
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Flugsystemdynamik

Inclusion of Physical Components in
Flight Control Systems Optimization

Dipl.-Ing. Univ. Christopher Thorsten Schropp

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: apl. Prof. Dr.-Ing. habil. Christian W. M. Breitsamter

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Florian Holzapfel

2. Prof. Dr. Markus Zimmermann

Die Dissertation wurde am 27.05.2019 bei der Technischen Universität München

eingereicht und durch die Fakultät für Maschinenwesen am 29.01.2020 angenommen.

Abstract

Today’s development processes for mechatronic products, such as modern flight control

systems, are noncontinuous and characterized by tool-chain gaps. Overcoming these gaps

requires time, funds, and manual labor and results in additional sources of error and

unautomated design loops. The effects are particularly significant in the aviation industry,

with its long and expensive development cycles. As such, although this work is tailored to

flight control systems, the outcomes can be used to a limited extent in the development

processes of any mechatronic product.

This thesis presents a method for bidirectional data transfer between CAD software

tools and Simscape Multibody, a toolbox from MathWorks’ Simulink, which allows for

multibody simulation (MBS). By automatically creating MBS models on the basis of pre-

viously transferred CAD model data and changing CAD parameters from MATLAB, the

approach closes the targeted design loop and enables the entire process to be automated.

Bridging this specific tool-chain gap allows the entire functionality of the MathWorks

suite to be applied to CAD models. As such, CAD model parameters can be included in

MATLAB optimizations.

Furthermore, the research of this thesis covers the simultaneous optimization of hard-

ware and software parameters. By additionally supplying requirements on the system as

an input, the developed framework can only produce optimal system designs that adhere

to the specifications. Such a highly automated design process results in much shorter and

cheaper development cycles and cutting edge system designs.

Comprehensive MBS models of flight control systems, which are easily generated using

the provided approach, allow one to evaluate the handling qualities, and ultimately the

flight safety, by accounting for inertia loads that result from aircraft maneuvers. Apart

from that, joints can be selected in the CAD tool to be automatically enhanced by models,

which were implemented or developed in this thesis to simulate complex nonlinear effects

like friction and free play.

Wide segments of the approach presented in this thesis are incorporated into a software

product that is now being sold to industrial customers.

Zusammenfassung

Heutige Entwicklungsprozesse für mechatronische Produkte, wie beispielsweise moderne

Flugsteuerungssysteme, sind durch viele Toolbrüche charakterisiert und damit nicht durch-

gängig. Die Überbrückung dieser Brüche erfordert Zeit, Geld und manuelle Arbeit, und

resultiert in zusätzlichen Fehlerquellen sowie nicht automatisierten Design-Zyklen. In

der Luftfahrtindustrie mit ihren langen und teuren Entwicklungszyklen sind diese Effekte

besonders ausgeprägt. Obwohl sich diese Dissertation auf Flugsteuerungssysteme konzen-

triert, können die Methoden in begrenztem Umfang in den Entwicklungsprozessen eines

jeden mechatronischen Produkts angewandt werden.

In dieser Dissertation wird eine Methode für den bidirektionalen Datentransfer zwis-

chen CAD-Software-Tools und Simscape Multibody vorgestellt, einer Toolbox von Math-

Works’ Simulink, die Mehrkörpersimulation ermöglicht. Die automatische Erstellung von

Mehrkörpersimulations-Modellen auf Basis zuvor übertragener CAD-Modelldaten und die

Änderung von CAD-Parametern aus MATLAB schließt die anvisierte Konstruktionss-

chleife und ermöglicht die Automatisierung des gesamten Prozesses. Die Überbrückung

dieser spezifischen Lücke in der Tool-Kette ermöglicht es, die gesamte Funktionalität

der MathWorks Suite auf CAD-Modelle anzuwenden. Auf diese Weise können CAD-

Modellparameter in MATLAB Optimierungen einbezogen werden.

Darüber hinaus umfasst die Forschung dieser Arbeit die gleichzeitige Optimierung von

Hard- und Softwareparametern. Durch die zusätzliche Bereitstellung von Anforderun-

gen an das System in Form von Randbedingungen kann das entwickelte Framework

nur optimale Systemdesigns erzeugen, die den Spezifikationen entsprechen. Ein derart

hochautomatisierter Designprozess führt zu viel kürzeren und kostengünstigeren Entwick-

lungszyklen und modernsten Systementwicklungen.

Hochdetaillierte Mehrkörpersimulations-Modelle von Flugsteuerungssystemen, die mit

dem präsentierten Ansatz einfach zu erzeugen sind, ermöglichen es, die sogenannten Han-

dling Qualities und letztlich die Flugsicherheit unter Berücksichtigung von Trägheitslasten

mechanischer Komponenten, die durch Flugmanöver entstehen, zu bewerten. Darüber

hinaus können im CAD-Tool Verbindungen ausgewählt werden, die automatisch durch

Modelle ergänzt werden, welche in dieser Arbeit implementiert oder entwickelt wurden,

um komplexe nichtlineare Effekte wie Reibung und freies Spiel zu simulieren.

Weite Teile des in dieser Dissertation vorgestellten Ansatzes sind in ein Softwarepro-

dukt integriert, das nun an Industriekunden verkauft wird.

Danksagung

Diese Dissertation entstand zu größten Teilen während meiner Zeit als wissenschaftlicher

Mitarbeiter am Lehrstuhl für Flugsystemdynamik der Technischen Universität München,

der von Prof. Florian Holzapfel geleitet wird. Ihm gilt zuallererst mein Dank für

das in mich gesetzte Vertrauen und damit für die Ermöglichung dieser Arbeit, sowie die

stetige Unterstützung, auch über die Zeit am Lehrstuhl hinaus.

Darüber hinaus möchte ich mich insbesondere bei Prof. Markus Zimmermann für den

Einsatz als Zweitgutachter, als auch für die Hilfsbereitschaft und den wertvollen Dialog

bedanken. Bei Prof. Christian Breitsamter bedanke ich mich herzlich dafür, dass er

sich bereiterklärt hat, den Vorsitz der Prüfungskommission zu übernehmen.

Weiterer Dank gilt den vielen Kollegen am Lehrstuhl für Flugsystemdynamik, für die

zahlreichen, interessanten und fruchtbaren Gespräche. Extra hervorheben möchte ich

hierbei Benedikt Grüter und Johannes Diepolder, die mich stets mit fachlichen

Diskussionen und hilfreichen Hinweisen unterstützt haben.

Zuletzt möchte ich mich besonders bei meinen Eltern, meiner Schwester Vivian und

meiner Freundin Lena bedanken, die mich über die lange Zeit fortwährend motiviert und

bestärkt haben.

München, im April 2019 Christopher Schropp

Table of Contents

List of Figures VIII

List of Tables IX

Acronyms XI

Symbols XIII

1 Introduction 1

1.1 Background . 3

1.2 History . 4

1.3 State-of-the-Art . 5

1.4 Motivation . 9

1.5 Literature Review . 12

1.6 Purpose Statement . 14

1.7 Contribution . 15

1.8 Outline . 17

2 Physical Components of Flight Control Systems 19

2.1 Rods and Bellcranks . 19

2.1.1 Nonlinearities in Rod Systems . 19

2.1.2 Buckling Resistance . 22

2.2 Joints . 23

2.2.1 Friction . 23

2.2.2 Backlash . 26

2.3 Cables . 29

2.3.1 Tension Regulators . 29

2.4 Actuators . 30

2.4.1 EMA Model with Thermal Dependencies 31

2.4.2 Gearbox . 33

2.4.3 Controller . 34

2.5 Clutches . 35

2.6 Sensors . 35

I

TABLE OF CONTENTS

2.6.1 Error Characteristics . 36

3 A Bidirectional Method for Connecting CAD Tools with Simscape Multi-

body 39

3.1 Market Overview . 39

3.1.1 Simscape Multibody Link . 39

3.1.2 CAMAT . 40

3.1.3 CAPRI . 41

3.2 Basic Strategy and Overview . 42

3.3 Requirements . 43

3.4 Specification of the Software Architecture 44

3.4.1 Design Considerations . 44

3.4.2 Partitioning of Functionality and Responsibilities 45

3.4.3 Class-Based Framework Architecture 49

3.5 Implementation of the Key Functionality 50

3.5.1 Connecting MATLAB and the CAD Software 50

3.5.2 Transferring CAD Data to MATLAB 50

3.5.3 Data Storage and Post-Processing 54

3.5.4 Automatic Simscape Multibody Model Building 59

3.5.5 Modification of CAD Parameters 65

3.6 Optimization Framework . 65

3.6.1 Structure of an Optimization Problem 65

3.6.2 Strategies for an Efficient Optimization 67

4 Application to a Mechanical Flight Control System 69

4.1 Mechanism and 3D CAD Model . 69

4.2 Kinematic Analyses . 70

4.2.1 Preparation of the MBS Model . 72

4.2.2 Evaluation of Simulation Results 73

4.2.3 Optimization of CAD Parameters 77

4.3 Mechanical Analyses . 83

4.3.1 Preparation of the Models . 84

4.3.2 Dynamic Simulation . 87

4.4 High Fidelity Simulation with a Flight Dynamics Model 98

4.4.1 Inclusion of Backlash . 98

4.4.2 Integration of the Flight Dynamics Model 99

4.4.3 Acceleration of the Mechanism . 100

4.4.4 Representation of the Elevator Surface Inertia 101

4.4.5 Scenario and Simulation Results . 102

4.5 Aircraft Handling Qualities . 107

4.6 Estimation of the Buckling Risk . 112

II

TABLE OF CONTENTS

4.6.1 Results . 114

4.7 Role of the Developed Method in this Use Case 114

5 Application to a Fly-by-Wire Flight Control System 117

5.1 Methods and Approach . 117

5.2 Yoke Control System with Mechanical Control Loading System 118

5.3 Requirements . 119

5.4 CAD Model . 124

5.5 Simscape Multibody Model . 124

5.5.1 Nomenclature . 124

5.5.2 Friction Clutch . 125

5.5.3 Control Loading System . 125

5.5.4 Breakout Force . 126

5.5.5 Actuators . 127

5.5.6 Stick Pusher . 128

5.5.7 Trim System . 128

5.5.8 Hard Stops . 129

5.5.9 Yoke Jam . 130

5.6 Requirements Validation and Discussion 130

5.6.1 Test Case 10: Nominal Achievable Deflection 130

5.6.2 Test Case 11: Nominal Achievable Deflection with Max. Forward

Trim . 132

5.6.3 Test Case 12: Nominal Achievable Deflection with Maximum Aft

Trim . 133

5.6.4 Test Case 20: FO Yoke Jammed in Neutral Position 134

5.6.5 Test Case 21: FO Yoke Jammed in Maximum Forward Trim Position136

5.6.6 Test Case 22: FO Yoke Jammed in Maximum Aft Trim Position . . 137

5.6.7 Test Case 30: Stick Pusher Activation With Neutral Trim Position 138

5.6.8 Test Case 31: Stick Pusher Activation With Maximum Aft Trim

Position . 139

5.6.9 Conclusion . 140

5.7 Simultaneous Optimization of Hard- and Software Parameters 141

5.7.1 Objective and Approach . 141

5.7.2 Simulation Inputs . 142

5.7.3 Parametrization of the CAD Model 142

5.7.4 Stick Pusher Controller . 142

5.7.5 Constrained Optimization Problem Setup 143

5.7.6 Cost Function . 144

5.7.7 Nonlinear Constraints (Requirements) 145

5.7.8 Complete Optimization Problem Statement 146

5.7.9 Results . 146

III

TABLE OF CONTENTS

6 Summary and Outlook 149

A Manual I

A.1 Requirements on the CAD Model . I

A.1.1 Limitations Regarding CATIA V5 I

A.2 Convert a CAD Model to a Simscape Multibody Model II

A.3 Change CAD Parameters from MATLAB III

A.4 Get an Update of the CAD Data . IV

A.5 Model Handling and Reconnect . IV

A.6 Application of the Optimization Framework V

B Implementation of the Class-Based Framework IX

C Definition of the General Interface XVII

C.1 Method Overview . XVII

C.2 Definition . XVIII

D Code for the Fly-by-Wire Use Case Requirement Validation XXV

E Publications XXVII

F Supervised Student Theses XXIX

IV

List of Figures

1.1 Common development process of mechatronic systems. 6

1.2 MBS model building process using automated methods. 10

1.3 Automated CAD design optimization loop. 10

1.4 Entire development process caused by using a bidirectional interface. . . . 11

2.1 Mechanical FCS using a push-pull rod system. 20

2.2 Nonlinear transmission of forces and displacements. 20

2.3 Normalized outputs over the bellcrank rotation angle. 21

2.4 The different Euler buckling modes according to [RS5]. 22

2.5 LuGre model assumes friction as a deflection of elastic bristles. Lower

bristles are shown as being rigid, for simplicity [Ols96]. 25

2.6 The average deflection of bristles in figure 2.5 is represented by a single

bristle [Ols96]. 25

2.7 (a) Backlash in a bellcrank. (b) Detailed view of the range of the pin

movement in the bushing. 27

2.8 Normalized outputs over the bellcrank rotation angle. 28

2.9 Planar joint with one rotary and two translational DoFs. 28

2.10 (a) Schematics of the revolute joint backlash model. (b) Visualization of

the mathematical model. 29

2.11 Schematics of a cable tension regulator. 30

2.12 Equivalent circuit diagram for the EMA model. 31

2.13 Characteristic curve of a DC motor. 32

2.14 Equivalent thermal circuit of a body heating up due to a heat flow source

and heat lost to the environment. 33

2.15 Actuator cascade controller. 35

2.16 Sensor signal processing. 35

3.1 Concept of Simscape Multibody Link. 40

3.2 Concept of CAMAT. 41

3.3 Concept of CAPRI. 42

3.4 Interface concept resulting from the requirements defined in Section 3.3. . . 46

3.5 Communication and partitioning of the interface. 46

V

LIST OF FIGURES

3.6 Example of Microsoft’s COM technology. 47

3.7 Overview of the framework’s classes. 49

3.8 Establishing a connection to the CAD Software. 51

3.9 Activity diagram of the data transfer concept. 51

3.10 Sequential steps of the CAD data transfer. 52

3.11 Overview of joints supported by the interface with their degrees of freedom. 53

3.12 Sequential steps for updating CAD data. 53

3.13 Data structure of the MATLAB framework. 54

3.14 Tree structure of CATIA. 55

3.15 Activity diagram of the model building algorithm. 60

3.16 Network traversed by "left-to-right" and "right-to-left" BFS. 60

3.17 BFS and rotated, condensed diagram layout. 61

3.18 Structure of the optimization framework. 66

4.1 Overview of the elevator axis. 70

4.2 Integration of the actuator in the existing mechanism. 70

4.3 CAD model of the elevator axis. 71

4.4 Detailed view of the FCS elevator axis Simscape Multibody model. 72

4.5 3D representation of the MBS model visualized with the Mechanics Explorer. 72

4.6 Generation of the motion signal for the revolute joint of the elevator surface. 73

4.7 Elevator and actuator deflections over time. 74

4.8 Actuator position over time. 75

4.9 Actuator position over time. 75

4.10 Definition of the angles δ1 and δ2. 76

4.11 Minimum distance of the angles δ1 and δ2 to a kneeling state. 76

4.12 Optimized integration of the actuator (gray: initial design). 80

4.13 Elevator and actuator deflections over time. 81

4.14 Actuator position over time. 81

4.15 Actuator position over time. 82

4.16 Minimum distance of the angles δ1 and δ2 to a kneeling state. 83

4.17 Stick force vs. elevator surface deflection diagram. 86

4.18 Elevator control force in maneuvers diagram. 86

4.19 Multi-step actuator command signal. 87

4.20 Supply Voltage 7V, Gear Ratio 100. 89

4.21 Supply Voltage 7V, Gear Ratio 100. 90

4.22 Supply Voltage 14V, Gear Ratio 100. 91

4.23 Supply Voltage 14V, Gear Ratio 100. 92

4.24 Supply Voltage 28V, Gear Ratio 100. 94

4.25 Supply Voltage 28V, Gear Ratio 100. 95

4.26 Supply Voltage 14V, Gear Ratio 200. 96

4.27 Supply Voltage 14V, Gear Ratio 200. 97

VI

LIST OF FIGURES

4.28 Overview of the elevator axis. 99

4.29 Introduction of the acceleration data to the MBS model. 101

4.30 High fidelity simulation results. 104

4.31 High fidelity simulation results. 105

4.32 Plot of the airspeed in the high fidelity simulation. 106

4.33 Aircraft response in the high fidelity simulation. 107

4.34 Elevator deflection, load factor, and pitch angle over time. 109

4.35 Stick force and minimum stick force over time. 110

4.36 Hinge moment over time. 110

4.37 Schematic diagram of the bob-weight installation. 111

4.38 Stick force with bob-weight and minimum stick force over time. 112

4.39 Compressive load for each rod. 113

4.40 Compressive load for each rod. 116

5.1 Modified V-model of [Rie13]. 118

5.2 Schematic diagram of the pitch axis mechanics. 120

5.3 3D CAD model of the yoke system. 124

5.4 Friction clutch connecting both yokes. 126

5.5 Step response of the transfer function and the simulation. 127

5.6 Consideration of the breakout forces via Dead Zone block. 127

5.7 Test Case 10: Nominal achievable yoke deflection. 131

5.8 Test Case 11: Nominal achievable yoke deflection with maximum forward

trim. 133

5.9 Test case 12: Nominal achievable yoke deflection with maximum aft trim. . 134

5.10 Test Case 20: FO yoke jammed in neutral position. 135

5.11 Test Case 21: FO yoke jammed in maximum forward trim position. 137

5.12 Test Case 22: FO yoke jammed in maximum aft trim position. 138

5.13 Test Case 30: Stick pusher activation with neutral trim position. 139

5.14 Test Case 31: Stick pusher activation with neutral trim position. 140

5.15 Inputs for the simulation. 143

5.16 Behavior of the optimized yoke system. 147

B.1 Structure of the iCADModel class. X

B.2 Structure of the iSimulinkModelBuilder class. X

B.3 Structure of the iProduct class. XII

B.4 Structure of the iPart class. XIII

B.5 Structure of the iConstraint class. XIV

B.6 Structure of the iMechanism class. XIV

B.7 Structure of the iJoint class. XV

B.8 Structure of the iParameter class. XV

B.9 Structure of the iTransformData class. XVI

VII

LIST OF FIGURES

C.1 Return scheme of hierarchical product and parts data. XIX

C.2 Return scheme of mechanisms and joints data. XXI

VIII

List of Tables

3.1 Features and functionality of Simscape Multibody Link. 40

3.2 Features and functionality of CAMAT. 41

3.3 Features and functionality of CAPRI. 42

3.4 Data required for building a Simscape Multibody model. 44

3.5 Required CAD Data. 52

3.6 Parameter set for defining friction. 62

3.7 Parameter set for defining friction. 63

4.1 Initial parameterization of the integration. 71

4.2 Optimization parameters, initial values, and limits. 77

4.3 Comparison of initial and optimized parameters. 79

4.4 Comparison of the simulation results of the initial and optimized designs. . 83

4.5 Parameters of the integrated actuator. 85

4.6 Elevator control surface moments, weights, and mass balances. 101

5.1 Parameters of the stick pusher actuator. 128

5.2 Parameters of the trim actuator. 129

5.3 Overview of the test cases. 130

5.4 Results of the automated requirements validation (Test Case 10). 132

5.5 Results of the automated requirements validation (Test Case 11). 132

5.6 Results of the automated requirements validation (Test Case 12). 134

5.7 Results of the automated requirements validation (Test Case 20). 136

5.8 Results of the automated requirements validation (Test Case 21). 136

5.9 Results of the automated requirements validation (Test Case 22). 138

5.10 Parameters, initial values, limits, and finite differences spacing. 144

5.11 Optimal parameter values. 146

IX

Acronyms

3D three-dimensional

ACE actuator control electronics

ADC analog-to-digital converter

AFCS automatic flight control system

AP autopilot

API application programming interface

BFS Breadth First Search

CAA component application architecture

CACE computer aided control engineering

CAD computer-aided design

CAE computer-aided engineering

CAN Controller Area Network

CFD computational fluid dynamics

CG center of gravity

CLI command-line interface

CLS control loading system

COM component object model

CPT Captain

CS-23 Certification Specifications 23

CS-25 Certification Specifications 25

DAE differential-algebraic equation

DCM direction cosine matrix

DLL dynamic link library

DoF degree of freedom

EASA European Aviation Safety Agency

EBHA electrical back-up hydraulic actuator

ECEF Earth Centered Earth Fixed

EHA electrohydrostatic actuator

EMA electromechanical actuator

FAA Federal Aviation Administration

FAR Federal Aviation Regulations

FBW fly-by-wire

XI

Acronyms

FCC flight control computer

FCS flight control system

FDM flight dynamics model

FEM finite element method

FO First Officer

FSD Institute of Flight System Dynamics

GUI graphical user interface

HMI human-machine interface

IPOPT Interior Point Optimizer

LUGRE Lund-Grenoble

LVDT Linear Variable Differential Transformer

MBS multibody simulation

MDO multi-disciplinary design optimization

MTOW maximum takeoff weight

NED North East Down

OOP object-orientated programming

OPV optionally piloted vehicle

PFCS primary flight control system

POH Pilot’s Operating Handbook

RS-232 Recommended Standard 232

RVDT Rotary Variable Differential Transformer

SBD simulation-based design

SFCS secondary flight control system

TUM Technische Universität München

UAV unmanned aerial vehicle

UI user interface

XII

Symbols

B Temperature coefficient of remanence

Ch,e Hinge moment coefficient of the elevator

Cth Thermal capacity

D0 Central difference quotient

E Young’s modulus

FB Buckling load

FC Dynamic friction force

FN Normal force

FS Static friction force

FV Viscous friction force

FP ilot Pilot force

FStick Stick force

Fbf Breakout force

G Gear ratio

He Hinge moment of the elevator surface

Ip Second polar moment of area

Imin Minimal second moment of area

I Second moment of area

JCost Cost function

Jzz Moment of inertia with respect to the z-axis

J Moment of inertia

K Effective length factor

L Phase-to-phase inductance

MR Moment about the point R

PP usher Stick pusher electrical power

Ploss Power loss

Rth Thermal resistance

R Phase-to-phase resistance

Se Elevator wing area behind the hinge line

TCoil Motor coil temperature

XIII

Symbols

Tenv Environment temperature

W Aircraft weight

αe Elevator actuator deflection after the gearbox (positive according to "right-

rand rule")

αt Angle of attack at the tail

αT0
Linear resistance temperature coefficient

αe,max Maximum elevator actuator deflection

αe,min Minimum elevator actuator deflection

q Quaternion

δe Elevator control deflection

ηD Dynamic viscosity

ηMech Mechanical efficiency

ηV Viscous friction coefficient

ηmax Maximum elevator surface deflection (most downward deflection)

ηmin Minimum elevator surface deflection (most upward deflection)

η Elevator surface deflection (positive for downward deflections)

g(z) Inequality constraints

h(z) Equality constraints

TClutch Torque transmitted by a clutch

THardStop Torque due to hard stops

T Torque

µC Dynamic friction coefficient

µS Static friction coefficient

ν Safety factor against buckling

ce Mean aerodynamic chord of the elevator

qt Dynamic pressure at the tail
..
ϕ Motor acceleration
.

Q Heat flow rate
.
ϕ Motor speed

ρ Density

σB Buckling strength

σy Yield strength

τth Thermal time constant

υ Safety against buckling

c Damping coefficient

g Gravitational acceleration

h Spacing for gradient calculation

i Current

ke Motor voltage constant

kf Friction coefficient

XIV

Symbols

kt Motor torque constant

kCLS Spring stiffness of the control loading system spring

k Spring stiffness

lbw Bob-weight lever length

l Length

mbw Bob-weight mass

mcm Compensating mass

mel Mass of elevator surface

nz Load factor

qs Scalar part of quaternion

ucmd Voltage command

vs Stribeck velocity

XV

1

Introduction

State-of-the-art development of modern aircraft involves many different engineering dis-

ciplines. These days advanced materials like carbon composites are gaining ground in

aircraft manufacturing. Sophisticated flight control algorithms operate and fly large pas-

senger airliners. Computers survey the pilot’s inputs and prevent dangerous flight atti-

tudes. Unmanned aerial vehicles (UAVs) like the General Atomics MQ-9 Reaper military

drone but also toys like quadcopters can fly automatically due to modern flight control

algorithms [Gen16]. Thanks to technological progress, flying today is safer than ever.

Obviously, aircraft systems as well as their development become more and more complex.

Naturally, today’s development processes have changed as well to meet the new re-

quirements. Many different physical domains have to be considered during the develop-

ment and design phase. Computers support in mastering complex tasks and have become

absolutely essential. As such, construction is undertaken virtually in computer-aided de-

sign (CAD) software programs by modeling three-dimensional (3D) parts. Finite element

method (FEM) analyses help to determine stress conditions inside these virtual parts un-

der certain loading conditions. The design of optimal aerodynamic shapes is accomplished

by computational fluid dynamics (CFD) simulations. Interaction of bodies and behavior

of mechanical systems are assessed via multibody simulations (MBSs) and further physi-

cal modeling methods even allow to simulate electrical, hydraulic or thermal components.

All these tools and methods enable engineers to find optimal solutions and allow to gain

information in early development phases (e.g. virtual prototypes).

An essential part of any aircraft is the flight control system (FCS). As a part of this

system, the primary flight control system (PFCS), including cockpit controls (e.g. side-

stick or yoke), control surfaces, and engines, allow an aircraft to be flown safely. For a

long time, FCSs were purely mechanical. These systems are characterized by the me-

chanical connection of the pilot’s controls to the control surfaces via rods, bellcranks, and

sometimes cables and pulleys. Whereas in almost every new commercial aviation aircraft

conventional mechanical FCSs were replaced by fly-by-wire (FBW) systems over time,

most aircraft in general aviation (smaller airplanes that are subject to the Certification

Specifications 23 (CS-23) ([Eur15]) of the European Aviation Safety Agency (EASA)) still

1

use mechanical FCSs. Nevertheless, these mechanical FCSs are often supplemented with

modern autopilot (AP) systems. The opportunity to delegate the constant task of cor-

rectively manipulating the aircraft’s controls, or even fly entire routes automatically, are

valuable benefits of APs. Using them, enables pilots to manage the actual flight instead

of moving the controls. Naturally, this results in an enormous reduction of the pilot’s

workload, which is beneficial especially during emergencies [Fed09]. Modern AP systems

for general aviation aircraft are usually represented by a simplex architecture, containing

one flight control computer (FCC), and one actuator per pitch, roll, and yaw axis. Flight

control algorithms running on the FCC calculate necessary surface deflections, which

are sent to the corresponding actuators. These are linked to the mechanical system via

clutches. Thus, in case of an AP system failure, the actuators can be decoupled from the

mechanical FCS. Therefore, no redundancy is needed and the number of components and

costs for certification is kept to a minimum.

On the other hand, FBW systems do not use any mechanical connection between the

pilot’s controls and the control surfaces. Pilot commands are sent electronically to the

FCCs directly, which surveil and assess them with respect to flight control laws, and then

command the actuators. These flight control laws prevent pilot commands that may result

in hazardous flight states. In case of using an AP, pilot-based commands are no longer

transmitted to the actuators, but rather commands are calculated by the AP algorithms.

As there is no mechanical backup system, for the case of a FBW system error most of the

critical components must be installed multiple times to reach a total loss probability of

the FBW system of less than 10−9 [Eur16]. This is one of the reasons why most general

aviation aircraft still use mechanical FCSs:

� Usually, general aviation aircraft have only a very limited payload. As FBW sys-

tems require components existing multiple times for redundancy, the already small

payload would be reduced by the entire system significantly.

� Costs for developing a pure FBW system can easily exceed the costs of a small

aircraft [HSPH13].

� Maintenance becomes more complex and more expensive, since more complex com-

ponents need to be serviced.

� Due to complex hard- and software, certification processes becomes a lot more dif-

ficult and with that more expensive [HSPH13]. However, conventional certification

specifications are currently revised in order to certify subsystems with less effort

and costs.

Regardless of whether a mechanical or FBW FCS is designed, the physical components

always have to be taken into account to represent the dynamic behavior of the systems

properly. Instead of using complex and abstract mathematical models, a MBS qualifies

perfectly to consider mechanical components easily, as the composition of MBS models is

2

Chapter 1: Introduction

similar to the systems they represent and not abstracted to mathematical models on the

modeling level.

However, the development of these models is often accompanied by a tool-chain gap

that produces a significant amount of manual work and with that, of course, costs, even

in today’s development processes.

1.1 Background

In recent years, a popular general-purpose simulation tool for control engineering and

model-based design, not only for aerospace purposes, is MathWorks Simulink R© ([The16e])

[Arn04]. Additional toolboxes like Simscape
TM

([The16d]) or Simscape Multibody
TM 1

([The16c]) provide an environment to rapidly create models of physical systems or MBS

models of 3D mechanical systems for multi-domain simulation within Simulink [The16b].

Many methods such as optimizations, trim and linearization, or sensitivity analyses from

MathWorks MATLAB R© ([The16a]) can be applied to any model within this MathWorks

environment. Today, Simulink combines tools for computer aided control engineering

(CACE), MBS, multi-domain simulation and many others. The software qualifies per-

fectly to model FCSs with its different subsystems and to develop corresponding flight

control algorithms. One complex model is built, whereas kinematics themselves can be

modeled using Simscape Multibody, and subsystems of, for example, electrical or hydraulic

nature can be modeled using Simscape. By simulating undesirable side effects like friction

or backlash in the mechanical part, a high fidelity model is created that enables for the

assessment of interaction of components and performance of the entire complex system.

In fact, friction is one of the main causes of control problems [Hac15]. For these reasons,

the widespread MathWorks suite is used for functional design in this thesis.

However, despite these many advantages, the use of Simscape Multibody in a devel-

opment process causes a big software gap regarding the MBS model building. Building

models by hand with CAD models as masters is common practice. Although design

tools like CATIA R© (Dassault Systèmes) or analyses tools like MATLAB / Simulink are

well developed, they lack of integration with each other. There are only a few interfaces

between some CAD systems and Simscape Multibody. These interfaces are most often uni-

directional and offer very limited functionality (market overview follows in Chapter 3.1).

There is actually no bidirectional interface to the most popular CAD software CATIA V5

([Das]) which is controllable from MATLAB.

As part of this thesis, an integral method for a bidirectional data transfer is developed

that allows for an interaction between selected CAD tools and MATLAB / Simscape

Multibody. The method enables to automatically convert even complex CAD models that

fulfill certain modeling rules to Simscape Multibody models within a few seconds. The

bidirectionality provides for the transfer of geometrical modifications back to the CAD

1Before MATLAB R2016a known as SimMechanics

3

1.2 History

system. Thus, it is possible to apply MATLAB analysis methods and functions such as

optimization algorithms on even CAD parameters.

A consequence of closing the software gap this way is a more continuous development

process with enhanced methods and functionality. This process provides an environment

that allows for a better and more competitive cutting edge design. Although this applies

to development processes in many industries, this thesis focuses on the aerospace industry.

1.2 History

Computers and specialized software tools have played an increasingly important role in

aircraft development in recent decades. The first commercial airliner designed through a

CAD process in the early ’90s is the Boeing 777 [WL13].

In these times, there was no comprehensive software for developing mechatronic prod-

ucts like Simulink today. There was a software tool for every single engineering discipline

such as CACE, CAD, MBS, FEM, or CFD amongst others. But over time, new mecha-

tronic products required more sophisticated controllers. Before then, linear state-space

models were exported from MBS to CACE tools, but an increasing controller complex-

ity has now generated demand for more tightly coupled interfaces between these tools.

Attempts to transfer full MBS models to CACE tools produced poor performance since

the CACE solvers were not designed for differential-algebraic equations (DAEs), which

typically are used to represent physical systems. Therefore, the time integration of the

full system including controllers was undertaken in MBS tools [VKV04, Arn04]. Today

Simulink, as a state-of-the-art software tool, uses modern solvers that solve differential and

algebraic parts simultaneously, and it is even capable of handling multiple local solvers in

one model [The16b].

Software tools from other disciplines like CAD and MBS have not been highly inte-

grated with each other. Very often the MBS model is still built and modified (in iterations)

by hand on the basis of CAD models or drawings [JNSM16]. Engineers key in numerical

values such as inertia tensors or change CAD parameters manually up to the present day.

In the case of Simscape Multibody, MathWorks provides an interface named Simscape

Multibody Link. Unfortunately Simscape Multibody Link with its limited functionality

satisfies only a fraction of the needs of a continuous development process. Although it is

not closing the software gap completely, it is a first step in the right direction by reducing

manual work.

Nevertheless, the software gap between CAD and MBS tools and especially between

the very popular tools CATIA V5 and Simscape Multibody still exists. Even if the con-

version of CAD to MBS models itself might be automated in some very few cases, there is

still a software gap that causes a significant amount of manual work due to development

processes that are dominated by many iterations and interdisciplinary design changes.

4

Chapter 1: Introduction

1.3 State-of-the-Art

During today’s development processes of mechatronic systems, virtual prototypes in form

of extended MBS models arise that allow for the estimation of system behavior and per-

formance (depending on the modeling depth) and a validation of formalized requirements,

for instance, without any part of the systems even existing.

Common MBS software tools used nowadays in the industry or research for the de-

velopment of these models are Adams (MSC Software Corporation), SIMPACK (Das-

sault Systemes Deutschland GmbH), or as already introduced Simscape Multibody (Math-

Works). Although all tools are MBS programs, their functional spectrum and conse-

quently their area of application differs considerably. While Adams and SIMPACK are

standalone programs dedicated to highly detailed and sophisticated MBS that can even

represent flexible bodies, Simscape Multibody covers only classical MBS, but in form of

a Simulink toolbox that integrates seamlessly into the MathWorks world. This means

that all MathWorks functionality can be applied to the MBS models and is even available

for developing entire virtual prototypes (e.g. including controllers, finite-state automa-

tons), which allows for a more continuous tool-chain. Therefore, this thesis focuses on the

MathWorks tool-chain and Simscape Multibody as MBS software tool.

Virtual prototypes of mechanical or mechatronic systems are developed in complex,

multi-staged, and iterative design processes that require a broad range of engineering

expertise. Discontinuities in the tool-chain cause manual work and prolong the design

process. At the same time the process is prone to error by many manual actions.

Such a process is shown in Figure 1.1. Each step is represented by a box, where a red

background indicates a step that requires manual action and a green background indicates

an automated step. Obviously, this process is characterized by many manual steps and

tool-chain gaps. It should be noted that the same gap between CAD and Simscape

Multibody shows up multiple times. In the following each step of this process chain is

discussed using the exemplary design of a FCS. The process assumes that no interface

and primarily CATIA V5 as CAD software is used, as leading aircraft manufacturers use

this software.

Requirements Specification

First and foremost requirements regarding the system are gathered and specified [VDI93].

Quite often requirement management tools like IBM Rational DOORS or Siemens PO-

LARION are used. In the case of FCSs for general aviation aircraft, there are mandatory

requirements due to certification regulations as well as requirements that are defined by

the aircraft manufacturer. The manufacturer itself might define a requirement regarding

the very limited installation space of the control stick, for instance:

The control stick must have a total length of between 400 mm and 600 mm.

5

1.3 State-of-the-Art

Requirements
Specification

Technical
Feasibility

Studies

CAD Model
Building

MBS Skeleton
Model

Building

Adding
Missing
Values

Model
Consistency

Check

MBS Model
Preparation

Simulation
& Evaluation

Design
Optimization

Iterations
CAD Model
Parameter

Change

MBS Model
Update

Tool-chain gap

Manual action required

Automated step

Figure 1.1: Common development process of mechatronic systems.

Since this is a design requirement, only the CAD system is necessary to design a system

that meets it. On the contrary, there are mandatory requirements from CS-23 like the

following:

CS 23.155 Elevator control force in manoeuvres

The elevator control force needed to achieve the positive limit maneuvering

load factor may not be less than - [...] for stick controls, W/14N (where W

is the maximum weight in kg) [...] or 66 · 8N (15 lbf), whichever is greater,

except that it need not to be greater than 155 N (35 lbf).

Designing a system that satisfies requirements like this, clearly shows the need of both

software tools, the CAD system and the MBS software.

Technical Feasibility Studies

The technical feasibility studies aim to show that the system concept works by making ba-

sic analytic calculations and rough estimates on the system parameters [BRIA14, VDI93].

Static calculations allow for estimation of expected performance values or determination

of dimensions or ratios of components like levers, so that a first probable technical solution

can be identified [CE08]. This is particularly valuable for the following step.

CAD Model Building

After specifying all the system requirements and the technical feasibility studies, the de-

sign phase begins [Ver98] and a CAD model is usually built. Engineers use CAD tools to

6

Chapter 1: Introduction

form single 3D parts, primarily with regards to design requirements (such as dimensions

or masses). If a FCS is modeled, parts are created for each component like control sticks,

rods, and bellcranks. At this stage, it is reasonable to use parameters for lengths, diam-

eters, or positions that might change later as such a parametrized model can be changed

easily afterwards. Then these parts are assembled to products. Therefore, kinematic

constraints are created between parts, and these constraints position the parts either in

relation to each other or in space. At the same time they define the relative motion

of parts, since every kinematic constraint blocks one or more degrees of freedom (DoFs)

between them. In the end, the combination of a part pair’s unblocked DoFs specifies the

type of joint that links them to each other. Since it is more intuitive to define joints rather

than constraints between parts, most of the popular CAD tools provide such a function-

ality and create corresponding constraints automatically after a joint type is chosen. The

resulting CAD model represents a 3D visualization, using solids that have a specific den-

sity and inertia. Moreover, if constraints are set not only for a proper positioning but

with respect to motion, the CAD model contains valid kinematic information as well.

MBS Skeleton Model Building

CAD models are often used as masters to build a MBS model [Fis07, SPLK01, RW99].

The following steps are undertaken in a MBS software, such as Simscape Multibody. For

every part in the CAD model, a Solid block is dragged manually from the Simscape

Multibody library to the model. The same applies to joints. Finally, Rigid Transform

blocks are added to the model in the same manner, which represent a transformation

between two coordinate frames and are necessary for positioning and orientating solids as

well as joints to each other.

Furthermore, this step involves structuring the model and connecting blocks that

belong together. Naming components in the CAD and MBS tool equally facilitates a

better orientation and helps to accomplish this step.

The result is a structured MBS model in which blocks are interconnected correctly

but which still lacks a lot of information. Depending on the particular block, different

data such as masses, inertias, distances, or the like is needed. This data is added in the

next step of the process.

Adding Missing Values

In order to obtain reasonable results with MBS, each solid’s mass, center of gravity (CG),

and inertia tensor as well as positions and orientations have to be entered. The entire

data is available as they are generated and computed by the CAD system. In the case of

solids, their masses, CGs, and inertia tensors have to be manually transferred accurately.

Accuracy is very important here since this data can influence the system behavior consid-

erably. For instance, it affects a FCS’s performance when accelerating the system from

7

1.3 State-of-the-Art

steady state or during flight maneuvers.

