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Abstract

Optimization problems that are governed by fluid-structure interaction models arise in nu-
merous applications from aeroelasticity to hemodynamics. In this thesis, a stationary and
non-linear fluid-structure model is considered that is discretized in space with stabilized fi-
nite elements. The underlying optimal control problem is then solved by adjoint-based first
and second order methods. Hereby, to acquire gradient and Hessian information, additional
systems have to be solved, such as the adjoint equation. A main focus of this thesis is the
development of partitioned solution schemes for the additional systems. Thereby, an exist-
ing approach, where the sensitivities for the coupled fluid-structure system are first derived
and then decoupled, is extended to second order methods. Furthermore, a novel approach
is introduced in which the sensitivities are derived after the fluid-structure system has been
decoupled. Another emphasis is the incorporation of these two approaches into adaptive
strategies that try to reduce the number of partitioned iterations during optimization. To
accomplish the latter, a posteriori techniques are derived that measure the approximation
error in the cost functional and are based on dual-weighted residual error estimators. This
is additionally combined with adaptive mesh refinement techniques. To test these concepts,
various numerical examples are presented.

Zusammenfassung

Optimierungsprobleme mit einem Fluid-Struktur-Modell als Nebenbedingung treten in einer
Vielzahl von Anwendung aus der Aeroelastiziät und Hämodynamik auf. In dieser Dissertation
gehen wir von einem stationären und nichtlinearen Fluid-Struktur-Modell aus, das mit stabil-
isierenden finiten Elementen diskretisiert wird. Das daraus folgende Optimalsteuerungsprob-
lem wird dann mit Methoden erster und zweiter Ordnung numerisch geslöst, wobei wir die
Lösungen von zusätzlichen Gleichungen, wie etwa der Adjungiertengleichung, verwenden, um
den Gradienten und die Hessematrix zu bestimmen. Ein Schwerpunkt dieser Doktorarbeit
ist dabei die Entwicklung von partitionierten Lösungsverfahren für diese zusätzlichen Gle-
ichungen. Ein bekannter Ansatz, bei dem zunächst die Sensitivitäten des gekoppelten Fluid-
Struktur-Systems bestimmt und im Anschluss entkoppelt werden, wird auf Methoden zweiter
Ordnung erweitert. Außerdem wird ein neuartiger Ansatz beschrieben, bei dem die Sen-
sitivitäten bestimmt werden, nachdem das Fluid-Struktur-System entkoppelt wurde. Ein
weiterer Fokus dieser Dissertation ist die Konstruktion von adaptiven Strategien zur Ver-
ringerung der Iterationen der partitionierten Verfahren im Optimierungsprozess. Mit der
Hilfe von residuenbasierten Fehlerschätzern werden a posteriori Techniken angewandt, die
den Approximationsfehler im Kostenfunktional schätzen. Zusätzlich werden diese Strategien
mit lokaler Gitterverfeinerung verbunden. Es werden numerische Beispiele präsentiert, an
denen die Konzepte dieser Doktorarbeit getestet werden.
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1. Introduction

This thesis is dedicated to the development of efficient algorithmic strategies for obtaining the
numerical solution of optimal control problems that are governed by stationary fluid-structure
interaction (FSI). The focus lies hereby on the usage of partitioned solution methods for the
FSI system of partial differential equations.

The term fluid-structure interaction usually describes the coupled behavior of a fluid flow and
an elastic structure. It is a well-known multi-physics problem and is used to model a wide
variety of physical phenomena. This goes from applications in aeroelasticity, where the air
flow interacts with the wing structure of a plane, to processes in medical science, like the
blood flow through an artery whose structure is elastic. A vast amount of literature can be
found concerning this topic. We refer exemplarily to the books [5, 22, 23, 50, 51] that give a
good overview on fields of applications.

Most of these applications refer to the time-dependent setting. Nevertheless, in this thesis we
are concerned with the the steady case that can usually be viewed as the stationary limit of
the unsteady one. This reduces the complexity while important properties, like the coupling
of the two subproblems, remain the same. Therefore, the concepts that are developed in this
thesis can be further extended to the unsteady case in future works.

Within the context of FSI, a large number of applications has arisen that fall into the field
of optimal control. These include, among others, parameter estimation (e.g., identification
of artery wall stiffness [12, 79]) and shape-optimization problems (e.g., the structural design
of an aeroplane [83], minimizing the pressure drop of a fluid in a pipe [65] and the optimal
design of an aorto-coronaric bypass [82]). There are various possibilities to tackle such optimal
control problems numerically. However, they all have in common that the state equation, i.e.,
the fully coupled FSI system, has to be solved several times. Therefore, the efficiency of an
optimization algorithm is closely linked to the efficiency of solution algorithms for the state
equation.

Solution algorithms for FSI can in general be divided into two categories: monolithic and
partitioned ones. Monolithic techniques revolve around solving the whole FSI system as one
entity. When using implicit methods like Newton, this results in solving large scaled linear
systems, where the system matrix is obtained by the linearized FSI equations. We want to
mention the work [78] that summarizes the recent developments of monolithic solvers.

The idea of partitioned methods on the other hand, arises from the composition of the FSI
model as a multiphysics system. The fluid and the structure subproblem are solved separately,
either sequentially or in parallel, while coupling information is exchanged between both. This
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1. Introduction

is usually done until the coupling conditions are fulfilled to a satisfactory accuracy. Conse-
quently, partitioned schemes can be seen as an iterative solution method. We refer to [46] and
[33], where the authors give a good overview on this topic. The main advantage here is the
usage of existing solving strategies for fluid and structural problems, respectively, that have
been developed over the years. This includes iterative solvers, preconditioners and so-called
“black-box” solvers, highly-efficient programming routines that only need the problem data.
In this thesis, we focus on partitioned methods.

As for optimization algorithms, we restrict us to adjoint-based algorithms that require gradient
or, additionally, Hessian information. To this end, additional sensitivity systems need be
solved. In particular, to obtain the gradient one needs the solution of an adjoint system, and
to obtain the action of the Hessian, the solution of a tangent and a dual for Hessian system
is required. These systems can again be tackled by either monolithic or partitioned solution
methods.

For the monolithic approach, the derivation of the additional systems can be done straight-
forward by the Lagrangian formalism as done in [40] for the gradient of a non-linear time-
dependent FSI problem, as well as for gradient and Hessian of a stationary configuration
in [99]. In [92], the authors derive the strong form of the adjoint equation within a shape
optimization problem.

One possibility to tackle the adjoint system with partitioned methods is to first derive the
adjoint system of the monolithic FSI formulation and decouple it afterwards, which we refer
to as first-optimize-then-partition (FOTP). This is the approach that has been commonly
discussed in the literature. In [107], the sensitivities of a general three-field system have
been decoupled. The authors in [85, 86] have first discretized both the fluid and the solid
equations and then derived and decoupled the sensitivities, while in [84, 83, 108] the authors
have used the continuous adjoint formulation of the fluid, mixing it with the discrete adjoint
formulation of the structure. These works have in common that the structural equation
is considered to be linear. Moreover, the used partitioned scheme is either restricted to a
relaxed fixed-point method, also known as Block Gauss-Seidel (see, e.g., [77]), or is not further
specified. In [104, 105] the considered fluid and structure equations are both nonlinear. After
spatial discretization, the adjoint equations are derived within a fixed-point formulation for
the single-field equations. The resulting single-field adjoint states can then be computed in a
similar manner as their primal counterparts. Hereby, the partitioned scheme is restricted to a
relaxed fixed-point method as well. For the unsteady case, a simplified one dimensional model
has been considered in [35], for which the adjoint equation has been solved with partitioned
methods.

One main contribution of this thesis, is to derive the adjoint equation based on the variational
monolithic FSI equation. Due to the incorporation of finite element methods, optimization and
discretization commute. The adjoint equation is decoupled afterwards. This is done, such that
different partitioned schemes can be applied to it. In particular, we consider a relaxed fixed-
point, a Quasi-Newton Inverse Least-Squares, and a Newton-Krylow method that have been
summarized in [33]. As reported in [33], the specific choice of the used partitioned method for
the primal problem is crucial due to a significant difference in computational cost. Therefore,
it is important to have this flexibility in the adjoint equation, too. Furthermore, this concept
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is extended to the computation of the Hessian. For that, two additional linear systems, called
tangent and dual for Hessian, need to be derived that are solved in a partitioned manner as
well. This allows the usage of second order methods for optimization, e.g., Newton’s method.
Likewise to the state equation, the iterative partitioned procedure is applied to the additional
equations until the respective coupling conditions are sufficiently fulfilled. Otherwise, gradient
and Hessian information are not accurate enough and standard optimization algorithms might
fail.

A novel approach, that is presented in this thesis, is based on first decoupling the primal
FSI system and deriving the additional sensitivity systems afterwards, which we call in the
following first-partition-then-optimize (FPTO). Instead of iterating a partitioned method for
the state equation until the coupling conditions are fulfilled, we stop after a fixed amount of
iterations. This is in contrast to the FOTP approach, for which the number of partitioned it-
erations depends on the desired accuracy of the coupling conditions. This leads to a perturbed
optimal control problem that is governed by this approximated state solution. If we derive the
correct sensitivities of this perturbed optimal control problem, we can again utilize standard
optimization algorithms. The resulting perturbed optimal solution is then an approximation
of the optimal solution of the original problem. However, we are flexible in the number of
partitioned iterations and can therefore adjust the approximation quality.

A further emphasis of this thesis is the development of adaptive strategies that reduce the
number of partitioned iterations within optimization algorithms. For that, we follow different
strategies for the two optimization approaches of the previous paragraphs. In case of FPTO,
the partitioned scheme is incorporated into the perturbed optimal control problem. The error
between the cost functional of the perturbed solution and the cost functional of the continuous
solution consists of the error coming from the spatial discretization and the approximation
error induced by the used partitioned method. The goal is to balance both error sources.
This is motivated by [97], where a technique is introduced to estimate and separate the error
from both sources. In this thesis, we want to apply those ideas to the FSI optimal control
problem.

On the other hand, in the case of FOTP, solving all the equations (state, adjoint, tangent,
dual for Hessian) with possibly different accuracy, leads to an inexactness in the functional,
gradient, and Hessian. Standard optimization algorithm might fail, if the inexactness is too
large. Thus, such optimization algorithms have to be modified and need to take the inexactness
into account. Within this context, trust-region methods are very popular, since they are
already built on solving only a model subproblem. For instance, in [25, 26, 76, 64, 32], there
are given conditions on how accurate functional, gradient, and Hessian need to be computed
for the trust-region method to work. In this thesis, we develop error estimators that are used
to verify those conditions and introduce then a modified trust-region algorithm that combines
the concepts of the above mentioned literature.

In addition to that, the adaptive strategies are combined with local mesh refinement techniques
that are based on the dual weighted residual error estimators that have been introduced in
[10] and [11]. Adaptive mesh refinement has already been applied to the simulation of FSI in
[100, 121, 43, 37, 59] and to FSI optimal control problems in [40]. To the author’s knowledge,
this has not been combined with the reduction of partitioned iterations yet.
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1. Introduction

Naturally, all the above concepts are presented with numerical examples both in two and three
dimensions. For the implementation, the optimization toolbox RoDoBo [103] has been used.
It utilizes the finite element toolkit Gascoigne3D [52].

The thesis is structured as follows:

Continuous Problem Formulation

In Chapter 2, we briefly establish some notation. Moreover, we introduce the governing
equations of the fluid and the structure subproblem, both in their strong and variational
form. They are then combined to the monolithic FSI system of equations. Afterwards, the
continuous optimal control problem is stated.

Spatial Discretization

Chapter 3 deals with the spatial discretization of the FSI equations and consequently of
the optimal control problem. We state the considered triangulation of the domain and the
used finite element spaces. Furthermore, we define the configurations that are used for the
numerical experiments performed throughout this thesis.

Partitioned Algorithms

The main topic of Chapter 4 is the derivation of partitioned solution algorithms for the
state equation. Hereby, the monolithic form is decoupled and reformulated into an interface
equation in Section 4.1. Afterwards, different schemes are presented: a fixed-point method in
Section 4.2, a relaxed fixed-point method in Section 4.3, and in Section 4.4 a Quasi-Newton
and a Newton-Krylow method. Those schemes are then compared within their numerical
performance with the help of a benchmark example in Section 4.5.

Sensitivity Analysis

Chapter 5 is dedicated to the formal sensitivity analysis of the discrete optimal control prob-
lem. In Section 5.1, the Lagrangian formalism is applied to the monolithic formulation and
acts as a show case. Section 5.2 introduces the FOTP approach. Again, the Lagrangian
formalism is applied to the monolithic system, but the resulting additional equations are de-
coupled afterwards. In contrast to that, Section 5.3 deals with the FPTO approach, in which
the Lagrangian formalism is applied to a partitioned (perturbed) formulation of the optimal
control problem. All these concepts are presented in a rather abstract way and are there-
fore translated into the FSI framework in Section 5.4. Finally, the correct derivation of the
sensitivities is confirmed in a numerical example.
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Optimization Algorithms

In Chapter 6, we briefly discuss the optimization algorithms used in this thesis, namely LBFGS
and Newton, and how they can be combined with the sensitivities of the previous chapter.

A Posteriori Error Estimators

Chapter 7 is about the derivation of a posteriori error estimators for the error in the cost
functional. First, in Section 7.1, this is done for the spatial discretization error. The approxi-
mation error that is induced by the usage of partitioned methods is the topic of the following
sections. While we look in Section 7.2 at the approximation error of the optimal control
problem, we also introduce an estimator for the approximation error in the cost functional
with fixed control in Section 7.3. Afterwards, the approximation qualities of the estimators
are shown for a numerical example in Section 7.4.

Adaptive Strategies

In Chapter 8, we present adaptive strategies for solving the optimal control problem where we
use the error estimators from the previous chapter. Hereby, Section 8.1 deals with an adaptive
mesh refinement algorithm that will be incorporated in the following strategies: For the FPTO
approach, we introduce a balancing strategy, where we try to keep spatial discretization error
and approximation error in an equilibrium. This is done in Section 8.2. Furthermore, we
present a modified trust-region algorithm in Section 8.3 that works with inexact functional,
gradient, and Hessian evaluations and is combined with the FOTP approach. Finally, the
performance of the adaptive strategies is compared to non-adaptive strategies in Section 8.4.

Shape Optimization Problem

Chapter 9 is dedicated to a three-dimensional shape-optimization problem. It is intended to
show that the concepts of this thesis are applicable to very complex configurations.

Conclusion and Outlook

Finally, in Chapter 10, we summarize the results of this thesis and give suggestions on topics
for future works.
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2. Stationary Fluid-Structure Interaction

In this chapter, we state the model stationary fluid-structure interaction (FSI) problem that is
regarded in this thesis and derive an appropriate variational form. This so called monolithic
form will be the basis for spatial discretization and the deduction of partitioned solution
schemes.

To begin with, we first give the governing equations for the subproblems, namely the fluid
and the structure, and explain how they are coupled and can be combined to the coupled
FSI system. Due to the elastic behavior of the structure, it has to be distinguished between
two domains: a reference domain (the stress-free configuration) and a deformed domain that
resembles the structural deformation under stress. In solid mechanics, one is usually interested
in how each particle of the structure is displaced under stress, which is why the governing
equations are defined on the reference domain. This is the so called Lagrangian point of view.
In fluid mechanics however, one wants to observe the flow at a specific point of the domain
instead of following a certain particle. Consequently, the fluid equations are defined on the
actual (physical) configuration, which is referred to as the Eulerian point of view.

Thus, in order to couple those subproblems and state meaningful coupling conditions, there
are two possibilities: We either define the solid equation in Eulerian coordinates, which is
referred to as the Fully Eulerian (FE) approach, or we transform the fluid equation to a
reference domain with so called Arbitrary Lagrange Eulerian (ALE) coordinates. In both
cases, additional transformation terms appear in the corresponding equation. Here, we use the
ALE approach due to some practical reasons: First, having defined everything on a reference
domain enables the use of standard finite element techniques for the spatial discretization
and hence having a fixed triangulation. In the FE case, the domain depends on the solution
variables themselves which makes discretization cumbersome. Second, when dealing with a
FSI optimal control problem we need to compute the sensitivities. For ALE this is done
straight forward whereas for FE, derivatives w.r.t to the domain have to be computed. Yet,
it has to be mentioned that the ALE approach has its limits if deformations are too large or
the topology changes in which case the FE method is more suitable. Therefore, we restrict
ourselves to configurations where the latter does not occur. We refer to [23] and [98], where
a more detailed derivation of the FSI equations can be found.

This chapter is structured as follows: In Section 2.1, we briefly introduce some notation.
Section 2.2 is dedicated to the general setting and function spaces that are considered in this
thesis. The formulations of the subproblems are discussed in Section 2.3 for the structure, in
Section 2.4 for the fluid, and in Section 2.5 for the fluid in ALE. Afterwards in Section 2.6,
the coupling conditions and the monolithic FSI problem are stated. This is concluded with
Section 2.7, where the definition of the optimal control problem is given.
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2. Stationary Fluid-Structure Interaction

2.1. Notation

Let D ⊂ Rd, d ∈ N be an arbitrary domain. By Lp(D), p ∈ [1,∞] we denote the usual Lp-
spaces with norm ‖ · ‖Lp , whereas W k,p(D), k ∈ N are the usual Sobolev spaces with norm
‖ · ‖Wk,p . Furthermore, we have the normalized space L2

0(D) := {q ∈ L2(D) |
∫
D q dx = 0}.

The space W k,p
0 (D; ΓD) represents the closure of smooth functions C∞0 (D; ΓD) with zero values

at some part of the boundary ΓD ⊂ ∂D in the ‖ · ‖Wk,p norm. Moreover, we use the common

abbreviations Hk(D) := W k,2(D), Hk
0 (D; ΓD) := W k,2

0 (D; ΓD). The dual space of a Banach
space Y is denoted as Y ∗. For two functions v, w ∈ L2(D) we define the integral

(v, w)D :=

∫
D
v · w dx.

Integrals at a boundary ΓD for v, w ∈ L2(ΓD) are denoted as

〈v, w〉ΓD :=

∫
ΓD

v · w ds.

Let F : X → Y be a mapping between two Banach spaces X and Y . The Gâteaux derivative
at a point x ∈ X in the direction δx ∈ X is defined as a linear mapping F ′(x) ∈ L(X,Y ) that
fulfills

F ′(x)(δx) = lim
t→0

F (x+ tδx)− F (x)

t
.

Let us consider the special case where we have a semi-linear form, i.e., an operator A :∏n
i=0Xi ×

∏m
i=0 Yi → R, where Xi, Yi are a collection of Banach spaces and A depends linear

on the elements of Yi. For (x0, . . . , xn) ∈
∏n
i=0Xi, (y0, . . . , ym) ∈

∏m
i=0 Yi we denote the

evaluation of A by

A(x0, . . . , xn)(y0, . . . , ym) ∈ R.

This notation is chosen to have the variables, on which A depends linearly, collected in the
right parenthesis. For this semi-linear form we denote the Gâteaux derivatives in direction
δxi as

A′xi(x0, . . . , xn)(δxi, y0, . . . , ym),

and in direction δyi
A′yi(x0, . . . , xn)(y0, . . . , δyi, . . . ym).

2.2. General Setting and Function Spaces

We consider a general setting that is schematically depicted in Figure 2.1: Let Ω ⊂ Rd, d ∈
{2, 3} be a given reference domain that is partitioned into a fluid reference domain Ωf and
a solid reference domain Ωs such that Ω = Ωf

.
∪ Ωs. We assume to have different disjoint

boundaries: an inflow boundary Γin, an outflow boundary Γout, and a no-slip boundary Γ0

with Γin,Γout,Γ0 ⊂ ∂Ωf . In addition to that, let Γs ⊂ ∂Ωs be the part of the solid boundary
where the solid is fixed and ΓI := Ω̄f∩Ω̄s the interface boundary where both domains intersect.
Moreover, for given functions uf : Ωf → Rd, us : Ωs → Rd the deformed domains are defined
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2.3. Structure Problem

Γin ΓoutΓ0

Ωf

ΩsΓs

ΓI Γin ΓoutΓ0

Ωf(uf)

Ωs(us)
Γs

ΓI(uf)

uf , us

Figure 2.1.: General FSI Configuration

by Ωf(uf) := {y ∈ Rd|y = x+ uf(x), x ∈ Ωf} and Ωs(us) := {y ∈ Rd|y = x+ us(x), x ∈ Ωs}.
Next, we define several function spaces that are used throughout this thesis. This includes
the spaces on the fluid reference domain

Vf := H1
0 (Ωf ; Γin ∪ Γ0)d,

Vf,ΓI := H1
0 (Ωf ; Γin ∪ Γ0 ∪ ΓI)

d,

Vf,Γout
:= H1

0 (Ωf ; Γin ∪ Γ0 ∪ Γout)
d,

Vf,0 := H1
0 (Ωf)

d,

Lf := L2(Ωf),

the space on the solid reference domain

Vs := H1
0 (Ωs; Γs)

d,

and the spaces defined on the whole reference domain

V := H1
0 (Ω; ∂Ω \ Γout)

d,

V0 := H1
0 (Ω)d.

Furthermore, the analogue spaces on the deformed fluid domain are given by

V̂f,ΓI := H1
0 (Ωf(uf); Γin ∪ Γ0 ∪ ΓI(uf))

d,

L̂f := L2(Ωf(uf)).

2.3. Structure Problem

The structural problem will be assumed to obey a non-linear elasticity model. The governing
equations for solid mechanics are in general defined on the reference domain, in contrast to

9



2. Stationary Fluid-Structure Interaction

the fluid problem, which is referred to as the Lagrangian point of view:

−div(FsΣs) = q in Ωs,

us = 0 on Γs,

FsΣsns = gs on ΓI .

(2.1)

Here, Fs := Id +∇us is the deformation gradient, Σs is the second Piola Kirchhoff stress
tensor representing a material law. Moreover, Σs is a function of the Green-Lagrange strain
tensor Es := 1

2(F Ts Fs − Id). In this thesis, we only consider the St. Venant Kirchhoff model
Σs := λs tr(Es) Id +2µsEs, with λs and µs being the first and second Lamé parameters but
other material laws are compatible with the general concepts of this thesis. We also demand
the structure to be fixed at the boundary Γs. Moreover, the generic variable q acts as force
term in the domain and the stress gs at the interface. The variational form is naturally
obtained by multiplying the first equation of (2.1) by a test function φs ∈ Vs and integrate it
by parts. This results in

S(us, q)(φs) := (FsΣs,∇φs)Ωs − (q, φs)Ωs . (2.2)

Problem 2.1 (Solid problem). Let q ∈ L2(Ωs) and gs ∈ H−
1
2 (ΓI). We say that us ∈ Vs is a

solution to the solid problem if

S(us, q)(φs) = 〈gs, φs〉ΓI ∀ φs ∈ Vs.

Proving existence for this equation with mixed boundary conditions is rather difficult. How-
ever, if Ωs is smooth enough and we restrict us to have only homogeneous boundary conditions
the result from [31, Theorem 6.7.1] states

Theorem 2.1. Let Ωs be of class C2 and q ∈ Lp(Ωs)
3, p > 3. Then, there exists a constant

c > 0 s.t. for ‖q‖Lp(Ωs)3 ≤ c we have a unique solution us ∈W 2,p(Ωs)
3 ∩H1

0 (Ωs)
3 of

S(us, q)(φs) = 0 ∀ φs ∈ H1
0 (Ωs)

3.

Remark 2.1. In Section 2.7, the variable q is introduced as the control variable of the optimal
control problem (Problem 2.8). It is therefore incorporated into the form S to describe
the dependence of the state solution us on the control. In addition to that, it enables the
interpretation of the variational form S as an abstract object with a not further specified
dependence on the control. Thus, we are not restricted to the case where q is a volume force
as long as the concrete definition S is not needed. This also holds for the case that a different
material law is to be considered.

2.4. Fluid Problem

In this thesis we focus on Newtonian and incompressible fluids with constant density. Such a
fluid can be modeled by the Navier-Stokes equations. As mentioned before, these equations
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2.4. Fluid Problem

are defined on the current domain Ωf(uf):

ρf(v̂ · ∇̂)v̂ − d̂iv(σ̂f(v̂, p̂)) = q̂ in Ωf(uf),

d̂iv v̂ = 0 in Ωf(uf),

v̂ = 0 on Γ0,

v̂ = v̂in on Γin,

(ρfνf∇̂v̂ − p̂ Id)nf = 0 on Γout,

v̂ = 0 on ΓI(uf).

(2.3)

Here, we denote by v̂ the fluid velocity and by p̂ the fluid pressure. Moreover, the fluid
Cauchy-stress tensor σ̂f is defined by σ̂f(v̂, p̂) := − Id p̂+ρfνf(∇̂v̂+ ∇̂v̂T ). An inflow profile v̂in

is imposed at Γin, a no-slip condition at Γ0, and a do-nothing outflow at Γout; see Figure 2.1.
We assume that the inflow profile v̂in can be extended to the domain, which is denoted as
the function space Vf,Γin

. At the moving interface ΓI(uf), the velocity is required to be zero.
Furthermore, ρf represents the fluid density, whereas νf the viscosity. Finally, we introduce
by q̂ a right-hand side (volume force). Note, that we indicate by the “hat” symbol that the
corresponding variable or differential operator is defined on the current configuration Ωf(uf).

Remark 2.2. The Navier-Stokes equations are often stated with the nonsymmetric form of the
Cauchy-stress tensor σ̃f (v̂, p̂) := −p̂ Id +ρfνf∇̂v̂. The reason why ∇̂v̂T can often be neglected

is that d̂iv(∇̂v̂T ) = ∇̂(d̂iv v̂) = 0 vanishes due to the fluid’s incompressibility. However,
as soon as boundary stresses are involved the transposed term needs to be included since
σ̃f (v̂, p̂)n 6= σ̂f(v̂, p̂)n. We will later see that fluid and solid are coupled through their interface
stresses. Consequently, the symmetric Cauchy-stress tensor needs to be considered.

We obtain the variational form of (2.3) by multiplying the first equation with a test function
φ̂f,0 ∈ V̂f,ΓI and integration by parts and multiplying the second equation with a test function

ξ̂ ∈ L̂f . This results in

F̂(v̂, p̂, q̂)(φ̂f,0, ξ̂) := (ρf∇̂v̂v̂, φ̂f,0)Ωf(uf) + (σ̂f(v̂, p̂), ∇̂φ̂f,0)Ωf(uf)

+ (d̂iv v̂, ξ̂)Ωf(uf) − 〈ρfνf∇̂v̂Tnf, φ̂f,0〉Γout

− (q̂, φ̂f,0)Ωf(uf). (2.4)

This enables us to state the variational problem:

Problem 2.2 (Fluid problem in Eulerian coordinates). We say that v̂ ∈ V̂f,ΓI + V̂f,Γin and

p̂ ∈ L̂f are a weak solution of (2.3) for given q̂ ∈ L2(Ωf(uf)), if

F̂(v̂, p̂, q̂)(φ̂f,0, ξ̂) = 0, ∀ (φ̂f,0, ξ̂) ∈ V̂f,ΓI × L̂f .

Remark 2.3. The do-nothing outflow condition at Γout implies that
∫

Γout
p ds = 0; see [66].

Therefore, it is not necessary to define a normalized function space for the pressure. Moreover,
this condition is used at artificial boundaries to avoid instabilities. However, existence of a
solution with this kind of boundary condition is often hard to prove.

Remark 2.4. For the same reasoning as mentioned in Remark 2.1, the form F̂ depends on the
right-hand side q̂ to consider it as a control variable and to stay in a general setting.
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2. Stationary Fluid-Structure Interaction

Next, we want to give an existence result. Although the Navier-Stokes equations have been in-
vestigated for a long time there are nearly no existence results for mixed boundary conditions.
The same holds for problems with the symmetric tensor. That is why, we only state a result
for the homogeneous boundary problem with the nonsymmetric tensor [55, Theorem 2.1].

Theorem 2.2. Let Ωf(uf) be a bounded domain with Lipschitz-continuous boundary. For
q̂ ∈ H−1(Ωf(uf))

d there exists a solution (v̂, p̂) ∈ H1
0 (Ωf(uf))

d × L2
0(Ωf(uf)) of

(ρf∇̂v̂v̂, φ̂f,0)Ωf(uf) + (ρfνf∇̂v̂ − p̂ Id, ∇̂φ̂f,0)Ωf(uf)

− (d̂iv v̂, ξ̂)Ωf(uf) = (q̂, φ̂f,0)Ωf(uf), ∀ (φ̂f,0, ξ̂) ∈ H1
0 (Ωf(uf))

d × L2(Ωf(uf)).

Moreover, there exists a constant c > 0 such that the solution is unique, if ‖q̂‖H−1 ≤ c.

2.5. Fluid Problem in ALE Coordinates

Next, we want to transform (2.3) to the reference domain Ωf in order to have fluid and solid
defined in the same configuration.

We start by introducing some general definitions in domain transformation. Thereby, we
orient ourselves to [98, Section 2.1]. Let us assume that there is given a fixed displacement
field uf ∈ Vf,Γout that transforms Ωf into Ωf(uf). Let Ff := Id +∇uf be the deformation
gradient and Jf := detFf its determinant. From now on, the “hat” above an variable is
omitted when the equivalent variable on the reference domain is considered. In general, we
have for f̂ : Ωf(uf) → R and f : Ωf → R the relation f̂(x + uf(x)) = f(x) for any x ∈ Ωf .
This also holds for vector valued functions ŵ : Ωf(uf) → Rd, w : Ωf → Rd. However, for the
derivatives there is not such a simple relation. In fact, we obtain as in [98, Section 2.1]

∇̂f̂ = F−Tf ∇f, ∇̂ŵ = ∇wF−1
f .

Moreover, the Piola transformation for vector valued functions leads to

d̂iv(ŵ) = J−1
f div(JfF

−1
f v),

and for tensors σ̂ : Ωf(uf)→ Rd×d, σ : Ωf → Rd×d

d̂iv(σ̂) = J−1
f div(JfσF

−T
f ).

Thus, (2.3) is transformed to

ρfJf∇vF−1
f v − div(Jfσf(uf , v, p)F

−T
f ) = Jfq in Ωf ,

div(JfF
−1
f v) = 0 in Ωf ,

v = 0 on Γ0,

v = vin on Γin,

Jf(ρfνf∇v̂F−1
f − p Id)F−Tf nf = 0 on Γout,

v = 0 on ΓI ,

(2.5)
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2.6. Fluid-Structure Interaction Problem

where σf(uf , v, p) := −p Id +ρfνf(∇vF−1
f + F−Tf ∇vT ) is the transformed fluid tensor. Before

deducing the corresponding variational form we have to take care of the transformed incom-
pressibility term that contains second order derivatives which are especially a problem for the
discretization with first order finite elements. Let us assume, that sufficient regularity is given
for uf . Then, as can be shown in [98, Lemma 2.61], it holds

div(JfF
−1
f v) = Jf tr(F−1

f ∇v),

which is the form we use from now on. With that the variational form of the fluid equation
on a reference domain can be defined as

F(uf , v, p, q)(φf,0, ξ) := (ρfJf∇vF−1
f v, φf,0)Ωf

+ (Jfσf(uf , v, p)F
−T
f ,∇φf,0)Ωf

+ (Jf tr(F−1
f ∇v), ξ)Ωf

− 〈ρfνfJfF
−T
f ∇vTF−Tf nf, φf,0〉Γout

− (Jfq, φf,0)Ωf
. (2.6)

Problem 2.3 (Fluid problem in ALE coordinates). For given uf ∈ Vf,Γout and q ∈ L2(Ωf)
d we

say that v ∈ Vf,ΓI + Vf,Γin and p ∈ Lf are a weak solution of the fluid problem on a reference
domain if

F(uf , v, p, q)(φf,0, ξ) = 0 ∀ (φf,0, ξ) ∈ Vf,ΓI × Lf .

Note that the above derived form is only formally defined, since with uf only of H1-regularity
the integrals do not need to be finite. Usually, one needs at leastW 1,∞-regularity of the domain
displacement. However, in most applications this cannot be guaranteed. Nevertheless, one
can show existence and uniqueness of a solution in the case of sufficient regularity. In [120,
Satz 4.1], it is shown that if uf is smooth enough such that the mapping Tf (x) := x + uf(x)
is a C1-diffeomorphism, the Sobolev spaces on the different domains are equivalent, i.e.

H1(Ωf)
d ∼= H1(Ωf(uf))

d, L2(Ωf) ∼= L2(Ωf(uf)).

As a consequence, variational problems defined both on the reference domain and the moving
domain are equivalent. Therefore, one can show existence and uniqueness of a solution on
the reference domain but again with the restriction that we have only homogeneous boundary
conditions and the nonsymmetric form of the stress tensor.

Theorem 2.3. Let Ωf be a bounded domain with Lipschitz-continuous boundary. Moreover,
let uf be smooth enough such that the mapping Tf (x) := x + uf(x) is a C1-diffeomorphism.
For q ∈ H−1(Ωf)

d there exists a solution (v, p) ∈ H1
0 (Ωf)

d × L2
0(Ωf) of

(ρfJf∇vF−1
f v, φf)Ωf

+ (Jf(ρfνf∇vF−1
f − p Id)F−Tf ,∇φf)Ωf

+ (Jf tr(F−1
f ∇v), ξ)Ωf

= (Jfq, φf)Ωf
∀ (φf , ξ) ∈ H1

0 (Ωf)
d × L2(Ωf).

In addition to that, there exists a constant c > 0 such that the solution is unique if, ‖q‖H−1 ≤ c.

2.6. Fluid-Structure Interaction Problem

The fluid an the structure are now coupled in three ways
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2. Stationary Fluid-Structure Interaction

• Dynamic Condition: The stresses coming from fluid and structure need to be in equi-
librium at the interface.

• Geometric Condition: Fluid and solid domain have to stick together, i.e., no holes and
no overlapping may appear.

• Kinematic Condition The fluid has to stick to the interface.

The dynamic condition can be expressed as

Jfσf(uf , v, p)F
−T
f nf = −FsΣsns on ΓI , (2.7)

while the geometric condition reads as

uf = us on ΓI , (2.8)

and the kinematic condition as
v = 0 on ΓI . (2.9)

Remark 2.5. It shall be noted, that in order to compare the stresses in a quantitative manner
both of them needed to be defined on the same configuration, which is one of the reasons why
we transformed the fluid equation to the reference domain.

2.6.1. Domain Extension

By now, we have assumed uf to be given. The coupling condition (2.8) states that uf has to be
the same as us on the interface ΓI , yet there is no requirement on how uf is defined in the inner
domain of Ωf . On Eulerian level this makes sense, since only the the shape of the interface is
important. However, for computations on the reference domain uf needs to be given explicitly
on the inner domain. A common approach is to extend the displacement by solving an linear
elliptic boundary problem for which there are several possibillities. Consequently, the fluid
domain deformation is kind of arbitrary and therefore justifies the name arbitrary Lagrangian
and Eulerian coordinates. In this section, we give examples of such extension operators; see
[118]. The choice of this operator is especially crucial in the discrete case since here the
extension defines the deformed mesh on the fluid domain. Consequently, the extension is
responsible for the quality of the mesh. We also call this operator mesh extension or mesh
motion.

Harmonic Extension

We start with the simplest possibility which is a harmonic extension, i.e., uf fulfills for given
boundary data ζ ∈ H

1
2 (ΓI)

d

−∆uf = 0 on Ωf ,

uf = 0 on Γf \ ΓI ,

uf = ζ on ΓI .
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2.6. Fluid-Structure Interaction Problem

This equation is associated with the variational form

M(uf)(ψ) := (∇uf ,∇ψ)Ωf
, (2.10)

with a test function ψ ∈ Vf,0. To define the variational solution of boundary value problem
one can do this by including the boundary data into the solution space. We use, however, a
different approach: Let B : H

1
2 (ΓI)

d → Vf,Γout be an arbitrary but fixed linear and continuous
extension operator. Then, the variational solution of the harmonic extension can be defined
the following way:

Problem 2.4 (Harmonic extension problem). Let ζ ∈ H
1
2 (ΓI)

d be a given boundary datum
and uf,0 ∈ Vf,0 be the solution of

M(∇uf,0 +∇Bζ)(∇ψ) = 0 ∀ ψ ∈ Vf,0.

Then, we say uf,0 := uf,0 +Bζ is a weak solution of the harmonic extension.

Remark 2.6. With regard to the FSI system, the boundary data ζ is interpreted as the interface
displacement of the structural solution. Therefore, the operator B allows us to keep track of
the coupling between the fluid and solid displacement and consider them as separate variables.
This is especially important in the discrete case where the discrete extension operator Bh is
the basis of deriving partitioned solution schemes. In order to stay consistent, the extension
is used for the continuous case, too.

It is well known (see, e.g., [60]) that there exists a unique solution uf of Problem 2.4. Moreover,
due to the zero right-hand, side uf is smooth inside the domain. However, if the boundary
data is not smooth enough or we have a non-convex domain, the regularity might be lost at
the boundary. Consequently, the above mentioned C1-regularity of uf is not obtained.

Linear Elasticity

Next, we consider to extend the boundary data by an pseudo-elasticity law, i.e.,

−div (λf tr(Σf (uf)) + 2µfΣf (uf)) = 0 on Ωf ,

uf = 0 on Γf \ ΓI ,

uf = ζ on ΓI ,

where Σf (uf) := 1
2(∇uf +∇uTf ) and λf , µf are parameters. The weak solution to this problem

is defined in the same manner as above.

Problem 2.5 (Linear elasticity problem). Let ζ ∈ H
1
2 (ΓI)

d be a given boundary datum and
uf,0 ∈ Vf,0 be the solution of

(λf tr(Σf (uf,0 +Bζ)) + 2µΣf (uf,0 +Bζ),∇ψ)Ωf
= 0 ∀ ψ ∈ Vf,0.

Then, we say uf := uf,0 +Bζ is a weak solution of the pseudo elasticity extension.
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2. Stationary Fluid-Structure Interaction

With the help of both Korn’s inequalities and the Lax-Milgram theorem one can show the
existence and uniqueness of a solution to Problem 2.5. As before, higher regularity depends
on the boundary data and smoothness of the domain. Nevertheless, in the discrete case the
obtained mesh usually has a better quality since it behaves like an elastic object and fits better
with the elastic structure.

Biharmonic Extension

Finally, we introduce the biharmonic extension in the sense of [30]. For that an additional
variable w is introduced.

−∆uf = w on Ωf ,

−∆w = 0 on Ωf ,

uf = ∂nuf = 0 on Γf \ ΓI ,

uf = ζ on ΓI .

This results in the following variational problem:

Problem 2.6 (Biharmonic extension problem). Let ζ ∈ H
1
2 (ΓI)

d be a given boundary datum
and uf,0 ∈ Vf,0, w ∈ Vf,Γout be the solutions of

(∇w,∇ψ1)Ωf
= 0,

(∇uf,0 +∇Bζ,∇ψ2)Ωf
= (w,ψ2)Ωf

∀ (ψ1, ψ2) ∈ Vf,0 × Vf,Γout .

Then we say uf := uf,0 +Bζ is a weak solution of the biharmonic extension.

By standard methods, one can show existence and uniqueness of Problem 2.6. An obvious
drawback is that for this extension an additional variable has to be computed. Nevertheless,
numerics show that we usually obtain a better mesh regularity. This is especially important
in the case of large deformations; see [118].

Remark 2.7. During this thesis we will useM(·)(·) as identification with the variational form
of the mesh motion. Although this notation has been introduced with the harmonic extension
one can easily exchange it with the other extensions as the specific choice does not alter the
later concepts.

2.6.2. Monolithic Formulation

After having defined both the fluid and solid equations on a reference domain we want to couple
them with the coupling conditions (2.7), (2.8), and (2.9) to receive a variational formulation
of the whole FSI system which will be referred to as the monolithic form. Note that the
kinematic condition (2.9) has already been incorporated into the fluid function space Vf,ΓI

and does not need further treatment.

We continue with the dynamic condition (2.7). Let us first assume that the fluid solution
(uf , v, p) has sufficient regularity, such that (2.5) is fulfilled in the strong sense. It follows,
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that (uf , v, p) is also a solution of the variational Problem 2.3. Next, we insert a test function
φf ∈ Vf in (2.6) instead of φf,0 ∈ Vf,ΓI . The major difference is that φf does not have zero
trace on ΓI . Integration by parts yields

F(uf , v, p, q)(φf , ξ) =
(
ρfJf∇vF−1

f v − div(Jfσf(uf , v, p)F
−T
f ), φf

)
Ωf

+
(
div(JfF

−1
f v), ξ

)
Ωf
− (Jfq, φf)Ωf

+
〈
Jf(ρfνf∇v̂F−1

f − p Id)F−Tf nf, φf

〉
Γout

+
〈
Jfσf(uf , v, p)F

−T
f nf, φf

〉
ΓI

=
〈
Jfσf(uf , v, p)F

−T
f nf, φf

〉
ΓI
.

(2.11)

Here, the inner integrals and the term at Γout disappear, since we assumed that (uf , v, p) is
a strong solution. Consequently, the variational interface stress can be expressed in terms of
the fluid residual, if an appropriate test function is used.

The same procedure is repeated for the solid equation. Let us assume, that us fulfills (2.1) in
a strong sense. Again, it follows that us is a solution of the variational Problem 2.1. Applying
integration by parts results in

S(us, q)(φs) = −(div(FsΣs), φs)Ωs − (q, φs)Ωs + 〈FsΣsns, φs〉ΓI
= 〈FsΣsns, φs〉ΓI .

(2.12)

Now by inserting a function φs ∈ V , that is defined on the whole domain Ω, into (2.11) and
(2.12), we obtain

F(uf , v, p, q)(φ, ξ) + S(us, q)(φ) = 〈Jfσf(uf , v, p)F
−T
f nf, φ〉ΓI + 〈FsΣsns, φ〉ΓI .

Thus, if we require that

F(uf , v, p, q)(φ, ξ) + S(us, q)(φ) = 0 ∀ φ ∈ V, (2.13)

it holds
〈Jfσf(uf , v, p)F

−T
f nf + FsΣsns, φ〉ΓI = 0 ∀ φ ∈ V,

and the dynamic condition (2.7) is fulfilled in a variational sense. One can further argue, that
with sufficient regularity and by taking pointwise limits the dynamic condition is even fulfilled
in a strong sense.

For the geometric condition (2.8), both displacements uf , us are glued at the interface. This
results in a function u ∈ V0 defined on the whole domain with the properties u|Ωf

= uf and

u|Ωs
= us in the sense of H1.

The variational monolithic form of the FSI problem is then constructed by collecting the forms
(2.2), (2.6) and (2.10) of the subproblems and inserting the glued functions. For a compact
representation we introduce the collection of state functions

U := (u, v, p) ∈ X := V0 × Vf,ΓI × Lf ,
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2. Stationary Fluid-Structure Interaction

and the collection of test functions

Ψ := (φ, ψ, ξ) ∈ X̃ := V × Vf,0 × Lf .

Moreover, the Dirichlet data space is represented as

XΓin
:= {0} × Vf,Γin

× {0}.

Finally, the variational form of the FSI system is defined as

a(U , q)(Ψ) :=M(u, ψ) + F(u, v, p, q)(φ, ξ) + S(u, q)(φ), (2.14)

which leads to the following variational problem.

Problem 2.7 (Monolithic FSI problem). Let q ∈ L2(Ω). We say that U ∈ X + XΓin is a
solution to the monolithic FSI problem if

a(U , q)(Ψ) = 0 ∀ Ψ ∈ X̃ . (2.15)

Since all the subproblems are difficult to analyze, this also holds for the monolithic FSI prob-
lem. Nevertheless, with some restrictions, existence of a solution can be shown. Once again,
we need homogeneous boundary conditions for the fluid velocity and use the nonsymmetric
Cauchy-stress tensor [56, Theorem 1].

Theorem 2.4. Let Ωf ,Ωs ⊂ R3 be smooth domains, q ∈ Lp(Ω)3, p > 3. Then there exists a
constant c > 0 such that there exists a solution (u, v, p) ∈ W 2,p(Ω)3 ∩H1

0 (Ω)3 ×W 2,p(Ωf)
3 ∩

H1
0 (Ωf)

3 ×H1(Ωf)∩L2
0(Ωf) of the monolithic FSI system with the symmetric fluid tensor σ̃f ,

if ‖q‖Lp(Ω)3 ≤ c.

A similar result for a two-dimensional fluid and one-dimensional structure can be found in
[57].

2.7. Optimal Control Problem

Until now, concrete definitions of the regarded variational forms have been given. With regard
to Remark 2.1 and Remark 2.4, the variational form a(U , q)(Ψ) can also be considered as an
abstract form for which the influence of the control q is not a priori determined. This is not
a drawback, since the concepts in this thesis purely depend on the abstract definitions of
the variational forms. A concrete definition is only needed if these concepts are applied to
numerical examples.

We restrict the control q to be of a Hilbert space Q that comes with its canonical inner product
denoted as (·, ·)Q and norm ‖ · ‖Q. In case of the original meaning of q as a volume force we
have

Q = L2(Ω).

18



2.7. Optimal Control Problem

However, one might consider the volume force to act only on one of the subdomains, i.e.,

Q = L2(Ωf) or Q = L2(Ωs).

Parameter control Q = Rn, n ∈ N is possible, too, as well as Neumann (boundary) control

Q = L2(Γa), Γa ⊂ ∂Ω.

More details are given when numerical optimal control examples are presented.

Now, let J : X × Q → R be a given cost functional. Then, the optimal control problem is
formulated as

Problem 2.8 (Optimal control problem).

min
q∈Q

J(U , q) s.t. a(U , q)(Ψ) = 0 ∀ Ψ ∈ X̃ .

We assume that the functional J can be split as

J(U , q) = J1(U) + J2(q) = J1(U) +
α

2
‖q‖2Q, (2.16)

where α > 0 is a regularization parameter. Furthermore, the assumption is made that for any
q ∈ Q there exists a unique solution U := U(q) ∈ X of

a(U , q)(Ψ) = 0 ∀ Ψ ∈ X̃ . (2.17)

As mentioned before, this is shown in [56] for a specific setting with q as a volume force. The
monolithic optimization Problem 2.8 is now regarded in its reduced form, i.e.,

min
q∈Q

j(q) := J(U(q), q). (2.18)

The advantage of the reduced form is that it solely depends on the control variable q, while
the state variable and the constraint equation are treated implicitly. That allows us to use
standard methods for solving unconstrained optimization problems. In particular, for first
or second order methods, only the computation of the reduced gradient or reduced Hessian,
respectively, is needed.

