ 0.15 (as compared to αcrit ≈ 0.21 in Fig. 6.2) at each terminal. This is in line with
our results in Chapter 7 where we show that in a distributed setting, exploiting the joint
sparsity of several signals helps to reduce the measurement rate to the sparsity (p = 0.1 in
this case).
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(a) p = 0.1, ρ = 0.9.
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Figure 6.6.: Comparison of SE and empirical performance for MGAMP with equal mea-
surement rates and quantizers at both terminal. The MSE is the same at both
terminals.

In a second experiment, we computed the state evolution for many different choices of α
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and b in both terminals and collected the achievable rate pairs (in terms of total number of
bits stored) for p = 0.1, ρ = 0, and two distortion levels of −20 dB and −30 dB. Figure 6.7
compares these to the inner and outer bounds for the rate region of the DBGS developed
in Chapter 5.
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(a) d1 = d2 = −20 dB.
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Figure 6.7.: Comparison of MGAMP with the inner and outer bounds for the rate region
of the distributed Bernoulli-Gaussian spike source (see Chapter 5) for p = 0.1
and ρ = 0.

6.3. Information Rates and Optimal Errors
In this section, we investigate information-theoretic limits for QCS based on the recent
work by Barbier et al. [BKM+19]. There, the authors consider the Generalized Linear
Model (GLM)

Zk ∼ Pout

(
·
∣∣∣∣ 1√
n
〈Ak,X〉

)
, 1 ≤ k ≤ m (6.22)

where the entries of X are iid samples from some distribution PX , A ∈ Rm×n is a dense
random matrix with independent entries of unit variance and Pout represents an output
channel that may include a function, noise, or other effects. This model covers both
estimation and learning problems, where in the first we view X as a signal to be recovered
from the measurements Z and in the second we would like to predict new labels Znew when
adding new rows to the matrix A. We focus on the first view point that models QCS.
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Recall the QCS model (6.1) with Q being the quantized measurements. One insight
from [BKM+19] is that GLMs of the form (6.1) can asymptotically be precisely character-
ized in terms of the mutual information 1

n
I(X; Q|A) as well as 1

n
mmse(X|Q,A). Because we

have I(X; Q|A) = H(Q |A) for noiseless QCS, Shannon’s source coding theorem [Sha48]
tells us that we can losslessly compress the measurements to 1

n
H(Q |A) bits per signal

dimension. This allows us to compare the optimal performance of GLMs with RD bounds
that characterize the optimal performance of any encoding/decoding scheme.
To state the results from [BKM+19], we return to the two scalar channels (6.5) and (6.8).

For the first channel (6.5) associated with the quantizers, we denote the mutual information
of Q and W given V by

Iϕ(η) := I
(
W ;ϕ

(√
ηV +

√
µ− ηW

)∣∣∣V )
= H

(
ϕ
(√

ηV +
√
µ− ηW

)
|V
)
. (6.23)

For the second channel, the additive noise channel (6.8), we denote the mutual information
between X and X̃ by

IPX (snr) := I
(
X; X̃

)
= h(PX̃)− 1

2 log(2πe/snr). (6.24)

We next define the replica-symmetric information as

iRS(η, snr;µ) := IPX (snr) + αIϕ(η)− snr(µ− η)
2 (6.25)

for some measurement rate α > 0 and denote its fixed points by

Γ :=
{

(η, snr) ∈ [0, µ]× [0,∞]
∣∣∣∣∣ η = µ− 2I ′PX (snr)

snr = 2αI ′ϕ(η)

}
(6.26)

where I ′PX (snr) and I ′ϕ(η) denote the derivatives.
We now state the asymptotic expressions for the average entropy of the quantized mea-

surements as well as the MMSE, tailored to the setting of QCS.

Theorem 6.1 (Barbier et al. [BKM+19]). Suppose the following conditions hold:

. PX admits a finite third moment and #(supp(PX)) ≥ 2.

. The entries of A are independent random variables with zero mean, unit variance
and finite third moment that is bounded by n.

. ϕ : R→ Q quantizes to at least one bit, i.e., #(Q) ≥ 2, and

. m/n→ α > 0 as m,n→∞.



90 Chapter 6. Information Rates in QCS

Then the limits of the entropy and the MMSE are

1
n
H(Q |A) n→∞−−−→ inf

η∈[0,µ]
sup
snr≥0

iRS(η, snr;µ) = inf
(η,snr)∈Γ

iRS(η, snr;µ) (6.27)

1
n

mmse(X|Q,A) n→∞−−−→ µ− η?(α) (6.28)

where η?(α) is the unique minimizer of iRS(η, snr;µ) in (6.27).

Observe that by Theorem 6.1 and the properties of SE, GAMP achieves the optimal MSE
whenever limt→∞ η

t
SE = η?(α). In Sections 6.3.1 and 6.3.2, we evaluate (6.27) and (6.28)

for Bernoulli-Gaussian spike sources and compare them to RD bounds.

6.3.1. Bernoulli-Gaussian
To compare the limits of QCS with RD bounds, we consider the Bernoulli-Gaussian spike
source

PX = (1− p)δ0 + pN (0, 1) (6.29)

and compute the mutual information for each of the two scalar inference problems (6.24)
and (6.23). By (6.8), the PDF of X̃ is given by

PX̃ = (1− p) · N (0, 1/snr) + p · N (0, 1 + 1/snr) (6.30)

and we compute

IPX (snr) = h(PX̃)− 1
2 log(2πe/snr)

= E
[
− log

(
(1− p) + p√

1 + snr
e

snr2X̃2
2(1+snr)

)]
+ µ · snr

2 . (6.31)

It remains to compute Iϕ(η), which depends on the quantizer. For a 1-bit quantizer without
dithering, i.e., ϕ(z) = sign(z), let W̃ ∼ N (0, 1) independently of V . We have

Iϕ(η)1bit = EV,Q
[
− log

∫ e−w
2/2

√
2π

1{Q=ϕ(√ηV+
√
µ−ηw)}dw

]

= EV,W̃
[
− log

∫ e−w
2/2

√
2π

1{ϕ(√ηV+
√
µ−ηW̃)=ϕ(√ηV+

√
µ−ηw)}dw

]

= EV
[
H2

(
Φ
(
−√ηV
√
µ− η

))]
(6.32)

where Φ is the cumulative distribution function of a standard Gaussian random variable.
For a general b-bit quantizer, we denote the interval boundaries by {τ0, τ1, . . . , τ2b} and let
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τ0 = −∞ and τ2b =∞. We compute

Iϕ(η)b bit

=
2b−1∑
`=0

EV W̃
[
−1{√ηV+

√
µ−ηW̃∈[τ`,τ`+1)} log

∫ e−w
2/2

√
2π

1{√ηV+
√
µ−ηw∈[τ`,τ`+1)}dw

]
(6.33)

=
2b−1∑
`=1

EV
[
−
(

Φ
(
τ`−
√
ηV

√
µ− η

)
− Φ

(
τ`−1−

√
ηV

√
µ− η

))
log

(
Φ
(
τ`−
√
ηV

√
µ− η

)
− Φ

(
τ`−1−

√
ηV

√
µ− η

))]
.

In Figure 6.8, we plot the error predicted by the GAMP SE, as well as the MMSE computed
from Theorem 6.1. For comparison, we plot the RD function R(MSE) of the source that
was computed with the Blahut-Arimoto algorithm (Algorithm 2.1). The results indicate
that GAMP achieves the MMSE for low-resolution QCS (see b = 1 and b = 3) but
has a suboptimal phase for high-resolution QCS when α ≈ αcrit (see b = 5). The sub-
optimality should not be surprising as we know (see, e.g. [KMS+12b, KMS+12a]) that
AMP is suboptimal for noiseless (i.e., the limit of b→∞) CS.
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Figure 6.8.: GAMP SE versus MMSE for the Bernoulli-Gaussian source with p = 0.1.

Next, Figure 6.9 shows the asymptotic entropy of the quantizer outputs, i.e., the min-
imum bit rate after optimally compressing the quantized measurements, versus the RD
function. First, we observe that optimally compressing the quantizer outputs significantly
improves the RD trade-off of QCS. We further see that after compression, one-bit mea-
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surements seem to have the best RD trade-off for any fixed bit rate. For higher resolution
quantizers, this performance is matched for sufficiently large rates.
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Figure 6.9.: RD performance of QCS with optimal lossless compression.

We remark, however, that finding an optimal compression algorithm for the quantized
measurements may not be an easy task. To illustrate this, Figure 6.10 plots the entropy of
the measurements versus the measurement rate α for three different quantizers. We observe
that up to approximately αcrit (the critical measurement rate at which the error starts to
drop significantly, cf. Figure 6.2), the measurements have nearly maximum entropy, thanks
to the scalar quantizer being chosen to maximize the entropy of a single measurement. As
a consequence, up to this point the measurements are nearly independent. Any useful
compression algorithm must therefore exploit a dependence between the measurements
that is somehow spread over at least nαcrit measurements.

