
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Nachrichtentechnik

Finite-Precision and Multi-Stream Distribution Matching

Marcin J. Pikus

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor–Ingenieurs

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Bernhard U. Seeber

Prüfer der Dissertation: 1. Prof. Dr. sc. tech. Gerhard Kramer
2. Prof. Giuseppe Caire, Ph.D.

Die Dissertation wurde am 28.05.2019 bei der Technischen Universität München eingere-
icht und durch die Fakultät für Elektrotechnik und Informationstechnik am 06.09.2019
angenommen.

3

Preface

I’m grateful to my wife, family, friends, colleagues, and supervisors for their on-going
support. Especially, I would like to thank Gerhard Kramer for his time and invaluable
guidance. Secondly, I have to thank my colleagues from Huawei Technologies for creat-
ing and maintaining the atmosphere where one could develop and verify ideas. Every
coffee break we took inspired me further. Last but not least, I would like to show my
appreciation for colleagues at the Technical University of Munich, where I had this great
opportunity to participate in developing a machine learning course, which also inspired
my work.

Munich, May 2019 Marcin Pikus

5

Contents

1. Preliminaries 1

1.1. Probability and Information Theory . 1

1.1.1. Probability Theory . 1

1.1.2. Information Theory . 3

1.2. Communication Systems . 5

1.2.1. Additive White Gaussian Noise Channel 5

1.2.2. Bit-interleaved Coded Modulation 9

1.2.3. Probabilistic Amplitude Shaping 10

1.3. Block-to-Block Distribution Matching . 12

1.3.1. Optimal Block-to-Block DM . 14

2. Arithmetic Coding in Distribution Matching 17

2.1. Infinite Precision Implementation . 18

2.2. Finite Precision Implementation . 23

2.2.1. Bounding the Discrepancy . 26

2.3. Constant-Composition Distribution Matcher 29

2.3.1. Practical Implementation . 33

2.4. Multi-Composition Distribution Matcher 36

2.4.1. Weight-Constrained Codebook . 37

2.4.2. Practical Implementation . 40

2.4.3. Approximated Weight Constrained Codebook 44

6 Contents

3. Multi-Stream Distribution Matching 49

3.1. Architecture . 50

3.2. Rate-loss . 54

3.2.1. Rate-loss of the BLDM and the CCDM 54

3.2.2. Rate-loss of the BLDM and weight-constrained DMs 56

3.3. Finding the BLDM Parameters . 57

3.3.1. Finding the BLDM Mapping . 59

3.3.2. Finding the BLDM Target Distributions 64

3.4. Optimization Results . 68

3.4.1. Normalized Divergence . 71

4. Distribution Matching and Efficient Communication 77

4.1. Probabilistic Amplitude Shaping for AWGN Channel 77

4.2. Efficient Communication for Rayleigh Block Fading Channel 80

4.3. Probabilistic Amplitude Shaping for Rayleigh Block Fading Channel . . . 87

4.3.1. Channel Estimation and Demodulation 88

4.3.2. Results . 89

A. Proofs for Chapter 2 93

A.1. Proof of Theorem 2.1 . 93

A.2. Proof of Theorem 2.2 . 99

B. Proofs for Chapter 3 105

B.1. Proof of Theorem 3.3 . 105

C. Notation and Abbreviations 107

7

Zusammenfassung

Um die Kapazität eines Kommunikationskanals zu erreichen, müssen in der Regel un-
gleich verteilte Symbole, sogenannte geshapte Symbole, übertragen werden. Die jüng-
ste Forschungstätigkeit zu Shaping Methoden ist auf das Interesse aus der Industrie
an der Verbesserung der spektralen Effizienz von optischen und drahtlosen Kanälen
zurückzuführen. Der Begriff Shaping Methoden bezeichnet Methoden, um Kommunika-
tionssysteme zu realisieren, die ungleich verteilte Symbole übertragen. Distribution-
Matching ist eine Shaping Methode, die reversibel eine Sequenz unabhängiger und gle-
ichverteilter Bits in eine Sequenz von Symbolen kodiert, die eine bestimmte Wahrschein-
lichkeitsverteilung aufweisen. Diese Arbeit analysiert Distribution-Matching Methoden.
Ein Algorithmus und Entwurfsregeln für ein auf arithmetischer Kodierung basierendes
Distribution-Matching werden abgeleitet. Insbesondere wird die Abhängigkeit zwischen
der Leistung eines solchen Distribution-Matchings und der Genauigkeit der Rechenop-
erationen bei der arithmetischen Kodierung quantifiziert. Außerdem wird gezeigt, wie
man das Wahrscheinlichkeitsmodell für das auf der arithmetischen Kodierung basierende
Distribution-Matching wählt, um die Leistung für kurze Blocklängen zu verbessern.
Außerdem wird eine parallele Architektur für das Distribution-Matching entwickelt, die
die Ausgabeverteilung durch eine Verteilung eines Produkts von Zufallsvariablen ap-
proximiert, und damit Flexibilität und Durchsatz erhöht. Die parallele Architektur
führt viele Distribution-Matchings mit kleineren Ausgabealphabeten durch, um die re-
sultierenden Sequenzen zusammen auf eine Sequenz aus dem primären Ausgabealphabet
abzubilden. Die Architektur wird für verschiedene Distribution-Matching Algorithmen
und Szenarien analysiert und optimiert. Schließlich werden die Vorteile von Shaping
Methoden für mehrere Kommunikationskanäle, einschließlich nicht kohärenter Fading-
Kanäle, untersucht.

8 Contents

Abstract

Achieving the capacity of a communication channel usually involves transmitting non-
uniformly distributed, or shaped, symbols. Recent research activity on shaping schemes
is driven by industrial interest in improving the spectral efficiency of optical and wire-
less channels. Distribution matching is a shaping scheme that reversibly encodes a
sequence of independent and uniformly distributed bits into a sequence of symbols that
have a certain probability distribution. This work analyzes distribution matching tech-
niques. We derive an algorithm and design rules for arithmetic coding distribution
matching. In particular, we quantify the dependence between the performance of such
distribution matching and the precision used for arithmetic operations by the arithmetic
coding algorithm. Moreover, we show how to choose the probability model governing
an arithmetic coding based distribution matcher to improve the performance for short
blocklengths. We also develop a parallel architecture for distribution matching that
approximates the output distribution by a product distribution, and thereby increases
flexibility and throughput. The parallel architecture performs many distribution match-
ings with smaller output alphabets to jointly map the resulting sequences to a sequence
from the primary output alphabet. We optimize and analyze the architecture for dif-
ferent distribution matching algorithms and scenarios. Finally, we examine the benefits
of shaping schemes for several communication channels including non-coherent fading
channels.

1
Preliminaries

1.1. Probability and Information Theory

1.1.1. Probability Theory

Vectors and Sequences

A finite sequence (or a row vector) is denoted by by a bold symbol:

x = [x1, . . . , xn] .

The i-th entry of x is denoted by xi or [x]i. A subsequence of x starting at the i-th
entry and ending at the j-th entry of x is denoted by

xji = [x]ji = [xi, . . . , xj] .

A concatenation of two sequences a and b is denoted by [a, b]. For example, we write
[
[x]21 , [x]43

]
= [x1, x2, x3, x4].

The number of entries of a finite sequence (or a dimension of a row vector) is denoted
by l(x), i.e., we have l(x) = n and l(xji) = j − i+ 1.

2 Chapter 1. Preliminaries

Random Variables

Random variables (RVs) are denoted by uppercase letters, e.g., X, and realizations of
RVs by lowercase letters, e.g., x. A discrete RV X takes values in a finite or countably
infinite set X . We describe X with a probability mass function (PMF) PX on X , which
gives the probability of X taking on the value x, i.e., PX(x) = Pr[X = x],∀x ∈ X . We
denote a PMF with an uppercase P with the corresponding RV as a subscript.

A continuous RV X takes on an uncountable number of values from a set X . Fur-
thermore, if X is absolutely continuous, there exists a non-negative function pX(x) such
that ∀S⊆X Pr[X ∈ S] =

∫
S pX(x)dx. The function pX(x) is called a probability density

function (PDF) of the RV X and is denoted by lowercase p.

We write
X ∼ PX (resp. X ∼ pX) (1.1)

if the RV X has the PMF PX (resp. PDF pX).

The set of arguments for which a PMF (resp. PDF) of a discrete (resp. continuous)
RV takes on non-zero values is called the support of the RV and is denoted by:

supp(PX) = {x ∈ X , PX(x) > 0 (resp. supp(pX) = {x ∈ X , pX(x) > 0}). (1.2)

Expectation

Suppose X is a RV defined on a set X and f is some real-valued function. Then f(X) is
also a RV and the expectation of f(X) is denoted by EX [f(X)]. If X is a discrete RV,
then we have

EX [f(X)] =
∑

a∈supp(PX)
PX(a)f(a). (1.3)

If X is a continuous RV with a density, then we have

EX [f(X)] =
∫

supp(pX)
pX(a)f(a)da. (1.4)

assuming the integral exists.

1.1. Probability and Information Theory 3

1.1.2. Information Theory

Entropy and Differential Entropy

The entropy of a discrete RV X is is defined as

H(PX) = H(X) = EX [− log2(PX(X))]. (1.5)

Some important properties of the entropy are [1, Appendix A]:

1. Non-negativity: H(X) ≥ 0.

2. Maximum Entropy:
H(X) ≤ log |X | (1.6)

with equality if and only if X is uniformly distributed on X .

3. Maximum Entropy with Linear Constraint: Consider a cost function f : X → R
and the linear constraint E[f(X)] = P . The maximum entropy is attained by the
Maxwell-Boltzmann distribution:

PX(x) ∝ e−αf(x) for x ∈ X .

The proof follows, e.g., by using Lagrange multipliers.

For a continuous RV, we use differential entropy defined as

h(X) = EX [− log2(pX(X))]. (1.7)

If X is a discrete RV, then we say that h(X) = −∞.

Kullback–Leibler Divergence

The Kullback–Leibler(KL) divergence, also referred to as informational divergence or
relative entropy, between two PMFs PX and QX is defined as

D (PX‖QX) = EX
[
log PX(X)

QX(X)

]
(1.8)

for X ∼ PX . The divergence can be defined in an analogous way for continuous RVs with
PDFs pX , qX instead of the PMFs PX , QX . Some important properties of the divergence
are [1, Appendix A]:

4 Chapter 1. Preliminaries

1. Non-negativity: D (PX‖QX) ≥ 0, with equality for PX = QX .

2. Non-symmetry: D (PX‖QX) 6= D (QX‖PX).

3. Data Processing Inequality: Consider two RV X, X ′ with PMFs PX , QX defined
on the set X , respectively. The two variables X, X ′ are processed by the channel
PY |X to obtain the the variables Y , Y ′ with PMFs PY , QY defined on the set Y ,
respectively. That is, we have

PY (y) = EX
[
PY |X(y|X)

]
∀y ∈ Y

QY (y) = EX
[
PY |X(y|X)

]
∀y ∈ Y .

Then we have
D (PY ‖QY) ≤ D (PX‖QX) . (1.9)

The proof follows, e.g., by manipulations and convexity properties (Jensen inequal-
ity). One can understand the result as follows: processing the observation makes it
more difficult to determine whether it comes from PX or QX . The data processing
inequality also holds for continuous/mixed RVs and channels (e.g., X, X ′ may be
discrete and Y , Y ′ may be continuous) although the formulation above uses PMFs.

Mutual Information

The mutual information between two RV X, Y is defined as

I (X;Y) = D (PXY ‖PXPY) .

The mutual information can be defined in an analogous way for continuous RVs. Some
important properties of the mutual information are [1, Appendix A]:

1. Non-negativity: I (X;Y) ≥ 0.

2. Independence indicator: I (X;Y) = 0 ⇐⇒ X and Y are independent.

3. Symmetry: I (X;Y) = I (Y ;X).

4. Data Processing Inequality: Consider three RVs X, Y, Z forming the Markov chain
X ⇔ Y ⇔ Z. We have

I (X;Z) ≤ I (X;Y) . (1.10)

1.2. Communication Systems 5

The data processing inequality for mutual information is a consequence of the
data processing inequality (1.9) for informational divergence. One can understand
the result as follows: processing of RVs can not increase the information that one
of them carries about the other one. The data processing inequality holds for
continuous/mixed RVs as well.

1.2. Communication Systems

Shannon [2] identified the purpose of communication as follows

The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point.

The communication can take place in space, e.g., transmitting data to a remote desti-
nation, or in time, e.g., storing data for future retrieval. We focus now on communication
systems that transmit digital data to remote destinations. A simple model of such a
system is presented in Figure 1.1. Digital data (data quantized in time and values) enter
the transmitter. The transmitter processes the data to obtain a sequence of (digital)
signal points. The transmitter processing may involve changing the representation of
the data or channel coding. The actual communication often takes place over a physi-
cal channel (for example by means of electro-magnetic waves, light, or acoustic waves)
which is continuous in nature (continuous in time and values). Thus, in the next step
the signal points are mapped to physical quantities that can propagate over the physical
channel. The channel modifies the signal, e.g., by adding noise. At the receiver, the
physical quantities are translated into estimates of the transmitted signal points, and
the estimated signal points are processed to obtain an estimate of the data.

1.2.1. Additive White Gaussian Noise Channel

Consider a wireless additive white Gaussian noise (AWGN) channel, where the con-
tinuous transmitted signal is affected by three main phenomena: propagation delay,
attenuation, and noise. Propagation delay shifts the time axes at the receiver and trans-
mitter. That is, let x(t) ∈ R, t ∈ R, be the continuous transmitted signal (the value of

6 Chapter 1. Preliminaries

Digital
Transmitter

Transmitter
RF Chain

Channel

Receiver
RF Chain

Digital
Receiver

data signal points continous transmitted signal

continous received signal

estimated
signal points

estimated
data

discrete time channel

Figure 1.1.: Digital communication system.

the electric field at the output of the transmitter radio frequency (RF) chain). Then
the continuous received signal (we ignore the other phenomena affecting the signal) is
x(t − τ) where τ is the propagation delay between the transmitter and the receiver.
One can thus shift the clock at the receiver RF chain by τ to have the continuous re-
ceived signal equal to x(t). In the AWGN channel model the attenuation is constant
and mainly caused by the propagation loss. On can normalize (amplify) the continuous
received signal to have the same amplitude as the transmitted signal. This results in
the received signal y(t) being

y(t) = x(t) + n(t)

where n(t) is noise, e.g., thermal noise due to the receiver RF chain. The noise is
modeled as a white Gaussian random process. That is, for any t1 6= t2, n(t1) and n(t2)
are independent zero-mean Gaussian RVs. Suppose that a symbol is transmitted every
T seconds, and that a base waveform v(t) of the transmitter RF chain is chosen such
that it is orthonormal to its time-shifts by multiples of T . The transmitted signal is

x(t) =
∑
i≥0

Xiv(t− iT)

where the real-valued Xi are digital signal points produced by the digital transmitter.
In the absence of noise, each digital signal point can be recovered by filtering

Xi =
∫ ∞
−∞

x(t)v(t− iT) dt

1.2. Communication Systems 7

which follows because v(t) is orthonormal to the other shifts. With the noise, the filtering
operation yields

Yi =
∫ ∞
−∞

y(t)v(t− iT) dt

=
∫ ∞
−∞

x(t)v(t− iT) dt+
∫ ∞
−∞

n(t)v(t− iT) dt

= Xi +Ni (1.11)

where Ni, i ≥ 0 is a filtered white Gaussian noise process, i.e., the sequence Ni, i ≥ 0, is a
sequence of IID zero-mean Gaussian RVs [3, Chapter 8]. Equation (1.11) shows that by
filtering one can transform the continuous-time channel into a discrete-time channel, see
Figure 1.1. In practice, communication systems often constrain the transmitter output
X to be from the amplitude shift keying (ASK) alphabet

X = {−2m + 1, . . . ,−5,−3,−1, 1, 3, 5, . . . , 2m − 1}. (1.12)

Finally, the discrete-time channel between the transmitter and receiver becomes

Y = ∆X +N (1.13)

where N ∼ N (0, 1), X ∈ X , and we introduced the scaling ∆ > 0 to allow more
flexibility with the fixed alphabet X . Usually the transmitter has a limited power at its
disposal. The transmitter power is proportional to the square of the magnitude of the
generated electric field, which results in the average power constraint

E
[
|∆X|2

]
≤ P. (1.14)

Efficient Communication over the AWGN Channel

Consider the AWGN channel (1.13) used n times:

[Y1, . . . , Yn] = ∆ [X1, . . . , Xn] + [N1, . . . , Nn] (1.15)
Y = X +N (1.16)

where ∆ was merged into the vector X, and N is multivariate Gaussian with zero-
mean and identity-covariance, i.e., N ∼ N (0, I). Standard digital transmitters generate
signal points with a uniform distribution on the alphabet X . This results in X being

8 Chapter 1. Preliminaries

Shaping gain
n linear dB
2 1.047 0.20
4 1.111 0.46
8 1.183 0.73
16 1.252 0.98
32 1.309 1.17
64 1.350 1.31
∞ 1

6πe 1.53

Table 1.1.: Shaping gain when using the n-sphere bounded multidimensional constella-
tion in comparison with the n-cube bounded constellation.

uniformly distributed on an n-dimensional cubic lattice enclosed within an n-cube. Let
Xn be an n-dimensional constellation, e.g., for the standard digital transmitters we have
Xn = X × X × . . .×X︸ ︷︷ ︸

n times

= X n.

Consider a digital receiver that implements the maximum likelihood (ML) decoder,
which for each received vector y outputs xMAP such that

xMAP = argmax
x∈Xn

pY |X(y|x) (1.17)

= argmin
x∈Xn

‖y − x‖2. (1.18)

The ML decoder thus chooses the vector x closest to the vector y with respect to
Euclidean distance. The probability of a decoding error, i.e., the probability that the
vector xMAP returned by the decoder is different that the transmitted vector, is upper-
bounded and closely approximated by the probability of the magnitude of the noise
vector N exceeding ∆ (to see this observe that the noise vector [∆ + ε, 0, . . . , 0] with
ε > 0 suffices to cause a decoding error if, e.g., X1 = −1 is transmitted). We would like
the error probability to be below some chosen value pe for all transmit vectors. That
is, no two vectors in the constellation Xn should be closer than some distance de. For
X uniform, the most energy efficient constellation is enclosed (approximately) by an
n-sphere [4]. By comparing the average energy of a point uniformly distributed in an
n-cube and n-sphere of the same volume (this ensures the both constellations have the
same transmission rate and pe), one can compute an approximate power saving resulting

1.2. Communication Systems 9

Channel
Encoder

π bX ×

∆

U

l(U) = k

B

l(B) = nL

B′

l(B′) = nL

X

l(X) = n

∆X

Figure 1.2.: BICM transmitter.

from using the optimal n-sphere bounded constellation, as compared to using an n-cube.
The power savings computed in [5] are presented in Table 1.1 (the power saving is defined
as the reduction in average transmission power per two dimensions). For n → ∞ the
probability distribution of the marginals Xi, i = 1, . . . , n, from the vectorX approach a
zero-mean IID Gaussian distribution. The same result can be obtained from Shannon’s
coding theorem where the Gaussian PDF maximizes

max
px : E[|X|2]≤P

I (X; ∆X +N) . (1.19)

1.2.2. Bit-interleaved Coded Modulation

Bit-interleaved coded modulation (BICM) [6] is a particular communication scheme that
uses a binary error-correcting code with non-binary modulation. A BICM transmitter
is presented in Figure 1.2. The binary data sequence U of dimension k is encoded into
a binary codeword B of dimension nL ≥ k. Next, the codeword’s bit are interleaved
(permuted) to obtain a binary sequence B′. The interleaver effectively makes the con-
secutive bits for each bit-level independent. Next, the interleaved sequence B′ is broken
into subsequences of length L, which are mapped by bX : {0, 1}L → X to a sequence X
of symbols from the ASK alphabet X . Finally, the symbols are scaled by ∆ to match
the power constraint. BICM achieves very good performance when combined with the
mapping bX based on Gray labeling [6].

An optimal decoder uses symbol-metric decoding (SMD) [7] and achieves the rate
I(X;Y). A BICM decoder uses bit-metric decoding (BMD). Let Xl,b be a subset of
symbols from X whose label has value b in the l-th position:

Xl,b = {x ∈ X : [bX(x)]l = b} .

10 Chapter 1. Preliminaries

The metric for BMD is

PY |Bl(y|b) ∝
∑
x∈Xl,b

pY |X(y|x)PX(x) (1.20)

where l is the position of the bit in the symbol label, and Bl, l = 1, . . . , L, is a RV
corresponding to l-th bit-level (l-th bit in the label) of the symbol. In this case, the
achievable rate is [7]

L∑
l=1

I(Bl;Y). (1.21)

which is less than I(X;Y) in general. BMD simplifies the receiver (one binary channel
code, independent processing of the bits) at the cost of decreased achievable rate. The
rate difference between SMD and BMD is sometimes referred to as the BICM loss. We
remark that the SMD performance could be achieved by a system with binary channel
codes by using multi-level coding, see [8, 9].

1.2.3. Probabilistic Amplitude Shaping

Many communication systems, e.g., LTE, DVB-APSK, and WiMAX, use BICM and
BMD. Observe in Figure 1.2 that a uniform data sequence U will result in a uniform
distribution of the transmit symbols. Using uniformly distributed transmit symbols
results in a shaping loss of up to 1.53dB, as explained in Section 1.2.1.
Two solutions are currently proposed for 5G mobile systems to overcome the shaping

loss: geometric shaping (GS) (also referred to as non-uniform constellations [10]) and
probabilistically shaped coded modulation (PSCM).
GS transmits uniformly distributed symbols from a non-uniformly spaced constella-

tion, where the positions of the constellation points are altered to achieve a distribution
beneficial for a certain channel. For example, the Gaussian distribution for the AWGN
channel can be imitated by a constellation where the density of the points is higher
close to the origin. GS has been studied extensively, e.g., in [11, 12], and is part of the
ATSC 3.0 [13] and DVB-NGH [14] standards. The disadvantages of GS systems are
an inferior performance as compared to PSCM systems [15], that the optimal constella-
tion changes with Signal-to-Noise Ratio (SNR) which requires the receiver to implement
multiple symbol demappers, and a reduced effective number of bits (ENOB) for uniform
quantizers.
PSCM, on the other hand, transmits non-uniformly distributed symbols from a uniformly-

1.2. Communication Systems 11

DM b−1
A Channel

Encoder

Sys.

Par.

bA

bS

×

∆

U

l(U)=k

U2

l(U2)=k2

A

l(A)=n

BA

l(BA)=Ln

BA

BS [BS ,U2]

l(BS) + l(U2) = n

A

S

l(S) = n

∆X

Figure 1.3.: PAS transmitter.

spaced ASK (or QAM) constellation. The essential part of PSCM is to generate non-
uniformly distributed symbols from uniformly distributed input data bits. The problem
has been studied and different practical implementations of PSCM have been proposed
in the literature. A short review on the topic is available in [16, Sec. II].
Probabilistic Amplitude Shaping (PAS) [16] is a PSCM transmission scheme that has

been used for optical systems [17] and has been proposed for the 5G mobile system
[18]. PAS can be seen as a joint source-channel coding scheme where a source decoder,
called a distribution matcher (DM), is introduced before a systematic channel encoder
at the transmitter. Figure 1.3 presents a PAS transmitter. The receiver performs the
inverse operations by introducing a source encoder, called an inverse DM, after a channel
decoder. This brings a number of advantages. First, the channel input symbols can
approach the capacity-achieving distribution because the DM can transform uniformly
distributed bits of the input message into an arbitrary non-uniform distribution. Second,
by appropriate parametrization of the DM, the transmitter can adjust the transmission
rate without changing the parameters of the channel code [16]. Both of these aspects
are different from conventional coded modulation schemes, such as BICM, where the
rate matching is achieved by adjusting the modulation order or the parameters of the
channel code.
Consider the PAS transmitter in Figure 1.3. The transmitter operates as follows (we

ignore the dotted arrows for now):

1. A sequence U of k data bits enters the DM.

2. The DM outputs a sequence A of n amplitudes from the alphabet:

A = {1, 3, . . . , 2L+1 − 1}.

The sequence A should mimic a sequence of IID symbols distributed according to
some target distribution PA on A.

12 Chapter 1. Preliminaries

3. Each amplitude is mapped by a fixed mapping b−1
A to a binary label of dimension

L. This process produces a binary sequence BA of dimension Ln.

4. The sequence BA is encoded by a systematic channel encoder with rate R = L
L+1 ,

i.e., for each amplitude symbol, one parity bit is produced. The systematic bits
BA leave the channel encoder via the output denoted by Sys, and the parity bits
BS via the output Par. The parity bits BS are approximately IID Bernoulli-0.5
RVs [16].

