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Abstract 
 

The Nile basin is home to over 257 million people, which are about 54% of the total population 

of the 11 countries that share the Nile River. The water resources in the upper Blue Nile River 

basin (UBNRB) are the major source of life for the people living in the Nile basin. It provides 

more than 60% of the total Nile water. However, land degradation, deforestation, increasing 

water demand due to population and economic growth, urbanization, and climate change are 

becoming the major challenges and threatening issues by altering the dynamics of the hydrology 

and water availability of the basin. Hence, sustainable water resources management in the basin 

is necessary that requires in-depth understanding of the historical trends of hydro-climatic 

variables, hydrological processes and sources influencing water quantity, such as land use land 

cover (LULC) and climate changes. This dissertation is therefore aiming for the following 

objectives i) to assess the long-term trends of rainfall, maximum temperature (Tmax), minimum 

temperature (Tmin) and streamflow.  ii) analyses responses by changes in LULC and climate 

over the past decades on streamflow in the UBNRB. iii) understand the future water 

development perspective in the UBNRB by considering the future climate change and proposed 

reservoirs in the basin. Different methods including long-term trend analysis, satellite remote 

sensing technique, climate and hydrological modeling were applied. 

 

The long-term trends (1971-2010) of rainfall, temperature and streamflow were analyzed for 15 

rainfall stations, 10 temperature stations and four streamflow gauging stations in the basin. 

Mann-Kendall (MK) and Pettitt tests were used for the trend and change point detection analysis, 

respectively. The results showed statistically significant increasing trend and related upward 

shifts in almost all temperature stations except Assosa station, which showed no change. 

However, precipitation time series did not reveal any statistically significant trends at 5% 

significance level in daily, mean annual and seasonal scales across the majority of examined 

stations. The MK test results for daily, monthly, annual and seasonal streamflow time series 

showed a positive trend, the magnitude of which is statistically significant at El Diem station. 

The Pettitt test also detected upward shift for daily, annual, and long rainy season streamflow at 

El Diem gauging station.  

 

Landsat satellite images for 1973, 1985, 1995, and 2010 were used for LULC change-detection 

analysis. The LULC change-detection findings indicate that cultivated land increased while the 

forest coverage decreased prior to 1995, but forest area increased after 1995 with the area of 

cultivated land that decreased. Statistically, forest coverage changed from 17.4% to 14.4%, by 

12.2 %, and by 15.6 %, while cultivated land changed from 62.9% to 65.6 %, by 67.5 %, and by 

63.9% from 1973 to 1985, in 1995, and in 2010, respectively. The Soil and Water Assessment 

Tool (SWAT) is applied to study the hydrological impact of climate and LULC changes. Results 

of SWAT hydrological modeling indicate that mean annual streamflow increased by 16.9 % 

between the 1970s and 2000s due to the combined effects of LULC and climate change. The 

evapotranspiration change caused by the LULC change is minimal. As a result, the change for 

surface runoff and base flow due to LULC change is not significant. However, climate change 

significantly affected the surface runoff and base flow. This indicates that hydrological impacts 

by climate change are more significant as compared to the impacts of LULC change for 

streamflow of the upper Blue Nile River basin. Between the period 1970s and 2000s, the 

combined effects of LULC changes and climate change increased surface runoff by 20.9 mm. 



iv 

 

The isolated effect of climate change contributed about 95.7 % (20 mm) while LULC change 

alone increased surface runoff by 0.3 mm, this accounted for 1.4 % of the total surface runoff 

change. Between this simulation period, combined changes of LULC and climate decreased 

baseflow by -11.5 mm, and the percent contributions were 94.8 % (-10.9 mm) for the climate 

change and 5.2 % (-0.6 mm) for the LULC changes.  

 

Two widely used statistical downscaling techniques, namely the Long Ashton Research Station 

Weather Generator (LARS-WG) and the Statistical Downscaling Model (SDSM) were applied to 

downscale future climate scenarios of precipitation, maximum temperature (Tmax) and 

minimum temperature (Tmin) of the UBNRB. The calibration and validation result illustrates 

that both downscaling techniques (LARS-WG and SDSM) have shown comparable and good 

ability to simulate the current local climate variables. Further quantitative and qualitative 

comparative performance evaluation was done by equally weighted and varying weights of 

statistical indexes for precipitation only. The performance evaluation result showed that SDSM 

was more accurate to reproduce long-term mean monthly precipitation but LARS-WG performed 

best in capturing the extreme events and distribution of daily precipitation in the whole data 

range.  

 

To overcome the uncertainties came from different general circulation models (GCMs), a multi-

model approach was employed. In total, 27 systematically selected future climate scenarios were 

produced for the period 2030s, 2050s and 2080s. The result from the ensemble mean of the six 

coupled model inter-comparison project phase 3 (CMIP3) GCMs showed an increasing trend for 

precipitation, Tmax and Tmin.  In contrary to CMIP3 GCMs, the downscaled precipitation from 

three coupled model inter-comparison project phase 5 (CMIP5) GCMs using representative 

concentration pathways (RCP 4.5 and RCP 8.5) scenarios showed a greater tendency towards a 

decrease in the future in the UBNRB. Furthermore, HadCM3 from CMIP3 using A2a and B2a 

scenarios and canESM2 from CMIP5 GCMs under RCP2.6, RCP4.5 and RCP8.5 scenarios were 

downscaled by SDSM method. The result from the two GCMs under five different scenarios 

showed that the three climate variables (precipitation, Tmax and Tmin) might increase in the 

future, which has an agreement with CMIP3 multi-model average result. The maximum increase 

of precipitation was obtained from canESM2 GCM downscaled using SDSM and maximum 

decrease from GFDL CMIP5 GCM downscaling using LARS-WG method. The wide-range of 

downscaled future precipitation results from multi-model GCMs over UBNRB showed the 

uncertainties' of GCMs outputs. 

 

Finally, HEC-HMS semi-distributed hydrological model was used for quantifying the impacts of 

combined future climate change and water managements with 12 different scenarios on the 

hydrology and water availability of UBNRB. The statistical performance evaluation results 

obtained during the calibration and validation periods were satisfactory and acceptable. The 

downscaled outputs of canESM2 and GFDL GCMs under midrange scenarios of RCP4.5 are 

used for further impact analysis as they represented the wet and dry climate conditions 

respectively in the future. The hydrological response result indicates that under RCP4.5 scenario 

from canESM2 climate model, streamflow might increase by 22.6 %, 43 % and 55 % in the 

period 2030s, 2050s and 2080s respectively over the UBNRB. However, the streamflow might 

decrease by -21 %, -25 % and -21 % using climate variables downscaled from GFDL CMIP5 

GCM under RCP4.5 scenario as input. The impact assessment result under wet climate condition 
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(canESM2 RCP4.5) and full development scenario indicates that the Lake Tana reservoir level 

and area might increase by maximum of 0.1m and 4.2 km
2
 respectively from the area during the 

natural flow condition. In contrary, under the climate change projection of GFDL GCM RCP 4.5 

scenario (dry climate condition) combined with full water resource developments in the 

UBNRB, the lake water levels lower up to by 1.03 m and the mean lake area reduced by a 

maximum of 47.4 km
2
 from 3,053.2 km

2
 to 3,005.8 km

2
.  

 

This dissertation also provide quantitative analysis of water resources management by 

considering the current and future climate change combined with the proposed cascades 

reservoirs for power generation. The model simulation results revealed that the total energy 

generation of Grand Ethiopian Renaissance Dam (GERD) might increase by 2,829 GWhyr
-1

 

from the target energy of 16,153 GWhyr
-1

 to 18,982 GWhyr
-1

 under wet climatic condition (i.e. 

canESM2 GCM RCP4.5 climate scenario). However, under dry climatic condition (i.e. GFDL 

GCM RCP4.5), it might decrease by 9,072 GWhyr
-1

 to 7,081 GWhyr
-1

. The proposed four large 

cascaded hydropower projects along the main stem of Abay River can generate a maximum total 

annual energy of 50,047 GWhyr
-1

 and a minimum of 24,213 GWhyr
-1

 at the end of 21
st
 century 

using canESM2 and GFDL GCMs respectively. 