6.3.2. Bernoulli-Gaussian with Thresholding
An important insight from the information-theoretic analysis of spike sources in [WV12a]
and Chapter 4 is that one can efficiently code such sources by distinguishing between
significant and insignificant samples. Setting the insignificant samples to zero helps because
this reduces the information needed to code their positions and thus leaves more bits to
code the values. In a CS setting, this would correspond to adding a filter before measuring
the signal to zero out small magnitudes and keep larger ones. This creates a sparser signal
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Figure 6.10.: Measurement rate versus entropy of the measurements in QCS for a Bernoulli-
Gaussian source. The dotted lines show the uncompressed bit rates αb of the
measurements.

that needs fewer measurements to approximate the signal well. This section investigates
the RD trade-off when adding such a filter before the measurements.

Let X iid∼ PX be a Bernoulli-Gaussian source and define

X†[i] = X[i] · 1{|X[i]|>τ}, 1 ≤ i ≤ n (6.34)

for some threshold τ ≥ 0. X† is then the input to a QCS system and its estimate (via
GAMP or an MMSE estimator) is used as an estimate for X. We will determine the
asymptotic limits of 1

n
H(Q |A) and 1

n
mmse(X†|Q,A) as given by Theorem 6.1. These two

quantities together provide achievable RD pairs for X since

E
[
‖X − E[X† |Q,A]‖2

]
≤ E

[
‖X − X†‖2

]
+ E

[
‖X† − E[X† |Q,A]‖2

]
=

n∑
i=1

E
[(
X[i] · 1{|X[i]|≤τ}

)2
]

+ mmse(X†|Q,A) (6.35)

and

I(X; Q|A) = I
(

X†; Q
∣∣∣A) (6.36)
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because of the Markov chain X–X†–Q|A. Let p† := Pr[|X| > τ ] = 2pΦ(−τ). We consider
X†[i] iid∼ PX† as the new source for our QCS system with

PX† = (1− p†) · δ0 + p · N (0, 1) · 1T (6.37)

where 1T is one for all values with magnitudes larger than τ and zero otherwise. Us-
ing [Tur10], the new PDF for X̃ = X† +N/

√
snr is

PX̃(x̃) = (1− p†) · N (x̃; 0, 1) + p† · e−
snr·x̃2

2(1+snr)√
2π 1+snr

snr

g1(x̃) + g2(x̃)
2 (6.38)

where

g1(x̃) := 1
1− Φ (τ)

[
1− Φ

( snr·x̃
1+snr + τ

1/
√

1 + snr

)]

g2(x̃) := 1
Φ (−τ)Φ

( snr·x̃
1+snr − τ

1/
√

1 + snr

)
.

(6.39)

Since Iϕ(q) depends only on the quantizer, we can reuse (6.32)-(6.32) and only need to
adapt IPX (snr) to the new source distribution. We have

IP
X†

(snr) = h(PX̃)− 1
2 log(2πe/snr)

= EX̃
[
− log

(
(1− p†) + p̃√

1 + snr
e

snr2X̃2
2(1+snr)

g1(X̃) + g2(X̃)
2

)]
+ µ snr

2 . (6.40)

Similar to Figure 6.8, we plot the bit rate versus the MSE (according to (6.35)) achieved
by GAMP and the MMSE for different quantizers in Figure 6.11. For this plot, we com-
puted the error for many different thresholds τ at each rate and chose the lowest overall
error among those. Observe that while GAMP still achieves the MMSE performance for
b = 1, it is suboptimal for a larger range of rates and quantizers compared to the regular
Bernoulli-Gaussian source. The RD performance for the MMSE estimator is significantly
improved compared to Figure 6.8.
Finally, we compare the RD performance of optimally compressed 1-bit measurements

with and without filtering in Figure 6.12. We see that filtering out the samples of low
magnitude significantly improves the RD performance at lower rates, but the improvement
is reduced at larger rates. It would be interesting to understand this theoretically.

6.3.3. Summary and Discussion

In this chapter, we investigated the RD behavior of (multi terminal) Bayesian QCS with
dense randommatrices. We started by applying the GAMP algorithm to QCS as in [KGR12].



6.3. Information Rates and Optimal Errors 95

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
−50

−45

−40

−35

−30

−25

−20

−15

−10

Bit Rate bm/n

M
SE

[d
B]

R(MSE)
GAMP b = 1
GAMP b = 3
GAMP b = 5
MMSE

Figure 6.11.: GAMP SE versus MMSE in QCS when filtering the insignificant samples
before measuring.

There, however, it is written that "we are not advocating quantized linear expansions as a
compression technique" due to the unfavorable RD behavior for both small measurement
rates (the undersampled case) and large measurement rates (the oversampled case) as ob-
served in Figure 6.3 and in the two-terminal case in Figure 6.6. This led us to pose the
following three questions about possible improvements which we could partially answer for
a single terminal with the help of recent results by Barbier et al. [BKM+19].

1) When is GAMP equal to the MMSE estimator? For 1-bit QCS, GAMP is optimal
with respect to the MSE in all settings the we computed. For larger quantizer
depths, GAMP becomes suboptimal around the phase transition for the Bernoulli-
Gaussian source and suboptimal for rates up to the phase transition for the truncated
Bernoulli-Gaussian source. We remark that while finding the MMSE estimator in
such cases may be extremely difficult, there are settings in which structured sensing
matrices have shown to be superior to dense matrices with independent entries,
see [DJM13,KMS+12a,BSK15].

2) How well can we compress the quantized measurements? We computed the entropies
of the quantizer outputs in various settings and found the RD performance with
optimal lossless compression of the quantizer outputs. This shows that QCS systems
with lossless compression can exhibit an excellent RD trade-off.
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Figure 6.12.: Comparison of the RD performance of one-bit CS with and without filtering
with optimal lossless compression.

3) Can we add some helpful preprocessing? We proposed to add a filter before measuring
the signal that zeros insignificant samples. If physically possible, this can significantly
improve the RD performance, especially at low rates.
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7
Analysis of Hard-Thresholding for
Distributed Compressed Sensing
with One-Bit Measurements

All results and numerics in this chapter are joint work with Johannes Maly and have been
published in [MP19].
In this chapter, we investigate aDistributed Compressed Sensing (see [BDW+09], [DSW+05])

setting with one-bit measurements. Consider the setting depicted in Figure 7.1.

. . .

CS System

= ·

CS System

= ·

CS System

= ·

Figure 7.1.: Distributed CS system.

The system consists of several wireless sensor nodes that each measure a signal using QCS
techniques. The nodes do not need to reconstruct their signal individually but send their
acquired information to a central processing unit that reconstructs all signals jointly.
Recall from the introduction in Chapter 2.2 that, knowing that a signal of interest x is

s-sparse, all such signals can be reconstructed from

m ≥ Cs log
(
en

s

)
(7.1)
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linear measurements of the form
z = Ax (7.2)

where C > 0 is a constant independent of s,m, and n (see [CT06a], [RV08]). This scaling
also carries over to one-bit measurements of the form

q = sign(Ax) (7.3)

with the difference that the scaling m ≥ Cδ−α s log (en/s) now includes an accuracy pa-
rameter δ−α that guarantees a certain reconstruction error and may depend on the exact
geometry of the signal set and the reconstruction algorithm in use.
The main idea in this chapter is that the log-factor in (7.1) is caused by not knowing

the support of x. This is intuitive because if we know the support of x, we can simply
reconstruct it using the sub-matrix of A consisting of only those columns corresponding
to the nonzero entries of x. If one must recover several signals x1, ..., xL, L ∈ N, sharing a
common support, it might be possible to reduce the number of measurements per signal
from O(s log(en/s)) to O(s) by exploiting the joint structure. In theory the improvement
seems small, but in practice it can make a notable difference (cf. [SCS14]). Moreover,
the common support might appear naturally. For example, a signal that is sparse in the
Fourier basis may be measured at different locations, which leads to different attenuations
and phase shifts at every node. This can be exploited in imaging applications such as
Magnetic Resonance Imaging [WZT+14]. Another prominent application is Multiple-Input
and Multiple-Output communications [RL14].
There are two popular settings for joint recovery from compressed measurements. The

first model is called Multiple Measurement Vectors. All signals are measured by the same
measurement matrix A ∈ Rm×n (resp. the same sensor) and the model in (2.6) becomes

Z = AX (7.4)

where X ∈ Rn×L and Z ∈ Rm×L are matrices containing the signals and their corresponding
measurement vectors as columns. As shown in [ER10], for this model one can improve
only the average performance as compared to single vector CS. The worst-case analysis
shows no improvement.
The second model considers distinct measurement matrices A(1), ...,A(L) ∈ Rm×n (resp.

distinct sensors) for each signal xl ∈ Rn, l ∈ [L]. Hence, there is a separate measurement
process of type (2.8) for each l ∈ [L] yielding L different yl ∈ Rm. We have

vec(Z) = A · vec(X) (7.5)

where A ∈ RmL×nL is block diagonal and built from the blocks A(l), and vec(·) denotes
the vectorization of a matrix. The authors of [EM09] guarantee recovery of jointly sparse
signal ensembles X from measurements of type (7.5) via `2,1-minimization provided A
satisfies a certain block RIP. A direct connection between the number of measurements
to guarantee block RIPs for random matrices and properties of the signal ensembles X is
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presented in [EYRW15]. In particular, the authors show that one can profit from joint
structure if the information in X is spread among multiple signals xl. For instance, if
all xl but one are zero then one will need m = O(s log(en/s)) measurements per signal,
rendering joint recovery useless. Hence, to obtain meaningful recovery guarantees for dis-
tributed CS one needs assumptions beyond a joint support set (see also Remark 7.2 below).