Entering positions and orientations is more challenging. Simscape Multibody requires a

consecutive modeling style, meaning that solids and joints can not be positioned and ori-

entated with respect to the global coordinate frame, but only to the one of the predecessor

block. Consequently, relative positioning and orientating data is needed. However, usu-

ally CAD systems provide data with respect to the origin, but not to other parts. Either

measurement tools have to be used to gain this information or it has to be calculated by

hand. Especially when simulating overconstrained mechanisms or ones containing kine-

matically closed loops, this data has to be very accurate. Otherwise, solvers are not able

to solve the equations of motion, describing the kinematic behavior of a mechanism.

Depending on the model’s complexity, this and the previous step may take from a few

minutes up to several days or even weeks.

Model Consistency Check

Having transferred, calculated, and entered all these data, the consistency / data integrity

of the Simscape Multibody model has to be verified. Typing errors or other corrupted data

could lead to unrealistic and therefore useless simulation results.

MBS Model Preparation

At this point, the CAD data is completely translated into a MBS model, but the kine-

matics are so far only under the influence of gravity. Therefore, preparing the MBS model

afterwards is essential for the simulation. The implementation or rather integration of

control algorithms takes place. External forces are applied on the mechanism. Values,

important for later analyses (such as positions, velocities, accelerations, and forces), are

logged in the form of time series and saved to variables.

In the case of designing a FCS, a flight dynamics model (FDM) or aerodynamic forces

might be added. Furthermore enhanced physical models of components, such as elec-

trodynamic models of actuators or clutches, can be added as part of the MBS model

preparation. After preparatory measures, the model is ready for simulation.

Simulation and Design Optimization Iterations

This section covers the Simulation & Evaluation step as well as the following loop Design

Optimization Iterations, shown in Figure 1.1.

First, the simulation is started, and the solver begins with the numerical solving of the

DAEs. Once all time steps are calculated, results and measurements can be evaluated.

Modern MBS tools provide a 3D visualization that allows for the visual assessment of the

kinematic motion at this point.

8

Chapter 1: Introduction

Analyzing the measurements and the 3D motion visualization, gives some indication

on the system behavior and whether it can meet the requirements specified in the first

step. At this point, systems usually show an unexpected behavior, the performance may

be insufficient, or measurements may not be within given limits. For example, the elevator

control force in maneuvers of the FCS fails to reach the required value (CS 23.155).

In order to improve the system behavior, parts may require design changes or con-

trollers may need a gain adjustment. To increase the elevator control force in the given

example, the gear ratio between control stick and elevator surface may be inappropriate

and needs to be lowered. This could be done by shortening the stick itself and thereby

decreasing the lever arm.

However, when parts are changed, their specific data such as masses, CGs, and inertia

tensors change. Furthermore, positions and orientations of subsequent parts and joints

may change as well. To calculate the changed data in such cases, the CAD system is

necessary again. If a parametrized CAD model was built, very probably the control stick’s

length is represented via a parameter and is changed quickly. But whether parametrized

or not, the length of the stick has to be changed, and that is undertaken in the CAD

software. The gear ratio can, of course, also be changed somewhere between the control

stick and the control surfaces.

Afterwards, design changes and their consequences have to be transferred manually to

the MBS tool again. Depending on the extent of the design change, under some circum-

stances this involves a recalculation of the values of relative positions and orientations.

Having this new data entered into the MBS model, the entire process starts again with

a new run of the simulation of the changed system design.

In addition to this complex and discontinuous process, the tool chain in its current state

has weaknesses regarding the optimization of FCS. As shown, a multi-disciplinary design

optimization (MDO) can only be performed manually, as updates of the CAD, but also

of the MBS model must be made manually. Beyond that, the Simscape Multibody blocks

representing joints inherently provide no opportunity to easily consider complex non-

linearities such as friction or backlash that might affect the system behavior significantly.

The same applies to the consideration of buckling which is according to [Fed12] clearly

unacceptable for push-pull rod systems.

1.4 Motivation

As seen in the previous chapter, the state-of-the-art process contains many manual steps

requiring a lot of manual actions, making it unnecessarily time-consuming, prone to error,

and expensive. Closing the tool-chain gap between CAD tools and especially Simscape

Multibody in a way that a more integral development process is formed entails many

advantages in technical as well as economical terms.

Figure 1.2 shows a part of the original state-of-the-art process and below, an equiv-

9

1.4 Motivation

alent MBS model building process using a bidirectional, enhanced interface between the

CAD and MBS tool. This interface automatically transfers and computes relevant data

and builds a MBS model. Furthermore, preparation of the MBS model can be partly

automated by automatically adding models for friction, backlash, or buckling to the MBS

model, and thereby considering non-ideal joints and solids.

CAD Model
Building

MBS Skeleton
Model

Building

Adding
Missing
Values

Model
Consistency

Check

MBS Model
Preparation

CAD Model
Building

Automatic
MBS Model

Building

MBS Model
Preparation

Tool-chain gap

Manual action required

Automated step

Figure 1.2: MBS model building process using automated methods.

This leads to several advantages, primarily a significant reduction of manual work and

consequently much shorter durations of the model building process which is accomplished

within only a fraction of the original time. In addition, the number of error sources

decreases. Thus, there are no mistakes, such as typing errors, transposed digits, or calcu-

lation errors. Shorter model building times and fewer sources of error subsequently result

in lower development costs and more reliable simulations.

A close of this tool-chain gap also applies the advantages mentioned above to the De-

sign Optimization process loop shown in Figure 1.3. In this part of the process, bidirec-

Simulation
& Evaluation

Design
Optimization

Iterations
CAD Model
Parameter

Change

MBS Model
Update

Simulation
& Evaluation

Design
Optimization

Iterations
CAD Model
Parameter

Change

MBS Model
Update

Tool-chain gap

Manual action required

Automated step

Figure 1.3: Automated CAD design optimization loop.

tionality is essential as the possibility of operations in both directions allows to automate

the step CAD Model Parameter Change in Figure 1.3. By this means, the loop over both

10

Chapter 1: Introduction

tools is closed. This enables the use of optimization algorithms that optimize even CAD

parameters with respect to results of the MBS, for example.

In the example of the control stick from Chapter 1.3, an optimization algorithm could

be used to find the optimal length after preparations and implementation of some addi-

tional data. The algorithm running in MATLAB changes the control stick length in the

CAD tool. Afterwards, the MBS model is updated and the simulation is started. The

optimization algorithm decides, depending on the measurements of the simulation, how

the stick length is changed. This is done until the length is within the design requirements

of the aircraft manufacturer and at the same time satisfies the elevator control stick force

requirement CS 23.155.

Requirements
Specification

Technical
Feasibility

Studies

CAD Model
Building

Automatic
MBS Model

Building

MBS Model
Preparation

Simulation
& Evaluation

Design
Optimization

Iterations
CAD Model
Parameter

Change

MBS Model
Update

Tool-chain gap

Manual action required

Automated step

Figure 1.4: Entire development process caused by using a bidirectional interface.

The resulting comprehensive process is shown in Figure 1.4. As a result of shortening

this process, knowledge of the system behavior is available at much earlier stages of

the development, and furthermore products require fewer development periods in total.

Additionally, since Simscape Multibody is a toolbox of the MathWorks world, it allows for

the application of many other analysis methods on the entire system, such as sensitivity

analysis or trim and linearization, which are common methods during development and

construction. As an overall consequence, this provides for competitive advantage.

All the advantages mentioned have positive effects on development processes in any

industry sector. However, especially the more complex the system is and the longer devel-

opment periods are, the more the positive effects impact the development. Design cycles

in the aviation sector are usually up to several months or years for components - whole

airplanes sometimes take even decades until they are entirely developed. Using methods

especially tailored to the development of FCSs, which allow for the simultaneous optimiza-

tion of mechanical and software parameters to find optimal system designs, automatically

11

1.5 Literature Review

monitor buckling in selected parts, consider friction and backlash in selected joints, ver-

ify simulations against requirements, or consider inertia loads due to flight can help to

gain detailed information at early development stages and to shorten overall development

times.

1.5 Literature Review

In present product development processes, simulation is an important tool and plays an

increasing role [MKLC09]. As [MMGG12] states, using simulations as early as possible

during the system design phase is a paradigm called simulation-based design (SBD). In

such a process, simulations of any kind are used for design evaluation and verification in

order to eliminate poor designs as soon as possible. For efficiency reasons, there arises

the need for a tight coupling of design in CAD tools and the different analysis disciplines

and their tools. The general SBD approach and its implementation and integration of

computational tools is described in [Bos98]. Current research focuses on the coupling of

CAD and analysis tools, which mostly provide FEM or CFD methods.

In [LAT15], a method for integrating CAD tools and software for FEM is presented.

Their approach allows CAD models to be modified automatically on the basis of an FEM

analysis. However, the method described in this thesis focuses on the coupling of CAD

and MBS software to complete the corresponding design loop. The authors of [GM11]

claim that, to date, research puts little emphasis on completing the design loop and the

automation of the entire process. Although the need for the integration of CAD and

behavioral modeling was identified almost two decades ago, this statement is still valid

today.

An SBD environment with a new modeling paradigm to combine CAD and MBS

models is introduced in [SPK00]. The core of the system is a central design database,

which stores function, behavior, product structure, and CAD data for the current design.

This database can then be modified, through several graphical user interfaces (GUIs), to

access, for instance, CAD or behavioral data. However, this framework is not integrated

into common and commercial CAD software tools and thus does not provide any means

of modifying the geometry of individual components.

An interface with integration into the widely accepted CAD tool SolidWorks is pre-

sented in [EBPF03]. The software automatically converts CAD models into the Modelica

language, which is a non-proprietary, object-oriented, equation-based language for conve-

nient modeling of complex physical systems [Mod]. This set of Modelica components can

then be simulated in a simulation environment like Dymola, for example. The visualization

takes place in either the CAD software or in a dedicated visualizer. Nevertheless, there

is no bidirectional data exchange that allows for modifying CAD components. A very

similar approach targeting the CAD software CATIA but showing the same drawbacks is

presented in [BSMC18].

12

Chapter 1: Introduction

In [CJ06], an integrated tool environment to determine a mechanism design with

optimal kinematic and dynamic performance is presented. The proposed environment

supports SolidWorks and Pro/ENGINEER 2. The dynamic simulation DADS (Dynamic

Analysis and Design System) is included, and DOT (Design Optimization Tool) is em-

ployed for a batch mode optimization. This approach closes a loop and allows a design to

automatically be optimized on the basis of dynamic simulation results. However, apart

from mechanical, other physical domains are not considered.

The approach presented in this thesis associates the design and the analysis process

by integrating common CAD tools and MATLAB / Simulink. The method integrates

seamlessly into MATLAB and provides access to its entire functionality, which includes

physical modeling (multi-domain) and optimization algorithms. This implies that there

is no need for external optimizers, although they are supported by the proposed method.

The approach allows one to automatically derive Simscape Multibody MBS models from

CAD models. The tight coupling to the CAD software tools is realized by using their

application programming interfaces (APIs) and allows for a bidirectional data exchange.

This system completes the design loop, even through to the controller design, and allows

a high degree of automation.

Such a deeply integrated environment enables the designing of large heterogeneous

systems involving all kinds of design variables, including geometric, physical, or logic ones.

At least a subset influences overall behavior and performance of the system and decides

whether system requirements are satisfied. The holistic determination of appropriate

design variable sets is subject to the current research regarding MDO.

There are several systems engineering approaches that address multidisciplinary de-

sign. A very popular one is the V-model presented in [Has06], which reduces complexity

in system development by disregarding design details in the top-level requirements. Sub-

sequently, the details are considered stepwise by cascading requirements down. Another

approach proposed in [PBFG07] structures systems on the functional level, which decom-

poses them and allows one to solve sub-problems. However, such concepts are too vague

and do not help design on a quantitative basis.

In [ML13], several architectures for MDO are presented and classified. Yet, the focus

does not lie specifically on the particular CAD and MBS software tools. In [MGM06],

methods for the optimization of complex mechanical systems with application to vehicle

engineering are treated. However, the approach of this thesis is very specific to the

software tools that are used and which interfaces are available.

The author of [Bet10] presents optimization methods and discusses how they can

be combined with discretization techniques for DAEs in order to solve optimal control

problems. However, the methods are not suitable for MDO problems in the context of

systems design.

Another multidisciplinary approach to develop complex systems in a top-down manner

2Now called PTC Creo Parametric

13

1.6 Purpose Statement

is presented in [PW, KMPJ03]. Top-level system design targets are cascaded down to

lower levels by splitting the problem into to subproblems of subsystems and components.

Nevertheless, complex coordinate strategies are required to ensure that subsystems are

compatible with each other.

The methodology proposed in [ZKN+17] allows the determination of a solution space

for a large system that is subject to uncertainty, for instance a system in early development

stages. A solution space consists of permissible ranges for each design variable in which

the overall system requirements are always satisfied. The primary goal is to maximize the

solution space in order to provide flexibility for the subsequent implementation and make

the system robust to design variable changes (while still satisfying the requirements). In

[ZMRMZ17], extensions to this methodology are presented that enable one to consider

varying design variables, additional constraints, and a balance between physical and logic

design variables. However, the approaches described in [ZKN+17, ZMRMZ17] require a

computationally expensive top-down target cascading using separate surrogate models to

identify feasible solution spaces.

In contrast, the method of this thesis incorporates a sort of top-down method by opti-

mizing the design variables and searching within the feasible space for the best solution.

Yet, the simulation, which is used in the context of MDO, belongs to the bottom-up meth-

ods. Intermediate levels, like in the previously described approaches, are not required.

1.6 Purpose Statement

The goal of this thesis is to close one of the major tool-chain gaps within the develop-

ment of FCSs by designing and implementing a method for a bidirectional data transfer

between CAD systems and Simscape Multibody in order to reach a more continuous and

integral development process. In fact, the developed method is not limited to this par-

ticular aerospace problem but can be applied in any mechatronic product development

process. That way, physical components can easily be included in analyses (like trimming

or linearizing for the design of controllers) or in further processes such as optimization or

requirement validation.

Although the techniques of this thesis can be applied to many industries, this thesis

relates intentionally to aviation. Simscape Multibody is chosen as the MBS tool, as it

is part of the MathWorks world and its many toolboxes which allow the development

of comprehensive virtual prototypes. Consequently, MATLAB is used to implement the

method of this thesis to achieve a seamless integration into this environment.

The implementation of the method is modular and encapsulated so that any CAD

software that provides the required information over a component object model (COM)

server can be used after a CAD system specific dynamic link library (DLL) is created.

These DLLs are loaded into the interface’s MATLAB framework to enable communication

to the corresponding CAD software.

14

Chapter 1: Introduction

This thesis concentrates on the CAD software CATIA V5 (R20) as this tool is very

common in especially the aviation industry. Furthermore, there is no bidirectional inter-

face between CATIA V5 and Simscape Multibody, as mentioned before.

Regarding the automatic MBS model building, aspects from graph theory are used

to automate reasonable positioning of programmatically added blocks. Moreover, CAD

data is fully parametrized within the Simscape Multibody model. This allows for quick

CAD parameter changes and MBS model updates as long as topology has not changed.

The development of a method providing for the optimization of mechanical and software

parameters takes the demand for an integral MDO into account as well.

Furthermore, the advantages of automatic MBS model building can be used for adding

automatically models for friction, backlash, or buckling together with their parametriza-

tion. Therefore the LuGre friction model and a model for simulating backlash are im-

plemented to enable the method presented in this thesis to add them automatically to

selected joints. Euler’s model for buckling is also implemented to estimate the risk of

buckling for selected parts.

In the application examples, the developed method is used to translate CAD models

of FCSs of general and commercial aviation aircraft to Simscape Multibody models. CAD

parameters of the mechanical FCS of the general aviation aircraft are optimized in order

to minimize nonlinearities in the transfer function. Electrodynamic actuator models are

introduced to determine a suitable configuration regarding supply voltage and gearbox

ratio. The entire FCS is accelerated using data from a FDM to assess inertia loads in

flight and to determine handling qualities. The model of the commercial aircraft FCS

is used for a model-based requirement validation. An optimal system design in terms

of mechanical and software parameters which meets specified formalized requirements is

determined with the utilization of the developed optimization framework.

1.7 Contribution

The following key topics of this thesis and especially their combination represent the main

contributions to the state-of-the-art. The next paragraphs give an overview and introduce

each of them briefly.

Integral Method for a Bidirectional Data Transfer Between Simscape Multi-

body and 3D-CAD Software Tools

The method developed in this thesis provides for a bidirectional data transfer between

Simscape Multibody and 3D-CAD software. Thereby, the encapsulated implementation

is modular in order to easily connect further CAD systems via the COM interface. The

connection to CATIA V5 is used as a sample implementation. The method allows a

fully automated conversion of CAD models into Simscape Multibody models, where no

manual mapping or similar is required. The bidirectional approach presented in this thesis

15

1.7 Contribution

controls the CAD program, which means that also CAD parameters can be changed from

MATLAB.

Simultaneous Optimization of Mechanical and Software Parameters

Mechanical parameters of the CAD model as well as software parameters are optimized

simultaneously in order to find an optimal system design of a FBW control system of a

commercial aviation aircraft. Thereby, requirements are introduced in form of inequality

constraints to converge only to solutions, which are compliant with the requirements. For

this purpose, a framework is developed, which utilizes the method for the bidirectional

data transfer.

Incorporation of CAD Models in the Automated Model-Based Requirement

Validation

The method of this thesis is applied to a CAD model of a commercial aviation aircraft

FCS. The automatically generated Simscape Multibody model is used for the automated

model-based requirement validation. Requirements are formalized and test cases verify

the compliance of the model.

Integrated Consideration of Complex Non-Linear Effects

To consider non-ideal joints in Simscape Multibody models, mathematical descriptions for

friction and backlash are introduced. The method presented in this thesis incorporates

models which represent these effects and allows to automatically consider them in selected

joints. The advanced LuGre friction model ([COAL95], [Ols96]) is implemented to take a

wide range of important friction effects into account (hysteresis, frictional lag, pre-sliding

displacement, or stick-slip).

Parallel Strength Estimation of Components Endangered by Buckling

For slim (hollow) cylinders, a the second moment of area is used to estimate the risk

of buckling during the simulation by applying Euler’s column formula. The developed

method automatically adds blocks for the buckling analysis to user selected parts and

provides an approach for approximating the second moment of area from the moment of

inertia.

Evaluation of Handling Qualities with Comprehensive MBS Models

Inertia loads due to aircraft maneuvers are included in the MBS model of a mechanical

FCS of a general aviation aircraft. The comprehensive model allows to evaluate handling

qualities and thus flight safety. The stick force per g characteristic of the FCS is assessed

16

Chapter 1: Introduction

and subsequently adjusted with a bob-weight to meet the corresponding requirement of

the CS-23.

1.8 Outline

After this introductory chapter, the thesis begins with a discussion of typical components

of FCSs in Chapter 2. Thereby, important physical effects that are related to these com-

ponents are considered and mathematical models describing these effects are introduced.

In Chapter 3, a market study is conducted, which clearly shows the demand of an in-

tegral method providing a bidirectional data transfer between CATIA V5 and Simscape

Multibody. The specification as well as the implementation of essential features of the

method developed in this thesis are presented. In addition, the structure of optimiza-

tion framework for the simultaneous optimization of CAD and software parameters is

described. Implemented strategies for a time-efficient optimization conclude the chapter.

The application of the presented method to a mechanical FCS of a general aviation

aircraft is subject of Chapter 4. After a conversion of the CAD model to a Simscape

Multibody model, CAD parameters are optimized in order to minimize nonlinearities in

the transfer function. Afterwards, an advanced actuator model is attached and friction is

considered in joints to determine actuator loads due to aerodynamic forces. By introduc-

ing backlash and a FDM, the inertia loads due to maneuvers are considered and handling

qualities of the aircraft are assessed and modified. Finally, the risk of buckling for the

push-pull rods is estimated.

Chapter 5 focuses on the model-based requirement validation for a FCS of a FBW

commercial aviation aircraft. The automatically generated Simscape Multibody model is

verified against previously formalized requirements. Afterwards, an optimal system design

is determined. Mechanical and software parameters of the model are simultaneously

optimized with respect to requirements.

A summary of the thesis and an outlook for potential future work is given in Chapter

6 which concludes this thesis.

17

2

Physical Components of Flight

Control Systems

This chapter introduces common components of FCSs. As such, it covers their typical field

of application and physical relations that are important especially for the design of FCSs.

Most of these physical relations are developed and derived within this chapter but initially

used later in the application examples. Subject matter are components affecting the

FCS directly, such as rods, bellcranks, joints, cables, actuators (including the controller),

clutches, or sensors. However, avionic components for navigation, communication, display,

flight guidance or FCCs are not considered.

2.1 Rods and Bellcranks

Mechanical FCSs can be divided into two types: Push-pull rod systems and cable systems.

This chapter deals with rod systems, while cable systems are covered in Section 2.3. In a

rod system, push-pull rods connect the cockpit controls with the flight control surfaces,

and bellcranks link these rods to each other.

Push-pull rods are usually mounted via hinge bearings on both sides, so force transmis-

sion can only occur along the longitudinal axis in the form of a normal force. Bellcranks

can be used to introduce a lever to increase or decrease forces. In addition to transmit-

ting forces from one rod to another, they also permit forces to be rerouted along another

direction. Thus, it is possible to install rod systems following the shape of the airplane’s

fuselage or to bypass obstacles. If a force is introduced into a mechanical FCS via the

control stick, the flux of the force runs over the rod system and transmits it to the levers

that are linked to the control surfaces.

2.1.1 Nonlinearities in Rod Systems

The use of bellcranks makes the system’s behavior nonlinear, meaning that the ratios

of output to input forces (each in axial direction of the rods) and displacements are not

19

2.1 Rods and Bellcranks

Figure 2.1: Mechanical FCS using a push-pull rod system.

constant. As rods are tilting when the system is actuated, effective lever arms change.

R

P2P1

βα

γl1 l2

Figure 2.2: Nonlinear transmission of forces and displacements.

Taking the bellcrank shown in Figure 2.2, a force F1 introduced on P1 in an axial

direction results in a moment MR about point R:

MR = l1 cos(γ − α)F1 (2.1)

where γ is the rotation angle of the bellcrank. The force F2 in the axial direction of the

subsequent rod, which is caused by a moment MR and thus by F1, is calculated as

F2 = cos(γ + β)
MR

l2
(2.2)

With Equations 2.1 and 2.2, the inherent constant angles α and β, and the constant

lengths l1 6= 0 and l2 6= 0, the force F2 can be described as a function of F1 and γ:

F2(F1, γ) = cos(γ − α) cos(γ + β)
l1
l2

F1 (2.3)

20

Chapter 2: Physical Components of Flight Control Systems

This function becomes zero for γ =
π

2
+ α, γ =

π

2
− β, and F1 = 0. In the γ-related zeros,

a mechanism is in a so-called kneeling state (see grey colored illustration in Figure 2.2).

For FCSs, this can be a catastrophic failure. Therefore, it must be a design maxim for an

FCS to never reach these states.

For a symmetrical bellcrank with α = β and l1 = l2, Figure 2.3 shows qualitatively

the resulting outputs normalized to the constant input over the bellcrank rotation angle

γ. It also shows that α and β not only define the kneeling states and thus the maximum

range of the bellcrank’s rotation, but together with l1 and l2, they also influence the gear

ratio.

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Bellcrank rotation γ [deg]

N
or

m
al

iz
ed

ou
tp

ut
[-

]

α = β = 0◦

α = β = 10◦

α = β = 20◦

α = β = 30◦

α = β = 40◦

Figure 2.3: Normalized outputs over the bellcrank rotation angle.

Having multiple consecutive bellcranks means these nonlinearities can accumulate. As

a result, there are system states where the ratio of inputs to outputs changes significantly

with only small displacements. Since on one hand flight control algorithms usually com-

mand surface deflections and on the other hand there are nonlinearities in the mechanism,

which links actuators and control surfaces, an analysis of such a behavior is important for

the development of controllers.

Usually, FCSs are designed in a way that nonlinearities are small with the control stick

in a central position. The more the control stick is displaced from this central position,

the greater the nonlinearities become. Using MBS allows the degree of the system’s

nonlinearity to be easily determined.

21

2.1 Rods and Bellcranks

2.1.2 Buckling Resistance

As mentioned, besides introducing nonlinearity, installing bellcranks involves several ad-

vantages. In addition to this, an occasional installation of bellcranks even reduces the

risk of buckling. Rods of a FCS must not buckle under any circumstances [Fed12]. Risk

of buckling exists especially in the case of slim parts that are exposed to high compressive

forces. If they reach a certain level, the part loses stability, which causes an unpredictable

deformation in lateral direction and involves a significant loss of load-carrying capacity.

As rods are very slim parts, it is likely that there is a risk of buckling in mechanical FCSs.

Buckled rods are not able to transmit forces properly and endanger a safe flight, hence

it is important to consider buckling during the design phase. As classical MBS methods

as well as Simscape Multibody always treat parts as rigid solids, buckling does not oc-

cur in the simulation inherently. Therefore, a separate buckling model, such as Euler’s

buckling model, is implemented in this thesis.

Figure 2.4: The different Euler buckling modes according to [RS5].

Analyzing Buckling with Euler’s Column Formula

Buckling is a complex phenomenon, but there are methods to estimate limit loads. To

analyze the buckling resistance, the Euler’s equation for determining the buckling force

can be applied:

FB =
π2EImin

(KL)2 (2.4)

where E is Young’s modulus, Imin is the minimal second moment of area, and L represents

column’s unsupported length. The effective length factor K depends on the bearing of

the column. With both ends of the rods hinged, K = 1 (Euler’s second case). Further,

safety against buckling is defined by υ, where FN ,max is the actual maximum allowed

compressive force:

FB = υ · FN ,max (2.5)

Related to structures, a safety factor of 1.5 is specified in [Eur15] and [Eur16], which also

applies to safety against buckling. According to [BB15], formula 2.4 is valid, as long as

Hooke’s law applies, and consequentially as long as the buckling strength σB ≤ σy (yield

22

Chapter 2: Physical Components of Flight Control Systems

strength). The buckling strength σB is defined as:

σB =
FB

A
(2.6)

The cross sectional area of the column, or in the case of a FCS, the cross sectional area

of a rod is represented by A. Using Equations 2.4 to 2.6 allows one to make a rough

estimate on buckling risk already during simulation. In summary, within this thesis, it is

assumed that, upon fulfillment of Equation 2.7, no buckling occurs.

F ≤ FB

ν
(2.7)

2.2 Joints

Mechanical joints link rods to each other, mount the FCS to the fuselage, and depending

on the joints themselves, block certain DoFs. Different types of joints are used, such

as prismatic, revolute, spherical or cylindrical ones. However, the most popular joint

should be the hinge (revolute joint). It blocks five out of six DoFs and only allows a

rotation around one axis. By nature, real joints are not ideal, as they are modeled within

MBS or CAD software. There is a certain degree of backlash and friction that increases

nonlinearity of the overall system. However, due to advanced methods of manufacturing,

backlash can be reduced to a minimum. Further, certified lubricants reduce friction and

wear, such as LPS 2 R©[LPS13].

If effects due to friction or backlash must be considered within a simulation, corre-

sponding models have to be implemented. Since friction and backlash are important

aspects of control systems, it makes sense to consider them especially when designing a

FCS, as they might affect flight control algorithms and with that overall system perfor-

mances negatively. Especially friction can lead to tracking errors or undesired stick-slip

motion [COAL95]. Using a combination of an enhanced MBS model covering effects of

friction and backlash together with a control algorithm, allows to assess the consequences

of these inefficiencies on the system’s behavior and to find better controller gains, for

instance.

2.2.1 Friction

Tribology1 is an important topic in current research and has still not been fully explored.

Researchers are trying to develop precise tribological simulation models that cover the

vast number of effects. The next sections present the most important types of friction,

followed by an introduction of a suitable model and its simplifications. Here, a model is

suitable in the sense of considering important and significant effects while simulating with

1Science of interacting surfaces in relative motion.

23

2.2 Joints

manageable computational costs. Thus, the aim is to have a balance between accuracy

and computation time.

Friction is usually differentiated between external and internal friction. The latter is

defined by dynamic viscosity, which plays a minor role only in fluids, such as lubricants

in joints. The more important effects come from external friction, primarily static and

dynamic friction, which basically arise when surfaces move relative to each other.

Static Friction

Technically, static friction plays an important role and occurs whenever two surfaces touch

and do not move relative to each other at the same time. Static friction FS is defined as

FS = µSFN (2.8)

Contrary to intuition, static friction is independent of the size of the contact area and

only depends on the normal force FN and the material-specific coefficient of static friction

µS. As long as an external force Fext ≤ FS, there is no relative movement.

Dynamic Friction (Coulomb Friction)

As soon as there is a relative motion (v > 0), dynamic friction occurs. It always acts

against the direction of movement and is independent of the magnitude of velocity:

FC = µCFN (2.9)

Usually, the friction coefficient µC ≤ µS and consequently the dynamic friction FC ≤ FS

with the same FN . Due to the law of energy conservation, dynamic as well as viscous

friction cause no loss of energy but rather a dissipation to thermal energy.

Viscous Friction

Viscous friction occurs in moving fluids, such as lubricated joints. In this case, surface

areas and velocity have a major influence on the magnitude of viscous friction FV , which

is defined as

FV = ηDA
∆v

∆y
(2.10)

where ηD is the fluid’s dynamic viscosity, A represents the surface area and ∆v
∆y

is the

velocity gradient. As most oils and lubricants are Newtonian fluids and clearance between

adjacent parts of joints is small, causing only thin fluid layers, the velocity gradient can be

assumed to be linear and constant [Sch10]. With this assumption made and y describing

clearance and v relative velocity, the formula for FV can be written as

FV =
ηDA

y
|v| (2.11)

24

Chapter 2: Physical Components of Flight Control Systems

Dynamic Friction Model LuGre

All three presented types of friction should be covered by a friction model. Static models

that combine all three types create discontinuities and require case differentiation, both at

the expenses of performance. Dynamic models mostly do not introduce these problems.

Moreover, they are able to describe macroscopic effects, such as pre-sliding displacement

or friction depending on increasing or decreasing velocity [Kub08].

Such a dynamic model is the Lund-Grenoble (LUGRE) model, which is described

in [COAL95] and [Ols96]. It simulates many of the previously mentioned macroscopic

effects and in addition does not require a case differentiation for v = 0. The basic

assumption of the LUGRE model is that two surfaces contact through elastic bristles,

visualized in Figure 2.5. According to [Ols96], the LUGRE model is based on the average

Figure 2.5: LuGre model assumes friction as a deflection of elastic bristles. Lower
bristles are shown as being rigid, for simplicity [Ols96].

behaviour of the bristles. Therefore only one bristle, which behaves similar to a mechanical

spring, describes the aggregated state of all bristles [Kub08]. Figure 2.6 shows an average

v

z

Figure 2.6: The average deflection of bristles in figure 2.5 is represented by a single
bristle [Ols96].

deflection z of the bristles. This single bristle can never slip, as it aggregates all bristles.

For motions with constant velocities, deflection reaches a steady-state value. Deflection z

25

2.2 Joints

is modeled by
dz

dt
=

.
z = v − |v|

g(v)
z (2.12)

with v being the relative velocity between the two surfaces. The function g depends on

many factors, such as material properties and lubrication. A parametrization of g that

describes the Stribeck effect, is

g(v) =
1

σ0

(

FC + (FS − FC)e−(v/vs)2
)

(2.13)

where vs is the Stribeck velocity, FC can be derived with Equation 2.9, and FS can be

derived from Equation 2.8. Values for the Stribeck velocity are chosen by [Ols96] in the

range vs ≈ [10−3, 10−1]. In order not to underestimate friction force for small velocities,

vs should not exceed the lower bound of this range. The total friction force, generated

from bristle bending and viscous friction, is described as

Ffric = σ0z + σ1(v)
.
z + Fv(v) (2.14)

which is equivalent to the equations of motion for a mass spring damper system, where σ0

is stiffness, σ1(v) a velocity dependent damping coefficient and Fv(v) a term proportional

to velocity, representing the the friction force caused by the viscosity of the lubricant (see

equation 2.11). In accordance with [Ols96], values for stiffness should be in the interval

σ0 ≈ [103, 105]. The velocity dependent damping coefficient is given by

σ1(v) = σ1e−(v/vd)2

(2.15)

where vd defines the velocity interval around zero, where damping becomes active. Also,

this value should not be chosen too small, as the motion may pass through zero too often

without slowing down enough to a complete stop. Values for the damping velocity interval

similar to vd ∼ vs are suggested. The authors of [Ols96] propose a relative damping of

ζ = 1. The damping coefficient is then given by

σ1 = 2
√

σ0. (2.16)

2.2.2 Backlash

Backlash, also referred to as free play, is mostly an undesired effect, which allows a small

movement of a part without transmitting a force to the following part. It is caused by

gaps within joints and exists by nature in every joint connection. The only exception is a

weld joint, where there is no relative motion at all. Accordingly, backlash only occurs in

blocked DoFs, where immediate power transmission is desired. Backlash must be reduced

to a minimum in FCSs, since tiny pilot or AP commands might be compensated by the

gaps and do not lead to a surface deflection change. Free play also leads to discontinuities

26

Chapter 2: Physical Components of Flight Control Systems

that can be problematic for flight control algorithms.

Backlash in Revolute Joints

In an FCS, backlash can originate in the revolute joints of the bellcranks, for example.

Presuming there is a clear gap between pin and bushing, the pin could move uncontrolled

in this space without transmitting any force or motion if the friction is disregarded (see

Figure 2.7). This applies to the translational movement of the pin and, of course, to the

rotary movement, which is not taken into account here.

x

y

P1

γ

(a)

(b)

Figure 2.7: (a) Backlash in a bellcrank. (b) Detailed view of the range of the pin
movement in the bushing.

Figure 2.8 shows, qualitatively, the resulting γ over a translational movement ∆x of

P1 (normalized to ∆xmax) for the case of a certain backlash in the revolute joint in P1

compared to the case without any backlash.

Backlash Model for Revolute Joints

To model a revolute joint with a certain backlash, a planar joint consisting of one rotational

DoF and, perpendicular to it, two translational DoFs is used. The translational DoFs allow

the rotary axis to freely move within a certain area, representing the free play.

To constraint the movement to a specified area, a spring damper combination is im-

plemented for each axis, which simulates a collision with the bushing by applying a force

to the pin as soon as the rotary axis exceeds this area. If both translational DoFs are

coupled, any shape can be defined for this free play area. In the following, a circular shape

is intended, as this fits best with a round pin. The schematics for this case are illustrated

in Figure 2.10.

27

2.2 Joints

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

Normalized ∆ x of P1 [-]

R
ot

at
io

n
an

gl
e

γ
[d

eg
]

No backlash
With backlash

Figure 2.8: Normalized outputs over the bellcrank rotation angle.

x

y

z

Figure 2.9: Planar joint with one rotary and two translational DoFs.

For the mathematical model in Equation 2.18, the pin is reduced to an axis with

the position ~p. Representing the backlash clearance, this axis is allowed to move freely

within a certain radius r from the ideal axis, when there is no backlash. Only outside this

area, the spring damper combination ensures that the maximum clearance of the joint

connection is maintained. With

~p =




x

y



 (2.17)

where x and y are the coordinates of the rotary DoF notated in the joint coordinate frame,

the force to maintain the joint connection is calculated as

~Fbacklash =




Fbacklash,x

Fbacklash,y



 =







k~p

(

r

‖~p‖ − 1

)

− c
.
~p for |~p| > r

0 for |~p| ≤ r.

(2.18)

To simulate a collision between solid bodies, the spring stiffness k must be set to appro-

priate high values. The damping term takes into account the inelastic component of the

28

Chapter 2: Physical Components of Flight Control Systems

(a)

x

y

r

~p

(b)

Figure 2.10: (a) Schematics of the revolute joint backlash model. (b) Visualization of
the mathematical model.

collision with the damping coefficient c.

The described backlash model can be combinated with the friction model presented

in 2.2.1.

2.3 Cables

A push-pull rod system, as presented in Chapter 2.1, can partially or entirely be substi-

tuted by a control cable system. As cables can transmit only tensile forces, two cables are

always needed for force transmission in two directions (push and pull). Another option is

the usage of Flexball cables that allow compressive as well as tensile forces. While a cable

system is usually lighter than a rod system, there is still more friction and more backlash

within the system. Furthermore, conventional control cables stretch over time and also

due to temperature changes, which requires a frequent adjustment of the cable tension.

Nevertheless, cable systems are often installed, especially for controlling rudder and trim

tabs.

2.3.1 Tension Regulators

In some FCSs, such as the Boeing 767, there is a significant difference in temperature

expansion of the aircraft’s aluminium fuselage and the steel control cables [Way18]. In

these cases, tension regulators are used to maintain a constant preload in the cables auto-

matically. Typically, FCS are designed to operate with a certain cable tension. Without

tension regulators, temperature changes could cause a variation in the cable tension.

Tension regulators have separate sector halves for each cable end, which can respond

to changes in the cable tension by a spring mechanism. However, both sector halves are

connected via a self-locking mechanism, which allows a tension regulation only if both

29

2.4 Actuators

cable tensions are equal. Otherwise, the control system is active and does not allow any

tension regulation.

Figure 2.11: Schematics of a cable tension regulator.

2.4 Actuators

With airplanes becoming larger, the required control forces naturally increase. Pilots are

not able to fly airplanes with a comfortable amount of effort when the aerodynamic forces

become too large. Therefore, actuators are used to position the control surfaces. For

this purpose, they produce a translational or rotational movement from a certain energy

source, mostly of electrical or hydraulic nature. The first aircraft that used actuators was

the Boeing Model 307 Stratoliner with it’s first flight in 1938, already [RC93].

Besides the control surfaces, actuators are used for gear retraction, steering, breaking,

and moving other components of the PFCS and secondary flight control system (SFCS)

(e.g. flaps, slats) depending, of course, on the type of aircraft. However, to ensure a safe

flight, a persistent authority over the control surfaces by the pilot is essential [RC93].

The control surfaces of commercial airplanes have been powered hydraulically for a

while. However, today there is a trend toward more electric airplanes, and respectively

actuators. Instead of hydraulic FBW actuators, which are connected to a centralized

hydraulic system, electrohydrostatic actuators (EHAs) are used, which are basically self-

contained hydraulic actuators incorporating a hydraulic pump that is driven by an electric

motor. These new types of actuators are fundamentally electrically powered, but gearing

and transmission are hydraulically achieved. A derivative is an electrical back-up hydraulic

actuator (EBHA), which is a mixture between a conventional FBW hydraulic actuator

and a EHA. EBHAs can be driven both in nominal mode hydraulically or electrically in

case of a hydraulic system failure. Modern commercial airplanes use systems of this kind.

In 2005, an Airbus A380 was the first commercial airplane that flew with no hydraulics

[Bos06, Tro07].

30

Chapter 2: Physical Components of Flight Control Systems

The Dreamliner, Boeing’s 787-8, is the first large-capacity aircraft that uses electrome-

chanical actuators (EMAs) within the PFCS, in particular to control two spoiler pairs on

the wing surfaces [Boe14]. Today, spoilers can be counted among the PFCS, as they

are also used for roll maneuvers in FBW airplanes. In EMAs all hydraulic technology

is eliminated since they consist merely of a DC motor and a gear. Actuators containing

hydraulics are, indeed,x by far stronger than EMAs. However, with a lower complex-

ity, a lower weight as well as easier maintenance, they are very attractive for especially

low power applications [Bos06]. Furthermore, they qualify perfectly for smaller aircraft

with very limited payloads, such as in general aviation. This thesis only considers EMAs

amongst actuators, as they are state-of-the-art.