A sufficient condition for the existence of a minimizer is that the reduced function j(q) is
weakly lower semicontinuous and radially unbounded. Even if J(U , q) has good properties
like continuity and convexity, due to the nonlinear dependence of U(q) on q, lower semi-
continuity cannot be guaranteed for j(q). In [1] and [61], the authors prove existence of a
minimizer to a Navier-Stokes optimal control problem. The authors require the existence and
boundedness of the control-to-state operator. With that they can prove the convergence of a
minimizing sequence to a minimizer. For an unsteady and linear FSI configuration, existence
of a minimizer has been proven in [42]. In [117] the authors prove differentiability of the
control-to-state operator for an FSI setting that is similar to the one in [56]. In addition to
that, we want to emphasize that with the nonlinear dependence of the state on the control,
uniqueness of a minimizer cannot be expected.
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2. Stationary Fluid-Structure Interaction

Finally, we introduce the Lagrangian L : Q × X × X̃ → R associated with the reduced
functional. It is defined by

L(q,U ,Z) = J(U , q)− a(U , q)(Z). (2.19)

We immediately have the identity

j(q) = L(q,U(q),Z),

and hence obtain

j′(q)(δq) = L′q(q,U(q),Z)(δq) + L′U (q,U(q),Z)(δU),

where δU = U ′(q)(δq) is the sensitivity of the state w.r.t. the control. Note that the derivatives
are only formally defined. The gradient can now be expressed by computing δU , but this has
to be done for all directions δq one is interested in. This is especially cumbersome for the
discrete case, if (jh)′ needs to be expressed in a basis of Qh; see Chapter 6. That is why the
adjoint state Z ∈ X̃ is determined by

L′U (q,U ,Z)(Φ) = 0 ∀ Ψ ∈ X . (2.20)

This leads to the gradient representation

j′(q)(δq) = L′q(q,U ,Z)(δq).

This has the advantage that we only need to solve the adjoint equation (2.20) once and are
able to evaluate the gradient for any direction δq.

A necessary optimality condition for the optimal control q̄ of the reduced problem (2.18) is

j′(q̄)(δq) = 0 ∀ δq ∈ Q. (2.21)

Consequently, the optimal tuple (q̄, Ū , Z̄) ∈ Q×X ×X̃ can be expressed as a stationary point
of the Lagrangian. This results in the following first order optimality system:

L′Z(q̄, Ū , Z̄)(Ψ) = 0 ∀ Ψ ∈ X̃ ,
L′U (q̄, Ū , Z̄)(Ψ) = 0 ∀ Ψ ∈ X , (2.22)

L′q(q̄, Ū , Z̄)(δq) = 0 ∀ δq ∈ Q.

The Lagrangian formalism allows us additionally to derive an expression for the Hessian.
However, this will be discussed in Chapter 5, where we show the differences between the
monolithic and partitioned point of view, respectively.
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3. Spatial Discretization

This chapter revolves around the spatial discretization of the monolithic Problem 2.7 and
hence of the optimal control Problem 2.8. To this end, standard Finite Element Methods
(FEM) are used, since these techniques adapt the variational character of (2.14). We do this
by first discretizing the domains and applying proper triangulations to them in Section 3.1.
Then, finite dimensional FEM spaces are defined on this triangulation that represent the dis-
crete counterparts of the continuous function spaces. Afterwards, in Section 3.2, the discrete
variational forms of the subproblems are derived which then are combined to a discrete mono-
lithic form in Section 3.3. In addition to that, we define the discrete optimal control problem
subject to this form in Section 3.5. Moreover, we state in Section 3.6 the standard New-
ton algorithm for solving nonlinear variational problems. This is concluded by the numerical
benchmark configurations of Section 3.7 that are used throughout the thesis.

3.1. Mesh Triangulations and Finite Element Spaces

For simplicity, we assume that the boundary of our domain ∂Ω and the interface ΓI are
polygonal; details on non-polygonal boundaries can be found in [17]. As a consequence, the
boundaries of the subdomains ∂Ωf and ∂Ωs are polygonal, too. We start by partitioning both
the fluid domain Ωf ⊂ Rd and the solid domain Ωs ⊂ Rd, d ∈ {2, 3} into either quadrilaterals
for the 2-dimensional or hexahedrals for the 3-dimensional case, respectively. We refer to the
quadrilaterals and hexahedrals as fluid cells Kf and solid cells Ks. For local refinement, we
allow hanging nodes. The resulting triangulations are denoted as T hf = {Kf} and T hs = {Ks},
where h serves as a mesh size parameter. In addition to that, we assume to have a patch
structure on both domains, i.e, every triangulation T hf and T hs can be obtained by uniformly
refining a coarser triangulation T 2h

f and T 2h
s , respectively. This assumption is later needed for

additional stabilization terms in the discretized fluid equation and for the efficient evaluation
of a posteriori error estimators in Section 7.1. Furthermore, we say that the two triangulations
are matching, if each fluid cell that lies at the interface shares an edge with a solid cell, i.e.,
for each fluid cell Kf with K̄f ∩ ΓI 6= ∅, there exists a solid cell Ks such that

K̄f ∩ ΓI = K̄s ∩ ΓI .

An example for matching triangulations is depicted in Figure 3.1. For this thesis, we demand
that the triangulations are matching. This simplifies defining finite element spaces on the
interface. Otherwise, we need to distinguish between a fluid and a solid interface space,
respectively. We denote the union of both triangulations by

T h := T hf ∪ T hs .
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Th T2h

Ωs

Ωf

ΓI

Ωs

Ωf

ΓI

Figure 3.1.: A two-dimensional matching triangulation with patch structure and hanging
nodes (left) resulting from a coarser triangulation (right) by global uniform re-
finement. There do not appear any hanging nodes on the interface ΓI

Remark 3.1. In view of partitioned methods, where the subproblems are solved separately
with specific black box solvers, these solvers might be designed for certain kinds of triangu-
lations which can make matching triangulations too restrictive. Furthermore, there are even
situations where the geometry of a configuration makes it impossible. That is why we note
at certain points, how one can adapt the concepts presented in this thesis for non-matching
triangulations without altering those concepts.

Next, we define for both triangulations the usual spaces of isoparametric finite element func-
tions Vh,lff ⊂ H1(Ωf) on T hf and Vh,lss ⊂ H1(Ωs) on T hs , respectively, with lf, ls ∈ N the
polynomial degrees of the finite element spaces. For a general overview of these spaces, we
refer to [18], [29], and [71]. We define the discrete fluid spaces by

V h
f := {ϕ ∈ (Vh,lff )d | ϕ|Γin∪Γ0

= 0},

V h
f,ΓI

:= {ϕ ∈ (Vh,lff )d | ϕ|Γin∪Γ0∪ΓI
= 0},

V h
f,Γout

:= {ϕ ∈ (Vh,lff )d | ϕ|Γin∪Γ0∪Γout
= 0},

V h
f,0 := (Vh,lff )d ∩H1

0 (Ωf)
d,

Lhf := Vh,lff .

In the same manner, we define the discrete solid displacement space by

V h
s := {ϕ ∈ (Vh,lss )d | ϕ|Γs

= 0}.

Moreover, let V h
f,Γin

be an appropriate discretization of the Dirichlet boundary data space
Vf,Γin

.

It remains to discretize the function spaces V, V0 that are defined on the whole domain. These
spaces were introduced to implicitly ensure the coupling conditions (2.7) and (2.8). However,
even though we have matching triangulations, it is not clear how these conditions are to be
fulfilled in the discrete case, if we use different polynomial degrees for the finite element spaces
of the fluid and the solid. In particular, we would need to redefine interface continuity on the
discrete level. To keep things simple, we set the polynomial degrees to be equal, i.e.,

lFSI := lf = ls.
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3.1. Mesh Triangulations and Finite Element Spaces

We comment later on how to adapt to the case with different polynomial degrees. As a result,
we are able to define the discretized variants of V and V0 by

V h := {ϕ ∈ (Vh,lFSI)d | ϕ|Γin∪Γ0
= 0},

V h
0 := V h ∩H1

0 (Ω)d,

where Vh,lFSI ⊂ H1(Ω) is the usual finite dimensional space with degree lFSI on the whole
domain triangulation T h. For the numerical examples in this thesis, we restrict us to the case
of continuous and piecewise linear finite elements, i.e.,

lFSI = 1.

We denote the space of the restrictions of finite element functions on the interface by

Ih :=
{
ζh : ΓI → Rd | ζh = ϕh|ΓI

, ϕh ∈ (Vh,lFSI

f )d
}

=
{
ζh : ΓI → Rd | ζh = ϕh|ΓI

, ϕh ∈ (Vh,lFSI
s )d

}
.

Note that the last equality only holds because we assumed the triangulations to be matching
and the polynomial degrees to be equal. In this context, let trh : V h

s → Ih be the usual
discrete trace operator. Now, let nI := dim(Ih) be the dimension of the interface space and
(ϕhi )nIi=1 the standard Lagrangian basis of Ih. For arbitrary ζh ∈ Ih, we identify by ζh ∈ RnI
the basis representative, i.e., ζh =

∑nI
i=1 ζ

h
i ϕ

h
i . In addition to that, we introduce a inner

product associated to Ih. A natural choice would be the L2(ΓI) inner product. However,
to avoid the computation of the mass matrix, we use instead the standard Euclidean inner
product for the representatives. That means, for ζh, ξh ∈ Ih we define

〈ζh, ξh〉Ih := 〈ζh, ξh〉2. (3.1)

Although this simplifies computations, the inner product has to be treated carefully, if we
want to compare situations on different meshes, because

‖ζh‖L2(ΓI) 6= ‖ζh‖2,

and the Euclidean norm ‖ · ‖2 is mesh dependent. That is why the Euclidean norm is usually
not suitable for defining stopping criteria. Yet, we can circumvent this problem by regarding
the L∞-norm since

‖ζh‖L∞(ΓI) = ‖ζh‖∞,

where ‖ · ‖∞ is the standard maximum norm. Note this is only true, because we demand the
polynomial order to be one.

Furthermore, let us consider an element of the dual space λh ∈ (Ih)∗ with the components

λhi = λh(ϕhi ).

Then, this element can be identified as an object of Ih by

λh =

nI∑
i=1

λhi ϕ
h
i ∈ Ih. (3.2)
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It follows that the action can be expressed via the inner product, i.e.,

λh(ζh) =

nI∑
i=1

λhi ζ
h
i = 〈λh, ζh〉Ih . (3.3)

This allows us, to treat elements of (Ih)∗ as elements of Ih as long as the components λhi are
available.

Discrete Control Space

Finally, we introduce a discrete control space Qh ⊂ Q. We did not specify the space Q, but

usually one choosesQh = Rn for parameter controlQ = Rn, or finite element spacesQh = Vh,lqf

and Qh = Vh,lqf for distributed control Q = L2(Ωf) and Q = L2(Ωs), respectively.

3.2. Discrete Subproblems

In this section, we first derive the finite dimensional subproblems and combine them, as
in Section 2.6.2, to a discrete monolithic FSI system. This is done in a straightforward
manner, since the finite element method preserves the variational character of the continuous
problems.

3.2.1. Discrete Mesh Motion Problem

To begin with, we discretize the mesh motion Problem 2.4. With regard to Remark 2.7, we
did not specify the actual form M(·)(·). Since V h

f,Γout
⊂ Vf,Γout , we can insert the discrete

functions directly into the mesh motion form and define therefore for uhf , ψ
h ∈ V h

f,Γout

Mh(uhf )(ψh) := M(uhf )(ψh). (3.4)

Moreover, let Bh : Ih → V h
f,Γout

be a bounded linear extension operator that extends an
interface function to a function on the fluid domain. Thus, the discrete mesh motion problem
reads as

Problem 3.1 (Disctrete mesh motion problem). Let ζh ∈ Ih be a given interface function.
Then, we say that uhf,0 ∈ V h

f,0 is a solution of the discrete mesh motion problem if

Mh(uhf,0 +Bhζh)(ψh) = 0 ∀ ψh ∈ V h
f,0.

In addition to that, we set uhf := uhf,0 +Bhζh ∈ V h
f,Γout

.
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3.2.2. Discrete Fluid Problem

Next, we derive the discrete fluid problem. It is well known, that elements of equal order
for velocity and pressure are unstable; see, for instance, [39, Section 4.2.3]. A common way
to overcome this, is to introduce additional stability terms for which several concepts have
been developed. For example, the streamline upwind Petrov-Galerkin method [20], which
has also been applied to FSI in [116]. With regard to optimal control, these residual-based
stabilized finite elements have the drawback that spatial discretization and optimization might
not commute. This means, if we first discretize the equation and then derive the optimality
system, the result might be different from first deriving the optimality system and then apply
discretization. That is why we use the symmetric local projection stabilization (LPS) that has
been introduced by Becker and Braak in [6, 8] and has been analyzed for an optimal control
problem in [14]. To this end, we define the interpolation operator

i2h,1 : Vh,1f → V2h,1
f .

This operator can be easily constructed as long as we have the above mentioned patch struc-
ture. Furthermore, we set the filter operator

π : Vh,1f → Vh,1f , π = Id−i2h,1. (3.5)

Since we have a moving domain, we obtain the stabilization term∑
Kf∈T h

f

αKf
(Jhf (F hf )−1∇π(ph), (F hf )−1∇π(ξh))Kf

,

with the stabilization parameter defined on each cell as

αKf
:= α0

h2
Kf

6νf + hKf
‖vh‖Kf

.

Although this is the correct stabilization term, it still lacks the property of the commutation
of discretization and optimization. That is why we propose to ignore the terms coming from
domain movement and define the LPS form, as in [40, Section 5.3.2], to be

ahLPS(ph)(ξh) :=
∑

Kf∈T h
f

αKf
(∇π(ph),∇π(ξh))Kf

. (3.6)

For our numerical examples, this simplification still produces stable solutions. To set up the
discrete fluid form, we combine the terms coming from the continuous form (2.6) and the
additional stabilization term (3.6), to receive for uhf ∈ V h

f,Γout
, vh ∈ V h

f , p
h ∈ Lhf , q

h ∈
Qh, φhf,0 ∈ V h

f,ΓI
and ξh ∈ Lhf

Fh(uhf , v
h, ph, qh)(φhf,0, ξ

h) := F(uhf , v
h, ph, qh)(φhf,0, ξ

h) + ahLPS(ph)(ξh). (3.7)

Problem 3.2 (Discrete fluid problem in ALE coordinates). Let uhf ∈ V h
f,Γout

and qh ∈ Qh

be given. Then, we say that (vh, ph) ∈ (V h
f,ΓI

+ V h
f,Γin

) × Lf is a solution to the discrete fluid
problem if

Fh(uhf , v
h, ph, qh)(φhf,0, ξ

h) = 0 ∀ (φhf,0, ξ
h) ∈ V h

f,ΓI
× Lf .
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3. Spatial Discretization

3.2.3. Discrete Solid Problem

The next point to be considered, is the discretization of the solid Problem 2.1. Similarly to
the mesh motion case, we can replace the continuous variables with the discrete ones due to
V h

s ⊂ Vs. This leads to the discrete solid form for uhs , φ
h
s ∈ V h

s and qh ∈ Qh

Sh(uhs , q
h)(φhs ) := S(uhs , q

h)(φhs ). (3.8)

In addition to that, we discretize the interface stress g of the continuous solid Problem 2.1 by
interpreting its discrete counterpart gh as an element of (Ih)∗ and therefore by (3.2) as an
element of Ih. Then, the discrete stress acts as

〈gh, trh φhs 〉Ih

on a test function φhs ∈ V h
s . For the partitioned methods introduced in Chapter 4, the fluid

stress is computed in exactly this form.

With these preliminaries, the discrete solid problem reads as

Problem 3.3 (Discrete solid problem). Let qh ∈ Qh and gh ∈ Ih be given. Then, we say that
uhs ∈ V h

s is a solution to the discrete solid problem, if

Sh(uhs , q
h)(φhs ) = 〈gh, trh φhs 〉Ih ∀ φhs ∈ V h

s .

3.3. Discrete Fluid-Structure Interaction Problem

With the previous preparations, we are now able to define the discrete FSI problem. The
geometric condition (2.8) and kinematic condition (2.9) can be easily translated into the
discrete setting as

uhf = uhs on ΓI (3.9)

and

vh = 0 on ΓI . (3.10)

Hereby, (3.9) can be achieved by using the glued function uh ∈ V h
0 , similar to the continuous

case, whereas (3.10) is incorporated within the discrete fluid space V h
f,ΓI

. For the dynamic
condition (2.7), one could replace the terms in (2.7) with their discrete counterparts. However,
to stay consistent with the continuous monolithic form (2.14), we demand instead that

Fh(uhf , v
h, ph, qh)(φh, ξh) + Sh(uhs , q

h)(φh) = 0 ∀ φh ∈ V h. (3.11)

This is justified by (2.13), since on the continuous level the residual expression and the interface
integral expression are equivalent. We note, however, that on the discrete level we have in
general

Fh(uhf , v
h, ph, qh)(φh, ξh) + Sh(uhs , q

h)(φh) 6= 〈Jhf σf(u
h
f , v

h, ph)(F hf )−Tnf + F hs Σh
s ns, φ

h〉ΓI ,

26



3.4. Notes on non matching finite element spaces

since integration by parts leads to jumping terms in the discrete case. Nevertheless, both
formulations approximate the same continuous object. Moreover, the jumping terms vanish
in the limit h→ 0.

Now, we collect once again the state variables in

Uh := (uh, vh, ph) ∈ X h := V h
0 × V h

f,ΓI
× Lhf ,

the test functions in

Ψh := (φh, ψh, ξh) ∈ X̃ h := V h × V h
f,0 × Lhf ,

and the Dirichlet data in

X hΓin
:= {0} × V h

f,Γin
× {0}.

We define

ah(Uh, qh)(Ψh) :=Mh(uh)(ψh)

+ Fh(uh, vh, ph, qh)(φh, ξh) + Sh(uh, qh)(φh). (3.12)

Problem 3.4 (Discrete monolithic FSI problem). Let qh ∈ Qh be given. Then, we say that
Uh ∈ X h + X hΓin

is a solution to the discrete monolithic fluid-structure interaction problem if

ah(Uh, qh)(Ψh) = 0 ∀ Ψh ∈ X̃ h.

Note, that the discrete spaces were chosen such that Qh ⊂ Q, X h ⊂ X , X̃ h ⊂ X̃ . Thus, we
have the following relation between the continuous monolithic form (2.14) and the discrete
monolithic form (3.12):

ah(Uh, qh)(Ψh) = a(Uh, qh)(Ψh) + ahLPS(ph, ξh). (3.13)

3.4. Notes on non matching finite element spaces

We shortly want to discuss, how the monolithic formulation (3.12) has to be adjusted in case of
non-matching meshes or in case of different polynomial degrees for the finite element spaces.
For that we have to distinguish between a fluid and a solid interface boundary which are
denoted as Γhf,I and Γhs,I . Furthermore, there are two different restrictions of the respective
finite element spaces, i.e.,

Ihf :=

{
ζh : Γhf,I → Rd | ζh = ϕh|

Γh
f,I
, ϕh ∈ (Vh,lff )d

}
,

Ihs :=

{
ζh : Γhs,I → Rd | ζh = ϕh|

Γh
s,I
, ϕh ∈ (Vh,lss )d

}
.

These spaces are now connected with the mapping

Πf
s : Ihs → Ihf .

27



3. Spatial Discretization

The explicit form of Πf
s depends on the circumstances. For instance, if the meshes are matching

but lf 6= ls, Πf
s can be an interpolation operator. If lf = ls and the mesh is non-matching,

mortar methods can be applied.

Now, the function spaces V h and V h
0 are not well defined anymore. Instead we set

V̄ h :=

{
φh : Ωf ∪ Ωs → R | φh|Ωf

∈ V h
f , φ

h
|Ωs
∈ V h

s , φ
h
|Ih

f

= Πf
s ◦ φh|Ihs

}
,

V̄ h
0 :=

{
φh : Ωf ∪ Ωs → R | φh|Ωf

∈ V h
f,ΓI

, φh|Ωs
∈ V h

s , φ
h
|Ih

f

= Πf
s ◦ φh|Ihs

}
.

Then, the geometric condition (3.9) is not fulfilled in a continuous sense but as

uhf ◦Πf
s = uhs on Ihs .

Furthermore, the dynamic condition (3.11) can once again be formulated in a variational
sense, but this time with a test function φh ∈ V̄ h, i.e.,

Fh(uhf , v
h, ph, qh)(φh, ξh) + Sh(uhs , q

h)(φh) = 0 ∀ φh ∈ V̄ h.

Finally, we define the solution (uh, vh, ph) ∈ V̄ h
0 ×(V h

f,ΓI
+V h

f,Γin
)×Lhf of the discrete monolithic

problem as

Mh(uh)(ψh) + Fh(uh, vh, ph, qh)(φh, ξh) + Sh(uh, qh)(φh) = 0

∀ (φh, ψh, ξh) ∈ V̄ h × V h
f,Γout

× Lhf .

We refer to [3, 44, 58] for further discussions on this topic.

3.5. Discrete Optimal Control Problem

Analogously to the continuous optimal control Problem 2.8, we define the discrete one by

Problem 3.5. (Discrete optimal control problem)

min
qh∈Qh

J(Uh, qh) s.t. ah(Uh, qh)(Ψh) = 0 ∀ Ψh ∈ X̃ h.

We assume that for any qh ∈ Qh there exists a solution Uh = Uh(qh) ∈ X h+X hΓin
that fulfills

ah(Uh, qh)(Ψh) = 0 ∀ Ψh ∈ X̃ h.

Thus, we are able to define the discrete reduced problem by

min
qh∈Qh

jh(qh) := J(Uh(qh), qh). (3.14)

In the same manner as before, we introduce the Lagrangian Lh : Qh ×X h × X̃ h → R as

Lh(qh,Uh,Zh) := J(Uh, qh)− ah(Uh, qh)(Zh). (3.15)
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3.6. Newton’s Method for Nonlinear Variational Equations

In addition to that, we can derive analogously the first order optimality system. The optimal
solution (q̄h, Ūh, Z̄h) thus fulfills

(Lh)′Zh(q̄h, Ūh, Z̄h)(Ψh) = 0 ∀ Ψh ∈ X̃ h,
(Lh)′Uh(q̄h, Ūh, Z̄h)(Ψh) = 0 ∀ Ψh ∈ X h, (3.16)

(Lh)′qh(q̄h, Ūh, Z̄h)(δqh) = 0 ∀ δqh ∈ Qh.

With regard to (3.13), we have the relation

Lh(qh,Uh,Zh) = L(qh,Uh,Zh)− ahLPS(ph, ξh). (3.17)

As a consequence, the continuous and the discrete Lagrangian only differ in the linear sta-
bilization term. As a consequence, if we discretize the continuous optimality system (2.22)
and use the same stabilization for the adjoint equation (2.20), we obtain (3.16). Therefore,
optimization and discretization commute.

3.6. Newton’s Method for Nonlinear Variational Equations

Next, we want to recall the standard Newton algorithm that is used to solve variational
equations of nonlinear partial differential equations.

We consider a generic discrete space V h and a semi linear variational form a : V h → (V h)∗

and search for the solution uh ∈ V h of

a(uh)(ϕh) = 0 ∀ ϕh ∈ V h. (3.18)

All the considered state equations of the subproblems, as well as the monolithic form of the
FSI system, are given in the form of (3.18) with a possible further dependence on additional
variables that do neither belong to the solution space nor to the test function space as, e.g.,
the control variable q.

In the standard Newton’s method for Galerkin approximations we need to solve the correction
equation to obtain the solution δuh ∈ V h of

a′u(uh)(δuh, ϕh) = −a(uh)(ϕh) ∀ ϕh ∈ V h. (3.19)

Now, let (ϕhi )dimV h

i=0 be a basis of V h. Then we can express uh and δuh with their basis

representations uh, δuh ∈ RdimV h
, i.e.,

uh =
dimV h∑
i=0

uhi ϕ
h
i , δuh =

dimV h∑
i=0

δuhi ϕ
h
i .

Moreover, we define the matrix A ∈ RdimV h×dimV h
and the vector b ∈ RdimV h

by

Ai,j := a′u(uh)(ϕhj , ϕ
h
i ), bi := −a(uh)(ϕhi ).
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3. Spatial Discretization

Then, solving (3.19) is equivalent to solving the linear system

Aδuh = b. (3.20)

Once the correction δuh is obtained we receive our updated solution ũh ∈ V h by

ũh = uh + γδuh,

with γ ∈ (0, 1] a possible damping parameter. We summarized this procedure in Algo-
rithm 3.1.

Algorithm 3.1: Newton algorithm for nonlinear variational equations

Choose initial state uh ∈ V h, a parameter γ ∈ (0, 1) and tolerance TOL > 0;

Compute initial residual ρ0 = ‖a(ũh)(·)‖∞;
while ρ0 > TOL do

Obtain the solution δuh ∈ V h by solving the correction equation

a′u(uh)(δuh, ϕh) = −a(uh)(ϕh) ∀ ϕh ∈ V h.

Compute the update
ũh = uh + δuh.

Compute ρ1 = ‖a(ũh)(·)‖∞;
Set i = 0;
while ρ1 > ρ0 do

Set i = i+ 1;

Set ũh = uh + γiuh;

Compute ρ1 = ‖a(ũh)(·)‖∞;

end

Set uh = ũh;

end

Note that the matrix A and the vector b depend on the current iterate uh. Thus, in order
to solve the exact correction equation they need to be assembled in every Newton step. It is
possible to avoid the assembling of A and to use the matrix from a previous step, if the error
reduction of the residual is still satisfying. This can be especially crucial in the 3-dimensional
case, where the computational time for assembling A can exceed the time for solving the
system (3.20).

If the form a is linear in uh, as it is the case for the mesh motion or the adjoint, tangent and
dual for Hessian equations that are introduced in Chapter 5, Newton’s method converges in
one step.

The linear system (3.20) can be tackled with iterative solution methods. Although direct
solvers like LU-decomposition are possible, too, in the 3-dimensional they can quickly become
too demanding in terms of memory usage. There is a vast amount of literature available for
iterative solvers that are highly efficient for solving the systems of the respective subproblems.
Moreover, a lot of those solvers are available in form of well-implemented black box solvers.
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Figure 3.2.: FSI-1 benchmark configuration

Again, this is one of the main reasons why partitioned methods are so popular. We refer to
the book of Elman [38] for an analysis and an overview on iterative solvers for elliptic and
Navier-Stokes equations with appropriate preconditioners.

In our case, we will use a geometric multigrid method with ILU smoothing for the mesh
motion equation equation. Of course, for the multigrid method we need to solve a linear
system directly on the coarsest level. We do this with a LU-decomposition from the open
source library UMFPACK. Since this is done within a very low-dimensional discrete space,
we usually do not have problems with the memory storage. The matrices that arise from the
fluid and solid equations are not symmetric which is why the GMRES method is well suited
for them. The (fast) convergence of this method relies on good preconditioning for which we
choose in both cases the mentioned multigrid method. Although those might not be the most
optimal approaches, they perform in our numerical examples quite well.

3.7. Numerical Benchmark Examples

To conclude this section, we describe the configurations in 2D and 3D, respectively, that we
use throughout this thesis to test the later algorithmic concepts.

Configuration 3.1 (2D benchmark). At first, we consider the 2D FSI-1 benchmark intro-
duced in [113]. Figure 3.2 shows the configuration which we explain in detail: We have a
rectangular canal with length L = 2.5 and height H = 0.41. The fluid, coming from the
left, passes a fixed circular obstacle with center M = (0.2, 0.2) and radius r = 0.05. At the
boundary of the obstacle Γcirc we enforce a no-slip condition. The density of the fluid is given
by ρf = 103, its viscosity by νf = 10−3. Moreover, we have a parabolic inflow profile at Γin

with vin(y) = 1.5 v̄ y(H − y)/(H/2)2, v̄ = 0.2. Attached to the obstacle is an elastic beam
with length l = 0.35 and height h = 0.02. In addition to that, the solid is fixed at the base of
the beam Γs. Finally, the Poisson ratio is given by νs = 0.4, i.e., we always have the relation
λs = 4µs. The authors in [113] propose µs = 5 · 105, which we use, too, but additionally have
two other configurations with µs = 5 · 104 and µs = 5 · 103. The smaller the parameter µs

is chosen, the more elastic the beam behaves. Numerically, we observe that the number of
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3. Spatial Discretization

partitioned iterations increases which is why we believe the configurations to be a good show
case for different situations.

Configuration 3.2 (2D outflow maximization example). Next, we regard another 2D con-
figuration that has been introduced in [99] and is shown in Figure 3.3. Here, the fluid density
is given by ρf = 103 and the viscosity by νf = 10−3. Again, the Poisson ratio is νs = 0.4,
the shear modulus, however, is µs = 5 · 102. Instead of an inflow profile at Γin, the boundary
pressure is controlled. This changes the fluid variational form slightly to

Fhpress(u
h
f , v

h, ph, qh)(φhf , ξ
h) = (ρfJf∇vF−1

f v, φf)Ωf
+ (Jfσf(u

h
f , v

h, ph)F−Tf ,∇φhf )Ωf

+ (Jf tr(F−1
f ∇v

h), ξh)Ωf
− 〈ρfνfJfF

−T
f (∇vh)TF−Tf nf, φ

h
f 〉Γout

+ ahLPS(ph, ξh)− 〈qhnf, φ
h
f 〉Γin

(3.21)
Note that the fluid function spaces have to be adjusted, since now non-zero values are allowed
on Γin.

Ωs

Ωf

Γout

Γin

Γ0 Γ0

Γs

ΓI

4.0

1.0 2.0

1
.5

.2
5
.2

5

Figure 3.3.: FSI 2D outflow maximization configuration

Configuration 3.3 (3D Box). Finally, we present a 3-dimensional configuration that has
been introduced in [100]. The fluid travels through a box and passes a box-shaped obstacle,
representing the structure; see Figure 3.4. The configuration is mirrored at Γsym. Due to this
symmetry, it is sufficient to do the computations only on one side of symmetry plane, i.e., the
“non-doted” domain. However, the boundary conditions of the solution variables have to to
be adjusted. In particular, we have that fluid velocity and domain displacement cannot have
contributions in direction of the normal vector, i.e.,

u · n = 0 on Γsym,

v · n = 0 on Γsym,

where n is the outer normal on Γsym. Furthermore, a parabolic inflow profile is induced at
Γin as

vin = 0.2 · y(0.4− y)

0.22
· (z + 0.4)(0.4− z)

0.42
.
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Figure 3.4.: FSI 3D box configuration

We set the fluid density to ρf = 103 and the viscosity to νf = 10−3. The structural parameters
are given by νs = 0.4 and µs = 5 · 105. Note, however, that in Chapter 9 the Lamé parameter
µs is adjusted.
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This chapter focuses on partitioned solution methods for solving the discrete variational FSI
problem (Problem 3.4). Note that this can also be tackled by standard Newton techniques
as explained in Section 3.6 which is the so called monolithic approach. This results in solv-
ing large scaled linear systems, where the system matrix is obtained by the linearized FSI
equations. The linear system can then be solved by direct methods like LU-decomposition.
However, for very fine discretizations this becomes infeasible due to storage limitations; see
[101] for an example of the memory demand. Consequently, one is restricted to iterative
solvers such as GMRES. Yet, the system matrix is badly conditioned because of influences
like the scaling discrepancy between the fluid and structure equations. We refer to [101], where
the condition numbers have been computed for an exemplary configuration. Consequently,
iterative solvers need good preconditioners to become a feasible option. To this end, a lot of
work has been put into in the last couple of years, resulting in very efficient monolithic solvers.
We want to mention the work [78] that summarizes the recent developments. Nevertheless,
these techniques are still not software standards.

The key point in the derivation of partitioned schemes is to reformulate the coupled variational
form (3.12) into an equation that is solely defined on the interface ΓI , which is done in
Section 4.1. The evaluation of the function that appears in this interface equation is equivalent
to successively solving the mesh motion, the fluid, and the solid equation. This enables the use
of highly efficient black box solvers for the subproblems. Next, standard solution strategies like
fixed-point methods (Section 4.2 and 4.3) and Newton type methods (Section 4.4) are applied
to the interface equation. Finally, in Section 4.5, the correctness of the interface equation is
verified for two numerical examples in the sense that computed values of quantities of interest
are compared to values obtained by a monolithic solver. Moreover, the performance and
numerical effort between the different partitioned schemes is compared.

4.1. Derivation of the Reduced Interface Equation

The reformulation of (3.12) into an interface equation is based on the following idea: Assume,
we start with a given interface deformation ζh. We extend this deformation to obtain the
changed fluid domain depicted as the fluid domain displacement uhf . As for Problem 3.1,
this can be expressed as a Dirichlet boundary problem. With that, we can compute the
velocity and the pressure of the fluid in this new configuration in Problem 3.2. This allows
us to evaluate the load of the fluid on the solid which is represented by the dynamic coupling
condition (3.11). Next, we are able to compute the solid deformation under this load which
is like in Problem 3.3 a Neumann boundary problem. The solid solution again delivers a
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new interface displacement that can be given to the fluid domain via the geometric coupling
condition (3.9).

Now, if this interface deformation is the same as the one we initially started with, our FSI
system is in balance and we automatically have a solution to the variational Problem 3.4.
Thus, the equality between initial interface displacement and the interface displacement ob-
tained after one cycle defines our interface equation. Note that such a cycle is referred to as
Dirichlet-Neumann (D-N) cycle, since it requires solving a Dirichlet and a Neumann interface
problem.

4.1.1. Domain Decomposition

In order to derive a formulation of the D-N cycle and the resulting interface equation, we use
domain decomposition methods as done in [47]. Let yh ∈ V h be a function that is defined
on the whole domain. The portion on the fluid domain is split into a part that has zero
boundary values at the interface ΓI and a part that resembles the extension of the interface
boundary values on the fluid domain. The portion on the solid domain remains the same; see
Figure 4.1.

Let trh : V h
s → Ih be the standard trace operator from the solid domain to the interface and

Bh : Ih → V h
f,Γout

be an arbitrary, but fixed extension operator from the interface to the fluid

domain that fulfills (Bhζh)|ΓI
= ζh for any ζh ∈ Ih. Here, we chose V h

f,Γout
as the image space

so that Bhζh has zero trace at any boundary that is not the interface ΓI . Then, we can define
a lift operator Lh : V h

s → V h
f,Γout

by Lh := Bh ◦ trh with the property that for any function

yh ∈ V h we have a decomposition yhf,0 ∈ V h
f,ΓI

and yhs ∈ V h
s s.t.

yh|Ωf
= yhf,0 + Lhyhs , yh|Ωs

= yhs . (4.1)

In the following lemma, we show that this decomposition exists and is unique, as long as the
lift operator Lh is fixed.

Lemma 4.1. Let Lh : V h
s → V h

f,Γout
, Lh := Bh ◦ trh. Then, the decomposition (4.1) exists for

any yh ∈ V h and is unique.

Proof. yhs is well defined by yh|Ωs
. Then, yhf,0 := yh|Ωf

− Lhyhs has zero boundary data at ΓI ,

since trh(yh|Ωf
) = trh(Lhyhs ). Thus, yhf,0 ∈ V h

f,ΓI
and existence is proved. Now, let (yh,1f,0 , y

h,1
s )

and (yh,2f,0 , y
h,2
s ) be two decompositions that each fulfill (4.1). We immediately have yh,1s =

yh|Ωs
= yh,2s . Moreover, we obtain

yh,1f,0 = yh|Ωf
− Lhyh,1s = yh|Ωf

− Lhyh,2s = yh,2f,0 ,

which shows uniqueness.

On the other hand, if we have arbitrary functions yhf,0 ∈ V h
f,ΓI

and yhs ∈ V h
s , we can glue them

together via (4.1) to obtain a coupled function yh ∈ V h.
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. .

Ωf ΓI Ωs Ωf ΓI Ωs

yh(x) yh(x)

yh

yhf,0

Lyhs yhs

decomposition

Figure 4.1.: Exemplary depiction of the decomposition of a function yh with an arbitrary lift

operator Lh

4.1.2. Choice of the Discrete Extension Operator

The simplest choice to extend a discrete interface function to the fluid domain is by extending
it to zero values on degrees of freedom on the fluid mesh that do not belong to the interface.
Let N be the dofs of the fluid triangulation T hf . We can separate them into those located on

the interface denoted by NI and the remaining ones N \NI . Now, let ζh ∈ Ih be an interface
function and yhf := Bhζh ∈ Vf,Γout its extension with their basis representations denoted as

ζh ∈ RnI and yhf ∈ Rnf , respectively. Then, we have the relation

yhf,i =

{
ζhi i ∈ NI ,
0 i ∈ N \ NI .

Note that by this construction yh is not zero on cells of the fluid mesh that lie at the interface
ΓI . From now on, this specific extension operator is used.

4.1.3. Decoupled Monolithic Form

To decouple the variational form (3.12), we apply the decomposition (4.1) to the displacement
trial function uh and the test function φh to receive uhf,0, u

h
s and φhf,0, φ

h
s . Let us recall that

those two functions are responsible that the dynamic and geometric coupling conditions (3.11)
and (3.9), respectively, are fulfilled. With those new state variables and test functions, we
define the decoupled collection of state variables by

Uh := (uhf,0, v
h, ph, us) ∈ Xh := V h

f,0 × V h
f,ΓI
× Lhf × V h

s ,

and the decoupled collection of test functions by

Φh := (ψh, φhf,0, ξ
h, φhs ) ∈ Xh.

Remark 4.1. As mentioned before, we can always re-couple arbitrary functions uhf,0, u
h
s and

φhf,0, φ
h
s to the original variables uh and φh, respectively. Consequently, we are able to identify
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the decoupled variables Uh and Φh with the coupled ones Uh and Ψh. Uh and Φh can be seen
as a link between the monolithic and the partitioned character of the FSI system, whereas Uh
and Ψh establish a connection between the discrete coupled and continuous coupled system
with the variables U and Ψ.

Inserting Uh and Φh into the variational form (3.12) leads to

ah(Uh, qh)(Φh) = Mh(uhf,0 + Lhuhs )(ψh) + Fh(uhf,0 + Lhuhs , v
h, ph, qh)(φhf,0 + Lhφhs , ξ

h)

+ Sh(uhs , q
h)(φhs )

= Mh(uhf,0 + Lhuhs )(ψh) + Fh(uhf,0 + Lhuhs , v
h, ph, qh)(φhf,0, ξ

h)

+ Sh(uhs , q
h)(φhs ) + Fh(uhf,0 + Lhuhs , v

h, ph, qh)(Lhφhs , ξ
h), (4.2)

where we used that the form Fh is linear in the argument of the second parenthesis. Obviously,
a solution Uh ∈ Xh of

ah(Uh, qh)(Φh) = 0 ∀ Φh ∈ Xh (4.3)

is also a solution to Problem 3.4, since (4.2) can be transformed back to (3.12).

Through the decoupling of the displacement function uh, the mesh motion equation

Mh(uhf,0 + Lhuhs )(ψh)

can now be solved solely for uhf,0, it only requires the interface data coming from the solid in

the form of Lhus. Since the fluid equation now depends on a test function φhf,0 that is zero
on the interface, it is decoupled from the dynamic coupling condition and for solving we only
need the fluid domain deformation. As for the solid equation, it now receives the stress from
the fluid via the fluid residual tested with Lhφs, but does not explicitly need the fluid domain
deformation. Hence, we get a consecutive behavior in which a subproblem needs the data
from the previous one.

4.1.4. Partitioned Form

Now, to reduce this whole process to an equation on the interface, we intersect at the com-
position Lhus = Bh ◦ trh us, i.e., the solid interface displacement is first stored as a interface
function ζh = trh us ∈ Ih whereas Lhus is replaced by Bhζh in the equations on the fluid
domain. Thus, starting with an arbitrary interface displacement, we obtain the following
natural (D-N ) cycle

1. Assume that we have a given initial interface displacement ζh ∈ Ih. Then, we collect
all terms in (4.2) that contain the test function ψh and compute the solution uhf,0 ∈ V h

f,0

by solving the mesh motion equation

Mh(uhf,0 +Bhζh)(ψh) = 0 ∀ ψh ∈ V h
f,0. (4.4)

This can be seen as a Dirichlet boundary problem. Moreover, we set uhf := uhf,0 +Bhζh.
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2. Now that we have the displacement on the fluid domain available, we collect all terms
with the test functions φhf,0 and ξh and solve the fluid equation to get the solutions

vh ∈ V h
f,ΓI

+ V h
f,Γin

and ph ∈ Lhf of

Fh(uhf , v
h, ph, qh)(φhf,0, ξ

h) = 0 ∀ (φhf,0, ξ
h) ∈ V h

f,ΓI
× Lhf . (4.5)

3. After that, we are able to compute the fluid residual Fh(uhf , v
h, ph, qh)(Lhφhs , ξ

h) for any
test function φhs ∈ Vs. This acts as a interface boundary term on the solid since the
extension given by the operator Bh depends only on the values on the the interface ΓI .
Thus, by collecting all terms with the test function φhs , we can compute the solution
uhs ∈ V h

s of

Sh(uhs , q
h)(φhs ) = −Fh(uhf , v

h, ph, qh)(Lhφhs , ξ
h) ∀ φhs ∈ V h

s . (4.6)

This can also be seen as a boundary problem of Neumann type.

As discussed in Section 3.3, the residual term Fh(uhf , v
h, ph, qh)(Lhφhs , ξ

h) can indeed be inter-
preted as an approximation of the interface stress term (2.7). Furthermore, after one cycle the
dynamic condition (3.11) is fulfilled. The actual computation of Fh(uhf , v

h, ph, qh)(Lhφhs , ξ
h) is

done on the fluid domain. Let (ϕhi )nIi=1 be a basis of Ih. Then, we compute the components

ghi = Fh(uhf , v
h, ph, qh)(Bhϕhi , ξ

h). (4.7)

Then, by associating gh =
∑nI

i=1 g
h
i ϕ

h
i as an element of Ih, the fluid stress acts on the solid

as

〈gh, trh φs〉Ih ,

which has the same form as in Problem 3.3.

The steps (4.4) - (4.6) can be written in a more compact variational form. We define bh :
Xh × Ih ×Qh → (Xh)∗ by

bh(Uh, ζh, qh)(Φh) :=Mh(uhf,0 +Bhζh)(ψh) + Fh(uhf,0 +Bhζh, vh, ph, qh)(φhf,0, ξ
h)

+ Sh(uhs , q
h)(φhs ) + Fh(uhf,0 +Bhζh, vh, ph, qh)(Lhφhs , ξ

h). (4.8)

Then, for a given interface displacement ζh ∈ Ih one can compute the resulting state solution
Uh = Uh(ζh) ∈ Xh by solving one cycle

bh(Uh, ζh, qh)(Φh) = 0 ∀ Φh ∈ Xh. (4.9)

4.1.5. Interface Equation

The restriction of the solid solution uhs (ζh) to the interface gives us a new interface deformation.
This can be summarized by introducing the trace operator Trh : Xh → Ih, (uhf,0, v

h, ph, uhs ) 7→
trh uhs and by setting FSt : Ih → Ih, FSt(ζ

h) := Trh Uh(ζh). Thus, FSt returns the solid
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interface displacement for a given initial interface displacement. The situation that both are
equal can be expressed by the interface equation

FSt(ζ
h) = ζh. (4.10)

With the following theorem, we show that this is equivalent to having a solution to the
monolithic problem.

Theorem 4.1. Let qh ∈ Qh be given. Then, (Uh(ζh), ζh) ∈ Xh × Ih is a solution to Prob-
lem 3.4, if and only if

FSt(ζ
h) = ζh.

Proof. Let FSt(ζ
h) = ζh. Then, by definition of FSt, we have for any Φh ∈ Xh

0 = bh(Uh(ζh), ζh, qh)(Φh)

= bh(Uh(ζh), FSt(ζ
h), qh)(Φh) = bh(Uh(ζh),Trh Uh(ζh), qh)(Φh).

Using the definition of bh and Trh, we obtain for (uhf,0, v
h, ph, uhs ) = Uh(ζh)

0 =Mh(uhf,0 + (Bh ◦ trh)us)(ψ
h) + Fh(uhf,0 + (Bh ◦ trh)us, v

h, ph, qh)(φhf,0, ξ
h)

+ Sh(uhs , q
h)(φhs ) + Fh(uhf,0 +Bhζh, vh, ph, qh)(Lhφhs , ξ

h)

=Mh(uhf,0 + Lhus)(ψ
h) + Fh(uhf,0 + Lhus, v

h, ph, qh)(φhf,0, ξ
h)

+ Sh(uhs , q
h)(φhs ) + Fh(uhf,0 +Bhζh, vh, ph, qh)(Lhφhs , ξ

h),

for any (ψh, φhf,0, ξ
h, φhs ) = Φh ∈ Xh, which is equivalent to (4.3) and therefore equivalent to

Uh(ζh) being a solution to Problem 3.4. The other direction of the proof can be received by
going the previous steps one by one backwards.

From the steps of the proof we have an immediate connection between the decoupled mono-
lithic form (4.2) and the partitioned form (4.8), namely

ah(Uh, qh)(Φh) = bh(Uh,Trh Uh, qh)(Φh). (4.11)

Consequently, we are further able to express the monolithic solution Uh with the partitioned
form bh via

bh(Uh,Trh Uh, qh)(Φh) = 0 ∀ Φh ∈ Xh.

In addition to the fixed point equation (4.10), we introduce the residual RSt : Ih → Ih,
defined by

RSt(ζ
h) = FSt(ζ

h)− ζh,
and can hence rearrange (4.10) into the root equation

RSt(ζ
h) = 0. (4.12)

Remark 4.2. The subscript “St” in FSt and RSt is chosen to highlight that these are the
fixed-point and residual functions associated with the state equation. In Chapter 5, interface
equations of the same form are derived for the additional equations that occur for gradient
and Hessian computations. Thus, the subscript is used to distinguish between the different
interface functions.
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The partitioned schemes that are derived in the following sections basically depend on standard
methods for solving fixed-point and root type equations.

We briefly introduce some further notation. If we have a current iterate ζhk ∈ Ih, then we
denote evaluations of FSt and RSt by

F kSt := FSt(ζ
hk), RkSt := RSt(ζ

hk).

Remark 4.3. The concepts of this chapter can be easily extended to the case of different
interface spaces for the fluid and the solid mesh as discussed in Section 3.4. In particular, the
lift operator Lh has to be intersected by the mapping Πf

s. By defining

L̄h : V h
s → V h

f , L̄h := Bh ◦Πf
s ◦ trh .

we only need to replace Lh with L̄h.

4.2. Fixed-Point Method (FP)

We start with the classical fixed-point method (FP) which can also be seen as Block-Gauss-
Seidel iteration [28, 93, 110]. We begin with our current interface deformation ζhk ∈ Ih
and compute one cycle (4.9) toevaluate the new interface displacement F kSt. If F kSt is close
enough to ζhk we stop, otherwise we set ζhk+1 = F kSt and repeat the procedure until we have
convergence. This is summarized in Algorithm 4.1. As a convergence criterion, we compare
the error

‖F kSt − ζhk‖∞ (4.13)

in the L∞(ΓI)-norm with a given tolerance as done in [36, Section 4.1.1], since this norm is
equivalent to the discrete maximum norm. Consequently, it is easy to evaluate and mesh-
independent which makes a fixed tolerance value reasonable.