Both extensions of the classical CS model (2.6), namely, one-bit CS and distributed
CS, are useful in practice. One might thus try to combine both approaches to reduce the
number of measurements in one-bit sensing. The papers [TXY14], [KKWV16], [KGK+19]
show promising numerical results, but they do not provide theoretical justification for the
improvements.

Contribution

We provide uniform approximation guarantees for distributed CS from one-bit measure-
ments quantifying the influence of the size L of signal ensembles X on the required num-
ber of measurements per signal m. Our analysis considers the second model above, i.e.,
distinct measurement matrices A(1), ...,A(L) corresponding to distinct sensors. In partic-
ular, we show that if the entries of all A(l) are drawn as iid Gaussian random variables,
then the matrix A will satisfy an `1/`2,1-RIP on a suitable set of jointly sparse signal
ensembles with high probability. We adapt the ideas of [Fou16] to deduce a uniform
error bound for recovering appropriate signal ensembles X from their one-bit measure-
ments Q by applying one simple hard-thresholding step to ATvec(Q). We find that
mL ≥ Cs(log(en/s) + L) measurements suffice to well-approximate X with high prob-
ability which means, for L ' log(en/s), O(s) measurements per single signal. This im-
proves the classical CS results for Gaussian measurements of O(s log(en/s)) (cf. [FR13]).
Moreover, we provide numerical evidence matching the experimental results in [TXY14],
[KKWV16], [KGK+19].

Outline

This chapter is organized as follows. Section 7.1 introduces our problem in detail, Section
7.2 presents our main results, and Section 7.3 gives proofs. Section 7.4 supports the theory
by numerical experiments, and Section 7.5 concludes with a brief summary and outlook
on future work.

7.1. Problem Setup
Suppose we are given one-bit measurements Q ∈ Rm×L obtained from L signals xl ∈ Rn,
l ∈ [L], that form the columns of a matrix X ∈ Rn×L. For simplicity we write x = vec(X) =
(xT

1, ..., xT
L)T and q = vec(Q) = (qT

1, ..., qT
L)T. The linear measurement process can then be
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described by

q = sign
(
Ax

)
(7.6)

where A ∈ RLm×Ln is a measurement matrix of the following form: A is block diagonal
and built from the sub-matrices A(l) ∈ Rm×n, l ∈ [L], which have iid Gaussian entries
N (0, 1), i.e., we have

A =


A(1)

. . .
A(L)

 . (7.7)

We denote the i-th column of (A(l))T by a(l)
i , i.e., a(l)

i is the transposed i-th row of A(l). Let
θ > 0 be an appropriate scaling to be determined later. Denote by Hs : Rn×L → Rn×L the
hard-thresholding operator which, for any Z ∈ Rn×L, keeps only the s rows of largest `2-
norm and sets the remaining n−s rows to zero. Inspired by [Fou16], we aim to approximate
x by

y = H̃s

(
(θA)Tq

)
(7.8)

where H̃s(z) = vec(Hs(Z)), for z = vec(Z). We will see that this simple procedure leads
to near-optimal approximation guarantees for signal ensembles X whose signals xl share a
common support and the same magnitude in `2-norm. We denote the support of a signal
ensemble Z ∈ Rn×L, i.e., the set of non-zero rows of Z, by supp(Z) ⊂ [n]. We define the
set Ss,L of admissible signal ensembles

Ss,L =

z = vec(Z) : Z =


| |
z1 · · · zL
| |

 ∈ Rn×L, |supp(Z)| ≤ s, ‖zl‖2 = ‖z‖2/
√
L

.
(7.9)

As the simple sign-bit measurements (7.6) are invariant under scaling of the signals and,
hence, dismiss any information on signal magnitudes, all we can hope for is approximating
the directions of the individual signals. Hence, we can restrict the xl to have constant
norm without loss of generality. Consequently, whenever we use the terms "approximation
of signals" or "recovery of signals" we implicitly mean "approximation/recovery of each
signal up to the scaling" and restrict the results to signals of fixed norm.
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7.2. Main Results
We show that Gaussian measurements of the form (7.7) fulfill under suitable scaling with
high probability an `1/`2,1-Restricted Isometry Property (`1/`2,1-RIP) on

Ks,L =
{

z = vec(Z) : Z ∈ Rn×L, |supp(Z)| ≤ s

}
(7.10)

(a relaxation of Ss,L) if mL & s(log(en/s) + L). We further show that all signals x ∈ Ss,L
can be well approximated from mL & s(log(en/s)+L) one-bit measurements (7.6). Proofs
can be found in Section 7.3. We first define what we mean by `1/`2,1-RIP.

Definition 7.1 (`1/`2,1-RIP). A matrix B ∈ RLm×Ln satisfies the `1/`2,1-RIP on Ks,L with
RIP-constant δ ∈ (0, 1) if

‖z‖2,1√
L
− δ‖z‖2 ≤ ‖Bz‖1 ≤

‖z‖2,1√
L

+ δ‖z‖2 (7.11)

for all z ∈ Ks,L.

The following lemma provides a sufficient number of measurements for θA, with A given
by (7.7), to fulfill the `1/`2,1-RIP. Its proof is inspired by [PV14, Cor. 2.3].

Lemma 7.1 (`1/`2,1-RIP). For θ =
√
π/(2Lm2) and mL & δ−2s(log(en/s) + L), the

operator θA, with A given by (7.7), has the `1/`2,1-RIP on Ks,L with RIP-constant δ with
probability at least 1− 2 exp (−δ2mL/(4π)).

Remark 7.1. For L = 1 this result agrees with known bounds on the sufficient number
of measurements to have `1/`2-RIPs for random Gaussian matrices with high probability,
namely, m & s log(en/s). If L ≥ log(en/s), we have (log(en/s) + L)/L ≤ 2 and, hence,
Lemma 7.1 requires m & δ−2s for an RIP on signal ensembles in Ks,L, i.e., only O(s)
measurements per signal.
In [EYRW15] the authors examined how many measurements suffice for random Gaussian
block matrices A to satisfy classical `2-RIPs depending on how the information of sparse
signals is distributed on the different blocks of A. Lemma 7.1 extends their result to
`1/`2,1-RIPs when all signals have the same support.
As ‖z‖2,1 ≤

√
L‖z‖2, the upper bound in (7.11) can be replaced by (1 + δ)‖z‖2. Moreover,

if restricted to Ss,L the `1/`2,1-RIP in (7.11) becomes a full `1/`2-RIP, i.e.,

(1− δ)‖x‖2 ≤ ‖Bx‖1 ≤ (1 + δ)‖x‖2 (7.12)

as in this case ‖x‖2,1 =
√
L‖x‖2. This observation suggests that the signal model Ss,L is

well-chosen as the signal ensembles in Ss,L when multiplied by block-diagonal Gaussian
measurement matrices (induced by the distributed setting) behave like single sparse vectors
multiplied by dense Gaussian measurement matrices.
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The next theorem is our main result. It guarantees uniform recovery of all signal en-
sembles x ∈ Ss,L by a simple hard-thresholding step. This result generalizes [Fou16, Thm.
8] to joint recovery of signals sharing a common support.

Theorem 7.2. Let n,m, s > 0, and let A be a random Lm×Ln matrix as defined in (7.7).
Set

mL & δ−2s(log(en/s) + L) (7.13)

and θ =
√
π/(2Lm2). Then with probability at least 1 − 2 exp (−δ2mL/(4π)) (over the

entries of A), and for all x ∈ Ss,L with ‖x‖2 = 1, we have

‖x − y‖2 .
√
δ (7.14)

where y is defined in (7.8) and δ is the `1/`2,1-RIP constant of θA.