2.4.1 EMA Model with Thermal Dependencies

The rotary actuator model and the thermal model presented in the following originate

from [LHH]. The EMA model is based on the assumption that a brushless DC motor

can be represented by a permanent magnet brushed DC motor. It disregards electrical

commutation effects for simplification. However, thermal dependencies are considered, as

they may have major impact on the system’s performance.

+

L R

.
ϕ

−

ucmd

Figure 2.12: Equivalent circuit diagram for the EMA model.

The equivalent circuit diagram for this model is shown in Figure 2.12. The differential

equation describing the motor dynamics is given by

L
di(t)

dt
= ucmd(t) − i(t)R(Tcoil) − ke(Tcoil)

.
ϕ(t) (2.19)

with phase-to-phase inductance L, motor current i(t), a controller commanded voltage

ucmd(t), coil temperature Tcoil, motor speed
.
ϕ(t), and voltage constant ke(Tcoil). The

phase-to-phase resistance R(Tcoil) is defined as

R(Tcoil) = R(T0) (1 + αT0
(Tcoil − T0)) (2.20)

where αT0
= 0.00393K−1 is the annealed copper linear resistance temperature coefficient

31

2.4 Actuators

and T0 is the specified temperature of the material coefficients. The torque output Tmotor

is modeled by

Tmotor (Tcoil, t) = kt(Tcoil)i(t) − kf
.
ϕ(t) (2.21)

where kt(Tcoil) is the motor torque constant, and kf is the friction coefficient. Regarding

DC motors, the motor voltage constant equals the motor torque constant and is given by

ke(Tcoil) = kt(Tcoil) = kt(T0) (1 − B (Tcoil − T0)) (2.22)

with the temperature coefficient of remanence B(NdFeB) = 0.001K−1 for Neodymium-

Iron-Boron (NdFeB) magnets, which are typically used in brushless DC motors. The

acceleration of the motor’s armature
..
ϕ is modeled by

..
ϕ =

Tmotor + Text

J
(2.23)

where Text is an external load and J is the armature’s inertia tensor. This brushless DC

motor model possesses a typical characteristic curve such as the one shown in Figure 2.13.

Rotational Speed

To
rq

ue

P
ow

er

.
ϕnoload

Tstall

Pmax
—– Torque
—– max. Power

Figure 2.13: Characteristic curve of a DC motor.

Thermal Model

To derive the equations for the thermal model, a thermal equivalent electric circuit, shown

in Figure 2.14, can be used. In compliance with Kirchhoff’s current law, heat flow dis-

tributes to both paths within this parallel circuit:

Ploss(t) =
.

QC +
.

QR (2.24)

∆T (t) = ∆TC = ∆TR + ∆TC,env
︸ ︷︷ ︸

=0

(2.25)

Thus, heat flow caused by a power loss Ploss(t) can be described as

32

Chapter 2: Physical Components of Flight Control Systems

Ploss(t) Cth

Rth

Cth,env = ∞

Figure 2.14: Equivalent thermal circuit of a body heating up due to a heat flow source
and heat lost to the environment.

Ploss(t) = Cth
d∆T (t)

dt
+

1

Rth
∆T (t) (2.26)

with the temperature difference ∆T (t) between a body with a given thermal resistance

Rth, a heat capacity Cth, and a thermal time constant τth = RthCth and its environment

is Tbody − Tenv. A Laplace transformation to the frequency domain reveals the equivalent

transfer function for an easy implementation in Simulink:

Ploss(s) = Cths∆T (s) +
1

Rth

∆T (s) (2.27)

G(s) =
∆T (s)

Ploss(s)
=

1
τth

Rth
s +

1

Rth

(2.28)

Within the scope of this thesis, two bodies for thermal analysis are considered, namely

the coil itself and the remaining parts of the motor. Thus, the coil temperature is given

by

Tcoil(t) = Tenv + ∆Tcoil,motor(t) + ∆Tmotor,env(t) (2.29)

2.4.2 Gearbox

As the rotational speed and the torque of a brushless DC motor are dependent on its diam-

eter, gearboxes are required to appropriately alter these values for general or commercial

aviation airplanes. Typically, a mechanical advantage greater than 1 is used, which lowers

the output’s rotational speed and increases the torque to suitable values. In the following,

index 1 indicates the input side of the gearbox (DC motor side), whereas index 2 indicates

the output side. With a given gear ratio G and no backlash, the transmission is described

as 


ϕ1
.
ϕ1



 = G




ϕ2
.
ϕ2



 (2.30)

where ϕ2 is the position and
.
ϕ2 is the velocity of the gearbox output, and ϕ1 is the position

and .
ϕ1 is the velocity of the gearbox input, which is also the DC motor’s output. The

33

2.4 Actuators

transmission of the torques is inversed and can be written as

T1 =
1

G
T2 (2.31)

with T1 being the torque of the motor Tmotor and T2 representing the torque on the

output side of the gearbox. The external torque in Equation 2.23 is the sum of external

loads and losses due to friction and inefficiencies, so that

Text =
T2

G
− TCoulomb − TV iscous (2.32)

With the gearbox efficiency ηMech, the coulomb losses are modeled by

TCoulomb =







(1 − ηMech)T1, if | .
ϕ1T1| > | .

ϕ2T2|

(1 − ηMech)
T2

G
, if | .

ϕ1T1| < | .
ϕ2T2|

(2.33)

depending on the power flow within the gearbox. The losses due to viscous friction are

given by

TV iscous = ηV
.
ϕ1 (2.34)

where ηV is the viscous friction coefficient. Thus, with T1 = Tmotor and T2 being the

torque at the gearbox output side Text,gb, Equation 2.23 can be written as

..
ϕ =







ηMechTmotor + Text,gb

G
− ηV

.
ϕ1

J
, if | .

ϕ1T1| > | .
ϕ2T2|

Tmotor + ηMech
Text,gb

G
− ηV

.
ϕ1

J
, if | .

ϕ1T1| < | .
ϕ2T2|

(2.35)

2.4.3 Controller

Ultimately, an EMA is controlled by regulating the voltage that is applied on the coil. The

authors of [LHH] use a cascade position controller, such as the one shown in Figure 2.15.

The first cascade (outer loop) controls a command velocity velcmd using a proportional-

integral controller based on the difference between commanded and actual position. The

difference between this velocity command and the actual velocity is the control devia-

tion that is fed to a proportional controller, which manipulates a command current icmd

through the coil. The inner loop compares this command current with the actual coil

current and controls a command voltage ucmd by a proportional controller. Obviously,

this command voltage is limited to the supply voltage ±usupply of the system. If the EMA

model represents an existing actuator, the data sheet helps to calculate the Kp_cur gain,

as Pmax and Imax should be listed

Kp_cur =
Pmax

I2
max

. (2.36)

34

Chapter 2: Physical Components of Flight Control Systems

x
Ki_pos

x
Kp_pos

x
xKp_vel

Kp_cur

+
+ +

-

+
-+

-

poscmd

pos

velcmd

vel

Icmd

I

ucmd

∫

Figure 2.15: Actuator cascade controller.

2.5 Clutches

As already mentioned in the introductory chapter, clutches are used to intentionally break

the power transmission at a certain point of a FCS. Within FCSs clutches are mostly

safety-critical components that decouple actuators from the rest of the FCS in the event

of an error.

Depending on the type of aircraft or even on the operating mode, there may be safety

requirements that are completely contrary to those of other aircraft types or operating

modes. For instance, clutches that link actuators to a mechanical FCS or clutches in a

manned optionally piloted vehicle (OPV) must safely open in the case of an error (fail

safe), whereas clutches which are installed in a UAV must never be opened inadvertently

(fail secure). Furthermore, clutches should not allow a significant amount of free play, as

this may affect the performance of flight control algorithms or even pilots. Additionally,

they must not slip unintentionally, as this is similar to opening the clutch, which means

a certain loss of control. Despite the great variety of clutches, electromagnetic tooth

clutches are often used in FCSs, as they meet these requirements very well.

2.6 Sensors

Sensors represent the senses of an aircraft. They are technical devices that measure

a certain physical property (e.g. temperature, pressure, acceleration) and output the

quantity in the form of an electrical signal. This analog signal is typically converted

into a digital signal using a analog-to-digital converter (ADC). A data interface then

allows the communication with other components using standardized interfaces such as

Recommended Standard 232 (RS-232) or bus systems like Controller Area Network (CAN)

(e.g. ARINC 825).

Analog
sensor

ADC
Data

interface

Analog signal Digital signal
e.g. RS232,

CAN

Figure 2.16: Sensor signal processing.

Sometimes the physical properties themselves are not returned but are used to derive

35

2.6 Sensors

further parameters, such as when measuring positions or angles. Today’s aircraft use

countless sensors to measure

� accelerations or angular rates (inertial sensors, accelerometers and gyros),

� static and dynamic pressure, temperatures, flow angles (air data sensors),

� pilot forces or control inputs,

� control surface deflections,

� engine parameters,

� position or velocity (global navigation satellite systems).

In the context of this thesis, sensors for measuring pilot forces and position sensors to

determine control surface deflections or control inputs are of particular interest. Position

measurements in commercial and large aircraft are mostly made using inductive measur-

ing methods with Linear Variable Differential Transformer (LVDT) or Rotary Variable

Differential Transformer (RVDT) sensors. These are electromechanical transducers that

allow for measuring linear or rotary displacements. They enable the determination of the

pilot control inputs or the control surfaces deflection. Using several sensors along one

axis, even actuator runaways or broken links can be detected, for instance.

Forces within the control rods of a mechanical FCS can be measured using a strain-

gauge or spring/LVDT-based instrumentation [Hon15]. Force sensors within the load-

path of an FCS can be used to determine aerodynamic forces or to measure pilot forces.

The latter is in particular used for a force-based disengagement of AP systems as is, for

example, recommended by Airbus [Air93].

2.6.1 Error Characteristics

No sensors are ideal, instead they exhibit different types of error characteristics that can

be grouped in three categories [Hol17c]:

Systematic Errors

Typical systematic errors are biases, scale factor errors, nonlinearities, or misalignments,

and can be determined and removed by calibration.

Random Errors

The most popular random error is sensor noise, which originates for example from mechan-

ical instabilities, vibrations, or electrical noise [Gro08]. Noise errors cannot be removed

completely, but certain filters such as the Kalman filter can be used to minimize them.

36

Chapter 2: Physical Components of Flight Control Systems

Errors Due to Sensor Dynamics

Dedicated sensors, such as the vertical speed indicator or even accelerometers, exhibit a

time-delayed output due to the way the values are measured.

37

3

A Bidirectional Method for

Connecting CAD Tools with

Simscape Multibody

This chapter describes the development of a method for bidirectional data transfer be-

tween CAD software and Simscape Multibody. The main purpose is to close the presented

tool-chain gap and to translate CAD models automatically to MBS models. After a mar-

ket overview over existing solutions, the requirements on the method are specified. Based

on this information, a software architecture is designed and the implementation of essen-

tial features is described. The chapter concludes with a presentation of the developed

optimization framework.

3.1 Market Overview

The world of interfaces between CAD systems and MATLAB or Simscape Multibody is

fairly negligible. This section lists the most important and popular ones that come closest

to the method developed within the scope of this thesis. Each interface application is

examined in particular with regards to supported CAD systems, communication and

interfaces, Simscape Multibody model building, and required manual action. A definition

of the kinematic constraints within the CAD tools is premise of all listed software products.

3.1.1 Simscape Multibody Link

MathWorks has its own interface to the CAD world called Simscape Multibody Link. It

is included in the installation of MATLAB; only the corresponding plug-ins for the CAD

tools have to be downloaded and installed separately. So far, these plug-ins are available

for SolidWorks R©, PTC R© Creo
TM

, and Autodesk Inventor R© [The16b]. Popular CAD tools

like CATIA or NX are not yet supported.

39

3.1 Market Overview

Simscape Multibody Link and its plug-ins allow CAD assemblies to be exported from

the corresponding tools to an XML file. This XML file contains all of the essential data

for a Simscape Multibody model. At the same time, STL files are generated that allow a

3D visualization of the individual parts within the Mechanics Explorer.

Using the smimport function of the MATLAB engine starts the import of the CAD

model into Simscape Multibody by building a model on the basis of the information stored

in the XML file. Thereby the generated Solid blocks are automatically linked to their

corresponding STL file.

Supported
CAD System

xml

stl

MATLAB
smimport

Simscape
Multibody

Model

Simscape Multibody Link Plug-In

Figure 3.1: Concept of Simscape Multibody Link.

The final outcome is a translated and parametrized Simscape Multibody model with

automated visualization capabilities. This free interface is appropriate if a CAD model

needs only to be converted without any other communication between the CAD tool

and MATLAB. However, there is clearly room for improvement, as the data transfer is

file-based and many widespread CAD tools are not supported.

Table 3.1: Features and functionality of Simscape Multibody Link.

CATIA
Connectivity

Bidirectional
Connection

Controllable
from MATLAB

MBS Model
Building

Parametrized
Model

- - X X X

3.1.2 CAMAT

CAMAT (CATIA-MATLAB-Translator) was developed by employees of the PROSTEP

AG as a proof of concept of a translator for generating SimMechanics 1st Generation

models from CATIA V5 models [BFS10]. The authors state that they selected these par-

ticular applications because they are very popular tools in their respective domains. The

translator itself uses CATIA’s programming interface, component application architecture

(CAA), which presents an API to the internals of the software [Dzo08]. The usage of

this particular API requires an additional expensive license. However, it also provides

40

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

profound access to CATIA and is used in this case to extract all relevant information,

saving it in the form of an XML file. This intermediary XML file is created in the same

manner that the Simscape Multibody Link interface XML files are created. Afterwards,

the MBS model is built by importing and processing the XML file by the MATLAB en-

gine. For visualization, CAMAT does not use the Mechanics Explorer but CATIA itself

by actuating the corresponding joints.

xml

Interoperability
Platform

MATLAB
smimport

Simscape
Multibody

Model
CATIA V5

CAMAT

Figure 3.2: Concept of CAMAT.

When using CAMAT, both software tools are controlled remotely via the interoper-

ability platform, a GUI. Unfortunately, this prevents the user from applying the broad

functionality of the MathWorks suite to the CAD model.

With CAMAT being a proof of concept, it definitely has potential, but there are some

downsides to the concept due to missing functionality and license costs. The interface is

not able to change CAD parameters from MATLAB. Further, extra CATIA licenses have

to be purchased because functions of the CAA library are used. Finally, no optimization

functionality is available even though there is a bidirectional connection between the CAD

tool and MATLAB.

Table 3.2: Features and functionality of CAMAT.

CATIA
Connectivity

Bidirectional
Connection

Controllable
from MATLAB

MBS Model
Building

Parametrized
Model

X X - X -

3.1.3 CAPRI

CAPRI (Computational Analysis Programming Interface), by CADNEXUS, is a CAD

vendor-neutral API that can be used for a bidirectional connection between the geo-

metric modeling world and analysis suites [DWH03]. In addition to an integration of

CAD systems with computer-aided engineering (CAE) applications, CAPRI allows for

automatic design updates triggered by human interaction and other software such as op-

timization tools [CADa]. Moreover, the interface is able to communicate with MATLAB

41

3.2 Basic Strategy and Overview

using the CAPRI MATLAB Connector [CADb]. However, there is no opportunity pro-

vided to translate CAD models to Simscape Multibody models. CAD data can only be

transferred to MATLAB, and CAPRI functions can be used in MATLAB scripts.

CAPRI does cover another important feature: bidirectional communication. As men-

tioned in the introductory chapter, communication in both directions is essential to an

optimization of CAD parameters from MATLAB.

Supported
CAD System CAPRI Platform MATLAB

CAPRI

Figure 3.3: Concept of CAPRI.

Table 3.3: Features and functionality of CAPRI.

CATIA
Connectivity

Bidirectional
Connection

Controllable
from MATLAB

MBS Model
Building

Parametrized
Model

X X X - -

3.2 Basic Strategy and Overview

Before the method used in this thesis is specified, the basic strategy for its development is

presented in this section. In terms of development processes, both worlds, the construction

and the simulation world, complement one another very well, as the results of one influence

the model of the other. Especially MBS requires mechanical and kinematic information

that somehow already exists in a digital form in the CAD software. Therefore, the primary

task of the method presented in this thesis is to abstract the CAD model and save it to

a data model that can be used for the creation of an equivalent MBS model in Simscape

Multibody. This requires the processing and translation of the mechanical and kinematic

data to a form that is supported by the MBS software. Furthermore, algorithms must

be developed that analyze relationships between components and calculate an adequate

diagram structure in order to generate a reasonable and human manageable MBS model.

To ensure that the broad spectrum of MATLAB functionality can access CAD pa-

rameters, an implementation of the method in MATLAB itself is practical, as it ensures

a seamless integration in the MathWorks world. The utilization of object-orientated pro-

gramming (OOP) allows a combination of dividing the method into sensible units and

defining a convenient data model. Separating the CAD-specific parts from the CAD-

independent part enables a reasonable degree of modularity. Therefore, CAD-specific

components are outsourced to DLLs, which establish a connection to the corresponding

construction software using Microsoft’s COM technology.

42

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

The V5 Automation API of Dassault Système’s CATIA V5 is accessible via the COM

technology and allows for the capture of all the necessary information. In this way, the

CAAV5 API, which is associated with expensive licensing costs, can be omitted.

The method developed in this thesis helps to solve today’s typical engineering problems

when developing mechatronic products but focuses particularly on the design of FCSs.

An optimization framework is developed that incorporates the method of this thesis and

allows for a straightforward optimization of CAD and MATLAB / Simulink parameters

based on results of a dynamic simulation. Naturally, this requires the communication

between the software tools to be bidirectional in order to enable the modification of

CAD parameters. In addition, models describing certain physical effects that occur in

mechanical systems and can significantly affect system behavior are integrated. The

parametrization of these models is thereby undertaken in the CAD software tools.

3.3 Requirements

The development process introduced in Chapter 1.4 requires functionality that the previ-

ously mentioned existing software solutions lack. This concrete process allows for deriving

important requirements on the method developed in this thesis, which are formulated in

this section. However, this collection of requirements is not intended to represent a com-

plete software requirements specification but lists the essential and desirable features:

� Bidirectional Connection Between CAD Tools and MATLAB: At the core

of the method presented in this thesis is an intercommunication between CAD ap-

plications and MATLAB. This can be achieved by establishing a connection that

allows for a data stream from the CAD tool to MATLAB and vice versa. Such a

bidirectional data exchange is fundamental for an optimization of CAD models with

respect to MBS results. It allows CAD parameters to be changed from MATLAB

and the communication loop over both tools to be closed.

� Support of CATIA V5: As previously mentioned, the CAD software of Dassault

Systèmes is one of the most widespread tools. Thus, the support of CATIA V5 by

the developed method is essential.

� Modular Concept for an Easy Connection of Additional CAD Systems:

The technical solution that establishes a bidirectional connection may not be CA-

TIA-specific. It must be modular and has to provide the opportunity to easily

attach additional CAD systems.

� Provision of Necessary Data: All the information that is required to automati-

cally build a Simscape Multibody model has to be captured by the developed method.

Table 3.4 gives an overview over required and optional data.

43

3.4 Specification of the Software Architecture

Table 3.4: Data required for building a Simscape Multibody model.

Object Required Information

Parts Instance name, mass, position of CG, inertia tensor, po-
sition, orientation

Joints joint name, type, parts, direction, origin

� Automatic Simscape Multibody Model Building: The transfered CAD data

needs to be processed automatically so that a Simscape Multibody model is created

without any manual action. As such, the created model has to be be parameter-

ized, meaning the data is stored in the workspace of MATLAB while the Simscape

Multibody model references the corresponding variables.

� MATLAB as Master: The method must be controllable by MATLAB. This is

necessary for applying MATLAB functions, such as an optimization algorithm, to

the CAD model. MATLAB must be able, for example, to change CAD parameters

and trigger an update of altered CAD data like masses or inertia tensors.

3.4 Specification of the Software Architecture

The specification of the approach presented in this thesis is the subject of this section.

First boundary conditions for the solution are defined. Afterwards a high-level overview

of the partitioning of functionality and responsibilities is provided. Finally, a class-based

software architecture is presented.

3.4.1 Design Considerations

This subsection briefly deals with general constraints, dependencies, and objectives before

focusing on the concept behind.

Operating Environment

The developed method is intended to be operated on a standard personal computer with

at least Windows R© 7 running as the operating system. Furthermore, the method is

considered to be an "offline" interface, meaning both software tools as well as the method

itself are meant to run on the same computer.

Development Environment

For the sake of completeness, the software environment used for the implementation of

the approach is specified below:

� Microsoft R© Windows 10 Version 1607

44

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

� MathWorks’ MATLAB Version 2015b (english language)

� Dassault Systèmes’ CATIA Version 5 Service Pack 7 Release 20 Hot Fix 54 (german

language)

� Microsoft’s .NET Framework Version 4.6.2

� Microsoft’s Visual Studio 2010 Version 10.0.40219.1 SP1Rel

Programming Paradigm

As part of coding, the paradigm of OOP is used, as this allows one to create classes

that represent objects with certain attributes and certain behaviours in the form of meth-

ods. Since classes can be nested, OOP provides the opportunity to define a custom data

structure, which is tailored to the data.

User Interface

In terms of the user interface (UI), the control is simple but not graphical. Since the

focus of this thesis lies on functionality and not design, a command-line interface (CLI)

is used instead of a GUI.

3.4.2 Partitioning of Functionality and Responsibilities

Before implementing the method, a basic concept or software architecture with proper

partitioning of the functionality and responsibilities must be specified. Figure 3.4 shows

a concept that satisfies all the requirements defined in Section 3.3.

The basis of the approach developed in this thesis is a framework coded in MATLAB,

the controlling platform. In this way, the requirement that the method has to be control-

lable by MATLAB is ensured. Furthermore, as stated in the contributions of this thesis,

a bidirectional connection provides a data exchange in both directions and closes the

loop over both software tools, which is necessary for an optimization of CAD parameters

from MATLAB. This is indicated by the bent arrows. Additionally, instead of creating

an XML file and using the smimport command, the approach presented in this thesis

stores the particular data in a custom data structure and builds a Simscape Multibody

model programmatically.

In order to enable an operation with multiple CAD software tools, a certain degree of

architecture modularity is reasonable. This can be achieved, for instance, by the separa-

tion of the functions that are specific to the individual CAD system and the ones that are

independent of it. With such a separation, only the CAD-system-specific pieces need to be

implemented in order to attach a new 3D modeling environment. The part containing the

independent functions does not have to be changed. Collecting all functions that are spe-

cific to one CAD system in a DLL, which can be embedded in the MATLAB framework,

is an appropriate and very practical technical solution that has many advantages.

45

3.4 Specification of the Software Architecture

MATLAB
smimport

Simscape
Multibody

Model

CAD System
(e.g. CATIA, NX,
SolidWorks, ...)

CAD Data

P a ra m e te r C h anges

Figure 3.4: Interface concept resulting from the requirements defined in Section 3.3.

DLL files represent the shared library concept of Microsoft Windows, which provides

a mechanism for shared code. As such, a DLL contains code or a collection of functions

that might and can be used by multiple software programs at the same time. They are not

executable directly, but they are intended to be loaded or integrated by external software.

Having all functions that are dependent on a 3D modeling tool packaged in such a DLL

file allows new software to be easily attached by simply creating a new DLL without having

to change the MATLAB framework itself. An interface concept of this kind is illustrated

in Figure 3.5. However, this requires the specification of a generalized interface between

the DLLs and the framework (see Appendix C). Every DLL has to match this generalized

interface. In this way, each DLL establishes a connection to the particular CAD software

and acts as an intermediate translator.

CAD System COM
Server

DLL
specific for

CAD system

MATLAB

Framework

Simscape
Multibody

Model

ge
ne

ra
liz

ed
in

te
rfa

ce

Figure 3.5: Communication and partitioning of the interface.

The separation of the DLL and the framework code in this solution has several ad-

vantages. For instance, the framework part must not be recompiled or even revealed in

case of further DLL developments or updates. Especially in terms of updates, this is

advantageous, since DLLs can be easily replaced if, for example, a CAD system’s API

changes. Moreover, they can be used by other software tools. In general, the program-

ming language of the DLLs is independent of the MATLAB framework as long as the

generalized interface can be satisfied.

46

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

The individual parts of the interface concept of Figure 3.5 and their responsibilities

within the overall context in particular are discussed in the following.

COM Server

As Figure 3.5 shows, all of the CAD system’s communication runs via its COM server. It

makes the API of the CAD system accessible to all COM-capable programming languages

using Microsoft’s COM technology. This standard enables reusable software components

and allows for easy interaction with these objects across process or software boundaries.

The COM server therefore provides COM components or objects, including their prop-

erties and methods, to COM clients. After a client has connected to the server, it can

create instances of the server’s objects, which allow access to the data of the running

process. Therefore, the client sets a pointer to the corresponding object instance, making

it available within its own process (see Figure 3.6).

COM Object B

-property 1

+method 1
+method 2

COM Object A

-property 1
-property 2

+method 1
+method 2
+method 2

COM Object C

-property 1
-property 2
-property 3

+method 1
+method 2

COM Client

Pointer

COM Server

Application

Figure 3.6: Example of Microsoft’s COM technology.

In this thesis’ approach, the DLL files are the COM clients that communicate with the

CAD tools. The counterpart, the COM server of the CAD software tools, is not developed

within the scope of this thesis but comes already with the programs and is addressed by

the DLLs. It is used for communicating with the API and enables one to create objects of

sessions, assemblies, or parts, for example. It is essential that the properties and methods

of these objects provide all the information required to build a Simscape Multibody model

automatically. The API is a sort of a bottleneck in terms of the data exchange. If it is not

able to supply the needed data, the CAD tool is not suitable for the method developed

47

3.4 Specification of the Software Architecture

in this thesis.

CAD Specific DLL Files

The DLL files that represent the corresponding COM client for the CAD systems are an

important part of the approach. They have to be tailored to the particular CAD software

and must match the generalized interface to the MATLAB framework. Consequently,

they do not yet come with the software programs. Instead, they must be developed for

each CAD tool. Regarding the communication between the DLLs and MATLAB, the

.NET framework, a successor to the COM standard, is used. It enables the DLL files

to use features of the .NET framework and allows for easy integration of these files into

MATLAB by simply using the NET.addAssembly() command. This enables it to

access all public functions of the DLL.

The main task of the DLLs is to handle the communication between two particular

software tools. They act as a connector and translate generalized high-level commands

into CAD system specific algorithms. The DLLs are in particular responsible for the

bidirectional communication. They gather all the necessary data and send it back in a

form that matches the generalized interface. This is realized by functions that collect

specific data and store it in the return value. These functions are then called from the

MATLAB framework. Moreover, the data exchange from MATLAB to the CAD software

is also realized within the DLL. For that reason, the DLLs contain a method that addresses

user-defined parameters in the CAD model and modifies their values according to the

input arguments.

MATLAB Framework

The MATLAB framework is the essential part of the approach presented in this thesis.

It represents the human-machine interface (HMI) and has control of the entire software

package. The HMI, which is basically constituted by MATLAB’s command line, allows

the user to control the method. A command from the user triggers the execution of

the corresponding algorithms, such as connecting to a CAD tool, opening a model, or

transferring CAD data. In addition, the HMI is used to display information that might

be relevant for the user.

To be able to control the CAD system or the whole software package, the CAD-specific

DLL must be embedded.

Additionally, the framework has two other important responsibilities. On the one

hand, it manages the entire data storage. The framework contains a system of several

classes, which is specially tailored for storing CAD related data. These class definitions

are used to create corresponding objects, such as parts, joints, or constraints. On the

other hand, the framework processes this data and automatically builds an equivalent

MBS or Simscape Multibody model.

48

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

3.4.3 Class-Based Framework Architecture

This subsection focuses on the class structure of the MATLAB framework, part of the

developed method. Figure 3.7 provides a simple overview of the framework’s classes.

It allows one to grasp the relation between the classes by providing two characteristics,

namely the navigability and the type of the relation. More details on the classes can be

found in Appendix B. If a connection between two classes includes an arrow tip, navigation

is only possible in the arrow’s direction. However, if it is a line without an arrowhead, it

can be navigated in both directions. Furthermore, a dashed connecting line indicates a

reference to an already existing instance of a class. On the other hand, if a line is solid,

the class instance object is truly created and a property or part of the creating object.

In the following, the relationships and responsibilities of the classes are briefly dis-

cussed. Classes with a lined background in Figure 3.7 represent the data storage classes,

which are primarily used for structuring and saving the CAD data. They perform very

little calculations and data processing and offer barely any functionality. Contrary to

these data storage classes, the unshaded functional classes are basically responsible for

controlling the interface and process data.

iCADModel iSimulinkModelBuilder

iCADSystem

CAD specific
DLL

iProduct

iConstraint iMechanismiPart

iJoint

iParameter

iTransformData

Functional Class
Data Storage
Class
Property

Reference
Unidirectional Link

Figure 3.7: Overview of the framework’s classes.

The central class of the framework is iCADModel , of which the user creates an object

instance to control the framework. As a sort of root object, it encapsulates the entire

framework, including the CAD data, and is stored in the MATLAB workspace. It creates

49

3.5 Implementation of the Key Functionality

an instance of the iCADSystem class, which is stored as a property of the iCADModel

object. The iCADSystem object defines the generalized interface and includes one of the

CAD specific DLLs to establish a connection to a particular CAD software.

Any data that iCADModel receives from iCADSystem is processed and saved in a

hierarchical structure in the form of objects of the data storage classes. In addition to

this hierarchy, objects are partially cross-linked by references, which allows for further

navigational opportunities.

The iCADModel class also creates an instance of the iSimulinkModelBuilder

class and saves it as a property as soon as it is required. As part of the iCADModel

object and due to the bidirectional linking of the classes it is able to access the objects of

the data storage classes when building a Simscape Multibody model. These objects also

serve as the models’ databases and are referenced when parameterizing the model.

3.5 Implementation of the Key Functionality

As previously mentioned, a description of the implementation of the individual classes

is intentionally omitted here because of the amount of irrelevant information but can be

found in Appendix B. Instead, the key functions of the approach presented in this thesis

are explained in the following. For a manual with more detailed information about the

application of the method, see Appendix A.

3.5.1 Connecting MATLAB and the CAD Software

The connection between MATLAB and the CAD software is established as soon as the user

creates an instance of the iCADModel class. Consequently, an argument is passed that

contains the path to the assembly or product file of the CAD model. Depending on the file

extension, the CAD system is determined and a new instance of the iCADSystem class

is created within the iCADModel object. Depending on the software, the correspond-

ing CAD-specific DLL is then made accessible to the framework. Each DLL provides a

Start() method, which creates a new object or instance of the CAD software. The

nested function calls are shown in Figure 3.8.

3.5.2 Transferring CAD Data to MATLAB

The method developed in this thesis contributes to a more integral development process

for mechatronic products by closing the gap between design and simulation software.

The method must therefore transfer specific data from the CAD tool to MATLAB. This

process is described in the following.

The transfer of CAD data is initially triggered by the user with an object of the

type iCADModel . The object provides a GetCADData method, which sequentially calls

functions from the embedded DLL. This returns the specific data. The communication

50

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

myModel = iCADModel(’myProduct.CATProduct’);

myModel object

CADSystem = iCADSystem(TypeOfCAD);

CADSystem object

CAD = NET.addAssembly(PathToDLL)
CAD.Start();

CAD object / DLL

CATIA = CreateObject("CATIA.Application")

Figure 3.8: Establishing a connection to the CAD Software.

concept is shown in Figure 3.9 while the mentioned sequence is illustrated in Figure 3.10.

User calls framework
function to retrieve data

Framework calls function
in DLL to query CAD data

DLL gathers CAD data

MATLAB receives
and processes func-

tion’s return value
and creates instances

MATLAB CAD system specific DLL

Return value
of function

Figure 3.9: Activity diagram of the data transfer concept.

First, all data regarding parts and products is transferred, followed by constraints, joints,

and finally, the user-defined parameters. The split of the functions might be slightly

less efficient for an initial transfer, but it allows particular functions to be reused and

redundant information to be skipped when, for instance, only a subset of the CAD data

is updated during optimization. As such, a significant amount of time can be saved in

these cases. For the same reason, the data capture is clustered instead of having each

parameter queried individually by MATLAB, which is less time efficient due to the many

function calls.

The data of a complete transfer is listed in Table 3.5. The position and orientation

51

3.5 Implementation of the Key Functionality

Products
and parts Constraints Joints

User-defined
parameters

Figure 3.10: Sequential steps of the CAD data transfer.

of products and parts is noted in the world frame, while the CG position and the inertia

tensor are noted in the coordinate frame of the particular body. Constraints themselves

Table 3.5: Required CAD Data.

Object Required Information

Products Instance name, part name, position, orientation, parts
(optional: filename)

Parts Instance name, product name, mass, position of CG,
inertia tensor, position, orientation (optional: filename,
material density, material Young’s modulus, color)

Constraints Parent product, constraint name, type, geometry, parts,
direction, origin

Joints Parent product, mechanism name, joint name, type,
constraints

cannot be created directly in Simscape Multibody. In CATIA, joints more-or-less repre-

sent a collection of constraints so that the essential information regarding the associated

parts, position, or orientation is not a property of the joint objects themselves. For this

reason, data related to constraints is transferred to gather the essential joint data. The

geometry attribute essentially returns the dimension of the constraint and can either be

a point, a line, or a plane in this thesis. This information is particularly important for

the interpretation of the constraint or joint direction when generating joint coordinate

frames in post-processing (see Subsection 3.5.3). The constraint type is primarily used

to determine parts that are fixed in 3D space. Considering future features, the geometry

and type attributes can also be further processed for an automatic determination of joint

types based on constraint data, for example. Regarding joints, the essential information

is the joint type, which defines the DoFs at the end. In Figure 3.11, all joint types that

are supported by the approach of this thesis as well as their DoFs (orange) are shown. As

described, the joint direction, orientation, and the associated parts are gathered over the

corresponding constraints.

Updating CAD Information

A modification of user-defined parameters might very likely result in a change of part

dimensions, part positions, or orientations. However, assuming that the topology of the

model has not changed, only a subset of parameters may have been affected by the mod-

ification. The number of parts, part names, or joint types, for instance, still remain the

52

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

Rigid / Weld Joint
Type ID 1

x

y

z

Revolute Joint
Type ID 2

x

y

z

Prismatic Joint
Type ID 3

x

y

z

Cylindrical Joint
Type ID 4

x

y

z

Planar Joint
Type ID 5

x

y

z

Spherical Joint
Type ID 6

x

y

z

Degree of
Freedom

Figure 3.11: Overview of joints supported by the interface with their degrees of freedom.

same and do not have to be queried again. Omitting these unchanged values when query-

ing an updated dataset is time-saving, which is particularly useful for iterative parameter

changes.

To enable such a time-efficient data update, the UpdateCADData method is imple-

mented. It is assumed that parameters are not used to change the CAD model topology

but to parameterize, for example, dimensions, positions, or material constants. This en-

ables one to query only a subset of parameters in a time-optimized manner and to skip

time-consuming data sources that are unaffected by a parameter change, such as products,

joints or user-defined parameters. Nevertheless, user-defined parameters are included in

the update query by default, but the method allows them to be omitted with an optional

boolean argument when required. The individual sequential steps that are performed to

update the CAD data are illustrated in Figure 3.12.

Parts Constraints
[optional]

User-defined
parameters

Figure 3.12: Sequential steps for updating CAD data.

53

3.5 Implementation of the Key Functionality

3.5.3 Data Storage and Post-Processing

The data that is returned by the DLL methods to the GetCADData or UpdateCADData

method is then post-processed. Depending on the data, objects or instances of the corre-

sponding class are created, to which the transferred data is assigned. At the end of the

process, the data structure is generated by nesting objects and their properties. Apart

from generating the data structure, some of the data has to be post-processed. In Sim-

scape Multibody, solids and joints are positioned and oriented relatively to each other.

Since positions and orientations which come from the CAD software are notated in the

global coordinate system, relative translations and rotations between them have to be

computed for a sequential modeling. Therefore, joint coordinate frames are generated

and quaternions are calculated to describe relative orientations of parts and joints.

Data Structure of the MATLAB Framework

Class properties and the nesting of objects that result from the specification of the classes

(see Figure 3.7) determine the data structure of the MATLAB framework. In Figure

3.13, the CAD model data is shown. For a complete overview of the implementation, see

Appendix B.

Root Product

Elements

Constraints

Parameters

Mechanisms

Joints

Figure 3.13: Data structure of the MATLAB framework.

The data structure is mainly based on the tree structure of CATIA V5, since this tool

was the only one available at the time of the software specification. Also at this time, it

was assumed that the data or tree structure of other common CAD tools was similar to

that of CATIA, which is illustrated in Figure 3.14. In order to minimize the effort for the

development of new DLL files, the scope of the DLL code must be as small as possible.

For that reason, the data storage or class structure of the presented method is similar to

the data structure of CATIA V5.

54

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

Root Product

Parts and Product

Constraints

Applications

Mechanisms

Joints

Figure 3.14: Tree structure of CATIA.

Calculation of Quaternions

Quaternions are used for the attitude representation of solids or joints with respect to

reference coordinate frames and are commonly applied in kinematics since they offer ad-

vantages over the Euler angles. According to [GY12], there is no singularity such as the

gimbal lock and the computational costs are fewer. The basis for the widespread quater-

nion representation is Euler ’s rotation theorem. It states that the relative orientation of

any two coordinate frames can always be expressed by exactly one rotation about an axis.

A quaternion is a vector with four components, where one component is the quater-

nion’s scalar part qs and the other three represent the vector ~qv. While the position of

the scalar part varies, the quaternion definition of the MATLAB Aerospace toolbox, with

the scalar part being the first component, is applied in this thesis:

q =




qs

~qv



 =










qs

qx

qy

qz










(3.1)

In the following, the methods described in [GY12] are used to calculate a quaternion from

two given coordinate frames or an angle and a corresponding axis.

For the determination of a quaternion, which represents the rotation of a coordinate

frame A to another coordinate frame B, a direction cosine matrix (DCM) is first described.

