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Abstract 

Automated driving systems (ADS) promise to increase traffic safety. Central challenges in the 

development of ADSs with higher levels of driving automation (≥ level 3) are to derive safety 

requirements for its components and to actually validate system safety. Important for ADS safety 

is the perception provided by the fused data of environment sensors, e.g. radar, camera and lidar. 

Perception errors can be safety-critical and can in the worst case cause accidents. Existing 

standards and test procedures do not directly allow to validate sufficient perception reliability, 

which we define as probability of absence of safety-critical perception errors. Well known in this 

context is the approval trap for ADSs, i.e. the impracticably large number of test kilometers 

required to validate the safety of the intended ADS functionality by simply “driving around”. 

These challenges motivate the development of perception reliability analysis methods to ensure 

ADS safety. To this end, we derive reliability requirements for individual sensors. This is based 

on 1.) a stochastic description of perception reliability, 2.) a conceptualization of sensor data fusion 

in terms of individual sensors with a simple k-out-of-n-model and 3.) statistical dependence 

models for sensor errors. We additionally devise methods to assess sensor perception reliability 

through simulation, on proving grounds and in field tests. A challenge in assessing sensor 

perception reliability in field tests is the need for a reference truth to identify sensor errors, which 

is not always available with the required specifications. For this reason, we propose an approach 

to learn sensor perception reliabilities without a reference truth by exploiting sensor redundancy. 

We find in synthetic case studies that one can theoretically learn sensor perception reliabilities by 

exploiting sensor redundancy, if an adequate dependence model is selected for errors among 

different sensors. With an inadequate dependence model, the estimates can however be biased. 

This thesis comprehensively studies how to demonstrate perception reliability for ADS safety 

validation. With the presented safety validation strategy, an empirical demonstration of perception 

reliability is in principle possible, as long as the models adequately represent the system. 

Additionally, the proposed approach to exploit sensor redundancies is an opportunity to cover a 

large number of realistic test situations by learning reliabilities from a fleet of driver controlled 

vehicles, equipped with standard series sensors. Considerable challenges in demonstrating 

perception reliability however remain: the difficulty of a systematic definition of safety-relevant 

perception errors, potentially improving simplifying modeling choices such as the k-out-of-n 

reliability model for sensor data fusion, the evaluation of adequate dependence models for the fleet 

learning framework and dealing with system design modifications during development represent 

future research opportunities. 
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Zusammenfassung 

Durch das automatisierte Fahren verspricht man sich eine erhöhte Verkehrssicherheit. Große 

Herausforderungen in der Entwicklung des automatisierten Fahrens sind jedoch eine Wahl 

geeigneter Sicherheitsanforderungen für Komponenten sowie eine Validierung der System-

sicherheit (speziell für ≥ Level 3). Zentral dabei ist die fusionierte Umfeldwahrnehmung von 

Radar, Kamera und Lidar Sensoren. Sensorische Wahrnehmungsfehler können zu 

sicherheitskritischem Fehlverhalten und schlimmstenfalls zu Unfällen führen. Etablierte Standards 

und Testverfahren reichen für einen Nachweis der benötigten Wahrnehmungszuverlässigkeit 

(Wahrscheinlichkeit der Abwesenheit von sicherheitskritischen Wahrnehmungsfehlern) nur 

teilweise aus. Ein Beispiel für die Limitierung bestehender Testverfahren ist die 

Absicherungsfalle, die den kaum zu bewältigenden empirischen Absicherungsaufwand für die 

Freigabe des automatisierten Fahrens durch „Herumfahren“ bezeichnet. 

Diese Herausforderungen motivieren die Entwicklung von Absicherungsmethoden für die 

Umfeldwahrnehmung. Um die Sicherheit eines automatisierten Fahrsystems zu gewährleisten, 

leiten wir Anforderungen an einzelne Sensoren ab. Dazu verknüpfen wir 1.) eine stochastische 

Beschreibung der Wahrnehmungszuverlässigkeit, 2.) eine Konzeptualisierung der 

Sensordatenfusion durch Einzelsensoren mit einem k-aus-n Modell, und 3.) statistische Modelle 

für Wahrnehmungsfehler. Zusätzlich entwickeln wir Methoden, um die Wahrnehmungs-

zuverlässigkeit der Sensoren über Simulationen, sowie in Prüfgelände- und Feldtests zu lernen. In 

Feldtests ist die Erhebung einer Referenzwahrheit zur Identifikation von Wahrnehmungsfehlern 

jedoch herausfordernd. Daher entwickeln wir einen Ansatz, um die Wahrnehmungszuverlässigkeit 

ohne Referenzwahrheit unter Ausnutzung von Sensorredundanzen zu lernen. Wir zeigen auf, dass 

damit die Wahrnehmungszuverlässigkeit theoretisch korrekt gelernt werden kann, solange das 

verwendete Abhängigkeitsmodell die Sensorfehler adäquat beschreiben kann. Ist dies nicht der 

Fall, ist die Abschätzung verfälscht. 

In dieser Dissertation erarbeiten wir Methoden für einen Nachweis der Wahrnehmungs-

zuverlässigkeit für die Absicherung des automatisierten Fahrens. Mit der entwickelten Strategie 

ist ein empirischer Nachweis der Wahrnehmungszuverlässigkeit prinzipiell möglich, soweit die 

verwendeten Modelle das System adäquat beschreiben können. Des Weiteren bietet der Ansatz 

unter Ausnutzung von Sensorredundanzen die Chance eine hohe Testabdeckung durch eine 

Fahrzeugflotte zu erreichen. Es sind aber noch nicht alle Herausforderungen gelöst: Eine 

systematische Definition von sicherheitskritischen Wahrnehmungsfehlern, vereinfachende 

Annahmen wie das k-aus-n Modell für die Sensordatenfusion, die Validierung von geeigneten 

Abhängigkeitsmodellen für den flottenbasierten Absicherungsansatz und die Berücksichtigung 

von Systemänderungen stellen Forschungsmöglichkeiten dar. 
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Nomenclature 

The symbols used in this work are defined in the text when first introduced. They are additionally 

summarized in the list below. Following conventions on nomenclature are pointed out: 

 Some common symbols for variables (e.g. 𝑋) are defined locally, if explanations are 

relevant for a specific Chapter or Section only. In case of ambiguities, local definitions are 

highlighted in the list below to clarify the scope of a variable.  

 Counter indices (subscripts such as 𝑗) may refer locally to different sets. 

 Bold faced symbols represent vectors or matrices.  

 Random variables are denoted with upper case letters (e.g. 𝑋) and their respective 

realizations with lower case letters (e.g. 𝑥). 

 The probability of a random variable 𝑋 taking a value 𝑥 is denoted with Pr(𝑋 = 𝑥). 

Equivalently used in this Thesis is 𝑝𝑋(𝑥) = Pr(𝑋 = 𝑥). 

 𝑝𝑋|𝛉(𝑥|𝛉) is the conditional probability mass function of 𝑋 = 𝑥 given 𝛉. 

 𝑓𝑋(𝑥) is the probability density function of 𝑋 and 𝐹𝑋(𝑥) the corresponding cumulative 

distribution function. 

 𝑓𝑋|𝛉(𝑥|𝛉) is the conditional probability density function of 𝑋 given 𝛉. 

 Prior and posterior probability density functions do not carry subscripts, e.g. 𝑓(𝛉) is the 

prior probability density function of 𝛉 and 𝑓(𝛉|𝐱) is the posterior probability density 

function of 𝛉 given x. 

 𝐹(𝛉|𝐱) is the posterior cumulative distribution function of 𝛉 given 𝐱. 

 𝕀(𝑥 = 1) is the indicator function which is one if 𝑥 = 1 is true, and zero otherwise. 

 ∝ is the proportionality symbol. 
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Roman Symbols 

𝑎  Shape parameter of gamma distribution 

𝑎(�̂�(𝑠)) Selected automated driving system action given �̂�(𝑠) 

𝑎(𝑠)  Selected automated driving system action given 𝑠 

𝑎′  Gamma shape parameter in prior distribution 

𝑎′′  Gamma shape parameter in posterior distribution 

𝐴B(𝑅)  Lidar beam cross section at distance 𝑅 [m²] 

𝐴R  Aperture area of optical receiver [m²] 

𝐴T  Cross sectional area of target [m²] 

𝑏  Base width stereo camera [m] (defined locally in Section 2.1.2) 

𝑏  Inverse scale parameter of gamma distribution (defined locally in Section 4.3) 

𝑏′  Gamma inverse scale parameter in prior distribution 

𝑏′′  Gamma inverse scale parameter in posterior distribution 

𝑐(𝐸)  Consequences of context variable 𝐸 on perception performance 

𝑐𝐹𝑗   Consequences associated with failure event 𝐹𝑗 

𝑐0  Speed of light [m/s] 

𝑑  Disparity (defined locally in Section 2.1.2) 

𝑑  Displacement between optical axes of receiver and transmitter [m] (defined locally 

in Section 5.2) 

𝐷, 𝑑  Binary event of indicating an object 

𝐃, 𝐝  Binary object indications in different sensors (detection vector) 

𝐷drop  Drop diameter [m] 

𝐷𝑖,𝑚, 𝑑𝑖,𝑚 Binary event of indicating an object in sensor 𝑖 at point in time 𝑚 

𝐷𝑖, 𝑑𝑖  Binary event of indicating an object in sensor 𝑖 

𝐷lens  Diameter of receiving lense (lidar) [m] 

𝐃𝑚, 𝐝𝑚 Binary object indications in different sensors at point in time 𝑚 (detection vector) 

𝐄, 𝐞  Context variables 

�̃�  Future context variables corresponding to future observables �̃� 

𝐞𝑗  Realization of context variables in time interval 𝑗 

𝐸  The event of a situation in which a hazard can arise (exposure in ISO 26262, locally 

defined in Section 3.2.1) 

E[ ]  Expectation operator 

𝑓0  Constant approximation of transmit frequency [s−1] 

𝑓length  Focal length camera [m] 

𝑓R  Receive signal frequency [s−1] 
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𝑓T  Transmit signal frequency [s−1] 

𝐹𝑗  Automated driving system failure event (i.e. accident) of type 𝑗 

FN  False negative error 

FP  False positive error 

𝑔( )  Arbitrary function 

𝑔−1  Inverse of 𝑔() 

𝐺R  Receive antenna gain 

𝐺T  Transmit antenna gain 

𝐻  Spatial impulse response function [m−2] 

𝐻C  Spatial impulse response of optical channel [m−2] 

𝐻T  Spatial impulse response of targets 

𝑖  Identifier (subscript) of a specific individual sensor 

𝐼, 𝑖  Rainfall intensity (random variable) [mm/h] 

𝐾  Number of data points in time interval 𝑗 (defined locally in Section 5.3) 

𝐾, 𝑘  Number of sensors indicating an object (defined locally in Section 4.2) 

𝐾, 𝑘  Number of errors in 𝑛 redundant sensors (defined locally in Section 6.1) 

𝐿𝑧(𝑝av, 𝜌) Likelihood of 𝑝av and 𝜌 under observation 𝑧 

𝑚  Discrete point in time 

𝑀  Total number of observations / total number of discrete points in time 

𝑛  Number of redundant sensors 

𝑛(𝑅)  Number of scattering particles in a beam volume element at distance 𝑅 (defined 

locally in Section 5.2) 

𝑛drops  Number of raindrops in volume element 𝑉beam 

𝑛MCS  Number of Monte Carlo samples 

𝑛𝑦  Number of occurrences of 𝑌 = 𝑦 in 𝑀 observations 

𝐧𝑌=𝑦  Vector containing the observed 𝑛y for each value of 𝑌 = 𝑦 

𝑛𝑧  Number of observations with 𝑍 = 𝑧 in a test with 𝑀 observations 

𝑁  Number density of scattering particles per unit volume [m−3] (defined locally in 

Section 5.2) 

𝑁(μ, σ2) Normal probability density function with mean μ and standard deviation σ 

𝑂, 𝑜  Binary event of an object being present in a specific area of the field of view 

𝑂𝑚, 𝑜𝑚 Binary random variable indicating whether an object is present in a specific area of 

the field of view at point in time 𝑚 

𝑝  Generic probability (of e.g. failure or detection event), average of 𝑝𝑚 (locally 

defined in Section 4.2.2) 

𝑝  Heuristical existence measure (locally defined in Section 4.1.1) 
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𝑝av  Average probability of sensor errors in a large number of randomly selected points 

in time  

�̂�av  Posterior mean of 𝑝av 

𝑝FN,𝑗  Fraction of safety-critical false negative errors in area 𝑗 

𝑝FP,𝑗  Fraction of safety-critical false positive errors in area 𝑗 

𝑃𝑚, 𝑝𝑚  Generic probability (of e.g. failure or detection event) at point in time 𝑚 (locally 

defined in Section 4.2.2) 

𝑝obj  Probability of an object being present in a specific area of field of view 

𝑝per(𝑝av, 𝜌)  Probability of the perception module to fail at a randomly selected point in time in 

function of 𝑝av and 𝜌 

�̂�per  Posterior mean of 𝑝per 

𝑝perlow
 Lower credible bound on 𝑝per 

𝑝perup
  Upper credible bound on 𝑝per 

𝑝s  Probability of a critical shock events (all sensors fail deterministically) 

𝑝slow  Lower credible bound on 𝑝s 

𝑝sup  Upper credible bound on 𝑝s 

𝑝TLSper  Target level of safety on 𝑝per (acceptable 𝑝per) 

𝑝𝑦  Probability of 𝑌 = 𝑦 

𝐩𝑦  Vector containing 𝑝y for all 𝑦 

𝑃0  Peak transmit power [W] 

PFA  Probability of false alarm 

PFA𝑖  Probability of false alarm in sensor 𝑖 

PFAlidar Lidar raw data probability of false alarm 

PFAsensor,𝑚 Probability of false alarm in individual sensor at point in time 𝑚, valid for all 

sensors 𝑖 = 1,… , 𝑛 

PFAsensor Probability of false alarm in individual sensor, valid for all sensors 𝑖 = 1,… , 𝑛 

POD  Probability of detection 

POD𝑖  Probability of detection in sensor 𝑖 

PODlidar Lidar raw data probability of detection 

PODsensor,𝑚 Probability of detection in individual sensor at point in time 𝑚, valid for all sensors 

𝑖 = 1, … , 𝑛 

PODsensor Probability of detection in individual sensor, valid for all sensors 𝑖 = 1,… , 𝑛 

𝑃R  Received power [W] 

𝑃T  Transmit power [W] 

𝑄back  Backscattering efficiency 
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𝑄ext  Extinction efficiency 

𝑟R,0  Radius of reception aperture [m] 

𝑟R  Radius of receiving channel’s cross section [m] 

𝑟T,0  Radius of transmission aperture [m] 

𝑟T  Radius of transmit beam cross section [m] 

𝑅  Distance, target range [m] 

𝐑  Covariance matrix  

𝑅0  Distance to a hard target [m] 

𝑅1  Minimum lidar range [m] 

𝑅2  Optical channels of transmitter and receiver overlap completely at 𝑅2 (lidar) [m] 

𝐑U,FN  Correlation matrix of false negative sensor errors in standard normal space 

𝐑U,FN,+ Adapted version of 𝐑U,FN with different signs 

𝐑U,FP  Correlation matrix of false positive sensor errors in standard normal space  

𝐑U,FP,+ Adapted version of 𝐑U,FP with different signs 

�̂�U,FN  Correlation matrix containing �̂�UFN,𝑖,𝑗 

�̂�U,FP  Correlation matrix containing �̂�UFP,𝑖,𝑗 

𝑠  True state of environment 

�̂�(𝑠)  Perceived environment given 𝑠 

𝑠(𝑑𝑖)  Sign (+1, −1) in dependence of 𝑑𝑖 

𝑆  Severity of damage (ISO 26262) 

𝑡  Time / test effort [h] 

𝑡cloudy  (Test) time in cloudy weather [h] 

𝑡crit  Time until an error becomes safety-critical [s] 

𝑡cycle  Time to update the perception (cycle time) [s] 

𝑡rain  (Test) time in rainy weather [h] 

𝑡snow  (Test) time in snowy weather [h] 

𝑡sun  (Test) time in sunny weather [h] 

𝑡t  Detection threshld  

𝑡ToF  Time-of-flight [s] 

𝑇  Atmospheric transmission factor (defined locally in Section 2.1.3) 

𝑇  Temperature (defined locally in Section 5.3) 

TN  True negative detection event 

TP  True positive detection event 

𝑇standard Standardized temperature  

𝑢PFA,𝑖  Inverse of standard normal cumulative distribution function with argument PFA𝑖 

𝑢POD,𝑖  Inverse of standard normal cumulative distribution function with argument POD𝑖 
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𝐔  Vector of standard normal random variables describing sensor object indications 𝐷𝑖  

𝑈c  Standard normal distributed auxiliary random variable 

𝑈FN,𝑖  Standard normal random variable describing true positive and false negative 

detections in sensor 𝑖 

𝑈FP,𝑖  Standard normal random variable describing false positive and true negative 

detections in sensor 𝑖 

𝑈𝑖  Standard normal random variable describing individual sensor object indications 𝐷𝑖  

𝑣ego  Velocity of ego-vehicle [m/s] 

𝑣rel  Relative velocity between transmitter and observer [m/s] 

𝑉beam(𝑅) Volume element of beam at distance 𝑅 [m³] 

𝑋, 𝑥  Number of failure events in time interval 𝑡 (defined locally in Section 4.3) 

�̃�  Future observable data 

𝐱𝑗,𝑘  Data point 𝑘 in time interval 𝑗 (defined locally in Section 5.3) 

𝐱𝑗  Combined data in time interval 𝑗 (defined locally in Section 5.3) 

𝐱labeled Labeled data of binary object indications in different sensors 

𝐱𝑚  Hidden true state of an object at point in time 𝑚 (defined locally in Section 2.2.2) 

𝐗, x  Generic data (defined locally in Section 5.3) 

𝐗, �̂�  True and estimated object states (defined locally in Section 4.1.2) 

𝑋𝑖, 𝑥𝑖  Binary variable for error occurrence in sensor 𝑖 (defined locally in Section 6.1) 

𝑦𝑚  Observation 𝑌 at point in time 𝑚 

𝑌  Variable identifying a specific combination of 𝐃 

𝑌𝑚  Variable identifying a specific combination of 𝐃𝑚 at point in time 𝑚 

𝑌n  Maximum deviation of state quantity in 𝑛 observations 

𝑍, 𝑧  Observation without reference truth when not distinguishing between error types 

and different sensors (locally defined in Section 6.1) 

𝐳  Collection of observations without reference truth when not distinguishing between 

error types and different sensors over time (locally defined in Section 6.1) 

𝐳1:𝑚−1  History of sensor observations up to 𝑚 − 1 (defined locally in Section 2.2.2) 

𝑧𝑚  Observation without reference truth when not distinguishing between error types 

and different sensors at point in time 𝑚 (defined locally in Section 6.1) 

𝐳𝑚  Noisy sensor observation of hidden true state (defined locally in Section 2.2.2) 

�̃�𝑚  One step ahead future sensor state observations (defined locally in Section 2.2.2) 
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Greek Symbols 

𝛼(𝑟)  Extinction coefficient at distance 𝑟 (defined locally in Section 5.2) 

α  Parameter of beta distribution 

β  Parameter of beta distribution 

β0  Constant factor influencing σ𝑗 

β1  Weight for temperature influence on σ𝑗  

𝛃  Weights for the influence of 𝐞𝑗 on 𝛉𝑗 (defined locally in Section 5.3) 

𝛽(𝑅)  Backscattering coefficient at distance 𝑅 (defined locally in Section 5.2) 

γ  Credibility level of complying with a target level of safety 

γT  Divergence of transmit beam [°] 

γR  Divergence of receive channel [°] 

𝛾(𝑎, 𝑏 ∙ λ) Incomplete gamma function with arguments 𝑎 and 𝑏 ∙ λ 

Γ  Reflectivity of a hard target (defined locally in Section 5.2) 

𝛤(𝑎)  Gamma function with argument 𝑎 

𝛿  Dirac function 

𝛿𝑘,𝑛  Kronecker delta, which is 𝛿𝑘,𝑛 = 1 if 𝑘 = 𝑛 and 𝛿𝑘,𝑛 = 0 otherwise 

∆𝑓  Shift between instantaneous transmit and receive signal frequencies [s−1] 

∆𝑓Doppler Doppler frequency shift [s−1] 

∆𝑡  Duration of one trial in which a perception error can occur (measurement cycle) [s] 

∆𝑥𝑗,𝑘  Object position deviation 𝑘 in time interval 𝑗 (defined locally in Section 5.3) 

∆𝑋  Object position deviation (defined locally in Section 5.3) 

∆𝐗  Deviation between estimated and true state (defined locally in Section 4.1.2) 

𝜁  Crossover function 

ηT  Optical efficiency transmitter 

ηR  Optical efficiency receiver 

𝛉  Generic model parameter 

�̂�  Global mean of model parameters over time intervals 𝑗 

𝛉dep  Model parameters for dependent sensor errors with Gaussian copula 

𝛉dep,DS Model parameter under dependent sensor errors with low rank Gaussian copula 

𝛉indep  Model parameter under statistically independent sensor errors 

𝛉indep,MAP Maximum a posteriori point estimate of 𝛉indep 

𝛉𝑗  Model parameter in time interval 𝑗 

λ  Generic failure rate [1/h] 

λ̅  Average of generic failure rate [1/h] 

λ̂  Posterior mean generic failure rate [1/h] 
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λact  Automated driving system actuation rate of failures [1/h] 

λFail  An item’s failure rate [1/h] 

λF𝑗  Rate of automated driving system failure events (i.e. accident) 𝐹𝑗 of type 𝑗 [1/h] 

λFN  Rate of false negative errors [1/h] 

λFNcrit,𝑗 Rate of safety-critical false negative errors of perception module in area 𝑗 [1/h] 

λFN𝑖  False negative error rate of individual sensor 𝑖 [1/h] 

λFN,𝑗  Rate of false negative errors of perception module in area 𝑗 [1/h] 

λFP  Rate of false positive errors [1/h] 

λFPcrit,𝑗   Rate of safety-critical false positive errors of perception module in area 𝑗 [1/h] 

λFP𝑖  False positive error rate of individual sensor 𝑖 [1/h] 

λFP,𝑗  Rate of false positive errors of perception module in area 𝑗 [1/h] 

λfunct  Rate of failures of automated driving function module [1/h] 

λper  Rate of failures of perception module [1/h] 

λsensor  Generic sensor error rate [1/h] 

λsys  Rate of automated driving system failures (i.e. fatal accidents) [1/h] 

λTLS  Generic target level of safety (acceptable rate) [1/h] 

λTLSFN,crit Acceptable safety-critical false negative error rate of perception module [1/h] 

λTLSFN,𝑖 Acceptable false negative error rate of individual sensor 𝑖 [1/h] 

λTLSFN,sensor Acceptable rate of false negative sensor errors, valid for all sensors 𝑖 = 1, … , 𝑛 

[1/h] 

λTLSFP,crit Acceptable safety-critical false positive error rate of perception module [1/h] 

λTLSFP,𝑖  Acceptable false positive error rate of individual sensor 𝑖 [1/h] 

λTLSFP,sensor Acceptable rate of false positive sensor errors, valid for all sensors 𝑖 = 1,… , 𝑛 

[1/h] 

λTLSper  Acceptable failure rate of perception module [1/h] 

λTLSsys  Acceptable rate of automated driving system failures [1/h] 

λUFN,𝑖  Correlation factor determining the correlation coefficient 𝜌UFN,𝑖,𝑗 if the correlation 

matrix is of Dunne-Sobel class  

λUFP,𝑖  Correlation factor determining the correlation coefficient 𝜌UFP,𝑖,𝑗 if the correlation 

matrix is of the Dunnet-Sobel class 

𝛌UFP  Vector containing the correlation factors λUFP,𝑖 for all 𝑖  

𝛌UFN  Vector containing the correlation factors λUFN,𝑖 for all 𝑖  

λwave  Wavelength [m] 

μ(𝑡)  Mean number of failures in time interval 𝑡 
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μ𝑗  Mean of object position deviations in time interval 𝑗 

μ𝑁  Average number of rain drops in a unit volume [m−3] 

μμ  Mean of μ𝑗 over time intervals 𝑗 

ρ  Target reflectance 

𝜌  Correlation coefficient 

𝜌  Sensor error correlation coefficient (defined locally in Section 6.1) 

�̂�  Posterior mean of 𝜌 

𝜌FN  Pairwise correlation coefficient of false negative errors valid for all pairs of sensors 

𝜌FN,𝑖,𝑗  Pairwise correlation coefficient of false negative errors in sensors 𝑖 and 𝑗 

𝜌FP  Pairwise correlation coefficient of false positive errors valid for all pairs of sensors 

𝜌FP,𝑖,𝑗  Pairwise correlation coefficient of false positive errors in sensors 𝑖 and 𝑗 

𝜌UFN,𝑖,𝑗  Correlation coefficient among the random variables 𝑈FN,𝑖 and 𝑈FN,𝑗 

𝜌UFN,+,𝑖,𝑗  Correlation coefficient among the random variables 𝑈FN,𝑖 and 𝑈FN,𝑗 with adapted 

sign 

𝜌UFP,𝑖,𝑗   Correlation coefficient among the random variables 𝑈FP,𝑖 and 𝑈FP,𝑗 

𝜌UFP,+,𝑖,𝑗  Correlation coefficient among the random variables 𝑈FP,𝑖 and 𝑈FP,𝑗 with adapted 

sign 

�̂�UFN,𝑖,𝑗  Posterior mean of 𝜌UFN,𝑖,𝑗 

�̂�UFP,𝑖,𝑗  Posterior mean of 𝜌UFP,𝑖,𝑗 

σback,𝑖  Backscattering cross section of particle 𝑖 [m²] 

σext,𝑖  Extinction cross section of particle 𝑖 [m²] 

σ̅ext  Mean extinction cross section of scattering particles [m²] 

σ𝑗  Standard deviation of object position deviations in time interval 𝑗 

σRCS  Radar cross section [m²] 

σ∆𝑋  Standard deviation of the deviation between estimated and true state 

σμ  Standard deviation of μ𝑗 over time intervals 𝑗 

τp  Pulse width [s] 

τφ  Hyperparameter for φσ,𝑗 (precision) 

φ  Standard normal probability density function 

𝛗  Collection of all random effect parameters (defined locally in Section 5.3) 

φ2  Bivariate standard normal probability density function 

𝛗𝑗  Random effect parameters in time interval 𝑗 (defined locally in Section 5.3) 

φn(𝐮, 𝐑) 𝑛-dimensional multivariate correlated standard normal probability density function 

with argument 𝐮 and covariance matrix 𝐑 

φσ,𝑗  Random effect for variability in σ𝑗 
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Φ  Standard normal cumulative distribution function 

𝛟  Hyperparameter (defined locally in Section 5.3) 

Φ−1  Inverse standard normal cumulative distribution function 

Φ2  Bivariate standard normal cumulative distribution function 

Φn  𝑛 dimensional multivariate correlated standard normal cumulative distribution 

function 

ϕR  Geometric property to calculate circle-circle intersection of transmitter and receiver 

channel [°]  

ϕT  Geometric property to calculate circle-circle intersection of transmitter and receiver 

channel [°]  

𝛟μ  Hyperparameter for mean μ𝑗 

𝛟σ  Hyperparameter with influence on standard deviation σj 
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Abbreviations 

ADAS  Advanced driver assistance systems 

ADS  Automated driving system 

AEB   Automatic emergency brake 

ALARP As low as reasonable possible 

APD  Avalanche photo diode 

ASIL  automotive safety integrity level 

AUC  Area under the ROC curve 

BASt  Bundesanstalt für Straßenwesen 

CDF  Cumulative distribution function 

CMOS  Complementary metal-oxide-semiconductor 

CNN  Convolutional neural network 

DGPS  Differential global positioning system 

DIN  Deutsches Institut für Normung 

E/E  Electrical and/or electronic systems 

EM  Expectation maximization algorithm 

ETA  Event tree analysis 

FBD  Functional block diagram 

FMCW Frequency modulated continuous wave 

FMEA  Failure mode and effects analysis 

FN  False negative 

FOV   Field of view 

FP  False positive 

FTA  Fault tree analysis 

GAMAB Globalement au moins aussi bon 

GPS  Global positioning system 

HAZOP Hazard and operability study 

HiL  Hardware-in-the-loop 

HMM  Hidden Markov Model 

IEC  International Electrotechnical Commission 

ISO  International Organization for Standardization 

JIPDA  Joint Integrated Probabilistic Data Association 

LSS  Limit state surface 

MAP  Maximum a posteriori estimate 

MCMC Markov Chain Monte Carlo 

MCS  Monte Carlo Simulation 
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MEM  Minimum endogenous mortality 

MiL   Model-in-the-loop 

OEM  Original equipment manufacturer 

PDF  Probability density function 

PIN  Positive intrinsic negative 

PMF  Probability mass function 

RBD  Reliability block diagram 

ROC  Receiver operating characteristic 

SAE  Society of Automotive Engineers 

SIL  Safety integrity level 

SiL  Software-in-the-loop 

SOTIF  Safety of the Intended Functionality 

SSD  Single shot detector 

TLS  Target level of safety 

TN  True negative 

ToF  Time-of-flight 

TP  True positive 

ViL  Vehicle-in-the-loop 

VSL   Value of a statistical life 

XiL  X-in-the-loop 
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1 Introduction 

1.1 Background and Motivation 

In the Living Machine (1935), science-fiction author David H. Keller envisions automated driving: 

“Old people began to cross the continent in their own cars. Young people found the driverless car 

admirable for petting. The blind for the first time were safe. Parents found they could more safely 

send their children to school in the new car than in the old cars with a chauffeur.” [1]. Automated 

driving is not only a science-fiction motif but is researched since the 1950s [2–13]. Almost every 

original equipment manufacturer (OEM) has developed automated driving system1 (ADS) 

prototypes and has announced the release of automated driving functionalities [15–28], which are 

enabled by environment perceiving sensors such as radar, lidar and cameras [29]. The old vision 

of automated driving with its “promise of salvation” [2] seems close to become reality. 

In The Living Machine there is however a twist in the story: “Cars, without control, coursed the 

public highways, chasing pedestrians, killing little children, smashing fences. […] Traffic was 

paralyzed. The nation became panic-stricken. Schools were closed.” [1]. The dystopia of 

automated driving vehicles coming to life to hunt people does not seem realistic2, but the science-

fiction pattern of the “wonderful and scary” ([30], authors translation) is reflected in emotions of 

society towards automated driving [31] and persists also in the discussion about the introduction 

of ADSs. ADSs are expected to increase safety, efficiency and mobility as well as to reduce land 

use and congestion [3, 31–38]. However, large challenges for a market introduction of ADSs are 

to develop safe ADSs and to demonstrate that they are actually safe enough [33, 35, 39–45].  

Such a safety demonstration is a prerequisite for authorities, society, end-users, regulatory bodies, 

the insurance industry and OEMs to accept that ADSs make safety-relevant decisions with 

implications on human life [39, 44]. Therefore, criteria for rational decision making about ADS 

safety are required [39]. An important aspect for the safety of ADSs is the reliability of its 

environment perception, provided by radar, lidar and camera sensors, because perception errors 

can be safety-critical. In the context of ADS safety, this thesis studies how to describe, assess and 

demonstrate the safety-critical reliability of environment perception.   

                                                 
1 This thesis uses automated driving instead of autonomous driving because the latter inadequately implies the 

connotation of an agent with “…capacity for self-governance” [14], e.g. by deciding whether, when and where to 

drive. In contrast to autonomous driving, automated driving should make clear that such decisions are made by a user. 

See [14] for a discussion on terminology. 
2 To give a correct account of The Living Machine: the gasoline industry was jealous of the automotive industry’s 

success with automated driving vehicles and as revenge decided to purposely mix cocaine into gas. The cocaine made 

the automated driving vehicles act without control. [1] 
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1.2 Relevance 

1.2.1 Levels of Driving Automation 

To discuss the safety of automated driving, one has to differentiate the capabilities of ADSs. The 

capabilities of ADSs are classified by the Society of Automotive Engineers (SAE) J3016 [14] and 

the German Bundesanstalt für Straßenwesen (BASt) [38] in terms of different levels of driving 

automation. The definitions according to SAE and BASt are corresponding, except for the 

terminology of levels 3-4 and an additional level 5 in J3016 [45]. Figure 1.1 summarizes the 

different levels of driving automation, for their exact definition we refer to [14, 38]. 

 

Figure 1.1 Levels of driving automation according to SAE J3016 [14] and German Bundesanstalt für 

Straßenwesen (BASt) [38]. Starting with level 3, the system is fully responsible for monitoring the 

system itself and the driving environment. In this thesis, levels 1-2 are summarized as advanced 

driver assistance systems (ADAS) and levels 3-5 as higher levels of driving automation3. 

Currently, the most advanced commercially available automated driving functionalities classify as 

level 2 systems (partial automation). A level 2 system is able to take over longitudinal and lateral 

vehicle control in specific driving situations, with the restriction that the driver must continuously 

monitor the system and the environment. In case of an error or inadequate behavior of the system, 

the driver is responsible for overriding the advanced driver assistance system’s (ADAS’s) action. 

As indicated in Figure 1.1, a paradigm change occurs between a level 2 and a level 3 system 

because the human driver in level 3 does not have to monitor the system and the environment, 

when the system is engaged. Hence, the human driver is not responsible to react (immediately) in 

case of a system failure or error. The restriction of a level 3 system is that the driver has to be 

                                                 
3 It is pointed out that the term automated driving system (ADS) in [14] refers to a system with driving automation 

levels 3-5, while driving automation system refers to levels 1-5. To avoid confusion, this thesis generally uses the term 

automated driving system (ADS) for levels 1-5, the term higher levels of driving automation for levels 3-5 and 

advanced driver assistance systems (ADAS) for levels 1-2. 
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receptive to take over control after an adequate time frame, whenever the system detects a failure 

or a situation it cannot handle. This restriction is not applicable to level 4 anymore, the system is 

expected to automatically reach a minimal risk condition4, when it detects a system failure or a 

situation it cannot handle. While levels 3-4 are restricted to specific driving domains (e.g. 

highway), a level 5 system can handle any driving domain. 

The human driver not being responsible for monitoring the ADS and its environment has profound 

implications on legal matters and liability5 [33, 45, 49], on ethical questions related to ADS actions 

[50–52], on ADS design, on ADS safety and performance requirements, and on system safety 

validation and testing procedures [35, 40, 44]. 

1.2.2 Higher Levels of Driving Automation: Implications on Testing and Safety 

In the following, it is assumed that it is legal for a human driver to not monitor the ADS and its 

environment (see e.g. [49] for a discussion on legal matters). The implications of higher levels of 

driving automation on safety, testing and validation under this assumption are explained with the 

three layer hierarchy of the driving task according to Donges [53]: 

 Navigation: selection of an adequate driving route. Time span in the orders of minutes to 

hours. 

 Vehicle guidance: selection of target driving variables such as the desired lane and velocity. 

Time span in the orders of seconds to minutes. 

 Vehicle stabilization: aligning the current vehicle state with desired driving variables and 

stabilizing the motion of the vehicle. Time span in the orders of milliseconds to seconds. 

 

A human driver is implicitly assumed to have the required perceptive, cognitive and sensory-

motoric abilities to handle the navigation, guidance and stabilization of a vehicle. This assumption 

is commonly verified in a driver license test. Based on this assumption, traditional safety concepts 

for the vehicle-driver system aim at demonstrating that the vehicle components have sufficiently 

low failure rates and that a driver is safely able to control the vehicle (controllability). [44]  

For instance, ISO 26262 based on a V-Model process is applied to design functional safe electrical 

and/or electronic (E/E) systems, i.e. to ensure the hardware and software of E/E systems have 

sufficiently low failure rates [54]. Controllability is demonstrated in exemplary test cases. If the 

                                                 
4 The minimal risk condition, sometimes also termed the safe state, is for instance achieved by parking on the hard 

shoulder of a highway [46]. 
5 Under the UN Vienna Convention on Road Traffic, the legal status of ADS with higher levels of driving automation 

was not clear: ”Every driver shall at all times be able to control his vehicle or to guide his animals.“ [47]. In 2016, the 

convention was amended, trying to clarify the legal status of ADS with higher levels of driving automation [48]. With 

this amendment, an ADS is acceptable, if the system is designed such that the driver is able to override the ADS’s 

actions and stop the ADS functionality at all times [48]. 
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test driver is able to control the vehicle in these exemplary situations, it is assumed that another 

driver with a driver license is also able to control the vehicle in other relevant but not tested 

situations. Hence an integral part of the traditional automotive safety concept for the driver-vehicle 

system are the abilities of the drivers. [44] 

For ADAS (levels 1-2), this safety concept does not change fundamentally [44]. Ultimately, the 

driver is responsible and hence the task is still to demonstrate controllability and sufficiently low 

component failure rates [44, 55, 56]. For example, the Code of Practice for the Design and 

Evaluation of ADAS summarized the state of the art in assessing controllability6 of level 1-2 

systems [40, 56]. An additional challenge in an ADAS safety validation compared to driver only 

systems is to provide a safe possibility for the driver to override the system’s actions and to ensure 

that the automation does not lead to a decreased situation awareness of the driver, which impairs 

controllability [44]. 

With higher levels of driving automation, the testing for driver controllability is not applicable 

anymore because the human driver does not have to monitor the system and the environment. Per 

definition, the system has to be able to control and monitor the vehicle as well as its environment 

(in specific situations, depending on the driving automation level and when engaged). In contrast 

to a human driver, one cannot simply assume the required perceptive, cognitive and sensory-

motoric abilities for an ADS to handle the navigation, guidance and stabilization of the vehicle. 

These abilities have to be tested and validated. With Donges’ three layer model, Figure 1.2 

illustrates which parts of the driver-vehicle system had to be tested traditionally (blue shaded area), 

and which parts have to be tested additionally in an ADS with higher levels of driving automation 

(red shaded area). [44] 

The navigation task is not directly deemed to be safety relevant and is therefore not included in 

Figure 1.2. One of the main points in Figure 1.2 is that one has to validate the reliability of the 

system’s perception and cognition to demonstrate the safety of an ADS with higher levels of 

driving automation. In ADSs, the perception is provided by e.g. radar, lidar and camera sensors, 

which gather information about the environment [29]. The information provided by the different 

sensors is typically combined in a sensor data fusion [57–60]. The fused sensor information is then 

the basis for the decision making of an ADS. 

Applying existing standards such as ISO 26262, e.g. to demonstrate the functional safety of an 

ADS’s environment perception, is not necessarily sufficient to ensure acceptable safety for higher 

levels of driving automation [40, 54, 61]. A failure in ISO 26262 is defined as the “termination of 

an element to perform a function as required” [62]. But even if environment perceiving sensors 

                                                 
6 The Code of Practice defines controllability as the: “likelihood that the driver can cope with driving situations 

including ADAS-assisted driving, system limits and system failures” [56]. 
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“perform as required”, deficient information due to the inherently uncertain environment 

perception could lead to an inadequate ADS behavior, and in the worst case to an accident [40, 54, 

63, 64]. This type of failure is as a distinction from classical (hardware / software) system failure 

events termed functional deficiency in [54, 64]. ISO 26262 reaches its limits in demonstrating a 

sufficiently low risk of functional deficiencies, because it is probably impossible to explicitly 

specify and verify requirements for all potential situations an ADS and its sensors have to handle. 

[40, 54, 61]. 

 

Figure 1.2 Validation and testing scope of an ADS with higher levels of driving automation (red and blue 

area) compared to traditional test concepts (blue area only). The safety relevance of transferring 

the driving task depends on the level of driving automation. In analogy to Fig. 21.6 in [44].  

To preclude an unacceptable risk of functional deficiencies, one hence has to validate the reliability 

of the perception, provided by radar, lidar and camera sensors, with respect to the intended 

automated driving functionality [39]. To clarify that this task is not (entirely) identical to the 

demonstration of functional safety, the term Safety of the Intended Functionality (SOTIF) is used. 

Hand in hand with the necessity of validating the SOTIF of ADSs goes the challenge that classical 

automotive testing procedures are not directly applicable to validate the safety of ADSs and their 

environment perception. Scenario based test methods by specifying tests in catalogues have the 

limitation that an ADS has to be able to control a near infinite number of situations [40, 44], field 

tests (“driving to safety” [41]) seem infeasible due to the large number of required test kilometers7 

[35, 41, 44, 65] and sufficiently realistic and comprehensive simulation methods for an exclusively 

simulation based safety demonstration do not yet exist [44, 66]. [39]   

                                                 
7 The unmanageable amount of required test kilometers is referred to as the „approval trap“ [35] for ADS. 
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1.2.3 Novelty of Challenge 

One might think that the automation in other domains such as commercial aviation or railways 

leads to corresponding challenges. This is not the case. The safety concept of automated aviation 

systems and typically also of automated railway systems includes a supervision of the automated 

system by trained human operators. Hence these systems classify in analogy to the levels of driving 

automation as level 2. In contrast to automated road traffic, the automated aviation and railway 

systems are additionally externally controlled, which in case of railways is further supported by 

the infrastructure. Another crucial difference is that the traffic space in aviation and railways is 

closed, while the road traffic space is open. The open road traffic space leads to a high variability 

of traffic participants and objects that have to be handled by the ADS. Due to the open road traffic 

space, the road traffic flow cannot be planned a priori, which is in contrast to aviation and railways. 

This underlines the novelty of the challenge of demonstrating the safety of higher levels of driving 

automation, which depends on environment perception. [40, 44, 46] 

The novelty of the challenge together with the previous discussion on implications of higher levels 

of driving automation underline the importance of validating an ADS’s safety. According to [40, 

63], with higher levels of driving automation, no methods to sufficiently address the safety 

validation of ADSs and their environment perception reliability are known.  

1.3 Research Objectives and Scope of Thesis 

Motivated by the discussed challenges, the subject of this thesis is the validation of perception 

reliability in the context of validating ADS safety. We define perception reliability as probability 

of absence of safety-critical perception errors at the output of sensor data fusion. An ADS’s 

perception reliability depends on the reliability of the perception provided by individual radar, 

lidar and camera sensors, which we define as sensor perception reliability. In reference to [60], 

we interpret environment perception to answer questions in three uncertainty domains:  

 Existence uncertainty: is there a relevant object in a specific area of the ADS’s 

surroundings? 

 Classification uncertainty: if there is a relevant object, what type of object is it? E.g. car, 

truck, pedestrian, lane marking, traffic sign, red traffic light, infrastructure, etc.. 

 State uncertainty: if there is a relevant object, what are its position, dimensions, velocity, 

acceleration, etc.?  
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With these definitions, the objectives of this thesis are to: 

 comprehensively structure the task of validating ADS perception reliability in the context 

of an ADS’s safety validation. 

 identify and discuss challenges associated with validating ADS perception reliability. 

 evaluate the applicability of existing automotive standards, safety validation frameworks 

and testing procedures on validating ADS perception reliability. 

 describe perception reliability with suitable reliability metrics. 

 devise general strategies for validating perception reliability in light of identified 

challenges. 

 develop statistical methods to assess and estimate sensor perception reliability. 

 

Within the scope of this thesis is sensor perception reliability and how errors in individual sensors 

can conceptually be connected to the perception reliability at the output of sensor data fusion. Not 

in scope of this thesis is an explicit modeling of sensor data fusion and an investigation of 

perception errors due to sensor data fusion, such as a wrong association of the information 

provided by individual sensors [59]. 

Also not in scope is the (reliability of the) interpretation of a perceived situation, which requires 

to comprehend the situation’s meaning by relating the different elements in the situation to each 

other and to project a situation into the future [31, 56, 67]. To clarify the scope of this thesis, we 

exclude questions related to the situation interpretation such as for instance: 

 Does a pedestrian try to cross the street? 

 Where will a pedestrian be located in 3 s from now? 

 Is a vehicle in front of the ego-vehicle (ADS) trying to change its lane? 

 Will a vehicle be decelerating in 2s from now? 

 What is an oncoming vehicle going to do at an intersection? 

 Is the ego-vehicle allowed to turn left at an intersection at a specific point in time?  

  

https://www.linguee.de/englisch-deutsch/uebersetzung/conceptionally.html
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1.4 Structure of Thesis 

We review the technical background of environment perception for ADSs in Chapter 2, including 

different sensor technologies, how an ADS represents its environment and how the data of different 

sensors is aggregated in a sensor data fusion. The reader familiar with environment perception for 

ADSs can skip Chapter 2. 

Thereafter, in Chapter 3, we formally derive and define the task of validating perception reliability. 

We further identify challenges associated with validating and assessing (sensor) perception 

reliability. In light of these challenges, we assess the applicability of existing standards, safety 

frameworks and testing procedures on validating perception reliability, which highlights in detail 

the necessity of this research. 

In Chapter 4, we describe perception reliability with suitable metrics, we derive requirements for 

sensor perception reliability from requirements on perception reliability and we estimate the test 

effort required to validate a required level of perception reliability. 

Next, in Chapter 5, we present different methods to assess (sensor) perception reliability. These 

include a semi-quantitative analysis method, an exemplary virtual simulation, tests on proving 

grounds and field tests. 

In Chapter 6, we investigate and develop statistical learning methods to estimate sensor perception 

reliabilities solely by exploiting sensor redundancies. Such an approach would facilitate the 

validation of perception reliability in Shadow-Mode [68], based on big data generated by a fleet 

of end-user vehicles. 

Finally, we summarize our contributions, provide conclusions and give an outlook in Chapter 7. 
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2 Automated Driving and Environment Perception 

The functional principle of an automated driving system (ADS) can be described with the classical 

robot control paradigm sense, plan, act [42, 69, 70]. Figure 2.1 presents a generic functional block 

diagram, detailing the sense, plan, act paradigm for ADSs. 

 

Figure 2.1 Generic functional block diagram of an automated driving system. In analogy to Fig 20.1 in [60].  

Information about the environment is gathered by multiple environment perceiving sensors such 

as radar, camera and lidar sensors (described in Section 2.1) [29]. This information is combined in 

a sensor data fusion [57–60] to derive an abstract representation of the ego-vehicle’s surroundings, 

which is called vehicle environment model (described in Section 2.2) [67]. Based on the vehicle 

environment model, the situation is interpreted by relating the different elements in the 

environment model to each other [31, 60, 71]. A path together with desired driving parameters 

(longitudinal and lateral acceleration, velocities…) is derived for the given situation, e.g. by 

minimizing a cost function for a given driving goal [31, 51]. The vehicle control (actuators for 

steering and acceleration) then execute the planned path by controlling the ego-vehicle’s driving 

parameters [31]. The whole process is repeated and updated cyclically, when the sensors provide 

new information [60].  

Figure 2.1 is a generic representation of a single automated driving functionality, the actual 

functional architecture of an ADS might differ. For instance, multiple fusion modules could be 

implemented for reasons of redundancy, or because they provide information to different 

automated driving functionalities. Also not indicated in Figure 2.1 is the fact that an ADS might 

use digital maps for localization [31, 60] and that the ADS makes use of information about the 

ego-vehicle’s state, such as its velocity and acceleration [72]. 

Any of the ADS functionalities illustrated in Figure 2.1 could fail in a safety-critical way or make 

a safety-critical error, which in the worst case can lead to an accident. This highlights the safety-

relevance of the environment perception, the path planning together with situation interpretation 

and the actuation. 
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2.1 Environment Perceiving Sensors 

Our focus is on perception reliability. This Section describes the automotive sensing technology 

that enables the environment perception for ADSs. The aim is to provide an overview over the 

main physical principles of the different sensing technologies, to broadly discuss their signal and 

data processing algorithms and to discuss potential sensing errors together with the physical 

mechanisms that cause these errors. The purpose is not to provide a complete review of all 

technical details and of the latest sensor technology, but to support an understanding of the sensor 

technology as a basis for describing and assessing (sensor) perception reliability. 

To this end, radar sensors are described in Section 2.1.1, camera sensors in Section 2.1.2 and lidar 

sensors in Section 2.1.3. Ultrasonic sensors are because of their small range (< 6 m, see e.g. [73]) 

mostly restricted to automated driving with small velocities, for instance in automated parking 

functionalities. The small velocities have limited safety-relevance, therefore ultrasonic sensors are 

not described here. For further information on ultrasonic sensors, we refer to [74, 75]. 

The strengths and weaknesses of different sensors are thereafter briefly summarized in Section 

2.1.4. Finally, a generic representation of the sensors’ signal and data processing is given in Section 

2.1.5, which provides an abstract basis for describing sensor perception reliability. 

2.1.1 Radar 

This Section presents automotive radar technology in reference to [76] if not otherwise indicated. 

The main purpose of radar (radio detection and ranging) sensors is to detect objects in the 

environment and to measure their distances and relative velocities. Radar technology goes back to 

military applications in the Second World War. The first commercial automotive implementation 

of radar sensors was in the context of Adaptive Cruise Control (ACC) in 1998. Thereafter, more 

radar use cases such as Automatic Emergency Braking (AEB) and Lane Change Assist (LCA) 

followed. 

Object Detection 

A radar transmits electromagnetic radiation, which is reflected back to the sensor by objects8 in 

the environment. The radar’s receiving antenna captures the reflected signal. The frequency bands 

utilized in the automotive domain include 21.65-26.65 GHz, 24.0-24.25 GHz and 76-77 GHz. 

                                                 
8 In radar literature, relevant objects are termed targets, which goes back to its military origin. In this work the targets 

are objects in the environment of an ADS. 
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An object is for instance detected by the radar, if the signal intensity in the frequency domain 

exceeds a detection threshold [40, 76]. The received power 𝑃R at the radar is described with the 

radar range equation [77], which helps to identify factors with influence on radar detection 

capabilities: 

𝑃R =
𝑃T ∙ 𝐺T ∙ 𝐺R ∙ σRCS ∙ λwave

2

(4π)3 ∙ 𝑅4
 (2.1) 

𝑃T is the peak transmit power. The gain of the transmit antenna 𝐺T is the power density ratio of 

the antenna’s directed radiation to an isotropic radiator with identical transmit power and 

quantifies the directivity of the radar. Additionally, 𝐺T accounts for transmit losses. The gain of 

the receiving antenna 𝐺R is generated by the receiver’s aperture. 𝐺R depends on the radiation’s 

wavelength λ and the receiver losses. σRCS is an object’s radar cross section, which determines 

how much of the incident radiation is reflected back towards the radar. σRCS is influenced by the 

size, shape, relative position [40], orientation [40] and the (surface) material of an object. The 

received power decreases with the distance to an object 𝑅 to the power of four. Eq. (2.1) allows to 

estimate a radar’s maximum range. Atmospheric losses are neglected in Eq. (2.1). [76, 77] 

Distance and Relative Velocity Measurement 

The distance and relative velocity measurements of radars are enabled by signal modulation, i.e. 

by encoding information into the transmit signal. By demodulating the received signal and 

comparing its properties to the transmit signal, the distance to and the relative velocity of an object 

are derived. A variety of modulation techniques are applied in the automotive domain, these 

include: 

 Pulse modulation (Pulse Doppler method) 

 Frequency-Shift-Keying (FSK) 

 Linear Frequency Modulation Shift Keying (FMSK) 

 Frequency Modulated Continuous Wave (FMCW) 

 Chirp Sequence Modulation 

 

It is not in the scope of this thesis to review all modulation techniques. Instead, the principle behind 

a Frequency Modulated Continuous Wave (FMCW) radar is presented to exemplarily explain how 

distances and relative velocities can be measured. For further information on radar signal 

processing it is referred to [76, 78–80]. 

A FMCW radar modulates the signal by linearly varying the instantaneous transmit signal 

frequency 𝑓T(𝑡) with a rate 𝑑𝑓T/𝑑𝑡. As illustrated in Figure 2.2, the frequency of the received 
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signal 𝑓R(𝑡)  at time 𝑡 is shifted compared to 𝑓T(𝑡)9: a) because of the time-of-flight (ToF) 𝑡ToF in 

combination with the varying transmit frequency; and b) because of the Doppler frequency shift 

∆𝑓Doppler. 

 

Figure 2.2 Relationship between transmit (solid blue line, 𝒇𝐓(𝒕)) and receive (solid black line, 𝒇𝐑(𝒕)) signal 

frequencies of a Frequency Modulated Continuous Wave (FMCW) radar. The illustrated Doppler 

Frequency shift ∆𝒇𝐃𝐨𝐩𝐩𝐥𝐞𝐫 represents the case in which sensor and object are approaching each 

other. The dashed line is the received signal’s frequency in the stationary case. In analogy to Fig. 

14 in [76] and to Bild 1 in [81]. 

𝑡ToF is the time needed for the signal to travel to an object at distance 𝑅 and back to the sensor: 

𝑡ToF =
2 ∙ 𝑅

𝑐0
 

(2.2) 

with 𝑐0 the velocity of light. The Doppler Effect describes the frequency shift ∆𝑓Doppler a wave 

experiences due to the relative movement of an observer and a transmitter:  

∆𝑓Doppler = −
2 ∙ 𝑣rel ∙ 𝑓0

𝑐0
 

(2.3) 

where 𝑣rel is the relative velocity between observer and transmitter and 𝑓0 is the frequency of the 

transmitted wave. 𝑓0 is often approximated with a constant frequency within the utilized frequency 

band leading to a negligible error. 

  

                                                 
9 The notation for the frequencies 𝑓T(𝑡) and 𝑓R(𝑡) is not to be confused with the notation of a probability density 

function 𝑓𝑋(𝑥) used in the remaining parts of this thesis. 
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Combining both effects a) and b) results in the frequency shift between the instantaneous transmit 

and receive signal frequencies ∆𝑓 = 𝑓T(𝑡) − 𝑓R(𝑡): 

∆𝑓 =
𝑑𝑓T
𝑑𝑡
∙ 𝑡ToF − ∆𝑓Doppler =

𝑑𝑓T
𝑑𝑡
∙
2 ∙ 𝑅

𝑐0
+
2 ∙ 𝑣rel ∙ 𝑓0

𝑐0
 

(2.4) 

which is a line in the 𝑅-𝑣rel space. In combination with a second frequency ramp, typically with 

negative 𝑑𝑓T/𝑑𝑡, two lines are obtained in 𝑅-𝑣rel space. The intersection of the two lines 

determines the distance 𝑅 and the relative velocity 𝑣rel to an object. Potential ambiguities due to 

the detection of multiple objects are resolved with additional frequency ramps of different 𝑑𝑓T/𝑑𝑡. 

In practice, ∆𝑓 is evaluated by mixing10 transmit and receive signals and transforming the mixed 

signal into the frequency domain with a Fourier transformation. 

Angular Discrimination 

A variety of methods are employed to obtain measurements in different directions in space. 

Angular discrimination in the far field is easier to achieve in the azimuth11, as automotive sensor 

size limitations restrict the discrimination in elevation12. A simple solution for the angular 

discrimination is mechanical scanning by rotating the radar’s antenna. Another option is the use 

of multibeam antennas, which evaluate an object’s angular direction by exploiting known antenna 

characteristics13. Planar antenna arrays with known spatial separation of the individual antennas 

use the dependence of the received signal phases at each antenna on signal direction for angular 

discrimination. Further used are the Monopulse method and Dual-Sensor concepts. 

The distance, velocity and angular measurements of a radar are aggregated cyclically and 

constitute the sensor’s raw data. The raw data is clustered and is the input to tracking algorithms, 

which associate the raw data to relevant objects in the environment and filter their state estimates 

(position, velocity, acceleration, etc.). 

Strengths, Limitations and Perception Errors 

The main advantages of radars compared to other sensors are their direct relative velocity 

measurement capability and their comparatively strong robustness towards weather influences. An 

important disadvantage is their limited angular discretization due to restrictions on acceptable 

sensor sizes. Object classification is another limitation of radars because, amongst others, the high 

                                                 
10 Mixing is the process of signal multiplication in high-frequency technology. [76]  
11 Azimuth is the angle of a direction in the horizontal sensor plane w.r.t. the sensor’s orientation. 
12 Elevation is the angle of a direction in the vertical sensor plane w.r.t. the sensor’s orientation. 
13 The antenna characteristic describes the relative strength of the electromagnetic field emitted by an antenna in 

dependence of the angular direction. [76, 82]  
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variability of the radar cross section within one object makes object classification based on the 

radar cross section difficult. Automotive long range radars have a range of up to 250 m. 

Despite their robustness towards weather influences, strong rainfall with drop sizes in the 

magnitude of the radar’s wavelength can lead to strong atmospheric attenuation and larger signal 

to noise ratio. Water on the radome leads to a refraction of the beam, potentially causing errors in 

angular measurements [76, 83]. Spray water next to vehicles could cause false positive detections. 

An important effect is the multipath propagation of a radar beam, for instance due to reflections 

on the road surface [40, 59]. Multipath propagation can lead to signal interference, detection errors 

and angular measurement errors. As apparent in Eq. (2.1), the radar cross section and with it the 

properties of the objects are an important influencing factor for a radar’s detection performance 

[40]. These exemplary factors and influences can cause perception errors. 