Remark 7.2.
(i) As already mentioned in Remark 7.1, the required number of measurements per signal
does not depend on s log(n/s) if L ≥ log(n/s) but only on s, i.e., when recovering several
signals that share a common support from sign-measurements collected independently for
each single signal, one can significantly reduce the number of measurements.
(ii) For unit norm signals ‖xl‖ = 1 the error bound (7.14) becomes

‖x − y‖2 .
√
Lδ (7.15)

i.e., the error per single signal xl is only less than
√
δ on average. In the worst case this

error concentrates on one signal. However, if the signals all are dense on a shared support
set T ⊂ [n], the support will be recovered even in this case because a large error on one
signal implies less error on the remaining signals. It is not surprising that a dense support
of all signals is needed to profit from joint recovery. If only one signal has dense support
while the rest have mostly zeros on T , then most of the signals do not carry helpful support
information, i.e., joint recovery cannot be expected to improve performance.
(iii) At first glance, the proof of Theorem 7.2 hardly differs from the one of [Fou16, Thm.
8]. One first proves an `1/`2-RIP for θA and then concludes by a simple computation.
However, the model selection Ss,L is crucial and must treat the matrix A as a whole to
reach the sample complexity in (7.13). Consider the following naive approach: If m &
δ−2s log(en/s) for some δ > 0, then for each l ∈ [L] and Gaussian A(l) ∈ Rm×n, and with
probability exceeding 1− C exp(−cδ2m) we have

(1− δ)‖z‖2 ≤
√

2
m
√
π
‖A(l)z‖1 ≤ (1 + δ)‖z‖2 (7.16)

for all s-sparse z ∈ Rn (see [Sch06]). Applying the union bound and summing over (7.16)
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for l ∈ [L], with probability at least 1− C exp(−cδ2m+ log(L)), we have

(1− δ)‖x‖2 ≤ ‖(θA)x‖1 ≤ (1 + δ)‖x‖2 (7.17)

for all x ∈ Ss,L and θ =
√

2/(m
√
πL). Choosing δ′ =

√
Lδ (to obtain comparable proba-

bilities of success) shows that this leads to a worse sample complexity than (7.13).
(iv) The proof of Theorem 7.2 relies on the assumption that x ∈ Ss,L. As mentioned in
Remark 7.1 this assumption corresponds to the equivalence of `1/`2,1-RIP and `1/`2-RIP
on Ss,L. One can relax the restriction a little. To this end, define for ε ∈ (0, 1) the set

Sε =
{

z = vec(Z) : Z ∈ RN×L, supp(Z) ≤ s, ‖zl‖2 ∈
[

1− ε√
L
‖z‖2,

1 + ε√
L
‖z‖2

]}
(7.18)

of signal ensembles which differ in norm by a bounded perturbation. Assume that a
matrix B satisfies the `1/`2,1-RIP on Ks,L with RIP-constant δ > 0. Using ‖x‖2,1 ∈
[1− ε, 1 + ε]

√
L‖x‖2 if x ∈ Sε, this implies

(1− δ)(1− ε)‖x‖2 ≤ ‖Bx‖1 ≤ (1 + δ)(1 + ε)‖x‖2. (7.19)

To rewrite (7.19) as an `1/`2-RIP on Sε for some δ′ ∈ (0, 1), i.e.,

(1− δ′)‖x‖2 ≤ ‖Bx‖1 ≤ (1 + δ′)‖x‖2 (7.20)

for all x ∈ Sε, it suffices that

(1− δ′) ≤ (1− δ)(1− ε) (7.21)

which is equivalent to

ε ≤ δ′ − δ
1− δ . (7.22)

We can upper bound the right-hand side by δ′ because it is positive for δ < δ′ and a
decreasing function in δ for 0 ≤ δ < δ′. Hence, the more general `1/`2,1-RIP becomes an
`1/`2-RIP on Sε only for ε ≤ δ′, meaning that only small perturbations ε are possible if
the approximation error in (7.14) is small. However, the assumption that all signals xl
share the same norm is a mild condition in our setting as (2.9) is blind to scaling and norm
variations in signal ensembles.

7.3. Proofs of Lemma 7.1 and Theorem 7.2
Our proofs rely on an improved understanding of Ks,L defined in (7.10), and we start by
analyzing this set in Section 7.3.1. The proof of Lemma 7.1 can be found in Section 7.3.2
and the proof of Theorem 7.2 is presented in Section 7.3.3.
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7.3.1. Properties of Ks,L
An important measure of complexity for subsets of Rd is the so-called Gaussian width.
This quantity generalizes the notion of linear dimension to arbitrary sets and is a useful
tool for estimating the sampling requirements of signal sets in CS.
Definition 7.2 (Gaussian width [PV14, Eq. (1.2)]). The Gaussian width of K ⊂ Rd is
defined as

w(K) = E
[
sup
z∈K
|〈G, z〉|

]
(7.23)

where G ∼ N (0, Idd) is a random vector with iid Gaussian entries.
Remark 7.3. Let B(0, 1) denote the Euclidean ball of radius 1 centered at 0. Examples
illustrating the relation between Gaussian width and set complexity are as follows [PV13b]:

(i) For K = B(0, 1) ⊂ Rd one has w(K) ≈
√
d.

(ii) If the linear dimension of a set K ⊂ B(0, 1) ⊂ Rd is dim(K) = k, then w(K) ≈
√
k.

(iii) Let Σs ⊂ Rd denote the set of s-sparse vectors. Then w(Σs∩B(0, 1)) ≈
√
s log(ed/s).

Examples (i) and (ii) show that w(K) provides a consistent extension of the linear di-
mension to arbitrary sets in Rd. A helpful rule of thumb is w(K)2 ∼ dim(K), i.e., the
complexity of a set corresponds to the squared Gaussian width. However, note that con-
trary to dim(K) the Gaussian width scales with supz∈K ‖z‖2.
The Gaussian width of a set K is closely related to the covering number N(K, ε) via

Dudley’s and Sudakov’s inequalities (cf. [Tal14]). The covering number N(K, ε) of a set is
defined as the minimal number of ε-balls in `2-norm (centered in K) one needs to cover K
completely. The cardinality of any ε-net of a set K provides an upper bound of N(K, ε). A
subset K̃ ⊂ K is called an ε-net of K if for any z ∈ K there exists z̃ ∈ K̃ with ‖z− z̃‖2 ≤ ε.
We obtain a bound on w(Ks,L ∩ B(0, 1)) by first bounding N(Ks,L ∩ B(0, 1), ε) in Lemma
7.3 and then applying Dudley’s inequality in Lemma 7.4.
Lemma 7.3 (Covering Number of Ks,L ∩ B(0, 1)). For ε ∈ (0, 1) we have

log (N(Ks,L ∩ B(0, 1), ε)) ≤ s log
(
en

s

)
+ sL log

(3
ε

)
. (7.24)

Proof. As Ks,L ∩ B(0, 1) is the union of
(
n
s

)
unit `2-balls in RsL embedded into RnL and

each unit ball can be covered by an ε-net of cardinality at most (3/ε)sL (see [CP11, Section
3]), we have

N (Ks,L ∩ B(0, 1), ε) ≤
(
n

s

)(3
ε

)sL
≤
(
en

s

)s (3
ε

)sL
. (7.25)

�
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Lemma 7.3 leads to a bound on w(Ks,L ∩ B(0, 1)).
Lemma 7.4 (Gaussian width of Ks,L ∩ B(0, 1)). We have

w(Ks,L ∩ B(0, 1)) .
√
s
(

log
(
en

s

)
+ L

)
. (7.26)

Proof. By [PV13b, Prop. 2.1] one has w(K) = E[supz∈K〈G, z〉] for an origin symmetric set
K. Hence, we obtain

w(Ks,L ∩ B(0, 1)) ≤ E
[

sup
z∈Ks,L∩B(0,1)

〈G, z〉
]

a
≤ 24

∫ 1

0

√
log (N(Ks,L ∩ B(0, 1), ε)) dε

b
≤ 24

√∫ 1

0
12 dε ·

√∫ 1

0
log (N(Ss,L ∩ B(0, 1), ε)) dε

c
≤ 24

√
s
(

log
(
en

s

)
+ L(1 + log 3)

)
(7.27)

where (a) follows from Dudley’s inequality [LT02, Thm. 11.17], (b) from Hölder’s inequality
and (c) from Lemma 7.3. �

7.3.2. Proof of the RIP Lemma (Lemma 7.1)
To prove the `1/`2,1-RIP for θA on the signal set Ks,L, we restrict ourselves to Ks,L∩SnL−1

where SnL−1 denotes the unit sphere in RnL. It suffices to prove (7.11) for all z ∈ Ks,L ∩
SnL−1, as (7.11) is invariant under scaling of the `2-norm. The proof hence reduces to a
direct application of the following concentration lemma which is a slightly adapted version
of [PV14, Lemma 2.1]. For sake of completeness we report its full proof.

Lemma 7.5. Consider a bounded subset K ⊂ RNL and let a(l)
i ∼ N (0, Idn), i ∈ [m], l ∈ [L]

be independent Gaussian vectors in Rn. Define

Z := sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈A(l)
i , xl〉

∣∣∣− 1√
L
‖x‖2,1

∣∣∣∣∣ . (7.28)

Then we have

E[Z] ≤
√

8πw(K)√
mL

(7.29)

and

Pr
[
Z >

√
8πw(K)√
mL

+ u

]
≤ 2 exp

(
− mLu2

πd(K)2

)
(7.30)
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where d(K) := maxx∈K ‖x‖2.