5. The binary sequence BA is mapped back to the sequence A of amplitudes by the
mapping bA. The binary sequence BS of n parity bits is mapped to a sequence S
of n sign symbols via:

bS(z) =


−1, z = 1

+1, z = 0.
(1.22)

6. The sequences A and S of n amplitudes and signs, respectively, are multiplied
element-wise and scaled by ∆ to obtain transmit symbols. Given the distribution
of the bits BS, the transmitted symbols will have a distribution symmetric around
zero.

The described approach requires channel codes of rates R = L
L+1 . The scheme can

be modified to use channel codes with R ≥ L
L+1 . The modification is presented with

dotted arrows in Figure 1.3. First, observe that for coding rates R > L
L+1 the number

of parity bits in the sequence BS will be less than the number of transmitted symbols
n. The missing bits are generated from the data sequence U2, see the dotted arrows in
Figure 1.3. After encoding, the bits U2 are appended to the parity bits BS. The length
k2 of the sequence U2 is selected such that k2 + l(BS) = n. With this modification, the
number of generated sign symbols S matches the number of amplitudes A. In addition,
the bits in the sequence U2 are IID Bernoulli-0.5, like the parity bits BS, resulting in a
symmetric probability distribution of the transmit symbols.

1.3. Block-to-Block Distribution Matching

We consider a one-to-one block-to-block (b2b) distribution matcher (DM) which is a
bijective mapping fDM from binary data sequences u ∈ {0, 1}k to output sequences

1.3. Block-to-Block Distribution Matching 13

(codewords) c ∈ C ⊆ An, i.e., we have

fDM : {0, 1}k → C ⊆ An. (1.23)

The set C of codewords, i.e., the image of fDM, constitutes a codebook of a DM. The
ratio R = k

n
is called the matching rate. We assume that the binary input sequences

are uniformly distributed, i.e., the input to the DM is a random variable (RV) U with
probability mass function (PMF) PU (u) = 2−k for u ∈ {0, 1}k. The output Ã of a
DM is thus a RV which is uniformly distributed on C, that is, Ã = fDM(U) with PMF
PÃ(a) = 2−k for a ∈ C.
We want the output of the DM to approximate a sequence of independent and iden-

tically distributed (IID) symbols, each distributed according to some target probability
distribution PA onA. The accuracy of the approximation is usually measured by the nor-
malized Kullback–Leibler (KL) divergence1 of the probability distribution of the DM’s
output and the probability distribution of the IID sequence A ∼ P n

A:

1
n
D(PÃ‖P n

A) = 1
n

∑
c∈C

PÃ(c) log PÃ(c)
P n
A(c) = 1

n

∑
c∈C

1
|C|

log
1
|C|

P n
A(c) . (1.24)

The divergence can be minimized by judiciously choosing a codebook C.

Definition 1.1: Empirical output distribution of a DM
The empirical probability of a single symbol output by a DM is a PMF on A equal to
the ratio of the number of specific symbols in the codebook C and the total size of the
codebook C expressed in symbols, i.e., we have

PA,C(a) = 1
n|C|

∑
c∈C

na(c) (1.25)

where na(c) := |{i : ci = a}| is the number of occurrences of a symbol a in the codeword
c.

Using Definition 1.1 the divergence can be rewritten as

1
n
D(PÃ‖P n

A) =
∑
c∈C

PÃ(c) log PÃ(c)
P n
A,C(c)

P n
A,C(c)
P n
A(c) (1.26)

1Other metrics such as variational distance are sometimes used. The KL-divergence is interesting
because it gives a lower-bound for the transmission rates [19, Eq. 5].

14 Chapter 1. Preliminaries

= 1
n
D(PÃ‖P n

A,C) + 1
n

∑
c∈C

1
|C|

∑
a∈A

log
(
PA,C(a)
PA(a)

)na(c)

(1.27)

= 1
n
D(PÃ‖P n

A,C) +
∑
a∈A

∑
c∈C na(c)
n|C|

log PA,C(a)
PA(a) (1.28)

= 1
n
D(PÃ‖P n

A,C) + D(PA,C‖PA). (1.29)

By the non-negativity of divergence, a necessary condition for a DM to achieve low
normalized divergence is PA,C → PA, i.e., the empirical output distribution of a DM
must be close to the target PMF PA. Now, consider the first term in (1.29):

1
n
D(PÃ‖P n

A,C) = 1
n

∑
c∈C

1
|C|

log
1
|C|

P n
A,C(c)

= − 1
n

log |C|+
∑
c∈C

1
|C|

n∑
i=1

log 1
PA,C(ci)

= − 1
n

log |C|+
∑
a∈A

∑
c∈C na(c)
n|C|

log 1
PA,C(a)

= H (PA,C)−
log |C|
n

(1.30)

which gives
1
n
D(PÃ‖P n

A) = H(PA,C)−
log |C|
n

+ D(PA,C‖PA). (1.31)

Equation (1.30) suggests that for a given PA,C, larger codebooks, i.e., with greater |C|,
are preferred due to lower divergence. The problem of designing a b2b DM corresponds
to finding a function (1.23) for a given output length n and target distribution PA such
that the divergence (1.24) is minimized. In practice, we are interested in functions which
have low-complexity implementations.

1.3.1. Optimal Block-to-Block DM

Consider blocklength n and a target PMF PA. The optimal codebook minimizes the
divergence (1.24), which gives the following optimization problem [20]:

min
k

 min
C⊆An : |C|=2k

1
n

∑
c∈C

1
|C|

log
1
|C|

P n
A(c)

 = min
k

{
min

C⊆An : |C|=2k

∑
c∈C

log 1
P n
A(c)

}
. (1.32)

1.3. Block-to-Block Distribution Matching 15

The inner problem is solved by a codebook consisting of the 2k most likely codewords
according to PA. The outer minimization can be performed by a line search over k, e.g.,
around nH(PA).

2
Arithmetic Coding in Distribution
Matching

Arithmetic coding was invented as a lossless source coding scheme around 19601. The
idea is based on assigning intervals to source sequences according to a probability dis-
tribution of the source, and then transmitting an identifier of the interval (which can
be a binary representation of a fraction from the interval). The decoder determines the
interval from the identifier, and reconstructs the corresponding source sequence using
the probability model of the source. Arithmetic coding can be seen as a recursive ap-
plication of Shannon-Fano-Elias coding to a sequence of source symbols, and the idea
is commonly contributed to Elias [22–25]. According to [26, Sec. 1.2] however, Elias
denied inventing the method. The encoding and decoding algorithms are simple to de-
scribe, yet require infinite arithmetic precision. Various ideas and improvements for
a fixed precision implementation were developed in [22, 27–29]. A work of Witten et
al. [30] in 1987, which presents a low-complexity, integer-arithmetic implementation of
a multi-symbol arithmetic coder, contributed to the present popularity of the scheme.
Nowadays, arithmetic coding is used in many compression standards and algorithms,
e.g., JPEG [31], WebP [32], H.264 [33], H.265 [34].
In this chapter, we use arithmetic coding to build a block-to-block (b2b) distribution

matcher (DM). The idea of applying arithmetic coding for distribution matching ap-
peared in [35]. The b2b setup was studied in [23] (a binary alphabet implementation),

1The idea is first mentioned in a book on information theory by Abramson [21].

18 Chapter 2. Arithmetic Coding in Distribution Matching

and [36] (as a more general concept). For distribution matching, arithmetic coding is ap-
plied in reverse order, i.e., for encoding, an arithmetic decoder decompresses a uniformly
distributed data sequence into a sequence with a given probability distribution. For de-
coding, an arithmetic encoder compresses the shaped sequence to the data sequence.
Standard arithmetic coding can be decomposed into two main processes: estimation of
the source probability distribution, and coding the input sequence using the estimated
probability distribution. In the reverse setup, we also have separate processes: choosing
a probability model for the shaped sequences, and coding with the selected probabil-
ity model. As we shall see, choosing a suitable probability model is crucial for DM
performance in terms of the code rate, divergence, and complexity.

2.1. Infinite Precision Implementation

We present an infinite precision implementation of an arithmetic coding based distribu-
tion matcher (ACDM). ACDM implements an invertible mapping from binary2 input
sequences u of length k to non-binary sequences (codewords) c of length n from the al-
phabet A = {a1, . . . , am}, i.e., c ∈ An. We first describe how the mapping is performed
and later focus on making the mapping act as a ’good’ DM.

Each input data sequence ui, i= 1, . . . , 2k corresponds to a distinct point d(ui), i=
1, . . . , 2k from the interval [0, 1). On the other hand, each codeword c ∈ An corresponds
to a distinct subinterval I(c) (possibly of length 0) of the interval [0, 1). The subintervals
I(c), c ∈ An are chosen such that they partition the interval [0, 1), i.e., they are pairwise
disjoint and ⋃c∈An I(c) = [0, 1). At the encoder an input data sequence u is mapped
to a codeword c if the corresponding point d(u) lines inside the corresponding interval
I(c). At the decoder first an interval I(c) is determined based on the received codeword
c. Then, a point d(u) ∈ I(c) is found and decoded to the sequence u.

2Extensions to different input alphabet sizes are straight-forward.

2.1. Infinite Precision Implementation 19

Definition 2.1: Natural m-ary code number
Consider the alphabet A = {a1, . . . , am} and a sequence x ∈ An. The function NCm(·)
returns a natural m-ary code number corresponding to the sequence x, i.e.,

NCm(x) =
n∑
j=1

(id(xj)− 1)mn−j (2.1)

where the function id(·) returns the alphabet index of the symbol, i.e., id(ai) = i for
all i.

A binary input sequence u ∈ {0, 1}k is mapped to a point d(u) ∈ [0, 1) via

d(u) = NC2(u)
2k . (2.2)

The codeword’s intervals are ordered lexicographically in the [0, 1) interval, with the
first codeword’s symbol c1 being the most significant symbol. We consider the lexico-
graphical ordering of the output alphabet symbols a1 < a2 < . . . < am. That is, for
two codewords c1 ∈ An and c2 ∈ An, if NCm(c1) < NCm(c2), the I(c1) will be placed
in the interval [0, 1) below the I(c2). We describe each codeword interval I(c) by it’s
beginning x(c) and it’s width y(c), i.e., I(c) = [x(c), x(c) + y(c))3. An interval I(c)
for a codeword c = [c1, . . . , cn] can be computed recursively using a chosen probability
model PC on the codeword’s symbols. The model PC is usually specified in terms of the
conditional probabilities (also referred to as branching probabilities) of the next symbol
given the previous symbols, i.e., PCi+1|Ci1(·|s), where s is a sequence denoting a prefix of
the codeword. The conditional cumulative probability of a letter c ∈ A is defined as

FCi+1|Ci1(c|s) =
∑
a≤c

PCi+1|Ci1(a|s) (2.3)

where a ≤ c refers to lexicographical ordering of the alphabet’s symbols. Clearly, we have
FCi+1|Ci1(am|s) = 1 for any s. For notational convenience we also use FCi+1|Ci1(a0|s) = 0
since a0 /∈ A. The recursive computation of the codewords’ interval for all c ∈ An can
be performed by iteratively applying equations (2.5) and (2.6) for i = 0, . . . , n− 1 :

x(λ) = 0, y(λ) = 1 (2.4)
x(saj) = x(s) + y(s)FCi+1|Ci1(aj−1|s) for j = 1, . . . ,m, (2.5)

3An interval of length 0, i.e., I(c) = [x(c), x(c)), contains no points.

20 Chapter 2. Arithmetic Coding in Distribution Matching

y(saj) = y(s)PCi+1|Ci1(aj|s), for j = 1, . . . ,m (2.6)

where λ denotes an empty sequence, and saj denotes a concatenation of s and aj. Note
that, to compute x(c) and y(c) for a specific codeword c, one must compute x(s), y(s)
for all s ∈ {c1

1, c
2
1, . . . , c

n
1}, i.e., for all prefixes of the codeword c. This way, very

long codewords can be generated, since there is no need to construct and store the
encoding/decoding trees for the whole codebook. See Figure 2.1 or Algorithm 2.1 and
2.2 below for more details on the encoder and decoder implementations. The recursive
procedure (2.4)–(2.6) gives

x(c) =
∑

c′∈An:c′<c
PC(c′) (2.7)

y(c) =
n−1∏
i=0

PCi+1|Ci1(ci+1|ci1) = PC(c) (2.8)

where c′ < c refers to the lexicographical ordering of the codewords (with the first
symbol c1 being the most significant symbol).

A one-to-one mapping between data sequences and codewords can be established
if each datapoint d(ui), i = 1, . . . , 2k, belongs to some interval and if each interval
I(c), c ∈ An, contains at most one point d(u). The first condition follows because
the intervals I(c), c ∈ An, partition the unit interval. The second condition can be
guaranteed by letting the distance between two adjacent points be greater than the
largest interval, i.e.,

1
2k ≥ max

c∈An
|I(c)| = max

c∈An
|y(c)| = max

c∈An
|PC(c)|. (2.9)

We are interested in maximizing k (since larger codebooks lead to lower divergence as
in (1.31)), and thus we often choose

k = −blog2(max
c∈An

|I(c)|)c. (2.10)

See Figure 2.1(b) for an example.

2.1. Infinite Precision Implementation 21

x(λ)0
i = 0

1

x(0)0
i = 1

x(1).6

1

x(00)0
i = 2

x(01).36

x(10).6

x(11).84

1

x(000)0
i = 3

x(001).216

x(010).36

x(011).504

x(100).6

x(101).744

x(110).84

x(111).936

1

(a) Codewords’ intervals.

d(00)0

d(01).25

d(10).5

d(11).75

1

x(000)0

x(001).216

x(010).36

x(011).504

x(100).6

x(101).744

x(110).84

x(111).936

1

(b) Resulting mapping.

Figure 2.1.: Computing the codeword intervals for A = {0, 1}, n = 3, and the model
PCi+1|Ci1(0|s) = 0.6 for any s, and the resulting mapping between input
sequences and codewords. The length k of the input sequence satisfies k ≤
− log2(maxc∈An |y(c)|) = − log2 0.216.

Definition 2.2: Model Codebook and Implementation Codebook
For arithmetic coding based DMs only a subset of the codewords with non-zero prob-
ability (according to PC) will be used. Thus, we define the model codebook as the
support of the model PC used by a DM, i.e,

CM = {a ∈ An : PC(a) > 0}, (2.11)

and the implementation codebook as the set of codewords that are used by the DM, i.e.,

CI = {a ∈ An : ∃u∈{0,1}k a = fDM(u)}. (2.12)

It follows that CI ⊆ CM since the codewords outside CM have intervals of zero length.
The output Ã of a DM is a RV uniformly distributed on CI , thus the discussion in
Chapter 1 implicitly considers the implementation codebook.

22 Chapter 2. Arithmetic Coding in Distribution Matching

Algorithm 2.1 ACDM Encoding. The encoder operates by recursively dividing the
current interval and locating the subinterval which contains the point d(u). Lines 3–6
find the subinterval of the current interval I(s) = [x(s), x(s) + y(s)) where the point
d(u) lies. The subinterval is associated with the alphabet symbol aj, which is later
appended to s.
Input: binary sequence u = [u1, · · · , uk]
Output: codeword c = [c1, · · · , cn] such that d(u) ∈ I(c)
1: s← λ, x(λ)← 0, y(λ)← 1
2: for i = 0 to n− 1 do
3: j ← 1
4: while d(u) < x(s) + y(s)FCi+1|Ci1(aj|s) do
5: j ← j + 1
6: end while
7: x(saj)← x(s) + y(s)FCi+1|Ci1(aj|s)
8: y(saj)← y(s)PCi+1|Ci1(aj|s)
9: s← saj
10: end for
11: return s

Algorithm 2.2 ACDM Decoding. The decoder operates by recursively dividing the
current interval and selecting the next interval according to the received codewords’
symbols. Finally, a fraction of the form d = nd

2k needs to be located in the final interval.
For properly chosen k, d ≥ x(s) > d − 1

2k =⇒ nd = dx(s)2ke. Next, the inverse
mapping NC−1

2 is used to convert the fraction numerator nd to a binary sequence u.
Input: codeword c = [c1, · · · , cn]
Output: binary sequence u = [u1, · · · , uk] such that d(u) ∈ I(c)
1: s← λ, x(λ)← 0, y(λ)← 1
2: for i = 0 to n− 1 do
3: x(sci+1)← x(s) + y(s)

(
FCi+1|Ci1(ci+1|s)− PCi+1|Ci1(ci+1|s)

)
4: y(sci)← y(s)PCi+1|Ci1(ci+1|s)
5: s← sci+1
6: end for
7: nd ← dx(s)2ke
8: u← NC−1

2 (nd)
9: return u

2.2. Finite Precision Implementation 23

2.2. Finite Precision Implementation

The ideas presented in Section 2.1 must be adapted for practical applications. For in-
stance, y(s) in (2.6) decreases with each processed symbol which can lead to numerical
underflow with a fixed precision. There has been extensive research on efficient imple-
mentations of arithmetic coding. Here we briefly present the low-complexity integer-
arithmetic implementation from [23,37]. The implementation has time complexity O(n)
and can process very long sequences using fixed precision arithmetic, e.g., using 32-bit
integers. The details of the implementation show that ACDM implements a one-to-one
mapping (including possible rounding errors).
We start by introducing an integer representation F̂C for the cumulative model FC

from (2.3):
F̂Ci+1|Ci1(c|s) =

⌊
ΘFCi+1|Ci1(c|s) + 1

2

⌋
(2.13)

with F̂Ci+1|Ci1(a0|s) = 0, since a0 /∈ A. The model P̂C is defined as

P̂Ci+1|Ci1(aj|s) = F̂Ci+1|Ci1(aj|s)− F̂Ci+1|Ci1(aj−1|s). (2.14)

Θ is a scaling factor used for the integer representation. It effectively converts the
probability models PC , FC into frequency-counts models P̂C , F̂C per Θ symbols. Next,
we represent the subsequent intervals appearing in (2.4)–(2.6) by three integer numbers
x̂(s), ŷ(s), and L(s). The start x(s) and width y(s) of the interval will be represented
as binary fractions with L(s) + w bits (w is a fixed parameter described below):

x(s) = x̂(s)
2L(s)+w , (2.15)

y(s) = ŷ(s)
2L(s)+w . (2.16)

The recursive formulas for computing the values x̂(s), ŷ(s), and L(s) are

x̂(λ) = 0, ŷ(λ) = 2w, L(λ) = 0, (2.17)

x̂(saj) =
x̂(s) +

 ŷ(s)F̂Ci+1|Ci1(aj−1|s)
Θ + 1

2

 2v (2.18)

ŷ(saj) =
 ŷ(s)F̂Ci+1|Ci1(aj|s)

Θ + 1
2

−
 ŷ(s)F̂Ci+1|Ci1(aj−1|s)

Θ + 1
2

 2v (2.19)

L(saj) = L(s) + v, (2.20)

24 Chapter 2. Arithmetic Coding in Distribution Matching

where v is chosen such that4

2w ≤ ŷ(saj) < 2w+1. (2.21)

The parameter w+1 represents the number of bits used to represent the mantissa ŷ(saj)
of the current interval width y(saj). The scaling by 2v in (2.18) and (2.19) guarantees
that the mantissa ŷ(saj) is at least 2w. This provides sufficient precision for further
subdivisions in (2.18) and (2.19) for the next symbols. Note that (2.17)–(2.19) round
the interval boundaries rather than the width. The interval width (2.19) is simply a
difference between two boundaries. This ensures that the original interval is partitioned
during each step. Thus, the codewords intervals I(c), c ∈ An partition the starting
unit interval. We want to avoid having the intervals disappear due to the rounding
operations, i.e., we require

P̂Ci+1|Ci1(aj|s) > 0 =⇒ ŷ(saj) > 0

which will be the case if ŷ(saj)
Θ ≥ 1, which in turn can be guaranteed by choosing

2w ≥ Θ. (2.22)

As in the infinite precision case (2.9), to guarantee error-free decoding, we require

y(c) = ŷ(c)
2L(c)+w ≤

1
2k , ∀c ∈ A

n. (2.23)

Jones [37] suggests using the following mapping d : {0, 1}k → [0, 1)

d(u) = 2w∑k
i=1 2k−iui +∑w−1

i=0 2i
2k+w (2.24)

which corresponds to appending w implicit ones to the fraction NC2(u)
2k . This way the

first k digits of x̂(c) are the same as the digits of u, if5 d(u) ∈ I(c). Accordingly,
the decoding corresponds to finding the first k digits of x̂(c) given the codeword c.
The encoding corresponds to finding an interval that contains the point d(u) and for
which x̂(c) starts with u. Both processes can thus be performed in steps, e.g., bit by
bit, without processing a large number of bits at once; see below for more details. The

4If P̂Ci+1|Ci
1
(aj |s) = 0 for certain s, aj , then we may have ŷ(saj) = 0 and a v satisfying (2.21) can not

be found. This does not lead to problems as the encoder will not produce codewords with the prefix
saj , so further subdivisions are not needed.

5By contradiction, we have (d(u) ∈ I(c) ∧ [x̂(c)]k1 6= u) =⇒ y(c) > 1
2k .

2.2. Finite Precision Implementation 25

spacing between the points (2.24) is 2−k which, together with (2.23) and the fact that the
intervals I(c), c ∈ An, partition the unit interval, guarantees that ACDM implements a
one-to-one6 mapping between data sequences u ∈ {0, 1}k and codewords c ∈ CI ⊆ An.
The described scheme can be applied to encode and decode arbitrarily long sequences

because of two properties. The first property is that one computes x̂(s), ŷ(s), L(s) only
for s ∈ {c1

1, c
2
1, . . . , c

n
1} when encoding/decoding a codeword c. The second property is

a smart arrangement of the computations in (2.17)–(2.19), where x̂(s), ŷ(s), L(s) can
be evaluated using fixed precision arithmetic. The first property originates from the
arithmetic coding approach. Below we focus on the second property.
First, to represent the value of y(s) we must store the value of ŷ(s), which requires

(w + 1) bits, and the value of L(s). The value of y(s) decreases as consecutive symbols
are processed since ŷ(s) is bounded and the value of L(s) increases, see (2.19)–(2.21).
Thus, the binary representation of y(s) will consist of (L(s)−1) zeros followed by (w+1)
bits from ŷ(s), see (2.25). On the other hand, the value x(s) increases as consecutive
symbols are processed and requires (L(s)+w) bits to be represented in general. However,
the representation can be arranged such that only the w + 1 least significant bits enter
the calculations. The binary representation of x(s) can be divided into four parts, see
(2.26). Starting from right to left we have:

1. the working end — the w+1 least significant bits which are the only bits effectively
participating in the computation (2.18);

2. a run of 1’s of length r, possibly r = 0;

3. the next bit equal to 0, but it may be changed when there is a carry from the
working which will propagate over the run of 1’s;

4. the decided bits which can not change in the encoding process.

y(s) = 0.
L(s)−1 leading 0’s

000 . 0000
ŷ(s)

1XXX (2.25)
x(s) = 0. XXX

decided bits
Z
↑

next
bit

11 1
runs of 1’s

XXXX
working end
(w + 1 bits)

(2.26)

6The partitioning guarantees that each point is in some interval. The spacing and (2.23) guarantee
that there is at most one point in an interval.

26 Chapter 2. Arithmetic Coding in Distribution Matching

Such an arrangement of the bits in x(s) is possible since according to (2.15) and (2.17)–
(2.21), x(s) can only increase, and at most by y(s). Such increase can result in a carry
from the working end, which can propagate forward until the first occurrence of a 0 bit.
The remaining bits are immune to changes. Thus, when implementing the line (2.18)
we must keep track of the four parts of x(s), perform the addition with the working end
of x(s) and the working end of y(s), and update the other parts of x(s) according to
the addition result.
The storage of x(s) thus requires w + 1 bits7 for the working end, dlog2 re bits for

the length r, and dlog2 L(s)e bits for L(s). The values of r and L(s) can grow without
bound, however, this does not lead to limitations in practice.

2.2.1. Bounding the Discrepancy

The described finite-precision scheme implements a one-to-one mapping given that (2.23)
is satisfied and the codeword intervals partition the unit interval. The latter condition
is inherently satisfied by the rounding of the interval boundaries in (2.18) rather than
rounding the intervals’ lengths. The finite-precision condition (2.23) does not follow
from the infinite-precision condition (2.9). This is because the intervals computed by
the finite precision implementation are approximations of the infinite-precision intervals.
The discrepancy is due to the model rounding (2.13)–(2.14) and the rounding operations
during the computation of (2.17)–(2.19). To assess the finite-precision condition (2.23)
we must bound the rounding error. From (2.19) we have

ŷ(saj)
2v =

 ŷ(s)F̂Ci+1|Ci1(aj|s)
Θ + 1

2

−
 ŷ(s)F̂Ci+1|Ci1(aj−1|s)

Θ + 1
2

 (2.27)

≤
ŷ(s)

(
F̂Ci+1|Ci1(aj|s)− F̂Ci+1|Ci1(aj−1|s)

)
Θ + 1 (2.28)

=
ŷ(s)P̂Ci+1|Ci1(aj|s)

Θ + 1 (2.29)

where the second line follows by x − 1 < bxc ≤ x. Dividing both sides by 2L(s)+w and
using (2.16) we get

y(saj) ≤ y(s)
P̂Ci+1|Ci1(aj|s)

Θ + 2−L(s)−w (2.30)

7For implementation it is convenient to add one extra bit to store the possible carry. E.g., for a 32 bit
machine it is convenient to choose w = 30.