 

The model simulation results show that drastic impacts on the annual cycle of discharges can be 

expected, shifting from a strong seasonal to a completely balanced regime with almost constant 

discharges each month. The value of the coefficient of variance at El Diem gauging station under 

natural condition is 1.14 but for other scenarios, which are influenced by climate and water 

resource developments, it is reduced to less than 0.5.  Lake Tana sub-basin is more susceptible to 

water scarcity because of the upstream large size future planned water resource developments 

and climate change effects. Hence, effective planning, management and regulation of water 

resource developments are highly recommended to prevent conflict between competing water 

users and sectors. In conclusion, this study has shown that climate change effect is more 

significant than the anthropogenic effects for altering the performance of water infrastructure 

developments and hydrology of the basin. 
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Zusammenfassung 
 

Im Nilbecken leben über 257 Millionen Menschen, das sind etwa 54% der Gesamtbevölkerung 

der elf Länder, die sich das Nileinzugsgebiet teilen. Die Wasserressourcen im oberen Blue Nile 

River Basin (UBNRB) sind die wichtigste Lebensgrundlage für die Menschen im Nilbecken. Es 

liefert mehr als 60% des gesamten Nilwassers. Landdegradation, Entwaldung, steigender 

Wasserbedarf aufgrund von Bevölkerungs- und Wirtschaftswachstum, Urbanisierung und 

Klimawandel werden jedoch zu großen Herausforderungen und Bedrohungen, indem sie die 

Dynamik der Hydrologie und der Wasserverfügbarkeit des Beckens verändern. Daher ist eine 

nachhaltige Bewirtschaftung der Wasserressourcen im Einzugsgebiet erforderlich, die ein 

grundlegendes Verständnis der historischen Trends hydroklimatischer Variablen, hydrologischer 

Prozesse und wassermengenbeeinflussender Ursachen wie Landnutzungsänderungen (LULC) 

und Klimaänderungen erfordert. Diese Dissertation zielt daher auf die folgenden Ziele: i)  

Bewertung der langfristigen Trends von Niederschlag, maximaler Temperatur (Tmax), 

minimaler Temperatur (Tmin) und Durchfluss. ii) Analyse von LULC und Klimaänderungen in 

den letzten Jahrzehnten und Auswirkungen auf den Durchfluss im UBNRB. iii) zukünftige 

Wasserverfügbarkeit im UBNRB durch Berücksichtigung der zukünftigen Klimaänderung und 

der vorgeschlagenen Reservoirs im Becken. Verschiedene Methoden wie Langzeittrendanalyse, 

Satellitenfernerkundung, Klima- und hydrologische Modellierung wurden eingesetzt. 

 

Die langfristige Entwicklung von Niederschlag wurde an 15 Stationen, Temperatur an zehn 

Stationen und Abfluss an vier Pegeln für den Zeitraum 1971-2010 analysiert. Für die Trend- und 

Sprungerkennung wurde der Mann-Kendall Test (MK) bzw. der Pettitt Test verwendet. Die 

Ergebnisse zeigten statistisch signifikant steigende Trends und einen damit verbundenen 

Temperaturanstieg an allen Messstellen außer in Assosa, die keine Veränderung zeigte. Die 

Niederschlagszeitreihen zeigten jedoch keine statistisch signifikanten Trends für Tages-, Monats- 

und Jahreswerte am Großteil der untersuchten Stationen bei 5% Signifikanzniveau. Die MK-

Testergebnisse für tägliche, monatliche, jährliche und saisonale Abflusszeitreihen zeigten einen 

positiven Trend, dessen Ausmaß an der Station El Diem statistisch signifikant ist. Der Pettitt Test 

erkannte ebenfalls einen Abflussanstieg auf täglicher und jährlicher Ebene sowie während der 

langen Regenzeit an der Messstation El Diem.  

 

Für die Erkennung und Analyse von LULC Veränderungen wurden Landsat Satellitenbilder der 

Jahre 1973, 1985, 1995 und 2010 verwendet. Die Ergebnisse der LULC-Änderungserkennung 

ergab für die Waldfläche in den Jahren 1973, 1985, 1995 und 2010 Flächenanteile von 17,4%, 

14,4%, 12,2% und 15,6%, und für die Ackerfläche im selben Zeitraum Flächenanteile von  

62,9%, 65,6%, 67,5% und 63,9%. Die Ergebnisse belegen, dass die landwirtschaftlich genutzte 

Fläche bis 1995 zunahm, während die Waldfläche gleichzeitig abnahm, allerdings hat sich diese 

Entwicklung nach 1995 umgekehrt. Zur Untersuchung der hydrologischen Auswirkungen von 

Klimaänderungen und LULC wird das Soil and Water Assessment Tool (SWAT) eingesetzt. Die 

Ergebnisse der hydrologischen SWAT-Modellierung deuten darauf hin, dass der mittlere 

jährliche Abfluss zwischen den 1970er und 2000er Jahren aufgrund der kombinierten 

Auswirkungen von LULC und Klimawandel um 16,9% gestiegen ist. Die durch LULC 

verursachte Evapotranspirationsänderung ist minimal. Infolgedessen ist die Änderung des 

Oberflächenabflusses und des Basisabflusses durch LULC nicht signifikant. Der Klimawandel 

hat jedoch den Oberflächen- und Basisabfluss erheblich beeinflusst. Dies deutet darauf hin, dass 
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die hydrologischen Auswirkungen des Klimawandels bedeutender sind als die Auswirkungen der 

LULC auf den Abfluss des oberen Blue Nile River Basins. Zwischen den 1970er und 2000er 

Jahren erhöhten die kombinierten Auswirkungen von LULC und Klimawandel den 

Oberflächenabfluss um 20,9 mm. Der isolierte Effekt des Klimawandels trug etwa 95,7 % (20 

mm) bei, während LULC allein den Oberflächenabfluss nur um 0,3 mm erhöhte, was 1,4 % der 

gesamten Oberflächenabflussänderung ausmachte. In diesem Simulationszeitraum verringerten  

die kombinierten Veränderungen von LULC und Klima den Basisabfluss um -11,5 mm, und die 

prozentualen Beiträge betrugen 94,8 % (-10,9 mm) für den Klimawandel und 5,2 % (-0,6 mm) 

für die Landnutzungsveränderungen (LULC). 

 

Zwei weit verbreitete statistische Downscalingverfahren, nämlich der Long Ashton Research 

Station Weather Generator (LARS-WG) und das Statistical Downscaling Model (SDSM), 

wurden zum Downscalen zukünftiger Klimaszenarien von Niederschlag, Maximaltemperatur 

(Tmax) und Minimaltemperatur (Tmin) des UBNRB eingesetzt. Die Kalibrier- und 

Validierungsergebnisse zeigen, dass beide Downscaling-Techniken (LARS-WG und SDSM) 

vergleichbare und gute Fähigkeiten zur Simulation der aktuellen lokalen Klimavariablen 

besitzen. Weitere quantitative und qualitative vergleichende Bewertungen wurden durch gleich 

gewichtete und variierende Gewichte von statistischen Indizes nur für Niederschläge 

durchgeführt. Das Auswertungsergebnis zeigte, dass SDSM in der Lage war, genauere 

langfristige mittlere monatliche Niederschläge zu reproduzieren, während LARS-WG bei der 

Erfassung der Extremereignisse und der Verteilung der täglichen Niederschläge im gesamten 

Datenbereich bessere Ergebnisse erzielte.  

 

Um die Unsicherheiten zu überwinden, wurden verschiedene allgemeine Zirkulationsmodelle 

verwendet (GCMs) herrühren, wurde ein multimodell-Ansatz verwendet. Insgesamt wurden 27 

systematisch ausgewählte Zukunftsszenarien für den Zeitraum 2030er, 2050er und 2080er Jahre 

erstellt. Das Ergebnis aus dem Ensemble-Mittelwert von sechs gekoppelten GCM Modellen 

(Projekt CMIP3) zeigte einen zunehmenden Trend für Niederschläge, Tmax und Tmin. Im 

Gegensatz zu CMIP3-GCMs zeigte der reduzierte Niederschlag aus drei gekoppelten 

modellübergreifenden Projektphasen-5 (CMIP5)-GCMs mit repräsentativen 

Konzentrationspfaden (RCP 4.5 und RCP 8.5) eine stärkere Tendenz zu einem zukünftigen 

Rückgang in der UBNRB. Darüber hinaus wurde HadCM3 aus CMIP3 unter Verwendung von 

A2a- und B2a-Szenarien und canESM2 aus CMIP5-GCMs unter RCP2.6, RCP4.5 und RCP8.5-

Szenarien mittels SDSM-Methode herunterskaliert. Das Ergebnis der beiden GCMs unter fünf 

verschiedenen Szenarien zeigte, dass die drei Klimavariablen (Niederschlag, Tmax und Tmin) in 

Zukunft zunehmen könnten, was eine Übereinstimmung mit dem CMIP3-Multimodell-

Durchschnittsergebnis darstellt. Die maximale Zunahme des Niederschlags wurde aus canESM2 

GCM erhalten, das mit SDSM verkleinert wurde, und die maximale Abnahme aus GFDL CMIP5 

GCM, das mit der LARS-WG-Methode verkleinert wurde. Die große Bandbreite der 

herunterskalierten zukünftigen Niederschlagsergebnisse von Multi-Modell-GCMs über UBNRB 

zeigte die Unsicherheiten der GCM-Outputs. 

 

Schließlich wurde das teilverteilte hydrologische Modell HEC-HMS zur Quantifizierung der 

kombinierten Auswirkungen des zukünftigen Klimawandels und der Wasserbewirtschaftung mit 

zwölf verschiedenen Szenarien auf die Hydrologie und Wasserverfügbarkeit im UBNRB 

verwendet. Die Ergebnisse der statistischen Bewertung, die während der Kalibrierungs- und 
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Validierungszeiträume erzielt wurden, waren zufriedenstellend und akzeptabel. Die 

herunterskalierten Werte der GCMs „canESM2“ und „GFDL“ mit mittleren Szenarien RCP4.5 

werden für die weitere Analyse der Auswirkungen auf den Klimawandel verwendet, da sie die 

nassen bzw. trockenen Klimabedingungen in der Zukunft darstellen. Das Ergebnis der 

hydrologischen Analyse deutet darauf hin, dass unter RCP4.5-Szenarien aus dem canESM2-

Klimamodell der Abfluss im Zeitraum 2030er, 2050er und 2080er Jahre um 22,6 %, 43 % bzw. 