Proof. Let G ∼ N (0, 1) and note that E[|G|] =
√

2/π. We have

E
[
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈A(l)
i , xl〉

∣∣∣] =
m∑
i=1

L∑
l=1

√
π

2Lm2 E[|G|] ‖xl‖2 = ‖x‖2,1√
L
. (7.31)

Now define the random variables ϑ
(l)
i =

√
π/(2Lm2)

∣∣∣〈A(l)
i , xl〉

∣∣∣, for i ∈ [m], l ∈ [L], iid copies

ϑ̂
(l)
i , and independent Rademacher variables εi,l, i.e., P[εi,l = 1] = P[εi,l = −1] = 1/2. We

obtain

E[Z] = E
[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

(
ϑ

(l)
i − E

[
ϑ

(l)
i

])∣∣∣∣∣
]

= E
[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

(
ϑ

(l)
i − E

[
ϑ

(l)
i

])
− E

[
ϑ̂

(l)
i − E

[
ϑ̂

(l)
i

]]∣∣∣∣∣
]

= E
[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

E
[
ϑ

(l)
i − ϑ̂

(l)
i

]∣∣∣∣∣
]

a
≤ E

[
E
[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

ϑ
(l)
i − ϑ̂

(l)
i

∣∣∣∣∣
]]

= E
[
E
[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

εi,l

(
ϑ

(l)
i − ϑ̂

(l)
i

)∣∣∣∣∣
]]

b
≤ 2E

[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

εi,lϑ
(l)
i

∣∣∣∣∣
]

(7.32)

= 2
√

π

2Lm2 E
[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

εi,l
∣∣∣〈A(l)

i , xl〉
∣∣∣∣∣∣∣∣
]

c
≤ 4

√
π

2Lm2 E
[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

εi,l〈A(l)
i , xl〉

∣∣∣∣∣
]

= 4
√

π

2Lm2 E
[
sup
x∈K

∣∣∣∣∣
L∑
l=1

〈 m∑
i=1

εi,lA(l)
i , xl

〉∣∣∣∣∣
]

= 4
√

π

2Lm2 E
[
sup
x∈K

∣∣∣∣∣
〈 m∑
i=1

(
εi,1(A(1)

i )T, ..., εi,L(A(L)
i )T

)T
, x
〉∣∣∣∣∣
]

d= 4
√

π

2Lm2 E
[
sup
x∈K

∣∣∣〈√mG, x〉
∣∣∣] (7.33)

=
√

8πw(K)√
mL

where (a) follows from Jensen’s inequality and (b) from the triangle inequality, (c) is a
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consequence of [LT02, Thm. 4.12] and in (d) we let G ∼ N (0, IdnL). To prove the deviation
inequality (7.30) we will first show that Z, as defined in (7.28), is Lipschitz continuous in
A. Consider two fixed block diagonal matrices A,B as in (7.7) and define the operator

Z(A) := sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈a(l)
i , xl〉

∣∣∣− ‖x‖2,1√
L

∣∣∣∣∣ . (7.34)

Then, we have

|Z(A)− Z(B)|

= sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈a(l)
i , xl〉

∣∣∣− ‖x‖2,1√
L

∣∣∣∣∣− sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈b(l)
i , xl〉

∣∣∣− ‖x‖2,1√
L

∣∣∣∣∣
≤ sup

x∈K

{∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈a(l)
i , xl〉

∣∣∣− ‖x‖2,1√
L

∣∣∣∣∣−
∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈b(l)
i , xl〉

∣∣∣− ‖x‖2,1√
L

∣∣∣∣∣
}

≤ sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈a(l)
i − b(l)

i , xl〉
∣∣∣∣∣∣∣∣

≤ sup
x∈K

√
π

2Lm2

m∑
i=1

L∑
l=1
‖a(l)

i − b(l)
i ‖2‖xl‖2 (7.35)

≤ sup
x∈K

√
π

2Lm2‖A−B‖F
(

m∑
i=1

L∑
l=1
‖xl‖2

2

) 1
2

≤
√

π

2Lm2

√
m‖A−B‖Fd(K)

= d(K)√
mL

√
π

2 ‖A−B‖F .

Hence, Z(·) is Lipschitz continuous with constant d(K)√
mL

√
π
2 . Using [LT02, Eq. (1.6)], we

see that for our random choice of A, we have

P[|Z − E[Z] | > u] ≤ 2 exp
(
− 2u2mL

2πd(K)2

)
. (7.36)

Thus, using (7.32), we have

Pr
[
Z −
√

8πw(K)√
mL

> u

]
≤ Pr[Z − E[Z] > u] ≤ Pr[|Z − E[Z] | > u] ≤ 2 exp

(
− mLu2

πd(K)2

)
(7.37)

which yields the claim. �

Proof of Lemma 7.1. The lemma is a direct consequence of Lemmas 7.4 and 7.5. We
choose u = δ/2 and mL ≥ 8π(δ/2)−2w(Ks,L ∩ B(0, 1))2 and note that by Lemma 7.4,
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we have w(Ks,L ∩ B(0, 1)) ≥ w(Ks,L ∩ SnL−1). Thus, with probability at least 1 −
2 exp (−mLδ2/(4π)), we have

∣∣∣∣∣
√

π

2Lm2‖Az‖1 −
‖z‖2,1√
L

∣∣∣∣∣ ≤ √8π
w
(
Ks,L ∩ SnL−1

)
√
mL

+ δ

2 ≤ δ (7.38)

for all z ∈ Ks,L∩SnL−1. The statement follows for z ∈ Ks,L by multiplying by ‖z‖2 on both
sides. �

7.3.3. Proof of the Main Result (Theorem 7.2)
We denote the set of nonzero rows of X by supp(X) = supp(x) ⊂ T for some T ⊂ [n] with
|T | ≤ s. For z = vec(Z) ∈ RnL, let zT = vec(ZT ), where ZT is the matrix in which all
rows not in T are zero. The proof of Theorem 7.2 follows the argument of [Fou16, Thm.
8] but relies on the assumption that all signals xl share a common `2-norm.

Lemma 7.6. If the operator θA satisfies the `1/`2,1-RIP on Ks,L, then all x ∈ Ss,L with
‖x‖2 = 1 satisfy ∥∥∥ ((θA)Tsign(Ax)

)
T
− x

∥∥∥2

2
≤ 5δ. (7.39)

Proof. Define θb = θATsign(Ax) ∈ RnL to be the back-projected quantized measurements.
We then have ∥∥∥ ((θA)Tsign(Ax)

)
T
− x

∥∥∥2

2
= ‖(θb)T ‖2

2 − 2〈(θb)T , x〉+ ‖x‖2
2 (7.40)

and

‖(θb)T ‖2
2 = 〈(θb)T , (θb)T 〉 = 〈(θA)Tsign(Ax), (θb)T 〉

= 〈sign(Ax), (θA)(θb)T 〉 ≤ ‖(θA)(θb)T ‖1

≤ ‖(θb)T ‖2,1√
L

+ δ‖(θb)T ‖2 ≤ (1 + δ)‖(θb)T ‖2.

(7.41)

Hence, we have ‖(θb)T ‖2 ≤ 1 + δ and

〈(θb)T , x〉 = 〈sign(Ax), (θA)x〉 = ‖(θA)x‖1 ≥
‖x‖2,1√

L
− δ‖x‖2 = (1− δ) (7.42)

where we used ‖x‖2,1 =
√
L‖x‖2 =

√
L. We conclude that∥∥∥ ((θA)Tsign(Ax)

)
T
− x

∥∥∥2

2
≤ (1 + δ)2 − 2(1− δ) + 1 ≤ 5δ. (7.43)

�
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Algorithm 7.1 : sHT(y,A, s)
Require: Q ∈ {−1, 1}m×L, A ∈ RmL×nL

1: y← H̃s(ATvec(Q)) {H̃s is defined in (7.8)}
2: Y← reshape(x, n, L) {reshape(·) reverses vec(·)}
3: return Y

Proof of Theorem 7.2. ChoosemL & δ−22s(log(en/(2s))+L) such that by Lemma 7.1, θA
satisfies the `1/`2,1-RIP on K2s,L with high probability. Let T = supp(x) and T̂ = supp(x̂)
where x̂ = H̃s((θA)Ty). Note that x̂ is also the best s-row approximation of ((θA)Ty)T ∪T̂ .
Hence, we have

‖x − x̂‖2 ≤ ‖((θA)Ty)T ∪T̂ − x̂‖2 + ‖((θA)Ty)T ∪T̂ − x‖2

≤ 2‖((θA)Ty)T ∪T̂ − x‖2 ≤ 2
√

5δ
(7.44)

where we applied Lemma 7.6 for K2s,L in the last inequality (note that |T ∪ T̂ | ≤ 2s). �

7.4. Numerical Experiments
We illustrate numerically the theoretical results of Section 7.2. Recall that we pro-
pose to recover an unknown signal ensemble X ∈ Rn×L from its one-bit measurements
Q ∈ {−1, 1}m×L by a single hard-thresholding step which needs the measurements Q, the
block diagonal measurement matrix A and the sparsity level s = |supp(X)|. The simple
approximation procedure is presented in Algorithm 7.1. We present two experiments which
document the asymptotically linear dependence of m = O(s) measurements per signal. In
both experiments the block diagonal measurement matrix A has iid Gaussian entries and
is scaled by θ =

√
π/(2Lm2) as required in Lemma 7.1. Signal ensembles X ∈ Rn×L with

|supp(X)| = s are created by first drawing some support set T ⊂ [n] uniformly at random,
then drawing the single entries as iid Gaussians of mean 0 and variance 1, and finally
rescaling all single signals xl, l ∈ [L], to have unit norm.