2.2. Finite Precision Implementation 27

125 130 135 140 145 150

100

102

104

106

108

1010

kUB = 123

k

N
u
m
b
er

of
sa
m
p
le
s

Figure 2.2.: Histogram of the Monte-Carlo samples of the right-hand-side of (2.37) for a
DM from Section 2.4.1 with w = 14.

≤ y(s)
(
PCi+1|Ci1(aj|s) + ε

)
+ 2−L(s)−w (2.31)

≤ y(s)
(
PCi+1|Ci1(aj|s) + ε+ 2−w

)
(2.32)

= y(s)PCi+1|Ci1(aj|s)
(

1 + ε+ 2−w
PCi+1|Ci1(aj|s)

)
(2.33)

where in the second line we introduced ε to denote the maximal absolute error between
the infinite precision model PCi+1|Ci1 and the rounded model 1

Θ P̂Ci+1|Ci1 , e.g., ε = 1
2Θ

if rounding is used. The third line follows because y(s) ≥ 2−L(s), see (2.25). Finally,
the length of the interval can be bounded by applying (2.33) for all codeword’s symbols
consecutively

y(c) ≤ PC(c)
n−1∏
i=0

(
1 + ε+ 2−w

PCi+1|Ci1(ci+1|ci1)

)
(2.34)

which results in the bound (2.23) on the input length becoming

k ≤ − log2

(
max
c∈An

PC(c)
n−1∏
i=0

(
1 + ε+ 2−w

PCi+1|Ci1(ci+1|ci1)

))
. (2.35)

Inequality (2.35) connects the k obtained with the fixed-precision and the infinite-
precision implementations. Inequality (2.34) shows that the base intervals can dilate
due to the model approximation and rounding operations. This will effectively reduce
the input sequence length k. Using higher precision arithmetic, i.e., larger w and Θ, re-
sults in lower dilatation. We emphasize the importance of (2.35), since checking directly
if an ACDM algorithm is one-to-one is not feasible for large values of k.

28 Chapter 2. Arithmetic Coding in Distribution Matching

Remark 2.1: Almost one-to-one ACDM for practical applications
The bound (2.35) guarantees that the ACDM is one-to-one. The resulting choice of k
may be too strict since the bound assumes worst-case rounding on each encoding step,
see (2.29). In practice, the rounding operations performed on each encoding/decoding
step may expand or compress the interval. To obtain higher values of k which guarantee
correct decoding with high-probability one may resort to a Monte-Carlo-based choice
of k. That is, the condition (2.23) can be written as

k ≤ log2

(
2L(c)+w

)
− log2 (ŷ(c)) ∀c ∈ An (2.36)

which is satisfied if
k ≤ L(c)− 1 ∀c ∈ An (2.37)

since we have ŷ(c) < 2w+1 from (2.21). To approximate k satisfying the condition
(2.37) we can apply the encoder for N randomly generated input sequences and keep
track of the lowest obtained value L(c). Note that using too long input sequences will
not cause the encoder to fail. This approach results in larger values of k than the upper
bound approach (2.35), but does not guarantee a one-to-one DM. However, our results
confirm that the decoding error is negligibly small for large values of N , see Example
2.1. The Monte-Carlo approach is also useful for probability models for which it is
difficult to compute the right-hand-side of (2.35).

2.3. Constant-Composition Distribution Matcher 29

Example 2.1: Almost one-to-one ACDM for practical applications
For a DM from Section 2.4.1 we compare the input sequence length kUB obtained from
the right-hand-side of (2.35) versus the values obtained via Monte-Carlo simulation as
explained in Remark 2.1. We encode N = 1010 randomly generated input sequences
{ui}Ni=1 and keep track of the obtained values

ki = L(ci)− 1 = L(fDM(ui))− 1 for i = 1, . . . , N.

The histogram of the values {ki}Ni=1 is presented in Figure 2.2. Next, we choose

kMC = min {ki}Ni=1 = 142.

Note that this kMC guarantees that all sequences {ui}Ni=1 can be properly encoded and
decoded, since each interval I(ci) is shorter than 2−kMC , i.e., we have

y(ci) <
2w+1

2L(ci)+w
= 2−ki ≤ 2−kMC

where the first inequality follows by (2.16) and (2.21). We can also expect low error
probability for the input sequences not included in the set {ui}Ni=1. In Figure 2.2, we
also mark the value kUB obtained by finding the maximizer of the bound (2.35). The
value kMC is much larger than the conservative choice kUB for the tested DM and works
well in practice, i.e., has low-error probability.

2.3. Constant-Composition Distribution Matcher

We have seen in Section 2.1 that choosing the probability model on the output sequences
PC determines the ACDM. Indeed PC implies all conditional (branching) probabilities
used by the encoder and decoder and the maximal input length k. See Algorithms 2.1
and 2.2. Specifying PC for all c ∈ An is prohibitively complex, and therefore some
simplifications are needed. It turns out that for certain probability models PC , the
branching probabilities admit simple formulas which can be computed on-the-fly. This
is the idea behind the Constant-Composition Distribution Matcher (CCDM) [36].

30 Chapter 2. Arithmetic Coding in Distribution Matching

101 102 103
0.8

1

1.2

1.4

1.6

1.8

n

k
/
n

H(PA)

CCDM w = 30

CCDM w = 6

IID ACDM

(a) Matching rate.

101 102 103

10−2

10−1

100

n
1 n
D
(P

Ã
‖P

n A
)

CCDM w = 30

CCDM w = 6

IID ACDM

(b) Normalized divergence.

Figure 2.3.: Matching rate and normalized divergence for CCDM with the target PMF
PA = [0.538, 0.322, 0.115, 0.025] and precision parameter w ∈ {6, 30}. IID
ACDM corresponds to the ACDM from Example 2.2 and using an IID model
for the branching probabilites.

The empirical distribution of a codeword c ∈ An is defined as

PA,c(a) = na(c)
n

(2.38)

where na(c) = |{i : ci = a}| is the number of occurrences of the symbol a in the codeword
c, see Definition 1.1 The distribution PA,c is also called the type of c. For any sequence
c we define a vector containing the numbers of occurrences in c of each of the symbols
from the alphabet A:

γ(c) = [na1(c), . . . , nam(c)]. (2.39)

The vector γ(c) is called the composition of c. Assume some n-type8 QA and the
corresponding composition γQ, i.e., γQ = [nQA(a1), . . . , nQA(am)]. The set of length n
sequences of type QA is denoted by T nQA , and the set of the sequences of composition γQ
is denoted by TγQ . We have

T nQA = {c ∈ An : PĀ,c = QA} = {c ∈ An : γ(c) = γQ} = TγQ . (2.40)

8A PMF with probabilities that are multiples of 1
n .

2.3. Constant-Composition Distribution Matcher 31

The size of the set TγQ is

|TγQ | =
n!∏m

j=1 [γQ]j!
(2.41)

where the brackets emphasize that [γQ]j is the j-th entry of the vector γQ.

The CCDM chooses the following model for arithmetic coding

PC(c) =


1

|T nQA |
, if c ∈ T nQA

0, otherwise
(2.42)

for some chosen n-type QA. The n-type QA (and the model codebook CM = T nQA)
is generally chosen to minimize the divergence (1.24). The equisized intervals, i.e.,
equiprobable codewords, are selected to maximize the input length k according to (2.9).
Let the corresponding composition be γQ = [na1 , . . . , nam]. It is easy to check that the
branching probabilities are

PCi+1|Ci1(aj|s) =
PCi+1

1
(saj)

PCi1(s) =
∑
c∈An : ci+1

1 =saj PC(c)∑
c∈An : ci1=s PC(c) =

∑
c∈TγQ : ci+1

1 =saj 1∑
c∈TγQ : ci1=s 1 (2.43)

=
|TγQ−γ(saj)|
|TγQ−γ(s)|

=
(n−(i+1))!∏

k=1,...,m[γQ−γ(saj)]
k
!

(n−i)!∏
k=1,...,m[γQ−γ(s)]

k
!

=

[γQ−γ(s)]
j
!

[γQ−γ(saj)]
j
!

n− i
(2.44)

=
[γQ − γ(s)]j

n− i
=
naj − naj(s)

n− i
, for aj ∈ A. (2.45)

One can interpret the second line as follows. Starting from the denominator: since
the prefix s of the codeword was already generated, the remaining suffix must have
a composition (γQ − γ(s)). Thus, there are |TγQ−γ(s)| equiprobable suffixes. For the
numerator, if the first symbol of the suffix is aj, then the remaining part of the suffix
has the composition (γQ − γ(saj)). There are |TγQ−γ(saj)| such remaining parts of the
suffix. The probability of the next symbol being aj is thus a ratio of the mentioned
terms. The probabilities (2.45) depend only on the composition of the current prefix s
and can be easily computed in each encoding/decoding step. This allows for efficient
implementation of the CCDM.

Note that the model (2.42) is approximated by the CCDM. By applying the algorithm
from Section 2.1 or 2.2, at most 2k, k = blog2 |T nQA|c, codewords from T nQA will be used
by the CCDM. The selection is done implicitly by the arithmetic coding algorithm.

32 Chapter 2. Arithmetic Coding in Distribution Matching

The CCDM is asymptotically optimal [36], as shown below.

Remark 2.2: Properties of the CCDM [36]
1. Suppose CCDM uses the n-type QA. The matching rate R = k

n
of the CCDM

satisfies
lim
n→∞

R = H(QA). (2.46)

2. Consider an arbitrary target distribution PA on the output alphabet A, and a
CCDM that chooses the n-type QA

QA = argmin
Q′A

D (Q′A‖PA) s.t. Q′A is n-type. (2.47)

Then we have
lim
n→∞

1
n
D(PÃ‖P n

A) = 0. (2.48)

Example 2.2: ACDM with an IDD Model
Consider a DM with output length n and a target PMF PA. As an alternative to the
CCDM we consider an ACDM with an IID model as follows

PCi+1|Ci1(aj|s) = PA(aj). (2.49)

We observe in Figure 2.4 that the empirical output distribution (Definition 1.1) for
such a DM approaches the target PMF PA. Consider now the infinite precision imple-
mentation of such DM. The largest codeword interval has length

(PA(a∗))n for a∗ = argmax
a∈A

PA(a)

which leads to reduced matching rate (smaller implementation codebook) as compared
to the CCDM. For the IID ACDM we have k

n
≤ − log2 PA(a∗), and for the CCDM we

have k
n
≤ H(PA). The reduced matching rate increases the normalized divergence via

(1.31). The results for the IID model are also presented in Figure 2.3. The IID ACDM
shows poor performance in terms of the normalized divergence despite matching the
empirical output distribution very well.

2.3. Constant-Composition Distribution Matcher 33

101 102 103

10−7

10−5

10−3

10−1

n

D
(P

A
,C
||P

A
)

IID ACDM

Figure 2.4.: Divergence of the empirical output distribution of the IID ACDM and the
target PMF PA. The plot corresponds to the the plots in Figure 2.3.

2.3.1. Practical Implementation

The CCDM can be implemented using the finite-precision arithmetic implementation
presented in Section 2.2. The CCDM’s conditional probabilities (2.45) can be represented
exactly by choosing Θ = n−i in (2.13), i.e., Θ is decremented after each encoded symbol.
This way the rounding is avoided and the interval length can be bounded by (2.34) with
ε = 0, i.e., we have

y(c) ≤ PC(c)
n−1∏
i=0

(
1 + 2−w

PCi+1|Ci1(ci+1|ci1)

)
(2.50)

which results in a bound on the input length:

k ≤ − log2

(
max
c∈An

PC(c)
n−1∏
i=0

(
1 + 2−w

PCi+1|Ci1(ci+1|ci1)

))
(2.51)

= log2 |Tγ | −max
c∈Tγ

n−1∑
i=0

log2

(
1 + 2−w

PCi+1|Ci1(ci+1|ci1)

)
(2.52)

= log2 |Tγ | −∆k. (2.53)

In (2.53) we introduced ∆k to denote the input length loss due to finite-precision imple-
mentation of the CCDM and γ is the composition used by the CCDM. ∆k denotes the
input length loss before the rounding, i.e., k will differ from log2 |Tγ | by more than ∆k
in general because k is an integer. In fact, the optimizer of the above expression can be

34 Chapter 2. Arithmetic Coding in Distribution Matching

found analytically for the CCDM, see Theorem 2.1. This theorem simplifies the choice of
k when implementing the CCDM in finite-precision arithmetic and allows to implement
one-to-one CCDMs even for large values of k. The input length loss for different values
of w is presented in Table 2.1 and in Example 2.3.

n 10 30 100 300 1000 3000
w = 6 0.64 3.1 13.3 46.7 168.9 522.1
w = 30 4.0e−8 2.1e−7 9.8e−7 4.0e−6 1.7e−5 6.2e−5

Table 2.1.: Input length loss ∆k due to finite-precision implementation of the CCDM
and for target PMF PA = [0.538, 0.322, 0.115, 0.025]. ∆k corresponds to the
CCDM plots in Figure 2.3.

Theorem 2.1: The worst-case sequence for CCDM implementation
Consider a CCDM using the composition γ = [na1 , . . . , nam] with na1 ≤ na2 ≤ . . . ≤
nam . A sequence

z = [a1 . . . a1︸ ︷︷ ︸
na1

a2 . . . a2︸ ︷︷ ︸
na2

. . . am . . . am︸ ︷︷ ︸
nam

], (2.54)

has the largest upper bound (2.34) on the interval length among all sequences in Tγ ,
or equivalently, determines the loss

∆k = max
c∈Tγ

n−1∑
i=0

log2

(
1 + 2−w

PCi+1|Ci1(ci+1|ci1)

)
. (2.55)

Proof. See Appendix A.

Example 2.3: Optimal Codes
In [23, Sec. III], T. Ramabadran considers binary CCDMs with composition γ = [n2 ,

n
2].

The optimal codes (with k = blog2

(
n
n/2

)
c) can be constructed by the CCDM when

∆k < 1. nMAX denotes the maximum length for which ∆k < 1. By bounding, [23]
obtains nMAX ≈ 2390 for w = 14. By using Theorem 2.1 we obtain a tighter bound,
i.e., nMAX ≈ 4440 for w = 14, see Figure 2.5. To verify the result, we build a CCDM
with γ = [1600, 1600], k = 3193, and test the encoding and decoding for 1010 different
input sequences.

2.3. Constant-Composition Distribution Matcher 35

101 102 103 104

10−3

10−2

10−1

100

n

∆
k

CCDM

Figure 2.5.: ∆k for binary CCDM with composition γ = [n2 ,
n
2] and w = 14 obtained by

Theorem 2.1

Corollary 2.1: One-to-one, finite-precision CCDM is not asymptotically op-
timal

[36] considers infinite-precision ACDM to implement a one-to-one CCDM. Such a DM
is asymptotically optimal, as mentioned in Remark 2.2. We now consider a finite-
precision implementation of a one-to-one CCDM as described in Section 2.2 and above.
It turns out that the finite-precision rate-loss ∆k prevents the asymptotic optimality
of the CCDM. Consider a CCDM with the finite-precision parameter w.

1. Suppose CCDM uses the n-type QA. The matching rate R = k
n
of the CCDM

satisfies
lim
n→∞

R < H(QA)− log2

(
1 + 2−w

)
. (2.56)

2. Consider an arbitrary target distribution PA on the output alphabet A, and a
CCDM that chooses an arbitrary n-type QA. Then we have

lim
n→∞

1
n
D(PÃ‖P n

A) > log2

(
1 + 2−w

)
. (2.57)

The bounds are not tight and suffice only to show that the finite-precision implementa-
tion is not asymptotically optimal. Tighter bounds can be obtained by evaluating ∆k
from Theorem 2.1. Figure 2.3 demonstrates the non-optimality of the finite-precision
CCDM by using a rather low value w = 6 (a convenient value for an implementation
on a machine with 8-bit arithmetic).

36 Chapter 2. Arithmetic Coding in Distribution Matching

Proof. From (2.53) we have

R = k

n
≤ 1
n

log2 |Tγ | −
∆k
n

(2.58)

< H(QA)−max
c∈Tγ

1
n

n−1∑
i=0

log2

(
1 + 2−w 1

PCi+1|Ci1(ci+1|ci1)

)
(2.59)

< H(QA)− log2

(
1 + 2−w

)
(2.60)

where γ is the corresponding composition. The first inequality follows by the first
property of the infinite-precision CCDM from Remark 2.2 and the definition of the
finite-precision loss ∆k in (2.53). The second lines follows by bounding the conditional
probabilities by one.

Next, using the divergence representation (1.31) for the CCDM with the n-type QA,
we have

1
n
D(PÃ‖P n

A) = H(QA)− k

n
+ D(QA||PA) (2.61)

> log2

(
1 + 2−w

)
+ D(QA||PA) (2.62)

> log2

(
1 + 2−w

)
(2.63)

where the second line follows from (2.60).

2.4. Multi-Composition Distribution Matcher

The CCDM is asymptotically optimal (with an infinite-precision implementation) and
has a low-complexity implementation. However, the performance for small values of n
can be improved, e.g., see Figure 2.3. Equation (1.31) implies that lower divergence (and
larger matching rate) can be achieved by using larger codebooks. This idea motivates
Multi-Composition Distribution Matcher (MCDM), that uses more general models PC
to include codewords with different compositions in the implementation codebook. In
this section we present a MCDM which applies a probability model motivated by the
approach from [38]. There a weight function is introduced to assign a weight to each of
the symbols in the alphabet. Later, only the 2k sequences with the lowest weights are
used as codewords.

2.4. Multi-Composition Distribution Matcher 37

2.4.1. Weight-Constrained Codebook

Consider the output length n, the target PMF PA, and the input length k. We compute
(1.24) as

1
n
D(PÃ‖P n

A) = 1
n

∑
c∈CI

1
|CI |

log |C
I |−1

P n
A(c) (2.64)

= −k
n

+ 1
n2k

∑
c∈CI

n∑
i=1

(− logPA(ci)). (2.65)

The divergence can be minimized by choosing the 2k codewords c with the lowest metric∑n
i=1(− logPA(ci)). The metric is a sum of per-symbol metrics, thus we can assign a

weight function
w(a) = − logPA(a) for a ∈ A (2.66)

and define the weight of a sequence as

w(c) =
n∑
i=1

w(ci).

The optimal implementation codebook CIopt consists of the 2k codewords with lowest
total weight:

CIopt = argmin
C⊆An : |C|=2k

∑
cn∈C

w(c). (2.67)

The idea of using such a weight function for distribution matching was first presented
in [38] and was combined with shell mapping [39]. Here, we apply the weight function
approach to arithmetic coding based DM. In practice we need to restrict the weights to
non-negative integers, i.e., the weight function we use is an approximation of (2.66)

w : A → N+
0 (2.68)

and the weight of the codeword c is

w(c) =
n∑
i=1

w(ci). (2.69)

The codebook C̃Iopt containing the 2k codewords with the lowest integer weight (2.69)
is thus an approximation of the optimal codebook (2.67). The mismatch is the result

38 Chapter 2. Arithmetic Coding in Distribution Matching

of (2.68) being an approximation9 of (2.66) and is zero for certain target PMFs, e.g.,
a binary distribution or a Maxwell-Boltzmann distribution. We denote a superset that
contains C̃Iopt by

T nW0 = {c ∈ An : w(c) ≤ W0} (2.70)

where W0 is chosen such that |T nW0| ≥ 2k. Our MCDM approximates a DM with the
model codebook CM = T nW0 by choosing the model

PC(c) =


1
|T nW0

| , if c ∈ T nW0

0, otherwise.
(2.71)

The conditional probabilities for encoding/decoding are

PCi+1|Ci1(aj|s) =
PCi+1

1
(saj)

PCi1(s) =
∑
c∈An : ci+1

1 =saj PC(c)∑
c∈An : ci1=s PC(c) =

∑
c∈T nW0

: ci+1
1 =saj 1∑

c∈T nW0
: ci1=s 1 (2.72)

=
|T n−(i+1)
W0−w(s)−w(aj)|
|T n−iW0−w(s)|

, for aj ∈ A. (2.73)

One can interpret the second line as follows. Starting from the denominator: since the
prefix s of the codeword was already generated, the remaining suffix must have weight
W0 − w(s) and length n − i. Thus, there are |T n−iW0−w(s)| equiprobable suffixes. For the
numerator, if the first symbol of the suffix is aj, then the remaining part of the suffix
must have weight W0 − w(s) − w(aj) and length n − i − 1. There are |T n−(i+1)

W0−w(s)−w(aj)|
such remaining parts of the suffix. The probability of the next symbol being aj is thus
a ratio of the mentioned terms.
Note that the conditional probability depends only on the weight w(s) of the prefix,

the length i of the prefix, and the symbol aj. Thus, there are at most W0n|A| branching
probabilities which can be stored in memory10.
To find (2.73) it remains to compute the values |T iw|, i ≤ n,w ≤ W0. We use dynamic

9The mismatch can be reduced by approximating the scaled metric α(− logPA(a)), where α > 1.
The greater the α, the lower the integer rounding error. Note that the set of the 2k codewords
with the smallest metric is not changed by the metric scaling. However larger weights increase the
complexity of the Shell Mapping Distribution Matcher(SMDM) [38] or MCDM. Note that shifting
the weights, i.e., using w′(a) = w(a) + b instead of w(a), does not change the set of the 2k lowest
weight codewords, but can reduce the weights and the complexity of the SMDM and MCDM. An
algorithm for choosing the weights for given target PMF is presented in [38].

10W0 is at most linear in n since W0 ≤ maxa∈A nw(a). Thus, the memory requirements scale at most
as n2, which is often feasible.

2.4. Multi-Composition Distribution Matcher 39

101 102 103

0.8

1

1.2

1.4

1.6

n

k
/n

H(PA)

MCDM

CCDM

(a) Matching rate.

101 102 103
10−3

10−2

10−1

100

n

1 n
D
(P

Ã
‖P

n A
)

CCDM

MCDM

(b) Normalized divergence.

Figure 2.6.: Matching rate and normalized divergence for MCDM and CCDM with the
target PMF PA = [0.538, 0.322, 0.115, 0.025].

programming [40] starting with |T 0
0 | = 1, and apply iteratively the following formula for

i = 0, . . . , n− 1 and w = 0, . . . ,W0:

|T i+1
w | =

∑
a∈A
|T iw−w(a)|. (2.74)

The identity (2.74) follows because a sequence of length i + 1 and weight w must start
with some symbol a ∈ A. The number of sequences of length i+1 and weight w starting
with a is |T iw−w(a)|. Next, we sum length i + 1 sequences starting with a1, a2, . . . , am to
get the total number of length i+ 1 sequences.

Remark 2.3: Branching probabilities property
For the model (2.71), from (2.73) we have

PCi+1|Ci1(aj|s) = PC′1(aj) (2.75)

where the PMF PC corresponds to the model C ∼ U
[
T nW0

]
, the PMF PC′ corresponds

to the model C ′ ∼ U
[
T n−iW0−w(s)

]
, and U [B] denotes a RV uniformly distributed on the

set B.

40 Chapter 2. Arithmetic Coding in Distribution Matching

2.4.2. Practical Implementation

Following the implementation from Section 2.2, we scale the model probabilities (2.73)
by Θ and store them as integers, see (2.13)–(2.14). We choose Θ = 2w and additionally
require

PCi+1|Ci1(aj|s) > 0 =⇒ P̂Ci+1|Ci1(aj|s) > 0.

This way no intervals are lost in the rounded model. This condition can result in an
absolute representation error11 of at most 2−w, i.e.,

1
Θ P̂Ci+1|Ci1(a|s)− PCi+1|Ci1(a|s) < 2−w = ε.