55 % im UBNRB zunehmen könnte. Der Abfluss könnte jedoch um -21%, -25% bzw. -21% 

abnehmen, wenn die Klimavariablen aus GCM GFDL CMIP5 unter RCP4.5-Szenarien als Input 

verwendet werden. Die Ergebnisse der Folgenabschätzung unter feuchten Klimabedingungen 

(canESM2 RCP4.5) und des vollständigen Entwicklungsszenarios deuten darauf hin, dass der 

Wasserstand und die Fläche des Lake Tana um maximal 0,1 m bzw. 4,2 km
2
 gegenüber dem 

Gebiet während der natürlichen Abflussbedingungen ansteigen könnten. Im Gegensatz dazu 

sinkt, im Rahmen der Klimaprognose des GCM GFDL RCP 4.5-Szenarios (trockene 

Klimabedingungen) in Kombination mit der vollständigen Erschließung der Wasserressourcen 

im UBNRB, der Wasserspiegel um bis zu 1,03 m und die mittlere Seefläche um maximal 47,4 

km
2
 von 3053,2 km

2
 auf 3005,8 km

2
.  

 

Diese Dissertation bietet auch eine quantitative Analyse des Wasserressourcen-Managements 

durch die Berücksichtigung der aktuellen und zukünftigen Klimaänderungen in Kombination mit 

den vorgeschlagenen Kaskaden-Reservoirs für die Stromerzeugung. Die 

Modellsimulationsergebnisse zeigten, dass die gesamte Energieerzeugung des Grand Ethiopian 

Renaissance Dam um 2.829 GWhyr
-1

 von der Soll-Energie von 16.153 GWhyr
-1

 auf 18.982 

GWhyr
-1

 unter feuchten klimatischen Bedingungen (z.B. GCM CanESM2 RCP4.5 

Klimaszenario) steigen könnte, aber unter trockenen klimatischen Bedingungen (z.B. GCM 

GFDL RCP4.5) könnte sie um 9.072 GWhyr
-1

 auf 7.081 GWhyr
-1

 sinken. Die vorgeschlagenen 

vier großen Kaskaden-Wasserkraftprojekte entlang des Hauptflusses des Abay River können am 

Ende des 21. Jahrhunderts mit CanESM2- und GFDL-GCMs eine maximale jährliche 

Gesamtenergie von 50.047 GWhyr
-1

 und mindestens 24.213 GWhyr
-1

 erzeugen. 

 

Weitere Ergebnisse der Simulation des Kaskadenspeicher-Betriebsmodells zeigten, dass 

drastische Auswirkungen auf die monatlichen Abflüsse zu erwarten sind, die sich von einem 

starken saisonalen zu einem vollständig ausgeglichenen System mit nahezu konstanten 

Abflüssen pro Monat verschieben. Der Wert des Varianzkoeffizienten an der Messstation El 

Diem unter natürlichen Bedingungen beträgt 1,14, für andere Szenarien, die von der 

Entwicklung der Klima- und Wasserressourcen beeinflusst werden, wird sie jedoch auf weniger 

als 0,5 reduziert. Das Teileinzugsgebiet des Lake Tana ist aufgrund der großen, zukünftig 

geplanten Entwicklung der Wasserressourcen stromaufwärts und der Auswirkungen des 

Klimawandels stärker der Wasserknappheit ausgesetzt. Daher wird eine effektive Planung, 

Verwaltung und Regulierung der Entwicklung der Wasserressourcen dringend empfohlen, um 

Konflikte zwischen konkurrierenden Wassernutzern und -sektoren zu vermeiden. 

Zusammenfassend lässt sich sagen, dass diese Studie gezeigt hat, dass der Effekt des 

Klimawandels signifikanter ist als die anthropogenen Effekte für die Veränderung der Leistung 

von Wasserinfrastrukturen und der Hydrologie des Einzugsgebietes. 
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Chapter 1 Introduction 

1.1 Background 
 

Nile is the world’s longest river and has a drainage area of about 3.2 million km
2
, which is nearly 

10% of the landmass of the African continent. The Nile River has two important water supply 

sources: the Blue Nile (Ethiopia) which contributes almost 85% of the flow and White Nile (Nile 

Equatorial countries) that contributes the remaining 15% of the flow. The Nile basin is home to 

over 257 million people which is about 54% of the total population of the 11 countries that share 

the Nile (Abdulkarim H et al., 2016).  Hence, it is becoming a crucial resource for the socio-

political and economic development of the Nile basin countries. Although, the Blue Nile River, 

originating from Ethiopian highland, contributes the major share of the Nile water with more 

than 60% of the total discharge (Conway, 2000), it is becoming one of the least developed sub-

basin. To date, Ethiopia has utilized very little of the Blue Nile water. Until recently, the usable 

installed capacity of hydropower is 639.4MW: Amerti-Neshi-Fincha (95 MW), Tana Beles (460 

MW) and Tis Abay I &II (84.4 MW), which account 16% of the country’s current 3,814.6 MW 

with almost no large-scale irrigation development except Fincha (8,145 ha) and Koga (7,200 ha). 

Recently due to its large water resource potential, and suitability of land and topography for 

irrigation and power generation, the Ethiopian government has given due emphasis to 

significantly increase large reservoir water storage in the Blue Nile basin to support national 

development and alleviate poverty. Possible irrigation and hydropower projects have been 

investigated over a number of years, as a result, 815,581 ha of land suitable for potential 

irrigation and more than 10,000 MW hydropower schemes being anticipated in the Blue Nile 

Basin (BCEOM, 1998a). 

 

Due to the high population growth and low productivity, cultivated land has been expanded with 

the objective of getting better economic benefits without looking at the environmental suitability. 

Several reasons are behind Ethiopia’s ambitious plan to develop large-scale irrigation and 

hydropower projects. First, to combat the negative effects of the extreme spatial and temporal 

variability of both climate and hydrology, which cause recurring floods and droughts. Majority 

of the population rely on rain fed agriculture in which its productivity has a strong correlation 

with the climate variability linked to vulnerability. The cost of hydrological variability currently 

has been estimated to be more than one third of the annual GDP, which indicated that increased 

investment in multipurpose water infrastructure could contribute to the long term economic 

development and mitigate the adverse impacts of floods and droughts (Chen and Swain, 2014). 

Second, Ethiopia’s hydropower capacity could contribute to economic growth particularly for 

generating foreign hard currency and a reliable source of electricity, which ultimately contribute 

for the sustainable economic development. 

 

However, land degradation, deforestation, increasing water demand due to population and 

economic growth, urbanization, and climate change are becoming the major challenges and 

threatening issues for future water developments by altering the dynamics of the hydrology and 

water availability of the basin. To optimize food security and to establish better water 

management policies and strategies in the basin, land and water resource development and 

environmental sustainability of the basin, a good knowledge of the impacts of all these social and 
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environmental changes on the hydrology of the basin is becoming crucial. Understanding the 

hydrological processes and sources impacting water quantity, such as LULC change and climate 

change can achieve this as they are the key driving forces that can modify the watersheds 

hydrology and water availability (Oki and Kanae, 2006; Woldesenbet et al., 2017b; Yin et al., 

2017). LULC change can modify the rainfall path to generate basin runoff  by altering critical 

water balance components, such as, groundwater recharge, infiltration, interception, and 

evaporation. Climate variations affect water cycle process in terms of temperature, precipitation 

and evaporation, which leads to the temporal and spatial change of water and sediment resources. 

Meanwhile, LULC alter the hydrologic cycle and soil erosion by way of such processes as 

canopy interception and transpiration, and the redistribution of rainfall erosivity. UBNRB 

experiences significant spatial and temporal climate variability (Alemseged and Tom, 2015; 

McCartney et al., 2012). Less than 500 mm of precipitation falls annually near the Sudanese 

border whereas more than 2000 mm falls annually in some areas of the southern basin 

(Awulachew et al., 2008). Potential evapotranspiration (ET) also varies considerably and it is 

strongly correlated with altitude. At annual bases, it varies from more than 2200 mm near the 

Sudanese border to between about 1300 mm and 1700 mm in the Ethiopian highlands 

(McCartney et al., 2012). The precipitation and ET cycles are characterized by seasonal and 

inter-annual variability, which affect the characteristic of the UBNRB streamflow. Hence, it is 

critical to quantify the change of river runoff through time, and to understand the drivers and 

mechanisms behind them. This would provide basic knowledge on the variation of change of 

streamflow in the upper Blue Nile River basin. 

 

1.2 Problem statement 
 

The UBNRB is characterized by large temporal variability in climate and hydrology both at 

seasonal and annual scale, which can be influenced by human activities such as modification in 

LULC, abstraction or change in water use. Identification of trends in hydro-climatic variables 

has enormous advantage for planning and management of limited water resources and for setting 

alternative strategies for future developments particularly to the shared water resource in the case 

of Blue Nile River. Changes in climate in conjunction with the changes in anthropogenic effects 

of the catchment could also influence the streamflow.  