In the first experiment we approximate 500 randomly drawn signal ensembles X ∈ Rn×L

of signal dimension n = 100, ensemble size L = 1, 2, 5, 20, and support size s = 5 from
their one-bit measurements Q ∈ {−1, 1}m×L. Figure 7.2 depicts the average approximation
error ‖X −Y‖F against the measurement rate α = m/n. One observes an improvement
for larger ensembles. The benchmark decay of order O(m−1/2) indicates that, on average,
the algorithm performs better than one might expect from the worst case guarantee of
O(m−1/4) in Theorem 7.2.
The second experiment (see Figure 7.3) illustrates the dependence of m and s. We again

approximate 500 randomly drawn signal ensembles X ∈ Rn×L of signal dimension n = 100
and ensemble size L = 1, 2, 5, 20 from their one-bit measurements Q ∈ Rm×L. This time
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Figure 7.2.: Log-log plot of the simulated error ‖X−Y‖F averaged over 500 experiments
for s = 5 and n = 100.

the support size of X varies from s = 1 to s = 50 while the measurement rate α = m/n
ranges from α = 0.01 up to α = 3. The average approximation error ‖X−Y‖F is plotted
in color while a selected error level is highlighted. When comparing the different choices
of L, the linear dependence of m on s for L = 20 and fixed error levels is clearly visible
and different from the s ln(en/s) behavior for L = 1.
The reader might notice that the measurement rate does not behave linearly in the plots

L = 2 and L = 5 for s/n ≥ e1−L which corresponds to the case L ≥ log(en/s) for which
we claimed O(s) behavior in Remark 7.1. This is no contradiction of our theory because
for the O(s) argument it suffices to bound (log(en/s) + L)/L ≤ 2. In the numerical
experiments with fixed L we observe that the transition from (log(en/s) + L)/L ≈ 2 for
small values of s/n (corresponding to large values of log(en/s)) to (log(en/s) + L)/L ≈ 1
for large values of s/n (corresponding to small values of log(en/s)) causes a non-linear
shape as long as L is not clearly dominating (cf. L = 20).
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Figure 7.3.: Simulated error ‖X−Y‖F averaged over 500 experiments with n = 100. The
blue contour lines correspond to ‖X−Y‖F = 2/3.

7.5. Conclusion

We examined how heavily quantized measurements and distributed CS can be combined.
We showed that a single hard thresholding step enables uniform joint approximation of
several signals sharing a common support for m = O(s) measurements per signal. We
see several possible directions of future research. First, sophisticated alternatives to a
single hard-thresholding step have been proposed (see [KKWV16]) which numerically give
a smaller approximation error. It would be interesting to extend our theory to these
methods. Second, extending our results to noisy measurements would be useful. The
proof of Theorem 7.2, however, relies on noiseless measurements to exploit the equivalence
of 〈sign(Ax), (θA)x〉 and ‖(θA)x‖1 in (7.42). It seems difficult to modify the above proof to
tolerate noise on the measurements. Third, our analysis relies on choosing the entries of the
measurement matrices as iid Gaussian random variables. Numerical simulations indicate
that, for example, iid Rademacher entries provide a similar (average) performance. It
would be useful to extend our results to more general classes of measurements. Finally,
increasing the quantization depth to multi-bit quantizers is desirable as this should decrease
the approximation error (cf. [JDV13,Jac16]) and bridge the wide performance gap between
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unquantized measurements and one-bit measurements.



8
Summary and Conclusions

In this dissertation, we investigated the digital compression of structured signals modeled
as sparse sources both from information-theoretic and algorithmic points of view.

Part I

In Part I, we focused on the question of finding the smallest coding rates among all possible
encoder and decoder pairs for a given average or probabilistic excess distortion criterion.
We first studied the RD function with multiple distortion criteria in Chapter 3 both for
infinite and finite block lengths. For finite block lengths, we derived a converse bound
that provides tight bounds for single and multiple distortions and established a connection
between previously known bounds.
In Chapter 4, we studied the RD function for Bernoulli Spike Sources. Since an intuitive

upper bound was available in the literature, we focused on deriving a converse bound,
first with two constraints and then for the usual case of a single squared error distortion
constraint. This converse bound improves on previously known bounds as it captures the
correct behavior at small distortions, which we used to characterize the RD function in
the limit of small distortions.
In Chapter 5, we studied the RD behavior of the Distributed Bernoulli-Gaussian Spike

Source with two terminals, building on the results from Chapter 4. Here, we derived
an inner bound based on distinguishing between significant and insignificant samples and
outer bounds using the single terminal converse result above. While the inner and outer
bounds exhibit a gap at larger distortions, they closely match at small distortion values.
We made this observation precise and characterized the achievable rate region exactly in
the limit of small distortions at both terminals.
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Part II

The second part investigated the RD performance of a specific encoder/decoder structure:
QCS combined with approximate message passing reconstruction. To this end, we reviewed
the GAMP algorithm for CS with scalar quantization and numerically investigated its
RD tradeoff for different measurement rates and quantizer depths for Bernoulli-Gaussian
signals. Further, we extended the algorithm to the multi-terminal setting and numerically
investigated the RD performance of MGAMP.
A key observation was that the RD tradeoff is best if the measurement rate is just

above the critical rate (the rate at which the phase transition happens in noiseless CS).
For larger rates, the error decays only slowly in the measurement rate which leads to an
increasingly worse tradeoff between the total number of bits and the reconstruction error.
Based on this observation, we investigated how this tradeoff changes if one compresses
the quantized measurements down to their joint entropy. Using the recent theory about
asymptotic properties of GLMs [BMDK17], we determined the asymptotic limit of the
measurement entropy and thus the RD behavior of QCS with lossless compression. An
interesting observation is that for a given entropy, 1-bit CS seems to outperform QCS
with a higher quantizer depth. Of course, finding a compression algorithm that achieves
this optimal compression may be difficult since it must exploit the dependence of a large
number of measurements. This is an interesting task for future work.
A second question investigated in this chapter was that of optimality of the GAMP

algorithm. AMP for dense matrices has been shown to exhibit a suboptimal phase tran-
sition for noiseless CS [KMS+12a], so one might expect the same to hold true for QCS.
Interestingly, in all performed experiments, GAMP achieves the MMSE whenever we used
1-bit quantization. Only for larger quantizer depths, where a phase transition starts to
develop, GAMP becomes suboptimal around this phase transition. An interesting question
is whether the seeded sensing matrices that have been shown to exhibit an optimal phase
transition in the noiseless case can also be applied for this purpose here.
Last, we used the intuition from Part I that an optimal coding scheme should distinguish

between significant and insignificant samples. To apply this to our QCS framework, we
assumed that before sensing a signal, all small values are set to zero. This filtered signal
was then used as the input to our QCS system. For this case, we performed the same
investigations as above. We found that in the 1-bit case, GAMP is still optimal at all
measurement rates. Further, the RD tradeoff with optimal lossless compression is signif-
icantly improved as compared to directly sensing a Bernoulli-Gaussian signal. Of course,
an important question is whether this filtering operation can be realized in practice.

Part III

Part III also investigated a specific setting for QCS. Here, we assumed that 1-bit mea-
surements of several signals are taken independently but reconstructed jointly. Further,
the sparse signals were assumed to have a common support. In contrast to Part II, our
fidelity criterion was the worst case error among all signals and we were mainly interested
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in how the measurement rate scales in the ambient dimension and the sparsity of the sig-
nals. Our key finding was that compared to the single terminal signal, we can reduce the
required number of measurements from O(s log(en/s)) to O(s) in the distributed case -
an improvement that can be significant in practice. This scaling was also confirmed in
numerical simulations.
There are not many related results for distributed QCS available in the literature, which

leaves many directions for future work. Our work has several strong assumptions that
would be important to relax. First, we assume that our measurements are Gaussian, which
is difficult to realize in practice. Recent results for the single terminal setting [DM18] with
sub-Gaussian and heavy tailed measurements offer new tools that could be used for this
purpose. Similarly, is important to consider noisy measurements and show that the results
still hold in a similar way. Another direction is to consider signal sets that have weaker
assumptions or nicer properties such as convexity. Finally, it is desirable to extend these
results to multi-bit quantization, a task that is far from trivial.