2.1.2 Camera 

Cameras are well suited for object detection, object classification and angular discrimination (e.g. 

estimating the orientation or contour of an object). In case of stereo camera systems, they also 

provide distance measurements. In the automotive domain, cameras were first implemented as rear 

view cameras to assist drivers. Later, a more advanced camera use case was automatic high beam 

control. Currently, cameras are enabling a variety of ADAS by providing, amongst others, object, 

traffic sign, lane and free space detection. [84] 

Measurement Principle 

A 3d scene is optically projected in a camera through a lens on a 2d image sensor, which is 

discretized into pixels [84, 85]. Photons hitting the pixels generate an electrical charge proportional 

to the light intensity [84]. With the generated electrical charge, the 2d image is digitized [84]. 

Through the projection of a 3d scene on a 2d image sensor, information about one dimension is 

lost [85]. Angular information is contained in the 2d image. 

Predominating are complementary metal-oxide-semiconductor (CMOS) image sensors [84]. 

CMOS image sensors transform and digitize the electrical charge at the individual pixel level [84]. 

Unlike radars, lidars and ultrasonic sensors, which all actively emit a signal, cameras are passive 

sensors making use of available electromagnetic radiation in the environment. Most commonly, 

the image sensors are sensitive towards the visible light spectrum [84]. 

Often no color filter is implemented in the image sensors due to the involved cost, i.e. the sensors 

are monochromatic and provide a greyscale image [84–86]. An alternative are infrared cameras, 

which are deployed as active sensors with an infrared headlight, or alternatively as passive sensors 

generating a thermal image [84, 86]. Due to their comparatively large cost, infrared cameras are 



Automated Driving and Environment Perception 

 15 

not implemented frequently [84, 87]. The raw output of an automotive camera is a greyscale, 

infrared, or alternatively, a rgb color14 image with frame rates in the order of 30 Hz [84, 85]. 

Distance Measurements 

It is possible to derive distance information using a monocamera, e.g. with known camera height 

above the ground and by assuming to drive over a plane [85]. The associated distance measurement 

accuracy is however unacceptably large, preventing safety-critical applications such as Automatic 

Emergency Braking (AEB) [84–86]. To obtain distance measurements with acceptable accuracy, 

stereo camera systems are used instead [85, 86]. Stereopsis15 is based on two images of the same 

scene, recorded simultaneously by cameras from different positions with known calibration 

parameters [85]. In an axis-parallel stereo system, the depth 𝑅16 of a pixel is reconstructed from 

the known focal length 𝑓length and known distance between the two cameras (base width) 𝑏 [84–

86]:  

𝑅 =
𝑓length ∙ 𝑏

𝑑
 (2.5) 

where 𝑑 is the disparity of a specific corresponding pixel in the images of two cameras, defined as 

the displacement in pixels in the image coordinate systems [84, 85]. 𝑓length is the distance between 

the image sensor and the camera’s optical center17 [85]. In the general case of stereo cameras not 

being axis-parallel, a transformation (rectification) is applied to virtually align the cameras’ 

coordinate systems [85]. To evaluate the disparity 𝑑, the correspondence between pixels in the two 

images has to be found, for which various methods have been developed [85]. Ultimately, a stereo 

camera system provides for each relevant pixel a 3d coordinate together with the associated 

greyscale or rgb information [86]. The tracking of corresponding pixels in subsequent images 

additionally enables to estimate the motion vector (velocity, acceleration) for each pixel [86]. 

Object Detection and Classification 

Object detection and classification is based on temporally stable groups of features. “Features are 

locally constraint[sic], expressive parts of an image which allow for a symbolic or empiric 

description of the image properties or the object.” [85]. Features are for instance edges and corners, 

which have the property of a considerable variation in grayscale or color. Hence, edges and corners 

                                                 
14 rgb color images have three channels: red, green and blue. For each channel, the pixels take values between 0 and 

255 (in case of 8-bit encoding) to represent the light intensities in the respective wavelength-spectra. A grayscale 

image only has a single channel, which takes values between 0 and 255 (8-bit), representing the light intensity. 
15 Stereopsis is also the basis for depth perception by humans. See e.g. https://en.wikipedia.org/wiki/Stereopsis. 
16 To be consistent with the notation for the distance in this thesis, the depth is denoted with 𝑅 for range. 
17 The optical center lies in the aperture, i.e. in a camera pinhole model the optical center is the pinhole [85]. 
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can be identified through e.g. the grayscale gradient. Object detection might additionally be 

enhanced with the disparity and the motion vector of the pixels. [85] 

Camera based object detection and classification is mostly approached with Machine Learning, 

i.e. a classifier is trained with a labeled set of images with known object classes. Widely used was 

the Viola–Jones object detection framework [88], e.g. for vehicles [89] and pedestrians [90]. The 

algorithm uses a cascade of Ada-Boost classifiers [91] to detect objects on the basis of Haar-like 

features18 [88]. 

Currently, object detection and classification is approached with Convolutional Neural Networks 

(CNN), a class of deep learning algorithms19 [93, 95]. Relevant features for object detection and 

classification are learned by the algorithm from labeled images within the convolutional layers of 

the CNN [93, 95]. Once trained, feature patterns present in unseen images activate the CNN’s 

neurons. The activation in the final layer of neurons in a CNN is typically passed through a softmax 

function to obtain a probability estimate of object existence, or of the object classes, respectively 

[93, 95]. A detection is indicated by the camera if the object existence probability exceeds a 

detection threshold (and if additional criteria are met, e.g. the object detection is validated by 

subsequent images). The detected objects are then in a final processing step tracked, for instance 

with a Kalman filter [85]. 

An exemplary CNN architecture for real-time applications in embedded systems is the single shot 

detector (SSD) [96]. Other network architectures such as the Faster R-CNN [97] or the R-FCN 

[98] have larger computational cost compared to the SSD, which is an important factor for 

deployment in ADSs20. 

Strengths, Limitations and Perception Errors 

Compared with other environment perceiving sensors, cameras have the advantage of providing 

the most extensive content of information and they are in analogy to human vision [84–86]. A 

disadvantage is their sensitivity towards environmental conditions (e.g. ambient light, weather, 

spray water, etc.) [40, 59, 84, 86]. Physical limitations of a camera are related to its resolution and 

                                                 
18 A Haar-like features is essentially the difference in summed pixel intensities over adjacent rectangular regions in 

an image [88]. 
19 Deep learning refers to training a deep neural network, which has millions of model parameters, and goes back to a 

seminal paper by Geoffrey Hinton et al. in 2006 [92]. Prior to [92], training a deep neural network “was widely 

considered impossible” [93]. Deep Convolutional Neural Networks are the state of the art in computer vision since 

Alex Krizhevsky et al. [94] won the ImageNet Large-Scale Visual Recognition Challenge in 2012 with their AlexNet. 

See also: https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html for a history on deep 

learning.  
20 Methods on Deep Learning develop fast and are quickly outdated. The state of the art performance in object 

recognition is typically evaluated with a benchmark suite, i.e. a labeled data set of images which allows to compare 

different algorithms. For instance, the KITTI Vision Benchmark Suite [99] for computer vision in ADSs is used to 

assess the performance of different algorithms and hence provides information on the state of the art.  

https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html
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optics [84]. For instance, to discriminate objects, a minimum number of pixels have to provide 

information about an object [84]. Another limitation is that the distance measurement accuracy of 

stereo cameras drops with 𝑅2, leading to errors in the order of multiple meters for 𝑅 > 50 m [84–

86]. Also, misalignment of a stereo camera system leads to errors [86]. 

Important factors with influence on a camera’s performance are ambient light conditions e.g. 

insufficient light during the night, large background radiation, scattered light, a low sun [40, 59, 

84, 86], and weather influences such as strong rainfall, spray water, snowfall or fog [86]. 

Imperfections in the optics lead to unwanted reflections and light scattering, causing reduced 

performance [100] as cited in [84]. Another error source are projection errors due to deficiencies 

of the optics [84]. 

Of special importance for the performance of a camera are also the learned features (detection 

patterns) in the trained CNN themselves [40, 59]. Depending, amongst others, on whether the 

activation in the final layer of the CNN exceeds a threshold, an object is detected or not. Wrongly 

not exceeding the detection threshold causes false negative errors, e.g. because relevant features 

of an object have not been learned from the training set. Additionally, patterns in an image that 

lead to a high activation but do not contain a relevant object cause false positive errors. Ultimately, 

a slight variation in the orientation, location and contrast of an object in a camera image could lead 

to a variation in the activation that makes the difference between object detection or not, see also 

[40]. 

2.1.3 Lidar 

Lidar (light detection and ranging) sensors complement radar and camera sensors [101]. Their 

main tasks are object detection and distance measurements [102]. With limitations, lidars are also 

used for object classification [102]. At present, lidars are a relatively novel alternative in the 

automotive series production, but they have been widely utilized in research projects, e.g. in [12, 

13]. The following presentation of lidar technology is in reference to [102] if not otherwise 

indicated. 

Similar to radars, lidars are active sensors but use an optical measurement principle. A lidar’s laser 

diode emits electromagnetic radiation in the ultra violet, the visible, or the infrared spectrum. 

Common in automotive applications are wavelengths between 850 – 1000 nm (infrared spectrum).  

Distance and Relative Velocity Measurements 

The Time-of-Flight (ToF) principle for distance measurements is most widely used in automotive 

lidars. The ToF principle is illustrated schematically in Figure 2.3. As sketched in Figure 2.3, at 

time 𝑡0 a laser pulse is emitted. The laser pulse propagates through the atmosphere, hits an object 
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and is scattered back to the laser source at time 𝑡1. The backscattered pulse is detected by the 

sensor at time 𝑡2. From the ToF 𝑡ToF = 𝑡2 − 𝑡1 and the known light velocity 𝑐0, the distance 𝑅 is 

derived with Eq. (2.2) [102]. 

 

Figure 2.3 Sketch of the Time-of-Flight (ToF) measurement principle. 

With a lidar, relative velocity measurements are obtained indirectly by differentiating subsequent 

range measurements over time. Measuring the Doppler frequency shift to derive relative velocity 

information is too expensive in the infrared spectrum for automotive applications. 

Object Detection 

To detect the backscattered laser pulse, its intensity at the sensor’s receiver has to exceed a 

detection threshold [40]. The receiver is typically either a PIN-diode (positive intrinsic negative) 

or an APD (avalanche photo diode). The power 𝑃R at the receiver is described with the lidar 

equation, which is in analogy to Eq. (2.1) [103]: 

𝑃R =
𝑇2 ∙ ρ ∙ ηT ∙ ηR ∙ 𝐷lens

2 ∙ 𝑃T
16 ∙ 𝑅2

 (2.6) 

where 𝑇 is the atmospheric transmission factor, ρ the  reflectance of an object. ηT and ηR are the 

optical efficiencies of the transmitter and receiver, respectively. 𝐷lens is the diameter of the 

receiving lens, 𝑃T the transmitted power and 𝑅 the distance to an object. Eq. (2.6) assumes that the 

beam cross section is completely overlapping with an objects cross section. 

While propagating through the atmosphere, part of a laser pulse’s energy is diffusely scattered and 

absorbed by particles. Only the remaining energy of the laser pulse is transmitted. Together, the 

scattering and absorption constitute the atmospheric attenuation. The atmospheric transmission 𝑇 

factor accounts for attenuation, it describes the part of the energy that is transmitted. [102, 104]  
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Angular Discrimination 

Above, the measurement principle is described in terms of a single laser beam, resulting in a single 

distance measurement. Scanning mechanisms that deflect the laser beam are used to obtain 

distance measurements in different directions in space. Alternatively, multibeam sensors allow for 

an angular discretization of the measurements.  

The distance measurements in the different spatial directions are aggregated and cyclically 

repeated in measurement cycles. The resulting lidar raw data is for each measurement cycle a 3d 

point cloud of the driving environment. Based on this data, algorithms detect and track relevant 

objects such as traffic participants (see Sections 2.1.5 and 2.2.2). 

Strengths, Limitations and Perception Errors 

The advantage of lidar sensors is their high distance measurement accuracy [60]. To a large degree, 

the uncertainty in the distance measurements is independent from the actual distance to an object 

[60]. Compared to a camera, the disadvantage of a lidar is that the object’s contours cannot be 

identified as accurately due the lidar’s limited angular resolution [60]. Further, little information 

about an object’s texture is obtained [60]. Compared to a radar, the disadvantage of lidars is their 

high sensitivity to environmental influences such as snowfall. The main physical limitations of 

lidars are that they potentially cannot detect objects with low reflectivity at the respective 

wavelength (i.e. high absorption or high transmission) and total reflection (i.e. the laser pulse is 

not scattered back to the sensor but deflected in another direction) [102]. The (current) maximum 

range of an automotive lidar is around 150 m [102].  

Based on the described physical measurement principle and based on Eq. (2.6), examples for 

factors influencing the performance of a lidar are: background illumination (e.g. low sun, scattered 

light) [102], particles in the atmosphere (e.g. rainfall, fog, snowfall, spray water, dust) [40, 59, 

102, 104, 105], properties of the target (surface material and color [106], relative position and 

orientation [59]) and potential dirt, snow or ice on the sensor cover [101, 102]. These factors must 

be considered when evaluating the reliability of lidar perception. 

2.1.4 Summarizing Sensor Strengths and Weaknesses 

The strengths and weaknesses of different sensor technologies are qualitatively summarized in 

Table 2.1. For a robust21 environment perception, the combination of different sensing 

technologies is necessary because the advantages of one help to mitigate the disadvantages of 

                                                 
21 Terms like robust, safe and reliable are often used interchangeably. Even though these concepts are related, they are 

technically not identical. As a distinction, a clear definition of robust is given: “Robustness: strength, or the ability of 

elements, systems, and other units of analysis to withstand a given level of stress or demand without suffering 

degradation or loss of function” [107].  



Automated Driving and Environment Perception 

 20 

another [58]. Perception is therefore provided by multiple sensors to achieve sufficient perception 

reliability. 

Table 2.1 Qualitative comparison of automotive environment sensors. (++: strong advantage / highest 

performance, + advantage / high performance; 0: neutral / medium performance, -: disadvantage 

/ poor performance; -- strong disadvantage / worst performance). Partly based on [108]. 

 Radar Camera Lidar 

Field of View + + ++ 

Range ++ + ++ 

Velocity measurements ++ 0 + 

Angular resolution - ++ + 

Adverse weather 0 - - 

Ambient light 0 -- - 

Object classification  - ++ + 

 

2.1.5 Generic Sensor Data Processing 

Based on the review of the sensing technologies, a generic environment sensor model is presented 

in Figure 2.4. With this model, the data processing of different environment perceiving sensors is 

generalized to describe how an ADS represents its environment. Despite their different physical 

measurement principles, on an abstract level, each of the sensing technologies can be modeled 

with Figure 2.4 [40, 109].  

 

Figure 2.4 Generic environment sensor model and signal processing. Based on a combination of Abbildung 

2.1 in [109] and Bild 8 in [40].  
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Active sensors such as radars and lidars emit a signal, which is reflected back to the sensor by 

objects in the environment. The receiver captures the reflected signal. A camera deviates slightly 

from Figure 2.4 because it does not actively emit a signal but uses a signal already present in the 

environment [40]. 

As discussed in Section 2.1, environmental influences act as external performance influencing 

factors, or in other words, as external noise [40, 58]. The received signal is preprocessed, including 

e.g. filtering, amplification and digitization [58, 76, 102]. In these processing steps, inner noise 

sources [40] apply. Examples include dark current noise [84], photon shot noise [84], phase noise 

of oscillators [76] and thermal noise [40]. 

From the preprocessed signal, the raw data is derived [58]. In case of radars and lidars, raw data 

evaluation is triggered if the signal exceeds a detection threshold [40]. The different sensing 

technologies provide different types of raw data: a radar for instance provides distance, relative 

velocity and angular measurements within a fixed discretization. A lidar provides a 3d point cloud 

of the environment and a camera an image, i.e. light intensities discretized in pixels. 

Typically, in the next processing step, sensor specific algorithms22 detect objects from raw data 

with help of features. Features for object detection include properties of the underlying signals 

such as frequencies, phases and intensities as well as the raw data and information extracted from 

the raw data such as gradients, feature maps (CNN), stereo images and signal spectra. Clustering 

is used to generate object hypotheses from regions with similar features. With the input features 

of an object hypothesis, the object detection is a binary classification problem. This classification 

is either approached with decision rules set up by experts or by learning a discriminating decision 

boundary in the feature space from labeled data with statistical methods or machine learning. For 

instance, in a CNN, the discriminating decision boundary is implicit in the trained weights of its 

neurons (see Section 2.1.2). [59, 110] 

The detected objects of individual sensors are usually described in terms of an object based vehicle 

environment model [58], which is outlined next. Potentially both, the raw and the object data, are 

transferred to the vehicle bus and serve as an input to the sensor data fusion. 

  

                                                 
22 In practice, it is often not possible to obtain detailed descriptions of the implemented algorithms, as these are 

proprietary. 
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2.2 Environment Representation 

By combining information provided by multiple sensors, a fused vehicle environment model is 

generated with sensor data fusion [58, 67]. The content of the environment model (together with 

digital maps or any other offline information) is ultimately the basis for the decision making of an 

ADS [31, 51, 60, 67] and is therefore central for system safety. To assess perception reliability, it 

is crucial how a vehicle’s surrounding is represented and how this representation is set up with the 

information provided by individual sensors. Therefore, Section 2.2.1 describes how an ADS 

represents its surroundings in an environment model and Section 2.2.2 outlines how the 

information of different sensors is combined in a sensor data fusion to generate a fused 

environment model. 

2.2.1 The Vehicle Environment Model: How an ADS Sees the World 

A vehicle environment model is an abstract representation of a vehicle’s surroundings. It ideally 

contains accurate23 state and semantic information about all relevant static and dynamic objects in 

the environment over time and space [60, 67]. Relevant static objects are for instance road 

boundaries, obstacles (drivable and non-drivable), infrastructure, lane markings, traffic signs and 

traffic lights. Exemplary dynamic objects are cars, trucks, pedestrians, animals, bicycles and 

motorcycles [60]. Which types of objects and information are relevant depends on the specific 

automated driving functionality [60]. 

Two environment modeling approaches are distinguished: an object based and a grid based 

environment representation [60, 67]. In an object based approach, each relevant dynamic and static 

object is associated with a dynamic time-discrete state space model [60, 67]. An object’s 

dimension is typically represented by a 2d or 3d bounding box (i.e. a rectangle or a cuboid)24 in 

the object based modeling approach [60, 67, 106]. It is common to project all objects into a plane 

[67, 106], that is, the bounding boxes often live in a 2d space. The dynamic object models are 

time-discrete because the sensing data is provided at discrete points in time [67]. Exemplarily, 

Table 2.2 lists common quantities to describe the objects’ states25. The required and used state 

quantities also depend on the implemented dynamics model [67]. In practice, the objects’ state 

estimates are at each discrete point in time stored in object lists. This modeling approach is well 

suited for dynamic objects, as it allows to efficiently filter state estimates. 

                                                 
23 It is here on purpose not defined what accurate exactly means, as this definition itself is a challenge. 
24 Representing the objects with 2d or 3d bounding boxes is state of the art. In the future, it is likely that more detailed 

object representations will prevail, see e.g. [111].  
25 A stationary quantity (e.g. the dimensions of a vehicle) is commonly referred to as parameter and a temporally 

variable quantity (e.g. a vehicle’s velocity) is termed state [59]. Simplifying, this distinction is not made and both 

stationary and temporally variable quantities of an object are referred to as states. 



Automated Driving and Environment Perception 

 23 

Table 2.2 Exemplary object state variables in a vehicle environment model. See e.g. [60]. 

Description Object State 

Position 2d coordinates of bounding box reference point 

Dimension Width, length, (height) of bounding box 

Velocity 2d velocity vector 

Acceleration 2d acceleration vector 

Orientation Yaw angle 

Rotation Yaw rate 

 

A grid based environment representation discretizes a vehicle’s environment into spatially fixed 

2d or 3d grid-cells. A cell is marked as either occupied or not occupied, conditional on the distance 

measurements provided by environment sensors, e.g. through Bayesian inference. Methods to deal 

with moving objects in the grid based approach have been developed. Due to remaining difficulties 

of representing moving objects in grid cells, an occupancy grid map is best suited for the static 

environment. An important output of occupancy grid maps is the drivable free space. [60, 67]  

It is possible to combine a grid based environment representation for static objects with an object 

based representation of dynamic objects to exploit the advantages of both modeling approaches 

[67]. This thesis concentrates on the object based vehicle environment representation because it is 

the dominating modeling approach in ADSs, often even for static objects.  

2.2.2 Sensor Data Fusion 

“Data fusion is the process by which data from a multitude of sensors is used to yield an optimal 

estimate of a specified state vector pertaining to the observed system.” [112]. The idea behind 

sensor data fusion is to combine the strengths of different sensors, or more generally, of different 

sources of information in order to increase the accuracy of state estimates and in order to reduce 

the influence of sensing errors [58, 110]. Sensor data fusion is here described as a basis for its 

conceptualization in a perception reliability assessment.  

In context of sensor data fusion, it is helpful to distinguish between complementary and redundant 

sensors. Complementary sensors provide different types of information (e.g. a camera provides 

object classification and a radar distance measurements [58]), whereas redundant sensors provide 

the same type of information within an overlapping field of view (FOV) (e.g. two sensors obtain 

distance measurements for the same object) [58]. Sensors with non-overlapping FOV are 

complementary [58] and not redundant. Complementary sensors allow to capture all relevant 

aspects of an ADS’s environment, while redundant sensors typically increase perception 

reliability. For instance, by fusing multiple redundant sensors in contrast to using only a single 

sensor, the position estimate of an object in the environment is improved and the probability of 

not detecting an object at all is decreased [58]. 



Automated Driving and Environment Perception 

 24 

It is distinguished between a decentralized, raw data or feature based sensor data fusion and a 

centralized, object data based sensor data fusion. [58, 110]. In the latter, object detection is 

performed by individual sensors as illustrated in Figure 2.4. Detected objects of individual sensors 

are the input to sensor data fusion. The centralized fusion architecture is predominantly used in 

practice because of reduced requirements on bandwidth for data transmission and because of its 

comparative simplicity. 

Object Tracking 

The main task of a centralized sensor data fusion in ADSs is object tracking26, which is the process 

of associating object detections in different sensors to object tracks27 in the environment model 

and of filtering the objects’ state estimates [58, 110].  

The Bayes filter is ubiquitous for filtering object states, and hence is central to sensor data fusion. 

Bayes filtering is a recursive implementation of Bayes rule [114] for inference in hidden Markov 

Models (HMMs) [115]. Figure 2.5 illustrates an HMM for Bayes filtering in terms of a Bayesian 

network28 [115, 116]. 𝐱𝑚 is an uncertain hidden true state of an object at a discrete point in time 

𝑚 and is populated e.g. with the variables in Table 2.2. In reality, one does not observe 𝐱𝑚 but 

only the corresponding noisy sensor observation 𝐳𝑚. It is assumed that sensor observations at 

different time steps are conditionally independent given the hidden states 𝐱𝑚 [115].  

 

Figure 2.5 Hidden Markov Model (HMM) underlying the Bayes filter [115, 116]. 𝐱𝒎 is the hidden true state 

of an object at discrete point in time 𝒎 and 𝐳𝒎 is the corresponding noisy sensor observation. 

The Bayes filter proceeds at each discrete point in time 𝑚 with two steps: the prediction of the 

states in the next time step and the update of the states with a new sensor observation. The 

mathematical details of the Bayes filter are well-known and not repeated here, instead we refer to 

[57, 59]. 

                                                 
26 The state of the art in environment perception, object detection and sensor data fusion is developing. In the future, 

it might be that sensor data fusion additionally detects objects based on raw data of multiple sensors (raw data fusion), 

see e.g. [113].  
27 An object track is essentially the state history of a given object. 
28 A Bayesian network represents a joint probability model with a directed acyclic graph by exploiting conditional 

independence assumptions [115, 116].  

𝐱𝑚−1 𝐱𝑚 𝐱𝑚+1   

𝐳𝑚−1 𝐳𝑚 𝐳𝑚+1
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The Kalman filter, a specific implementation of the Bayes filter assuming a linear dynamics model 

and assuming that the observation and process noise follow a normal distribution, is a common 

choice in practice [57, 67]. With the assumptions underlying the Kalman filter, the solution to the 

Bayes filter is traceable in analytic form, rendering a cheap implementation [57, 67, 115]. The 

most common alternatives with less restrictive assumptions but larger computational cost are the 

unscented Kalman filter, the extended Kalman filter and the particle filter [67, 72]. 

With a Bayes filter, the estimated state of a tracked object is updated whenever a sensor provides 

new observations that are associated to the respective track. The incorporation of information from 

multiple sensors provided at different points in time is based on a sequential [110] application of 

the Bayes filter for each respective sensor. An extension of the Bayes filter to account for multiple 

sensors providing information at the same point in time is straightforward with its formulation in 

the joint space of all sensors [59].  

An important task of sensor data fusion and a prerequisite for state filtering is the association of 

sensor object detections to different object tracks. Based on the model in Figure 2.5, the posterior 

predictive distribution 𝑓(�̃�𝑚|𝐳1:𝑚−1) of the one step ahead future sensor observation �̃�𝑚 given the 

history of measurements 𝐳1:𝑚−1 is derived at prediction time. 𝑓(�̃�𝑚|𝐳1:𝑚−1) allows to judge 

whether a certain observation is likely due to a specific track and hence, enables object association. 

For instance, a validation gate [58, 117] is specified for each track with 𝑓(�̃�𝑚|𝐳1:𝑚−1), e.g. defined 

by the 99.9 % probability region of �̃�𝑚 in the state parameters’ hyperspace. Sensor observations 

that fall within such a validation gate are associated to a track [58, 102]. In case of ambiguities, 

i.e. if a sensor observation can be associated to multiple tracks, the ambiguity is dissolved by 

associating the sensor observation 𝐳𝑚 to the track that maximizes its probability conditional on the 

track being the correct one. 

In case of a Kalman filter, the described association procedure is identical to a Maximum 

Likelihood nearest centroid /nearest neighbor classifier with the Mahalanobis distance as the 

distance metric [67, 115, 117]. More generally, the procedure is a Bayesian model selection with 

a uniform prior on different tracks [114]. A problem is however that multiple observations can be 

associated to one track, violating the common assumption of perfect object discrimination under 

which each track only generates a single observation per sensor at one time step [59, 67]. To 

account for this constraint, the problem is extended to express the likelihood of joint association 

hypotheses under the one observation to one track constraint [59, 67]. This results in a global 

nearest-neighbor association algorithm, in which the likelihood of all sensor observations at one 

time step is maximized jointly and not individually [59, 67]. 
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Sensor observations that cannot be associated (e.g. they do not fall within a validation gate) are 

candidates for new tracks [59]. If a new candidate track fulfills certain heuristics such as a 

successful association to observations for a certain number of time steps and complies with an 

upper bound on state estimation uncertainties, a new track is born [59, 102, 106]. Likewise, a track 

dies if no sensor observations are associated to it for several time steps, or if other heuristics apply, 

e.g. the state estimation uncertainty exceeds an upper bound [59, 102]. Hence, object existence 

uncertainty on the fusion level is commonly considered by means of heuristics such as the 

described multi cycle validation [59], which reduces false positive detection rates. 

The disadvantage of associating observations to tracks with a nearest-neighbor approach is that 

the decision is deterministic [67, 117]. The Joint Integrated Probabilistic Data Association (JIPDA) 

is an alternative probabilistic association /fusion algorithm [67, 118]. It takes association 

uncertainties into account by updating each track with a weighted combination of all sensor 

observations, where the weights depend on the association probabilities of a specific track to the 

different sensor observations [67, 117, 118]. Due to computational cost and unknown sensor 

performance parameters necessary to tune the algorithm, JIPDA is not widely implemented in 

practice. 

Each tracked object is finally classified (e.g. car, pedestrian, truck, bicycle, etc.) based on features 

gained throughout the data processing [58]. This classification problem is solved with a suitable 

classifier, e.g. trained with supervised learning [110, 115, 119].  

Grid Based Fusion 

The described tracking of objects is in the context of the object based environment representation. 

In the grid based environment representation, the fusion of different sensor observations is a 

straightforward application of Bayes rule to obtain posterior grid occupancy probabilities based 

on the likelihood of an occupied grid cell, given sensor range measurements [67]. 

Errors in Sensor Data Fusion 

The main source of perception errors due to sensor data fusion are errors in the association of 

observations to tracks. The consequences include wrong object state estimates (i.e. track 

deviations) potentially leading to the loss of a track [117], track multiplication [59] or track 

coalescence [59]. The latter describes a false positive track, which is initiated due to sensors 

indicating an object when none is present, being associated with the observations arising from an 

object existing in reality. This might cause false positive and true positive tracks swapping roles, 

in some cases in an alternating pattern. A heuristic to prevent track coalescence is to delete one of 

the two tracks if they are too close to each other to represent two real objects [59]. 
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Aside of wrong data association, e.g. caused by the association algorithm, a wrong association 

could also arise due to the properties of underlying sensing technologies. For instance, a lidar 

might detect the rear view reflectors of a truck, while a radar might detect the truck’s axle [58]. In 

combination, the fusion might not be able to associate these detections leading to potential 

perception errors. Another error source is the misalignment of different sensors, which on its own 

might lead to negligible deviations in individual sensors but could lead to association errors in the 

fusion [58]. The tracking of correctly associated objects with the Bayes filter is not deemed to be 

a significant source of perception errors, as long as underlying model assumptions are adequate. 
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3 The Safety of Automated Driving Systems 

An environment sensor is inherently imperfect due to external influences, inner noise, as well as 

assumptions and potential inadequacies in data processing [40, 58], as follows from Chapter 2. 

Additional to and in combination with perception errors of individual sensors, sensor data fusion 

causes perception errors, for instance due to association errors [59]. Because perception errors can 

cause inadequate ADS behavior and in the worst case can lead to accidents, perception reliability 

has to be validated. 

We therefore start this Chapter in Section 3.1 by formalizing the task of validating perception 

reliability in the context of ADS safety. With this formalization, it is in Section 3.2 evaluated if 

established automotive safety concepts are transferable to develop a reliable environment 

perception, and if these concepts achieve sufficient safety for an ADS with higher levels of driving 

automation. Section 3.3 additionally discusses if established automotive testing and safety 

validation procedures allow to demonstrate sufficient perception reliability. 

3.1 Demonstrating Environment Perception Reliability 

The central purpose behind a perception reliability demonstration is to validate ADS safety. Safety 

is typically a legal prerequisite for the market introduction of products [38, 120]29. To discuss the 

task of demonstrating perception reliability, safety is defined in reference to ISO 2626230 as “the 

absence of unreasonable risk” [62]. Unreasonable risk itself is defined as the “risk judged to be 

unacceptable in a certain context according to valid societal moral concepts” [62]. Hence, the goal 

of a safety validation according to this definition is to demonstrate that the ADS complies with an 

acceptable risk [54]. 

In light of these definitions, the question is, what constitutes an acceptable risk for ADSs? 

According to [31, 43] this question remains unsolved. 

Defining risk and reliability targets for ADSs and their components is therefore a challenge itself. 

To put the task of validating ADS safety and a demonstration of its perception reliability into 

perspective, and as a foundation for developing perception reliability targets, we next present how 

                                                 
29 The German Product Safety Act for instance states that a product “[…] may only be made available on the market 

if it […] does not put at risk the safety and health of persons or other legal goods […]” [120]. 
30 A similar definition of safety is given in DIN 31000: “Safety is a situation in which the risk does not exceed the 

acceptable risk”. ([121] authors translation, original: “Sicherheit ist eine Sachlage, bei der das Risiko nicht größer als 

das Grenzrisiko ist.“) 
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to derive rational risk criteria for ADSs that are acceptable for society and OEMs. In other words: 

how safe is safe enough? 

3.1.1 Risk Acceptance for Automated Driving Systems 

This Section is partly based on and taken from our publication in [39]. 

Common ways of expressing the risk due to a system are in terms of the expected value of negative 

consequences per calendar time interval or per unit time of exposure [122]. The latter has the 

advantage of taking the actual exposure into account. Risk is measured as31 [123, 124]: 

Risk =∑λF𝑗
𝑗

∙ 𝑐F𝑗 
(3.1) 

where λF𝑗 is the rate of system failure events 𝐹𝑗 (i.e. accidents) of type 𝑗 and 𝑐F𝑗 are the associated 

consequences. The consequences are for instance monetary, injuries or the loss of life. λF𝑗 has the 

unit [1/h]. An alternative is to express λF𝑗 with unit [1/km], as is common in road vehicle 

accidents statistics [33, 35, 41]. 

In an ideal world, the risk of an ADS is zero. However, an absolutely risk free technical 

transportation system is probably impossible to build. Therefore, risk acceptance criteria are 

required. Three fundamental ethical principles for defining risk acceptance criteria are 

distinguished [122, 125, 126] to discuss the acceptable risk “[…] according to valid societal moral 

concepts” [62]: 

 Equity: A risk is acceptable if it is below an upper limit, which should not be exceeded for 

any member of society. 

 Utility: Risk acceptability is derived based on societal cost and benefits of a technical 

system. 

 Technology: A risk is acceptable if it is as low as that of a reference system. 

 

The minimum endogenous mortality32 (MEM) criterion derived with the equity principle and used 

in the railway standard EN 50126 [125, 127, 128] is an example of a risk acceptance criteria. The 

MEM criterion imposes that the risk of dying due to a technical system must not significantly 

increase the risk of dying in comparison with natural causes such as diseases [125]. In western 

countries, children between 5 and 15 years have the MEM rate per person [125], which is around 

                                                 
31 The definition of risk goes back to Blaise Pascal (1623 – 1662): „Risk should be proportional to the probability of 

occurrence as well as to the extent of damage.” 

32 “The endogenous mortality rate is the rate of deaths due to internal causes of a given population at a given time.” 

[125]. 
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2 ∙ 10−4 yr−1 [127]. An acceptable risk for the most exposed persons of ≈ 10−5 yr−1 is derived 

by imposing that a technical system is only allowed to increase the MEM rate by 5% [125]. 

Considering a person who drives in the order of 1000 h per year, the MEM criterion would lead 

to an acceptable fatality risk of 10−8 h−1. 

With the utility principle, the acceptable risk is defined through expert judgment, analyzing risks 

and corresponding benefits that have been accepted by society in the past (revealed preferences 

[129]) or formal cost-benefit and decision analyses33 [125]. Note that one could also interpret 

revealed preferences to follow the technology principle. 

Well-known is the “as low as reasonable possible” (ALARP) principle [125, 126], illustrated in 

Figure 3.1. It defines three risk regions of individual fatality risk for the most exposed persons. In 

the broadly acceptable region, the risk is negligible and can be accepted. The broadly acceptable 

region prescribes an individual fatality risk of the most exposed person of ≤ 10−6 yr−1. In the 

tolerable region between 10−6 yr−1 and 10−3 yr−1, the risk has to be reduced ALARP, which 

depends on cost and benefits (utility principle) [125]. In the unacceptable region ≥ 10−3 yr−1, the 

risk cannot be accepted (equity principle) [125]. Assuming an exposure of 1000 h driving per 

year, a broadly acceptable risk of 10−9 h−1 is derived. 

 

Figure 3.1 Risk acceptability according to the ALARP principle. In reference to Figure 4.3 in [125]. 

                                                 
33 Formal analyses require to express the risk of loss of life with monetary values, which is controversial and often 

raises ethical concerns. Nevertheless, to make rational decisions accounting for benefits and risks of a new system or 

policy, the value of a statistical life (VSL) is used in formal analyses [130]. VSL is defined as the amount of money 

the society is willing to pay for an infinitesimal reduction in the risk of loss of live [131]. Hence, VSL does not value 

life but is a measure for the accepted societal cost to prevent a statistical fatality. This quantity is implicit in (past) 

decisions made by society and can be assessed empirically. For instance, the US Environmental Protection Agency 

(EPA) quantifies VSL = 7.4 ∙ 106 $ (2006) and recommends this value updated to the year of the analysis as a basis 

for cost benefit analyses [132]. In [133], the EPA quantifies VSL = 10.3 ∙ 106 $ in terms of 2013$. 
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The globalement au moins aussi bon (GAMAB: globally as good as existing systems) is an 

example for the technology principle [125]. The ethics commission on automated driving of the 

German Federal Ministry of Transport and Digital Infrastructure states [52]: “The licensing of 

automated systems is not justifiable unless it promises to produce at least a diminution in harm 

compared with human driving, in other words a positive balance of risks.” Hence, the ethics 

commission follows the technology principle with the human driver as a reference.  

A similar argument that ADSs should be at least as good as human drivers in terms of accident 

rates is made in [35, 41, 44, 66]. Current reference values for accident rates of human drivers 

involving fatalities are ≈ 6.8 ∙ 10−9 km−1 in the US (all road types) [41] or ≈ 1.5 ∙ 10−9 km−1 

(German highways) [134]. With the assumption of an average velocity of 100 km/h [135], this 

results in a risk of ≈ 6.8 ∙ 10−7 h−1 and ≈ 1.5 ∙ 10−7 h−1, respectively. 

Due to the development in automotive safety systems, the reference risk of human controlled road 

traffic is however a non-stationary target [40]. Figure 3.2 for instance depicts the road vehicle risk 

in the US over time. The cited reference risk values of human driving should therefore not be 

interpreted as fixed. 

 

Figure 3.2 The risk of human driving in the US over time, in terms of fatalities per vehicle-km travelled. 

Data from [136]. 

Other reference systems are aviation with acceptable failure rates of 10−9 h−1 (for catastrophic 

failures) [137] and automotive E/E systems with automotive safety integrity level D (ASIL D) 

having an acceptable (hardware) failure rate of 10−8 h−1 [138]. 
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Aside of ethical risk criteria, it is important for products such as ADSs to consider legal 

requirements [38] and the risk acceptance therein. For instance, according to German Product 

Liability Act (German: Produkthaftungsgesetz) [139], a producer is hold liable in case of damages 

caused by a failure of its products. The liability obligation is excluded, if the product is designed 

according to the [40, 43, 140] “[…] state of scientific and technical knowledge at the time when 

the producer put the product into circulation […]” [139].  

The state of scientific and technical knowledge is not explicitly defined. Implicitly, the state of 

scientific and technical knowledge could however be interpreted to impose the technology risk 

acceptance criteria on a new product. The Product Liability Act also implies that, if under the state 

of scientific and technical knowledge, risks cannot be avoided, the decision to release the product 

should be based on assessing the risks and benefits associated with the product [140], i.e. the utility 

principle applies. Another possible interpretation is that one follows the state of scientific and 

technical knowledge, if the product is designed according to accepted standards and norms such 

as ISO 26262 [40, 54, 141]. These standards and norms in turn might be related to risk acceptance 

criteria, as for example the MEM criterion in the railway standard EN 50126 [127]. Therefore, 

ethical risk acceptance criteria are at least indirectly considered by German law. 

An acceptable risk should be the basis for a formal ADS safety validation and compliance with 

the acceptable risk should be demonstrated [40]. While the given examples on risk acceptance 

criteria provide a guidance, a universally established risk acceptance criteria does not exist [125]. 

Society and its representatives, the authorities, must make a decision on acceptable risk, since 

ultimately, the risk of a technical system has to be accepted by the public. 

It is further pointed out, ultimately, it is not the true but the perceived risk of a technical system 

that determines risk acceptance by society. Public risk perception is influenced by a number of 

factors and cognitive biases [122, 125, 129, 142–144]. Amongst others, public risk perception and 

acceptance is influenced by its context, the benefits of accepting a risk, the number of exposed 

members of society, familiarity, immediacy of effects, availability of occurrences, anchoring, 

personal control, voluntariness and potential for catastrophic consequences [122, 125, 129, 142–

144]. Hence, even if an ADS complies with the discussed risk acceptance criteria, the perceived 

risk could prevent societal acceptance. These factors and biases therefore should be considered in 

the discussion of acceptable risk for ADSs because in case of fatal accidents, the particular OEM 

and the technology in general face serious reputational challenges. 
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3.1.2 The Approval Trap 

How much testing is required to demonstrate the discussed risk acceptance targets? We exemplary 

address this question in this Section, which is partly taken from our publication in [39]. 

We note that with respect to fatalities, the risk acceptance criteria following Section 3.1.1 can be 

directly taken as the acceptable ADS failure rate. The acceptable ADS failure rate is in the 

following termed target level of safety (TLS) and denoted with λTLSsys. Let λF𝑗 = λsys be the 

ADS’s rate of fatal accidents. The system should only be released if: 

λsys ≤ λTLSsys  (3.2) 

The goal of the ADS safety validation is to demonstrate Eq. (3.2). Other aspects such as monetary 

consequences of the risk in Eq. (3.1) are neglected in this work but have to be addressed in practice. 

As is well known, empirically demonstrating compliance of an ADS with an acceptable risk (i.e. 

λsys ≤ λTLSsys) by means of field tests alone (“driving to safety” [41]) is hardly possible because 

of the large amount of required testing [35, 41, 65, 66]. [35] coined the term “the approval trap” 

for ADSs to describe this issue. To make matters worse, in principle every modification in the 

design of a specific ADS would require a new series of tests. 

In Figure 2.1, similar to [35], we demonstrate the approval trap considering a hypothetical TLS of 

λTLSsys = 10
−9 h−1 with an approach we developed in [65].  

 

Figure 3.3 Exemplary illustration of the required number of hours to empirically demonstrate compliance 

with 𝛌𝐓𝐋𝐒 = 𝟏𝟎
−𝟗 𝐡−𝟏 in function of the acceptable number of failures in the test. Based on [65], 

adapted from [39]. 
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Illustrated in Figure 2.1 are the required number of hours to empirically demonstrate 

λsys ≤ λTLSsys with a credibility of 95 %, over the corresponding acceptable number of failures 

(i.e. severe accidents) in the test. The calculations underlying Figure 2.1 [65] are presented in 

Section 4.3, here we report the results only. As illustrated, at least 2/λTLSsys failure free testing is 

required (equivalent to ≈ 230000 yr) to demonstrate compliance with the TLS according to [65]. 

It is concluded that the required test effort for an empirical safety validation of ADSs is hardly 

manageable. Driving to safety is therefore not directly possible without additional measures. 

To address the approval trap, [66] propose a so called brave introduction of ADSs. The idea is to 

first derive an upper confidence limit on an ADS’s accident rate λsys from a limited field test. 

Based on the upper confidence limit on λsys, the number of kilometers in a given year that all 

ADSs combined are allowed to drive are then derived such that the absolute risk for society is 

unlikely to be increased significantly34. At the end of the year, the upper confidence limit on λsys 

is updated with new data from the field and the approach is iteratively repeated until enough 

kilometers are driven to demonstrate Eq. (3.2). This approach however might contradict the equity 

risk acceptance criterion (Section 3.1.1), as the risk for the drivers of bravely introduced but 

potentially unsafe ADSs could exceed an upper limit. 

Another approach to overcome the approval trap is to formally prove the safety of an ADS’s 

actions [42]. The idea of formally proving the safety of (robot) control algorithms has its origin in 

robotics [145–149]. [42] prove the safety of an ADS by restricting its path planning such that the 

ADS can only chose a safe action. An action is considered safe, if it cannot cause an accident of 

the ADS’s blame35. The prerequisite for this formal safety validation is however that the 

probability of perception errors is sufficiently low, otherwise the claim of a provably safe path 

planning is flawed36. Therefore, validating perception reliability e.g. by means of field tests is a 

requirement for provably safe ADS / robot control.  

  

                                                 
34 [66] argue that the risk of ADSs for society is negligible, if the number of accidents due to ADSs are within the 

observed variability (i.e. standard deviation) of the number of human accidents per year. 
35 Blame in turn is formally defined by considering the driving dynamics of the vehicles and bounds on e.g. reaction 

time and maximum deceleration. With this formalism, the ego-vehicle is for instance not to blame for an accident if 

it kept a safe distance to other vehicles prior to an accident, which allows to brake in time to prevent an accident. If 

then an accident happened while ego-vehicle decelerated adequately, it is argued that it cannot be the blame of the 

ego-vehicle. [42] 
36 Additionally, as is pointed out in [44], the models underlying the formal prove of safety have to be validated 

themselves. In the words of Mitch et al: “we […] prove that collisions can never occur (as long as the robot system 

fits to the model).” [145]. 
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3.1.3 System Reliability Theory and System Decomposition 

This Section is partly taken from our publication in [39]. 

If one cannot perform a system safety validation by driving to safety, how can one estimate and 

demonstrate system safety? System reliability theory and hazard analysis techniques [150–152] 

have been developed exactly for this purpose: to estimate and predict the probability of failure of 

technical systems and to design systems with acceptably low failure rates, without an empirical 

safety validation of the full system. 

System reliability theory describes a system in terms of its (sub-)functionalities (or components) 

and estimates the system failure probability based on the failure probabilities and dependencies of 

the (sub-)functionalities. On the level of (sub-)functionalities, the failure probabilities are typically 

easier to assess than on the system level. For an ADS, this implies that one needs to adequately 

describe the system functionalities by means of a system decomposition. 

As described in Chapter 2, the generic ADS functionalities are sense, plan and act [42, 69, 70]. A 

high level reliability block diagram (RBD) therefore is as illustrated in Figure 3.4, corresponding 

to a series system with three components. Perception represents the environment sensors and the 

generation of an environment model with sensor data fusion, Function includes e.g. the situation 

interpretation and path planning. Actuation executes the planned path. 

 

Figure 3.4 High level system reliability block diagram (RBD) for ADSs. Taken from [39]. 

If at least one of the functionalities in Figure 3.4 fails in a safety-critical way (i.e. makes a safety-

critical error that causes an accident), then the ADS fails. The failure rate of the series system in 

Figure 3.4 is approximated by [153, 154]: 

λsys ≈ λper + λfunct + λact (3.3) 

where λsys is the ADS failure rate (fatal accident rate), λper the rate of safety-critical failures of 

the perception module, λfunct the rate of safety-critical failures of the automated driving function 

module, and λact the rate of safety-critical failures of the actuation. Eq. (2.2) is an upper bound on 

λsys because it assumes mutually exclusive failures between the different functionalities. This is a 

conservative approximation, i.e. λsys can only be overestimated for known λper, λfunct and λact. 

Accounting for statistical dependencies in failures among the three modules is an opportunity to 

obtain a lower, more accurate estimate of λsys [153, 154]. 
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The task of validating ADS safety is formalized by Eq. (3.2). In combination with Eq. (3.3), the 

safety validation of an ADS is thus equivalent to demonstrating: 

λper + λfunct + λact ≤ λTLSsys (3.4) 

With this system decomposition, safety validation is based on individually considering λper, λfunct 

and λact. An important prerequisite underlying such a system decomposition is that safety-critical 

errors in the perception module can be separated from errors in the function module. 

λper is related to the perception reliability as defined in Section 1.3. Demonstrating perception 

reliability is equivalent to demonstrating an acceptable λper. In this thesis, we focus on estimating 

λper of the perception module, λfunct and λact are not further considered. Safe path planning can 

for instance be approached by formally proving the safety of control algorithms [42] together with 

simulations and, in the automotive domain, ISO 26262 is employed to design sufficiently safe E/E 

systems (e.g. actuation). 

3.1.4 Challenges in Demonstrating Perception Reliability 

This Section discusses challenges associated with estimating λper and is partly taken from our 

publication in [39]. 

The Approval Trap for Environment Perception 

As follows from Eq. (3.4), the TLS for the perception module has to be even stricter than for the 

ADS itself. Hence, the approval trap also applies to validating the perception reliability of an ADS 

[65]. 

Perception Error Definition 

To assess λper, one first needs to define what constitutes a safety-critical perception error. This is 

hardly possible without considering e.g. the path planning of the automated driving functionality 

and without considering the actual driving situation, because a prerequisite for an ADS to react 

adequately is situational awareness through a situation interpretation [67, 155].  

For instance, a false positive detection, i.e. a wrong indication of an object when there is none, 

might be safety critical if the ADS reacts by applying maximal deceleration and another vehicle 

in the back of the ADS cannot brake in time to prevent an accident. The same situation, but without 

another vehicle following the ADS, or with the ADS choosing a different action, might be 

unpleasant but not necessarily safety-critical. Similarly, a vehicle changing its lane, which is 

wrongly interpreted to not change its lane due to an error in the estimated lateral velocity, could 

cause a safety-critical situation. Depending on the implemented situation interpretation, the same 
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estimation error in the velocity of another vehicle could have no consequence at all in a different 

situation. Another example is an error in the position estimate of another vehicle. Even a small 

error in the position estimate of a vehicle could lead to a wrong situation interpretation, for instance 

by assigning the vehicle to the wrong lane while large position errors of objects that are not safety-

critical are irrelevant. 

To borrow the formalism from [42], let 𝑠 be the true state describing the environment and 𝑎(𝑠) the 

action the ADS’s path planning module selects given 𝑠. The action 𝑎(𝑠) is executed by the actors. 

�̂�(𝑠) is introduced, which is the perceived environment provided by the perception module given 

𝑠. �̂�(𝑠) is a probabilistic function. The selected action under the perceived environment is 𝑎(�̂�(𝑠)). 

A theoretical definition of a safety-critical perception error is: if the action 𝑎(�̂�(𝑠)) leads to an 

accident, but 𝑎(𝑠) would not, then a safety-critical perception error has occurred. As an example, 

consider the case that the ADS does not detect an obstacle and crashes into it. If the ADS would 

have been able to prevent the crash if it detected the obstacle, then a perception error has occurred. 

In practice, it is challenging to comprehensively derive a catalogue of perception errors because 

one cannot specify the infinite number of combinations of states in e.g. actual situations 𝑠, the 

resulting perception �̂�(𝑠) and of the interpretation of the perception combined with the planned 

paths (selected actions) 𝑎. The safety-criticality of perception errors might therefore only be 

revealed at test time. 

In reality, the outcome of an action (accident or no accident) further depends on multiple time 

steps, i.e. on how a driving situation evolves, and the actions are adapted constantly in a control 

loop to the changing perception �̂�(𝑠). For simplicity, we do not include a time parameter here but 

point out that time has to be included in a definition of a safety-critical perception errors.  

Generating a Reference Truth 

To assess λper with standard methods, one has to compare the perceived environment �̂�(𝑠) with a 

reference truth (ground truth) 𝑠 to identify perception errors [156, 157]. The reference truth is 

either derived from suitable reference sensors (optionally) in combination with human data 

labeling, directly from the implemented online sensor data fusion [57, 58, 110, 118], or from 

automatic offline labeling algorithms [158]. 

Employing reference sensors requires considerable efforts, as the reference sensors must have an 

extremely high performance. A reference truth derived from online sensor data fusion is not error 

free. Offline automatic data labeling with offline fusion has larger accuracy than online sensor data 

fusion, but is still imperfect. These errors, and the fact that labeling is typically deterministic, are 

relevant when trying to estimate small error probabilities. Moreover, setting up a reference truth 

requires in part human data labeling because, at present, human data labeling is less error prone 
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compared with automatic data labeling. The post processing of the reference truth data is thus time 

consuming and only a limited amount can be handled. 

Time Variable Perception Performance 

Another challenge lies in the influence of uncertain and variable environment conditions on the 

perception performance [65]. Exemplary influencing conditions are as discussed in Section 2.1 the 

weather, background illumination, dirt, the properties of objects and traffic participants themselves 

as well as their relative orientation and location [104, 159, 160]. Let the conditions with influence 

on perception performance be described by a vector of context variables 𝐄 and their realizations 

with 𝐞. 

Due to 𝐞, λper is not a constant but varies with time 𝑡, i.e. λper(𝑡) [161]. Instead of considering 

λper as a function of time, one can formulate it in function of 𝐞, i.e. λper(𝐞). As an example, Figure 

3.5 schematically illustrates λper(𝐞) with the example of dry and snowy weather. 

 

Figure 3.5 Schematic illustration of the temporal variability in the perception error rate 𝛌𝐩𝐞𝐫 due to context 

variables 𝐞. In the graph, 𝐞 is the weather with two states: dry and snow. 

A high variation of driving situations and the complexity of environment perception leads to a 

large number of relevant context variables [40]. The challenge therefore lies in identifying relevant 

context variables 𝐄 and quantifying their influence on perception performance, i.e. λper(𝐞). 

Representativeness of Testing Perception Reliability 

The dependence of perception performance on context variables 𝐄 is associated to the challenge 

of conducting a representative test [40, 54]. In very long representative field tests, the influence of 

𝐄 is automatically accounted for, since the observed failure rate is averaged over all 𝐞.   

Perception 

failure rate

λper(𝑡)

Time 𝑡

λper( = 𝑠𝑛𝑜 )

λper( = 𝑑𝑟𝑦)



The Safety of Automated Driving Systems 

 40 

In such a test, the time variable perception error rate λper(𝑡) is related to λper(𝐞): 

λper = ∫ λper(𝐞) ∙ 𝑓𝐄(𝐞)𝑑𝐞𝐞
=
1

𝑇
∫ λper(𝑡)𝑑𝑡
∞

𝑇=0
  (3.5) 

where 𝑓𝐄(𝐞) is a probability density function (PDF) describing the frequency of the randomly 

occurring context variables 𝐄. If a test is representative and long (RHS), then the occurrence 

frequency of the context variables 𝑓𝐄(𝐞) is accounted for (LHS) and one estimates the global 

average perception error rate λper.  

It follows from the equality in Eq. (3.5) that a test is representative, if it is in line with 𝑓𝐄(𝐞). If not 

in accordance with 𝑓𝐄(𝐞), the estimate of λper is biased. A biased estimate of λper is for example 

obtained if one exclusively tests the environment perception in favorable weather conditions, e.g. 

in Figure 3.5 one would only test in  = 𝑑𝑟𝑦. 

In practice, it is challenging to make sure a test is representative, for instance because it is 

challenging to know all context variables 𝐄 with their distribution and because each geographical 

region is associated with a different distribution 𝑓𝐄(𝐞). Hence, even if a test is representative, say, 

for German roads, it might not be for Chinese roads because different countries have different 

distributions of e.g. infrastructure elements, traffic participants or different climate. 

Statistical Perception Error Dependence 

Due to common context variables 𝐞, identical sensor types, similar physical measurement 

principles and similar processing algorithms, a certain degree of statistical dependence among 

perception errors in different sensors is expected [156, 157]. This error dependence has to be 

accounted for in order to correctly estimate the joint frequencies of perception errors in multiple 

sensors [65]. 

A second type of statistical error dependence are temporal dependencies, as the common 

influencing factors in 𝐞 such as snowfall are present for a certain time interval [65]. Correctly 

representing all dependencies in statistical models for perception errors is a challenge. 

Changing the System during Development: Reliability Growth? 

During the ADS development, the system is modified frequently, e.g. by software updates or by 

changing the position of a sensor in the vehicle. Ideally, one would expect a reliability growth 

associated with software updates, i.e. a decrease in λper with each update. This is however not 

certain. It is therefore not straightforward to account for these modifications in reliability 

modeling, estimation and testing. Strictly, each modification would render previous estimates of 
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λper as obsolete. Devising methods to model the influence of these changes and updates on λper 

without requiring to repeat all testing is challenging. 

Potentially, methods from software reliability analysis such as regression testing [162], change 

impact analysis [163–165] and reliability growth modeling [151] can help to address challenges 

involved with system updates. Regression tests aim at verifying with optimized test strategies that 

modifications do not impair performance and interfere with functionalities, e.g. by selecting only 

tests relevant for the changes made and by prioritizing tests according to their relevance for 

detecting faults [162]. Change impact analysis deals with identifying elements impacted by a 

(software) change and with estimating the effect of change [163–165]. Reliability growth models 

account for increasing reliability over time by eliminating faults in a system [151]. 

3.2 Established Safety Concepts 

Eq. (3.4) formalizes the task of demonstrating perception reliability for an ADS’s safety 

validation. As pointed out by [66], in principle there is a difference between developing a system 

that is safe and (formally) validating that a safe system has been developed. In practice a clear 

separation between developing a safe system and validating system safety is however not always 

possible, this Section therefore discusses in light of the challenges identified in Section 3.1.4 if 

established standards and safety concepts enable the validation and development of a reliable 

environment perception for ADS with higher levels of driving automation. Test methods to 

validate system safety are in focus of Section 3.3. 

Particularly, Section 3.2.1 reviews ISO 26262 for functional safety and Section 3.2.2 reviews the 

Code of Practice for the Design and Evaluation of ADAS [40, 43, 56, 63]. 

3.2.1 Functional Safety: ISO 26262 and the V-Model 

IEC 61508 is the generic standard for the development of functional safe electrical, electronic and 

programmable electronic systems [166]. ISO 26262 is the automotive specific adaption of IEC 

61508 with requirements for the development of safety-relevant electrical and/or electronic (E/E) 

systems within road vehicles [40, 54, 62]. The scope of ISO 26262 is functional safety, defined as 

the “absence of unreasonable risk due to hazards caused by malfunctioning behavior of E/E 

systems” [62]. Malfunctioning behavior is the “failure or unintended behavior of an item with 

respect to its design intent” [62]. 

The structure and content of ISO 26262 follows the V-Model process, which is illustrated in Figure 

3.6 [40, 54, 62, 63]. The development of a product (left branch in Figure 3.6) with the V-Modell 

progresses from the specification of a system’s functionalities over the design on the system level 
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to the detailed specification, design and implementation of its components [40, 44, 62]. The 

integration, verification and validation37 (right branch in Figure 3.6) progresses from the 

components to the fully integrated system [40, 44, 62]. 