 

Climate change affects human kind in several ways. Drought and flooding are among the main 

effects of climate change, which significantly affect the livelihood of the people. Climate change 

affects the hydrological cycle, through changes in precipitation, maximum and minimum 

temperature and evapotranspiration. As it is clearly known that evapotranspiration is one of the 

main components of hydrological cycle, as the evaporation rate changes it has a direct impact on 

the hydrological regimes of a specific watershed. The higher the temperature the higher the rate 

of evaporation (Mohammed, 2013). This indicates that in addition to the changing pattern of the 

rainfall due to climate change there will be a direct influence on evaporation and ultimately on 

water resources potential. Hence, it is very important to understand how future climate change 

affects the availability and variability of basin water resource. So far, investigation of climate 

change on basin scale is not studied in detail especially in Ethiopia.  

 

As upper Blue Nile basin covers about 14% of the total land area of Ethiopia and it is a basin, 

where 40% of the national agricultural product is generated, climate impact on the water 



3 

 

resources of the upper Blue Nile basin will have significant impact on the national food security.  

About two-thirds of the population who are entirely depending on farming is expected to reside 

on the highland parts of the basin, where there is relatively high amount of rainfall. However, the 

livelihood of the population is still below the poverty line, because of the erratic distribution of 

the rainfall both spatial and temporal, with the increase of dry spells that significantly reduce 

crop yields and sometimes lead to total crop failure (Gebrehiwot et al., 2010).  

 

Furthermore, the implication of climate change could be enormous on the performance of the 

planned large-scale irrigation and hydropower project as they are heavily relies on the 

availability of rainfall. During drought years, the hydropower generation is significantly affected 

due to shortage of water in the dams for power generation; meanwhile, the performance of the 

irrigation projects may reduce as the base flow of the rivers available for irrigation decreases. 

Climate variability, the way climate fluctuates yearly and seasonally above or below a long-term 

average value, caused by changes in forcing factors such as variation in seasonal extent of the 

Inter-tropical Convergence Zone (ITCZ) like El Niño and La Niña events, is already imposing a 

significant challenge to Ethiopia. It affects food security, water and energy supply, poverty 

reduction and sustainable socio-economic development efforts. For instance, recurrent droughts 

and floods in Ethiopia have resulted in loss of life and property as well as in the displacement of 

people. Changes in temperature and precipitation will have direct impact on the processes of 

runoff production. Consequently, any change in the spatial and temporal availability of water 

resources affects agriculture, industry and urban development. IPCC (2014a) findings indicate 

that developing countries such as Ethiopia will be more vulnerable to climate change because of 

its economic, climatic settings and limited water storage facilities.  

 

One of the most important causes for vulnerability of Ethiopia to climate variability and change 

is very high dependence on rainfall amount and distribution, which has a direct effect on rain, fed 

agriculture. Climate variability also severely influences the water resources spatial and temporal 

availability and indirectly on the hydropower production capacity. These in turn affects the 

country‘s economy and its developmental goals and poverty reduction capacity. Over all, the 

impact may potentially embrace back economic progress or reverse the efforts made in 

development, and thus exacerbates social and economic challenges (Simane et al., 2016). The 

country’s vulnerability to climate change is further increased by high levels of poverty, rapid 

population growth, and reliance on rain-fed agriculture. 

 

Changes in land use and land cover (LULC) have also significant impacts on the regional 

hydrology by partitioning the rainfall into evapotranspiration and other water balance 

components such as surface runoff, lateral flow from the soil storage, ground water recharge. In 

the upper Blue Nile basin, due to high population growth and low productivity of the upland 

areas, changes in LULC are expected through expansion of cultivated land in low land areas of 

the basin. Furthermore, changes in LULC are expected through expansion of large scale 

irrigation and sugar cane plantation due to ambitious water resource development plan of the 

Ethiopian Government (Girma, 2013). 

 

To mitigate these challenges, the Ethiopian government is therefore carried out a series of studies 

on upper Blue Nile river basin (UBNRB), which have been identified as an economic “growth 

corridor”, focused on identifying irrigation and hydropower potential of the basin (BCEOM, 
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1998a; USBR, 1964; WAPCOS, 1990). As the result, large scale irrigation and hydropower 

projects including the Grand Ethiopian Renaissance Dam (GERD), which will be the largest 

hydroelectric power plant in Africa after completion, have been identified and being constructed 

as mitigation measure for the impacts of climate change and reducing the conversion of 

forestland into cultivated land. The Ethiopian government argues that the GERD will supply 

electricity for the country as well as generate surplus cheap energy for export to neighboring 

countries. It has been suggested that a strong link exists between energy and development, and 

that access to electricity, including access in rural areas, is one of the keys to reducing poverty. It 

is also expected that the huge reservoir would generate positive externalities downstream by 

reducing flooding and sediment loads and by providing more constant and predictable flows. 

However, the implication of climate change effect on the availability of water resource should be 

a great concern for the sustainability of these large scale projects otherwise the consequences 

becomes catastrophic. In this regard, quantifying the effects of climate change on streamflow 

should be the first priority and crucial step for developing  better water resource management 

policies and strategies in the basin and to provide concrete and concise information for water 

managers, policy and decision makers.   

 

Therefore, understanding the relationships between the hydrologic regime, climate factors, and 

anthropogenic effects, patterns or trends of hydrological and meteorological variables of the 

basin will benefit efforts to manage water and ecological resources of the basin.  It is a clear fact 

that in any water related engineering activities proper estimation of runoff magnitude is required 

for efficient design, planning, and management of the planned large-scale water resource 

developments that deals with preservation and utilization of water for various purposes.  

 

The research was carried out in collaboration with a larger project on water resources 

management of the Nile River Basin also referred to as NIMA-NEX (NIle MAnagement Nexus 

EXpert tool). 
 

1.3 Research objectives, questions and hypothesis 
 

The main objective of this study is to quantify the combined and isolated impacts of climate 

change and LULC changes on the streamflow of UBNRB. Moreover, to analyze the combined 

impacts of future climate change, land and water management on the hydrology of UBNRB 

under different scenarios. Therefore, the specific objectives are  

 To properly investigate and analyze the different methods available for filling gaps for 

the rainfall, temperature and streamflow data records and propose a method suitable for a 

basin 

 To assess the long-term trend of rainfall and streamflow 

 To evaluate the comparative performance of two widely used statistical downscaling 

techniques, namely the Long Ashton Research Station Weather Generator (LARS-WG) 

and the Statistical Downscaling Model (SDSM) over the UBNRB 

 To downscale future climate scenarios of precipitation, maximum temperature (Tmax) 

and minimum temperature (Tmin) at acceptable spatial and temporal resolution, which 

can be used directly for further hydrological impact studies 
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 To analyze the changes in LULC for the past 4 decades (1973-2010) 

 To quantify the combined and isolated effects of the changes in LULC and climate 

change on the streamflow and water balance components of UBNRB 

 To quantify the potential impacts of climate change and water demands on the hydrology 

of the UBNRB. 

Specific questions to be addressed during the completion of this research are: 

 

 What is the general pattern of ground based measured precipitation, maximum 

temperature, minimum temperature and streamflow in the past 40 years (1971-2010)? 

 Which driving factor is more significant for altering the hydrology of UBNRB? Is it 

LULC or climate change? 

 Did LULC exhibits change in the past 37 years (1973-2010) in the UBNRB?  Which land 

cover type has shown positive change and which one showed negative change? 

 Can SWAT hydrological model be applied in the UBNRB in areas where the climate is 

monsoon tropical i.e. the soil moisture completely drying in dry season and saturate in 

rainy season unlike the temperate region where SWAT is originally developed? 

 Which statistical downscaling methods better performs in representing the current climate 

of the basin?   

 What will be the pattern of precipitation, maximum temperature, minimum temperature 

in the future for the UBNRB due to climate change effect? How do these patterns affect 

the streamflow and water balance components of the basin? 

 How do the combined climate change and water resource developments that have 

planned to be developed by the Government of Ethiopia (GoE) in the future affects the 

Lake Tana reservoir? 

 Could water scarcity be a big challenge for the region in the future? 

 

Following the above research objectives and research questions the following hypotheses can be 

formulated 

 Climate change effect is more significant than LULC changes for altering the streamflow 

of the basin.  

 SWAT can be applied in monsoon tropical area if additional site-specific data containing 

soil and land use information is properly integrated into the model. 

 SDSM statistical down scaling model based on regression of predictands and predictors 

might perform better than LARS-WG stochastically weather generator model in 

simulating the present climate condition of the UBNRB. 

 In the future due to green house effect, precipitation and temperature may experience an 

increasing trend and as a result, streamflow may increase.  

 Lake Tana sub-basin is more susceptible to water scarcity because of the large size future 

planned water resource developments and climate change effects.  
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 Climate change in portions of the UBNRB of Ethiopia may have the potential to increase 

the precipitation and flow regimes significantly. The increasing of precipitation in the 

basin could also result in increased water availability for rain-fed agricultural, domestic 

consumption and habitat.  

This is doable by combining the analysis of statistical trend test, LULC classification and change 

detection derived from satellite remote sensing, and by employing semi-distributed hydrological 

models for simulating the past, present and future time periods streamflow under different 

forcing conditions. 