Thus, intervals length can be bounded by (2.34) with ε = 2−w, i.e., we have

y(c) ≤ PC(c)
n−1∏
i=0

(
1 + 2−w+1

PCi+1|Ci1(ci+1|ci1)

)
(2.76)

which results in

k ≤ − log2

(
max
c∈An

PC(c)
n−1∏
i=0

(
1 + 2−w+1

PCi+1|Ci1(ci+1|ci1)

))
(2.77)

= min
c∈T nW0

n−1∑
i=0
− log2

(
PCi+1|Ci1(ci+1|ci1) + 2−w+1

)
(2.78)

where T nW0 is the superset used by the MCDM. The minimization in (2.78) can be solved
efficiently using dynamic programing. Define

Ki
w = min

c∈T iw

i−1∑
j=0
− log2

(
PCj+1|Cj1

(cj+1|cj1) + 2−w+1
)

(2.79)

where the branching probabilities correspond to a uniform distribution of the codewords
on T iw, i.e., (2.79) uses the model C ∼ U [T iw]. Now consider

Ki+1
w = min

c∈T i+1
w

i∑
j=0
− log2

(
PCj+1|Cj1

(cj+1|cj1) + 2−w+1
)

(2.80)

11The probabilities PCi+1|Ci
1
(a|s) ≈ 0 are represented by 1

Θ = 2−w. Other probabilities for the same
prefix s, i.e., PCi+1|Ci

1
(b|s), b 6= a, may be scaled down, which does not lead to problems since we

are interested in the largest interval.

2.4. Multi-Composition Distribution Matcher 41

= min
c∈T i+1

w

− log2

(
PC1(c1) + 2−w+1

)
+

i∑
j=1
− log2

(
PCj+1|Cj1

(cj+1|cj1) + 2−w+1
)
(2.81)

= min
c∈T i+1

w

− log2

(
PC1(c1) + 2−w+1

)
+

i−1∑
j=0
− log2

(
PCj+1|Cj1

(cj+2|cj+1
2) + 2−w+1

)
︸ ︷︷ ︸

≥Ki
w−w(c1) with C∼U

[
T i
w−w(c1)

]
(2.82)

= min
a∈A
− log2

(
PC1(a) + 2−w+1

)
+Ki

w−w(a). (2.83)

The fourth line follows because the branching probabilities for the model U
[
T iw−w(c1)

]
are

the same as the branching probabilities for the model U [T i+1
w] conditioned on c1 being

the first codeword symbol, see (2.73) or Remark 2.3, and because the latter term in the
third line is minimized by choosing a codeword c corresponding to the value Ki

w−w(c1).
As we observe Ki+1

w , w ∈ {0, . . . ,W0} can be computed given Ki
w, w ∈ {0, . . . ,W0}.

This allows to efficiently find Kn
W0 by starting with Kw

i = 0 for w ∈ {0, . . . ,W0}, i = 0
and progressing until i = n. Finally, observe that the branching probabilities in (2.79)
are different than in (2.73) since they refer to different supersets, i.e., T iw and T nW0 ,
respectively. However, the previously computed values (2.74) for the model C ∼ U

[
T nW0

]
contain also the values needed for the model C ∼ U [T iw] (see (2.73) or Remark 2.3),
thus no extra computation is needed. Finally, we set k = bKn

W0c, which guarantees that
the DM implements a one-to-one mapping from {0, 1}k to CI ⊆ T nW0 .

As for the CCDM, one could define an input length loss due to fixed precision imple-
mentation (before rounding) as

∆k = log2 |T nW0| −K
n
W0 (2.84)

which is depicted in Figure 2.7(a). Observe that the presented MCDM requires rela-
tively large precision (as compared to the CCDM) to avoid an excessive rate penalty.
We speculate that this is because the branching probabilities for the MCDM can take
lower values. In this case the absolute rounding error ε contributes to a larger in-
terval extension. Values of w larger than the machine codewords size, e.g., 32 or 64
bit, require extended precision arithmetic operations. This complicates implementation
and increases processing complexity. To avoid large values of w we compute also the
Monte-Carlo bound on the input length from Remark 2.1. The results are presented in

42 Chapter 2. Arithmetic Coding in Distribution Matching

101 102 103
10−13

10−10

10−7

10−4

10−1

102

n

∆
k

w = 30
w = 40
w = 50
w = 60

(a) Input length loss

101 102 103
103

104

105

106

107

108

109

1010

n

M
em

o
ry

[b
it
]

w = 30
w = 40
w = 50
w = 60

(b) Storage memory

Figure 2.7.: Input length loss due to implementation and the storage memory re-
quirements for the discussed MCDM with the target PMF PA =
[0.538, 0.322, 0.115, 0.025].

Table 2.2.

Figure 2.7(b) depicts the number of bits required to store the approximated branching
probabilities. We assume that each probability is stored as a (w + 1)-bit integer. For
each prefix length and prefix weight we need to store (|A| − 1) probabilities for all but
the last symbols. The total storage requirement is thus wW0n(|A| − 1). We observe
that the memory requirements can be a limiting factor when implementing MCDM
for large n. E.g., for n = 1000 we require approximately 108 bits, which corresponds
to approximately 12.5 Mbytes. This is a large number if the memory needs high speed
(processor cache preferably) for high throughput. The complexity of the ACDM is linear
in n, thus the memory requirement is the only limiting factor, which we address in the
next section.

Remark 2.1: Properties of the MCDM
Consider a target probability distribution PA defined on alphabet A and an MCDM
using the weight function w : A → N+

0 such that

PA(ai) > PA(aj) =⇒ w(ai) < w(aj) for ai, aj ∈ A.

Suppose that the MCDM uses the probability model C ∼ U [T nW] and we choose W to
be the weight of a sequence with a composition corresponding to an n-type QA such

2.4. Multi-Composition Distribution Matcher 43

n 100 300 1000
kMC, w = 14 145 441 1494
kMC, w = 20 148 449 1499
kMC, w = 30 150 450 1500
kUB, w = 30 149 439 1459
kUB, w = 40 150 449 1488
kUB, w = 50 150 450 1499
kUB, w = 60 150 450 1500

Table 2.2.: Input length kMC obtained by the Monte-Carlo bound from Remark 2.1 with
108 samples and kUB obtained from the exact bound (2.78) using dynamic
programming. The target PMF is PA = [0.538, 0.322, 0.115, 0.025]. The
Monte-Carlo based DMs were additionally tested by encoding and decoding
108 input sequences. No errors were observed.

that
QA = argmin

Q′A

D (Q′A‖PA) .

The infinite precision implementation of the MCDM is asymptotically optimal:

1. The matching rate R = k
n
satisfies

lim
n→∞

R = H(QA). (2.85)

2. The normalized divergence satisfies

lim
n→∞

1
n
D(PÃ‖P n

A) = 0. (2.86)

Now consider the MCDM in the finite-precision implementation with the precision
parameter w. The MCDM is not asymptotically optimal:

3. The matching rate R = k
n
satisfies

lim
n→∞

R < H(QA)− log2

(
1 + 2−w

)
. (2.87)

44 Chapter 2. Arithmetic Coding in Distribution Matching

4. The normalized divergence satisfies

lim
n→∞

1
n
D(PÃ‖P n

A) > log2

(
1 + 2−w

)
. (2.88)

Proof. The second property follows since the model codebook of such an MCDM contains
the model codebook of the optimal CCDM from Remark 2.2. The extra codewords in
the MCDM’s model codebook have lower weight and thus higher probability (according
to the weight function) and lead to lower divergence via (2.65). Thus the normalized
divergence of the MCDM is upper-bounded by the normalized divergence of the CCDM,
which goes to zero for large n. See Remark 2.2.

The fist property follows since the matching rate of the MCDM is greater than or
equal to the matching rate of the CCDM since the MCDM’s model codebook has at
least as many codewords. On the other hand, the matching rate of the MCDM is upper
bounded by H(QA) since 1

n
D(PÃ‖P n

A)→ 0 [41, Proposition 8].

Since MCDM is asymptotically optimal, the third and fourth properties can be proved
as for the CCDM in Corollary 2.1.

2.4.3. Approximated Weight Constrained Codebook

Following the design rule for the ACDM from Remark 2.1 we can decouple the probabil-
ity modeling process from the coding process, just like in arithmetic coding compression
schemes. Basically, we can use any model PC and then find k such that the ACDM
can decode with high probability. In this section we use this fact to simplify the ar-
chitecture from Section 2.4.1. Specifically, we use the weight function and the weight
constrained codebook, but we approximate some branching probabilities to lower the
memory requirements. It turns out that the branching probabilities converge for large
n to a probability distribution specified by the average remaining weight per symbol.
Theorem 2.2 makes the idea precise and an example is shown in Figure 2.8.

2.4. Multi-Composition Distribution Matcher 45

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

w

P
(a

1
)

1
2
5
10
20
50
100
200
500
1000
∞

(a) a1

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

w
P
(a

2
)

(b) a2

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

w

P
(a

3
)

(c) a3

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

w

P
(a

4
)

(d) a4

Figure 2.8.: Probability of the first codewords symbol for a model as in (2.71) with the
superset T nnw for different values of n. w denotes the average remaining
weight per symbol. The weight function is w(a1) = 0, w(a2) = 1, w(a3) = 3,
w(a4) = 6, which corresponds to Maxwell-Boltzmann distribution on the
alphabet A = {1, 3, 5, 7}.

46 Chapter 2. Arithmetic Coding in Distribution Matching

Theorem 2.2: Asymptotic Branching Probabilities
Consider the output alphabet A = {a1, . . . , am}, a non-constant weight function
w : A → N+

0 such that w(a1) ≤ w(a2) ≤ . . . ≤ w(am), and a probability distribu-
tion on the codewords PC as in (2.71) with the maximum allowed weight nW0, i.e.,
C ∼ U

[
T n
nW0

]
. We assume that w(a1) < W0. For n→∞, the probability distribution

of the first symbol C1 from C converges, i.e., we have

PC1(aj) n→∞−−−→ QA(aj) =



2−αw(aj)∑
a∈A

2−αw(a) , if W0 <
1
|A|

∑
a∈A

w(a)

1
|A|

, if W0 ≥
1
|A|

∑
a∈A

w(a)

(2.89)

where α is chosen such that ∑a∈AQA(a)w(a) = W0.

Proof. See Appendix A.

The truncated MCDM (TMCDM) works as follows. When the remaining length of
the codeword is below some threshold value t, we use the branching probabilities as in
the approach from the previous section, see (2.73). When the remaining length of the
codeword is above the threshold we use the asymptotic branching probabilities from
Theorem 2.2, namely

PCi+1|Ci1(aj|s) =


|T n−(i+1)
W0−w(s)−w(aj)|
|T n−iW0−w(s)|

if n− i ≤ t

QA(aj) with W0 = W0 − w(s)
n− i

if n− i > t.

(2.90)

This way we need to store at most (|A|−1)t2wMAX with wMAX = maxa∈Aw(a) branching
probabilities and |A| − 1 sampled functions Q(w). By choosing larger t the approxima-
tions become more precise at the cost of higher memory requirements.
The results obtained for the precision parameter w = 30, and different values of the

threshold t are presented in Figure 2.9. We used the Monte Carlo based choice of k.
In Figure 2.9(b) we observe that the approximated branching probabilities increase the
divergence. The increase is lower for larg values of t since the approximation is more
accurate for large t. However, we can still improve on the CCDM. For the memory plot
in Figure 2.9(c) we observe that the TMCDM memory usage diverges from the MCDM

2.4. Multi-Composition Distribution Matcher 47

memory usage at the threshold value. The TMCDM memory usage keeps increasing
after the threshold because the maximum weight for the branching probabilities up
to the threshold t keeps increasing. Once the look-up-table table reaches the full size
t× twMAX × (|A| − 1), memory usage stays constant.

48 Chapter 2. Arithmetic Coding in Distribution Matching

101 102 103

0.8

1

1.2

1.4

1.6

n

k
/n

H(PA)

MCDM

CCDM

TMCDM t=25

TMCDM t=50

TMCDM t=100

TMCDM t=200

(a) Matching rate.

101 102 103
10−3

10−2

10−1

100

n

1 n
D
(P

Ã
‖P

n A
)

CCDM

MCDM

TMCDM t=25

TMCDM t=50

TMCDM t=100

TMCDM t=200

(b) Normalized divergence.

101 102 103
103

104

105

106

107

108

109

1010

n

M
em

or
y
[b
it
]

MCDM

TMCDM t=25

TMCDM t=50

TMCDM t=100

TMCDM t=200

(c) Storage memory requirements

Figure 2.9.: Matching rate, normalized divergence, and storage memory require-
ments for TMCDM, MCDM, and CCDM with the target PMF PA =
[0.538, 0.322, 0.115, 0.025]

3
Multi-Stream Distribution Matching

Multi-Stream Distribution Matching (MSDM) replaces a single DM with a non-binary
output alphabet by multiple DMs with smaller output alphabets. Namely, the input
sequence is first split and fed to multiple DMs. Next, the output sequences from the
multiple DMs are combined and mapped to symbols from the primary output alphabet.
MSDM was introduced in [42] as Bit-level Distribution Matcher (BLDM) and in [43]
as Product Distribution Matching. In [42] the binary output alphabets were used for
the constituting DMs (we refer to the inner DMs as constituting DMs) with the goal of
increasing the throughput of distribution matching.
Arithmetic coding based DMs are inherently sequential. For example, see Section

2.1 and observe that the codeword symbols are produced/read sequentially. MSDM
allows for parallel processing of input bits and contributes to increased throughput [44].
Moreover, the independent processing of sequences for each stream can be beneficial in
some scenarios. For example, in communication systems with higher order modulation,
each bit-level experiences a different channel. If one cannot recover the full message, then
it may still be possible to decode the information transmitted in the better-protected
bit-levels. Such an approach will not work with symbol-level distribution matching.
Since the introduction of MSDM, many new architectures for distribution matching

have been proposed, e.g., a shell mapping based approach [38], enumerative coding based
approaches [45,46], or the MCDM from Section 2.4.1. These approaches have storage re-
quirements which grow with the output alphabet size. By employing MSDM, non-binary
distribution matching can be performed by using only binary DMs. Moreover, the con-

50 Chapter 3. Multi-Stream Distribution Matching

stituting DMs can share the memory (the same information is needed for all constituting
binary DMs). The MSDM is an interesting solution for increasing the throughput, al-
lowing more decoding flexibility, and minimizing the memory requirements.

3.1. Architecture

We consider MSDM with independent streams and binary output alphabets for consti-
tuting DMs, i.e., we consider BLDM. The analysis and conclusions can often be applied
when the constituting DMs use non-binary alphabets. An example of a BLDM with three
bit-levels (which corresponds to the output alphabet A of size 8) is presented in Fig-
ure 3.1(a). The binary input sequence U is first split into three sequences: U1,U2,U3,
which are input to the binary DM1,DM2,DM3, respectively. The dimensions of the
input sequences U1,U2,U3 are different in general and depend on the parameters of
DM1,DM2,DM3. Each constituting DM generates a binary output sequence B̃l with a
target distribution PBl . Next, the bits from the output sequences are mapped to the
symbols from the primary alphabet A by a fixed, bijective mapping fM, i.e., the i-th
symbol of the output sequence Ã is

[Ã]i = fM([B̃1]i, [B̃2]i, [B̃3]i). (3.1)

Intuitively, we expect worse divergence performance from the BLDM (as compared to
the standard symbol-level DM), since the empirical output PMF PA,C is restricted to be
a product distribution.
The MSDM should be distinguished from the Split-parallelized DM (SPDM), where

the constituting DMs operate with the primary output alphabet. The architecture is
presented in Figure 3.1(b). We also expect worse divergence performance from the
SPDM (as compared to the standard symbol-level DM), since the constituting DMs
operate on shorter sequences. For long output sequences, we expect the solution to
perform similarly to the standard symbol-level DM.
Consider now a BLDM with L bit-levels, an output alphabet A, and a target PMF

PA on A. The normalized divergence is (see (1.31) and Definition 2.2 on page 21)

1
n
D(PÃ‖P n

A) = H(PA,CI)−
log |CI |
n

+ D(PA,CI ||PA). (3.2)

Since the mapping fM is injective, the BLDM implementation codebook (Definition 2.2)

3.1. Architecture 51

DM1

(target: PB1)

DM2

(target: PB2
)

DM3

(target: PB3
)

fM : {0, 1}3 → A

Mapping

U

U = [U1U2U3]

U1

l(U1) = k1

U2

l(U1) = k2

U3

l(U1) = k3

B̃1

l(B̃1) = n

B̃2

l(B̃2) = n

B̃3

l(B̃3) = n

Ã

(a) Bit-level DM

DM1

(target: PA)

DM2

(target: PA)

DM3

(target: PA)

U

U = [U1U2U3]

U1

l(U1) = k/3

U2

l(U2) = k/3

U3

l(U3) = k/3

Ã1

l(Ã1) = n/3

Ã2

l(Ã2) = n/3

Ã1

l(Ã1) = n/3

Ã

Ã = [Ã1Ã2Ã3]

(b) Split-parallelized DM

Figure 3.1.: Architectures for parallelization and complexity reduction of a non-binary
DM with the parallelization factor L ≈ 3.

52 Chapter 3. Multi-Stream Distribution Matching

satisfies
|CI | =

L∏
l=1
|CIl | (3.3)

where CIl , l = 1, . . . , L, are the implementation codebooks of the constituting DMs.
Denote by PBl,CIl , l = 1, . . . , L, the empirical output probability distributions (the PMF
of a single symbol output by the DM, i.e., Definition 1.1) of the constituting DMs. To
decompose the empirical output PMF as

PA,CI =
L∏
l=1

PBl,CIl (3.4)

we assume that each symbol in the output sequence B̃l for l = 1, . . . , L has approxi-
mately the same marginal probability distribution.1 The assumption is justified because
many DM architectures select codebooks using additive metrics, e.g., codeword weight
or composition, and do not consider the order of the symbols in the codeword. This
way all permutations of a codeword should have the same probability and the marginal
distribution for each symbol should be approximately equal. Finally, the normalized
divergence of the BLDM becomes

1
n
D(PÃ‖P n

A) = H
(

L∏
l=1

PBl,CIl

)
− log∏L

l=1 |CIl |
n

+ D
(

L∏
l=1

PBl,CIl ||PA
)

=
L∑
l=1

(
H(PBl,CIl)−

log |CIl |
n

)
+ D

(
L∏
l=1

PBl,CIl ||PA
)
. (3.5)

The first term is a sum of rate-losses, i.e., the differences between the target entropy
and the matching rate, of the constituting DMs. In Chapter 2 we observed that for the
CCDM, the rate-loss is close to zero for large values of n. Similarly, for the MCDM the
rate-loss is close to zero, as is the case for other DMs [38, 45]. Thus, for the BLDM we
focus on minimizing the latter term, which is also the minimal normalized divergence
achieved by the BLDM.

1Otherwise (3.4) may not hold. Consider a BLDM with 2 bit-levels and the implementation code-
books of the constituting DMs: CI

1 = {000111, 001011}, CI
2 = {000111, 001011} and the mapping

fM(b1, b2) = a2b1+b2+1. Bits in the output sequence have different marginal distributions and we
have PA,CI 6=

∏2
l=1 PBl,CI

l
. Namely, PB1,CI

1
(0) = PB1,CI

1
(1) = PB2,CI

2
(0) = PB2,CI

2
(1) = 0.5 and

PA,CI (a1) = PA,CI (a4) = 10
24 , PA,CI (a2) = PA,CI (a3) = 2

24 .

3.1. Architecture 53

We follow the steps as in (1.30) to compute

H(PBl,CIl)−
log |CIl |
n

= 1
n
D(PB̃l‖P

n
Bl,CIl

) ≥ 0 for l = 1, . . . , L (3.6)

which gives
1
n
D(PÃ‖P n

A) ≥ D
(

L∏
l=1

PBl,CIl ||PA
)
. (3.7)

The right-hand-side term in (3.7), and thus the BLDM normalized divergence, is in
general bounded away from zero. This is because the divergence is equal to zero only for∏L
l=1 PBl,Cl = PA, and not every target distribution PA can be represented as a product

of distributions.

Now consider the SPDM from Figure 3.1(b) with L identical constituting DMs, each
with the implementation codebook CIL, and the empirical output distribution PA,CIL equal
to empirical output distribution PA,CI of the SPDM. Since the output sequences of the
constituting DMs are concatenated, it follows that

|CI | = |CIL|L. (3.8)

The divergence of the SPDM becomes

1
n
D(PÃ‖P n

A) = H(PA,CIL)− log |CIL|L
n

+ D(PA,CIL||PA)

=
(
H(PA,CIL)− log |CIL|

n
L

)
+ D

(
PA,CIL||PA

)
= 1

n
L

D(PÃL‖P
n
L
A) (3.9)

where ÃL is the output of a constituting DM. Thus, the divergence of the SPDM with
output length n is equal to the divergence of a constituting DM with output length
n
L
. The SPDM will thus have worse divergence performance as compared to a standard

symbol-level DM, since the effective output length gets shortened by the parallelization
factor L. However, for large n the SPDM should perform similar to the standard symbol-
level DM.

54 Chapter 3. Multi-Stream Distribution Matching

3.2. Rate-loss

Consider a DM with a target distribution PA on the alphabet A. If the DM is asymp-
totically optimal, i.e., 1

n
D(PÃ‖P n

A) → 0 as n → ∞, then the matching rate R = k
n
is

upper bounded by H(PA) [41, Proposition 8]. The difference

Rloss = H(PA)−R (3.10)

is called the rate-loss of the DM and can be decomposed as

nRloss = nH(PA)−H(PC)︸ ︷︷ ︸
nRMloss

+H(PC)−H(PÃ)︸ ︷︷ ︸
nRIloss

(3.11)

where PC is the probabilistic model of the output of the DM, e.g., PC may be a uniform
distribution on a set of constant-composition sequences for the CCDM. The term nRM

loss

corresponds to the model rate-loss, i.e., the entropy difference between the IID model
PA and the model used by a DM. The latter term nRI

loss is the implementation rate-loss
due to imperfect implementation of the probabilistic model PC by the DM, e.g., some
sequences from the model are not used because binary input sequences of fixed length
are used at the input, or some of the data points’ spacing in the arithmetic-coding based
DM may have to be increased to guarantee a one-to-one mapping. The implementa-
tion rate-loss can be minimized by choosing proper parameters for the DM, e.g., the
precision parameter w for the arithmetic-coding based DM. Then the implementation
rate-loss occurs because only 2k sequences from the support of PC are used, and the
implementation rate-loss is upper-bounded by one bit (per codeword).

3.2.1. Rate-loss of the BLDM and the CCDM

Consider two DMs: DM1 a standard symbol-level CCDM, and DM2 a BLDM with
binary CCDMs used as constituting DMs. Consider an n-type target distribution PA

and suppose DM1 chooses the composition [nPA(a1), . . . , nPA(a2L)]. Suppose that PA
can be represented as a product of binary distributions for some mapping fM, and that
DM2 chooses the mapping and its output distribution QA,C = ∏L

l=1QBl,Cl to match the
PMF PA. DM1 and DM2 are asymptotically optimal: DM1 by Remark 2.2 and DM2

because the normalized divergence is equal to a sum of the constituting DMs’ rate-losses,
see (3.5). The model rate-loss for the BLDM is less than or equal to the model rate-loss

3.2. Rate-loss 55

of the symbol-level CCDM. The model rate-loss for the CCDM is

nRM
loss = nH(PA)−H(PC); (3.12)

PC is uniform on the set

CMSL = {c ∈ An : na(c) = nPA,C(a) ∀a ∈ A}; (3.13)

the model rate-loss for the BLDM is

nRM
loss = nH(PA)−H(PC); (3.14)

PC is uniform on the set

CMBL = {c ∈ An : ci = fM ([b1]i , . . . , [bL]i) , bl ∈ {0, 1}
n : n0(bl) = nQBl,Cl(0)} . (3.15)

The model codebook CMBL of the BLDM contains at least as many codewords as the
model codebook CMSL of the CCDM. CMSL imposes a symbol-level constant-composition
constraint, which, after mapping to binary sequences via the mapping f−1

M , results in
bit-level sequences that satisfy the constant-composition constraints, i.e., each codeword
from the CCDMs’ model codebook is also in the BLDMs’ model codebook. To see this,
consider c ∈ CMSL and define

bl =
[[
f−1

M (c1)
]
l
,
[
f−1

M (c2)
]
l
, . . . ,

[
f−1

M (cn)
]
l

]
.

The number of zeros in bl is

n0(bl) =
∑
a∈A

[f−1
M (a)]l=0

nPA(a) = n
∑
a∈A

[f−1
M (a)]l=0

PA(a) = nQBl,Cl(0)

which shows that c ∈ CMSL =⇒ c ∈ CMBL. Thus, the model rate-loss of the BLDM is at
most the rate-loss for the symbol-level CCDM when the target distribution can be rep-
resented as a product of the distributions. In practice, even when the target distribution
cannot be factored, the BLDM often achieves lower rate-loss than the CCDM, but the
comparison is less clear since both DMs generate different distributions.