 

Figure 3.6 Simplified illustration of the V-Modell process in ISO 26262 [62]. In reference to Bild 6 and Bild 

7 in [40].  

A summary of ISO 26262 is given in the following to discuss its applicability for developing a 

reliable environment perception. 

Achieving Functional Safety: Preliminary Hazard Analysis and Risk Assessment 

In the concept phase, a hazard analysis and risk assessment is performed based on an initial 

description of the system’s functionalities (the item38 definition) [40, 43, 54, 167]. Hazards due to 

potential malfunction of an item are systematically identified through expert judgment, checklists, 

failure modes and effects analysis (FMEA), field experience or other suitable methods [167, 168]. 

The risk associated with identified hazards is then assessed by evaluating the exposure, 

controllability and severity of the hazardous events [167]. The risk assessment is often further 

supported by FMEA, event tree analysis (ETA) or fault tree analysis (FTA) [43, 63, 167, 169].  

                                                 
37 Verification and validation are defined here in reference to [56], which gives a definition of these terms.  

Verification: “Assuring, e.g. by testing, that a component, a sub-system, a system or a process is working as required 

and specified.“ [56]. 

Validation: “The process of evaluating a system or component during or at the end of the development process to 

determine whether it satisfies the expectations.” [56]. 
38 An item is a “system or array of systems to implement a function at the vehicle level, to which ISO 26262 is applied” 

[62]. 
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Reverse engineering the risk assessment of ISO 26262 leads to the following expression of risk 

associated with a single hazard, as utilized in ISO 2626239: 

Risk = Pr(𝐸) ∙ λFail ∙ [1 − Pr(𝐶|𝐸, 𝐹𝑎𝑖𝑙)] ∙ 𝑆  
(3.6) 

where Pr(𝐸)40 is the exposure probability towards situations 𝐸 in which the hazardous event could 

occur, λFail is the item’s rate of failure that could lead to the hazard, Pr(𝐶|𝐸, 𝐹𝑎𝑖𝑙) is the 

controllability41, i.e. the probability that the harm (accident) can be averted by drivers or other 

persons, conditional on a failure of the item in a potentially hazardous situation. 𝑆 is the severity 

of the damage. [167] 

Eq. (3.6) is not directly evaluated nor reported in ISO 26262. Instead, the exposure probability is 

evaluated in five discrete categories (from incredible to high probability), the controllability in 

four discrete categories (from controllable in general to difficult to control or uncontrollable) and 

the severity in four discrete categories (from no injuries to life-threatening and fatal injuries) [167]. 

With these categories, the preliminary risk due to a hazard is classified with a lookup table in terms 

of the automotive safety integrity level (ASIL) [167]. It is distinguished between five risk classes 

to qualitatively estimate the preliminary risk (ASIL A-D and QM: quality management) [167]. The 

item’s failure rate λFail is not included in the initial risk assessment [167]. 

The approach in ISO 26262 to achieve an acceptable risk is explained with Figure 3.7, in reference 

to a similar discussion of IEC 61508’s safety integrity level (SIL) in [125, 171]. A high preliminary 

risk (ASIL D) implies a large required risk reduction during the development, leading to strict 

requirements for the development of an item. A low preliminary risk (e.g. ASIL A) in contrast 

implies a small required risk reduction, leading to less strict requirements for the development of 

an item. The estimated preliminary risk expressed as an ASIL therefore determines the required 

risk reduction measures during the development of the product to achieve an acceptable risk, 

thereby implicitly imposing requirements on λFail42. The acceptable risk is not explicitly defined 

in ISO 26262 but is claimed to be achieved by the ASIL specific requirements on the specification 

of safety goals, on the product development and on testing. 

                                                 
39 An equivalent expression of risk on the basis of ISO 26262 is reported in [170]. 
40 In ISO 26262, the exposure is denoted simply with E and the controllability with C [167]. The notation deviates 

here from [167] to be in line with notation used in probability theory. 
41 Controllability in ISO 26262 is the: ”ability to avoid a specified harm or damage through the timely reactions of the 

persons involved, possibly with support from external measures” [62]. 
42 One is able to explicitly derive the acceptable item failure rate by rearranging Eq. (3.6) for λFail and inserting the 

acceptable risk (if it is defined), the exposure, the controllability and the severity. Such an explicit approach is for 

instance proposed in [170] to derive acceptable error rates for functional deficiencies of ADAS. 
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Figure 3.7 Achieving an acceptable risk level in ISO 26262: First, a hazard analysis and risk assessment is 

performed to determine the automotive safety integrity level (ASIL). The ASIL defines 

requirements on the development of the system, thereby being a measure for the required risk 

reduction to achieve an acceptable risk. Based on Figure 3.7 in [125], Fig. 3 in [54] and Fig. 2 in 

[171].  

Specification, Design and Development 

Safety goals are defined for each hazardous event on basis of the hazard analysis and risk 

assessment. A functional safety concept is derived from the safety goals, specifying functional 

safety requirements to avoid unreasonable risk. The functional safety requirements inherit the 

ASIL of the corresponding hazards. Technical safety requirements necessary to realize the 

functional safety requirements are formulated, e.g. by specifying “the measures relating to the 

detection, indication and control of faults in the system itself” [172] and “the measures that enable 

the system to achieve or maintain a safe state” [172]. Finally, the system is designed. During the 

system design, safety and non-safety related requirements are allocated to the architectural 

elements of the system. Based on the specified requirements, the system’s hardware and software 

elements are designed and implemented. [167, 172] 

Integration, Verification and Validation 

After developing the hardware and software, the elements are integrated and tested at each 

integration stage to verify that the design complies with the specified requirements and that the 

design is correctly implemented (right branch in Figure 3.6). On the level of the integrated item in 

the vehicle, it is validated by tests that the safety goals are appropriate for functional safety and 

that the safety goals are being complied with. The safety validation includes for example an 

evaluation of controllability against corresponding assumptions made in the concept phase [173] 

and an evaluation of the effectiveness of controlling failures with safety measures. [172]  

Test cases are specified for the verification and safety validation. The test cases are for instance 

derived from requirements, the expected functional behavior, experience and expert knowledge, 
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boundary values, interactions at interfaces, the statistical distribution of environmental conditions 

or field experience. The specified test cases are associated with pass/fail acceptance criteria and 

are executed with a variety of reproducible test methods such as tests under laboratory conditions, 

tests on proving grounds and simulation methods. Moreover, field tests in real-life conditions are 

conducted. In addition to testing, ISO 26262 allows to use FMEA, FTA, RBDs, Markov models 

and ETA for system safety validation. [138, 172, 174, 175] 

Applicability to the Development of a Reliable Environment Perception 

The functional safety concept in ISO 26262 aims at an item behaving as specified. This is achieved 

by ensuring sufficiently rare hardware failures, sufficiently rare software failures and providing 

for driver controllability. As discussed in Section 1.2.2, this is the traditional safety concept for a 

driver-vehicle system and to a large degree for ADAS [44]. The environment perception can 

however be deficient without hardware and software failures [40, 54, 63, 64], potentially leading 

to an inadequate system behavior (functional deficiencies) [64, 170]. For instance, a false positive 

perception error (indicating an object when none is present) is due to the physical measurement 

principle of a sensor in combination with implemented algorithms (e.g. a lidar detects snowfall as 

an object, see Section 2.1). 

The nominal performance (i.e. the Safety of the Intended Functionality SOTIF) of a system is not 

addressed in ISO 26262 [54, 62]43. Therefore, ISO 26262 does not comprehensively cover 

perception errors with its failure definition. One could argue that the scope of ISO 26262 is easily 

extended to cover perception errors by adapting its failure definition. But is it possible to apply the 

processes and methods of ISO 26262 to the development of a reliable environment perception, and 

in the wider sense, to the development of safe ADSs? 

It is possible to conduct a hazard analysis to identify hazards of perception errors. Also, 

(preliminarily) estimating the risk of perception errors is possible with common methods such as 

FMEA, ETA or FTA. Limitations of the (preliminary) hazard analysis and risk assessment are 

potential inconsistencies and subjectivity [168, 169]. Therefore, the hazard analysis and risk 

assessment is predominantly a design tool, i.e. its purpose is developing a safe system (see Figure 

3.7) and not formally validating that a safe system has been developed. Combining the hazard 

analysis and risk assessment with systematic and formal modeling approaches is a way to mitigate 

these limitations [168, 169]. However, due to the complexity of the problem, with a large number 

of combinations of context variables with influence on perception errors and the difficulty of 

specifying perception errors (see Section 3.1.4), it is not guaranteed that the estimated risk is 

accurate and comprehensively covers all potential perception errors. 

                                                 
43 Currently, a standard addressing SOTIF for ADAS is being drafted (ISO PAS 21448).  
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Including driver controllability in the hazard analysis and risk assessment as well as in the design 

of the system [44] is by definition not possible for ADSs with higher levels of driving automation, 

when the system is engaged44. This means Pr(𝐶|𝐸, 𝐹𝑎𝑖𝑙) = 0  in Eq. (3.6)45, leading to stricter 

requirements (i.e. a higher ASIL). As a consequence, it is more difficult to achieve safety for 

higher levels of driving automation. 

The functional safety concept achieves an acceptable risk by controlling λFail with adequate safety 

measures (see Figure 3.7) [171]. Exemplary safety measures are fault detection, failure mitigation, 

transition to a safe state and fault tolerance mechanisms [167]. These measures are challenging to 

apply to the development of a reliable environment perception [40], because perception errors are 

difficult to observe. While hardware failures (e.g. no power) or software errors (e.g. a value is out 

of range) are often observable and hence can be dealt with by adequate safety measures [63], a 

perception error requires a reference truth to be identified46 (see Section 3.1.4). Potential 

exceptions that to some degree enable the detection of perception errors are heuristics, plausibility 

checks and sensor redundancies [59], [176] as cited in [40]. It has to be studied how and whether 

these measures lead to an acceptable risk, which is not clear due to the lack of certainty in detecting 

perception errors [40]. Furthermore, it is possible to estimate the accuracy of perception online in 

the ADS, e.g. with the uncertainty of the state estimates in the Bayes filter, or with an estimate of 

the a posteriori probability of track existence in the JIPDA-Filter, see Section 2.2.2 [60]. These 

estimates allow to optimize the perception but do not allow to predict or detect perception errors 

[60], which is intuitively understood in case of a false negative detection (wrongly not indicating 

an existing object).  

Another issue is that a comprehensive system specification is the prerequisite for verifying 

compliance with requirements in test cases [54]. It does not seem possible to comprehensively 

specify environment perception requirements for all possible situations and context variables due 

to the involved complexities [40, 63]. Limitations of the test case approach for system verification 

and validation are further discussed in Section 3.3.1. 

To conclude, ISO 26262 provides an initial basis for the SOTIF of ADS because the methods in 

ISO 26262 are partly transferrable to the development of a reliable environment perception. In 

light of the challenges involved with specifying requirements, verifying the requirements and 

applying safety measures to the environment perception [40], however, applying the methods in 

                                                 
44 An exception is a level 3 functionality which passes the control to the diver within an adequate time frame in case 

a system limitation is detected [14, 49].  
45 Another exception is that other drivers or vehicles could be able to control a hazardous situation caused by an ADS. 

Then, Pr(𝐶|𝐸, 𝐹𝑎𝑖𝑙) ≠ 0. 
46 This applies to (stochastic) perception errors due to the inherent uncertainties of a sensor. Systematic sensing errors 

could be addressed with adequate safety measures. For example, a blindness detection could identify that a sensor is 

blinded by dirt on its cover and initiate a cleaning program. Another example is that one can detect if the ambient light 

is insufficient for cameras. 
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ISO 26262 is not sufficient to claim the absence of unreasonable risk due to perception errors, and 

in the wider sense, an acceptable risk for ADS. 

3.2.2 Code of Practice for the Design and Evaluation of ADAS 

ISO 26262 is formulated generically, without being specific on its processes and methods. For 

instance, no detailed instructions are given on how to evaluate the controllability or how to develop 

an ADAS with environment perception. To provide more specific guidance on these topics, the 

Code of Practice for the Design and Evaluation of ADAS documented the state of the art47 for the 

introduction of safe ADAS [40, 43, 56, 63]. For instance, the Code of Practice describes procedures 

and provides checklists for the development and safety validation of ADAS such as Adaptive 

Cruise Control or Lane Keeping Assist [44, 56]. Additionally, the Code of Practice describes 

system reliability analysis methods such as a hazard and operability study (HAZOP), FMEA and 

FTA [56]. 

The Code of Practice’s central premise is that “[…] an ADAS is considered safe, as long as the 

driver is able to control the vehicle.” [56]. Based on this premise, the focus of the Code of Practice 

is to design for and demonstrate driver controllability of the ADAS [40, 44, 56, 63], defined as 

the: “likelihood that the driver can cope with driving situations including ADAS-assisted driving, 

system limits and system failures” [56]. The development process in the Code of Practice is 

illustrated in Figure 3.8. In practice, this process is realized in analogy to the V-Modell (see Figure 

3.6) [44].  

 

Figure 3.8 Safety process for the development of ADAS according to the Code of Practice. Adapted from 

Figure 2 in [56]. 

                                                 
47 It is not necessarily given that the Code of Practice published in 2009 still documents the state of the art due to 

technological and scientific progress. 
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This safety process is summarized in the following to highlight how the safety of ADASs is 

achieved and validated, and to discuss its applicability to ADSs with higher levels of driving 

automation and their environment perception. 

ADAS Development and Safety Process 

In the concept phase, a draft is set up which contains concepts on the ADAS functionality, its use 

case (i.e. the domain and the scenarios of usage) and the human machine interaction (i.e. a sketch 

on how to operate the system) with a controllability safety concept. Next, a preliminary hazard 

analysis and risk assessment is performed to identify hazardous situations and hazards within the 

ADAS function. The hazard analysis and risk assessment is essentially identical to the approach 

in ISO 26262 with special focus on controllability. From the ADAS draft and the hazard analysis 

and risk assessment, controllability concepts detailing the human machine interactions are derived. 

Criteria are specified to evaluate and compare different concepts, taking into account the 

controllability requirements derived from the risk assessment. The best among potentially multiple 

concepts is selected and is incorporated into a detailed system specification. [56] 

In the series development, the system including its human machine interaction is designed in detail 

based on the specifications. The hazard analysis and risk assessment is updated with the detailed 

design. It is then verified if requirements on controllability are met by the realization of the design. 

Ultimately the system’s safety is validated with a final proof of controllability. To this end, relevant 

driving scenarios are identified and collected in a list as test scenarios. The identification of 

relevant scenarios is informed by the hazard analysis and risk assessment [55]. The evaluation of 

controllability is restricted to the most relevant scenarios under the assumption that similar 

situations have the same controllability. Selected test scenarios are associated with specified 

pass/fail criteria and their controllability is assessed by experts, in field tests, on proving grounds 

and in (driving) simulators [55, 64]. [56] 

Additional to the evaluation of the selected test scenarios, an extensive field test of potentially 

millions of test kilometer supports the final demonstration of controllability and system safety 

validation [64]. For further information on controllability evaluation it is referred to [63, 64, 168, 

177]. 

Perception Errors in Light of the Code of Practice 

Under the Code of Practice, perception errors are not safety-relevant as long as the driver is able 

to control the consequences. Consider for example an Automatic Emergency Brake (AEB) 

functionality. False negative (FN) errors have little safety relevance for an AEB system (but reduce 

its effectiveness). A FN error has a large controllability, as it is the driver’s regular duty to control 

the vehicle in reaction to obstacles and other traffic participants. A false positive (FP) perception 
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error, however, could lead to an inadequate emergency brake, which is safety relevant because it 

has a small controllability for following vehicles. This asymmetry in safety relevance of FN and 

FP errors allows to optimize the perception w.r.t. a reduction of FP errors, at the cost of an 

increased number of FN errors [44]. An acceptably low FP error rate is then in practice validated 

with a field test in real traffic [64]. In combination with a design for controllability of FP errors 

(e.g. limitation of maximum deceleration), the system’s safety can be validated with a manageable 

number of test kilometers [44, 55, 64]. In [64], it is for instance described that a final safety 

validation of an AEB system was based on 2 Mio km field tests in real traffic. 

Applicability to Higher Levels of Driving Automation 

As discussed in Section 1.2.1, with higher levels of driving automation, the system instead of the 

human driver is responsible for monitoring and operating the vehicle and for monitoring the 

environment. Therefore, the abilities of the human driver cannot be part of the safety concept for 

a level 3-5 ADS. The Code of Practice’s paradigm of designing for and demonstrating driver 

controllability hence cannot apply to the development of ADS with higher levels of driving 

automation. As a consequence, all types of perception errors (e.g. FN and FP) are potentially safety 

relevant because it is not possible to validate the SOTIF by assuming and demonstrating that the 

driver is able to control the consequences of perception errors. 

3.3 Established Test Methods 

Section 3.2 shows that existing safety concepts focusing on functional safety and controllability 

are not sufficient to develop a reliable environment perception for ADS with higher levels of 

driving automation. Therefore, it is crucial to explicitly assess perception reliability to validate the 

SOTIF. 

This Section investigates the applicability of established automotive test procedures on 

demonstrating an ADS’s perception reliability. Scenario based testing together with field tests 

represents the state of the art in testing ADAS48 [40, 44, 56, 172, 178–181]. Section 3.2.1 revealed 

that scenario based testing is also central for the verification of functional safety in ISO 26262. 

We therefore first review in Section 3.3.1 how test cases are derived with the scenario based 

approach and outline in Section 3.3.2 how tests are executed. 

  

                                                 
48 As there are currently only level 1-2 ADSs in the market, the state of the art in testing level 3-5 ADSs cannot be 

described. 
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3.3.1 Test Case Generation: Scenario Based Testing 

Driving scenarios define use cases, support the system development and define test cases for ADSs 

[40, 44, 56, 178–182]. A driving scenario is for instance described in terms of the road geometry, 

the spatial and temporal constellation of traffic participants with their expected states, 

infrastructure elements, static obstacles, hazards, the ego-vehicles intended actions, environmental 

conditions, the drivers’ conditions and the drivers’ goals [40, 56, 178–183].  

In the context of scenario based testing, it has to be distinguished between test case generation and 

test execution [184]. The following terminology is proposed in [178] for the generation of test 

cases, which is motivated by an inconsistent use of terms like scenario and situation [178, 179, 

182]:  

 Scene: geometry and type of roads, position of traffic signs and lights, static obstacles, 

environmental conditions, dynamic elements (other traffic participants, state of traffic 

lights). 

 Situation: the combination of the scene, the ego-vehicle and the designated actions of the 

driver or of the automated driving functionality.  

 Scenario: a sequence of situations, including the expected actions of the actors (i.e. traffic 

participants). 

 

Similar definitions are given in [182], which slightly deviate from [178]. The situation is in [182] 

interpreted to contain only the elements of the scene that are relevant for an actor to achieve its 

driving goals. A scenario is in [182] defined as the temporal development of a sequence of scenes 

with prescribed actions and events between the scenes and including the goals of the actors. 

Because of an inconsistent use of scenarios in different phases of ADAS development, [180] 

propose to distinguish between functional, logical and specific scenarios (with decreasing level of 

abstraction). The terminology is here not presented to discuss which definitions are more 

appropriate but to clarify the concept of scenario based testing. For further references on 

terminology we refer to [180, 182]. 

The specification of system requirements, the risk assessment of driving scenarios and the range 

of parameter values at the systems’ interfaces are according to [185] the basis for generating test 

cases. Additionally, Section 3.2.1 discussed that test cases are derived from expert knowledge, the 

statistical distribution of environment conditions and field experience. The identification of test 

cases from field tests is for instance described in [61, 186]. 

Based on such information, scenarios and associated parameters relevant for an automated driving 

functionality are identified [184, 187, 188]. The test cases are then systematically generated by 

detailing and varying the relevant parameters of the driving scenarios and by specifying pass/fail 
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criteria [40, 43, 56, 71, 178, 179, 182, 184, 188]. To this end, the parameters of the test scenarios 

are for example discretized into classes [184, 188]. To generate the test cases, combinatorial 

methods are applied to the discretized parameters [184, 188]. In the context of ADSs, relevant test 

cases for ADSs were identified and collected in the PEGASUS project [181].  

To manage the test effort in practice, test cases are restricted to the most representative scenarios, 

e.g. by evaluating their probability (i.e. the exposure, see e.g. [169]) or by selecting critical 

scenarios from experience and expert knowledge [40, 56, 61, 71]. [63] for instance describes an 

approach to select test scenarios. The approach limits the level of detail of the test scenarios by 

means of a relevance factor derived from the probability of the scenario and from controllability 

[63]. Ultimately, the selected test cases are collected in scenario catalogues and are executed with 

a variety of test methods, which are described in Section 3.3.2 [40, 44, 183]. 

While scenario based testing demonstrates to a large degree an acceptable risk for ADAS by 

assessing controllability and functional safety, it has limitations when applied to demonstrate the 

SOTIF and perception reliability with higher levels of driving automation [40, 44]. The two central 

reasons for the limited applicability of scenario based testing in this context are: 

1.) The ADS and its environment perception have to handle potentially an infinite number of 

driving situations with a large number of context variables (see Section 3.1.4) [40, 61, 170, 

184]. 

2.) The ADS is not able to rely on the drivers’ abilities and controllability in case of failures (see 

Section 3.2.2) [44]. 

 

Point 1.) makes it difficult to explicitly specify and execute all relevant test cases [40, 61, 170] and 

to specify what constitutes an absence of perception errors (see Section 3.1.4). The difficulty of 

comprehensively specifying test cases is closely related to the difficulty of comprehensively 

specifying the requirements for an ADS and its environment perception [40, 71], as already 

discussed in 3.2.1. 

Consider as an example the sensor specification “detect all relevant objects at all times while not 

indicating non-existing objects”. Clearly, compliance with this requirement cannot be 

demonstrated through test cases because of the imprecise specification. To verify this requirement 

by means of test cases, one would need to specify all relevant objects that the perception must be 

able to detect as well as the situations in which these must be detected. For particular objects and 

specific driving situations, the requirements are specifiable [40, 63]. From these specifications, 

test cases could be derived to verify compliance with the requirements. Due to the large number 

of context variables, the combinations of their states, objects and possible driving situations (see 

Section 3.1.4), there is no guarantee that the specifications are sufficiently complete [40] to claim 
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the absence of unreasonable risk. The challenge is that not necessarily all relevant context variables 

and situations are known. If all context variables and situations are known, the number of test cases 

to systematically explore the space of the context variables grows exponentially with each 

additional dimension of test parameters due to the curse of dimensionality [115, 189]. Hence, 

strictly, one would need to define an uncountable number of test cases to claim the absence of 

unreasonable risk [66, 170, 184]. This seems not achievable at present. 

Point 2.) invalidates the underlying assumption to restrict the test scenarios to the most relevant 

scenarios [44, 66]. As already explained in Section 3.2.2, it is assumed that a driver who is able to 

control the vehicle in one situation is also able to control the vehicle in similar situations due to 

her perceptive, cognitive and sensory-motoric abilities [44]. An ADS of higher levels of driving 

automation however excludes the driver49 when the automated driving functionality is engaged. 

Assuming similarly that the performance of  environment perception evaluated in exemplary test 

cases is transferrable to all situations could turn out to be wrong [141] because of potential 

unaccounted influences of context variables (see Section 3.1.4) [190]. A small variation in the 

environment could due to the involved complexities lead to a perception error, e.g. because a 

different amount of photons hits a lidar’s photo diode, and hence, cause a different ADS behavior 

in similar situations (see Section 2.1) [71]. Therefore, one cannot simply assume an absence of 

perception errors in all possible situations by successfully passing some test cases. 

For ADAS it was further argued to restrict testing to situations in which an intervention (e.g. 

emergency brake) is safety critical [61]. The possibility of perception errors however renders 

almost all situations as potentially safety-relevant for an ADS with higher levels of driving 

automation, which is continuously and actively driving in its use case (e.g. highway pilot). 

Restricting test cases to exemplary situations is therefore inadmissible because relevant situations 

could be neglected otherwise [40].  

It is concluded that scenario based testing is a tool to improve an ADS during its development and 

is applicable to verify an ADS’s requirements. However, scenario based testing does not 

automatically allow to claim the absence of unreasonable risk due to perception errors without 

additional measures. To formally claim the absence of unreasonable risk with the described 

scenario based approach, one has to execute an uncountable number of test cases. 

  

                                                 
49 An exception is a level 3 functionality which passes the control to the diver within an adequate time frame in case 

a system limitation is detected [14, 49]. This aspect is not further discussed because perception errors cannot always 

be anticipated for the purpose of handing over the control to a driver in a timely manner. 
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3.3.2 Test Execution 

The generated and specified test cases are executed with a variety of test methods [40, 44]. These 

include simulations, controlled tests on proving grounds and field tests [40, 44]. This Section 

evaluates if the different test methods allow to validate perception reliability. 

X-in-the-loop Simulations 

Simulation methods execute test cases in virtual test drives to evaluate system specifications and 

to verify requirements early in the development process, when the system and its components are 

not yet fully realized. The drivers with their behavior, the vehicles, the environment and all 

relevant interactions have to be modeled to execute the test scenarios virtually. [40, 44, 71, 89, 

183, 186, 187, 191–195] 

As the development of the system progresses, models of functionalities, software code and the 

hardware of different components are realized (see Figure 3.6). The realized parts of a system are 

combined with virtually simulated representations of system parts that are not yet realized, together 

with virtual representations of the environment and the drivers. It is distinguished between 

different types of X-in-the-loop simulations methods, depending on which parts of the system, the 

environment and the drivers are represented virtually or in reality. To distinguish different 

simulation methods, the X in X-in-the-loop (XiL) is substituted by model (MiL), software (SiL), 

hardware (HiL) or vehicle (ViL): [40, 44, 56, 66, 183, 184, 187, 188, 191–197]50 

 MiL: Algorithms modeling the system and its intended functionalities are tested in a fully 

virtual environment. 

 SiL: A realized software code is tested in a simulation environment that potentially takes 

computational performance constraints of the not yet realized hardware into account. The 

vehicle, the drivers and the environment are virtually simulated. A SiL can also be 

combined with real measured input data. 

 HiL: Parts of the system (e.g. specific control units) are physically realized and combined 

with virtual representations of the remaining vehicle. Partly the vehicle, the drivers and the 

environment are simulated virtually. A HiL can be combined with real measured input 

data. 

 ViL: The vehicle is realized but parts of the environment such as infrastructure and other 

traffic participants are simulated virtually. An interface at the sensor level provides 

simulated signal responses from the virtual environment. The vehicle’s reactions derived 

from the simulated sensor signals (and/or the driver) are executed on a test stand or on a 

                                                 
50 The large number of publications addressing simulation methods for ADSs highlight the research activity on 

simulation based testing. 
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proving ground. For example, a ViL simulation enables to move a real vehicle through a 

virtual construction site or to safely test AEB systems. 

 

XiL simulations are also listed as possible test methods in ISO 26262 and the Code of Practice 

[56, 174]. For more details on XiL we refer to [195, 198–200]. 

The main advantages of simulation methods are that they can be employed early in the 

development [44], they are reproducible [44, 56, 183, 191, 193, 196], they are inexpensive once 

established [196], they allow to test a large number of test cases virtually with limited effort [44, 

56, 66, 183, 191, 201], component failures / errors can be injected to evaluate system behavior in 

case of failures [56, 183, 193], and they are safe [44, 56, 193, 196, 201]. The reference truth is 

known in a virtual environment. The main disadvantage of simulations is the simplification of 

reality by reducing the complexity of a problem with models [44, 191, 193].  

A prerequisite to demonstrate perception reliability by means of simulation is that the simulations 

are sufficiently accurate [40, 44, 66, 191, 193, 197, 201]. It is reminded that the goal of an ADS’s 

safety validation is to demonstrate Eq. (3.2). Perception reliability enters Eq. (3.2) through Eq. 

(3.3). Sufficiently accurate therefore means that an estimation of λper with simulation is only 

deviating from the true perception error rate with an acceptable estimation error. To be able to 

demonstrate Eq. (3.2), the simulation estimation error on λper has to be approximately one order 

of magnitude smaller than the risk acceptance criteria discussed in Section 3.1.1. This illustrates 

that demonstrating the validity of simulation methods to be used for the purpose of an ADS’s 

safety validation is at least as hard as directly demonstrating the safety of an ADS (see Section 

3.1.2) [66].  

Setting up accurate simulations for perception reliability is particularly challenging [71, 191]. To 

become a valid simulation that accurately estimates λper, one would need to know a priori which 

context variables and environmental constellations could potentially cause perception errors to 

include them in the simulation (see Section 3.1.4) [191]. Additionally one would need to be able 

to accurately model the environment and the interactions of an ADS’s perception with the 

environment [191, 193]. Discrepancies between simulated and corresponding real sensor data in 

[197] as well as discrepancies of camera based object detections and state estimates (e.g. object 

distance) in a simulated image compared with the corresponding real image exemplarily 

demonstrate these challenges [89, 193]. 

While accurate simulations certainly can be realized for some effects, it is challenging to accurately 

simulate all relevant effects. Even if one was able to devise a valid simulation method to assess 

perception reliability, the computational costs to achieve this high degree of validity might be 



The Safety of Automated Driving Systems 

 55 

prohibitive [191]. According to [66, 191] no simulation methods exists today that allow to solely 

demonstrate ADS safety and with it perception reliability by simulation. 

It is concluded that simulation methods are an important ADS development tool to improve the 

quality of an ADS, especially in early phases of the V-Model process [183, 196]. Simulations are 

an opportunity to verify compliance with specified requirements [191, 192], e.g. requirements on 

environment perception. Real software code can be implemented in the simulations. A simple 

solution to account for changes in the perception system is for instance to freeze the system’s 

hardware at one point, collect (physical) sensor raw data once, and implement a SiL tool chain that 

represents the implemented algorithms and timing behavior of the sensors to further process the 

sensing raw data. Whenever the (sensor or fusion) software is updated, a new SiL can be run to 

obtain test data with the most recent software version. 

Simulations allow to optimize an ADS’s sensor architecture and the design of individual sensors, 

thereby increasing (sensor) perception reliability during system development. At present, 

simulation methods however do not allow to learn the perception reliability for an ADS’s safety 

validation at the end of the system development, because of the involved simplifications of reality. 

It is furthermore not clear if simulation methods will become sufficiently realistic in the near future 

to allow for an ADS’s safety validation by application of simulation alone. 

Controlled Field Tests on Proving Grounds 

Due to the limitations of virtual simulations, each ADS functionality is still tested in reality [44, 

187, 191, 194]. One option is to execute controlled field tests on proving grounds with an 

integrated prototype according to test cases described in scenario catalogues [44, 56, 64, 66, 141, 

186]. The test execution on proving grounds requires to control the relevant test scenario’s 

parameters [55]. The aim is to successfully pass all test cases for a certain number of times, see 

e.g. [56]. To enable reproducibility of the test cases without risk for the involved personal, slap 

cars, driving robots51 and dummy pedestrians are used [55, 141, 186, 190, 202]. 

As a main advantage, controlled field tests are more realistic than virtual simulations [55]. They 

are to a certain degree reproducible, safe and allow to inject faults for an evaluation of system 

behavior under failures [44, 56]. A practical limitation is that not all scenario parameters such as 

snowfall, spray water or fog can be controlled easily. Also, for safety reasons, testing the ADS in 

critical situations involves simplifications such as slap cars [194]. A slap car has different 

                                                 
51 A driving robot is not to be confused with an ADS because it does not react to the environment. Instead, it is a robot 

that controls a vehicle in analogy to a human driver by physically actuating the acceleration and brake pedals as well 

as the steering wheel in a predefined way. A driving robot allows to precisely program potentially safety critical 

driving maneuvers. [190] 

Alternatively, one can also pre-program a path in a test vehicle if equipped with suitable actuation for driverless 

maneuvering. 

https://dict.leo.org/englisch-deutsch/maneuver
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properties than a real car, e.g. it has different optical reflection properties and a different radar 

cross section [141]. Measures to mitigate these differences are taken [141, 190], e.g. prismatic 

reflectors are installed on slap cars to adjust the radar cross section [141]. Nevertheless, the 

involved simplifications of reality potentially lead to a different behavior of an ADS’s environment 

perception. In comparison with field tests in real traffic, the variability of the driving situations on 

a proving ground is limited because the situations are artificially generated [44, 56]. In real traffic, 

for example, the variability in potential traffic participants is larger (e.g. different sizes, shapes and 

colors of cars or trucks). 

In principle, controlled tests on proving grounds allow to learn perception reliability, because the 

real behavior of an ADS’s environment perception is observed. On proving grounds, it is 

comparatively easy to set up a reference truth for observing perception errors, e.g. by equipping 

the test vehicles with differential GPS (DGPS) [190, 194, 195]. Tests on proving grounds are 

particularly well suited to demonstrate the absence of systematic perception errors52. Limitations 

of testing environment perception on proving grounds are simplifications concerning the selection 

of relevant traffic participants (e.g. dummy pedestrian) and the difficulty of testing all relevant 

situations (e.g. limited variability of relevant objects). The latter point is related to the limitations 

of scenario based testing, as discussed in Section 3.3.1. Furthermore, instead of qualitatively 

evaluating each test case as either passed or failed a, it is preferable to explicitly demonstrate Eq. 

(3.4), which requires to quantify the perception failure rate λper. It is challenging to generate a 

quantitative statement on λper by means of controlled field tests on proving grounds.  

Field Tests in Real Traffic 

Field tests in real traffic are performed as a final means of safety validation under realistic 

conditions before an automated driving functionality is released [35, 40, 44, 56, 61, 64, 66, 186, 

187, 193, 194]. Either test cases described in scenario catalogues occur by chance in the field, the 

test cases are actively sought (e.g. with an event based field test approach, which aims at restricting 

the test to critical or relevant situations [61]), or most commonly, the field test is performed for a 

predefined number of test kilometer to demonstrate a low system failure probability [35, 44, 54, 

56, 61, 66, 141, 187]. 

To ensure public safety, field tests are typically performed at the end of the development cycle, 

after conducting controlled field tests on proving grounds [44, 66, 194]. For ethical reasons, one 

cannot actively generate safety critical situations in the field to test e.g. AEB [56]. Exemplarily, 

an AEB functionality is validated with 2 Mio km of driving in [64]. In [203], the risk of ADAS 

                                                 
52 A systematic error is defined as a: “failure related in a deterministic way to a certain cause, that can only be 

eliminated by a change of the design or of the manufacturing process, operational procedures, documentation or other 

relevant factors” [62]. In contrast, a random error would be related to a certain cause in a probabilistic way. 
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equipped vehicles compared with driver only vehicles is studied in extensive field tests. Moreover, 

large scale naturalistic driving studies are conducted to identify relevant critical situations and 

corresponding human behavior under real life conditions [204, 205], which can be used to develop 

ADSs and as a benchmark for ADS performance.  

The central advantage of field tests in real traffic is that test conditions are most realistic [44, 55, 

56, 201]. Field tests automatically lead to a high variability of driving situations and a variability 

of relevant objects (e.g. different sizes, shapes, colors and relative position of cars or trucks) [55, 

66]. Additionally, field tests allow to identify unknown test cases [55, 61, 186, 191, 201]. By 

recording relevant unknown critical situations, scenario catalogues can be updated [61, 186]. One 

is then able to verify the ability and specifications of an ADS to handle these situations in 

controlled field tests or by means of simulation [186]. Challenges are to conduct the test 

representatively [40, 54] and to set up a reference truth for the identification of perception errors 

(see Section 3.1.4). Field tests are not reproducible, are hard to control (i.e. actively trying to test 

certain situations) and are cumbersome because of the large amount or required testing (see Section 

3.1.2) [44, 55, 56, 66, 201]. 

In combination with demonstrating driver controllability in scenario based testing, field tests allow 

to demonstrate an acceptable risk of ADAS with a manageable test effort (e.g. 2 Mio km to 

demonstrate a sufficiently low false positive rate for an AEB functionality [64]). Without the 

assumed driver controllability, empirically demonstrating an acceptable risk for higher levels of 

driving automation is not practical due to the approval trap (see Section 3.1.2). According to 

Section 3.1.4, the approval trap also applies to a demonstration of perception reliability. Hence, 

demonstrating an ADS’s SOTIF and perception reliability seems not directly possible with field 

tests alone due to the impractically large required test effort. Implementing scenario based testing 

in field tests (e.g. an event based field test [61]) has similar limitations when applied to ADSs with 

higher levels of driving automation as already discussed in Section 3.3.1. Aside of ethical 

concerns, restricting and actively testing predefined critical situations in the field neglects that for 

ADSs with higher levels of driving automation, a seemingly uncritical situation can become 

critical due to perception deficiencies. 

Summary 

Testing is used as a development tool to increase the quality and safety of a system and as a means 

of validating if an acceptable system safety has been achieved [71, 141]. All currently established 

test methods are useful development tools for ADSs. Most importantly, field tests in real traffic 

and partly controlled field tests on proving grounds are utilized to validate system safety. However, 

none of these methods are in their current form sufficient to formally demonstrate perception 

reliability and with it the safety of an ADS with higher levels of driving automation. 
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4 Environment Perception Reliability 

According to [35], an important step towards addressing the gap in ADS safety validation methods 

is to define a metric that allows to formally assess the performance of an ADS. We argue that this 

metric should be the risk of an ADS, here expressed as the rate λsys of fatal accidents in Eq. (3.3). 

The risk of an ADS has to comply with risk acceptance criteria (see Section 3.1.1). Further, [31] 

state that a lack of perception metrics makes it difficult to assess the performance of the 

environment perception. [35] proposes to individually introduce metrics for the perception, 

cognition and the actuation of an ADS. In this manuscript, the corresponding individual metrics 

are according to Section 3.1.3 the respective failure rates of the perception λper, the automated 

driving function module λfunct and the actuation λact. 

The goal of a perception reliability analysis is to estimate λper for a demonstration of Eq. (3.4). It 

is not straightforward to directly assess λper due to the difficulties discussed in Section 3.1.4. 

Directly assessing λper requires a comprehensive definition of safety-critical perception errors or 

alternatively necessitates to test the perception and automated driving functionality jointly. In 

particular, the difficulty of defining safety-relevant perception errors, which depends e.g. on the 

path planning and the actual driving situation, makes it hard to assess λper directly. 

To address these challenges, we introduce additional perception reliability metrics in Section 4.1 

that allow to assess the performance of environment perception independent of the automated 

driving functionality and actual driving situation. Based on these perception reliability metrics and 

on targets for λper, we derive individual sensor perception reliability requirements in Section 4.2. 

Finally, we estimate the test effort to validate the derived perception reliability requirements in 

Section 4.3. 

4.1 Environment Perception Reliability Metrics 

This Section is based on our publications in [39, 161] and is partly taken from our publications in 

[39]. 

In Sections 4.1.1-4.1.4 we introduce perception reliability metrics accounting for environment 

perception uncertainties [40]. In a second step, the perception reliability metrics are related to λper 

in Section 4.1.5.  

The basis for describing perception reliability with metrics are the three fundamental types of 

uncertainties in environment perception [60, 67], which are schematically illustrated in Figure 4.1: 
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 Existence uncertainty: uncertainty on whether existing objects are detected (true positive 

TP vs. false negative FN) and on whether non-existing ghost objects are wrongly indicated 

(false positive FP vs. true negative TN). 

 Classification uncertainty: uncertainty on the semantic types of detected objects (e.g. car, 

truck, pedestrian, bicycle, motorcycle, static obstacle, traffic sign, etc.). 

 State uncertainty: uncertainty on the state of physical quantities of detected objects (object 

position, object velocity, object acceleration, object size, etc.). 

 

Figure 4.1 Schematic illustration of the existence, classification and state uncertainty due to noisy and 

potentially deficient environment sensing. The black bounding box is the output of the perception. 

Without knowledge of the ground truth, it is uncertain whether the indicated black object exists 

in reality (true positive TP or false positive FP?), which object type it is (car, truck, etc.?) and 

what state it is in (velocity, position, etc.?). Taken from [39]. 

Each of these uncertainties can lead to safety-critical perception errors and hence contribute to 

λper. Independent of the safety-criticality of a specific perception error, the overall perception 

performance is quantified by metrics for these fundamental uncertainties [161]. We present the 

perception reliability metrics on the level of the perception module (= fused environment model), 

however they equally apply to individual sensors if they provide information in the respective 

uncertainty domain (object detection, object classification and object states). On the grounds of 

the generic environment sensor model in Figure 2.4, the perception reliability metrics are used for 

all sensing technologies (radar, camera and lidar) on the object data level, i.e. each sensing 

technology is described with these metrics. 

A type of uncertainty not illustrated in Figure 4.1 is association uncertainty [59], which occurs in 

a redundant multi-sensor system with sensor data fusion. Association uncertainty is the uncertainty 

on which sensor object detections are due to the same (real) object, represented as a track in sensor 

data fusion (i.e. object to track association uncertainty) [59]. Explicitly modeling perception errors 

due to sensor data fusion is not in scope of this thesis. Moreover, as explained in Section 1.3, we 

exclude situation awareness in the definition of the metrics. 

Truth

Type: Car

Velocity:  

Position: 𝐱pos

Perception

Existence: TP or FP?

Type: car, truck…? 

True velocity?

True position?

Field-of-view
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4.1.1 Existence Uncertainty 

Signal processing in a single sensor proceeds with a variety of algorithms from the signal over raw 

data to object data (see Figure 2.4). The data of multiple sensors is then combined in a sensor data 

fusion, see Section 2.1.5. 

To exemplarily illustrate one reason behind existence uncertainty, consider the hypothetical lidar 

signal in Figure 4.2. A raw data point is detected if the signal intensity exceeds a detection 

threshold [40], which is a setting of the sensor. With threshold 1, a false negative (FN) error occurs, 

with threshold 2 a true positive (TP) detection results. Threshold 3 results in a true positive (TP) 

detection as well as a false positive (FP) error, if the sensor is designed to detect multiple signal 

peaks as objects (multi-target capability [102]). This example illustrates how the detection 

threshold is a compromise between FP and FN errors [40]. Depending on the full signal processing 

chain and processing algorithms, these potential errors in raw data can in some cases in 

combination with other perception errors lead to perception deficiencies in the (fused) environment 

model. 

 

Figure 4.2 Example of how perception errors arise in the existence uncertainty domain with a lidar. At 40 m 

a real object is present while the signal in the range < 40 m is due to noise. Depending on the 

detection threshold, the real object is indicated or not (true positive vs false negative) and the 

noise is wrongly indicated as an object or not (false positive vs true negative). Adapted from [105]. 

In the following we model the perception probabilistically because of the large number of context 

variables 𝐄 (see Section 3.1.4), due to system complexity and due to inherent uncertainties of 

environment perception [40]. Particularly, the detection performance in the existence uncertainty 

domain is described with the theory of signal detectability [206–208]. The task of the perception 

is to detect (event 𝐷 = 1) an existing object (event 𝑂 = 1) and not indicate (event 𝐷 = 0) non-

existing objects (event 𝑂 = 0). As illustrated with the confusion matrix in Figure 4.3, and as 

explained with the example of Figure 4.2, the output of the perception in the context of existence 
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uncertainty is therefore either a true positive (TP), a false negative (FN), a false positive (FP) or a 

true negative (TN). 

 

Figure 4.3 Confusion matrix for the existence uncertainty. 𝑶 = 𝟏: object present; 𝑶 = 𝟎 no object present; 

𝑫 = 𝟏: detection; 𝑫 = 𝟎: no detection; TP: true positive; FN: false negative; FP: false positive; 

TN: true negative. Taken from [157]. 

The confusion matrix in Figure 4.3 represents a binary problem interpretation: Either the 

perception output is a detection or not, and either the underlying truth is an object being present or 

not. In an environment model, multiple objects are present. Therefore one needs to find a suitable 

binary representation of the environment model in order to apply the confusion matrix in Figure 

4.3. An example is to evaluate a limited area of the field-of-view (FOV), in which 𝑂 = 1 is the 

event of at least one object being present. The area should be limited such that the case of more 

than one object being present can be neglected. Another possible binary interpretation is to analyze 

detections of the closest preceding vehicle in the driving path up to a certain distance. Either an 

object is detected in the driving path or not. 

With the confusion matrix in Figure 4.3, the perception performance in the context of existence 

uncertainty is described with a probability of detection POD and a probability of false alarm PFA 

[206–208]. POD is defined as the conditional TP probability53: 

POD = Pr(𝐷 = 1|𝑂 = 1)  
(4.1) 

PFA is defined as the conditional FP probability: 

PFA = Pr(𝐷 = 1|𝑂 = 0)  
(4.2) 

By modifying the settings (sensor detection thresholds, filters, gates etc.) of the perception module, 

the POD and PFA can be varied, which leads to a receiver operating characteristic (ROC) curve 

[206–208]. 

                                                 
53 An assessment of perception reliability is for instance interested in the POD. It is pointed out, for an automated 

driving functionality to make a decision, the a posteriori probability of object or track existence given an indication 

of an object by the environment perception (and given additional information) is needed. The POD is 

Pr(𝐷 = 1|𝑂 = 1), while the a posteriori probability of object existence is (on a simple basis) Pr(𝑂 = 1|𝐷 = 1). The 

POD is required to accurately estimate Pr(𝑂 = 1|𝐷 = 1), that is, the POD is an input quantity to fusion algorithms 

(see Section 2.2.2). 

𝑂=1 𝑂  

𝐷 = 1

𝐷 = 0

𝑇𝑃 𝐹𝑃

𝐹𝑁 𝑇𝑁
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In practice, an object in the environment model is associated with an often heuristically derived 

existence measure 𝑝 [60, 67]. ROC analysis [206–208], which is crucial for representing existence 

uncertainties, is explained next with the example of the existence measure 𝑝 and the detection 

threshold 𝑡t in analogy to [209]. 𝑝 is usually normalized. Alternatively, a classifier such as a CNN 

outputs a probability of object existence 𝑝 in a binary detection problem. To count as a valid object 

detection, 𝑝 has to exceed a detection threshold 𝑡t. The implemented threshold 𝑡t is a design setting 

[40]. 

Conditional on an object being present 𝑂 = 1 or not 𝑂 = 0, 𝑝 is itself a sample from a population, 

described with a probability density function (PDF) 𝑓𝑃|𝑂(𝑝|𝑂). Figure 4.4a) shows examples 

of 𝑓𝑃|𝑂(𝑝|𝑂 = 1) and 𝑓𝑃|𝑂(𝑝|𝑂 = 0). For a specific 𝑡t, the POD is: 

POD = ∫ 𝑓𝑃|𝑂(𝑝|𝑂 = 1)
1

𝑡t
𝑑𝑝  

(4.3) 

and the PFA: 

PFA = ∫ 𝑓𝑃|𝑂(𝑝|𝑂 = 0)
1

𝑡t
𝑑𝑝  

(4.4) 

These integrals correspond to the shaded areas in Figure 4.4a). Plotting the POD over the PFA for 

different 𝑡t in Eqs. (4.3) and (4.4) leads to a ROC curve, as shown in Figure 4.4b).  

 

Figure 4.4 Receiver operating characteristic (ROC) analysis: In (a) the threshold 𝒕𝐭 is modified, leading to a 

different POD and PFA. POD and PFA are the respective areas under the PDFs 𝒇
𝑷|𝑶
(𝒑|𝑶 = 𝟏) 

and 𝒇
𝑷|𝑶
(𝒑|𝑶 = 𝟎), as illustrated by the blue and the red shaded areas. In (b), the resulting POD 

over PFA is shown, which leads to the ROC curve. Each threshold 𝒕𝐭 corresponds to a specific 

point on the ROC curve in (b). A perfect classifier is the red star in (b) with POD=1 and PFA=0. 

In analogy to Fig.1 in [209]. 

Threshold 𝑡t

POD
PFA

Optimal 

classifier
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The overall detection performance of the perception module w.r.t. existence uncertainties is 

described with the ROC curve, while one POD and PFA pair are one operating point on this curve 

for a specific setting. For example, the blue point in Figure 4.4b) on the ROC curve corresponds 

to the threshold in Figure 4.4a).  

This example shows how the POD and PFA are related to the ROC curve. Lowering the detection 

threshold leads to a larger POD but also to an increased PFA. Hence, sensor settings such as 

detection thresholds allow to tradeoff FP and FN errors. The inherent performance of a receiver 

(e.g. a sensor) is thus determined by the two PDFs in Figure 4.4a). Altering the low level signal 

processing of a single sensor might modify the two PDFs in Figure 4.4a), but the effect on overall 

performance must be evaluated by considering both, POD and PFA. 

Ultimately, the interest is in the frequencies of FP and FN errors for a specific operating 

characteristic (point on the ROC curve). The probability of a FN error Pr(FN) in a specific area of 

the FOV depends on the probability Pr(𝑂 = 1) of at least one object being present in that particular 

area and on POD: 

Pr(FN) = Pr(𝐷 = 0 ∩ 𝑂 = 1) = (1 − POD) ∙ Pr(𝑂 = 1)  
(4.5) 

Likewise, the FP probability Pr(FP) in a particular area of the FOV depends on the probability of 

no object being present in that area Pr(𝑂 = 0) and on PFA: 

Pr(FP) = Pr(𝐷 = 1 ∩ 𝑂 = 0) = PFA ∙ Pr(𝑂 = 0)  
(4.6) 

The TP and TN probabilities are derived in the same manner. 

Sometimes POD and PFA are termed TP rate and FP rate54 [208]. To avoid confusion, we explicitly 

distinguish between probabilities and rates. The rates are the expected number of occurrences per 

time interval (or per distance interval) and the probabilities are the expected number of occurrences 

in a discrete trial. For the FP rate λFP, the following identity holds: 

λFP ≈ PFA ∙ Pr(𝑂 = 0) ⋅
1

Δt
  

(4.7) 

where Δt is the duration of one trial. Similarly, the FN rate λFN is defined by: 

λFN ≈ (1 − POD) ∙ Pr(𝑂 = 1) ∙
1

Δt
  

(4.8) 

How to define Δt? It is assumed that the environment perception is updated cyclically with a time 

of 𝑡cycle. Usually, the automated driving functionality only reacts if an object is indicated over 

                                                 
54 This terminology is however misleading because rates imply an underlying continuous reference (e.g. time) while 

a probability refers to a frequency in the limit of discrete trials. Hence, we consider a FP rate λFP not to be identical 

but related to PFA. 
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multiple cycles, i.e. the perception is validated with a multi-cycle heuristic [29, 59, 60, 106]. 

Therefore, an error only becomes safety-critical if it persist for a critical time 𝑡crit, which is a 

multiple of 𝑡cycle and is derived from the implemented multi-cycle heuristics. Δt is set equal to 

𝑡crit. 

4.1.2 State Uncertainty 

State uncertainties arise because of a variety of noise sources, which are exemplarily discussed in 

Section 2.1 [40]. Noise leads e.g. to uncertainty in a raw distance measurements [210–212], which 

together with imperfect processing algorithms translates to uncertainty in state quantities of object 

data. 

In Section 2.2.2, it was described how the Bayes filter is used to estimate object states given sensor 

observations. Ultimately, the estimates of object states are the basis for the path planning55. Let 𝐗 

be the vector of true object states, with elements as for instance as in Table 2.2. �̂� is the estimated 

state of an object with true state 𝐗. With an additive error model, the perception reliability of state 

uncertainties is described by the joint PDF 𝑓∆𝐗(∆𝐱) of the deviations ∆𝐗 between �̂� and 𝐗: 

�̂� = 𝐗 + ∆𝐗  (4.9) 

A common choice is to model ∆𝐗 with a normal model, i.e. 𝑓∆𝐗 is the multivariate normal PDF. 

Under a multivariate normal model, if no systematic errors are present, the mean vector is zero. In 

this case, the state uncertainty is fully described with a covariance matrix. If further, the elements 

in ∆𝐗 are uncorrelated, the state uncertainty is fully described with the standard deviations of the 

elements in ∆𝐗. In the general case, 𝑓∆𝐗 is not multivariate normal and one has to determine 𝑓∆𝐗 

on the basis of data. 

We point out that Eq. (4.9) is only one way of describing state uncertainties. An alternative to the 

additive error model in Eq. (4.9) is for instance a multiplicative error model: 

�̂� = 𝐗 ∙ ∆𝐗  (4.10) 

∆𝐗 again follows a PDF 𝑓∆𝐗 that must be determined from data.  

The most important aspect of state uncertainties for perception reliability are extreme but rare ∆𝐗. 

Therefore, the main concern in quantifying state uncertainty is to accurately estimate the tails of 

𝑓∆𝐗. A normal distribution for ∆𝐗 is not necessarily an accurate model of the tails of ∆𝐗. An 

                                                 
55 Also, the uncertainty in the estimated states (e.g. a credible region) is relevant for the path planning. The accuracy 

in the uncertainty estimation is not considered here. 
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alternative to describe state uncertainties with focus on extreme ∆𝐗 is provided by extreme value 

theory [213]. 

For instance, one modeling option in extreme value theory is based on the block-maxima method. 

With the block-maxima method, the maxima of an independent and identically distributed scalar 

∆𝑋 is extracted from a fixed number of data points, for instance, from all data in a given time 

interval (e.g. 5 min): 

𝑌n = max [∆𝑋1, … , ∆𝑋n]  (4.11) 

n is the number of data points corresponding to the time interval of chosen length and 𝑌n is the 

corresponding maximum in this time interval. 𝑌n follows an extreme value distribution such as the 

generalized extreme value distribution [213]. The advantage of this modeling approach is the focus 

on safety-relevant extreme values of ∆𝑋. 

All given modeling examples are suitable ways of describing perception reliability in the state 

uncertainty domain. The goal is to determine the (joint) PDF of the deviations between the true 

and the estimated states. 

4.1.3 Classification Uncertainty 

Typically, each object in an environment model is classified (see Section 2.2.2) and associated 

with semantic information. Object classes are for instance car, truck, pedestrian and cyclist, the 

type of a traffic sign or the state of a traffic light. Wrong classifications potentially are perception 

errors. 

Classification uncertainty is represented by extending the confusion matrix in Figure 4.3 with 

additional rows and columns [161]. This means, 𝑂 is not binary but categorical. For instance, a 

categorical 𝑂 has as states: No object present, car, truck, pedestrian, etc.. The classification 

uncertainty is then described with conditional probabilities in analogy to Eqs. (4.1)-(4.2), for 

instance, the conditional probability of classifying a pedestrian as a car. Table 4.1 is a generic 

example of a confusion matrix to describe classification uncertainty. 
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Table 4.1 Exemplary illustration of a confusion matrix to describe classification uncertainty with 3 object 

classes. Consider for instance the following classes: 𝑶 = 𝟎: No object present; 𝑶 = 𝟏: car; 𝑶 = 𝟐: 

truck; 𝑶 = 𝟑: pedestrian. The classification performance is expressed in terms of conditional 

probabilities of indicating (event D) one of the objects under the respective truth (event 𝑶). The 

sum of each column is one. Taken from [39]. 

 𝑂 = 0 𝑂 = 1 𝑂 = 2 𝑂 = 3 

𝐷 = 0 Pr(𝐷 = 0|𝑂 = 0) Pr(𝐷 = 0|𝑂 = 1) Pr(𝐷 = 0|𝑂 = 2) Pr(𝐷 = 0|𝑂 = 3) 

𝐷 = 1 Pr(𝐷 = 1|𝑂 = 0) Pr(𝐷 = 1|𝑂 = 1) Pr(𝐷 = 1|𝑂 = 2) Pr(𝐷 = 1|𝑂 = 3) 

𝐷 = 2 Pr(𝐷 = 2|𝑂 = 0) Pr(𝐷 = 2|𝑂 = 1) Pr(𝐷 = 2|𝑂 = 2) Pr(𝐷 = 2|𝑂 = 3) 
𝐷 = 3 Pr(𝐷 = 3|𝑂 = 0) Pr(𝐷 = 3|𝑂 = 1) Pr(𝐷 = 3|𝑂 = 2) Pr(𝐷 = 3|𝑂 = 3) 

 

4.1.4 Higher Order Uncertainties 

The perception reliability metrics evaluated over a limited amount of data (or time) are themselves 

not constant but follow a probability distribution because of the influence of stochastic context 

variables 𝐄, see also Section 3.1.4. This means, the perception reliability metrics evaluated with a 

limited amount of data are random variables themselves. In [161], we termed the uncertainty in 

the perception reliability metrics higher order uncertainties. 

Figure 4.5 illustrates higher order uncertainties with the example of state uncertainties. The 

relevant context variable in this example is rainfall intensity 𝐼. Let the state uncertainties be 

described with the standard deviation σ∆𝑋 of ∆𝑋. ∆𝑋 is the deviation between the estimated and 

the true state of a physical quantity of interest (e.g. x-coordinate of an object).  

 

Figure 4.5 Schematic illustration of higher order uncertainties with the example of state uncertainties. (a) 

The standard deviation 𝛔∆𝑿 describing the state uncertainty is a function of rainfall intensity 𝑰. 

(b) Rainfall intensity is a random variable following the PDF 𝒇
𝐈
(𝒊). (c) Because of the relationships 

in (a) and (b), the standard deviation is itself a random variable following the PDF 𝒇𝛔∆𝑿(𝛔∆𝑿). 