 

1.4 Dissertation structure 
 

The thesis is organized in eight chapters. In the first chapter, introduction of the research issues 

on the UBNRB, the problem statement, the objectives and hypothesis of the thesis were 

presented. Chapter 2 summarizes the state of the art about the statistical trend analysis, 

hydrological and climate change modeling and remote sensing techniques for the LULC map 

classification and change detection analysis. In Chapter 3 the description of the study area, 

topography, climate, hydrology, land use and soil characteristics are presented. Chapter 4 

briefly describes the hydro-meteorological data, in filling techniques for the missing data and 

evaluates their comparative performances. Furthermore, statistical trend analysis for 

precipitation, minimum temperature and maximum temperature for the 15 stations that have long 

time records and better data quality, and for streamflow of the four main streamflow stations (El 

Diem, Kessi, Gilgel Abay and Gumara) is carried out. Statistical Mann Kendall trend test and 

Pettittt homogeneity tests have been applied to assess the significance of trends and change point 

detection over different periods respectively. Chapter 5 assesses the hydrological responses of 

the UBNRB to the changes in LULC and climate. It further identifies the major driving forces 

for the alteration of hydrology in the basin. In this chapter detail LULC classification and change 

detection analysis was carried out using remote sensing technique from Landsat images for the 

period 1973, 1985, 1995 and 2019 for the UBNRB. SWAT semi distributed hydrological model 

is applied for analyzing the combined and single effects of LULC and climate changes on the 

streamflow. Chapter 6 analyzes the comparative performance of two widely used statistical 

downscaling methods (LARS-WG and SDSM) and projects the future precipitation, maximum 

temperature and minimum temperature. Chapter 7 deals with the combined impacts of climate 

change and water managements on the hydrology of the basin and on the irrigation and 

hydropower sectors under different scenarios. HEC-HMS semi-distributed hydrological model is 

used for this task. Finally, Chapter 8 summarizes the findings of the thesis, concluding remarks, 

recommendation, and outlooks for further studies in the basin. 
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Chapter 2 State of the Art 

2.1 Statistical trend test for hydro-climatic variables of upper Blue Nile River 
basin 

 

Detection of trends in hydro-climatic variables could be the priority task for planning and 

managing limited water resources and devise alternative strategies for future developments. It 

has significant importance in particular to the shared water resources in the case of the Blue Nile 

river basin (Gebrekristos, 2015). It is also one of the most important factors in explaining various 

socio-economic problems such as food security in  a country whose economy is heavily 

dependent on low-productivity rain fed agriculture such as Ethiopia (Cheung et al., 2008).  

Furthermore, the various developments made by human activity and hydro climatic changes can 

alter the time series of a streamflow. Determining of trends in long term streamflow is an 

important tool to detect any modification in hydrological systems (Salarijazi et al., 2012).  

 
Several individual studies have been done to investigate the historical trends in precipitation and 

streamflow in the UBNR basin, with most studies focusing on annual and seasonal total 

precipitation and streamflow. Taye et al. (2011) reviewed some of the research outputs and 

concluded that most studies reported no significant trend in annual and seasonal precipitation 

totals.  For instance, (Conway, 2000) reported no change for a basin-wide time series of annual 

rainfall constructed from 11 gauges for the period 1900 to 1998 in the UBNRB. Whereas, over 

the period 1961 -1 990 the basin-wide series showed a strong negative correlation with time, r = -

0.65). Seleshi and Zanke (2004) analyzed the changes in annual, rainy season and dry season 

rainfall and rainy days based on 11 key stations located in different climatic zones of Ethiopia 

over the common period 1965–2002 using Mann-Kendall (MK) trend test. They demonstrated 

that there is no trend in the annual rainfall total, the seasonal rainfall total or rainy days over 

central, northern and northwestern Ethiopia in the period 1965–2002. Changes in rainfall were 

examined using data from 134 stations in 13 watersheds across Ethiopia  between 1960 and 2002 

by Cheung et al. (2008). They analyzed the variability and trends in seasonal and annual rainfall 

at the watershed scale at the gauge, regional, and national levels. By regressing annual watershed 

rainfall on time, results from the one-sample t -test show no significant changes in rainfall for 

any of the watersheds examined. However, the seasonal rainfall averages against time, showed a 

significant decline in June to September rainfall (i.e. Kiremet) for the Baro-Akobo, Omo-Ghibe, 

Rift Valley, and Southern Blue Nile watersheds located in the southwestern and central parts of 

Ethiopia. Gebremicael et al. (2013) also analyzed the annual rainfall pattern at nine stations in 

the Upper Blue Nile and reported no change of annual rainfall in all nine stations except Assosa 

for the period (1970–2005). Gebrekristos (2015) investigated the monthly and seasonal rainfall 

trends at 13 rainfall stations in the UBNRB using MK test. He reported that the changes are not 

significant both at monthly and seasonal scale for the majority of investigated climate stations. 

Tesemma et al. (2010) applied both the Mann-Kendall and Sen's t tests to investigate the 

statistical trend tests for precipitation and streamflow in the UBNRB. Their report showed that 

there was no significant trend in the basin wide annual, dry season, short and long rainy season 

rainfall at 5% significant level for the Blue Nile basin for the period from 1963-2004. 
 

Furthermore, (Meze-Hausken, 2004) analyzed long-term rainfall data up to 2002 for 4 stations in 

northern Ethiopia (Mekelle from 1960, Gondar from 1953, Bahr Dar from 1962, and Combolicha 
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from 1953). No trends were detected in these data during this extended period. (Hurni et al., 

2005) analyzed the trend change of rainfall from seven soil conservation and research 

programmes (SCRP) research sites. Their result confirmed the above conclusion of no significant 

trends in annual rainfall, during the period from1981 and 2002. Nevertheless, two of the stations, 

Maybar and Andit Tid along the Eastern escarpment, where a small rainy season (Belg) is 

common in the first half of the year, followed by the Kiremet season in the second half, showed 

slight to pronounced trends. In Maybar, both the Belg and Kiremet seasons showed a tendency 

towards increased total rainfall and in Andit Tid Kiremet showed a distinct increase, while Belg 

totals decreased over the same period.  

 

At the UBNRB basin scale, no significant long-term trends were observed for mean streamflow 

at the annual and seasonal scales (Awulachew et al., 2008; Conway, 2000; Melesse et al., 2009). 

Tesemma et al. (2010) reported significant increases in discharge during the long wet season at 

three stations, Bahirdar, Kessie and El Diem, all situated on the main stem of UBNR. As a 

percentage of the 40-year seasonal mean, these increments were 26% at Bahir Dar, 27% at 

Kessie and 10% at El Diem. Discharge during the short rainy season streamflow increased 

significantly at Bahir Dar (33%) and at Kessie (51%), while the trend was not significant at El 

Diem in the period from 1963 to 2003. Dry season streamflow show no significant trend at 

Bahirdar and Kessie but a significant decreasing trend at El Diem (10%). Similarly, 

(Gebremicael et al., 2013) find statistically significant increasing trends of annual and long wet 

season streamflow, while dry season streamflow show a significant decreasing trend at El Diem. 

This indicates trends towards more severe hydrological extremes, in both high and low 

streamflow directions. At the sub-basin scale, Rientjes et al. (2011a) reported that low 

streamflow in the Gilgel Abay sub-basin decreased during the past 30 years (1973–2001), 

specifically an 18.1% and 66.6% decrease for the periods 1982–2000 and 2001–2005, 

respectively. However, for the same periods, the high streamflow show an increase of 7.6% and 

46.6%. For the Chemoga sub-basin, (Bewket and Sterk, 2005) observed a statistically significant 

decline of dry season streamflow (October–May) during 1960–1999, while high streamflow do 

not indicate any discernible trend. According to Bewket et al. (2005), these decreasing trends are 

explained by significant land cover changes in the basins observed during 1957–1998, 

specifically destruction of natural vegetative cover, expansion of cropland, overgrazing, and 

increased area under eucalypt plantations, spurring increased transpiration and declines in base 

flow.  

 

According to Taye et al. (2015), although there are some contradictory findings across these 

studies, it appears there are no statistically significant precipitation trends in the Ethiopian 

highlands, while statistically significant streamflow trends are evident in some of the tributary 

catchments. They summarized the findings for high and low streamflow trends in the ten sub-

basins over UBNRB. Low streamflow are shown to have significant decreasing or increasing 

trends in 11 out of 18 cases, or 61%. Comparatively, no significant change is evident for high 

streamflow in 13 out of 18 cases (72%). This illustrates that low streamflow in the basin are 

historically more sensitive to the natural and artificial changes than high streamflow.  For the 

historical context, the discrepancies could be due to the period and length of data analyzed and 

the failure to consider stations, which can represent the spatial variability of the basin and errors 

induced from observed data. 

 



9 

 

 

2.2 Climate change modeling on upper Blue Nile River basin 
 

General Circulation Models (GCMs) from Intergovernmental Panel on Climate Change (IPCC) 

Third and Fifth Coupled Model Inter-comparison Projects (CMIP3 and CMIP5) are tools used to 

simulate the current and future climate change of different climate variables under different 

climate change scenarios (Chisanga et al., 2017) due to increasing greenhouse gases (GHGs). 