56 Chapter 3. Multi-Stream Distribution Matching

3.2.2. Rate-loss of the BLDM and weight-constrained DMs

Consider two DMs: DM1 a standard symbol-level weight-constrained DM (e.g., the
MCDM from Section 2.4.1 or the DMs [38,45]), and DM2 a BLDM with binary weight-
constrained DMs used as constituting DMs. Consider a target distribution PA and
suppose that DM1 chooses the weight constraint W0 to match its output distribution
PA,C to PA. DM1 is asymptotically optimal by Remark 2.1. Suppose that PA can
be represented as a product of binary distributions for some mapping fM, i.e., PA =∏L
l=1 PBl , and that DM2 chooses the same weight constraint W0 as DM1. The model

rate-loss for the BLDM is higher than for the symbol-level DM. First, consider the
weight function used by DM1 (we assume no integer rounding of the weight function):

w(a) = − log2 PA(a)

= − log2

L∏
l=1

PBl
([
f−1

M (a)
]
l

)

=
L∑
l=1

wl
([
f−1

M (a)
]
l

)
.

The weight of a symbol a ∈ A is a sum of the weights of the bits corresponding to a via
the mapping fM. The model rate-loss for the DM1 is

nRM
loss = nH(PA)−H(PC) (3.16)

and PC is uniform on the set

CMSL = {c ∈ An : w(c) ≤ W0} (3.17)

= {c ∈ An :
L∑
l=1

wl (bl) ≤ W0} (3.18)

where bl is the bit sequence corresponding to the l-th bit-level in the codeword c, i.e.,
we have

bl =
[[
f−1

M (c1)
]
l
,
[
f−1

M (c2)
]
l
, . . . ,

[
f−1

M (cn)
]
l

]
.

The model rate-loss for the BLDM is

nRM
loss = nH(PA)−H(PC) (3.19)

3.3. Finding the BLDM Parameters 57

and PC is uniform on the set

CMBL = {c ∈ An : wl (bl) ≤ Wl,
L∑
l=1

Wl = W0}. (3.20)

Observe that c ∈ CMBL =⇒ c ∈ CMSL, since the model codebook of the BLDM constrains
each bit-level separately and the symbol-level DM has a sum constraint. Thus, the model
rate-loss for the BLDM is at least the model rate-loss for the symbol-level DM. This is
the opposite behavior to the one for the CCDM.

3.3. Finding the BLDM Parameters

A natural problem that arises when employing the BLDM is choosing the mapping fM

and the target distribution of the constituting DMs. Following the arguments above, we
aim to find the target distribution that minimizes the right-hand side term in (3.7). Since
we know that good DMs achieve empirical output distributions (Definition 1.1) close to
their target distribution2, we will optimize the divergence with respect to the target
distributions rather the empirical output distributions. We thus look for a solution to
the following problem

min
fM,PB1 ,...,PBL

D
(

L∏
l=1

PBl ||PA
)
s.t. fM : {0, 1}L → A is injective

and PBl , l = 1, . . . , L are PMFs.
(3.21)

The mapping fM enters the objective function via

D
(

L∏
l=1

PBl ||PA
)

=
∑
a∈A

PB
(
f−1

M (a)
)

log2

PB
(
f−1

M (a)
)

PA(a)

 (3.22)

where f−1
M is the inverse mapping from symbols to binary labels, and where we intro-

duced PB to denote the product distribution ∏L
l=1 PBl . Finding a solution to (3.21)

requires a joint optimization with respect to both the mapping fM and the target prob-
abilities PBl , l = 1, . . . , L. This problem seems difficult to solve, see Example 3.1. In
what follows, we consider the optimization with respect to fM and the bit-level PMFs

2This is a necessary condition to achieve low divergence, see (1.31).

58 Chapter 3. Multi-Stream Distribution Matching

separately. Note that

min
fM,PB1 ,...,PBL

D
(

L∏
l=1

PBl ||PA
)

= min
fM

min
PB1 ,...,PBL

D
(

L∏
l=1

PBl ||PA
)
. (3.23)

We first focus on optimizing with respect to fM and later on finding the bit-level target
PMFs that minimize the divergence for a given mapping fM.

Example 3.1: BLDM Output Divergence
Consider BLDM with the output alphabet A and a target PMF PA on A. Consider
|A| = 4 and two bit-levels B1, B2. The divergence to optimize decomposes as

D (PB||PA) = −H (PB) + EB∼PB [− log2 PA (fM(B))] (3.24)

=
L∑
l=1
−H2(PBl(0)) + EB∼PB [− log2 PA (fM(B))] (3.25)

where H2(·) is the binary entropy function. The optimization is with respect to the
probabilities PBl(0), l = 1, . . . , L, which results in the objective function

g (PB1(0), . . . , PBL(0)) =
L∑
l=1
−H2(PBl(0)) + EB∼PB [− log2 PA (fM(B))] (3.26)

=
L∑
l=1
−H2(PBl(0)) +

∑
a∈A

L∏
l=1

(PBl(0))1−[fM(a)]l (1− PBl(0))[fM(a)]l log2
1

PA(a) . (3.27)

Now consider the Hessian of the function g, i.e., the matrix of second derivatives with
respect to the optimization parameters:

∇2(g) =



∂2g
∂PB1(0) ∂PB1(0)

∂2g
∂PB1(0) ∂PB2(0) . . . ∂2g

∂PB1(0) ∂PBL(0)

∂2g
∂PB2(0) ∂PB1(0)

.
... . . . ∂2g

∂PBL−1(0) ∂PBL(0)
∂2g

∂PBL(0) ∂PB1(0) . . . ∂2g
∂PBL(0) ∂PBL−1(0)

∂2g
∂PBL(0) ∂PBL(0)


(3.28)

3.3. Finding the BLDM Parameters 59

which becomes

∇2(g) =


1

PB1(0)(1− PB1(0)) log2
PA(a1)PA(a2)
PA(a3)PA(a4)

log2
PA(a1)PA(a2)
PA(a3)PA(a4)

1
PB2(0)(1− PB2(0))

 (3.29)

where the arrangement of terms under the logarithms depends on the mapping fM.
The Hessian is symmetric because the function g is continuous in the optimization
variables. Depending on the target PMF PA and the mapping fM, the matrix can
be either positive-definite or indefinite (negative-definite is not possible because of the
positive trace of the Hessian). A positive-definite matrix corresponds to a convex
optimization problem, and in general the problem is non-convex. Similar examples can
be constructed for larger alphabets A.

3.3.1. Finding the BLDM Mapping

We investigate the problem of finding the optimal mapping fM. Consider a BLDM with
L bit-levels, i.e., the output alphabet A has |A| = 2L. Without loss of generality assume
that the target PMF PA satisfies

PA(a1) ≥ PA(a2) ≥ . . . ≥ PA(a2L).

Our approach for finding the optimal mapping is based on exhaustive search.
There are (2L)! mappings from A to {0, 1}L. However, by exploiting the symmetry we

can significantly reduce the number of mappings that need to be investigated. Following
Theorem 3.1 and 3.2, we reduce the search to the mappings for which the bit-level PMFs
satisfy

PB1(0) ≥ . . . ≥ PBL(0) ≥ 0.5 (3.30)

and which are probabilistically ordered mappings. The number of probabilistically or-
dered mappings with the bit-level PMFs satisfying (3.30) is much smaller than (2L)!
and allows for an exhaustive search for some values of interest. Table 3.1 presents the
number of such mappings for different values of L. Table 3.2 presents the two possi-
ble mappings for L = 3. We observe that the distribution PA from Table 3.2 can be
represented as a product of distributions for one of the mappings. Thus, searching for

60 Chapter 3. Multi-Stream Distribution Matching

L 2 3 4 5
number of

probabilistically
ordered mappings 1 2 14 516

(2L)! 24 40320 2.1× 1013 2.6× 1035

Table 3.1.: Number of probabilistically ordered mappings with bit-levels satisfying (3.30)
versus the number of all mappings fM : A → {0, 1}L.

PA a f−1
M,1(a) f−1

M,2(a)
8
27 a1 000 000
4
27 a2 001 001
4
27 a3 010 010
4
27 a4 011 100
2
27 a5 100 011
2
27 a6 101 101
2
27 a7 110 110
1
27 a8 111 111

Table 3.2.: The probabilistically ordered mappings for alphabet of size 8. The mapping
f−1

M,1 achieves the minimal divergence of 0.021 (with an exhaustive search
over the bit-level PMFs), the mapping f−1

M,2 achieves zero divergence (with
PB1(0) = PB2(0) = PB3(0) = 2

3).

the optimal mapping is essential to minimize the divergence. Unfortunately, for larger
values of L it is not possible to evaluate the performance of all the mappings. Instead,
a random sampling could be used to find a good mapping.

Definition 3.1: Probabilistically Ordered Mapping
An invertible mapping fM : {0, 1}L → A is a probabilistically ordered mapping for the
bit-level PMFs PBl , l = 1, . . . , L, if

PB(f−1
M (a1)) ≥ PB(f−1

M (a2)) ≥ . . . ≥ PB(f−1
M (a2L)) (3.31)

with PB = ∏L
l=1 PBl .

3.3. Finding the BLDM Parameters 61

Theorem 3.1: BLDM Mapping Properties
Consider the target PMF PA on the alphabet A such that |A| = 2L, and the minimiza-
tion problem (3.21) which is

min
fM,PB1 ,...,PBL

∑
b∈{0,1}L

PB(b) log2
PB(b)

PA(fM(b)) s.t. fM : {0, 1}L → A is injective,

PB =
L∏
l=1

PBl , and PBl , l = 1, . . . , L are PMFs.

Let D∗ be the minimum of the optimization problem (the minimum is attained since
the feasible set of the optimization parameters is closed and the function is continuous
on the set). Any parameters (fM, PB) that attain the minimum are called a minimizer
of the problem. It follows that:

1. There exists a minimizer (f ∗1
M , P ∗1

B) such that P ∗1
Bl

(0) ≥ 0.5, l = 1, . . . , L.

2. There exists a minimizer (f ∗2
M , P ∗2

B) such that P ∗2
B1(0) ≥ . . . ≥ P ∗2

BL
(0) ≥ 0.5.

Proof. The first property follows because we can invert the bit-level PMFs and the
corresponding bits in the mapping fM until the property is satisfied. More precisely,
consider a maximizer (f ∗M, P ∗B). We define a set of bit-level indices which satisfy P ∗Bl(0) <
0.5, i.e., I =

{
l : P ∗Bl(0) < 0.5

}
, and the following bit-level PMFs

P ∗1
Bl

(b) =


P ∗Bl(1− b), if l ∈ I

P ∗Bl(b), otherwise
for b ∈ {0, 1}, l = 1, . . . , L (3.32)

which are inverted whenever P ∗Bl(0) < 0.5. We have P ∗1
Bl

(0) ≥ 0.5, l = 1, . . . , L. Simi-
larly, we define the mapping f ∗1

M so that

[
f ∗1

M
−1(a)

]
l
=


1−

[
f ∗M
−1(a)

]
l
, if l ∈ I[

f ∗1
M
−1(a)

]
l
, otherwise

for a ∈ A, l = 1, . . . , L (3.33)

which has inverted (0→ 1 and 1→ 0) bits associated with the bit-levels from I. Clearly,
the mapping remains injective. Let b′ ∈ {0, 1}L be a binary label equal to a label b with

62 Chapter 3. Multi-Stream Distribution Matching

inverted bits on the positions from I, i.e., we set

[b′]l =


1− [b]l , if l ∈ I

[b]l , otherwise
for l = 1, . . . , L. (3.34)

We have

P ∗B(b) = P ∗1
B (b′) (3.35)

f ∗M(b) = f ∗1
M (b′) (3.36)

which gives

D∗ =
∑

b∈{0,1}L
P ∗B(b) log2

P ∗B(b)
PA(f ∗M(b)) =

∑
b∈{0,1}L

P ∗1
B (b′) log2

P ∗1
B (b′)

PA(f ∗1
M (b′))

=
∑

b∈{0,1}L
P ∗1
B (b) log2

P ∗1
B (b)

PA(f ∗1
M (b)) = D∗1

where the second line follows by changing the order of summands in the sum over the
elements of {0, 1}L. Finally, (f ∗1

M , P ∗1
B) is a maximizer as well.

The second property holds because we can arrange the order of the bit-levels’ PMFs
and the corresponding bits in the mapping fM until the property is satisfied. More
precisely, consider a maximizer (f ∗M, P ∗B) satisfying the first property. We define a sorting
function s : {1, . . . , L} → {1, . . . , L}, that sorts the bit-level PMFs according to the
probability of zero with P ∗Bs(1)

(0) ≥ P ∗Bs(2)
(0) ≥ . . . ≥ P ∗Bs(L)

(0). We define the bit-level
PMFs

P ∗2
Bl

(b) = P ∗Bs(l)
(b) for b ∈ {0, 1}, l = 1, . . . , L (3.37)

so that P ∗2
B1(0) ≥ P ∗2

B2(0) ≥ . . . ≥ P ∗2
BL

(0) ≥ 0.5, and we define the mapping that sorts
the bits according to s(·) as

[
f ∗2

M
−1(a)

]
l
=
[
f ∗M
−1(a)

]
s(l)

for a ∈ A, l = 1, . . . , L. (3.38)

Let b′ ∈ {0, 1}L be a binary label equal b with bits sorted according to s(·):

[b′]l = [b]s(l) for l = 1, . . . , L. (3.39)

3.3. Finding the BLDM Parameters 63

We have

P ∗B(b) = P ∗2
B (b′) (3.40)

f ∗M(b) = f ∗2
M (b′) (3.41)

which gives

D∗ =
∑

b∈{0,1}L
P ∗B(b) log2

P ∗B(b)
PA(f ∗M(b)) =

∑
b∈{0,1}L

P ∗2
B (b′) log2

P ∗2
B (b′)

PA(f ∗2
M (b′)) ,

=
∑

b∈{0,1}L
P ∗2
B (b′) log2

P ∗2
B (b′)

PA(f ∗2
M (b′)) = D∗2 (3.42)

where the second line follows by changing the order of summands in the sum over the
elements of {0, 1}L. Finally, (f ∗2

M , P ∗2
B) is a maximizer as well.

Theorem 3.2: Probabilistically Ordered Mapping is Optimal
Consider the target PMF PA on the alphabet A such that |A| = 2L. Without loss
of generality, assume that PA(a1) ≥ PA(a2) ≥ . . . ≥ PA(a2L), and let (f ∗M, P ∗B) be a
minimizer of the divergence (3.21). It follows that

P ∗B(f ∗M
−1(a1)) ≥ P ∗B(f ∗M

−1(a2)) ≥ . . . ≥ P ∗B(f ∗M
−1(aL)). (3.43)

Proof. The proof follows by contradiction. Suppose there is a minimizer (f ∗M, P ∗B) which
does not satisfy (3.43). It follows that there exists i < j such that PA(ai) > PA(aj) and
P ∗B(f ∗M−1(ai)) < P ∗B(f ∗M−1(aj)). We introduce the mapping f ∗1

M which is the same as f ∗M
but swaps ai and aj:

f ∗1
M
−1(ai) = f ∗M

−1(aj)
f ∗1

M
−1(aj) = f ∗M

−1(ai).

The difference between the divergence D∗ achieved for the parameters (f ∗M, P ∗B) and the
divergence D∗1 achieved for the parameters (f ∗1

M , P ∗B) is

D∗ −D∗1 = PB(ai) log2
PB(ai)
PA(ai)

+ PB(aj) log2
PB(aj)
PA(aj)

− PB(aj) log2
PB(aj)
PA(ai)

− PB(ai) log2
PB(ai)
PA(aj)

64 Chapter 3. Multi-Stream Distribution Matching

= (PB(aj)− PB(ai)) log2
PA(ai)
PA(aj)

> 0 (3.44)

where we used a shortened notation PB(a) for the term P ∗B(f ∗M−1(a)).

3.3.2. Finding the BLDM Target Distributions

In this section we focus on minimizing the divergence (3.21) for a fixed mapping fM

with respect to the bit-level PMFs. Even in this case, the problem is non-convex: the
constraints on the target probabilities in (3.21) are convex, but the divergence (3.21) is
non-convex in general, see Example 3.1. Consequently, we resort to heuristic optimiza-
tion to find the bit-level target distributions.

Grid Search

Gird search is a basic algorithm that can be used to optimize non-convex functions. It
evaluates the function for certain parameters (usually a Cartesian product of the one-
dimensional search sets for each parameter) and returns the parameters which achieve
the lowest value of the function. The complexity of the grid search is strongly connected
with the accuracy (denser search grid increases complexity and accuracy) and grows
exponentially with the number of parameters. The condition (3.30) on the bit-levels’
PMFs allows to reduce the search space.

Divergence Relaxation

The approach taken in [42] replaces the original objective function with a new function for
which we can find an analytical solution. Namely, we invert the order of the arguments
in the divergence. That is, instead of solving

min
PB1(0),...,PBL(0)

D
(

L∏
l=1

PBl

∣∣∣∣∣
∣∣∣∣∣PA

)
(3.45)

we solve
min

PB1(0),...,PBL(0)
D
(
PA

∣∣∣∣∣
∣∣∣∣∣
L∏
l=1

PBl

)
. (3.46)

The problems are different (divergence is not symmetric) and achieve the minima for
different arguments in general. However, if we know that the minimum for any of the

3.3. Finding the BLDM Parameters 65

problems is zero, the minimizer is the same for both problems. Thus, this approach
finds the optimum bit-level distributions when the distribution PA can be represented
as a product of binary distributions with the selected mapping fM.

This is an instance of a more general statement. Suppose the minimum (3.45) is ε1
and is achieved for a distribution P ∗1

B = ∏L
l=1 P

∗1
Bl
, and the minimum (3.46) is ε2 and

is achieved for a distribution P ∗2
B = ∏L

l=1 P
∗2
Bl
. Using Pinsker’s inequality [47] and the

triangle inequality, we have

‖P ∗1
B − PA‖ ≤

√
2ε1 (3.47)

‖P ∗1
B − PA‖ ≤

√
2ε2 (3.48)

‖P ∗2
B − P

∗1
B ‖ ≤

√
2ε1 +

√
2ε2. (3.49)

Thus, the solution of (3.45) is close to the solution of (3.46) if both minima are close to
zero. The inverted divergence in (3.46) can be written

D
(
PA||

L∏
l=1

PBl

)
= −H(PA)−

∑
a∈A

PA(a) log2

(
L∏
l=1

PBl
(
[f−1

M (a)]l
))

(3.50)

= −H(PA)−
L∑
l=1

∑
a∈A

PA(a) log2 PBl
(
[f−1

M (a)]l
)

(3.51)

= −H(PA)−
L∑
l=1

∑
b∈{0,1}

∑
a∈A

[f−1
M (a)]l=b

PA(a) log2 PBl(b) (3.52)

= −H(PA)−
L∑
l=1

∑
b∈{0,1}

Pr
[
[f−1

M (A)]l = b
]

log2 PBl(b) (3.53)

= −H(PA) +
L∑
l=1

EB′
l
∼[f−1

M (A)]l [− log2 PBl(B′l)] . (3.54)

The expectation terms are cross-entropies between the bit-level PMFs PB′
l
, l = 1, . . . , L,

induced by the PMF PA via the mapping fM and the optimization bit-level PMFs
PBl , l = 1, . . . , L. The cross entropy between two distributions QX , PX is

EX∼QX [− log2 PX(X)] = H(QX) + D (QX ||PX) (3.55)

66 Chapter 3. Multi-Stream Distribution Matching

which gives

D
(
PA||

L∏
l=1

PBl

)
= −H(PA) +

L∑
l=1

{
H(PB′

l
) + D

(
PB′

l
||PBl

)}
. (3.56)

Only the latter divergence terms depend on the choice of the optimization PMFs PBl , l =
1, . . . , L, and can be minimized by choosing

PBl(b) = PB′
l
(b) =

∑
a∈A

[fM(a)]l=b

PA(a) b ∈ {0, 1}, l = 1, . . . , L. (3.57)

Thus, PBl is a marginal distribution of the l-th bit-level induced by PA and fM.

Coordinate Descent

Recall the divergence in (3.21):

D (PB||PA) =
L∑
l=1
−H2(PBl(0)) + EB∼PB [− log2 PA (fM(B))] . (3.58)

Now consider a partial derivative with respect to the i-th parameter:

∂D
∂PBi(0) = log2

PBi(0)
1− PBi(0) +

∑
a∈A

[f−1
M (a)]

i
=0

L∏
l=1
l 6=i

PBl
([
f−1

M (a)
]
l

)
log2

1
PA(a)

−
∑
a∈A

[f−1
M (a)]

i
=1

L∏
l=1
l 6=i

PBl
([
f−1

M (a)
]
l

)
log2

1
PA(a)

and observe that only the first term depends on PBi(0). We conclude that a solution to

∂D
∂PBi(0) = 0 (3.59)

is a global minimum of the divergence (with respect to PBi(0)) since the partial derivative
is negative for PBi(0) smaller than the solution, and positive for PBi(0) greater than the
solution. Thus, the P ∗Bi(0) minimizing the divergence (the solution to (3.59)) is

P ∗Bi(0) = 1
1 + 2−α (3.60)

3.3. Finding the BLDM Parameters 67

with

α =
∑
a∈A

[f−1
M (a)]

i
=1

L∏
l=1
l 6=i

PBl
([
f−1

M (a)
]
l

)
log2

1
PA(a)

−
∑
a∈A

[f−1
M (a)]

i
=0

L∏
l=1
l 6=i

PBl
([
f−1

M (a)
]
l

)
log2

1
PA(a) . (3.61)

Equations (3.60) and (3.61) allow to formulate an iterative optimization procedure called
coordinate descent where we update only one coordinate (parameter) at a time. At each
step, we update successively all bit-level PMFs according to (3.60) and (3.61). Repeat
the steps until convergence. The algorithm converges because during each update we
decrease the objective function and the objective function (divergence) is non-negative.
The algorithm coverages to a local minimum in general.

Application Example: One-bit BLDM

Using the approach of Section 3.3.1 and coordinate descent optimization, one may find
good parameters for a BLDM for the so-called one-bit shaping schemes [48]. There only
one of the bit-level enters a DM and the other bit-levels remain unchanged, see Figure
3.2. One-bit shaping can achieve a significant shaping gain with a small complexity
increase. The condition (3.30) becomes

PB1(0) ≥ 0.5 = PB2(0) = . . . = PBL(0)

and there is effectively only one probabilistically ordered mapping fM, i.e., the NBC
mapping (the mapping fM,1 in Table 3.2). It remains to find the probability distribution
of the first bit-level, which can be solved by the coordinate descent. We have

P ∗B1(0) = 1
1 + 2−α (3.62)

where α is the average logarithm of probability ratio of the symbols with the first bit 0
and the symbols with the first bit 1 (average a-priori information of the first bit):

α = 1
2L−1

∑
b∈{0,1}L−1

log2
PA (fM ([0, b]))
PA (fM ([1, b])) . (3.63)

68 Chapter 3. Multi-Stream Distribution Matching

DM1

(target: PB1)

fM : {0, 1}3 → A

Mapping

U

U = [U1U2U3]

U1

l(U1) = k1

U2

l(U1) = n

U3

l(U1) = n

B̃1

l(B̃1) = n

Ã

Figure 3.2.: Bit-level DM for one-bit shaping for the alphabet A of size 8.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 510−6

10−5

10−4

10−3

10−2

10−1

100

H(PA)

D
(∏

L l=
1
P
B

l
||P

A

)

|A| = 4

|A| = 8

|A| = 16

|A| = 32

Figure 3.3.: The minimal achievable normalized divergence (3.7) of the BLDM (solid
lines) and the one-bit BLDM (dashed lines) for a half Maxwell-Boltzmann
target PMF, i.e., PA(a) ∝ e−va

2
, a ∈ A = {1, 3, 5, . . . , 2L+1 − 1}. The

entropy of the distribution is varied by changing the parameter v.

The minimal achievable divergence for the one-bit BLDM is presented in Figure 3.3.

3.4. Optimization Results
We apply now the optimization approach from the previous sections to find a BLDM
that achieves the minimal divergence (3.7). The results for different target PMFs and
alphabet sizes are presented in Figures 3.3 and 3.4. To plot the figures, we performed an
exhaustive search over probabilistically ordered mappings for bit-levels satisfying (3.30),
and for each mapping we used the the optimization algorithms from the previous section.
All algorithms achieve similar results. Interestingly, coordinate descent performed the

3.4. Optimization Results 69

1 3 5 7 9 11 13 150

0.05

0.1

0.15

0.2

a

P
(a
)

PA

gird s. D= .005412

d. relax. D= .005364

c. desc. D= .005360

(a) PA(a) ∝ e−0.005a2

1 3 5 7 9 11 13 150

0.1

0.2

0.3

0.4

a

P
(a
)

PA

gird s. D= .028792

d. relax. D= .030326

c. desc. D= .028669

(b) PA(a) ∝ e−0.02a2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 310

0.02

0.04

0.06

0.08

0.1

a

P
(a
)

PA

gird s. D= .004117

d. relax. D= .003789

c. desc. D= .003788

(c) PA(a) ∝ e−0.001a2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 310

0.05

0.1

0.15

a

P
(a
)

PA

gird s. D= .022251

d. relax. D= .021798

c. desc. D= .021476

(d) PA(a) ∝ e−0.003a2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.2

0.4

a

P
(a
)

PA

gird s. D= .009435

d. relax. D= .007773

c. desc. D= .007618

(e) PA(a) ∝ 1
a 0.9a

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 310

0.05

0.1

0.15

0.2

a

P
(a
)

PA

gird s. D= .000973

d. relax. D=0

c. desc. D=0

(f) PA(a) ∝ e−0.1a

Figure 3.4.: Empirical distributions (and corresponding divergences in the legend) of a
single symbol generated by a BLDM for different target distributions PA.