Adapted from [161]. 

Figure 4.5a) shows that the variability in ∆𝑋 increases with the rainfall intensity, i.e. σ∆𝑋 increases 

with 𝐼. The rainfall intensity 𝐼 is a random variable described with a PDF 𝑓I(𝑖), schematically 

visualized in Figure 4.5b). Combining the functions in Figure 4.5a) and Figure 4.5b) leads to the 

σ∆𝑋(𝑖) 𝑓 (𝑖)

b) PDF 𝑓 (𝑖)

𝑓 ∆  (σ∆𝑋)

c) PDF 𝑓 ∆ (σ∆𝑋)

Standard deviation σ∆𝑋Rainfall intensity 𝐼

a) σ∆𝑋 is a function of 𝐼

Rainfall intensity 𝐼
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standard deviation σ∆𝑋 being a random variable described with a PDF 𝑓σ∆ (σ∆𝑋) as shown in 

Figure 4.5b). 𝑓σ∆ (σ∆𝑋) therefore describes higher order uncertainties in ∆𝑋. The considerations 

in Figure 4.5 can be transferred to the existence and classification uncertainty domains. 

Following Section 3.1.4 in analogy to Eq. (3.5), if the amount of data is large and representative, 

global perception reliability metrics are estimated from the data. Then, higher order uncertainties 

do not have to be specifically taken into account. If the perception reliability metrics are estimated 

from a limited amount of data, higher order uncertainties must be accounted for. 

4.1.5 Relationship between the Reliability Metrics and the Perception Failure Rate 

With the description of perception uncertainties by perception reliability metrics in the previous 

Sections, we define perception performance metrics separately from an automated driving 

functionality. This leads to the advantage that during the ADS development, one is able to estimate 

the perception reliability metrics in a first step independently from e.g. the path planning in the 

automated driving function module. 

To be able to judge whether specific values of the perception reliability metrics are acceptable for 

an automated driving functionality, they are in a second step related to the safety-critical failure 

rate λper of the perception module, which depends on the specific automated driving functionality 

under consideration. We discuss how the perception reliability metrics relate to λper with the 

example of existence uncertainties, i.e. with FN and FP errors. FP and FN sensor errors are among 

the most safety-critical perception error types [42].  

The metrics introduced in Section 4.1.1 refer to specific areas of the FOV. Let the FOV be 

partitioned into 𝐽 sub-areas to enable the binary interpretation of Figure 4.3 and let the index  

𝑗 = 1,… , 𝐽 identify a specific area. For instance, the FOV is partitioned into equally sized cells as 

in Figure 4.6. In reality, in each area only a fraction of the FN and FP perception errors are safety-

critical, i.e. would lead to an accident. In case of FN it is: 

λFNcrit,𝑗 = λFN,𝑗 ∙ 𝑝FN,𝑗  (4.12) 

where λFN,𝑗 is the FN error rate of the perception module in the 𝑗th area of the FOV according to 

Eq. (4.8), schematically illustrated in Figure 4.6b). 𝑝FN,𝑗 is the fraction of all FN errors that 

according to the perception error definition in Section 3.1.4 are safety-critical in area 𝑗, as 

schematically presented in Figure 4.6a). λFNcrit,𝑗 is the resulting rate of safety-critical FN errors of 

the perception module in the 𝑗th area. λFPcrit,𝑗  is defined analogously: 

λFPcrit,𝑗 = λFP,𝑗 ∙ 𝑝FP,𝑗  (4.13) 
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For simplicity, it is not distinguished between 𝑝FN and 𝑝FP in Figure 4.6a). Eq. (4.12) for instance 

multiplies the cell values in Figure 4.6a) with the corresponding cell values in Figure 4.6b). 

 

Figure 4.6 Exemplary schematic illustration of partitioning the FOV into smaller areas. (a) the safety-

criticality of FN and FP errors, 𝒑𝐅𝐍 and 𝒑𝐅𝐏, over different areas of the FOV. (b) The FN error 

rate 𝛌𝐅𝐍 in different areas of the FOV. (c) The FP error rate 𝛌𝐅𝐏 in different areas of the FOV. 

Taken from [39]. 

Under the conservative assumption of mutually exclusive safety-relevant FN and FP errors in the 

different cells, the contribution of all areas to λper is the sum over Eq. (4.12) and Eq. (4.13) w.r.t. 

all areas. This is equivalent to interpreting the different areas in the FOV as a series system [153, 

154]: 

λper ≈ λFNcrit + λFPcrit = ∑ λFNcrit,𝑗
𝐽
𝑗=1 + ∑ λFPcrit,𝑗

𝐽
𝑗=1   

(4.14) 

where λFNcrit is the safety-relevant FN error rate and λFPcrit the safety-relevant FP error rate. The 

contribution of perception errors due to the other uncertainty domains are for simplicity not 

explicitly considered in Eq. (4.14). However, other error types such as large object position 

deviations (state uncertainty) or association errors in the sensor data fusion could also be defined 

as FP and FN errors. 

A challenge is to quantify the fractions of safety-critical perception errors 𝑝FN and 𝑝FP for a 

specific automated driving functionality. The quantification of 𝑝FN and 𝑝FP has to consider the 

path planning and situation interpretation. One possible solution strategy to this challenge is to 

apply heuristics to define the safety-criticality to some degree separately from the path planning 

and a given situation. An exemplary heuristic is to consider FN and FP errors in a limited area 

around the driving path as safety-relevant if the error is present for a time ≥ 𝑡crit. All other FNs 

and FPs are neglected. 

In terms of Figure 4.6a) this heuristic is realized by setting 𝑝FN = 1 and 𝑝FP = 1 in the area around 

the driving path, i.e. schematically in the area with high safety relevance in Figure 4.6a) (yellow). 

In all other areas it is 𝑝FN = 0 and 𝑝FP = 0. Similar heuristics could be defined for other error 

Field-of-view Field-of-view Field-of-view

False negative error rate λFNSafety-criticality 𝑝FN and 𝑝FP False positive error rate λFP

High Medium Low

(a) (b)
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types and uncertainties, e.g. position deviations that exceed an upper bound for a time ≥ 𝑡𝑐𝑟𝑖𝑡 in 

the driving path are safety critical. 

An alternative to the heuristics for the safety-criticality is to evaluate 𝑝FN and 𝑝FP in depth (e.g. 

by simulation) for different automated driving functionalities. These approaches allow to 

demonstrate the safety of different automated driving functionalities in an ADS by combining 

perception reliability metrics (e.g. λFP,𝑗) with the safety-criticality depending on the specific 

automated driving functionality (e.g. 𝑝FN). Then, the perception reliability metrics only have to be 

learned once for a given perception architecture. Without loss of generality we omit the index 𝑗 of 

the different areas in the following. 

4.2 Sensor Perception Reliability Requirements: Addressing the Approval Trap 

Section 4.1.5 approximates λper with Eq. (4.14). An inductive (empirical) demonstration of an 

acceptable λper is however subject to the approval trap (see Figure 3.3). To address the approval 

trap, we outline an alternative deductive strategy to demonstrate λper. This Section is based on our 

publications [39, 214] and is partly taken from our publication [39]. 

A deductive demonstration of λper takes perception reliabilities of components /sub-

functionalities (i.e. individual sensors) of the perception module into account. Similar to Section 

3.1.3, the perception module is decomposed into its sub-functionalities and individual sensors. The 

perception reliability is then demonstrated on the level of individual sensors, i.e. by validating 

sensor perception reliability.  

To validate perception reliability at the sensor level, sensor perception reliability requirements are 

derived. Because FP and FN errors are among the most important perception error types, we only 

consider existence uncertainty in the following. Starting from a global risk acceptance criterion in 

Section 3.1.1, acceptable rates λTLSper
56 are defined for the perception module according to  

Eq. (3.3). The aim is to demonstrate λper ≤ λTLSper. Thereafter, from λTLSper, acceptable values 

λTLSFN,crit and λTLSFP,crit are derived with Eq. (4.14) for the perception module. We then derive 

requirements on FP and FN error rates, λTLSFN,𝑖 and λTLSFP,𝑖 of individual sensors 𝑖 = 1, . . . , 𝑛 from 

acceptable values of λTLSFN,crit and λTLSFP,crit of the perception module. 𝑛 is the number of 

redundant sensors with overlapping FOV and 𝑖 identifies a specific sensor. Demonstrating 

                                                 
56 To highlight the difference between requirements and actual rates, requirements are indexed with TLS (target level 

of safety). E.g. λTLSper  is the requirement on λper.  
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perception reliability on the level of the individual sensors, i.e. on the level of λFN𝑖 and λFP𝑖 can 

help to overcome the approval trap. 

4.2.1 Decomposition of Environment Perception: The k-out-of-n Vote 

An exemplary functional block diagram (FBD) for a generic perception module is shown in Figure 

4.7. The FBD is the basis for a decomposition of the perception module into its sub-functionalities 

and components (i.e. sensors). Different sensors, which in some parts of the FOV are redundant, 

collect information about the environment. This information is combined in a sensor data fusion 

(see Section 2.2.2) [57, 58, 110], which is here treated as a black box. 

 

Figure 4.7 Exemplary functional block diagram representing the perception module. Adapted from [39]. 

The task of sensor data fusion is to associate object detections of different sensors to tracks and to 

filter the corresponding state estimates, i.e. object tracking (see Section 2.2.2) [57–59, 67]. After 

this step, a decision has to be made – prior to path planning – on whether an object track at the 

output of sensor data fusion is credible and serves as an input to the path planning. The decision 

of accepting an object track at the fusion’s output may for instance be represented by a k-out-of-n 

vote [65, 156, 215], which means, an object track is the input to the path panning if at least k-out-

of-n sensors indicate a tracked object (and if additionally, the object is indicated for some 

minimum number of discrete time steps by the respective k-out-of-n sensors). The k-out-of-n vote 

implies a k-out-of-n system. A k-out-of-n system is a widely used model to analyze the reliability 

of technical systems [150]. A special case of the k-out-of-n vote is a majority-voter with  

𝑘 = ⌊
𝑛

2
+ 1⌋, which is utilized in [42] to derive requirements on FP and FN sensor error rates. 

The appropriateness of this simple interpretation of sensor data fusion depends on the object 

association algorithm and how the decision about object track existence is made in (or after) sensor 

data fusion. For instance, a probabilistic association algorithm such as the Joint Integrated 

Probabilistic Data Association (JIPDA, see Section 2.2.2) does not allow for the k-out-of-n 

representation because sensor object-to-track associations are probabilistic [67, 118]. In contrast, 

Sensor 1

k-out-of-n 

vote
Environment

 

Sensor 2

Sensor 𝑛
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the more common global nearest-neighbor association on the basis of Mahalanobis distance (see 

Section 2.2.2) [59, 67, 117] allows for the k-out-of-n representation, because sensor object-to-track 

associations are deterministic.  

Note that one of the main sources of perception errors in the sensor data fusion are errors related 

to object-to-track associations (i.e. because of association uncertainties, see Section 2.2.2) [59]. In 

the following we neglect association errors but point out that many association errors can again be 

interpreted as FN and FP errors.  

Regarding the fusion architecture, the k-out-of-n vote is an appropriate modeling approach for a 

decentralized fusion [58] of individual sensors’ object detections (and their respective tracks). In 

contrast, the k-out-of-n vote does not appear to directly fit to a centralized sensor data fusion 

architecture [58] on the basis of raw data. One could however argue for a supervision of the fusion 

with a k-out-of-n voter based on individual sensors [42], which would again allow for the FBD in 

Figure 4.7. For these reasons, a k-out-of-n representation of sensor data fusion is used as the 

modeling approach in this work57. 

4.2.2 Deriving Sensor Perception Reliability Requirements 

Sensor perception reliability requirements for each individual sensor are derived with the k-out-

of-n voting approach in combination with statistical models for perception errors. It is here not 

distinguished between different sensors for the purpose of assigning reliability requirements. That 

is, each sensor 𝑖 is assigned the same acceptable λTLSFN,𝑖 = λTLSFN,sensor and λTLSFP,𝑖 =

λTLSFP,sensor. λTLSFN,sensor and λTLSFP,sensor have a corresponding TLS on PODsensor and on 

PFAsensor according to Eqs. (4.7)-(4.8). 

Two simple statistical models are presented to derive perception reliability requirements [39, 65, 

156, 214]: the binomial model assuming statistical independence between sensor errors and the 

beta-binomial model, taking sensor error dependence into account. To describe the dependence in 

sensor errors with the beta-binomial model, the pairwise correlation coefficient of FP and FN 

errors among different sensors is introduced.  

More sophisticated statistical models to explicitly distinguish between the FP and FN error rates 

in different sensors are proposed in Section 5.4. These detailed models are not suited for setting 

initial requirements due to the large number of free model parameters. Instead they should be 

                                                 
57 “All models are wrong but some are useful” (Statistician George Box 1978). A more detailed representation of 

sensor data fusion likely requires the actual software code of sensor data fusion in combination with a simulation 

framework. Such a detailed simulation approach is probably difficult to set up in the beginning of the development of 

an ADS. In the words of mathematician Norbert Wiener (1945): “The best material model of a cat is another, or 

preferably the same, cat.” 
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applied to learn and validate sensor perception reliability, and subsequently perception reliability, 

of a developed sensor system. Parts of Section 4.2.2 are taken and adapted from our publications 

in [39, 65, 156]. 

Statistically Independent Sensor Errors: Binomial Model 

For a FP detection, at least k-out-of-n sensors have to make a FP error at the same time. 

Additionally, FP errors have to occur at a similar location in the FOV for sensor data fusion to 

associate the FP errors in the individual sensors with each other. We do not further model these 

spatial aspects but interpret the problem binary according to Section 4.1.1, e.g. by focusing on a 

limited area of the FOV. Explicitly modeling the spatial aspects is related to addressing association 

errors in sensor data fusion as a separate error type. 

With the binary problem interpretation, a detection in sensor 𝑖 is a binary random variable 𝐷𝑖. For 

a discrete point in time, 𝐷𝑖 = 1 is the event of an object indication in sensor 𝑖 and 𝐷𝑖 = 0 is the 

event of no object indication in sensor 𝑖. Because we do not distinguish between different sensors 

for deriving sensor perception reliability requirements, PFAsensor is the conditional FP probability 

for all sensors 𝑖 = 1, . . . , 𝑛, as defined in Eq. (4.2). 

Under the assumption of statistically independent errors among different sensors, the number of 

sensors to make an FP error is binomially distributed with parameter PFAsensor. Hence the PFA of 

the perception module is related to the individual sensors’ PFAsensor: 

PFA = ∑ (𝑛
𝑖
)𝑛

𝑖=𝑘 ∙ PFAsensor
𝑖 ∙ (1 − PFAsensor)

𝑛−𝑖  
(4.15) 

where 𝑛 is the number of redundant sensors in a particular area of the FOV and 𝑘 defines the k-

out-of-n voter. Eq. (4.15) is the conditional FP probability of the perception module in a specific 

area of the FOV. In analogy to the derivation of FP errors, a TP detection occurs in the perception 

module if at least k-out-of-n sensors make a true-positive (TP) detection. It follows that: 

POD = ∑ (𝑛
𝑖
)𝑛

𝑖=𝑘 ∙ PODsensor
𝑖 ∙ (1 − PODsensor)

𝑛−𝑖   
(4.16) 

1 − POD is the conditional FN probability of the perception module in a specific area of the FOV. 

To derive reliability requirements for FN errors in individual sensors, one has to define in a first 

step targets on λFN from λTLSFN,crit with Eq. (4.12). In a second step, the targets on λFN are 

transformed to targets on POD of the perception module with Eq. (4.8). Thereafter, targets on 

PODsensor are derived from the targets on POD by inverting Eq. (4.16). The relationship of targets 

on PODsensor to λTLSFN,sensor is then again given with Eq. (4.8). Equivalently, requirements on FP 

errors are derived. 
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Statistically Dependent Sensor Errors: Sensor Error Correlation Coefficient 

As discussed in Section 3.1.4, a certain degree of statistical perception error dependence is 

expected among different sensors. The assumption of independence in Eqs. (4.15)-(4.16) is 

therefore questionable. To describe the statistical dependence in e.g. FP errors, we define the 

pairwise correlation coefficient 𝜌FP𝑖,𝑗 of FP errors among pairs of sensors 𝑖, 𝑗𝜖[1, . . . , 𝑛] [216]: 

𝜌FP𝑖,𝑗 =
E[𝐷𝑖∙𝐷𝑗|𝑂=0]−E[𝐷𝑖|𝑂=0]∙E[𝐷𝑗|𝑂=0]

√E[𝐷𝑖|𝑂=0](1−E[𝐷𝑖|𝑂=0])∙E[𝐷𝑗|𝑂=0]∙(1−E[𝐷𝑗|𝑂=0])
   

(4.17) 

where E[ ] denotes the expectation operator. E[𝐷𝑖|𝑂 = 0] is the expectation of 𝐷𝑖 conditional on 

𝑂 = 0. As we do not distinguish between different sensors in assigning sensor perception 

reliability requirements, it is: 

E[𝐷𝑖|𝑂 = 0] = PFAsensor    (4.18) 

for all 𝑖 = 1, . . . , 𝑛. Not distinguishing between different sensors it further holds: 

E[𝐷𝑖 ∙ 𝐷𝑗|𝑂 = 0] = Pr(𝐷𝑖 = 1|𝐷𝑗 = 1,𝑂 = 0) ∙ PFAsensor   (4.19) 

Pr(𝐷𝑖 = 1|𝐷𝑗 = 1,𝑂 = 0) is the conditional probability of a FP error in sensor 𝑖 given a FP error 

in sensor 𝑗.  

Each pair of sensors is assumed to have the same correlation coefficient 𝜌FP𝑖,𝑗 = 𝜌FP for the 

purpose of deriving sensor perception reliability requirements. Inserting Eqs. (4.18)-(4.19) into 

Eq. (4.17) leads to: 

𝜌FP =
Pr(𝐷𝑖=1|𝐷𝑗=1,𝑂=0)∙PFAsensor−PFAsensor

2

PFAsensor−PFAsensor
2    (4.20) 

On the one hand, with statistically independent FP errors it is:  

Pr(𝐷𝑖 = 1|𝐷𝑗 = 1,𝑂 = 0) = Pr(𝐷𝑖 = 1|𝑂 = 0) = PFAsensor  (4.21) 

and the correlation coefficient becomes 𝜌 = 0. On the other hand, if it is certain that sensor 𝑖 makes 

a FP error when sensor 𝑗 makes a FP error, i.e. Pr(𝐷𝑖 = 1|𝐷𝑗 = 1,𝑂 = 0) = 1, the correlation 

coefficient becomes  𝜌 = 1. This is equivalent to full dependence. 

When PFAsensor is small, it holds PFAsensor
2 ≪ PFAsensor and PFAsensor

2 ≈ 0. Then, Eq. (4.20) 

can be simplified to enhance the interpretability of 𝜌FP: 

𝜌FP ≈ Pr(𝐷𝑖 = 1|𝐷𝑗 = 1,𝑂 = 0)   (4.22) 
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That is, the correlation coefficient 𝜌FP is approximately equal to the conditional probability of a 

FP error in sensor 𝑖 given a FP error in sensor 𝑗. It follows that even a small numeric value of 𝜌FP 

can indicate a strong statistical dependence. For instance, if PFAsensor = 10
−6 and the correlation 

coefficient is 𝜌 = 10−3, then the conditional probability of an FP error in sensor 𝑖 given an FP 

error in sensor 𝑗 is approximately 1000 times larger than PFAsensor. Hence, the strength of the 

statistical dependence can be interpreted with the ratio of 𝜌FP to PFAsensor. 

In analogy to 𝜌FP, the correlation coefficient of FN errors 𝜌FN between different sensors is defined 

as: 

𝜌FN =
Pr(𝐷𝑖=0|𝐷𝑗=0,𝑂=1)∙(1−PODsensor)−(1−PODsensor)

2

(1−PODsensor)−(1−PODsensor)2
≈  

≈ Pr(𝐷𝑖 = 0|𝐷𝑗 = 0,𝑂 = 1)  
(4.23) 

Statistically Dependent Sensor Errors: Beta-Binomial Model 

We propose the beta-binomial model [216–221] to describe statistically dependent FP and FN 

sensor errors in different sensors. Aside of describing the statistical dependence among perception 

errors, the beta-binomial model has the advantage of conceptually representing the temporal 

variability in sensor perception error rates (see Section 3.1.4). The temporal variability in sensor 

perception error rates implies e.g. that also the sensors’ probabilities of false alarm are temporally 

variable. 

Let the time be adequately discretized. For example, a discrete trial in which 𝐷𝑖 is either zero or 

one corresponds to a time interval of 𝑡crit, as discussed in Section 4.1.1. Let 𝑚 = 1,2,3, …𝑀 

identify a discrete point in time. 𝑀 is the total number of discrete time steps. The sensors’ 

probability of false alarm at point in time 𝑚 is PFAsensor,𝑚 and the sensors’ probability of detection 

is PODsensor,𝑚. 

The beta-binomial model is presented generically in the following. To this end, the beta-binomial 

model parameters 𝑝, 𝑝𝑚 and 𝜌 are introduced. In case of no object being present {𝑂 = 0},  

𝑝 = PFAsensor, 𝑝𝑚 = PFAsensor,𝑚 and 𝜌 = 𝜌FP. In case of an object being present {𝑂 = 1},  

𝑝 = PODsensor, 𝑝𝑚 = PODsensor,𝑚 and 𝜌 = 𝜌FN. The average of 𝑝𝑚 over a large number of 𝑚 is 

𝑝: 

𝑝 = lim
𝑀→∞

1

𝑀
∑ 𝑝𝑚
𝑚=𝑀
𝑚=1    

(4.24) 

With these definitions, Figure 4.8 summarizes how both aspects, the FP and FN sensor error 

dependence and the temporal variability in sensor error rates, are accounted for with the beta-

binomial model. 
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Figure 4.8 The beta-binomial model: at each discrete point in time 𝒎, the probability 𝑷𝒎 is a sample from a 

beta distribution with parameters 𝛂 and 𝛃. Given a specific 𝒑𝒎, the number 𝑲𝒎-out-of-n sensors 

to indicate an object is binomially distributed. Taken and adapted from [156]. 

First, the variability in 𝑝𝑚 at randomly selected discrete points of time is described with a beta 

distribution 𝑓𝑃𝑚(𝑝𝑚|α, β): 

𝑓𝑃𝑚(𝑝𝑚|α, β) =
𝛤(α+β)∙𝑝𝑚

α−1∙(1−𝑝𝑚)
β−1

𝛤(α)∙𝛤(β)
   

(4.25) 

α and β are the distribution parameters and 𝛤(𝑎)  = ∫ 𝑢𝑎−1 ∙ exp(−𝑢)d𝑢
∞

0
 is the gamma function. 

As is common in the Bayesian literature [114], the notation 𝑓𝑃𝑚( ∙ |α, β) makes it explicit that the 

probability distribution of 𝑃𝑚 is conditional on the distribution parameters α and β. The beta 

distribution is bounded by zero and one and is flexible in representing the probability density, 

hence it is an obvious choice for modeling 𝑝𝑚. 

Second, 𝑝𝑚 is a factor common to all sensors at point of time 𝑚, inherently accounting for the 

statistical dependence in errors among different sensors. Let 𝐾 = ∑ 𝐷𝑖
𝑛
𝑖=1  be the number of sensors 

indicating an object at a discrete point in time in a specific area of the FOV. For a given value of 

𝑝𝑚 at point of time 𝑚, the indication of an object in the different sensors is assumed to be 

conditionally statistically independent and thus the number 𝐾-out-of-n sensor to indicate an object 

is binomial distributed (see Figure 4.8). The assumption of this type of dependence structure is 

justified by the fact that 𝑃𝑚 collectively accounts for context variables (i.e. influencing factors) 

that are common to all sensors. 

Integrating over the uncertainty in the beta distributed binomial parameter 𝑝𝑚 leads to the beta-

binomial distribution, which here models the probability of exactly k-out-of-n statistically 

dependent sensors to indicate an object [217, 218, 222]: 

𝑝𝐾(𝑘𝑚|α, β) = Pr(𝐾 = 𝑘𝑚|α, β) = (
𝑛
𝑘𝑚
)
𝛤(α+β)∙𝛤(α+𝑘𝑚)∙𝛤(β+𝑛−𝑘𝑚)

𝛤(α)∙𝛤(β)∙𝛤(α+β+𝑛)
  

(4.26) 

To facilitate the interpretation of the model parameters in Eq. (4.26), α and β are expressed in 

terms of the average probability 𝑝 in a large number of randomly selected points in time and the 

correlation coefficient 𝜌 [217]: 

k-out-of-n detections: 𝑲𝑚|𝒑𝑚  𝒊  𝒎𝒊  (𝒑𝒎)

…𝒑𝟐 𝒑𝑚𝒑𝟏

 𝟏  𝟐  𝑚
…

Probability: 𝑷𝑚|𝛂, 𝛃   𝒕 (𝛂, 𝛃)

Discrete point in time 𝟏 𝟐 𝒎…

…

…

…

Discretized time
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α =
𝑝∙(1−𝜌)

𝜌
, β =

(1−𝑝)∙(1−𝜌)

𝜌
  

(4.27) 

𝑝 is the mean of 𝑝𝑚 according to Eq. (4.24). The beta-binomial model in Eq. (4.26) is identical to 

the binomial model under statistical independence 𝜌 → 0 [218]. The beta-binomial model implies 

equi-correlation58. 

With these definitions, the PFA of the perception module accounting for statistical dependence 

among FP sensor errors is: 

PFA = ∑ Pr(𝐾 = 𝑘|𝑝 = PFAsensor, 𝜌 = 𝜌FP)
𝑛
𝑖=𝑘   

(4.28) 

Pr(𝐾 = 𝑘|𝑝 = PFAsensor, 𝜌FP) is the beta-binomial distribution defined with Eqs. (4.26)-(4.27).  

Similarly, the POD of the perception module accounting for the statistical dependence in FN sensor 

errors is: 

POD = ∑ Pr(𝐾 = 𝑘|𝑝 = PODsensor, 𝜌 = 𝜌FN)
𝑛
𝑖=𝑘   

(4.29) 

The inverse of Eq. (4.29) allows to set requirements on PODsensor for a given 𝜌FN and given 

requirements on POD. Equivalently, Eq. (4.28) is the basis for setting requirements on PFAsensor. 

4.2.3 Numerical Examples 

This Section exemplarily derives sensor perception reliability requirements from requirements on 

perception reliability. 

Deriving Sensor Perception Reliability Requirements 

It is here hypothetically assumed that the TLS for safety-critical FN and FP perception errors in a 

specific area of the FOV is λTLSFN,crit = λTLSFP,crit = 10
−9 h−1. With these requirements, we 

derive the TLS λTLSFN,sensor and λTLSFP,sensor for individual sensors. 

On the safe side, we set the criticality 𝑝FN = 𝑝FP = 1 in Eqs. (4.12)-(4.13) and directly insert 

λTLSFN,crit and λTLSFP,crit into Eqs. (4.7)-(4.8) to derive requirements on POD and PFA of the 

perception module. Also on the safe side, we set Pr(𝑂 = 1) = Pr(𝑂 = 0) = 1 in Eqs. (4.7)-(4.8). 

Collecting more information on Pr(𝑂 = 1), 𝑝FN and 𝑝FP would lead to lower sensor perception 

reliability requirements than those derived in the following. 

                                                 
58 Equi-correlation signifies that the pairwise correlation coefficients 𝜌𝑖,𝑗 of errors among sensors 𝑖 and 𝑗 are identical 

for all pairs of sensors 𝑖, 𝑗 𝜖 [1, … , 𝑛], 𝑖 ≠ 𝑗 . 
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The transformation between continuous error rates λTLSFN,crit / λTLSFP,crit and the requirements on 

discrete probabilities POD /PFA is according to Eqs. (4.7)-(4.8), with Δt = 𝑡crit = 0.5 s. With 

requirements on POD and PFA, requirements on PODsensor and PFAsensor are derived under the 

assumption of statistically independent sensor errors with the inverse relationships of Eqs. (4.15)-

(4.16). Finally, the requirements on PODsensor and PFAsensor are inserted into Eqs. (4.7)-(4.8) to 

express the perception reliability requirements in terms of λTLSFN,sensor and λTLSFP,sensor. Figure 

4.9a) shows the resulting sensor perception reliability requirements for 𝑛 = 3 and Figure 4.9b) for 

𝑛 = 5 redundant sensors under different voting schemes, assuming independent sensors.  

 

Figure 4.9 Acceptable sensor error rates (grey points) 𝛌𝐓𝐋𝐒𝐅𝐍,𝐬𝐞𝐧𝐬𝐨𝐫  and 𝛌𝐓𝐋𝐒𝐅𝐏,𝐬𝐞𝐧𝐬𝐨𝐫 to comply with the 

perception module’s requirements (red point) of 𝛌𝐓𝐋𝐒𝐅𝐍,𝐜𝐫𝐢𝐭 = 𝛌𝐓𝐋𝐒𝐅𝐏,𝐜𝐫𝐢𝐭 = 𝟏𝟎
−𝟗 𝐡−𝟏 under 

different voting schemes, when assuming independent sensor errors. (a) The sensor system 

consists of  =3 and (b) of  =5 redundant sensors. Taken and adapted from [39]. 

We next consider potential sensor error dependencies with Eqs. (4.28)-(4.29) to derive sensor 

perception reliability requirements without the independence assumption. The required error rates 

λTLSFN,sensor and λTLSFP,sensor for individual sensors are derived exemplarily for selected 𝜌 and are 

illustrated in Figure 4.10. In the calculations, the correlation coefficients for FP and FN errors are 

identical, i.e. 𝜌 = 𝜌FN = 𝜌FP.  

In case of 𝜌 = 0 (statistically independent sensor errors), the requirements are as in Figure 4.9. 

With increasing correlation coefficients, the points in Figure 4.10 move towards the perception 

module’s TLS, as indicated schematically with the arrows. For full dependence 𝜌 = 1, the 

individual sensor’s requirements are identical to the perception module’s TLS. With 𝜌 = 1, the 

error occurrence is simply a Bernoulli trial (for instance, either an FP error in all sensors occurs 

with probability PFA or it does not occur). 
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Figure 4.10 Acceptable sensor error rates 𝛌𝐓𝐋𝐒𝐅𝐍,𝐬𝐞𝐧𝐬𝐨𝐫  and 𝛌𝐓𝐋𝐒𝐅𝐏,𝐬𝐞𝐧𝐬𝐨𝐫 to comply with the perception module’s 

requirements (red point) of 𝛌𝐓𝐋𝐒𝐅𝐍,𝐜𝐫𝐢𝐭 = 𝛌𝐓𝐋𝐒𝐅𝐏,𝐜𝐫𝐢𝐭 = 𝟏𝟎
−𝟗 𝐡−𝟏 under different voting schemes. The 

colors of points correspond to different values of the correlation coefficient 𝝆. The arrows indicate 

schematically how the acceptable sensor error rates change with increasing 𝝆. (a) The sensor 

system consists of  = 𝟑 and (b) of  = 𝟓 redundant sensors. Taken and adapted from [39]. 

Sensor Perception Reliability Requirements in Function of the TLS 

Figure 4.11 presents the relationship between sensor perception reliability requirements 

λTLSFN,sensor and the perception TLS λTLSFN,crit with the example of the 2-out-of-3 vote for different 

values of the correlation coefficient 𝜌 (see Figure 4.9a).  

 

Figure 4.11 Relationship between the perception TLS 𝛌𝐓𝐋𝐒𝐅𝐍,𝐜𝐫𝐢𝐭  and requirements on sensor FN error rates 

𝛌𝐓𝐋𝐒𝐅𝐍,𝐬𝐞𝐧𝐬𝐨𝐫 in case of a 2-out-of-3 voting with different values of the correlation coefficient 𝝆. 

Under the 2-out-of-3 voting, the requirements for FP error rates are identical to 𝛌𝐓𝐋𝐒𝐅𝐍,𝐬𝐞𝐧𝐬𝐨𝐫  if 

𝝆𝐅𝐍 = 𝝆𝐅𝐏.  
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The relationship between the perception TLS and sensor requirements are identical for FN errors 

(Figure 4.11a) and FP errors in case of the 2-out-of-3 vote and assuming 𝜌FN = 𝜌FP. This however 

does not hold in general. 

Sensor Perception Reliability Requirements in Function of 𝝆 

Figure 4.12 depicts the relationship between the correlation coefficient 𝜌FN and sensor 

requirements λTLSFN,sensor for a perception TLS of λTLSFN,crit = 10
−9 h−1 under a 2-out-of-3 

voting. The relationship between the correlation coefficient 𝜌FP and λTLSFP,sensor under the 2-out-

of-3 voting is as in Figure 4.12. With statically independent sensor errors (𝜌 → 0), the sensor 

perception reliability requirements are identical to the grey point in Figure 4.10a). With fully 

dependent sensor errors 𝜌 → 1, the requirements are identical to the perception TLS  

λTLSFN,crit = 10
−9 h−1 (red point in Figure 4.10a). Small numeric values of the correlation 

coefficient can according to Eq. (4.22) indicate a strong dependence. 

 

Figure 4.12 Relationship between requirements on sensor error rates 𝛌𝐓𝐋𝐒𝐅𝐍,𝐬𝐞𝐧𝐬𝐨𝐫  and the correlation 

coefficient among FN sensor errors 𝝆𝐅𝐍 under a 2-out-of-3 voting to comply with a perception 

TLS of 𝛌𝐓𝐋𝐒𝐅𝐍,𝐜𝐫𝐢𝐭 = 𝟏𝟎
−𝟗 𝐡−𝟏. The requirements for FP errors under a 2-out-of-3 are as in the 

Figure. In analogy to Figure 6a) in [65]. 
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4.2.4 Discussion and Conclusions 

In the case of statistically independent sensor errors, sensor redundancy together with the k-out-

of-n voting allows for larger acceptable values of error rates at the sensor level compared with the 

perception module, see Figure 4.11. For example, under the assumption of independence, the TLS 

of an individual sensor is ≈ 1.55 ∙ 10−3 h−1 for a perception TLS of 10−9 h−1 with a 2-out-of-3 

voting scheme (Figure 4.9a). The sensor requirement of 1.55 ∙ 10−3 h−1 can be validated by a test 

effort in the orders of magnitude of 103 - 104 h. With independent sensor errors, one can thus 

overcome the approval trap and approach an empirical safety validation (given the assumed 

models and system decomposition). Not explicitly considered in these calculations are errors 

introduced by fusing data of individual sensors. 

While the assumption of independence is not appropriate, the statistical error dependence between 

lidar, radar and camera sensors is likely small due to the complementary physical measurement 

principles [42, 156, 157]. As shown in Figure 4.12, with a weak statistical dependence, 

requirements on the sensor level are still considerably lower than requirements on the level of the 

perception module. It follows from Figure 4.10 and Figure 4.12 that one does not only need to 

evaluate the error rates of individual sensors but also the sensor error dependencies, given their 

strong effect on system safety. 

The sensor perception reliability requirements with statistical dependence (Figure 4.12) are 

derived with the beta-binomial model, which is only one among many possible dependence 

models. A limitation of the beta-binomial model is that it does not allow to model certain extreme 

types of statistical dependence [156], which is discussed in detail in Section 6.1.4. 

The beta-binomial model additionally assumes exchangeability between different discrete points 

in time, i.e. no information is conveyed by the exact temporal order of the points in time 𝑚. This 

does not hold if – in addition to the statistical error dependence among the different sensors – the 

errors in subsequent points in time are also statistically dependent. 

In principle, the statistical model illustrated in Figure 4.8 could be extended with an autocorrelation 

function or Markov chain for 𝑝1 … 𝑝𝑚 to model the dependence between subsequent points in 

time. Alternatively, the dependence could also be reduced by only taking every 𝑚th discrete point 

in time into account, i.e. by thinning out. Another solution strategy for potential temporal 

dependence is to formulate the model parameters as a function of context variables, which is 

further be addressed in Section 5.3. Given the state of the context variables, subsequent points in 

time can be considered to be approximately conditionally independent and exchangeability holds. 

For simplicity, we do not include context variables here. If the time interval large (𝑀 → ∞), the 

overall frequency of exactly k-out-of-n sensor object detections can without bias be expressed with 

Eq. (4.26). Therefore, the dependence between subsequent points in time is for simplicity 
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neglected in the following. It is pointed out though, if the interest is in the frequency of multiple 

sensor errors in a row, an unjustified assumption of exchangeability would lead to an 

underestimation of this frequency. 

The reliability requirements shown e.g. in Figure 4.9 and Figure 4.10 assume sensor redundancy. 

In certain situations, sensor redundancy could however be restricted because the performance of 

individual sensors is systematically impaired. For example, the performance of a lidar could 

systematically be affected by dirt on the sensor cover [101], or the performance of a camera could 

systematically be too low in the night. To account for these systematic effects, one either has to 

restrict the availability of the automated driving functionalities in these situations, define safety 

mechanisms that mitigate these systematic effects (e.g. illumination and cleaning), or adapt the 

calculations presented in this Section (e.g. 80% of the time one can assume 𝑛 = 3 sensors and 

20% of the time only 𝑛 = 2 sensors are available). 

We understand the methods and models in this Section as a means to estimate requirements on 

sensor perception reliability. For evaluating the sensor perception reliability, models as proposed 

in 5.4 are more suitable because they explicitly distinguish error rates of different sensors. 

4.3 Perception Reliability Validation: Test Effort Estimation 

To plan tests, it is important to estimate the required test effort for a validation of the perception 

reliability requirements, or more generally, a given target level of safety. We therefore present a 

method to estimate the empirical test effort required to demonstrate a given target level of safety 

(TLS). For the sake of generality, the target level of safety is in this Section denoted with λTLS, 

which could for instance be the requirements λTLSFN,sensor or λTLSFP,sensor on the individual sensor 

level, as derived with Section 4.2. Alternatively λTLS could be the TLS on safety-critical FN and 

FP errors on the level of the perception module λTLSFN,crit or λTLSFP,crit, the TLS for the perception 

module λTLSper or the TLS for the ADS λTLSsys. This Section is based on and partly taken from 

our publication in [65]. 

The empirical test effort for a given TLS on ADS safety is often estimated with Null Hypothesis 

Significance Testing (NHST) [35, 41, 44, 215]. NHST is based on the frequentist interpretation of 

probability. Because NHST is frequently misinterpreted and counterintuitive [223–227], we 

present an alternative to estimate the test effort with Bayesian statics59 [114]. We find the Bayesian 

approach easy to implement and its interpretation more intuitive. An advantage of the Bayesian 

                                                 
59 In contrast to frequentist approaches such as NHST, the Bayesian interpretation of probability treats observed data 

as fixed and the parameters that produced the data as random. Further information on the frequentist and Bayesian 

point of view of probability can be found in [228–231]. 
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method compared to NHST is its flexibility, which allows easier application to non-standard 

problems. Bayesian methods for reliability assessments are well-known and widely used [150, 

232–241].  

In particular, we briefly describe the Poisson distribution as the statistical model for the test effort 

estimation in Section 4.3.1. In Section 4.3.2, we describe how to account for a non-stationary error 

rate in the test (see Section 3.1.4). The Bayesian approach to estimate the test effort is then 

explained in Section 4.3.3 and Section 4.3.4 provides numerical examples for test effort 

estimations. 

4.3.1 Statistical Model: The Poisson Distribution 

The Poisson distribution is applied in this thesis to estimate the test effort. The Poisson model is 

also used in e.g. [35, 44] to estimate the test effort for ADS safety validation. To highlight the 

underlying assumptions when applying the Poisson model to perception errors, it is explained how 

a Poisson distribution is in the limit related to the binomial model [242]. 

Let the time be adequately discretized. For example, a discrete trial in which a failure event either 

occurs or not occurs corresponds to a time interval of 𝑡crit, as discussed in Section 4.1.1. 

Depending on the system under consideration and the scope of a test, a failure event could among 

others be a predefined safety-critical perception error, a FP error on the sensor or fusion level, a 

FN error on the sensor or fusion level, or an accident of the ADS. Let 𝑚 = 1,2,3, …𝑀 identify a 

discrete point in time. The number of failure events 𝑋 in 𝑀 discrete trials is described with the 

binomial distribution: 

𝑝𝑋(𝑥|𝑝,𝑀) =
𝑀!

𝑥!∙(𝑀−𝑥)!
∙ 𝑝𝑥 ∙ (1 − 𝑝)𝑀−𝑥  

(4.30) 

𝑝 is the (generic) probability of a failure event and 𝑀 is the total number of trials. In the limit, as 

𝑀 → ∞, the binomial distribution leads to the Poisson distribution [242]: 

𝑝𝑋(𝑥|λ, 𝑡) = Pr(𝑋 = 𝑥|λ, 𝑡) ≈
(λ∙𝑡)𝑥

𝑥!
∙  −λ∙𝑡  (4.31) 

The Poisson distribution models the number of failures 𝑋𝜖{0,1,2, … } in a time interval 𝑡 for a 

given system failure rate λ. Here λ is a generic failure rate. Depending on the system and the scope 

of the test, λ could for instance be the failure rate of the ADS λsys, the perception failure rate λper, 

the rate of safety-critical FN errors of the perception module λFNcrit, the rate of safety-critical FP 

errors of the perception module λFPcrit, the FN error rate λFN𝑖 of sensor 𝑖, or the FP error rate λFP𝑖 

of sensor 𝑖. 
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We use the approximation in Eq. (4.31) because the Poisson model is derived from a binomial 

model in the limit by letting the time interval that corresponds to a discrete trial go to zero, which 

leads to 𝑝 → 0 and 𝑀 → ∞ [242]. For the environment perception, there is however the restriction 

that a discrete trial cannot be smaller than the measurement cycle time (i.e. the update frequency 

of the environment model). 

Two central requirements are assumed by Eq. (4.31) [242]: 

1.) The probability 𝑝 of a failure event and hence the error rate λ are constant. 

2.) The number of failure events in non-overlapping time intervals are independent of each 

other. 

 

Both requirements are not met by environment perception (see Section 3.1.4). 

Point 1.) is addressed in Section 4.3.2. In [65] we proposed to account for the temporal dependence, 

point 2.), by interpreting the relevant failure events as perception errors that occur for at least 𝑡crit. 

The interpretation of perception errors in [65] is however not directly compatible with the 

relationship between FN /FP error rates and the POD /PFA in Eqs. (4.7)-(4.8), which discretize the 

continuous time into intervals of exactly 𝑡crit. Potential strategies to address point 2.) are discussed 

in Section 4.2.4 in the context of exchangeability. As the purpose of this Section is to initially 

estimate the test effort, we assume for simplicity in analogy to the discussion in Section 4.2.4 

exchangeability in the discrete points in time. Assuming exchangeability neglects the statistical 

dependence over time, but does not lead to a bias in the estimated failure rate λ (if learned from a 

large amount data, i.e. 𝑡 → ∞). 

4.3.2 Non-Stationary Error Rate 

To account for a non-stationary rate of failures (see Section 3.1.4),  λ ∙ 𝑡 in Eq. (4.31) is replaced 

by the mean number of failures μ(𝑡) in the time interval 𝑡 [242]: 

𝑝𝑋(𝑥|μ(𝑡), 𝑡) = Pr(𝑋 = 𝑥|μ(𝑡), 𝑡) ≈
μ(𝑡)𝑥

𝑥!
∙  −μ(𝑡)  (4.32) 

where μ(𝑡) is [242]: 

μ(𝑡) = ∫ λ(𝑡)𝑑𝑡
𝑡

0
  (4.33) 

The average rate of failure events λ̅ is in analogy to Eq. (3.5):  

λ̅ = lim
𝑇→∞

1

𝑇
∫ λ(𝑡)𝑑𝑡
𝑇

0
= ∫ λ(𝐞) ∙ 𝑓𝐄(𝐞)𝑑𝐞𝐞

  
(4.34) 
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where 𝐞 is the vector of context variables (see Section 3.1.4). 

To exemplify the calculations of μ(𝑡) and λ̅, consider that the variability in λ(𝑡) is caused by 

weather conditions. Let the weather for illustrative purposes be characterized by the four 

conditions sunny, rainy, snowy and cloudy weather. This means that the context variable weather 

has possible states 𝐸 ϵ {sunny, rainy, snowy, cloudy}. When the time interval 𝑡 is large, the mean 

number of error occurrences μ(𝑡) is approximated as: 

μ(𝑡) = [Pr(𝐸 = sun) ∙ λ( = sun) + Pr(𝐸 = rain) ∙ λ( = rain) +  

+Pr(𝐸 = snow) ∙ λ( = snow) + Pr(𝐸 = cloudy) ∙ λ( = cloudy)] ∙ 𝑡  (4.35) 

where e.g. Pr(𝐸 = sun) is the exposure probability towards sunny weather (i.e. the context 

variable is in state sunny) and λ( = sun) is the (mean) failure rate in sunny weather. The average 

failure rate λ̅ in this example is: 

λ̅ = Pr(𝐸 = sun) ∙ λ( = sun) + Pr(𝐸 = rain) ∙ λ(𝐸 = rain) +  

+Pr(𝐸 = snow) ∙ λ( = snow) + Pr(𝐸 = cloudy) ∙ λ( = cloudy)  (4.36) 

It is Pr(𝐸 = sun) + Pr(𝐸 = rain) + Pr(𝐸 = snow) + Pr(𝐸 = cloudy) = 1. Additional context 

variables are considered by letting 𝐄 be a vector, for example 𝐸1 for weather and E2 background 

illumination (e.g. day and night). It follows from Eqs. (4.35)-(4.36), to correctly estimate a 

representative λ̅, a test drive of total duration 𝑡 has to be split into 𝑡sun = Pr(𝐸 = sun) ∙ 𝑡; 𝑡rain =

Pr(𝐸 = rain) ∙ 𝑡; 𝑡snow = Pr(𝐸 = snow) ∙ 𝑡; 𝑡cloudy = Pr(𝐸 = cloudy) ∙ 𝑡. 

Under a varying failure rate λ(𝑡), the probability of the number of failure events in a large time 

interval 𝑡 can be described by Eq. (4.31), in which λ ⋅ 𝑡 is replaced by μ(𝑡) (or equivalently by 

replacing λ with λ̅). For ease of notation, λ is in the following not explicitly replaced with λ̅ but it 

is assumed that the non-stationary error rate is represented as outlined in this Section. 

4.3.3 Bayesian Test Design 

In this Section, we derive the necessary test drive effort to demonstrate λ < λTLS, e.g. to 

demonstrate Eq. (3.2) or requirements such as in Figure 4.10. The problem of demonstrating  

λ < λTLS is related to inferring an unknown mean rate λ of failure events from a limited amount 

of data, where the data consists of the number of failure events 𝑥 observed in a time interval 𝑡. We 

use Bayesian statistics [114] to solve this problem. For a detailed treatment of Bayesian reliability 

analyses we refer to textbooks [150, 232]. 
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Posterior Distribution of the Failure Rate 𝛌 

Bayes’ theorem allows to infer λ from 𝑥 observed in 𝑡: 

𝑓(λ|𝑥, 𝑡)  ∝  𝑓(λ) ∙ 𝑝𝑋(𝑥|λ, 𝑡)   (4.37) 

𝑓(λ|𝑥, 𝑡) is the posterior probability density function (PDF) of the failure rate λ for a given 

observed number of failures 𝑥 in the time interval 𝑡. 𝑓(λ) is the prior PDF of λ and 𝑝𝑋(𝑥|λ, 𝑡)  is 

the likelihood of λ given the observation of 𝑥 in 𝑡. The likelihood is defined by the Poisson PMF 

in Eq. (4.31). The symbol ∝ expresses that the posterior distribution is proportional to the prior 

and the likelihood up to a constant. 

A convenient choice for the prior distribution in case of a Poisson likelihood is the gamma 

distribution. The gamma distribution is the conjugate distribution to the Poisson likelihood, which 

means that both 𝑓(λ) and 𝑓(λ|𝑥, 𝑡) in Eq. (4.37) have the gamma distribution [114]. The gamma 

PDF is: 

𝑓(λ) =
𝑏𝑎

𝛤(𝑎)
∙  λ𝑎−1 ∙  exp(−𝑏 ∙ λ)   

(4.38) 

where 𝑎 and 𝑏 are the parameters of the gamma distribution and 𝛤(𝑎)  = ∫ 𝑢𝑎−1 ∙ exp(−𝑢) d𝑢
∞

0
 

is the gamma function. The corresponding gamma cumulative distribution function (CDF) 

𝐹(λ|𝑥, 𝑡) is: 

𝐹(λ|𝑥, 𝑡) =
𝛾(𝑎,𝑏∙λ)

𝛤(𝑎)
   

(4.39) 

where 𝛾(𝑎, 𝑏 ∙ λ) = ∫ 𝑢𝑎−1
𝑏∙λ

0
∙ exp(−𝑢) d𝑢 is the incomplete gamma function. 

The prior distribution is described by 𝑓(λ) with parameters 𝑎′ and 𝑏′. The parameters of the 

posterior 𝑓(λ|𝑥, 𝑡) are denoted 𝑎′′ and 𝑏′′ and are obtained as: 

𝑎′′ = 𝑎′ + 𝑥   
(4.40) 

𝑏′′ = 𝑏′ + 𝑡   
(4.41) 

The posterior mean λ̂ of the unknown error rate λ follows directly from 𝑎′′ and 𝑏′′: 

λ̂ =
𝑎′′

𝑏′′
=
𝑎′+𝑥

𝑏′+𝑡
  (4.42) 

The posterior mean is the point estimate of λ that minimizes the mean squared error E[(λ̂ − λ)²] 

[115]. 
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Prior Distribution 

Prior parameters 𝑎′ and 𝑏′ have to be selected to evaluate Eqs. (4.40)-(4.41). A commonly 

accepted formal rule to construct an (objective) prior distribution when no prior information is 

available was defined by Jeffreys [114, 243, 244]. The property that makes Jeffreys’ prior non-

informative is its invariance to re-parameterizations [114]. Jeffreys’ prior yields 𝑎′ = 0.5 and  

𝑏′ → 0. Assuming that no errors are observed in a time interval 𝑡, the point estimate of the failure 

rate according to Eq. (4.42) with Jeffreys prior is λ̂ = 0.5/𝑡. This means that even if no failure 

events are observed, the posterior mean estimate is not zero. 

Eq. (4.42) supports the interpretation of the prior parameters as 𝑎′ prior error observations in a 

prior test time interval 𝑏′ (see [232] page 89). By comparing Eq. (4.38) with (4.31), it is argued in 

[114] page 52 that the prior parameters can be interpreted as 𝑎′ − 1 prior observations in a prior 

time interval 𝑏′. Following this interpretation, a weakly informative prior in case of no prior 

information could also be selected as 𝑎′ = 1 and 𝑏′ → 0. 𝑎′ = 1 and 𝑏′ → 0 result in the same 

numerical test effort 𝑡 as NHST. If substantial information about λ prior to the analysis is available, 

it can easily be incorporated into 𝑎′ and 𝑏′ following the interpretations given. With a finite 

number of model parameters and a large amount of data (𝑡 → ∞), the choice of the prior is 

irrelevant in the limit [114]. 

Test Effort Estimation 

The basis for the test effort estimation is the probability of the system’s failure rate being smaller 

than the target level of safety Pr(λ < λTLS|𝑥, 𝑡) for a given observed number of failures 𝑥 in time 

interval 𝑡. Exemplarily, Figure 4.13 shows that the posterior probability of λ < λTLS is the area 

under the posterior distribution 𝑓(λ|𝑥, 𝑡) up to λTLS. 𝑓(λ|𝑥, 𝑡) is obtained by updating the prior 

𝑓(λ) with the likelihood 𝑝𝑋(𝑥|λ, 𝑡). The probability Pr(λ < λTLS|𝑥, 𝑡) (blue shaded area in Figure 

4.13) is calculated by inserting λTLS together with 𝑎′′ and 𝑏′′ into the CDF in Eq. (4.39)60. 

To empirically validate λ < λTLS, it is imposed that the posterior probability of λ < λTLS for a 

given test outcome (𝑥, 𝑡) has to exceed an upper limit γ:  

Pr(λ < λTLS|𝑥, 𝑡) > γ   (4.43) 

γ is the required level of credibility to accept the hypothesis λ < λTLS. To estimate the test effort 

before conducting a test, the test outcome 𝑥 is fixed at different values (𝑥 = 0,1,2, …) and  

Eq. (4.43) is solved for the required test effort 𝑡. 

                                                 
60 The validity of the probability Pr(λ < λTLS|𝑥, 𝑡) is subject to the adequacy of the underlying modeling assumptions. 
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Figure 4.13 How is the probability 𝐏𝐫(𝛌 < 𝛌𝐓𝐋𝐒|𝒙, 𝒕) derived? At first, the prior PDF is updated with the 

likelihood for a given number of observed failure events 𝒙 in a time interval 𝒕 to form the posterior 

distribution. The area under the posterior PDF up to the target level of safety 𝛌𝐓𝐋𝐒 is then the 

probability 𝐏𝐫(𝛌 < 𝛌𝐓𝐋𝐒|𝒙, 𝒕). 

The full approach to estimate the test effort is summarized: 

1.) Select a suitable statistical model for the number of failures 𝑥 in time interval 𝑡 under a 

failure rate λ. Here the Poisson model is selected. 

2.) Derive the posterior distribution of λ given the observed number of failures 𝑥 in time 

interval 𝑡 with Bayesian parameter inference. 

3.) Relate the posterior distribution to the probability of λ < λTLS, i.e. determine  

Pr(λ < λTLS|𝑥, 𝑡) from the posterior CDF. 

4.) Impose that the probability of complying with the TLS for a given postulated test outcome 

𝑥 exceeds an upper limit, for instance Pr(λ < λTLS|𝑥, 𝑡) > 0.95. 

5.) Insert λTLS into Pr(λ < λTLS|𝑥, 𝑡) > 0.95, fix 𝑥 at different values (0,1,2…) and solve for 

𝑡. 

The results are the acceptable number of failure events 𝑥 for a given test effort 𝑡, which allow to 

conclude with at least γ probability that the TLS λTLS is complied with. 

  

λTLS

Pr (λ ≤ λTLS|𝑥, 𝑡)
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4.3.4 Numerical Examples 

The test effort estimation is in this Section demonstrated with numerical examples. 

Exemplary Test Effort Estimation 

The test effort to demonstrate λ < λTLS is exemplarily derived for λTLS = 1.55 ∙ 10
−3 h−1. A TLS 

of λTLS = 1.55 ∙ 10
−3 h−1 is the requirement on the FP /FN error rates for an individual sensor 

under statistically independent sensor errors with a 2-out-of-3 voting, as derived in Figure 4.9. 

Jeffreys’ prior parameters 𝑎′ = 0.5 and 𝑏′ = 0 are selected for all calculations in this Section. 

Jeffreys’ prior reflects ignorance on the failure rate λ before conducting a test. With Jeffreys’ prior, 

the prior probability Pr(λ < λTLS = 1.55 ∙ 10
−3 h−1) = 1.4 ∙ 10−9 of λ < λTLS is essentially zero. 

The required level of credibility in Eq. (4.43) is selected as γ = 0.95. 

Figure 4.14a) shows the probability Pr(λ < λTLS|𝑥, 𝑡) that λ is smaller than the TLS  

λTLS = 1.55 ∙ 10
−3 h−1 in function of the test effort 𝑡 for the cases of 𝑥 = 0, 𝑥 = 1 and 𝑥 = 2 

events. To estimate the test effort 𝑡 to demonstrate λ < λTLS, the inverse of the functions in Figure 

4.14a) at Pr(λ < λTLS|𝑥, 𝑡) = 0.95 are determined, as indicated for the case 𝑥 = 0 with the black 

arrow. For instance, with zero acceptable events, a test effort of 𝑡 ≈ 1250 h demonstrates  

λTLS = 1.55 ∙ 10
−3 h−1. 

 

Figure 4.14 (a) Posterior probability 𝐏𝐫(𝛌 < 𝛌𝐓𝐋𝐒|𝒙, 𝒕) of 𝛌 < 𝛌𝐓𝐋𝐒 = 𝟏. 𝟓𝟓 ∙ 𝟏𝟎
−𝟑 𝐡−𝟏 (see 2-out-of-3 voting 

under independence in Figure 4.9a) in function of the test effort 𝒕, for the cases of 𝒙 = 𝟎, 𝒙 =
𝟏 and 𝒙 = 𝟐 events during the test. The black arrow indicates the test effort required to 

demonstrate 𝐏𝐫(𝛌 < 𝛌𝐓𝐋𝐒|𝒙, 𝒕) = 𝟎. 𝟗𝟓 in case of 𝒙 = 𝟎 acceptable events. (b) Number of 

acceptable events 𝒙 in a test with the corresponding test effort 𝒕 such that 𝐏𝐫(𝛌 < 𝛌𝐓𝐋𝐒|𝒙, 𝒕) =
𝟎. 𝟗𝟓. In analogy to Figure 3 in [65]. 
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Note that Figure 3.3 was derived in analogy to Figure 4.14 for a TLS of λTLS = 10
−9 h−1 to 

highlight the approval trap. 