The given coordinate frames A and B are noted in the global coordinate frame / world

frame W :

(A)W =
[

~iA
~jA

~kA

]

W
(3.2)

(B)W =
[

~iB
~jB

~kB

]

W
(3.3)

55

3.5 Implementation of the Key Functionality

with the unit vectors ~i,~j,~k in the direction of their x, y, and z axes. The DCM MBA is

created according to

MBA =







~iA ·~iB
~jA ·~iB

~kA ·~iB

~iA ·~jB
~jA ·~jB

~kA ·~jB

~iA · ~kB
~jA · ~kB

~kA · ~kB







(3.4)

Afterwards, the trace of the DCM is determined by summing the elements of the main

diagonal as

tr(MBA) =
3∑

i=1

mii = m11 + m22 + m33 (3.5)

If the trace is > 0, the scalar component qs and the vector component ~qv of the quaternion

can be calculated by

qs =
1

2

√

tr(MBA) + 1 (3.6)

~qv =















m32 − m23

2
√

tr(MBA) + 1
m13 − m31

2
√

tr(MBA) + 1
m21 − m12

2
√

tr(MBA) + 1















(3.7)

If tr(MBA) ≤ 0, the greatest element of the diagonal values of MBA determines the

calculation. In the case that m11 is the greatest diagonal value, the components are

calculated as follows:

qs =
m32 − m23

2
√

1 + m11 − m22 − m33
(3.8)

~qv =











1

2

√
1 + m11 − m22 − m33

m21 − m12

2
√

1 + m11 − m22 − m33
m13 − m31

2
√

1 + m11 − m22 − m33











(3.9)

Whenever m22 is the biggest element, the quaternion is defined as

qs =
m13 − m31

2
√

1 − m11 + m22 − m33
(3.10)

~qv =











m21 − m12

2
√

1 − m11 + m22 − m33
1

2

√
1 − m11 + m22 − m33

m32 − m23

2
√

1 − m11 + m22 − m33











(3.11)

56

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

Finally, for the case where m33 is the maximum of the diagonal values, the quaternion

components are calculated by

qs =
m21 − m12

2
√

1 − m11 − m22 + m33

(3.12)

~qv =











m13 − m31

2
√

1 − m11 − m22 + m33
m32 − m23

2
√

1 − m11 − m22 + m33
1

2

√
1 − m11 − m22 + m33











(3.13)

For a given rotation with an axis ~r and an angle φ, the corresponding quaternion can

be calculated according to

q =




cos

(
φ
2

)

~r · sin
(

φ
2

)



 (3.14)

Calculation of the Joint Coordinate System

As mentioned previously, joints are basically bundles of constraints, so CAD systems most

likely do not provide corresponding coordinate frames. However, in Simscape Multibody,

each joint has two coordinate frames, between which a relative motion is allowed, depend-

ing on the joint type. In order to ensure a proper model building, these two coordinate

frames must have the same orientation after an initial transfer. Otherwise, the initial po-

sition or rotation states of joints are not zero, which might cause problems, as Simscape

Multibody reverts them to zero as long as corresponding state targets are not set. For this

reason, one generic, temporary coordinate frame must be generated for each joint, which

is used to calculate relative orientations.

An efficient way to generate the generic joint coordinate frame is to rotate a reference

frame from a linked part in a way that its z-axis (which is the relevant one for the

DoFs of joints in Simscape Multibody) points in the same direction as the constraint or

joint direction. This can be done by determining the quaternion which describes such a

rotation. Subsequently, the rotation can be applied to the unit vectors of the reference

frame. A further benefit is that the relative orientation of this particular joint-part pair

is now already computed in the form of a quaternion and can be directly assigned to the

joint object. According to Equation 3.14, only the rotation axis and the rotation angle are

required. If ~z represents the direction of the reference frame z-axis and ~d is the direction

of the joint, then the required angle φ for the rotation can be calculated as follows:

cos φ =
~z ◦ ~d

|~z| · |~d|
(3.15)

57

3.5 Implementation of the Key Functionality

whereas the axis for the rotation ~r is simply derived from the cross product:

~r = ~z × ~d (3.16)

A vector ~v can be rotated using a quaternion q and its conjugated version q∗:




0

~v ′



 =



q




0

~v







 q∗ (3.17)

where the conjugated has an inverted vector part. As the multiplication of quaternions

is non-commutative, the execution order is important, which shall be symbolized by the

brackets. After [GY12], two quaternions can be multiplied by

q = q1q2 =




qs,1 · qs,2 − ~qv,1 ◦ ~qv,2

qs,1 · ~qv,1 + qs,2 · ~qv,1 + ~qv,1 × ~qv,2



 (3.18)

However, for the quaternion multiplication and the calculation of the conjugated quater-

nion, the MATLAB Aerospace toolbox provides the quatmultiply and the quatconj

functions, which are used in this approach.

After all three unit vectors of the reference frame are rotated, the joint coordinate

frame is generated. Naturally, there are joints that do not have a certain direction, like

spherical joints. In these cases, the joint coordinate frame is set to an identity matrix

I3. As soon as the joint coordinate frame is available, all other relative orientations or

quaternions involving this joint can be calculated according to the method using two

coordinate frames, which is described in the previous section.

Calculation of the Relative Joint Transformation Data

The methods for calculating the relative orientation are already described in the previous

sections. In the following, the general approach to calculate the transformation data of

joints, that is the relative orientation and translation to the connected parts (or the world

frame), is described. The implemented method calculates this information and saves it in

the form of iTransformData objects. Every joint has two connected frames, and the

calculation is performed for each connection.

The implemented method first checks the joint type, since weld joints, which provide

no DoFs at all, are treated differently. The orientation and position of a weld joint are ir-

relevant, because the Weld joint block simply keeps its coordinate frames congruent. With

these aligned to the coordinate frame of one of both parts, only the relative orientation

to the coordinate frame of the second part must be determined. The same applies to the

data for the relative translation which is calculated by a trivial vector subtraction. This

is subsequently multiplied with the corresponding transformation matrix for a notation

in the correct coordinate frame. Let (O1)W be the matrix of the unit vectors of the first

58

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

part’s coordinate frame, (~P1)W be the position of the first part, and (~P2)W be the position

of the second part. Then the translation noted in the coordinate frame of the first part

O1 is:

(

~t
)

O1

= f((O1)W , (~P1)W , (~P2)W) = ((O1)W)⊺
(

(~P2)W − (~P1)W

)

(3.19)

For weld joints, only one transformation dataset is determined. For other joint types,

there are two datasets describing the transformation to the other two connected parts or

frames. In these cases, the method checks whether there is already a coordinate frame

for the joint. If there is not, it is generated based on the coordinate frame of the part,

and the quaternion is saved as a by-product. Otherwise, the quaternion for the relative

orientation to the part’s coordinate frame is determined. The translational data is derived

analogous to Equation 3.19 but in this case (~P2)W represent the joint position.

3.5.4 Automatic Simscape Multibody Model Building

In order to automatically convert a CAD model to an MBS model, a method is developed

to build the corresponding Simscape Multibody model on the basis of the transferred CAD

data. Basically, the algorithm uses three different block types to create a model, which are

Solid, Joint, and Rigid Transform blocks. While parts are always represented by a Solid

block, there is a variety of joint blocks available, where the transferred joint ID is used to

choose the equivalent one. However, in the case of a revolute joint, which is supposed to

have backlash, two translatory DoFs perpendicular to the rotary axis are required. For

this reason, instead of a Revolute Joint block a Planar Joint block is used, which provides

exactly this combination of DoFs. Finally, the relative position and orientation of parts

and joints is achieved via Rigid Transform blocks. Depending on the user-defined CAD

parameters, additional friction or backlash models are added to particular joints. In order

to create decent diagrams, an auto layout algorithm is implemented, which determines

sensible coordinates for each block in advance.

The method adds these blocks programmatically and parameterizes them with the

transferred data. Instead of copying the data, the paths to the corresponding locations

in the data structure in the MATLAB workspace are set. This is particularly beneficial

when the CAD model changes and the MBS model needs to be adjusted. Due to the

parametrization, there is no need to change the Simscape Multibody model itself. Only

the data in the MATLAB workspace requires the new, updated information.

Determination of Sensible Block Coordinates

Building a model automatically, easily leads to confusing diagrams. For this reason, the

method presented in this thesis aims for a clear model structure and determines reasonable

coordinates for each block. Therefore, a technique from graph theory is used. The Breadth

First Search (BFS) is an algorithm for traversing graph structures and is typically used

59

3.5 Implementation of the Key Functionality

Calculate coordinates for each block

Add parametrized parts to diagram

Add parametrized joints and
Rigid Transform blocks to di-
agram and connect all blocks

Connect fixed parts to the world frame

Figure 3.15: Activity diagram of the model building algorithm.

to find the shortest path between two vertices [CH05]. The technique discovers vertices

level-by-level. Therefore, first all of the direct adjacent vertices are explored (which were

not visited yet) before the search continues at the next level.

a(1|1)

b(2|3)

d(4|8) e(5|7)

c(3|2)

f(6|6)i(9|9) g(7|5) h(8|4)

Figure 3.16: Network traversed by "left-to-right" and "right-to-left" BFS.

In order to determine the x and y coordinates of each block, the BFS algorithm is

applied twice to an adjacent matrix. This matrix is created based on the parts, joints,

and their connections and represents the model structure or the block network. First the

BFS is performed in a "left-to-right" manner for the x-axis and then in a "right-to-left"

manner for the y-axis. The coordinates of each block result from the order in which

they are found. In the vertices of the example network shown in Figure 3.16, the vertex

identifier and the resulting x and y coordinates are given. Diagrams generated by this

method are usually elongated and expand at an angle of 45 degrees to the upper right. To

obtain a diagram that extends from left to right, a rotation is applied. For the exemplary

network, the resulting diagram with BFS coordinates is illustrated on the left in Figure

3.17. As can be seen, the distance between the individual layers varies significantly. Thus,

60

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

the algorithm adjusts the horizontal spacing to an equidistant distribution after rotating

the coordinates, in order to keep diagrams practical (see on the right in Figure 3.17).

a

b

c

d

e

f

g

h

i

x

y

a
b

c

d

e

f

g

h

i

Figure 3.17: BFS and rotated, condensed diagram layout.

Consideration of Friction and Backlash in Revolute Joints

As stated in the contributions of this thesis, the developed method automatically adds

models for friction and backlash to user-selected revolute joints. In the analysis of mechan-

ical systems, especially with regard to mechanical FCSs, friction and backlash in joints

can have a significant influence on system behavior. Particularly in mechatronic systems,

these non-linear effects often cause control problems [Hac15]. Therefore, it is reasonable

to include these effects in a simulation. In terms of friction, Simscape Multibody does

not offer a direct setting. Utilization of Simscape Foundation Library blocks within the

mechanical domain allows one to take friction into account with the Rotational Friction

block, which considers Stribeck, Coulomb, and viscous friction. The method developed in

this thesis, however, requires no manual modification of the Simscape Multibody model to

add the sophisticated LUGRE friction model (see Chapter 2.2.1) to selected joints, which

covers effects like hysteresis, frictional lag, pre-sliding displacement, or stick-slip [Hac15].

This allows for a much more efficient and easier creation of high fidelity models.

The selection and the necessary parameterization regarding friction and backlash is

not undertaken in Simulink but in the CAD software tool. In order to provide joints with

the LUGRE friction model, user-defined parameters are specified in the CAD software.

The basic idea is to create a parameter set for a particular case of friction with geometry,

material, and lubricant information. This allows the parameter set to be assigned multiple

times to different joints, thus proving to be an efficient data entry. A parameterization

for friction must contain the parameters listed in Table 3.6, which are defined in the

root product. The parameters are grouped by the numeric identifier #. The names of

61

3.5 Implementation of the Key Functionality

Table 3.6: Parameter set for defining friction.

Parameter Name Symbol Unit

frictionSetting#_Radius r m
frictionSetting#_Length l m
frictionSetting#_Gap y m
frictionSetting#_Eta η N · s/m2

frictionSetting#_Mu_c µS -
frictionSetting#_Mu_s µC -
frictionSetting#_Sigma_0 σ0

frictionSetting#_V_s vs m/s

frictionSetting#_Mechanism
frictionSetting#_Joints

the joints that should receive this friction model are specified, comma-separated, in the

parameter frictionSetting#_Joints . To ensure uniqueness, the mechanism name

must also be specified. If the parameters are available in the CAD system, the model

builder method can be called with CreateSimulinkModel(’Friction’, true) .

This triggers the processing of the added data and the attachment of friction models. The

integration into a revolute joint is achieved by formulating a forward dynamics problem,

where the normal forces and the rotational speed is added to the friction model and the

calculated torque due to friction is reintroduced to the joint.

For introducing backlash, a similar procedure is required. Like friction, backlash

in joints is not a feature of Simscape Multibody. Using hard stop blocks of the Sim-

scape Foundation Library allows backlash to be simulated but a dynamic altering of

the clearance is not possible. For a proper representation of a circular backlash, as it

appears in revolute joints, the method developed in this thesis automatically adds the

model presented in Subsection 2.2.2 to selected revolute joints. The required parameters

are shown in Table 3.7. To trigger the model builder to process the information and

to add the backlash model to corresponding joints, the method has to be called with

CreateSimulinkModel(’Backlash’, true) . Naturally, both effects can be real-

ized simultaneously when calling the method CreateSimulinkModel(’Friction’,

true, ’Backlash’, true) . A backlash model is also linked to a revolute joint by

formulating a forward dynamics problem. Consequently, the position of the two transla-

tional DoFs are used to calculate backlash forces, which keep the DoFs within the specified

clearance.

For performance purposes, both the friction model and the backlash model are added

in the form of S-Functions.

62

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

Table 3.7: Parameter set for defining friction.

Parameter Name Symbol Unit

backlashSetting#_Gap r m
backlashSetting#_K k N/m
backlashSetting#_D d N · s/m

backlashSetting#_Mechanism
backlashSetting#_Joints

Strength Analyses

Buckling is a serious threat to mechanical FCSs and must be avoided in any case. For

airplanes certified according to CS-23, requirements on strength are given in CS-23.305,

while AC 23-19A ([Fed12]) states that column structures, such as control system pushrods

in single-load-path design applications, cannot be allowed to buckle under ultimate load

conditions. An examination of the buckling risk is therefore reasonable.

With the functions provided by Simscape Multibody, a direct assessment of the buck-

ling risk is not possible. Therefore, the method developed in this thesis determines the

critical load according to Euler for user-selected parts. The required Young’s modulus

is specified in the CAD system either in the form of user-defined parameters (dominant)

or via the assigned material. In terms of the second moment of area, it can also either be

specified exactly as a parameter (dominant) or very roughly approximated. Using the in-

ternal forces of a part allows one to then estimate the risk of buckling for a given scenario

during the simulation. Thus, even an optimization might take the risk into account. The

internal forces are determined via Weld joints, which are added to both ends of the part.

This guarantees that internal force caused by the part’s dead weight is considered as well,

leading to two slightly different signals.

The developed method prepares the buckling analysis for parts with the following

parameters:

isBucklingRelevant = 1

I = 7.653e-9

E = 8.8e+10

where I is the second moment of area, and E is Young’s modulus. The specification of I

and E is not mandatory, as otherwise the information is gained from material data or is

approximated. Calling the model builder via CreateSimulinkModel(’Buckling’,

true) undertakes all measures for a buckling analysis.

Examining the risk of buckling using the presented method provides an initial estimate

but is by no means accurate enough to substitute a necessary buckling strength study.

63

3.5 Implementation of the Key Functionality

Approximation of the Second Moment of Area

In case the second moment of area is not given via a user-defined parameter, it is approx-

imated for rotationally symmetric profiles in order to calculate a critical load. This is

based on the available moment of inertia. The second moment of area can be calculated,

according to [RS08], as

Ix = Iy =
Ip

2
=

1

2

∫

A
r2dA (3.20)

where Ip is the polar second moment of area. According to [PK01], the moment of inertia

with respect to the z-axis is described as

Jzz =
∫

m
r2dm (3.21)

Assuming a homogeneous density,

ρ(z) = const (3.22)

the moment of inertia can be formulated as

Jzz = ρ
∫

V
r2dV (3.23)

= ρ · l ·
∫

A
r2dA (3.24)

= ρ · l · 2 · Ix (3.25)

where l is the column or part length. Thus, the relation between Ix and Jzz is

Ix =
Jzz

2 · ρ · l
(3.26)

As mentioned, the critical load after Euler as well as this approximation are only appli-

cable to slim and rotational symmetric columns. As such, Jzz must always be the moment

of inertia with respect to the longitudinal axis of the column. For this reason, the method

uses the minimal value of the main diagonal of the inertia tensor for the calculation, to

consider the cases where column direction is not the part’s z-axis.

Of course, the derivation of the second moment of area from the moment of inertia is

only exact for prismatic geometric bodies. Large parts of the rods in mechanical FCSs

might be prismatic, but at their ends the shape changes to realize appropriate connection

points. Most of the time, this results in more mass away from the longitudinal axis,

leading to a larger moment of inertia and thus a larger second moment of area, which is

akin to a mean value. However, Euler’s formula requires the minimum second moment

of area occurring in the parts. The presented approximation consequently represents only

emergency values if the exact value is not available.

64

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

3.5.5 Modification of CAD Parameters

Typically, there is a large tool-chain gap between the design and the simulation world,

preventing automated processes across tool boundaries and resulting in a large amount of

manual work. Therefore, one of the main contributions of this thesis is the development of

a method for a bidirectional data transfer between CAD software and Simscape Multibody.

This closes the gap and allows for the application of methods on a model coupling both

worlds. The developed method provides MATLAB access to the user-defined parameters

in the CAD system. The bidirectionality is realized by the ability to modify them from

MATLAB. Depending on the degree of parameterization, a CAD model can be modified

considerably.

For the modification of CAD parameters, the same API and DLL are used. The

generalized interface provides a function called SetParameterValue , which requires

three arguments. Naturally, the parameter name and the value to which it is meant to be

set are required. Since user-defined parameters can be an element of either products (root

product) or parts and no pointer to the parameter parent object in the CAD software can

be passed, a string containing the path of the instance names from the root product to

the parameter parent is used. The DLL that has direct access to the objects in the CAD

system splits this string and searches for the corresponding parameter.

3.6 Optimization Framework

In order to use the developed method for the easy integration of CAD parameters in

MATLAB optimizations, a framework is created that integrates and controls the method.

The framework is a collection of object-orientated classes and allows for the application

of different MATLAB optimization algorithms as well as the external software package

Interior Point Optimizer (IPOPT). Due to its very modular structure, further optimizers

can be integrated without much effort. In the following, only the structure and strategies

for increasing the efficiency of the framework are presented. The manual for the framework

can be found in Appendix A.6.

3.6.1 Structure of an Optimization Problem

The structure of the optimization framework is illustrated in Figure 3.18. The individual

classes for structuring an optimization problem are described in the following.

Problem

The main class of the optimization framework is of the type Problem and represents

the only interface to the user. It has a property to choose an optimizer and contains the

iCADModel object, which stores all information regarding the CAD model and makes

the CAD system available to the optimizer. Furthermore, the Problem object holds

65

3.6 Optimization Framework

Problem

Optimization Environment

iCADModel

Functions

Parameters

Settings

History

Simulation Model

Derivatives

Cost Function

Nonlinear Constraints

Figure 3.18: Structure of the optimization framework.

the optimization parameters, settings, history, and the optimization environment. The

optimization parameters are created automatically within the Problem object using a

function that allows for comfortable parameter searching by the names of the CAD pa-

rameter and its parent object. The function also handles the different parameter types

(CAD or MATLAB).

Functions

The Functions property manages function handling. Here, the function handles of the

user-defined cost function and the function for evaluating nonlinear constraints are stored.

Parameters

Each optimization parameter is an instance of the OptimizationParameter class.

Objects of this type holds information such as initial values, upper and lower bounds,

spacing for finite differences, scaling factor, parameter type, and the parameter itself.

Depending on the type, the set routine either changes the corresponding CAD parameter

or modifies the particular workspace variable.

Optimization Environment

The individual optimization algorithms require different function structures. Thus, the

optimization environment is specific to the chosen algorithm. There is a particular class for

every optimizer that handles the argument and returns the value structure. However, it is

always derived from the same base class OptimizationEnvironment , which contains

all parts not specific to the algorithm. Moreover, the simulation model and the user-

defined cost function and nonlinear constraints are part of the optimization environment.

66

Chapter 3: A Bidirectional Method for Connecting CAD Tools with Simscape Multibody

The Derivatives object is used for the derivation of their Jacobian.

Simulation Model

This class is a sort of a container for the Simulink simulation models. It controls the

simulation and manages the data logging. Signals that are relevant for the optimization

are logged and used for the evaluation of the cost function and nonlinear constraints.

Furthermore, methods are implemented that allow for an efficient parameter update and

a significant time-saving for specific, cost-intensive simulations.

Derivatives

For gradient-based optimization algorithms, the derivatives like δJ
δz

, δg

δz
, and δh

δz
are re-

quired. The Derivatives class provides the corresponding methods to calculate the

gradients on the basis of a prior specified manner. In this thesis, only forward and central

finite differences are applied, since the simulation model is considered a black box, where

an analytical gradient determination is impossible. Nevertheless, other methods for the

gradient derivation can easily be implemented into the framework.

Settings

The optimization algorithms provide a wide variety of settings which may influence the

optimization results significantly (e.g. tolerances, maximum number of iterations). In

addition, each optimizer has its own settings structure. To take these factors into ac-

count, the settings are specified outside the optimization framework but are subsequently

passed. This also allows for a problem-specific configuration of the optimization algo-

rithm. Furthermore, the Settings property allows the type of the gradient derivation

to be specified.

3.6.2 Strategies for an Efficient Optimization

The presented framework is used in the remainder of this thesis for a simulation-based

optimization across tool-boundaries, which includes CAD parameters. This is the typical

application the framework was developed for.

However, the simulation of physical models can quickly become computationally inten-

sive. Together with a finite-differences-based gradient determination, one single iteration

can take a considerable amount of time. Especially for the more accurate central dif-

ferences, the number of costly evaluations of the cost function relates to the number of

optimization parameters according to 2n+1. For this reason, the following two strategies

are implemented to avoid unnecessary processes.

67

3.6 Optimization Framework

Sparse CAD Parameter Update

The sparse CAD parameter update strategy aims for a minimum costly interaction with

the CAD software. After receiving a new set of optimization parameter values, typically all

parameters are consequently updated in the MATLAB workspace and the CAD software.

The update of CAD parameters and, in particular, the subsequent necessary update of

the changed CAD model data is very time-intensive, depending on the complexity of the

model. For this reason, a sparse update method is implemented to minimize the effort

related to CAD parameter updates. In this method, CAD parameters are only updated

if their value differs from the current one. Consequently, if no parameter change was

sent, the CAD model remains unchanged, and thus there is no update of the model data

required.

This eliminates costly but unnecessary interaction with the CAD software, especially

in a simultaneous optimization of hard- and software parameters, which also includes

non-CAD parameters. In combination with a finite differences gradient determination,

the time savings become substantial.

Sparse Simulation

While the previous strategy focused on a minimum interaction with the CAD software,

this strategy aims to avoid unnecessary simulations. There are optimization problem

formulations like Tschebyscheff that introduce additional parameters and reformulate

the problem in order to achieve better convergences. Such a reformulation is done in the

application example in Section 5.7. However, this reformulation leads to redundant, costly

simulations, as the additional parameter has no effect on the simulation results themselves

but only on the evaluation of the cost function and the nonlinear constraints. Therefore,

the optimization parameters provide an attribute that indicates whether it has an influence

on the simulation results. Consequently, a subset of simulation influencing parameters

arises. As soon as there are already results available, which were obtained with the same

parameter set, the simulation is skipped. Analogous to the aforementioned strategy,

this significantly reduces the duration of finite-differences-based derivative approximation

since no additional, costly simulation is required for such parameters.

68

4

Application to a Mechanical Flight

Control System

This chapter describes the application of the developed interface in the course of a research

project together with an aircraft manufacturer. The interface was used for the analysis

and modification of a mechanical FCS of a general aviation aircraft in order to equip it

with a new full envelope AP system (hardware and software), accordingly an automatic

flight control system (AFCS). The analyses are necessary to determine requirements on

the actuators focusing in particular on torque and dynamics. Furthermore, they allow one

to gain information on the kinematic behavior of the FCS, such as the transfer function

between actuator and surface, which is relevant for tuning the controller at early devel-

opment stages. Although the procedures are analog for all three axes, the elevator axis is

of major importance, therefore this chapter is limited to this axis.

Initially, a CAD model of the elevator axis of the given mechanical FCS is created and

converted to a Simscape Multibody model. This axis is analyzed and optimized from a

kinematic perspective before mechanical analyses are performed to determine minimum

requirements on the actuator forces and dynamics.

4.1 Mechanism and 3D CAD Model

The CAD model of the elevator axis is built in CATIA V5. The parts are linked using

predefined joints from the DMU Kinematics environment, which automatically creates

equivalent constraints between the parts for each joint. These joint objects are used by

the interface when generating the Simscape Multibody model.

The elevator axis consists of several push-pull rods, which are linked via levers and

which connect the pilot’s stick with the elevator surface. Due to lack of space, there is

no degree of freedom in terms of the installation position of the new AP actuator for the

elevator axis. An overview of the entire axis is illustrated in Figure 4.1.

The integration of the actuator in the already installed FCS is achieved with a modified

69

4.2 Kinematic Analyses

Figure 4.1: Overview of the elevator axis.

lever, which is connected to the lever of the actuator via a rod (see Figure 4.2). In this

way, the existing certified mechanical FCS remains unchanged, making it much easier

to obtain a permit to fly for flight tests. For optimization purposes, the orientation of

the actuator, as well as the linkage to the existing elevator axis, was parameterized.

This allows the parameters to be modified from MATLAB, which is necessary to apply

MATLAB optimization algorithms. The parameters dX and dZ essentially describe the

position of the upper joint, while L specifies the length of the actuator lever and β

represents the actuator orientation.

L

dX

dZ

β

Figure 4.2: Integration of the actuator in the existing mechanism.

The length of the rod connecting the actuator lever with the modified lever of the

existing mechanism is parameterized in such a way that the required length is measured

automatically in CATIA. Table 4.1 lists the initial design parameterization of the inte-

gration.

4.2 Kinematic Analyses

First, the given mechanical FCS shall be analyzed in terms of kinematics. This means

forces and the masses of the components are not considered in the analyses, but the

mechanism’s motion and its range of motion are reviewed. The kinematic analyses are

70

Chapter 4: Application to a Mechanical Flight Control System

Table 4.1: Initial parameterization of the integration.

Parameter Value

dX 50mm
dZ 136mm
L 50mm
β 0◦

Figure 4.3: CAD model of the elevator axis.

performed with the help of an MBS model and are intended to specifically answer the

following questions:

� What actuator deflections are necessary to achieve full elevator surface deflections?

� To what degree are nonlinearities observed, where the result is a variation in the

gear ratio between actuator motion and control surface deflection over the entire

stroke?

For this purpose, the CAD model of the mechanical FCS must be converted to a MBS

model. This is accomplished via the method presented in Chapter 3. It allows for the

automatic translation of the CAD model to a parameterized Simscape Multibody model

within a fraction of the time that is needed for a manual transfer. Figure 4.4 shows an

excerpt of the model that was created automatically by the interface. Parts and joints

defined in the CAD model in the previous section can now be found in the MBS model.

In order to enable a visual assessment of the simulation and its results, the generation

of STL files representing the parts is also triggered by the interface. This provides a 3D

representation in the Mechanics Explorer, as the interface automatically assigns the files

to the corresponding parts. The resulting visualization of the FCS’s elevator axis in the

Mechanics Explorer is shown in Figure 4.5.

71

4.2 Kinematic Analyses

Figure 4.4: Detailed view of the FCS elevator axis Simscape Multibody model.

Before the actuator deflections and the variation in the gear ratio can be determined,

the Simscape Multibody model has to be prepared. Therefore, methods of inverse dynamics

are applied by actuating the joint of the elevator surface according to a predefined motion.

Sensing the position of the actuator joint then provides the necessary data to determine

the maximum deflections as well as to analyze nonlinearities.

Figure 4.5: 3D representation of the MBS model visualized with the Mechanics Explorer.

4.2.1 Preparation of the MBS Model

The motion of the elevator surface joint shall start at the upper hard stop (ηmin = −15◦)

and move with a constant rate of
.
η = 3.5◦

1s
to the lower hard stop (ηmax = 20◦). In order to

be able to specify the joint’s motion, the Motion Actuation setting must be set to Provided

72

Chapter 4: Application to a Mechanical Flight Control System

by Input and the Torque Actuation setting has to be set to Automatically Computed. The

additional input port of the joint block then allows the introduction of a Physical Signal.

This signal must contain information on the position, velocity, and acceleration of the

specified motion. It is generated using regular Simulink blocks and then converted to a

Physical Signal via the Simulink-PS Converter block. The implementation of the motion

signal for the kinematic analyses, which is introduced in the elevator surface joint, is shown

in Figure 4.6. The initial condition of the integrator block is set to ηmin. For evaluation

purposes, the position of this joint is also measured and saved within a variable.

Figure 4.6: Generation of the motion signal for the revolute joint of the elevator surface.

The revolute joint between the actuator lever and the actuator itself provides the signal

for the position measurement αe of the actuator. Hence, position sensing is activated in

the joint settings and the signal is recorded for further processing.

4.2.2 Evaluation of Simulation Results

After running the simulation, the recorded position signals of both joints can be evaluated

regarding the questions introduced at the start of this section.

Maximum Actuator Deflections

The maximum actuator deflections are dependent on the maximum elevator deflections,

the nonlinear gear ratio of actuator deflection to elevator deflection, and the neutral

actuator position. The resulting actuator position over time, which is caused by the

elevator deflection, is shown in Figure 4.7. The graph reveals a maximum deflection

αe,max = 55.0◦, which corresponds to the ηmin. Likewise, the minimum actuator deflection

αe,min = −51.8◦ corresponds to the maximum elevator deflection ηmax. The total actuator

deflection sums up to ∆αe = 106.8◦.

Evaluation of Nonlinearities

Nonlinearities in the mechanism’s motion can already be observed in Figure 4.7. The

line representing the deflection of the actuator shows greater changes in the curvature,

73

4.2 Kinematic Analyses

0 1 2 3 4 5 6 7 8 9 10

−50

0

50

Time [s]

A
ct

u
at

or
D

efl
ec

ti
on

α
e

[d
eg

]
Actuator Deflection

0 1 2 3 4 5 6 7 8 9 10

−10

0

10

20

Time [s]

E
le

va
to

r
D

efl
ec

ti
on

η
[d

eg
]

Elevator Deflection

Figure 4.7: Elevator and actuator deflections over time.

especially at the beginning and at the end of the simulation. In these sections, the

actuator and the elevator surfaces are near their full deflections. Figure 4.8 illustrates the

elevator deflection plotted versus the actuator deflection. Furthermore, the ideal linear

relationship is drawn to highlight the deviation due to nonlinearities. For the actuator

deflection range −10◦ ≤ αe ≤ 40◦ the effects might be negligible, but for larger deflections

outside this range, they quickly become significant.

Nonlinearity becomes even more visible if the gear ratio is plotted versus the actuator

deflection. For each time step i, the gear ratio can be calculated as

Gi =
∆αei

∆ηi

. (4.1)

Figure 4.9 shows the change of the gear ratio versus the actuator position. As already

explained in Chapter 2.1.1, it can be seen that the gear ratio is growing at an accelerated

rate with increasing actuator deflections. At the maximum actuator deflection, G grows to

almost four times its value, from G = 2.49 to G = 9.09. It is obvious that such significant

changes affect flight control algorithms and therefore must be carefully considered.

74

Chapter 4: Application to a Mechanical Flight Control System

−60 −50 −40 −30 −20 −10 0 10 20 30 40 50 60
−30

−20

−10

0

10

20

30

Actuator Deflection αe[deg]

S
u
rf

ac
e

D
efl

ec
ti

on
η

[d
eg

]

Ideal Linear
Measured

Figure 4.8: Actuator position over time.

−60 −50 −40 −30 −20 −10 0 10 20 30 40 50 60

3

4

5

6

7

8

9

Actuator Deflection αe [deg]

G
ea

r
R

at
io

G
[-

]

Gear Ratio G

Figure 4.9: Actuator position over time.

75

4.2 Kinematic Analyses

Evaluation of the Kneeling Risk

As mentioned in Chapter 2.1.1, a kneeling state of the FCS can be a catastrophic failure

and must be avoided at all times. For this reason, the risk of kneeling is assessed for the

integration mechanism of the actuator by evaluating of the angles δ1 and δ2 (see Figure

4.10).

δ2

δ1

Figure 4.10: Definition of the angles δ1 and δ2.

The minimum distance of both angles to either 0◦ or 180◦ is measured and plotted in

Figure 4.11. Naturally, the maximum distance from kneeling is 90◦. Conversely, as soon

as it is 0◦, the mechanism is in a kneeling state. The evaluation of the simulation results

reveals that δ2 is only 14.3◦ away from a kneeling position when reaching ηmin.

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Time [s]

D
is

ta
n
ce

to
K

n
ea

le
d

S
ta

te
[◦

]

δ1

δ2

Figure 4.11: Minimum distance of the angles δ1 and δ2 to a kneeling state.

76

Chapter 4: Application to a Mechanical Flight Control System

4.2.3 Optimization of CAD Parameters

The simulation results of the initial design with very asymmetric plots show a potential

for optimization. The integrated optimization framework of the interface enables an

optimization of the CAD parameters specified in Section 4.1 using built-in MATLAB

algorithms, for example. This functionality is used to find a better design of the integration

mechanism in terms of kinematic factors. The original design is used as an initial solution

and is modified throughout the optimization process.

Constrained Optimization Problem Setup

For the optimization of the design parameters, MATLAB’s fmincon function is used, which

finds a minimum of a constrained nonlinear multivariable function [The16b]. Therefore,

a cost function JCost(z), inequality constraints g(z), and equality constraints h(z) are

defined. The constrained optimization problem can be formulated as

min
z∈Rn

JCost(z) (4.2)

s.t. h(z) = 0 (4.3)

g(z) ≤ 0 (4.4)

The fmincon function belongs to the gradient methods, where the gradient of the cost

function at the current point determines the subsequent search direction. Naturally,

this means that only local minima can be found with this method, which is typical for

gradient methods. Since the gradients are not calculated analytically, they are determined

via finite difference quotients. The gradient for each parameter is approximated via the

central difference quotient as

D0[JCost](z) =
JCost(z + h) − JCost(z − h)

2h
(4.5)

where h is a constant spacing set to 10−2. Significantly smaller values are neglected by

CATIA.

Further, the chosen optimization algorithm allows setting upper and lower bounds of

optimization parameters so that the solution is always in the range lb ≤ z ≤ ub [The16b].

Table 4.2 lists them together with the initial values.

Table 4.2: Optimization parameters, initial values, and limits.

Parameter Initial Value Lower Bound Upper Bound

dX 50mm 30mm 200mm
dZ 136mm 30mm 200mm
L 50mm 45mm 100mm
β 0◦ −15◦ 30◦

77

4.2 Kinematic Analyses

Cost Function

The primary goal of the optimization procedure is to find a CAD parameterization with

fewer nonlinearities and a more uniform gear ratio over the actuator deflection range.

Therefore, the cost function to be minimized must consider the gear ratio and is calculated

by

JCost =
N−1∑

i=2

(Gi − G∗) =
N−1∑

i=2

(

∆αei

∆ηi

− G∗

)

(4.6)

=
N−1∑

i=2

(

αei+1 − αei−1

ηi+1 − ηi−1

− G∗

)

with

G∗ = min
i

Gi (4.7)

the minimum gear ratio of the current design, Gi the local gear ratio (based on central

difference quotient), and N the total number of simulation time steps, which accordingly

has an influence on the value of the cost function. For this reason, the number of time

steps is made to be constant by using a fixed-step solver. With this formulation of costs,

the optimization algorithm attempts to minimize the area between the curve and the

curve’s minimum, as shown in Figure 4.9. This can be achieved by flatten the curve

towards its minimum while maintaining the minimum gear ratio, which results in the

desired reduction of nonlinearities.

Nonlinear Constraints

The nonlinear constraints are formulated in form of equality and inequality constraints

and are used to ensure that

� the minimal gear ratio of the optimized mechanism is not lower than that of the

initial design and

� the solution is kinematically feasible.

As mentioned in the previous section, the cost function formulated in Equation 4.6 can

be minimized by decreasing the variation of the gear ratio. In order to obtain comparable

designs, it is desirable to keep the minimum gear ratio. As a means to maintain the

minimum gear ratio during the optimization, the inequality constraint is formulated as

g(z) = 2.49 − G∗ (4.8)

where G∗ is the minimal gear ratio of the current design according to Equation 4.7, and

2.49 is the minimal gear ratio of the initial design.

78

Chapter 4: Application to a Mechanical Flight Control System

To avoid the translation of the mechanism’s geometry into mathematical constraints,

other means are required to ensure the kinematic feasibility of the parameter set. The

CAD model is parameterized in such a way that the initial state of the elevator axis

is always feasible, but during the simulation, infeasible states may be reached. In these

cases, Simulink stops the simulation, because a geometric constraint cannot be maintained

any longer. This is exactly where the kinematic feasibility can be verified, namely by

inspecting the final state of the elevator joint. The resulting formulation of the equality

constraint is

h(z) = ηmax − ηN (4.9)

As long as the elevator joint position in the last time step of the simulation ηN reaches the

design maximum deflection ηmax, the mechanism is kinematically feasible over the entire

movement.

Results

The results of the optimization process are presented below. The optimized parameter

set is listed in Table 4.3. It can be seen that the two parameters describing the length

and angle of the modified lever dX and dZ ran into the corresponding lower and upper

bound. This indicates that there is probably a better solution than the one found outside

the search space. However, due to limited installation space and manufacturing, these

limits should be maintained.

Table 4.3: Comparison of initial and optimized parameters.

Parameter Initial Value Lower Bound Upper Bound Optimized Value

dX 50mm 30mm 200mm 30mm
dZ 136mm 30mm 200mm 200mm
L 50mm 45mm 100mm 70.8mm
β 0◦ −15◦ 30◦ 13.8◦

The new actuator orientation is slightly rotated and the actuator lever is lengthened.

The design with the optimized parameter values is illustrated in Figure 4.12 next to

the initial design in gray. Both versions are shown with the elevator surface in neutral

position.

The upper curve in Figure 4.13 represents the actuator deflection over time. With a

maximum deflection αe,max = 41.2◦ and a minimum deflection αe,min = −54.8◦, the total

actuator deflection range of ∆αe = 96◦ is reduced compared to the initial design.

With regards to nonlinearities, it can be seen in Figure 4.14 that the deviation from

the ideal linear course is much smaller and also more symmetric than in Figure 4.8. The

reduction of nonlinearities is also clearly visible in Figure 4.15, which shows the gear ratio

79

4.2 Kinematic Analyses

Figure 4.12: Optimized integration of the actuator (gray: initial design).

versus actuator deflection of the optimized and initial designs. Note that the minimum

gear ratio has not been changed but only occurs in a different actuator position.

80

Chapter 4: Application to a Mechanical Flight Control System

0 1 2 3 4 5 6 7 8 9 10

−50

0

50

Time [s]

A
ct

u
at

or
D

efl
ec

ti
on

α
e

[d
eg

]
Actuator Deflection

0 1 2 3 4 5 6 7 8 9 10

−10

0

10

20

Time [s]

E
le

va
to

r
D

efl
ec

ti
on

η
[d

eg
]

Elevator Deflection

Figure 4.13: Elevator and actuator deflections over time.

−40 −30 −20 −10 0 10 20 30 40 50
−20

−10

0

10

20

Actuator Deflection αe[deg]

S
u
rf

ac
e

D
efl

ec
ti

on
η

[d
eg

]

Ideal linear
Measured

Figure 4.14: Actuator position over time.