Algorithm 4.1: Fixed-point algorithm

Choose initial interface displacement ζh0 ∈ Ih and tolerance Tol > 0;
for k = 0, 1, . . . do

Evaluate F kSt;

if ‖F kSt − ζhk‖∞ ≤ Tol then
exit loop;

end

ζhk+1 = F kSt.

end

4.3. Relaxed Fixed-Point Method (RFP)

In general, the fixed-point method converges only with a linear rate or is even divergent. This
can often be circumvented by not applying a full fixed-point step but a damped one. Let us
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4. Partitioned Solution Algorithms

assume we have a current iterate ζhk ∈ Ih and apply one cycle to obtain F kSt. Now, instead of
setting ζhk+1 = F kSt we use a convex combination of ζhk and F kSt with a parameter ωk ∈ (0, 1],
namely

ζhk+1 = ωkF kSt + (1− ωk)ζhk. (4.14)

We call this the relaxed fixed-point method (RFP). The parameter ωk can be chosen constant
for every k. This has been done in [91, 93, 115]. As a rule of thumb, if ωk is chosen too big,
one can lose convergence, whereas the convergence rate is decreasing the smaller ωk is chosen.
This is also confirmed in our numerical results in Section 4.5. Consequently, the choice of ωk is
problem dependent, i.e., if the RFP method converges with a certain ωk for one configuration
it might fail in another.

Thus, one would like to choose ωk adaptively, such that it is optimal in every step k in the
sense that ωk is as big as possible without losing convergence. One possibility is to apply
the so called Aitken’s ∆2 method, which has been developed to accelerate the convergence of
general sequences and in particular fixed-point iterations. A derivation for the scalar case can
be found in [69, 95, 111]. It is shown that this method converges with a super linear rate. An
extension to the vector valued case has been done for general configurations in [68] and for
FSI in [77]. We give, however, a more descriptive derivation as done in [36].

Let F : Rn → Rn, n ∈ N, be a linear mapping for which we want to obtain a fix-point x∗. This
problem can be reformulated as a root problem of the function R(x) := F (x) − x. Applying
Newton’s method leads to a linear equation for the solution x∗ for any starting point x0

x∗ = x0 − (R′)−1(x0)R(x0),

where R′ is the Jacobian of R which is constant due to the linearity of F . Instead of computing
the real Jacobian we approximate it by a scaled identity matrix (R′)−1 ≈ ωI. Inserting this
approximation into Newton’s method yields for the iterates

xk+1 = xk − ωR(xk),

xk = xk−1 − ωR(xk−1).

A possible way to find an appropriate value for ω, is to minimize the quadratic distance of
two consecutive iterates in the Euclidean norm, i.e.,

ωk = arg min
ω∈(0,1]

‖xk+1 − xk‖2 = arg min
ω∈(0,1]

∥∥∥xk − xk−1 + ω
(
R(xk−1)−R(xk)

)∥∥∥2
.

Thus, ωk can be easily computed by

ωk =

(
xk − xk−1

)T (
R(xk−1)−R(xk)

)
(R(xk−1)−R(xk))

2 .

In general, we deal with nonlinear functions. Nevertheless, we can use the above procedure
and approximate the (now non-constant) Jacobian R by a scaled identity. The reasoning is
that, close to the solution, the first order term of the Taylor expansion is dominating which
results in an approximately linear function R.
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4.4. Newton Type Methods

Now, we want to apply this idea to our interface residual RSt. Then, ωk can be computed
by

ωk =
〈ζk − ζk−1, Rk−1

St −RkSt〉Ih
〈Rk−1

St −RkSt, R
k−1
St −RkSt〉Ih

. (4.15)

Note that by the definition of 〈·, ·〉Ih , we optimize ωk w.r.t. to the discrete l2 norm, i.e., the
Euclidean norm, that is not equivalent on different meshes. Nevertheless, minimizing in this
norm on a fixed mesh will result in a decrease in the maximum norm, that is once again used
as stopping criteria. Algorithm 4.2 depicts the relaxed fixed-point procedure. Note that ωk

in (4.15) can earliest be obtained at step k = 1. For k = 0, an initial value has to be chosen
for ω0. Obviously, if we choose ωk = 1 for every k, we obtain the standard fixed-point case.

Algorithm 4.2: Relaxed fixed-point algorithm

Choose initial interface displacement ζh0 ∈ Ih, initial relaxation parameter
ω0 ∈ (0, 1] and tolerance Tol > 0;

for k = 0, 1, . . . do
Evaluate F kSt, R

k
St;

if ‖F kSt − ζhk‖∞ ≤ Tol then
exit loop;

end
if k = 0 then

Compute update by
ζh1 = ω0F 0

St + (1− ω0)ζh0;

else
Set ωk = ω0 or compute it by (4.15);
Compute update by

ζhk+1 = ωkF kSt + (1− ωk)ζhk;

end

end

4.4. Newton Type Methods

A well-known possibility to solve root equations are Newton type methods. These usually re-
sult in super-linear convergence rates and in certain cases even in local quadratic convergence,
but also require sensitivity information. Let us recall the interface residual equation (4.12).
The basic idea of Newton type methods is to regard the current iterate ζhk and then solve
the correction equation

R′St(ζ
hk)(∆ζhk) = −RSt(ζ

hk), (4.16)

where R′St(ζ
hk) ∈ L(Ih, Ih) is the Jacobian of RSt. Having computed ∆ζk, we obtain the new

iterate by
ζhk+1 = ζhk + γk∆ζhk,

with some damping parameter γk ∈ (0, 1].
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4. Partitioned Solution Algorithms

Solving (4.16) can be tackled by different approaches:

• R′St can be assembled, such that (4.16) is solved directly. In the discrete case, to obtain
an expression of R′St(ζ

hk) one needs to compute R′St(ζ
hk)(ϕi), for every basis vector ϕi of

Ih. However, such a computation involves a linearized fixed-point cycle. Consequently,
this means solving nI cycles which makes this approach in general too costly.

• We use an iterative procedure to solve (4.16). That way, we only need the action of R′St

on the current iterate. In comparison to the assembling of R′St, iterative procedures are
known to converge in much less steps than there are unknowns. Thus, the action has to
be computed fewer times than in the direct case. Nevertheless, we still have to compute
the sensitivities of RSt in every iteration.

• The Jacobian R′St is replaced by some approximation M . Instead of (4.16) we now solve

∆ζhk = −M−1RSt(ζ
hk).

Depending on the approximation M we might circumvent computing the sensitivities of
RSt. However, one usually cannot expect local quadratic convergence.

4.4.1. Quasi-Newton Inverse Least-Squares Method (QN-ILS)

At first, we follow the approach of approximating the Jacobian R′St or, to be precisely, its
inverse (R′St)

−1. To begin with, we consider the linear case.

Let us assume that R : Rn → Rn is a linear mapping for which we want to find a root.
Moreover, let F : Rn → Rn, F (x) := R(x) + x and let (Ri, F i) := (R(xi), F (xi)), i = 0, . . . , k
be iterates acquired by previous steps. To solve the Newton equation at the k-th step

∆xk = −(R′)−1(xk)R(xk)

we would like to construct an approximation M ≈ (R′)−1(xk) depending only on the iterates
(Ri, F i), i ≤ k, where we assume that k � n. This can be done by the so called Quasi-
Newton Inverse Least-Squares Method (QN-ILS). This method has originally been introduced
as a partitioned method for FSI in [34] and has later been analyzed for a general framework
[62, 63]. Let x̄ ∈ Rn be the solution to the root equation, i.e., R(x̄) = 0. The idea is to
approximate the difference between R(x̄) and Rk by a linear combination of ∆Rki := Rk−Ri,
that means finding αk ∈ Rk with

0−Rk = R(x̄)−Rk ≈
k−1∑
i=0

αki ∆R
k
i . (4.17)

Of course, since k � n, solving for αk directly in (4.17) leads to an underdetermined system.
We can, however, transform (4.17) into a least-square problem

αk = arg min
βk∈Rk

‖Rk +
k−1∑
i=0

βki ∆Rki ‖22. (4.18)
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4.4. Newton Type Methods

By introducing the matrix V k ∈ Rn×k defined by

V k := [∆Rkk−1, . . . ,∆R
k
0 ],

the solution of (4.18) can be expressed by

αk = −((V k)TV k)−1(V k)TRk. (4.19)

Next, we want to predict the difference F (x̄)−F k with the help of (4.17) and the linearity of
F and R. We obtain

F (x̄)− F k = F (R−1(0))− F (R−1(Rk)) = F (R−1(0−Rk))

≈ F

(
R−1

(
k−1∑
i=0

αki ∆R
k
i

))

=
k−1∑
i=0

αki (F (R−1(Rk))− F (R−1(Ri)))

=

k−1∑
i=0

αki (F
k − F i) =

k−1∑
i=0

αki ∆F
k
i ,

where ∆F ki := F k − Fi. With the matrix W k ∈ Rn×k

W k := [∆F kk−1, . . . ,∆F
k
0 ],

this can be expressed as
k−1∑
i=0

αki ∆F
k
i = W kαk. (4.20)

Finally, by using the definition of F and R, we have the relation

R(x̄)−Rk = F (x̄)− F k − x̄+ xk,

which can be rearranged to

x̄ = xk + F (x̄)− F k +Rk ≈ xk +W kαk +Rk

= xk − (W k((V k)TV k)−1(V k)T − Id)Rk.

This approximated equality justifies the computation of the next iterate by

xk+1 = xk −MkRk,

with
Mk = (W k((V k)TV k)−1(V k)T − Id),

which shows that this is indeed a Quasi-Newton update. We refer to [63, 62] for a deeper
analysis of this scheme. In particular, the authors can show that this algorithm converges
with a super-linear rate. Moreover, as long as Mk stays non-singular, we have in the final
step Mn = (R′)−1, therefore the method terminates after a finite number of steps. Finally, it
shall be noted that the matrix Mk+1 is related to Mk by a rank-1 update.
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Remark 4.4. In general, the matrix Mk is not assembled since we only need the action MRk.
In fact, after determining the solution αk of (4.19), we have

−MkRk = W kαk +Rk. (4.21)

This procedure is now transferred to the non-linear case. This can be formally done in the
same manner as in the linear case since the matrices V k,W k only depend on the iterates
(F i, Ri), i = 0, 1, . . . , k. Let Fi

St,R
i
St be the finite element basis representations of F iSt, R

i
St.

We define

∆Rk
St,i := Rk

St −Ri
St,

Vk
St := [∆Rk

St,k−1, . . . ,∆Rk
St,0],

∆Fk
St,i := Fk

St − Fi
St,

Wk
St := [∆Fk

St,k−1, . . . ,∆Fk
St,0].

Then, we obtain with

Mk = (Wk
St((V

k
St)

TVk
St)
−1(Vk

St)
T − Id), (4.22)

the correction

∆ζh,k = −MkRk
St. (4.23)

Note that we can compute Vk
St and Wk

St only, if we have at least two iterates. That is why
we have to perform a relaxed fixed-point iteration for the first step. In Algorithm 4.3, we
summarize the method. It should be noted that analysis for the non-linear case is rather
difficult. The authors in [63] state that close to the solution the non-linear case behaves
approximately like the linear case and adapts its properties. Moreover, in a lot of numerical
examples we obtain super linear convergence as proven for the linear case.

4.4.2. Newton-Krylov Subspace Method (N-K)

Next, we follow the approach of using Newton-Krylov (N-K ) methods (see, e.g., [21, 75]),
where we only need to compute the action of the Jacobian R′St(ζ

h)(∆ζh) for a given ∆ζh.
These methods rely on a Krylov subspace method for solving the linear system. In our case,
we restrict us to the generalized minimal residual method (GMRES) (see, for instance, [38]),
since R′St is in general not symmetric and GMRES has been developed for non-symmetric
matrices. In [45, 48], the authors show how to compute the action for the interface equation.
Obviously, since

R′St(ζ
h)(∆ζh) = F ′St(ζ

h)(∆ζh)−∆ζh = Trh
(

(Uh)′(ζh)(∆ζh)
)
−∆ζh,

the difficult part is to obtain the action

(∆uhf,0,∆v
h,∆ph,∆uhs ) = ∆Uh := (Uh)′(ζh)(∆ζh).
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Algorithm 4.3: Quasi-Newton Inverse Least-Squares algorithm

Choose initial interface displacement ζh0 ∈ Ih, initial relaxation parameter
ω0 ∈ (0, 1] and tolerance Tol > 0;

for k = 0, 1, . . . do
Evaluate F kSt, R

k
St;

if ‖F kSt − ζhk‖∞ ≤ Tol then
exit loop;

end
if k = 0 then

Computethe update by

ζh1 = ω0F 0
St + (1− ω0)ζh0

else
Compute the correction ∆ζhk by (4.23);
Compute the interface update by

ζhk+1 = ζhk + ∆ζhk.

end

end

This can be done by recalling that Uh(ζh) fulfills (4.9) and thus

0 =
d

dζh
bh(Uh(ζh), ζh, qh)(∆ζh,Φh) = (bh)′Uh(Uh(ζh), ζh, qh)(∆Uh,Φh)

+ (bh)′ζh(Uh(ζh), ζh, qh)(∆ζh,Φh)

= (Mh)′u(uhf,0 +Bhζh)(∆uhf,0, ψ
h)

+ (Mh)′u(uhf,0 +Bhζh)(Bh∆ζh, ψh)

+ (Fh)′u(uhf,0 +Bhζh, vh, ph, qh)(∆uhf,0, φ
h
f,0, ξ

h)

+ (Fh)′u(uhf,0 +Bhζh, vh, ph, qh)(Bh∆ζh, φhf,0, ξ
h)

+ (Fh)′(v,p)(u
h
f,0 +Bhζh, vh, ph, qh)(∆vh,∆ph, φhf,0, ξ

h)

+ (Fh)′u(uhf,0 +Bhζh, vh, ph, qh)(∆uhf , L
hφhs , ξ

h)

+ (Fh)′u(uhf,0 +Bhζh, vh, ph, qh)(Bh∆ζh, Lhφhs , ξ
h)

+ (Fh)′(v,p)(u
h
f,0 +Bhζh, vh, ph, qh)(∆vh,∆ph, Lhφhs , ξ

h)

+ (Sh)′u(uhs , q
h)(∆uhs , φ

h
s ).

By collecting equal test functions, we get the following routine:

1. For ∆ζh, we compute the solution ∆uhf,0 ∈ V h
f,0 of the linearized mesh motion equation

(Mh)′u(uhf,0 +Bhζh)(∆uhf,0 +Bh∆ζh, ψh) = 0 ∀ ψh ∈ V h
f,0,

and set uhf = uhf,0 +Bhζh,∆uhf = ∆uhf,0 +Bh∆ζh. This can again be seen as a Dirichlet
boundary problem.
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2. Having the mesh motion sensitivity, we can obtain the velocity and pressure sensitivities
(∆vh,∆ph) ∈ V h

f,ΓI
× Lhf by solving the linearized fluid equation

(Fh)′(v,p)(u
h
f , v

h, ph, qh)(∆vh,∆ph, φhf,0, ξ
h) = −(Fh)′u(uhf , v

h, ph, qh)(∆uhf , φ
h
f,0, ξ

h)

∀ (φhf,0, ξ
h) ∈ V h

f,ΓI
× Lhf .

3. Now, we are able to evaluate the linearized residual

(Fh)′(v,p)(uf , v, p, q)(∆v,∆p, Lφs, ξ) + (Fh)′u(uf , v, p, q)(∆uf , Lφs, ξ),

which acts as a boundary force on the linearized solid equation. Consequently, we want
to find the solid sensitivity ∆us ∈ Vs by solving

(Sh)′u(uh, qh)(∆uh, φhs ) = − (Fh)′(v,p)(u
h
f , v

h, ph, qh)(∆vh,∆ph, Lφhs , ξ
h)

− (Fh)′u(uhf , v
h, ph, qh)(∆uhf , L

hφhs , ξ
h) ∀ φhs ∈ V h

s .

Restricting the solid sensitivity ∆uhs to the interface leads to

R′St(ζ
h)(∆ζh) = F ′St(ζ

h)(∆ζh)−∆ζh = trh ∆uhs −∆ζh.

The resulting Newton algorithm is given in Algorithm 4.4.

Algorithm 4.4: Newton-Krylov subspace algorithm

Choose initial interface displacement ζh0 ∈ Ih and initial tolerances Tol1,Tol2 > 0;
for k = 1, 2, . . . do

Evaluate F kSt, R
k
St;

if ‖RSt(ζ
hk)‖∞ ≤ Tol1 then

exit loop;
end

Choose an initial correction ∆ζhk,0;
for j = 1, 2, . . . do

Compute the action R′St(ζ
hk)(∆ζhk,j);

if ‖R′St(ζhk)(∆ζhk,j) +RSt(ζ
hk)‖2 ≤ Tol2 then

Set ∆ζhk := ∆ζhk,j and exit loop;
end

Use GMRES method to compute the update ∆ζhk,j+1;

end
Compute the Newton update

ζhk+1 = ζhk + γk∆ζhk.

end
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4.5. Numerical Results

In this section, we test each method on the numerical benchmark examples Configuration 3.1
and Configuration 3.3.

To begin with, we want to confirm that the derivation of our interface equation (4.10) is
correct and that its solution is indeed a solution to the monolithic system. To do that, we
solve the interface equation on a hierarchy of uniformly refined meshes and compute certain
quantities of interest which are then compared to the results in [100] that have been obtained
by a monolithic solver. For that, QN-ILS has been applied as partitioned method, but the
other schemes yield the same result. In Configuration 3.1, we compare the drag and lift values
at the interface and the obstacle

Jdrag(Uh) =

∫
ΓI∪Γcirc

〈Jfσf(u
h
f , v

h, ph)F−Tf n,~ex〉ds,

Jlift(U
h) =

∫
ΓI∪Γcirc

〈Jfσf(u
h
f , v

h, ph)F−Tf n,~ey〉ds,

as well as the displacement of the beam at the tip A = (0.6, 0.2) in x-direction and y-
direction

Jx(Uh) = uhs,x(A), Jy(U
h) = uhs,y(A).

Note that the drag and lift values are not computed as boundary integrals, but as residuals
with the Babuška-Miller-Trick ; see, e.g., [4]. We refer to Section 9.1.3, where this is explained
in more detail. In Table 4.1, the computed values are depicted. In addition to that, we have
extrapolated the last three values and see that they coincide very well with the reference
values from [100, Table 1].

Table 4.1.: Computed values for drag, lift, x-displacement and y-displacement in Configura-
tion 3.1 on uniformly refined meshes. Those values are extrapolated and compared
to the reference values

dofs drag lift x-displacement y-displacement

1456 15.249 0.7783 2.791 · 10−05 5.505 · 10−04

5270 14.470 0.7892 2.371 · 10−05 7.892 · 10−04

19978 14.340 0.7726 2.300 · 10−05 8.115 · 10−04

77714 14.307 0.7669 2.279 · 10−05 8.181 · 10−04

306466 14.298 0.7653 2.272 · 10−05 8.192 · 10−04

1217090 14.296 0.7649 2.269 · 10−05 8.192 · 10−04

extrapolated 14.294 0.7648 2.268 · 10−05 8.192 · 10−04

reference val. ([100]) 14.294 0.7648 2.268 · 10−05 8.190 · 10−04

We proceed in the same way for Configuration 3.3, for which we compare again the drag value
and the x-displacement at point A = (0.45, 0.15, 0.15). Table 4.2 confirms that our computed
values fit quite well with the reference values from [100, Table 3].
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Table 4.2.: Computed values for drag and x-displacement in Configuration 3.3 on uniformly
refined meshes. Those values are extrapolated and compared to the reference
values

dofs drag x-displacement

3028 1.9341 5.9123 · 10−05

18750 1.4675 5.6212 · 10−05

130546 1.3798 5.8496 · 10−05

971226 1.3488 5.9333 · 10−05

7522315 1.3375 5.9604 · 10−05

extrapolated 1.3310 5.9733 · 10−05

reference val. ([100]) 1.33 5.95 · 10−05

Next, we want to compare the performance and numerical effort of the different partitioned
schemes. We do this with Configuration 3.1 on a hierarchy of uniformly refined meshes, where
we use different values for the shear modulus µs ∈ {5 · 105, 5 · 102, 5 · 103} of the St. Venant
Kirchhoff law. By decreasing this parameter, the beam behaves more elastic, which increases
the coupling between the fluid and the solid. In every case, we start with an initial interface
displacement ζh0 = 0. As a stopping criterion, we demand that

‖F kSt − ζhk‖∞ ≤ 10−10.

First, in Table 4.3, the number of partitioned steps k for each method is depicted. It can be
observed the that RFP method with constant relaxation needs less steps for larger values of
ωk. However, by decreasing the shear modulus, the RFP method diverges if ωk is too large,
indicated by “div”. If ωk is chosen dynamically as in (4.15), convergence is maintained, as
well as much less partitioned steps are needed. In Figure 4.2, the computed values of ωk are
shown for a mesh with 1456 dofs. The values oscillate between a lower bound and ωk ≈ 1.

In terms of number of steps, the RFP method is outperformed by the QN-ILS scheme.
Furthermore, the N-K methods needs even less partitioned steps. This is due to the good
quadratic convergence of the Newton method, which is shown in Table 4.4.

However, in order to quantify and thereby compare the computational effort of the different
partitioned methods it does not suffice to look at the number of steps k. One reason is that
the evaluation of F kSt is not comparable for different values of k. To evaluate F kSt, one needs to
solve a mesh motion, a fluid, and a solid problem. This is done with the Newton method in
Algorithm 3.1, whose convergence can be dramatically improved, if the algorithm is started
with a good initial value. Note that in case for the mesh motion problem this is irrelevant,
since it is a linear problem. For k = 0, one has to guess an initial value, that might or might
not be close to the actual solution. However, as k increases one can use the solution from the
previous iteration as initial value in the current iteration, which is a more reasonable choice.
This is also observed in practice, with a reduction of Newton steps in Algorithm 3.1 for larger
k.
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Table 4.3.: Number of partitioned steps k in Configuration 3.1 for µs = 5·105, µs = 5·104, µs =
5 ·103 (top to bottom). The number in the parenthesis for N-K denotes the overall
GMRES steps on this mesh

dofs N-K QN-ILS ωk = dyn. ωk = 1 ωk = 0.5 ωk = 0.25 ωk = 0.1 ωk = 0.05

1456 2(5) 5 8 26 21 49 130 266

5270 2(5) 5 8 57 19 44 118 240

19978 2(5) 5 8 88 19 44 117 238

77714 1(3) 5 8 109 18 41 110 225

306466 1(3) 5 7 108 16 38 100 205

dofs N-K QN-ILS ωk = dyn. ωk = 1 ωk = 0.5 ωk = 0.25 ωk = 0.1 ωk = 0.05

1456 3(8) 7 11 div div 53 143 292

5270 2(7) 7 13 div div 68 123 252

19978 2(7) 7 13 div div >400 107 218

77714 3(8) 6 10 div div div 95 194

306466 3(9) 6 11 div div div 86 176

dofs N-K QN-ILS ωk = dyn. ωk = 1 ωk = 0.5 ωk = 0.25 ωk = 0.1 ωk = 0.05

1456 3(12) 10 27 div div div 167 340

5270 2(9) 11 44 div div div div 299

19978 3(12) 11 31 div div div div 265

77714 2(10) 9 45 div div div div 241

306466 2(10) 9 42 div div div div 221

Another reason is that although the N-K method needs the least amount of partitioned
steps, the GMRES steps have to be taken into consideration, too, since each step requires the
evaluation of the sensitivity FSt. As explained in Section 4.4, this involves a cycle of linearized
subproblems.

That is why we propose the following way to measure numerical effort: Let P ∈ {M,F, S}
be an index representing mesh motion, fluid and solid. Each subproblem is solved with the
Newton method in Algorithm 3.1. In each Newton step, a linear system has to be solved. We
denote by mP ∈ N the overall Newton steps that have been applied to the respective subprob-
lem during a partitioned method, which is then equivalent to the number of linear systems
that have been solved. Moreover, let NP ∈ N be the degrees of freedom of the respective
subproblem. This number is used to weight the numerical difficulty of the subproblem. Thus,
we obtain as measurement for the effort

cost =
∑

P∈{M,F,S}

mP ·NP . (4.24)

In Figure 4.3, the absolute effort is plotted for the different methods, while in Table 4.5 the
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Figure 4.2.: Values for dynamically computed ωk in Configuration 3.1 for different values of
the shear modulus µs

effort relative to N-K is depicted. We observe that QN-ILS and N-K are in general the ones
with the lowest effort.

To conclude this chapter, the RFP method with constant relaxation can perform quite well,
but this is problem dependent. With regard to optimal control, different controls qh can induce
situations for which certain values ωk fail. On the other hand, the RFP scheme with dynamic
relaxation seems to work in different situations but both the QN-ILS and N-K method are
more stable in the number of partitioned steps k. Since the numerical effort for the QN-ILS
scheme is slightly less than for N-K, QN-ILS becomes our method of choice. In [33], the
author obtains similar results.
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4.5. Numerical Results

Table 4.4.: Convergence of the absolute error with N-K for µs = 5·105, µs = 5·104, µs = 5·103

(top to bottom) in Configuration 3.1

k

dofs
1456 5270 19978 77714 306466

0 8.28 · 10−04 4.18 · 10−04 4.32 · 10−05 1.31 · 10−05 2.46 · 10−06

1 1.18 · 10−07 5.02 · 10−08 6.93 · 10−10 6.96 · 10−11 2.76 · 10−12

2 2.49 · 10−12 9.07 · 10−13 5.83 · 10−14 - -

k

dofs
1456 5270 19978 77714 306466

0 6.90 · 10−03 1.95 · 10−03 3.05 · 10−04 9.62 · 10−05 3.65 · 10−05

1 4.76 · 10−05 4.26 · 10−06 1.28 · 10−07 1.32 · 10−08 1.81 · 10−09

2 5.46 · 10−10 1.24 · 10−12 6.01 · 10−12 3.58 · 10−10 1.77 · 10−10

3 1.98 · 10−12 - - 3.59 · 10−13 3.08 · 10−13

k

dofs
1456 5270 19978 77714 306466

0 2.58 · 10−02 4.87 · 10−03 1.84 · 10−03 5.79 · 10−04 2.04 · 10−04

1 8.71 · 10−04 3.07 · 10−05 5.67 · 10−06 5.62 · 10−07 6.62 · 10−08

2 9.34 · 10−08 7.05 · 10−11 3.95 · 10−10 5.88 · 10−12 2.99 · 10−11

3 1.72 · 10−12 - 8.97 · 10−12 - -
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Figure 4.3.: Comparison of the numerical effort for the different partitioned methods on a
hierarchy of uniformly refined meshes in Configuration 3.1 with shear modulus
values µs ∈ {5 · 105, 5 · 104, 5 · 103} (top to bottom)
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4.5. Numerical Results

Table 4.5.: Numerical effort in Configuration 3.1 with µs = 5 · 105, µs = 5 · 104, µs = 5 · 103

(top to bottom) relative to N-K

dofs N-K QN-ILS ω = dyn. ω = 1.0 ω = 0.5 ω = 0.25 ω = 0.1 ω = 0.05

1456 1.00 0.91 1.21 3.55 2.52 5.58 13.69 27.35

5270 1.00 0.75 1.01 6.87 2.06 4.71 12.34 24.60

19978 1.00 0.71 1.01 9.80 2.12 4.61 12.02 24.32

77714 1.00 1.11 1.57 17.97 3.17 6.87 17.90 36.21

306466 1.00 1.10 1.41 18.66 2.85 6.31 16.28 33.00

dofs N-K QN-ILS ω = dyn. ω = 1.0 ω = 0.5 ω = 0.25 ω = 0.1 ω = 0.05

1456 1.00 0.91 1.27 div div 4.13 10.69 21.22

5270 1.00 0.89 1.46 div div 7.06 10.62 21.34

19978 1.00 0.87 1.50 div div 39.43 9.29 18.63

77714 1.00 0.61 1.02 div div div 7.32 14.76

306466 1.00 0.64 1.00 div div div 6.22 12.56

dofs N-K QN-ILS ω = dyn. ω = 1.0 ω = 0.5 ω = 0.25 ω = 0.1 ω = 0.05

1456 1.00 0.95 2.41 div div div 10.46 22.15

5270 1.00 1.30 3.54 div div div div 21.50

19978 1.00 0.96 2.59 div div div div 15.75

77714 1.00 0.89 2.97 div div div div 16.31

306466 1.00 0.88 2.37 div div div div 15.86
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5. Sensitivity Analysis with Partitioned
Methods

This chapter focuses on the formal sensitivity analysis of the discrete optimal control Prob-
lem 3.5 and the application of partitioned methods to the additional equations that occur.

A lot of robust optimization algorithms require the explicit computation of gradient and
Hessian information. By regarding the reduced problem (Problem 3.5), we have already
shown a way to efficiently compute the gradient by only solving an adjoint equation. As we
later see in this chapter, this also holds for the computation of the action of the Hessian, for
which we require to solve two additional equations.

We now present three approaches to acquire the correct sensitivities:

• The gradient and Hessian expressions are derived from the monolithic system. Each
additional equation is solved with monolithic techniques. We will call this approach
monolithic.

• The gradient and Hessian expressions are derived from the monolithic system in which
the additional equations are decoupled and appropriate interface equations are derived.
Each equation can then be solved by a partitioned method with possibly different num-
bers of iterations. That means that the received gradient and hessian are inexact and
their accuracy depends on the number of partitioned iterations. This approach will be
called first-optimize-then-partition (FOTP).

• We suppose that the state equation is solved with a partitioned method with a fixed
number of iterations which results in a perturbed optimization problem. We then de-
rive the exact optimality system of that problem. This automatically leads to certain
partitioned schemes for the additional equations. The perturbed optimization problem
is only an approximation of the unperturbed one, yet one receives the exact gradient
and Hessian information of the first. Therefore, one can rely on robust optimization
algorithms. We refer to this approach as first-partition-then-optimize (FPTO).

First, the monolithic approach is used to demonstrate the Lagrangian formalism for optimal
control problems with variational constraints to derive gradient and Hessian information. It
is applied to the optimal control problem together with the monolithic variational form ah.
Similar derivations can be found in [9, 67, 88]. Note that this acts only as a showcase of the
Lagrangian formalism, computations with the monolithic approach are not performed in this
thesis.
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Next, in the FOTP approach, this formalism is applied to the equivalent optimal control
problem, this time with the partitioned form bh; compare with (4.11). Similar approaches
can be found in [84, 83, 85, 86, 105, 108]. However, this is mostly done in a block-structure
representation in comparison to the variational representation in this thesis. Furthermore,
these works are restricted to the adjoint equation.

The resulting sensitivities are equivalent to the monolithic case, but since those sensitivities
are now expressed with bh, one can derive interface equations for the additional equations
similar to (4.10). On those equations, the partitioned methods of Chapter 4 can be applied
straightforward. Due to the formal equivalence this approach is used to obtain the monolithic
sensitivities. However, as for the state equation, the accuracy depends on how accurately the
interface equations are solved. In particular, the inexactness of the interface equations induces
an inexactness on the gradient and the Hessian. This can have consequences on the robustness
of optimization algorithms, if the inexactness is not kept small. This is also a problem, if we
want to combine this approach with an adaptive procedure, where we try to keep the number
of partitioned iterations small. A modified trust-region method is designed that can tackle
the inexactness properly; see Section 8.3.

In contrast to that, in the FPTO approach we assume that our state equation is always
solved with a fixed partitioned scheme and a fixed number of iterations K. This leads us to
a perturbed optimal control problem. However, if we now derive the the sensitivity equations
based on that perturbed problem, we obtain certain schemes for computing the solutions of
those equations. These schemes are induced by the specific partitioned method originally
used for the state equation. Moreover, they require the same number of iterations K. Thus,
even for small numbers K, the correct sensitivities are obtained. This has the advantage
that we are able utilize robust optimization algorithms for any K in comparison to FOTP.
With regard to adaptive strategies, we can therefore easily control the number of iterations.
Nevertheless, the derivation of the additional equations is quite complicated and has to be
done for each partitioned method one is interested in.

To sum up, while the sensitivities in the FOTP approach are easier to derive, it is less
complicated to incorporate the FPTO approach into adaptive strategies.

The derivations for the three approaches only depend on the abstract forms ah and bh. This is
done in order to avoid an overflow of occurring terms since the derivatives are quite complex.
The translation into the FSI framework is taken care of afterwards. There, it will become clear,
that for the additional equations a cycle of subproblems has to be solved. This is analogous
to the state interface function FSt, where each evaluation requires solving a mesh motion,
a fluid and a solid problem. Thus, even for the sensitivities the main idea of partitioned
methods is maintained, namely using solution methods specifically designed for the respective
subproblems.

Finally, we want to highlight that all the occurring the derivatives throughout this chapter
are derived only formally. Still, tests for the presented numerical examples are successful. We
refer to [117], in which the authors prove analytically the existence of the first order derivatives
in a setting with small deformations. As a final note, for the rest of the chapter we omit the
spatial discretization index h to simplify the notation, but all the derivations take place in
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5.1. Monolithic Approach

the discrete setting.

This chapter is outlined as follows: The sensitivity analysis for the monolithic approach is done
in Section 5.1, followed by FOTP in Section 5.2, and FPTO in Section 5.3. Afterwards, in
Section 5.4, the abstract terms are translated into the FSI setting. This chapter is concluded
with Section 5.5, where we confirm the correct derivation of the sensitivities for some numerical
examples in the sense that gradient and Hessian match the values of the differential quotient
up to a certain accuracy.

5.1. Monolithic Approach

We now regard the discrete monolithic optimal control problem

min
q∈Q

J(U, q) s.t. a(U, q)(Φ) = 0 ∀ Φ ∈ X. (5.1)

By Remark 4.1, this is equivalent to our original Problem 3.5. Furthermore, we assume that
there exists a unique solution U(q) ∈ X +XΓin of

a(U(q), q)(Φ) = 0 ∀ Φ ∈ X, (5.2)

for any q ∈ Q. We introduce the reduced form of (5.1), i.e.,

min
q∈Q

j(q) := J(U(q), q). (5.3)

In addition to that, we define the Lagrangian L : Q×X ×X → R by

L(q, U, Z) := J(U, q)− a(U, q)(Z).

Although the focus of this thesis is on optimal control with partitioned methods, we can use
the standard Lagrangian techniques on the monolithic setting. This acts as a showcase of this
technique which makes it easier to understand once we apply it to the partitioned setting. To
this end, we follow the structure and notation of [9, 88].

Remark 5.1. The gradient and Hessian expressions that are derived for the discrete system
can be easily transferred to the continuous case since optimization and discretization commute
due to (3.17).

5.1.1. Optimality Conditions and First Order Derivatives

As we have already seen, to obtain the adjoint solution Z ∈ X, we need to solve the adjoint
equation

L′U (q, U, Z)(Φ) = 0 ∀ Φ ∈ X. (5.4)

This translates to determining Z by

a′U (U, q)(Φ, Z) = J ′U (U, q)(Φ) ∀ Φ ∈ X.
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Then, the first derivative can be expressed by

j′q(q)(δq) = L′q(q, U, Z)(δq) = J ′q(U, q)(δq)− a′q(U, q)(δq, Z).

Once again, the necessary condition for q̄ ∈ Q to be a solution of (5.3) is

j′(q̄)(δq) = 0, ∀ δq ∈ Q. (5.5)

This can be summarized by the following optimality system of first order: (q̄, Ū , Z̄) ∈ Q ×
(X +XΓin)×X fulfill the first order optimality conditions if

L′Z(q̄, Ū , Z̄)(Φ) = −a(Ū , q̄)(Φ) = 0 ∀ Φ ∈ X,
L′U (q̄, Ū , Z̄)(Φ) = J ′U (Ū , q̄)(Φ)− a′U (Ū , q̄)(Φ, Z̄) = 0 ∀ Φ ∈ X,
L′q(q̄, Ū , Z̄)(δq) = J ′q(Ū , q̄)(δq)− a′q(Ū , q̄)(δq, Z̄) = 0 ∀ δq ∈ Q.

(5.6)

It shall be noted that for q ∈ Q, we only need to compute the solutions U and Z once in order
to evaluate the gradient for any direction δq. In the discrete setting, this allows us to easily
compute a representative of the gradient in the space Qh; see Section 6.1.

5.1.2. Second Order Derivatives

In order to get an expression for the Hessian j′′(q)(δq, τq) we use again the Lagrangian to
receive

j′′(q)(δq, τq) = L′′qq(q, U, Z)(δq, τq) + L′′qU (q, U, Z)(δq, τU) + L′′qZ(q, U, Z)(δq, τZ)

+ L′′Uq(q, U, Z)(δU, τq) + L′′UU (q, U, Z)(δU, τU) + L′′UZ(q, U, Z)(δU, τZ)

+ L′′Zq(q, U, Z)(δZ, τq) + L′′ZU (q, U, Z)(δZ, τU) + L′′ZZ(q, U, Z)(δZ, τZ)

+ L′U (q, U, Z)(δτU) + L′Z(q, U, Z)(δτZ).

Here, we used the abbreviations

δU := U ′(q)(δq), τU := U ′(q)(τq), δτU := U ′′(q)(δq, τq),

δZ := Z ′(q)(δq), τZ := Z ′(q)(τq), δτZ := Z ′′(q)(δq, τq).

Since L is linear in Z and the states U and Z fulfill (5.2) and (5.4), respectively, the Hessian
simplifies to

j′′(q)(δq, τq) = L′′qq(q, U, Z)(δq, τq) + L′′qU (q, U, Z)(δq, τU) + L′′qZ(q, U, Z)(δq, τZ)

+ L′′Uq(q, U, Z)(δU, τq) + L′′UU (q, U, Z)(δU, τU) + L′′UZ(q, U, Z)(δU, τZ)

+ L′′Zq(q, U, Z)(δZ, τq) + L′′ZU (q, U, Z)(δZ, τU).

One possibility to express the Hessian is to collect all terms containing τZ and define δU ∈ X
as the solution of the tangent equation for given δq ∈ Q that reads as

L′′qZ(q, U, Z)(δq,Φ) + L′′UZ(q, U, Z)(δU,Φ) = 0 ∀ Φ ∈ X, (5.7)
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and collecting all the terms containing τU and define δZ ∈ X as the solution of the dual for
Hessian equation

L′′qU (q, U, Z)(δq,Φ) + L′′UU (q, U, Z)(δU,Φ) + L′′ZU (q, U, Z)(δZ,Φ) = 0 ∀ Φ ∈ X. (5.8)

Then, we obtain

j′′(q)(δq, τq) = L′′qq(q, U, Z)(δq, τq) + LUq(q, U, Z)(δU, τq) + L′′Zq(q, U, Z)(δZ, τq). (5.9)

Lastly, we want to give explicit formulations of the additional equations by using the definition
of the Lagrangian. Recall that due to the definition of the cost functional (2.16), mixed
derivatives of J vanish. For the tangent equation (5.7) we get

a′U (U, q)(δU,Φ) = −a′q(U, q)(δq,Φ) ∀ Φ ∈ X,

for the dual for Hessian equation (5.8)

a′′U (U, q)(Φ, δZ) = J ′′UU (U, q)(δU,Φ)− a′′UU (U, q)(δU,Φ, Z)− a′′qU (U, q)(δq,Φ, Z) ∀ Φ ∈ X,

and for the Hessian expression (5.9)

j′′(q)(δq, τq) = J ′′qq(U, q)(δq, τq)−a′′qq(U, q)(δq, τq, Z)−a′′Uq(U, q)(δU, τq, Z)−a′q(U, q)(τq, δZ).

Remark 5.2. Similar to gradient we would like to compute a representative of the Hessian in
a basis of Qh. However, we would need to compute the tangent and dual for Hessian solutions
δU and δZ for every basis function since they depend on δq, which makes it usually too
costly, if the control space has a large dimension. In [9], an alternative method is presented
to assemble the Hessian which still requires solving n = dimQh additional PDEs. In general,
this is only feasible for parameter control. Consequently, we only compute the action of the
Hessian on a direction δq and use an iterative solver for optimization algorithms involving the
Hessian; see Section 6.1.

5.2. First-Optimize-then-Partition Approach (FOTP)

In this section, we want to apply the Lagrange formalism of the previous chapter to the same
optimal control problem, but this time reformulated with the partitioned form b. To this end,
we assume that there is similar partitioned form of the cost functional J . Let J̃ : X×I×Q→ R
be a functional with the property

J(U, q) = J̃(U,TrU, q). (5.10)

This assumption is necessary, to divide the cost functional into a portion on the fluid and one
on the solid. For instance, if the cost functional depends on the whole domain displacement
u ∈ V0 as

J(U, q) =

∫
Ω
u2dx,

we can also write it as

J̃(U, ζ, q) =

∫
Ωf

(uf,0 +Bζ)2dx+

∫
Ωs

u2
sdx,
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or

J̃(U,TrU, q) =

∫
Ωf

(uf,0 + Lus)
2dx+

∫
Ωs

u2
sdx.

This is similar to the relation between the forms a and b (4.11).

Next, we regard the optimal control problem

min
q∈Q

J̃(U,TrU, q) s.t. b(U,TrU, q)(Φ) = 0 ∀ Φ ∈ X. (5.11)

Since we have for any Φ ∈ X that

a(U, q)(Φ) = b(U,TrU, q)(Φ),

and (5.10), (5.11) is equivalent to (5.1). However, by utilizing the partitioned form b instead
of the monolithic form a, as well as the partitioned functional J̃ instead of J , we keep track
of the coupling while deriving the sensitivities. This will make the deduction of the interface
equations straightforward.

We assume that for any control q ∈ Q there is a unique solution U = U(q) ∈ X +XΓin of

b(U,TrU, q)(Φ) = 0 ∀Φ ∈ X, (5.12)

which is of course equivalent to (5.2). In the same manner as in the previous section, we
regard the reduced cost functional

min
q∈Q

j(q) := J̃(U(q),TrU(q), q). (5.13)

Again, we define the Lagrangian L : Q×X ×X → R by

L(q, U, Z) := J̃(U,TrU, q)− b(U,TrU, q)(Z).

5.2.1. First Order Derivatives

We can now derive the optimality system as done for the monolithic case, but now with the
decoupled form b which is equivalent but will emphasize the partitioned character afterwards.
We receive

L′Z(q̄, Ū , Z̄)(Φ) = −b(Ū ,Tr Ū , q̄)(Φ) = 0 ∀ Φ ∈ X,
L′U (q̄, Ū , Z̄)(Φ) = J̃ ′U (Ū ,Tr Ū , q̄)(Φ) + J̃ ′ζ(Ū ,Tr Ū , q̄)(Tr Φ)

− b′U (Ū ,Tr Ū , q̄)(Φ, Z̄)− b′ζ(Ū ,Tr Ū , q̄)(Tr Φ, Z̄) = 0 ∀ Φ ∈ X,
L′q(q̄, Ū , Z̄)(δq) = J̃ ′q(Ū ,Tr Ū , q̄)(δq)− b′q(Ū ,Tr Ū , q̄)(δq, Z̄) = 0 ∀ δq ∈ Q.

(5.14)
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Adjoint Equation

We have already addressed how the state interface equation (4.10) is derived. We now want
to do the same for the adjoint equation. By recalling (5.10), the adjoint equation reads as

b′U (U,TrU, q)(Φ, Z) = J̃ ′U (U,TrU, q)(Φ)

+ J̃ ′ζ(U,TrU, q)(Tr Φ)− b′ζ(U,TrU, q)(Tr Φ, Z) ∀ Φ ∈ X.
(5.15)

We see that the adjoint state Z is not directly connected to the interface by the operator Tr
as it is the case for the state. However, Tr : X → I acts on the test function Φ and thus

J̃ ′ζ(U,TrU, q)(·)− b′ζ(U,TrU, q)(·, Z) ∈ I∗

can be seen as an element of the dual interface space I∗. Furthermore, with regard to (3.2),
it can be identified as an element of the original space I. Now, for any λ ∈ I∗ we define
Z = Z(λ,U) ∈ X to be the solution of

b′U (U,TrU, q)(Φ, Z) = J̃ ′U (U,TrU, q)(Φ) + 〈λ,Tr Φ〉I ∀ Φ ∈ X. (5.16)

Then, solving (5.15) is equivalent to solving for fixed U ∈ X the adjoint interface equation

FAdj(λ,U) = λ in I∗, (5.17)

where FAdj : I∗ ×X → I∗ is defined by

FAdj(λ,U) = J̃ ′ζ(U,TrU, q)(·)− b′ζ(U,TrU, q)(·, Z(λ,U)).

Consequently, we can apply any partitioned method to solve (5.17). As we will see in Sec-
tion 5.4.1, (5.16) can be interpreted as a cycle of solving an adjoint solid, adjoint fluid and
adjoint mesh motion equation, depending on the given stress λ. The resulting adjoint stress
occurs in the form of FAdj. Therefore, the partitioned character is maintained.

In addition to the fixed-point equation (5.17), we also have the interface residual equation

RAdj(λ,U) = 0,

with RAdj : I∗ ×X → I∗ defined by

RAdj(λ,U) := FAdj(λ,U)− λ.

The first derivative can then be expressed as

j′(q)(δq) = J̃ ′q(U,TrU, q)(δq)− b′q(U,TrU, q)(δq, Z). (5.18)

5.2.2. Second Order Derivatives

Next, we derive an expression for the Hessian. For that we need to solve two additional
equations like in the monolithic case. The necessary derivatives of the Lagrangian expressed
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in terms of the form b are

L′′qZ(q, U, Z)(δq, τZ) = −b′q(U,TrU, q)(δq, τZ),

L′′UZ(q, U, Z)(δU, τZ) = −b′U (U,TrU, q)(δU, τZ)− b′ζ(U,TrU, q)(Tr δU, τZ),

L′′qU (q, U, Z)(δq, τU) = −b′′qU (U,TrU, q)(δq, τU, Z)− b′′qζ(U,TrU, q)(δq,Tr τU, Z),

L′′UU (q, U, Z)(δU, τU) = J̃ ′′UU (U,TrU, q)(δU, τU) + J̃ ′′ζU (U,TrU, q)(Tr δU, τU)

+ J̃ ′′Uζ(U,TrU, q)(δU,Tr τU) + J̃ ′′ζζ(U,TrU, q)(Tr δU,Tr τU)

− b′′UU (U,TrU, q)(δU, τU, Z),

− b′′Uζ(U,TrU, q)(δU,Tr τU, Z)

− b′′ζU (U,TrU, q)(Tr δU, τU, Z)

− b′′ζζ(U,TrU, q)(Tr δU,Tr τU, Z),

L′′UZ(q, Z, U)(δZ, τU) = −b′U (U,TrU, q)(τU, δZ)− b′ζ(U,TrU, q)(Tr τU, δZ),

L′′qq(q, U, Z)(δq, τq) = J̃ ′′qq(U,TrU, q)(δq, τq)− b′′qq(U,TrU, q)(δq, τq, Z),

L′′Zq(q, U, Z)(δZ, τq) = −b′q(U,TrU, q)(τq, δZ),

L′′Uq(q, U, Z)(δZ, τq) = −b′′Uq(U,TrU, q)(δU, τq, Z)− b′′ζq(U,TrU, q)(Tr δU, τq, Z).