The GHG emissions scenarios reflect the uncertainty of the future climate and GCMs’ striving to 

represent complex natural systems (Nkomozepi and Chung, 2013). The range of possible 

emission scenarios (forcing), internal variability, and intermodel differences are the major source 

of uncertainties in climate projections (Deser et al., 2012; Meher et al., 2017). Forcing 

uncertainty arises from incomplete knowledge of external factors influencing the climate system, 

including future trajectories of anthropogenic greenhouse gases (GHGs), aerosol, stratospheric 

ozone concentrations; land-use change, etc. were included in the emission scenario as external 

factors that influence the climate system significantly. Model uncertainty, also termed response 

uncertainty, occurs because different models may yield different responses to the same external 

forcing as a result of differences in, for example, in physical and numerical formulations. 

Internal variability is the natural variability of the climate system that occurs in the absence of 

external forcing, and includes processes intrinsic to the atmosphere, the ocean, and the coupled 

ocean-atmosphere system (Deser et al., 2012). The combined effect of this variability's makes 

difficult in estimating precipitation accurately through GCMs. 

 

GCMs perform reasonably well at larger spatial scales but poorly at finer spatial and temporal 

scales, especially precipitation, which is of interest to hydrological impact analysis (Goly et al., 

2014). GCMs are the most important tools, which provide past and future climate change 

information at various grid locations over the globe (Meher et al., 2017). To this day, output 

from the GCMs are not adequate to represent the regional, sub regional, or local-scale climate 

features properly because of their coarser resolution and inadequate representation of forcing and 

feedbacks like cloud, convections, evaporation, topography, etc. (Pervez and Henebry, 2014; 

Wilby et al., 1999). Because of these inherent limitations, downscaling of the GCM simulations 

is essential for impact applications at local scale.  

 

The impacts of climate change on the hydrological cycle in general and on water resources in 

particular are of high significance due to the fact that all natural and socio/economic system 

critically depends on water. The direct impact of climate change can be variation and changing 

pattern of water resources availability and hydrological extreme events such as floods and 

droughts, with many indirect effects on agriculture, food and energy production and overall 

water infrastructure (Ebrahim et al., 2013). The impact may be worse on trans-boundary Rivers 

like Upper Blue Nile River where competition for water is becoming high from different 

economic, political and social interests of the riparian countries and when runoff variability of 

upstream countries can greatly affect the downstream countries (Kim, 2008; Semenov and 

Barrow, 1997).  

 

To this end, several individual researches have been done to study the impacts of climate change 

on the water resources of UBNRB from one or more GCMs, emission scenario(s), and 



10 

 

downscaled GCM output for driving a hydrological model. Regardless of its magnitude, better 

agreement among authors with regard to the prediction of the future increasing temperature was 

observed over the UBNRB. However, the accurate estimation of future prediction of 

precipitation over this region remains difficult because of its complex topography, sparse data 

availability, and poor data quality. As the result, inconsistent and conflicting research outputs are 

observed for predicting precipitation.  

 
For example, Beyene et al. (2010) used 11 GCMs and observed data from CRU and their outputs 

for precipitation prediction ranges from -16 to 40% in 2020s (2010-2039) and -24% to 26% for 

2080s (2070-2099). Conway (2005) considered the outputs of nine GCMs using A2 SRES 

scenario for the projection of rainfall and temperature. The result suggested that the changes in 

average seasonal climate for the period around the 2080s, relative to 1961-1990 climate ranges 

from -40 % to 100 % for the winter season (Dec-Feb), and from  -40 % to 120 %  for the summer 

season (June to Aug) precipitation. Kim (2008) used the outputs of six GCMs for the projection 

of future precipitations and temperature, the result suggested that the changes in mean annual 

precipitation from the six GCMs range from -11 % to 44 % while the weighted average projected 

with a change of 11% at 2050s. On the other hand, the changes in mean annual temperature 

range from 1.4°C to 2.6
o
C with a weighted average change of 2.3

o
C from the baseline. Likewise, 

Yates and Strzepek (1998a) used 3 GCMs and the result revealed that the changes in 

precipitation range from -5 % to 30 % and the change in temperature range from 2.2
o
c to 3.5

o
c. 

Yates and Strzepek (1998b) also used six GCMs and the result showed in the range from -9 % to 

55 % for precipitation while temperature increased from 2.2
o
c to 3.7

o
c. Another study done by 

Elshamy et al. (2009b), used 17 GCMs and the result showed that changes in total annual 

precipitation range between −15 % to +14 % but the ensemble mean of all models showed 

almost no change in the annual total rainfall. While, all models predict the temperature to 

increase between 2
o
C and 5

o
C. Gebre and Ludwig (2014), used  five biased corrected 50km x 

50km spatial resolution GCMs for RCP4.5 and RCP8.5 scenarios to down scale the future 

climate change of  4 watershed (Gilgel Abay, Gumara, Rib and Megech) located in Tana sub 

basin for the time period of 2030s and 2050s. The result suggested that the selected five GCMs 

disagree on the direction of future prediction of precipitation but multimodal average monthly 

and seasonal precipitation may generally increases over the watersheds. 

 

For the future context, discrepancies could be due to the difference of type and number of GCMs 

and scenarios used for downscaling, the downscaling techniques applied (can be dynamical and 

statistical), selection of representative predictors, the period of analysis, the type of observed data 

(gridded or station based), and spatial and temporal resolution of observed and predictor dataset 

(Cherie, 2013). So based on such differences, it is not clear which combination of inputs give a 

good insight for future plausible climate conditions of the UBNRB.  

 

To address uncertainty in projected climate changes, the (IPCC, 2014b)  thus recommends using 

a large ensemble of climate change scenarios produced from various combinations of 

Atmospheric Ocean General Circulation Model (AOGCMs) and forcing scenarios. However, it 

can become prohibitively time consuming to assess the climate change, using simultaneously 

many climate change scenarios and many statistical down scaling models. As a result, 

researchers typically assess the climate change and its impacts under only one or a few climate 

change scenarios selected arbitrarily with no justification for instance used only A1B and A2 
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scenarios. Yet, there is no any hard rule to select an appropriate subset of climate change 

scenarios among the wide range of possibilities (Casajus et al., 2016). Hence, the performance of 

downscaling that ensures to narrow down the scale discrepancy between the coarse scale GCMs 

and the required local scale climate variables for hydrological models should be investigated for 

their contribution, which is missed in previous studies of climate change analysis in the UBNRB. 

 

Many researchers have been tried to compare the comparative skill of down scaling methods in 

different study areas such as (Dibike and Coulibaly, 2005; Ebrahim et al., 2013; Fiseha et al., 

2012; Goodarzi et al., 2015; Hashmi et al., 2011; Khan et al., 2006; Qian et al., 2004; Wilby et 

al., 2004b; Wilby and Wigley, 1997; Xu, 1999). However, no single model has been found to 

perform well over all the regions and time scales. Thus, evaluations of different models are 

critical to understand the applicability of the existing models. 

 

Apart from the GCMs and downscaling techniques, most of the previous studies e.g. (Beyene et 

al., 2010; Elshamy et al., 2009b; Kim, 2008), used CRU, NFS and other gridded data sets 

constructed based on the interpolation of a few stations in Ethiopia, which has relatively less 

accurate as compared with the station based data (Worqlul et al., 2014). Therefore, a multi-model 

approach, to minimize the uncertainty of GCMs and  incorporating acceptable number of 

weather stations which has long time series and  reliable observed climate data to minimize the 

errors coming from the less accurate gridded data is recommended. 

 

2.3 Hydrological modeling 
 

Hydrological models  and definitions 

Water is one of the essential components of the environment, which requires proper planning and 

management to achieve its sustainable utilization. However, it is well known that the number and 

diversity of water-related challenges are large and are expected to increase in the future. In 

addition to climate change, land use change is one of the important human interventions altering 

the quality and quantity of both surface and ground water (Dwarakish and Ganasri, 2015). Both 

climate and land use change have adverse implications on the natural hydrologic system in terms 

of variation in the runoff regime, evapotranspiration (ET), subsurface flow, infiltration, etc., 

(Lørup et al., 1998; McColl and Aggett, 2007; Xu and Singh, 1998). Due to complicated inter-

relationship between various hydrological components such as precipitation, evaporation, 

transpiration, infiltration, and runoff, hydrological cycle and hydrological response of a 

catchment have become very complex.  In response to these challenges, hydrological models 

have been developed to analyze and understand the natural hydrologic system, to investigate the 

relationship between climate, land use and hydrologic process (Bormann et al., 2009; 

Nandakumar and Mein, 1997; Tang et al., 2011), and to explore solutions for sustainable water 

management, in order to support decision makers and operational water managers. Therefore, 

hydrologic models have become increasingly important tools for the management of the water 

resources (Sarkar and Kumar, 2012; Shirke et al., 2012; Suliman et al., 2015) which can be used 

for flow forecasting to support reservoir operation, flood mitigation, spillway design studies, and 

many other purposes.  
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Hence, models are constructed to serve as proof of an idealized logical structure and they are an 

important element of methodical theories (Adem and Batelaan, 2006). A model is an expression 

to show a part of the natural or human created world which can be in the form of a physical, 

analog or mathematical model (Dingman, 2002). Generally, hydrological models are tools that 

integrate our knowledge of hydrologic systems to a set of interrelated equations that try to 

convert the physical laws, which govern extremely complex natural phenomena, to simulate the 

real world hydrologic processes.  