81

4.2 Kinematic Analyses

−60 −50 −40 −30 −20 −10 0 10 20 30 40 50 60

3

4

5

6

7

8

9

Actuator Deflection αe [deg]

G
ea

r
ra

ti
o

G
[-

]

Initial design
Optimized design

Figure 4.15: Actuator position over time.

82

Chapter 4: Application to a Mechanical Flight Control System

The data from Table 4.4 allows for a quantification of the optimization results. It lists

the costs associated with both designs. The costs of the initial design, the area between

the curve and its minimum, could be reduced by 55.23%. The maximum gear ratio has

been reduced by 62.16%.

Table 4.4: Comparison of the simulation results of the initial and optimized designs.

Parameter Initial Design Optimized Design

Costs 5.569 · 102 2.493 · 102

Gmin 2.49 2.49
Gmax 9.09 3.44

An analysis of the optimized design regarding the minimum distance to a kneeling state

shows that the risk of kneeling decreased significantly compared to the initial design. With

33.4◦ δ2 is now more than 19◦ further away from a kneeling position when reaching ηmin.

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Time [s]

D
is

ta
n
ce

to
K

n
ea

le
d

S
ta

te
[◦

]

δ1

δ2

Figure 4.16: Minimum distance of the angles δ1 and δ2 to a kneeling state.

4.3 Mechanical Analyses

The following mechanical analyses simulate the elevator axis of the FCS with a higher de-

gree of detail, aiming for the forecast of the actuator loads and the actuator performance.

By evaluating the resulting flight performance using dynamic simulations, the risk of inac-

curate dimensioning shall be reduced in the project. The actuator that is supposed to be

integrated is almost identical to a model used in previous projects. Masses and inertias,

friction in joints, aerodynamic forces or hinge moments, and actuator characteristics now

play an important role. In the following, the optimized design of the actuator integration

into the elevator axis is used. After the preparation of the CAD model and the MBS

model, the simulation is performed and its results are evaluated and discussed.

83

4.3 Mechanical Analyses

4.3.1 Preparation of the Models

Before the simulations can be performed, the CAD model and the MBS model have to be

adapted and enhanced. The information about the friction in joints is added to the model

in CATIA while the actuator model and aerodynamic forces on the elevator surface are

introduced to the Simscape Multibody model. Further, the actuator command signal is

defined.

Inclusion of Friction

Since the Simscape Multibody toolbox does not provide ready-to-use friction models for

its joint blocks, the LUGRE model (presented in Chapter 2.2.1) was implemented and

integrated into the interface. It automatically adds the friction model to the corresponding

joint blocks in the model. Thereby, the CAD model serves as a source for the characteristic

parameters that significantly determine the joint friction and are therefore also required

by the friction model. The values in the CAD software are stored in the form of user-

defined parameters and are evaluated only in MATLAB. The following listing shows the

parameters chosen for the study.

frictionSetting1_Mechanism = Mechanismus.1

frictionSetting1_Joints = Rotieren.2, Rotieren.3, Rotie ren.4,

Rotieren.5, Rotieren.6, Rotieren.7, Rotieren.8, Rotiere n.9,

Rotieren.10, Rotieren.11, Rotieren.12, Rotieren.13, Rot ieren.14,

Rotieren.16, Rotieren.17, Rotieren.19, Rotieren.20, Rot ieren.22,

Rotieren.23

frictionSetting1_Length = 0.01

frictionSetting1_Radius = 7.5e-3

frictionSetting1_Gap = 1e-3

frictionSetting1_Mu_s = 0.7

frictionSetting1_Mu_c = 0.6

frictionSetting1_Eta = 100

frictionSetting1_V_s = 10e-2

To avoid unnecessarily increasing the calculation effort of the simulations, the pin of

the revolute joints is not represented in the models.

The coefficients of friction are of course strongly dependent on the materials and

their processing, and the dynamic viscosity is very specific to the lubricant used. Since

this information is not available and the parameters were not obtained in the course of

measurements, a set of worst-case generic values in the order of magnitude of lubricated

metals are chosen.

Integration of an Actuator Model

The actuator that shall be integrated is the same for all three axes and is also used in

previous similar projects. The model is presented in Chapter 2.4.1. The operating voltage

of the actuator as well as the gear ratio of the gearbox are chosen based on the resulting

84

Chapter 4: Application to a Mechanical Flight Control System

performance in the dynamic simulations. The actuator-specific parameters required by

the actuator model can be found in Table 4.5.

Table 4.5: Parameters of the integrated actuator.

Name Symbol Value

Phase-to-phase inductance L 0.55mH
Phase-to-phase resistance R 1.25Ω
Voltage constant ke 0.055V s
Torque constant kt 0.055Nm/A
Friction coefficient kf 4 · 10−7Nms
Moment of inertia J 7.5 · 10−6kgm2

The actuator model is formulated as a forward dynamics problem, which means the

actuator load torque must originate from the corresponding joint block and is an input to

the model, while the resulting motion is an output and has to be fed to the joint block.

Conversely, the joint block itself represents an inverse dynamics problem.

With the controller implemented according to Subsection 2.4.3, the controlled variable

in the following simulations is the actuator position after the gearbox.

Aerodynamic Forces / Hinge Moments

In order to simulate adequate actuator loads, the aerodynamic forces on the control sur-

faces must be considered. Originating from the dynamic pressure, these forces create

moments about the hinge lines of the control surfaces. These hinge moments shall be

introduced in the MBS model. Since the aircraft had no flight test instrumentation at the

time of the project start, data from earlier flight tests for the design of the previous AP

served as a data source. In that case, a Static Longitudinal Stability diagram contained

relevant information on the stick force and corresponding elevator deflection for a certain

flight state and aircraft configuration. The information on the basis of which the aero-

dynamic loads are calculated is shown in Figure 4.17. The first order polynomial fit, the

stick force as a function of the elevator deflection, is described as

FS(η) = 10.24 · η − 91.8 (4.10)

An implementation of this formula in the MBS model allows the stick force to be calculated

and applied to the control inceptor related joint.

Actuator Deflection

The diagram in Figure 4.17 contains information about the stick force and corresponding

elevator deflection. Together with an Elevator Control Force in Maneuvers diagram with

stick force and corresponding acceleration data (for the same configuration and altitude),

85

4.3 Mechanical Analyses

2 3 4 5 6 7 8 9 10
−80

−60

−40

−20

0

20

Surface Deflection η [deg]

S
ti

ck
F

or
ce

F
S

[N
]

Data points
Fit

Figure 4.17: Stick force vs. elevator surface deflection diagram.

an estimation of the AFCS or aircraft performance can be made. Regarding the dynamic

analysis, the performance shall be evaluated based on the maximum achievable load factor

and the duration until 1.5g are reached. Therefore, the actuator is commanded a multi-

step signal starting from the trim position to the position at which a load factor of

nz = 1.5g is reached. Then the position command is set back to the trim position and

finally to the maximum deflection. Each position shall be held for two seconds. The

elevator trim deflection can be derived from Equation 4.10 with ηtrim = 8.96◦, which

corresponds to an actuator trim deflection of αe,trim = −22.63◦.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−400

−300

−200

−100

0

100

Load Factor [g]

S
ti

ck
F

or
ce

F
[N

]

Data points
Fit

Figure 4.18: Elevator control force in maneuvers diagram.

As previously mentioned, the Elevator Control Force in Maneuvers diagram allows

86

Chapter 4: Application to a Mechanical Flight Control System

one to obtain the stick force and consequently η1.5 the elevator deflection for nz = 1.5g.

The first order polynomial fit is represented by

FS(nz) = −181.5 · nz + 181.5 (4.11)

According to Figure 4.18, a stick force of FS = −90.75N is required, which corresponds

to an elevator deflection of η1.5 = 0.1◦ and an actuator deflection of αe,1.5 = −0.23◦. Of

course, the maximum achievable load factor occurs at the maximum elevator deflection

of αe,max = 41.2◦. Figure 4.19 illustrates the resulting actuator command signal.

0 1 2 3 4 5 6 7 8 9 10
-40

αe,trim

αe,1.5

20

αe,max

60

Time [s]A
ct

u
at

or
P

os
it

io
n

C
om

m
an

d
α

e,
cm

d
[◦

]

Figure 4.19: Multi-step actuator command signal.

4.3.2 Dynamic Simulation

The conducted dynamic simulations simulate a flight at very high altitudes for several

combinations of actuator supply voltages (7V, 14V, 28V) and gear ratios (100, 200). Each

configuration’s simulation results are evaluated and discussed below.

Key Aspects and Boundary Conditions for the Evaluation

Since the AP is supposed to operate in major areas of the flight envelope, the minimum

load factor to be achieved short term by the AFCS, was set to 1.75g, which corresponds

to turns with a bank angle of slightly more than ±55◦. Typical AP commands, however,

are usually limited to ∆nz = ±0.1g.

The actuator rate plays an important role as well. It shall not be too fast for reaching

higher load factors, as this means the actuator torque is very high and might harm the

structure in the case of actuator runaways, for example. In addition, excessively high

actuator or surface deflection rates become a problem for pilots with regards to their

reaction times. Therefore, a maximum elevator deflection rate of | .
ηmax| = 35

◦

s
is defined,

87

4.3 Mechanical Analyses

which results in 1 s for a full stop to full stop deflection. Naturally, the actuator rate

must neither be too low, since in this case the AFCS may not react fast enough to the

flight dynamics. Usually, the maximum deflection rate is limited by software.

Further, the coil temperature and power consumption should also be taken into ac-

count in the evaluation of simulation results. The environment temperature is set to

−10◦C as the actuator is installed in an unpressurized area of the aircraft. According to

the data sheets the actuator allows a maximum coil temperature of Tcoil,max = 180◦C.

Option 1: Supply Voltage 7V, Gear Ratio 100

The first configuration supplies the actuator with a maximum of 7 volts and the gear-

box realizes a gear ratio of 100. The simulation results reveal that 95 percent of the

initially commanded 1.5g are achieved after ∆t1.5,95% = 0.61s while the target load fac-

tor is achieved after ∆t1.5 = 0.75s. When commanding the maximum elevator deflection,

nz,max = 1.53g is reached after ∆tmax = 1.35s while 95 percent of this movement is already

reached after ∆tmax,95% = 0.85s.

The longer duration for reaching 1.5g in the second step can be explained by the

increased temperature of the coil caused by the first step. The same applies to the

decreasing load factor after its peak value and to the decreasing voltage when holding the

1.5g level in the first commanded step. During both step commands, the temperature

of the coil increased, which results in a higher resistance of the coil and consequently in

less motor torque. The fact that the actuator does not reach the maximum commanded

deflection and cannot hold the level after its maximum deflection suggests that the motor

is operating at its limits.

Due to its low performance, this configuration is only limited suitable, depending on

the performance requirements. However, the minimum performance requirement defined

above are not met.

88

Chapter 4: Application to a Mechanical Flight Control System

0 1 2 3 4 5 6 7 8 9 10

−20

0

20

40

Time [s]

A
ct

u
at

or
P

os
it

io
n

α
e

[◦
]

Command
Position

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

10

Time [s]

E
le

va
to

r
D

efl
ec

ti
on

η
[◦

]

0 1 2 3 4 5 6 7 8 9 10

−20

0

20

40

60

Time [s]

D
efl

ec
ti

on
R

at
e

. η
[◦ s

]

0 1 2 3 4 5 6 7 8 9 10
1

1.2

1.4

1.6
0.61 s | 1.48 g

0.75 s | 1.5 g
0.85 s | 1.5 g

1.35 s | 1.53 g

Time [s]

L
oa

d
F

ac
to

r
n

z
[g

]

Figure 4.20: Supply Voltage 7V, Gear Ratio 100.

89

4.3 Mechanical Analyses

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

Time [s]

C
om

m
an

d
ed

V
ol

ta
ge

U
cm

d
[V

]

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

Time [s]

P
ow

er
[W

]

0 1 2 3 4 5 6 7 8 9 10
−20

0

20

40

Time [s]

C
oi

l
T

em
p

er
at

u
re

[◦
]

Figure 4.21: Supply Voltage 7V, Gear Ratio 100.

90

Chapter 4: Application to a Mechanical Flight Control System

Option 2: Supply Voltage 14V, Gear Ratio 100

The supply of the same actuator and gearbox with a doubled voltage of 14 V results in a

power four times higher. According to the simulation results, nz = 1.5g is reached more

than twice as fast after ∆t1.5 = 0.28s, whereas 95 percent of this level is achieved after

only ∆t1.5,95% = 0.2s. The maximum load factor of this configuration is nz,max = 2g and

is achieved after ∆tmax = 1.03s. After ∆tmax,95% = 0.72s 95 percent of the maximum

load factor are reached.

0 1 2 3 4 5 6 7 8 9 10

−20

0

20

40

Time [s]

A
ct

u
at

or
P

os
it

io
n

α
e

[◦
]

Command
Position

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

10

Time [s]

E
le

va
to

r
D

efl
ec

ti
on

η
[◦

]

0 1 2 3 4 5 6 7 8 9 10
−50

0

50

100

Time [s]

D
efl

ec
ti

on
R

at
e

. η
[◦ s

]

0 1 2 3 4 5 6 7 8 9 10
1

1.5

2

0.2 s | 1.48 g
0.28 s | 1.5 g

0.72 s | 1.95 g
1.03 s | 2 g

Time [s]

L
oa

d
F

ac
to

r
n

z
[g

]

Figure 4.22: Supply Voltage 14V, Gear Ratio 100.

Figure 4.23 shows that the electrical power of the system has quadrupled, which is

91

4.3 Mechanical Analyses

clearly not advantageous for a system with limited resources. The plots also show an

increased coil temperature within the second step. This significant rise can be credited

to the correspondingly higher power losses.

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

10

20

Time [s]

C
om

m
an

d
ed

V
ol

ta
ge

U
cm

d
[V

]

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

Time [s]

P
ow

er
[W

]

0 1 2 3 4 5 6 7 8 9 10
−50

0

50

100

Time [s]

C
oi

l
T

em
p

er
at

u
re

[◦
]

Figure 4.23: Supply Voltage 14V, Gear Ratio 100.

Option 3: Supply Voltage 28V, Gear Ratio 100

This configuration with a maximum voltage supply of 28 V and a gear ratio of 100, is

the fastest among all those considered. After ∆t1.5 = 0.17s the commanded nz = 1.5g,

and after ∆t1.5,95% = 0.09s, 95 percent of this level is achieved. The maximum elevator

deflection, namely nz,max = 2.35g is reached after ∆tmax = 0.4s and can be held until

the trim position is commanded again. Such fast actuator deflections are problematic,

as mentioned above. The plot illustrating the elevator deflection rate in Figure 4.24 also

confirms that the deflection rates are far too high, with more than | .
ηmax| = 200

◦

s
. Such a

configuration should definitely limit the maximum rates using software.

92

Chapter 4: Application to a Mechanical Flight Control System

With the voltage being very close to the maximum voltage at t = 8s, it can be seen

that the actuator operated at its limits when performing the maximum load factor step.

The temperature rise within this phase can be problematic as it reaches the maximum

value of 180◦C for a short time. A reason for this is, of course, the again increased power

consumption, which shows quadrupled peak values compared to a voltage supply of 14 V.

93

4.3 Mechanical Analyses

0 1 2 3 4 5 6 7 8 9 10

−20

0

20

40

Time [s]A
ct

u
at

or
P

os
it

io
n

α
e

[◦
]

Command
Position

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

10

Time [s]E
le

va
to

r
D

efl
ec

ti
on

η
[◦

]

0 1 2 3 4 5 6 7 8 9 10
−100

0

100

200

Time [s]

D
efl

ec
ti

on
R

at
e

. η
[◦ s

]

0 1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

0.09 s | 1.48 g0.17 s | 1.5 g

0.32 s | 2.29 g
0.4 s | 2.35 g

Time [s]

L
oa

d
F

ac
to

r
n

z
[g

]

Figure 4.24: Supply Voltage 28V, Gear Ratio 100.

94

Chapter 4: Application to a Mechanical Flight Control System

0 1 2 3 4 5 6 7 8 9 10

−40

−20

0

20

40

Time [s]

C
om

m
an

d
ed

V
ol

ta
ge

U
cm

d
[V

]

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1,000

Time [s]

P
ow

er
[W

]

0 1 2 3 4 5 6 7 8 9 10
−100

0

100

200

Time [s]

C
oi

l
T

em
p

er
at

u
re

[◦
]

Figure 4.25: Supply Voltage 28V, Gear Ratio 100.

95

4.3 Mechanical Analyses

Option 4: Supply Voltage 14V, Gear Ratio 200

According to the simulation results of the previous configurations, a voltage supply of 14

V and a gear ratio of 200 appears to be promising. The results of the simulation show

that this configuration reaches the nz = 1.5g after ∆t1.5 = 0.45s with a surface deflection

rate of | .
η| = 25.5

◦

s
, which is acceptable. Due to the higher gear ratio, the actuator also

reaches the minimum elevator deflection within ∆tmax = 1.41s, which results in a load

factor of nz,max = 2.35g.

0 1 2 3 4 5 6 7 8 9 10

−20

0

20

40

Time [s]A
ct

u
at

or
P

os
it

io
n

α
e

[◦
]

Command
Position

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

10

Time [s]E
le

va
to

r
D

efl
ec

ti
on

η
[◦

]

0 1 2 3 4 5 6 7 8 9 10

−20

0

20

40

Time [s]

D
efl

ec
ti

on
R

at
e

. η
[◦ s

]

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

0.36 s | 1.48 g0.45 s | 1.5 g

1.25 s | 2.29 g
1.41 s | 2.35 g

Time [s]

L
oa

d
F

ac
to

r
n

z
[g

]

Figure 4.26: Supply Voltage 14V, Gear Ratio 200.

The surface deflection rate slightly exceeds the requirements for less than 300ms with

96

Chapter 4: Application to a Mechanical Flight Control System

a value of | .
η| = 36.2

◦

s
when the maximum load factor level is left. Generally, the rates

that are realized by this configuration should be fast enough in terms of flight dynamics

but also slow enough to give pilots sufficient time to react.

This configuration is also characterized by its low temperature development. This

is due to the low power consumption, especially during stationary system states. Peak

values, however, still reach values of 150 W.

In this case, the gearbox reduced external loads for the actuator by half compared to

the other configurations. Conversely, the actuator generates twice as much torque, which

may be harmful for the aircraft structure in some cases of an error. In general, so called

hard stops must be used to mechanically limit the actuator deflections and to protect the

aircraft structure.

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

10

20

Time [s]

C
om

m
an

d
ed

V
ol

ta
ge

U
cm

d
[V

]

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

Time [s]

P
ow

er
[W

]

0 1 2 3 4 5 6 7 8 9 10
−10

0

10

20

Time [s]

C
oi

l
T

em
p

er
at

u
re

[◦
]

Figure 4.27: Supply Voltage 14V, Gear Ratio 200.

97

4.4 High Fidelity Simulation with a Flight Dynamics Model

Conclusion and Next Steps

After analyzing the simulation results of the different voltage and transmission combi-

nations, Option 4 appears to be the most appropriate. The performance in terms of

maximum torque, surface deflection rate, and power consumption is the most satisfac-

tory. Although the presented results look reasonable and considered friction in joints and

actuator dynamics, the conducted simulations used static models for the hinge moments

and did not consider the flight dynamics itself. This deficit is remedied in the following

section, where a FDM is integrated into the simulation model.

4.4 High Fidelity Simulation with a Flight Dynamics

Model

Using an FDM that represents the aircraft in question allows one not only assess the

dynamic aircraft behavior but also to take into account the forces caused by the inertia

during a maneuver. Consequently, this qualifies the simulation model for an analysis of

the resulting handling qualities. For this reason, an FDM is included in the following

simulation, which provides the necessary data to accelerate the MBS according to the

aircraft’s motion. In addition to this, backlash is simulated in certain joints to consider

another physical effect occurring in real mechanical FCSs.

After the backlash is specified in the CAD model, it is converted again into a Simscape

Multibody model. This is then modified to include the FDM, accelerate the mechanism,

and represent the inertia of the elevator.

4.4.1 Inclusion of Backlash

The Foundation Library of the Simscape toolbox provides hard stop blocks that can be

combined with Simscape Multibody blocks. However, it is not possible to simulate a circle-

shaped clearance as it appears in revolute joints. Therefore, the backlash model presented

in Chapter 2.2.2 is used for introducing backlash into the following simulation.

Since the backlash model is highly nonlinear, the simulation costs increase rapidly.

This is why only certain but important joints are provided with this physical effect.

Especially joints between the actuator and the elevator surface, which connect rods and

levers, have a significant influence on the transfer function and are therefore enhanced

with the backlash model (see red marked joints in Figure 4.28).

98

Chapter 4: Application to a Mechanical Flight Control System

Figure 4.28: Overview of the elevator axis.

Analogous to the inclusion of friction, the definition of backlash in joints is undertaken

in the CAD software. Therefore, the parameters below are added to the CAD model in

the form of user-defined parameters:

backlashSetting1_Mechanism = Mechanismus.1

backlashSetting1_Joints = Rotieren.11,Rotieren.13,Rot ieren.14,

Rotieren.16,Rotieren.17,Rotieren.19,Rotieren.22

backlashSetting1_Gap = 0.0001/7

backlashSetting1_k = 1e7

backlashSetting1_d = 6e4

In this case, the clearance or gap for each joint is chosen such that the overall clearance

sums up to 0.1mm over the entire actuator to elevator segment with the seven joints,

including the backlash model.

4.4.2 Integration of the Flight Dynamics Model

The FDM of this particular aircraft was developed at the Institute of Flight System

Dynamics as part of the research project. It includes nonlinear equations of motion, an

environment simulation, motion kinematics, and an airframe block that contains weight

and balance, propulsion, and aerodynamic models. The FDM is based on a comprehensive

flight dynamics simulation framework, which was also developed at the institute and is

further described in [ZSMH18].

The aerodynamic and propulsion data that had been identified for the design of the

former AP served as a data source for the development of the model. In this particular

case, the only input of the FDM is the elevator deflection, which is measured within the

Simscape Multibody model. As outputs, the model returns the hinge moment for the

elevator surface He and the aircraft’s translational and angular accelerations. While He

is directly routed to the corresponding joint, the acceleration data is used to accelerate

the entire MBS according to the aircraft motion.

To obtain comparable results in the following analysis, the flight state of the FDM

must be as similar as possible to that of the flight test data sheets used in the previous

simulations. Unfortunately, the provided data is partly deficient, which leads to an altered

99

4.4 High Fidelity Simulation with a Flight Dynamics Model

momentum balance in the FDM. This results most importantly in a changed elevator trim

position ηtrim for the same flight state. Nevertheless, in order to get comparable simulation

results, a stationary bias for the elevator deflection is used. Therefore, the η measured

from the MBS model is subtracted from the bias of 8.96◦, while the bounds ηmin and ηmax

in the FDM are disabled.

Furthermore, the institute’s trim routines use only the elevator surface for trimming,

but the trim position for the trim tab is not calculated. This is necessary to reach a force-

free actuator and with that a hinge moment He ≃ 0 in a trimmed flight state. With a

relatively small trim tab area, but a large lever arm between the trim tab’s aerodynamic

center and the hinge line, it has a significant influence on the elevator hinge moment,

which can be calculated according to [Hol17b] as

He = qt · Se · ce · Ch,e (4.12)

where qt is the dynamic pressure at the tail, Se is the elevator wing area behind the hinge

line, ce is the mean aerodynamic chord of the elevator, and Ch,e is the hinge moment

coefficient of the elevator. This coefficient can be assumed as a linear function of the

angle of attack, the surface deflection, and the trim tab deflection as

Ch,e = Ch0,e + Chα,e · αt + Chη,e · η + Chδtab
· δtab (4.13)

with Ch0,e as a static hinge moment coefficient, Chα,e the hinge moment coefficient de-

pending on the angle of attack, αt the angle of attack at the tail, Chη,e the hinge moment

coefficient depending on η, and Chδtab
the hinge moment coefficient depending on δtab

the deflection of the trim tab. Setting Equation 4.13 equal to zero allows the trim tab

deflection to be calculated eliminating the elevator hinge moment:

δtab = − Ch0,e

Chδtab

− Chα,e

Chδtab

· αt − Chη,e

Chδtab

· η (4.14)

Together with the aerodynamic coefficients, αt from the simulation for the trimmed flight

state, and ηtrim = −13.08◦, the trim tab has to be deflected by δtab = 15.14◦.

4.4.3 Acceleration of the Mechanism

As previously mentioned, the FDM returns the translational and angular accelerations

acting on the aircraft. In the following simulation, this information is used to move the

mechanism in the MBS, aiming for the mechanical FCS to experience the same accelera-

tions as the aircraft. As a result, the inertia loads due to flight maneuvers can be taken

into account (as stated in 1.7 Contribution). This is achieved by introducing a combina-

tion of a Cartesian Joint (3 translational DoFs) and a Gimbal Joint (3 rotational DoFs)

between the fixtures of the FCS and the World Frame. This system, shown in Figure

100

Chapter 4: Application to a Mechanical Flight Control System

4.29, moves a coordinate frame that corresponds to the reference point of the aircraft

in the FDM. Accordingly, to obtain reasonable results, the mechanism is then correctly

positioned and orientated relative to this point after the Gimbal Joint block.

Figure 4.29: Introduction of the acceleration data to the MBS model.

Analogous to Section 4.2.1, the acceleration data, in the form of an ordinary Simulink

signal, must be converted to a Physical Signal before it is led into the joint blocks. There-

fore, the data is integrated twice in order to generate the velocity and the position data.

4.4.4 Representation of the Elevator Surface Inertia

The elevator surface itself is not part of the CAD model and thus there is no consideration

of its inertia within the MBS. For a more detailed and more realistic simulation, the

actual inertia data is approximated and then integrated into the model in the form of two

point masses. One represents both elevator surfaces, including the trim tab, and another

one represents both compensating masses, which are designed to lower the static hinge

moment. The data provided by the aircraft manufacturer is listed in Table 4.6.

Table 4.6: Elevator control surface moments, weights, and mass balances.

Part Mass stat. Moment

Elevator (R) without compensating mass 9.6kg -
Elevator (R) compensating mass included 10.7kg 400.5Ncm
Elevator (L, Trim tab included) without compensating mass 11.1kg -
Elevator (L, Trim tab included) compensating mass included 14.6kg 387.0Ncm

Compensating mass is installed 42cm in front of hinge axis

The mass of the elevator and the point mass data for the compensating mass can be

101

4.4 High Fidelity Simulation with a Flight Dynamics Model

directly derived from the table:

mel = 9.6kg + 11.1kg = 20.7kg (4.15)

mcm = 1.1kg + 3.5kg = 4.6kg (4.16)

xcm = −0.42m (4.17)

The equilibrium of moments for both point masses about the elevator hinge line can be

formulated as

g · (xcm · mcm + xel · mel) = 400.5Ncm + 387.0Ncm (4.18)

where the lever arm for the elevator point mass can then easily be calculated as

xel =
7.875Nm − xcm · mcm · g

mel · g
= 0.1321m. (4.19)

Such a model, of course, does not exactly represent the moment of inertia of the elevator

control surface but is a reasonable approximation when more precise data is not available.

4.4.5 Scenario and Simulation Results

The scenario for the set up high fidelity simulation differs from the scenario of the simu-

lations conducted in Chapter 4.3.2. The reason for this is that the second maneuver for

reaching the maximum load factor would not start from a trimmed flight state. Therefore,

the following simulation only focuses on the maximum achievable load factor and neglects

the first maneuver for reaching 1.5g.

The plots showing the simulation results in Figure 4.30 indicate that actuator tracking

and performance is very similar to that of Chapter 4.3.2. In particular, it reaches and holds

the commanded position. Moreover, it can be seen that the elevator surface deflection

follows the actuator movement. Nevertheless, the maximum upward deflection and the

minimum value is only min(η) = −14.35◦. The reason for the deviation from ηmin =

−15◦ is the backlash introduced at certain joints, which compensates for parts of the

movement. The consequences of backlash are also noticeable when the elevator surface

position changes, most notably at t = 3.9s. The effects are more visible in the course of

the surface deflection rate. In terms of the load factor, the maximum reached value of

nz = 2.07g only deviates 0.28g from the simulation results, as presented in Chapter 4.3.2.

Likewise, the time horizon of both simulations very closely match. The maximum load

factor is reached within ∆tmax = 1.44s, which is only 30ms longer than the ∆tmax of the

previous study. This is an indication that the results and the assumptions made in the

previous simulation are quite plausible. Furthermore, the course of the load factor reveals

the non-minimum phase behavior of the aircraft at t = 1s, which results from an initial

height loss due to the negative lift generated by the elevator deflection right before the

102

Chapter 4: Application to a Mechanical Flight Control System

pitching moment sets in.

Figure 4.31 contains the electrical power Pel plot, which shows peak values at points

where a surface movement begins, similar to the previous simulation results. The power

output through the reverse driven surface, however, is significantly smaller. This is mainly

related to a lower restoring hinge moment and to the lowering load on the actuator during

the maneuver, which results from a decreasing hinge moment as the angle of attack at

the tail αt decreases. The lower power values lead to less power dissipation in the form of

thermal energy. The total temperature rise over the entire maneuver is only ∆Tcoil ≈ +6◦

compared to ≈ +20◦ in the simulation of Option 4 in Chapter 4.3.2.

103

4.4 High Fidelity Simulation with a Flight Dynamics Model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−20

0

20

40

Time [s]

A
ct

u
at

or
P

os
it

io
n

α
e

[◦
]

Command
Position

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−10

0

10

Time [s]

E
le

va
to

r
D

efl
ec

ti
on

η
[◦

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−40

−20

0

20

40

Time [s]

D
efl

ec
ti

on
R

at
e

. η
[◦ s

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

1

1.5

2

2.5

1.23 s | 2.02 g
1.44 s | 2.07 g

Time [s]

L
oa

d
F

ac
to

r
n

z
[g

]

Figure 4.30: High fidelity simulation results.

104

Chapter 4: Application to a Mechanical Flight Control System

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−10

0

10

20

Time [s]

C
om

m
an

d
ed

V
ol

ta
ge

U
cm

d
[V

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

100

200

Time [s]

P
ow

er
P

el
[W

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−15

−10

−5

0

Time [s]

C
oi

l
T

em
p

er
at

u
re

T
co

il
[◦

]

Figure 4.31: High fidelity simulation results.

105

4.4 High Fidelity Simulation with a Flight Dynamics Model

Aircraft Response

For the sake of completeness, the response of the aircraft is also evaluated. The graph in

Figure 4.33 represents (V R
K)E , the kinematic velocity of the aircraft reference point with

respect to the Earth Centered Earth Fixed (ECEF) frame. Further information on the

coordinate frames and notation can be found in [Hol17a].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

80

90

100

Time [s]

(V
R K

)E
[m s

]

Figure 4.32: Plot of the airspeed in the high fidelity simulation.

To ensure that the maneuver is actually flyable, the stall speed has to be reviewed

for the most critical flight state, which occurs at t = 2.44s with the maximum load

factor. The Pilot’s Operating Handbook (POH) for this aircraft provides the stall speeds

depending on the deflection of the flaps, the aircraft mass, and the bank angle of the

aircraft. According to [Hol17a], the correlation between load factor and bank angle µ can

be described as

nz =
1

cos(µ)
(4.20)

which leads to µ = 61.1◦ for the maximum load factor of 2.07g. Under the given condi-

tions, the POH indicates a stall speed of 90 KIAS, which corresponds to an aerodynamic

airspeed of VA,Stall = 46.3
m

s
. Since the wind speed is set to zero in this scenario, the

kinematic velocity is equal to the aerodynamic velocity. Accordingly, the airspeed during

the maneuver is clearly above the stall speed stated in the POH.

The first graph in Figure 4.33 shows the pitch angle Θ between the Body Fixed frame

and the North East Down (NED) frame. Together with the second graph, which represents

the aerodynamic angle of attack αA between the Aerodynamic frame and the Body Fixed

frame, it can be concluded that the aircraft is flying straight level first. This can also

be seen in the last graph of Figure 4.33, where the climb angle γK between the NED

frame and the Kinematic frame is plotted. At t = 1s the actuator movement and thus

the moment dynamics set in. The ∆η causes a positive moment around the pitch axis of

the aircraft, leading to an angular acceleration and consequently to an angular rate that

changes the angle of attack. This is visible in the plots of Θ and αA until around t = 1.5s.

While both angles are already rising, γK remains more or less unchanged. With a change

106

Chapter 4: Application to a Mechanical Flight Control System

of the aircraft’s angle of attack ∆αA, the force dynamics then set in, which causes an

increase in lift. This in turn leads to a change of the climb angle and, ultimately, flight

altitude. The effects of the force dynamics can be seen in the course of γK , which starts

rising only after t = 1.5s.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

10

20

30

Time [s]

Θ
[◦

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

10

20

Time [s]

α
A

[◦
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

10

Time [s]

γ
K

[◦
]

Figure 4.33: Aircraft response in the high fidelity simulation.

4.5 Aircraft Handling Qualities

As stated previously, the level of detail of the built simulation model also allows aircraft

handling qualities to be reviewed. According to [Coo69], handling qualities refer to "those

qualities or characteristics of an aircraft that govern the ease and precision with which a

pilot is able to perform the tasks required in support of an aircraft role". The following

focuses on the stick force per g relationship as part of the airplane’s control characteristics.

The gradient describes the stick force that is needed to produce a change of the load factor

and is an important parameter of the basic handling qualities. In its CS-23 ([Eur15]),

EASA provides a minimum elevator control force in maneuvers (CS 23.155), which is

defined as the stick force required to achieve the positive limit maneuvering load factor.

107

4.5 Aircraft Handling Qualities

For stick controls, this is the greater value between 66.8N and

FStick,nz,max,min =
W

14N
(4.21)

where W is the maximum aircraft weight in kg. However, it does not need to be greater

than 156N . The reason for the lower limit is to ensure that the aircraft is not overstressed

too easily, so that a certain force is necessary to reach the positive limit of the aircraft.

On the other hand, there is also a good reason for the upper limit of the parameter, which

is in any case not dependent on the aircraft. This limit is supposed to ensure that the

aircraft remains controllable without too much effort and that the pilots do not fatigue

too quickly. The EASA Certification Specifications 25 (CS-25) for large aeroplanes does

not contain such maneuvering control force requirements.

The minimum stick force per g gradient is also part of the United States Military

Standard. The MIL-HDBK 1797 ([U.S97]) calculates the minimum gradient for level 1

aircraft and center stick controllers as
(

∆FStick

∆nz

)

min

=
21lb

nz,max − 1
. (4.22)

According to the formula provided in the MIL-HDBK 1797, the minimum gradient for

the considered aircraft is
(

∆FStick

∆nz

)

min,MIL
= 40.9N . However, using the formula from the

CS-23, the minimum gradient is calculated as
(

∆FStick

∆nz

)

min,CS
= 68.4N . Since the CS-23

is relevant for the certification of the aircraft, its requirements must be met. Nevertheless,

fulfilling the requirements from the MIL-HDBK 1797 is advisable, as it considers aspects

that are not covered by the CS-23.

The stick force of the current FCS can easily be derived using a minor modification of

the simulation model used in Section 4.4. For this purpose, an inverse dynamics problem

is formulated at the control inceptor. Instead of the actuator model governing the motion

of the mechanism, the joint connecting the control stick and its fixture is now used.

Therefore, its motion is specified in such a way that the control stick deflection is almost

identical to the simulation of the previous section. Due to the introduced backlash, it is

not possible to reproduce the exact same motion as before. After this modification, inverse

dynamics algorithms allow one to calculate the torque needed to perform the predefined

motion. Together with the length of the control stick, the stick force or required pilot

force can be calculated. Figure 4.34 shows the elevator deflection, the load factor, and

the pitch angle over time during the maneuver. The actual stick force and the required

stick force are shown in Figure 4.35. While the red graph represents the (smoothed) stick

force required for the pull-up maneuver, the blue graph shows the minimum stick force

108

Chapter 4: Application to a Mechanical Flight Control System

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−20

−10

0

10

Time [s]

E
le

va
to

r
D

efl
ec

ti
on

η
[◦

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

1

1.5

2

2.5

Time [s]

L
oa

d
F

ac
to

r
n

z
[g

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

10

20

30

Time [s]

Θ
[◦

]

Figure 4.34: Elevator deflection, load factor, and pitch angle over time.

required by the CS-23:

FStick,min(t) =

(

∆FStick

∆nz

)

min,CS

· nz(t) = 68.4N · nz(t) (4.23)

As can be seen, the actual stick force is mostly above the required stick force. Only

shortly before reaching the maximum load factor at the end of the simulation it falls

slightly below the minimum force. This shortfall is probably due to inaccuracies in the

models, since the aircraft is already CS-23 certified.

Moreover, the maximum stick force does not occur at the same time as the maximum

load factor. Initially, FStick correlates with the hinge moment that is shown in Figure 4.36.

The temporal offset is quite reasonable, since the hinge moment is primarily dependent

on the moment dynamics. These are significantly faster than the force dynamics, by

which the load factor is largely influenced. Equations 4.12 and 4.13 can also explain the

kink in the hinge moment curve at t = 1.95s. On the one hand, the dynamic pressure

qt decreases as it is proportional to the square of the airspeed, which decreases over the

109

4.5 Aircraft Handling Qualities

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

50

100

Time [s]

S
ti

ck
fo

rc
e

F
S

ti
ck

[N
]

CS-23 Minimum FStick

Actual FStick

Figure 4.35: Stick force and minimum stick force over time.

entire maneuver. On the other hand, the hinge moment coefficient is composed of, among

others, the η term, which is the main determinant, and the αt term, which decreases

with an increasing αt. This expresses the decreasing restoring moment with an increasing

angle of attack. Consequently, He reaches its peak value as soon as the elevator is fully

deflected. After this point, the η term remains unchanged, but the angle of attack still

increases, leading to a decreasing αt term and finally to a decreasing He.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

50

100

Time [s]

H
in

ge
M

om
en

t
H

e
[N

m
]

Figure 4.36: Hinge moment over time.

In order to bring the model of the mechanical FCS in line with the requirements of

the CS-23, the stick force per g gradient is to be adapted. In accordance with [Hol17b],

the stick force per g gradient can be calculated from

∆FStick

∆nz

= Ge · Se · ce · qt

q
· mg

S
· Chη,e

CN
mη

xGMfree

c
(4.24)

where Ge is the mechanical transmission ratio between control stick and elevator surface,

q is the dynamic pressure, m is the aircraft mass, g is gravitational acceleration, S is the

wing area, CN
mη is the elevator pitching moment derivative around the aircraft neutral

point, xGMfree is the distance between the aircraft CG and the stick-free maneuver point,

and c is the mean aerodynamic chord. Consequently, the main determinants on the

gradient are

110

Chapter 4: Application to a Mechanical Flight Control System

� the mechanical transmission ratio Ge,

� the elevator wing area Se,

� the wing loading mg
S

,

� the aircraft’s CG, and the flight altitude (determining xGMfree).

However, none of the listed determinants shall be used. Instead, the control inceptor is

equipped with a bob-weight, a common control system gadget to tailor the stick force

per g gradient. In [Ros03], the relationship between a bob-weight and the stick force for

relatively shallow pitch angles is given as

∆FStick ≈ nz · g · mbw · lbw

ls
(4.25)

with the bob-weight mass mbw, the bob-weight lever length lbw, and the stick length ls.