Tangent Equation

The tangent equation is again obtained by collecting all the terms containing τZ. It reads
as

b′U (U,TrU, q)(δU,Φ) = −b′q(U,TrU, q)(δq,Φ)− b′ζ(U,TrU, q)(Tr δU,Φ) ∀ Φ ∈ X.

To derive an interface equation, we proceed in the same way as for the state equation: δU on
the left side is coupled with Tr δU on the right side. Thus, for δζ ∈ I we define δU = δU(δζ, U)
as the solution of

b′U (U,TrU, q)(δU,Φ) = −b′q(U,TrU, q)(δq,Φ)− b′ζ(U,TrU, q)(δζ,Φ) ∀ Φ ∈ X. (5.19)

We obtain the tangent interface equation

Tr δU(δζ, U) = δζ. (5.20)

Once again, we can rewrite this with the help of FTa : I ×X → I, FTa(δζ, U) := Tr δU(δζ, U)
to

FTa(δζ, U) = δζ.

In addition to that, with the residual function RTa : I×X → I, RTa(δζ, U) := FTa(δζ, U)−δζ,
this is equivalent to

RTa(δζ, U) = 0.

Similar to the state and adjoint equation, if we translate (5.19) into the FSI setting, the
solution process is a cycle of solving a tangent mesh motion, a tangent fluid problem, and a
tangent solid problem. This is addressed in Section 5.4.3.
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Dual for Hessian Equation

For the dual for Hessian equation, we collect all terms containing τU and obtain that δZ ∈ X
is the solution of

b′U (U,TrU, q)(Φ, δZ) = J̃ ′′UU (U,TrU, q)(δU,Φ) + J̃ ′′ζU (U,TrU, q)(Tr δU,Φ)

+ J̃ ′′Uζ(U,TrU, q)(δU,Tr Φ) + J̃ ′′ζζ(U,TrU, q)(Tr δU,Tr Φ)

− b′′UU (U,TrU, q)(δU,Φ, Z)

− b′′Uζ(U,TrU, q)(δU,Tr Φ, Z)

− b′′ζU (U,TrU, q)(Tr δU,Φ, Z)

− b′′ζζ(U,TrU, q)(Tr δU,Tr Φ, Z)

− b′′qU (U,TrU, q)(δq,Φ, Z)

− b′′qζ(U,TrU, q)(δq,Tr Φ, Z)

− b′ζ(U,TrU, q)(Tr Φ, δZ) ∀ Φ ∈ X.

As for the adjoint equation, we identify

J̃ ′′Uζ(U,TrU, q)(δU, ·) + J̃ ′′ζζ(U,TrU, q)(Tr δU, ·)
− b′′Uζ(U,TrU, q)(δU, ·, Z)

− b′′ζζ(U,TrU, q)(Tr δU, ·, Z)

− b′′qζ(U,TrU, q)(δq, ·, Z)

− b′ζ(U,TrU, q)(·, δZ) ∈ I∗

as an object of the dual interface space. Consequently, for every δλ ∈ I∗ we define δZ =
δZ(δλ, U, δU, Z) as the solution of

b′U (U,TrU, q)(Φ, δZ) = J̃ ′′UU (U,TrU, q)(δU,Φ) + J̃ ′′ζU (U,TrU, q)(Tr δU,Φ)

− b′′UU (U,TrU, q)(δU,Φ, Z)

− b′′ζU (U,TrU, q)(Tr δU,Φ, Z)

− b′′qU (U,TrU, q)(δq,Φ, Z)

+ 〈δλ,Tr Φ〉I ∀ Φ ∈ X.

(5.21)

Thus, we have the dual for Hessian interface equation

FDfH(δλ, U, δU, Z) = δλ in I∗, (5.22)

where FDfH : I∗ ×X ×X ×X → I∗ is defined by

FDfH(δλ, U, δU, Z) := J̃ ′′Uζ(U,TrU, q)(δU, ·) + J̃ ′′ζζ(U,TrU, q)(Tr δU, ·)
− b′′Uζ(U,TrU, q)(δU, ·, Z)− b′′ζζ(U,TrU, q)(Tr δU, ·, Z)

− b′′qζ(U,TrU, q)(δq, ·, Z)− b′ζ(U,TrU, q)(·, δZ(δλ, U, δU, Z)).

Once more, this can be written as a residual equation by

RDfH(δλ, U, δU, Z) = 0 in I∗,
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with RDfH : I∗ ×X ×X ×X defined as

RDfH(δλ, U, δU, Z) := FDfH(δλ)− δλ.

The solution procedure for δZ in (5.21) consists of a cycle, too, namely a dual for Hessian
solid, a dual for Hessian fluid, and a dual for Hessian mesh motion problem. The resulting
FSI equations are given in Section 5.4.4.

Hessian Expression

Now, if we assume that the interface equations have been solved, the action of the Hessian on
a direction τq is evaluated by

j′′(q)(δq, τq) = J̃ ′′qq(U,TrU, q)(δq, τq)− b′′qq(U,TrU, q)(δq, τq, Z)

− b′Uq(U,TrU, q)(δU, τq, Z)

− b′′ζq(U,TrU, q)(Tr δU, τq, Z)

− b′q(U,TrU, q)(τq, δZ),

(5.23)

which is of course equivalent to the monolithic derivation (5.9).

Since the additional interface equations have the same fixed-point (or root) form as the state
interface equation (4.10), Algorithm 4.1, Algorithm 4.2 and Algorithm 4.3 can be easily ap-
plied. This holds also for the Newton-Krylov subspace method (N-K) in Algorithm 4.4, how-
ever, the sensitivities of the interface functions are needed for that, which is why we go into
more detail.

5.2.3. Newton-Krylov Subspace Method

The interface functions for the additional equations have in common that they are affine
linear in their arguments. Consequently, if we apply N-K and solve the correction equation
exactly, we have convergence in one step. Because of that, it seems at first that this method
is far superior than the others in this case. However, as for the state equation it would be
too costly to assemble the Newton matrix and are therefore restricted to compute only the
action of it and apply GMRES. But, for each action we need to compute again a cycle of
linear subproblems. Thus, the numerical effort depends on the number of steps needed for
the convergence of GMRES which depends on the configuration itself. We now state the
sensitivities of the additional interface functions:

Adjoint equation: We have for given λ,∆λ ∈ I∗

F ′Adj(λ)(∆λ) = −b′ζ(U,TrU, q)(·,∆Z),

with ∆Z := Z ′(λ)(∆λ). From (5.16), it follows that ∆Z fulfills

b′U (U,TrU, q)(Φ,∆Z) = 〈∆λ,Tr Φ〉I ∀ Φ ∈ X. (5.24)
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Consequently,
R′Adj(λ)(∆λ) = −b′ζ(U,TrU, q)(·,∆Z)−∆λ.

Tangent equation: We have for given δζ,∆δζ ∈ I

F ′Ta(δζ)(∆δζ) = Tr ∆δU,

with ∆δU := δU ′(δζ)(∆δζ). From (5.19), it follows that ∆δU fulfills

b′U (U,TrU, q)(∆δU,Φ) = −b′ζ(U,TrU, q)(∆δζ,Φ) ∀ Φ ∈ X. (5.25)

Consequently,
R′Ta(δζ)(∆δζ) = Tr ∆δU −∆δζ.

Dual for Hessian equation: We have for given δλ,∆δλ ∈ I∗

F ′DfH(λ)(∆λ) = −b′ζ(U,TrU, q)(·,∆δZ),

with ∆δZ := δZ ′(δλ)(∆δλ). From (5.21) it follows that ∆δZ fulfills

b′U (U,TrU, q)(Φ,∆δZ) = 〈∆δλ,Tr Φ〉I ∀ Φ ∈ X. (5.26)

Consequently,
R′DfH(λ)(∆δλ) = −b′ζ(U,TrU, q)(·,∆δZ)−∆δλ.

With the above sensitivities, Algorithm 4.4 can be applied to the interface equations (5.17),
(5.20) and (5.22).

5.2.4. Approximations of the Reduced Cost Functional and its Derivatives

So far, we have not taken into account that the interface equations have possibly not been
solved exactly. In practice, however, a partitioned method is applied to them and is aborted
after a certain number of iterations. Consequently, the resulting inexact solutions induce an
inexactness on cost functional, gradient, and Hessian.

We express this situation in the following way: Assume, we have given an initial interface
displacement ζ0. Then, the state solution, that is obtained by applying a partitioned scheme
with this initial iterate, is denoted as UK . Here, K ∈ N is the number of partitioned iterations.
Next, for given initial interface dual λ0, the approximate adjoint solution is written as ZKL,
with L ∈ N the number of partitioned iterations on (5.17). Note that the adjoint interface
function FAdj depends on the state U . That is why the dependence on K is included in
ZKL.

Analogously, the tangent and dual for Hessian approximations are denoted as δUKM and
δZKLMN , with M ∈ N tangent and N ∈ N dual for Hessian partitioned steps applied on
(5.20) and (5.22), respectively. We assume that the corresponding initial iterates δζ0 and δλ0

are given.
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Remark 5.3. Whenever it is important for a numerical example, it is stated what partitioned
method has been applied for each interface equation and which initial value has been used.

Inserting these approximations into the cost functional and the expressions (5.18) and (5.23)
of the gradient and the Hessian, respectively, leads to inexact evaluations of the functional

jK(q) := J̃(UK ,TrUK , q), (5.27)

the gradient

(j)′KL(q)(δq) := J̃ ′q(U
K ,TrUK , q)(δq)− b′q(UK ,TrUK , q)(δq, ZKL), (5.28)

and the Hessian

(j)′′KLMN (q)(δq, τq) := J̃ ′′qq(U
K ,TrUK , q)(δq, τq)− b′′qq(UK ,TrUK , q)(δq, τq, ZKL)

− b′Uq(UK ,TrUK , q)(δUKM , τq, ZKL)

− b′′ζq(UK ,TrUK , q)(Tr δUKM , τq, ZKL)

− b′q(UK ,TrUK , q)(τq, δZKLMN ).

(5.29)

5.2.5. Accuracy of the Interface Equations

As for the state interface equations, convergence criteria can be given for the additional
interface equations. To this end, let TolSt,TolAdj,TolTa,TolDfH > 0 be positive numbers that
act as the tolerances for the maximum norm, i.e.,

‖FSt(ζ
K)− ζK‖∞ ≤ TolSt,

‖FAdj(λ
L, UK)− λL‖∞ ≤ TolAdj,

‖FTa(δζM , UK)− δζM‖∞ ≤ TolTa,

‖FDfH(δλN , UK , δUKM , ZKL)− δλN‖∞ ≤ TolDfH.

(5.30)

If the tolerances are chosen small enough, their specific value depends on the configuration, it
can be assumed that the inexact functional, gradient, and Hessian are good enough approxi-
mations, i.e.,

j(q) ≈ jK(q),

j′(q)(δq) ≈ (j)′KL(q)(δq),

j′′(q)(δq, τq) ≈ (j)′′KLMN (q)(δq, τq).

In that case, standard optimization algorithms can be utilized together with those approx-
imations; see Section 6.1. When numerical examples are presented, the specific values of
TolSt,TolAdj,TolTa,TolDfH are stated.
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5.3. First-Partition-then-Optimize Approach (FPTO)

We now fix a number K ∈ N. This is the number of partitioned iterations we use to solve
the state equation. Moreover, let ζ0 ∈ I be the initial interface displacement, which we also
assume to be fixed. We now want to formulate an optimal control problem that is subject to a
partitioned method that has been iterated K times, for which we exclude the Newton-Krylov
subspace method for the time being. All the other methods have in common that for ζk ∈ I,
we obtain the state approximation Uk ∈ X by solving

b(Uk, ζk, q)(Φ) = 0 ∀ Φ ∈ X.

and they only differ in the way the next iterate ζk+1 is updated.

The idea is now to include this interface update as a constraint in the optimal control problem.
To this end, we view two examples. At first, let us consider the standard fixed-point method
(FP). In each step, the update

ζk+1 = TrUk

is computed. This can be rewritten with the inner interface product (3.1) as

〈ζk+1 − TrUk, λ〉I = 0 ∀ λ ∈ I∗. (5.31)

Here, λ ∈ I∗ acts as a multiplier for the interface constraint. If this term is incorporated
into the Lagrangian formalism, λ is determined as the solution of the corresponding adjoint
system.

Next, we regard the update coming from the Quasi-Newton Inverse Least-Squares method
( QN-ILS). As a reminder, the following abbreviations are used:

F i = TrU i, ∆F ki = F k − F i,
Ri = TrU i − ζi, ∆Rki = Rk −Ri.

Then, by combining (4.21) and (4.23), the update can then be expressed as

〈ζk+1 − ζk −
k−1∑
i=0

αki ∆F
k
i −Rk, λ〉I = 0 ∀ λ ∈ I∗. (5.32)

The constraint is not complete, however, since the relation of the vector αk ∈ Rk is missing.
The property that αk is the solution of (4.18), can be written as

〈
k−1∑
i=0

αki ∆R
k
i +Rk,

k−1∑
i=0

µki ∆R
k
i 〉I = 0 ∀ µk ∈ Rk, (5.33)

where µk ∈ Rk acts as the multiplier of this constraint.

These two examples are now used to construct a general setting with a generic interface form
Ck. It has to depend on the state variable in form of TrU and the interface variable ζ, but might
also depend on an additional constraint variables as it is the case in (5.32) with αk. We write
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the latter two as the combined variable γk = (ζk, βk) ∈ I ×Yk, where Yk is a generic Hilbert
space, e.g., Rk. Here, we include the dependence of Yk on k, referring to αk ∈ Rk in (5.32).
In the case of FP, where there is no additional constraint, the space can be set to Yk = ∅. In
addition to that, we have the corresponding multipliers written as θ := (λ, µ) ∈ I∗ × (Yk)∗.
Next, it has to be kept in mind that the interface update can depend on all the previous
variables (U j)kj=0, (γ

j)kj=0 as it is the case in (5.32) and (5.33). Therefore, we introduce the

collection of state variables as xk := ((U j)kj=0, (γ
j)kj=0) ∈ Xk := Xk × (Ik ×

∏k
j=0 Yj). With

that, we define the interface form

Ck : I ×Xk × (I∗ × (Yk)∗)→ R,

that expresses the interface update as

Ck(ζ
k+1,xk)(θk) = 0 ∀ θk ∈ I∗ × (Yk)∗.

We give now the specific forms of Ck for the different partitioned methods that have been
discussed in Chapter 4.

• Fixed-point: This has been already done in (5.31). Since there is no additional con-
straint, we set Yk = ∅. Therefore, γ = ζ, θ = λ, with the resulting form

Ck(ζk+1,xk)(θk) =〈ζk+1 − TrUk, λk〉I .

• Relaxed fixed-point (RFP) with constant ωk, k = 0, . . . ,K − 1: This is similar to the
previous case with the slightly different update (4.14). Again, the additional constraint
space is set to Yk = ∅. We have γ = ζ, θ = λ, and

Ck(ζk+1,xk)(θk) =〈ζk+1 − ωk TrUk − (1− ωk)ζk, λk〉I .

• RFP with dynamic ωk, k = 0, . . . ,K − 1: Here, we have an additional relation of
the relaxation parameter ωk. While ω0 is assumed to be fixed, the other values are
determined by (4.15). Therefore, it is Y0 = ∅ and Yk = R, k = 1, . . . ,K − 1. Moreover,
we have γk = (ζk, ωk), θ = (λk, µk), and

Ck(ζk+1,xk)(θk) = 〈ζk+1 − ωk TrUk − (1− ωk)ζk, λk〉I

+

(
ωk − 〈ζk − ζk−1, ζk − TrUk − ζk−1 + TrUk−1〉I

〈ζk − TrUk − ζk−1 + TrUk−1, ζk − TrUk − ζk−1 + TrUk−1〉I

)
µk,

for k = 1, . . . ,K − 1. The form for k = 0 is given by

C0(ζ1,x0)(θ0) = 〈ζ1 − (1− ω0)ζ0 − ω0 TrU0), λ0〉I .

• Quasi-Newton Inverse Least-Squares (QN-ILS ). This has already been addressed by
(5.32) and (5.33). It is γk = (ζk, αk), θ = (λk, µk), Yk = Rk, and

Ck(ζk+1,xk)(θk) = 〈ζk+1 − ζk −
k−1∑
i=0

αki ∆F
k
i −Rk, λk〉I

+ 〈
k−1∑
i=0

αki ∆R
k
i +Rk,

K−1∑
i=0

µki ∆R
k
i 〉I ,
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for k = 1, . . . ,K−1. Recall, that the first step of QN-ILS in Algorithm 4.3 is a relaxation
step with fixed ω0 ∈ (0, 1]. Consequently, Y0 = ∅ and the interface form reads as

C0(ζ1,x0)(θ0) = 〈ζ1 − (1− ω0)ζ0 − ω0 TrU0), λ0〉I .

Note that by the above definition, Ck has the properties

C′j,γk(ζj+1,xj)(δγk, θj) = 0, j + 1 < k,

C′j,Uk(ζj+1,xj)(δUk, θj) = 0, j < k.
(5.34)

Moreover, deriving with respect to γk+1 gives us

Ck,γk+1(ζk+1,xk)(δγk+1, θk) = Ck,ζk+1(ζk+1,xk)(δζk+1, θk) = 〈δζk+1, λk〉I . (5.35)

Now, we are able to express the solution of a partitioned algorithm with K iterations as a
system of equations by

K∑
k=0

b(Uk, ζk, q)(Φk) = 0 ∀ (Φk)Kk=0 ∈ XK ,

K−1∑
k=0

Ck(ζk+1,xk)(θk) = 0 ∀ (θk)K−1
k=0 ∈

K−1∏
k=0

(I∗ × (Yk)∗). (5.36)

Consequently, our optimal control problem can be formulated as

Problem 5.1 (Discrete partitioned optimal control problem).

min
q∈Q

J̃(UK , ζKq) s.t. (5.36).

Under the assumption that for any q ∈ Q there exists a solution UK(q), ζK(q) of (5.36), this
automatically induces the corresponding reduced functional

jK(q) := J̃(UK(q), ζK(q), q). (5.37)

Note that the optimal control problem also depends on the initial interface displacement, ζ0

which is fixed.

Now, let UK be the optimal state of Problem 5.1. Although it is hard to prove in general, if
we assume that the considered partitioned method converges for any q ∈ Q, one can expect
that for higher numbers K ∈ N we also obtain a better approximation to the optimal state of
the monolithic optimal control problem.

By defining Zk ∈ X as the adjoint state at step k and collecting all the multipliers in yK :=
((Zk)Kk=0, (θ

k)K−1
k=0 ), we specify the corresponding Lagrangian to be

LK(q,xK ,yK) := J̃(UK , ζK , q)−
K∑
j=0

b(U j , ζj , q)(Zj)−
K−1∑
j=0

Cj(ζj+1,xj)(θj) (5.38)
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The idea is now to apply the Lagrangian formalism of Section 5.1 to this particular Lagrangian
to derive expressions for the gradient and the Hessian of jK . That way, we are able to obtain
the correct sensitivity information for any number K ∈ N. This allows us to effectively control
K and may increase it if a better approximation is required; see Chapter 8.

Remark 5.4. In later chapters, we need to distinguish between the continuous and the discrete
solutions. Since the discretization index h has only been omitted for simplification reasons,
we refer to the FPTO functional as

jhK(qh),

and to the solution variables as
qhK , UhK , ZhK

in later chapters.

5.3.1. First Order Derivatives

To deduce the first order optimality system we derive the Lagrangian w.r.t. the control and
every state and adjoint state, i.e.,

• Derivatives w.r.t. the adjoint variables

(LK)′yK (q,xK ,yK)(δyK).

This includes the derivatives w.r.t. Zk and θk

(LK)′Zk(q,xK ,yK)(δZk) = −b(Uk, ζk, q)(δZk), 0 ≤ k ≤ K,
(LK)′θk(q,xK ,yK)(δθk) = −Ck(ζk+1,xk)(δθk), 0 ≤ k ≤ K − 1.

• Derivatives w.r.t. to the state variables

(LK)′xK (q,xK ,yK)(δxK).

This includes the derivatives w.r.t. Uk and γk, where we recall (5.34) and obtain

(LK)′UK (q,xK ,yK)(δUK) = J̃ ′U (UK , ζK , q)(δUK)− b′U (UK , ζK , q)(δUK , ZK),

(LK)′ζK (q,xK ,yK)(δγK) = J̃ ′ζ(U
K , ζK , q)(δζK)− b′ζ(UK , ζK , q)(δζK , ZK)

− 〈δζK , λK−1〉I ,

(LK)′Uk(q,xK ,yK)(δUk) = −b′U (Uk, ζk, q)(δUk, Zk)−
K−1∑
j=k

C′j,Uk(ζj+1,xj)(δUk, θj),

0 ≤ k < K,

(LK)′γk(q,xK ,yK)(δγk) = −b′ζ(Uk, ζk, q)(δζk, Zk)−
K−1∑
j=k−1

C′j,γk(ζj+1,xj)(δγk, θj),

1 ≤ k ≤ K − 1.
(5.39)
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• Derivatives w.r.t. the control variable q

(LK)′q(q,x
K ,yK)(δq),

i.e.,

(LK)′q(q,x
K ,yK)(δq) = J̃ ′q(U

K , ζK , q)(δq)−
K∑
k=0

b′q(U
k, ζk, q)(δq, Zk).

Adjoint Equation

The adjoint solution yK needs to fulfill

(LK)′xK (q,xK ,yK)(δxK) = 0 ∀ δxK .

Now, to determine the routine for obtaining the adjoint iterates Zk and θk, we combine all
the terms in (5.39) with the same derivative direction. This first done for the different cases
of k with no specific order. Afterwards, we explain in which order these equations have to be
solved to obtain a consecutive routine.

We start by collecting all the terms containing δUK . We compute the solution ZK ∈ X of

b′U (UK , ζK , q)(Φ, ZK) = J̃ ′U (UK , ζK , q)(Φ) ∀ Φ ∈ X. (5.40)

Then, for k = K − 1, . . . , 0, by collecting all terms with δUk, the adjoint solution Zk ∈ X is
computed by

b′U (Uk, ζk, q)(Φ, Zk) = −
K−1∑
j=k

C′j,Uk(ζj+1,xj)(Φ, θj) ∀ Φ ∈ X. (5.41)

Next, we collect all terms with δζK and obtain the adjoint interface solution λK−1 by

λK−1 = J̃ ′ζ(U
K , ζK , q)(·)− b′ζ(UK , ζK , q)(·, ZK). (5.42)

For the further interface updates, we need to take care of the composition of γ = (ζ, β)
and θ = (λ, µ) and regard the derivatives separately. By collecting all terms with δζk+1, k =
K−2, . . . , 0, that are part of the derivatives in (5.39) w.r.t. γk+1, the interface adjoint solution
λk is obtained by

λk = −b′ζ(Uk+1, ζk+1, q)(·, Zk+1)−
K−1∑
j=k+1

C′j,ζk+1(ζj ,xj)(·, θj). (5.43)

For the additional interface adjoint state µk, k = K − 1, . . . , 0, we collect all terms with δβk

and obtain µk as the solution of

K−1∑
j=k

C′j,βk(ζj ,xj)(·, θj) = 0. (5.44)
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Of course, if there is no additional constraint, i.e., Yk = ∅, this equation does not appear.

To determine the correct order of solving these equations, one needs to look on the dependence
of previous adjoint iterates. Therefore, we start with (5.40) since this equation depends solely
on state variables. This is followed by (5.42). Then, for decreasing k, we solve (5.44), (5.41),
and (5.43). The steps are summarized in Algorithm 5.1.

Algorithm 5.1: FPTO adjoint routine

Compute the adjoint state ZK by (5.40);
for k = K − 1, . . . , 0 do

if k = K − 1 then
Compute the interface adjoint state λK−1 by (5.42);

else
Compute the interface adjoint state λk by (5.43);

end

Compute, if it exists, the additional interface adjoint state µk by (5.44);

Compute the adjoint state Zk by (5.41);

end

In comparison to the first-optimize-then-partition approach, the equations (5.40) and (5.41) for
determining the adjoint state Zk have the same left-hand side as (5.16). The only difference is
that for FPTO the left-hand sides depend on the corresponding state iterates Uk and ζk. On
the one hand, this does not alter the basic structure, i.e., (5.40) and (5.41) represent an adjoint
cycle of subproblems; see Section 5.4.1. On the other hand, the resulting system matrices still
depend on Uk and ζk. Consequently, we do not only have to save all the previous iterates, but
we also need to reassemble the matrices at each iteration k in comparison to FOTP, where
only the final iterate UK is inserted into the adjoint equation. Another difference is that terms
of the cost functional J vanish as a right-hand side in (5.41), since J only depends on the last
iterate UK . Finally, while for FOTP the adjoint interface update can be expressed in terms
of FAdj or RAdj, it depends here on the specific form of Cj . We refer to Section 5.3.3, where
two examples are used to demonstrate this process.

Evaluation of the Gradient

For the gradient we receive

(jK)′q(q)(δq) = (LK)′q(q,x
K ,yK)(δq) = J̃ ′q(U

K , ζK , q)(δq)−
K∑
k=0

b′q(U
k, ζk, q)(δq, Zk).

Note that the gradient expression does not depend on the specific interface update. Further-
more, for an evaluation we need all state and adjoint iterates.

Remark 5.5. Let U,Z be the state and adjoint variable of the monolithic system. We can
expect for increasing K that UK becomes a better approximation of U . However, it cannot
be assumed that the last adjoint iterate Z0 is an approximation of Z. In fact, numerical
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experiments show that for increasing K, Z0 tends to zero and ‖Zk‖, k = K, . . . , 0 is a
decreasing sequence. If, for instance, the control acts as right-hand side, then the gradient
can be transformed into

(jK)′q(q)(δq) = J̃ ′q(U
K , ζK , q)(δq)− b′q(UK , ζK , q)

(
δq,

K∑
k=0

Zk

)

and the decrease makes sense, since the sum could become infinite otherwise. This justifies
to take

Z̃K :=
K∑
k=0

Zk

as an approximation of Z. In Chapter 7, this becomes important, since an appropriate
approximation of the adjoint state is needed for the evaluation of a posteriori error estimators.

5.3.2. Second Order Derivatives

Next, we want to derive the sensitivities of second order. Again we use the Lagrange formalism
to obtain the corresponding tangent and dual for Hessian equations. However, since both cases
alone require complicated derivatives, we regard each on its own.

Second Order Derivatives for the Tangent Equation

We proceed with the derivatives that are needed for the tangent equation.

• Derivatives w.r.t. the control and adjoint variables

(LK)′′qyK (q,xK ,yK)(δq, τyK).

This includes the derivatives w.r.t. (q, Zk)

(LK)′′qZk(q,xK ,yK)(δq, τZk) = −b′q(Uk, ζk, q)(δq, τZk), 0 ≤ k ≤ K. (5.45)

• Derivatives w.r.t. the state and adjoint variable

(LK)′′xKyK (q,xK ,yK)(δxK , τyK).

This includes the derivatives w.r.t. (Uk, Zk), (U i, θk), (γk, Zk), and (γi, θk)

(LK)′′UkZk(q,xK ,yK)(δUk, τZk) = −b′U (Uk, ζk, q)(δUk, τZk), 0 ≤ k ≤ K,
(LK)′′U iθk(q,xK ,yK)(δU i, τθk) = −C′k,U i(ζ

k+1,xk)(δU i, τθk), 0 ≤ i ≤ k ≤ K − 1,

(LK)′′γkZk(q,xK ,yK)(δζk, τZk) = −b′ζ(Uk, ζk, q)(δζk, τZk), 1 ≤ k ≤ K,

(LK)′′γiθk(q,xK ,yK)(δγi, τθk) = −C′k,γi(ζ
k+1,xk)(δγi, τθk), 1 ≤ i ≤ k + 1 ≤ K.

(5.46)
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Tangent Equation

The tangent solution δxK needs to fulfill

(LK)′′qyK (q,xK ,yK)(δq, τyK) + L′′K,xKyK (q,xK ,yK)(xK , τyK) = 0 ∀ τyK .

We proceed in the same way as for the adjoint equation, in the sense that we combine terms
in (5.45) and (5.46) with the same directional derivatives. We start by collecting all terms
with τZ0. Then δU0 ∈ X is the solution of

b′U (U0, ζ0, q)(δU0,Φ) = −b′q(U0, ζ0, q)(δq,Φ) ∀ Φ ∈ X. (5.47)

Next, by collecting all terms with τZk, we compute the tangent state δUk ∈ X for k = 1, . . . ,K
as the solution of

b′U (Uk, ζk, q)(δUk,Φ) = −b′q(Uk, ζk, q)(δq,Φ)− b′ζ(Uk, ζk, q)(δζk,Φ) ∀ Φ ∈ X. (5.48)

For the tangent interface state, we regard again the composition δγ = (δζ, δβ). Then, interface
update δζk+1 for k = 0, . . . ,K − 1 is determined by (terms with τλk)

C′k,ζk+1(ζk+1,xk)(δζk+1, (τλk, 0)) =−
k∑
j=0

C′k,γj (ζ
k+1,xk)(δγj , (τλk, 0))

−
k∑
j=0

C′k,Uj (ζ
k+1,xk)(δU j , (τλk, 0)) ∀ τλk ∈ I∗.

(5.49)

The additional tangent interface update δβk, k = 0, . . . ,K − 1, is determined by (terms with
τµk)

k∑
j=0

C′k,γj (ζ
k+1,xk)(δγj , (0, τµk)) +

k∑
j=0

C′k,Uj (ζ
k+1,xk)(δU j , (0, τµk)) = 0 ∀ τµk ∈ (Yk)∗.

(5.50)
The solution order of the equations can be identified by checking the dependence on previous
tangent iterates. The corresponding steps are summarized in Algorithm 5.2.

The computation of the tangent state is similar to the FOTP approach. As in the adjoint case,
the left-hand sides in (5.47) and (5.48) only differ in the iterates Uk and ζk in comparison to
(5.19). The same holds for the right-hand sides. The coupling is again given by the tangent
interface displacement δζk, its update, however, depends on the specific form of Cj in (5.49).

Second Order Derivatives for the Dual for Hessian Equation

Next, the derivatives needed for the dual for Hessian equation are considered.

• Derivatives w.r.t. to the control and state variables

L′′K,qxK (q,xK ,yK)(δq, τxK).
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Algorithm 5.2: FPTO tangent routine

Compute the tangent state δU0 by (5.47);
Compute, if it exists, the additional interface tangent state δβ0 by (5.50);
Compute the interface tangent state δζ1 by (5.49);
for k = 1, . . . ,K do

Compute the tangent state δUk by (5.48);
if k < K then

Compute, if it exists, the additional interface tangent state δβk by (5.50);

Compute the interface tangent state δζk+1 by (5.49);

end

end

This includes the derivatives w.r.t. (q, Uk) and (q, γk)

(LK)′′qUk(q,xK ,yK)(δq, τUk) = −b′′qU (Uk, ζk, q)(δq, τUk, Zk), 0 ≤ k ≤ K,

(LK)′′qγk(q,xK ,yK)(δq, τζk) = −b′′qζ(Uk, ζk, q)(δq, τζk, Zk), 1 ≤ k ≤ K.
(5.51)

• Second order derivatives w.r.t. to the state variables

(LK)′′xKxK (q,xK ,yK)(δxK , τxK).

This includes the derivatives w.r.t. (U i, Uk) and (γi, Uk)

(LK)′′UKUK (q,xK ,yK)(δUK , τUK) = J̃ ′′UU (UK , ζK , q)(δUK , τUK)

− b′′UU (UK , ζK , q)(δUK , τUK , ZK),

(LK)′′ζKUK (q,xK ,yK)(δζK , τUK) = J̃ ′′ζU (UK , ζK , q)(δζK , τUK)

− b′′ζU (UK , ζK , q)(δζK , τUK , ZK),

(LK)′′UkUk(q,xK ,yK)(δUk, τUk) = −b′′UU (Uk, ζk, q)(δUk, τUk, Zk)

−
K−1∑
j=k

C′′j,UkUk(ζj+1,xj)(δUk, τUk, θj),

0 ≤ k ≤ K − 1,

(LK)′′U iUk(q,xK ,yK)(δU i, τUk) = −
K−1∑
j=k

C′′j,U iUk(ζj+1,xj)(δU i, τUk, θj),

0 ≤ i ≤ K − 1, 0 ≤ k ≤ K − 1, i 6= k, (5.52)
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(LK)′′γkUk(q,xk,yk)(δγk, τUk) = −b′′ζU (Uk, ζk, q)(δζk, τUk, Zk),

−
K−1∑
j=k

C′′j,γkUk(ζj+1,xj)(δγk, τUk, θj),

1 ≤ k ≤ K − 1,

(LK)′′γiUk(q,xK ,yK)(δζi, τUk) = −
K−1∑
j=k

C′′j,γiUk(ζj+1,xj)(δγi, τUk, θj),

1 ≤ i ≤ K − 1, 0 ≤ k ≤ K, i 6= k, (5.53)

and the derivatives w.r.t. (γi, γk) and (U i, γk)

(LK)′′ζKζK (q,xK ,yK)(δζK , τζK) = J̃ ′′ζζ(U
K , ζK , q)(δζK , τζK)

− b′′ζζ(UK , ζK , q)(δζK , τζK , ZK)

(LK)′′γkγk(q,xK ,yK)(δγk, τγk) = −b′′ζζ(Uk, ζk, q)(δζk, τζk, Zk)

−
K−1∑
j=k−1

C′′j,γkγk(ζj+1,xj)(δγk, τγk, θj),

1 ≤ k ≤ K − 1,

(LK)′′γiγk(q,xK ,yK)(δγi, τγk) = −
K−1∑
j=k−1

C′′j,γjγk(ζj+1,xj)(δγi, τγk, θj),

1 ≤ i ≤ K − 1, 1 ≤ k ≤ K − 1, i 6= k,

(LK)′′UKζK (q,xK ,yK)(δUK , τζK) = J̃ ′′Uζ(U
K , ζK , q)(δUK , τζK)

− b′′Uζ(UK , ζK , q)(δUK , τζK , ZK),

(LK)′′Ukγk(q,xK ,yK)(δUk, τγk) = −b′′Uζ(Uk, ζk, q)(δUk, τζk, Zk)

−
K−1∑
j=k−1

C′′j,Ukγk(ζj+1,xj)(δUk, τγk, θj),

1 ≤ k ≤ K − 1,

(LK)′′U iγk(q,xK ,yK)(δU i, τγk) = −
K−1∑
j=k−1

C′′j,U iγk(ζj+1,xj)(δU i, τγk, θj),

1 ≤ i ≤ K − 1, 1 ≤ k ≤ K − 1, i 6= k.

(5.54)

• Derivatives w.r.t. to the adjoint and state variables

(LK)′′yKxK (q,xK ,yK)(δyK , τxK).
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This includes the derivatives w.r.t. (Zk, Uk), (θi, Uk), (Zk, γk), and (θi, γk)

(LK)′′ZkUk(q,xK ,yK)(δZk, τUk) = −b′U (Uk, ζk, q)(τUk, δZk), 0 ≤ k ≤ K,
(LK)′′θiUk(q,xK ,yK)(δθi, τUk) = −C′i,Uk(ζi+1,xi)(τUk, δθi), 0 ≤ k ≤ i ≤ K − 1,

(LK)′′Zkγk(q,xK ,yK)(δZk, τγk) = −b′ζ(Uk, ζk, q)(τζk, δZk), 1 ≤ k ≤ K,

(LK)′′θiγk(q,xK ,yK)(δθi, τγk) = −C′i,γk(ζi+1,xi)(τγk, δθi), 0 ≤ k − 1 ≤ i ≤ K.
(5.55)

Dual for Hessian Equation

The dual for hessian solution δyK needs to fulfill

(LK)′′yKxK (q,xK ,yK)(δyK , τxK)+(LK)′′xKxK (q,xK ,yK)(δxK , τxK)

+(LK)′′qxK (q,xK ,yK)(δq, τxK) = 0 ∀ τxK .

Likewise to the previous equations, terms with the same directional derivatives in (5.51),
(5.52), (5.53), (5.54), and (5.55) are put together. We start by collecting all terms containing
τUK . Then, we obtain the dual for Hessian state δZK as the solution of

b′U (UK , ζK , q)(Φ, δZK) = J ′′UU (UK , q)(δUK ,Φ)− b′′UU (UK , ζK , q)(δUK ,Φ, ZK)

− b′′ζU (UK , ζK , q)(δζK ,Φ, ZK)

− b′′qU (UK , ζK , q)(δq,Φ, ZK) ∀ Φ ∈ X.
(5.56)

Afterwards, for k = K − 1 . . . 0, by collecting all terms with τUk, we compute the dual for
Hessian state δZk as the solution of

b′U (Uk, ζk, q)(Φ, δZk) = −b′′UU (Uk, ζk, q)(δUk,Φ, Zk)− b′′ζU (Uk, ζk, q)(δζk,Φ, Zk)

−b′′qU (Uk, ζk, q)(δq,Φ, Zk)

−
K−1∑
i=k

C′i,Uk(ζi+1,xi)(Φ, δθi)

−
K−1∑
i=1

K−1∑
j=k

C′′j,γiUk(ζj+1,xj)(δγi,Φ, θj)

−
K−1∑
i=1

K−1∑
j=k

C′′j,U iUk(ζj+1,xj)(δU i,Φ, θj) ∀ Φ ∈ X.

(5.57)

Next, by collecting all terms with τζK we obtain the interface dual for Hessian solution δλK−1

by

δλK−1 = J̃ ′′Uζ(U
K , ζK , q)(δUK , ·) + J̃ ′′ζζ(U

K , ζK , q)(δζK , ·)
− b′ζ(Uk, ζk, q)(·, δZk)− b′′ζζ(UK , ζK , q)(δζK , ·, ZK)

− b′′Uζ(Uk, ζk, q)(δUk, ·, Zk)− b′′qζ(Uk, ζk, q)(δq, ·, Zk).
(5.58)
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For the remaining interface variables, we distinguish again between the derivatives in direction
τζk and τβk that belong to τγk. To obtain the interface dual for Hessian solution δλk, k =
K − 2, . . . , 0, we compute (terms with τζk that are shifted in the index k by 1)

δλk =− b′ζ(Uk+1, ζk+1, q)(·, δZk+1)− b′′ζζ(Uk+1, ζk+1, q)(δζk+1, ·, Zk+1)

− b′′Uζ(Uk+1, ζk+1, q)(δUk+1, ·, Zk+1)

− b′′qζ(Uk+1, ζk+1, q)(δq, ·, Zk+1)

−
K−1∑
i=k+1

C′i,ζk+1(ζi+1,xi)(·, δθi)

−
K−1∑
i=1

K−1∑
j=k+1

C′′j,γiζk+1(ζj+1,xj)(δγi, ·, θj)

−
K−1∑
i=1

K−1∑
j=k+1

C′′j,U iζk+1(ζj+1,xj)(δU i, ·, θj).

(5.59)

Finally, for the additional interface dual for Hessian state δµk, k = K − 1, . . . , 0, we collect all
terms with τβk and obtain

K−1∑
i=k

C′i,βk(ζi+1,xi)(·, δθi) = −
K−1∑
i=1

K−1∑
j=k

C′′j,γiβk(ζj+1,xj)(δγi, ·, θj)

−
K−1∑
i=1

K−1∑
j=k

C′′j,U iβk(ζj+1,xj)(δU i, ·, θj).

(5.60)

Algorithm 5.3: FPTO dual for Hessian routine

Compute the dual for Hessian state δZK by (5.56);
for k = K − 1, . . . , 0 do

if k = K − 1 then
Compute the interface dual for Hessian state δλK−1 by (5.58);

else
Compute the interface dual for Hessian state δλk by (5.59);

end

Compute, if it exists, the additional interface dual for Hessian state δµk by (5.60);

Compute the dual for Hessian state δZk by (5.57);

end

There are some changes in comparison to the FOTP approach. First, as for the adjoint
equation, the left-hand sides in (5.56) and (5.57) are the same as in (5.21), with the exception
of the dependence on the iterates Uk and ζk. Again, in the right-hand side of (5.57) the
derivatives of the cost functional J vanish. Likewise, the dual for Hessian interface update
in (5.59) depends on the specific form Cj . Note that we do not only need the previous state
iterates, but also the previous adjoint and tangent ones.
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Second Order Derivatives for Hessian Expression

Finally, the derivatives are regarded that are tied to the Hessian expression.

• Second order derivatives w.r.t. the control variable

L′′K,qq(q,xK ,yK)(δq, τq),

i.e.,

(LK)′′qq(q,x
K ,yK)(δq, τq) = J̃ ′′qq(U

K , ζK , q)(δq, τq)−
K∑
k=0

b′′qq(U
k, ζk, q)(δq, τq, Zk).

• Derivatives w.r.t. the state and control variables

(LK)′′xKq(q,x
K ,yK)(τq, δxK).

This includes the derivatives w.r.t. (Uk, q) and (γk, q)

(LK)′′Ukq(q,x
k,yk)(δUk, τq) = −b′′Uq(Uk, ζk, q)(δUk, τq, Zk), 0 ≤ k ≤ K,

(LK)′′γkq(q,x
k,yk)(δζk, τq) = −b′′ζq(Uk, ζk, q)(δζk, τq, Zk), 1 ≤ k ≤ K.

• Derivatives w.r.t. the adjoint and control variables

(LK)′′yKq(q,x
K ,yK)(δyK , τq).

This includes the derivatives w.r.t. (Zk, q)

(LK)′′Zkq(q,x
k,yk)(δZk, τq) = −b′q(Uk, ζk, q)(τq, δZk), 0 ≤ k ≤ K.

Evaluation of the Hessian

The Hessian is expressed by

(jK)′′qq(q)(δq, τq) =(LK)′′qq(q,x
K ,yK)(δq, τq)

+(LK)′′xKq(q,x
K ,yK)(δxK , τq) + (LK)′′yKq(q,x

K ,yK)(δyK , τq),

which is

(jK)′′qq(q)(δq, τq) =J̃ ′′qq(U
K , ζK , q)(δq, τq, )

−
K∑
k=0

[
b′′Uq(U

k, ζk, q)(δUk, τq, Zk) + b′′ζq(U
k, ζk, q)(δζk, τq, Zk)

]
−

K∑
k=0

b′q(U
k, ζk, q)(τq, δZk).

As for the gradient, the hessian expression does not explicitly depend on the interface update
terms, but on all the previous iterates.
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5.3.3. Specific Interface Updates

We now want to see, what the interface updates for adjoint, tangent and dual for Hessian look
like for a specific form of Ck. We restrict this to FP and RFP with constant relaxation ωk.
For RFP with dynamical relaxation and QN-ILS, we refer to Appendix B, since the involved
terms become quite complicated.

Fixed-Point Method

For this case, we have the interface variable γ = ζ ∈ I and the adjoint interface variable
θ = λ ∈ I∗ with the interface form

Ck(ζk+1,xk)(θk) = 〈ζk+1 − TrUk, λk〉I .

The derivatives of this form are computed as

C′j,γk+1(ζj+1,xj)(δγ, θj) =

{
〈δζ, λk〉I j = k,

0 else,

and

C′j,Uk(ζj+1,xj)(Φ, θj) =

{
−〈Tr Φ, λk〉I j = k,

0 else.

Consequently, the adjoint interface update (5.43) reads as

λk = −b′ζ(Uk+1, ζk+1, q)(·, Zk+1) in I∗,

and thus the adjoint state Zk is computed by (5.41) as

b′U (Uk, ζk, q)(Φ, Zk) = 〈Tr Φ, λk〉I ∀ Φ ∈ X.

Analogously, we receive the tangent interface update (5.49) for δζk+1 by

δζk+1 = Tr δUk.

Finally, for the dual for Hessian interface update (5.59) we receive

δλk =− b′ζ(Uk+1, ζk+1, q)(·, δZk+1)− b′′ζζ(Uk+1, ζk+1, q)(δζk+1, ·, Zk+1)

− b′′Uζ(Uk+1, ζk+1, q)(δUk+1, ·, Zk+1)

− b′′qζ(Uk+1, ζk+1, q)(δq, ·, Zk+1) in I∗

and for the dual for Hessian state update δZk

b′U (Uk, ζk, q)(Φ, δZk) = −b′′UU (Uk, ζk, q)(δUk,Φ, Zk)− b′′ζU (Uk, ζk, q)(δζk,Φ, Zk)

−b′′qU (Uk, ζk, q)(δq,Φ, Zk)

+〈Tr Φ, δλk〉I ∀ Φ ∈ X.
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RFP with Constant Relaxation

Once more, we have the interface variable γ = ζ ∈ I and the adjoint interface variable
θ = λ ∈ I ′. In addition to that, we have relaxation parameters ωk ∈ R, k = 0, . . . ,K − 1,
which we assume to be constant. This results in the interface form

Ck(ζk+1,xk)(θk) = 〈ζk+1 − ωk TrUk − (1− ωk)ζk, λk〉I .

The form’s derivatives are

C′j,γk+1(ζj+1,xj)(δγ, θj) =


〈δζ, λk〉I j = k,

−(1− ωk+1)〈δζ, λk+1〉I j = k + 1,

0 else,

and

C′j,Uk(ζj+1,xj)(Φ, θj) =

{
−ωk〈Tr Φ, λk〉I j = k,

0 else.

Then, the adjoint interface update (5.43) is

λk = −b′ζ(Uk+1, ζk+1, q)(·, Zk+1) + (1− ωk+1)λk+1 in I∗,

and the adjoint state update(5.41) is computed by

b′U (Uk, ζk, q)(Φ, Zk) = ωk〈Tr Φ, λk〉I ∀ Φ ∈ X.

Next, the tangent interface update (5.49) reads as

δζk+1 = ωk Tr δUk + (1− ωk)δζk.

For the dual for Hessian interface update (5.59) we have

δλk =− b′ζ(Uk+1, ζk+1, q)(·, δZk+1)− b′′ζζ(Uk+1, ζk+1, q)(δζk+1, ·, Zk+1)

− b′′Uζ(Uk+1, ζk+1, q)(δUk+1, ·, Zk+1)

− b′′qζ(Uk+1, ζk+1, q)(δq, ·, Zk+1) + (1− ωk+1)λk+1 in I∗,

and for the dual for Hessian state (5.57)

b′U (Uk, ζk, q)(Φ, δZk) = −b′′UU (Uk, ζk, q)(δUk,Φ, Zk)− b′′ζU (Uk, ζk, q)(δζk,Φ, Zk)

− b′′qU (Uk, ζk, q)(δq,Φ, Zk)

+ ωk〈Tr Φ, δλk〉I ∀ Φ ∈ X.