70 Chapter 3. Multi-Stream Distribution Matching

best in all scenarios. Coordinate descent converges to a local minimum, which suggests
that the local minimum for the tested distributions is the global minimum. To check
this, a grid search returned distributions which are very close to the distributions found
by coordinate descent. The performance of the grid search is limited by granularity.
Coordinate descent used 100 iterations, and is much faster than the grid search which
evaluated the divergence at about 106 points for each mapping.

Figure 3.3 presents the divergence obtained via optimization for a range of Maxwell-
Boltzmann target distributions with different entropies. For low entropy, the target
distribution effectively becomes binary and the BLDM can generate the distribution ex-
actly. For intermediate entropy values, the divergence stays around 0.02 and 0.05 while
slowly increasing. The increase is because the number of free parameters for the product
distribution PB = ∏L

l=1 PBl grows linearly with the number L of the bit-levels, while the
number of free parameters for an arbitrary distribution PA grows exponentially. For
high entropy values, i.e., values close to the maximum entropy for a given alphabet size,
the divergence decreases. This is expected, since in this case the Maxwell-Boltzmann
distribution approaches the uniform distribution, which can be factored into a product
of binary distributions, i.e., would have zero divergence. After testing different alpha-
bet sizes and distribution parameters, we conjecture that the smallest divergence for
Maxwell-Boltzmann distributions can be obtained with a natural binary code (NBC)
mapping, see the mapping fM,1 in Table 3.2. Theorem 3.3 states necessary and suffi-
cient conditions for the NBC mapping to be a probabilistically ordered mapping. The
NBC mapping was also used for the BLDM in [42–44]. Finally, the dashed lines in the
plot in Figure 3.3 represent the divergences for the one-bit BLDM. For low-entropy, the
target distribution PA accumulates most of the probability mass on the symbol 1, and
the divergence goes to infinity since the one-bit BLDM has to put non-zero probability
mass on at least half of the alphabet. For high entropy values for a given alphabet size,
i.e., log2 |A| − 0.5 ≤ H(PA) ≤ log2 |A|, one-bit BLDM performs well.

Figure 3.4 presents the distributions obtained for different target PMFs. For better
distinction, the target distribution PA is plotted with a dotted line (although it is dis-
crete). The obtained divergence is low and suggest that BLDM can successfully improve
the throughput or complexity of distribution matching. All figures except Figure 3.4(e)
were obtained using the NBC mapping. Finally, Figure 3.4(f) was generated with an
exponential target distribution that can be represented as a product distribution, and
thus zero divergence was obtained by the relaxed divergence and the coordinate descent
optimization algorithms.

3.4. Optimization Results 71

Theorem 3.3: Probabilistically Ordered NBC Mapping
Consider L independent bits B1, . . . , BL with corresponding probabilities PB1(0), . . . ,
PBL(0), and the joint PMF PB = ∏L

l=1 PBl . The bit labels bi, i = 1, . . . , 2L, ordered
according to NBC with the most significant bit first, i.e., [b1, b2, . . . , b2L] = [0 . . . 00,
0 . . . 01, . . . , 1 . . . 11]. These vectors have non-increasing probabilities, i.e., PB(bi) ≥
PB(bi+1) if and only if

∀l ∈ {1, . . . , L} LLR(Bl) ≥
L∑

i=l+1
LLR(Bi) (3.64)

where LLR(Bl) := log2

(
PBl (0)
PBl (1)

)
is the log-likelihood ratio (LLR) of the bit Bl.

Proof. See Appendix B.

3.4.1. Normalized Divergence

We now compare a symbol-level DM with the parallelized architectures BLDM and
SPDM in Figure 3.1 which use the constituting DMs of the same type as the symbol-level
DM. We consider two DM implementations: the CCDM and the enumerative approach
from [45] that we refer to as Enumerative Distribution Matcher (EDM). The EDM is
a weight-constrained DM similar to the MCDM from Section 2.4.1, but it has lower
memory requirements for large alphabets. The alphabet size is 16, which corresponds
to L = 4 bit-levels and L = 4 constituting DMs in the BLDM. We use four constituting
DMs for the SPDM as well.

CCDM-based Architectures

Figure 3.5 presents the results for the symbol-level CCDM (denoted by CCDM) and the
parallelized architectures. Figure 3.5(a) shows that the BLDM has higher matching rate
than the symbol-level CCDM. The effect is particularity pronounced for shorter output
sequences. The behavior is because the bit-level constant-composition constraints are
more relaxed that the symbol-level constant-composition constraint, see Section 3.2.1.
We also observe that the rate of the SPDM corresponds to the rate of the symbol-level
CCDM with length n

L
. This follows in a similar way as the divergence result from (3.9).

Figure 3.5(b) presents the normalized divergence of the DMs. For output lengths below
2000, the BLDM achieves lower normalized divergence than the symbol-level CCDM.

72 Chapter 3. Multi-Stream Distribution Matching

101 102 103 104

1

2

3

n

k
/n

H(PA)

CCDM

SPDM

BLDM

(a) Matching rate

101 102 103 104

10−2

10−1

100

n

1 n
D
(P

Ã
‖P

n A
)

CCDM

SDPM

BLDM

(b) Normalized divergence

101 102 103 104
0

20

40

60

n

N
u
m
.
M

A
C

o
p
.

n

CCDM

SPDM

BLDM: DM1

BLDM: DM2

BLDM: DM3

BLDM: DM4

(c) Encoder operations per symbol

Figure 3.5.: Results for the CCDM and the parallelized CCDM-based DMs for a half
Maxwell-Boltzmann target distribution PA from Figure 3.4(d), i.e., PA(a) ∝
e−0.003a2

, a ∈ A = {1, 3, 5, . . . , 31}.

3.4. Optimization Results 73

This is the length region where the performance of the CCDM is dominated by the rate-
loss and the BLDM achieves lower rate-loss due to a larger implementation codebook.
For larger values of n, the normalized divergence of the BLDM approaches the lower-
bound (3.7) which equals ≈ 0.0215 for this target PA (see Figure 3.4(d)). Finally, the
divergence of the SPDM corresponds to the divergence of the symbol-level CCDM with
length n

L
, as expected from (3.9).

Figure 3.5(c) presents the number of multiply–accumulate (MAC) operations per out-
put symbol for each of the DMs. A MAC operation is defined as

a← a+ b× c (3.65)

and is a key figure of merit of computational complexity for a digital signal processor
(DSP). The ACDM implementation described in Section 2.2 performs three different
types of integer operations: multiplication, addition, and comparison. For simplicity
we consider all these operations as MAC operations and count the total number of
performed operations during encoding (or decoding). The number of MAC operations
at the encoder and decoder are similar. Finally, we average the number of operations
for encoding 105 random input sequences and plot the results in Figure 3.5(c).
First, consider the symbol-level CCDM and the SPDM. For the SPDM we present the

number of MAC operations for a single constituting DM normalized by the total output
length n. Thus, the number of MAC operations per output symbol is L times lower for
the SPDM. This is because each constituting DM generates only n

L
symbols at the output.

Observe in Algorithms 2.1 and 2.2 that the number of operations increases linearly with
the length of the output sequence (for each extra symbol the algorithm searches for the
appropriate interval). Thus, when a separate DSP core can be employed for each of the
constituting DMs, the SPDM throughput will be approximately L times higher than for
the symbol-level CCDM.
Next, consider the symbol-level CCDM and the BLDM. The output length of the

constituting DMs is the same as for the symbol-level CCDM, so the reduction in the
number of MAC operation is not caused by the shorter output sequence as for the SPDM.
For the BLDM, the constituting DMs operate on binary alphabets which means that
only one comparison has to be performed to find the next interval, see Algorithms 2.1
and 2.2. For the symbol-level CCDM, in the worst case we need 2L − 1 comparisons to
find the next interval. Naturally, the bit-levels that have higher entropy (more uniform
distribution) perform more operations. For instance, a constituting DM with the output
composition [1, n − 1] can generate the zeros suffix of the sequence once the 1-bit was

74 Chapter 3. Multi-Stream Distribution Matching

generated.

Architectures Based on Weight-Constrained DM

Figure 3.6 presents the results for the symbol-level EDM [45] (denoted by EDM) and the
parallelized architectures. Figure 3.6(a) shows that the BLDM has lower matching rate
than the symbol-level EDM. The effect is particularity pronounced for short lengths.
The behavior is because the bit-level weight constraints are more strict that the symbol-
level weight constraint, see Section 3.2.2. We also observe that the rate of the SPDM
corresponds to the rate of the symbol-level EDM with length n

L
. This follows in a similar

way as the divergence result from (3.9). Finally, we note that the matching rates are
much higher than the rates obtained for the CCDM-based architectures.
Figure 3.6(b) presents the normalized divergence of the DMs. The BLDM achieves

higher normalized divergence than the symbol-level EDM. This is caused partially by
the lower matching rate of the BLDM. However, the BLDM with the constituting EDMs
achieves better divergence than the BLDM with the constituting CCDMs in the previous
section. For larger values of n, the normalized divergence of the BLDM approaches the
lower-bound (3.7) which is ≈ 0.0215 for this target PA (see Figure 3.4(d)). Finally, the
divergence of the SPDM corresponds to the divergence of the symbol-level EDM with
length n

L
, as expected from (3.9).

The EDM needs to store a trellis of size nW0(wm + wp), where W0 is the maximum
output sequence weight, and wn, wp are precision parameters that we set to wm = wp =
30 bits. Figure 3.6(c) presents the memory storage requirements for each of the DMs.
Naturally, the constituting DMs in the SPDM can use the same trellis since they are
identical. For the BLDM, only the largest trellis needs to be stored. The constituting
DMs for each bit-level can simply start processing the trellis from different starting
nodes to generate sequences from different model codebooks. We observe that the storage
requirements for the BLDM are indeed lower than for the SPDM, however the normalized
divergence is worse as well. Thus, one could use the SPDM with higher parallelization
factors to reduce the memory requirements even further.

3.4. Optimization Results 75

101 102 103

3.3

3.4

3.5

3.6

3.7

n

k
/n

H(PA)

EDM

SPDM

BLDM

(a) Matching rate

101 102 103
10−3

10−2

10−1

100

n

1 n
D
(P

Ã
‖P

n A
)

EDM

SDPM

BLDM

(b) Normalized divergence

101 102 103
102

103

104

105

106

107

n

M
em

or
y
[b
it
s]

EDM

SPDM

BLDM: DM1

BLDM: DM2

BLDM: DM3

BLDM: DM4

(c) Memory storage requirements

Figure 3.6.: Results for the EDM and the parallelized EDM-based DMs for a half
Maxwell-Boltzmann target distribution PA from Figure 3.4(d), i.e., PA(a) ∝
e−0.003a2

, a ∈ A = {1, 3, 5, . . . , 31}

4
Distribution Matching and Efficient
Communication

4.1. Probabilistic Amplitude Shaping for AWGN
Channel

In this section we evaluate the performance of a PAS system with the CCDM and
MCDM. As observed in Chapter 2, the MCDM achieves lower divergence and higher
matching rate than CCDM and this should contribute to a better PAS system. A
lower divergence allows to operate closer to the channel capacity, see [19, Eq. 5]. A
higher matching rate allows the MCDM to use a "more shaped" distribution. The more
informative prior distribution helps the channel decoder and should result in a lower
frame error rate (FER).
Figure 4.1 presents FERs for classic BICM with uniform transmit distribution (U-

BICM), PAS with CCDM (PAS-CC), and PAS with MCDM (PAS-MC). The curve
groups correspond to transmission rates of 1.70, 3.40, 5.10, 6.80 bit per channel use
(b/CU), respectively. The effective coding rate of a PAS scheme is a product of the rate
of the channel code (equal to 0.85) and the matching rate of a DM (equal to 0.5). Thus,
the effective coding rate for the PAS schemes is 0.425. We compare the PAS schemes
with U-BICM using exactly the same channel code and lower order modulation (denoted
by U-BICM 0.85), and U-BICM using the same constellation and the same effective

78 Chapter 4. Distribution Matching and Efficient Communication

coding rate (denoted by U-BICM 0.425). We use the two U-BICM baselines since the
former U-BICM scheme has longer codewords (in terms of symbols), which may affect the
performance, and the latter U-BICM scheme uses a different LDPC code, which also may
have different performance. Accordingly, all schemes have the same transmission rate
and use 100 iterations of belief propagation at the decoder. The PAS schemes and the U-
BICM scheme with the code rate 0.425 use 16-, 64-, 256-, and 1024-QAM constellations
for the transmission rates of 1.70, 3.40, 5.10, 6.80 b/CU respectively. The U-BICM
scheme with the code rate 0.85 uses the QPSK, 16-, 64-, 256-QAM constellations for the
transmission rates of 1.70, 3.40, 5.10, 6.80 b/CU respectively.

Figure 4.1a presents the FER curves for a codeword of 360 bits. The PAS-MC scheme
performs better than the PAS-CC scheme for all transmission rates. E.g., at the FER of
10−3, the advantage of PAS-MC is 0.01, 0.27, 0.91, and 2.75 dB for transmission rates
of 1.70, 3.40, 5.10, 6.80 b/CU respectively. The gains are greater for short codewords
since the gap in matching rate between the MCDM and CCDM is greater for short
output sequences, e.g., see Figure 2.6. The gap in normalized divergence seems to offer
a small advantage according to [19, Eq. 5], e.g., reducing the divergence by 10−2 reduces
the gap to the capacity by 10−2 bits per codeword. The PAS-CC performs worse than
the U-BICM baseline for 256-, and 1024-QAM. This is due to increasing rate-loss of
the CCDM for larger alphabets. However, PAS-MC performs better than the U-BICM
baselines for all transmission rates. This demonstrates the necessity of using efficient
distribution matching for short transmission frames.

Figure 4.1b presents the FER curves for a codeword of 2400 bits. The PAS-MC scheme
performs better than the PAS-CC scheme for all transmission rates. E.g., at the FER of
10−3, the advantage of PAS-MC is 0.015, 0.045, 0.195, and 0.5 dB for transmission rates
of 1.70, 3.40, 5.10, 6.80 b/CU respectively. The gains are lower than for the 360-bits
codeword. Both PAS schemes beat the U-BICM baselines.

Figure 4.1b presents the FER curves for a codeword of 9600 bits. Due to increas-
ing complexity of MCDM, we implemented the PAS-MC scheme with an enumerative
DM from [45]. The PAS-MC scheme performs better than the PAS-CC scheme for all
transmission rates. E.g., at the FER of 10−3, the advantage of PAS-MC is 0.005, 0.01,
0.06, and 0.16 dB for transmission rates of 1.70, 3.40, 5.10, 6.80 b/CU respectively. The
advantage is rather small and comes with increased complexity when compared to the
PAS-CC scheme. Both PAS schemes beat the U-BICM baselines.

4.1. Probabilistic Amplitude Shaping for AWGN Channel 79

4 6 8 10 12 14 16 18 20 22 24 26 2810−4

10−3

10−2

10−1

100

ES/N0 [dB]

F
E
R

U-BICM 0.85 U-BICM 0.425 PAS-CC PAS-MC

(a) Codeword length = 360 bits

4 6 8 10 12 14 16 18 20 22 24 26 2810−4

10−3

10−2

10−1

100

ES/N0 [dB]

F
E
R

(b) Codeword length = 2400 bits

4 6 8 10 12 14 16 18 20 22 24 26 2810−4

10−3

10−2

10−1

100

ES/N0 [dB]

F
E
R

(c) Codeword length = 9600 bits

Figure 4.1.: Frame error rates for transmission rates of 1.70, 3.40, 5.10, 6.80 bits per
channel use, respectively.

80 Chapter 4. Distribution Matching and Efficient Communication

4.2. Efficient Communication for Rayleigh Block
Fading Channel

This section is based on [49] and considers communication schemes for a Rayleigh Block
Fading Channel (RBFC). The fading experienced by consecutive symbols of wireless links
is usually correlated and the channel can be predicted to some extent. The RBFC models
predictability via constant fading within a block of T symbols, and channel fluctuations
via fading that changes independently from block to block [50]. We consider the RBFC
where the fading coefficients are unknown to the transmitter and the receiver, i.e., the
channel is non-coherent and the transmitter and the receiver have no channel state
information (CSI).
Consider the Single Input-Single Output (SISO) RBFC with T ≥ 2. The capacity-

achieving coding scheme applies discrete per-block power modulation and, conditioned
on the block power, transmits isotropically distributed vectors [50]. Various other sig-
naling strategies have been studied in the literature. Pilot schemes, where the receiver
estimates the channel from training symbols, were examined in [51]. Unitary Space-
Time Modulation (USTM), proposed in [52], follows the information-theoretic guidelines
from [50] but does not use per-block power modulation. Finally, Gaussian IID input sig-
nals, studied in [53], are optimal when the receiver knows the channel, and perform well
for large T in general.

Channel Model

A SISO RBFC has fading that remains the same for a block of T consecutive symbols
and that changes between blocks in an independent manner. The parameter T represents
the channel coherence time. The channel fading coefficient H is drawn independently
for each block from a circular-symmetric zero-mean unit-variance complex Gaussian
distribution, i.e., H ∼ NC(0, 1). The channel input-output relation is

Y = H
√
γX +N (4.1)

where X and Y are vectors with T transmitted and received symbols, respectively, and
N is a vector of T IID RVs ∼ NC(0, N0). We fix N0 = 1 and normalize the signal via

E
[
‖X‖2

]
= T (4.2)

4.2. Efficient Communication for Rayleigh Block Fading Channel 81

so that γ represents the average signal-to-noise ratio (SNR) for a single received symbol.

Input Signal

1) Capacity-Achieving Input Signal: The input that achieves capacity over a non-
coherent SISO RBFC can be written as

X = ΦV (4.3)

where Φ is a complex vector of dimension T and V is a real non-negative scalar RV,
with Φ and V being independent [50]. The distribution (4.3) is commonly referred to
as a product form. The complex vector Φ is equally likely to point in any direction
in T -dimensional complex space, i.e., Φ is uniformly distributed on a T -dimensional
complex sphere with radius

√
T . The V that achieves capacity is discrete [50]. Because

Φ is isotropical, each Xi, for i = 1, . . . , T, has the same marginal distribution. We thus
have

E
[
‖X‖2

]
= E

[
T∑
i=1
|Xi|2

]
= TE

[
V 2
]
. (4.4)

The power constraint (4.2) is met as long as E [V 2] = 1.
2) Discrete Product Form: The Φ in (4.3) is a continuous RV on the T -dimensional

complex sphere. In practice, we must discretize X by discretizing Φ. To this end, we
sample a T -dimensional complex sphere with radius

√
T by choosing the following points

Θ = [Θ1, . . . ,ΘT] (4.5)

where Θi, i = 1, . . . , T, are IID uniformly distributed RVs on the QPSK alphabet

A4 = {1,−1, j,−j} .

It is clear that Θ lies on a T -dimensional complex sphere with radius
√
T because

ΘΘ† = T .
The next step is to choose V . We choose an on-off distribution so that the power

constraint (4.2) is met:

V =


0, with probability 1− P1

v1 =
√

1
P1
, with probability P1

(4.6)

82 Chapter 4. Distribution Matching and Efficient Communication

where P1 is a parameter that depends on the SNR. We can write the discrete input
signal as

X =


0, with probability 1− P1√

1
P1

Θ with probability P1.
(4.7)

Computing the Mutual Information

The methods for computing the mutual information for RBFCs presented in [50,53] rely
on the rotational invariance of X, i.e., X ∼ XU for any unitary matrix U. For such
input signals closed-form expressions for the PDF of the channel output are available in
[54,55], which allows to estimate the mutual information using MC techniques. However,
a discrete signal is not rotationally invariant.
We present a nested MC approach tailored to estimate the mutual information over

SISO RBFCs with X as in (4.7). Consider the identity

I(Y ;X) = h (Y)− h (Y |X) (4.8)

where h denotes differential entropy. From (4.1) observe that if X = x, then Y has a
complex circular-symmetric Gaussian distribution with 0 mean and covariance matrix
I + γx†x. Therefore, we have

h (Y |X) = E
[
log det

(
πe
(
I + γX†X

))]
(a)= E

[
log

(
1 + γXX†

)]
+ T log πe

(b)= P1 log
(

1 + γ
T

P1

)
+ T log πe (4.9)

where (a) follows by Sylvester’s determinant identity, i.e., det(In + y†x) = det(1 +
xy†), ∀x,y ∈ Cn, and (b) follows by (4.7).
Next, we have

h (Y) = −EY [log p(Y)] (4.10)

which can be evaluated by MC averaging with respect to p(y). However, a direct com-
putation of p(y) as a marginal of p(y,x) is infeasible even for short block lengths as it
involves summing over all possible input vectors, i.e., we have

p(y) =
∑
x

P (x)p(y|x) (4.11)

4.2. Efficient Communication for Rayleigh Block Fading Channel 83

and the number of x grows exponentially with T . On the other hand, Y conditioned
on V and H is a vector of IID RVs, which can be seen from (4.1) and (4.7). In this case
the summation (4.11) can be simplified.

First, we expand

p(y) = Pr(V=0)p(y|V=0) + Pr(V=v1)p(y|V=v1)
(a)= (1− P1) 1

πT
e−‖y‖

2 + P1p(y|V=v1)
(4.12)

where (a) follows by (Y |V=0) ∼ NC(0, I). We next compute the term p(y|V=v1). For
convenience, we denote the condition V= v1 by writing v1 after the conditioning mark.
By further conditioning on H, we have

p(y|v1) = EH [p(y|v1, H)]

= EH
[
T∏
i=1

p(yi|v1, H)
]

= EH

 T∏
i=1

∑
θi∈A4

P (θi)p(yi|θi, v1, H)


= EH

 T∏
i=1

∑
θi∈A4

1
4

1
π
e−|yi−H

√
γθiv1|2

 . (4.13)

We define the argument of the expectation in (4.13) as

f(y, h) =
T∏
i=1

∑
θi∈A4

1
4πe

−|yi−h
√
γθiv1|2 . (4.14)

The complexity of computing (4.14) grows linearly with respect to T and the alphabet
size of the symbols Θi, i = 1, . . . , T . To evaluate the expectation in (4.13) we apply MC
averaging.
Finally, using (4.10), (4.12) and (4.13) we formulate a nested MC routine for evaluating

h (Y), which is presented in Algorithm 4.1, with f(y, h) being the function (4.14).
Using Algorithm 1, (4.9) and (4.8), we estimate the mutual information achieved by the
proposed discrete signal.
Our approach works well for moderate block lengths, e.g., T = 50, whereas compu-

tation with (4.11) would be impossible (each sum would require 2100 additions). The

84 Chapter 4. Distribution Matching and Efficient Communication

accuracy can be increased at the cost of computing time by increasing the number of
samples N1, N2. For the results in the next section, the number of samples was chosen
so that the relative error of the mutual information estimates lies within 3% with prob-
ability not smaller than 90%. The presented algorithm can be adapted for any discrete
IID signal X.

Algorithm 4.1 Evaluation of h (Y)
Input: N1, N2, T

Output: An estimate of h(Y)
1: s← λ, x(λ)← 0, y(λ)← 1
2: for i = 1 to N1 do
3: generate yi using (4.1)
4: for j = 1 to N2 do
5: generate hj ∼ NC(0, 1)
6: aj ← f(yi, hj)
7: end for
8: p̂(yi|v1)← 1

N2

∑N2
j=1 aj

9: p̂(yi)← (1− P1) 1
πT

exp(−‖yi‖2) + P1p̂(yi|v1)
10: bi ← − log(p̂(yi))
11: end for
12: return 1

N1

∑N1
i=1 bi

Results

We compare our discrete product form with several other input distributions from the
literature. The rates are presented versus the SNR per information bit, which is

Eb
N0

= γ
1
T
I(X;Y) .

1) Perfect CSI Capacity: Gaussian IID input signals achieve capacity when the re-
ceiver has CSI. In this case, the capacity is independent of the block length T and
is

C(γ) = EH
[
log(1 + γ|H|2)

]
. (4.15)

The perfect CSI capacity is an upper-bound to non-CSI rates.