Test Effort Estimation in Function of Sensor Error Correlation Coefficient 

In this example, the methods of Sections 4.2 and 4.3 are combined to estimate the test effort under 

a 2-out-of-3 vote to comply with a TLS of λTLSFN,crit = λTLSFP,crit = 10
−9 h−1, in function of the 

correlation coefficients 𝜌FN and 𝜌FP by applying the beta-binomial model. The results are 

presented in Figure 4.15 for a credibility level of γ = 0.95 and zero acceptable FN errors. Under 

a 2-out-of-3 vote, Figure 4.15 also applies to FP errors. This does however not hold in the general 

case. The calculations are in analogy to Figure 4.14, by estimating the test effort corresponding to 

the requirements in Figure 4.12.  

In case of statistically independent FP or FN errors among different sensors (𝜌 → 0), the test effort 

is 1250 h as in Figure 4.14 for 𝑥 = 0 acceptable events. With fully dependent sensors (𝜌 → 1), 

the test effort is 1.92 ∙ 109 h, which is identical to directly demonstrating the TLS of  

λTLSFP,crit = 10
−9 h−1 on the level of the perception module. 

 

Figure 4.15 Test effort 𝒕 for 𝐏𝐫(𝛌 < 𝛌𝐓𝐋𝐒 = 𝟏𝟎
−𝟗 𝐡−𝟏|𝒙, 𝒕) = 𝟎. 𝟗𝟓 with zero acceptable events (errors) in 

function of the FN sensor error correlation coefficient. The illustrated test effort corresponds to 

the requirements in Figure 4.12a). In analogy to Figure6b) in [65]. An identical test effort is 

obtained for FP errors under the 2-out-of-3 voting. 
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4.3.5 Discussion and Conclusions 

It follows from the approval trap (Figure 3.3) that a direct ADS safety validation with Eq. (3.2) is 

not practical. Likewise, as pointed out in Section 3.1.4, validating the perception reliability  

by demonstrating λper < λTLSper  on the level of the perception module (fused environment model) 

is subject to the approval trap. 

To address the approval trap, we proposed to conceptualize environment perception in terms of 

individual sensors and to validate perception reliability on the sensor level by exploiting sensor 

redundancy. With the described modeling assumptions, exploiting redundancy reduces the 

required test effort for λTLSper considerably, if sensor errors are statistically independent among 

different sensors, as illustrated in Figure 4.14. For instance, with 𝑛 = 3 redundant and statistically 

independent sensors, the effort is here estimated as ≈ 1250 h failure free testing to validate target 

error rates of 10−9 h−1 on the level of the perception module (fused environment model). Subject 

to the assumptions, the described approach hence might make it possible to overcome the approval 

trap and “to drive to safety”. 

It is pointed out that even though all combinations of acceptable events 𝑥 and the corresponding 

test efforts 𝑡 in Figure 4.14b) demonstrate compliance with the target level of safety with 95 % 

credibility, it is better to select the test design a-priori, and not to adjust it based on the observed 

number of errors during the test. If a stopping criteria is selected during the test based on the 

observed number of events, the testing can be biased for a given failure rate λ [245, 246].  

A challenge is to plan a representative test (see Section 3.1.4) as a prerequisite for correctly 

estimating the average rate of failure events λ̅ according to Eq. (4.34). To address this challenge, 

we account for a non-stationary error rate in function of the context variables 𝐄. In practice, it is 

however difficult to know a priori all important context variables together with their probabilities. 

Additionally, not all context variables such as dirty sensor covers or the strength of snowfall can 

be easily measured and quantified in practice. Also, the probability of for instance Pr(𝐸 = 𝑟𝑎𝑖𝑛) 

varies geographically. A chance to address the varying exposure probability towards the context 

variables in different regions is to learn e.g. λ( = rain), λ( = sun) independently of the 

geographical region. Eq. (4.36) then allows to combine the error rates with the exposure 

probabilities for each region, to estimate λ̅ for each region separately. With this approach, one can 

also include additional context variables 𝐄 with (systematic) effects on sensor performance, such 

as darkness or dirt.  

As is already discussed in Section 4.2.4, it is not automatically given that errors among different 

sensors are statistically independent. To show the influence of the statistical dependence, Figure 

4.15 estimates the test effort in function of the correlation coefficient of FP /FN sensor errors 
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among different sensors. Depending on the statistical dependence, the test effort is estimated 

between 1250 h and 1.92 ∙ 109 h. This clearly highlights the important role of statistical 

dependence among different sensors for perception reliability. An important conclusion is 

therefore, that one not only has to assess the respective (sensor) error rates but also the sensor error 

dependence from test data. Simultaneously validating sensor error rates and sensor error 

dependence however might require longer tests than the efforts estimated in this Chapter, which 

are conditional on given correlation coefficients. 

While the statistical dependence in errors among different sensor is accounted for with the beta-

binomial model, we neglect the temporal error dependence in the test effort estimation by assuming 

exchangeability in Section 4.3.1. Modeling both types of dependence simultaneously has to be 

addressed in the future. In particular, it should be studied from data which dependence structure 

adequately describes perception errors among different sensors and which dependence structure 

adequately represents the temporal perception error dependence. 

It has to be understood that the modeling assumptions behind the methods presented in this Section 

are flexible. For instance, the Bayesian test effort estimation in Section 4.3.3 is flexible with 

respect to the statistical model assumptions in Section 4.3.1. Ultimately, with the availability of 

data collected in tests, all modeling assumptions such as statistically independent sensor errors 

over time or among different sensors must be validated. If modeling assumptions do not hold, the 

models and the respective required test effort have to be adapted. Hence, the test efforts derived in 

this Chapter should be interpreted as initial estimates, which have to be updated dynamically in 

the course of the validation. 
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5 Assessing Sensor Perception Reliability 

In the previous Chapter we advocate addressing the approval trap for ADSs with higher levels of 

driving automation by inductively (empirically) demonstrating perception reliability at the sensor 

level. Requirements on the sensor level are derived through a deductive decomposition of the 

perception module’s reliability metrics. Exemplarily, Figure 4.15 depicts the estimated test effort 

with this approach. Ultimately, sensor perception reliability has to be learned in tests from data to 

quantify the perception failure rate λper. With λper, an ADS’s safety is validated by demonstrating 

Eq. (3.4). 

In this Section, we describe various methods to assess sensor perception reliability, which mostly 

can also be applied to assess the perception reliability of the fused environment model. The 

methods we introduce build on established test and safety validation methods, as reviewed in 

Sections 3.2 and 3.3: 

 Qualitative and semi-quantitative analysis methods 

 Virtual simulations 

 Tests on proving grounds 

 Field tests 

 

We start in Section 5.1 with a presentation of a qualitative and semi-quantitative method to assess 

the risk of perception deficiencies. The method identifies potential context variables 𝐄 with 

influence on sensor performance and preliminarily assesses the risk associated with 𝐄. This method 

can for instance be applied in the concept phase in the context of a preliminary hazard and risk 

analysis (see Figure 3.6).  

Due to the integral part of virtual simulations in the development of ADSs, we outline in Section 

5.2 with the example of a lidar’s detection performance under rainy conditions how sensor 

perception reliability metrics (see Section 4.1) can be estimated by simulations [105]. Such a 

simulation method could help to inform the design of a sensor (e.g. in the design phase of the  

V-Model, see Figure 3.6) and to initially verify compliance with sensor perception reliability 

requirements, when the sensor of interest is not yet physically realized.  

With progressing development of the sensors and their integration into the system’s perception 

module, the option of testing the sensors in reality becomes available. In Section 5.3 we propose 

a method that allows to learn and predict sensor perception reliability from tests on proving 

grounds. Evaluating sensor perception reliability on proving grounds with the proposed method 

could contribute to a perception reliability validation. 
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Finally, we generically outline in Section 5.4 how to learn (sensor) perception reliability metrics 

in the existence uncertainty domain (see Section 4.1) from data collected in field tests. The 

prerequisite is a reference truth, which allows the identification of perception deficiencies. If the 

field test is conducted representatively, this is the most realistic test method, and therefore could 

be utilized to obtain a final validation of (sensor) perception reliability. 

5.1 Semi-Quantitative Sensor Perception Reliability Analysis 

This Section is partly taken from our publication in [39]. 

One of the first steps in a risk analysis is a qualitative or semi-quantitative hazard and consequence 

analysis [242]. It is based on expert knowledge, experience and an understanding of the physical 

principles and processes behind the sensor technology. For instance, a preliminary hazard analysis 

and risk assessment according to ISO 26262 (Section 3.2.1) is a semi-quantitative method. 

As outlined in Section 3.1.4, it is important for a perception reliability analysis to consider the 

influence of context variables 𝐄. This Section therefore presents a semi-quantitative analysis 

method to estimate the influence of 𝐄 on perception reliability. On the basis of established hazard 

analysis techniques [152], we present in Section 5.1.1 how to identify context variables that 

potentially cause perception deficiencies. In Section 5.1.2 we assess the risk of perception 

deficiencies associated with the identified context variables. 

5.1.1 Hazard Analysis: Identification of Relevant Context Variables 

The main purpose of a hazard analysis for technical systems is to identify “what can go wrong?”, 

“how can it happen?” and “what controls exist” (or can be implemented)? [242]. Hazard analysis 

techniques are a fundamental basis for the identification of hazards, failure modes, failure /error 

causes, failure effects, test cases, influencing factors, countermeasures (safety goals) and potential 

error diagnostics [152]. It is applied to obtain a deep understanding of the system from a safety 

perspective, to obtain initial estimates of system risk and is the basis for designing a safe system. 

The most widely applied methods in this context are various forms of Hazard Analyses, Event 

Tree Analysis (ETA), Fault Tree Analysis (FTA) and Failure Modes and Effect Analysis (FMEA) 

[152]. These methods are well-known and are therefore not presented here, for further information 

it is referred to [150, 152]. 

To identify relevant context variables, failure modes (“Manner by which an item fails” [152]), are 

analyzed in a first step, for instance with FMEA, brainstorming, functional block diagrams of a 

sensor’s perception, or other suitable methods. The (sensor’s) perception failure modes are related 

to the existence, state and classification uncertainty domains (see Section 4.1). 



Assessing Sensor Perception Reliability 

 95 

Based on a failure mode, one can identify in a deductive manner (e.g. with a FTA, analyzing the 

physical principles and functional processes behind the sensor technology, expert knowledge, 

experience, mind maps or other suitable methods) corresponding failure mechanisms (“physical, 

chemical or other process that has led to a failure” [247]), failure causes (“Circumstances during 

design, manufacture or use that have led to a failure” [247]) and root causes (“fundamental causes 

[…], causes upon which remedial actions can be decided.” [150]). The root causes are part of the 

context variables 𝐄, the state of all conditions with influence on the perception performance. Note 

that one failure mode can have many root causes. This step is exemplified for a few failure modes 

of a lidar sensor in Figure 5.1. 

 

Figure 5.1 Exemplary identification of root causes potentially leading to perception deficiencies in an 

automotive lidar. The root causes are context variables (see Section 3.1.4). Adapted from [39]. 

5.1.2 Semi-Quantitative Risk Analysis: Assessing the Influence of Context Variables 

To identify the most critical root causes, a semi-quantitative risk analysis is performed. To this 

end, the probability of exposure Pr(𝐸) towards an identified context variable 𝐸 as well as the 

context variable’s consequences 𝑐(𝐸) on perception performance are estimated. For simplicity, it 

is assumed that a given context variable 𝐸 is binary, it either occurs or not. Further, each context 

variable is assessed individually, i.e. interactions and the joint effect of being exposed to multiple 

context variables are not assessed. With these conditions, the Risk(𝐸) of a context variable is 

expressed as: 

Risk(𝐸) = Pr(𝐸) ∙ 𝑐(𝐸)  
(5.1) 

Failure causeRoot cause Failure mechanism Failure mode

Snowfall Large atmospheric 

backscattering

High particle 

concentration in 

atmosphere

False positive

Fog Large atmospheric 

backscattering

High particle 

concentration in 

atmosphere

False positive

Object surface 

material and 

color

Losses due to reflective 

properties of object

Backscattering of 

energy at object 

not sufficient

False negative

Rainfall Large atmospheric 

transmission losses

High particle 

concentration in 

atmosphere

False negative

Snow 

accumulation 

on sensor cover

Reduced transmitter / 

receiver efficiencies

Blocking the 

optical path on 

sensor cover

Blindness / 

unavailability
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The consequences 𝑐(𝐸) on perception performance can be interpreted qualitatively as the severity 

of the perception performance impairment under 𝐸 (e.g. low, medium, high), or more 

quantitatively as a rate λper(𝐸) of perception errors in function of 𝐸61. The results of this risk 

analysis are visualized in a risk matrix [242] by plotting Pr(𝐸) over 𝑐(𝐸). 

Aside of the risk, it is important whether a certain context variable is diagnosable. For example, if 

a context variable is easy to diagnose, safety mechanisms that mitigate adverse effects can be 

devised. It is proposed to classify each context variable into one of the following three categories: 

 Easy to diagnose: safety mechanisms are devised that either mitigate the effect of the 

context variable, or restrict the availability of the automated driving functionality in the 

presence of context variables that lead to inacceptable performance impairment. Methods 

of ISO 26262 are applicable. With adequate safety mechanisms, the context variable is not 

directly relevant for perception reliability. 

 Hard to diagnose: at first relevant for perception reliability. Test should further evaluate 

under which conditions the risk associated with a context variable is unacceptable. For 

example, it could be evaluated, which rainfall intensity leads to an unacceptable perception 

reliability. Considering the test results with the associated risk, it should be determined if 

it is feasible to diagnose the context variable and to devise respective safety mechanisms.  

 Probably impossible to diagnose: the influence of the context variable is hard to mitigate. 

Its influence should be accounted for in a perception reliability analysis. 

 

Figure 5.2 shows a risk matrix together with a diagnosability assessment for the context variables 

with potential influence on a lidar’s performance identified in Figure 5.1. The lines in Figure 5.2 

are equi-risk lines when both the occurrence frequency and the consequences are in log scale [242]. 

The equi-risk lines allow to prioritize /rank the context variables according to their preliminarily 

estimated risk. For instance, one would conclude that snowfall is expected to be a larger risk for 

the perception performance of a lidar than rainfall which in turn is a larger risk than fog. 

The snow accumulation on a lidar’s sensor cover completely blinds the sensor and is therefore the 

context variable with the largest risk in Figure 5.2. A blindness detection can however be 

implemented, which mitigates the large risk. If a sensor is blind, one could activate a heating and 

cleaning mechanism while relying for a short time on redundant sensors. If the sensor is still blind 

after these measures, the automated driving functionality could be deactivated. Therefore, the 

                                                 
61 The risk in Eq. (5.1) is not to be confused with the risk of Eq. (3.1). In Eq. (5.1), the consequences are evaluated on 

the (sensor) perception level and in Eq. (3.1) on the ADS level. The selection of the consequences determines how to 

interpret Eq. (5.1). The interpretation of Eq. (5.1) is here however not central, because the purpose is to evaluate the 

influence of the context variables relative to each other and not to evaluate the absolute risk of a context variable. 
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snow accumulation on the sensor cover is not critical62 for the perception reliability but might 

reduce the availability. 

In contrast, it is probably not possible to detect if an object’s surface material reflects too little 

energy towards the lidar to detect the object63. The object’s surface material is therefore a very 

important influence to account for in the perception reliability analysis. Rainfall is an example of 

a context variable classified as hard to diagnose because the exact rainfall intensity is not readily 

measurable in a vehicle. At first, rainfall is therefore relevant for perception reliability. Further 

tests and studying the feasibility of diagnosing the presence of rainfall are a chance to mitigate the 

risk of perception deficiencies, for example by restricting the sensor availability if the rainfall 

exceeds a critical intensity threshold. One would however need to develop solutions to diagnose 

the exceedance of the critical intensity threshold. 

 

Figure 5.2 Exemplary risk matrix for an initial semi-quantitative risk assessment of context variables with 

potential influence on the performance of a lidar sensor. Colors represent the diagnosabiltiy of 

different context variables. Adapted from [39]. 

  

                                                 
62 It is pointed out, for the snow accumulation not to be critical, the blindness detection has to work flawlessly and 

without time delay. Additionally, the deactivation of the automated driving functionality must not lead to a risk. 
63 An exception is the availability of credible sensor information from one or more redundant sensors. The difficulty 

then is however that one cannot be certain which sensor is correct (the lidar not indicating an object, or the other 

sensor(s) indicating an object, which could also be a FP error). 
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5.1.3 Discussion 

The purpose of the analysis is to identify context variables (conditions that influence perception 

reliability and /or could cause perception deficiencies) and to evaluate their relative influence on 

perception reliability. The identification of context variables 𝐄 with their associated risk helps to 

further develop virtual simulations, to describe and prioritize test cases, to allocate resources to 

testing, and to plan representative field tests. Results such as Figure 5.2 are the basis for more 

detailed quantitative analyses according to the following Sections in later stages of the system 

safety validation. Additionally, the method in this Section is an important development tool to 

devise risk reduction measures (i.e. safety mechanisms) for context variables that are diagnosable. 

These risk reduction measures increase the SOTIF. 

The semi-quantitative risk assessment in Section 5.1.2 assesses each context variable individually, 

and the joint effect of multiple context variables is not considered. Perception errors are however 

likely caused by a combination of factors /conditions in the environment. A combination of factors 

that cause a perception error are hard to identify and to assess early in the development, as no data 

is available. In principle, one can extend the analysis to assess each combination of context 

variables. This is however impractical. Considering that the purpose of the analysis is to identify 

the most critical context variables, it might be sufficient to evaluate each context variable 

separately. It is further pointed out, because the risk associated with each context variable is 

assessed individually, the sum of Eq. (5.1) over all context variables and their states is not a proper 

estimate of total risk64.  

Also, the analysis does not account for the fact that some context variables are continuous 

parameters. For instance, weak rainfall has a different influence on perception reliability than 

strong rainfall. To account for continuous parameters, one could introduce additional sub 

categories (e.g. weak rainfall, strong rainfall) in the semi-quantitative risk assessment. Ultimately, 

the testing should account for the continuous nature of the context variables. 

A limitation is that there is no certainty that all important context variables are identified with this 

analysis, which to a large degree is based on expert knowledge and not on data. Due to the 

subjective nature of the semi-quantitative risk assessment, results such as Figure 5.2 are by no 

means comprehensive and should only be interpreted qualitatively. 

  

                                                 
64 More correctly accounting for all context variables jointly, the total risk is (in the case of discrete context variables) 

the sum over all combinations of states in the joint space 𝐄 of the context variables: Risk = ∑ Pr(𝐄) ∙ 𝑐(𝐄)𝐄 . It is 

however not practicable to estimate Pr(𝐄) and 𝑐(𝐄) without data. Also, 𝐄 might consist of many individual context 

variables, which renders an assessment of all combinations of states in 𝐄 as impracticable.  
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5.2 Virtual Simulation: Estimation of a Lidar’s Detection Performance 

This Section is partly taken from our publications in [39, 105]. 

Virtual simulations are an important test and verification tool in the development of ADSs, as 

outlined in Section 3.3. Simulations are an opportunity to estimate (sensor) perception reliability 

early in the ADS development. Complex system interactions can be accounted for in a simulation 

by implementing real software code to be employed in an ADS. In the context of environment 

perception, it can be distinguished between statistics-based simulations [248, 249], physics-based 

simulations [104, 250–252] or a combination of both [105, 253]. 

Statistical simulations are an option to reproduce the statistical sensor error behavior in a virtual 

environment. Statistical simulations can for example be combined with actual software code of 

sensor data fusion in a SiL. The SiL then allows to obtain an estimation of perception reliability 

(fused environment model), based on sensor perception reliabilities. While we see the methods in 

Section 4.2 as a means to obtain an initial estimate of sensor requirements early in the development 

of an ADS, such a SiL could be used to refine the initially derived requirements in final phases of 

the development. A prerequisite for valid statistical simulations is to learn the sensor perception 

reliabilities in the different uncertainty domains (see Section 4.1) from data, accounting for 

relevant context variables [157]. Methods to learn sensor perception reliabilities are outlined in 

Sections 5.3, 5.4 and 6.2. 

The main idea of physics-based simulations is to reproduce the physical processes behind a sensing 

technology in a computer model, for instance by means of a ray-tracing simulation [252]. 

Challenges for physics-based simulations are the need to know relevant influencing factors (i.e. 

context variables 𝐄) and to be able to physically model the influence of 𝐄 on the sensing processes. 

As discussed in Section 3.3, simulations themselves need to be validated, leading to additional test 

effort in the real world [44, 66, 201]. To the best of our knowledge, currently no comprehensive 

and widely accepted simulation framework exists to solely validate sensor perception reliability 

virtually. 

Even without extensive validation of a simulation, a sound physical simulation approach can 

however be used early in the development to qualitatively estimate the effect of adverse 

influencing factors 𝐄 on sensor perception reliability and to optimize the sensor design. In the 

following, we exemplarily present such a simulation framework for lidar sensors. 
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5.2.1 Simulating the Effect of Rainfall on a Lidar Sensor: Background and Motivation 

A challenge is to quantify the effect of context variables on a sensor’s performance early in the 

ADS development. A drawback of lidar sensors is for instance their sensitivity towards adverse 

weather conditions such as rainfall, snowfall and fog [102, 104, 159]. Hence, the weather condition 

is an important context variable for lidar sensors. To exemplarily address this challenge, we 

combine statistical and physical simulation methods to estimate the effect of rainfall on lidar 

perception reliability in this Section.  

Previously, the lidar equation was employed to estimate the maximum lidar range under adverse 

weather conditions [104]. The approach used Mie theory [254, 255] to physically describe 

backscattering and signal attenuation in the atmosphere caused by particles such as raindrops 

[104]. The model used mean values of the rainfall dependent attenuation coefficient, which 

describes the lidar’s signal attenuation in the atmosphere [104]. 

We propose a probabilistic extension of the modeling framework in [104], accounting for the 

variability in parameters such as the rainfall intensity, the number of raindrops per volume segment 

of laser beam and the raindrop size. We combine basic probabilistic models for these key rainfall 

parameters with Mie theory [254, 255] and the theory of signal detection [206–208] in a Monte 

Carlo simulation framework [242]. The developed simulation framework allows to estimate a 

lidar’s raw detection performance, expressed with a receiver operating characteristic (ROC) curve 

(see Section 4.1). 

5.2.2 Physical Lidar Model 

As explained in Section 2.1.3, a lidar raw detection and its corresponding distance measurement 

𝑅 are triggered whenever the received signal intensity (i.e. the backscattered laser pulse) exceeds 

a detection threshold. The received signal is physically modeled with the lidar equation [102–104]. 

Here we present the lidar equation in reference to [104]. 

The received signal power 𝑃R(𝑅) at the lidar is described in function of the distance 𝑅 with a 

convolution integral: 

𝑃R(𝑅) = 𝐴RηTηR ∫ 𝑃T(𝑡
′)

2∙𝑅/𝑐0

𝑡′=0
𝐻 (𝑅 − 𝑐 ∙

𝑡′

2
) 𝑑𝑡′  (5.2) 

where 𝐴R is the aperture area of the optical receiver, ηT and ηR are the optical efficiencies of the 

transmitter and receiver, respectively. The upper bound of the integral is the Time-of-Flight, Eq. 

(2.2), to distance 𝑅 and back to the emitting sensor, where 𝑐0 = 3 ∙ 10
8 m/s is the speed of light. 

𝑃T(𝑡
′) is the transmitted signal at time 𝑡′, and 𝐻(𝑅) is the spatial impulse response function. 
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𝑃T(𝑡
′) of a single laser pulse is modeled: 

𝑃T(𝑡) = {
𝑃0 ∙ sin

2(π ∙ 𝑡/τp), 0 ≤ 𝑡 ≤ τp
0, 𝑡 > τp

  
(5.3) 

with 𝑃0 the peak transmit power and τp the pulse width. 

The spatial impulse response function is the product of the spatial impulse response of the optical 

channel 𝐻C(𝑅) and the spatial impulse response of targets 𝐻T(𝑅): 

𝐻(𝑅) = 𝐻C(𝑅) ∙ 𝐻T(𝑅)  (5.4) 

The spatial impulse response of the optical channel 𝐻C(𝑅) is: 

𝐻C(𝑅) = [exp (−∫ 𝛼(𝑟)𝑑𝑟
𝑅

0
)]
2

∙
𝜁(𝑅)

2∙π∙𝑅2
  (5.5) 

with 𝛼(𝑟) the local extinction coefficient and 𝜁(𝑅) the crossover function. 𝛼(𝑟) is defined in 

Section 5.2.3. 

𝜁(𝑅) models the overlap of the area illuminated by the transmitter and the area observed by the 

receiver in dependence of the distance 𝑅. To explain the crossover function 𝜁(𝑅), the case of a 

bistatic beam configuration with parallel optical axes is depicted in Figure 5.3.  

 

Figure 5.3 Lidar with bistatic beam configuration. The transmitter’s optical channel (red) and the receivers 

optical channel (blue) start to overlap at distance 𝑹𝟏. At distance 𝑹𝟐, the optical channels are 

completely overlapping. Adapted from Fig.2 in [104]. 

As Figure 5.3 shows, the transmitter’s and receiver’s optical channels do not overlap for distances 

𝑅 < 𝑅1, hence 𝜁(𝑅 < 𝑅1) = 0: 

𝑅1 =
𝑑−𝑟T,0−𝑟R,0

tan(
γT
2
)+tan(

γR
2
)
  

(5.6) 

𝑅𝑅1 𝑅2

𝑑

0.5γR

0.5γT

2𝑟T,0

2𝑟R,0

Transmitter

Receiver
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where γT and γR are the divergence of the transmit beam and receiver’s channel, respectively. 𝑑 

is the displacement between the optical axes of the receiver and transmitter, 𝑟T,0 and 𝑟R,0 are the 

radius of the transmission and reception aperture, respectively. 

For 𝑅 ≥ 𝑅2, the crossover function 𝜁(𝑅 ≥ 𝑅2 ) = 1, i.e. the transmitter’s and receiver’s optical 

channels overlap completely: 

𝑅2 =
𝑑−𝑟R,0+𝑟T,0

tan(
γR
2
)−tan(

γT
2
)
  

(5.7) 

Under the assumption of a homogenous intensity distribution over the beam’s cross section, 𝜁(𝑅) 

between 𝑅1 ≤ 𝑅 ≤ 𝑅2 is modeled with the intersection of the transmit beam’s cross section and 

the receiver’s optical channel at distance 𝑅 (circle-circle intersection): 

𝜁(𝑅) =
𝑟T
2∙(ϕT−sin(ϕT))+𝑟R

2∙(ϕR−sin(ϕR))

2∙π∙𝑟T
2   

(5.8) 

with 𝑟T the radius of the transmit beam cross section: 

𝑟T = 𝑅 ∙ tan (
γT

2
) + 𝑟T,0  (5.9) 

𝑟R is defined equivalently. Further it holds: 

ϕT = 2 ∙ arccos (
𝑟T
2−𝑟R

2+𝑑2

2∙𝑑∙𝑟T
)  

(5.10) 

ϕR is defined equivalently by swapping 𝑟T and 𝑟R. 

Finally, the spatial impulse response of the targets is defined as: 

𝐻T(𝑅) = {
Γ ∙ 𝛿(𝑅 − 𝑅0) + 𝛽(𝑅), 𝐴T > 𝐴B(𝑅)

Γ ∙ 𝛿(𝑅 − 𝑅0) ∙
𝐴T

𝐴B(𝑅)
+ 𝛽(𝑅), 𝐴T < 𝐴B(𝑅)

  
(5.11) 

where Γ is the reflectivity of a hard target (e.g. a car) located at distance 𝑅0, 𝛿(𝑅) is the dirac 

function and 𝛽(𝑅) the backscattering coefficient of soft targets (e.g. raindrops) at distance 𝑅. 𝛽(𝑅) 

is defined in Section 5.2.3. 𝐴T is the cross sectional area of the target and 𝐴B(𝑅) is the cross section 

of the lidar beam at distance 𝑅. 

5.2.3 Electromagnetic Absorption, Scattering and Transmission 

Part of a laser pulse’s energy is absorbed and diffusely scattered by particles during the propagation 

through the atmosphere, and only the remaining energy is transmitted [102, 104]. Absorption and 

scattering are described with the extinction coefficient α(𝑅). Additionally, the backscattering 

coefficient 𝛽(𝑅) describes the part of the electromagnetic energy scattered back into the direction 
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of the emitting source. A physical description of a laser pulse’s backscattering and attenuation by 

particles in the atmosphere (e.g. rain drops) is outlined in this Section with Mie theory to define 

 α(𝑅) and 𝛽(𝑅) [255, 256]. As a simplification and to separate the effect of precipitation, 

additional noise sources are neglected. 

According to the law of Lambert-Beer, α(𝑅) is defined [257]: 

α(𝑅) = 𝑁 ∙ σ̅ext  (5.12) 

where 𝑁 is the number density of scattering particles per unit volume (e.g. raindrops) and σ̅ext is 

the mean extinction cross section of the scattering particles. Due to the small size of the laser beam, 

𝑁 and σ̅ext in a specific volume element of the beam are subject to uncertainty, and more precisely 

it holds: 

α(𝑅) =
1

𝑉beam(𝑅)
∙ ∑ σext,𝑖

𝑛(𝑅)
𝑖=1   

(5.13) 

where 𝑉beam(𝑅) is a volume element of the beam at distance 𝑅, 𝑛(𝑅) is the number of scattering 

particles in the volume element and σext,𝑖 is the extinction cross section of particle 𝑖. 𝛽(𝑅) is 

defined equivalently by replacing σext,𝑖 with the backscattering cross section σback,𝑖. 

The extinction and backscattering cross sections of a particle depend on its size as well as the 

wavelength λwave of the emitted laser pulse and are defined with the following relationships [255, 

258]: 

σext(𝐷drop, λwave) = 𝑄ext(𝐷drop, λwave) ∙
π∙𝐷drop

2

4
  (5.14) 

σback(𝐷, λwave) = 𝑄back(𝐷drop, λwave) ∙
π∙𝐷drop

2

4
  

(5.15) 

where 𝑄ext(𝐷drop, λwave) and 𝑄back(𝐷drop, λwave) are the extinction and backscattering 

efficiencies, respectively. 𝐷drop is the drop diameter. 𝑄ext(𝐷drop, λwave) and 𝑄back(𝐷drop, λwave) 

are calculated with Mie theory. Mie theory provides a solution to Maxwell’s equations which 

describe the scattering of electromagnetic radiation. [254, 255] 

For the sake of brevity, Mie theory is not reviewed here. Instead the reader is referred to standard 

textbooks for mathematical details on Mie theory [255, 256]. We implement a widely used Matlab 

routine developed by [259] based on a code in the appendix of [255] for the calculations of 

𝑄ext(𝐷drop, λwave) and 𝑄back(𝐷drop, λwave). The relevant results of these calculations are 

presented in Figure 5.4 in function of 𝐷drop for λwave = 905 ∙ 10
−9 m, the wavelength most 

common in automotive lidars [102, 104]. 
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Figure 5.4 The extinction 𝑸𝐞𝐱𝐭(𝑫𝐝𝐫𝐨𝐩, 𝛌𝐰𝐚 𝐞) and backscattering 𝑸𝐛𝐚𝐜𝐤(𝑫𝐝𝐫𝐨𝐩, 𝛌𝐰𝐚 𝐞) efficiencies for a 

wavelength of 𝛌𝐰𝐚 𝐞 = 𝟗𝟎𝟓 ∙ 𝟏𝟎
−𝟗 𝐦 in dependence of a particle’s diameter 𝑫𝐝𝐫𝐨𝐩. Calculations 

based on [259]. Taken and adapted from [105]. 

5.2.4 Probabilistic Modeling of Rainfall 

The aim is to estimate the influence of precipitation on lidar performance by means of simulation. 

As is apparent from Section 5.2.3, key rainfall properties that influence lidar performance are the 

number of drops in the optical channel and the corresponding drop diameters 𝐷drop. Simplifying, 

we neglect the shape of the drops, which in accordance with Mie’s theory is assumed spherical. 

The variability in the rain drop size 𝐷drop has been extensively studied [260–263]. These studies 

empirically determine drop size distributions (DSD) with different types of sensors [263]. A DSD 

describes the number and sizes of drops in a given volume element [260–263]. The DSD tends to 

depend on the rainfall intensity 𝐼, therefore a DSD can empirically be parameterized in terms of 𝐼 

[260, 262–264]. We apply an exponential drop size distribution (DSD), which is found to often 

accurately describe the temporally averaged DSD, i.e. the distribution of 𝐷drop [260, 261, 263]: 

𝑁(𝐷drop) = 8000 ∙ exp (−4.1 ∙ 𝐼
−0.21 ∙ 𝐷drop)  (5.16) 

here 𝐼 is the rainfall intensity in [mm/h] and 𝐷drop is the drop diameter in [mm]. 𝑁(𝐷drop) ∙

𝑑𝐷drop are the number of drops with diameter between 𝐷drop and 𝐷drop + 𝑑𝐷drop per m³. We 

study the performance of a lidar conditional on rainfall intensity, therefore we do not model the 

uncertainty in 𝐼. 
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While many studies empirically confirm the DSD in Eq. (5.16), it is not universally applicable 

[260, 261, 263]. Most importantly, the type of rainfall (orographic, stratiform, thunderstorm, 

shower) influences the DSD due to e.g. different wind speeds [262, 263]. The type of rainfall is 

further correlated with the geographic location. Hence Eq. (5.16) is a good starting point to 

evaluate the influence of rainfall on a lidar’s detection performance, but a detailed empirical study 

of DSD for different rainfall types at a given geographic location might increase the accuracy of 

the simulation. The simulation framework presented here is flexible w.r.t the rainfall model, and 

can be combined with any other suitable DSD. Eq. (5.16) can therefore depending on the 

application be replaced. Measuring the DSD is however out of scope of this thesis. 

We point out that a three parameter gamma DSD [262] sometimes provides a better fit to empirical 

DSDs because it is a generalization of the exponential distribution. The parameters of the gamma 

DSD are however not readily defined in the DSD literature, they have to be derived based on 

measurements. 

The integral over Eq. (5.16) determines the average number μ𝑁 of rain drops in a unit volume 

[m−3]. Due to the small size of the beam, the actual number of drops 𝑛drops present in a beam 

volume element 𝑉beam is subject to uncertainty. The uncertainty in the number of drops 𝑛drops in 

a given volume element of the beam is represented with the Poisson distribution [260]: 

𝑝𝑁drops(𝑛drops) = exp (−μ𝑁 ∙ 𝑉beam) ∙
(μ𝑁∙𝑉beam)

𝑛drops

𝑛drops!
  

(5.17) 

The exponential DSD of Eq. (5.16) and the Poisson probability mass function (PMF) for the 

number of drops according to Eq. (5.17) are shown with exemplarily selected values of  

𝐼 = 5 mm/h and 𝑉beam = 0.001 m³ in Figure 5.5. 

5.2.5 Stochastic Simulation: Signal Detectability Evaluated with Monte Carlo Simulation 

Combining the rainfall properties described in Section 5.2.4 with the electromagnetic scattering 

and absorption defined by Eqs. (5.13)-(5.15) as well as the lidar model in Eq. (5.2) allows to 

represent the stochastic influence of precipitation on signal intensity. 

Noise in the signal due to unwanted backscattering at the raindrops leads to the problem of signal 

detectability [206–208], which here consists of optimizing a lidar’s detection threshold as a 

tradeoff between the frequency of false positive detections and the frequency of valid detections 

caused by relevant objects, see Section 4.1. A specific detection threshold determines the sensor 

probability of detection PODlidar and probability of false alarm PFAlidar on the raw data level. 

Plotting PODlidar over PFAlidar with varying detection thresholds leads to a receiver operating 

characteristic (ROC) curve, see Figure 4.4. 
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Figure 5.5 Modeling uncertainties in rainfall properties. (a) An exponential drop size distribution with 𝑰 =

𝟓 𝐦𝐦/𝐡 and (b) Poisson probability mass function (PMF) of the number of drops  𝐝𝐫𝐨𝐩𝐬 in 

𝑽𝐛𝐞𝐚𝐦 = 𝟎. 𝟎𝟎𝟏 𝐦³. 

ROC curves are derived conditional on rainfall intensity 𝐼 for a target at distance 𝑅0 with Monte 

Carlo Simulation (MCS). The MCS here artificially generates lidar signals under rainy conditions 

with the following steps: 

1. Discretize the beam into segments of specific length. 

2. Sample the number of drops 𝑛drops per beam segment from Eq. (5.17). 

3. For each drop, sample 𝐷drop from Eq. (5.16). 

4. For each segment of beam, calculate 𝛼(𝑅) and 𝛽(𝑅) according to Section 5.2.3. 

5. Generate the corresponding signal over distance 𝑃R(𝑅) with the lidar model of Eq. (5.2). 

 

Steps 2.-5. are repeated 𝑛MCS times for a given rainfall intensity to simulate the stochastic variation 

in response signal due to random rainfall influences. The fraction of the 𝑛MCS generated signals 

that exceed a specific chosen detection threshold at the target’s location 𝑅0 approximates PODlidar 

and the fraction of signals that exceed the detection threshold in the range 𝑅 < 𝑅0, where no target 

is present, approximates PFAlidar. With a large number of samples 𝑛MCS, the MCS error is 

negligible. For an explicit estimation of the MCS error we refer to [105, 265].  

Varying the detection threshold with the given MCS results leads to a ROC for the underlying 𝑅0 

and 𝐼. The overall raw data detection performance is fully defined by the ROC curve. To quantify 

the detection performance with a scalar value, we calculate the area under the ROC curve (AUC). 

The AUC is a common choice to summarize a ROC curve with a scalar value [208]. 
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5.2.6 Case Study: Evaluating the Effect of Precipitation on a Lidar’s Performance 

With the developed framework, we study the effect of rainfall on a hypothetical lidar in a case 

study. In particular, we evaluate the raw data detection performance by analyzing stochastic signal 

responses of a single laser beam under rainy conditions. At first, we compare two different 

hypothetical lidar design specifications to demonstrate how the framework allows to optimize the 

sensor design w.r.t. adverse precipitation effects. Further, we demonstrate how an optimization of 

the detection threshold allows for an effective filtering of false positive raw detections. Finally, 

we present the lidar’s raw detection performance expressed as AUC, in dependence of a hard 

target’s distance 𝑅0 and rainfall intensity 𝐼.  

As we are only interested in the received signal due to a hard target relative to unwanted signal 

caused by rainfall, we set the constants 𝐴R, ηT, ηR in Eq. (5.2) and the peak power 𝑃0 in Eq. (5.3) 

to one. The emit pulse width is set to τp = 5 ∙ 10
−9 s, which is in the range of automotive lidars 

[102]. We assume a bistatic beam configuration with a displacement of the optical axis 𝑑 = 5 mm. 

The design specifications of the two hypothetical lidars are summarized in Table 4.1. 

Table 5.1 Case study: Design specifications of hypothetical lidar. 

Design Transmitter 

aperture radius 𝒓𝐓,𝟎 

Receiver aperture 

radius 𝒓𝐑,𝟎 

Transmit beam 

divergence 𝛄𝐓 

Receive channel 

divergence 𝛄𝐑 

1 2 mm 20 mm 0.06° 0.1° 
2 2 mm 20 mm 0.03° 0.06° 

 

To demonstrate the tradeoff between true positive and false positive indications of objects by the 

hypothetical lidars, we study the situation in which a hard target of normal reflectivity Γ = 0.2 

[104] is located at a distance 𝑅0 = 40 m and the rainfall intensity is 𝐼 = 5 mm/h. Further, we 

assume 𝐴T > 𝐴B(𝑅) in Eq. (5.11) for all calculations in this case study. Additional to the 

attenuation caused by the rainfall according to Eq.(5.13), we account for an extinction coefficient 

of 𝛼 = 0.1 km−1 at clear sky [103]. In the simulation, the lidar beam is discretized into segments 

of 0.1 m length and the total number of signals generated per simulation setting is 𝑛MCS = 10
4. 

This number of samples limits the relative MCS estimation error on a probability in the magnitudes 

of 10−2 to 10% [105]. 

Results: Comparing Two Lidar Designs 

In a first step, we generate 𝑛MCS synthetic signals with the simulation framework described in 

Section 5.2.5. Figure 5.6 exemplary presents an evaluation of the spatial impulse response of the 

optical channel 𝐻C(𝑅) and the spatial impulse response of the targets 𝐻T(𝑅) for one of the 𝑛MCS 

generated signals with lidar design 1 (see Table 4.1). In Figure 5.6a) the maximum response in the 

optical channel is at about 𝑅 = 7 m because of the influence of the crossover function 𝜁(𝑅) in 
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combination with the 1/𝑅² proportionality of 𝐻C(𝑅). In Figure 5.6b), a peak due to the hard target 

at 𝑅0 = 40 m is visible. The remaining peaks in Figure 5.6b) are due to backscattering at raindrops. 

 

Figure 5.6 Lidar design 1: One sample of (a) spatial impulse response of the optical channel 𝑯𝐂(𝑹) and (b) 

spatial impulse response of the targets 𝑯𝐓(𝑹) with a rainfall intensity of 𝑰 = 𝟓 𝐦𝐦/𝐡. A hard 

target is located at 𝑹𝟎 = 𝟒𝟎 𝐦, all remaining peaks in (b) are due to backscattering at raindrops. 

The lidar equation in Eq. (5.2) convolves the product of the impulse response functions in Figure 

5.6 with the emitted signal. The resulting signal corresponding to Figure 5.6 is shown in Figure 

5.765. Indicated are the response due to the target at 𝑅0 = 40 m and the noise due to rainfall in the 

range 𝑅 < 40 m. The noise is strong only for approximately 𝑅 < 20 m because of the 1/ 𝑅2 

proportionality in Eq. (5.2), which is visible in Figure 5.6a). Further illustrated are three static 

detection threshold values66. With threshold 1, the detection threshold is not exceeded. Hence no 

detection is indicated by the sensor. With threshold 2, only the target is correctly detected at  

𝑅0 = 40 m. In contrast, with threshold 3, both a FP detection at 𝑅 ≈ 12 m as well as the TP target 

detection at 𝑅0 occur. 

 

                                                 
65 This Figure was already presented in Section 4.1.1 to exemplify existence uncertainties. 
66 Static means that the detection threshold is constant w.r.t. the range, or equivalently, the time since laser pulse 

emission. 
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Figure 5.7 A sample of received relative signal over distance R with lidar design 1 and rainfall intensity 𝑰 =
𝟓 𝐦𝐦/𝐡. A hard target is located at 𝑹𝟎 = 𝟒𝟎 𝐦, which causes the largest signal peak. The peaks 

at 𝑹 < 𝟒𝟎 𝐦 are due to backscattering at raindrops. Depending on the detection threshold, either 

no detection occurs (threshold 1), only the target would be correctly detected (threshold 2), or a 

correct target detection and incorrect rainfall detection occur (threshold 3). In analogy [105]. 

In a second step, PODlidar and PFAlidar are estimated with all 𝑛MCS signal responses for varying 

threshold levels. The resulting ROC curves for both sensor designs are illustrated in Figure 5.8.  

 

Figure 5.8 ROC curves of sensor designs 1 and 2 with a rainfall intensity of 𝑰 = 𝟓 𝐦𝐦/𝐡 and a target located 

at 𝑹𝟎 = 𝟒𝟎 𝐦. The ROC curve shows the receiver’s 𝐏𝐎𝐃𝐥𝐢𝐝𝐚𝐫 over 𝐏𝐅𝐀𝐥𝐢𝐝𝐚𝐫 with varying detection 

thresholds (e.g. dashed lines in Figure 5.7). With a small detection threshold, 𝐏𝐎𝐃𝐥𝐢𝐝𝐚𝐫 is large but 

so is 𝐏𝐅𝐀𝐥𝐢𝐝𝐚𝐫. Increasing the detection threshold leads to a smaller 𝐏𝐅𝐀𝐥𝐢𝐝𝐚𝐫, but also to a smaller 

𝐏𝐎𝐃𝐥𝐢𝐝𝐚𝐫. An optimal receiver has a 𝐏𝐎𝐃𝐥𝐢𝐝𝐚𝐫 = 𝟏 and 𝐏𝐅𝐀𝐥𝐢𝐝𝐚𝐫 = 𝟎. Taken and adapted from 

[105]. 
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To achieve a PODlidar ≈ 0.99 with sensor design 1 would result in a PFAlidar ≈ 0.55, which is 

clearly not acceptable. Decreasing the divergence of the transmit beam and the optical channel 

according to lidar design 2 would increase the performance of the lidar in this specific situation. 

With sensor design 2, PFAlidar ≈ 0.24 for a PODlidar ≈ 0.99. Because of the 1/𝑅2 proportionality 

of the signal, the influence of rainfall is present mostly for small 𝑅, see Figure 5.6. Reducing the 

divergence of the beam results in a lower probability of the beam hitting drops in this critical range 

and thus decreasing the PFAlidar. This comes at the cost of a larger minimal range, defined by Eq. 

(5.6). In design 1 the minimal range is 𝑅1 = 3.6 m and in design 2 it is 𝑅1 = 6.4 m. 

Results: Filtering Rainfall Effect 

The ROC curves in Figure 5.8 are derived with static detection threshold values of varying 

magnitudes. Because of the 1/𝑅2 proportionality, both the unwanted signal response due to 

rainfall and the desired signal response due to hard targets are much larger at close distances than 

at farther distances. One option to filter the adverse rainfall effect is therefore a dynamic threshold 

proportional to 1/𝑅2. The ROC curve for design 1 with such a dynamic threshold is shown in 

Figure 5.9. Design 1 is selected here because it has a smaller minimum range of 𝑅1 = 3.6 m 

compared with 𝑅1 = 6.4 m of design 2. The plot corresponds to the same situation (𝑅0 = 40 m 

and 𝐼 = 5 mm/h) as in Figure 5.8. By applying the dynamic threshold, a PODlidar ≈ 0.99 is 

achieved with a PFAlidar ≈ 0.017. 

 

Figure 5.9 ROC curve of sensor design 1 applying a dynamic threshold with a rainfall intensity of 𝑰 =
𝟓 𝐦𝐦/𝐡 and a target at 𝑹𝟎 = 𝟒𝟎 𝐦. Taken and adapted from [105]. 

The ROC curve in Figure 5.9 estimates the raw detection performance of the lidar considering a 

single laser pulse. As explained in Section 2.1.3, a lidar for instance scans its environment with 

multiple laser pulses emitted in different angular directions. Thereafter, object detection and 
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tracking are performed on the basis of the resulting point cloud (i.e. raw data), which further 

reduces adverse rainfall influences. Often, a multi cycle heuristic is applied to validate object 

detections by requiring multiple subsequent detections to gain credibility in the existence of an 

object [29, 59, 60, 106]. 

Neglecting the scanning in different directions, it is here assumed that object detections are 

validated by requiring three subsequent detections. Further, it is assumed that false positives due 

to rainfall are statistically independent in subsequent measurements. With these assumptions, 

PFAlidar is estimated at the object data level on a highly simplified basis by PFAlidar
3 ≈ 0.0173 =

4.9 ∙ 10−6. However, also PODlidar would decrease to PODlidar
3 ≈ 0.97 under the assumption of 

independence if three subsequent detections are required to validate an object detection. These 

calculations neglect the influence of segmentation algorithms to detect objects in the lidar point 

cloud and are therefore a rough estimation only. 

Results: Rainfall Effect in Function of Target Distance 

Figure 5.8 and Figure 5.9 looked at the specific situation of 𝑅0 = 40 m and 𝐼 = 5 mm/h. The 

analysis is repeated with sensor design 1 and the dynamic threshold employed in Figure 5.9 for 

varying values of target distance 𝑅0 and rainfall intensity 𝐼. To summarize the resulting ROC 

curves with a single scalar, AUC is calculated for each 𝑅0 and 𝐼 pair. The results are displayed in 

Figure 5.10.  

 

Figure 5.10 Area under ROC curve (AUC) in function of target distance 𝑹𝟎 and rainfall intensity 𝑰. The larger 

the AUC, the better the detection performance of the lidar. With low rainfall intensity and low 

target distances, the lidar has the largest detection performance. With increasing target distance, 

and with increasing rainfall intensity, the detection performance of the lidar decreases. Taken 

and adapted from [105]. 
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The AUC plot indicates that with a small rainfall intensity (𝐼 ≤ 4 mm/h), the performance of the 

lidar is not impaired substantially. However, for larger rainfall intensities  

(𝐼 > 4 mm/h) the lidar performance decreases, especially for larger distances. As a reference, the 

AUC corresponding to Figure 5.9 is AUC = 0.986. 

5.2.7 Discussion and Conclusions 

We presented a physics-based simulation framework to analyze adverse rainfall effects on lidar 

sensors. With the simulation, we assessed how sensor design parameters influence adverse rainfall 

effects on sensor perception reliability (Figure 5.8), we devised filtering methods for adverse 

rainfall effects to optimize sensor perception reliability (Figure 5.9) and we quantified sensor 

perception reliability in function of the distance to a valid target and the rainfall intensity (Figure 

5.10). Physics-based simulations are therefore an opportunity to assess sensor perception 

reliability accounting for context variables, in this case rainfall. 

In the presented simulation framework, we modeled rainfall effects separately from other noise 

sources (i.e. context variables), such as different weather conditions (e.g. snowfall and fog) or 

background light. Of special interest in an automotive application is the influence of spray water 

from the road surface. The spray water might lead to dirt on a sensor’s cover [101], alter the 

distribution of rainfall drop size and is subject to spatial uncertainty (i.e. it is strong directly behind 

vehicles and decreases in strength in areas where no vehicle is located). 

The simulation framework models the response of a single laser beam. Therefore, the laser 

performance is evaluated on the raw data level. Tracking and multi-cycle heuristics further allow 

to filter the false positive errors made on the raw data level. Extending the framework could allow 

to estimate a sensor’s performance on the object data level. 

For instance, combining the effects of other context variables with the presented framework in a 

ray tracer is an opportunity for physics-based lidar simulations to virtually estimate the 

performance of object detection and tracking. In a ray-tracing simulation, the sender and receiver 

could be simulated as a module. This module could be a black box in case the intellectual property 

of a third party needs to be protected. An intensity value is assigned to the rays corresponding to 

a discretization of 𝑃T(𝑡). A MCS is then performed for each ray, similar to Section 5.2.5 by 

dividing each ray into segments for which 𝛼(𝑅) and 𝛽(𝑅) are calculated. The received signal 

𝑃R(𝑅) is then derived for each ray with Eq. (5.2). In a next step, the obtained 𝑃R(𝑅) is provided to 

the sensor receiver module. The module processes the signal to provide the simulated lidar raw 
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data. Next, the simulated raw data can be combined with a SiL that simulates the object extraction 

and tracking in order to evaluate the performance of the whole sensing system. [105]67 

The simulation framework for rainfall effects is here derived by combining well known physics 

theories (lidar equation and Mie theory) with empirical findings on rainfall properties. Despite the 

framework’s theoretical and empirical foundation, future work could try to validate the proposed 

simulation framework by means of measurements and experiments, which is not in the scope of 

this thesis. To do so, the effect of precipitation has to be separated from other noise sources such 

as a varying background illumination. Alternatively, rainfall could be generated artificially with a 

rainfall simulator (i.e. a piping system with different nozzles to reproduce a realistic drop size 

distribution), similar to an experiment described in [104]. 

Considering the specific example of simulating adverse rainfall effects on lidar sensors, we 

conclude that simulation methods based on the physical principles behind a sensing technology 

constitute useful development tools. Simulation methods such as the presented framework are an 

opportunity to estimate sensor perception reliability early in the development process, when 

testing the sensors in reality is not yet possible. The simulations allow to account for context 

variables such as rainfall. Due to the complexities of environment perception, it is however not 

suggested that these simulation methods replace real sensor tests on proving grounds or in the field 

for a final validation of perception reliability (see also the discussion in Section 3.3.2). 

5.3 Learning Perception Reliability in Controlled Field Tests on Proving Grounds 

This Section is based on our publications in [39, 161] and is partly taken from our publication in 

[39]. 

An option to test and validate perception reliability is to conduct controlled field tests on proving 

grounds, following a catalogue of detailed scenarios [40, 44, 56, 178–181]. Significant research 

effort is made to identify and collect relevant test cases for ADS [181]. Limitations of 

demonstrating the perception reliability of an ADS with higher levels of driving automation on 

proving grounds through scenario based testing are discussed in Section 3.3. 

To (partly) overcome the limitations of scenario based testing, we develop a statistical framework 

to learn (sensor) perception reliability from controlled field tests on proving grounds. Two 

challenges for such a learning framework are potential statistical dependencies over subsequent 

                                                 
67 This paragraph is due to Jose Roberto Vargas Rivero in [105]. 
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time steps and a variable perception performance (see Section 3.1.4). The variable perception 

performance leads to higher order uncertainties (see Section 4.1.4). 

Because of higher order uncertainties, it is not sufficient to evaluate the (sensor) perception 

reliability once under controlled conditions on proving grounds. Instead, one has to account for 

the variability in the context variables 𝐄, otherwise the estimated (sensor) perception reliability is 

biased (see Section 3.1.4). Furthermore, a prerequisite for learning perception reliability metrics 

(Section 4.1) with standard statistical inference methods are statistically independent and 

identically distributed observations (i.e. object indications conditional on a real object being 

present or not, deviation in state quantities, object classes conditional on the true class). This 

prerequisite is not fulfilled because of potential statistical dependencies over subsequent time steps 

and a variable perception performance. 

To address the dependence structure in the data and the variable perception performance, we 

propose a Bayesian hierarchical regression model in Section 5.3.1 to exploit conditional 

independence properties, which enables the use of standard statistical inference methods. The 

hierarchical regression model learns the functional relationship between (known) context variables 

𝐄 and perception reliability metrics. Section 5.3.2 combines this functional relationship with the 

exposure 𝑓𝐄(𝐞) towards the context variables to predict global perception reliability metrics, or 

alternatively, the distribution of observables. The prediction probabilistically accounts for all 

values of 𝐞 in 𝑓𝐄(𝐞), hence it is not required to conduct an infinite number of test cases. The 

application of this framework is demonstrated with a simple case study in Section 5.3.3, which 

examines the influence of temperature on a lidar’s perception reliability. 

5.3.1 Learning the Influence of Context Variables on Perception Reliability 

The hierarchical regression model to learn the functional relationship between known context 

variables 𝐄 and relevant reliability metrics is developed in reference to [114]. The reliability 

metrics are generically denoted with 𝛉 in the following, which are model parameters to be learned. 

Depending on the respective uncertainty domain, 𝛉 include the reliability metrics as described in 

Section 4.1, and potentially parameters for sensor error dependencies in case multiple sensors are 

examined simultaneously. The generic structure underlying the hierarchical model is explained 

with Figure 5.11. 

The subscript 𝑗 identifies a specific discrete time interval of specific length (e.g. 5 s), in which it 

is assumed that the model parameters 𝛉𝑗 and the context variables 𝐞𝑗 are constant. In each time 

interval 𝑗 one observes 𝐾 data points 𝐱𝑗 = [𝐱𝑗,𝑘]𝑘=1
𝐾 , i.e. the subscript 𝑘 identifies a specific data 

point in the interval 𝑗. The data 𝐗 could for instance be binary indications of objects, the deviation 

in estimated state quantities from their true value, or object classes. 
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Figure 5.11 Bayesian network [116] for learning the effect of context variables E on perception reliability 

expressed through the model parameters 𝛉. 𝐗 is the observable data, 𝛃 quantifies the influence of 

E on 𝛉, 𝛗 are random effects not covered through E and 𝛃. 𝛟 are hyperparameter describing the 

variability in 𝛗. Taken and adapted from [39]. 

The data 𝐱𝑗 in a given time interval 𝑗 can be assumed to be approximately conditionally 

independent and identically distributed given 𝛉𝑗: 

𝐱𝑗,𝑘|𝛉𝑗 𝑓𝐗|𝛉𝑗(𝐱𝑗,𝑘|𝛉𝑗)  (5.18) 

𝑓𝐗|𝛉𝑗(𝐱𝑗,𝑘|𝛉𝑗) is the PDF of 𝐱𝑗,𝑘 for 𝑘 = 1, … , 𝐾 in time interval 𝑗. 