5.3.4. Newton-Krylov Subspace Method

So far we have excluded the N-K method from the FPTO approach. The reason is that this
partitioned algorithm cannot be expressed as the system (5.36). In fact, at each step the the
interface update is computed by

ζk+1 = ζk + ∆ζk,
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where ∆ζk ∈ I is determined by

Tr ∆Uk −∆ζk = −TrUk + ζk,

with ∆Uk := ∆U(∆ζk) ∈ X the solution of

b′U (Uk, ζk, q)(δUk,Φ) = −b′ζ(Uk, ζk, q)(δζk,Φ) ∀ Φ ∈ X.

Thus, the interface update does not purely depend on values on the interface but requires
solving an additional linearized equation. Nevertheless, one can assemble a similar system as
(5.36). The state variables (Uk)Kk=0, (∆U

k)K−1
k=0 , (ζ

k)Kk=0, (∆ζ
k)K−1
k=0 fulfill

K∑
k=0

b(Uk, ζk, q)(Φk) = 0 ∀ (Φk)Kk=0 ∈ XK ,

K−1∑
k=0

b′U (Uk, ζk, q)(∆Uk,∆Φk) +

K−1∑
k=0

b′ζ(U
k, ζk, q)(∆ζk,∆Φk) = 0 ∀ (∆Φk)K−1

k=0 ∈ X
K−1,

K−1∑
k=0

〈ζk+1 − ζk −∆ζk, λk〉I = 0 ∀ (λk)K−1
k=0 ∈ (I∗)K−1,

K−1∑
k=0

〈Tr ∆Uk −∆ζk + TrUk − ζk,∆λk〉I = 0 ∀ (∆λk)K−1
k=0 ∈ (I∗)K−1.

Once again, this can be incorporated into an appropriate Lagrangian analogous to (5.38).
The main drawback is now that in this Lagrangian, derivatives of first order appear. As a
consequence, the gradient expression depends on second order terms, whereas the Hessian ex-
pression even requires terms of third order. That is why this approach is in general impractical
for implementation and is further not considered.

5.4. Sensitivities for the FSI System

The concepts in the previous sections were presented with a dependence on the abstract form
b without specifying how this can be translated into the FSI framework. For the monolithic
system in terms of the form a, this has been done in [99]. In this section, we use the explicit
definition of b to display the occurring derivatives in terms of mesh motion, fluid and solid.
In particular, we show what subproblems have to be solved in the adjoint, tangent and dual
for Hessian cycle, to confirm that the partitioned character is indeed maintained. Note that
we do most of this in the style of the equations formulated in the FOTP approach. However,
since almost the same derivatives are involved in the FPTO approach, one can easily transfer
it to that case. In addition to that, we comment on the major differences between the two
approaches.

To begin with, the adjoint variable Z ∈ X is written as the following tuple of variables

Z = (zuf
, zv,0, zp, zus).
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5.4. Sensitivities for the FSI System

Analogously, we can write the tangent state δU ∈ X as

δU = (δuf,0, δv, δp, δus),

and the dual for Hessian state δZ ∈ X as

δZ = (δzuf
, δzv,0, δzp, δzus).

Note that in the case of adjoint and dual for Hessian, trial function and test function change
their role in comparison to state and tangent. We will see that the respective subproblems
are coupled via Dirichlet and Neumann data but the other way around.

Finally, with regard to (5.10) we assume that the cost functional is decoupled into a fluid part
and and a solid part, i.e.,

J̃1(U,TrU) = Jf(uf,0 + Lus, v, p) + Js(us),

or, by the definition of the operator L,

J̃1(U, ζ) = Jf(uf,0 +Bζ, v, p) + Js(us),

5.4.1. Adjoint Cycle

We start by collecting the derivatives that are involved in the adjoint cycle (5.16) and use the
definition of b (4.8) to receive

b′U (U, ζ, q)(Φ, Z) =M′u(uf,0 +Bζ)(ψ, zuf
)

+ F ′u(uf,0 +Bζ, v, p, q)(ψ, zv,0, zp)

+ F ′(v,p)(uf,0 +Bζ, v, p, q)(φf,0, ξ, zv,0, zp)

+ F ′u(uf,0 +Bζ, v, p, q)(ψ,Lzus , zp)

+ F ′(v,p)(uf,0 +Bζ, v, p, q)(φf,0, ξ, Lzus , zp)

+ S ′u(us, q)(φs, zus)

=M′u(uf)(ψ, zuf
)

+ F ′u(uf , v, p, q)(ψ, zv,0 + Lzus , zp)

+ F ′(v,p)(uf , v, p, q)(φf,0, ξ, zv,0 + Lzus , zp)

+ S ′u(us, q)(φs, zus),
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b′ζ(U, ζ)(θ, Z) =M′u(uf,0 +Bζ)(Bθ, zuf
)

+ F ′u(uf,0 +Bζ, v, p, q)(Bθ, zv,0 + Lzus , zp)

=M′u(uf)(Bθ, zuf
)

+ F ′u(uf , v, p, q)(Bθ, zv, zp),

J̃ ′U (U, ζ, q)(Φ) = J ′f,u(uf,0 +Bζ, v, p)(ψ)

+ J ′f,(v,p)(uf,0 +Bζ, v, p)(φf,0, ξ) + J ′s,u(us)(φs)

= J ′f,u(uf , v, p)(ψ)

+ J ′f,(v,p)(uf , v, p)(φf,0, ξ) + J ′s,u(us)(φs),

J̃ ′ζ(U, ζ, q)(θ) = J ′f,u(uf,0 +Bζ, v, p)(Bθ)

= J ′f,u(uf , v, p)(Bθ).

Here, we set uf = uf,0 +Bζ.

Now, for given λ ∈ I∗ we want to compute the adjoint solution Z(λ,U) = (zuf
, zv,0, zp, zus) of

one adjoint cycle

b′U (U, ζ, q)(Φ, Z(λ,U)) = εJ̃ ′U (U, ζ, q)(Φ) + 〈λ,Tr Φ〉I ∀ Φ ∈ X. (5.61)

Here, ε ∈ {0, 1} displays the different possibilities for the right-hand side. It is ε = 1 for the
FOTP cycle in (5.16), but ε = 0 for the linearized cycle in (5.24) and the FPTO cycle in
(5.41). Moreover, to stay in a general setting, (5.61) depends on the state U but has to be
replaced by the appropriate iterate as in (5.41). Furthermore, the right-hand side in (5.41)
can be identified as an object λ ∈ I∗. Thus, this case is covered by (5.61).

Next, we note that λ, acting as a mapping on Tr Φ, is actually, by the definition of Tr, a
mapping on the solid test function φs, since

〈λ,Tr Φ〉I = 〈λ, trφs〉I .

Consequently, the adjoint cycle (5.61) can be written in the following steps:

1. We start with collecting all terms containing φs. Then zus ∈ Vs is the solution of the
adjoint solid equation

S ′u(us, q)(φs, zus) = εJ ′s,u(us)(φs) +−〈λ, trφs〉I ∀ φs ∈ Vs. (5.62)

This can be seen as Neumann boundary problem, since λ acts only on the trace of φs.

2. Next, we collect all terms containing (φf,0, ξ). This allows us to compute the solution
(zv,0, zp) ∈ Vf,ΓI × Lf of the adjoint fluid problem

F ′(v,p)(uf , v, p, q)(φf,0, ξ, zv,0+Lzus , zp) = εJ ′f,(v,p)(uf , v, p)(φf,0, ξ) ∀ (φf,0, ξ) ∈ Vf,ΓI×Lf .
(5.63)

This can be seen as a Dirichlet boundary problem because zv,0 is directly coupled with
Lzus . We set zv = zv,0 + Lzus
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3. Finally, we collect all terms containing ψ and are able to compute the solution zuf
∈ Vf,0

of the adjoint mesh motion equation

M′u(uf)(ψ, zuf
) = εJ ′f,u(uf , v, p)(ψ)

−F ′u(uf , v, p, q)(ψ, zv, zp) ∀ ψ ∈ Vf,0.
(5.64)

Then, we can evaluate the adjoint interface function FAdj by

FAdj(λ,U) = εJ ′f,u(uf , v, p)(B·)−M′u(uf)(B·, zuf
)

−F ′u(uf , v, p, q)(B·, zv, zp).

In comparison to the state cycle, we now have a Neumann-Dirichlet cycle. Moreover, the order
of subproblems is reversed, i.e., instead of mesh motion, fluid, solid we receive the sequence
solid, fluid, mesh motion. The reason is that in the adjoint equation, trial function and test
function have switched places.

Remark 5.6. The state subproblems (4.4), (4.5) and (4.6) are solved with Algorithm 3.1. In
each step a linearized equation has to be solved. The resulting left-hand sides are thereby
the same as the ones that correspond to the left-hand sides in (5.64), (5.63) and (5.62),
respectively, but transposed due to the change in trial function and test function. Thus, the
adjoint system matrices have the same structure as their state counterpart. Consequently,
efficient solver for the state system can be easily applied to the adjoint system.

5.4.2. Gradient Expression

At first, we have a look at the derivatives of b and J with respect to the control variable q,
i.e.,

b′q(U, ζ, q)(δq, Z) = F ′q(uf , v, p, q)(δq, zv, zp) + S ′q(us, q)(δq, zus),

J̃ ′q(U, ζ, q)(δq) = α(q, δq)Q,

where we used the special form (2.16) of the cost functional in the last equation. Hence, the
gradient can be expressed as

j′(q)(δq) = α(q, δq)Q −F ′q(uf , v, p, q)(δq, zv, zp)− S ′q(us, q)(δq, zus),

in the case of FOTP, or as

(jK)′(q)(δq) = α(q, δq)Q −
K∑
k=0

[
F ′q(ukf , vk, pk, q)(δq, zkv , zkp ) + S ′q(uks , q)(δq, zkus

)
]
,

in the case of FPTO.
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5.4.3. Tangent Cycle

The tangent cycle in terms of the form b reads as

b′U (U, ζ, q)(δU(δζ),Φ) = −εb′q(U, ζ, q)(δq,Φ)− b′ζ(U, ζ, q)(δζ,Φ) ∀ Φ ∈ X. (5.65)

Then, the respective derivatives in terms of mesh motion, fluid and solid are

b′U (U, ζ, q)(δU,Φ) =M′u(uf,0 +Bζ)(δuf,0, ψ)

+ F ′u(uf,0 +Bζ, v, p, q)(δuf,0, φf,0 + Lφs, ξ)

+ F ′(v,p)(uf,0 +Bζ, v, p, q)(δv, δp, φf,0 + Lφs, ξ)

+ S ′u(us, q)(δus, φs)

b′ζ(U, ζ, q)(δζ,Φ) =M′u(uf,0 +Bζ)(Bδζ, ψ)

+ F ′u(uf,0 +Bζ, v, p, q)(Bδζ, φf,0 + Lφs, ξ)

b′q(U, ζ, q)(δq,Φ) = F ′q(uf,0 +Bζ, v, p, q)(δq, φf,0 + Lφs, ξ)

+ S ′q(us, q)(δq, φs)

Again, the parameter ε ∈ {0, 1} takes the different right-hand sides into consideration. It is
ε = 1 for the FOTP cycle (5.19) and the FPTO cycle (5.48), while it is ε = 0 for the linearized
cycle (5.25).

Next, for given δζ ∈ I we can compute the tangent solution δU ∈ X by the following tangent
cycle:

1. We collect the terms containing the test function ψ to find the solution δuf,0 ∈ Vf,0 of
the tangent mesh motion equation

M′u(uf)(δuf,0 +Bδζ, ψ) = 0 ∀ ψ ∈ Vf,0. (5.66)

This can be seen as Dirichlet coupling. We set δuf = δuf,0 +Bδζ.

2. Afterwards, we collect the terms with the test functions (φf,0, ξ) to find the solution
(δv, δp) ∈ Vf,ΓI × Lf of the tangent fluid equation

F ′(v,p)(uf , v, p, q)(δv, δp, φf,0, ξ) = −εF ′q(uf , v, p, q)(δq, φf,0, ξ)

−F ′u(uf , v, p, q)(δuf , φf,0, ξ) ∀ (φf,0, ξ) ∈ Vf,ΓI × Lf .
(5.67)

3. We can evaluate the tangent fluid residual

g(φs) = − εF ′q(uf , v, p, q)(δq, Lφs, ξ)

− F ′u(uf , v, p, q)(δuf , Lφs, ξ)

− F ′(v,p)(uf , v, p, q)(δv, δp, Lφs, ξ),

(5.68)

which can again be seen as a Neumann boundary term, similar to the fluid residual in
the state cycle. Next, we collect the terms containing φs to find solution δus ∈ Vs of
tangent solid equation

S ′u(us, q)(δus, φs) = −εS ′q(us, q)(δq, φs) + g(φs) ∀φs ∈ ussp.
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The evaluation of the tangent interface function FTa is

FTa(δζ) = tr δus.

The structure of the tangent cycle is equivalent to the state cycle, i.e., it is of type Dirichlet-
Neumann and maintains the order of the subproblems. Moreover, with the same argument as
in Remark 5.6, the system matrices in (5.66), (5.67) and (5.68) maintain the structure of the
corresponding state matrices.

5.4.4. Dual for Hessian Cycle

The dual for Hessian cycle (5.21) reads as

b′U (U, ζ, q)(Φ, δZ(δλ, U, δU, Z)) = ε1J
′′
1,UU (U, ζ)(δU,Φ) + ε1J

′′
1,ζU (U, ζ)(δζ,Φ)

− ε2b′′UU (U, ζ, q)(δU,Φ, Z)

− ε2b′′ζU (U, ζ, q)(δζ,Φ, Z)

− ε2b′′qU (U, ζ, q)(δq,Φ, Z)

+ 〈δλ,Tr Φ〉I ∀ Φ ∈ X,

with the respective derivatives

b′′UU (U, ζ, q)(δU,Φ, Z) = F ′′uu(uf , v, p, q)(δuf,0, ψ, zv, zp)

+ F ′′u(v,p)(uf , v, p, q)(δuf,0, φf,0, ξ, zv, zp)

+ F ′′(v,p)u(uf , v, p, q)(δv, δp, ψ, zv, zp)

+ F ′′(v,p)(v,p)(uf , v, p, q)(δv, δp, φf,0, ξ, zv, zp)

+ S ′′uu(us, q)(δus, φs, zus),

b′′ζU (U, ζ, q)(δζ,Φ, Z) = F ′′uu(uf , v, p, q)(Bδζ, ψ, zv, zp)

+ F ′′u(v,p)(uf , v, p, q)(Bδζ, φf,0, ξ, zv, zp),

b′′qU (U, ζ, q)(δq,Φ, Z) = +F ′′qu(uf , v, p, q)(δq, ψ, zv, zp)

+ F ′′q(v,p)(uf , v, p, q)(δq, φf,0, ξ, zv, zp)

+ S ′′qu(us, q)(δq, φs, zus),

b′U (U, ζ, q)(Φ, δZ) =M′u(uf)(ψ, δzuf
)

+ F ′u(uf , v, p, q)(ψ, δzv, zp)

+ F ′(v,p)(uf , v, p, q)(φf,0, ξ, δzv, zp)

+ S ′u(us, q)(φs, δzus),

J̃ ′′UU (U, δζ, q)(δU,Φ) = J ′′f,uu(uf , v, p)(δuf,0, ψ) + J ′′f,u(v,p)(uf , v, p)(δuf,0, φf,0, ξ)

+ J ′′f,(v,p)u(uf , v, p)(δv, δp, ψ) + J ′′f,(v,p)(v,p)(uf , v, p)(δv, δp, φf,0, ξ)

+ J ′′s,uu(us)(δus, φs),

J̃ ′′ζU (U, ζ, q)(δU,Φ) = J ′′f,uu(uf , v, p)(Bδζ, ψ) + J ′′f,u(v,p)(uf , v, p)(Bδζ, φf,0, ξ).
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This time, two parameters ε1, ε2 ∈ {0, 1} are needed to cover all cases. They are (ε1, ε2) = (1, 1)
for the FOTP cycle (5.21), (ε1, ε2) = (0, 1) for the FPTO cycle (5.57), and (ε1, ε2) = (0, 0) for
the linearized cycle (5.26). Then, for given δλ ∈ I∗ we compute the dual for Hessian state
δZ(δλ) ∈ X of (5.21) by the following dual for Hessian cycle:

1. We start by collecting the terms containing the test function φs and compute the solution
δzus ∈ Vs of the dual for Hessian solid equation

S ′u(us, q)(φs, δzus) = ε1J
′′
s,uu(us)(δus, φs)− ε2S ′′uu(us, q)(δus, φs, zus)

− ε2S ′′qu(us, q)(δq, φs, zus) + 〈δλ, φs〉I ∀ φs ∈ Vs.
(5.69)

This can be seen as a boundary problem of Neumann type.

2. Next, we collect all terms containing the test functions (φf,0, ξ) and compute the solution
(δzv,0, δzp) ∈ Vf,ΓI × Lf of the dual for Hessian fluid equation

F ′(v,p)(uf , v, p, q)(φf,0, ξ, δzv,0 + Lδzus , δzp) =

ε1J
′′
f,u(v,p)(uf , v, p)(δuf , φf,0, ξ)

+ ε1J
′′
f,(v,p)(v,p)(uf , v, p)(δv, δp, φf,0, ξ)

− ε2F ′′u(v,p)(uf , v, p, q)(δuf , φf,0, ξ, zv, zp)

− ε2F ′′(v,p)(v,p)(uf , v, p, q)(δv, δp, φf,0, ξ, zv, zp)

− ε2F ′′q(v,p)(uf , v, p, q)(δq, φf,0, ξ, zv, zp)

∀ (φf,0, ξ) ∈ Vf,ΓI × Lf .

(5.70)

This can be seen as a Dirichlet coupling, since δzv,0 is coupled with Lδzus .

3. Finally, we collect all terms with the test function ψ and compute the solution δzuf
∈ Vf,0

of the dual for Hessian mesh motion equation

M′u(uf)(ψ, δzuf
) = ε1J

′′
f,uu(uf , v, p)(δuf , ψ) + ε1J

′′
f,(v,p)u(uf , v, p)(δv, δp, ψ)

− ε2F ′′uu(uf , v, p, q)(δuf , ψ, zv, zp)

− ε2F ′′(v,p)u(uf , v, p, q)(δv, δp, ψ, zv, zp)

− ε2F ′′qu(uf , v, p, q)(δq, ψ, zv, zp)

−F ′u(uf , v, p, q)(ψ, δzv, δzp) ∀ ψ ∈ Vf,0.

(5.71)

Now, we are able to evaluate the dual for Hessian interface function FDfH by

FDfH(δλ) = ε1J
′′
f,uu(uf , v, p)(δuf , B·) + ε1J

′′
f,(v,p)u(uf , v, p)(δv, δp,B·)

− ε2F ′′uu(uf , v, p, q)(δuf , B·, zv, zp)
− ε2F ′′(v,p)u(uf , v, p, q)(δv, δp,B·, zv, zp)

− ε2F ′′qu(uf , v, p, q)(δq,B·, zv, zp)
−M′u(uf)(B·, δzuf

)−F ′u(uf , v, p, q)(B·, δzv, δzp).

Again, as in Remark 5.6, the resulting matrices of (5.71), (5.70) and (5.69) have the same
structure as their corresponding counterpart of the state equation.
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5.4.5. Hessian Expression

The relevant derivatives for the Hessian expression (5.23) are

b′′qq(U, ζ, q)(δq, τq, Z) = F ′′qq(uf , v, p, q)(δq, τq, zv, zp)

+ S ′′qq(us, q)(δq, τq, zus),

b′′Uq(U, ζ, q)(δU, τq, Z) = F ′′uq(uf , v, p, q)(δuf,0, τq, zv, zp)

+ F ′′(v,p)q(uf , v, p, q)(δv, δp, τq, zv, zp)

+ S ′′uq(us, q)(δus, τq, zus),

b′′ζq(U, ζ, q)(Tr δU, τq, Z) = F ′′uq(uf , v, p, q)(Lδus, τq, zv, zp),

b′q(U, ζ, q)(τq, δZ) = F ′q(uf , v, p, q)(τq, δzv, δzp)

+ S ′q(us, q)(τq, δzus),

J̃ ′′qq(U, ζ, q)(δq, τq) = α(δq, τq)Q.

Therefore, the Hessian expression reads as

j′′(q)(δq, τq) = α(δq, τq)Q

−F ′′qq(uf , v, p, q)(δq, τq, zv, zp)

− S ′′qq(us, q)(δq, τq, zus)

−F ′′uq(uf , v, p, q)(δuf , τq, zv, zp)

−F ′′(v,p)q(uf , v, p, q)(δv, δp, τq, zv, zp)

− S ′′uq(us, q)(δus, τq, zus)

−F ′q(uf , v, p, q)(τq, δzv, δzp)

− S ′q(us, q)(τq, δzus),

in the case of FOTP, or

(jK)′′(q)(δq, τq) = α(δq, τq)Q

−
K∑
k=0

[
F ′′qq(ukf , vk, pk, q)(δq, τq, zkv , zkp )

+ S ′′qq(uks , q)(δq, τq, zkus
)

+ F ′′uq(ukf , vk, pk, q)(δuf , τq, z
k
v , z

k
p )

+ F ′′(v,p)q(u
k
f , v

k, pk, q)(δvk, δpk, τq, zkv , z
k
p )

+ S ′′uq(uks , q)(δuks , τq, zkus
)

+ F ′q(ukf , vk, pk, q)(τq, δzkv , δzkp )

+S ′q(uks , q)(τq, δzkus
)
]
,

in the case of FPTO.
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5. Sensitivity Analysis with Partitioned Methods

5.5. Numerical Results

To conclude this chapter, we want to confirm the correct derivation for the gradient and the
Hessian expressions, respectively. We do this for the FOTP approach, for which the interface
equations are solved up to a high accuracy, and for the FPTO approach with a fixed value
K. The respective expressions are then compared to the difference quotients. In particular,
we obtain with standard Taylor expansion:

e1(ε) :=

∣∣∣∣j(q + εδq)− j(q − εδq)
2ε

− j′(q)(δq)
∣∣∣∣ ≈ Cε2j′′′(r) +

c

ε
,

e2(ε) :=

∣∣∣∣j(q + εδq)− 2j(q) + j(q − εδq)
ε2

− j′′(q)(δq, δq)
∣∣∣∣ ≈ Cε2j′′′′(r) +

c

ε2
,

where r ∈ (q − εδq, q + εδq) is an intermediate value and C, c > 0 are constants that depend
on the problem, but not on ε. The error representations e1(ε), e2(ε) consist of two parts:
The approximation error, that decreases with quadratic order and the truncation error that
increases for ε → 0. In a lot of cases, if the error is plotted against a decreasing sequence of
εk → 0, one can first observe quadratic convergence due to the approximation term until at a
certain value εk, the truncation error begins to dominate.

We regard Configuration 3.1. As a control, we chose a distributed right-hand side that acts on
the solid as a forcing term in y-direction. In particular, we have Q = L2(Ωs) as a control space

with its discretization Qh = Vh,1s , i.e., continuous and piecewise linear elements. Moreover,
the corresponding solid form reads as

S(us, q)(φs) = (FsΣs,∇φs)Ωs − (q~ey, φs)Ωs .

We consider two cost functionals to reflect different situations: The L2-norm of the solid
displacement

Jsolid(U, q) =
108

2
‖us‖2L2(Ωs)

+
α

2
‖q‖2Q,

and the L2-norm of the fluid velocity

Jfluid(U, q) =
1

2
‖v‖L2(Ωf) +

α

2
‖q‖2Q.

Both functionals are equipped with a regularization term, where we choose α = 10−4 in both
cases. Moreover, the L2-norm of the solid displacement is weighted with 108 to avoid bad
scaling, since the squared solid displacement is quite small in comparison to other quantities.

The gradient and Hessian checks are performed with the constant function q = 10 in constant
direction δq = 105. This is done on a mesh with 1456 dofs. For the FOTP approach the
interface equations are solved very accurately. In particular, for Jsolid we choose the tolerances
in (5.30) as

TolSt = 10−12, TolAdj = 10−9, TolTa = 10−11, TolDfH = 10−04,
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5.5. Numerical Results

and for Jfluid as

TolSt = 10−12, TolAdj = 10−10, TolTa = 10−13, TolDfH = 10−10.

The tolerances have been chosen such that a partitioned method cannot much further reduce
the error. In Figure 5.1, e1(ε) and e2(ε) are depicted. The expected behavior of the error
can be observed. The corresponding interface equations have been solved with QN-ILS. The
average number of partitioned steps in each equation is approximately 6. It shall be noted,
that if the termination criteria for adjoint, tangent and dual for Hessian equation are loosened
by one or two powers of ten, it has significant consequences on e1(ε) and e2(ε). This is also
observed for standard optimization algorithms in the sense that the convergence behavior
worsens.
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Figure 5.1.: Error between difference quotient, and gradient and Hessian for the FOTP ap-
proach

Now, the same tests are performed for the FPTO approach, i.e., for the perturbed functional
jK(q). In this case, we do not have to worry about the stopping criteria, since we have a fixed
number of partitioned steps for each equation. Here, we choose K = 3 and restrict us to the
QN-ILS scheme as partitioned method. Therefore, we have effectively halved the number of
steps in comparison to FOTP. Moreover, we set ζ0 = 0 as initial interface displacement. The
resulting graphs for e1(ε) and e2(ε) are plotted in Figure 5.2. Again, we see that the error is
reduced up to a certain threshold value and is then dominated by truncation.
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Figure 5.2.: Error between difference quotient, and gradient and Hessian for the FPTO ap-
proach

94



6. Algorithmic Aspects in Optimal Control

In this chapter we will state the optimization routines for solving the discrete optimal control
problem that rely on the evaluation of gradient and Hessian information.

6.1. Optimization Loops

The optimization routines that will be presented in this section have been designed for uncon-
strained optimization problems. Since we converted the considered optimal control problem
in its reduced form and hence treat the constraint implicitly, these routines can be applied in
a straightforward manner in the sense that we only need the reduced gradient and Hessian.
We do this with the notation of the reduced discrete monolithic functional jh(qh), but the
concepts also work in the case of FPTO, where we can easily exchange jh(qh) with jhK(qhK),
since we derived the correct sensitivities. Note that if jh(qh) and its derivatives are approxi-
mated by the FOTP approach, the optimization algorithms might fail, if the approximation in
the sense of Section 5.2.5 is not accurate enough. This is also a topic of section Section 8.3.

Newton type methods for optimization are based on finding a root of the gradient, i.e.,

(jh)′(qh)(τqh) = 0 ∀ τqh ∈ Qh.

To this end, we compute for qh ∈ Qh the direction δqh ∈ Qh of the Newton equation

(jh)′′(qh)(δqh, τqh) = −(jh)′(qh)(τqh) ∀ τqh ∈ Qh, (6.1)

and set the new control to be

q̃h = qh + δqh. (6.2)

Using (6.2) might only lead to locally converging algorithms. Instead we use the well-known
line search method. It follows the idea of finding the largest step size in direction δqh such
that we have a reduction of the cost functional. In fact, we seek the solution of the minimizing
problem

min
t∈(0,1]

jh(qh + tδqh).

Obviously, solving this problem exactly is in most cases not trivial and too costly. Thus,
it is usually simplified. A possibility for that is the Armijo rule, where we chose constants
β, γ ∈ (0, 1] and apply a decreasing sequence of step sizes tk ∈ (1, β1, β2, . . .), until

jh(qh + tkδq
h) ≤ jh(qh) + tkγ(jh)′(qh)(δqh).
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6. Algorithmic Aspects in Optimal Control

Common choices are β = 0.5 and γ = 0.01. For more details, we refer to [94].

We now want to transfer (6.1) into a typical finite-dimensional setting. Since Qh is a Hilbert
space and the gradient and Hessian are linear functionals on Qh, we can express them as
elements of the space Qh. In particular, the representatives ∇jh(qh) ∈ Qh and ∇2jh(qh) ∈
(Qh)′ are determined by

(∇jh(qh), τqh)Q = (jh)′(q)(τqh) ∀ τqh ∈ Qh,
(∇2jh(qh)(δqh), τqh)Q = (jh)′′(qh)(δqh, τqh) ∀ δqh, τqh ∈ Qh.

Now, let (τqhi )dimQh

i=0 be a basis of Qh. Then, the gradient basis representation g ∈ RdimQh
is

given by

∇jh(qh) =

dimQh∑
i=0

giτq
h
i .

Moreover, we define H ∈ RdimQh×dimQh
such that

∇2jh(qh)(δqh) =

dimQh∑
i=0

dimQh∑
j=0

Hi,jδqi

 τqhj ,

where δq ∈ RdimQh
is the representation of δqh. In addition to that, we have the mass matrix

M ∈ RdimQh×dimQh
, defined by

(M)i,j = (τqhi , τq
h
j )Q.

Thus, we have the relations

Mg =
(

(jh)′(qh)(τqhi )
)dimQh

i=0
,

MHδq =
(

(jh)′′(qh)(δqh, τqhi )
)dimQh

i=0
.

Remark 6.1. Note, that (·, ·)Q is a inner product. Hence, the mass matrix M is symmetric
positive definite and is indeed invertible. The form of M depends on the specific discrete
space Qh. For instance, it is the identity matrix if we have parameter control or the usual
finite element mass matrix in the case of distributed control.

Hence, equation (6.1) can be written as the linear system

MHδq = −Mg, (6.3)

or equivalently

Hδq = −g. (6.4)
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6.1.1. LBFGS Method

Quasi-Newton methods avoid assembling the matrix H but replace it by an approximation
Hi that only requires gradient information. Then, instead of (6.3), one solves

MHiδq = −Mg. (6.5)

One of the most important Quasi-Newton method is the so called Broyden-Fletcher-Goldfarb-
Shanno (BFGS) procedure; see, e.g., [53] for an overview in the finite dimensional setting.
Starting with an initial symmetric and positive definite matrix H0, it is updated in each opti-
mization step via a rank-2 update that guarantees that that the next iterate is still symmetric
and positive definite. Otherwise, the solution of (6.5) would not be well defined.

In the context of optimal control, the BFGS method is first defined in the infinite dimensional
setting of the continuous control space Q. Therefore, one has to be careful in applying this
method to the discrete control space Qh. In particular, the appropriate inner product and
norm has to be incorporated. In [73], it is shown that a correct discretization results in
the same convergence rate for both the infinite dimensional and discretized method. This
generates an independence of the convergence w.r.t. dimQh. Moreover, we have at least a
linear convergence rate that can even be extended to a superlinear rate. For that, the authors
in [73, 67] demand that the initial BFGS matrix fulfills H0 = J ′′qq(q).

The discretized BFGS method is given in Algorithm 6.1, cf. [73, 67].

Algorithm 6.1: BFGS algorithm for optimization

Choose initial control q0, initial symmetric positive definite BFGS matrix
H0 ∈ RdimQh×dimQh

, and tolerance Tol > 0;
Set i = 1;
while gTi Mgi > Tol do

Solve for the direction δqi of

MHiδq = −Mδq.

Set qi+1 = qi + δq;
Set di = qi+1 − qi and yi = gi+1 − gi;
Compute the update

MHi+1 = MHi +
Myi(Myi)

T

yTi Mdi
− MHidi(MHidi)

T

dTi MHidi
.

Set i = i+ 1;

end

Instead of using a solution method for the linear system (6.5), one can directly compute the
inverse of Hi. One can show by using the Sherman-Morrison-Woodbury formula that the
inverse Bi+1 = (MHi+1)−1 can be obtained via the update

Bi+1 = Bi +
(di −BiMyi)d

T
i + di(di −BiMyi)

T

(Myi)Tdi
−
(
(di −BiMyi)

TMyi
)
did

T
i

((Myi)Tdi)2
.
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6. Algorithmic Aspects in Optimal Control

Consequently, to obtain δq one only needs to compute the matrix vector product

δq = −Bi+1Mgi+1.

If the control space Qh is the discretization of a distributed control, dimQh can become quite
after the mesh is refined a couple of times. For the mass matrix M, this is not a problem
since it is usually sparse. However, this is in general not the case for Hi and Bi, which might
result in a huge memory demand. A way to overcome this is not to actually assemble them,
but to compute their action on a vector with a recursive formula for which we only need
to evaluate scalar products on the control space. This methodology is widely known as the
Limited Memory BFGS (LBFGS), which is used in the following sections. For an overview,
we refer to [53] and to [54, 80] for further details.

6.1.2. Newton Method

In comparison to LBFGS, the Newton method for optimization problems requires solving (6.3)
with the actual matrix H. This method has been successfully applied to a vast amount of
optimal control problems; see for instance [67, 112]. With regard to Remark 5.2, assembling
of H is in general too expensive. However, the way we derived the Hessian expressions in
Chapter 5, only the action Hδq is available for which we still need to solve two additional
equations. In particular, we can view the action ∇2jh(qh)(δqh) as an object of Qh and are

able compute the vector h ∈ RdimQh
that fulfills for qh, δqh ∈ Qh

∇2jh(qh)(δqh) =

dimQh∑
i=0

hiτq
h
i .

Hence, the action translates to

Hδq = h.

This is enables the use of iterative solution techniques for (6.3). If H is symmetric and
positive definite, the conjugate gradient (cg) method is well suited for this. With regard to
the trust-region method in Section 8.3, we consider the Steihaug conjugate gradient method
[109].

Of course, H is in general not positive definite. However, if we have the usual Tikhonov
regularization term as in (2.16) and α is large enough, this term dominates in the Hessian
expression. Algorithm 6.2 depicts the steps of the Newton method.

The two additional PDEs that have to be solved for every action of the Hessian might seem far
more expensive in comparison to the LBFGS procedure. However, under certain assumptions
one has local quadratic convergence, as shown in, e.g., [72], which can make the Newton
method worthwhile in terms of computational cost. We see this in the numerical results of
Section 6.2.
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Algorithm 6.2: Newton algorithm for optimization

Choose initial control q0 and tolerances Tol0,Tol1 > 0;
for i = 0, 1, . . . do

Compute the gradient gi;
if gTi Mgi < Tol0 then

exit loop;
end
Choose initial direction δqi,0;
for j = 0, 1, . . . do

Compute the action hj = Hδqi,j ;
if (hj + gi)

TM(hj + gi) < Tol1 then
Set δqi = δqi,j ;
exit loop;

end
Use cg-step to obtain update δqi,j+1;

end
Set qi+1 = qi + δqi;

end

6.2. Numerical Results

To conclude this chapter, we want to apply the LBFGS and Newton method to a numerical
example where we compare the methods’ convergence and the numerical effort. Moreover, we
apply both methods to the FPTO approach, where we test different partitioned methods and
look at the accuracy of the cost functional for different values of K.

Figure 6.1.: The fluid velocity in x-direction in its uncontrolled state (top) and in its optimal
state (bottom). The domain displacement is scaled with a factor of 50

To measure the numerical effort, we follow the idea of Section 4.5: For each subproblem
we multiply the respective degrees of freedom with the number of overall Newton steps of
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6. Algorithmic Aspects in Optimal Control

Algorithm 3.1. This includes the Newton systems of the state, adjoint, tangent and dual
for Hessian equations. Let again NP , P ∈ {M,F,S} be the degrees of freedom for the mesh
motion, fluid and solid subproblem. Moreover, let mP,E be the number of Newton steps in
Algorithm 3.1 that have been needed to solve equation E ∈ {St,Adj,Ta,DfH} (standing for
state, adjoint, tangent and dual for Hessian) of subproblem P . Naturally, mP,Ta = mP,DfH = 0,
if we use the LBFGS method. Then, an approximation of the computational effort is given
by

cost :=
∑
E

∑
k

mP,ENP . (6.6)

Now, we consider Configuration 3.1. As a control space we choose a distributed right-hand
side in y-direction, i.e., Q = L2(Ωs) and the solid variational form reads as

S(us, q)(φs) = (FsEs,∇us)Ωs − (q~ey, φs)Ωs ,

where ~ey is the unit vector in y-direction. Continuous and piecwise linear finite element

functions are chosen for the discrete control space, i.e., Qh = Vh,1s .

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

−500

0

500

x

q o
p

t

Figure 6.2.: The optimal control on {(x, y) ∈ Ωs | 0.25 ≤ x ≤ 0.6, y = 0.21} (the top of the
beam)

Let D = {x ∈ Ωs|x ≥ 0.45} be the domain representing the area near the tip of the beam in
Configuration 3.1. We want to steer the y-component of this area into a given position. The
corresponding cost functional is given by

J(U, q) =
108

2
‖us,y − 10−3‖2L2(D) +

α

2
‖q‖2Q,

with α = 10−6. Here, we scaled the cost functional in order to balance the contribution from
the state solution and the control. In Figure 6.1, the fluid velocity in x-direction is depicted
under domain deformation on a mesh with 306466 dofs. We can see that the front of the
beam has indeed been steered into the desired position. The corresponding optimal control q
is depicted in Figure 6.2.

In Table 6.1, on a hierarchy of uniformly refined meshes, we denote the number of optimization
steps needed for the LBFGS and Newton method to reach an absolute error ‖(jh)′‖Qh ≤ 10−7,
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as well as the numerical effort. The interface equations have been solved with QN-ILS with
the tolerances

TolSt = 10−12, TolAdj = 10−10,TolTa = 10−14,TolDfH = 10−12.

On each mesh, the optimization loop starts with the interpolated optimal control from the
previous mesh. For the Newton method, this leads to a significant reduction of optimization
steps on finer meshes.

Table 6.1.: Numerical effort for distributed control in Ωs. The numbers in the brackets denotes
the number of cg-iterations in each Newton step

LBFGS Newton

dofs steps cost steps cost

1456 18 5.38 · 1006 3(8) 3.30 · 1006

5270 21 2.42 · 1007 2(5) 9.02 · 1006

19978 9 4.17 · 1007 2(3) 2.48 · 1007

77714 22 3.34 · 1008 1(4) 9.19 · 1007

306466 8 5.14 · 1008 1(2) 2.60 · 1008

If we compare the numerical effort between both algorithms, it can be seen that Newton
is more efficient then LBFGS. Moreover, for this numerical example, the reduction of the
gradient’s norm is faster under Newton as shown in Figure 6.3. Consequently, the usage of
derivatives of second order can indeed result in a substantial reduction of numerical effort,
despite the higher numerical cost in each Newton step. Nevertheless, it is remarkable that
LBFGS performs quite well as it only needs gradient information.
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Figure 6.3.: Gradient descent for distributed control on a mesh with 1456 dofs: LBFGS vs.
Newton

Finally, both methods are applied within the FPTO setting. This is done on a mesh with
1465 dofs. As partitioned method, RFP with constant ωk = 0.5, RFP with dynamic ωk and
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QN-ILS are used. It should be noted that, independent of the value K and the partitioned
method, the number of LBFGS and Newton steps, respectively, in the optimization loop is
relatively stable, i.e., about the same values as in Table 6.1 are obtained. Next, we want to
analyze how good the optimal FPTO solution approximates the optimal FOTP solution. For
that, the approximation error

errK = |jh(qh)− jhK(qkh)|

is evaluated for each K and partitioned method.

The results are collected in Figure 6.4. First, we see that the error reduces with increasing
K. On the other hand, the good convergence properties of RFP with dynamic relaxation and
QN-ILS that have been shown in Section 4.5 occur in the FPTO approach as well. Although
the error’s behavior is unstable for larger K, the error is always below the error with constant
relaxation.
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Figure 6.4.: Error of the cost functional in the FPTO approach for different partitioned meth-
ods
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The main goal of this chapter is the derivation of a posteriori error estimators for the optimal
control problem. To this end, we measure the error of the cost functional due to the spatial
discretization and the partitioned method. The presented estimators are based on the so
called Dual-Weighted Residual method (DWR) that has been introduced in [10] for a non-
optimization setting and has been further developed for optimal control in [11]. These DWR
techniques have already been applied to numerous types of partial differential equations, in
particular for elasticity problems [96], reactive flows [16], and incompressible flows [13], as
well as to a large number of optimal control problems; see, e.g., in [7, 9, 11, 87]. As the name
suggests, the error estimator depends on dual information that comes in form of the adjoint
solution of the optimal control problem. Hence, if the optimal control problem is solved by
adjoint-based methods, this information is automatically available and almost no additional
computational costs are necessary.

At first, let us consider the optimal solutions of the continuous problem (Problem 2.8)
(q,U) ∈ Q × X , the discrete monolithic problem (Problem 3.5) (qh,Uh) ∈ Qh × X h and
an approximation (qhK , UhK) ∈ Qh ×Xh (obtained, e.g., from the discrete partitioned prob-
lem (Problem 5.1)). Then, we can separate the overall error in its components coming from
spatial discretization and partitioned approximation by

J(U , q)− J(UhK , qhK) = J(U , q)− J(Uh, qh)︸ ︷︷ ︸
=errh

+ J(Uh, qh)− J(UhK , qhK)︸ ︷︷ ︸
=errK

.

Let us recall that Uh and Uh represent the same object, but with a different point of view
on the components; see Remark 4.1. If we are able to estimate both components errh and
errK , we can develop strategies to equilibrate both error sources. In particular, this means we
can control the number of iterations that are needed to push the iteration error errK below
errh. Moreover, the DWR estimator for the spatial discretization error can be combined with
localization techniques that allow us to adaptively refine the underlying mesh. This results in
a reduction of degrees of freedom and therefore in an overall reduction of the computational
cost.

In case of fluid-structure interaction, the DWR method has been applied to the simulation of
stationary fluid-structure interaction settings in [37, 49, 59, 100, 119, 121]. For the unsteady
case, DWR techniques have been used to control the error in space and time in [40, 43].
Moreover, a general representation of an arbitrary approximation error has been derived in
[89] for an optimal control problem constrained to an linear elliptic PDE and in [97] with
a nonlinear PDE constraint. In this chapter, we combine all those ideas to accomplish the
above mentioned error separation.
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In addition to the estimators for errh and errK , we also look at estimators for the approx-
imation error of the cost functional with a fixed control. That means, for qh ∈ Qh we are
interested in measuring

errKJ := J(Uh, qh)− J(UhK , qh) = J1(Uh)− J1(UhK).

Furthermore, we derive a method to measure the error of the gradient, i.e., of

errKLg := ‖(jh)′(q)− (jh)′KL(q)‖Qh .

In Section 8.3, a modified trust-region method is introduced that is based on measuring the
error in the functional and the gradient with a fixed control. The above estimators help to
accomplish this.

7.1. Spatial Discretization Error

We begin by deriving an representation of the spatial discretization error. To this end, we
will cite the main steps from the proofs of [11, Section 2]. The crucial points are that the
continuous and discrete optimal solutions are stationary points of their respective Lagrangians
and that Qh ×X h × X̃ h ⊂ Q×X × X̃ .

Theorem 7.1 (Spatial discretization error). Let (q,U ,Z) ∈ Q × X × X̃ and (qh,Uh,Zh) ∈
Qh × X h × X̃ h be stationary points of the continuous and discrete Lagrangian, respectively,
i.e.,

L′(q,U ,Z)(δq,Φ,Ψ) = 0 ∀ (δq,Φ,Ψ) ∈ Q×X h × X̃ h, (7.1)

(Lh)′(qh,Uh,Zh)(δqh,Φh,Ψh) = 0 ∀ (δqh,Φh,Ψh) ∈ Qh ×X h × X̃ h. (7.2)

Then, the spatial discretization error can be represented by

J(U , q)− J(Uh, qh) =
1

2
(Lh)′(qh,Uh,Zh)(q − ihq,U − ihU ,Z − ihZ)

+
1

2

(
ahLPS(p, zhp ) + ahLPS(ph, zp)

)
+Rh, (7.3)

where (ihq, ihU , ihZ) ∈ Qh × X h × X̃ h are the interpolations of the continuous solutions and
Rh is a remainder term of cubic order in the error (q − qh,U − Uh,Z − Zh).

Proof. U and Uh are solutions of their particular monolithic systems. Consequently, by the
definition of the Lagrangians (2.19) and (3.15), we have

J(U , q)− J(Uh, qh) = L(q,U ,Z)− Lh(qh,Uh,Zh)

= L(q,U ,Z)− L(qh,Uh,Zh) + ahLPS(ph, zhp ),

where the last equality follows from (3.17). By the virtue of [10] and [11], we obtain for the
difference of the Lagrangians

I := L(q,U ,Z)− L(qh,Uh,Zh) =

∫ 1

0
L′((qh,Uh,Zh) + se)(e) ds,
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with e = (q− qh,U −Uh,Z −Zh). Furthermore, we apply the trapezoidal rule to the integral
which results in

I =
1

2
L′(qh,Uh,Zh)(e) +

1

2
L′(q,U ,Z)(e) +Rh1

=
1

2
L′(qh,Uh,Zh)(e) +Rh.

Here, the second term vanished, since by (7.1), (q,U ,Z) is a stationary point of the continuous
Lagrangian. Moreover, the remainder Rh1 is the integration error of the trapezoidal rule

Rh =
1

2

∫ 1

0
L′′′((qh,Uh,Zh) + se)(e, e, e) · s · (s− 1) ds.

Next, by (3.17) and the fact that the stabilization term is linear in its arguments we obtain

1

2
L′(qh,Uh,Zh)(e) =

1

2

(
(Lh)′(qh,Uh,Zh)(e) + ahLPS(ph)(zp − zhp ) + ahLPS(p− ph)(zhp )

)
.

Furthermore, the error e can be split into

e = (q − ihq,U − ihU ,Z − ihZ) + (ihq − qh, ihU − Uh, ihZ − Zh),

for which we choose the interpolants (ihq, ihU , ihZ) ∈ Qh ×X h × X̃ h. It follows

I =
1

2
(Lh)′(qh,Uh,Zh)(q − ihq,U − ihU ,Z − ihZ)

+
1

2
(Lh)′(qh,Uh,Zh)(ihq − qh, ihU − Uh, ihZ − Zh)

+
1

2

(
ahLPS(ph)(zp − zhp ) + ahLPS(p− ph)(zhp )

)
+Rh

=
1

2
(Lh)′(qh,Uh,Zh)(q − ihq,U − ihU ,Z − ihZ)

+
1

2

(
ahLPS(ph)(zp − zhp ) + ahLPS(p− ph)(zhp )

)
+Rh,

where we used (7.2). Finally, we receive

J(U , q)− J(Uh, qh) = I + ahLPS(ph, zhp )

=
1

2
(Lh)′(qh,Uh,Zh)(q − ihq,U − ihU ,Z − ihZ)

+
1

2

(
ahLPS(ph)(zp − zhp ) + ahLPS(p− ph)(zhp )

)
+ ahLPS(ph, zhp ) +Rh

=
1

2
(Lh)′(qh,Uh,Zh)(q − ihq,U − ihU ,Z − ihZ)

+
1

2

(
ahLPS(ph)(zp) + ahLPS(p)(zhp )

)
+Rh.

The remainder Rh1 is of order three in the error e and can hence often be neglected. However,
it still depends on the boundedness of L′′′. As mentioned in [100], due to the non linear trans-
formation terms in the fluid equations, the derivatives of the Lagrangian are not degenerating
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and can be become quite relevant, if large mesh deformations are involved. Furthermore, due
to the discrepancy between the continuous and the discrete Lagrangian, the error depends on
the stabilization term ahLPS. It is not clear whether it is necessary to include this term or not.
In [106], for the simulation of incompressible flows, the numerical examples suggest that the
quality of the estimator is sufficient, if the stabilization term is neglected. On the other hand,
in [100] for a stationary FSI setting, it is shown that this term can a have a relevant part in
the overall error and should therefore not be neglected. Here, we include this term.