Nevertheless, for higher pitch angles, the stated relationship can no longer be applied.

For this purpose, the bob-weight is considered in a dynamic simulation, which enables

a much more detailed examination of the bob-weight effects. Figure 4.37 illustrates the

installation point of the bob-weight near the rotational axis of the control stick. The

greater the distance to the axis, the faster the effective lever arm and thus the bob-

weight effects are reduced, as the pitch angle or the stick deflection (in the pull direction)

increases.

lbw

ls

Figure 4.37: Schematic diagram of the bob-weight installation.

With ls = 1m, lbw = 0.4m, and mbw = 1.5kg, the bob-weight is implemented as a

point mass 0.05m above the rotational axis. The resulting adapted stick force with the

bob-weight is shown in Figure 4.38. This is in contrast to the unadapted force of Figure

4.35. The results were obtained by applying the identical motion to the FCS. The actual

stick force remains above the minimum stick force according to CS-23. Moreover, it can

be seen that the bob-weight causes a constant stick force augmentation of 5.81N in a

straight-level flight with nz = 1g. Despite the trim pitch angle and trim stick deflection,

this is very close to the approximation given by Equation 4.25 with ∆Fs ≈ 5.89N . In the

subsequent course, the force caused by the bob-weight inertia increases with a rising load

factor, but at the same time, the effective bob-weight lever arm decreases with a rising

111

4.6 Estimation of the Buckling Risk

pitch angle and an increasing stick deflection. Since both effects work against each other,

this leads to an almost constant force augmentation over the entire simulation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

50

100

Time [s]

S
ti

ck
fo

rc
e

F
S

ti
ck

[N
]

CS-23 Minimum FStick

Actual FStick without Bob-Weight
Actual FStick with Bob-Weight

Figure 4.38: Stick force with bob-weight and minimum stick force over time.

4.6 Estimation of the Buckling Risk

Column buckling is a subject of continuum mechanics and is, due to its complexity, a

separate field of research. Euler’s column formula allows one to estimate a critical

compression load for columns with homogeneous and isotropic materials, but for more

realistic use cases in particular related to FCS with oftentimes anisotropic materials like

carbon fibers for rods, the stated relationship reaches its limits. To obtain accurate data,

this method is not suitable. However, the critical load, according to Euler, is an initial

clue for the risk of buckling. For this reason, it is used in the following simulation to assess

the buckling risk for certain rods of the FCS. Therefore, for demonstration purposes, it is

assumed that the maximum operational forces occur in this scenario.

The Simscape Multibody toolbox offers no functionality to consider buckling. Applying

Euler’s formula to a model built with this toolbox usually requires a lot of manual

work and time. To measure the normal forces, additional Weld joint blocks have to be

introduced between corresponding parts and joints. The outputs must be logged and

further necessary parameters such as Young’s modulus, the minimal second moment of

area, or the length have to be provided in order to calculate critical loads. The method

developed in this thesis, however, allows parts already in the CAD system to be marked

for a subsequent analysis. When converting the CAD model into a Simscape Multibody

model, the required parameters are transferred automatically. They can either be read

out from the material data assigned to the parts in the CAD system or be given in the

form of user-defined parameters. The additional Weld joint blocks are introduced and the

data logging is automated as well.

For this purpose, the CAD model is converted again, but the Simscape Multibody

model creation is triggered with altered parameters. In order to keep simulation costs

small, the physical effects friction and backlash in joints are no longer considered, since

112

Chapter 4: Application to a Mechanical Flight Control System

their influence on buckling is negligible. The FDM still accelerates the entire mechanism

and provides the hinge moment. This allows one to not only consider the aerodynamic

forces but also the forces caused by inertia.

Apparently, Equation 2.4 contains the relevant parameters for calculating the critical

load, which are the second moment of area and Young’s modulus. The second moment

of area I can be given via user-defined parameters or can be approximated according to

Equation 3.26 if the material’s density is available. In the following scenario, the material

of the rods shall be carbon fiber with a Young’s modulus of E = 8.8 · 1010P a. For

more precise results, the second moment of area for the hollow cylinders is given using

user-defined parameters in CATIA. For such cross sections, I is described as

I =
π

4

(

R4 − r4
)

(4.26)

with R being the outer and r the inner radius. For a cylinder with R = 10mm and

r = 4mm, the second moment of area is I = 7.653·10−9kgm2. The user-defined parameters

related to buckling are managed part-wise in the CAD software and are the same for each

rod:

isBucklingRelevant = 1

I = 7.653e-9

E = 8.8e+10

The critical buckling force FB is calculated with Equation 2.4 and Euler’s second case.

Together with the safety factor υ, introduced in Equation 2.5, the maximum allowable

compressive force is determined. According to paragraph CS-23.303, the safety factor

υ = 1.5 is applied to assess the risk of buckling in this use case.

As can be seen in Figure 4.39, the forces are measured twice per part in the built

Simscape Multibody model using Weld joint blocks at both ends of the corresponding

rods. The measured total forces (in x-, y-, and z-direction) are then converted to regular

Simulink signals, which are automatically logged to the MATLAB workspace and are

finally led in Terminator blocks.

Figure 4.39: Compressive load for each rod.

The logged data is post-processed in order to obtain the total force by simply applying

the Pythagorean theorem:

F (t) =
√

Fx(t)2 + Fy(t)2 + Fz(t)
2. (4.27)

113

4.7 Role of the Developed Method in this Use Case

4.6.1 Results

Referring to Figure 4.1, the rods are consecutively numbered starting with the most

forward one. The obtained simulation results, which are shown in Figure 4.40, relate to

these numbers. As described, the forces are measured twice per part. For this reason,

there are two plots, respectively. Naturally, the two blue graphs of each part differ only

marginally due to gravitational or inertia forces. The red line, representing the critical load

FB according to Equation 2.4, and the yellow line, representing the maximum allowable

load considering the factor of safety, are exactly the same for one and the same part. The

results of this particular scenario suggest that most of the rods should not be affected

by a risk of buckling, since their compressive load lies well under the yellow line. For

Rod6.1, the maximum loads are way above the others, so that they are not shown within

the chosen range of the y-axis. After a more precise buckling study, some of these rods,

especially Rod2.1 and Rod6.1, may be streamlined to reduce the overall weight. Only

Rod3.1, with its long length, exceeds the maximum allowable load slightly, indicating a

buckling strength deficit. For further action, this part could be strengthened by increasing

its outer radius or by introducing a new lever to reduce the unsupported rod length.

As mentioned at the beginning of this section, such an examination is intended only to

give a rough idea of the buckling risk and is by no means suitable to substitute a precise

and, of course, necessary buckling strength study.

4.7 Role of the Developed Method in this Use Case

The application of the method developed in this thesis and related advantages regarding

the present use case shall be briefly discussed in the following. First and foremost, the

method allowed a fully automatic and therefore very fast and flawless conversion of the

CATIA model to a Simscape Multibody model. Subsequently, the bidirectional nature of

the developed method allowed the CAD parameters to be optimized in order to minimize

nonlinearities in the transfer function of the kinematic between actuator and elevator

surface.

Moreover, certain functions developed in this thesis were particularly tailored to me-

chanical FCSs. For this reason, the nonlinear and complex effects of friction and backlash

in revolute joints could be easily and quickly taken into account. The control of these

models as well as the parameters required for the simulation of these effects is therefore

managed in the CAD system.

The developed method allowed the given FCS to be reviewed in terms of certification

aspects and flight safety. Handling qualities were analyzed by accelerating the automat-

ically created model. This way, inertia loads due to flight maneuvers and realistic hinge

moments could be considered.

For an estimation of the risk of buckling, the interface provides an automatic calcula-

tion of the critical load according to Euler and an automatic determination of the rod

114

Chapter 4: Application to a Mechanical Flight Control System

loads. The developed feature to read out the necessary material constants from the mate-

rial assigned to the part as well as the approximation of the parts’ second moment of area

were not used for accuracy reasons, but were given directly in the form of user-defined

parameters in the CAD software.

115

4.7 Role of the Developed Method in this Use Case

0 1 2 3
0

1

2

3

Time [s]

F
or

ce
[k

N
]

Rod1.1

Force
FB

FB/ν

0 1 2 3
0

1

2

3

Time [s]

F
or

ce
[k

N
]

Rod1.1

0 1 2 3
0

1

2

3

Time [s]

F
or

ce
[k

N
]

Rod2.1

0 1 2 3
0

1

2

3

Time [s]

F
or

ce
[k

N
]

Rod2.1

0 1 2 3
0

1

2

3

Time [s]

F
or

ce
[k

N
]

Rod3.1

0 1 2 3
0

1

2

3

Time [s]

F
or

ce
[k

N
]

Rod3.1

0 1 2 3
0

1

2

3

Time [s]

F
or

ce
[k

N
]

Rod4.1

0 1 2 3
0

1

2

3

Time [s]

F
or

ce
[k

N
]

Rod4.1

0 1 2 3
0

1

2

3

Time [s]

F
or

ce
[k

N
]

Rod5.1

0 1 2 3
0

1

2

3

Time [s]

F
or

ce
[k

N
]

Rod5.1

0 1 2 3
0

1

2

3

Time [s]

F
or

ce
[k

N
]

Rod6.1

0 1 2 3
0

1

2

3

Time [s]

F
or

ce
[k

N
]

Rod6.1

Figure 4.40: Compressive load for each rod.

116

5

Application to a Fly-by-Wire Flight

Control System

The use case presented in this chapter shows the application of the methods developed

in this thesis within the scope of a project related to a medium-range turboprop airliner.

The aircraft manufacturer assigned the institute to perform a model-based requirement

validation regarding the yoke control system. The approach of this thesis is applied

to automatically create the MBS model, and further models presented previously are

integrated to enhance it. Requirements provided by the manufacturer are formalized

and test cases verify the simulation model against them. The chapter concludes with a

simultaneous optimization of hard- and software parameters while considering formalized

requirements.

5.1 Methods and Approach

For development projects of complex systems such as aircraft, requirements management

is crucial, as is the quality of the requirements. The classical requirement derivation and

validation is a manually driven process. The V-model illustrated in Figure 5.1 is common

for the development of safety-critical systems or software. The left side represents captur-

ing the requirements in a top-down manner, where the system is increasingly decomposed

downwards. Since the requirements are typically only captured in natural language, the

subsequent review has then to be performed manually, as well.

A model-based requirement validation approach, however, uses simulation models to

automate the right side of the V-model and support the left side. Therefore, the require-

ments are not only captured in natural language but are also formalized in order to be

able to validate them automatically. Automatic test routines model the requirements and

are then able to verify the simulation model against the formalization. The simulation

models are therefore not only used for verification but can also be used for the requirement

derivation. Requirements at each level can be verified without a specific implementation.

117

5.2 Yoke Control System with Mechanical Control Loading System

Aircraft-level
requirements

System
requirements

Subsystem
requirements

SW and HW
requirements

SW and HW
implementation

SW and HW
verification

Subsystem
verification

System
verification

Aircraft-level
verification

Function
development

Item development

R
equirem

ents
capture

and
validate

In
te

gr
at

e
an

d
ve

rif
y

Ve
rif

y

Ve
rif

y

Ve
rif

y

Ve
rif

y

Figure 5.1: Modified V-model of [Rie13].

Assuming that the requirements are complete and that the simulation model covers all

essential effects, a successful verification of the requirement models corresponds to the

validation of the requirements. Another benefit of model-based requirement validation is

that, based on the formalization and modeling of the requirements, their verifiability is

already ensured during the requirements engineering phase. Requirement verifiability is a

common demand in requirements engineering. The incorporation of physical models that

are derived automatically from the design and construction world into this established

model-based requirement validation process is one of the contributions of this thesis.

In this project, the requirements were provided by the aircraft manufacturer and were

captured in the requirements management platform Polarion R© REQUIREMENTSTM.

Apart from the creation of the simulation model, this use case demonstrates the require-

ments formalization and the requirements modeling in the form of test cases. Therefore,

model inputs and the expected outputs, according to the formalization, are specified in

MATLAB scripts. A subsequent simulation then produces data that is post-processed to

verify the model against the formalized requirements.

In addition, the institute uses a tool called SimPol, which manages traceability across

the tool borders of Simulink and Polarion. The tool was developed at the institute and

allows one to link requirements and subsystems in Simulink models to each other.

5.2 Yoke Control System with Mechanical Control

Loading System

The aircraft is to be equipped with a FBW FCS, while the cockpit control inceptor is

represented by a yoke control system for two pilots. Due to the irreversible FCS, the yokes

are provided with a mechanical control loading system (CLS) to supply the pilots with

118

Chapter 5: Application to a Fly-by-Wire Flight Control System

some kind of flight control forces. Essentially, it consists of a spring-damper combination,

which produces corresponding counter-forces with increasing deflections and deflection

rates.

The yoke of the Captain (CPT) and the First Officer (FO) are rigidly connected

by a friction clutch. This connection can be released with a force exceeding a specified

threshold. This ensures the aircraft’s controllability in the case that one of both yokes

is jammed mechanically. Once the yokes are disconnected, they cannot be reconnected

in-flight. A yoke source signal selection system, which is not here considered in detail,

manages the signal selection and priority between both yokes.

The trim actuator for the pitch axis is connected to both yokes and alters the zero-

force equilibrium point of the spring-damper combinations. In addition to the absolute

deflection hard stops, there are CLS hard stops, which move with the trim position. This

range is about 20% wider than the absolute hard stops. With the trim in a maximum

forward or aft position, the relative hard stops become relevant because in such conditions,

the absolute opposite hard stops are no longer reachable. However, if the trim is jammed

in the most forward or aft position, safe operation of the aircraft is still guaranteed

according to the aircraft manufacturer.

The installed AP actuator is only connected to the CPT yoke and is also used as

a stick pusher. The purpose of such a stall identification system is to push the yoke

forward whenever the aircraft approaches the stall. Typically, the angle of attack serves

as an indicator. The stick pusher is activated as soon as a certain threshold value is

reached. Naturally, a linkage only to the CPT yoke results in a loss of autopilot and stall

identification if it is jammed.

Analogous to Chapter 4, this use case only focuses on the pitch axis, since the study

of the other axis is very similar. The schematic diagram of the mechanics of the pitch

axis is illustrated in Figure 5.2. For a clearer visualization, the schematic diagram shows

the rotary mechanism in the analogous translational representation.

5.3 Requirements

The requirements to be validated using a model-based approach were provided by the

aircraft manufacturer. The relevant ones for the pitch axis are listed below. The require-

ments were given as translational lengths, which were interpreted as circular arc lengths

using the yoke length as the radius. For the relevant requirements, the MATLAB code for

an automatic requirement validation is listed. For this purpose, the clsRequirement

class was developed in this thesis. Its implementation can be found in Appendix D. The

requirements are assigned a status which can be "passed" (1), "failed" (0), or "no testable

condition found" (-1). The used variables originate from the signal logging and contain

the corresponding quantity’s temporal course.

119

5.3 Requirements

MT

MAP

xCP T xF O

Figure 5.2: Schematic diagram of the pitch axis mechanics.

Requirement 1 (REQ-1)

The pitch control shall provide an override function that allows axis control to be kept on

one side in case of jamming on the other side.

Requirement 2 (REQ-2)

The pitch control shall mechanically link CPT and FO control.

Requirement 3 (REQ-3)

The column stroke shall be 100mm±1mm in forward and −120mm±1mm in aft direction.

Formalization and Code for Automatic Verification: The following code shows

the automatic validation of this requirement. Each yoke is reviewed separately for the

upper and lower bound. As such, the boundaries are marginally relaxed by 1mm, so that

minor penetration into the hard stop does not lead to a failed requirement validation.

% Create requirement object

objRequirement = clsRequirement();

% Check upper limit for CPT yoke

objRequirement.AddVerification(1, max(x_CPT) < 0.101);

% Check lower limit for CPT yoke

objRequirement.AddVerification(1, min(x_CPT) > -0.121) ;

% Check upper limit for FO yoke

objRequirement.AddVerification(1, max(x_FO) < 0.101);

% Check lower limit for FO yoke

objRequirement.AddVerification(1, min(x_FO) > -0.121);

120

Chapter 5: Application to a Fly-by-Wire Flight Control System

% Evaluate requirement

verification_results(3) = objRequirement.Evaluate();

Moreover, the code assumes that, in the test case, a full deflection in both directions was

attempted.

Requirement 4 (REQ-4)

The desired breakout force should be 15N ± 5N in the forward and aft directions.

Formalization and Code for Automatic Verification: The idea is to find a point

in the simulation results where the pilot force just exceeds 15N . At this point, the yokes

must still be in the trim position. Analogous to REQ-3, the requirement is relaxed by

1.5mm mainly to account for deflections due to gravity.

% Create requirement object

objRequirement = clsRequirement();

% Check breakout force for positive pilot forces

condition = F_CPT(1: end-1) <=15 & F_CPT(2: end) > 15;

objRequirement.AddVerification(condition, abs(x_wo_t rim_CPT(condition)) <

0.0015);

% Check breakout force for negative pilot forces

condition = F_CPT(1: end-1) >=-15 & F_CPT(2: end) < -15;

objRequirement.AddVerification(condition, abs(x_wo_t rim_CPT(condition)) <

0.0015);

% Evaluate requirement

verification_results(4) = objRequirement.Evaluate();

Requirement 5 (REQ-5)

The maximum pitch force shall be 260N ±10N in the forward direction and −310N ±10N

in the aft direction.

Formalization and Code for Automatic Verification: With the pilot force as input

to the model, it is not trivial to validate the maximum pitch forces. In this case, the

maximum forces are validated in both directions through checking the minimum force

occurring in the full deflection positions. In addition, the rigid connection between both

yokes must still be intact. Otherwise, control loads are halved, since only the remaining

CLS of the CPT yoke has an effect. If they are within the required forces, the requirement

is validated. Of course, a combination of a certain pitch force course and the inertia of

the system may lead to a falsified validation. This must be considered in this particular

test case.

% Create requirement object

objRequirement = clsRequirement();

% Check nominal maximum pilot force for min forward deflecti on

121

5.3 Requirements

condition = x_CPT >= 0.1 & bDisconnected == 0;

objRequirement.AddVerification(condition, min(F_CPT(condition)) < 260);

% Check nominal minimum pilot force for max aft deflection

condition = x_CPT <= -0.12 & bDisconnected == 0;

objRequirement.AddVerification(condition, max(F_CPT(condition)) > -310);

% Evaluate requirement

verification_results(5) = objRequirement.Evaluate();

Requirement 6 (REQ-6)

The pitch trim speed shall be 5.5mm/s ± 10% with no load on the column.

Formalization and Code for Automatic Verification: This requirement is only

checked for time steps where the command for the trim system does not equal zero. In

order to focus on significant motion, the logged data is first filtered using a second-order

transfer function. Afterwards, velocities below 1mm/s are removed from the dataset. The

requirement is valid if the mean velocity of the remaining data does not deviate by more

than 0.5mm/s from the target value.

% Resample data

t = 0:ts:t_end;

v_trim = interp1(timeVector, v_trim, t);

% Filter data to remove spikes

w = 1000;

G = tf(w, [0.1 2 * sqrt(w) w]);

v_trim = lsim(G, v_trim, t);

% Remove slow velocities

v_trim(abs(v_trim)<0.001) = [];

% Create requirement object

objRequirement = clsRequirement();

% Check trim speed for trim position commands other than zero

condition = x_trim_cmd ~= 0;

objRequirement.AddVerification(condition, abs(abs(me an(v_trim)) - 0.0055)

< 0.0005);

% Evaluate requirement

verification_results(6) = objRequirement.Evaluate();

Requirement 7 (REQ-7)

The pitch trim stroke shall be 50mm±1mm in the forward direction and −60mm±1mm

in the aft direction.

Formalization and Code for Automatic Verification: Analogous to REQ-3, the

requirement is validated as long as the required upper and lower bound is not exceeded.

122

Chapter 5: Application to a Fly-by-Wire Flight Control System

For reasonable results, this requires the test case to command a full deflection of the trim

actuator in both directions. In addition, the requirement is relaxed by 1mm.

% Create requirement object

objRequirement = clsRequirement();

% Check upper limit for trim system

objRequirement.AddVerification(1, max(x_trim) < 0.501) ;

% Check lower limit for trim system

objRequirement.AddVerification(1, min(x_trim) > -0.601);

% Evaluate requirement

verification_results(7) = objRequirement.Evaluate();

Requirement 8 (REQ-8)

The required force to open the friction clutch between both yokes shall be 446N ± 10N .

% Create requirement object

objRequirement = clsRequirement();

% Check friction clutch dissolving force

condition = abs(F_CPT(1: end -1)) <=446 & abs(F_CPT(2: end)) > 446;

objRequirement.AddVerification(condition,

~isempty(bDisconnected(condition) == 1));

% Evaluate requirement

verification_results(8) = objRequirement.Evaluate();

Requirement 9 (REQ-9)

When jammed, the maximum pitch force shall be ≤ 500N .

% Create requirement object

objRequirement = clsRequirement();

% Check maximum pitch force if FO yoke is jammed

condition = x_wo_trim_CPT(bDisconnected == 1)>=0.10 |

x_wo_trim_CPT(bDisconnected == 1)<=-0.12;

objRequirement.AddVerification(condition, ~isempty(a bs(F_CPT(condition))

<= 500));

% Evaluate requirement

verification_results(9) = objRequirement.Evaluate();

123

5.4 CAD Model

5.4 CAD Model

The CAD model of this use case is fairly straightforward. One reason for this is that the

CLS, with its spring and damper parts, as well as the details of the friction clutch for the

rigid connection of both yokes are not represented in the CAD model. However, all other

important parts for a pitch axis study, such as both yokes, their connecting parts, the

installation points of the trim actuator, and the AP actuator are present. Nevertheless,

according to the CAD model information, both yokes are not yet connected to each other

and are independently moveable. Only in the MBS model is the rigid connection by

the friction clutch established with the implementation of the corresponding logic and

behavior. The same applies to the spring-damper combinations for both CLSs.

Figure 5.3: 3D CAD model of the yoke system.

5.5 Simscape Multibody Model

To convert the CAD model to an MBS model, the interface developed in this thesis is

used. Afterwards, details like the friction clutch or models for the AP and trim actuator

are added to the Simscape Multibody model manually.

5.5.1 Nomenclature

The data and requirements provided by the aircraft manufacturer refer to translational

movements. However, since the motion is a rotation, which is represented in the simulation

model, a relationship between the rotary deflection δe and the translational movement x

must be made. This is briefly introduced in the following for a better comprehension in

later sections. As already mentioned, x is interpreted as the length of the circular arc,

124

Chapter 5: Application to a Fly-by-Wire Flight Control System

which is described by the rotating pilot handle. As such, a positive sign is defined for the

push-direction. The relation is then

δe = −x

l
(5.1)

with a yoke length of l = 0.72m between the rotary axis to the pilot handle. The sign

change is necessary because rotational deflections in the push direction have negative

signs.

5.5.2 Friction Clutch

The force or torque transmission by the friction clutch is modeled as a very stiff spring con-

necting the rotary DoF of both yokes. With the difference between the rotary deflection

of the CPT yoke δe,CP T and the FO yoke δe,F O,

∆δe = δe,CP T − δe,F O (5.2)

the torque applied by the clutch can be described as

Tclutch =







∆δe · kclutch, if clutch is closed

0Nm, if clutch is open
(5.3)

The clutch remains closed until Tclutch exceeds a threshold value, which results in opening

the clutch. Once it is opened, it stays open until the end of the simulation. The threshold

value can be derived from REQ-8 using the yoke length to convert the pilot force to a

torque in the clutch. The actual connection between the implementation of the clutch

packed in a subsystem and the MBS model is shown in Figure 5.4. Of course, forward

dynamics are used to introduce the torque, which is calculated according to the presented

equations, into both joints.

5.5.3 Control Loading System

The CLS for each yoke is represented with the help of the internal mechanics, which

are available by default for each joint in Simscape Multibody. This feature allows one to

define a spring stiffness, a damper coefficient, and an equilibrium position for any joint.

Accordingly, the two corresponding joints are equipped with a spring-damper combination

with spring stiffness kCLS and damper coefficient dCLS. The parameter estimation feature

of Simulink is used for the estimation of the spring stiffness and the damper coefficient.

The measurement data required for this is obtained by a second order transfer function,

which was provided by the aircraft manufacturer in addition to the requirements presented

in Section 5.3. The transfer function describes the desired relation between introduced

force and resulting yoke deflection for the pitch axis. Due to the non-disclosure agreement,

125

5.5 Simscape Multibody Model

Figure 5.4: Friction clutch connecting both yokes.

the actual values are not given:

x

Fin
=

0.339 · b

s2 a + s b
(5.4)

The time domain response of this transfer function to the step function H(t) (Equation

5.5), applying the maximum pull force at t = 5, is plotted next to the response of the

final MBS model in Figure 5.5. As can be seen, the estimated parameter lead to a decent

fit.

H(t) =







0, for t < 5

−310, for t ≥ 5
(5.5)

5.5.4 Breakout Force

According to the specified requirements, the yoke system shall exhibit breakout forces from

the trim position, which must be overcome in order to start a movement of the control

surfaces. Such means attempt to suppress unintentional commands from the pilot.

In the model, the mechanism to generate a breakout force is not simulated, but its

consequences are considered. The breakout force is realized by a Dead Zone block, which

effectively outputs zero within a specified range. For values outside of this zone, the

126

Chapter 5: Application to a Fly-by-Wire Flight Control System

0 1 2 3 4 5 6 7 8 9 10
−0.15

−0.1

−5 · 10−2

0

5 · 10−2

Time [s]

x
[m

]
2nd order transfer function
Simulation xCPT / xFO

Figure 5.5: Step response of the transfer function and the simulation.

output is a linear function of the input.

Fin(FP ilot) =







FP ilot − Fbf ,min, for FP ilot < Fbf ,min

0, for Fbf ,min ≤ FP ilot ≤ Fbf ,max

FP ilot − Fbf ,max, for FP ilot > Fbf ,min

(5.6)

The forces exerted by the pilots, which are fed into the model, are thus reduced to forces

Fin that are perceived by the mechanism. These perceived forces are then applied to the

x-axis of the particular yoke via External Force and Torque blocks. This means that the

applied forces always act perpendicularly to the yoke.

−250 −200 −150 −100 −50 0 50 100 150 200
−300

−200

−100

0

100

200

FPilot [N]

F
in

[N
]

Figure 5.6: Consideration of the breakout forces via Dead Zone block.

5.5.5 Actuators

The mechanism represented in the simulation model contains two actuators: one for the

trim system and another one for the AP or stick pusher. The actuator models are based

on the model presented in Subsection 2.4.1.

127

5.5 Simscape Multibody Model

5.5.6 Stick Pusher

With regards to the stick pusher actuator model, a simulation of the thermal behavior is

neglected, since no data was available in the course of this project, apart from its maximum

torque of 253.33Nm. For this reason, generic data is used for the remaining parameters, in

order to reach a corresponding maximum torque (see Table 5.1). Furthermore, the stick

Table 5.1: Parameters of the stick pusher actuator.

Name Symbol Value

Phase-to-phase inductance L 0.55mH
Phase-to-phase resistance R 1.05Ω
Voltage constant ke 0.095V s
Torque constant kt 0.095Nm/A
Friction coefficient kf 4 · 10−7Nms
Moment of inertia J 7.5 · 10−6kgm2

Gear ratio Gr 100
Gearbox efficiency η 1
Viscous friction coefficient ηv 1 · 10−4

pusher actuator operates in a binary fashion, meaning it provides either its maximum

torque by commanding the maximum voltage of 28V or it is off. In fact, this behavior

was specified by the aircraft manufacturer. The forward dynamics actuator model is

connected to the corresponding joint, which link the solid of the CPT yoke and the solid

of the stick pusher actuator. Naturally, the joint must then be specified as an inverse

dynamics problem.

5.5.7 Trim System

For the trim actuator, a parameter set is used that satisfies the requirement regarding

maximum torque, which was given by the aircraft manufacturer. The parameters are

listed in Table 5.2.

In this particular case, the trim actuator model is connected to the two joints con-

necting each yoke with its fixture. In addition, it is provided with the torque measured in

both joints and supplies the resulting trim actuator motion to both. Another modification

is the altered gearbox efficiency. Typically, the trim actuator or the gearbox is mostly

self-locking, meaning the system cannot be driven by the output side. This is necessary to

avoid a continuous load as well as a continuous correction of the position. This is usually

achieved by high gearbox ratios and low gearbox efficiencies. In order to account for this

effect, the gearbox efficiency η is reduced to 0.1. The maximum rate of the actuator is

limited by the controller.

128

Chapter 5: Application to a Fly-by-Wire Flight Control System

Table 5.2: Parameters of the trim actuator.

Name Symbol Value

Phase-to-phase inductance L 0.55mH
Phase-to-phase resistance Rcoil 1.25Ω
Voltage constant ke 0.055V s
Torque constant kt 0.055Nm/A
Friction coefficient kf 4 · 10−7Nms
Inertia tensor J 12.0 · 10−6kgm2

Gear ratio Gr 100
Gearbox efficiency η 0.1
Viscous friction coefficient ηv 1 · 10−4

5.5.8 Hard Stops

Contrary to the previous examples, this model requires the modeling of hard stops to

consider the limited trim and yoke deflections. Otherwise, due to the nested limits,

system states might be reached that are not possible with the real system. In particular,

three different hard stops have to be modeled:

� Absolute limits of the yoke deflection (REQ-3)

� Absolute limits of the trim actuator stroke (REQ-7)

� Limits of the CLS relative to the trim position (20% wider than REQ-3)

All hard stops are represented by a spring-damper combination, which is modified based

on the model proposed by Hunt and Crossley in [HC75]:

THardStop = kβ + |kβ| c
.
β (5.7)

with β being the angle exceeding the hard stop limit, defined as

β = min{δe − δe,min, 0} + max{δe − δe,max, 0} (5.8)

With δe,min as the lower (forward) bound and δe,max as the upper (aft) bound, it can be

seen that the damper term is in this case dependent on the absolute value of the spring

force. This results in a continuous contact force, which is both more realistic and more

beneficial for the simulation. However, Hunt and Crossley present a complex formula

for the damping coefficient which is not used in this case. In addition, only the absolute

value of the spring force influences the damper term, since in this use case there are hard

stops for negative deflections.

The hard stop models for the CLSs can be directly connected to the corresponding

blocks. For the trim system, the model is directly integrated into the actuator model. To

129

5.6 Requirements Validation and Discussion

limit the absolute deflection of the yokes, the position measurements of the trim and the

CLS are required to determine the absolute yoke deflection (see Figure 5.4).

5.5.9 Yoke Jam

The hard stop model just described is also used in this use case to simulate jammed

yokes. A boolean signal therefore triggers the forward bound δe,min and the rearward

bound δe,max of the hard stop model to be overwritten with the current yoke deflection at

that particular time step. These altered bound values are held until the boolean signal

becomes false again.

5.6 Requirements Validation and Discussion

The test cases for the verification of the requirements compliance are grouped into three

major groups. Table 5.3 gives an overview of the test cases whose results are discussed in

detail in the following. Note that the applied pilot force always refers to the CPT yoke

and its x-axis. If relevant, the clutch state is given, which indicates a working connection

if it is equal to one or a disconnect if it is equal to zero.

Table 5.3: Overview of the test cases.

Test Case No. Description

Nominal behavior

10 Nominal achievable yoke deflection
11 Nominal achievable yoke deflection with trim in maximum

forward position
12 Nominal achievable yoke deflection with trim in maximum aft

position

Jammed FO yoke

20 FO yoke jammed in neutral position
21 FO yoke jammed in maximum forward trim position
22 FO yoke jammed in maximum aft trim position

Stick pusher activation

30 Stick pusher activation with neutral trim position
31 Stick pusher activation with maximum aft trim position

5.6.1 Test Case 10: Nominal Achievable Deflection

This test case attempts to validate the nominal achievable yoke deflection (REQ-3) with

the trim system in neutral position. Therefore, a pilot force according to the maximum

forces of REQ-5 is applied to the CPT yoke. The maximum short term forces according

130

Chapter 5: Application to a Fly-by-Wire Flight Control System

to Paragraph 25.143 of the CS-25 are applied afterwards to verify the resulting deflection.

For a more realistic and pilot-like loading, the forces are not introduced as discontinuous

steps, but the transition between two force levels always takes 500ms.

Results and Discussion

As can be seen in the course of x in Figure 5.7, using the maximum pitch forces of REQ-5

does not result in the maximum yoke deflections stated in REQ-3. However, this could

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

−400

−200

0

200

400

Time [s]

F
P

il
o
t

[N
]

REQ-5 forces CS-25 short term forces

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

−0.1

0

0.1

Time [s]

x
[m

]

Deflection bounds xF O xCP T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

−5

0

5
·10−2

Time [s]

x
tr

im
[m

]

REQ-7 bounds

Figure 5.7: Test Case 10: Nominal achievable yoke deflection.

be predicted from the given transfer function (Equation 5.4). Even when applying the

maximum short term forces of the CS-25, only the forward hard stop cannot be reached

while the maximum aft position still needs a higher force. Moreover, with both yokes

deflecting, the graph shows an intact connection between them. This is also indicated by

the plotted clutch state. Consequently, REQ-2 can be seen as validated.

The results of the automated requirements validation are shown in Table 5.4. They also

indirectly indicate a violation of the maximum pitch forces. Although REQ-5 is marked

as non-testable, it can be seen as violated since the conditions (maximum deflections)

were not found under the maximum forces. The requirements for the trim velocity and

for jamming cases are also marked as non-testable, as expected.

131

5.6 Requirements Validation and Discussion

Table 5.4: Results of the automated requirements validation (Test Case 10).

Requirement REQ-3 REQ-4 REQ-5 REQ-6 REQ-7 REQ-8 REQ-9

Result passed passed - - passed - -

5.6.2 Test Case 11: Nominal Achievable Deflection with Max.

Forward Trim

In addition to the trim in neutral position, the achievable yoke deflection with the trim

in its maximum positions must also be reviewed. For this purpose, the trim actuator

is commanded the maximum forward position first. Subsequently, the maximum force

of REQ-5 and the maximum short term force of the specifications is applied in the pull

direction, to evaluate the reached deflections. In the push direction, only the maximum

force of REQ-5 is introduced.

Results and Discussion

With the trim position in maximum forward position, and thus a shortened way to

the forward hard stop from REQ-3, it is easily reached with the maximum pitch force.

Nevertheless, the rear hard stop is far from being reached, although it is no longer repre-

sented by the absolute hard stop but by that of the CLS, which moves forward with the

trim position in this case. This can clearly be seen between t = 6s and t = 10s. Even

the maximum CS-25 short term forces were not sufficient, as there is still a separation

of 36mm to the lower bound. This suggests possible higher pitch forces when the yoke

is deflected to the rear hard stop. This test case scenario also shows the achievable yoke

deflections with a pitch trim runaway in the forward direction. The requirement regarding

the trim speed (REQ-6) can hardly be manually validated using Figure 5.8. It takes a

little less than 10s to travel 5mm, but a more precise assertion can only be done using

the raw data. In this context, the automated requirements validation results (Table 5.5)

are of particular interest. These show that the pitch trim speed lies between the required

limits. As before, the automated requirements validation could not verify REQ-5 because

not all test conditions were met.

Table 5.5: Results of the automated requirements validation (Test Case 11).

Requirement REQ-3 REQ-4 REQ-5 REQ-6 REQ-7 REQ-8 REQ-9

Result passed passed - passed passed - -

132

Chapter 5: Application to a Fly-by-Wire Flight Control System

0 2 4 6 8 10 12 14 16 18 20 22 24

−400

−200

0

200

400

Time [s]

F
P

il
o
t

[N
]

REQ-5 forces CS-25 short term forces

0 2 4 6 8 10 12 14 16 18 20 22 24

−0.1

0

0.1

Time [s]

x
[m

]

Deflection bounds xF O xCP T

0 2 4 6 8 10 12 14 16 18 20 22 24

−5

0

5
·10−2

Time [s]

x
tr

im
[m

]

REQ-7 bounds

Figure 5.8: Test Case 11: Nominal achievable yoke deflection with maximum forward
trim.

5.6.3 Test Case 12: Nominal Achievable Deflection with Maxi-

mum Aft Trim

Analogous to the previous test case, now the achievable yoke deflections with the trim

system in maximum aft position are reviewed.

Results and Discussion

The simulation results are very similar to the ones of Test Case 11. Between t = 5s and

t = 10s, the reduction of the possible forward stroke can be seen, which is associated

to the rearward moving pitch trim. As the plot in Figure 5.9 reveals, the forward hard

stop is not reached in this test case, neither by applying the forces of REQ-5 nor by

applying the CS-25 forces. However, the deficiency is now only 13mm. The achievable

yoke deflections also apply to a pitch trim runaway scenario in the aft direction. The

results of the automatic requirements validation are identical to those of Test Case 11

and are listed again in Table 5.6 for consistency.

133

5.6 Requirements Validation and Discussion

0 2 4 6 8 10 12 14 16 18 20 22 24

−400

−200

0

200

400

Time [s]

F
P

il
o
t

[N
]

REQ-5 forces CS-25 short term forces

0 2 4 6 8 10 12 14 16 18 20 22 24

−0.1

0

0.1

Time [s]

x
[m

]

Deflection bounds xF O xCP T

0 2 4 6 8 10 12 14 16 18 20 22 24

−5

0

5
·10−2

Time [s]

x
tr

im
[m

]

REQ-7 bounds

Figure 5.9: Test case 12: Nominal achievable yoke deflection with maximum aft trim.

Table 5.6: Results of the automated requirements validation (Test Case 12).

Requirement REQ-3 REQ-4 REQ-5 REQ-6 REQ-7 REQ-8 REQ-9

Result passed passed - passed passed - -

5.6.4 Test Case 20: FO Yoke Jammed in Neutral Position

The decoupling of both yokes in the case that the FO yoke jams in the neutral position

is verified in this test case. Furthermore, the resulting behavior of the operative CPT

yoke is reviewed. At the beginning of the simulation, the FO yoke jam is triggered in the

neutral position. This jam is held until the end of the simulation.

Results and Discussion

First, the pilot force introduced over the CPT yoke is increased to 500N , which leads to

a release of the mechanical connection, as expected. This can be seen twice in Figure

5.11, namely in the graph representing the clutch state, which drops from 1 (connected)

to 0 (disconnected) at around t = 2.5s. In addition, the graph displaying the deflection

of both yokes reveals a decoupled motion with xF O remaining at zero while xCP T shows a

deflection. Furthermore, it is noticeable that the disconnect occurs at the very end of the

pilot force rise and not at the beginning. This indicates a validation of the requirement

134

Chapter 5: Application to a Fly-by-Wire Flight Control System

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
−500

0

500

Time [s]

F
P

il
o
t

[N
]

REQ-5 forces CS-25 short term forces

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

−0.1

0

0.1

Time [s]

x
[m

]

Deflection bounds xF O xCP T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

Time [s]

C
lu

tc
h

S
ta

te
[-

]

Figure 5.10: Test Case 20: FO yoke jammed in neutral position.

specifying the force to open the clutch. Within 130ms after the disconnect, the yoke

leaps forward to the hard stop. Taking human factors into account brings the study to an

interdisciplinary level and leads to the conclusion that such a behavior can be hazardous.