 

Classification of hydrological modeling 

 

Hydrologic models have become an indispensable tool for the study of hydrological processes 

and the impact of modern anthropogenic factors on the hydrologic system. Many researchers 

classified hydrological models based on; the basis of their function and objectives, their 

structure, and their level of spatial disaggregation. Proper classification can be helpful for 

engineers, experts and researchers to understand the characteristics of models before deciding to 

employ them for their works. Hence, models can be categorized into three main classes, namely, 

physical model, analogous and mathematical models. Physical model is a reduced-dimension 

representation of real world system. As a simple definition for models, a physical model is 

defined as a scaled-down form of a real system (Brooks et al., 2003; Salarpour et al., 2011). The 

analog model is the result of a simulated process that is used to represent a natural process. 

Mathematical models, on the other hand, include clear chronological set of relation, numerical 

and logical steps that change numerical inputs into numerical outputs(Jajarmizadeh et al., 2012).  

 

In terms of hydrological model, mathematical models was given more consideration due to the 

rapid development of computer technology. These models are faster, high accuracy and more 

economical. On the contrary, deficiencies of a hydrologic model can be due to its user-

unfriendliness, large data requirement, lack of reliable measuring and other unclear limitations 

(Singh and Frevert, 2005). 

 

There are many hydrological models with unique and common characteristics that have been 

developed so far (Wang et al., 1996). Hydrologic models can be classified based on the 

representation of physical processes, space, time, or randomness. The classification of 

hydrologic models centered on physical process is based on the input and parameters needed for 

the model and the extent of physical principles represented within the model. Another method 

for classifying models includes the spatial representation of the basin either modeling the basin 

as whole where spatial variability is disregarded or by dividing the basin into spatially explicit 

sub-regions. Further classifications focus on whether randomness is incorporated into the model 

and if time is represented within the model. Figure 2-1 represents the classifications of the 

different hydrologic models. 

 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=mathematical+model
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Figure 2-1: Classification of hydrological models after MARKERT et al. (2016)  

Moreover, each category is subdivided into subcategories that are more detailed. Based on 

process representation includes physically based, conceptual and empirical. In addition, spatial 

representation category consists of lumped, distributed and semi-distributed, meanwhile 

temporal representation category comprises of dynamic and static. Finally, aspect of randomness 

category comprises stochastic and deterministic.  

 

However, different authors classified the hydrological models into different classifications. For 

instance, Chow et al. (1988) classified the hydrological models into two major categories, 

namely physical models and mathematical models. Furthermore, he divided physical models into 

two classes again, namely scale models and analog models. Mathematical model c further 

divided into two subcategories, namely stochastic and deterministic. Figure 2-2 presents the 

classification of hydrological models according to Chow et al. (1988). 

 

 
 
Figure 2-2: Hydrological models classification by  Chow et al. (1988) 
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https://scialert.net/fulltextmobile/?doi=jest.2012.249.261#f2
https://scialert.net/fulltextmobile/?doi=jest.2012.249.261#f2
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Cunderlik (2003) further classified deterministic hydrologic models into three major categories 

(lumped, semi-distributed and distributed). Oogathoo (2006) classified the mathematical 

hydrological model into five major different categories based on criteria such as law and 

assumptions, equations, parameters, time and procedure of computations, which further 

classified into ten different types. Figure 2-3 presents the classification of hydrological models 

according to the criteria mentioned above. Lewarne (2009) stated that hydrological models could 

be classified into five groups in accordance to the definition of mathematical models under polar 

condition. Category1 divides the models into two-linear and non-linear. Category2 divides the 

models into deterministic and probabilistic (stochastic) models. Category3 divides the models 

into static and dynamic, where the time element plays a significant role. Category4 is based on 

the role of parameters into lumped and distributed. Category5 divides the models into physical 

and conceptual models.  

 

Gosain et al. (2009) noted that a broad classification for hydrological models can emerge from 

the development of hydrological models from the old days but generally the models can be 

simply defined as a black-box, conceptual or deterministic model. Undoubtedly, there are also 

subdivisions for these categories. Figure 2-4 presents the classification of hydrological models 

according to Gosain et al. (2009). Detail descriptions can be found in (Jajarmizadeh et al., 2012). 

 

 
 
Figure 2-3: Hydrological models classification by criteria 

 
 
Figure 2-4: Hydrological models classification by Gosain et al. (2009) 
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Previous works of hydrological modeling in the upper Blue Nile River basin 

 

A review by Awulachew et al. (2008) shows that the number of models simulating the 

streamflow from watersheds in the Blue Nile and other river basins in Ethiopia and Africa has 

increased exponentially in recent years. These models are from relatively simple engineering 

approaches, such as the rational method (Desta, 2003), to more complex models, such as SWAT 

(Cherie, 2013; Gashaw et al., 2018; Gebremicael et al., 2013; Girma, 2013; Setegn et al., 2008; 

Teferi et al., 2013). Others are the precipitation runoff modeling system (PRMS) (Legesse et al., 

2003), water erosion prediction project (WEPP) (Zeleke, 2000), the agricultural non-point source 

model (AGNPS) (Haregeweyn and Yohannes, 2003; Mohamed et al., 2004) and water balance 

approaches (Ayenew and Gebreegziabher, 2006; Kim and Kaluarachchi, 2008a). Implementation 

of these models yielded mixed results. For example, AGNPS was tested in the highlands of 

Ethiopia on the Augucho Catchment but the observed runoff patterns could not be reproduced. 

PRMS was similarly tested by Legesse et al. (2003) for South Central Ethiopia, and needed 

extensive calibration to predict the monthly runoff.  

 

The main conclusion of this overview of hydrological models used in the highlands of Ethiopia 

is that the daily simulation results of the more complex models is disappointing when compared 

with the relatively better predictions of the simple water balance models. The main reason is that 

most of the complex hydrological models are developed based on the SCS curve number 

approach, of which the parameter values are obtained statistically from plot data in the United 

States with a temperate climate. The watershed behavior in a temperate climate is different than 

in a monsoonal climate where during the dry period the soil dries out completely, something that 

does not happen in the United States (Steenhuis et al., 2009).  

 

The lack of available data for both input and calibration further hinders the use of complex 

models in Ethiopia. For these reasons, simple water balance models, that most efficiently utilize 

the available data, are the most appropriate choice for simulation of the hydrology of the Blue 

Nile. Hence, many simple water balance type approaches have been attempted for the Nile 

Basin. Kebede et al. (2006) developed a water balance model on Lake Tan sub-basin of UBNRB 

utilizing relatively long durations (>30 years) of data for precipitation, evaporation, inflows of 

major tributaries and outflows to the Blue Nile. A similar water balance type rainfall-runoff 

model was developed and tested by Collick et al. (2009) to predict the stream flow for four 

relatively small watersheds (<500 ha) in the Blue Nile Basin. The authors reported reasonable 

predictions on a daily or weekly time step using nearly identical parameters for watersheds, 

which are hundreds of kilometers apart. Steenhuis et al. (2009), were made minor modifications 

for the model developed by Collick et al. (2009) with respect to interflow generation for 

predicting the discharge  and sediment of the entire Blue Nile. They reported satisfactory result 

both for simulating the discharge and sediment of the UBNRB. 

 

Hence, it is to be noticed that simple water balance models often perform better, especially over 

monthly time steps than the complex counterparts that have many more calibration parameters in 

the UBNRB. However, simple water balance models have limitations such as different parameter 

sets are required for different basin sizes in the Blue Nile Basin as shown by Kim et al. (2008a) 
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and also hills and valleys were not differentiated in their simplified model (Kebede et al., 2006). 

In addition, simple water balance could not be able to evaluate the likely implications of climate 

change and LULC changes on streamflow and water balance components. Therefore, several 

authors preferred to apply the complex hydrological models like SWAT for investigating the 

impacts of climate and LULC changes on the hydrology of the UBNRB. 

 

Van Griensven et al. (2012) reviewed 22 peer-reviewed papers on the application of SWAT to 

the tropical high lands of the Nile basin countries for a variety of thematic areas including 

climate change impact modeling. They carried out a critical evaluation of model performance, 

physical representation of model parameters and correctness of the hydrological balance. Based 

on performance evaluation, they reported that majority of the SWAT models were classified as 

giving satisfactory to very good results.  

 

Recently, several attempts have been made to evaluate the likely implications of climate change 

and LULC changes on streamflow to UBNRB and some other sub-watersheds using SWAT  

(e.g., (Chakilu and Moges, 2017; Cherie, 2013; Gashaw et al., 2018; Gebremicael et al., 2013; 

Girma, 2013; Kidane et al., 2018; Setegn et al., 2008; Teferi et al., 2013; Teklay et al., 2019; 

White et al., 2011; Woldesenbet et al., 2017b; Woldesenbet et al., 2018), whereby the results 

obtained provide further evidence of the performance of SWAT model in these kinds of 

hydrological basin studies. 

 

At basin scale, Cherie (2013) applied SWAT model to evaluate the climate change impacts on 

the streamflow of UBNRB at El Diem station. He reported that the future simulations of 

streamflow in the basin, using both SDSM and LARS-WG downscaled output in SWAT reveal a 

decline of -10% to -61% of the future Blue Nile streamflow. Girma (2013) also used SWAT 

model to study the hydrological impact of climate and land use changes on the UBNRB. 