4.2. Efficient Communication for Rayleigh Block Fading Channel 85

2) Gaussian IID Modulation: Gaussian IID inputs do not achieve capacity when the
receiver has no CSI. We present the rate estimates computed by the algorithm proposed
in [53].
3) On-Off Gaussian IID Modulation: The schemes from Sections 4.2 and 4.2 below

are on-off schemes. To make a fair comparison, we consider an on-off Gaussian signaling,
i.e., we use

X =


0, with probability 1−Q1√

1
Q1
W with probability Q1

(4.16)

where W ∼ NC(0, I) and Q1 is chosen to maximize mutual information. A modified
version of the algorithm from [53] is used to compute the rates.
4)Unitary Space-Time Modulation: Unitary Space-Time Modulation (USTM) as in

[52] has
X = Φ (4.17)

where Φ is an isotropically distributed complex vector of radius
√
T . The algorithm

from [52] is used to compute the mutual information.
5)On-Off Unitary Space-Time Modulation: We use the product form (4.3) and we

choose V to be on-off distributed as in (4.6), which yields

X =


0, with probability 1− P1√

1
P1

Φ with probability P1

(4.18)

where Φ is an isotropically distributed complex vector of radius
√
T and P1 is chosen to

maximize mutual information. This scheme can also be seen as an isotropical counterpart
of the signal (4.7). The algorithm from [50] is used to compute the mutual information.
6)Discrete Product Form: We use the signal (4.7) and the P1 obtained from the

optimization for the on-off unitary space-time modulation. Although better P1 may
be found, this approach is much faster than performing the optimization with respect
to mutual information estimate for the discrete scheme, i.e., using Algorithm 4.1 in
the objective function. After fixing P1, Algorithm 4.1 is used to estimate the mutual
information.
7)Pilot Scheme: We consider a pilot based scheme, where pilot symbols are inserted

during each fading block. At the receiver the pilot symbols are used to estimate the
channel and the estimate is used to decode the data. The scheme is allowed to use
pilot-power-boosting, i.e., pilot symbols can have different power than data symbols. For

86 Chapter 4. Distribution Matching and Efficient Communication

0 2 4 6 8 10 120

0.5

1

Eb/N0 [dB]

R
at
e
[b
/C

U
]

CSI Capacity On-Off USTM Disc. Prod. Form Gaussian IID
On-Off Gaussian USTM Pilot Scheme

−1 0 1 2 30

0.5

1

Eb/N0 [dB]

R
at
e
[b
/C

U
]

(a) T = 2 (b) T = 50

Figure 4.2.: Information rates for block length T = 2 and T = 50.

the SISO RBFC, using one pilot symbol per fading block maximizes a lower-bound on
the capacity [51]. The plotted rate, also presented in [51], is a lower-bound to the rate
achieved by the best pilot scheme with separate recovery of pilots and data.

Discussion

Figures 1 and 2 present results for T = 2 and T = 50 respectively. The gap between
the CSI capacity and the presented schemes decreases with increasing block length, and
the schemes that use isotropically distributed alphabets perform similarly at high SNR.
The discrete product form achieves rates comparable to its isotropical counterpart up to
0.4 bits per channel use (b/CU) and saturates approximately at 1 b/CU and 2 b/CU,
respectively.
1)Using the 0-symbol: USTM achieves the minimum Eb/N0 at a rate of about 0.3

b/CU and below this rate becomes power inefficient. Introducing non-zero probability
mass at the 0-symbol improves power efficiency. A significant improvement of the on-off
USTM over the standard USTM occurs for rates below 1.5 b/CU for T = 2 and for rates
below 0.25 b/CU for T = 50. The same behavior follows for Gaussian IID and on-off
Gaussian signaling. The importance of using the 0-symbol is known in the low-SNR

4.3. Probabilistic Amplitude Shaping for Rayleigh Block Fading Channel87

regime [56,57]. The effect is relevant also for higher SNR for small T .
2)On-a-sphere signal: For T = 2 a gap between the on-off Gaussian modulation and

the on-off USTM can be observed. Both signals are on-off schemes so the gain is due
to the on-a-sphere structure of the on-off USTM during the on-cycle. For rates below
0.15 b/CU, the discrete product form, which uses a sampled sphere signal during the
on-cycle also performs better than the on-off Gaussian signaling.
3)Power efficiency: The presented plots for the on-off USTM and discrete product

form coincide in the wideband regime. We are interested whether the schemes are first
order optimal, i.e., whether they can achieve the highest power efficiency achieved by
Gaussian inputs with CSI, which is given by (Eb/N0)min = −1.59 dB. The scheme from
Section 4.2 is a peaky flash signaling (if P1 → 0 as γ → 0), i.e., the mixture of a
probability distribution concentrating at 0 and a probability distribution that migrates
to infinity as SNR vanishes [56].
In [56, Thm 5] it is shown that flash signaling achieves (Eb/N0)min = −1.59 dB over

the RBFC. The scheme from Section 4.2 is optimized with respect to P1, so it also
achieves (Eb/N0)min = −1.59 dB. In addition, [56, Thm 7] states that flash signaling is
needed to achieve −1.59 dB. We conclude that the schemes from Sections 4.2 and 4.2
are types of flash signaling and achieve −1.59 dB as they use the same P1. The argument
is consistent with our results that show that P1 tends to 0 as the SNR decreases.
4)Wideband slope: The curves of the isotropical product form and discrete product

form flatten as they approach −1.59 dB. In fact, their wideband slope S0 (the slope of
the rate curve at (Eb/N0)min) equals 0. In [56, Thm 16] it is shown that flash signaling
has S0 = 0.
The non-CSI capacity must also achieve the power efficiency of −1.59 dB, so it must

be a form of flash signaling with S0 = 0. In this sense, the on-off USTM and discrete
product form are first and second order optimal as they achieve the same power efficiency
and wideband slope as the non-CSI capacity [56].

4.3. Probabilistic Amplitude Shaping for Rayleigh
Block Fading Channel

In this section we evaluate performance of simple communication schemes for RBFCs.

88 Chapter 4. Distribution Matching and Efficient Communication

4.3.1. Channel Estimation and Demodulation

Consider a transmitter as in Figure 1.3 and a RBFC with block length T . The receiver
first demodulates the received symbols, i.e., computes the probability of the codewords’
bits given the received symbols, and then the channel decoder uses the probabilities to
recover the transmitted massage. In the presence of block-fading, one usually transmits
pilot symbols to simplify the receiver design and this effectively reduces the transmission
rate. We consider a receiver which estimates the channel and uses the estimate as if it
was correct (which transfers the estimation noise to the additive noise). When pilot-
power-boosting is allowed, it suffices to use one pilot symbol per block [51]. We denote
the power used for pilot transmission by γP and the power for data transmission by γD.
The channel input-output relation for the pilot-based commutation system is

Y = H
√
γX +N (4.19)

[Y1, Y2, . . . , YT] = H[√γP ,
√
γDX2, . . . ,

√
γDXT] + [N1, N2, . . . , NT] (4.20)

with E[‖X‖2] = T . To satisfy the power constraint as in (4.1)-(4.2) it follows that

γP + (T − 1)γD = Tγ. (4.21)

Since Y1 and H are jointly Gaussian, the conditional distribution of H given that Y1 = y1

is
(H|Y1 = y1) ∼ NC

(√
γP

1 + γP
y1,

1
1 + γP

)
. (4.22)

We introduce the conditional mean channel estimate of H

µH|Y1 =
√
γP

1 + γP
y1

and the estimation error
H̃ ∼ NC

(
0, 1

1 + γP

)
.

Using the knowledge obtained from the pilot signal, we can see the new channel as

[Y]T2 = µH|Y1 [X]T2 + H̃ [X]T2 + [N]T2︸ ︷︷ ︸
noise

. (4.23)

The receiver knows µH|Y1 and treats the value as if it was correct (we do not update the
estimate). We process the symbols independently neglecting the fact that all symbols

4.3. Probabilistic Amplitude Shaping for Rayleigh Block Fading Channel89

have the same estimation error H̃. This corresponds to treating the two latter expressions
on the right-hand-side of (4.23) as independent additive noise. The demodulator first
computes the posterior symbol probabilities

PXt|Yt(x|yt), x ∈ X (4.24)

for t = 2, . . . , T , and uses the symbol probabilities to get the bit probabilities for BMD
as in (1.20). Note that in the channel model (4.23), Yt conditioned on Xt is Gaussian.
Thus, the symbol probabilities (4.24) are straight-forward to compute using

PXt|Yt(x|yt) ∝ PXt(x)pYt|Xt(yt|xt)

= PXt(x)NC

(
yt; µH|Y1x, 1 + |x|2

1 + γP

)
(4.25)

where NC (x;µ, σ2) denotes the value of the PDF of a univariate complex circular-
symmetric Gaussian RV with mean µ and variance σ2 evaluated at point x.
A standard BICM system would use the block channel (4.19) several times and com-

bine the several channel uses into one codeword. For each fading block, the receiver
separately estimates the channel and computes the posterior bit probabilities. Finally,
the posterior bit probabilities from several fading blocks are fed to the channel decoder.
Note that the demodulation step for a PAS system and a standard BICM system is the
same. The only difference is (4.25) where PAS uses a nonuniform PMF PXt , as opposed
to the standard BICM which uses a uniform PXt .

4.3.2. Results

Figure 4.3 presents FERs for classic BICM with a uniform transmit distribution (U-
BICM) and PAS with CCDM (PAS-CC) for the following channels: AWGN, RBFC
(denoted by RBF on the figure), RBFC when the receiver perfectly estimates the fading
coefficient H (denoted by RBF CSI on the figure), i.e., one slot is allocated to pilot
transmission and the receiver knows H exactly. Thus the performance of a scheme
for the RBF CSI channel constitutes an upperbound to the performance for the RBF
channel. Both schemes use the same codeword length, constellation size, and effective
coding rate. One pilot symbol is used for non-AWGN channels and all schemes have the
same transmission rate. The transmission rate for the non-AWGN channels includes the
pilot overhead.

90 Chapter 4. Distribution Matching and Efficient Communication

0 2 4 6 8 10 1210−4

10−3

10−2

10−1

100

1 3 5 7 9 11

AWGN

RBF CSI
T=9

RBF CSI
T=2RBF

T=9

RBF
T=2

ES/N0 [dB]

F
E
R

U-BICM PAS-CC

(a) Transmission rate = 0.89 b/CU

9 10 11 12 13 14 15 16 17 18 19 2010−4

10−3

10−2

10−1

100

AWGN

RBF CSI
T=21

RBF CSI
T=5

RBF
T=21

RBF
T=5

ES/N0 [dB]

F
E
R

(b) Transmission rate = 3.0 b/CU

Figure 4.3.: Frame error rates for different channels.

4.3. Probabilistic Amplitude Shaping for Rayleigh Block Fading Channel91

Figure 4.3a presents results for the transmission rate 0.89 b/CU. All schemes use
16 QAM modulation and a codeword of length 2400 bits. For these parameters the
performance of PAS-CC should be very close to that of PAS-MC from Section 4.2, thus
we evaluate only the PAS-CC scheme. The PAS-CC scheme uses a channel code with
coding rate 0.5 and adjusts the matching rate according to the transmission rate. PAS-
CC and U-BICM perform the same for the AWGN channel and the PAS-CC scheme
is slightly worse for the channels with CSI. When no CSI is available, the gap between
the U-BICM and PAS-CC performances increases. The curves for larger value of T
are flat because the codeword compromises fewer fading blocks and it is less likely that
blocks with unfavorable fading get averaged out by the blocks with favorable fading.
The curves for larger values of T are in general closer to the AWGN curves because of
less pilot overhead.
Figure 4.3b presents results for the transmission rate 3.0 b/CU. All schemes use 64

QAM modulation and a codeword of length 9600 bits. The PAS-CC scheme uses a
channel code with coding rate 2/3, and it performs significantly better than U-BICM
for the AWGN channel and is slightly better for the channels with CSI. When no CSI
is available, the PAS-CC performance is worse than that of U-BICM. The behavior is
similar to the case with 0.89 b/CU. Both schemes do not operate very well for fading
channels due to the poor performance of BMD for such channels, however PAS-CC seems
to be affected more than U-BICM.
Figure 4.4 compares the performance of U-BICM and PAS-CC with the asymptotic

performance of the schemes from Figure 4.2. The new curves correspond to transmission
rates at an FER 10−3. All curves are computed without CSI at the receiver. Each
transmitted frame constitutes 1200 fading blocks. The U-BICM schemes use different
constellations. The two PAS-CC schemes use 16QAM and channel codes of rates 1/2
and 2/3, respectively. We observe that U-BICM is more energy efficient than PAS-CC.
In addition the PAS-CC scheme with coding rate 1/2 outperforms the PAS-CC scheme
with coding rate 2/3.

92 Chapter 4. Distribution Matching and Efficient Communication

6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

0.5

1

1.5

2

2.5

3

Eb/N0 [dB]

R
a
te

[b
/C

U
]

Gaussian IID Pilot Scheme Disc. Prod. Form BICM 4QAM

BICM 16QAM PAS-CC 1/2 PAS-CC 2/3

Figure 4.4.: Communication rates for RBFC with T=2.

A
Proofs for Chapter 2

A.1. Proof of Theorem 2.1
Lemma A.1: Some properties of log2(1 + δx)
Consider the function f(x) = log2 (1 + δx) for δ > 0, x ≥ 0. The function f has the
following properties.

1.
x2 > x1 ≥ 0 =⇒ f(x2)− f(x1) ≤ f(x2 − x1) (A.1)

2.
x2 ≥ 0, x1 ≥ 0 =⇒ f(x1 + x2) ≤ f(x1) + f(x2) (A.2)

3.
x1, . . . , xk ≥ 0 =⇒ f

(
k∑
i=1

xi

)
≤

k∑
i=1

f(xi) (A.3)

Proof. The proof of the first property follows by

f(x2)− f(x1) = log2

(
1 + δx1 + δ(x2 − x1)

1 + δx1

)

= log2

(
1 + δ

x2 − x1

1 + δx1

)

94 Appendix A. Proofs for Chapter 2

≤ log2(1 + δ(x2 − x1)).

The proof of the second property follows by

f(x1) + f(x1) = log2

(
1 + δx1 + δx2 + δ2x1x2

)
≥ log2 (1 + δx1 + δx2)
= f(x1 + x2).

The proof of the third property follows by applying the second property multiple
times.

Lemma A.2: Binary maximizer of the cost function
Consider real numbers x1 > x2 > . . . > xk ≥ 0 and the function f(x) = log2 (1 + δx)
with 1

x1
≥ δ > 0. Consider a sequence s ∈ {0, 1}k with composition γ(s) = [n0, n1]

where n0 ≤ n1. Define the cost function

c(s) =
k∑
i=1

f

(
xi

nsi − nsi(si−1
1)

)
. (A.4)

Claim: The maximizer of the cost function is

z = [0 . . . 0︸ ︷︷ ︸
n0

1 . . . 1︸ ︷︷ ︸
n1

] = argmax
s∈{0,1}k : γ(s)=[n0,n1]

c(s). (A.5)

Furthermore, if n0 < n1 then the maximizer z is unique.

Proof. The proof of (A.5) follows by induction. It is easy to check that for k = 2 the
maximizer admits the form (A.5). Thus, we assume that (A.5) holds and consider the
case of s ∈ {0, 1}k+1.
Consider first the case n0 = n1. We have two candidates s1 and s2 for a maximizer

of (A.4):

s1 = [0
γ=[n0−1,n1]︷ ︸︸ ︷

00 . . . 0011 . . . 11] (A.6)
s2 = [1 11 . . . 1100 . . . 00︸ ︷︷ ︸

γ=[n0,n1−1]

]. (A.7)

A.1. Proof of Theorem 2.1 95

This is because a candidate has to start with either 0 or 1 and the remaining k bits
follow from the inductive assumption for sequences of length k. Both candidates s1 and
s2 match (A.5), i.e., the s2 symbols could be relabeled and achieve the same cost (A.4).
Suppose next that n0 < n1. Again, we have only two1 candidates s1 and s2 for a

maximizer of (A.4):

s1 = [0
γ=[n0−1,n1]︷ ︸︸ ︷

00 . . . 0011 . . . 11] (A.8)
s2 = [1 00 . . . 0001 . . . 11︸ ︷︷ ︸

γ=[n0,n1−1]

]. (A.9)

The candidate s1 has the desired form (A.5) and we will show that it has a larger cost.
The cost of each sequence is

c(s1)=f
(
x1

n0

)
+ f

(
x2

n0−1

)
+ . . .+ f

(
xn0

1

)
+ f

(
xn0+1

n1

)
+ f

(
xn0+2

n1−1

)
+ . . .+ f

(
xk+1

1

)
c(s2)=f

(
x1

n1

)
+ f

(
x2

n0

)
+ f

(
x3

n0−1

)
+ . . . + f

(
xn0+1

1

)
+ f

(
xn0+2

n1−1

)
+ . . .+ f

(
xk+1

1

)
.

The last k − n0 terms are the same and the difference ∆c = c(s1)− c(s2) is

∆c =
(
n0∑
i=1

f
(

xi
n0 + 1− i

)
− f

(
xi+1

n0 + 1− i

))
−
(
f
(
x1

n1

)
− f

(
xn0+1

n1

))
. (A.10)

We can upper-bound the latter bracket by

f
(
x1

n1

)
− f

(
xn0+1

n1

) (A.1)
≤ f

(
x1 − xn0+1

n1

)
(A.11)

= f

(
n0∑
i=1

xi − xi+1

n1

)
(A.12)

(A.3)
≤

n0∑
i=1

f
(
xi − xi+1

n1

)
. (A.13)

This results in a lower-bound

∆c ≥
n0∑
i=1

f
(

xi
n0 + 1− i

)
− f

(
xi+1

n0 + 1− i

)
− f

(
xi − xi+1

n1

)
. (A.14)

1If n1 = n0 + 1 we could have a third candidate s3 which would be the same as s2 but with the last k
bits inverted. However, the costs of s2 and s3 are the same due to uniform composition of the last
k symbols. Thus, we refrain from including s3 in the analysis.

96 Appendix A. Proofs for Chapter 2

We consider the i-th summand for f(x) = log(1 + δx). We compute

f
(

xi
n0 + 1− i

)
− f

(
xi+1

n0 + 1− i

)
− f

(
xi − xi+1

n1

)
=

= log2

(
1 + δ

xi
n0 + 1− i

)
− log2

(
1 + δ

xi+1

n0 + 1− i

)
− log2

(
1 + δ

xi − xi+1

n1

)
= log2

(
1 + δ

xi − xi+1

n0 + 1− i+ δxi+1

)
− log2

(
1 + δ

xi − xi+1

n1

)
. (A.15)

It follows that the summands are positive if for all i = 1, . . . , n0 we have

n0 + 1− i+ δxi+1 < n1

δxi+1 < n1 − n0 − 1 + i

which is satisfied if δx2 < 1. This follows by the assumption 1
x1
≥ γ > 0. Thus, ∆c > 0

and s1 is maximizes of (A.4). It follows that (A.5) is true.

Now we turn our attention to uniqueness. The proof also follows by induction. Con-
sider first the non-trivial case k = 3, n0 = 1 < n1 = 2. We have z = [011], s2 =
[101], s3 = [110]. Using the arguments above for sequences in (A.8)–(A.9) we have
c(z) > c(s2) = c(s3). Thus, we assume uniqueness for sequences of length k and we
consider sequences of length k + 1. Consider sequences starting with 1-bit:

c(z) > c([1 00 . . . 0001 . . . 11︸ ︷︷ ︸
γ=[n0,n1−1]

]) ≥ c([1s]) for s ∈ {0, 1}k : γs = [n0, n1 − 1] (A.16)

where the first inequality follows because ∆c > 0 as for sequences in (A.8)–(A.9), and
the second inequality because the suffix on the left hand side is a maximizer of length k
according to the first part of the lemma (note that n0 ≤ n1 − 1). It remains to consider
the sequences starting with 0. For n0 = 1 there is only one such sequence, thus the
maximizer is unique. For n0 > 1 we have

c(z)− c(0s) = c(zk+1
2)− c(s) > 0 for s ∈ {0, 1}k : γs = [n0 − 1, n1] (A.17)

where the inequality follows by the inductive assumption. This completes the proof.

A.1. Proof of Theorem 2.1 97

Lemma A.3: Optimality of a greedy maximizer
Consider a sequence a ∈ {a1, . . . , am}n = An, a composition γ = [na1 , . . . , nam] with∑n

1 nai = n, and a scalar function f(x) = log2 (1 + δx) with 1
n
≥ δ > 0. Define the cost

function
c(s) =

n∑
i=1

f

(
n+ 1− i

nsi − nsi(si−1
1)

)
(A.18)

and consider the optimization
max

s∈An : γ(s)=γ
c(z). (A.19)

Claim: The greedy solution z, which is defined below, is a global maximizer of the
optimization. The next symbol zi ∈ A is obtained by

zi = argmin
a∈A : na>na(si−1

1)
na − na(si−1

1) (A.20)

where the constraint ensures that z has the required composition γ and the chosen zi
maximizes the instantaneous cost increment.

Proof. The proof follows by contradiction. We first assume that there exists a maximizer
s different then z. Next, we show that s can be improved and the greedy solution z
must be optimal.
Consider the maximizer s and let i1 be the first position where s and z differ. We

define si1 = y, zi1 = x, and Ixy = {i : si = x ∨ si = y} = {i1, . . . , ik}. We construct a
sequence t with ti = si for i /∈ Ixy and (ti1 , ti2 , . . . , tik) = (x, . . . , x, y, . . . , y), i.e, we have

s = [. . .
=y︷︸︸︷
si1 . . .si2 . . .sik−1 . . .sik . . .] (A.21)

t = [. . . x . . . x . . . y . . . y . . .]. (A.22)

Sequences t and s are the same on all positions excluding i /∈ Ixy, thus the difference
c(t) − c(s) depends only on s′ = [si1 , . . . , sik] and t′ = [ti1 , . . . , tik]. s′ and t′ have the
same composition γ = [n′x, n′y] and n′x < n′y because z is a greedy solution, and i1 is
the first position where s and z differ (si1 = y, zi1 = x). From Lemma A.2 it follows
that c(t) − c(s) > 0. Thus, we improved on the optimal solution s, which proves the
lemma.

98 Appendix A. Proofs for Chapter 2

Theorem A.1: The worst-case sequence for CCDM implementation
Consider a CCDM using the composition γ = [na1 , . . . , nam] with na1 ≤ na2 ≤ . . . ≤
nam . A sequence

z = [a1 . . . a1︸ ︷︷ ︸
na1

a2 . . . a2︸ ︷︷ ︸
na2

. . . am . . . am︸ ︷︷ ︸
nam

] (A.23)

has the largest upper bound (2.34) on the interval length among all sequences in Tγ ,
or equivalently, determines the loss

∆k = max
c∈Tγ

n−1∑
i=0

log2

(
1 + 2−w

PCi+1|Ci1(ci+1|ci1)

)
. (A.24)

Proof. We are interested in the solution of

max
c∈Tγ

n∑
i=1

log2

(
1 + 2−w

PCi+1|Ci1(ci+1|ci1)

)
= max

c∈Tγ

n∑
i=1

log2

(
1 + 2−w n+ 1− i

nci − nci(ci−1
1)

)
.

(A.25)
A finite-precision implementation of the CCDM requires 2w ≥ n, since in Section 2.2
we require 2w ≥ Θ and for CCDM we use Θ = n − i. This implies 1

n
≥ δ = 2−w > 0.

From Lemma A.3, it follows that a greedy optimizer to the above problem is a global
optimizer. We observe that the sequence (A.23) is a greedy optimizer.

A.2. Proof of Theorem 2.2 99

A.2. Proof of Theorem 2.2
Lemma A.4: W (α) is bijective
Consider the output alphabet A = {a1, . . . , am}, a non-constant weight function
w : A → N+

0 such that w(a1) ≤ w(a2) ≤ . . . ≤ w(am), a family of PMFs parametrized
by α > 0:

QA(a) = 2−αw(a)∑
b∈A

2−αw(b) (A.26)

and the expected weight achieved by the distribution QA:

W (α) = EQA [w(A)] =
∑
a∈A

QA(a)w(a). (A.27)

Claim: The function W (α) is bijective on α ∈ [0,+∞) with image(
w(a1), 1

|A|
∑
a∈Aw(a)

]
.