Such short time spans are usually below the human response time when it comes to

auditory, visual, or tactile stimuli. Although the time to react to tactile stimuli is faster

according to [NC12] compared to the auditory or visual ones, it still takes at least 150ms

for the neuromuscular system to react ([LSW54]). Consequently, the pilot hardly has

a chance to disconnect both yokes without pushing the yoke forward to its hard stop.

Moreover, it is important to consider that always both yokes have to be pushed or pulled

as long as it is not obvious which yoke is jammed.

After returning to the neutral position, the maximum pitch forces are applied to the

CPT yoke. In contrast to the previous test cases, the hard stops are reached easily this

time. The reason for this is the halved loading from the CLS. Due to the disconnect,

the CLS from the FO yoke has no effect on the movements of the CPT yoke. The

reduced restoring force is also visible when returning to the neutral position, which takes

considerably longer than with an intact mechanical connection.

At this point, the automatic requirements validation has verified all but two irrelevant

requirements. Since REQ-5 requires connected yokes and REQ-6 requires a trim move-

ment, both requirements are marked as non-testable. In contrast, REQ-8 and REQ-9

135

5.6 Requirements Validation and Discussion

could be verified as valid for the first time.

Table 5.7: Results of the automated requirements validation (Test Case 20).

Requirement REQ-3 REQ-4 REQ-5 REQ-6 REQ-7 REQ-8 REQ-9

Result passed passed - - passed passed passed

5.6.5 Test Case 21: FO Yoke Jammed in Maximum Forward

Trim Position

In this test case, the FO yoke is jammed after moving the trim system to its maximum

forward position. To disconnect the yokes, the CPT yoke is pushed forwards with 500N .

Results and Discussion

The simulation results of this test case show that, after the disconnect of both yokes in

the most forward trim position, the operative yoke hits the forward hard stop after only

70ms, which is far below the time a pilot could react. This shortened time span is based

on the minimized possible forward deflection of the yoke. Analogous to the previous test

case, the yoke acts after the disconnect only against its own CLS, which results in a full

aft deflection using the maximum pitch forces of REQ-5. As Table 5.8 shows that, now

also the requirement on the trim speed (REQ-6) is verified as valid again. The other

results are the same as in Test Case 20.

Table 5.8: Results of the automated requirements validation (Test Case 21).

Requirement REQ-3 REQ-4 REQ-5 REQ-6 REQ-7 REQ-8 REQ-9

Result passed passed - passed passed passed passed

136

Chapter 5: Application to a Fly-by-Wire Flight Control System

0 2 4 6 8 10 12 14 16 18 20 22
−500

0

500

Time [s]

F
P

il
o
t

[N
]

REQ-5 forces CS-25 short term forces

0 2 4 6 8 10 12 14 16 18 20 22

−0.1

0

0.1

Time [s]

x
[m

]

Deflection bounds xF O xCP T

0 2 4 6 8 10 12 14 16 18 20 22

−5

0

5
·10−2

Time [s]

x
tr

im
[m

]

Deflection bounds

0 2 4 6 8 10 12 14 16 18 20 22
0

1

Time [s]

C
lu

tc
h

S
ta

te
[-

]

Figure 5.11: Test Case 21: FO yoke jammed in maximum forward trim position.

5.6.6 Test Case 22: FO Yoke Jammed in Maximum Aft Trim

Position

The subject matter of this test case is a FO yoke jam in the most aft trim position.

As before, the disconnect is caused by the forward directed maximum pitch force in a

jamming case (REQ-9).

Results and Discussion

The plotted deflection of both yokes in Figure 5.12 shows that, after the disconnect,

the CPT yoke also reaches the maximum forward deflection. However, with the greater

distance to the hard stop, it takes 170ms, which is 20ms above the minimum response

time to tactile stimuli presented in [LSW54]. As long as the prevailing flight state allows

it, it can be beneficial to disconnect the yokes by a push or pull force, depending on which

hard stop is further away. As in the other two jam test cases, the remaining operative

137

5.6 Requirements Validation and Discussion

0 2 4 6 8 10 12 14 16 18 20 22
−500

0

500

Time [s]

F
P

il
o
t

[N
]

REQ-5 forces CS-25 short term forces

0 2 4 6 8 10 12 14 16 18 20 22

−0.1

0

0.1

Time [s]

x
[m

]

Deflection bounds xF O xCP T

0 2 4 6 8 10 12 14 16 18 20 22

−5

0

5
·10−2

Time [s]

x
tr

im
[m

]

Deflection bounds

0 2 4 6 8 10 12 14 16 18 20 22
0

1

Time [s]

C
lu

tc
h

S
ta

te
[-

]

Figure 5.12: Test Case 22: FO yoke jammed in maximum aft trim position.

yoke reaches the opposite hard stop using the maximum pitch forces of REQ-3.

Table 5.9: Results of the automated requirements validation (Test Case 22).

Requirement REQ-3 REQ-4 REQ-5 REQ-6 REQ-7 REQ-8 REQ-9

Result passed - - passed passed passed passed

5.6.7 Test Case 30: Stick Pusher Activation With Neutral Trim

Position

This test case focuses on the effect of the stick pusher on the yoke system with the

trim system in neutral position. While in the first phase there is no pilot force, the

maximum pitch forces of REQ-3 and the maximum maneuver forces of the CS-25 are

applied afterwards to review a possible flightcrew interaction. According to [Fed12], it

138

Chapter 5: Application to a Fly-by-Wire Flight Control System

should be unlikely for a flight crew member to prevent oder delay the stick pusher’s

nose-down control input.

Results and Discussion

The stick pusher is triggered at t = 1s, which immediately leads to a full forward deflection

of both yokes within half a second. However, the later applied pilot forces restore the yoke

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−500

0

500

Time [s]

F
P

il
o
t

[N
]

REQ-5 forces CS-25 short term forces

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

−0.1

0

0.1

Time [s]

x
[m

]

Deflection bounds xF O xCP T

Figure 5.13: Test Case 30: Stick pusher activation with neutral trim position.

system close to its neutral position. As stated in [Fed12], such a behavior is undesirable.

In this case, most of the stick pusher’s torque acts against both CLSs so that only a small

amount is available to counteract pilot inputs.

Since most of the requirements of the automated validation are not applicable to the

tested scenario, its results are not reviewed.

5.6.8 Test Case 31: Stick Pusher Activation With Maximum

Aft Trim Position

Similar to Test Case 30, the stick pusher performance is reviewed in this test case. How-

ever, instead of the trim in neutral position, it is now commanded to the aft trim hard

stop. Naturally, this leads to an increased possible forward deflection, which has to be

overcome by the actuator.

139

5.6 Requirements Validation and Discussion

Results and Discussion

After reaching the most rear trim position, the stick pusher is activated at t = 13s. As

0 2 4 6 8 10 12 14 16
−500

0

500

Time [s]

F
P

il
o
t

[N
]

REQ-5 forces CS-25 short term forces

0 2 4 6 8 10 12 14 16

−0.1

0

0.1

Time [s]

x
[m

]

Deflection bounds xF O xCP T

0 2 4 6 8 10 12 14 16

−5

0

5
·10−2

Time [s]

x
tr

im
[m

]

Deflection bounds

Figure 5.14: Test Case 31: Stick pusher activation with neutral trim position.

the deflection plot in Figure 5.14 shows, the actuator only just pushes the yokes to the

front hard stop. As such, the flight crew could easily override the stick pusher deflection.

5.6.9 Conclusion

The conducted tests revealed that the system meets all but one requirement. With the

trim system in neutral position, the forward or aft hard stops cannot be reached by the

application of the maximum pitch forces, which are stated in REQ-5. This deficit will

be rectified in the next chapter by the optimization of selected system parameters in

accordance with system requirements.

140

Chapter 5: Application to a Fly-by-Wire Flight Control System

5.7 Simultaneous Optimization of Hard- and Soft-

ware Parameters

Modern aircraft are very complex and truly multidisciplinary systems, whose development

involves countless number of specialized software tools. On account of couplings between

domains or disciplines, the optimization of such systems requires the evaluation of the

effect of parameter changes in one discipline on the entire system. The incorporation

of multiple disciplines into an optimization is known as MDO. Typically, MDO refers

in aerospace engineering to different physical domains, such as aero-structural problems,

where the best trade-off between aerodynamics and structures is sought. Software param-

eters, such as controller gains or control strategies, are rarely part of these optimizations.

There are methods that consider physical systems and their controllers [AN10, FPU04],

but they use either sequential, nested, or distributed approaches of decomposition meth-

ods. In this thesis, an integrated architecture is presented that solves the MDO problem

using a strategy to simultaneously find the optimal system design. The simultaneous

or all-at-once optimization generally provides better results than the sequential strategy,

where problems are first decomposed to subproblems and then are optimized sequentially.

This often leads to non-optimal system designs due to neglected couplings [FRPU01].

Moreover, none of these approaches considers the integration of a CAD system. For this

reason, this thesis presents an approach for a simultaneous optimization of software and

hardware parameters, where CAD parameters and the effects of their changes on the

overall system are taken into account.

5.7.1 Objective and Approach

In this use case, an optimization problem is formulated that simultaneously involves

hard- and software parameters in order to minimize the maximum power consumption of

the stick pusher in accordance with the system requirements. On the one hand, energy

is somehow a limited resource aboard. On the other hand, flight safety is taken into

account, since the stick pusher shall apply a significant force ([Fed12] states 50 to 80 lbs),

but it shall be possible to override it in the case of a system fault or of an erroneous

trigger signal. A minimization of the required power allows one to limit the voltage

source and with that the maximum torque. To prevent overheating and possible damage,

this torque must not be greater than the actuator’s maximum continuous stall torque.

The method developed in this thesis is therefore used to additionally optimize a CAD

parameter - the yoke length - and consider resulting mass, inertia, CG, and position and

orientation changes in the optimization. For the purpose of optimization, a closed loop i-

controller (integral) for the stick pusher with the external load as feedback is added to the

simulation model to control the stick pusher on the basis of a reference torque. As such,

the gain of the i-controller represents the software parameter to be optimized. Moreover,

141

5.7 Simultaneous Optimization of Hard- and Software Parameters

the developed optimization framework also allows one to include MATLAB variables in

the optimization. As a means of increasing the potential for improvement, the spring

stiffness, and the transmission ratio of the actuator gearbox - both model parameters in

the MATLAB workspace - are included into the optimization as well. The application

of IPOPT, an algorithm for constrained nonlinear optimization, allows one to include

the requirements on the system in the optimization. They are implemented in the form

of inequality constraints and thus are made visible to the optimizing algorithm. In this

use case, only the requirements are verified which are directly affected by the parameter

modifications. Therefore, a predefined pilot force FP ilot(t) is applied to the CPT yoke and

the stick pusher is activated while the requirements are verified at certain time steps.

5.7.2 Simulation Inputs

The inputs for the simulation model as well as the final time are not dependent on the

optimization parameters and thus do not change over the iterations. The simulation

starts with a pilot force according to the maximum pitch force requirement (REQ-5) of

260N pushing the yokes forward. This allows one to verify that the maximum pitch force

results in a full forward deflection (see requirement verification in Subsection 5.7.7). After

a short holding period, the pilot force is instantly released so that the yokes return to their

neutral position. The same applies for an aft deflection. Afterwards, the stick pusher is

activated until the end of the simulation. Both input signals are plotted in Figure 5.15.

Significant time steps for the requirement verification are

� the force release at t1 = 1.6s,

� after a zero pilot force time span while the CLS had enough time to center the yoke

system at t2 = 3s, and

� after the stick pusher has been active for 1.5s at tf = 7.5s.

5.7.3 Parametrization of the CAD Model

For optimization purposes, a length of the yoke system CAD model is parameterized. The

parameter l defines the length of the yoke column rotary axis (for pitch commands) to the

yoke handle rotary axis (for roll commands). The deflection range is not angular-based

but dependent on the yoke handle translation. Consequently, according to Equation 5.1,

larger values for l result in smaller maximum deflection angles for a constant maximum

translational handle movement, and vice versa.

5.7.4 Stick Pusher Controller

In order to control the stick pusher force-based, a closed-loop i-controller is implemented

and added to the model. The control function for the voltage command can be expressed

142

Chapter 5: Application to a Fly-by-Wire Flight Control System

0 1 2 3 4 5 6 7
−500

0

500

Time [s]

F
P

il
o
t

[N
] REQ-5 forces CS-25 short term forces

0 1 2 3 4 5 6 7
0

0.5

1

Time [s]

S
ti

ck
P

u
sh

er
F

la
g

[-
]

Figure 5.15: Inputs for the simulation.

as

ucmd = Ki

t∫

0

e(τ)dτ (5.9)

where Ki is the integral gain which is optimized, τ is the variable of the integration,

and e(t) is the error from the measured actuator load to the reference. One requirement

under which the optimization is performed states that the stick pusher shall generate a

power reserve at the yoke handle of 222N at the forward hard stop. This means that the

controller reference r is constant during the simulation but depends on the yoke length l

and the spring stiffness kCLS. It is calculated by

r = −2

(

kCLS
0.1 · 103

l

)

︸ ︷︷ ︸

Spring forces of the CLSs

−222 · l · 10−3

︸ ︷︷ ︸

Torque reserve

(5.10)

and represents the minimal torque to overcome the spring forces of both CLSs at the

forward hard stop and additionally to build up the specified power reserve. The negative

sign is needed for the correct direction of rotation.

5.7.5 Constrained Optimization Problem Setup

The interface of the developed optimization framework allows one to use also optimization

tools in addition to the ones that are provided by MATLAB. As already stated, in this

use case IPOPT is supposed to be used. The constrained optimization problem can be

143

5.7 Simultaneous Optimization of Hard- and Software Parameters

formulated as

min
z∈Rn

JCost(z)

s.t. g(z) ≤ 0
(5.11)

where JCost(z) is the cost or objective function and g(z) represents the inequality con-

straint. Like fmincon, IPOPT is a gradient-based optimizer. Analogous to the previous

use case, the gradients cannot be derived analytically but are determined via central finite

differences (see Equation 4.5). The vector z, which contains all optimization parameters,

is defined as

z =










kCLS

l

GP usher

Ki










(5.12)

The spacing, the lower and upper bounds, and the initial values for each parameter are

listed in Table 5.10. The limits regarding l are chosen due to the available space and

regarding GP usher with respect to common ratios.

Table 5.10: Parameters, initial values, limits, and finite differences spacing.

Parameter Origin Initial Value Lower Bound Upper Bound Spacing

kCLS Simulink 752.81Nm
rad

0Nm
rad

∞ 10−3

l CAD 720mm 500mm 1250mm 1
GP usher Simulink 100 1 200 10−3

Ki Simulink 1 0 ∞ 10−3

5.7.6 Cost Function

The objective of this MDO is to minimize the maximum electrical power required by the

stick pusher actuator, which can be calculated by

PP usher(t) = u(t) · i(t) (5.13)

where u(t) is the voltage and i(t) is the current in the actuator. Consequently, the costs

are then calculated by

JCost(z) = max
t

(PP usher(t, z)) (5.14)

However, when using gradient-based optimization algorithms, these kinds of of min-max

optimization problems are typically reformulated, in order to achieve better results. In

this case, the problem is transformed to a Tschebyscheff problem formulation by

144

Chapter 5: Application to a Fly-by-Wire Flight Control System

introducing an additional optimization parameter α and inequality constraint

max
t

(PP usher(t, z)) ≤ α

JCost(z) = α
(5.15)

This definition of the cost function is mathematically equivalent to Equation 5.14. Details

on the transformation may be found in [Ger12].

5.7.7 Nonlinear Constraints (Requirements)

As stated, a contribution of this thesis is the simultaneous optimization of hard- and

software parameters in accordance with defined system requirements. The parameters

listed in Table 5.10 mostly influence the pilot force - deflection relation as well as the

stick pusher behavior or performance. The effect on the trim speed, hard-stops, or on the

disconnect behavior is negligible. For this reason, the requirements are formulated in the

form of nonlinear inequality constraints to ensure that

� the forward hard stop is reached with a 1mm tolerance when applying the maximum

pilot force of 260N in push-direction,

� the spring is strong enough to center the yokes with a 1mm tolerance, and

� the stick pusher reaches the forward hard stop and generates a power reserve of

222N at the yoke handle within 1.5s. According to [Fed12], an instantly applied

stick pusher force of 222N to 355N is suggested. This requirement guarantees a

constant power reserve of 222N at the yoke handle until a full forward deflection.

For the automatic verification, these requirements are first formalized and then imple-

mented in a function that evaluates the nonlinear constraints and is called by the opti-

mization algorithm. The mathematical formulations of the constraints are

g1(z) = 0.099 − xCP T (t1) (5.16)

g2(z) = xCP T (t2) − 0.001 (5.17)

g3(z) = (0.1 − xCP T (tf)) · 104 (5.18)

− THardStop,CP T (tf) + THardStop,F O(tf)

z(2)
· 103 + 222

where the time points refer to Subsection 5.7.2. The first term of g3 does not actually

represent a requirement but helps the optimizer to determine proper gradients in cases

where the stick pusher does not reach the forward hard stop. The additional constraint

due to the Tschebyscheff problem formulation is not listed above.

145

5.7 Simultaneous Optimization of Hard- and Software Parameters

5.7.8 Complete Optimization Problem Statement

The complete optimization problem including the Tschebyscheff formulation is sum-

marized in form of a problem statement below:

min
α,z

α

s.t. g(z, α) ≤ 0

with

z =
[

kCLS, l, GP usher, Ki

]

g1(z, α) = 0.099 − xCP T (t1)

g2(z, α) = xCP T (t2) − 0.001

g3(z, α) = (0.1 − xCP T (tf)) · 104

− THardStop,CP T (tf) + THardStop,F O(tf)

l
· 103 + 222

g4(z, α) = max
t

(PP usher(t, z)) − α

5.7.9 Results

The initial configuration and the converged solution of the simultaneous optimization are

presented and discussed in the following.

The original system represented the starting point for the optimization. Since it does

not meet the requirement for the maximum pitch forces (REQ-5), this leads consequently

to an infeasibility at the beginning. The initial parametrization leads to a maximum

power consumption of the stick pusher of PP usher,max = 1771.68W . Admittedly, the

power consumption depends strongly on the integral gain, whose initial value is more-or-

less randomly chosen. For this reason, an optimization of only Ki was undertaken for a

better comparability. This led to Ki = 0.2887 and a maximum power consumption of

PP usher,max = 1536.02W . This configuration requires a voltage source providing at least

40.16V .

Table 5.11: Optimal parameter values.

Parameter Initial Value Lower Bound Upper Bound Optimized Value

kCLS 752.81Nm
rad

0Nm
rad

∞ 1161.62Nm
rad

l 720mm 500mm 1250mm 1043.06mm
GP usher 100 1 200 200

Ki 1 0 ∞ 0.1480

The optimal values found by IPOPT are shown in Table 5.11. With the listed param-

eter set, the stick pusher requires a maximum power of PP usher,max = 588.47W , which is

146

Chapter 5: Application to a Fly-by-Wire Flight Control System

about 65% less than the initial value and roughly 60% less than with only Ki optimized.

Moreover, with the optimal parameter set, the required voltage is reduced to only 24.87V .

As can be seen, only the transmission ratio of the stick pusher gearbox ran into its up-

per bound, while the other parameters found their optimal values between their limits.

Naturally, the optimizer aims for at least a local minimum, so that the value found for

spring stiffness clearly cannot be realized in the precision listed. Moreover, setting the

manufacturing tolerance of the yoke length to less than millimeters is not practical. But

even major parameter adjustments still result in a significant improvement compared to

the initial system parameterization.

0 1 2 3 4 5 6 7

−0.1

0

0.1

Time [s]

x
[m

]

Deflection bounds
xF O

xCP T

0 1 2 3 4 5 6 7
0

200

400

600

Time [s]

P
P

u
sh

er
[W

]

0 1 2 3 4 5 6 7
−500

0

500

Time [s]

F
P

il
o
t

[N
]

REQ-5 forces CS-25 short term forces

0 1 2 3 4 5 6 7
0

0.5

1

Time [s]S
ti

ck
P

u
sh

er
F

la
g

[-
]

Figure 5.16: Behavior of the optimized yoke system.

A solution has been found with a maximum constraint violation of less than 10−6.

Therefore it can be concluded that the requirements are still satisfied. Apart from the

inputs, the yoke deflection and the electrical power required by the actuator are plotted

over the time in Figure 5.16. It is clearly visible that the forward and aft hard stop are

147

5.7 Simultaneous Optimization of Hard- and Software Parameters

now reached when applying the maximum forces of REQ-5. Furthermore, the spring is

strong enough to center both yokes within a tolerance of less than 1mm. The plot of the

stick pusher power consumption shows that the actuator is inactive until t = 6s. With

activation, the stick pusher draws power when acting against the CLS to push the yokes

forward. The significantly flattening curve at the end of the simulation indicates a strong

reduction of the control deviation and thus the generation of the demanded power reserve.

The method developed in this thesis allowed for the inclusion of hard- and software

parameters in Simulink as well as CAD parameters in a simultaneous optimization with

respect to formalized requirements. As such, the simultaneous strategy considers all

parameter couplings and thus enables to find an optimal system design. By means of the

inclusion of CAD software, the gap to the design and construction world was bridged and

effects of a part modification on the dynamic system behavior could be evaluated.

148

6

Summary and Outlook

In this thesis, an integrated method for including physical components in the design

and optimization of flight control systems (FCSs) is presented. The essential part is the

development of a method for bidirectional data exchange between CAD software tools

and MATLAB / Simscape Multibody, which closes the prevalent tool-chain gap between

design and simulation. In the following, the most important aspects of each chapter are

summarized. Furthermore, a brief outlook for possible future work is given.

The first chapter focuses on the process layer and initially presents a common state-

of-the-art development process of mechatronic products. Such processes are very much

characterized by tool-chain gaps, causing a lot of unnecessary manual and time-intensive

work, sources of error, and costs. As explained in Chapter 1, closing the gap has a

substantially positive effect on the development process, leading to shorter development

times, more detailed models and, with that, more knowledge about the system in early

development phases. As long as a bidirectional data transfer is available, better system

design through optimization possibilities across tool-borders can ultimately be achieved.

The closure of further tool-chain gaps and the incorporation of disciplines like FEM or

CFD may be the subject of future work.

In Chapter 2, typical components of, in particular, mechanical FCSs are introduced.

Since the Simscape Multibody toolbox does not provide all required components for build-

ing high fidelity models, mathematical models are presented, which either represent essen-

tial physical effects or entire systems. These models are afterwards used in the application

examples and are partly integrated in the developed method for automated usage. Since

friction and backlash in joints can have a significant effect on the system behavior, par-

ticularly with regard to FCSs, the sophisticated LUGRE friction model is described and

a model for simulating backlash in revolute joints is developed.

The solution to the key issue is the subject of Chapter 3, which describes the de-

velopment of the MATLAB-based method for a bidirectional data exchange with CAD

tools and the automated building of Simscape Multibody models. First, an overview of

commercial off-the-shelf interfaces together with a comparison to the approach of this

thesis is given, which clearly shows the demand for a more comprehensive method. In

149

Section 3.3, the requirements for such a method are listed. According to them, the soft-

ware architecture is specified in Section 3.4. For a most modular approach, a general

interface is defined that allows for outsourcing CAD software specific parts to DLLs that

are later embedded in the core framework. This ensures an easy integration of further

CAD software tools. Proof of concept has already been attained with the help of two

bachelor theses which created DLLs for the application of the developed method with

SolidWorks R© 2014 (Dassault Systèmes) and NX
TM

10.0 (Siemens). The implementation

of the key methods of the object-orientated framework core in MATLAB is covered in

Chapter 3.5. The proposed application of quaternions for describing relative orientations

and the derivation of synthetic coordinate frames is explained. Moreover, an applied tech-

nique from graph theory for the programmatic creation of reasonable models is described.

In addition, the inclusion of the friction and backlash model as well as the method for

the strength analysis are introduced. In order to enable an optimization of CAD parame-

ters on the basis of the simulation results, an additional framework especially tailored for

simulation-based system design optimization is developed and presented in Chapter 3.6.

It supports the formulation of nonlinear constrained optimization problems and allows the

application of MATLAB but also of external optimization algorithms. The use cases in

Chapter 4 and Chapter 5 utilize this framework to solve optimization problems, incorpo-

rating CAD parameters. Furthermore, strategies implemented for increasing the efficiency

of gradient-based optimizations with certain problem formulations are described, such as

Tschebyscheff, which include CAD parameters and apply finite differences for gradient

approximation.

Although this thesis provides a comprehensive approach, there are interesting aspects

that can be covered in future work. This includes the integration of an automated deriva-

tion of joints based on only constraints data or the automated modeling of flexible bodies.

Two methods for implementing the latter are described in [MSVW17]. Moreover, the op-

timization framework also offers room for advancement. The parallelization of costly

simulations and updates of CAD data, or the automated modification of Simscape Multi-

body generated code to make parameters tunable, offer considerable potential to increase

the performance of optimization processes.

Chapter 4 presents the first use case, where the method of this thesis is applied to

the elevator axis of a mechanical FCS of a general aviation aircraft within the scope of a

research project. After describing the mechanism and the parametrization of the 3D CAD

model, kinematic analyses are conducted to determine necessary actuator deflections and

nonlinearities in the transfer function. The subsequent optimization of CAD parameters,

which describe the integration mechanism of the actuator, reduced these nonlinearities

by more than half for the same elevator surface deflection. For mechanical analyses, the

LUGRE friction model is added to joints and an actuator model takes electrodynamic

effects into account. Different combinations of actuator supply voltage and gearbox ratio

are examined and discussed for a certain flight maneuver. The most promising configu-

150

Chapter 6: Summary and Outlook

ration is then again enhanced with the inclusion of backlash in joints and with the flight

dynamic model of the aircraft, which is used to accelerate the mechanism according to

the aircraft motion. This allows for not only assessing the dynamic aircraft behavior,

and thus the performance of the entire FCS, but also considering forces caused by inertia

during the maneuver. To take into account the handling qualities of the aircraft, the

model is used to assess the stick force per g characteristic, which is eventually improved

by means of a bob-weight. The chapter concludes with an estimation of the buckling risk

of the push-pull rods using the methods developed for strength analysis.

The application of the presented method to the pitch axis of a yoke control system of a

commercial fly-by-wire aircraft is demonstrated in Chapter 5. After a short introduction

to model-based requirement validation, the yoke control system and its requirements are

described. The method of this thesis is then used to automatically generate a Simscape

Multibody model on the basis of the developed CAD model. Thereafter, models for com-

ponents that cannot be represented in the CAD software, such as the friction clutch, the

spring-damper control loading system, the hard stops, or the breakout forces, are pre-

sented and integrated into the multibody simulation model. The requirements validation

is eventually achieved by verifying the model against the requirements using test cases,

whose results are discussed in detail. Finally, a simultaneous optimization of hard- and

software parameters with respect to system requirements in form of nonlinear inequality

constraints is performed. The optimal system design found, consisting of CAD, hard- and

software parameters, meets the specified requirements and is conclusively described.

The methods presented in this thesis allow the inclusion of physical components in the

design and optimization of FCSs and thus contribute to a significant improvement of the

development process. The more integral process is not limited to the aerospace industry

but can be applied to the development of any mechatronic product. The approach for

the simultaneous optimization of hard- and software parameters with respect to system

requirements contributes to better designs of mechatronic systems. However, especially

the aerospace industry with its long development cycles and the state-of-the-art tools

MATLAB and CATIA can directly benefit from the methods described in this thesis.

151

Appendix A

Manual

The code of the developed method is available for the employees and students of the

Institute of Flight System Dynamics. The following guide shall help to operate the method

of this thesis appropriately and gives a first impression how easy the resulting work beyond

the tool boundaries is.

A.1 Requirements on the CAD Model

In order to convert a CAD model to a Simscape Multibody model using the presented

approach, it must be built according to a few rules, of course. This includes the exclusive

use of the following joints supported by the method:

� Rigid / weld joint

� Revolute joint

� Prismatic joint

� Cylindrical joint

� Planar joint

� Spherical joint

For further information about the particular DoFs refer to Figure 3.11. This also implies

the need to use joints and not only constraints. Regarding CATIA V5 this means, for

instance, that connections between parts have to be created using the DMU Kinematics

Toolbox.

A.1.1 Limitations Regarding CATIA V5

Since CATIA V5 R20 is the predominant CAD software tool at the institute, the method

was used intensively in this combination and a respective experience has been gained.

I

A.2 Convert a CAD Model to a Simscape Multibody Model

Therefore, limitations resulting from restrictions of the CATIA API are listed below.

There may be similar restrictions for combinations with other CAD systems, but they

have not been determined so far.

Weld Joints

If multiple parts are connected via a weld joint, none of these parts must be fixed in space,

as otherwise the API stops providing further parts as soon as reaching one of the parts

involved in the joint. A possible workaround is to either combine all parts to one single

one or to fix all parts in space without using a weld joint.

Spherical Joints

When using spherical joints, the API is not able to obtain the joint position. For this

reason, the two points of the individual parts, which are later used for the definition of

the congruence condition, must be created in advance using the Generative Shape Design

Toobox. Defining a spherical joint using these two points allows then to extract the

position information.

A.2 Convert a CAD Model to a Simscape Multibody

Model

To begin with a model conversion, the path to the CAD model product or assembly

file must be known. An object of the type iCADModel can then be created using the

following command:

path = ’C:\Exemplary_Path\Example_Product.CATProduct’ ;

myModel = iCADModel(path);

This establishes a connection to the CAD system, opens the corresponding model, and

creates the object in the MATLAB workspace. For capturing and transferring the CAD

data, the created object provides the GetCADData method:

myModel.GetCADData();

Depending on the model complexity, this process might take a while. Therefore, the

progress is indicated with a progress bar. At the end, all required data from the CAD

model is extracted, transferred, and stored within the object.

The next step automatically processes this data and builds an equivalent Simscape

Multibody model. The CreateSimulinkModel method of the object triggers the model

building:

myModel.CreateSimulinkModel();

II

Chapter A: Manual

Since the implemented features of the interface may influence the outcome of this step,

additional arguments can be passed to the method. The following name-value pairs may

be used:

� ’STL’ - {true | false (default)} Enables the automatic export the STL

files of each part for a visual 3D representation in the Mechanics Explorer. It should

be noted, that this slows down the model building process considerably.

� ’JPG’ - {true | false (default)} Enables the automatic photography

of each part and a subsequent masking of the particular block. This allows to

create clearer diagrams. This feature also slows down the model building process

considerably.

� ’Color’ - {true (default) | false} Extracts and transfers colors as-

signed to parts by default.

� ’Material’ - {true (default) | false} Extracts and transfers data of

the materials assigned to parts by default.

� ’Friction’ - {true | false (default)} Determines, if a potential pa-

rameterization for friction in joints shall be considered.

� ’Backlash’ - {true | false (default)} Determines, if a potential pa-

rameterization for backlash in joints shall be considered.

� ’Buckling’ - {true | false (default)} Determines, if a potential pa-

rameterization for strength analyses shall be considered.

All attributes regarding Solid, Joint, or Rigid Transform blocks are parametrized and

refer to data of the object of type iCADModel in the MATLAB workspace.

A.3 Change CAD Parameters from MATLAB

As stated in this thesis, a major feature of the interface is the bidirectionality. In this

case, it allows for the modification of user-defined CAD parameters from MATLAB.

These parameters are either a member of parts or products. To change a particular

parameter value, the location in the iCADModel object must be known. For this pur-

pose, the object can be examined in the Variables editor. Then, the modification can be

undertaken using the Set method of parameter objects as follows:

% Modification of a parameter located in the root product

myModel.RootProduct.Parameters(2).Set(450);

% Modification of a parameter located in a part

myModel.RootProduct.Elements{3}.Parameters(1).Set(6 0);

III

A.4 Get an Update of the CAD Data

Some CAD tools like CATIA require an update trigger to make the parameter changes

effective. This can be started using the Update() method.

myModel.Update();

The method must not be confused with the following one for obtain an update of CAD

data.

A.4 Get an Update of the CAD Data

After changing a parameter either from MATLAB or directly in the CAD system, the

effective changes can be considered in the model by updating the iCADModel object with

the UpdateCADData method.

myModel.UpdateCADData();

Similar to the model building, this method allows for passing additional arguments. Pri-

mary intention is a time efficient update by skipping unnecessary data, as this method is

also used in the optimization framework. The method accepts the following name-value

pairs:

� ’STL’ - {true | false (default)} Enables the automatic export the STL

files of each part for a visual 3D representation in the Mechanics Explorer. It should

be noted, that this slows down the model building process considerably.

� ’Color’ - {true (default) | false} Extracts and transfers colors as-

signed to parts by default.

� ’Material’ - {true (default) | false} Extracts and transfers data of

the materials assigned to parts by default.

� ’Parameters’ - {true (default) | false} Extracts and transfers user-

defined parameters.

A.5 Model Handling and Reconnect

Since essential data of Simscape Multibody models created with the method of this thesis is

in the iCADModel object in the MATLAB workspace, the model and the object must be

treated as a couple. This means, if the multibody simulation model is stored for later use,

the object containing the data must also be saved in a .mat file, for instance. Otherwise,

important data will be lost.

However, the embedding of the DLL and thus the connection to the CAD system is a

component of the object which is lost in this process. Consequently, reloading it causes

the following warning which can be ignored:

IV

Chapter A: Manual

Warning: Cannot load an object of class ’CatiaLinkLibrary’ :

Its class cannot be found.

To reconnect the object with the CAD system and enable an interaction of both tools

again, the Reconnect method is provided:

myModel.Reconnect();

A.6 Application of the Optimization Framework

In Capter 3.6, the developed optimization framework is outlined. It facilitates to set-up

simulation-based optimizations which incorporate CAD parameters. For this purpose,

an object of the type Problem must be created, which embeds the previous discussed

iCADModel object and by that inherits a connection to the CAD software tool:

myProblem = Problem(myModel);

Afterwards, settings, functions, and parameters for the optimization can be specified. In

terms of settings, an algorithm and its particular options must be provided in form of:

% Selection of the optimizer

myProblem.Optimizer = ’fmincon’ ;

% Algorithm-specific settings

myProblem.Settings.Algorithm = optimoptions(...

’fmincon’ , ...

’Algorithm’ , ’interior-point’ , ...

’Display’ , ’iter-detailed’ , ...

’SpecifyObjectiveGradient’ , true, ...

’SpecifyConstraintGradient’ , true, ...

’OptimalityTolerance’ , 1e-6);

% Setting type of gradients

myProblem.Settings.Gradients = ’central’ ;

Valid values for the Optimizer field are currently

� fmincon - for the application of MATLAB’s gradient-based fmincon algorithm,

� ga - for the application of a genetic algorithm of the Global Optimization Toolbox,

� patternsearch - for the application of

� ipopt - for the application of IPOPT.

The Gradients field is only necessary for gradient-based optimization algorithms. At

the moment is only supports finite differences for gradient approximation and thus can

either be ’forward’ (default) or ’central’ . The objective or cost function and the

function for nonlinear constraints are created by the user and then just passed to the

framework via a function handle:

V

A.6 Application of the Optimization Framework

myProblem.CostFunction = @costfun;

myProblem.NonlinearConstraintsFunction = @nonlinconfu n;

For a proper operation, the definition of these functions must match a certain predefined

set of arguments and return values. Passed arguments and expected return values are

respectively:

function [F] = costfun(z, simulationMeasurements)

...

end

function [c, ceq] = nonlinconfun(z, simulationMeasurements)

...

end

The simulation results, in other words the signals logged in Simulink, are passed to both

functions and are of type Dataset .

The optimization parameters are introduced using the AddParameter method. It

allows to specify the parameter type (MATLAB or CAD) and its initial, minimum, and

maximum values:

% Add MATLAB parameter

myProblem.AddParameter(’Type’ , ’Matlab’ , ...

’VariableName’ , ’k_cls’ , ...

’Initial’ , 100,

’Min’ , 0, ...

’Max’ , inf, ...

’DiffChange’ , 1e-6, ...

’ScaleFac’ , 1);

% Add CAD parameter

myProblem.AddParameter(’Type’ , ’CAD’ ,

’ParentName’ , ’Yoke_Column’ , ...

’ParameterName’ , ’YokeLength’ , ...

’Initial’ , 500,

’Min’ , 250, ...

’Max’ , 1000, ...

’DiffChange’ , 1e-3, ...

’ScaleFac’ , 1);

Depending on the parameter type, a different set of additional arguments is required:

� For MATLAB parameter, only the particular name of the variable in the workspace

is required and passed in the VariableName argument.

� In terms of CAD parameters, two additional arguments are required to find the

corresponding parameter object in the iCADModel object. Therefore, the name of

the parameter itself as well as the instance name of the parent object are needed.

Optional arguments allow to specify the spacing for a finite differences gradient approxi-

mation (use DiffChange) and to scale the parameter. In this case, all numerical param-

VI

Chapter A: Manual

eter values are then divided by ScaleFac before handed over to the optimizer. Naturally,

before they are sent to the CAD system or the MATLAB workspace, the output of the

algorithm is again multiplied by the scaling factor.

After setting up the optimization problem, the algorithm can be started by:

[x, fval] = myProblem.Solve

VII

Appendix B

Implementation of the Class-Based

Framework

The presentation of the framework in Chapter 3 focuses rather the applied methodology

than the implementation itself. For this reason the following intends to give an insight

into the implementation of the framework. Therefore, each class definition and important

methods are presented. However, minor helper methods that wrap useful functionality just

for internal processes are not included. Furthermore, a description of the iCADSystem

class is intentionally omitted, since only data is processed and passed to the framework

core. For an overview of the interaction of the classes, please refer to Figure 3.7.

iCADModel

Central element of the entire framework is the iCADModel class. From a hierarchical

point of view, it represents the root object which contains all other objects. At the same

time, it is basically the interface to the user and handles the interaction. Therefore, this

class is large in scale compared to most of the others.

Objects of this class instantiate respectively an object of the iSimulinkModel-

Builder (for model building capabilities), iCADSystem (for a connection to the CAD

system), and iProduct (for the representation of the root product) type. The property

Id is a unique string which helps later to find the object in the MATLAB workspace.

The GetCADData and the UpdateCADData method use functionality of the CAD-

System object to subsequently transfer data regarding product and parts, joints, con-

straints, and parameters. Yet to enable an efficient update process, the scope of informa-

tion is reduced:

� Joint names or associated parts and constraints are not transferred, since CAD

parameter changes should not affect the model topology

� Optional: The extraction of color or material data can be suppressed by the user

(see Appendix A.4)

IX

� Optional: The repeated transfer of parameter values can be suppressed (see Ap-

pendix A.4)

In order to build a proper data structure, the class contains methods that divide the

transferred array data into meaningful blocks and create corresponding objects.

iCADModel

Properties Methods

SimulinkModelBuilder

ModelBuildSettings

CADSystem

Id

FilePath

Filename

RootProduct

Constructor

GetCADData

Update

UpdateCADData

CreateSimulinkModel

Reconnect

Figure B.1: Structure of the iCADModel class.

iSimulinkModelBuilder

As the name implies, the iSimulinkModelBuilder class takes care of the model

building. Thereby, the access to the transferred data is granted by the Parent property

which points to the creating iCADModel object.

iSimulinkModelBuilder

Properties Methods

Parent

Settings

SystemName

VariableName

Constructor

CreateModel

CalculateBFSCoordinates

GetCoordinatesOfBlock

AddElementsFromProduct

AddJoints

AddFixConstraintsOfProduct

Figure B.2: Structure of the iSimulinkModelBuilder class.