To account for higher order uncertainties, 𝛉𝑗 is formulated in function 𝑔( ) of a linear combination 

of known context variables 𝐞𝑗 and in function of a random effect parameter 𝛗𝑗: 

𝛉𝑗 = 𝑔(𝐞𝑗
T ∙ 𝛃 + 𝛗𝑗)  (5.19) 

𝛃 describes how 𝐞𝑗 influences 𝛉𝑗. 𝐞𝑗
T is the transposed vector of context variables’ states. Relevant 

context variables 𝐄 are identified with the procedure in Section 5.1. As one cannot know and 

quantify all relevant context variables, the random effect parameter 𝛗𝑗 quantifies the influence of 

all factors on 𝛉, which are not explicitly included in 𝐄. 𝛗𝑗 is described with a statistical model 

𝑓𝛗|𝛟 defined by the hyperparameter 𝛟: 

𝛗𝑗|𝛟 𝑓𝛗|𝛟(𝛗𝑗|𝛟)  (5.20) 

 

  

𝛃 𝛗𝑗

𝛟

𝑗 = 1,… , 𝐽

𝛉𝑗

𝐄𝑗

𝐗𝑗,𝑘

𝑘 = 1,… , 𝐾
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With the hierarchical model structure of Figure 5.11 and its implied conditional independence 

properties, the parameters 𝛃,𝛟  and 𝛗 are learned with Bayesian interference [114] from the 

collection of observed data 𝐱 = [𝐱𝑗]𝑗=1
𝐽

 and their corresponding context variables 𝐞 = [𝐞𝑗]𝑗=1
𝐽

:  

𝑓(𝛃, 𝛗,𝛟|𝐱, 𝐞) ∝  

∝ 𝑓(𝛃,𝛟) ∙ ∏ 𝑓𝛗|𝛟(𝛗𝑗|𝛟) ∙ ∏ 𝑓𝐗|𝛉𝑗(𝐱𝑗,𝑘|𝛉𝑗 = 𝑔(𝐞𝑗
T ∙ 𝛃 + 𝛗𝑗))

𝐾
𝑘=1

𝐽
𝑗=1   

(5.21) 

where 𝑓(𝛃,𝛗,𝛟|𝐱, 𝐞) is the joint posterior of 𝛃, 𝛗, 𝛟 given 𝐱 and 𝐞. 𝑓(𝛃,𝛟) is the joint prior of 

𝛃 and 𝛟. 𝑓𝛗|𝛟(𝛗𝑗|𝛟) is the likelihood of the random effects as in Eq. (5.20).  

𝑓𝐗|𝛉𝑗(𝐱𝑗,𝑘|𝛉𝑗 = 𝑔(𝐞𝑗
T ∙ 𝛃 + 𝛗𝑗) is the likelihood of the model parameters, defined by Eqs. (5.18)-

(5.19). 

Given the influencing factors 𝐞𝑗, the model in Figure 5.11 is fully defined by the joint PDF of 𝛟 

and 𝛃. Therefore, inference of the random effects 𝛗𝑗 in a particular time interval 𝑗 is not important 

for a reliability prediction. Eq. (5.21) can be marginalized over 𝛗 = [𝛗𝑗]𝑗=1
𝐽

 to obtain the relevant 

posterior 𝑓(𝛃,𝛟|𝐱, 𝐞): 

𝑓(𝛃, 𝛟|𝐱, 𝐞) ∝ ∫ 𝑓(𝛃,𝛗,𝛟|𝐱, 𝐞)d𝛗
𝛗

  
(5.22) 

In Section 5.3.3 we demonstrate with a simple example how to learn 𝛟 and 𝛃 from data 𝐱, i.e. how 

to estimate the posterior 𝑓(𝛃,𝛟|𝐱, 𝐞) in Eq. (5.22). 

5.3.2 Predicting Perception Reliability 

Ultimately, the goal is to predict future observable data �̃� given the test data 𝐱 and 𝐞, accounting 

for the exposure (i.e. occurrence frequency) 𝑓𝐄(�̃�) of the context variables 𝐄68. This prediction is 

obtained in analogy to Eq. (3.5) by marginalizing over all parameters in the joint distribution in 

Figure 5.11, given the evidence on 𝐱 and 𝐞: 

𝑓(�̃�|𝐱, 𝐞) =  

= ∫𝑓(𝛃,𝛟|𝐱, 𝐞) ∙ 𝑓𝛗|𝛟(𝛗|𝛟) ∙ 𝑓𝐄(�̃�) ∙ 𝑓𝐗|𝛉(�̃�|𝑔(�̃�
T ∙ 𝛃 + 𝛗)) 𝑑𝛟𝑑𝛗𝑑𝛃𝑑�̃�  

(5.23) 

where 𝑓(�̃�|𝐱, 𝐞) is the posterior predictive distribution of the observables and  

𝑓𝐗|𝛉(�̃�|𝛉 = 𝑔( ̃
T ∙ 𝛃 + 𝛗)) is the sampling distribution in Eq.(5.18) of 𝐱 for given model 

                                                 
68 The posterior 𝑓(𝛃,𝛟|𝐱, 𝐞) describes the uncertainty in the model parameters 𝛃 and 𝛟 given the observed data  

𝐱 = [𝐱𝑗]𝑗=1
𝐽

 and the corresponding observed context variables 𝐞 = [𝐞𝑗]𝑗=1
𝐽

 in a test. The notation �̃� makes clear that 

the prediction in Eq. (5.23) is not w.r.t. 𝑓(𝛃,𝛟|𝐱, 𝐞) but to the sampling distribution in Eq. (5.18), i.e. to 

𝑓𝐗|𝛉(�̃�|𝑔(�̃�
T ∙ 𝛃 + 𝛗)). 
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parameters 𝛉 = 𝑔( ̃T ∙ 𝛃 + 𝛗). The (sensor) perception reliability can be derived from 𝑓(�̃�|𝐱, 𝐞), 

e.g. in terms of the standard deviation of state quantities or POD and PFA. 

Alternatively one could also directly predict the model parameters: 

�̂� = ∫𝑓(𝛃,𝛟|𝐱, 𝐞) ∙ 𝑓𝛗|𝛟(𝛗|𝛟) ∙ 𝑓𝐄(�̃�) ∙ 𝑔(�̃�
T ∙ 𝛃 + 𝛗) 𝑑𝛟𝑑𝛗𝑑𝛃𝑑𝐞  

(5.24) 

where �̂� is the predicted global mean of the model parameters w.r.t. higher order uncertainties 

over time intervals 𝑗. As an alternative to evaluating the mean �̂�, the PDF of 𝛉𝑗 could be derived 

with Markov Chain Monte Carlo (MCMC) sampling [114, 115, 266, 267]. 

5.3.3 Case Study: Quantifying the Influence of Temperature on a Lidar’s Accuracy 

The learning framework of Section 5.3.1 is exemplarily applied in a simple case study to 

investigate the effect of increased sensor temperatures on a lidar’s accuracy in object position 

estimations. The utilized lidar controls the angular measurement directions with a mechanically 

rotating mirror [268]. A heating pad was attached to the sensor casing to control the temperature. 

Object position deviations ∆𝑋 in the direction perpendicular to the sensor are evaluated, i.e. the 

case study evaluates the lidar’s perception reliability in the domain of state uncertainties, see 

Section 4.1. In this example, temperature is the only context variable we consider.  

Experiment Set-Up 

To evaluate ∆𝑋, a vehicle equipped with the lidar is parked perpendicular to a wooden wall at a 

distance of 37.84 m. The simple experiment set-up is depicted in Figure 5.12. 

 

Figure 5.12 Experiment set-up to learn the influence of temperature on a lidar’s object position estimation 

accuracy according to Section 5.3.1. 

37,84 m

𝑣ego = 0 km/h

Wall

LiDAR with heating pad

FOV
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The distance to the wall was not altered during the test. This means, the ego-velocity of the vehicle 

is 𝑣ego = 0 km/h during the complete test. The weather during the test was cloudy but without 

precipitation. Due to stable weather conditions, it is not expected that the weather causes variations 

in the lidar’s performance during the test.  

In total 24min 36 s of measurements were recorded. During the measurements, the heating pad 

was activated at 𝑡 ≈ 7 min to increase the sensor’s temperature. The recorded object position 

deviations ∆𝑥 of the wall in the direction perpendicular to the sensor are plotted over time in Figure 

5.13a). The corresponding temperature of the sensor casing is presented in Figure 5.13b).  

 

Figure 5.13 (a) Recorded object position deviations ∆𝒙 of a wall (see Figure 5.12) over time. (b) Corresponding 

temperature of the lidar casing. The heating pad was activated at 𝒕 ≈ 𝟕 𝐦𝐢𝐧. 

It is difficult to draw conclusions on the influence of temperature on the accuracy in ∆𝑥 by solely 

visually comparing Figure 5.13a) and Figure 5.13b). A comparatively large value of ∆𝑥 is observed 

at time 𝑡 ≈ 17 min. 

Statistical Model 

The data is grouped into time intervals of 𝑡 = 30 s length to apply the learning framework of 

Section 5.3.1, resulting in 𝐽 = 50 time intervals. The position deviations ∆𝑥𝑗,𝑘 in interval 𝑗 are 

modeled with a normal distribution for 𝑘 = 1,… , 𝐾: 

∆𝑥𝑗,𝑘|μ𝑗, σ𝑗 𝑁(μ𝑗, σ𝑗
2)  

(5.25) 

where the model parameters 𝛉𝑗 = [μ𝑗, σ𝑗] are the mean and standard deviation of ∆𝑋𝑗 in block 𝑗. 

Eq. (5.25) is the distribution of the data as in Eq. (5.18). 
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To account for higher order uncertainties in the mean of ∆𝑋𝑗, the μ𝑗 in the different time intervals  

𝑗 = 1,… 𝐽 are assumed to be samples from a normal distribution: 

μ𝑗|μμ, σμ 𝑁(μμ, σμ
2)  

(5.26) 

𝛟μ = [μμ, σμ] are hyperparameter as in Eq. (5.20). μμ is the global mean, i.e. the mean of μ𝑗 over 

𝑗. σμ is the standard deviation of μ𝑗 over 𝑗. With this modeling choice, it is assumed that there is 

no systematic influence of temperature on the position deviations but that the mean is variable due 

to random effects.  

The standard deviations σ𝑗 of ∆𝑋𝑗 in the different time intervals 𝑗 = 1,… 𝐽 are modeled in function 

of the standardized69 temperature 𝑇standard. Additionally, a random effect φσ,𝑗 accounts for 

variability in σ𝑗, which is not accounted for by temperature 𝑇: 

σ𝑗 = √exp (−β0 − β1 ∙ 𝑇standard − φσ,𝑗)  (5.27) 

The exponential in Eq. (5.27) ensures that σ𝑗 > 0. 

Finally, the random effect φσ,𝑗 is modeled with a normal distribution: 

φσ,𝑗|τφ 𝑁(0, 1/τφ)  (5.28) 

where the hyperparameters are 𝛟σ = [μσ, σσ
2] = [0, 1/τφ]. 

The prior distribution 𝑓(𝛃,𝛟) in Eq. (5.21) is naively selected to be weakly-informative for all 

model parameters with a uniform prior. 

Results 

The model parameters are learned from the data in Figure 5.13 in analogy to Eq. (5.21) with 

MCMC [114, 115, 266, 267] using OpenBugs [269]. The results are presented in arbitrary units. 

The inference of the mean of ∆𝑥𝑗 in the different time intervals 𝑗 is presented in Figure 5.14a) to 

demonstrate the variability in μ𝑗. Points are a posteriori parameter estimates and lines are 95% 

credible intervals. A comparison of Figure 5.14a) with empirical values of μ𝑗 reveals that the 

learning framework of Section 5.3.1 correctly determines the mean values. The credible intervals 

indicate that estimation uncertainties for μ𝑗 are generally small, except for time interval 𝑗 = 35. 

                                                 
69 The standardized temperature has a mean of 0 and a standard deviation of 1. Regression analysis and model training 

is more stable when standardizing covariates (i.e. features) [114, 115]. 
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Figure 5.13a) shows that a comparatively large position deviation ∆𝑥 occurred in time interval  

𝑗 = 35, which translates into the larger uncertainty in μ35. 

In units of Figure 5.14a), the global mean is estimated as μμ = 0.76 with a 95% credible interval 

of [0.64, 0.88]. Visually comparing Figure 5.14a) with Figure 5.13b) leads to the hypothesis of a 

quadratic relationship between μj and temperature 𝑇. This potential relationship is not further 

investigated nor modeled because the variability of μ𝑗 is negligible in absolute values. In practice, 

the influence of 𝑇 on μ𝑗 should be accounted for. 

 

Figure 5.14 Caterpillar plots: (a) mean 𝛍𝒋 of ∆𝒙𝒋 and (b) random effect 𝛗𝛔,𝒋 of the standard deviation 𝛔𝒋 in 

interval 𝒋 = 𝟏,…𝟓𝟎. Points are a posteriori mean estimates and lines 95% credible intervals. 

The estimation of random effects φσ,𝑗 is presented in Figure 5.14b). The variability in ∆𝑥35 caused 

by the large position deviation in time interval 𝑗 = 35 is explained with a large (absolute) random 

effect of φσ,𝑗 = −2.06 and not by the temperature influence. A random effect of φσ,𝑗 = −2.06 

increases the standard deviation σ𝑗 by a factor of 2.79. Further investigating the data in time 

interval 𝑗 = 35 reveals that the large position deviation is due to an error in the object bounding 

box and not due to temperature. This is correctly identified by the random effect. 

To assess sensor perception reliability in the state uncertainty domain (Section 4.1.2), the 

functional relationship between temperature 𝑇 and the standard deviation σ𝑗 of ∆𝑋𝑗 according to 

Eq. (5.27) is investigated. Results of the parameter estimation are summarized in Table 5.2. A 

central question is, whether the temperature has an influence on the variability of the position 
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deviations ∆𝑥? Because β1 is with more than 99.99 % credibility smaller than zero, it is concluded 

that 𝑇 is correlated with σ𝑗70.  

Table 5.2 Results of the parameter inference in arbitrary units. From [161]. 

Parameter Mean 2.5% quantile Median 97.5% quantile 

β0  1.00 0.97 1.00 1.04 

β1 −0.32 −0.56 −0.32 −0.10 

φσ,2 −0.20 −0.40 −0.20 0.03 

φσ,35 −2.06 −2.27 −2.05 −1.90 

τφ 5.51 3.53 5.43 7.95 

μμ 0.76 0.64 0.76 0.88 

σμ 0.44 0.38 0.46 0.56 

 

The learned relationship between 𝑇 and σ𝑗 is presented in Figure 5.15a) together with observed σ𝑗. 

The relationship adequately represents observed σ𝑗. The credible intervals in Figure 5.15a) account 

for the influence of 𝑇 on σ𝑗, i.e. they do not account for statistical uncertainties in random effects 

φσ,𝑗 or the hyperparameter τφ. Conditional on the a posteriori mean value of τφ, the random 

effects φσ,𝑗 have with 95% probability a multiplicative effect between 0.66 and 1.52 on σ𝑗. The 

scattering of observed σ𝑗 around the relationship in Figure 5.15a) is due to random effects φσ,𝑗. 

 

Figure 5.15 (a) Influence of temperature on the standard deviation 𝛔𝒋 of ∆𝒙𝒋. Points are observed 𝛔𝒋. The 95% 

credible intervals account for the a posteriori uncertainty in the constant factor 𝛃𝟎 and the weight 

𝛃𝟏 of the temperature influence, see Eq. (5.27). (b) Relative change of 𝛔𝒋 with temperature 𝑻. The 

credible intervals only account for the weight 𝛃𝟏. Taken and adapted from [161]. 

                                                 
70 Based on the results, it is possible that an increased temperature causes an increased standard deviation. It could 

however also be the case that another factor which is correlated with the temperature in Figure 5.13b) actually causes 

the standard deviation to increase. 
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Figure 5.15b) shows the relative change of σ𝑗 with increasing temperature 𝑇. The standard 

deviation of position deviations increases in the mean by 46%, when increasing the temperature 

of the sensor casing from 1.85 to 5.00 [arbitrary units]. 

Finally, the standard deviation σ𝑗 is predicted. The prediction is performed by sampling τφ, β0, β1 

and φσ,𝑗 with MCMC and inserting these parameter into Eq. (5.27). The result is displayed in 

Figure 5.16.  

 

Figure 5.16 Posterior predictive distribution of the standard deviation 𝛔𝒋. Conditional on the data and the 

temperature 𝑻, 𝛔𝒋 is predicted to lie with 95% probability between the dashed lines. 

With 95% probability, the standard deviation is predicted to lie between the dashed lines, 

conditional on the data in Figure 5.13 and conditional on temperature 𝑇. To obtain a prediction not 

conditional on 𝑇, one needs to estimate the exposure 𝑓T(𝑡) towards 𝑇. Averaging the prediction in 

Figure 5.16 over 𝑓T(𝑡) is then a prediction of σ𝑗 accounting for the context variable 𝑇 and for 

random effects that are not due to 𝑇. 

5.3.4 Discussion and Conclusions 

The main idea behind the proposed framework is to learn (sensor) perception reliability in 

dependence of context variables. Combining the learned relationship with the probability of 

exposure towards the context variables then allows to predict the overall (sensor) perception 

reliability.  

With this approach, we partly address the concerns of scenario based testing on proving grounds 

as discussed in Section 3.3: a) the framework provides statistical evidence on (sensor) perception 

reliability over the population of possible scenarios, accounting for context variables 𝐞, instead of 
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evaluating a specific test case deterministically as either passed or failed. b) The method (partly) 

accounts for factors not present in a specific test case with the population of random effects in Eq. 

(5.20). Hence the method does not require an infinite number of test cases. Both a) and b) 

combined account for higher order uncertainties and allow to efficiently assess (sensor) 

perception reliability. 

In the learning framework, the distribution of random effects 𝑓𝛗|𝛟(𝛗𝑗|𝛟) in Eq. (5.20) is informed 

by factors not included in 𝐄 whose influence is present in the data 𝐱. The distribution 𝑓𝛗|𝛟(𝛗𝑗|𝛟) 

however cannot account for the stochastic effect of factors, which are not present in the data 𝐱 

AND would lead to a different sensor behavior than expected under the model 𝑓𝛗|𝛟(𝛗𝑗|𝛟)71. For 

example, one cannot identify the effect of rare shock events (see Section 6.1.4 for a definition of 

shock events) not present on the proving ground that systematically would lead to perception 

errors. This is a fact one has to bear in mind if the perception reliability analysis relies to a large 

degree on a scenario based testing. 

To apply the learning framework of Section 5.3.1, the context variables have to be measured (and 

controlled on a proving ground). As already discussed in Section 3.3.2, some context variables 

such as snowfall are difficult to measure quantitatively or to control on proving grounds. 

Additionally, relevant context variables 𝐄 have to be known a priori to set up the relationship 

between 𝐄 and the model parameter in Eq. (5.19). Relevant context variables can for instance be 

identified with the method of Section 5.1. 

A practical problem is however that the interactions between different context variables can – due 

to the course of dimensionality – only partly be taken into account. The curse of dimensionality 

refers to an exponential increase in the required data (i.e. test effort) with the number of features 

(here context variables) in learning relationships such as Eq. (5.19), if interactions between the 

features are to be considered [115, 189]. In the case study, for example, the object we observed 

was a wooden wall. Postulating that the effect of temperature on sensor accuracy depends also on 

the object type (i.e. an interaction between the two context variables temperature and object type) 

would require to obtain data for the combinations of each object type and each relevant temperature 

level. The required test effort to account for all possible interactions between context variables 

hence becomes probably intractably large. 

A prerequisite for the prediction of (sensor) perception reliability according to Section 5.3.2 is an 

estimation of the exposure 𝑓𝐄(𝐞) towards context variables. While 𝑓𝐄(𝐞) could in principle be 

estimated based on additional data and field studies, or through expert knowledge, an accurate 

assessment of 𝑓𝐄(𝐞) is a challenge in practice. An advantage of the framework is that by altering 

                                                 
71 This means, the factors not present in the data 𝐱 would lead to a different distribution 𝑓𝛗(𝛗𝑗|𝛟).  
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𝑓𝐄(𝐞) in Eq. (5.23), one is able to account for exposure frequencies in different geographical 

regions (e.g. a hot and dry region versus a cold and wet region). This allows to evaluate (sensor) 

perception reliability under varying user profiles. 

In conclusion, the presented framework allows to preclude an unsatisfactory (sensor) perception 

reliability under the influence of relevant context variables. The results of a case study show that 

the proposed methodology is for example able to identify and quantify the relationship between 

temperature and (sensor) perception reliability in the state uncertainty domain. The presented 

framework could therefore contribute to a validation of (sensor) perception reliability and 

improves scenario based testing procedures evaluated with pass /fail criteria. Due to the risk of not 

accounting for critical factors not present in the tested scenarios on the proving grounds, additional 

field test are however recommendable for a final validation of (sensor) perception reliability. 

5.4 Learning Perception Reliability with Field Tests in Real Traffic 

This Section is based on our publications in [39, 157] and is partly taken from our publications in 

[39, 157]. 

Extensive field tests in real traffic can account for the variability of environmental factors and thus 

allow to learn and validate (sensor) perception reliability under realistic conditions [44, 65, 66]. 

A challenge is the setting-up of a reference truth, to test representatively, to deal with changes in 

the perception system and the approval trap (see Section 3.1.4). We address the approval trap in 

Section 4.2 with methods from system reliability theory by conceptualizing the perception module 

in terms of its individual sensors (k-out-of-n vote in Figure 4.7). Our contribution in this Section 

is the presentation of methods to actually learn sensor perception reliabilities in field tests. 

With the availability of a reference truth to identify perception deficiencies, learning (sensor) 

perception reliability is straightforward. Either the sensor or perception error rate is directly 

evaluated with a suitable definition of perception errors, or alternatively, the perception reliability 

metrics according to Section 4.1 are learned from the data. In this Section, we outline with the 

example of existence uncertainties how to learn (sensor) perception reliabilities and dependencies 

from representative field tests with a reference truth. Representative field tests account for the 

variability in sensor performance (higher order uncertainties) and the resulting estimates of the 

sensor or perception error rates can be interpreted as global mean error rates (Sections 3.1.4 and 

4.1.4). Applying Section 4.3.2 for instance ensures that a test is approximately representative. 

In particular, we formulate the problem of learning perception reliability of redundant sensors in 

the context of existence uncertainties in Section 5.4.1. Bayesian inference [114] straightforwardly 
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enables to learn the underlying reliability metrics, as we outline in Section 5.4.2. Additionally, a 

statistical model for existence uncertainties in redundant sensors is introduced in Section 5.4.3 

under the assumption of statistically independent sensor errors. As is apparent from Figure 4.15, 

an important aspect for perception reliability are potential statistical dependencies among sensor 

errors. The beta-binomial dependence model introduced in Section 4.2 assumes identical sensor 

error rates with equi-correlated sensor errors. As a more flexible alternative to the beta-binomial 

distribution, we propose in Section 5.4.4 to model the dependence among FN or FP sensor errors 

with a Gaussian copula [115, 270–273]. Finally, we provide a low rank parameterization of the 

Gaussian copula [115] in Section 5.4.5, with the advantage of having a smaller number of model 

parameters. 

5.4.1 Problem Formulation: Learning (Sensor) Perception Reliability in the Existence 

Uncertainty Domain 

In accordance with Sections 4.1.1 and 4.1.5, we interpret the sensors’ object detections binary. The 

object data of 𝑛 redundant sensors is analyzed within a certain temporal discretization, e.g. with 

𝑡crit as in Eq. (4.8). A single sensor is identified with 𝑖, for 𝑖 = 1,… , 𝑛 sensors. A specific discrete 

point in time is identified with 𝑚, for 𝑚 = 1,2,3, …𝑀. 𝑀 is the total number of observed discrete 

points in time. The output of sensor 𝑖 at point in time 𝑚 is described by a binary random variable 

𝐷𝑖,𝑚, with states detection 𝐷𝑖,𝑚 = 1 or no detection 𝐷𝑖,𝑚 = 0. The random variable 𝑂𝑚 is 

introduced, which describes the binary state of the reference truth at point in time 𝑚. With  

𝑂𝑚 = 1, an object is present, and with 𝑂𝑚 = 0 no object is present. 𝐷𝑖,𝑚 and 𝑂𝑚 enable to evaluate 

the individual sensor output with the confusion matrix of Figure 4.3.  

With sensor redundancy, not only the confusion matrix of each individual sensor but also the joint 

performance of all sensors in the sensor set is relevant, because sensor data fusion combines the 

output of different sensors [57–59, 110, 118]. We therefore describe the output of the sensor set as 

a binary random vector 𝑫𝑚 with 𝑫𝑚 = [𝐷1,𝑚, … , 𝐷𝑛,𝑚]. 𝑫𝑚 is termed detection vector, i.e. it is 

the vector of binary object detections in the different sensors (e.g. referring to a specific area of 

the FOV). With 𝑛 sensors, there are 2𝑛 different possible outcomes of 𝑫𝑚. The 8 possible 

outcomes of 𝑫𝑚 with 𝑛 = 3 sensors are for example illustrated in Table 5.3. A random variable 

𝑌𝑚 is introduced, which identifies a specific combination of 𝑫𝑚 and facilitates notation. 𝑌𝑚 takes 

values between 1,…, 2𝑛 and once defined as in Table 5.3, 𝑌𝑚 = 𝑦𝑚 can be written interchangeably 

for 𝑫𝑚 = [𝑑1,𝑚, … , 𝑑𝑛,𝑚]. As an example, with the definitions in Table 5.3, 𝑌𝑚 = 4 is identical to 

𝑫𝑚 = [0,0,1]. 
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Table 5.3 Illustration of the sample space of the detection vector 𝑫𝒎 = [𝑫𝟏,𝒎, … , 𝑫 ,𝒎] for  = 𝟑 sensors. 

The variable 𝒀𝒎 identifies a specific detection vector 𝑫𝒎. 

Variable 𝑌𝑚 𝐷1,𝑚  𝐷2,𝑚  𝐷3,𝑚  

1 0 0 0 

2 1 0 0 

3 0 1 0 

4 0 0 1 

5 1 1 0 

6 0 1 1 

7 1 0 1 

8 1 1 1 

 

In the binary setting, the joint performance of the sensors is fully described by the frequencies of 

the different elements in Table 5.3, once conditional on 𝑂𝑚 = 1 and once conditional on 𝑂𝑚 = 0. 

The assessment of these conditional frequencies is the task of the sensor perception reliability 

analysis. We are interested in global averages of these frequencies, to assess if safety and 

performance goals are met. This is in contrast to sensor data fusion [57–59, 110, 118], which aims 

at obtaining instantaneous estimates of these frequencies for an optimal combination of the 

information provided by different sensors. 

We therefore describe the occurrence of 𝑌𝑚 = 𝑦𝑚 with its probability in a large number of 

randomly selected points in time, conditional on 𝑂𝑚. With this description, we implicitly assume 

exchangeability, i.e. no information is conveyed by the ordering of the different points in time 

𝑚 = 1,2,… ,𝑀. Hence, we drop the index 𝑚 in the following and the joint performance of the 

sensors is fully described by the conditional probability mass functions 𝑝𝑌|𝑂, i.e. Pr(𝑌 = 𝑦|𝑂 = 1) 

and Pr(𝑌 = 𝑦|𝑂 = 0), for any value 𝑦. The implications of assuming exchangeability are 

discussed in Section 4.2.4. 

Let 𝛉 denote the model parameters that describe the probability mass functions 𝑝𝑌|𝑂. In this 

Section, we consider the model parameters 𝛉 to be constant and not a function of any context 

variables (covariates). The probability of an object being present in a specific area of the FOV is 

described by its a priori probability Pr(𝑂 = 1) = 𝑝obj. With these definitions, Figure 5.17 

summarizes the model graphically by means of a Bayesian network [116].  
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Figure 5.17 Bayesian network representation of the model for learning sensor perception reliability in the 

existence uncertainty domain. 𝒑𝐨𝐛𝐣 and 𝛉 are the model parameters to be learned, 𝒀𝒎 identifies 

the detection vector as e.g. defined in Table 5.3 for  = 𝟑 and 𝑶𝒎 indicates if an object is present. 

Taken and adapted from [157]. 

5.4.2 Learning Perception Reliability with a Reference Truth 

With a reference truth, one obtains labeled data 𝐱labeled = [𝑦𝑚, 𝑜𝑚]𝑚=1
𝑀 , i.e. whether an object is 

actually present or not, described by 𝑜𝑚, is known for each 𝑚. From 𝐱labeled, one can directly 

derive method of moment or maximum likelihood estimates of the individual sensors’ POD and 

PFA as well as of the frequencies of 𝑌 = 𝑦, conditional on an object being present or not. As an 

alternative, we utilize Bayesian analysis for the inference of 𝛉 and 𝑝obj to account for estimation 

uncertainties [114, 115]. In Bayesian statistics, a probability expresses a degree of belief that can 

change as new information is gathered. The posterior of 𝛉 and 𝑝obj is readily obtained based on 

the data. In case of 𝑝obj it is: 

𝑓(𝑝obj|𝐱labeled) ∝ 𝑓(𝑝obj) ∙ ∏ 𝑝obj
𝕀(𝑜𝑚=1) ∙ (1 − 𝑝obj)

𝕀(𝑜𝑚=0)𝑀
𝑚=1   

(5.29) 

𝑓(𝑝obj|𝐱labeled) is the posterior probability density function (PDF) of 𝑝obj given the vector of 

observed data 𝐱labeled, 𝑓(𝑝obj) is the prior PDF and ∏ 𝑝obj
𝕀(𝑜𝑚=1) ∙ (1 − 𝑝obj)

𝕀(𝑜𝑚=0)𝑀
𝑚=1  is the 

likelihood describing the data. 𝕀(𝑜𝑚 = 1) is the indicator function, which equals one if 𝑜𝑚 = 1 is 

true and zero otherwise. By choosing a beta distributed prior 𝑓(𝑝obj), the posterior is also beta 

distributed, hence this is a convenient choice (the beta distribution is the conjugate prior) [114]. 

The posterior of 𝛉 is: 

𝑓(𝛉|𝐱labeled) ∝ 𝑓(𝛉) ∙ ∏ 𝑝𝑌|𝛉,𝑂(𝑦𝑚|𝛉, 𝑜𝑚)
𝑀
𝑚=1   

(5.30) 

𝑓(𝛉) is the prior PDF of 𝛉 and ∏ 𝑝𝑌|𝛉,𝑂(𝑦𝑚|𝛉, 𝑜𝑚)
𝑀
𝑚=1  is the likelihood. If 𝑝𝑌|𝛉,𝑂 is described by 

a multinomial distribution, the Dirichlet PDF is the conjugate prior, which leads to a closed form 

𝛉 𝑂𝑚

𝑝obj

𝑚 = 1,… ,𝑀

𝑌𝑚

https://en.wikipedia.org/wiki/Probability
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solution [115]. Alternatively, the posterior can be estimated based on Markov Chain Monte Carlo 

(MCMC) methods [114, 115, 266, 267]. 

When 𝑝𝑌|𝛉,𝑂 is described with the multinomial distribution, each of the conditional distributions 

𝑝𝑌|𝛉,𝑂=1 and 𝑝𝑌|𝛉,𝑂=0 has 2𝑛 − 1 parameters, resulting in a total of 2𝑛+1 − 2 free parameters 𝛉 

that need to be learned (2𝑛 parameters for the different values of 𝑦, where one parameter is 

redundant because of the constraint ∑ Pr(𝑌 = 𝑦|𝑂 = 𝑜)
𝑦=2𝑛

𝑦=1 = 1). The parameters 𝛉 are the 

relative frequencies of the different values of 𝑌. The following Sections specify alternatives to the 

multinomial distribution for 𝑝𝑌|𝛉,𝑂 to reduce the number of model parameters.  

5.4.3 Model for Statistically Independent Sensor Errors 

In accordance with Section 4.1.1, the sensor perception reliability of an individual sensor  

𝑖 = 1, … , 𝑛 in the existence uncertainty domain is described with POD𝑖 and PFA𝑖. When sensor 

errors are statistically independent, the probability 𝑝𝑌|𝛉,𝑂(𝑦|𝛉, 𝑜) is fully determined by the 

parameters 𝛉indep = [POD1, … , POD𝑛, PFA1, … , PFA𝑛]. The probability 

𝑝𝑌|𝛉indep,𝑂(𝑦|𝛉indep, 𝑂 = 1) given an object is present is: 

𝑝𝑌|𝛉indep,𝑂(𝑦|𝛉indep, 𝑂 = 1) = ∏ (POD𝑖)
𝕀(𝑑𝑖=1)𝑛

𝑖=1 ∙ (1 − POD𝑖)
𝕀(𝑑𝑖=0)  

(5.31) 

The values of 𝑑𝑖,  𝑖 = 1,… , 𝑛 are those corresponding to 𝑦, in analogy to Table 5.3. The probability 

𝑝𝑌|𝛉indep,𝑂(𝑦|𝛉indep, 𝑂 = 0) given no object is present is: 

𝑝𝑌|𝛉indep,𝑂(𝑦|𝛉indep, 𝑂 = 0) = ∏ (PFA𝑖)
𝕀(𝑑𝑖=1)𝑛

𝑖=1 ∙ (1 − PFA𝑖)
𝕀(𝑑𝑖=0)  

(5.32) 

With a reference truth, information on 𝑜𝑚 is available, hence one can directly insert Eqs. (5.31)-

(5.32) for each 𝑚 into Eq. (5.30) and learn 𝛉indep. The advantage of this model over the use of the 

multinomial distribution is that the number of parameters is only 2𝑛 as opposed to 2𝑛+1 − 2 in the 

case of a multinomial distribution. 

5.4.4 Gaussian Copula for Statistically Dependent Sensor Errors 

The model of Section 5.4.3 does not account for potential statistical dependencies in FN or FP 

errors among different sensors. The statistical error dependence is fully accounted for by the 

probabilities of Pr(𝑦|𝑂 = 𝑜). Describing Pr(𝑦|𝑂 = 𝑜) with a multinomial distribution leads to 

2𝑛 − 1 free parameters that need to be learned once for 𝑂 = 1 and once for 𝑂 = 0. To reduce the 

number of parameters relative to the multinomial distribution, we introduce a model of statistical 

dependence for sensor perception reliabilities in the existence uncertainty domain based on the 

Gaussian copula, which is the most common copula model [115, 270–273]. 
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The Gaussian copula for correlated binary data is also known as a multivariate probit in the context 

of regression analysis [115, 273]. The Gaussian copula model is based on transforming the 

marginal (Bernoulli) random variables 𝐷𝑖, describing the individual sensor detections, to random 

variables 𝑈𝑖 in standard normal space. One then imposes that the transformed 𝐷𝑖 of the different 

sensors 𝑖 in standard normal space jointly have the multi-normal distribution, whose correlation 

matrix describes the statistical dependence among the sensors.  

Transformation of 𝑫𝒊 to Standard Normal Space  

The transformation to standard normal space enables a straightforward description of the 

dependence among the random variables 𝐷𝑖 with a manageable number of free parameters. The 

random variable 𝐷𝑖 conditional on an object being present, describing TP and FN sensor 

detections, is transformed into standard normal space by the probability conserving 

transformation: 

POD𝑖 = Pr(𝐷𝑖 = 1|𝑂 = 1) = Pr(𝑈FN,𝑖 ≤ Φ
−1(POD𝑖)|𝑂 = 1)  (5.33) 

where 𝑈FN,i is a standard normal random variable, Φ−1 the inverse standard normal cumulative 

distribution function (CDF) and 𝑢POD,𝑖 = Φ
−1(POD𝑖). Consequently, it is Pr(𝐷𝑖 = 0|𝑂 = 1) =

Pr (𝑈FN,𝑖 > Φ
−1(POD𝑖)|𝑂 = 1). The inverse transformation is illustrated in Figure 5.18. 

 

Figure 5.18 Inverse transformation of TP and FN probabilities 𝐏𝐫(𝑫𝒊 = 𝟏|𝑶 = 𝟏) and 𝐏𝐫(𝑫𝒊 = 𝟎|𝑶 = 𝟏) to 

a standard normal random variable 𝑼𝐅𝐍,𝒊. The solid blue line is the standard normal CDF. Taken 

and adapted from [157]. 

The transformation for FP and TN sensor outcomes is equivalent, with 𝑢PFA,𝑖 = Φ
−1(PFA𝑖), 

resulting in a standard normal random variable 𝑈FP,𝑖. 

ϕ(𝑢FN,𝑖)

𝑢POD,𝑖 𝑈FN,𝑖

𝑈FN,𝑖 ≤ 𝑢POD,𝑖 𝑈FN,𝑖 > 𝑢POD,𝑖

𝐷𝑖 = 1 𝐷𝑖 = 0

POD𝑖 
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Gaussian Copula 

The statistical dependence among the sensors 𝑖 and 𝑗 is represented by the correlation coefficient 

𝜌UFN,𝑖,𝑗 among the random variables 𝑈FN,𝑖 and 𝑈FN,𝑗, and by the correlation coefficient 𝜌UFP,𝑖,𝑗 

among the random variables 𝑈FP,𝑖 and 𝑈FP,𝑗. As an example, the joint probability of a FN sensor 

error in both sensors 𝑖 and 𝑗 under this model is: 

Pr(𝐷𝑖 = 0, 𝐷𝑗 = 0|𝑂 = 1) = Φ2 ([
−𝑢POD,𝑖
−𝑢POD,𝑗

] , [
1 𝜌UFN,𝑖,𝑗

𝜌UFN,𝑖,𝑗 1
])  

(5.34) 

where Φ2 is the bivariate standard normal CDF with zero mean vector and covariance matrix 

defined by 𝜌UFN,𝑖,𝑗. Eq. (5.34) is derived from Pr(𝐷𝑖 = 0,𝐷𝑗 = 0|𝑂 = 1) = Pr(𝑈FN,𝑖 >

𝑢POD,𝑖, 𝑈FN,𝑗 > 𝑢POD,𝑗|𝑂 = 1).  

Note that 𝜌UFN,𝑖,𝑗 and 𝜌UFP,𝑖,𝑗 are not identical to 𝜌FN,𝑖,𝑗 and 𝜌FP,𝑖,𝑗 (as in Eq. (4.17)), respectively. 

The relationship between e.g. 𝜌FP,𝑖,𝑗 and 𝜌UFP,𝑖,j is [274]: 

𝜌FP,𝑖,𝑗 = ∫ ∫
𝕀(𝑢FP,𝑖≤𝑢PFA,𝑖)−PFA𝑖

√PFA𝑖∙(1−PFA𝑖)

∞

−∞

∞

−∞
∙
𝕀(𝑢FP,𝑗≤𝑢PFA,𝑗)−PFA𝑗

√PFA𝑗∙(1−PFA𝑗)
∙

φ2 ([
𝑢FP,𝑖
𝑢FP,𝑗

] , [
1 𝜌UFP,𝑖,𝑗

𝜌UFP,𝑖,𝑗 1
]) 𝑑𝑢FP,𝑖𝑑𝑢FP,𝑗  

(5.35) 

where φ2 is the bivariate standard normal PDF with zero mean vector and covariance matrix 

defined by 𝜌UFP,𝑖,𝑗. 

In the general case, more than two sensors are present. With the Gaussian copula, the dependence 

among 𝑛 sensors is described by the joint distribution of 𝐔, which is multivariate normal. Its PDF 

is defined as: 

𝑓𝐔|𝑂(𝐔 = 𝐮|𝑂 = 𝑜) = {
φn(𝐮, 𝐑𝐔,FN), 𝑜 = 1

φn(𝐮, 𝐑𝐔,FP), 𝑜 = 0
  

(5.36) 

where φn(𝐮, 𝐑) is the 𝑛-dimensional multivariate correlated standard normal PDF with argument 

𝐮 = [𝑢1, … , 𝑢𝑛] and covariance matrix 𝐑. If 𝑜 = 1, the correlation matrix in standard normal space 

is 𝐑𝐔,FN, whose elements are 𝜌UFN,𝑖,𝑗; if 𝑜 = 0, the correlation matrix is 𝐑𝐔,FP, whose elements are 

𝜌UFP,𝑖,𝑗. The model parameters are 𝛉dep = [POD1, … , POD𝑛, PFA1, … , PFA𝑛, 𝐑𝐔,FN, 𝐑𝐔,FP]. 
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The conditional probability 𝑝𝑌|𝛉dep,𝑂(𝑦|𝛉dep, 𝑂 = 𝑜) is determined based on Eq. (5.36). We 

demonstrate this here for 𝑂 = 1. Each 𝑌 corresponds to a combination of the detection vector 𝐃, 

i.e. 𝑝𝑌|𝛉dep,𝑂(𝑦|𝛉dep, 𝑂 = 𝑜) = 𝑝𝐃|𝛉dep,𝑂(𝐝|𝛉dep, 𝑂 = 𝑜), whereby the elements of 𝐝 follow 

Table 5.3 (or its alternative for a different number of sensors). It is reminded that {𝐷𝑖 = 1} is 

equivalent to {𝑈FN,𝑖 ≤ 𝑢POD,𝑖} and {𝐷𝑖 = 0} is equivalent to {𝑈FN,𝑖 > 𝑢POD,𝑖}. To compute the 

joint probability  𝑝𝐃|𝛉dep,𝑂(𝐝|𝛉dep, 𝑂 = 𝑜), one therefore needs to integrate Eq. (5.36) for each 

combination of 𝐝 = [𝑑1, … , 𝑑𝑛] over a 𝑛-dimensional hypercube defined by {𝑈FN,𝑖 ≤ 𝑢POD,𝑖} if 

𝐷𝑖 = 1 or {𝑈FN,𝑖 > 𝑢POD,𝑖} if 𝐷𝑖 = 0 for all 𝑖 = 1, … , 𝑛. Figure 5.19 graphically represents the 

integration of Eq. (5.36) over 𝑈FN,1 > 𝑢POD,1 and 𝑈FN,2 > 𝑢POD,2 by the probability density in the 

red shaded area with the example of 𝑛 = 2. Note that the probability density in the red shaded area 

in Figure 5.19 is schematically identical to Eq. (5.34). 

 

Figure 5.19 Graphical illustration of Gaussian copula dependence model for correlated sensor errors. 

Contour lines represent the bivariate standard normal PDF 𝛗𝟐. The probability density in the 

red shaded area is the probability of 𝐏𝐫(𝑫𝟏 = 𝟎,𝑫𝟐 = 𝟎|𝑶 = 𝟏). Likewise, 𝐏𝐫(𝑫𝟏 = 𝒅𝟏, 𝑫𝟐 =
𝒅𝟐|𝑶 = 𝟏) are defined analogously for any combination of 𝒅𝟏 and 𝒅𝟐. 

In the general case, the result of integrating Eq. (5.36) over the different 𝑛-dimensional hypercubes 

is: 

𝑝𝑌|𝛉dep,𝑂(𝑦|𝛉dep, 𝑂 = 1) = 𝑝𝐃|𝛉dep,𝑂(𝐝|𝛉dep, 𝑂 = 1) =  

= Φn ([
𝑠(𝑑1) ∙ ϕ

−1(POD1)
 

𝑠(𝑑𝑛) ∙ ϕ
−1(POD𝑛)

] , 𝐑𝐔,FN,+(𝐝))  (5.37) 

with Φn the 𝑛 dimensional multivariate correlated standard normal CDF and 

ϕ−1 (POD1)

ϕ−1 (POD2)

Pr 𝐷1 = 0,𝐷2 = 0|𝑂 = 1φ2(𝐮, 𝐑𝐔,𝐅𝐍)
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𝑠(𝑑𝑖) = {
+1, 𝑑𝑖 = 1
−1, 𝑑𝑖 = 0

  
(5.38) 

regulates over which part of the hyperspace to integrate. 𝐑𝐔,FN,+(𝐝) is an adapted version of 𝐑𝐔,FN, 

whose elements have different signs. The elements 𝜌UFN,+,𝑖,𝑗 are defined by: 

𝜌UFN,+,𝑖,𝑗(𝑑𝑖, 𝑑𝑗) = {
1, 𝑖 = 𝑗

𝑠(𝑑𝑖) ∙ 𝑠(𝑑𝑗) ∙ 𝜌UFN,𝑖,𝑗 , 𝑖 ≠ 𝑗
  

(5.39) 

In analogy, the probability of sensor outcomes given 𝑂 = 0 is: 

𝑝𝑌|𝛉dep,𝑂(𝑦|𝛉dep, 𝑂 = 0) = 𝑝𝐃|𝛉dep,𝑂(𝐝|𝛉dep, 𝑂 = 0) =  

= Φn ([
𝑠(𝑑1) ∙ ϕ

−1(PFA1)
 

𝑠(𝑑𝑛) ∙ ϕ
−1(PFA𝑛)

] , 𝐑𝐔,FP,+(𝐝))  (5.40) 

The correlation matrices each have 𝑛 ∙ (𝑛 − 1)/2 correlation coefficients and define the pairwise 

sensor dependence in FP and FN errors. Therefore, there are a total of 2𝑛 +  𝑛 ∙ (𝑛 − 1) = 𝑛2 + 𝑛 

free parameters with this model. For larger number of sensors 𝑛, this is a significantly smaller 

number than the 2𝑛+1 − 2 free parameters of the multinomial distributions. E.g. for 5 sensors, the 

number of parameters are 30 instead of 62. 

Eqs. (5.37)-(5.40) are inserted into Eq. (5.30) to set up the posterior distribution of the model 

parameters 𝛉dep and 𝑝obj with a reference truth. If the off-diagonal elements in 𝐑𝐔,FN and 𝐑𝐔,FP 

are set to zero, the model is identical to the one of Section 5.4.3. 

The resulting posterior in Eq. (5.30) can for instance be evaluated with MCMC methods [114, 115, 

266, 267]. This is however computationally costly and numerically instable for small probabilities 

because of the involved evaluation of the multinormal CDF. Furthermore, the still significant 

number of free parameters to estimate reduces the convergence rate of the MCMC algorithms. In 

the next Section, we therefore report an alternative formulation of the Gaussian copula for 

correlated sensor errors, based on a low rank approximation of the correlation matrix. This 

alternative formulation is identical to Eqs. (5.37)-(5.40) for a special class of correlation matrices, 

but is computationally cheaper and MCMC based inference is easier to converge.  
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5.4.5 Gaussian Copula with Low Rank Correlation Matrices for Statistically Dependent 

Sensor Errors 

In this Section we describe a low rank parameterization of the correlated multivariate normal 

distribution [115], applied to the Gaussian copula. This low rank parameterization is a compromise 

between the flexibility of capturing generic dependence structures, computational costs and 

difficulties in MCMC convergence. The presentation in this Section is based on [115, 242, 275, 

276]. 

We prescribe that the correlation matrix 𝐑𝐔,FN is of the Dunnet-Sobel class, which are rank one 

correlation matrices, whose entries are constructed as follows: 

𝜌UFN,𝑖,𝑗 = λUFN,𝑖 ∙ λUFN,𝑗  (5.41) 

wherein the λUFN,𝑖 are the model parameters to be learnt. The construction of 𝐑𝐔,FP is equivalent.  

The use of this rank one correlation matrix reduces the number of free parameters to learn from 

𝑛2 + 𝑛 to 4𝑛. The second advantage of model is that, instead of the 𝑛-dimensional integration 

required to evaluate Eqs. (5.37)-(5.40), it allows to compute 𝑝𝐃|𝛉dep ,𝑂(𝐝|𝛉dep, 𝑜) with a one 

dimensional integration: 

𝑝𝐃|𝛉dep,DS,𝑂(𝐝|𝛉dep,DS, 𝑜) = ∫ φ(𝑢c) ∙ 𝑝𝐃|Uc,𝛉dep,DS,𝑂(𝐝|𝑢c, 𝛉dep,DS, 𝑜)
∞

−∞
𝑑𝑢c  (5.42) 

where 𝑈c is a standard normal distributed auxiliary random variable and φ(𝑢c) its PDF. Given 

𝑈c = 𝑢c, the detection events in the different sensors are conditionally independent. Conditional 

on 𝑈c = 𝑢c and 𝑂 = 1, the probability 𝑝𝐃|Uc,𝛉dep,DS,𝑂(𝐝|𝑢c, 𝛉dep,DS, 𝑜) of the detection vector is: 

𝑝𝐃|𝑈c,𝛉dep,DS,𝑂(𝐝|𝑢c, 𝛉dep,DS, 𝑂 = 1)  = ∏ [𝑑𝑖 ∙ ϕ(
ϕ−1(POD𝑖)−𝑢c∙λUFN,𝑖

√1−λUFN,𝑖
2

)𝑛
𝑖=1 +  

(1 − 𝑑𝑖) ∙ [1 − ϕ(
ϕ−1(POD𝑖)−𝑢c∙λUFN,𝑖

√1−λUFN,𝑖
2

)]]  

(5.43) 

Where Φ is the standard normal CDF. 
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Equivalently, given 𝑈c = 𝑢c and 𝑂 = 0, the probability of the detection vector 

𝑝𝐃|𝑈c,𝛉dep,DS,𝑂(𝐝|𝑢c, 𝛉dep,DS, 𝑜) writes 

𝑝𝐃|𝑈c,𝛉dep,DS,O(𝐝|𝑢c, 𝛉dep,DS, 𝑂 = 0)  = ∏ [𝑑𝑖 ∙ ϕ(
ϕ−1(PFA𝑖)−𝑢c∙λUFP,𝑖

√1−λUFP,𝑖
2

)𝑛
𝑖=1 +  

(1 − 𝑑𝑖) ∙ [1 − ϕ(
ϕ−1(PFA𝑖)−𝑢c∙λUFP,𝑖

√1−λUFP,𝑖
2

)]]   

(5.44) 

Inserting Eqs. (5.42)-(5.44) into Eq. (5.30) results in the posterior distribution of 𝛉dep,DS and 𝑝obj. 

The Dunnet-Sobel class correlation matrix, as defined by (5.41) is not as flexible as a generic 

correlation matrix. 

5.4.6 Discussion 

Due to the limited realism of other test methods, field tests are the most important method for a 

final validation of (sensor) perception reliability. When a reference truth is available, estimation 

of (sensor) perception reliability and sensor error rates is straightforward. 

In case of existence uncertainties, perception reliabilities of redundant sensors are for instance 

estimated with Eq. (5.30). In the binary case of existence uncertainties, frequencies of different 

combinations of sensor detections 𝐝 (e.g. the 8 combinations in Table 5.3) conditional on an object 

being present or not fully describe sensor perception reliability and dependencies. From these 

frequencies, the sensors’ POD𝑖 and PFA𝑖 are readily derived, which are related to the FP and FN 

sensor error rates (Section 4.1.1). 

Our contribution in this Section is the introduction of dependence models to learn FN and FP 

sensor error rates. The overall goal of a perception reliability analysis is however not to 

demonstrate acceptable FP and FN sensor error rates but to demonstrate an acceptable rate of 

safety-critical perception errors λper ≤ λTLSper . The required test effort to validate perception 

reliability based on the individual sensors was initially estimated in Section 4.3. Once sensor 

perception reliabilities and dependencies have been learned with the models and methods 

presented in this Section, the perception module’s actual perception reliability, quantified by λper, 

can be estimated either with the k-out-of-n model (Section 4.2), or another possibly more detailed 

and realistic representation of the sensor data fusion and object detection decision process. 

For instance, a detailed statistical simulation framework that incorporates the actual software code 

and timing behavior of sensor data fusion could be employed, see also Section 5.2. Such a 

statistical simulation framework enables to simultaneously account for perception reliabilities in 
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all uncertainty domains (Section 4.1), which need to be learned in analogy to this Section. Such 

an approach would allow to estimate perception reliability on the level of the fused environment 

model from learned sensor perception reliabilities, and hence, to validate λper ≤ λTLSper.  

Learning sensor perception reliabilities with Eq. (5.30) is flexible w.r.t. the statistical model of 

sensor errors. For example, directly employing the frequencies of the different combinations of 

sensor detections 𝐝 results in a multinomial model. Due to the large number of parameters in the 

multinomial model that need to be learned, we proposed the Gaussian copula dependence model 

as an alternative. The Gaussian copula does neither assume identical sensor error rates nor equi-

correlated sensor errors, which are the assumptions of the beta-binomial model. Hence, compared 

with the beta-binomial model introduced in Section 4.2, used to derive initial sensor perception 

reliability requirements, the Gaussian copula is more flexible in actually learning TP and FP sensor 

error rates from data. We additionally proposed a low rank approximation to the Gaussian copula 

to reduce the computational costs in evaluating the posterior distribution of the model parameters 

of interest. In principle, one could however also use any other suitable dependence model. 

It is pointed out that the assumption of exchangeability also applies to Eq. (5.30). For a discussion 

on exchangeability we refer to Section 4.2.4. Another assumption of this Section was that a 

reference truth is available, i.e. labeled data 𝐱labeled enables the identification of perception 

deficiencies. Setting up a reference truth in real driving environments can be demanding and the 

post processing of the data time consuming. In case suitable data with a reference truth is available, 

Bayesian parameter inference with the proposed models is straightforward, e.g. with MCMC 

sampling [114, 115, 266, 267]. 

In the future, the proposed models must be evaluated with data to further examine dependence 

structures of FP and FN errors among different sensor technologies (e.g. radar, camera and lidar 

sensors). As in any data analysis, the data then enables to improve and adjust the proposed models. 

Because of its high flexibility in modeling pairwise dependencies, and because it accounts for 

varying error rates in different sensors, the Gaussian copula can be used as an initial dependence 

model for an analysis of sensor perception reliabilities in field tests. The challenge and substantial 

effort of setting up a reference truth in field tests however leads to the question: can one learn 

sensor perception reliabilities without a reference truth? 
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6 Assessing Perception Reliability by Exploiting Redundancy 

This Section is based on our publications in [156, 157] and partly taken from our publications in 

[156, 157]. 

Chapter 5 outlined a variety of methods to assess (sensor) perception reliability. Field tests allow 

testing under realistic conditions. Depending on the number of redundant sensors and the statistical 

dependence among sensor errors, the effort in field tests to demonstrate λper ≤ λTLSper under the 

k-out-of-n representation of sensor data fusion is feasible (Section 4.3). In these tests, a reference 

truth needs to be derived either with suitable reference sensors in combination with human data 

labeling, from online sensor data fusion [57, 58, 110, 118], or from automatic offline labeling 

algorithms [158]. Employing reference sensors requires considerable efforts and online sensor data 

fusion as well as offline automatic data labeling is imperfect. 

Furthermore, statistical dependencies among sensor errors are unknown prior to a sensor 

perception reliability assessment, and thus have to be learned as well. The stronger the statistical 

error dependence, the stricter are the reliability requirements on individual sensors to comply with 

λper ≤ λTLSper  (see Figure 4.12). Consequently, the stronger the statistical error dependence 

among sensors, the larger test effort is required to be able to demonstrate λper ≤ λTLSper  (see 

Figure 4.15).  

An idea to overcome the limitations of traditional empirical tests is to run automated driving 

functionalities in the background of a fleet of end-user vehicles without executing the output, while 

human drivers control the vehicles [68, 201, 277–279]. Discrepancies between human driving and 

the intended automated driving serve as a pseudo reference for the safety validation of automated 

driving functionalities jointly with their perception. These approaches are sometimes termed 

Shadow Mode [68], Trojan horse [40, 279] or open loop tests [277]. One can combine empirical 

testing and virtual simulations in these approaches [277]. In the following, we refer to these ideas 

as Shadow Mode. In addition to human driving, other types of information such as a priori 

knowledge of static obstacles could be used to assess sensor perception reliability through fleet 

learning [280].  

Implementing a Shadow Mode in a fleet allows to cover a large number of situations with little 

effort. A challenge is the prediction of how a situation would have developed, if the automated 

driving functionality had been in control of the vehicle. Furthermore, some sensor errors might be 

difficult to identify solely based on a comparison of human and intended automated driving [201]. 

A limitation of the Shadow Mode is that if the output of the automated driving functionality was 

actually executed, a different sensing behavior would be observed in a specific situation due to an 
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altered vehicle dynamics. For example, an emergency brake would alter the sensor’s vertical field 

of view, which in turn could alter the subsequent automated driving function’s behavior.  

Motivated by the challenges, we investigate theoretically in Section 6.1, if in principle it is possible 

to learn sensor perception reliabilities without a reference truth, by solely comparing the output 

of redundant sensors. In light of the opportunities of Shadow Mode on the one hand, and the 

difficulties of jointly evaluating the automated driving functionality with its perception by means 

of the Shadow Mode on the other hand, we develop a testing framework in Section 6.1, which 

enables to learn sensor error rates as well as sensor error dependencies without a reference truth. 

The resulting framework could be implemented as a Shadow Mode for perception. We 

demonstrate on a theoretical basis that the framework correctly determines sensor perception 

reliabilities if an adequate statistical model for sensor errors and dependencies is employed.  

Based on these findings, we extend the learning framework in Section 6.2 to address the main 

simplifications made in Section 6.1. The proposed framework could facilitate sensor perception 

reliability demonstrations because it enables the learning of sensor perception reliability from a 

fleet of vehicles equipped with standard series sensors. The idea is to quasi automatically generate 

big data online in end-user vehicles, transfer this data to a backend and learn sensor perception 

reliabilities offline from the aggregated data of the whole fleet in the backend.  

6.1 Does One Need a Reference Truth? 

In classical reliability assessments and testing [150, 238, 239, 281–288], failure events are well 

defined and are directly observable in tests. When assessing sensor perception reliability, this only 

holds if a reference truth (ground truth) and a suitable sensor error definition is known. Generating 

the reference truth is however cumbersome and a comprehensive definition of perception errors 

difficult (Section 3.1.4). The aim of this Section is to investigate on a theoretical basis, if it is 

possible to demonstrate sensor perception reliability without a reference truth, by solely 

comparing the output of multiple redundant sensors.  

To this end, we simplify the problem of inferring sensor perception reliabilities in Section 6.1.1. 