A
Proofs for Chapter 4

A.1. Proof of Lemma 4.3
Recall that

d1 = sup
PY |X∈Q(dS)

Pr[B̂ = 0 |B = 1]. (A.1)

Since B = 1 implies X = Z, we can write d1 as

d1 = sup
f

E[f(Z)] (A.2)

where the supremum is taken over all Borel measureable mappings f : R → [0, 1] satis-
fying E[Z2f(Z)] ≤ dS. Intuitively, f(z) is the conditional probability Pr[B̂ = 0 |Z = z].
Moreover, let W := Z2 and note that by symmetry, we only need to consider mappings
f : [0,∞)→ [0, 1] such that

d1 = sup
f

E[f(W )] subject to E[Wf(W )] ≤ dS. (A.3)

Let µ((a, b]) := QW (b)−QW (a), where QW is the quantile function of W . Since f is Borel
measurable, the expectation E[f(W )] is given by the Lebesgue integral of f with respect
to µ [Hal74, Ch. V]:

E[f(W )] = sup
{∫

s(w)dµ(w) : s is simple and s ≤ g

}
. (A.4)

Recall that s is simple if it can be written as a linear combination of indicator functions
s(w) = ∑K

k=1 ak1{w∈Ak}, where the Ak are disjoint sets and 0 ≤ a1 ≤ a2 ≤ . . . ≤ aK = 1.
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Since f is bounded from below by zero and from above by one, each s can be written
as a convex combination of indicator functions of (overlapping) sets Bk such that s(w) =∑K
k=1 λk1{w∈Bk}, where λk = ak − ak−1, ak−1 := 0 and Bk := ⋃

k′≥k Bk′ .
Now, we define for some s:

d†1 := E[s(W )] =
∫
s(w)dµ(w) =

K∑
k=1

akµ(Ak) =
K∑
k=1

λkµ(Bk) (A.5)

and

d†S := E[Ws(W )] =
K∑
k=1

λKE
[
W1{W∈Bk}

]
. (A.6)

Next, choose γ = F−1
W (d†1) and s̃(w) := 1{w∈[0,γ]}, so that E[s̃(W )] = µ([0, γ]) = d†1. Then,

we have

E[s̃(W )] =
K∑
k=1

λkE
[
W1{W∈[0,γ]}

]
a
≤ d†1 + γ

K∑
k=1

λk

(
µ
(
[0, γ] ∩ Bc

k

)
− µ

(
[0, γ]c ∩ Bk

))
b= d†1

(A.7)

where (a) follows since

E
[
W1{W∈[0,γ]}

]
= E

[
W1{W∈[0,γ]∩Bk}

]
+ E

[
W1{W∈[0,γ]∩Bc

k}
]

= E
[
W1{W∈Bk}

]
− E

[
W1{W∈[0,γ]c∩Bk}

]
+ E

[
W1{W∈[0,γ]∩Bc

k}
]

≤ E
[
W1{W∈Bk}

]
− γµ

(
[0, γ]c ∩ Bk

)
+ γµ

(
[0, γ] ∩ Bc

k

) (A.8)

and (b) follows since

K∑
k=1

λk

(
µ
(
[0, γ] ∩ Bc

k

)
− µ

(
[0, γ]c ∩ Bk

))

=
K∑
k=1

λk

(
µ([0, γ])− µ

(
[0, γ] ∩ Bk

)
−
(
µ
(
Bk
)
− µ

(
[0, γ] ∩ Bk

)))

= µ([0, γ])︸ ︷︷ ︸
= d†1

−
K∑
k=1

λkµ(Bk)︸ ︷︷ ︸
d†1

= 0.

(A.9)
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Thus, s̃(w) = 1{W∈Q−1
W (dS)} yields an upper bound for any simple s(w). Since s̃(w) is itself

simple and satisfies the constraint in (A.3), it achieves the supremum in (A.4).
For the case of Z ∼ N (0, 1), note that W is a χ2-distributed random variable and

QW = F−1
χ2

1
. A direct calculation shows that

E
[
W1{W≤F−1

W (dS)}
]

=
∫ F−1

χ2
1

(dS)

0
w

1
21/2Γ(1/2)w

1/2−1e−w/2dw

a=
∫ F−1

χ2
1

(dS)

0

1
23/2Γ(3/2)w

3/2−1e−w/2dw

= Fχ2
3

(
F−1
χ2

1
(dS)

)
(A.10)

where (a) follows from the relation zΓ(z) = Γ(z + 1) for the gamma function. �

A.2. Proof of Theorem 4.4

Proof of Theorem 4.4. To derive (4.22), we start by expanding

R(d) = inf
PY |X :

E[(X−Y )2]≤d
I(X;Y )

= inf
PY |X :

(1−p) E[(X−Y )2 |X=0]
+pE[(X−Y )2 |X 6=0]≤d

I(X;Y )

= min
d′0,d

′
S:

(1−p)d′0+pd′S≤d

inf
PY |X :

E[(X−Y )2 |X=0]≤d′0
E[(X−Y )2 |X 6=0]≤d′S

I(X;Y )

= min
d′0,d

′
S:

(1−p)d′0+pd′S≤d

RBSS,mse
L (d′0, d′S)

(A.11)

where RBSS,mse
L (d′0, d′S) is defined in (4.23a) – (4.23b). Let P ?

Y |X achieve the aforementioned
minimum. Fix some γ > 0 and define B̂ = 1{|Y |>γ}. Similar to (4.12) – (4.13), we can
write

I(X;Y ) ≥ I
(
B; B̂

)
+ p

(
h(Z)− 1

2 log(2πed′S)
)
. (A.12)

Next, we lower bound the first term in (A.12) by the RDL function for the binary memo-
ryless source with two Hamming distortion constraints. To this end, we determine appro-
priate Hamming distortion constraints in a similar manner as in the proof of Theorem 4.2.
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From the first constraint (4.23a), we get

d′0 ≥ E[(X − Y )2 |B = 0]
= E[Y 2 |B = 0]
≥ E[Y 21{B̂=1} |B = 0]

≥ E[γ21{B̂=1} |B = 0]

= γ2 Pr[B̂ = 1 |B = 0].

(A.13)

Therefore, the joint distribution of B and B̂ induced by P ?
Y |X satisfies

Pr[B̂ = 1 |B = 0] ≤ d0/γ
2. (A.14)

The second step of the argument is to upper bound Pr[B̂ = 0 |B = 1]. Using the second
constraint (4.23a), we have

d′S ≥ E[(X − Y )2 |B = 1]
≥ E

[
(X − Y )21{|X|>γ,B̂=1}

∣∣∣B = 1
]

≥ E
[
(|X| − γ)21{|X|>γ,B̂=1}

∣∣∣B = 1
]

≥ Pr[|X > γ |B = 1]E
[
(|X| − γ)21{|X|>γ,B̂=1}

∣∣∣|X| > γ,B = 1
]
. (A.15)

Now note that every distribution PY |X induces a distribution PB̂|B and, similar to (4.16),
consider the following set of distributions

Q(d′S) :=
{
PY |X : E

[
(|X| − γ)21{|X|>γ,B̂=1}

∣∣∣B = 0
]
≤ d′S

}
(A.16)

that, by (A.15), contains all distributions satisfying the required constraint (4.23a). Thus,
the joint distribution of B and B̂ satisfies

Pr[B̂ = 0 |B = 1]
≤ sup

PY |X∈Q(d′S)
Pr[B̂ = 0 |B = 1]

= sup
PY |X∈Q(d′S)

(
Pr
[
B̂ = 0, |X| ≥ γ

∣∣∣B = 1
]

+ Pr[B̂ = 0, |X| < γ |B = 1]
)

≤ Pr[|X| ≥ γ |B = 1] sup
PY |X∈Q(d′S)

Pr
[
B̂ = 0

∣∣∣B = 1, |X| ≥ γ
]

+ Pr[|X| < γ |B = 1].

(A.17)
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Now let W := (|Z| − γ)21{|Z|≥γ} and Z := {|Z| > γ}. To complete the proof, it remains to
show that

q†(d′S) := sup
PY |X∈Q(d′S)

Pr[B̂ = 0 |Z, B = 1] (A.18)

is the solution to

d′S
Pr[Z, B = 1] = E

[
W1{W≤QW |Z(q)}

∣∣∣∣Z, B = 1
]

(A.19)

because it is the distortion constraint given by (A.15). But this is implied by Lemma 4.3.
�

A.3. Proof of Theorem 4.6

We show that R̃BSS,mse
LB (d) and therefore also RBSS,mse

LB (d) converge to R0(d) as the distortion
d approaches zero.
To this end, we resolve the supremum in (4.30) by showing that for a good choice of

γ, the first term in (4.30) converges to H2(p) as d tends to zero. We will do this in three
steps.
Step 1 (Sequences): Let {dn}∞n=1 be a sequence of positive real numbers d1 > d2 > · · ·

with dn n→∞−→ 0. Further, for every n, let Zn := {|Z| > γn} and choose γn = d1/4
n . Define

Wn and QWn|Z according to (4.24)–(4.26) for each n. For sufficiently large n, we define

q̃n := g−Wn|Zn

(
dn

pPr[Zn |B = 1]

)
(A.20)

according to (4.28).
Step 2 (Large n): Fix some arbitrary ε > 0. By construction, there is an n0 such that

for all n ≥ n0 the following holds:

ε2 ≥ dn

p Pr
[
Zn
∣∣∣B = 1

] = gWn|Zn(q̃n) = E
[
Wn1{Wn≤QWn|Zn (q̃n)}

∣∣∣Zn, B = 1
]
. (A.21)

By Markov’s inequality, this implies that for all n ≥ n0, we have

ε ≥ Pr
[
Wn1{Wn≤QWn|Zn (q̃n)} ≥ ε

∣∣∣∣Zn, B = 1
]
. (A.22)