Evaluation of the Spatial Discretization error

By now, we are not able to evaluate the error, since (7.3) still depends on the not accessible
continuous solution (q,U ,Z). One possibility to overcome this, is to approximate the inter-
polation errors (q − ihq, U − ihU ,Z − ihZ) by higher-order reconstruction of the discrete
solutions. This idea is based on “super-closedness” results shown in [10]. For this recon-
struction we make use of the patch structure that we required for the underlying mesh; see
Figure 3.1. Let φhf ∈ V

h,1
f be a finite element function on the fluid mesh. Then, by regarding

4 cells that form a macro cell, we interpolate φhf onto a function with polynomial degree 2
that lives on the macro cell. We denote this local interpolation operator by

i2hf : Vh,1f → V2h,2
f ,

the solid equivalent is denoted by

i2hs : Vh,1s → V2h,2
s .

Since the discretization of the control space is case dependent, we briefly write the appropriate
operator as i2hq . The next step is to replace

(q − ihq, U − ihU ,Z − ihZ)

with
(i2hq q

h − qh, i2hUh − Uh, i2hZh −Zh)

in (7.3), where i2h is representative for the interpolation of the different components in Uh
and Zh. It remains to treat the stabilization terms in (7.3) appropriately.. Since the Local
Projection Stabilization consists only of local fluctuations, it is suggested in [100, Section 5.3]
to approximate

ahLPS(p, zhp ) ≈ ahLPS(ph, zhp ) ≈ ahLPS(ph, zp).

Therefore, we have the approximation

J(U , q)− J(Uh, qh) ≈ 1

2
L′(qh,Uh,Zh)(i2hq q

h − qh, i2hUh − Uh, i2hZh −Zh)

+ ahLPS(ph, zhp ).

Usually, we do not want to compute the fully approximated solution (qh, Uh, Zh), but only an
approximation (qhK , UhK , ZhK). Nevertheless, we just insert this approximation in the error
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representation (7.3) to receive

ηh :=
1

2
(Lh)′(qhK , UhK , ZhK)(i2hq q

hK − qhK , i2hUhK − UhK , i2hZhK − ZhK)

+ ahLPS(phK , zhKp )

=
1

2

[
J ′f,u(uhKf , vhK , phK)(i2hf u

hK
f − uhKf )−M ′u(uhKf )(i2hf u

hK
f − uhKf , zhKuf

)

−F ′u(uhKf , vhK , phK , qhK)(i2hf u
hK
f − uhKf , zhKv , zhKp )−M(uhKf )(i2hf z

hK
uf
− zhKuf

)
]

+
1

2

[
J ′f,(v,p)(u

hK
f , vhK , phK)(i2hf v

hK − vhK , i2hf phK − phK)

− F ′(v,p)(u
hK
f , vhK , phK , qhK)(i2hf v

hK − vhK , i2hf phK − phK)

− F ′q(uhKf , vhK , phK , qhK)(i2hq q
hK − qhK , zhKv , zhKp )

− F (uhKf , vhK , phK , qhK)(i2hf z
hK
v − zhKv , i2hf z

hK
p − zhKp )

−ahLPS(phK , i2hf z
hK
p − zhKp )− ahLPS(i2hf p

hK − phK , zhKp )
]

+ ahLPS(phK , zhKp )

+
1

2

[
J ′s,u(uhKs )(i2hs u

hK
s − uhKs )− S′u(uhKs , qhK)(i2hs u

hK
s − uhKs , zhKus

)

−S′q(us, q
hK)(i2hs q

hK − qhK , zhKus
)− S(uhKs , qhK)(i2hs z

hK
us
− zhKus

)
]

+
1

2

[
J ′2,q(q

hK)(i2hq q
hK − qhK)

]
=: ηhM + ηhF + ηhS , (7.4)

where we used the derivatives of the Lagrangian in terms of the variational FSI forms; compare
with Section 5.4. Here, we have collected the different contributions to the error in ηhM, η

h
F

and ηhS , standing for mesh motion, fluid and solid. For instance, ηhM consists of the mesh
motion primal and dual residual. It depends on the choice of the control to which part
1
2 [J ′2,q(q

hK)(i2hq q
hK − qhK)] is contributing to.

One might argue that using (qhK , UhK , ZhK) in the error estimator leads to difficulties since
the approximation is not a stationary point of the discrete Lagrangian (3.15). At least, if
(qhK , UhK , ZhK) is a stationary point of the partitioned Lagrangian (5.38), we see in our
numerical tests that ηh is almost independent of the number K of partitioned steps. This can
be explained by the good extracting properties of the interpolation operator.

7.2. Approximation Error

In this section we will derive a representation for the approximation error

J(Uh, qh)− J(UhK , qhK). (7.5)

This derivation is inspired by [97], where the authors derive an representation for the overall
error

J(U, q)− J(UhK , qhK),
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which is then separated into a fraction that represents the discretization error and one that
represents the iteration error but without using the intermediate solution (Uh, qh). In contrast
to that, we use this intermediate solution in order to really justify the separation of the two
error sources. To this end, we utilize the same techniques as in the proof of Theorem 7.1.

Theorem 7.2. Let (qh, Uh, Zh) ∈ Qh×Xh×Xh be a stationary point of the discrete monolithic
Lagrangian, i.e.

(Lh)′(qh, Uh, Zh)(δqh,Φh,Φh) = 0 ∀ (δqh,Φh,Ψh) ∈ Qh ×Xh ×Xh. (7.6)

Moreover, let (qhK , UhK , ZhK) ∈ Qh ×Xh ×Xh an arbitrary approximation of (qh, Uh, Zh).
Then, the approximation error can be represented by

J(Uh, qh)− J(UhK , qhK) =
1

2
(Lh)′(qhK , UhK , ZhK)(qh − qhK , Uh − UhK , Zh − ZhK)

− ah(UhK , qhK)(ZhK) +RK ,

where RK is a remainder term of cubic order in the error (qh − qhK , Uh − UhK , Zh − ZhK).

Proof. The approximation UhK is not necessarily a solution to the discrete monolithic system.
Therefore, we obtain

J(UhK , qhK) = Lh(qhK , UhK , ZhK) + ah(UhK , qhK)(ZhK).

Together with the fact that Uh is a solution to Problem 3.5, this leads us to

J(Uh, qh)− J(UhK , qhK) = Lh(qh, Uh, Zh)− Lh(qhK , UhK , ZhK)︸ ︷︷ ︸
=I

−ah(UhK , qhK)(ZhK).

Using the same techniques as in the proof of Theorem 7.1, we receive with e = (qh−qhK , Uh−
UhK , Zh − ZhK)

I =
1

2
(Lh)′(qhK , UhK , ZhK)(e) +

1

2
(Lh)′(qh, Uh, Zh)(e) +RK

=
1

2
(Lh)′(qhK , UhK , ZhK)(e) +RK , (7.7)

where, the second Lagrangian term vanished due to (7.6). Moreover, the remainder is identified
by

RK =
1

2

∫ 1

0
(Lh)′′′((qhK , UhK , ZhK) + se)(e, e, e) · s · (s− 1) ds.

Note that we did not require any properties for the approximation (qhK , UhK , ZhK). Although
we test the effectiveness of the error estimator with (qhK , UhK , ZhK) being a stationary point
of the partitioned Lagrangian (5.38), any other approximation is possible.

The error estimator in [97] differs from ours only in the Lagrangian term. In a lot of numerical
examples, the residual term is sufficient enough to estimate the approximation error. However,
we provide cases in which the Lagrangian term contributes a relevant part to the error.
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Evaluation of the Approximation Error

For the error representation (7.7), we have a similar difficulty as for the spatial discretization
error (7.3). We do not want to compute the fully approximated discrete solution (qh, Uh, Zh).
That is why we would like to replace it in (7.7) by a slightly better approximation than the
one we have already computed.

Let us assume that (qhK , UhK , ZhK) is a stationary point of the partitioned Lagrangian (5.38).
One possibility to obtain a better solution is to compute another stationary point of (5.38),
but this time with K+ 1-steps. One can utilize the control qhK to start the new optimization
loop and might therefore reduce the number of optimization steps by having a good initial
control. Nevertheless, the additional computational cost for this approach might still exceed
the one for the previous problem with K steps and is therefore too costly.

We propose another idea: UhK and ZhK are approximations of the state and adjoint interface
equation (4.10) and (5.17), respectively. Consequently, we receive a better approximation if
we apply a partitioned method of our choice to the interface equations. For that, we use the
initial value

ζh0 = TrUhK (7.8)

for the state and obtain the better approximation denoted by ŨhK̃ , where K̃ is the number
of additional partitioned iterations. If we use the same method that has been originally been
used to obtain UhK , then we can identify ŨhK̃ = UhK+K̃ . For the adjoint equation, we start
with the initial interface dual

λ̃h0 = J ′1,ζ(Ũ
hK ,Trh ŨhK̃)(·)− b′ζ(ŨhK̃ ,Trh ŨhK̃ , qhK)(·, ZhK) (7.9)

to receive the better approximation Z̃hK̃ = ZhK+K̃L̃, with L̃ the number of additional adjoint
iterations. For the control, we make use of the assumption that the cost functional can be
separated into

J(U, q) = J1(U) +
α

2
‖q‖2Q,

with α > 0. Then, the first order optimality condition can be written as

α(qh, δqh)Q − (bh)′q(U
h,TrUh, qh)(δqh, Zh) = 0 ∀ δqh ∈ Qh. (7.10)

Since Qh is a Hilbert space, (bh)′q(U
h,TrUh, qh)(·, Zh) ∈ (Qh)′ can be interpreted as an

element of Qh denoted by bhq . Consequently, (7.10) reduces to

qh =
1

α
bhq .

Based on this equality and by setting bhKq ∈ Qh the representative of

(bh)′q(Ũ
hK̃ , ŨhK̃ , qhK)(·, Z̃hK̃),

we compute the better approximation q̃hK by

q̃hK =
1

α
bhKq .
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Finally, we can evaluate the approximation error by exchanging (qh, Uh, Zh) in (7.7) with

(q̃hK̃ , ŨhK̃ , Z̃hK̃) and get

ηK := (Lh)′(qhK , UhK , ZhK)(q̃hK̃ − qhK , ŨhK̃ − UhK , Z̃hK̃ − ZhK)

+ ah(UhK , qhK)(ZhK)

= ηK1 + ηK2 .

(7.11)

7.3. Approximation Error with Fixed Control

Next, we want to have a look at the functional error for a fixed control, namely

J(Uh, qh)− J(UhK , qh) = J1(Uh)− J1(UhK).

We assume that the approximation UhK has been obtained with the FOTP approach, i.e., we
have applied some partitioned method to the interface equation of the state. In Section 8.3,
we introduce a modified trust-region method for which we do not need to fully iterate the
partitioned method. It relies, however, on the accuracy of the functional which is why we are
interested in estimating the functional error.

Theorem 7.3. Let qh ∈ Qh be a fixed control and (Uh, Zh) ∈ Xh ×Xh be stationary points
of the discrete Lagrangian w.r.t. the state and adjoint variables, i.e.

(Lh)′Uh(qh, Uh, Zh)(Φh) = 0 ∀ Φh ∈ Xh,

(Lh)′Zh(qh, Uh, Zh)(Φh) = 0 ∀ Φh ∈ Xh.

Moreover, let (UhK , ZhKL) ∈ Xh ×Xh be an arbitrary approximation of (Uh, Zh). Then, the
functional error can be expressed as

J(Uh, qh)− J(UhK , qh) =
1

2

[
(Lh)′U (qh, UhK , ZhKL)(Uh − UhK)

+(Lh)′Z(qh, UhK , ZhKL)(Zh − ZhKL)
]

− ah(UhK , qh)(ZhKL) +RK , (7.12)

where RK is a remainder term of cubic order in the error (Uh − UhK , Zh − ZhKL).

Proof. The proof has the same structure as the one for Theorem 7.2, this time with fixed
control qh. Therefore, the derivative w.r.t. to the control variable does not appear in the
Lagrangian.

Here, we used the notation ZhKL to highlight that this approximation is obtained by the
FOTP approach.

As before, in order to evaluate (7.12), we need a better approximation of (UhK , ZhL) that is
replaced with (Uh, Zh) in (7.12). We do this in the same way as for the approximation of the
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optimal control solution, except that in this case we do not need a better approximation for
the control. This means, we use a partitioned method of choice and apply it to the interface
equations for state and adjoint with the initial values (7.8) and (7.9), respectively, to receive

the better approximations ŨhK̃ and Z̃hK̃L̃. Inserting in (7.12) results in

ηKJ :=
1

2

[
(Lh)′U (qh, UhK , ZhKL)(ŨhK̃ − UhK) + (Lh)′Z(qh, UhK , ZhKL)(Z̃hK̃L̃ − ZhKL)

]
− ah(UhK , qh)(ZhKL)

= ηKJ,1 + ηKJ,2. (7.13)

In addition to that, we want to estimate the error between the reduced gradient and its
approximation. For this purpose we simply evaluate

ηKLg := ‖(jh)′(q)− (jh)′KL(q)‖Qh ≈ ‖(jh)′(q)K̃L̃ − (jh)′KL(q)‖Qh , (7.14)

where (jh)′(q)K̃L̃ is the gradient obtained by inserting (ŨhK̃ , Z̃hK̃L̃) into (5.28).

7.4. Numerical Results

Finally, we give a numerical example for which we test the effectiveness of the error estimators,
i.e., we compare the ratio between the value of the estimator and the value of the actual error.
The reference value for J(U , q) is obtained by computing J(Uh, qh) on uniformly refined meshes
and extrapolating the values of the three finest meshes.

Again, we regard Configuration 3.1 with a constant right-hand side in y-direction as control.
Consequently, we have Q = Qh = R. This right-hand side is to steer the x-component of the
beam’s tip into the value 10−4. The cost functional then reads as

J(U , q) =
108

2
‖us,x(A)− 10−4‖22 +

α

2
‖q‖Q,

with α = 10−4.

Effectiveness of ηh

First, we look at the spatial discretization error. As a reference value for the continuous
solution we have computed

J(U , q) ≈ 0.298345.

To measure the effectiveness of ηh, the ratio between errh and ηh is evaluated, i.e.,

Iheff :=
errh

ηh
.

Therefore, ηh measures the error well enough, if Iheff is about one. Note that in the derivation
of ηh no absolute values have been taken. Therefore, the sign of the error should be maintained
and positiveness of Iheff is another indicator for a good error estimation.
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Table 7.1.: Progression of the spatial error errh and error estimator ηh on uniformly refined
meshes

dofs errh ηh ηhM ηhF ηhS Iheff

1456 3.86 · 10−02 3.25 · 10−02 4.06 · 10−05 3.13 · 10−02 1.18 · 10−03 1.189

5270 7.76 · 10−03 8.55 · 10−03 3.78 · 10−05 7.58 · 10−03 9.30 · 10−04 0.908

19978 2.38 · 10−03 1.59 · 10−03 1.81 · 10−05 1.21 · 10−03 3.64 · 10−04 1.492

77714 8.27 · 10−04 5.78 · 10−04 1.03 · 10−05 4.04 · 10−04 1.63 · 10−04 1.431

306466 2.92 · 10−04 2.62 · 10−04 5.98 · 10−06 1.70 · 10−04 8.59 · 10−05 1.114

1217090 1.03 · 10−04 1.15 · 10−04 3.45 · 10−06 8.36 · 10−05 2.81 · 10−05 0.892

Table 7.1 shows the progression of the error and its estimator on uniformly refined meshes.
Moreover, the decomposition of ηh into the contributions from mesh motion, fluid and solid
are stated. The value of Iheff is close to 1 on all refinements, suggesting that ηh measures the
actual error in a well manner.

Effectiveness of ηK

Next, we regard the estimator ηK for the approximation error. On a mesh with 1456 dofs, we
compute the reference value

J(Uh, qh) ≈ 0.25971946.

As for the spatial discretization case, we measure the effectiveness via the ratio

IKeff :=
errK

ηK
.

The approximations (qhK , UhK , ZhK) that are used for the numerical test are the solutions
to the partitioned optimal control Problem 5.1, where we used RFP as interface update with
constant relaxation ωk = 0.5. Moreover, ζh0 = 0 is used as initial interface displacement.

Table 7.2.: Progression of the approximation error errK and error estimator ηK on a mesh
with 1456 dofs

K errK ηK1 ηK2 ηK IKeff ηh

0 −3.79 · 10−03 3.07 · 10−03 −6.62 · 10−03 −3.55 · 10−03 1.070 3.64 · 10−02

1 −8.29 · 10−04 1.51 · 10−04 −9.80 · 10−04 −8.29 · 10−04 1.000 3.33 · 10−02

2 −2.00 · 10−04 8.63 · 10−06 −2.09 · 10−04 −2.00 · 10−04 0.999 3.27 · 10−02

3 −5.02 · 10−05 5.20 · 10−07 −5.08 · 10−05 −5.02 · 10−05 1.000 3.25 · 10−02

4 −1.31 · 10−05 3.21 · 10−08 −1.31 · 10−05 −1.31 · 10−05 1.000 3.25 · 10−02

In Table 7.2, the progression of the approximation error and the corresponding estimator are
given, with the value IKeff being almost one. Furthermore, the estimator ηK is divided in the
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two parts ηK1 and ηK2 as in (7.11). Recall that for evaluating ηK1 , a better approximation has
to be computed, while this is not necessary for ηK2 . As K increases, the contribution of ηK1
to ηK becomes less relevant, suggesting that it can be neglected for larger K. In addition to
that, we see that ηh is almost independent of K and converges to the corresponding value
given in Table 7.1.

The same experiments are now repeated for a mesh with 19978 dofs. The corresponding
reference value is

J(Uh, qh) ≈ 0.29596998.

The results are collected in Table 7.3.

Table 7.3.: Progression of the approximation error errK and error estimator ηK on a mesh
with 19978 dofs

K errK ηK1 ηK2 ηK IKeff ηh

0 −1.43 · 10−02 1.95 · 10−02 −3.11 · 10−02 −1.17 · 10−02 1.226 2.50 · 10−03

1 −9.27 · 10−04 1.00 · 10−04 −1.02 · 10−03 −9.18 · 10−04 1.010 1.64 · 10−03

2 −7.49 · 10−05 7.26 · 10−07 −7.56 · 10−05 −7.48 · 10−05 1.001 1.60 · 10−03

3 −8.26 · 10−06 1.86 · 10−08 −8.28 · 10−06 −8.26 · 10−06 1.000 1.59 · 10−03

4 −1.89 · 10−06 2.71 · 10−09 −1.89 · 10−06 −1.89 · 10−06 1.000 1.59 · 10−03

Effectiveness of ηK
J and ηKL

g

To conclude this chapter, we evaluate the error estimators for the functional error errKJ and
gradient errKLg for fixed control qh = 10. The corresponding reference values are computed
on a mesh with 1456 dofs as

j(qh) = 0.2666386, j′(qh) = 0.001199074.

The state approximation UhK is computed via RFP with constant relaxation ωk = 0.5 and
initial interface displacement ζh0 = 0. The adjoint approximation ZhKL is also computed via
RFP with ωk = 0.5 and initial interface dual λh0 = 0. Moreover, we set L = K. To obtain
the better approximations ŨhK̃ and Z̃K̃L̃ we proceed as explained in Section 7.2, where we
set K̃ = L̃ = 1.

Once again, the effectiveness of the error estimators is given by the corresponding ratios

IKeff,J =
errKJ
ηKJ

,

and

IKeff,g =
errKLg
ηKLg

.
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Table 7.4.: Progression of the approximation error errKJ and error estimator ηKJ on a mesh
with 1456 dofs

K jhK(q) errKJ ηKJ,1 ηKJ,2 ηKJ IKeff,J

0 0.2732670 −6.63 · 10−03 4.70 · 10−03 −1.22 · 10−02 −7.47 · 10−03 0.887

1 0.2680270 −1.39 · 10−03 2.65 · 10−04 −1.60 · 10−03 −1.34 · 10−03 1.038

2 0.2669687 −3.30 · 10−04 1.50 · 10−05 −3.46 · 10−04 −3.31 · 10−04 0.998

3 0.2667205 −8.19 · 10−05 −8.25 · 10−07 −8.28 · 10−05 −8.37 · 10−05 0.979

4 0.2666595 −2.09 · 10−05 5.65 · 10−08 −2.09 · 10−05 −2.09 · 10−05 1.000

In Table 7.4, the results for the functional error are displayed. It is notable that both sign
and absolute value are well approximated by the error estimator. Moreover, as in the case of
ηK , the Lagrangian part ηKJ,1 contributes the most to the overall error for smaller K.

Table 7.5.: Progression of the approximation error errKLg and error estimator ηKLg on a mesh

with 1456 dofs

K (j′)KL(q) errKLg ηKLg IKeff,g

0 0.001459526 2.60 · 10−04 2.37 · 10−04 1.101

1 0.001253089 5.40 · 10−05 5.37 · 10−05 1.005

2 0.001211789 1.27 · 10−05 1.24 · 10−05 1.024

3 0.001202174 3.10 · 10−06 3.01 · 10−06 1.030

4 0.001199836 7.62 · 10−07 7.56 · 10−07 1.008

Finally, we can see the results for the gradient error in Table 7.5, where the values of IKeff,g are
again close to 1.
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This chapter is dedicated to adaptive strategies for computing a solution to the optimal control
problem. The basic idea is to reduce the number of partitioned iterations, which results in a
reduction of the overall computational cost. We present two different concepts. At first, we
have a look at the FPTO approach. Here, the strategy is to balance the approximation error
and the spatial discretization error. To this end, we make use of the error estimators derived
in the previous chapter, since these allow us to measure those errors. This strategy is fairly
simple, because we have already explained how to compute the solution of the FPTO optimal
control Problem 5.1 and how the estimators are evaluated. Consequently, we only have to
check, which error is dominating.

Reducing the number of partitioned steps within the FOTP approach is more complicated.
So far, we have assumed that the interface equations are solved very accurately, if we wanted
to optimize with this approach. Otherwise, gradient and Hessian information are not accurate
enough for optimization algorithms like LBFGS or Newton to work. That is why we need to
use an algorithm that can take care of the inexactness in the functional, gradient, and Hessian.
To this end, we introduce a modified trust-region method. However, there are a lot of details
in this method that need to be explained which makes the method not as straightforward as
the adaptive strategy for the FPTO approach.

Finally, both adaptive concepts are combined with adaptive mesh refinement by the help of
the spatial discretization error estimator ηh.

8.1. Adaptive Mesh Refinement

In the previous chapter, estimators for the spatial error discretization have been introduced.
We now present a technique that uses these estimators to measure the local contribution of a
mesh node which allows adaptive refinement afterwards.

Localization of the Error

The error representation (7.4) is given in form of residual evaluations. These evaluations are
obtained by the integration of the specific forms on the fluid or solid mesh. Consequently, one
might ask for the contribution of each node in this integration to the overall error. With this
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information we would be able to compare those contributions and sort them in order to refine
the mesh locally, starting with the cells with the largest contribution.

An obvious way to do this is to consider (7.4) and evaluate the residuals cell wise. However, as
shown in [24], this can lead to overestimation due to the oscillatory behavior of the residuals.
Another common way is to integrate the residual by parts in each cell (see, e.g., [10]) which
results in differential operators of second order in the inner parts of the cell, as well as jump
terms at the edges. In the case of fluid-structure interaction, this results in very complicated
terms, since we have to derive the strong form of the adjoint equation. Furthermore, these
evaluations are in general very costly. We use an alternative approach from [15], where the
authors propose a filtering method that avoids integration by parts. In fact, the filtering
operator π (3.5) that has been used in the stabilization term ahLPS is applied to the higher-
order differences in (7.4), i.e.,

i2h − id

is replaced with
Ψ := π ◦ (i2h − id).

With that (7.4) is evaluated not cell wise but node wise. This has resulted in efficient adaptive
mesh refinement for many application. For the FSI case, we refer examplarily to [40, 43,
100].

In particular, let φhf,i, φ
h
s,j be the nodal basis functions for the finite element spaces on the fluid

and solid mesh for the i-th and j-th node, respectively. In the following, we use bold letters
for the coordinates of the discrete variables w.r.t. to this basis. Then, the portion of indicator
that belongs to the mesh motion is computed by

ηhM,i :=
1

2

[
J ′f,u(uhKf , vhK , phK)(uhKf,i Ψ(φhf,i))−M ′u(uhKf )(uhKf,i Ψ(φhf,i), z

hK
uf

)

−F ′u(uhKf , vhK , phK , qhK)(uhKf,i Ψ(φhf,i), z
hK
v , zhKp )−M(uhKf )(zhKuf,i

Ψ(φhf,i))
]
,

as well as the portion belonging to the fluid by

ηhF,i :=
1

2

[
J ′f,(v,p)(u

hK
f , vhK , phK)(vhKi Ψ(φhf,i),p

hK
i Ψ(φhf,i))

− F ′(v,p)(u
hK
f , vhK , phK , qhK)(vhKi Ψ(φhf,i),p

hK
i Ψ(φhf,i))

− F ′q(uhKf , vhK , phK , qhK)(qhKi Ψ(φhf,i), z
hK
v , zhKp )

− F (uhKf , vhK , phK , qhK)(zhKv,i Ψ(φhf,i), z
hK
p,i Ψ(φhf,i))

−ahLPS(phK , zhKp,i Ψ(φhf,i))− ahLPS(phKi Ψ(φhf,i), z
hK
p )

]
+ ahLPS(phK , zhKp,i φ

h
f,i).

This is followed by the contributions of the solid

ηhS,j =
1

2

[
J ′s,u(uhKs )(uhKs,j Ψ(φhs,j))− S′u(uhKs , qhK)(uhKs,j Ψ(φhs,j), z

hK
us

)

−S′q(us, q
hK)(qhKj Ψ(φhs,j), z

hK
us

)− S(uhKs , qhK)(zhKus,jΨ(φhs,j))
]
.

As mentioned before, it depends on the controls’ definition to which portion the term

J ′q(q
hK)(·)
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belongs to. Furthermore, the terms

F ′q(u
hK
f , vhK , phK , qhK)(·, zhKv , zhKp ) and S′q(us, q

hK)(·, zhKus
)

are zero, if the control is a collection of parameters. These contributions are now combinedto
measure the overall contribution of a node to the error. Let N be the nodes of the whole
triangulation T h and let Nf, Ns be the respective nodes on the fluid and solid mesh. Thus,
NI = Nf ∩Ns are the nodes on the interface ΓI . We define

ηhi :=


ηhM,i + ηhF,i, i ∈ Nf \ NI ,
ηhM,i + ηhF,i + ηhS,i, i ∈ NI ,
ηhS,i, i ∈ Ns \ NI .

Refinement Strategy

Now that we have measured the error contribution of each node, the local error estimators
Σh = {ηh1 , . . . , ηhN} are arranged from largest to smallest absolute value, for which we chose
the same numbering out of convenience, i.e., we have

|ηh1 | ≥ |ηh2 | ≥ . . . ≥ |ηhN |.

For adaptive refinement, we need to choose a set Σh
r ⊂ Σh as a coherent queue Σh

r =
{ηh1 , . . . , ηhr }, with 1 ≤ r ≤ N . Those are the nodes to be refined. There are several strategies
to determine a reasonable number r. For this thesis, we will follow the idea from [102]. The
author proposes r as the solution of

r = arg min
1≤l≤N

E(l)N(l)β,

where

E(l) =
N∑
i=1

|ηhi | −
l∑

i=1

(1− 2−α)|ηhi |

is the prediction of the discretization error and N(r) the number of degrees of freedom after
refinement. The parameter α represents the expected order of convergence, whereas β is
computed as the ratio of the finite element polynomial degree and spatial the dimension.
Since we restricted us to linear elements, this reduces to

β = 2
lFSI

d
=

2

d
.

Once r is obtained, the nodes of the set Σh
r are refined. By refining a node, we mean that

all adjacent cells are refined. There are some things to be kept in mind: First, in order to
guarantee a patch structure on the next mesh, if a cell is refined, all the other cells that belong
to a patch need to be refined, too. Second, during this process is can happen that the resulting
mesh is not matching at the interface anymore. Thus, the mesh has to be adjusted properly.
For instance, if a fluid cell is marked for refinement that has an edge at the interface, the solid
counterpart cell has to be marked too.
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In order to quantify the reduction of computational cost due to the adaptive refinement,
we present two procedures. First, we solve the discrete monolithic optimization problem
(Problem 3.5) on a hierarchy of uniformly refined meshes. We assume that all the involved
interface equations are solved with a fixed partitioned method in the sense of FOTP to a very
high accuracy. This procedure is depicted in Algorithm 8.1.

Algorithm 8.1: Global refinement strategy

Choose initial triangulation T h0 and initial control qh0
0 ∈ Qh0 ;

for l = 0, . . . do
Compute the stationary point (qhl , Uhl , Zhl) of the discrete monolithic
Lagrangian Lhl ;

Refine mesh uniformly to receive T hl+1 ;

Interpolate qhl on T hl+1 as initial value q
hl+1

0 for next mesh;

end

Second, we solve again the discrete monolithic problem, but this time on a hierarchy of
adaptively refined meshes as summarized in Algorithm 8.2. These two algorithms are intended
to solely measure the efficiency of the adaptive mesh refinement.

Algorithm 8.2: Adaptive refinement strategy

Choose initial triangulation T h0 and initial control qh0
0 ∈ Qh0 ;

for l = 0, . . . do
Compute the stationary point (qhl , Uhl , Zhl) of the discrete monolithic
Lagrangian Lhl ;

Compute indicators ηhli ;

Refine mesh adaptively to receive T hl+1 ;

Interpolate qhl on T hl+1 as initial value q
hl+1

0 for next mesh;

end

By computing a stationary point in Algorithm 8.1 and Algorithm 8.2, we mean that the
optimal control problem is solved with either LBFGS or Newton. Since, we assumed that
the interface equations have been solved very accurately, these algorithms should in general
converge.

8.2. Adatpive Strategy for FPTO

In this section, we focus on a strategy to balance spatial discretization and approximation
error between the continuous solution (U , q) and the FPTO approximation (UhK , qhK). In
particular, we control the number of partitioned steps K until the spatial discretization error
is dominating. Moreover, this is be combined with the adaptive mesh refinement procedure
from Section 8.1.

As for a strategy to balance spatial discretization and approximation error, we proceed in a

118



8.2. Adatpive Strategy for FPTO

similar way as in [97]. We choose an initial number of partitioned steps K = K0 ∈ N for
the partitioned optimal control problem (Problem 5.1). Once we have computed a stationary
point (qhK , UhK , ZhK) of the partitioned Lagrangian LhK , we are able to evaluate the error
estimators ηh, ηK . We then consider two cases for a constant c ≥ 1:

Case 1: |ηh| ≤ c|ηK |

This means that the spatial discretization error is smaller than the approximation error
by a factor of c. Then, we increase the number of partitioned iteration steps by one
and restart the optimization routine for the Lagrangian LhK+1. Here, we can use the
solution qhK+1

0 = qhK as initial control for possibly faster convergence and ζh0 = TrUhK

as initial interface displacement to have an even better approximation.

Case 2: |ηh| > c|ηK |

In this case, the spatial discretization error is dominating. Hence, we refine the mesh
to decrease the error coming from this source. Since ηh has already been computed,
we can use the adaptive refinement strategy from Section 8.1. On the next mesh, we
restart the optimization loop with the interpolations of the control qhK and the interface
displacement TrUhK .

A summary of this strategy is shown in Algorithm 8.3. The constant c ≥ 1 can be seen as
a safety mechanism that makes sure that the approximation error is indeed small enough in
comparison to the spatial discretization error. The authors in [97], for instance, propose c = 5,
which is used here, too.

Algorithm 8.3: Adaptive FPTO strategy

Choose initial triangulation T h0 , initial control qh0
0 ∈ Qh0 , initial interface

displacement ζh0
0 ∈ Ih, integers K0,Kmax and constant c > 1;

for l = 0, . . . do
for K = K0, . . . ,Kmax do

Compute the stationary point (qhlK , UhlK , ZhlK) of the discrete partitioned
Lagrangian LhlK ;

Compute error estimators ηhl , ηK ;

if |ηhl | > c|ηK | or K = Kmax then
Set K0 = K;
exit loop;

end

Use qhlK as initial control and TrUhlK as initial interface displacement for
next optimization loop;

end

Refine mesh adaptively to receive T hl+1 ;

Interpolate qhlK and TrUhlK on T hl+1 as initial values q
hl+1

0 and ζ
hl+1

0 for next
mesh;

end
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Since we have derived the correct sensitivities for the FPTO approach, a stationary point of
the partitioned Lagrangian (5.38) can be obtained with either applying the LBFGS or Newton
method that have been introduced in Chapter 6.

8.3. Modified Trust-Region Algorithm

We now want to present a concept to tackle the optimization problem with the FOTP approach
without having to solve the involved interface equations up to a high accuracy. In comparison
to the adaptive FPTO strategy of the previous chapter, the intention here is not to balance the
errors coming from spatial discretization and the partitioned method. We want to design an
algorithm that treats the partitioned approximation appropriately, such that it still converges
to a stationary point of the discrete Lagrangian Lh. That means, we can assume that the
approximation error is negligible after the algorithm has terminated. This falls in the context
of optimization with inexact functional values, gradient, and Hessian. To this end, a lot of
work has been put into trust-region methods; see, e.g., [25, 26, 32, 64, 76]. The reason is that
trust-region methods only approximate the actual functional by a simplified model (mostly
quadratic models). Thus, a further inexactness, if treated correctly, can be incorporated. We
will start by giving a brief summary of the classical trust-region procedure. More details can
be found in [32].

8.3.1. Classical Trust-Region Algorithm

For a,b ∈ RdimQh
we introduce the notation

〈a,b〉 := aTMb.

Trust-region methods focus on finding a minimizer of a model problem, for which we choose
a quadratic one, that is located in a certain “region” around the origin. Let qhi be the current
iterate. Then, we want to find the solution of

min
‖d‖≤∆i

m(qhi ,d) := jh(qhi ) + 〈gi,d〉+ 〈Hid,d〉, (8.1)

with ∆i ∈ (0,∆max], the so-called trust-region radius. There are several possibilities to tackle
this sub problem, however, we restrict ourselves to the classical Steihaug conjugate gradient
method [109], since it only requires the action of the Hessian which fits well into our context.
Naturally, in the case we do not want to compute second order derivatives, Hi can replaced
by the BFGS matrix. Note that if Hi is symmetric positive definite and we have

‖H−1
i gi‖ < ∆i,

d = −H−1
i gi is the unique solution of (8.1).

Once we have a solution δqhi of (8.1), we compute the actual reduction

aredi := jh(qhi )− jh(qhi + δqhi ),
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the predicted reduction
predi := m(qhi , 0)−m(qhi , δq

h
i ),

as well as its ratio

ρi :=
aredi
predi

.

The ratio ρi measures the approximation quality of the model m. Depending on its value,
we decide whether δqhi is accepted and if the trust-region radius ∆i has to be adapted. With
the parameters ∆0 ∈ (0,∆max], 1 > η1 > η2 > η3 > 0, σ1, σ2, σ3, σ4 > 0, these steps are
summarized in Algorithm 8.4.

Algorithm 8.4: Trust-region update

if ρi > η1 then
∆i+1 = min(σ1∆i,∆max);

Set qhi+1 = qhi + δqhi ;

else if ρi > η2 then
∆i+1 = min(σ2∆i,∆max);

Set qhi+1 = qhi + δqhi ;

else if ρi > η3 then
∆i+1 = ∆i;

Set qhi+1 = qhi + δqhi ;

else if ρi > 0 then
∆i+1 = σ3∆i;

Set qhi+1 = qhi + δqhi ;

else
∆i+1 = σ4∆i;

Set qhi+1 = qhi ;

end

Once this is done, we repeat the procedure with a model for the new iterate qhi+1. Under certain
smoothness and boundedness assumptions, the trust-region method is known to converge
globally. Thus, in comparison to Chapter 6, we do not need an additional line search and
always apply a full step in a possible search direction.

For the presented examples in Section 8.4, the following parameters are used:

η1 = 0.9625, η2 = 0.7, η3 = 0.5, σ1 = 12.5, σ2 = 3.5, σ3 = 0.75, σ4 = 0.5,∆0 = 20,∆max = 20.
(8.2)

8.3.2. Trust-Region with Inexact Functional and Derivatives

Now, we have the situation that we only want to compute approximations of jh(qhi ),gi and
Hi. In the style of Section 5.2, we have the approximate state variables

UhK , ZhKL, δUhKM , δZhKLMN ,
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where K,L,M,N ∈ N are representative for the number of partitioned iterations. These
variables induce the inexact functional, gradient, and Hessian denoted by

jhK(qhi ),gKLi ,HKLMN
i ,

where gKLi is the representative of the inexact gradient (jh)′KL(qhi ) and HKLMN
i the rep-

resentative of the inexact hessian (jh)′′KLMN (qhi ) . To be more precisely, since we only
compute the action of the Hessian, we actually compute HKLMN

i δq as representative of
(jh)′′KLMN (qhi )(δqh). Note that in case of using the BFGS matrix, we can omit the indexes
M and N . With these we can build our new model problem

min
‖d‖≤∆i

m̃(qhi ,d) := jhK(qhi ) + 〈gKLi ,d〉+ 〈HKLMN
i d,d〉. (8.3)

Once again, we can use standard methods like Steihaug conjugate gradient to solve the model
problem. However, in order to have global convergence to the right solution, we need to
control the approximation errors appropriately. In [25] it has been established that the Hessian
approximations need to be globally bounded, i.e., there is a constant c0 > 0 such that

‖HKLMN
i ‖ ≤ c0 ∀ i. (8.4)

We assume that this is fulfilled for all numbers K,L,M,N . Nevertheless, the convergence
behavior depends strongly on the approximation quality of the inexact Hessian.

Moreover, according to [25], the error between the gradient and its approximation must ful-
fill

‖gi − gKLi ‖ ≤ c1‖gKLi ‖ ∀ i, (8.5)

where 0 < c1 < 1 − η1, with η1 the parameter of the classical trust-region method in Algo-
rithm 8.4. If (8.5) is fulfilled and since c1 < 1, we have the equivalence

‖gi‖
i→∞−−−→ 0⇔ ‖gKLi ‖

i→∞−−−→ 0.

Note that we have already established a way to estimate the error in the gradient by (7.14).
Consequently, (8.5) is changed into

ηKLg ≤ c1‖gKLi ‖. (8.6)

Therefore, K and L have to be increased until (8.6) is fulfilled.

Remark 8.1. The authors in [64] remark that it can be a disadvantage that the constant c1

is bounded by a trust-region parameter 1− η1 and is in particular smaller than 1. Instead of
(8.5), they suggest the criterion

‖gi − gKLi ‖ ≤ cmin(‖gKLi ‖,∆i)

and prove convergence for arbitrary c > 0.

Let us assume that (8.4) and (8.5) are fulfilled for the current iterate and that δqhi is the
solution of (8.3). For the possible next iterate qhi + δqhi we need to evaluate jh, too, which is
again done approximately and is denoted by

jhK
′
(qhi + δqhi ),
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with K ′ > 0 the number of partitioned steps for the state UhK
′
(qhi + δqhi ). Now, the predicted

reduction is computed with the new model, i.e.,

predi := m̃(qhi , 0)− m̃(qhi , δq
h
i ).

In addition to that, we have the functional reduction

credi := jhK(qhi )− jhK′(qhi + δqhi ).

that we are able to compute. This allows us evaluate the ratio

ρ̃i :=
credi
predi

.

In the classical trust-region method, ρ̃i is used to measure the approximation properties of the
model. However, this is done with the actual reduction aredi which is initially not available.
Hence, in order to have a reasonable representation of ρ̃i, credi may not deviate too much
from aredi. Similar to [32, Section 10.6], we demand

credi− aredi ≤ c2 predi, (8.7)

where 0 < c2 < η3. With the help of the DWR error estimator (7.13) we have

jh(qhi )− jhK(qhi ) ≈ ηKJ ,

jh(qhi + δqhi )− jhK′(qhi + δqhi ) ≈ ηK′J .

Hence, it follows

credi− aredi = jhK(qhi )− jhK′(qhi + δqhi )−
[
jh(qhi )− jh(qhi + δqhi )

]
≈ −ηKJ + ηK

′
J .

Thus, instead of (8.7) we can check if

|ηK′J − ηKJ | ≤ c2 predi . (8.8)

Remark 8.2. For the numerical results in Section 7.4, we have seen that the error estimators
for the functional do not only approximate the actual error very well, they also maintain the
correct sign. This is not surprising since the DWR error estimator and the real error are
connected through identities while only high order terms are neglected. Thus, in a lot of cases
the difference credi− aredi can be evaluated very accurately. Moreover, there is no need to
take the absolute value in between as done in [26].

Let us assume that ρ̃i ≥ η3. Then, (8.7) implies (cf. [32, Section 10.6])

ρ̃i =
credi
predi

=
aredi
predi

+
credi− aredi

predi
≥ η1.

It follows
aredi
predi

≥ η3 − c2 > 0.

Consequently, (8.7) guarantees that if ρ̃i ≥ η3, there is a decrease for the actual functional
values and we have a justification to accept the search direction δqhi . Moreover, ρ̃i is used to
determine the quality of the model as in Algorithm 8.4.
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8.3.3. Algorithmic Details

In the previous subsection, the conditions on how accurate functional, gradient, and Hessian
need to be have been stated. Now, we go into more detail how the modified trust-region
algorithm is realized with those criteria.

No matter what partitioned method is used to compute the approximate variables, it is of
importance that a good initial value is chosen. That is why we always include this value in
the following, i.e., the state approximation is denoted by

UhK(ζh0),

meaning that this variable has been obtained with the initial value ζh0 ∈ Ih and by applying
K partitioned steps. The same holds for the other variables, which are written as

ZhKL(λh0, UhK), δUhKM (δζh0, UhK), δZhKLMN (δλh0, UhK , δUhKM , ZhKL),

where we included the dependencies on the respective variables.

Let us assume, we start with an initial number of partitioned iterations for the state and
adjoint equations, denoted by K0 and L0, respectively, as well as fixed numbers K1, L1 that
represent the number of additional steps that are used to obtain a better approximation.
Moreover, the initials ζh0, λh0 are used (possibly obtained from step i − 1, or zero valued, if
i = 0). Furthermore, we assume that we are at optimization step i ∈ N with the current
control qhi ∈ Qh. In case that we approximate the Hessian with the tangent and dual for
Hessian solutions, we have the additional numbers M0, N0.

First, the approximations jhK(qhi ) and gKL with K = K0, L = L0 are computed. They are
induced by the variables UhK(ζh0) and ZhKL(λh0, UhK). Then, to evaluate the gradient error

estimator ηKLg , we determine the better gradient approximation gK̃L̃ with K̃ = K +K1, L̃ =

L1. Hereby, the state iteration can just be continued, i.e., we have UhK̃(ζh0). However, this
straightforward continuation is not possible for the adjoint variable, since it also depends on
the state variable that has just been updated. Therefore, by choosing a new adjoint initial λ̃h0

as in (7.9), we actually compute ZhK̃L̃(λ̃h0, UhK̃). This can be a disadvantage for partitioned
methods whose convergence improves the more previous iterates are used, as it is the case for
QN-ILS, since the adjoint iteration has to be restarted. Note that during this process, we can
already evaluate the estimator ηKJ for the functional error which is needed later.

Having obtained ηKLg , it is checked if it fulfills (8.6). If not, we set K = K̃ and L = L̃ and
repeat the process described in the previous paragraph. Otherwise, we continue with the
gradient approximation gK̃L̃. Note that we estimate the gradient error w.r.t. gKL. However,
since gK̃L̃ is a better approximation it can be assumed it fulfills (8.5), too. Moreover, this
fact can be used to relax the constant c1. Therefore, we set K = K̃, L = L̃. This part of the
algorithm is summarized in Algorithm 8.5.

Now, if the gradient is already small enough, we stop the optimization loop. If not, we continue
by determining a direction δqhi as a solution of (8.3). If this is done with the BFGS matrix, we
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Algorithm 8.5: Accurate gradient computation

Assume, the approximations UhlKi , ZhlKLi and the numbers K1, L1, as well as the
constant 0 < c1 < 1− η1 are given;

while (8.6) is not fulfilled do

Compute better approximations UhlK̃i , ZhlK̃L̃i with K̃ = K +K1, L̃ = L1 and
evaluate ηKJ and ηKLg ;

Set UhlKi = UhlK̃i , ZhlKLi = ZhlK̃L̃i ;

Set K = K̃, L = L̃;

end

do not need to worry about the approximation of the tangent and dual for Hessian solution.
Otherwise, we have to treat this very carefully. As mentioned before, (8.3) is solved with the
Steihaug conjugate gradient method. As such, we compute only the action of the approximate
Hessian

HKLMN
i d.

at each step, with M = M0, N = N0. Hereby, HKLMN
i d is induced by δUhKM (δζh0, UhK)

and δZhKLMN (δλh0, UhK , δUhKM , ZhKL). Consequently, this matrix-vector product does not
only depend on M and N but also on the initials δζh0 and δλh0. Since the product has to be
evaluated for several vectors d, those variables need to remain the same, otherwise the Hessian
approximation would differ at each cg-iteration. Numerically, we have indeed observed that
if the initials are changed, the Steihaug conjugate gradient method becomes unstable. That is
why they are set to δζh0 = 0, δλh0 = 0.

After obtaining the new direction δqhi , it has to be checked if (8.8) is fulfilled. Note that we
have already computed ηKJ . For the possible new control qhi +δqhi we compute the approximate
functional jhK

′
(qhi + δqhi ) with K ′ = K0. As initial value for the state approximation of

Uh(qhi + δqhi ), we can use TrUhK , which is a good initial, if δqhi is small. That means
jhK

′
(qhi + δqhi ) is induced by UhK

′
(TrUhK).

Next, we need to evaluate the error estimator ηK
′

J . As explained in Section 7.3, we also need
to compute the approximate adjoint solution. This can be a disadvantage if it turns out that
δqhi is rejected as an acceptable step. Otherwise, it can be used for the computation of the
approximate gradient in the next optimization step. This holds also for the gradient error
estimator.

Having both ηKJ and ηK
′

J evaluated, (8.8) has to be verified. If (8.8) is not fulfilled, we have
to find out, which functional error, if not both, is responsible for that. That means, we first
check if

|ηKJ | ≤ c2 predi .