We formulate likelihood functions in Section 6.1.2 that describe the sensors’ observations without 

reference truth, by comparing the outputs of multiple sensors. We combine the learnable 

parameters of these likelihood functions in Section 6.1.3 with a k-out-of-n system representation 

to enable a demonstration of perception reliability. Due to the importance of the statistical 

dependence among sensor errors (Section 3.1.4), we additionally discuss in Section 6.1.4 the 

challenges associated with selecting an adequate statistical model when learning without reference 

truth. Synthetic case studies in Section 6.1.5 demonstrate that it is in principle possible to correctly 
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learn sensor perception reliabilities without reference truth by exploiting sensor redundancy. The 

redundancy provides a statistical reference truth, but without the need to manually generate and 

verify it. 

6.1.1 Simplified Problem Formulation 

We consider 𝑛 redundant environment perceiving sensors. The sensors perform the same type of 

task, such as the detection of relevant objects. The data of the sensors is analyzed in discretized 

time e.g. with temporal discretization 𝑡crit as in Eqs. (4.7)-(4.8). A specific discrete point in time 

is identified with 𝑚 = 1,2,3, …𝑀. 𝑀 is the total number of observed discrete points in time. We 

focus here on the situation in which all 𝑛 sensors are identical. 

It is assumed that a definition of perception errors exists, which – if perfect knowledge of the 

reference truth is available – would allow to classify the output of a sensor 𝑖 = 1,… , 𝑛 at a specific 

point in time either as correct (𝑥𝑖 = 1) or erroneous (𝑥𝑖 = 0). For example, FP and FN errors in a 

specific area of the FOV are defined as perception errors. Here, we purposely do not distinguish 

between different types of errors (e.g. FP and FN errors) to enhance the clarity of the presentation. 

It follows that the error occurrence in one sensor is described with a binary random variable 𝑋𝑖. 

𝐾 = ∑ (1 − 𝑋𝑖)
𝑛
𝑖=1  is the total number of sensors providing deficient information (i.e. making 

errors) at a given discrete point in time. Due to the potential statistical dependence among sensor 

errors, Pr(𝑋𝑖 = 0|𝑋𝑗 = 0) is not equal to Pr(𝑋𝑖 = 0). Additionally, due to the variable perception 

performance (see Section 3.1.4), Pr(𝑋𝑖 = 0) is not constant but variable itself. We account for 

both aspects with the beta-binomial model introduced in Section 4.2.2.  

The parameters of the model are the average probability 𝑝av of a sensor error (𝑋𝑖 = 0) in a large 

number of randomly selected points in time and the sensor error correlation coefficient 𝜌. The 

correlation coefficient is here identical among all pairs of sensors (equi-correlation), because we 

assume all 𝑛 sensors to be identical. The beta-binomial model implies equi-correlation, which 

justifies its selection as the statistical model. Inserting 𝑝av and 𝜌 into Eqs. (4.26)-(4.27) defines 

the beta-binomial model, without distinction in FP and FN errors. The assumption of 

exchangeability discussed in Section 4.2.4 is here applicable as well. 

Depending on the temporal discretization 𝑡crit [h], a given 𝑝av is related to the sensor error rate 

λsensor [1/h]: 

λsensor =
𝑝av

𝑡crit
  

(6.1) 

λsensor is the expected number of sensor errors per time. 
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To summarize, with the presented problem formulation, the complement of sensor perception 

reliability is 𝑝av. In the next section, it is described how to infer 𝑝av and 𝜌 without reference truth. 

6.1.2 Sensor Perception Reliability Assessment without a Reference Truth 

With only a single sensor and without additional information, it is not possible to identify whether 

a sensor error has occurred at point in time 𝑚 or not. Consequently, the sensor error probability 

cannot be learned. However, when data from multiple redundant sensors is available, the sensor 

outputs can be compared with each other. Consider the following example: 𝑛 = 3 sensors with 

overlapping field of views are implemented to detect relevant objects in a certain limited area in 

front of a vehicle. Failure to detect a relevant object in this area (FN) and also a wrong detection 

in this area (FP) are defined as sensor errors. With these definitions and the situation outlined in 

Section 6.1.1, only four relevant outcomes exist at point in time 𝑚: a) all sensors are correct  

𝑘 = 0; b) one sensor makes an error 𝑘 = 1; c) two sensors make an error 𝑘 = 2 and d) all sensors 

make an error 𝑘 = 3. The different permutations of the outcomes b) and c) are irrelevant because 

it does not matter which particular sensor makes an error with identical sensors. 

Without a reference truth, the outcomes 𝑘 = 0 and 𝑘 = 3 cannot be distinguished. For example, 

if all sensors indicate an object in the area of interest, it could be that this object exists in reality, 

thus all sensors would be correct. This means 𝑘 = 0 has occurred. However, it could also be that 

the detected object does not exist. Then all sensors would make an error and 𝑘 = 3 has occurred. 

While 𝐾 is unknown without reference truth, it is known how many of the sensors have matching 

output. If the output of all sensors matches – denoted with 𝑧 = 0 – either 𝑘 = 0 or 𝑘 = 3 must 

have occurred. If the output of two sensors matches, denoted with 𝑧 = 1, either 𝑘 = 1 or 𝑘 = 2 

must have occurred. In other words, what can be observed without a reference truth is the random 

variable 𝑍, a measure of how many sensors agree on the output. This random variable reflects the 

inability to discriminate between 𝑘 = 0 and 𝑘 = 3 or 𝑘 = 1 and 𝑘 = 2. The sample spaces of 𝐾 

and 𝑍 are summarized for 𝑛 = 3 in Figure 6.1. 

 

Figure 6.1 With  = 𝟑 sensors, the number of sensors 𝑲 to make an error at point in time 𝒎 can take values 

0, 1, 2, 3. Without a reference truth, one cannot observe 𝑲 but one can observe how many of the 

sensors have matching output. For a binary sensor task, if  = 𝟎 or  = 𝟑, the output of all sensors 

matches (observation 𝒛 = 𝟎). If  = 𝟏 or  = 𝟐, the output of two sensors matches (observation 

𝒛 = 𝟏). Taken and adapted from [156]. 

𝐾-out-of-n errors: 0 1 2 3

Observation: 𝑍 0 1 1 0
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The observation 𝑍 has been introduced with the example of 𝑛 = 3 sensors. In case of an arbitrary 

number of sensors 𝑛, the sample space is 𝑍 𝜖 {0,1, … , ⌈
𝑛−1

2
⌉}. 𝑍 = 𝑧 if {𝐾 = 𝑧 ∪ 𝐾 = 𝑛 − 𝑧}. 

For illustrative purposes, Figure 6.2 exemplarily shows how the probability of the observation 

Pr(𝑍 = 𝑧|𝑝av , 𝜌) in a system of 𝑛 = 7 sensors (Figure 6.2b) is related to the probability 

Pr(𝐾 = 𝑘|𝑝av , 𝜌) of exactly 𝐾 sensor errors (Figure 6.2a) with the beta-binomial model. As will 

be demonstrated, one can estimate the model parameters and thus the full distribution in Figure 

6.2a) solely by knowledge of Figure 6.2b) i.e. the frequency of the observations 𝑍. Note that the 

error frequencies in Figure 6.2 are unrealistically large, they are selected for demonstrative 

purposes only. 

 

Figure 6.2 (a) The probability of k-out-of-n sensor errors with the beta-binomial distribution and for 

exemplary purposes selected n=7, 𝒑𝐚 = 𝟎. 𝟑𝟓 and 𝝆 = 𝟎. 𝟏. These frequencies would be observed 

in a long test with a reference truth. (b) The corresponding statistically expected frequencies of 

the observations 𝒁 without a reference truth. Taken and adapted from [156]. 

Bayes theorem is applied to learn the individual sensors’ average error probability 𝑝av as well as 

the sensors’ error correlation coefficient 𝜌 from the observations 𝐳 = [𝑧1, 𝑧2, … , 𝑧𝑀] [114]: 

𝑓(𝑝av, 𝜌|𝐳) ∝  𝑓(𝑝av, 𝜌) ∙ 𝐿𝑧(𝑝av, 𝜌)  (6.2) 

where 𝑓(𝑝av, 𝜌|𝐳) is the joint posterior distribution of 𝑝av and 𝜌 given the test outcome 𝐳, 𝑓(𝑝av, 𝜌) 

is the joint prior distribution and 

𝐿𝑧(𝑝av, 𝜌) = ∏ Pr(𝑍 = 𝑧𝑚|𝑝av, 𝜌)
𝑀
𝑚=1   

(6.3) 
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the likelihood of (𝑝av, 𝜌). The likelihood Pr(𝑍 = 𝑧𝑚|𝑝av, 𝜌) for the single observation 𝑧𝑚 in 

measurement cycle 𝑚 is the probability of either exactly 𝐾 = 𝑧𝑚 or exactly 𝐾 = 𝑛 − 𝑧𝑚 errors 

occurring: 

Pr(𝑍 = 𝑧𝑚|𝑝av, 𝜌) = Pr(𝐾 = 𝑧𝑚|𝑝av, 𝜌) + Pr(𝐾 = 𝑛 − 𝑧𝑚|𝑝av, 𝜌)  (6.4) 

The probabilities Pr(𝐾 = 𝑧𝑚|𝑝av, 𝜌) and Pr(𝐾 = 𝑛 − 𝑧𝑚|𝑝av, 𝜌) are defined with Eqs. (4.26)-

(4.27). For a given 𝑧𝑚, the formulation in Eq. (6.4) does not require to make a deterministic 

decision on whether 𝐾 = 𝑧𝑚 or 𝐾 = 𝑛 − 𝑧𝑚 has occurred, instead it probabilistically accounts for 

the fact that both are possible. The likelihood in Eq. (6.4) could equivalently be formulated with 

any other suitable statistical model instead of the beta-binomial distribution in Eqs. (4.26)-(4.27). 

In case of an even number of sensors 𝑛, there is one exception to Eq. (6.4). If half of the sensors 

agree on the output, 𝑧𝑚 = 𝑛/2, the number of sensor errors is with certainty 𝑘𝑚 = 𝑛/2. 

Consequently, the likelihood of the observation is in this case: 

Pr(𝑍 = 𝑛/2|𝑝av, 𝜌) = Pr(𝐾 = 𝑛/2 |𝑝av, 𝜌)  (6.5) 

To simplify Eq. (6.2), the number 𝑛𝑧 is introduced. It denotes the number of observations with 

𝑍 = 𝑧 in a test with a total of 𝑀 observations. It is: 

𝑀 = 𝑛𝑧=0 + 𝑛𝑧=1 + + 𝑛𝑧=max (𝑍)  (6.6) 

where max(𝑍) = ⌈
𝑛−1

2
⌉. Eq. (6.3) is a multinomial likelihood, which can be expressed with 

sufficient statistics 𝑛𝑧=0, 𝑛𝑧=1, . . . , 𝑛𝑧=max (𝑍) [115]. Therefore, Eq. (6.3) can be reformulated to: 

𝐿𝑧(𝑝av, 𝜌) = ∏ Pr(𝑍 = 𝑧|𝑝av, 𝜌)
𝑛𝑧max (𝑧)

𝑧=0   (6.7) 

The product is now only of size ⌈
𝑛+1

2
⌉ compared to size 𝑀 in Eq. (6.3). 

If the number of measurement cycles 𝑀 becomes large, it is more convenient to work with the log-

posterior distribution, to prevent underflow, i.e. Eq. (6.2) is replaced with: 

ln [𝑓(𝑝av, 𝜌|𝐳)] ∝ ln[𝑓(𝑝av, 𝜌)] + ∑ 𝑛𝑧 ∙ ln[Pr(𝑍 = 𝑧|𝑝av, 𝜌)]
max (𝑧)
𝑧=0   (6.8) 

The log-posterior Eq. (6.8) can readily be evaluated on a numerical grid. Alternatively, Markov 

Chain Monte Carlo (MCMC) [114, 115, 266, 267] allows to obtain samples from the joint posterior 

𝑓(𝑝av, 𝜌|𝐳). 
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Eqs. (6.2) and (6.8) describe the uncertainty in the average sensor error probability 𝑝av and the 

sensor error correlation coefficient 𝜌 for a specific test outcome without a reference truth. If the 

interest is in the individual average sensor error probability, the marginal posterior PDF of 𝑝av is 

obtained from Eq. (6.2) by integrating over the uncertainty in the error correlation coefficient 𝜌: 

𝑓(𝑝av|𝐳) = ∫ 𝑓(𝑝av, 𝜌|𝐳) 𝑑𝜌
1

0 
  (6.9) 

𝑓(𝜌|𝐳) is obtained analogously. From Eq. (6.9), the posterior mean �̂�av of the average sensor error 

probability and similarly, from 𝑓(𝜌|𝐳) the posterior mean of the sensor error correlation coefficient 

�̂� are readily derived. These are point estimates of the sensor perception (un-)reliability and 

dependence for the given test outcome 𝐳. Alternatively, point estimates based on the median, on 

the posterior mode or a specific quantile could be selected to summarize the individual sensor 

perception reliability. 

By utilizing Bayesian parameter inference [114], we also quantify the uncertainty associated with 

the parameter estimation. The uncertainty in the estimation of 𝑝av or 𝜌 is expressed with credible 

intervals as the (central) intervals that contain γ% of the probability density in 𝑓(𝑝av|𝐳) or 𝑓(𝜌|𝐳). 

6.1.3 Demonstrating Perception Reliability by Exploiting Sensor Redundancy 

To demonstrate perception reliability without reference truth by exploiting sensor redundancy, the 

k-out-of-n model of Section 4.2.1 is employed to represent the fusion model. We assume that the 

perception module fails to provide correct information at a given point of time when more than 

half of the individual sensors make an error, i.e. the perception is validated by means of a majority 

vote of the individual sensors. The k-out-of-n model is, however, not necessary to learn 𝑝av and 𝜌 

of the individual sensors without the reference truth. The methodology presented in Section 6.1.2 

is valid without the assumption of a majority vote for the perception module. 

With the majority vote, the perception module fails if: 

𝐾 ≥ ⌊
𝑛

2
+ 1⌋  

(6.10) 

where 𝐾 is the number of sensor errors in a sensor system consisting of 𝑛 redundant sensors, as 

introduced in Section 6.1.1. 
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With the probability of exactly k-out-of-n sensor errors being defined by Eq. (4.26) and its 

parameters by Eq. (4.27), the probability 𝑝per(𝑝av, 𝜌) of the perception module to fail at a 

randomly selected point in time is the probability that the majority of individual sensors provide 

incorrect information [65]: 

𝑝per(𝑝av, 𝜌) = ∑ Pr(𝐾 = 𝑘|𝑝av, 𝜌)
𝑛

𝑘=⌊
𝑛

2
+1⌋

  
(6.11) 

𝑝per(𝑝av , 𝜌) implies that the perception module’s failure probability 𝑝per is a function of the 

individual average sensor error probability 𝑝av as well as the sensor error correlation coefficient 

𝜌.  

Let the perception module’s TLS be λTLSper, which can be transformed to a TLS 𝑝TLSper on 𝑝per 

with Eq. (6.1). Hence, it has to be demonstrated that the probability 𝑝per of the perception module 

to fail complies with 𝑝TLSper. In a deterministic setting, when 𝑝av  and 𝜌 are known with certainty, 

one would accept the system if 

𝑝per(𝑝av, 𝜌) ≤ 𝑝TLSper  (6.12) 

otherwise the system would be rejected. In reality, the parameters 𝑝av  and 𝜌 cannot be known with 

certainty. They have to be inferred e.g. according to Section 6.1.2 from a limited amount of data 

obtained through tests. The methodology to jointly account for uncertainties in multiple parameters 

is subsequently presented for the simplified problem interpretation of Section 6.1.1 in case no 

reference truth is available, but it is analogous for another problem formulation such as Section 

5.4 for tests with reference truth. 

To decide whether a test summarized by Eq. (6.2) indicates compliance with 𝑝TLSper, the domain 

of all acceptable combinations of (𝑝av, 𝜌) is identified. Dividing the outcome space of the involved 

model parameters into a failure and a safe domain (here, the safe domain is termed acceptable 

domain) is common in structural reliability [274] and is transferred to the problem of 

demonstrating perception reliability. Based on Eqs. (6.11)-(6.12) the acceptable domain is 

formulated as: 

{𝑝per(𝑝av, 𝜌) − 𝑝TLSper ≤ 0}  (6.13) 

The surface 𝑝per(𝑝av, 𝜌) − 𝑝TLSper = 0 divides all acceptable combinations of (𝑝av, 𝜌) from all 

inacceptable combinations and is termed limit state surface (LSS). An exemplary LSS is 

schematically illustrated in Figure 6.3 for an arbitrary value of 𝑝TLSper.  
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Figure 6.3 Illustration of the perception reliability validation: The limit state surface (LSS) divides all 

combinations of (𝒑𝐚 , 𝝆) leading to satisfactory system safety from all combinations of (𝒑𝐚 , 𝝆) 
that would lead to violations of desired system safety. After a reliability demonstration test, the 

probability of complying with the target level of safety 𝒑𝐓𝐋𝐒𝐩𝐞𝐫 is defined by the integral over the 

posterior PDF 𝒇(𝒑𝐚 , 𝝆|𝐳) in the acceptable domain (shaded area). Taken and adapted from [156]. 

All combinations of (𝑝av, 𝜌) on the left side of the LSS lead to failure probabilities complying 

with the target level of safety, i.e. 𝑝per(𝑝av, 𝜌) ≤ 𝑝TLSper. In contrast, all combinations of (𝑝av, 𝜌) 

on the right side of the LSS lead to violations of the target level of safety, hence they constitute 

the inacceptable domain. The ellipses in the Figure are exemplary contours of the joint posterior 

𝑓(𝑝av, 𝜌|𝐳) according to Eq. (6.2) for a given test outcome 𝐳. 

The Bayesian probability of the system to comply with its target level of safety 𝑝TLSper is 

quantified by the posterior probability density 𝑓(𝑝av, 𝜌|𝐳) in the acceptable domain. Given the 

outcome of the test 𝐳, the system’s compliance probability is therefore the integral (shaded area in 

Figure 6.3). 

Pr (𝑝per ≤ 𝑝TLSper|𝐳) = ∫ 𝑓(𝑝av, 𝜌|𝐳) d𝑝av 𝑑𝜌𝑝per(𝑝av,𝜌)−𝑝TLSper≤0 
  

(6.14) 

This integral can be evaluated numerically or through MCMC.  

Sampling 𝑝av, 𝜌 from the posterior distribution 𝑓(𝑝av, 𝜌|𝐳), Eq. (6.2), and inserting into (6.11) 

allows to derive the posterior PDF of the perception module’s failure probability 𝑓(𝑝per|𝐳). To 

obtain a point estimate of 𝑝per, the posterior mean �̂�per is derived from 𝑓(𝑝per|𝐳). Alternatively, 

the median or an upper credible bound on 𝑝per could be selected as point estimate. 
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The probability of complying with the target level of safety after a specific test, given by Eq. (6.14) 

is the aim of the perception reliability assessment. If for a given test outcome  

Pr (𝑝per ≤ 𝑝TLSper|𝐳) is sufficiently large, meaning one has high credibility in the system 

complying with its reliability requirements, the system is accepted. The reliability test decision 

rule is in analogy to Eq. (4.43)72:  

Accept the system if Pr (𝑝per ≤ 𝑝TLSper|𝐳) ≥ γ  
(6.15) 

Reject otherwise. γ is a pre-specified level of credibility. This procedure is equivalent to a lower 

Bayesian credible bound of the perception module’s reliability complying with the TLS. In other 

words, the applied reliability demonstration test plan is the Bayesian analogue to the frequentist 

lower confidence bound of the system reliability complying with the TLS (see e.g. [285]). 

6.1.4 Challenges Associated with Statistical Dependence among Sensor Errors 

In this Section, we discuss the challenges associated with the dependence among sensor errors in 

an analysis without reference truth. Firstly, strong error correlations among sensors makes it 

difficult to learn sensor perception reliabilities by exploiting sensor redundancies. Secondly, and 

more critical, it is much more challenging to identify whether or not the correct statistical model 

for sensor error dependence is employed. 

With a single sensor, it is not possible to identify the sensor error probability without a reference 

truth. Therefore, if all sensors were fully dependent, 𝜌 = 1, the error probability of the sensors 

could not be learned from the data without a reference truth, as the observation would be that the 

output of the sensors matches at all times (𝑧 = 0). It is however possible to correctly find 𝑝av even 

for correlations close to one (𝜌 → 1) without a reference truth, if sufficient data is available. Only 

the case 𝜌 = 1 makes it strictly impossible to learn 𝑝av. 

A larger challenge is the choice of the statistical model for sensor error dependence. In Section 

6.1.1 we utilize the beta-binomial model. As with any statistical analysis, if the selected statistical 

model is not adequately representing the real statistical process, spurious inference might be the 

result. The problem of the analysis without a reference truth is that it is much more difficult to 

identify if an inadequate statistical model has been selected. To illustrate this challenge and to 

                                                 
72 This decision rule limits the probability of a specific released system not to comply with the safety targets to 1- γ 

for any given test outcome. An individual decision maker following this rule therefore is not wrong more often than 

(1 −  γ)  in the long run (provided the model assumptions are adequate). This decision rule is not optimal. An optimum 

decision in a Bayesian sense – and from a cost optimization point of view – would be to accept a system if the posterior 

mean system failure probability �̂�per complies with the target level of safety (�̂�per ≤ 𝑝TLSper). Then, for a large number 

of released systems, the (average) failure frequency of all systems is complying with the (average) target level of 

safety. This cost optimal decision rule would however expose the individual decision maker to a larger risk of being 

wrong in a specific decision (≤ 50 % if the posterior system failure probability is symmetrically distributed). 
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examine the consequences of choosing an inadequate statistical model, we additionally consider 

an alternative dependence model. 

In addition to the common failure events described by the beta-binomial model, the alternative 

dependence model accounts for critical shock events that occur with a probability 𝑝s. A shock 

event causes all the sensors to make an error simultaneously. The term shock event is utilized by 

the reliability engineering community in the context of common cause failures [289] and can be 

understood as an abstract collection of causes leading to a joint failure event. Given a critical shock 

event occurs, all components fail deterministically. The probability of 𝑘 failures is then: 

Pr(𝐾 = 𝑘|𝑝s, 𝑝av, 𝜌) = 𝑝s ∙ 𝛿𝑘,𝑛 + (1 − 𝑝s) ∙ Pr(𝐾 = 𝑘|𝑝av, 𝜌)  (6.16) 

where 𝛿𝑘,𝑛 is the Kronecker delta, which is 𝛿𝑘,𝑛 = 1 if 𝑘 = 𝑛 and 𝛿𝑘,𝑛 = 0 otherwise. 

Pr(𝐾 = 𝑘|𝑝av, 𝜌) is the beta-binomial model in Eqs. (4.26)-(4.27). The model in Eq. (6.16) is 

essentially a mixture model between beta-binomial distributed common failure events and shocks. 

A similar general formulation of dependence structures with mixture models and dirac functions 

can be found in [290]. The model of Eq. (6.16) in discretized time can be interpreted in analogy to 

the beta-factor model [291] and its generalization, the binomial failure rate (BFR) model [222, 

292, 293] in continuous time. 

If the true statistical error process is accurately described by Eq. (6.16), but one assumes Eqs. 

(4.26)-(4.27) as the basis for the estimation without reference truth according to Section 6.1.2, one 

potentially severely underestimates the probability of all sensors to make an error simultaneously 

(𝐾 = 𝑛). The reason for the underestimation lies in the inability to distinguish the case of no sensor 

errors (𝑘 = 0) from all sensors to make an error (𝑘 = 𝑛) without a reference truth, as these both 

lead to the observation 𝑧 = 0. For example, when 𝑝av and 𝜌 are small but 𝑝s is large, then  

Pr(𝐾 = 𝑛) is large. Eqs. (4.26)-(4.27) however do not allow for a large Pr(𝐾 = 𝑛) if 𝑝av and 𝜌 

are small. With this specific example, the combination of applying Eqs. (4.26)-(4.27) with the 

inability of distinguishing (𝑘 = 𝑛) from (𝑘 = 0) without reference would lead to an 

underestimation of Pr(𝐾 = 𝑛). The consequences of choosing an inadequate statistical model with 

the presented framework are further studied in case studies and discussed in Section 6.1.6. 

6.1.5 Case Studies 

Synthetic case studies are conducted to illustrate the presented ideas. The perception module of 

the case studies consists of 𝑛 = 7 identical redundant sensors. For demonstrative purposes, the 

perception module’s TLS is selected exemplary as 𝑝TLSper = 10
−4. This requirement is not in 

accordance with common risk acceptance criteria (see Section 3.1.1), but is here selected 

nevertheless, as the goal is to demonstrate the validity of the presented framework. 
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The aim of the first three case studies is to show that Eq. (6.2) allows to estimate the individual 

sensors’ average error probability 𝑝av and the sensor error correlation coefficient 𝜌 under the 

model of Eqs. (4.26)-(4.27) without a deterministic reference truth. To this end, different virtual 

truth scenarios are selected for 𝑝av and 𝜌, which are examined in the case study: 1) a combination 

of (𝑝av, 𝜌) that leads to compliance with the target level of safety 𝑝per ≤ 𝑝TLSper = 10
−4, 2) a 

combination of (𝑝av, 𝜌) that does not comply with the target level of safety 𝑝per > 𝑝TLSper = 10
−4 

and 3) sensors with almost full error dependence. This means the correlation coefficient is 𝜌 ≈ 1.  

In a fourth case study, the effect of selecting an inadequate statistical sensor error dependence 

model is studied. To this end, critical shock events are simulated to occur according to Eq. (6.16) 

i.e. the virtual truth is 𝑝s ≠ 0, but we purposely assume 𝑝s = 0. The parameters of the different 

virtual truth scenarios are summarized in Table 5.2. 

Table 6.1 Case study: Virtual truth of the average sensor error probability 𝒑𝐚 , the error correlation 

coefficient 𝝆, the shock probability 𝒑𝐬 and the corresponding perception module’s failure 

probabilities 𝒑𝐩𝐞𝐫 under a majority vote. From [156]. 

Case Sensor error 

probability 𝒑𝐚  
Error correlation 

𝝆 

Shock probability 

𝒑𝐬 
Perception failure 

probability 𝒑𝐩𝐞𝐫 

1)  10−4 0.01 0 1.89 ∙ 10−8 
2)  10−2 0.20 0 2.8 ∙ 10−3 
3)  10−3 0.99 0 10−3 
4)  10−2 0.20 0.1 0.103 

 

Synthetic datasets are derived with the true parameter values (𝑝av, 𝜌, 𝑝s) of Table 5.2 by randomly 

sampling the number of sensors 𝑘𝑚 to make an error at different points in time 𝑚 = 1,2,… ,𝑀. 

The sampling distribution of 𝑘𝑚 is the beta-binomial distribution defined in Eqs. (4.26)-(4.27) 

with parameters (𝑝av, 𝜌) for cases 1-3 and the shock model of Eq. (6.16) for case 4. The resulting 

datasets 𝐤 of the four cases are transformed into the observation 𝑧𝑚 if {𝑘𝑚 = 𝑧𝑚 ∪ 𝑘𝑚 = 𝑛 − 𝑧𝑚}, 

which simulates that the exact number 𝑘𝑚 of sensors making an error cannot be observed without 

a reference truth, as explained in Section 6.1.2. With this approach, it is simulated that only 𝐳 and 

not 𝐤 are known after the test. Figure 6.4 schematically illustrates the structure of the synthetic 

datasets. 
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Figure 6.4 Schematic illustration of the synthetic datasets. For each point in time 𝒎, the number of sensor 

errors  𝒎 are sampled from Eqs. (4.26)-(4.27), or Eq. (6.16) respectively, with known parameters 

according to Table 5.2. To simulate that no reference truth is available, 𝐤 is transformed into the 

observations 𝐳 without a reference truth. Taken and adapted from [156]. 

The prior distribution 𝑓(𝑝av, 𝜌) in Eq. (6.8) is selected as a uniform prior in the domain 𝑝av < 0.5: 

𝑓(𝑝av, 𝜌)  = {
1,        𝑖𝑓 𝑝av < 0.5 
0,        𝑜𝑡ℎ 𝑟 𝑖𝑠 

  
(6.17) 

The restriction to 𝑝av < 0.5  is necessary, since the likelihood is symmetric around 𝑝av = 0.5, i.e. 

the learning process cannot distinguish between e.g. 𝑝av = 0.01 and 𝑝av = 0.99. However it is 

safe to assume that no sensor is considered for a safety-relevant task, if it commits an error more 

often than every second discrete point in time (𝑝av ≥ 0.5). Such a high frequency of errors would 

be detected in the development and the sensor would thus be rejected before the reliability analysis. 

The prior is here naïvely selected to be weakly informative, a different prior such as Jeffreys prior 

could be derived following [243, 244]. The idea behind the presented framework is to learn sensor 

perception reliabilities from a large fleet of human controlled vehicles without a reference truth, 

leading to a large amount of data. As the choice of the prior becomes irrelevant with a finite number 

of model parameters in the limit of 𝑀 → ∞ [114], the modeling of the prior is not further 

investigated. 

For virtual truth cases 1-3, it is checked whether the parameter estimates based on the framework 

in Section 6.1.2 converge against the true values as given in Table 5.2. Moreover, the probability 

of the perception module to comply with the target level of safety 𝑝TLSper is derived as described 

in Section 6.1.3. In virtual truth case 4, the effect of learning the parameters of Eqs. (4.26)-(4.27) 

without reference truth is studied, despite 𝑝𝑠 ≠ 0. 

Results case study 1: 𝒑𝐚 = 𝟏𝟎
−𝟒, 𝝆 = 𝟏𝟎−𝟐 

First, the posterior distribution 𝑓(𝑝av, 𝜌|𝐳) is set up with Eq. (6.8) and the first 𝑀 = [102, … , 107] 

(synthetic) observations 𝑧. The marginal posteriors 𝑓(𝑝av|𝐳) and 𝑓(𝜌|𝐳) are calculated with Eq. 

(6.9) for each 𝑀. Additionally, to demonstrate compliance with 𝑝TLSper = 10
−4, the limit state 

surface (LSS) is derived according to Section 6.1.3. Results of these evaluations are presented in 

Figure 6.5 which corresponds to 𝑀 = 103. 

Index of discretized time 𝟏 𝟐 𝒎… …

Discretized time

 𝒎-out-of-n errors

Observation: 𝒛𝒎

𝟎 𝟏

𝟎 𝟏

𝟑 𝟒

𝟐 𝟎

𝟐 𝟎

𝟓  

𝟕 𝟓

𝟎 𝟐

𝟕  

𝟒 𝟑

𝟑 𝟑

… …

… …

 

𝟏
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Figure 6.5 Virtual truth case 1 after 𝑴 = 𝟏𝟎𝟑 observations z. (a) marginal posterior of sensor error 

correlation coefficient 𝒇(𝝆|𝐳); (b) joint posterior 𝒇(𝒑𝐚 , 𝝆|𝐳). (c) marginal posterior of sensor 

error probability 𝒇(𝒑𝐚 |𝐳). Also shown in (b) is the limit state surface (LSS) that separates the 

acceptable (left) from the inacceptable (right) domain with the given system target level of safety 

𝒑𝐓𝐋𝐒𝐩𝐞𝐫 = 𝟏𝟎
−𝟒. Taken and adapted from [156]. 

In Figure 6.5b), the contour lines reflect the uncertainty in the average sensor error probability 𝑝av 

and the sensor error correlation coefficient 𝜌 after 𝑀 = 103 observations. Both the average sensor 

error probability 𝑝av and the sensor error correlation coefficient 𝜌 are still subject to substantial 

uncertainty. As visible in Figure 6.5a), 𝜌 is assigned a marginal posterior probability density 

between 10−6 and one, with a spike close to one. The spike in the density close to one is due to 

the fact that up to 𝑀 = 103, the sensors had 998 times matching observations 𝑧 = 0. Figure 6.5c) 

illustrates that the marginal posterior density of 𝑝av is confined between 10−5 and 0.5 with its 

mode around 10−3. It is pointed out that in the domain of 𝑝av ≈ 10
−4 and 𝜌 ≤ 10−6 the beta-

binomial distribution is here not defined because of numerical reasons. 

Due to the logarithmic scale of Figure 6.5, it is not directly visible that most of the joint posterior 

density is concentrated in the unacceptable domain on the right side of the LSS, leading to a 

compliance probability of Pr (𝑝per ≤ 𝑝TLSper|𝐳) = 0.08 with Eq. (6.14). Because of the 

uncertainties in the parameters, the compliance probability is not yet conclusive. 

Figure 6.6 presents the joint posterior distribution 𝑓(𝑝av, 𝜌|𝐳) after 𝑀 = 106 observations. The 

posterior means �̂�av = 1.03 ∙ 10
−4 and �̂� = 0.014 are close to their true values and the remaining 
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uncertainty is small. All the posterior density is in the acceptable domain, thus the probability of 

compliance is Pr (𝑝per ≤ 𝑝TLSper|𝐳) = 1. 

 

Figure 6.6 Joint posterior distribution 𝒇(𝒑𝐚 , 𝝆|𝐳) of virtual truth case 1 after 𝑴 = 𝟏𝟎  observations z. 

𝒇(𝒑𝐚 , 𝝆|𝐳) has converged towards the true values 𝒑𝐚 = 𝟏𝟎
−𝟒 and 𝝆 = 𝟏𝟎−𝟐. Taken and adapted 

from [156]. 

To obtain a clearer picture of the effect of data size, the posterior means �̂�av and �̂� are tracked in 

Figure 6.7 over an increasing number of observations 𝑀. Figure 6.7a) displays that �̂�𝑎𝑣 converges 

to its true value of 𝑝av  = 10
−4 within approximately 𝑀 = 3 ∙ 104 observations. Figure 6.7b) 

demonstrates that 𝜌 is more difficult to learn, �̂� requires between 𝑀 = 105 and 𝑀 = 106 

observations to approach its true value of 𝜌 = 10−2. 

 

Figure 6.7 Virtual truth case 1 with increasing number of observations 𝑴. (a) Posterior mean �̂�𝐚  and (b) 

posterior mean �̂� with corresponding 95% credible intervals. Taken and adapted from [156]. 
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To demonstrate the uncertainty in 𝑝per at a specific point of time, samples (𝑝av, 𝜌) are drawn from 

the posterior distribution 𝑓(𝑝av, 𝜌|𝐳). These samples are inserted into Eq. (6.11) to obtain samples 

of the perception failure probability 𝑝per. These samples define the posterior PDF 𝑓(𝑝per|𝐳) of the 

perception failure probability as described in Section 6.1.3. For 𝑀 = 106 observations, the 

posterior PDF 𝑓(𝑝per|𝐳) of the perception failure probability is presented in Figure 6.8 which 

corresponds to the posterior 𝑓(𝑝av, 𝜌|𝐳) in Figure 6.6. 

 

Figure 6.8 Virtual truth case 1. Sampled posterior PDF 𝒇(𝒑𝐩𝐞𝐫|𝐳) of the perception failure probability after 

𝑴 = 𝟏𝟎  observations 𝐳. The virtual truth 𝒑𝐩𝐞𝐫 = 𝟏.  𝟗 ∙ 𝟏𝟎
−  is indicated by the dashed line. 

Taken and adapted from [156]. 

𝑓(𝑝per|𝐳) is approximately centered around the virtual truth of 𝑝per = 1.89 ∙ 10
−8 with a posterior 

mean of �̂�per = 4.9 ∙ 10
−8 and a 95% credible interval of [𝑝perlow

= 1.3 ∙ 10−8, 𝑝perup
= 1.2 ∙

10−7]. Hence, the true system failure probability 𝑝per = 1.89 ∙ 10
−8 is identified with limited 

uncertainty. Furthermore, it is clear that the requirement 𝑝per ≤ 𝑝TLSper = 10
−4 is complied with. 

To obtain an idea of how much testing is required to identify that the system complies with its 

target level of safety 𝑝TLSper = 10
−4, the compliance probability Pr (𝑝per ≤ 𝑝TLSper|𝐳) is plotted 

against the number of observations 𝑀 in Figure 6.9a). Starting around 𝑀 = 4.5 ∙ 104, the 

compliance probability is Pr (𝑝per ≤ 𝑝TLSper|𝐳) ≥ 0.99999 with which one has near certainty of 

complying with 𝑝TLSper. In Figure 6.9b) the corresponding posterior mean �̂�per is plotted in 

function of the number of observations 𝑀. Figure 6.9b) is derived analogous to Figure 6.8 but with 

varying numbers of observations 𝑀. The 95% credible intervals of the perception failure 

probability illustrate the uncertainty in the estimate. It takes around 𝑀 = 105 observations for �̂�per 
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to be near its true value (dotted line). After 𝑀 = 107 observations, the uncertainty is negligible 

and the true value has been identified. 

 

Figure 6.9 Virtual truth case 1 with increasing number of observations 𝑴. (a) Compliance probability 

𝐏𝐫 (𝒑𝐩𝐞𝐫 ≤ 𝒑𝐓𝐋𝐒𝐩𝐞𝐫|𝐳). (b) Posterior mean �̂�𝐩𝐞𝐫 of the perception failure probability with the 95% 

credible intervals. Taken and adapted from [156]. 

Results case study 2: 𝒑𝐚 = 𝟏𝟎
−𝟐, 𝝆 = 𝟎. 𝟐 

The analysis presented for case 1 is repeated for virtual truth case 2. To summarize the results of 

the parameter inference, Figure 6.10 shows the posterior mean sensor error probability �̂�av and 

sensor error correlation coefficient �̂� over the number of observations 𝑀. Additionally, the 

estimated perception failure probability 𝑝per is presented in Figure 6.10c). 

 

Figure 6.10 Virtual truth case 2 with increasing number of observations 𝑴. (a) Posterior mean �̂�𝐚 , (b) 

posterior mean �̂� and (c) posterior mean �̂�𝐩𝐞𝐫 with corresponding 95% credible intervals. Taken 

and adapted from [156]. 
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Similar to case 1, the virtual truth 𝑝av  = 10
−2 (Figure 6.10a) and 𝜌 = 0.2 (Figure 6.10b) are 

learned correctly. Compared to virtual truth case 1, the parameters are learned faster because of 

the high error probability 𝑝av. Figure 6.10c) illustrates that the correct failure probability of the 

perception module 𝑝per = 2.8 ∙ 10
−3 is identified after less than 𝑀 = 104 observations. The 

compliance probability is Pr (𝑝per ≤ 𝑝TLSper|𝐳) ≈ 0 after 𝑀 = 3.4 ∙ 103 observations. 

Results case study 3: 𝒑𝐚 = 𝟏𝟎
−𝟑, 𝝆 = 𝟎. 𝟗𝟗 

The previous case studies have numerically demonstrated the validity of the framework presented 

in Sections 6.1.2 and 6.1.3. Here, the case of almost fully statistically dependent sensor errors with 

𝜌 = 0.99 is examined. Again, the analysis according to Section 6.1.2 is repeated. The resulting 

joint posterior distribution 𝑓(𝑝av, 𝜌|𝐳) with 𝑀 = 107 observations is reported in Figure 6.11.  

 

Figure 6.11 Joint posterior distribution 𝒇(𝒑𝐚 , 𝝆|𝐳) of virtual truth case 3 after 𝑴 = 𝟏𝟎𝟕 observations. The 

posterior has not yet converged against the virtual truth of 𝒑𝐚 = 𝟏𝟎
−𝟑 and 𝝆 = 𝟎. 𝟗𝟗. 

The parameter inference presented in Figure 6.11 has not yet converged after 𝑀 = 107 

observations. 

The 𝑀 = 107 synthetic observations 𝐳 utilized in this case study are based on sampling from the 

virtual truth, as explained under Section 6.1.5. To demonstrate that convergence is ultimately 

achieved with more data, the sampled dataset is substituted with the expected number 

𝐸[𝑁𝑍=𝑧|𝑝av , 𝜌,𝑀] of observations 𝑍 = 𝑧, given the virtual truth and the number of observations 

𝑀. The expected number of observations 𝐸[𝑁𝑍=𝑧|𝑝av , 𝜌, 𝑀] is derived by multiplying 𝑀 with Eq. 

(6.4). This approach still allows to evaluate whether convergence is to be expected with a large 
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number of observations without relying on sampling (which becomes computationally too 

expensive for 𝑀 ≫ 107). 

The parameter inference based on the expected number of observations is illustrated in Figure 

6.12. It is verified that eventually the correct parameters can be learned.  

 

Figure 6.12 Virtual truth case 3 with increasing number of observations 𝑴. (a) Posterior mean �̂�𝐚 , (b) 

posterior mean �̂� with the corresponding 95% credible intervals. The underlying observations 

are equal to their expected values. Taken and adapted from [156]. 

The behavior in Figure 6.12 with 𝜌 → 1 can be explained with the beta distribution of the error 

probabilities 𝑝𝑚 in the different points in time 𝑚 according to Eq. (4.25). First, when 𝜌 = 1, then 

the sensor error probability at a randomly selected point in time is 𝑝𝑚 = 1 with a probability of 

𝑝av and 𝑝𝑚 = 0 otherwise. This is equivalent to a Bernoulli trial in which either all or none of the 

sensors make an error, therefore, the observation is 𝑧 = 0 for all 𝑚. As mentioned in Section 6.1.4, 

it is therefore not possible to learn the sensor error probability with fully dependent sensors. Still 

𝜌 can be correctly identified. 

In case 𝜌 is slightly smaller than one, in rare instances 𝑝𝑚 takes values substantially different from 

zero and one, which could lead to observations 𝑧 ≠ 0. This is illustrated in Figure 6.13 by the beta 

CDF of 𝑝𝑚 with virtual truth case 3. There is a small probability of 𝑝𝑚 to be between 

10−20 ≤ 𝑝𝑚 ≤ 1. Eventually, from these observations, the correct 𝑝av and 𝜌 are learned, as shown 

in Figure 6.12. 
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Figure 6.13 Beta CDF 𝑭𝑷𝒎(𝒑𝒎|𝒑𝐚 = 𝟏𝟎
−𝟑, 𝝆 = 𝟎. 𝟗𝟗) of the sensor error probability 𝒑𝒎 in randomly 

selected points of time 𝒎. With 𝝆 → 𝟏, 𝒑𝒎 is either one with probability 𝒑𝐚  or zero otherwise. 

Because here 𝝆 is not exactly one, a small probability exists for 𝒑𝒎 to be different from zero and 

one. Taken and adapted from [156].  

Results case study 4:  𝒑𝐚 = 𝟏𝟎
−𝟐, 𝝆 = 𝟎. 𝟐, 𝒑𝐬 = 𝟎. 𝟏 

To study the effect of selecting an inadequate statistical model when learning sensor perception 

reliabilities without reference truth, we additionally consider the dependence model of Section 

6.1.4. In this example, the virtual truth is as in case 2, but with additional critical shocks occurring 

approximately ten times as often as common error events. The resulting frequency of sensor errors 

is unrealistically large, but this choice facilitates the illustration of the problem associated with a 

wrong statistical dependence model. 

Under the virtual truth with Eq. (6.16) in the limit as 𝑀 → ∞, the frequencies in Figure 6.14a) 

would be observed when conducting a long test with a reference truth. Likewise, the corresponding 

frequencies of the observations 𝑍 = 𝑧 illustrated in Figure 6.14b) would be observed in a long test 

without a reference truth. If one now selects the beta-binomial model, Eqs. (4.26)-(4.27), to 

describe the statistical sensor error process and one learns the parameters (𝑝av, 𝜌) from the 

observations 𝑍 without a reference truth in Figure 6.14b), one learns the sensor error frequencies 

illustrated in Figure 6.14c). 

Comparing Figure 6.14a) and Figure 6.14c) reveals that the probability of 𝐾 = 7 sensor errors 

would be underestimated with the beta-binomial model. This is due to the additional critical shocks 

occurring with 𝑝s = 0.1 that are not represented in the beta-binomial model and the fact that 𝑘 =

7 and 𝑘 = 0 cannot be distinguished without reference truth, as already explained in Section 6.1.4. 
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Figure 6.14 (a) Probability of 𝑲 =   sensors to make an error with virtual truth case 4 according to Eq. (6.16). 

These frequencies would be obtained in a long test with reference truth. (b) Corresponding 

frequencies of the observations 𝒁 = 𝒛 in a test without reference truth. (c) Resulting frequencies 

of sensor errors if one learns the model parameters of the beta-binomial distribution (without 

critical shocks), Eqs. (4.26)-(4.27), from the observations in (b). Taken and adapted from [156]. 

It might be suspected that the probability 𝑝s of the critical shocks cannot in general be learned 

without reference truth, as any number of the observations in which all of the sensors agree on the 

output, 𝑧 = 0, could in reality be 𝑘 = 7. However, when applying the correct dependence model 

after Eq. (6.16) to the framework outlined in Section 6.1.2, even the probability of the shocks 𝑝s 

can be learned without reference truth. 

To demonstrate this, the model parameters 𝑝s, 𝑝av and 𝜌 are learned from the expected virtual truth 

(similar to case 3) with 𝑀 = 109. The software OpenBUGS based on MCMC sampling is utilized 

to obtain samples from the joint posterior distribution 𝑓(𝑝s, 𝑝av, 𝜌|𝐳) [269]. The resulting marginal 

posterior distributions of the model parameters are illustrated in Figure 6.15.  

 

Figure 6.15 (a), (b), (c) Marginal posterior distributions of the model parameters 𝒑𝐬, 𝒑𝐚  and 𝝆. Even without 

reference truth, all model parameters including the shock probability 𝒑𝐬 converge to their virtual 

truth of 𝒑𝐬 = 𝟎. 𝟏, 𝒑𝐚 = 𝟎. 𝟎𝟏, 𝝆 = 𝟎. 𝟐. Taken and adapted from [156]. 
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Figure 6.15a) illustrates that the posterior PDF 𝑓(𝑝s|𝐳) is converging. The posterior mean is  

�̂�s = 0.101 and the 95% credible interval [𝑝slow = 0.039, 𝑝sup = 0.174], meaning that there is 

still some uncertainty associated with the estimate. The posterior mean is �̂�s ≈ 𝑝s also because the 

data is equal to the expected values, however, it still can be concluded that in the long term 

convergence is to be expected. The average sensor error probability 𝑝av and the sensor error 

correlation coefficient 𝜌 are also correctly identified as is apparent from Figure 6.15b) and Figure 

6.15c). 

It is pointed out, to learn without a reference truth that all sensors make a (shock event type) error 

once in ten measurement cycles, a large number of observations are necessary (here 𝑀 = 109 is 

used). Additionally, the model for the (common, non-shock event type) errors needs to be perfect, 

which is however not realistic in practice.  

6.1.6 Discussion and Conclusion 

The aim of this Section is to investigate on a theoretical basis, if it is possible to learn sensor 

perception reliabilities without a reference truth. Such an approach would have several 

advantages: First, the significant effort associated with setting up a reference truth is not required. 

Second, technical difficulties, which make it hard to set up the reference truth in real driving 

environments, would be overcome. Third, it is an opportunity to parallelize the testing to a large 

extent and to generate the large amount of data required to achieve credibility in strict target levels 

of safety. The large amount of data could for instance be collected by a fleet of end-user vehicles 

equipped with the required sensing hardware, without having automated driving functionalities 

activated. The data preprocessing could be done online in the vehicles, and the sensor perception 

reliabilities could be demonstrated offline with the combined data from all vehicles in the fleet. 

With this approach, the test is naturally representative (see Section 3.1.4). 

We showed in synthetic case studies with different virtual truth scenarios that when one employs 

an adequate statistical model for sensor errors, the correct sensor error rates and dependencies can 

potentially be learned without a reference truth by exploiting sensor redundancy. From these error 

rates and dependencies, the target level of safety of the perception module can be demonstrated 

e.g. with the k-out-of-n model assumption or another suitable representation of sensor data fusion. 

Hence we conclude on a theoretical basis that the concept is applicable, but a number of challenges 

and simplifications must be addressed before implementing it in practice. 
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The Challenge of Selecting an Adequate Sensor Error and Dependence Model  

Learning sensor perception reliability with the presented framework is enabled by Eqs. (6.2)-(6.4). 

The expression of the likelihood in Eq. (6.4) is central to the approach and can be combined with 

any suitable statistical model. This means, the learning framework is flexible with respect to the 

selection of a statistical dependence model. The number of redundant sensors 𝑛 however constrain 

the number of free parameters in the statistical model that can be learned without reference truth, 

which we further discuss in Section 6.2.3. 

The main challenge is that the selection of an inadequate statistical model can lead to spurious 

inference and statistically biased estimates of the sensor error rates, as exemplified in Figure 6.14. 

That particular case reflects the most critical situation: that the model does not adequately capture 

the possibility of all sensors to make an error simultaneously. The actual limitation of working 

without a reference truth is not the error in the parameter estimation, but the difficulty in detecting 

from data without reference truth that an inadequate statistical model has been selected. The 

learned beta-binomial model in Figure 6.14c) almost perfectly explains the observations of Figure 

6.14b), which in reality are due to the virtual truth in Figure 6.14a). Therefore, one has to make 

sure the utilized statistical model is robust with respect to the dependence of sensor errors in the 

different sensors. A model in analogy to Eq. (6.16) conceptually seems to be adequate because it 

accounts for common failure events and critical shocks. However, considering the large test effort 

required to learn the shock frequency (see case 4), learning a shock model purely from data without 

reference truth might not be practicable. 

Future research should therefore investigate on the basis of data which statistical models are 

adequately representing sensor errors and dependencies to enable the learning of sensor perception 

reliabilities without reference truth and to demonstrate the practical feasibility of the approach. 

Additionally, the potential underestimation of all sensors making an error simultaneously should 

in practice be precluded with other test methods such as virtual simulations, tests on proving 

grounds and limited field tests with reference truth. 

Simplifications and Future Work 

To enhance the clarity of the presentation and for mathematical simplicity, several simplifying 

assumptions have been made. For instance, we assumed exchangeability in Eq. (6.3) and did not 

model a potential statistical dependence of sensor errors over subsequent points in time. Future 

research could try to address both, the dependence among sensors and the dependence over time, 

in one model. 

We further assume that all sensors are identical, but in ADSs, lidar, radar and camera sensors are 

employed (see Section 2.1). These sensors exploit different physical measurement principles, e.g. 
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by actively probing the environment with radio waves (radar), coherent light (laser) or by passively 

capturing environment information in the light spectrum (camera). The different sensors are 

complementary in their measurement principles, which purposely reduces the sensor error 

dependence. On the one hand, different physical measurement principles should therefore partly 

mitigate the discussed problem of shock events and dependencies in the extremes. On the other 

hand, it is obvious that these sensors have different error rates and interdependencies. 

Moreover, this Section did not distinguish between FP and FN sensor errors. In practice, these 

must be separated, as the mechanisms leading to these errors and their consequences are different 

[289]. 

Conclusions 

We demonstrated that it is theoretically possible to learn sensor perception reliabilities and 

dependencies without reference truth, when utilizing an adequate statistical model for sensor 

errors. When not utilizing an adequate statistical model, the reliability estimates might be wrong. 

On its own, this is not crucial, wrong inference occurs in any statistical analysis with inadequate 

statistical models. However, without a reference truth, one cannot detect that the statistical model 

is inadequate. In contrast, with full knowledge of the reference truth, the data allows to identify 

whether the employed statistical model is inappropriate. Thus, one has to ensure that the selected 

statistical model is adequate when estimating sensor perception reliabilities without reference 

truth. 

6.2 Exploiting Sensor Redundancy for Learning False Positive and False Negative 

Error Rates 

The framework in Section 6.1 is restricted to the situation that all sensors are identical, and it does 

not distinguish between different error types, e.g. between false positive (FP) and false negative 

(FN) sensor errors. Here, we overcome these limitations.  

We focus on the sensors’ task of detecting objects, i.e. existence uncertainty (Section 4.1.1). In 

Section 6.2.1 we formulate the problem of jointly learning FP and FN error rates of non-identical 

sensors without reference truth, solely by exploiting sensor redundancy. In Section 6.2.2 we 

develop the likelihood function to estimate FP and FN sensor error rates, which probabilistically 

accounts for the missing reference truth. This is in contrast to the generation of a reference truth 

by automatic label generation algorithms or through sensor data fusion, which typically make a 

deterministic decision on the reference truth (e.g. on object existence) that can be wrong. 
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Due to the unknown state of the reference truth, which enters the likelihood as a latent variable, 

the resulting likelihood function is a mixture of two categorical distributions [115]. The likelihood 

function enables to estimate average sensor POD and PFA as well as statistical error dependencies 

with Bayesian inference [114] and more generally machine learning [115, 119] from data without 

a reference truth. The framework can be applied with any adequate dependence model. 

Thereafter, in Section 6.2.3, we discuss difficulties and solution strategies in evaluating the 

posterior distribution when learning without reference truth. We demonstrate in Section 6.2.4 with 

synthetic binary (sensor) data, that under adequate dependence models, the framework correctly 

estimates the POD and PFA as well as sensor error dependencies despite the missing reference 

truth. In numerical examples, we also investigate the effect of an incorrect dependence model on 

the accuracy of predictions, which in analogy to the discussion of Section 6.1.6 is the main 

challenge to the approach. 

6.2.1 Problem Formulation: Learning Sensor Perception Reliability in the Existence 

Uncertainty Domain without Reference Truth 

The idea is to learn sensor perception reliabilities from a probabilistic reference truth provided by 

sensor redundancy. The framework is therefore restricted to redundant sensors with overlapping 

field of view (FOV). We focus in this Section on the sensors’ indication of objects, i.e. on existence 

uncertainties. Other types of sensor information such as object velocities or object classes are not 

considered. In accordance with Section 4.1.1, we further restrict the presentation here to binary 

object detections. The binary object detection, e.g. in a certain limited area of the field of view, 

can be facilitated by an object association derived from sensor data fusion [57–59, 110] based on 

the individual sensors’ objects to track associations (see Section 2.2.2). Such a binary 

representation is applicable to static and dynamic objects. The detailed specification of a binary 

representation is not the scope of this Section. We assume the sensors’ task of indicating objects 

is reduced to a binary description. 

To learn the sensors’ perception reliabilities in the existence uncertainty domain, we apply the 

formulation of the problem in Section 5.4.1. Let the number of redundant sensors be 𝑛. The sample 

space of the sensors’ object indications consists of the 2𝑛 possible outcomes of the detection vector 

𝐃 = [𝐷1, … , 𝐷𝑛] at points in time 𝑚. The detection vectors are identified by 𝑌 = 𝑦, for instance 

as defined in Table 5.3. The random variable 𝑂 indicates the existence of an object in reality. The 

task is to learn Pr(𝑌 = 𝑦|𝑂 = 1) and Pr(𝑌 = 𝑦|𝑂 = 0) for any value 𝑦. 

The model of Figure 5.17 forms the basis for the estimation of the parameters 𝛉. The difficulty of 

learning the model parameters 𝛉 lies in the fact that 𝑂 cannot be observed without reference truth. 

This means, no labeled data pairs [y𝑚,  𝑜𝑚] are available for the inference of 𝛉. In this case, one 
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has to consider the uncertainty in 𝑂𝑚 for each 𝑚. To this end, 𝑂𝑚 is included in the model as a 

latent variable, whose true state is unknown. It is described by its a priori probability  

Pr(𝑂 = 1) = 𝑝obj, which is unknown and should be learned from the data. The estimation of 𝛉 

and 𝑝obj from data  𝐲 = [y𝑚]𝑚=1
𝑀  without reference truth is described next. 

6.2.2 Learning Sensor Perception Reliability without a Reference Truth  

Without reference truth, the state of 𝑂𝑚 is unknown and inference based on Eqs. (5.29)-(5.30) is 

not possible. In this case, one has to consider the uncertainty in the state of 𝑂𝑚 for each observation 

𝑚. To this end, 𝑂𝑚 is included as a latent variable in the model, following Figure 5.17. The 

likelihood function is formulated by applying the total probability theorem with respect to 𝑂𝑚. The 

resulting likelihood function is a mixture of two categorical distributions: 

𝑝𝑌|𝛉,𝑝obj(𝑦𝑚 |𝛉, 𝑝obj) =  

= 𝑝obj ∙ 𝑝𝑌|𝛉,𝑂(𝑦𝑚 |𝛉, 𝑂𝑚 = 1) + (1 − 𝑝obj) ∙ 𝑝𝑌|𝛉,𝑂(𝑦𝑚 |𝛉, 𝑂𝑚 = 0)  
(6.18) 

Eq. (6.18) is the likelihood of the model parameters 𝛉 and 𝑝obj, given a single observation 𝑦𝑚 

without reference truth.  

The posterior 𝑓(𝛉, 𝑝obj|𝐲) of the model parameters 𝛉 and 𝑝obj, given all the observations  

𝐲 = [𝑦𝑚]𝑚=1
𝑀  without reference truth, is: 

𝑓(𝛉, 𝑝obj|𝐲) ∝ 𝑓(𝛉, 𝑝obj) ∙ ∏ 𝑝𝑌|𝛉,𝑝obj(𝑦𝑚 |𝛉, 𝑝obj)
𝑀
𝑚=1   

(6.19) 

𝑓(𝛉, 𝑝obj) is the joint prior and 𝑝𝑌|𝛉,𝑝obj(𝑦𝑚 |𝛉, 𝑝obj) is the likelihood of a single observation in 

Eq. (6.18). 