The SystemName property is an equivalent but in any case valid MATLAB identifier

of the root product name of the CAD model. Moreover, the variable name of the asso-

X

Chapter B: Implementation of the Class-Based Framework

ciated iCADModel object in the MATLAB workspace is identified via its unique id and

stored in the VariableName property. This is used for a proper parametrization of the

programmatically added diagram blocks.

Actually, all the listed methods in Figure B.2 are major helper methods, with the

exception of the Constructor and the CreateModel method. Before a new model

is created, the coordinates for each block in the model are calculated by means of the

BFS algorithm (for details, refer to Chapter 3.5.4). After the mandatory set of blocks

(Solver Configuration, Mechanism Configuration, World Frame) has been prepared, all

Solid blocks are added to the diagram and configured. The particular coordinates are

derived via the GetCoordinatesOfBlock method. Afterwards, blocks for representing

the corresponding joints and Rigid Transform blocks are attached. By processing parts in

the first step, all adjacent blocks are available when adding a joint. Therefor, respective

parts are already connected to each other by creating Physical Signals. In the last step,

parts which are fixed in space are linked to the World Frame whereby a Rigid Transform

block with the part’s orientation and origin data ensures for a consistent kinematic loop.

iProduct

Products or assemblies are represented using objects of type iProduct . The Root-

Product of the iCADModel class, thus the root product of the CAD model, is of this

type too.

As Figure B.3 shows, a iProduct object saves typical product parameters such as

instance name, product name, or filename. In addition, these objects also store all children

parts or products in the Elements property, which allows for representing a hierarchical

data structure. The Parent property of iProduct and iPart (see next section) also

enables an upwards navigation in the hierarchy up to the root object. The CADModel

property allows a direct access.

The CalculateTransformation method is used to calculate the quaternion for

the relative orientation and the relative translation to the global coordinate frame. It is

always triggered when these fields are updated. The results are hold by the Transform-

Data property.

XI

iProduct

Properties Methods

Parent

CADModel

ProductName

InstanceName

Filename

Elements

Constraints

Parameters

Mechanisms

Orientation

Origin

TransformData

Constructor

Update

CalculateTransformation

Figure B.3: Structure of the iProduct class.

iPart

Information about parts is stored in objects of the iPart class. Instances of this type are

always children of iProduct objects, thus part of their Elements property. Besides

general information the iPart class also provides physical properties.

When the model builder adds the parts to the model in the form of Solid blocks, the

parameterization refers to these properties. The TransformData property is used for

the quaternion and relative translation to the global coordinate frame.

In addition, if a model for strength analysis is created, the IsBucklingRelevant

method determines, whether the respective part must be considered. The method searches

for corresponding parameter names in the Parameters property of the object.

XII

Chapter B: Implementation of the Class-Based Framework

iPart

Properties Methods

Parent

CADModel

PartName

InstanceName

Filename

Mass

CG

Inertia

Orientation

Origin

Parameters

Color

Density

YoungsModulus

TransformData

Constructor

Update

CalculateTransformation

IsBucklingRelevant

Figure B.4: Structure of the iPart class.

iConstraint

Constraints basically define the relative motion of two coordinate frames or respectively

parts. Since there are no corresponding constraint blocks, constraints can not be added to

a Simscape Multibody model directly. Yet a combination of constraints or sometimes even

one single constraint represents a particular joint. As stated in the concluding chapter of

this thesis (Chapter 6), future work may include the determination of joints derived from

constraint data.

XIII

iConstraint

Properties Methods

Name

Parts

Type

Geometry

Direction

Origin

Constructor

Update

Figure B.5: Structure of the iConstraint class.

iMechanism

A mechanism basically subsumes all joints of one product. For each product that con-

tains joints, a corresponding mechanism object is created which collects all it’s joints. All

mechanism objects are stored in the root product and not in the corresponding child prod-

ucts. In the context of this thesis, mechanisms originated from CATIA’s tree structure.

iMechanism

Properties Methods

Parent

Name

Joints

Constructor

Figure B.6: Structure of the iMechanism class.

Similiar to constraints, mechanisms can not be added to a Simscape Multibody model but

the iMechanism class is used to structure the CAD data similar to CATIA.

iJoint

The aforementioned description of the iConstraint class already introduces that joints

represent only bundles of constraints. In terms of Simscape Multibody, joints are one of

the most essential modeling components since they link Solids to each other.

The Type property provides information about the joint type, thus its DoFs, and refers

to Figure 3.11. Consequently, this determines the appropriate block from the comprehen-

sive joints library of Simscape Multibody. Under Parts and Constraints , links to the

associated objects are captured. In case of joints, the CalculateTransformation

method determines the quaternion and relative translation of the joint and the respective

XIV

Chapter B: Implementation of the Class-Based Framework

parts. Thereby, the data is notated is the corresponding part coordinate frame.

iJoint

Properties Methods

Parent

Name

Type

Parts

Constraints

TransformData

Constructor

CalculateTransformation

Figure B.7: Structure of the iJoint class.

iParameter

Any user-defined CAD parameter, whether of parts or products, is represented by an

object of the type iParameter . The Parent property enables access to the parent

object which is either of type iProduct or iPart . Thus access to the CAD software

tool is granted by their CADModel property which is needed for the Set method to

change parameter values.

In order to address the correct parameter object in the CAD model, the path from the

root product to the parameter is required. It is determined by the GetProductPath

method once and then hold by the ParentPath property.

iParameter

Properties Methods

Parent

Name

Value

ParentPath

Constructor

Set

GetProductPath

Figure B.8: Structure of the iParameter class.

iTransformData

Many of the classes presented in the previous sections use the iTransformData class to

save a quaternion and a translation vector to a corresponding component. Although this

XV

data does not necessarily require a class to store it, the iTransformData class allows

for a better structuring.

iTransformData

Properties Methods

Quaternion

Translation

Constructor

Figure B.9: Structure of the iTransformData class.

XVI

Appendix C

Definition of the General Interface

As stated in this thesis, CAD-specific code is outsourced to DLLs in order to obtain

a very modular concept. This requires the definition of a general interface in order to

standardize the communication with the MATLAB framework core. Accordingly, the

method structure of each DLL has to match the specification hereinafter.

C.1 Method Overview

The standardized communication requires a minimal set of methods. The following list

provides an overview:

� Start

� Close

� OpenFile

� SetVisibility

� Update

� GetParts

� GetConstraints

� GetJoints

� GetParameters

� GetParameterValue

� SetParameterValue

� CreateSTL

� CreateJPEG

XVII

C.2 Definition

C.2 Definition

This chapter specifies each method with its required input arguments and return values.

Start

Establishes a connection to the CAD software and starts it.

Close

Closes the CAD tool.

OpenFile

Opens the passed file.

Syntax

OpenFile(Filename)

Input Arguments

� Filename - String - Full path (including file name and extension) to the assembly

file

SetVisibility

Sets the visibility of the CAD system.

Syntax

SetVisibility(Visibility)

Input Arguments

� Visibility - Boolean - Full path (including file name and extension) to the

assembly file; Default value is true

Update

Updates the CAD model. This is necessary for some CAD tools to make parameter

changes effective.

XVIII

Chapter C: Definition of the General Interface

GetParts

Extracts all product an part information from the CAD model and returns data in form

of a nested array.

Syntax

GetParts(ColorReadout, MaterialReadout)

Input Arguments

� ColorReadout - Boolean - Extract color information of parts; Default value is

true

� MaterialReadout - Boolean - Extract data of materials assigned to parts; Default

value is true

Return Values

The data of each component, whether part or product, is respectively stored in an array

with two elements. The first element contains all data of the particular component, while

the second element contains an array with the information of all children. If there are no

children, the element remains empty. The return scheme is illustrated in Figure C.1.

Product Array Part Array - Nothing -

Part Array - Nothing -

Part Array - Nothing -

Figure C.1: Return scheme of hierarchical product and parts data.

For products, the sequence of the elements is:

� Product name (String): Name of the product

� Instance name (String): Instance name of the product

� Filename (String): Filename of the CAD model (with file extension)

� Orientation (Array(9) of Double, in mm): Orientation of the product coordinate

frame; Sequence: x-, y-, z-axis; Notated in the global coordinate frame

� Origin (Array(3) of Double, in mm) Position of the product coordinate frame; No-

tated in the global coordinate frame

Data regarding parts is structured as follows:

XIX

C.2 Definition

� Part name (String): Name of the part

� Instance name (String): Instance name of the part

� Filename (String): Filename of the part (with file extension)

� Mass (Double, in kg): Mass of the part

� Center of gravity (Array(3) of Double, in mm): Position of the part’s center of

gravity; Notated in the part coordinate frame

� Inertia tensor (Array(9) of Double, in kg ·m2): Moment of inertia tensor of the part;

Sequence is Ixx, Ixy, Ixz, Iyx, Iyy, Iyz, Izx, Izy, Izz

� Orientation (Array(9) of Double, in mm): Orientation of the part coordinate frame;

Sequence: x-, y-, z-axis; Notated in the global coordinate frame

� Origin (Array(3) of Double, in mm) Position of the part coordinate frame; Notated

in the global coordinate frame

� Color (Array(3) of Double): Assigned color normalized to 1; Sequence: red, green,

blue

� Material data (Array(2) of Double): First element is the density of the assigned

material in kg
m3 ; Second element if Young’s modulus of the assigned material in kg

m·s2

GetConstraints

Extracts all data regarding the constraints of the model.

Return Values

The method returns the constraint data in form of an array where each element itself

contains a second array with the particular constraint information, where the scheme is

as follows:

� Parent product (Array of String): Top-down path of product names

� Constraint name (String): Name of the constraint

� Constraint type (Integer): Type of the constraint (0: fixed in space, 1: distance, 2:

on, 3: concentricity, 99: fixed together)

� Constraint geometry (String): ’plane’, ’line’ or ’point’ ; for constraint

type 99 ”

� Parts (Array of String): Provides the path of instance names to the corresponding

parts; For each part there is an element containing the path also in form of an array;

XX

Chapter C: Definition of the General Interface

� Direction (Array(3) of Double, in mm) If constraint geometry is plane : x, y, z of

surface normal; If geometry is line : x, y, z of direction; If geometry is point : 0,

0, 0; In case of no geometry, this element is not provided

� Origin (Array(3) of Double, in mm) Position of the constraint; Notated in the global

coordinate frame; In case of no geometry, this element is not provided

GetJoints

Provides all mechanisms and joints data in form of a nested array.

Return Values

The return scheme is illustrated in Figure C.2. The upper level contains information

about the mechanisms and has the particular joints data nested. The mechanism data is

Parent Product Mechanism Name Joint Array

Joint Array

Joint Array

Figure C.2: Return scheme of mechanisms and joints data.

given as:

� Parent product (Array of String): Top-down path of product names

� Mechanism name (String): Name of the mechanism

The structure of a joint array is:

� Joint name (String): Name of the joint

� Joint type (Integer): Type of the joint; For rigid joints: 1; For revolute joints: 2;

For prismatic joints: 3; For cylindrical joints: 4; For planar surface joints: 5; For

spherical joints: 6

� Constraints (Array of String): Contains all associated constraint names

GetParameters

Provides all user-defined parameters of the CAD model.

XXI

C.2 Definition

Return Values

The method returns an array where each element contains a nested array with the pa-

rameter information according to the following structure:

� Parent name (String): Name of the parent object

� Parameter name (String): Name of the parameter

� Parameter value (Double): Value of the parameter

GetParameterValue

Reads the current value of the passed parameter.

Syntax

GetParameterValue(ParameterName)

GetParameterValue(ParameterName, ParentInstanceName)

Input Arguments

� ParameterName - String - Name of the parameter

� ParentInstanceName - String - Optional - Instance name of the parent object;

Can be omitted if parameter is in the root product

Return Values

� Parameter value (Double): Value of the parameter

SetParameterValue

Sets a parameter to an user-defined value.

Syntax

SetParameterValue(Path, Name, Value)

Input Arguments

� Path - String - Top-down path of the instance names to the parameter parent

object, separated by a slash

� Name- String - Name of the target parameter

� Value - Double - Parameter target value

XXII

Chapter C: Definition of the General Interface

CreateSTL

Exports the STL file for the given part to the same directory.

Syntax

CreateSTL(Path, File)

Input Arguments

� Path - String - Path to the target file (concluding with a slash)

� File - String - File name with extension

CreateJPEG

Photographs the given object and save the picture as a jpg file to the same directory.

Syntax

CreateJPEG(Path, File)

Input Arguments

� Path - String - Path to the target file (concluding with a slash)

� File - String - File name with extension

XXIII

Appendix D

Code for the Fly-by-Wire Use Case

Requirement Validation

In Chapter 5.3, the requirements of the yoke control system of a FBW aircraft, their

formalization, and the corresponding code for an automated verification are presented.

For this purpose a class is used which has been developed in this thesis. Its implementation

is described below.

classdef clsRequirement < handle

properties

items = [];

end

methods

function obj = Requirement()

end

%% Add verification

function AddVerification(obj, condition, verification)

if find(condition > 0)

% Check if there is a test condition

obj.items = [obj.items; 1, verification];

else

% Mark verification as non-testable

obj.items = [obj.items; 0, -1];

end

end

%% Evaluate added verifications

function valid = Evaluate(obj)

if find(obj.items(:,2) < 0)

% If verification is non-testable, mark requirement as

non-testable

valid = -1;

elseif find(obj.items(:,2) == 0)

XXV

% Else if there is any violation, mark requirement as

violated

valid = 0;

else

% Else mark requirement as valid

valid = 1;

end

end

end

end

XXVI

Appendix E

Publications

The author of this thesis published the following publications during the period at the

Institute of Flight System Dynamics at Technical University of Munich. Besides, the

author contributed to the lecture notes for the lecture MATLAB Simulink for Computer

Aided Engineering and to the lecture notes for the corresponding lab course MATLAB

Simulink for Computer Aided Engineering.

� Schmiechen, Kevin; Hochstrasser, Markus; Rhein, Julian; Schropp, Christo-

pher; Holzapfel, Florian:"Traceable Model-Based Requirements Derivation, Sim-

ulation and Validation with Matlab Simulink and Polarion ALM" In: 2019 AIAA

SciTech Forum. San Diego, USA. 2019

� Nezhat, Sam; Jewoh, Silvain; Schropp, Christopher; Miller, Steve: "Comput-

ergestützte Simulationsschnittstelle - Optimierte Systementwicklung in der Mecha-

tronik" In: SAXSIM 2017. Chemnitz, Germany. 2017

� Jewoh, Silvain; Nezhat, Sam; Schropp, Christopher; Miller, Steve: "Opti-

mierte Systementwicklung" In: VDI Bewegungstechnik 2016. Nürtingen, Germany.

2016

� Schropp, Christopher: "Development of an Interface between CAD-Systems and

SimMechanics" In: MATLAB EXPO 2014. Munich, Germany. 2014.

XXVII

Appendix F

Supervised Student Theses

The author of this thesis supervised or co-supervised the following students during the

period at the Institute of Flight System Dynamics at Technical University of Munich.

� Gartner, Heitor; "Entwicklung und Simulation einer alternativen Full-Flight-Si-

mulator Kinematik für VTOL Flugzeuge". Garching, Germany. 2018

� Kirsch, Michael; "Entwicklung einer Simulink Simscape Multibody Erweiterung

zum Berechnen und Optimieren von Kontaktkräften anhand von CAD-Daten". Garch-

ing, Germany. 2018

� Marowsky, Christoph; "Konzeptstudie zu möglichen Ansteuerungskinematiken für

einen Flugsteuerungsroboter". Garching, Germany. 2018

� Zhong, Bingzhuo; "Dynamic Simulation of Contact Forces Based on Model Trans-

formations between Siemens NX and MATLAB". Garching, Germany. 2017

� Weinbuch, Moritz; "Mü 32 R̈eißmeister̈- Modellierung und Auslegung der Steuerung

für ein Segelkunstflugzeug". Garching, Germany. 2017

� Kochdumper, Niklas; "Entwicklung einer Schnittstelle zu SolidWorks in Form

einer Dynamic Link Library (DLL)". Garching, Germany. 2015

� Su, Jizong; "Entwicklung einer Schnittstelle zu PTC Creo in Form einer Dynamic

Link Library (DLL)". Garching, Germany. 2015

� Staudenmaier, Adrian; "Entwicklung einer Schnittstelle zu Siemens NX in Form

einer Dynamic Link Library (DLL)". Garching, Germany. 2015

� Nezhat, Sam; "Entwicklung einer funktionalen Interoperabilität zwischen CATIA

V5 und MATLAB/SimMechanics". Garching, Germany. 2013

XXIX

Bibliography

[Air93] Airbus Industrie ; Airbus Industrie (Hrsg.): Service Bulletin SB

A300-22-6021: A300-600. 1993

[AN10] Allison, James T. ; Nazari, Sam: Combined Plant and Controller Design

Using Decomposition-Based Design Optimization and the Minimum Prin-

ciple. In: Volume 1: 36th Design Automation Conference, Parts A and B,

ASME, 2010. – ISBN 978–0–7918–4409–0, S. 765–774

[Arn04] Arnold, Martin: Report / Martin-Luther-Universität Halle-Wittenberg,

Fachbereich Mathematik und Informatik. Bd. No. 2004,27 : Reports of the

Institute of Numerical Mathematics: Simulation algorithms in vehicle sys-

tem dynamics. Halle : Univ., Fachbereich Mathematik und Informatik, 2004

[BB15] Böge, Alfred ; Böge, Wolfgang: Technische Mechanik. Wiesbaden :

Springer Fachmedien Wiesbaden, 2015

[Bet10] Betts, John T.: Practical Methods for Optimal Control and Estimation

Using Nonlinear Programming. Society for Industrial and Applied Mathe-

matics, 2010

[BFS10] Biahmou, Alain ; Fröhlich, Arnulf ; Stjepandic, Josip: Improving

Interoperability in Mechatronic Product Developement, 2010

[Boe14] Boeing 787–8 Critical Systems Review Team: Boeing 787-8 Design,

Certification, and Manufacturing Systems Review. 2014

[Bos98] Bossak, Maciej A.: Simulation based design. In: Journal of Materials

Processing Technology 76 (1998), Nr. 1-3, S. 8–11. – ISSN 09240136

[Bos06] Bossche, Dominique van d.: The A380 Flight Control Electrohydrostatic

Actuators, Achievements And Lessons Learnt. In: ICAS 2006 proceedings.

Edinburgh : Optimage, 2006. – ISBN 9780953399178

[BRIA14] Bause, Katharina ; Radimersky, Aline ; Iwanicki, Marinette ; Albers,

Albert: Feasibility Studies in the Product Development Process. In: Proce-

dia CIRP 21 (2014), S. 473–478. – ISSN 22128271

XXXI

BIBLIOGRAPHY

[BSMC18] Bhattacharya, Partha ; Suyam, Nick-Ange ; Makanaboyina, Ranga ;

Chimalakonda, Adithya: Integration of CATIA with Modelica. (2018)

[CADa] CADNexus Inc.: CAPRI CAE Gateway Overview. http://www.

cadnexus.com/index.php/capri.html

[CADb] CADNexus Inc.: Visualize | Analyze | Optimize your CAD

designs in MATLAB. http://www.cadnexus.com/index.php/

matlab-connector.html

[CE08] Cooper, R. G. ; Edgett, S. J.: Maximizing Productivity in Product

Innovation. In: Research Technology Management (2008), S. 47–58

[CH05] Clark, John ; Holton, Derek A.: A first look at graph theory. Repr.

Singapore : World Scientific, 2005

[CJ06] Chang, Kuang-Hua ; Joo, Sung-Hwan: Design parameterization and tool

integration for CAD-based mechanism optimization. In: Advances in Engi-

neering Software 37 (2006), Nr. 12, S. 779–796. – ISSN 09659978

[COAL95] Canudas de Witt, Carlos ; Olsson, Henrik ; Aström, Karl J. ; Lischin-

sky, Pablo: A new model for control of systems with friction. In: IEEE

Transactions on Automatic Control (1995). – ISSN 0018–9286

[Coo69] Cooper, G.E. and Harper. R.P: The Use of Pilot Rating in the Eval-

uation of Aircraft Handling Qualities. 1969

[Das] Dassault Systèmes: CATIA V5: Service Pack 7, Build Number 20, Hot

Fix 54

[DWH03] Deremaux, Yann ; Willcox, Karen ; Haimes, Robert: Physically-Based,

Real-Time Visualization and Constraint Analysis in Multidisciplinary De-

sign Optimization. In: 33rd AIAA Fluid Dynamics Conference and Exhibit.

Reston, Va. : American Institute of Aeronautics and Astronautics, 2003. –

ISBN 978–1–62410–095–6

[Dzo08] Dzomo, Prudence C.: Modellierung eines Mapping in einer multidiszi-

plinären Umgebung zur effizienten Cross-Skill Engineering Kollaboration.

Darmstadt, 2008

[EBPF03] Engelson, Vadim ; Bunus, Peter ; Popescu, Lucian ; Fritzson, Pe-

ter: Mechanical CAD with Multibody Dynamic Analysis Based on Modelica

Simulation. 2003

XXXII

http://www.cadnexus.com/index.php/capri.html
http://www.cadnexus.com/index.php/capri.html
http://www.cadnexus.com/index.php/matlab-connector.html
http://www.cadnexus.com/index.php/matlab-connector.html

BIBLIOGRAPHY

[Eur15] European Aviation Safety Agency: CS-23 Certification Specifications

and Acceptable Means of Compliance for Normal, Utility, Aerobatic, and

Commuter Category Aeroplanes: Amendment 4. 2015

[Eur16] European Aviation Safety Agency: CS-25 Certification Specifications

and Acceptable Means of Compliance for Large Aeroplanes. 2016

[Fed09] Federal Aviation Administration: Advanced Avionics Handbook.

Washington, D.C. : U.S. Department of Transportation, Federal Aviation

Administration, Flight Standards Service, 2009

[Fed12] Federal Aviation Administration: Advisory Circular 25-7C. 2012

[Fis07] Fischer, E.: Standard multi-body system software in the vehicle develop-

ment process. In: Proceedings of the Institution of Mechanical Engineers,

Part K: Journal of Multi-body Dynamics 221 (2007), Nr. 1, S. 13–20. – ISSN

1464–4193

[FPU04] Fathy, H. K. ; Papalambros, P.Y. ; Ulsoy, A.G.: On combined plant

and control optimization. (2004)

[FRPU01] Fathy, H. K. ; Reyer, J. A. ; Papalambros, P. Y. ; Ulsoy, A. G.: On

the coupling between the plant and controller optimization problems. In:

Proceedings of the 2001 American Control Conference. New York : IEEE,

2001. – ISBN 0–7803–6495–3, S. 1864–1869 vol.3

[Gen16] General Atomics Aeronautical: Predator B RPA. http://www.

ga-asi.com/predator-b . Version: 2016

[Ger12] Gerdts, Matthias: Optimal control of ODEs and DAEs. Berlin and Boston

: De Gruyter, 2012 (De Gruyter graduate)

[GM11] Gujarathi, G. P. ; Ma, Y.-S.: Parametric CAD/CAE integration using a

common data model. In: Journal of Manufacturing Systems 30 (2011), Nr.

3, S. 118–132. – ISSN 02786125

[Gro08] Groves, Paul D.: Principles of GNSS, inertial, and multisensor integrated

navigation systems. Boston : Artech House, 2008 (GNSS technology and

applications series)

[GY12] Groÿekatthöfer, Karsten ; Yoon, Zizung: Introduction into quater-

nions for spacecraft attitude representation. Berlin, 2012

[Hac15] Hackl, Christoph M.: Dynamische Reibungsmodellierung: Das Lund-

Grenoble (LuGre) Reibmodell. In: Schroeder, D. (Hrsg.): Elektrische

XXXIII

http://www.ga-asi.com/predator-b
http://www.ga-asi.com/predator-b

BIBLIOGRAPHY

Antriebe – Regelung von Antriebssystemen. Springer-Verlag, 2015, S. 1615–

1657

[Has06] Haskins, C.: Systems Engineering Handbook v. 3. San Diego, CA: IN-

COSE., 2006

[HC75] Hunt, K. H. ; Crossley, F. R. E.: Coefficient of Restitution Interpreted

as Damping in Vibroimpact. In: Journal of Applied Mechanics 42 (1975),

Nr. 2, S. 440. – ISSN 00218936

[Hol17a] Holzapfel, Florian: Flight System Dynamics I. München, 2017

[Hol17b] Holzapfel, Florian: Flight System Dynamics II. München, 2017

[Hol17c] Holzapfel, Florian: Flight System Identification. München, 2017

[Hon15] Honeywell International Inc.: Aerospace and Defense: Sensors and

Switches Product Range Guide. 2015

[HSPH13] Heller, Matthias ; Schuck, Falko ; Peter, Lars ; Holzapfel, Flo-

rian: Hybrides Flugsteuerungssystem für zukünftige Kleinflugzeuge (Future

Small Aircraft). Bonn : Deutsche Gesellschaft für Luft- und Raumfahrt -

Lilienthal-Oberth e.V, 2013

[JNSM16] Jewoh Zekeyo, Silvain ; Nezhat, Sam ; Schropp, Christopher ; Miller,

Steve: Computergestützte Simulationsschnittstelle: Optimierte Systemen-

twicklung in der Mechatronik. 18. VDI-Getriebetagung Bewegungstechnik

2016, 20.09.2016

[KMPJ03] Kim, Hyung M. ; Michelena, Nestor F. ; Papalambros, Panos Y. ;

Jiang, Tao: Target Cascading in Optimal System Design. In: Journal of

Mechanical Design 125 (2003), Nr. 3, S. 474. – ISSN 10500472

[Kub08] Kubisch, Matthias: Modellierung und Simulation nichtlinearer Motor-

eigenschaften, Humboldt-Universität zu Berlin, Studienarbeit, 2008

[LAT15] Louhichi, Borhen ; Abenhaim, Gad N. ; Tahan, Antoine S.: CAD/CAE

integration: Updating the CAD model after a FEM analysis. In: The Inter-

national Journal of Advanced Manufacturing Technology 76 (2015), Nr. 1-4,

S. 391–400. – ISSN 0268–3768

[LHH] Lauffs, Patrick J. ; Hochstrasser, Markus ; Holzapfel, Florian: Real-

time simulation of nonlinear transmission behavior in electro-mechanical

flight control systems. In: 2014 IEEE International Conference on Aerospace

Electronics and Remote Sensing Technology (ICARES), S. 39–47

XXXIV

BIBLIOGRAPHY

[LPS13] LPS R© Laboratories: Technical Data Sheet - LPS 2 R© Heavy-Duty Lubri-

cant. 4647 Hugh Howell Road, Tucker, GA 30084, 2013

[LSW54] Lele, P. P. ; Sinclair, D. C. ; Weddell, G.: The reaction time to touch.

In: The Journal of physiology 123.1. 1954

[MGM06] Mastinu, Giampiero ; Gobbi, Massimiliano ; Miano, Carlo: Optimal

Design of Complex Mechanical Systems. Berlin, Heidelberg : Springer Berlin

Heidelberg, 2006

[MKLC09] Maier, A. M. ; Kreimeyer, M. ; Lindemann, U. ; Clarkson, P. J.:

Reflecting communication: A key factor for successful collaboration between

embodiment design and simulation. In: Journal of Engineering Design 20

(2009), Nr. 3, S. 265–287. – ISSN 0954–4828

[ML13] Martins, Joaquim R. R. A. ; Lambe, Andrew B.: Multidisciplinary Design

Optimization: A Survey of Architectures. In: AIAA Journal 51 (2013), Nr.

9, S. 2049–2075. – ISSN 0001–1452

[MMGG12] Mefteh, Wafa ; Migeon, Frederic ; Gleizes, Marie-Pierre ; Gargouri,

Faiez: Simulation based design. In: 2012 International Conference on

Information Technology and e-Services, IEEE, 2012. – ISBN 978–1–4673–

1166–3, S. 1–6

[Mod] https://www.modelica.org/

[MSVW17] Miller, S. ; Soares, T. ; Van Weddingen, Y. ; Wendlandt, J. ;

The MathWorks, Inc. (Hrsg.): Modeling Flexible Bodies with Simscape

Multibody Software: An Overview of Two Methods for Capturing the Effects

of Small Elastic Deformations. 2017

[NC12] NG, Annie W. Y. ; CHAN, Alan H. S.: Finger response times to visual,

auditory and tactile modality stimuli. In: Proceedings of the international

multiconference of engineers and computer scientists Bd. 2. 2012

[Ols96] Olsson, H.: Control systems with friction. Lund, 1996

[PBFG07] Pahl, Gerhard ; Beitz, Wolfgang ; Feldhusen, Jörg ; Grote, Karl-

Heinrich: Engineering Design. London : Springer London, 2007

[PK01] Pytel, Andrew ; Kiusalaas, Jaan: Engineering mechanics: Dynamics.

2nd ed. Pacific Grove : Thomson, 2001

[PW] Papalambros, Panos Y. ; Wilde, Douglass J.: Principles of optimal

design: Modeling and computation. 3rd ed.

XXXV

https://www.modelica.org/

BIBLIOGRAPHY

[RC93] Raymond, E. T. ; Chenoweth, C. C.: Aircraft flight control actuation

system design. Warrendale, PA : Society of Automotive Engineers, 1993

[Rie13] Rierson, Leanna: Developing Safety-Critical Software: A Practical Guide

for Aviation Software and DO-178C Compliance. Taylor & Francis Inc, 2013

[Ros03] Roskam, Jan: Airplane Flight Dynamics and Automatic Flight Controls:

Part I. DARcorporation, 2003

[RS5] Richard, Hans A. ; Sander, Manuela: Technische Mechanik: Lehrbuch

mit Praxisbeispielen, Klausuraufgaben und Lösungen : Grundlagen - effektiv

und anwendungsnah. Einzelbände in versch. Ausg. Wiesbaden : Vieweg,

2005- (Viewegs Fachbücher der Technik)

[RS08] Richard, Hans A. ; Sander, Manuela: Technische Mechanik: Lehrbuch

mit Praxisbeispielen, Klausuraufgaben und Lösungen. 2., erw. Aufl. Wies-

baden : Vieweg+Teubner / GWV Fachverlage, Wiesbaden, 2008 (Vieweg

Studium)

[RW99] Reinhart, G. ; Weissenberger, M.: Multibody simulation of machine

tools as mechatronic systems for optimization of motion dynamics in the

design process. In: Proceedings. Piscataway, NJ : IEEE Service Center,

1999. – ISBN 0–7803–5038–3, S. 605–610

[Sch10] Schröder, Valentin: Prüfungstrainer Strömungsmechanik. Wiesbaden :

Vieweg+Teubner, 2010

[SPK00] Sinha, R. ; Paredis, C.J.J. ; Khosla, P. K.: Integration of mechanical

CAD and behavioral modeling. In: Proceedings 2000 IEEE/ACM Inter-

national Workshop on Behavioral Modeling and Simulation, IEEE Comput.

Soc, 2000. – ISBN 0–7695–0893–6, S. 31–36

[SPLK01] Sinha, Rajarishi ; Paredis, Christiaan J. J. ; Liang, Vei-Chung ; Khosla,

Pradeep K.: Modeling and Simulation Methods for Design of Engineering

Systems. In: Journal of Computing and Information Science in Engineering

1 (2001), Nr. 1, S. 84. – ISSN 15309827

[The16a] The MathWorks, Inc.: MATLAB: R2016a. 2016

[The16b] The MathWorks, Inc.: R2016a Documentation. Natick, Massachusetts,

2016

[The16c] The MathWorks, Inc.: Simscape Multibody: R2016a. 2016

[The16d] The MathWorks, Inc.: Simscape: R2016a. 2016

XXXVI

BIBLIOGRAPHY

[The16e] The MathWorks, Inc.: Simulink: R2016a. 2016

[Tro07] Tron, Xavier L.: A380 Flight Controls Overview. Deutsche Gesellschaft

für Luft- und Raumfahrt - Lilienthal Oberth e.V., 2007

[U.S97] U.S. Department of Defense: MIL-HDBK-1797 Flying Qualities of

Piloted Aircraft: Handbook. 1997

[VDI93] VDI - Verein Deutscher Ingenieure: Methodik zum Entwickeln und

Konstruieren technischer Systeme und Produkte. 1993

[Ver98] Veryzer, R.: Discontinuous Innovation and the New Product Development

Process. In: Journal of Product Innovation Management 15 (1998), Nr. 4,

S. 304–321. – ISSN 07376782

[VKV04] Vaculín, Ondřej ; Krüger, Wolf R. ; Valášek, Michael: Overview of

coupling of multibody and control engineering tools. In: Vehicle system

dynamics (2004). – ISSN 0042–3114

[Way18] Wayne Stout, PhD: Aerospace Flight Control Systems. Desig-

nAerospaceLLC, 2018

[WL13] Wickert, Jonathan A. ; Lewis, Kemper E.: An introduction to mechanical

engineering. 3rd ed. Stamford, CT : Cengage Learning, 2013

[ZKN+17] Zimmermann, Markus ; Königs, Simon ; Niemeyer, Constantin ;

Fender, Johannes ; Zeherbauer, Christian ; Vitale, Renzo ; Wahle,

Martin: On the design of large systems subject to uncertainty. In: Journal

of Engineering Design 28 (2017), Nr. 4, S. 233–254. – ISSN 0954–4828

[ZMRMZ17] Zare, Amir ; Michels, K. ; Rath-Maia, L. ; Zimmermann, M.: On the

design of actuators and control systems in early development stages. In: Pf-

effer, Prof. Peter E. (Hrsg.): 8th International Munich Chassis Symposium

2017. Wiesbaden : Springer Fachmedien Wiesbaden, 2017 (Proceedings). –

ISBN 978–3–658–18458–2, S. 337–352

[ZSMH18] Zollitsch, Alexander W. ; Schatz, Simon P. ; Mumm, Nils C. ;

Holzapfel, Florian: Model-in-the-Loop Simulation of Experimental Flight

Control Software. In: 2018 AIAA Modeling and Simulation 2018. 2018

XXXVII

	List of Figures
	List of Tables
	Acronyms
	Symbols
	1 Introduction
	1.1 Background
	1.2 History
	1.3 State-of-the-Art
	1.4 Motivation
	1.5 Literature Review
	1.6 Purpose Statement
	1.7 Contribution
	1.8 Outline

	2 Physical Components of Flight Control Systems
	2.1 Rods and Bellcranks
	2.1.1 Nonlinearities in Rod Systems
	2.1.2 Buckling Resistance

	2.2 Joints
	2.2.1 Friction
	2.2.2 Backlash

	2.3 Cables
	2.3.1 Tension Regulators

	2.4 Actuators
	2.4.1 EMA Model with Thermal Dependencies
	2.4.2 Gearbox
	2.4.3 Controller

	2.5 Clutches
	2.6 Sensors
	2.6.1 Error Characteristics

	3 A Bidirectional Method for Connecting CAD Tools with Simscape Multibody
	3.1 Market Overview
	3.1.1 Simscape Multibody Link
	3.1.2 CAMAT
	3.1.3 CAPRI

	3.2 Basic Strategy and Overview
	3.3 Requirements
	3.4 Specification of the Software Architecture
	3.4.1 Design Considerations
	3.4.2 Partitioning of Functionality and Responsibilities
	3.4.3 Class-Based Framework Architecture

	3.5 Implementation of the Key Functionality
	3.5.1 Connecting MATLAB and the CAD Software
	3.5.2 Transferring CAD Data to MATLAB
	3.5.3 Data Storage and Post-Processing
	3.5.4 Automatic Simscape Multibody Model Building
	3.5.5 Modification of CAD Parameters

	3.6 Optimization Framework
	3.6.1 Structure of an Optimization Problem
	3.6.2 Strategies for an Efficient Optimization

	4 Application to a Mechanical Flight Control System
	4.1 Mechanism and 3D CAD Model
	4.2 Kinematic Analyses
	4.2.1 Preparation of the MBS Model
	4.2.2 Evaluation of Simulation Results
	4.2.3 Optimization of CAD Parameters

	4.3 Mechanical Analyses
	4.3.1 Preparation of the Models
	4.3.2 Dynamic Simulation

	4.4 High Fidelity Simulation with a Flight Dynamics Model
	4.4.1 Inclusion of Backlash
	4.4.2 Integration of the Flight Dynamics Model
	4.4.3 Acceleration of the Mechanism
	4.4.4 Representation of the Elevator Surface Inertia
	4.4.5 Scenario and Simulation Results

	4.5 Aircraft Handling Qualities
	4.6 Estimation of the Buckling Risk
	4.6.1 Results

	4.7 Role of the Developed Method in this Use Case

	5 Application to a Fly-by-Wire Flight Control System
	5.1 Methods and Approach
	5.2 Yoke Control System with Mechanical Control Loading System
	5.3 Requirements
	5.4 CAD Model
	5.5 Simscape Multibody Model
	5.5.1 Nomenclature
	5.5.2 Friction Clutch
	5.5.3 Control Loading System
	5.5.4 Breakout Force
	5.5.5 Actuators
	5.5.6 Stick Pusher
	5.5.7 Trim System
	5.5.8 Hard Stops
	5.5.9 Yoke Jam

	5.6 Requirements Validation and Discussion
	5.6.1 Test Case 10: Nominal Achievable Deflection
	5.6.2 Test Case 11: Nominal Achievable Deflection with Max. Forward Trim
	5.6.3 Test Case 12: Nominal Achievable Deflection with Maximum Aft Trim
	5.6.4 Test Case 20: FO Yoke Jammed in Neutral Position
	5.6.5 Test Case 21: FO Yoke Jammed in Maximum Forward Trim Position
	5.6.6 Test Case 22: FO Yoke Jammed in Maximum Aft Trim Position
	5.6.7 Test Case 30: Stick Pusher Activation With Neutral Trim Position
	5.6.8 Test Case 31: Stick Pusher Activation With Maximum Aft Trim Position
	5.6.9 Conclusion

	5.7 Simultaneous Optimization of Hard- and Software Parameters
	5.7.1 Objective and Approach
	5.7.2 Simulation Inputs
	5.7.3 Parametrization of the CAD Model
	5.7.4 Stick Pusher Controller
	5.7.5 Constrained Optimization Problem Setup
	5.7.6 Cost Function
	5.7.7 Nonlinear Constraints (Requirements)
	5.7.8 Complete Optimization Problem Statement
	5.7.9 Results

	6 Summary and Outlook
	A Manual
	A.1 Requirements on the CAD Model
	A.1.1 Limitations Regarding CATIA V5

	A.2 Convert a CAD Model to a Simscape Multibody Model
	A.3 Change CAD Parameters from MATLAB
	A.4 Get an Update of the CAD Data
	A.5 Model Handling and Reconnect
	A.6 Application of the Optimization Framework

	B Implementation of the Class-Based Framework
	C Definition of the General Interface
	C.1 Method Overview
	C.2 Definition

	D Code for the Fly-by-Wire Use Case Requirement Validation
	E Publications
	F Supervised Student Theses