If not, we set K = K + K1 and repeat until this condition is fulfilled. Similar to that, we
check whether

|ηK′J | ≤ c2 predi

and set K ′ = K ′ + K1 if that is not the case and repeat the process. This depicted in
Algorithm 8.6.
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Algorithm 8.6: Accurate functional computation

Assume, the approximations UhiKi , UhlK̃
′

i , ZhlKLi , ZhlK̃L̃
′

i and the numbers K1, L1, as
well as the constant 0 < c2 < η3 are given;

if (8.8) is not fulfilled then
while |ηKJ | > c2 predi do

Compute better approximations UhlK̃i , ZhlK̃L̃i with K̃ = K +K1, L̃ = L1 and
evaluate ηKJ and ηKLg ;

Set UhlKi = UhlK̃i , ZhlKLi = ZhlK̃L̃i ;

Set K = K̃, L = L̃;

end

Set UhlK
′

i = UhlK̃
′

i , ZhlK
′L′

i = ZhlK̃
′L̃′

i ;

Set K ′ = K̃ ′, L′ = L̃′;

while |ηK′J | > c2 predi do

Compute better approximations UhlK̃
′

i , ZhlK̃
′L̃′

i with K̃ ′ = K ′ +K1, L̃
′ = L1

and evaluate ηK
′

J and ηK
′L′

g ;

Set UhlK
′

i = UhlK̃
′

i , ZhlK
′L′

i = ZhlK̃
′L̃′

i ;

Set K ′ = K̃ ′, L′ = L̃′;

end

end

Once (8.8) is satisfied, ρi is computed and is used as in Algorithm 8.4 to determine whether
the step δqhi is accepted and/or if the trust-region radius has to be adjusted. Then, the whole
procedure is repeated for the next control qhi+1 until the gradient is sufficiently small.

Afterwards, the underlying mesh can be refined. Naturally, this can be combined with the
adaptive mesh refinement of Section 8.1. Since the approximate adjoint variable has already
been computed, ηh can be easily evaluated. All those steps have been summarized in Algo-
rithm 8.7.

Remark 8.3. In addition to controlling the number of iterations for the state and adjoint
variable one can also think of ways to do the same for the tangent and dual for Hessian
variables. For instance, in [74], the authors evaluate a better model by having a better
approximation of the Hessian. After comparing the original model with the better model,
it is decided whether the better approximation of the Hessian should be used for the next
iteration.
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8.4. Numerical Results

Algorithm 8.7: Modified trust-region algorithm

Choose tolerance Tol > 0, initial triangulation T h0 , initial control qh0
0 ∈ Qh0 , initial

interface displacement ζh0
0 ∈ Ih, integers K0,K1, L0, L1,M0, N0 ∈ N, parameters

0 < eta3 < η2 < η1 < 1, γ ∈ (0, 0.25],∆max > 0,∆0 ∈ (0,∆max], and constants
0 < c1 < 1− η1, 0 < c2 < η3;

for l = 0, . . . do
Set K = K0, L = L0;

Compute state and adjoint approximations UhlK0 , ZhlKL0 of Uhl(qhl0 ), Zhl(qhl0 );

Compute better approximations UhlK̃0 , ZhlK̃L̃0 with K̃ = K +K1, L̃ = L1 and
evaluate ηKJ and ηKLg ;

Set UhlK0 = UhlK̃0 , ZhlKL0 = ZhlK̃L̃0 ;

Set K = K̃, L = L̃;
for i = 0, . . . do

Compute accurate gradient by Algorithm 8.5;
if (gKLi )TMgKLi ≤ Tol then

exit loop;
end

Compute the solution δqhi of the model problem (8.3);
Set K ′ = K0, L

′ = L0;

Compute the state and adjoint approximations UhlK
′

i , ZhlK
′L′

i of
Uhl(qhi + δqhi ), Zhl(qhi + δqhi );

Compute better approximations UhlK̃
′

i , ZhlK̃
′L̃′

i with K̃ ′ = K ′ +K1, L̃
′ = L1

and evaluate ηK
′

J and ηK
′L′

g ;

Set UhlK
′

i = UhlK̃
′

i , ZhlK
′L′

i = ZhlK̃
′L̃′

i ;

Set K ′ = K̃ ′, L′ = L̃′;
Compute accurate functionals by Algorithm 8.6;

Use Algorithm 8.4 to determine qhli+1 and ∆i+1 and set UhlKi+1 , Z
hlKL
i+1

accordingly;

end

Refine mesh adaptively to receive T hl+1 ;

Interpolate the optimal control qhl on T hl+1 as initial value q
hl+1

0 for next mesh;

end

8.4. Numerical Results

We now want to analyze the performance of the presented strategies for which two test cases
are presented. In particular, Algorithm 8.1 is compared to Algorithm 8.2 to measure the
efficiency of the adaptive refinement, while Algorithm 8.2 is compared to both Algorithm 8.3
and Algorithm 8.7 to measure the efficiency of the reduction of partitioned iterations.

In addition to that, we show that the results of Section 4.5 also hold for optimization in
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8. Adaptive Strategies

the sense that the Quasi-Newton Inverse Least-Squares method is usually the best choice as
partitioned scheme in terms of computational cost. Therefore, this choice alone leads to major
improvement in the cost reduction.

8.4.1. Beam Steering Control Problem

At first, we review the example from Section 6.2 of Configuration 3.1, where we control a
distributed force on the beam in y-direction, such that the front part of the beam is lifted
upwards; see Figure 6.1. Again, let D = {x ∈ Ωs|x ≥ 0.45} be the domain representing the
front of the beam. Furthermore, the cost functional is given by

J(U, q) =
108

2
‖us,y − 10−3‖2L2(D) +

α

2
‖q‖2Q,

with α = 10−6. We now want to compare the numerical effort of Algorithm 8.1, Algorithm 8.2,
Algorithm 8.3, and Algorithm 8.7. For the first three algorithms, both LBFGS and Newton
are used as optimization loops for comparison. For the modified trust-region method we
restrict us to the Newton method. The tolerances used in Algorithm 8.1 and Algorithm 8.2
for the interface equations are

TolSt = 10−11, TolAdj = 10−09, TolTa = 10−13, TolDfH = 10−12.

Moreover, the stopping criterion for the optimization loop is

‖(jh)′(q)‖Q ≤ 10−6.

The initial control is qh0
0 = 0. Furthermore, the initial interface displacement is chosen as

ζh0
0 = 0 in Algorithm 8.3, as well as the initial number of iterations is set to K0 = 0. The

numerical effort is computed by the virtue of (6.6). This is a good indicator for the effort,
since the number of dofs Nk for each subproblem measures the complexity which is different
for uniformly and adaptively refined meshes. In addition to that, the number mk,E of Newton
steps in Algorithm 3.1 expresses how often the corresponding (linearized) subproblem had
to be solved. Therefore, the influence on mk,E of the reduction of partitioned iterations in
Algorithm 8.3 and Algorithm 8.7 is taken into consideration.

At first, we see in Figure 8.1 the performance of Algorithm 8.1 for different partitioned
schemes, where LBFGS has been used as optimization loop. As in Section 4.5, the (QN-ILS )
scheme performs best, although the Newton-Krylov subspace method (N-K ) is comparable.
The relaxed fixed-point method (RFP) with constant and dynamic relaxation, is outperformed
by the previous ones. This shows that already the choice of the scheme can result in a ma-
jor improvement, at least if the fully approximated solution is computed. For the following
numerical tests, we restrict us to using the QN-ILS scheme.

Discussion of the Adaptive Mesh Refinement

In Figure 8.2, the error
err = J(U , q)− J(Uh, qh)
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Figure 8.1.: Comparison of the numerical effort for the beam steering problem with different
partitioned schemes

is plotted against the number of dofs for uniformly and adaptively refined meshes. Here, we
computed

J(U , q) ≈ 5.8146 · 10−4

as reference value. It can be seen in Figure 8.2 that the adaptive refinement reduces the
number of dofs on the finest mesh by a factor of 10 while the functional error is almost
the same as on a uniformly refined mesh. The reason why the results of Algorithm 8.3 and
Algorithm 8.7 are not shown in Figure 8.2 is that they basically follow the same path as
Algorithm 8.2. The adaptively refined meshes only differ in a negligible amount of cells.

We can see an excerpt of an adaptively refined mesh in Figure 8.3, where the local refinement
focuses on the front part of the beam, which is also the area where the cost functional has its
support.

Table 8.1.: Progression of the total error with Algorithm 8.3 for the beam steering problem

dofs K err ηh ηK ηK + ηh Ieff

1456 0 −2.16 · 10−03 −1.54 · 10−03 1.19 · 10−04 −1.42 · 10−03 1.516

3036 0 −6.27 · 10−04 −6.25 · 10−04 −6.33 · 10−06 −6.31 · 10−04 0.993

7462 0 −1.49 · 10−04 −1.53 · 10−04 −1.16 · 10−06 −1.54 · 10−04 0.968

16296 0 −4.15 · 10−05 −4.06 · 10−05 −1.62 · 10−07 −4.08 · 10−05 1.017

40024 0 −1.18 · 10−05 −1.12 · 10−05 −5.03 · 10−08 −1.13 · 10−05 1.045

124158 0 −3.22 · 10−06 −2.95 · 10−06 −1.56 · 10−08 −2.96 · 10−06 1.086
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Figure 8.2.: Plot of the total error against the number of dofs for the beam steering problem.
Uniformly vs. adaptively refined mesh

Discussion of the Adaptive FPTO Strategy

The progression of the error with Algorithm 8.3 is depicted in Table 8.1. The total error is
computed by

err = J(U , q)− J(UhK , qhK),

the effectiveness of the error estimators is described by

Ieff :=
err

ηK + ηh
.

As can be seen in Table 8.1, the approximation error is already significantly smaller than the
spatial discretization error for K = 0. Consequently, one partitioned iteration is enough to
compute the optimal solution accurately enough. One might wonder, why the approximation
error is decreasing after each refinement even though K remains constant. A reason for that
is the choice of the initial displacement ζh0 the perturbed optimal control Problem 5.1 depends
on. Naturally, the closer ζh0 is to the solution of the state interface equation, the better is
the resulting approximation obtained in Problem 5.1. As explained in Algorithm 8.3, this
value is obtained by interpolating the interface information from the previous mesh, which is
presumably closer to the optimal solution then if the optimization loop would start with, for
instance, ζh0 = 0 on each mesh.

Although we chose QN-ILS as partitioned method for Algorithm 8.3, it does not matter since
only one partitioned iteration is applied and FP and RFP are identical to QN-ILS in the first
step.

Since the average number of partitioned steps for each state and adjoint solution is approxi-
mately 5 in Algorithm 8.1 and Algorithm 8.2, the numerical effort should be greatly reduced.
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8.4. Numerical Results

Figure 8.3.: Excerpt of an adaptive Mesh after 4 refinement steps for the beam steering prob-
lem

Discussion of the Modified Trust-Region Algorithm for FOTP

The parameters for Algorithm 8.7, together with (8.2), are chosen as

K0 = 2,K1 = 1, L0 = 1, L1 = 1,M0 = 4, N0 = 4, c1 = 0.1, c2 = 0.9. (8.9)

On the initial mesh with 1456 dofs, the progression of the important quantities during the
modified trust-region algorithm are shown in Table 8.2. In the first step, the norm of the
gradient as well as the predicted reduction are relatively large, which is why the gradient
and the functionals do not have to be evaluated with a high accuracy. Near the optimal
solution, the gradient becomes smaller, which also holds for the difference of the functional
values between two consecutive optimization steps. Therefore, as can be seen by the error
estimators, functional and gradient have to be computed more accurately.

Table 8.2.: Progression of the modified trust-region algorithm for the beam steering problem

i ηKLg ‖gKL‖ ηKJ ηK
′

J ηKJ + ηK
′

J predi

0 7.63 · 10−04 2.45 · 10−02 4.26 · 10−05 −1.30 · 10−03 −1.26 · 10−03 4.95 · 10−02

1 2.03 · 10−05 2.68 · 10−04 −1.62 · 10−05 −2.85 · 10−05 −4.47 · 10−05 1.08 · 10−03

2 2.71 · 10−06 3.58 · 10−05 3.37 · 10−09 −1.27 · 10−05 −1.27 · 10−05 2.45 · 10−04

3 3.25 · 10−08 9.38 · 10−07 - - - -

Comparison of the Different Strategies

In Figure 8.4, the errors of all algorithms are plotted against the numerical effort. The first
notable thing is, that for Algorithm 8.1, Algorithm 8.2 and Algorithm 8.3 the optimization
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with Newton is more efficient in comparison to the respective counterpart with LBFGS, which
has already been addressed in Section 6.2.

Next, by comparing Algorithm 8.1 and Algorithm 8.2, the reduction of dofs as shown in
Figure 8.2 has a large impact on the computational cost. This is not surprising, since the
optimization process behaves similarly for both types of refinement, i.e., number of optimiza-
tion steps are comparable, but the resulting systems under adaptive refinement are easier to
solve.

Furthermore, the reduction of the numerical effort with the adaptive FPTO strategy is quite
good, for which the low number of K partitioned steps is responsible.

The performance of the modified trust-region algorithm is only slightly better than Algo-
rithm 8.2 with Newton. One reason for that is, as explained in Section 8.3.3, the loss of
the good convergence of QN-ILS as partitioned method when the adjoint iteration has to
be restarted in comparison to Algorithm 8.2. Another point is, decreasing the number of
steps for the tangent and dual for Hessian iteration results often in more optimization steps.
Consequently, although there are less partitioned iterations for state and adjoint in each op-
timization step, this is compensated by and increasing amount of optimization steps.
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Figure 8.4.: Comparison of the numerical effort for the beam steering problem with different
adaptive strategies. QN-ILS has been used as partitioned scheme

8.4.2. Outflow Maximization

Next, we regard Configuration 3.2. As explained in Section 3.7, the inflow pressure is con-
trolled. This is done by switching to the fluid form in (3.21). The control space is chosen
as Q = L2(Γin). For the discrete counterpart, we use the restriction of piecewise linear and
continuous finite element functions to Γin, i.e.,

Qh = {φh|Γin
|φh ∈ Vh,(1)

f }.
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Figure 8.5.: Optimal pressure distribution on Γin

The goal is to maximize the fluid velocity at Γout, described by∫
Γout

(v · n)2ds.

Consequently, the cost functional is defined as

J(U , q) = −
∫

Γout

(v · n)2ds+
α

2
‖q − q̄‖2Q,

where we set α = 4.5 · 10−2 and q̄ = 0.11. Naturally, the greater the inflow pressure is chosen,
the bigger is the velocity at Γout. However, this also increases the stress on the solid beam from
below that bends it upwards. This blocks the fluid and therefore decreases the flow. Thus,
the control is to balance those phenomena. This optimal control problem is motivated by [99],
where the pressure is chosen to be constant on Γin and the control is a single parameter.

On this optimal control problem, the tests from the previous subsection are repeated. The
tolerances used for the interface equations in Algorithm 8.1 and Algorithm 8.2 are given as

TolSt = 10−11, TolAdj = 10−12, TolTa = 10−13, TolDfH = 10−15.

Table 8.3.: Outflow values
∫

Γout
(v · n)2ds for constant control and optimal control

dofs q = 0.11 qopt Improvement

1767 5.26 · 10−05 7.24 · 10−05 137.59%

6375 7.26 · 10−05 1.28 · 10−04 176.79%

24135 7.78 · 10−05 1.79 · 10−04 230.74%

93831 7.91 · 10−05 2.13 · 10−04 269.55%

369927 7.95 · 10−05 2.23 · 10−04 280.45%
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Figure 8.6.: Beam’s displacement, blocking the the fluid channel for opt pressure distribution
in Γin.

Moreover, as a stopping criterion for the optimization loop, we demand

‖(jh)′(q)‖Q ≤ 10−6.

The initial control is set to qh0 = 0.11 in all algorithms. The initial interface displacement to
ζh0 = 0 and K0 = 0,Kmax = 5 for Algorithm 8.3. As a reference value, we have computed

J(U , q) ≈ −1.07174 · 10−4.

In Figure 8.5 the optimal pressure distribution on Γin is displayed. It has a maximum close
to the channel leading to Γout since at this it point it can directly influence the fluid velocity.
This optimal pressure profile has a significant influence on the outflow value that is show in
Table 8.3.

Figure 8.7.: Streamlines of the optimal flow

Moreover, we can see in Figure 8.6 the displacement of the beam under this pressure profile. It
has moved up, preventing the fluid to flow through the upper channel properly. Furthermore,
an interesting phenomenon happens at the inflow. Due to the large difference in the pressure
at Γin, the fluid both enters and leaves at this boundary, depicted in the streamline plot of
Figure 8.7.
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Discussion of the Adaptive Mesh Refinement

103 104 105 106

10−6

10−5

10−4

dofs

er
r

Algorithm 8.1
Algorithm 8.2

Figure 8.8.: Plot of the total error against the number of dofs for the outflow maximization
problem. Uniformly vs. adaptively refined mesh

Now, we want to compare the numerical effort of the different algorithms. At first, we note
that the number of dofs is greatly reduced by local refinement as shown in Figure 8.8. The
mesh after 3 adaptive refinements is depicted in Figure 8.9. The refinement takes mainly place
above the beam which is not surprising since the the fluid domain tightens up there, due to
the upper movement of the beam. Consequently, this area needs a finer resolution.

Figure 8.9.: Adaptive mesh after 3 refinement steps for the outflow maximization problem

Discussion of the Adaptive FPTO Strategy

As in the previous example, we show in Table 8.4 the error progression with Algorithm 8.3.
This time, however, we have the situation that on the first mesh that the approximation error
is not sufficiently smaller than the spatial discretization error. Thus, K is increased by 1.
On the next mesh the same situation is encountered. Afterwards, K = 2 is enough for the
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spatial discretization error to dominate. The fact that the approximation error jumps by a
large factor for K = 2 can be explained by the good convergence properties of QN-ILS. As
depicted in Algorithm 4.3, the first to steps of QN-ILS are not different to RFP. Only with
the second step the previous iterates are used. This is also shown in Figure 6.4.

Table 8.4.: Progression of the total error with Algorithm 8.3 for the outflow maximization
problem

dofs K err ηh ηK ηh + ηK Ieff

1767 0 −3.14 · 10−05 −5.29 · 10−05 1.52 · 10−05 −3.77 · 10−05 0.83

1767 1 −4.58 · 10−05 −3.82 · 10−05 3.76 · 10−07 −3.78 · 10−05 1.21

3555 1 −1.37 · 10−05 −1.35 · 10−05 3.60 · 10−06 −9.90 · 10−06 1.38

3555 2 −1.68 · 10−05 −1.15 · 10−05 1.78 · 10−09 −1.15 · 10−05 1.46

9141 2 −6.33 · 10−06 −4.12 · 10−06 8.90 · 10−09 −4.11 · 10−06 1.54

28877 2 −2.08 · 10−06 −1.63 · 10−06 1.64 · 10−08 −1.61 · 10−06 1.29

97709 2 −5.60 · 10−07 −4.75 · 10−07 8.33 · 10−09 −4.66 · 10−07 1.20

167373 2 −3.64 · 10−07 −3.39 · 10−07 1.30 · 10−09 −3.38 · 10−07 1.08

Consequently, with an average of 6 partitioned steps in Algorithm 8.1 and Algorithm 8.2, the
reduction of the numerical effort is less than in the previous example, which can also be seen
in Figure 8.10.

Discussion of the Modified Trust-Region Algorithm for FOTP

The corresponding parameters for Algorithm 8.7 are this time

K0 = 2,K1 = 1, L0 = 1, L1 = 1,M0 = 3, N0 = 3, c1 = 0.1, c2 = 0.9.

Again, the important quantities during the algorithm have been collected in Table 8.5 on a
mesh with 1767 dofs. It can be seen that the functional values have to be computed very
accurately this time, due to the relatively small value of predi.

Table 8.5.: Progression of the modified trust-region algorithm for the outflow maximization
problem

i ηKLg ‖gK‖ ηKJ ηK
′

J ηKJ + ηK
′

J predi

0 1.64 · 10−04 5.14 · 10−03 2.13 · 10−06 −8.47 · 10−06 −6.34 · 10−06 2.79 · 10−04

1 3.58 · 10−05 5.30 · 10−04 1.24 · 10−07 −1.35 · 10−06 −1.23 · 10−06 3.62 · 10−06

2 3.17 · 10−06 3.57 · 10−05 3.46 · 10−09 −1.68 · 10−11 3.44 · 10−09 1.86 · 10−08

3 2.28 · 10−07 3.66 · 10−06 −6.43 · 10−15 −2.60 · 10−12 −2.61 · 10−12 1.87 · 10−10

4 1.48 · 10−08 9.54 · 10−07 - - - -
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Comparison of the Different Strategies

Surprisingly, as can be seen in Figure 8.10, the LBFGS method is this time the more efficient
optimization algorithm. Although the number of optimization steps is larger than for Newton,
the latter suffers from a relative high number of cg-iterations.

The reduction of computational cost with Algorithm 8.3 in comparison to Algorithm 8.2 is
not as good as in the previous example. Naturally, this is due the larger number of partitioned
iterations that is necessary for the discretization error to dominate.

The performance of the modified trust-region has worsened, with the computational effort
even larger on the finest mesh in comparison to Algorithm 8.2.
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Figure 8.10.: Comparison of the numerical effort for the outflow maximization problem with
different adaptive strategies. QN-ILS has been used as partitioned scheme
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In this last chapter, we want to apply the concepts of this thesis to a three-dimensional shape
optimization problem. In particular, we want to confirm the correct derivation of the sensitiv-
ities, especially since the dependence on the control variable is much more complicated than
in the previous examples. Moreover, it is shown that even for challenging problems, adaptive
strategies can greatly reduce the numerical effort. Hereby, this is restricted to the adaptive
strategy for the FPTO approach, since the previous chapter suggests that it is more efficient
than the modified trust-region algorithm. Finally, we want to highlight that the shape opti-
mization problem is a prime example for the advantage of adjoint based optimization, because
the control represents a discretized three-dimensional area. Consequently, after a couple of
refinement steps, the dimension of the control space becomes quite large. Nevertheless, only
one adjoint equation needs to be solved to compute the gradient. This results in much less
effort in comparison to direct methods, where a linearized equation needs to be solved for
each basis vector of the control space.

Shape optimization problems governed by fluid-structure interaction arise in a lot of appli-
cations, like the aerodynamic design of planes [84] or the patient specific design of an aorto-
coronaric bypass [82], to name a few. A common question in the formulation of such an
optimal control problem is the discretization of the control space. A possible approach is the
usage of CAD methods. For instance, the control can act as the design variables of NURBS
as done in [81]. Usually, the number of control variables is quite small which enables the usage
of direct methods or even zero-order methods as, e.g., evolution strategies [2].

Nevertheless, the shape design with CAD can be too restrictive as every shape inherits the
same characteristics of the basis design. Thus, to be more flexible, node-based designs are a
good alternative. Here, the vertexes of the mesh are directly controlled, which enriches the
dimension of the control space greatly. As mentioned above, only adjoint-based optimization
makes this approach feasible. One has to be careful though, since without proper regulariza-
tion, the resulting shapes might have a bad mesh quality and show an unphysical behavior.
We refer to [108], where different regularization techniques have been investigated.

In our case, we use node-based shape design. In fact, based on a reference shape, the control q
represents the displacement. The advantage is that this can be incorporated straight-forward
in the ALE setting.
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Ωf Ωf(q)

Ωf(u)

Ωs Ωs(q)

Ωs(u)

id +q

id +ũs(id +ũs) ◦ (id +q)

Figure 9.1.: Shape optimization transformations

9.1. Problem Formulation

In this section, we formulate shape optimization problem. In particular, the focus lies on the
derivation of the correct solid equations under the influence of a controlled shape. Similar
derivations can be found in [19].

9.1.1. Recall on Solid Mechanics

Let us consider the solid reference domain Ωs ⊂ Rd. This domain is “shaped” by a control
function q : Ωs → Rd which results in the shaped domain Ωs(q) := (id +q)(Ωs). We now assume
that our elastic structure is given by this shaped domain. Recall that elastic deformation
equations are usually given in the so-called Lagrangian point of view, i.e., they are defined
in terms of the displacement ũs : Ωs(q) → Rd. We consider the following nonlinear elasticity
equations, analogous to (2.1):

−d̃iv(F̃sΣ̃s) = 0 in Ωs(q),

ũs = 0 on Γs,

F̃sΣ̃sn = g on ΓI(q).

(9.1)

Here, F̃s := Id +∇̃ũs is the deformation gradient and Σ̃s is tensor representing the St. Venant-
Kirchhoff material law, i.e.,

Σ̃s = λs tr(Ẽs) Id +2µsẼs,

Ẽs =
1

2
(F̃ Ts F̃s − Id).
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depending only on F̃s. The structure is fixed at Γs and underlies a force g on the shaped
interface ΓI(q). To eliminate the dependence of the control on the domain, we transform
(9.1) to the reference domain Ωs. To this end, we specify the composition displacement
us : Ωs → Rd by us := q + ũs ◦ (id +q); see Figure 9.1. We now define

Fq := Id +∇q, Jq := detFq, Fs := Id +∇us. (9.2)

To transform (9.1), we use the Piola transformation. This guarantees not only the correct
transformation of the divergence term but also preserves the boundary forces. It reads as

Jqd̃iv(F̃sΣ̃s) ◦ (id +q) = div(Jq(F̃sΣ̃s) ◦ (id +q)F−Tq ). (9.3)

Since Σ̃s only depends on F̃s, it remains to transform the latter term to

Fs = Id +∇us = Id +∇q +∇(ũs ◦ (id +q))

= Id +∇q + (∇̃ũs ◦ (id +q))(Id +∇q) = F̃s ◦ (id +q)Fq.

Therefore, we get
F̃s ◦ (id +q) = FsF

−1
q .

By setting Σs := Σ̃s ◦ (id +q), we obtain the structure equation on the reference domain Ωs:

−div(JqFsF
−1
q ΣsF

−T
q ) = 0 in Ωs(q),

us = 0 on Γs,

JqFsF
−1
q ΣsF

−T
q n = g on ΓI .

(9.4)

Moreover, the transformed tensor reads as

Σs =λ tr(Es) Id +2µEs,

Es =
1

2
(F−Tq F Ts FsF

−1
q − Id).

The corresponding solid variational form is then

Sshape(us, q)(φs) := (JqFsF
−1
q ΣsF

−T
q ,∇φs)Ωs . (9.5)

9.1.2. Fluid-Structure Interaction Configuration

Next, the solid equation (9.1) is to be coupled with the fluid equation (2.3). Once again, we
demand that the fluid and solid domain match at the interface and that their stresses are
equal. For that the fluid only needs the total displacement information in form of us on the
interface, which is then extended to the fluid domain. Consequently, the coupling conditions
are

uf = us on ΓI ,

Jfσf(uf , v, p)F
−T
f nf = −JqFsF

−1
q ΣsF

−T
q ns on ΓI ,

v = 0 on ΓI .
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9. A Shape Optimization Problem

The advantage is that the fluid and mesh motion equation depend only implicitly on the
control q. Moreover, the monolithic variational form can be formulated in the same way as
(2.14), replacing only S with Sshape. This results in the monolithic shape variational form

ashape(U , q)(Ψ) :=M(u)(ψ) + F(u, v, p)(φ, ξ) + Sshape(u, q)(φ). (9.6)

Consequently, all the concepts that have been developed in this thesis can be applied to this
specific form.

9.1.3. Optimal Control Problem

We regard now Configuration 3.3. Here, we change the shear modulus to λs = 5 · 103. The
reason is that for the originally proposed value of 5 · 105 in [100] the coupling between the
fluid and the structure is not that strong. Numerically, we have observed that there are only
a few partitioned iterations necessary for solving each equation, controlling the number of
partitioned iterations as in Algorithm 8.3 does not achieve much. Thus, by decreasing λs the
difficulty of this configuration is increased on purpose to create an example where the adaptive
strategies are able to reduce the computational cost.

The goal is to optimize the shape of the structure, such that the drag value in x-direction is
minimized. The drag is computed via

Jdrag(U) =

∫
ΓI

〈Jfσf(u, v, p)F
−T
f · n,~ex〉ds.

Due to the equality of the stresses at ΓI and by partial integration, this can be rewritten as∫
Γs

〈JqF−1
q FsΣsF

−T
q · n,~ex〉ds.

Next, by the Babuška-Miller-Trick (see, e.g., [4]), the boundary integral can be expressed in
terms of the residuals, i.e., a function φdrag ∈ H1(Ω)3 with the properties

φdrag(x) =

{
(1, 0, 0)T x ∈ Γs,

extended to (0, 0, 0)T x /∈ Γs,

is inserted into the monolithic form (9.6) with Φdrag = (φdrag, 0, 0). This leads to

Jdrag(U) = ashape(U , q)(Φdrag).

For the control, the space L2(Ωs) is not suitable, since gradients of q appear in the formulation
(9.5). That is why we chose Q = H1

0 (Ωs; Γs ∪ Γsym)3. However, for the regularization we do
not simply set ‖q‖2Q. Instead, we want to penalize local volume change. This is accomplished
by the integral ∫

Ωs

1

(Jq)2
+ (Jq)

2dx. (9.7)

The term inside the integral is minimal, if Jq = 1, which corresponds to a pointwise preser-
vation of the volume. The reason why this type of penalization is chosen is that we have
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9.2. Numerical Results

observed that even with a global volume constraint, some cells of the shaped mesh tended to
degenerate during optimization, especially at the corners of the structure, leading to numeri-
cal instabilities. Thus, although this penalization can be formulated on the continuous level,
it is rather intended for the discrete level.

In addition to that, we add an L2-regularization of the control. This leads to the cost func-
tional

Jshape(U , q) = Jdrag(U) +
α1

2
‖q‖2L2(Ωs)

+
α2

2

∫
Ωs

1

(Jq)2
+ (Jq)

2dx, (9.8)

with α1 = 8 · 106, α2 = 5 · 103. The shape-optimization problem then reads as

min
q∈Q

Jshape(U , q) s.t. ashape(U , q)(Ψ) = 0 ∀ Ψ ∈ X̃ . (9.9)

In this form, we can apply the algorithmic concepts developed in this thesis. Note that we
could have also demanded a global volume constraint, i.e., that the initial volume of Ωs is
preserved up to a given accuracy. However, the numerical results show that the above defined
penalization already guarantees that the change in the volume is negligible.

Remark 9.1. Usually, the adjoint equation has the derivative of the cost functional w.r.t. to
state variables as a right-hand side; see Section 5.4.1. However, in this configuration, the
portion of the cost functional that depends on the state variable is directly incorporated into
the variational form. Consequently, we obtain the Lagrangian

L(q,U ,Z) =
α1

2
‖q‖2L2(Ωs)

+
α2

2

∫
Ωs

1

(Jq)2
+ (Jq)

2dx− ashape(U , q)(Z − Φdrag).

Then, the sensitivities can be computed as in Chapter 5. The adjoint equation has a zero
right-hand side, but due to the test function Φdrag the adjoint solutions zv and zus have now
the boundary values (1, 0, 0) at Γs instead of homogeneous boundary conditions.

9.2. Numerical Results

The control space is now discretized with piecewise linear and continuous fine elements, i.e.,

Qh = Vh,(1)
s ⊂ Q. As in Section 8.4, we want to compare Algorithm 8.1, Algorithm 8.2,

and Algorithm 8.3 to see how much the numerical effort can be reduced. As optimization
loop, LBFGS is chosen, whereas we set QN-ILS as partitioned method. At this point, we
want to highlight that the corresponding mass matrix M is not the standard L2 one, since

Q ⊂ H1(Ωs). In fact, for a basis (φhi )dimQh

i=0 of Qh, we compute

Mi,j = (φhi , φ
h
j )Ωs + (∇φhi ,∇φhj )Ωs .

This is important for LBFGS, since it relies on the correct inner product of the control space.
Otherwise, the optimization routine can converge to solutions that are not in H1(Ωs), leading
to non-conforming shapes. In the literature, choosing the H1-inner product is often referred
to as the Sobolev gradient ; see [70, 90].
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9. A Shape Optimization Problem

(a) Ωs (b) Ωs(q)

Figure 9.2.: Sketch of the solid domain in its reference configuration (left) and in its shaped
transformation (right)

The interface equations are solved up to the tolerances of

TolSt = 10−12, TolAdj = 10−09,

the optimization loop is stopped in case of

‖(jh)′(qh)‖Q ≤ 6 · 10−3.

All of the three algorithms start with an initial control qh0
0 = 0. For Algorithm 8.3 we choose

ζh0
0 = 0 and K0 = 1. The reference value is computed as

J(U , q) ≈ 21.2667.

In Figure 9.2, the finest mesh of the solid domain with and without the optimal shape transfor-
mation is depicted. To reduce the drag value, the edges and corners of the structure have been
rounded off. Moreover, the shape has broadened in the x-direction while the area perpendicu-
lar to this direction is reduced which is the attack surface of the fluid stress. The corresponding

Table 9.1.: Evolution of the drag value with the reference and optimal shape, together with
the reduction percentage

dofs reference shape optimal shape drag reduction

3028 1.935 1.877 3.00%

18750 1.466 1.379 5.97%

130546 1.379 1.280 7.17%

971226 1.348 1.248 7.44%

7522315 1.330 1.237 6.95%
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9.2. Numerical Results

drag values for the reference shape and the optimal shape are given in Table 9.1. The reduc-
tion of the drag value that is accomplished by the shape optimization process is greater for
finer meshes, since the design of the shape is more flexible due the increased amount of dofs
and is about 7% on the finest mesh. Note that an even bigger reduction can be accomplished
by relaxing the regularization parameters α1 and α2, with less numerical stability.

Figure 9.3.: Solution of the shape optimization problem on an adaptively refined mesh

The adaptive mesh refinement in Algorithm 8.2 and Algorithm 8.3 is in this configuration
very effective. Since the cost functional is defined on the interface and the control is defined
on the solid domain, most of the refinement takes place on the solid mesh and the area around
it while the fluid mesh remains coarser in the territory behind the obstacle; see Figure 9.3.
This greatly reduces the number of dofs in comparison to uniform refinement, especially for
the fluid subproblem.

Table 9.2.: Evolution of the error with Algorithm 8.3.

dofs K err ηh ηK ηh + ηK Ieff

3028 1 −6.46 · 10−01 4.59 · 10−02 4.97 · 10−04 4.64 · 10−02 -13.91

12212 1 −1.66 · 10−01 −6.20 · 10−02 2.35 · 10−04 −6.18 · 10−02 2.68

67098 1 −5.83 · 10−02 −2.71 · 10−02 7.06 · 10−05 −2.70 · 10−02 2.15

321046 1 −2.25 · 10−02 −8.14 · 10−03 4.62 · 10−05 −8.10 · 10−03 2.78

1563316 1 −8.60 · 10−03 −2.62 · 10−03 3.37 · 10−05 −2.58 · 10−03 3.33

As shown in Table 9.2, Algorithm 8.3 performs well in the sense that two partitioned steps are
required for the approximation error to go below the disretization error, whereas the average
number of partitioned steps in Algorithm 8.1 and Algorithm 8.2 is about 6. Moreover, we
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9. A Shape Optimization Problem

have the case that the quality of the error estimators is not as good as in the examples of the
previous chapters, for which ηh is responsible since it is the dominating part of the overall
error. Nevertheless, the resulting adaptive meshes give a good error reduction.

105 106 107 108 109 1010 1011

10−2

10−1

100

cost

er
r

Algorithm 8.1
Algorithm 8.2
Algorithm 8.3

Figure 9.4.: Comparison of the numerical effort for the three algorithms

Finally, in Figure 9.4, the error is plotted against the numerical effort of the three algorithms
which is determined as in (6.6). As in the examples of the previous section, both adaptive
mesh refinement and the saving of partitioned iterations reduce the overall effort. The explicit
numbers, as well as the respective ratios, are stated in Table 9.3. To sum up, Algorithm 8.3
reduces the effort by a factor of about 7, showing that this adaptive strategy can be efficient
even for rather complicated configurations.

Table 9.3.: Overall numerical cost of the three algorithms with the respective ratios to reach
an error below 10−2

Alg. 8.1 Alg. 8.2 Alg. 8.3 Alg. 8.1/Alg. 8.2 Alg. 8.2/Alg. 8.3 Alg. 8.1/Alg. 8.3

1.29 · 1010 3.69 · 1009 1.86 · 1009 3.49 1.98 6.91

9.3. Parallelization

The numerical results in this thesis have been carried out with a single core performance. We
now perform a single state computation in which the subproblems are solved in a parallel
manner, to emphasize the potential of the methods presented in the previous chapters.

As explained in Section 3.6, the subproblems are solved with an iterative solver. The occurring
matrix-vector multiplications are straightforward to parallelize. A geometric multigrid method
is used as preconditioner for GMRES. On a single core, an ILU -smoother is used. However,
it is difficult to apply parallelization to this kind of smoother. Instead, we use the well known
smoother Vanka [114]. This smoother has already been used for the preconditioning of a
parallel monolithic FSI solver in [41]. On a single core, ILU and Vanka perform similarly for
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9.3. Parallelization

our numerical examples. The real advantage of Vanka becomes visible once more than one core
is used. The patches in the Vanka solver are colored and all blocks with the same color can
be inverted ath the same time, if a Jacobi type method is used.Furthermore, by parallelizing
the assembling of the underlying variational forms and matrices of the subproblems, one saves
additional computational time.
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Residual computation
Matrix assembling
Smoothing
Matrix-vector mult.

Figure 9.5.: Computational time, given in seconds, in relation to the number of cores that
have been used for the parallelization of the different components of the solution
process

We now compare the influence of using multiple cores on our 3D Configuration 3.3. Hereby,
the computations are carried out on a computer with an Intel(R) Xeon(R) Gold 6150 CPU
@ 2.70GHz. A very fine mesh with 7522315 dofs is used. QN-ILS is chosen as partitioned
method, where we use ζh0 = 0 as a starting value.

In Figure 9.5 the computational time is plotted against the number of used cores. It can
be seen that there is especially a significant reduction of time in assembling the matrices,
matrix-vector multiplications and smoothing which accumulates in a vast reduction of the
total time.

In particular, on a single core the total time is approximately 10800s = 3h while it is reduced
to approximately 1260s = 21min on 32 cores. That weighs even more in optimization when
the state equation has to be solved several times. It can be expected that the reduction
of computational time for the additional equations like the adjoint is comparable, since the
system matrices of corresponding subproblems have the same structure as their counterpart
of the primal state equation; see Section 5.4. Furthermore, the parallelization still works with
hanging nodes and can be combined with adaptive mesh refinement. Therefore, it can be
assumed that the time reduction ratio of Figure 9.5 holds also for the optimization algorithms,
including the adaptive strategies, that have been presented in this thesis.
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10. Conclusion and Outlook

In this thesis, we have investigated optimal control problems that are governed by a nonlinear,
stationary fluid-structure interaction problem. A main emphasis has been the derivation of
the sensitivities for adjoint-based optimization algorithms such that these sensitivities can be
tackled by partitioned solution methods. To this end, we have analyzed two approaches.

Partitioned methods for the fluid-structure equation can be derived by reformulating the
equation on the interface, where the fluid and the structure are coupled, and by applying
standard solution methods as fixed-point and Newton. In the first-optimize-then-partition
approach (FOTP), we have first derived the sensitivities of the monolithic fluid-structure
system and decoupled them afterwards, such that the sensitivity equations are also formulated
on the interface. That allowed us to use the schemes developed for the state equation in a
straightforward manner. The results in Section 8.4 confirm that it is important to be flexible in
the specific choice of the partitioned method since the computational effort varies significantly.
It turned out that the Quasi-Newton Inverse Least-Squares method (QN-ILS ) performs best
in most applications.

In the first-partition-then-optimize approach (FPTO), we have assumed that the fluid-structure
state solution is only approximated using a fixed number of steps with a fixed partitioned
scheme. This assumption has been incorporated into the optimal control problem, leading to
a perturbed one. The solution of this perturbed problem is therefore only an approximation of
the original problem. Different partitioned schemes have yielded different approximations for
the same number of partitioned steps as reported in Section 6.2. The approximation quality
is especially good for the QN-ILS method, but the derivations within the FPTO approach
are quite complicated.

Both of the above approaches have been incorporated into first and second order optimization
algorithms. Although the LBFGS method performs quite well, the Newton method might be
more efficient as it is the case for the beam steering example in Section 6.2, justifying the
analysis for the derivatives of second order.

Furthermore, the derivations in Section 5.4 have shown that the subproblems that need to
be solved within the sensitivity equations have a system matrix with the same properties as
their state equation counterpart. Therefore, iterative solvers and preconditioners developed
for the mesh motion, fluid, and solid state equation can be easily transferred to the respective
adjoint, tangent, and dual for Hessian equation.

To develop adaptive strategies, we have derived error estimators for both spatial discretization
and approximation induced by the partitioned methods. The results in Section 7.4 certify a
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very good measurement quality of the estimators.

The adaptive strategy for the FPTO approach performs in a very satisfying manner, since the
approximation error is already smaller than the discretization error after a few partitioned
steps; see Section 8.4. The modified trust-region method for the FOTP approach can treat
the inexactness in the functional, the gradient, and the Hessian appropriately, but does not
perform as good as the other strategy. Both strategies have been combined with local mesh
refinement, which alone reduces the computational costs a lot.

Finally, we have applied the concepts of this thesis to a three-dimensional shape optimization
configuration in Chapter 9. Not only have we successfully solved this very complex prob-
lem with partitioned methods, the adaptive strategies have also lowered the numerical effort
noticeably.

There are several interesting topics that are worth to be investigated in future works. For
instance, although we have given instructions on how to apply the concepts to discretizations
where the meshes or finite element spaces do not match, this has not been tested in practice.

Furthermore, it would be favorable to extend the concepts to the time-dependent case, since
this paves the way for far more applications. Deriving the sensitivities in the unsteady setting
and decoupling them should be possible with the here presented variational techniques, too.
However, it has to be taken care of the different layers of discretization, since partitioned
techniques are usually applied after temporal discretization. As for adaptive techniques, one
can think of ways to measure the approximation error induced by a partitioned method in
each time step and therefore control the number of partitioned steps. Nevertheless, due to
the added mass effect, this has to be done very carefully, since time-stepping schemes can
become unstable, if the coupling conditions lack too much accuracy. If adaptive techniques
are developed, they can be combined with local refinement, in this case both in time and
space.
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A. Explicit Derivatives of the FSI Equation

We now state formally the explicit derivatives of the forms involved in the mesh motion, fluid
and solid subproblems. These can be used and inserted into the abstract cycles derived in
Section 5.4. In addition to that, we also give the derivatives of the cost functionals that
appeared in the examples throughout this thesis. Again, we omit the spatial discretization
index h.

A.1. General Derivatives

At first, we present the derivatives of the tensors that appear in the forms. We start with the
inverse and the determinant of the deformation gradient, where we use the general variable
u, i.e.,

F = Id +∇u, J = det(F ),

and obtain

F ′(δu) = ∇δu,
(F−1)′(δu) = −F−1∇δuF−1,

(F−T )′(δu) = −F−T∇δuTF−T ,
(F−1)′′(δu, τu) = F−1∇τuF−1∇δuF−1 + F−1∇δuF−1∇τuF−1,

(F−T )′′(δu, τu) = F−T∇τuTF−T∇δuTF−T + F−T∇δuTF−T∇τuTF−T ,
J ′(δu) = J tr(F−1∇δu),

J ′′(δu, τu) = J tr(F−1∇τu) tr(F−1∇δu)− J tr(F−1∇τuF−1∇δu),

Instead of the tensor F and the variable u, we use the tensors Fs, Ff , Fq and the variables
us, uf , q, in the following, depending on the situation. The same holds for Jf , Jq instead of
J .

Next, we view the fluid tensor

σf := σf(uf , v, p) = −ρfνf(∇vF−1
f + F−Tf ∇vT ).

The derivatives of first order are

σ′f,u(ψ) = ρfνf(∇v(F−1
f )′(ψ) + (F−Tf )′(ψ)∇vT ),

σ′f,(v,p)(φf , ξ) = −ξ Id +ρfνf(∇φfF
−1
f + F−Tf ∇φTf ),
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whereas the derivatives of second order are computed as

σ′f,uu(δuf , ψ) = ρfνf(∇v(F−1
f )′′(δuf , ψ) + (F−T )′′(δuf , ψ)∇vT ),

σ′f,(v,p)u(δv, δp, ψ) = ρfνf(∇δv(F−1
f )′(ψ) + (F−Tf )′(ψ)∇δvT ),

σ′f,u(v,p)(δuf , φf , ξ) = ρfνf(∇φf(F
−1
f )′(δuf) + (F−Tf )′(δuf)∇φTf ).

Note that the derivatives w.r.t. (v, p)(v, p) vanish.

Now, the solid tensor with the St. Venant-Kirchhoff material law

Σs := Σs(us) = λs tr(Es) Id +2µsEs,

Es := Es(us) =
1

2
(F Ts Fs − Id),

is regarded. Here, we receive derivatives of first order

Σ′s(δus) = λs tr(E′s(δus)) Id +2µsE
′
s(δus),

E′s(δus) =
1

2
(∇δuTs Fs + F Ts ∇δus),

as well as the derivatives of second order

Σ′′s (δus, φs) = λs tr(E′′s (δus, φs)) Id +2µsE
′′
s (δus, φs),

E′′s (δus, φs) =
1

2
(∇δuTs ∇φs +∇φTs ∇δus).

Finally, we have the solid tensor of the shape optimization problem

Σs := Σs(us, q) = λs tr(Es) Id +2µsEs,

Es := Es(us, q) =
1

2
(F−Tq F Ts FsF

−1
q − Id),

with the first order derivatives

Σ′s,u(δus) = λs tr(E′s,u(δus)) Id +2µsE
′
s,u(δus),

Σ′s,q(δq) = λs tr(E′s,q(δq)) Id +2µsE
′
s,q(δq),

and the second order derivatives

E′s,u(δus) =
1

2

(
F−Tq ∇δuTs FsF

−1
q + F−Tq F Ts ∇δusF

−1
q

)
,

E′s,q(δq) =
1

2

(
(F−Tq )′(δq)F Ts FsF

−1
q + F−Tq F Ts Fs(F

−1
q )′(δq)

)
.

A.2. Form Derivatives

In this section, the explicit derivatives of the variational forms are presented. Note that in
Section 5.4, the same derivatives but in different direction appear. For instance, in the solid
adjoint equation there is Su(us, q)

′(φs, zus), whereas in the solid tangent equation there is
Su(us, q)

′(δus, φs). For convenience, only the first is stated explicitly, since the second can be
obtained by inserting the right functions.
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A.2.1. Mesh Motion

Since the variational form of the mesh motion (2.10) is linear in its arguments, only the
derivative of first order is of importance, which is

M ′u(uf)(ψ, zuf
) = (∇ψ,∇zuf

)Ωf
.