Eq. (6.19) assumes exchangeability, i.e. no information is conveyed by the ordering of [𝑦𝑚]𝑚=1
𝑀 . 

Strategies to relax the assumption of exchangeability are discussed in Section 4.2.4. 

In the general case, 𝑝𝑌|𝛉,𝑝obj(𝑦𝑚 |𝛉, 𝑝obj) has the multinomial distribution. As part of the 

exponential family, multinomial data can be summarized with its sufficient statistics [115] which 

are the number of occurrence 𝐧𝑦 = [𝑛𝑦=1, … , 𝑛𝑦=2𝑛] of each value 𝑦 in 𝐲. With this notation, the 

log posterior corresponding to Eq. (6.19) is: 

log 𝑓(𝛉, 𝑝obj|𝐧𝑦) ∝ log 𝑓(𝛉, 𝑝obj) + ∑ 𝑛𝑦 ∙ log 𝑝𝑌|𝛉,𝑝obj(𝑦𝑚 |𝛉, 𝑝obj)
2𝑛
𝑦=1   

(6.20) 

𝑝𝑌|𝛉,𝑂(𝑦𝑚 |𝛉, 𝑂𝑚 = 𝑜) in Eq. (6.18) has to be specified to apply the learning framework. When 

modeling 𝑝𝑌|𝛉,𝑂(𝑦𝑚 |𝛉, 𝑂𝑚 = 𝑜) with the multinomial distribution, the number of free parameters 
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in 𝛉 that need to be learned is 2𝑛+1 − 2, as pointed out in Section 5.4. In Section 6.2.3, it is 

discussed that a number of 2𝑛+1 − 2 free model parameters cannot be learned without reference 

truth. Less general alternatives that depending on the number of sensors can be learned without 

reference truth are the model under independence (Section 5.4.3) and the Gaussian copula 

dependence model (Section 5.4.4), which have 2𝑛 and 𝑛2 + 𝑛 free model parameters, respectively. 

The low rank approximation to the Gaussian copula in Section 5.4.5 requires to learn 4𝑛 free 

model parameters. Strategies to evaluate the posterior in Eq. (6.19) or Eq. (6.20), related challenges 

and requirements on the number of free model parameters are discussed next. 

6.2.3 Evaluating the Posterior Distribution without Reference Truth: Challenges and 

Solution Strategies 

 

The Label-Switching Problem 

One problem with inference involving mixtures such as Eq. (6.18) is that the model parameters 

are not uniquely identified due to the unknown state of the latent variables 𝑂𝑚, which results in 

the likelihood having multiple modes [115]. This behaviour is known as the label-switching 

problem because the likelihood is invariant to relabeling the mixture components [294]. The 

potential number of modes in the likelihood is equal to the number of possible permutations of the 

mixture components [115, 294], here two.  

This is illustrated with the example of 𝑛 = 3 sensors and assuming statistical independence 

between sensor errors (as in Section 5.4.3). In reference to Table 5.3, consider the case that the 

observations consist 20% of the time of 𝑦 = 1 and 80% of 𝑦 = 8. Then, according to Eqs. (5.31)-

(5.32) the following two explanations are equally likely: Either 𝑝obj = 0.8, the POD of all sensors 

is one and the PFA of all sensors is zero, or 𝑝obj = 0.2, the PFA of all sensors is one and the POD 

of all sensors is zero. This means, the labels of POD and PFA can be switched. 

We solve this problem by regulating the corresponding parameters by a suitable prior 𝑓(𝛉, 𝑝obj). 

As the sensors are being considered for a safety relevant task, at the time of the reliability 

assessment they have already been tested considerably during development. A priori, POD should 

be close to one and PFA close to zero. Therefore, one can safely construct a prior which excludes 

POD < 0.5 and PFA > 0.5. In the illustrative example above this would lead to 𝑝obj = 0.8,  

POD = 1 and PFA = 0 for all sensors. 
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With this prior, the full posterior distribution of the parameters in Eq. (6.20) can be identified with 

a suitable MCMC algorithm [114, 115, 266, 267]. Alternatively, the maximum a posteriori 

parameter (MAP) estimate can be found with standard optimization algorithms [115] or the 

expectation maximization (EM) algorithm [119, 295]. 

Selecting a Prior Distribution 

In Eq. (6.19) it is required to select a prior distribution 𝑓(𝛉, 𝑝obj) for the model parameters. Recall 

that the main idea behind the proposed framework is to learn sensor perception reliabilities from 

a large number of driver controlled vehicles, which leads to a large amount of data. It is well known 

that the influence of the prior on the posterior reduces with increasing amount of data, if the 

number of model parameters is finite [114]. Hence, in the limit of 𝑀 → ∞, the choice of the prior 

becomes irrelevant. The derivation of a prior distribution is therefore not in the focus of this thesis. 

In case no prior information is available, the prior can be selected to be weakly informative with 

Jeffreys prior [115, 243] or alternatively, one can simply select a uniform prior for the model 

parameters. The only information that should be encoded in the prior is the restriction of the 

support due to the label switching problem. 

Markov Chain Monte Carlo (MCMC) 

As no closed form analytical solutions can be obtained for the posterior distributions, MCMC is 

applied to evaluate the posterior [114, 115, 266, 267]. An expectation maximization (EM) 

algorithm under the assumption of independence between sensor errors (Section 5.4.3) allows us 

to find accurate maximum a posteriori (MAP) estimates. These are utilized as MCMC starting 

points for POD𝑖 and PFA𝑖 in the sensors 𝑖 = 1,… , 𝑛 [119]. 

While common MCMC algorithms work well with the posterior in the independent case (Section 

5.4.3), inference with a multivariate probit model (i.e. a Gaussian copula for correlated binary data, 

Section 5.4.4) is known to be difficult and computationally demanding [273]. Specialized MCMC 

algorithms have been developed for probit models [273], these are here however not applicable 

because our likelihood when inserting Eqs. (5.37)-(5.40) into Eqs. (6.18)-(6.20) is a mixture of 

two probit models. In particular, the model parameters 𝛉dep can exhibit strong dependence. This 

motivates the use of (gradient-based) Hamiltonian MCMC [114, 296] to improve convergence.  

With the combination of EM for finding initial MAP estimates and the Hamiltonian MCMC, 

convergence can be achieved for the models presented in Sections 5.4.3 and 5.4.5, as we 

demonstrate in Section 6.2.4. 
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Required Number of Sensors without Reference Truth 

When evaluating sensor perception reliability with reference truth, a single sensor can be analyzed 

individually. In contrast, the proposed approach without reference truth relies on redundant sensors 

identifying the same objects. In this Section, we briefly discuss the minimum number of sensors 

necessary to apply the proposed learning framework. To this end, we interpret the inference of the 

model parameters 𝛉 and 𝑝obj as a deterministic inverse problem. 

We consider the limiting case of 𝑀 → ∞ observations, in which the probabilities 𝑝𝑦, 𝑦 = 1,… , 2
𝑛 

are known deterministically. According to the models of Section 5.4, the probabilities 𝑝𝑦 are a 

function of the parameters 𝛉 and 𝑝obj, i.e., 𝑝𝑦 = 𝑔𝑦(𝛉, 𝑝obj). With this interpretation of the 

problem, 𝑝𝑦 = 𝑔𝑦(𝛉, 𝑝obj) for 𝑦 = 1,… , 2𝑛 defines a nonlinear system of 2𝑛 − 1 equations (one 

equation is redundant because of the constraint ∑ 𝑝𝑦
𝑦=2𝑛

𝑦=1 = 1). This would allow obtaining 𝛉 and 

𝑝obj from 𝐩y = [𝑝1, … , 𝑝2𝑛] by the solution of the inverse problem [𝛉, 𝑝obj] = 𝑔𝑦
−1(𝐩𝑦). Note that 

the constraints POD < 0.5 and PFA > 0.5 following the label switching problem must be included 

to obtain a unique solution to this inverse problem. 

With this interpretation of the problem, we conclude that 𝛉 can consist of up to 2𝑛 − 2 free 

parameters (one free parameter is 𝑝obj). Otherwise, there is no unique solution for 𝛉 in the inverse 

problem, which leads to likelihood invariance under different parameter combinations. The model 

with independent sensors (Section 5.4.3) has 2𝑛 free parameters. It follows that 𝑛 ≥ 3 sensors are 

required to learn this model. For dependent sensors, the model of Section 5.4.4 has 𝑛2 + 𝑛 

parameters and the model of Section 5.4.5 4𝑛, excluding 𝑝obj. Hence, both proposed models for 

dependent sensors require 𝑛 ≥ 5 sensors. 

6.2.4 Numerical Examples 

A series of synthetic numerical experiments demonstrate the proposed methodology. Several 

synthetic data sets 𝐲 = [𝑦𝑚]𝑚=1
𝑀  containing 𝑀 samples of the detection vectors are generated with 

fixed sensor reliabilities and dependencies 𝛉 and 𝑝obj. In case of independence, the data set 𝐲 is 

sampled based on Eqs. (5.31)-(5.32) inserted into Eq. (6.18) and in case of dependence, based on 

Eqs. (5.37)-(5.40) inserted into Eq. (6.18). From the samples 𝐲 = [𝑦𝑚]𝑚=1
𝑀 , the sufficient test 

statistics 𝐧𝑦 are derived (see Section 6.2.2). 

As outlined in Section 6.2.3, the minimum number of sensors to learn the parameters is 𝑛 = 3 in 

case of independence and 𝑛 = 5 in case of dependence, which we adapt in the following. Four 

different numerical investigations are performed: (1) We estimate 𝛉indep under the assumption of 

independence (following Sections 5.4.3 and 6.2.2) from statistically independent data. (2) We 
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estimate 𝛉indep under the assumption of independence (following Sections 5.4.3 and 6.2.2) from 

data generated with a model including statistical dependence, to investigate the effect of wrong 

model assumptions. (3) We estimate 𝛉dep under the assumption of dependence (following Sections 

5.4.5 and 6.2.2) with data whose dependence is described by correlation matrices of the Dunnet-

Sobel class. (4) We estimate 𝛉dep under the assumption of dependence (following Sections 5.4.5 

and 6.2.2) where the error dependence structure used to generate the data does not follow the 

Dunnet-Sobel class assumed in the estimation. Therefore, in case studies 1) and 3), the models are 

aligned to the data, and in case studies 2.) and 4.), the data does not follow the selected models. 

The synthetic data does not reproduce real data but allows to study the properties of the proposed 

inference algorithms. 

The number of sensors 𝑛, the selected probabilities of detection POD𝑖, the probabilities of false 

alarm PFA𝑖 and the number of synthetic observations 𝑀 for case studies 1-4 are summarized in 

Table 6.2. 𝑝obj = 0.8 in all case studies. 

Table 6.2 Case study: virtual truth of the probabilities of detection 𝐏𝐎𝐃𝒊 and probabilities of false alarm 

𝐏𝐅𝐀𝒊. From [157]. 

Case Number of 

sensors   

𝐏𝐎𝐃𝟏, … , 𝐏𝐎𝐃  𝐏𝐅𝐀𝟏, … , 𝐏𝐅𝐀  
[𝐱𝟏𝟎−𝟑] 

Number of 

data points 𝑴 

1)  3 [0.999, 0.9999, 0.99999] [2, 0.2, 0.02] 107 
2)  3 [0.999, 0.9999, 0.99999] [2, 0.2, 0.02] 107 
3)  5 [0.995,0.999,0.9995,0.9999,0.99995] [25,20,2.5,2.0,1.0] 108 
4)  5 [0.995,0.999,0.9995,0.9999,0.99995] [25,20,2.5,2.0,1.0] 108 

 

The correlation matrices 𝐑𝐔,FN and 𝐑𝐔,FP of FN and FP sensor errors in standard normal space for 

case studies (2-4) are summarized in Table 6.3. In case study 2, the detection vectors are sampled 

based on 𝛉dep, therefore the virtual truth includes the correlation matrices. The elements of the 

correlation matrices of case (2) are randomly selected between zero and one. The correlation 

matrices of case study (3) belong to the Dunnet-Sobel class (Section 5.4.5) with randomly selected 

underlying values 𝛌UFN = [0.50, 0.61, 0.00, 0.58, 0.78] and 𝛌UFP = [0.66, 0.53, 0.83, 0.96, 0.31]. 

The values of 𝐑𝐔,FN and 𝐑𝐔,FP in case study (4) are randomly selected between zero and 0.7. 
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Table 6.3 Virtual truth correlation matrices 𝐑𝐔,𝐅𝐍 and 𝐑𝐔,𝐅𝐏 of FN and FP sensor errors. From [157]. 

Case 𝐑𝐔,𝐅𝐍 𝐑𝐔,𝐅𝐏 

2)  (
1 0.71 0.72
0.71 1 0.91
0.72 0.91 1

) (
1 0.66 0.43
0.66 1 0.42
0.43 0.42 1

) 

3)  

(

 
 

1 0.30 0 0.29 0.39
0.30 1 0 0.36 0.47
0 0 1 0 0
0.29 0.36 0 1 0.46
0.39 0.47 0 0.46 1 )

 
 

 

(

 
 

1 0.34 0.54 0.63 0.21
0.34 1 0.44 0.51 0.17
0.54 0.44 1 0.79 0.26
0.63 0.51 0.79 1 0.30
0.21 0.17 0.26 0.30 1 )

 
 

 

4)  

(

 
 

1 0.61 0.67 0.64 0.53
0.61 1 0.20 0.23 0.33
0.67 0.20 1 0.40 0.42
0.64 0.23 0.40 1 0.17
0.53 0.33 0.42 0.17 1 )

 
 

 

(

 
 

1 0.40 0.26 0.19 0.69
0.40 1 0.45 0.27 0.08
0.26 0.45 1 0.22 0.03
0.19 0.27 0.22 1 0.27
0.69 0.08 0.03 0.27 1 )

 
 

 

 

For reproducibility, the randomly generated sufficient statistics 𝐧𝑦 of the number of observations 

with 𝑌 = 𝑦 (as in Table 5.3) are summarized in Table 6.4 for case studies (1-2).  

Table 6.4 Case studies (1-2): Number 𝐧𝒚 of synthetic observations with 𝒀 = 𝒚. From [157]. 

Case  𝒚=𝟏  𝒚=𝟐  𝒚=𝟑  𝒚=𝟒  𝒚=𝟓  𝒚=   𝒚=𝟕  𝒚=  

1)  1996720 4043 395 37 89 8038 801 7989877 

2)  1994624 4131 284 302 127 7769 493 7992270 
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𝐧𝑦 for case studies (3-4) is given in Table 6.5. 

Table 6.5  Corresponding detection vectors 𝑫=[ 𝑫𝟏, … , 𝑫𝟓] and observations 𝒀 = 𝒚 in case of  = 𝟓 sensors 

together with the number of synthetic observations  𝒚 in case studies (3) and (4). 

Variable 

𝒀 

𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 𝑫𝟓 Case 3)  𝒚 Case 4)  𝒚 

1 0 0 0 0 0 19088692 19077268 

2 1 0 0 0 0 428716 423982 

3 0 1 0 0 0 342185 330087 

4 0 0 1 0 0 21789 34777 

5 0 0 0 1 0 9950 32831 

6 0 0 0 0 1 16689 6123 

7 1 1 0 0 0 37953 53385 

8 1 0 1 0 0 8669 3193 

9 1 0 0 1 0 9052 2112 

10 1 0 0 0 1 1326 12703 

11 0 1 1 0 0 4240 8932 

12 0 1 0 1 0 3705 3264 

13 0 1 0 0 1 901 305 

14 0 0 1 1 0 3615 396 

15 0 0 1 0 1 195 88 

16 0 0 0 1 1 101 418 

17 1 1 1 0 0 2284 2446 

18 1 1 0 1 0 3864 857 

19 1 1 0 0 1 174 702 

20 1 0 1 1 0 4958 74 

21 1 0 1 0 1 293 44 

22 1 0 0 1 1 161 233 

23 0 1 1 1 0 2208 1244 

24 0 1 1 0 1 504 3432 

25 0 1 0 1 1 250 15537 

26 0 0 1 1 1 4043 19636 

27 1 1 1 1 0 5832 2743 

28 1 1 1 0 1 7144 4310 

29 1 1 0 1 1 39732 23755 

30 1 0 1 1 1 75500 59802 

31 0 1 1 1 1 393521 358226 

32 1 1 1 1 1 79481754 79517095 

 

Following Section 6.2.3, we select a uniform prior. To solve the label-switching problem, we 

require that 𝑓(𝛉, 𝑝obj) = 0 when POD𝑖 ≤ 0.5 or PFA𝑖 ≥ 0.5 for all 𝑖 = 1, … , 𝑛. 

In all case studies, samples [𝛉, 𝑝obj] from the respective posterior distributions 𝑓(𝛉, 𝑝obj|𝐧𝑦) were 

generated with Hamiltonian MCMC with starting points randomly perturbed around the initial EM 

estimate, as discussed in Section 6.2.3 [114, 296]. Convergence of the MCMC chains was checked 

with the Gelman-Rubin convergence statistic [114], which was close to one for all parameters and 

case studies. 
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Results: Case (1) Independent Sensors 

Based on the observations 𝐧𝑦 of case (1), as in Table 6.4, and the prior as defined under 6.2.4, the 

log-posterior distribution log 𝑓(𝛉indep, 𝑝obj|𝐧𝑦) is set up with Eq. (6.20) and the model described 

in Section 5.4.3. Note that it holds log 𝑓(𝛉indep, 𝑝obj|𝐧𝑦) = log 𝑓(𝛉indep, 𝑝obj|𝐲) where  

𝐲 = [𝑦𝑚]𝑚=1
𝑀  are the detection vectors underlying 𝐧𝑦. 

To illustrate the joint posterior, we exemplarily show 1604 generated samples of selected 

parameters [POD3, PFA3, 𝑝obj] in Figure 6.16. POD3 is the probability of detection in sensor 3 and 

PFA3 is the probability of false alarm in sensor 3. 

 

Figure 6.16 Samples of the joint posterior 𝒇(𝐏𝐎𝐃𝟑, 𝐏𝐅𝐀𝟑, 𝒑𝐨𝐛𝐣|𝐲) for case (1). Taken and adapted from 

[157]. 

The samples spread around the virtual truths of POD3 and PFA3 given in Table 6.2 and around the 

correct probability of an object being present, 𝑝obj = 0.8. Therefore, the correct POD3 and PFA3 

as well as the correct 𝑝obj are learned, even though it is unknown if a particular observation in 

Table 6.4 is actually a TP or FP sensor detection. As also visible in Figure 6.16, the parameters 

are independent in their posterior distribution, which facilitates convergence of the MCMC chains. 

The marginal posterior distributions 𝑓(POD𝑖|𝐲) and 𝑓(PFA𝑖|𝐲) of the remaining parameters are 

presented in Figure 6.17 to demonstrate that also these parameters are correctly learned. The 

dashed lines indicate the virtual truths. 𝑓(PFA2|𝐲) is shifted compared to the virtual truth due to 

sampling uncertainty. 
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Figure 6.17 Marginal posterior distributions of case (1): (a) 𝒇(𝐏𝐎𝐃𝟏|𝐲) probability of detection in sensor 1 

(b) 𝒇(𝐏𝐎𝐃𝟐|𝐲) probability of detection in sensor 2 (c) 𝒇(𝐏𝐅𝐀𝟏|𝐲) probability of false alarm in 

sensor 1 (d) 𝒇(𝐏𝐅𝐀𝟐|𝐲) probability of false alarm in sensor 2. The dashed lines indicate the virtual 

truth. From [157]. 

Results: Case (2) Incorrectly Assuming Independence 

In case (2), the FP and FN detections underlying the observations 𝐧y in Table 6.4 include 

dependence according to the correlation matrices in Table 6.3. Nevertheless, the posterior 

distribution 𝑓(𝛉indep, 𝑝obj|𝐲) is estimated based on the assumption of independence with  

Eq. (6.20) and the model under independence described in Section 5.4.3, as in case (1).  

Figure 6.18 presents the estimated marginal posterior distribution of the model parameters after 

convergence of the MCMC chains, based on 1604 MCMC samples. 

 

Figure 6.18 Marginal posterior distributions of case (2): (a) 𝒇(𝒑𝐨𝐛𝐣|𝐲) probability of object being present; (b-

d) 𝒇(𝐏𝐎𝐃𝒊|𝐲) probability of detection in sensor 𝒊; (e-f)  𝒇(𝐏𝐅𝐀𝒊|𝐲) probability of false alarm in 

sensor 𝒊. The dashed lines indicate the virtual truth. Taken and adapted from [157]. 
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Due to the dependence, which is not captured in the model of Section 5.4.3, the parameters are not 

correctly learned. Nevertheless, the posterior means are approximately of the same order of 

magnitude as the virtual truths. 

Results: Case (3) Dependent Sensors 

In case (3), the dependence model is as described in Section 5.4.5. The posterior distribution 

𝑓(𝛉dep,DS, 𝑝obj|𝐲) is based on Eqs. (5.42)-(5.44) inserted into Eq. (6.20). The data 𝐧y underlying 

this case study are summarized in Table 6.5. The model parameters are 𝛉dep,DS =

[POD1, … , POD5, PFA1, … , PFA5, λUFN,1 , … , λUFN,5 , λUFP,1 , … , λUFP,5]. 

Figure 6.19 shows the posterior 𝑓(PFA3, PFA4, PFA5, 𝜌UFP,3,4 , 𝜌UFP,3,5 , 𝜌UFP,4,5|𝐲) of selected 

parameters. The correlation coefficients 𝜌UFP,𝑖,𝑗 are calculated with Eq. (5.41).  

 

Figure 6.19 The joint posterior 𝒇(𝐏𝐅𝐀𝟑 , 𝐏𝐅𝐀𝟒 , 𝐏𝐅𝐀𝟓 , 𝝆𝐔𝐅𝐍,𝟑,𝟒 , 𝝆𝐔𝐅𝐏,𝟑,𝟓 , 𝝆𝐔𝐅𝐏,𝟒,𝟓|𝐲) of selected parameters for case 

(3). Taken and adapted from [157]. 
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Unlike in Figure 6.16, not all posterior parameters are independent. In particular, 𝜌UFP,3,5 and 

𝜌UFP,4,5 show a strong linear dependence. The dependence in the posterior distribution makes 

MCMC-based inference more challenging, but the applied Hamiltonian MCMC is well suited for 

such problems because it is gradient based. 

The posterior mean estimates of POD𝑖 and PFA𝑖 are summarized in Table 6.6. Similar to Figure 

6.17, the remaining posterior uncertainty in POD𝑖 and PFA𝑖 is negligible and is therefore not 

reported. The posterior mean of 𝑝obj is 0.80 with negligible uncertainty. Comparing Table 6.6 

with Table 6.2 reveals that all probabilities of detection and probabilities of false alarm are 

estimated accurately. 

Table 6.6 Case study 3): Posterior mean parameter estimates of 𝐏𝐎𝐃𝒊 and 𝐏𝐅𝐀𝒊. From [157]. 

Posterior mean 𝐏𝐎𝐃𝟏, … , 𝐏𝐎𝐃𝟓 Posterior mean 𝐏𝐅𝐀𝟏, … , 𝐏𝐅𝐀𝟓[∙ 𝟏𝟎−𝟑] 

[0.995015, 0.998998, 0.999501, 0.999901, 0.999950] [25.00, 20.00, 2.50, 1.99, 0.99] 

 

The marginal posteriors 𝑓(λUFN,𝑖|𝐲) and 𝑓(λUFP,𝑖|𝐲) of the coefficients λUFN,𝑖 and λUFP,𝑖, which 

according to Eq. (5.41) fully define the dependence structure in the model of Section 5.4.5, are 

summarized in Figure 6.20. With the exception of λUFN,3, all marginal posterior distributions are 

centred on their underlying virtual truth. The deviation of the estimate of λUFN,3 from the true value 

is because both values are close to zero. This slight deviation has no noticeable impact on the 

resulting dependence structure. The deviation of 𝑓(λUFP,1|𝐲) from the true value is caused by 

sampling uncertainty. 

 

Figure 6.20 The marginal posteriors (a-e) 𝒇(𝛌𝐔𝐅𝐍,𝒊|𝐲) and (f-j) 𝒇(𝛌𝐔𝐅𝐏,𝒊|𝐲) in sensor 𝒊 for case (3). The dashed 

lines indicate the virtual truth. Taken and adapted from [157]. 
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We (jointly) transform all samples in Figure 6.20 into samples of the correlation coefficients of 

sensor errors in standard normal space 𝜌UFN,𝑖,𝑗 and 𝜌UFP,𝑖,𝑗 with Eq. (5.41). The matrices containing 

the resulting posterior means of 𝜌UFN,𝑖,𝑗 and 𝜌UFP,𝑖,𝑗 are summarized in Table 6.7. These matrices 

are essentially identical to the underlying truth, presented in Table 6.3. Hence the dependence 

structure in both FP and FN sensor errors is correctly identified. 

Table 6.7 Posterior mean correlation matrices �̂�𝐔,𝐅𝐍 and �̂�𝐔,𝐅𝐏 of FN and FP sensor errors in standard 

normal space for case (3). From [157]. 

�̂�U,FN �̂�U,FP 

(

 
 

1 0.30 0 0.29 0.39
0.30 1 0 0.36 0.47
0 0 1 0 0
0.29 0.36 0 1 0.45
0.39 0.47 0 0.45 1 )

 
 

 

(

 
 

1 0.35 0.54 0.63 0.20
0.35 1 0.44 0.51 0.17
0.54 0.44 1 0.79 0.27
0.63 0.51 0.79 1 0.30
0.20 0.17 0.27 0.30 1 )

 
 

 

 

Results: Case (4) Inadequate Dependence Model 

In case (4), the virtual truth of the dependence in FN and FP sensor errors does not follow the 

Dunnet-Sobel class model of Section 5.4.5. Nevertheless, the model is applied to the data of case 

study (4) in Table 6.5, analogous to case 3.The estimates of the sensors’ POD𝑖 and PFA𝑖 (posterior 

means from 3600 samples) are summarized in Table 6.8. Comparing with Table 6.3 reveals that 

they are close to their true values. 

Table 6.8 Case study (4): Posterior mean parameter estimates of 𝐏𝐎𝐃𝒊 and 𝐏𝐅𝐀𝒊. From [157]. 

Posterior mean 𝐏𝐎𝐃𝟏, … , 𝐏𝐎𝐃𝟓 Posterior mean 𝐏𝐅𝐀𝟏, … , 𝐏𝐅𝐀𝟓[𝐱𝟏𝟎−𝟑] 

[0.995168, 0.998997, 0.999500, 0.999906, 0.999945] [25.01, 20.02, 2.52, 1.98, 1.04] 

 

Analogue to Table 6.7, estimates of �̂�𝐔,FN and �̂�𝐔,FP are derived from the posterior mean 

correlation coefficients �̂�UFN,𝑖,𝑗 and �̂�UFP,𝑖,𝑗. The absolute error of these estimates with respect to 

their underlying virtual truth of 𝜌UFN,𝑖,𝑗 and 𝜌UFP,𝑖,𝑗 is summarized in Table 6.9. As is apparent, the 

estimated correlation matrices are partly subject to errors. However, in this specific case the 

absolute error is small for most correlation coefficients. 
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Table 6.9 Absolute error of the posterior mean correlation coefficients �̂�𝐔𝐅𝐍,𝒊,𝒋 and �̂�𝐔𝐅𝐏,𝒊,𝒋 of FN and FP 

sensor errors in standard normal space w.r.t. the underlying virtual truth of 𝝆𝐔𝐅𝐍,𝒊,𝒋 and 𝝆𝐔𝐅𝐏,𝒊,𝒋. 

From [157]. 

(�̂�𝐔𝐅𝐍,𝒊,𝒋 − 𝝆𝐔𝐅𝐍,𝒊,𝒋) (�̂�𝐔𝐅𝐏,𝒊,𝒋 − 𝝆𝐔𝐅𝐏,𝒊,𝒋) 

(

 
 

0 0.00 0.00 −0.01 0.04
0.00 0 0.21 0.15 0.01
0.00 0.21 0 0.02 −0.04
−0.01 0.15 0.02 0 0.19
0.04 0.01 −0.04 0.19 0 )

 
 

 

(

 
 

0 0.01 0.12 0.05 −0.06
0.01 0 −0.18 −0.10 0.37
0.12 −0.18 0 −0.06 0.39
0.05 −0.10 −0.06 0 −0.01
−0.06 0.37 0.39 −0.01 0 )

 
 

 

 

Of major interest is how the biased estimates of the parameters 𝛉dep affect the ability to predict 

the occurrence frequencies Pr(𝑌 = 𝑦 |𝛉dep, 𝑂 = 1) and Pr(𝑌 = 𝑦 |𝛉dep, 𝑂 = 0). To evaluate the 

performance of the prediction, we evaluate the posterior predictive distributions 

Pr(𝑌 = 𝑦 |𝑂 = 1, 𝐧𝑦) = ∫ Pr(𝑌 = 𝑦 |𝛉dep, 𝑂 = 1) ∙ 𝑓(𝛉dep|𝐧𝑦) 𝑑𝛉dep
∞

−∞
 and 

Pr(𝑌 = 𝑦 |𝑂 = 0, 𝐧𝑦) = ∫ Pr(𝑌 = 𝑦 |𝛉dep, 𝑂 = 0) ∙ 𝑓(𝛉dep|𝐧𝑦) 𝑑𝛉dep
∞

−∞
. 

Figure 6.21 illustrates the posterior predictive distributions. Additionally, the virtual truth and 

estimates of Pr(𝑌 = 𝑦 |𝛉indep,MAP, 𝑂 = 1) and Pr(𝑌 = 𝑦 |𝛉indep,MAP, 𝑂 = 0) under the 

assumption of independence are shown. The latter are based on the maximum a posteriori 

parameter (MAP) estimates 𝛉indep,MAP under independence, which have been derived with the 

implemented expectation maximization (EM) algorithm. Due to the negligible posterior 

uncertainty, the prediction with the MAP estimates is essentially identical to the corresponding 

predictive distribution under independence. 

 

Figure 6.21 Comparing the predictions of 𝒀 = 𝒚|𝑶 =   based on the assumption of independence (dotted line) 

and based on the Dunnet-Sobel model (dashed line) with the virtual truth (solid line). (a) 𝑶 = 𝟏 

an object is present and (b) 𝑶 = 𝟎 no object is present. Each 𝒀 = 𝒚 defines a different combination 

of sensor detections 𝐃 = 𝐝 as defined in Table 6.5. Taken and adapted from [157]. 
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Despite the errors in estimating the correlation matrices (see Table 6.9), the predictions with the 

Dunnet-Sobel model are rather accurate. In both cases, Figure 6.21a) with 𝑂 = 1 and Figure 6.21b) 

𝑂 = 0, the Dunnet-Sobel model gives better predictions than the assumption of independence. 

Especially the worst case errors 𝑌 = 1 in Figure 6.21a) (all sensors commit a FN error) and  

𝑌 = 32 in Figure 6.21b) (all sensors commit FP error) are far more accurately predicted than under 

the assumption of independence. 

6.2.5 Discussion 

We developed a statistical framework that allows determining sensor perception reliability in the 

existence uncertainty domain without a reference truth, by exploiting sensor redundancy. In case 

of independent sensor errors, the approach is applicable for 𝑛 ≥ 3, and for dependent sensor errors 

for 𝑛 ≥ 5 redundant sensors. 𝑛 = 3 redundant sensors is common today, and in the future, it is 

likely that automated driving functionalities (≥level 3) will employ more than 3 redundant sensors. 

Alternatively, one could also equip a selected number of vehicles with ≥ 5 redundant sensors to 

apply the approach. 

A prerequisite for the presented framework is a binary interpretation of the sensor data. This can 

be achieved for instance by restricting the analysis of sensor object indications to a limited area of 

the field of view, by evaluating if a preceding vehicle is detected in a certain range, or by 

thresholding continuous parameters. Before the framework can be implemented in practice, one 

must devise a suitable binary representation of the sensor perception. 

Another challenge lies in the dependence among sensor errors, which is potentially safety-critical 

and must be included in the model. In synthetic case studies, we demonstrate that one can correctly 

learn sensor perception reliability of binary sensor data (here in form of FP and FN sensor error 

rates) and sensor error dependencies without reference truth, if an adequate dependence model is 

employed. If the dependence model is not accurate, as simulated in cases (2) and (4), the estimated 

sensor perception reliabilities and dependencies are biased. In this Section we implemented a 

Gaussian copula to describe correlated (binary) sensor errors. To facilitate statistical inference, we 

used a low rank parameterization of the Gaussian copula dependence model. 

It is difficult to decide without reference truth if a correct dependence model is employed. This 

issue has already been discussed in detail in Section 6.1.6, and equivalently applies to the 

framework in this Section. 
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Simplifications and Future Work 

We only consider the perception reliability (POD and PFA) averaged over time. The perception 

reliabilities are changing in time due to variable environmental influencing factors (see Section 

3.1.4). Including context variables in the proposed framework as covariates is conceptually 

straightforward but would require to collect additional data, which might be difficult. This would 

allow to a) include variability in the model parameters and b) allow to relax the exchangeability 

assumption made in Eq. (6.19). Future work could extend the framework to account for context 

variables by formulating the model parameters as functions of covariates, similar to Section 5.3. 

This could also facilitate an online estimation of sensor perception reliability for an optimization 

of fusion algorithms. 

If the frequencies of the different detection vectors (see e.g. Table 5.3) are sensitive towards 

context variables, one could also utilize this information to predict which environmental conditions 

a vehicle is currently experiencing. Further, deviations of the frequency of the different detection 

vectors from their global mean could indicate that a specific sensor is not working correctly. This 

is an important information for sensor data fusion. In practical applications of testing sensors 

without a reference truth, it might also be beneficial to enhance the learning with additional 

information. This could for instance be the braking signal and the velocity of the ego-vehicle. 

Note that every time the (binary) output of the sensors is not in line, one knows with certainty that 

a perception error must have occurred in one of the sensors. One could identify these events and 

trigger a manual data labeling process only for these events. This would allow to clarify which 

sensor made an error and speed up the learning. Following this approach, if the test is long enough, 

one does not even need any statistics to learn the correct sensor error frequencies (except for the 

case that all sensors make an error, as these events cannot be identified). With this partial reference 

truth (for some points in time one knows the error occurrence with certainty and for some not) one 

could combine the learning methods outlined in this Section with Section 5.4.2. 

Another avenue of future research could be to extend the binary case of sensor errors (object 

present or not) to the multivariate problem of object classification (e.g. with classes: no object 

present, car, pedestrian, bicycle, motorcycle, truck, etc.). Further, one could also try to 

probabilistically combine the proposed framework with sensor data fusion algorithms, e.g. JIPDA 

[118]. 

Finally and most importantly, as already discussed in Section 6.1.6, additional investigations with 

real data into adequate models of sensor error dependence are required before the framework can 

be applied in practice. This could enable an unbiased estimation of sensor error rates without 

reference truth. Moreover, it is in any case advisable to conduct limited tests with a reference truth 

to preclude a large frequency of joint sensor errors. 
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Opportunities 

With an adequate statistical model, the proposed framework is an opportunity to demonstrate 

perception reliability with a fleet of end-user vehicles, as sketched in Figure 6.22. With this 

approach, a fleet of end-user vehicles could collect the large amounts of data because no reference 

truth has to be established. Standard series sensors could be built into the vehicles and tested in 

Shadow Mode in real environments [68], without having the automated driving functionalities 

activated. Hence, the approach could complement Shadow Mode test concepts [201, 277] for 

automated driving functionalities. The error rates would be learned offline in the backend based 

on the data of all vehicles in the fleet. Only a limited amount of data would be needed to be 

transferred to the backend. In contrast, an offline labeling approach requires transmitting sensor 

raw data to the backend. 

This approach can facilitate capturing a high variation of driving situations in a sensor perception 

reliability assessment, and the test naturally is representative (see Section 3.1.4). The approach 

would allow generating the large amount of data needed to demonstrate strict reliability targets for 

the sensor perception and ultimately for the safety of automated driving. 

 

Figure 6.22 Outlook: Schematic concept of how to demonstrate the perception reliability with a fleet learning 

approach.73 

 

                                                 
73 This Figure was originally created by Olaf Schubert, one of the supervisors of this research project. 
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Conclusion 

We investigated on a theoretical basis if it is possible to learn sensor perception reliabilities without 

a reference truth. To this end, we presented a framework for estimating reliabilities of binary sensor 

data by exploiting sensor redundancies. The presented approach could enable learning sensor 

detection and false alarm rates as well as sensor error dependencies from a fleet of end-user 

vehicles because a reference truth is not required. 

In synthetic case studies, we demonstrate that correct sensor error rates are learned despite the lack 

of certainty, whenever the selected sensor error dependence model is adequate. Additionally, we 

study the estimation errors made by the framework if the dependence model is not adequate. This 

Section presents an alternative testing and demonstration procedure for sensor perception 

reliability, complementing existing methods such as empirical tests with a reference truth and 

virtual simulations. Eventually, the developed framework could contribute to demonstrate the 

safety of automated driving vehicles. However, further investigations into the adequacy of 

statistical models to describe dependence among sensor errors are needed. 
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7 Conclusions and Outlook 

7.1 Concluding Remarks 

Even though the introduction of automated driving systems (ADSs) promises to increase traffic 

safety [3, 31–38], ADSs can and probably will cause fatal accidents. Due to technical complexities, 

at present open questions are how to develop safe ADSs with higher levels of driving automation 

(≥ level 3) and how to demonstrate that a developed ADS is complying with its safety 

requirements. To prevent unacceptable risk for society and the ADSs’ producers, the safety of 

ADSs has to be demonstrated before their release to public traffic. Biased public risk perception 

[122, 125, 129, 142–144] implies that ADSs need to comply with strict safety targets. 

ADSs are enabled by environment perceiving sensors such as radar, camera and lidar as well as a 

variety of processing and decision making algorithms. Of particular relevance for an ADS’s safety 

is the perception based on the fused data of radar, lidar and camera sensors, because perception 

errors can be safety critical. Depending on the postulated capabilities of an ADS (i.e. the level of 

driving automation), the ADS’s perception replaces human perception. For claiming higher levels 

of driving automation, it is crucial to demonstrate sufficient perception reliability (i.e. probability 

of absence of safety-critical perception errors) to ensure system safety. 

Current standards such as ISO 26262 for functional safety and established test procedures 

(scenario based testing in simulations and on proving grounds, field tests) do not formally allow 

to demonstrate an ADS’s perception reliability without additional measures. In practice for 

instance, it is hardly possible to empirically demonstrate sufficient perception reliability and 

consequently an ADS’s safety because of the approval trap [35], i.e. the impracticably large 

number of required kilometers in field tests. Additionally, due to the complexities of environment 

perception, whose performance depends on numerous context variables (factors in the 

environment such as weather, properties of traffic participants…), the requirements for an ADS’s 

perception can likely neither be comprehensively specified nor verified in tests. This would result 

in a near infinite number of specifications and, consequently, test cases. 

These difficulties have motivated this thesis’ objective of developing reliability analysis methods 

for environment perception in ADSs. By assessing perception reliability, it aims at contributing to 

a validation of the safety of the intended ADS functionality (SOTIF). Central research questions 

to achieve this objective are: how to derive reliability requirements for components (individual 

sensors) of an ADS’s perception system and how to actually demonstrate these requirements, to 

ensure sufficient ADS perception reliability? 
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7.2 Contributions of this Thesis 

In this thesis, we comprehensively structured the task of demonstrating an ADS’s perception 

reliability, we identified challenges involved with this task, and we developed some possible 

solutions to these challenges. Our main original contributions are: 

1. In Chapter 3, we formalized the task and challenges of demonstrating perception reliability 

for ADSs with higher levels of driving automation with Eq. (3.4). These challenges 

include:  

 The approval trap for environment perception 

 Perception error definition 

 Generating a reference truth 

 Time variable perception performance 

 Representativeness of tests 

 Statistical perception error dependence 

 System modifications during development 

2. Based on a literature review, we comprehensibly outlined in Chapter 3 why established 

safety validation and testing procedures are not necessarily sufficient to achieve and 

demonstrate acceptable safety levels as well as perception reliability for an ADS with 

higher levels of driving automation. Main reasons are existing standards not addressing the 

safety of the intended functionality (SOTIF), the driver being out of the loop (limited driver 

controllability of an ADS with higher levels of driving automation), and testing procedures 

not being directly applicable: 

 Simulation frameworks for sole and comprehensive validation of perception 

reliability do not yet exist. 

 Scenario based testing has the limitation that an ADS has to handle a near infinite 

number of situations. 

 Field tests are impractical due to the large number of required test kilometers. 

3. In Chapter 4, we described an ADS’s perception reliability in three central uncertainty 

domains of environment perception (existence, classification and state uncertainty) with 

suitable metrics. The metrics are conditional probabilities collected in confusion matrices 

for existence and classification uncertainties, and joint probability density functions for 

state uncertainties. We related these metrics to the safety of an ADS with the example of 

existence uncertainties. Additionally, we introduced the notion of higher order 

uncertainties (uncertainty in the reliability metrics themselves). 
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4. We proposed a strategy to demonstrate perception reliability with feasible test effort by 

combining statistical dependence models for perception errors with a conceptualization of 

sensor data fusion in terms of individual environment perceiving sensors (k-out-of-n 

system) in Chapter 4. The rationale is that ADS safety can be formally demonstrated 

inductively (empirically), when combined with a deductive system description, as 

redundancies on the component (e.g. sensor) level lead to reduced reliability requirements 

for components. With this approach, we derived sensor perception reliability requirements, 

i.e. targets on perception reliability for individual sensors. Additionally, we presented a 

simple Bayesian method to estimate the required test effort for a given reliability target. 

5. We developed a variety of methods to assess sensor perception reliability in Chapter 5. 

These include: 

 A qualitative and semi-quantitative analysis method to identify context variables. 

With this analysis one can preliminarily estimate the risk for perception due to a 

context variable.  

 A stochastic physics-based simulation framework for an assessment of rainfall 

influences on a lidar’s perception performance. The framework exemplarily 

illustrates how simulation methods can help in the ADS development to verify 

requirements on perception reliability. 

 A framework to learn sensor perception reliabilities on proving grounds. This 

framework allows to learn sensor perception reliability more efficiently compared 

with pass /fail evaluated scenario based tests, because it combines the performance 

of environment perception in dependence of context variables with the exposure 

towards the context variables in a prediction. 

 Flexible dependence models for sensor errors to describe and jointly learn sensor 

perception reliabilities of redundant sensors in field tests with a reference truth. 

6. Due to the considerable effort and technical difficulties of generating a reference truth, we 

investigated in Chapter 6 on a theoretical basis if it is possible to learn sensor perception 

reliabilities without a reference truth, by exploiting sensor redundancy. To this end, we 

devised a framework to learn sensor perception reliabilities by exploiting redundancies 

under simplified conditions (no distinction among different error types was made and we 

assumed identical sensors). We found that it is possible to accurately learn sensor 

perception reliabilities without a reference truth, if an adequate statistical model is chosen 

for the dependence of errors among different sensors. Based on this initial finding, we 

extended the framework to overcome the simplifying initial assumptions, i.e. we 

introduced a distinction in false positive and false negative sensor errors and a distinction 

in different sensors to the framework.  
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7.3 Discussion 

In summary, to address the approval trap, we a) introduced metrics to describe the reliability of 

environment perception, b) decomposed an ADS’s functionalities into perception (sense), function 

(plan) and actuation (act), and c) conceptualized perception (sense) in terms of individual 

environment perceiving sensors with a k-out-of-n model. Due to redundancies at the sensor level, 

requirements on sensor perception reliability derived with this approach and the assumptions made 

are easier to demonstrate than requirements at the ADS level. In combination with d) a variety of 

tools for assessing sensor perception reliability, it might become possible to overcome the 

approval trap and drive to safety. Points a)-d) are central for the perception reliability analysis 

methods presented in this Thesis. 

A prerequisite for assessing (sensor) perception reliability is a systematic definition of safety-

critical perception errors. We have only partly addressed this challenge, which is related to a), the 

description of environment perception reliability with suitable metrics. Important to our 

description of perception reliability are false positive (FP) and false negative (FN) errors 

(existence uncertainties), formalized in terms of a binary confusion matrix. While the methods 

presented in this thesis are generic and applicable to any specific definition of e.g. FP and FN 

errors, we did not investigate an optimal specific definition of safety-critical FP and FN errors. 

This specific definition of FP and FN errors could for instance be related to an association rule for 

the ground truth and the perceived (sensor) objects based on state quantities. Despite formulating 

perception reliability metrics for state and classification uncertainties, we did not specifically 

relate these uncertainties to safety critical perception errors. For example, we did not include 

incorrect estimations of state quantities (state uncertainties) such as a wrong object yaw angles in 

the definition of safety critical perception errors. However, one could implicitly include these error 

types in the definition of FP and FN errors with an adequate association rule for (sensor) objects 

and the ground truth. 

It is not trivial to define safety-critical perception errors within the development process of an 

ADS, because at the point of time when one needs this error definition, the sensor data fusion, the 

situation interpretation and path planning of the ADS are typically not yet completed. During 

development, the system is modified constantly, e.g. with software updates altering the processing 

algorithms. It is the combination of sensor data fusion, situation interpretation, path planning 

together with the specific driving situation that determines the safety-criticality of perception 

errors. Therefore, one can probably only derive comprehensive perception requirements at the end 

of the system development, but a catalogue of perception errors that are to be prevented is required 

in the beginning of sensor development. 
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Even if an ADS is fully developed, it is not trivial to formally derive perception error definitions 

by analyzing the system. A system, which is adapted constantly (and often in a heuristic way) by 

expertise collected during the development, ultimately is hard to model. Additionally, the safety-

criticality of perception errors is not only a function of the system itself, but also of the specific 

situation, i.e. the environment and other traffic participants. To address the discussed challenges, 

we proposed conservative heuristics in the definition of perception errors, however also simulation 

methods could be established. Our reasoning is that if the ADS complies with requirements under 

conservative heuristics, it is (very likely) also complying with a more specific definition of safety-

critical perception errors and therefore safe. We point out that we neglected the complexity of 

environment perception to some degree with the binary problem interpretation underlying the 

confusion matrix for existence uncertainties. In reality, multiple objects are detected at once. With 

the binary problem interpretation utilized here, one can estimate e.g. (sensor) perception 

reliabilities related to a particular area of the field of view, such as the driving path. 

The difficulty of specifying perception requirements and perception errors also challenges the 

established product development organization in the automotive industry. Frequently modifying 

the system during development requires agile methods, which are only partly practicable in 

collaboration with suppliers. E.g. a contracted sensor supplier typically needs a detailed 

specification of product requirements at the beginning of the development from the OEM, which 

– as pointed out above – is not readily available for perception. An option to address this dilemma 

is an initially well-planned (perception) system architecture designed on the safe side, because a 

system architecture which, due to underdesign, fails to comply with safety requirements has a large 

development risk. Additionally, suppliers could only be developing hardware, which has less 

complexity to be specified. In contrast, the software (i.e. processing algorithms for perception and 

the automated driving functionality) could be developed and optimized in-house of an OEM. Such 

an approach allows for agile development with which sufficient safety can probably be achieved 

more easily. 

Under point b), we postulate the possibility of separating the reliabilities of perception, function 

and actuation by decomposing an ADS’s functionalities into perception (sense), function (plan) 

and actuation (act). This decomposition enables to test and validate sensor perception reliability 

separately from an automated driving functionality. In practice, it is due to system complexities 

not trivial to clearly separate errors in e.g. perception (sense) and function (plan). An assumption 

of such a system decomposition is therefore that safety-critical errors in the perception module can 

be defined and separated from errors in the function module. Additionally, one must relate sensor 

perception reliability to safety targets of an automated driving functionality to validate perception 

separately from function. Setting up this relationship is itself challenging and requires further 

research. Involved difficulties are discussed above. 
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This thesis shows however, from a safety validation perspective, there is a huge benefit associated 

with decomposing an ADS’s functionalities into perception (sense), function (plan) and actuation 

(act). A possible way forward would be to aim for modular system architectures with the 

possibility of a clear separation between sub-functionalities and clear interfaces between the sub-

functionalities within an ADS. This would reduce interdependencies within a given ADS, and 

hence, reduce system complexities. In the spirit of design for test, it might be better to develop a 

modular system architecture (with increased cost in the beginning of the development) than to end 

up with a complex system whose safety is (e.g. due to the approval trap) extremely hard to assess. 

A modular system architecture is the prerequisite for breaking down the problem of ADS safety 

validation into smaller and manageable sub-problems. 

The derivation of sensor perception reliability requirements in this thesis is conditional on point 

c), the conceptualization of sensor data fusion in terms of individual sensors, here with a simple 

k-out-of-n model. The applicability of the k-out-of-n model was already discussed in Section 4.2.1. 

A k-out-of-n model does not fully capture the complexity of sensor data fusion. 

In practice, the parameterization and processing in sensor data fusion is updated frequently during 

development to include recent experience with a specific sensor behavior. The development 

progress hence is (partly) empirical and (partly) based on heuristics. Similar to the discussion 

above on decomposition, a sensor data fusion with many heuristics is difficult to model, and thus 

hard to be adequately conceptualized. 

Because of the considerable optimization that goes into sensor data fusion during system 

development, the actual sensor data fusion likely performs better in most situations than a simple 

k-out-of-n model. We therefore believe that the k-out-of-n model is for most situations a 

conservative modeling choice. If the k-out-of-n model is conservative and the perception complies 

with its requirements under the k-out-of-n model, the perception is reliable. A problem is however, 

that a system might not comply with its requirements under the conservative k-out-of-n model, but 

the actual sensor data fusion is complying with the requirements. In this case, one would need to 

e.g. set up simulation methods to combine statistical sensor models with the actual software code 

of sensor data fusion in a SiL, to obtain more accurate reliability estimations, which requires 

considerable effort. Another potential solution would be to implement a sensor data fusion, which 

follows a formal model, i.e. the actual sensor data fusion can be conceptualized in terms of a model. 

No model to represent sensor data fusion is required for d) learning sensor perception reliability 

with the methods in Chapters 5 and 6. Each of these methods addresses some but not all challenges 

in assessing sensor perception reliability. For example, simulations enable to collect a large 

number of virtual test kilometers. Because of the complexity of physical processes in environment 

perception, and consequently, the need to validate physics-based simulations, it does not seem 
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possible at present to solely assess sensor perception reliability virtually [44, 66]. If sensor 

perception reliabilities are learned with an adequate method from data, statistics based simulations 

are however a chance to analyze the performance of sensors and sensor data fusion jointly. 

As a more realistic alternative, we proposed a framework to learn sensor perception reliability on 

proving grounds [161]. The framework alleviates the need for specifying an uncountable number 

of test cases because it provides statistical statements on sensor perception reliability. These 

statistical statements are derived by learning sensor perception reliability in dependence of the 

context variables and by considering the exposure to the context variables. 

Field tests conducted in a representative manner naturally take context variables into account and 

are the most realistic choice of testing. Setting up a reference truth (i.e. labeled data) in field tests 

to analyze perception errors can be cumbersome (or imperfect), and because of the necessary large 

amount of testing, it seems impracticable to demonstrate sufficient reliability with field tests alone. 

We therefore developed a framework to assess sensor perception reliability without a reference 

truth, by exploiting sensor redundancies [156, 157]. The idea behind this framework is to equip 

end-user vehicles with the required hardware for automated driving and perception, but without 

activating the automated driving functionality. The proposed framework allows to test sensors in 

Shadow Mode [68]. The data can be preprocessed in the vehicles, transferred to the backend and 

sensor perception reliabilities are learned from the aggregated data of a fleet. With such an 

approach one would cover a vast amount of real driving situations, thereby accounting for context 

variables. As we discussed in Chapter 6, a prerequisite for learning sensor perception reliability 

with a fleet of end-user vehicles in Shadow Mode is an adequate dependence model for perception 

errors in different sensors. In this context, the adequacy of dependence models needs to be further 

studied before implementing the framework in practice. 

Each of the different methods for assessing sensor perception reliability has strengths and 

weaknesses. Learning sensor perception reliability based on solely one of these methods does not 

appear to be sufficient. We therefore recommend to combine them in practice. For example, early 

in the system development, simulations could be employed to optimize the perception architecture 

and the sensor design. Simulations also allow to preclude systematic effects due to limitations of 

the sensor set and to preliminarily estimate perception reliability for selected context variables. 

Tests on proving grounds later enable to more realistically preclude unacceptable sensor 

perception reliability for known context variables. A fleet learning based Sensor Shadow Mode 

could contribute the required large scale testing to obtain credibility in strict reliability 

requirements. Finally, a limited field test with a reference truth could preclude an unacceptably 

large frequency of common cause errors among different sensors (i.e. shock events, all sensors 

failing deterministically, see Chapter 6), which are the most critical errors. 
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The considerable challenges pointed out in this discussion and the challenges summarized in 

Section 3.1.4 indicate that not all problems associated with validating perception reliability or 

ADS safety are solved. However, this thesis provides a starting point for further developments.  

7.4 Future Research Opportunities 

Research opportunities are summarized in this Section, which follow from the discussion in the 

previous Section and from open points in this thesis.  

Importantly, future research should address in larger detail how to specifically define safety-

critical perception errors. Due to the involved challenges, it could be necessary to develop 

heuristics in this definition, taking into account specific fusion and function (situation 

interpretation, path planning) algorithms. The error definition has to be considered holistically 

with special attention towards the interfaces of individual sensors with sensor data fusion, and of 

sensor data fusion with the automated driving functionality. The complete system needs to be 

understood for this task. To account for different driving situations, it might be necessary to have 

a flexible error definition, which depends on the specific situation.  

Of practical relevance in this context are temporal aspects (e.g. how to model that perception errors 

can have a different duration and hence have different safety-criticality?) and spatial aspects (e.g. 

when does a true object in the environment count as detected by perception?). The latter is related 

to the definition of false positive and false negative sensor errors, which is not trivial in a multi-

object environment. To extend the binary problem interpretation in this thesis, one needs e.g. rules 

on how to associate the output of perception with a ground truth (if available) for the purpose of a 

reliability assessment. Ultimately this is an association problem similar to the association in sensor 

data fusion, with the difference of not being limited by computational constraints and having the 

opportunity to propagate information back into the past. For example, one could propagate the 

shape of a vehicle back to previous time steps, when the shape is only fully revealed after observing 

a vehicle for some time. A simple solution to the association problem could be an association gate 

around a ground truth object in the hyperspace of relevant state quantities. It could also be studied 

in this context how to optimally discretize the field of view into cells, as exemplarily illustrated in 

Figure 4.6. 

Not in the scope of this thesis was the reliability of interpreting a perceived situation. However, it 

is not only the perception but also its interpretation and the subsequent action that determines ADS 

safety. One could try to develop methods similar to the ones presented this thesis for situation 

interpretation. 
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It should be investigated in depth how to optimally conceptualize sensor data fusion in terms of 

individual environment perceiving sensors for the purpose of a perception reliability assessment. 

This investigation should assess how reliabilities and error dependencies of individual sensors 

propagate through a sensor data fusion algorithm. An adequate conceptualization of sensor data 

fusion allows to define sensor perception reliability requirements with an inverse relationship in 

function of perception reliability. As illustrated in Figure 4.9 with the k-out-of-n model, such a 

conceptualization has the potential of practically enabling an empirical safety demonstration on 

the individual sensor level. In this thesis, we did not explicitly model perception errors arising in 

sensor data fusion, e.g. a wrong association of sensor object detections. Future research should 

therefore extend the methods presented in this thesis to account for association uncertainties. 

Another avenue of future research is to connect the reliability of a raw data fusion to the reliabilities 

of individual sensors. 

We see a large potential to test the perception in a vast number of real driving situations by a fleet 

of end-user vehicles with the framework presented in Chapter 6, which relies on exploiting sensor 

redundancy. As was discussed in depth, a prerequisite for its application is an adequate dependence 

model for perception errors among different sensors. A challenge to the framework is that one 

cannot detect without reference truth whether a statistical model is adequate or not. If it is not 

adequate, the estimated sensor perception reliability can be biased. Therefore, it needs to be 

studied which dependence model is adequate for the framework, before implementing it in practice 

in a fleet. Additionally, in most parts of the thesis, we neglected temporal statistical dependence 

in perception errors by assuming exchangeability. When developing suitable dependence models, 

one should also account for temporal dependencies. Ultimately, the dependence models are not 

only important for validation, but also for development (e.g. optimizing algorithms). 

As was discussed, during development, the ADS is modified constantly. In this thesis we did not 

include a potential reliability growth in the presented models, or more generally, how to deal with 

system changes. A research opportunity is to explicitly account for such changes, for instance with 

common reliability growth models [151]. An alternative is the development of simulation methods 

to account for different software versions in the reliability estimation. 

Finally, we recommended in the previous Section to combine different test methods (e.g. presented 

in Chapters 5 and 6) for a demonstration of perception reliability. An open question is to quantify 

how much each method contributes to the safety assurance, to obtain a single quantitative 

statement on perception reliability. Future research should study how to optimally combine 

different test methods. To large parts, this thesis was lying out theoretical foundations for 

analyzing perception reliability. Applying these methods in practice should enable to extend and 

optimize them with data. 
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