Resolving the indicator function above, we can rewrite (A.22) as
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ε ≥ Pr
[
Wn ∈

[
ε,QWn|Zn(q̃n)

]∣∣∣∣Zn, B = 1
]

a
≥ Pr

[
Wn ≤ QWn|Zn(q̃n)

∣∣∣Zn, B = 1
]
− Pr

[
Wn ≤ ε

∣∣∣Zn, B = 1
]

= q̃n − Pr
[
Wn ≤ ε

∣∣∣Zn, B = 1
]

(A.23)

where (a) is an inequality since ε might be larger than QWn|Zn(q̃n).
Step 3 (The limit): Starting with the nonnegativity of q

d
1/4
n

(dn) as given by (4.28), we
have

0 ≤ lim sup
n→∞

q
d

1/4
n

(dn)
a= lim sup

n→∞

(
Pr[Zn |B = 1] q̃n + Pr[Zc

n |B = 1]
)

b
≤ lim sup

n→∞

(
Pr[Zn |B = 1]

(
ε+ Pr[Wn ≤ ε |Zn, B = 1]

)
+ Pr[Zc

n |B = 1]
)

≤ lim sup
n→∞

(
ε+ Pr

[
Zn,Wn ≤ ε

∣∣∣B = 1
]

+ Pr[Zc
n |B = 1]

)
c
≤ lim sup

n→∞

(
ε+ Pr

[
|Z| ∈ (d1/4

n , d1/4
n +

√
ε]
∣∣∣B = 1

]
+ Pr

[
|Z| ≤ d1/4

n

∣∣∣B = 1
])

≤ lim sup
n→∞

(
ε+ F|Z|

(
d1/4
n +

√
ε
)

+ F|Z|
(
d1/4
n

))
d= ε+ F|Z|(

√
ε) + F|Z|(0). (A.24)

The steps are justified as follows:

(a) uses the definition of q
d

1/4
n

(4.28) and (A.20).

(b) follows from (A.23).

(c) uses the definition ofWn (4.24) and its distribution function conditioned on Zn (4.25).

(d) holds since every cumulative distribution function is right continuous.

Since Z2 has a PDF and (A.24) holds for any arbitrary ε > 0, we conclude that lim
n→∞

q
d

1/4
n

(dn)→
0.
Putting everything together and using the continuity of RBMS

L (·) in both arguments, we
see that

lim
n→∞

RBMS
L

( √
dn

(1− p) , qd1/4
n

(dn)
)

= RBMS
L (0, 0) = H2(p) (A.25)

which concludes the proof of Theorem 4.4.
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B.1. Proof of Theorem 5.3
We provide a more detailed derivation of the thresholding-based inner bound.

Proof. We start with (5.17) – (5.19) for U1, U2 and the decoders g1 and g2. Let B̂j :=
1{|Xj |>τj} for j = 1, 2. The rate bound for user 1 as given by the Berger-Tung inner bound
(Theorem 5.1) is

I(X1;U1|U2)
= I

(
X1;U1, B̂1

∣∣∣U2
)

= I
(
X1; B̂1

∣∣∣U2
)

+ I
(
X1;U1|U2, B̂1

)
= H

(
B̂1 |U2

)
−H

(
B̂1 |U2, X1

)
︸ ︷︷ ︸

= 0

+ Pr[U00 ∪ U01] I(X1;U1|U2,U00 ∪ U01)︸ ︷︷ ︸
= 0

+ Pr[U10]I(X1;U1|U2,U10) + Pr[U11]I(X1;U1|U2,U11)
= H

(
B̂1 |U2

)
+ Pr[U10]I(X1;X1 +N1| U10) + Pr[U11]I(X1;X1 +N1|U2,U11) . (B.1)

The first mutual information in (B.1) can be bounded by

I(X1;X1 +N1| U10) = h(X1 +N1| U10)− h(X1 +N1|X1,U10)
= h(X1 +N1| U10)− h(N1)
a
≤ 1

2 log
(

Var[X1 +N1|U10]
σ2

1

)
b= 1

2 log
(

1 + Var[X1|U10]
σ2

1

)
(B.2)
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where (a) is due to the maximum entropy property of Gaussian random variables [CT06b,
Thm 17.2.3] and (b) holds true because X1 and N1 are independent given U10. For the
second mutual information in (B.1), we similarly have

I(X1;U1 +N1|U2,U11) = h(X1 +N1|U2,U11)− h(X1 +N1|X1, U2,U11)
= h(X1 +N1|U2,U11)− h(N1)

≤ 1
2 log

(
Var[X1 +N1|U2,U11]

σ2
1

)

= 1
2 log

(
1 + Var[X1|U2,U11]

σ2
1

)

≤ 1
2 log

(
1 + lmmse(X1;U2|U11)

σ2
1

)
(B.3)

where the last line follows because the conditional variance represents the MMSE when
estimating X1 from U2 which is upper bounded by the LMMSE. This bound is done for
numerical convenience. The LMMSE is given by

lmmse(X1;U2|U11) = Var[X1|U11]− E[X1U1 |U11]
Var[U2|U11]

= Var[X1|U11]− E[X1U1 |U11]
Var[X2|U11] + σ2

2
.

(B.4)

The rate bound for R2 is similar. For the sum rate, we have

I(X1, X2;U1, U2)
= I

(
X1, X2;U1, U2, B̂1, B̂2

)
= I

(
X1, X2; B̂1, B̂2

)
+ I

(
X1, X2;U1, U2| B̂1, B̂2

)
= H

(
B̂1, B̂2

)
+ Pr[U00] · I(X1, X2;U1, U2| U00)︸ ︷︷ ︸

= 0

+ Pr[U01] · I(X1, X2;U1, U2| U01)

+ Pr[U10] · I(X1, X2;U1, U2| U10) + Pr[U11] · I(X1, X2;U1, U2| U11)
a= H

(
B̂1, B̂2

)
+ Pr[U01] · I(X2;U2| U01)

+ Pr[U10] · I(X1;U1| U10) + Pr[U11] · I(X1, X2;U1, U2| U11)
b
≤ H

(
B̂1, B̂2

)
+ Pr[U01]

2 log
(

1 + Var[X2|U01]
σ2

1

)

+ Pr[U10]
2 log

(
1 + Var[X1|U10]

σ2
1

)
+ Pr[U11]

2 log
(

detCUU|U11

σ2
1σ

2
2

)
(B.5)

where (a) follows from the Markov chain U1–X1–X2–U2 and (b) uses the upper bound
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(B.2) applied to X1, X2 and then (X1, X2). The covariance matrix CUU|U11 is given by

CUU|U11 =
[

Var[U1|U11] E[U1U2 |U11]
E[U1U2 |U11] Var[U2|U11]

]
=
[
Var[X1|U11] + σ2

1 E[X1X2 |U11]
E[X1X2 |U11] Var[X2|U11] + σ2

2

]
. (B.6)

It remains to determine the distortion of the LMMSE decoders in these four different
scenarios. The distortion is then given by

E[δ(X1, Y1)] = Pr[U00] · E[δ(X1, Y1) |U00] + Pr[U01] · E[δ(X1, Y1) |U01]
+ Pr[U10] · E[δ(X1, Y1) |U10] + Pr[U11] · E[δ(X1, Y1) |U11] (B.7)

which is, using the properties of the LMMSE estimators [Kay93, Ch. 12], given by

E[δ(X1, Y1) |U00] = E[X2
1 |U00]

E[δ(X1, Y1) |U01] = E[X2
1 |U01]− E[X1U2 |U01]2

E[U2
2 |U01]

= E[X2
1 |U01]− E[X1X2 |U01]2

E[X2
2 |U01] + σ2

2

E[δ(X1, Y1) |U10] = E[X2
1 |U10]− E[X1U1 |U10]2

E[U2
1 |U10]

= E[X2
1 |U10]− E[X2

1 |U10]2
E[X2

1 |U10] + σ2
1

E[δ(X1, Y1) |U11] = E[X2
1 |U11]− CX1U|U11C

−1
UU|U11
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(B.8)

The rate bound and distortions for user 2 are computed similarly. �
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Abbreviations

List of Abbreviations

AMP Approximate Message Passing
BMS Binary Memoryless Source
BP Belief Propagation
BSS Bernoulli Spike Source
CS Compressed Sensing
DBGS Distributed Bernoulli-Gaussian Source
GAMP Generalized Approximate Message Passing
GLM Generalized Linear Model
GMS Gaussian Memoryless Source
iid independent and identically distributed
JPEG Joint Photographic Experts Group
LB Lower Bound
LMMSE Linear Minimum Mean Squared Error
MAMP Multi-Terminal Approximate Message Passing
MGAMP Multi-Terminal Generalized Approximate Message Passing
MMSE Minimum Mean Squared Error
MSE Mean Squared Error
PDF probability density function
PMF probability mass function
QCS Quantized Compressed Sensing
RD Rate-Distortion
RDL Letter-Based Rate-Distortion



130 List of Abbreviations

RHS right hand side
RIP Restricted Isometry Property
SE State Evolution
UB Upper Bound
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