A.2.2. Fluid

For the fluid equations, two different variational forms have been presented, namely F in (2.6)
and Fpress in (3.21). However, they only differ in the term that depends on the control q.
Therefore, derivatives w.r.t. to the state variables (u, v, p) are stated with the basic form F ,
while we distinguish the derivatives w.r.t. the control. Then, the state derivatives are

F ′u(uf , v, p, q)(ψ, zv, zp) = ρf

(
J ′f(ψ)∇vF−1

f v − Jf∇v(F−1
f )′(ψ)v, zv

)
Ωf

+
(
J ′f(ψ)σfF

−T
f + Jfσ

′
f,u(ψ)F−Tf + Jfσf (F−Tf )′(ψ),∇zv

)
Ωf

+
(
J ′f(ψ) tr(F−1

f ∇v) + Jf tr((F−1
f )′(ψ)∇v), zp

)
Ωf

− ρfνf

〈
J ′f(ψ)F−Tf ∇vTF−Tf n+ Jf(F

−T
f )′(ψ)∇vTF−Tf n

+JfF
−T
f ∇vT (F−Tf )′(ψ)n, zv

〉
Γout

,

and

F ′(v,p)(uf , v, p, q)(φf , ξ, zv, zp) = ρf

(
Jf∇φfF

−1
f v + Jf∇vF−1

f φf , zv
)

Ωf

+
(
Jfσ
′
f,(v,p)(φf , ξ)F

−T
f ,∇zv

)
Ωf

+
(
Jf Tr(F−1

f ∇φf), zp
)

Ωf

− ρfνf

〈
JfF

−T
f ∇φTf F−Tf n, zv

〉
Γout

,

while the control derivatives are obtained as

F ′q(uf , v, p, q)(δq, zv, zp) = (δq, zv)Ωf
,

F ′press,p(uf , v, p, q)(δq, zv, zp) = −〈δqn, zv〉Γin
.

Next, the derivatives of second order are regarded. Hereby, the mixed ones w.r.t. to the control
and state (and vise versa) vanish. We obtain derivatives after the same variable as

F ′′(v,p)(v,p)(uf , v, p)(δv, δp, φf , ξ, zv, zp) = ρf

(
Jf∇δvF−1

f φf + Jf∇φfF
−1
f δv, zv

)
Ωf
,

and
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F ′′uu(uf , v, p)(δuf , ψ, zv, zp) =

ρf

(
J ′′f (δuf , ψ)∇vF−1

f v − J ′f(δuf)∇v(F−1
f )′(ψ)v

+ J ′f(ψ)∇v(F−1
f )′(δuf)v − Jf∇v(F−1

f )′′(δuf , ψ)v, zv
)

Ωf

+
(
J ′′f (δuf , ψ)σfF

−T
f + J ′f(δuf)σ

′
f,u(ψ)F−Tf + J ′f(δuf)σf (F−Tf )′(ψ)

+J ′f(ψ)σ′f,u(δuf)F
−T
f + Jfσ

′′
f,uu(δuf , ψ)F−Tf + Jfσ

′
f,u(δuf)(F

−T
f )′(ψ)

+J ′f(ψ)σf (F−Tf )′(δuf) + Jfσ
′
f,u(ψ)(F−Tf )′(δuf) + Jfσf (F−Tf )′′(δuf , ψ),∇zv

)
Ωf

+
(
J ′′f (δuf , ψ) tr(F−1

f ∇v) + J ′f(δuf) tr((F−1
f )′(ψ)∇v)

+J ′f(ψ) tr((F−1
f )′(δuf)∇v) + Jf tr((F−1

f )′′(δuf , ψ)∇v), zp
)

Ωf

− ρfνf

〈
J ′′f (δuf , ψ)F−Tf ∇vTF−Tf n+ J ′f(δuf)(F

−T
f )′(ψ)∇vTF−Tf n

+J ′f(δuf)F
−T
f ∇vT (F−Tf )′(ψ)n+ J ′f(ψ)(F−Tf )′(δuf)∇vTF−Tf n

+Jf(F
−T
f )′′(δuf , ψ)∇vTF−Tf n+ Jf(F

−T
f )′(δuf)∇vT (F−Tf )′(ψ)n

+J ′f(ψ)F−Tf ∇vT (F−Tf )′(δuf)n+ Jf(F
−T
f )′(ψ)∇vT (F−Tf )′(δuf)n

+JfF
−T
f ∇vT (F−Tf )′′(δuf , ψ)n, zv

〉
Γout

,

as well as the derivatives after the mixed variables, i.e.,

F ′′u(v,p)(uf , v, p)(δuf , φf , ξ, zv, zp) =

ρf

(
J ′f(δuf)∇φfF

−1
f v − Jf∇φf(F

−1
f )′(δuf)v

+ J ′f(δuf)∇vF−1
f φf − Jf∇v(F−1

f )′(δuf)φf , zv
)

Ωf

+
(
J ′f(δuf)σ

′
f,(v,p)(φf , ξ)F

−T
f + Jfσ

′
f,u(v,p)(δuf , φf , ξ)F

−T
f

+ Jfσ
′
f,(v,p)(φf , ξ)(F

−T
f )′(δuf),∇zv

)
Ωf

+
(
J ′f(δuf) tr(F−1

f ∇φf) + Jf tr((F−1
f )′(δuf)∇φf), zp

)
Ωf

− ρfνf

〈
J ′f(δuf)F

−T
f ∇φTf F−Tf n+ Jf(F

−T
f )′(δuf)∇φTf F−Tf n

+ JfF
−T
f ∇φTf (F−Tf )′(δuf)n, zv

〉
Γout

,
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and

F ′′(v,p)u(u, v, p)(δv, δp, ψ, zv, zp) =

ρf

(
J ′f(ψ)∇δvF−1

f v − Jf∇δv(F−1
f )′(ψ)v

+J ′f(ψ)∇vF−1
f δv − Jf∇v(F−1

f )′(ψ)δv, zv
)

Ωf

+
(
J ′f(ψ)σ′f,(v,p)(δv, δp)F

−T
f + Jfσ

′
f,u(v,p)(ψ, δv, δp)F

−T
f

+ Jfσ
′
f,(v,p)(δv, δp)(F

−T
f )′(ψ),∇zv

)
Ωf

+
(
J ′f(ψ) tr(F−1

f ∇δv) + Jf tr((F−1
f )′(ψ)∇δv), zp

)
Ωf

− ρfνf

〈
J ′f(ψ)F−Tf ∇δvTF−Tf n+ Jf(F

−T
f )′(ψ)∇δvTF−Tf n

+JfF
−T
f ∇δvT (F−Tf )′(ψ)n, zv

〉
Γout

.

A.2.3. Solid

For the structural equation, we have to distinguish between the standard form (2.2) and the
one from the shape optimization problem (9.5). We start with the former one. The first order
derivatives are given as

S′u(us, q)(φs, zus) =
(
∇φsΣs + FsΣ

′
s(φs),∇zus

)
Ωs
,

S′q(us, q)(δq, φs) = − (δq, zus)Ωs
.

For the second order derivatives, only the ones w.r.t. to the state variable remain. This results
in

S ′′uu(us, q)(δus, φs) =
(
∇δusΣ

′
s(φs) +∇φsΣ

′(δus) + FsΣ
′′
s (δus, φs),∇zus

)
Ωs
.

Now, the sensitivities of the shape optimization derived. Since the shape optimization problem
has solely been solved with LBFGS as optimization loop, we restrict us to the derivatives of
first order, which are given as

S ′shape,u(us, q)(φs, zus) =
(
Jq∇φsF

−1
q ΣsF

−T
q + JqFsF

−1
q Σ′s,u(φs)F

−T
q ,∇zus

)
Ωs
,

S ′shape,q(us, q)(δq, zus) =
(
J ′q(δq)FsF

−1
q ΣsF

−T
q + JqFs(F

−1
q )′(δq)ΣsF

−T
q

+ JqFsF
−1
q Σ′s,q(δq)F

−T
q + JqFsF

−1
q Σs(F

−T
q )′(δq),∇zus

)
Ωs
.
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A. Explicit Derivatives of the FSI Equation

A.3. Functionals

Throughout this thesis, several cost functionals have been used. Their respective derivatives
are now presented. We restrict this to the portion of the cost terms that depend on the state,
since the other portion is a standard regularization term. However, we exclude the shape
optimization problem due to Remark 9.1.

Fluid Velocity L2-Norm

This example has been used for the sensitivity test in Section 5.5. We obtain

J1(U) =
1

2
(v, v)Ωf

,

J ′1,v(U)(φf) = (v, φf)Ωf
,

J ′′1,vv(U)(δv, φf) = (dv, φf)Ωf
.

Fluid Outflow Velocity

Similar to that, the derivatives for the outflow velocity cost term in Section 8.4 are given as

J1(U) = −1

2
〈v, v〉Γout

,

J ′1,v(U)(φf) = −〈v, φf〉Γout
,

J ′′1,vv(U)(δv, φf) = −〈δv, φf〉Γout
.

Solid Displacement L2-Norm

This example has been discussed in Section 5.5, Section 6.2 and Section 8.4, with different
tracking values and on different domains. The following form can be easily transferred to all
these cases. Therefore, with a ∈ R, it is

J1(U) =
1

2
(us − a, us − a)Ωs

,

J ′1,u(U)(φs) = (us − a, φs)Ωs
,

J ′′1,uu(U)(δus, φs) = (δus, φs)Ωs
,
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A.3. Functionals

Solid Displacement in Point A

Finally, the point functional from Section 7.4 is regarded. The derivatives can basically be
seen as Dirac-measure applied to the test function. Thus, for a ∈ R,

J1(U) =
1

2
|us,x(A)− a|2,

J1,u(U)′(φs) = (us,x(A)− a)φs,x(A),

J1,uu(U)′(δus, φs) = δus,x(A)φs,x(A).

157





B. Specific Interface Updates

This part of the appendix is dedicated to sensitivities of the interface update forms that
have not been addressed in Section 5.3.3, which includes the relaxed fixed-point method with
dynamic relaxation and the Quasi-Newton Inverse Least-Squares method. To simplify the
notation, we write the interface inner product as

〈·, ·〉 = 〈·, ·〉I .

B.1. Relaxed Fixed-Point Method with Dynamic Relaxation

We have γ = (ζ, ω) , θ = (λ, µ) and

Ck(ζk+1,xk)(θk) =
〈
ζk+1 − ωk TrUk − (1− ωk)ζk, λk

〉
+

(
ωk − 〈a

k, bk〉
〈bk, bk〉

)
µk, 1 ≤ k,

C0(ζ1,x0)(θ0) =
〈
ζ1 − ω0 TrU0 − (1− ω0)ζ0, λ0

〉
,

where we abbreviated

ak = ζk − ζk−1, bk = ζk − TrUk − ζk−1 + TrUk−1.

B.1.1. Adjoint Update

Here, we compute the derivatives w.r.t. γ = (ζ, ω) to determine the update for θ = (λ, µ) in
(5.43) and the derivatives w.r.t. U to determine the update for Z in (5.41).

Update for λk

First, the update for λk needs the derivatives w.r.t. ζk+1. Those are

C′k,ζk+1(ζk+1,xk)(ξ, θk) = 〈ξ, λk〉,
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B. Specific Interface Updates

as well as,

C′k+1,ζk+1(ζk+2,xk+1)(ξ, θk+1) = −(1− ωk+1)〈ξ, λk+1〉

− µk+1

〈bk+1, bk+1〉2
(
〈ξ, bk+1〉〈bk+1, bk+1〉+ 〈ak+1, ξ〉〈bk+1, bk+1〉

−2〈ak+1, bk+1〉〈ξ, bk+1〉
)
,

and

C′k+2,ζk+1(ζk+3,xk+2)(ξ, θk+2) =
−µk+2

〈bk+2, bk+2〉2
(
−〈ξ, bk+2〉〈bk+2, bk+2〉 − 〈ak+2, ξ〉〈bk+2, bk+2〉

+2〈ak+2, bk+2〉〈ξ, bk+2〉
)
.

Then, λk is obtained by

λk = −b′ζ(Uk+1, ζk+1, q)(·, Zk)
+ (1− ωk+1)〈·, λk+1〉

+
µk+1

〈bk+1, bk+1〉2
(
〈·, bk+1〉〈bk+1, bk+1〉+ 〈ak+1, ·〉〈bk+1, bk+1〉

−2〈ak+1, bk+1〉〈·, bk+1〉
)

+
µk+2

〈bk+2, bk+2〉2
(
−〈·, bk+2〉〈bk+2, bk+2〉 − 〈ak+2, ·〉〈bk+2, bk+2〉

+2〈ak+2, bk+2〉〈·, bk+2〉
)
.

Update for µk

Next, the derivatives w.r.t. ωk are given as

C′k,ωk(ζk+1,xk)(τω, θk) = τω〈ζk − TrUk, λk〉+ τωµk,

followed by the update of µk as

µk = 〈TrUk − ζk, λk〉.

Update for Zk

Here, the derivatives w.r.t. the state Uk are given as

C′k,Uk(ζk+1,xk)(Φ, θk) = −ωk〈Tr Φ, λk〉 − µk

〈bk, bk〉2
(
−〈ak,Tr Φ〉〈bk, bk〉

+2〈ak, bk〉〈Tr Φ, bk〉
)
.
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B.1. Relaxed Fixed-Point Method with Dynamic Relaxation

and

C′k+1,Uk(ζk+2,xk+1)(Φ, θk+1) =− µk+1

〈bk+1, bk+1〉2
(
〈ak+1,Tr Φ〉〈bk+1, bk+1〉

−2〈ak+1, bk+1〉〈Tr Φ, bk+1〉
)
.

Afterwards, the adjoint state update for Zk is computed by

b′U (Uk, ζk, q)(Φ, Zk) = ωk〈Tr Φ, λk〉

+
µk

〈bk, bk〉2
(
−〈ak,Tr Φ〉〈bk, bk〉+ 2〈ak, bk〉〈Tr Φ, bk〉

)
+

µk+1

〈bk+1, bk+1〉2
(

+〈ak+1,Tr Φ〉〈bk+1, bk+1〉

−2〈ak+1, bk+1〉〈Tr Φ, bk+1〉
)
.

B.1.2. Tangent Update

For the tangent interface update (5.43), the second order derivatives, where the second deriva-
tive is computed w.r.t. θ = (λ, µ) in direction τθ = (τλ, τµ) are regarded. For the tangent
update for δU in (5.48), only the new value of ζ is needed, but no further derivatives of C.

Update for δωk

Regarding the update for ωk, the second order derivatives in direction τµ are needed. This
includes the derivatives w.r.t. (ωk, µk)

C′′k,ωkµk(ζk+1,xk)(δωk, τµ, θk) = δωkτµ.

and, by setting δak = δζk − δζk−1 and δbk = δζk − Tr δUk − δζk−1 + Tr δUk−1, we combine
the derivatives w.r.t. (ζk, µk), (ζk−1, µk), (Uk, µk) and (Uk−1, µk) to receive

C′′k,ζkµk(ζk+1,xk)(δζk, τµ, θk) + C′′k,ζk−1µk(ζk+1,xk)(δζk−1, τµ, θk)

+ C′′k,Ukµk(ζk+1,xk)(Tr δUk, τµ, θk) + C′′k,Uk−1µk(ζk+1,xk)(Tr δUk−1, τµ, θk) =

− τµ

〈bk, bk〉2
(
〈δak, bk〉〈bk, bk〉+ 〈ak, δbk〉〈bk, bk〉 − 2〈ak, bk〉〈δbk, bk〉

)
.

Then, we obtain for δωk by

δωk =
1

〈bk, bk〉2
(
〈δak, bk〉〈bk, bk〉+ 〈ak, δbk〉〈bk, bk〉 − 2〈ak, bk〉〈δbk, bk〉

)
.
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Update for δζk

Here, the derivatives in direction (τλ) are needed. Those are the ones w.r.t. (ωk, λk)

C′′k,ωkλk(ζk+1,xk)(δωk, τλ, θk) = 〈−δωTrUk + δωkζk, τλ〉,

the ones w.r.t. (ζk, λk)

C′′k,ζkλk(ζk+1,xk)(δζk, τλ, θk) = 〈−(1− ωk)δζk, τλ〉,

the ones w.r.t. (ζk+1, λk)

C′′k,ζk+1λk(ζk+1,xk)(δζk+1, τλ, θk) = 〈δζk+1, τλ〉,

as well as the ones w.r.t. (Uk, λk)

C′′k,Ukλk(ζk+1,xk)(Tr δUk, τλ, θk) = 〈−ωkUk+1, τλ〉.

Afterwards, the update for ζk+1 reads as

δζk+1 = ωk Tr δUk + (1− ωk)δζk + δωk TrUk − δωkζk.

B.1.3. Dual for Hessian Update

For the dual for Hessian interface update in (5.59), we regard the second order derivatives in
direction τγ = (τζ, τω) to obtain the update for δθ = (δλ, δµ). Moreover, for the dual for
Hessian state δZ, the derivatives in direction (τU) are required.

Update for δλk

First, we regard the derivatives w.r.t. ζk+1. For that we combine the ones for Ck+1 w.r.t.
(ζk, ζk+1), (ζk+1, ζk+1), (Uk, ζk+1) and (Uk+1, ζk+1)

C′′k+1,ζkζk+1(ζk+2,xk+1)(δζk, τζ, θk+1) + C′′k+1,ζk+1ζk+1(ζk+2,xk+1)(δζk+1, τζ, θk+1)

+C′′k+1,Uk,ζk+1(ζk+2,xk+1)(δUk, τζ, θk+1) + C′′k+1,Uk+1,ζk+1(ζk+2,xk+1)(δUk+1, τζ, θk+1) =

− µk+1

〈bk+1, bk+1〉3
[(
〈δak+1, τζ〉〈bk+1, bk+1〉+ 2〈δak+1, bk+1〉〈bk+1, τζ〉

+ 〈τζ, δbk+1〉〈bk+1, bk+1〉+ 2〈ak+1, δbk+1〉〈bk+1, τζ〉
− 2〈τζ, bk+1〉〈δbk+1, bk+1〉 − 2〈ak+1, τζ〉〈δbk+1, bk+1〉

−2〈ak+1, bk+1〉〈δbk+1, τζ〉
)
〈bk+1, bk+1〉

−
(
〈δak+1, bk+1〉〈bk+1, bk+1〉+ 〈ak+1, δbk+1〉〈bk+1, bk+1〉

−2〈ak+1, bk+1〉〈δbk+1, bk+1〉
)

4〈bk+1, τζ〉
]
,
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the ones for Ck+2 w.r.t. (ζk, ζk+1), (ζk+2, ζk+1), (Uk+1, ζk+1) and (Uk+2, ζk+1)

C′′k+2,ζk+1,ζk+1(ζk+3,xk+2)(δζk+1, τζ, θk+2) + C′′k+2,ζk+2,ζk+1(ζk+2,xk+1)(δζk+2, τζ, θk+1)

+C′′k+2,Uk+1,ζk+1(ζk+3,xk+2)(δUk+1, τζ, θk+2) + C′′k+2,Uk+2,ζk+1(ζk+3,xk+2)(δUk+2, τζ, θk+2) =

− µk+2

〈bk+2, bk+2〉3
[(
−〈δak+2, τζ〉〈bk+2, bk+2〉 − 2〈bk+2, bk+2〉〈bk+2, τζ〉

− 〈τζ, δbk+2〉〈bk+2, bk+2〉 − 2〈ak+2, δbk+2〉〈bk+2, τζ〉
+ 2〈τζ, bk+2〉〈δbk+2, bk+2〉+ 2〈ak+2, τζ〉〈δbk+2, bk+2〉

+2〈ak+2, bk+2〉〈δbk+2, τζ〉
)
〈bk+2, bk+2〉

−
(
−〈δak+2, bk+2〉〈bk+2, bk+2〉 − 〈ak+2, δbk+2〉〈bk+2, bk+2〉

+2〈ak+2, bk+2〉〈δbk+2, bk+2〉
)

4〈bk+2, τζ〉
]
.

the ones w.r.t. (λk, ζk+1)

C′′k,λkζk+1(ζk+1,xk)(δλk, τζ, θk) = 〈τζ, λk〉,

the ones w.r.t. (λk+1, ζk+1)

C′′k+1,λk+1ζk+1(ζk+2,xk+1)(δλk+1, τζ, θk+1) = 〈−(1− ωk+1)τζ, λk+1〉,

the ones w.r.t. (ωk+1, ζk+1)

C′′k+1,ωk+1,ζk+1(ζk+2,xk+1)(δωk+1, τζ, θk+1) = δωk+1〈τζ, λk+1〉,

the ones w.r.t. (µk+1, ζk+1)

C′′k+1,µk+1,ζk+1(ζk+2,xk+1)(δµk+1, τζ, θk+1) =

− δµk+1

〈bk+1, bk+1〉2
(
〈τζ, bk+1〉〈bk+1, bk+1〉+ 〈ak+1, τζ〉〈bk+1, bk+1〉

−2〈ak+1, bk+1〉〈τζ, bk+1〉
)
,

as well as the ones w.r.t. (µk+2, ζk+1)

C′′k+2,µk+2,ζk+1(ζk+3,xk+2)(δµk+2, τζ, θk+2) =

+
δµk+2

〈bk+2, bk+2〉2
(
−〈τζ, bk+2〉〈bk+2, bk+2〉 − 〈ak+2, τζ〉〈bk+2, bk+2〉

+2〈ak+2, bk+2〉〈τζ, bk+2〉
)
,
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Then, the for δλk reads as

δλk =− δωk+1λk+1 + (1− ωk+1)δλk+1

− b′ζ(Uk+1, ζk+1, q)(·, δZk+1)− b′′ζζ(Uk+1, ζk+1, q)(δζk+1, ·, Zk+1)

− b′′Uζ(Uk+1, ζk+1, q)(δUk+1, ·, Zk+1)

− b′′qζ(Uk+1, ζk+1, q)(δq, ·, Zk+1)

+
µk+1

〈bk+1, bk+1〉3
[(
〈δak+1, ·〉〈bk+1, bk+1〉+ 2〈δak+1, bk+1〉〈bk+1, ·〉

+ 〈·, δbk+1〉〈bk+1, bk+1〉+ 2〈ak+1, δbk+1〉〈bk+1, ·〉
− 2〈·, bk+1〉〈δbk+1, bk+1〉 − 2〈ak+1, ·〉〈δbk+1, bk+1〉

−2〈ak+1, bk+1〉〈δbk+1, ·〉
)
〈bk+1, bk+1〉

−
(
〈δak+1, bk+1〉〈bk+1, bk+1〉+ 〈ak+1, δbk+1〉〈bk+1, bk+1〉

−2〈ak+1, bk+1〉〈δbk+1, bk+1〉
)

4〈bk+1, ·〉
]

+
µk+2

〈bk+2, bk+2〉3
[(
−〈δak+2, ·〉〈bk+2, bk+2〉 − 2〈δak+2, bk+2〉〈bk+2, ·〉

− 〈·, δbk+2〉〈bk+2, bk+2〉 − 2〈ak+2, δbk+2〉〈bk+2, ·〉
+ 2〈·, bk+2〉〈δbk+2, bk+2〉+ 2〈ak+2, ·〉〈δbk+2, bk+2〉

+2〈ak+2, bk+2〉〈δbk+2, ·〉
)
〈bk+2, bk+2〉

−
(
−〈δak+2, bk+2〉〈bk+2, bk+2〉 − 〈ak+2, δbk+2〉〈bk+2, bk+2〉

+2〈ak+2, bk+2〉〈δbk+2, bk+2〉
)

4〈bk+2, ·〉
]

+
δµk+1

〈bk+1, bk+1〉2
(
〈·, bk+1〉〈bk+1, bk+1〉+ 〈ak+1, ·〉〈bk+1, bk+1〉

−2〈ak+1, bk+1〉〈·, bk+1〉
)

+
δµk+2

〈bk+2, bk+2〉2
(
−〈·, bk+2〉〈bk+2, bk+2〉 − 〈ak+2, ·〉〈bk+2, bk+2〉

+2〈ak+2, bk+2〉〈·, bk+2〉
)
.

Update for δµk

Next, the second order derivatives in direction τω are computed. Thus, we obtain the ones
w.r.t. (Uk, ωk)

C′′k,Ukωk(ζk+1,xk)(δUk, τω, θk) = 〈−τωTr δUk, λk〉,

the ones w.r.t. (ζk, ωk)

C′′k,ζkωk(ζk+1,xk)(δζk, τω, θk) = 〈τωδζk, λk〉,
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the ones w.r.t. (λk, ωk)

C′′k,λkωk(ζk+1,xk)(δλk, τω, θk) = 〈−τωTr δUk + τωδζk, δλk〉,

as well as the ones w.r.t. (δµk, ωk)

C′′k,δµkωk(ζk+1,xk)(δµk, τω, θk) = τωδµk.

Combining these terms, the update for δµk reads as

δµk = 〈TrUk − ζk, δλk〉+ 〈Tr δUk − δζk, λk〉.

Update for δZk

Finally, we require the second order derivatives w.r.t. (statek). For that we combine the
derivatives for Ck w.r.t. (Uk, Uk), (Uk−1, Uk), (ζk, Uk) and (ζk−1, Uk)

C′′k,UkUk(ζk+1,xk)(δUk,Φ, θk) + C′′k,Uk−1Uk(ζk+1,xk)(δUk−1,Φ, θk)

+ C′′k,ζkUk(ζk+1,xk)(δζk,Φ, θk) + C′′k,ζk−1Uk(ζk+1,xk)(δζk−1,Φ, θk) =

− µk

〈bk, bk〉3
[(
−2〈ak, δbk〉〈Tr Φ, bk〉

+ 2〈ak,Tr Φ〉〈δbk, bk〉

+2〈ak, bk〉〈δbk,Tr Φ〉
)
〈bk, bk〉

−
(
−〈ak, δbk〉〈bk, bk〉

+2〈ak, bk〉〈δbk, bk〉
)

4〈bk,Tr Φ〉
]
,

the ones for Ck+1 w.r.t. (Uk, Uk), (Uk+1, Uk), (ζk+1, Uk) and (ζk, Uk)

C′′k+1,UkUk(ζk+2,xk+1)(δUk,Φ, θk+1) + C′′k+1,Uk+1Uk(ζk+2,xk+1)(δUk+1,Φ, θk+1)

+ C′′k+1,ζk+1Uk(ζk+2,xk+1)(δζk+1,Φ, θk+1) + C′′k+1ζkUk(ζk+2,xk+1)(δζk+1,Φ, θk+1) =

− µk+1

〈bk+1, bk+1〉3
[(

2〈ak+1, δbk+1〉〈Tr Φ, bk+1〉

− 2〈ak+1,Tr Φ〉〈δbk+1, bk+1〉

−2〈ak+1, bk+1〉〈δbk+1,Tr Φ〉
)
〈bk+1, bk+1〉

−
(
〈ak+1, δbk+1〉〈bk+1, bk+1〉

−2〈ak+1, bk+1〉〈bk+1, bk+1〉
)

4〈bk+1,Tr Φ〉
]
,

the ones w.r.t. (µk, Uk)

C′′k,µkUk(ζk+1,xk)(δµk,Φ, θk) = − δµk

〈bk, bk〉2
(
−〈ak,Tr Φ〉〈bk, bk〉+ 2〈ak, bk〉〈Tr Φ, bk〉

)
,
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the ones w.r.t. (µk+1, Uk)

C′′k+1,µk+1Uk(ζk+2,xk+1)(δµk+1,Φ, θk+1) = − δµk+1

〈bk+1, bk+1〉2
(
〈ak+1,Tr Φ〉〈bk+1, bk+1〉

−2〈ak+1, bk+1〉〈Tr Φ, bk+1〉
)
,

the ones w.r.t. (ωk, Uk)

C′′k,ωkUk(ζk+1,xk)(δωk,Φ, θk) = 〈−δωk Tr Φ, λk〉,

the ones w.r.t. (λk, Uk)

C′′k,λkUk(ζk+1,xk)(δλk,Φ, θk) = 〈−ωk Tr Φ, δλk〉,

Then, the dual for Hessian state δZk is computed as

b′U (Uk, ζk, q)(Φ, δZk) =− b′′UU (Uk, ζk, q)(δUk,Φ, Zk)− b′′ζU (Uk, ζk, q)(δζk,Φ, Zk)

− b′′qU (Uk, ζk, q)(δq,Φ, Zk)

+ ωk〈δλk,Tr Φ〉+ δωk〈λk,Tr Φ〉

+
µk

〈bk, bk〉3
[(
−〈δak,Tr Φ〉〈bk, bk〉 − 2〈δak, bk〉〈bk,Tr Φ〉

− 2〈ak, δbk〉〈bk,Tr Φ〉
+ 2〈ak,Tr Φ〉〈δbk, bk〉

+2〈ak, bk〉〈δbk,Tr Φ〉
)
〈bk, bk〉

−
(
−〈δak, bk〉〈bk, bk〉 − 〈ak, δbk〉〈bk, bk〉

+2〈ak, bk〉〈δbk, bk〉
)

4〈bk,Tr Φ〉
]

+
µk+1

〈bk+1, bk+1〉3
[(
〈δak+1,Tr Φ〉〈bk+1, bk+1〉

+ 2〈δak+1, bk+1〉〈bk+1,Tr Φ〉
+ 2〈ak+1, δbk+1〉〈bk+1,Tr Φ〉
− 2〈ak+1,Tr Φ〉〈δbk+1, bk+1〉

−2〈ak+1, bk+1〉〈δbk+1,Tr Φ〉
)
〈bk+1, bk+1〉

−
(
〈δak+1, bk+1〉〈bk+1, bk+1〉

+ 〈ak+1, δbk+1〉〈bk+1, bk+1〉

−2〈ak+1, bk+1〉〈δbk+1, bk+1〉
)

4〈bk+1,Tr Φ〉
]

+
δµk

〈bk, bk〉2
(
−〈ak,Tr Φ〉〈bk, bk〉+ 2〈ak, bk〉〈Tr Φ, bk〉

)
+

δµk+1

〈bk+1, bk+1〉2
(
〈ak+1,Tr Φ〉〈bk+1, bk+1〉

−2〈ak+1, bk+1〉〈Tr Φ, bk+1〉
)
.
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B.2. Quasi-Newton Inverse Least-Squares

We have γ = (ζ, α), θ = (λ, µ), Yk = Rk

Ck(ζk+1,xk)(θk) =〈ζk+1 − ζk −
k−1∑
m=0

αkm∆F km −Rk, λk〉

+〈
k−1∑
m=0

αkm∆Rkm +Rk,
k−1∑
m=0

µkm∆Rkm〉,

C0(ζ1,x0)(θ0) =〈ζ1 − (1− ω0)ζ0 − ω0 TrU0), λ0〉.

with ∆F ki = TrUk − TrU i and ∆Rki = TrUk − ζk − TrU i + ζi.

B.2.1. Adjoint Update

Update for λk

For the adjoint interface update λk we need the derivatives of first order w.r.t. ζk+1,i.e.,

C′k,ζk+1(ζk+1,xk)(δζ, θk) = 〈δζ, λk〉.

and

K−1∑
j=k+1

C′j,ζk+1(ζj+1,xj)(δζ, θj) =− (
k∑

m=0

αk+1
m + 1)〈δζ,

k∑
m=0

µk+1
m ∆Rk+1

m 〉

−
k∑

m=0

µk+1
m 〈

k∑
m=0

αk+1
i ∆Rk+1

m +Rk+1, δζ〉

+

K−1∑
j=k+2

(
αjk+1〈δζ,

j∑
m=0

µjm∆Rjm〉

+µjk+1〈
j∑

m=0

αjm∆Rjm +Rj , δζ〉

)
.

This results in the adjoint interface update

λk =− b′ζ(Uk+1, ζk+1, q)(·, Zk)

+ (
k∑

m=0

αk+1
m + 1)〈·,

k∑
m=0

µk+1
m ∆Rk+1

m 〉

+

k∑
m=0

µk+1
m 〈

k∑
m=0

αk+1
m ∆Rk+1

m +Rk+1, ·〉

−
K−1∑
j=k+2

(
αjk+1〈·,

j∑
m=0

µjm∆Rjm〉+ µjk+1〈
j∑

m=0

αjm∆Rjm +Rj , ·〉

)
.
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Update for µk

The update for µk requires the derivatives w.r.t. αk

C′k,αk(ζk+1,xk)(δα, θk) = −〈
k−1∑
m=0

δαkm∆F km, λ
k〉+ 〈

k−1∑
m=0

δαkm∆Rkm,
k−1∑
m=0

µkm∆Rkm〉

and is determined by

−〈
k−1∑
m=0

δαm∆F km, λ
k〉+ 〈

k−1∑
m=0

δαm∆Rkm,

k−1∑
m=0

µkm∆Rkm〉 = 0 ∀ δα ∈ Rk.

Update for Zk

For the adjoint state update (5.41), we regard the derivatives w.r.t. Uk

K−1∑
j=k

C′j,Uk(ζj+1,xj)(Φ, θj) = (
k−1∑
m=0

αkm + 1)〈Tr Φ,
k−1∑
m=0

µkm∆Rkm〉

+
k−1∑
m=0

µkm〈
k−1∑
m=0

αkm∆Rkm +Rk,Tr Φ〉

−
K−1∑
j=k+1

(
αjk〈Tr Φ,

j−1∑
m=0

µjm∆Rjm〉 − µ
j
k〈

j−1∑
m=0

αjm∆Rjm +Rj ,Tr Φ〉

)

− (
k−1∑
m=0

αkm + 1)
〈

Tr Φ, λk
〉

+
K−1∑
j=k

αjk〈Tr Φ, λj〉.

Afterwards, the adjoint state Zk is computed as

b′U (Uk, ζk, q)(Φ, Zk) = −(

k−1∑
m=0

αkm + 1)〈Tr Φ,

k−1∑
m=0

µkm∆Rkm〉

+
k−1∑
m=0

µkm〈
k−1∑
m=0

αkm∆Rkm +Rk,Tr Φ〉

+
K−1∑
j=k+1

(
αjk〈Tr Φ,

j−1∑
m=0

µjm∆Rjm〉 − µ
j
k〈

j−1∑
m=0

αjm∆Rjm +Rj ,Tr Φ〉

)

+ (
k−1∑
m=0

αkm + 1)
〈

Tr Φ, λk
〉
−
K−1∑
j=k

αjk〈Tr Φ, λj〉 ∀ Φ ∈ X.
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B.2.2. Tangent Update

The tangent interface update (5.49) to obtain δγ = (δζ, δα) requires the second order deriva-
tives, where the second derivative is evaluated in direction δθ = (δλ, δµ).

Update for δαk

We start with the update for δαk, for which the second derivatives w.r.t. µk are collected.
This includes the derivatives w.r.t. (αk, µk)

C′k,αkµk(ζk+1,xk)(δαk, τµ, θk) = 〈
k−1∑
m=0

δαkm∆Rkm,

k−1∑
m=0

τµm∆Rkm〉,

and the ones w.r.t. (ζi, µk) and (U i, µk)

k−1∑
i=0

C′′k,ζiµk(ζk+1,xk)(δζi, τµ, θk)

+
k−1∑
i=0

C′′k,U iµk(ζk+1,xk)(δU i, τµ, θk) = −〈
k−1∑
m=0

αkm∆δRkm + δRk,
k−1∑
m=0

τµm∆Rkm〉

− 〈
k−1∑
m=0

αkm∆Rkm +Rk,
k−1∑
m=0

τµm∆δRkm〉.

For the tangent update δαk we have therefore

〈
k−1∑
m=0

δαkm∆Rkm,
k−1∑
m=0

τµm∆Rkm〉 =− 〈
k−1∑
m=0

αkm∆δRkm + δRk,
k−1∑
m=0

τµm∆Rkm〉

− 〈
k−1∑
m=0

αkm∆Rkm +Rk,
k−1∑
m=0

τµm∆δRkm〉 ∀τµ ∈ Rk−1.

Update for δζk+1

To obtain the update for δζk+1 we regard the second derivatives w.r.t. λk. Those are the ones
w.r.t. (ζk+1, λk)

C′′k,ζk+1µk(ζk+1,xk)(δζk+1, τλ, θk) = 〈δζk+1, τλ〉,

the ones w.r.t. (αk, λk)

C′k,αkλk(ζk+1,xk)(δαk, τλ, θk) = 〈−
k−1∑
m=0

δαkm∆F km, τλ〉,
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the combination of ones w.r.t. (U i, λk) and (ζi, λk)

k−1∑
i=0

C′′k,ζiλk(ζk+1,xk)(δζi, τλ, θk) = 〈−δζk −
k−1∑
m=0

αkm∆δF km − δRk, τλ〉.

Afterwards, we obtain the update for δζk+1 as

δζk+1 = δζk +
k−1∑
m=0

αkm∆δF km + δRk +
k−1∑
m=0

δαkm∆F km.

B.2.3. Dual for Hessian Update

In the dual for Hessian update (5.59) the derivatives in direction τθ = (τζ, τα) are needed
for determining δθ = (δλ, δµ). For the dual for Hessian state δZ in (5.57), the derivatives in
direction τstate are needed.

Update for δλk

To obtain δλk, the following second order derivatives are needed: The ones w.r.t. (ζi, ζk+1)
and (U i, ζk+1)

K−1∑
i=0

K−1∑
j=k+1

C′′j,ζiζk+1(ζj+1,xj)(δζi, τζ, θj)

+

K−1∑
i=0

K−1∑
j=k+1

C′′j,U iζk+1(ζj+1,xj)(δU i, τζ, θj) = −(

k∑
m=0

αk+1
m + 1)〈τζ,

k∑
m=0

µk+1
m ∆δRk+1

m 〉

−
k∑

m=0

µk+1
m 〈

k∑
m=0

αk+1
m ∆δRk+1

m + δRk+1, τζ〉

+

K−1∑
l=k+2

(
αlk+1〈τζ,

l∑
m=0

µlm∆δRlm〉

+ µlk+1〈
l∑

m=0

αlm∆δRlm + δRl, τζ〉

)
,
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the ones w.r.t. (αi, ζk+1)

K−1∑
i=0

K−1∑
j=k+1

C′′j,αiζk+1(ζj+1,xj)(δαi, τζ, θj) =− (

k∑
m=0

δαk+1
i )〈τζ,

k∑
m=0

µk+1
i ∆Rk+1

i 〉

−
k∑

m=0

µk+1
m 〈

k∑
m=0

δαk+1
m ∆Rk+1

m , τζ〉

+
K−1∑
l=k+2

(
δαlk+1〈τζ,

l∑
m=0

µlm∆Rlm〉

+µlk+1〈
l∑

m=0

δαlm∆Rlm, τζ〉

)
,

the ones w.r.t. (λk, ζk+1)

C′′k,λkζk+1(ζk+1,xk)(δλk, τζ, θk) = 〈τζ, δλk〉,

as well as the ones w.r.t. (µi, ζk+1)

K−1∑
i=k+1

C′′i,µiζk+1(ζi+1,xi)(δµi, τζ, θi) = (

k∑
m=0

αk+1
m + 1)〈τζ,

k∑
m=0

δµk+1
m ∆Rk+1

m 〉

+
k∑

m=0

δµk+1
m 〈

k∑
m=0

αk+1
m ∆Rk+1

m +Rk+1, τζ〉

−
K−1∑
l=k+2

αlk+1

(
〈τζ,

l∑
m=0

δµlm∆Rlm〉

−δµlk+1〈
l∑

m=0

αlm∆Rlm +Rj , τζ〉

)
.

The dual for Hessian interface update then is

δλk =− b′ζ(Uk+1, ζk+1, q)(·, δZk+1)− b′′ζζ(Uk+1, ζk+1, q)(δζk+1, ·, Zk+1)

− b′′Uζ(Uk+1, ζk+1, q)(δUk+1, ·, Zk+1)

− b′′qζ(Uk+1, ζk+1, q)(δq, ·, Zk+1)
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+ (

k∑
m=0

αk+1
m + 1)〈·,

k∑
m=0

δµk+1
m ∆Rk+1

m 〉

+
k∑

m=0

δµk+1
m 〈

k∑
m=0

αk+1
m ∆Rk+1

m +Rk+1, ·〉

−
K−1∑
l=k+2

αlk+1〈·,
l∑

m=0

δµlm∆Rlm〉 − δµlk+1〈
l∑

m=0

αlm∆Rlm +Rl, ·〉

+ (
k∑

m=0

αk+1
m + 1)〈·,

k∑
m=0

µk+1
m ∆δRk+1

m 〉

+
k∑

m=0

µk+1
m 〈

k∑
m=0

αk+1
m ∆δRk+1

m + δRk+1, ·〉

−
K−1∑
l=k+2

αlk+1〈·,
l∑

m=0

µlm∆δRlm〉 − µlk+1〈
l∑

m=0

αlm∆δRlm + δRl, ·〉

+ (
k∑

m=0

δαk+1
m )〈·,

k∑
m=0

µk+1
m ∆Rk+1

m 〉

+

k∑
m=0

µk+1
m 〈

k∑
m=0

δαk+1
m ∆Rk+1

m , ·〉

−
K−1∑
l=k+2

δαlk+1〈·,
l∑

m=0

µlm∆Rlm〉 − µlk+1〈
l∑

m=0

δαlm∆Rlm, ·〉.

Update for δµk

The update for δµk depends on the derivatives w.r.t. (ζi, αk) and (U i, αk)

k∑
i=0

C′′k,ζiαk(ζk+1,xk)(δζi, τα, θk)

+

k∑
m=0

C′′k,Ujαk(ζk+1,xk)(δU i, τα, θk) = 〈
k−1∑
m=0

ταkm∆δF km, λ
k〉

− 〈
k−1∑
m=0

ταkm∆δRkm,

k−1∑
m=0

µkm∆Rkm〉

− 〈
k−1∑
m=0

ταkm∆Rkm,
k−1∑
m=0

µkm∆δRkm〉,

the ones w.r.t. (λk, αk)

C′′k,λkαk(ζk+1,xk)(δλk, τα, θk) = 〈
k−1∑
m=0

ταkm∆F km, δλ
k〉,
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and the ones w.r.t. (µk, αk)

C′′k,µkαk(ζk+1,xk)(δµk, τα, θk) = 〈
k−1∑
m=0

ταkm∆Rkm,
k−1∑
m=0

δµkm∆Rkm〉.

Then, δµk is determined by

〈
k−1∑
m=0

ταkm∆Rkm,

k−1∑
m=0

δµkm∆Rkm〉 =〈
k−1∑
m=0

ταkm∆F km, δλ
k〉+ 〈

k−1∑
m=0

ταkm∆δF km, λ
k〉

−〈
k−1∑
m=0

ταkm∆δRkm,
k−1∑
m=0

µkm∆Rkm〉

−〈
k−1∑
m=0

ταkm∆Rkm,
k−1∑
m=0

µkm∆δRkm〉.

Update for δZk

For the dual for Hessian update δZk, we regard the derivatives w.r.t. (ζi, Uk) and (ζk, Uk)

K−1∑
i=0

K−1∑
j=k

C′′j,ζiUk(ζj+1,xj)(δζi,Φ, θj)

+
K−1∑
i=0

K−1∑
j=k

C′′j,U iUk(ζj+1,xj)(δU i,Φ, θj) = (
k−1∑
m=0

αkm + 1)〈Tr Φ,
k−1∑
m=0

µkm∆δRkm〉

+
k−1∑
m=0

µkm〈
k−1∑
m=0

αkm∆δRkm + δRk,Tr Φ〉

−
K−1∑
l=k+1

(
αlk〈Tr Φ,

l∑
m=0

µlm∆δRlm〉

+ µlk〈
l∑

m=0

αlm∆δRlm + δRl,Tr Φ〉

)
,
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the ones w.r.t. (αi, Uk)

K−1∑
i=k

C′′i,αiUk(ζi+1,xi)(δαi,Φ, θi) = (

k−1∑
m=0

δαkm)〈Tr Φ,

k−1∑
m=0

µkm∆Rkm〉

+

k−1∑
m=0

µkm〈
k−1∑
m=0

δαkm∆Rkm,Tr Φ〉

−
K−1∑
l=k+1

(
δαlk〈Tr Φ,

l−1∑
m=0

µlm∆Rlm〉

+µlk〈
l−1∑
m=0

δαlm∆Rlm,Tr Φ〉

)

− (
k−1∑
m=0

δαkm)〈Tr Φ, λk〉 −
K−1∑
l=k+1

δαlk〈Tr Φ, λl〉,

the ones w.r.t. (λi, Uk)

K−1∑
i=k

C′′i,λiUk(ζi+1,xi)(δλi,Φ, θi) = (
k−1∑
m=0

αkm + 1)〈Tr Φ, δλk〉 −
K−1∑
l=k+1

αlk〈Tr Φ, δλl〉.

and the ones w.r.t. (µi, Uk)

K−1∑
i=k

C′′i,µiUk(ζi+1,xi)(δµi,Φ, θi) = −(
k−1∑
m=0

αkm + 1)〈Tr Φ,
k−1∑
m=0

δµkm∆Rkm〉

−
k−1∑
m=0

δµkm〈
k−1∑
m=0

αkm∆Rkm +Rk,Tr Φ〉

+
K−1∑
l=k+1

(
αlk〈Tr Φ,

l−1∑
m=0

δµlm∆Rlm〉

+δµlk〈
l−1∑
m=0

αlm∆Rlm +Rl,Tr Φ〉

)
.
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Finally, the update for δZk reads as

b′U (Uk, ζk, q)(Φ, δZk) = −b′′UU (Uk, ζk, q)(δUk,Φ, Zk)− b′′ζU (Uk, ζk, q)(δζk,Φ, Zk)

− b′′qU (Uk, ζk, q)(δq,Φ, Zk)

− (
k−1∑
m=0

αkm + 1)〈Tr Φ,
k−1∑
m=0

δµkm∆Rkm〉

−
k−1∑
m=0

δµkm〈
k−1∑
m=0

αkm∆Rkm +Rk,Tr Φ〉

+
K−1∑
l=k+1

(
αlk〈Tr Φ,

l−1∑
m=0

δµlm∆Rlm〉+ δµlk〈
l−1∑
m=0

αlm∆Rlm +Rl,Tr Φ〉

)

+ (

k−1∑
m=0

αkm + 1)〈Tr Φ, δλk〉 −
K−1∑
l=k+1

αlk〈Tr Φ, δλl〉

− (
k−1∑
m=0

αkm + 1)〈Tr Φ,
k−1∑
m=0

µkm∆δRkm〉

−
k−1∑
m=0

µkm〈
k−1∑
m=0

αkm∆δRkm + δRk,Tr Φ〉

+
K−1∑
l=k+1

(
αlk〈Tr Φ,

l−1∑
m=0

µlm∆δRlm〉+ µlk〈
l−1∑
m=0

αlm∆δRlm + δRl,Tr Φ〉

)

− (

k−1∑
m=0

δαkm)〈Tr Φ,

k−1∑
m=0

µkm∆Rkm〉 −
k−1∑
m=0

µkm〈
k−1∑
m=0

δαkm∆Rkm,Tr Φ〉

+

K−1∑
l=k+1

(
δαlk〈Tr Φ,

l−1∑
m=0

µlm∆Rlm〉+ µlk〈
l−1∑
m=0

δαlm∆Rlm,Tr Φ〉

)

+ (

k−1∑
m=0

δαkm)〈Tr Φ, λk〉 −
K−1∑
l=k+1

δαlk〈Tr Φ, λl〉.
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