Proof. The proof follows by showing that the derivative is strictly negative for α ∈
[0,+∞). We start with

∂

∂α

∑
a∈A

w(a) 2−αw(a)∑
b∈A 2−αw(b) =

=
∑
a∈A

w(a)
−w(a)2−αw(a)

(∑
b∈A 2−αw(b)

)
− 2−αw(a)

(∑
b∈A−w(b)2−αw(b)

)
(∑b∈A 2−αw(b))2

sign∝

−(∑
a∈A

w2(a)2−αw(a)
)∑

b∈A
2−αw(b)

+
(∑
a∈A
−w(a)2−αw(a)

)∑
b∈A
−w(b)2−αw(b)


=
(∑

a∈A
w(a)2−αw(a)

)2

−
(∑
a∈A

w2(a)2−αw(a)
)(∑

a∈A
2−αw(a)

)
=
(
|uv|2 − ‖u‖2‖v‖2

)
< 0 (A.28)

where we introduced two vectors

u =
[
w(a1)2−0.5αw(a1), . . . , w(am)2−0.5αw(am)

]
(A.29)

v =
[
2−0.5αw(a1), . . . , 2−0.5αw(am)

]
. (A.30)

The final step follows from the Cauchy-Schwartz inequality. Note that, since the weight

100 Appendix A. Proofs for Chapter 2

function is non-constant, the vectors u and v can not be parallel. Thus, we have the
strict inequality in (A.28). Since the function is monotonic, the image of [0,+∞) can
be obtained by evaluating W (α) at the boundaries, which proves the Lemma.

Lemma A.5: Marginal distribution of the entropy typical sets
Consider a probability distribution PA on the alphabet A = {a1, . . . , am}. For ε > 0
we define the set of length-n letter typical (strongly typical) sequences as

Lnε (PA) =
{
a ∈ An :

∣∣∣∣∣nai(a)
n
− PA(ai)

∣∣∣∣∣ < ε for i = 1, . . . ,m
}
. (A.31)

We also define the set of length-n entropy typical (weakly typical) sequences as

Hn
ε (PA) =

{
a ∈ An :

∣∣∣∣∣ 1n
n∑
i=1
− log2 PA(ai)−H(PA)

∣∣∣∣∣ < ε

}
(A.32)

and the one-sided entropy typical set as

Hn
ε+(PA) =

{
a ∈ An : 1

n

n∑
i=1
− log2 PA(ai) < H(PA) + ε

}
. (A.33)

Claim: The size of the sets approaches 2nH(PA) as n→∞ and ε→ 0, i.e., we have

lim
ε→0

lim
n→∞

|Lnε (PA)| = 2nH(PA) (A.34)

lim
ε→0

lim
n→∞

|Hn
ε (PA)| = 2nH(PA) (A.35)

lim
ε→0

lim
n→∞

|Hn
ε+(PA)| = 2nH(PA). (A.36)

Consider a vector RV Ã uniformly distributed Hn
ε+(PA), i.e., Ã ∼ U

[
Hn
ε+(PA)

]
. The

marginal distribution of the first symbol from Ã satisfies

lim
ε→0

lim
n→∞

PÃ1
= PA. (A.37)

Proof. (A.34) and (A.35) are well-known properties of typical sets and can be found
in [1, 47]. We follow [1] to prove (A.36). By standard arguments, we have

(1− o(n))2n(H(PA)−ε) < |Hn
ε (PA)| < 2n(H(PA)+ε) (A.38)

A.2. Proof of Theorem 2.2 101

where o(n) denotes a function such that o(n)→ 0 as n→∞. Consider a RV A ∼ P n
A.

We have

1 ≥ Pr
[
A ∈ Hn

ε+(PA)
]

=
∑

a∈Hnε+(PA)
PA(a) > |Hn

ε+(PA)|2−n(H(PA)+ε) (A.39)

where the last inequality follows because PA(a) > 2−n(H(PA)+ε) for a ∈ Hn
ε+(PA), see the

definition of Hn
ε+(PA). From the last inequality we have

|Hn
ε+(PA)| < 2n(H(PA)+ε) (A.40)

and from Hn
ε (PA) ⊆ Hn

ε+(PA) we have

(1− o(n))2n(H(PA)−ε) < |Hn
ε+(PA)| (A.41)

which completes the proof of (A.36).
Now consider Ã ∼ U

[
Hn
ε+(PA)

]
. For brevity we drop the parameter PA of each of the

sets. The marginal distribution of the first symbol from Ã for ε→ 0, n→∞ is

PÃ1
(a) = Pr

[
Ã ∈ Lnε

]
Pr
[
Ã1 = a|Ã ∈ Lnε

]
+ Pr

[
Ã ∈ Hn

ε+\Lnε
]
Pr
[
Ã1 = a|Ã ∈ Hn

ε+\Lnε
]

= |Lnε |
|Hn

ε+|
Pr
[
Ã1 = a|Ã ∈ Lnε

]
+ |H

n
ε+| − |Lnε |
|Hn

ε+|
Pr
[
Ã1 = a|Ã ∈ Hn

ε+\Lnε
]

(a)= Pr
[
Ã1 = a|Ã ∈ Lnε

]
(b)= 1

n

n∑
i=1

Pr
[
Ãi = a|Ã ∈ Lnε

]
= 1
n

n∑
i=1

∑
a∈Lnε

1(ai = a)
|Lnε |

= 1
|Lnε |

∑
a∈Lnε

nai(a)
n

(c)→ PA(a)

where (a) follows by (A.34) and (A.36), (b) follows by symmetry, and (c) follows from
the definition of the letter typical set and vanishing ε.

102 Appendix A. Proofs for Chapter 2

Theorem A.2: Asymptotic Branching Probabilities
Consider the output alphabet A = {a1, . . . , am}, a non-constant weight function
w : A → N+

0 such that w(a1) ≤ w(a2) ≤ . . . ≤ w(am), and a probability distribu-
tion on the codewords PC as in (2.71) with the maximum allowed weight nW0, i.e.,
C ∼ U

[
T n
nW0

]
. We assume that w(a1) < W0. For n→∞, the probability distribution

of the first symbol C1 from C converges, i.e., we have

PC1(aj) n→∞−−−→ QA(aj) =



2−αw(aj)∑
a∈A

2−αw(a) , if W0 <
1
|A|

∑
a∈A

w(a)

1
|A|

, if W0 ≥
1
|A|

∑
a∈A

w(a)

(A.42)

where α is chosen such that ∑a∈AQA(a)w(a) = W0.

Proof. We define a relaxed weight-constrained set for a weight function w and average
per-symbol weight W0:

Wn
ε (w,W0) =

{
a ∈ An : 1

n

n∑
i=1

w(ai) < W0 + ε

}
(A.43)

which for ε→ 0 becomes the support set T n
nW0

of the the model PC .
We first consider w(a1) < W0 <

1
|A|
∑
a∈Aw(a). Consider a PMF RA parametrized by

some α > 0
RA(a) = 2−αw(aj)∑

a∈A 2−αw(a) = 2−αw(aj)

Zα
. (A.44)

The condition defining the set (A.43) can be rewritten such that the set reads as

Wn
ε (w,W0) =

{
a ∈ An : 1

n

n∑
i=1
− log2RA(ai) < αW0 + log2 Zα + αε

}
. (A.45)

We choose α such that the set becomes a one-sided entropy typical set for the PMF RA,
i.e., we require

H(RA) = αW0 + log2 Zα (A.46)

which corresponds to choosing α such that

∑
a∈A

RA(a)w(a) = W0. (A.47)

A.2. Proof of Theorem 2.2 103

Lemma A.4 states that there exists a unique α satisfying the condition. Thus, we have

Wn
ε (w,W0) = Hn

αε+(RA) (A.48)

and from Lemma A.5 for ε → 0 and n → ∞ the PMF of the first symbol of a vector
RV ∼ U(Wn

ε (w,W0)) is RA. Since C ∼ U
[
T n
nW0

]
and Wn

ε (w,W0) = T n
nW0

for ε small
enough, it follows that PC1 = RA.

For W0 ≥ 1
|A|
∑
a∈Aw(a) we cannot follow the same steps, since it may not by possible

to find a unique α satisfying (A.47). Instead, we first show that the set Wn
ε (w,W0)

contains a letter typical set with uniform PMF RA. Next we show that the letter typical
set dominates the marginal distribution of the first symbol. We introduce

∆W0 = W0 −
∑
a∈A

1
|A|

w(a) ≥ 0

and a uniform PMF
RA(a) = 1

|A|
fot a ∈ A

and rewrite the set (A.43) as

Wn
ε (w,W0) =

{
a ∈ An : 1

n

n∑
i=1

w(ai) <
∑
a∈A

RA(a)w(a) + ∆W0 + ε

}

=
{
a ∈ An :

∑
a∈A

w(a)
(
na(a)
n
−RA(a)

)
< ∆W0 + ε

}
.

Now consider the letter typical set with ε1 = ε
wMAX

and wMAX = maxa∈Aw(a):

Lnε1(RA) =
{
a ∈ An :

∣∣∣∣∣na(a)
n
−RA(a)

∣∣∣∣∣ < ε1 = ε

wMAX
for a ∈ A

}
(A.49)

and observe that Lnε1(RA) ⊆ Wn
ε (w,W0). The asymptotic size of the set Lnε1(RA) is |A|n

(see Lemma A.5), and is the same as the upper-bound on the size of Wn
ε (w,W0). Thus,

the sequences from the set Lnε1 dominate the marginal distribution of the first symbol
(see below). Now consider C ∼ U

[
Wn

ε (w,W0)
]
. For brevity, we skip the parameters of

each of the sets. The marginal distribution of the first symbol from C for ε→ 0, n→∞
is

PC1(a) = Pr
[
C ∈ Lnε1

]
Pr
[
C1 = a|C ∈ Lnε1

]
+ Pr

[
C ∈ Wn

ε \Lnε1
]
Pr
[
C1 = a|C ∈ Wn

ε \Lnε1
]

104 Appendix A. Proofs for Chapter 2

=
|Lnε1 |
|Wn

ε |
Pr
[
C1 = a|C ∈ Lnε1

]
+
|Wn

ε | − |Lnε1|
|Wn

ε |
Pr
[
C1 = a|C ∈ Wn

ε \Lnε1
]

= Pr
[
C1 = a|C ∈ Lnε1

]
(a)= 1

n

n∑
i=1

Pr
[
Ci = a|C ∈ Lnε1

]
= 1
n

n∑
i=1

∑
a∈Lnε1

1(ai = a)
|Lnε1 |

= 1
|Lnε1 |

∑
a∈Lnε1

nai(a)
n

(b)→ RA(a)

where (a) follows by symmetry, and (b) follows since ε→ 0 =⇒ ε1 → 0.

B
Proofs for Chapter 3

B.1. Proof of Theorem 3.3
Theorem B.1: Probabilistically Ordered NBC Mapping
Consider L independent bits B1, . . . , BL with corresponding probabilities PB1(0), . . . ,
PBL(0), and the joint PMF PB = ∏L

l=1 PBl . The bit labels bi, i = 1, . . . , 2L ordered
according to NBC with the most significant bit first, i.e., [b1, b2, . . . , b2L] are [0 . . . 00,
0 . . . 01, . . . , 1 . . . 11]. These vectors have non-increasing probabilities, i.e., PB(bi) ≥
PB(bi+1) if and only if

∀l ∈ {1, . . . , L} LLR(Bl) ≥
L∑

i=l+1
LLR(Bi) (B.1)

where LLR(Bl) := log2

(
PBl (0)
PBl (1)

)
is the log-likelihood ratio (LLR) of the bit Bl.

Proof. The inequalities in (B.1) imply that

∀l ∈ {1, . . . , L} PBl(0) ≥ PBl(1). (B.2)

Consider two bit sequences a = [a1, . . . , aL] and b = [b1, . . . , bL], where a has a larger

106 Appendix B. Proofs for Chapter 3

NBC number. Suppose i is the first position where the sequences differ:

a = (a1, . . . , ai−1, 1, ai+1, . . . , aL)
b = (a1, . . . , ai−1, 0, bi+1, . . . , bL).

Then we have

PB(a)
PB(b) = PBi(1)

PBi(0)

L∏
l=i+1

PBl(al)
PBl(bl)

(B.2)
≤ PBi(1)

PBi(0)

L∏
l=i+1

PBl(0)
PBl(1)

(B.1)
≤ 1

which proves that the labels ordered according to the NBC have non-increasing proba-
bilities.
We prove the converse by contradiction. Consider the 2L− 1 inequalities for the NBC

ordered bit labels:
PB(bi) ≥ PB(bi+1), i = 1, . . . , 2L − 1.

Suppose that the inequality (B.1) does not hold for the i-th bit-level. We have

LLR(Bi) <
m∑

l=i+1
LLR(Bl),

PBi(0)
m∏

l=i+1
PBl(1) < PBi(1)

m∏
l=i+1

PBl(0)

which results in the contradiction

PB(b2L−i−1) < PB(b2L−i)

for

b2L−i−1 = [0 . . . 0︸ ︷︷ ︸
i−1

0 1 . . . 1︸ ︷︷ ︸
L−i

]

b2L−i = [0 . . . 0︸ ︷︷ ︸
i−1

1 0 . . . 0︸ ︷︷ ︸
L−i

].

C
Notation and Abbreviations

Mathematical Notation

R the set of real numbers
N0 the set of natural number (with 0 included)
X a set
b·c and d·e the floor and ceiling function
pX a probability density function of a random variable X
PX a probability mass function of a random variable X
U [X] a random variable uniformly distributed on the set X
E [X] expectation of a random variable X
H(PX) or H(X) entropy of a random variable X with PMF PX

h(pX) or h(X) differential entropy of a random variable X with PDF pX

D (PX‖QX) Kullback–Leibler divergence between two PMFs
I (X;Y) mutual information between random variables X and Y
x a row vector (finite sequence)
l(x) the number of entries in x
xi or [x]i the i-th entry of x
xji or [x]ji a subvector (subsequence) of x

108 List of Abbreviations

[x,y] a concatenation of two sequences x and y
na(x) the number of occurrences of a in x
γ(x) a composition of x
PX,x the empirical PMF of a sequence x
CM a model codebook of a distribution matcher
CI an implementation codebook of a distribution matcher

List of Abbreviations

ACDM arithmetic coding based distribution matcher
ASK amplitude shift keying
ATSC Advanced Television Systems Committee
AWGN additive white Gaussian noise
b/CU bits per channel use
b2b block-to-block
BICM bit-interleaved coded modulation
BLDM bit-level distribution matcher
BMD bit-metric decoding
CCDM constant-composition distribution matcher
CSI channel state information
DM distribution matcher
DSP digital signal processor
DVB Digital Video Broadcasting
EDM enumerative distribution matcher
ENOB effective number of bits
FER frame error rate
GS geometric shaping
IID independent and identically distributed
KL Kullback–Leibler
LDPC low-density parity-check
LTE Long-Term Evolution
MAC multiply–accumulate
MAP maximum a posteriori

List of Abbreviations 109

MC Monte-Carlo
MCDM multi-composition distribution matcher
ML maximum likelihood
MSDM multi-stream distribution matcher
NBC natural binary code
PAS probabilistic amplitude shaping
PDF probability density function
PMF probability mass function
PSCM probabilistically shaped coded modulation
QAM quadrature amplitude modulation
QPSK quadrature phase shift keying
RBFC Rayleigh block fading channel
RF radio frequency
RV random variable
SISO single-input single-output
SMD symbol-metric decoding
SMDM shell mapping distribution matcher
SNR signal-to-noise ratio
SPDM split-parallelized distribution matcher
TMCDM truncated multi-composition distribution matcher
USTM unitary space-time modulation
WiMAX Worldwide Interoperability for Microwave Access

111

Bibliography

[1] G. Kramer, “Topics in Multi-User Information Theory,” Foundations and Trends
in Communications and Information Theory, vol. 4, no. 4-5, pp. 265–444, Apr.
2008. [Online]. Available: http://dx.doi.org/10.1561/0100000028

[2] C. E. Shannon, “A mathematical theory of communication,” The Bell System Tech-
nical Journal, vol. 27, no. 3, pp. 379–423, July 1948.

[3] R. G. Gallager, Principles of Digital Communication. Cambridge University Press,
2008.

[4] G. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient modulation
for band-limited channels,” IEEE J. Sel. Areas Commun., vol. 2, no. 5, pp. 632–647,
Sept. 1984.

[5] G. D. Forney and L. . Wei, “Multidimensional constellations. i. introduction, figures
of merit, and generalized cross constellations,” IEEE J. Sel. Areas Commun., vol. 7,
no. 6, pp. 877–892, Aug. 1989.

[6] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE
Trans. Inf. Theory, vol. 44, no. 3, pp. 927–946, May 1998.

[7] A. Martinez, A. G. i Fabregas, G. Caire, and F. M. J. Willems, “Bit-interleaved
coded modulation revisited: A mismatched decoding perspective,” IEEE Trans.
Inf. Theory, vol. 55, no. 6, pp. 2756–2765, June 2009.

[8] H. Imai and S. Hirakawa, “A new multilevel coding method using error-correcting
codes,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 371–377, May 1977.

[9] U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel codes: theoretical
concepts and practical design rules,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp.
1361–1391, July 1999.

112 Bibliography

[10] R1-1700679, “Non-uniform constellations in NR,” Sony, 3GPP TSG RAN1 NR Ad
Hoc Meeting, 16-20 Jan. 2017.

[11] J. Zoellner and N. Loghin, “Optimization of high-order non-uniform QAM constel-
lations,” in 2013 IEEE Int. Symp. on Broadband Multimedia Systems and Broad-
casting, June 2013.

[12] M. F. Barsoum, C. Jones, and M. Fitz, “Constellation design via capacity maxi-
mization,” in 2007 IEEE Int. Symp. Inf. Theory, June 2007.

[13] “NATSC Proposed Standard: Physical Layer Protocol (A/322),” Tech. Rep. S34,
June 2016.

[14] “Digital Video Broadcasting (DVB);Next Generation broadcasting system to Hand-
held, physical layer specification (DVB-NGH),” Tech. Rep. A160, Nov. 2013.

[15] F. Steiner and G. Böcherer, “Comparison of geometric and probabilistic shaping
with application to ATSC 3.0,” in 11th Int. ITG Conf. on Systems, Commun. and
Coding 2017, Feb. 2017.

[16] G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-
density parity-check coded modulation,” IEEE Trans. Commun., vol. 63, no. 12,
pp. 4651–4665, Dec 2015.

[17] F. Buchali, G. Böcherer, W. Idler, L. Schmalen, P. Schulte, and F. Steiner, “Exper-
imental demonstration of capacity increase and rate-adaptation by probabilistically
shaped 64-QAM,” in 2015 Eur. Conf. Opt. Commun. (ECOC), Sept 2015, pp. 1–3.

[18] R1-1700076, “Signal shaping for QAM constellations,” Huawei, HiSilicon, 3GPP
TSG RAN1 NR Ad Hoc Meeting, Jan. 2017.

[19] G. Böcherer and B. C. Geiger, “Optimal m-type quantizations of distributions,”
CoRR, vol. abs/1307.6843, 2013. [Online]. Available: http://arxiv.org/abs/1307.
6843

[20] G. Böcherer and R. A. Amjad, “Block-to-block distribution matching,” CoRR, vol.
abs/1302.1020, 2013. [Online]. Available: http://arxiv.org/abs/1302.1020

[21] N. Abramson, Information Theory and Coding. McGraw-Hill, 1963.

Bibliography 113

[22] F. Rubin, “Arithmetic stream coding using fixed precision registers,” IEEE Trans.
Inf. Theory, vol. 25, no. 6, pp. 672–675, Nov. 1979.

[23] T. V. Ramabadran, “A coding scheme for m-out-of-n codes,” IEEE Trans. Com-
mun., vol. 38, no. 8, pp. 1156–1163, Aug. 1990.

[24] D. J. MacKay, Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press 2003, 2003.

[25] K. Sayood, Introduction to Data Compression. Elsevier, 2006.

[26] J. Sayir, “On coding by probability transformation,” Ph.D. dissertation, ETH, 1999.

[27] J. J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM J. Re-
search and Development, vol. 20, no. 3, May 1976.

[28] R. Pasco, “Source coding algorithms for fast data compression,” Ph.D. dissertation,
Stanford University, 1976.

[29] G. G. Langdon, “An introduction to arithmetic coding,” IBM J. Research and
Development, vol. 28, no. 2, pp. 135–149, Mar. 1984.

[30] I. H. Witten, R. M. Neal, and J. G. Clearly, “Arithmetic coding for data compres-
sion,” Commun. ACM, 1987.

[31] M. Rabbani, R. L. Joshi, and P. W. Jones, The JPEG 2000 Suite. Wiley, 2009,
ch. JPEG 2000 core coding system (Part 1) ., pp. 1–69.

[32] “Compression techniques | webp |.” [Online]. Available: https://developers.google.
com/speed/webp/docs/compression

[33] ITU-T, Audiovisual and Multimedia Systems: Advanced video coding for generic
audiovisual services (H.264), ITU-T Std., 2017.

[34] ——, Audiovisual and Multimedia Systems: High efficiency video coding (H.265),
ITU-T Std., 2018.

[35] J. Sayir, “Arithmetic coding for noisy channels,” in Proc. 1999 IEEE Inf. Theory
and Commun. Workshop, 1999, pp. 69–71.

[36] P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE
Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434, Jan 2016.

114 Bibliography

[37] C. Jones, “An efficient coding system for long source sequences,” IEEE Trans. Inf.
Theory, vol. 27, no. 3, pp. 280–291, May 1981.

[38] P. Schulte and F. Steiner, “Shell mapping for distribution matching,” CoRR, vol.
abs/1803.03614, 2018.

[39] R. Laroia, N. Farvardin, and S. A. Tretter, “On optimal shaping of multidimensional
constellations,” IEEE Trans. Inf. Theory, vol. 40, no. 4, pp. 1044–1056, July 1994.

[40] R. Bellman, Dynamic Programming. Princeton University Press, 1957.

[41] G. Böcherer and R. A. Amjad, “Informational divergence and entropy rate on rooted
trees with probabilities,” in 2014 IEEE Int. Symp. Inf. Theory, June 2014, pp. 176–
180.

[42] M. Pikus and W. Xu, “Bit-level probabilistically shaped coded modulation,” IEEE
Commun. Lett., vol. 21, no. 9, pp. 1929–1932, Sept. 2017.

[43] G. Böcherer, P. Schulte, and F. Steiner, “High throughput probabilistic shaping
with product distribution matching,” CoRR, vol. abs/1702.07510, 2017. [Online].
Available: http://arxiv.org/abs/1702.07510

[44] M. Pikus and W. Xu, “Applying bit-level probabilistically shaped coded modulation
for high-throughput communications,” in Proc. 28th IEEE Int. Symp. Personal,
Indoor and Mobile Radio Commun. (PIMRC), Feb. 2018, pp. 1–6.

[45] Y. Gultekin, W. van Houtum, S. Serbetli, and F. Willems, “Constellation shaping
for IEEE 802.11,” in Proc. 28th IEEE Int. Symp. Personal, Indoor and Mobile
Radio Commun. (PIMRC), Feb. 2018.

[46] Y. Gultekin, F. Willems, W. van Houtum, and S. Serbetli, “Approximate enumera-
tive sphere shaping,” in 2018 IEEE Int. Symp. Inf. Theory, Aug 2018, pp. 676–680.

[47] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York, NY,
USA: Wiley-Interscience, 2006.

[48] O. İşcan and W. Xu, “Polar codes with integrated probabilistic shaping
for 5G new radio,” CoRR, vol. abs/1808.09360, 2018. [Online]. Available:
https://arxiv.org/abs/1808.09360

Bibliography 115

[49] M. Pikus, G. Kramer, and G. Böcherer, “Discrete signaling for non-coherent, single-
antenna, Rayleigh block-fading channels,” IEEE Commun. Lett., vol. 20, no. 4, pp.
764–767, April 2016.

[50] T. Marzetta and B. Hochwald, “Capacity of a mobile multiple-antenna communi-
cation link in Rayleigh flat fading,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp.
139–157, Jan 1999.

[51] B. Hassibi and B. Hochwald, “How much training is needed in multiple-antenna
wireless links?” IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 951–963, April 2003.

[52] B. Hochwald and T. Marzetta, “Unitary space-time modulation for multiple-
antenna communications in Rayleigh flat fading,” IEEE Trans. Inf. Theory, vol. 46,
no. 2, pp. 543–564, Mar 2000.

[53] F. Rusek, A. Lozano, and N. Jindal, “Mutual information of IID complex gaussian
signals on block Rayleigh-faded channels,” IEEE Trans. Inf. Theory, vol. 58, no. 1,
pp. 331–340, Jan 2012.

[54] B. Hassibi and T. Marzetta, “Multiple-antennas and isotropically random unitary
inputs: the received signal density in closed form,” IEEE Trans. Inf. Theory, vol. 48,
no. 6, pp. 1473–1484, Jun 2002.

[55] G. Alfano, C.-F. Chiasserini, A. Nordio, and S. Zhou, “Closed-form output statistics
of MIMO block-fading channels,” IEEE Trans. Inf. Theory, vol. 60, no. 12, pp.
7782–7797, Dec 2014.

[56] S. Verdu, “Spectral efficiency in the wideband regime,” IEEE Trans. Inf. Theory,
vol. 48, no. 6, pp. 1319–1343, Jun 2002.

[57] I. Telatar and D. Tse, “Capacity and mutual information of wideband multipath
fading channels,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1384–1400, Jul 2000.