Although the downscaling rainfall data may decrease by 6 – 12 % during the short rainy season 

in the basin, average annual projected runoff changes for the basin were 9.2% and -10.0% 

relative to the historical flow for 2041-2070 and 2071-2100 respectively. (Gebremicael et al., 

2013) applied SWAT model to simulate the runoff and sediment fluxes in the early 1970s and at 

the end of the time series in 2000s in order to interpret the physical causes of the trends and 

corroborate the statistical results. A comparison of model parameter values between the 1970s 

and 2000s showed significant change, which could explain catchment response changes during 

the period (1973-2005).  

 

At sub-basin scale, Kidane et al. (2018) evaluated the impacts of climate and LULC dynamics on 

the hydrological responses of Guder sub-watershed located in the south of UBNRB (see Figure 

3-2) using SWAT for the period 1973 - 2015. They reported the decreases of forest and shrub 

land by 38% and 48% while, settlement and cultivated land increased by 572% and 7% 

respectively. After LULC change detection analysis, individual and combined impacts of climate 

and LULC on hydrological dynamics of Guder watershed were evaluated by comparing the 

simulated flow generated by climate data of 1973–1982 and 2006–2015 and LULC data of 1973 

and 2015. As the result, the SWAT simulation indicted that LULC change increased the wet 

season flow by 14.5% while decreasing by 9.65% in dry season. In wet season, the flow 

increased by 4.5% while decreased by 3.3% in dry season because of change in climate and 

seasonal variability. The combined effects of climate change and LULC changes results the 
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decline of dry season stream flow by 11.34% and the increment of wet season stream flow by 

17.76%.  
 

Gashaw et al. (2018) also applied remote sensing techniques for the LULC map classification 

and SWAT model to analyze the hydrological impacts of LULC changes in the Andasa 

watershed, which is located in the North Gojjam sub-basin of the UBNRB (Figure 3-2),  for a 

baseline period of 1985–2015 and to the future changes of 2030 and 2045 periods. The results 

showed that there was a continuous expansion of cultivated land and built-up area, and 

withdrawing of forest, shrubland and grassland during the 1985–2015 periods, which are 

expected to continue in the 2030 and 2045 periods. The LULC changes, which had occurred 

during the period of 1985 to 2015, had increased the annual flow (2.2%); wet seasonal flow 

(4.6%), surface runoff (9.3%) and water yield (2.4%). Conversely, the observed changes had 

reduced dry season flow (2.8%), lateral flow (5.7%), groundwater flow (7.8%) and ET (0.3%). 

The 2030 and 2045 LULC states are expected to further increase the annual and wet season flow, 

surface runoff and water yield, and reduce dry season flow, groundwater flow, lateral flow and 

ET.  

 

Teklay et al. (2019) also applied SWAT model to assess the impacts of land use change and 

climate change on hydrological responses such as surface runoff, evapotranspiration, and peak 

flow in Gumara watershed. The Gumara watershed is located in the eastern part of the Lake Tana 

Basin (Figure 3-2), which has an area of 1269 km
2
. The elevation ranges between 1794 and 

3704masl, with a mean elevation of 2272 masl. They reported the expansion of agricultural land 

use by 11.1% and the reduction of forest cover by 2.3% during the period from 1985 to 2015. As 

the result, the surface runoff simulation increased by 45.1 mm (12.4%) between 1985-199 and 

2010-2015 due to the combined effects of LULC change and climate variation. The isolated 

LULC change increased surface runoff by 11.6mm (3.2%), which accounts for 25.7% of the total 

surface runoff change (45.1mm). The isolated effects of climate variation between 1985-1989 

and 2010-2015 increased surface runoff by 33.5mm (9.2%), which accounted for about 74.3% of 

the total surface runoff increment.  The above results showed that land use change and climate 

variation during 1985–1989 and 2010–2015 increased surface runoffs, but the contribution of 

land use change was smaller than that of climate variation. Between this simulation period, 

combined LULC change and climate variation increased peak flow by 3.7m
3
s

-1
 (1.7%), and 2.4 

m
3
s

-1
 (1.1%) increase due to isolated LULC change and 1.3m

3
s

-1
(0.6%) increase for the isolated 

climate variability. The percent contributions were 64.9% for LULC change and 35.1% for 

climate variability.  
 

The impacts of LULC dynamics and its impact on the low flow of Gumara sub-watershed of the 

UBNRB were evaluated through application of the SWAT model by Chakilu et al. (2017). They 

prepared three LULC data; 1973, 1986, and 2013 from Landsat satellite and these data were used 

for base map, model calibration and change study respectively. Based on the result, the extreme 

low flow of Gumara watershed has been decreasing from 0.53 m
3
s

-1
 to 0.43 m

3
s

-1
, which showed 

decreasing by 0.1 m
3-1

 that is 18.87%.  In general, the above studies illustrated that agricultural 

land has increased while the forest coverage has decreased in the UBNRB, which results the 

increase of surface runoff and peak flow and decreasing of dry season flow. 
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2.4 Remote sensing for land use/land cover 
 

Land use and land cover change (LULC) has been a key research priority with multi-directional 

impacts on both human and natural systems (Turner et al., 2007) yet also a challenging research 

theme in the field of land change science. It can affect biodiversity (Hansen et al., 2004), 

hydrology (DeFries and Eshleman, 2004; Uhlenbrook, 2007), and ecosystem services (DeFries et 

al., 2004). Hence, it has increasingly become a topic of paramount importance for regional and 

international research programs examining LULC change. As is the case in many other 

developing countries, most of the population of Ethiopia lives in rural areas and depends directly 

on agriculture for its livelihood (Bewket et al., 2005). This rural population is currently growing 

rapidly, and consequently inducing a very dynamic land use and land cover. Hence, several 

studies highlighted that LULC Change is a prevalent phenomenon in the highlands of Ethiopia 

(Bewket et al., 2005; Gebremicael et al., 2013; Kidane et al., 2018; Teferi et al., 2013; Zeleke, 

2000). These studies found different types and rates of LULC in different parts of the country 

over the different periods. In most cases, however, expansion of forestland into cultivated land, 

deforestation and afforestation have been the common forms of transitions. In addition to the few 

published researches, as mentioned above, the Abay River Basin Master Plan Project prepared 

the LULC map of UBNRB at scales of 1:2,000,000 and 1:250,000 based on Landsat Thematic 

Mapper (TM) images from 1986 to 1990 (BCEOM, 1998a).  

The impact of LULC change on stream flow pattern in a typical watershed called Chemoga in 

the Blue Nile basin of Ethiopia was investigated by Bewket et al. (2005). Their results show that, 

between 1960 and 1999, total annual stream flow decreased at a rate of 1.7 mm year
-1

, whereas 

the annual rainfall decreased only at a rate of 0.29 mm year
-1

. The decrease in the stream flow 

was more pronounced during the dry season (October to May), while the corresponding rainfall 

showed no discernible trend. The wet season (June to September) rainfall and stream flow did 

not show any trends. The observed adverse changes in the stream flow could be attributed due to 

changes in LULC that involved destruction of natural vegetative covers, expansion of croplands, 

overgrazing and increased area under eucalypt plantations. 

Zeleke (2000) analyzed the LULC changes that occurred from 1957 to 1995 in the Dembecha 

area, Gojam, in the Northwestern highlands of Ethiopia. Their analysis showed that 99% of the 

forest cover that existed in 1957 was cleared in 1995. On the other hand, cultivated land 

increased from 39% in 1957 to 70% in 1982 and 77% in 1995. The greatest expansion occurred 

between 1957 and 1982 (about 78%) and slowed down between 1982 and 1995 (only 10%) 

because almost no land was left for further expansion. 

Teferi et al. (2013) quantified long-term land use and land cover (LULC) changes and to identify 

the spatial determinants of locations of most systematic transitions for the period 1957–2009 in 

the Jedeb watershed, Upper Blue Nile Basin. It covers an area of 296.6 km
2
 and thus is meso-

scale in size. It is situated in the southwestern part of Mount Choke, which is a headwater of the 

Upper Blue Nile in Ethiopia with its elevation ranging from 2172 masl to nearly 4001 masl. They 
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reported that cultivated land and grassland were the major proportions as compared to the other 

LULC classes during the whole period 1957–2009. The percentage coverage of cultivated land 

increased from 53.4% to 69.5% while grassland decreased from 20.6% to 14.9% from the 

baseline period 1957 to 2009.  About 46% of the study area experienced a transition over the past 

52 years, out of which 20% was due to a net change while 26% was attributable to swap change 

(i.e. simultaneous gain and loss of a given category during a certain period).  

Gebremicael et al. (2013) analyzed the impacts of LULC change on the runoff and sediment 

fluxes of the UBNRB during the period 1973 to 2000. Their findings indicate that the surface 

runoff (Qsurf) contribution to the total river discharge has increased by 75%, while the 

subsurface flow (Qlat) and the ground water (GWQ) flow has decreased by 25% and 50%, 

respectively and the total water yield at the outlet has increased by 25% with negligible change 

of rainfall between the two periods . This clearly depicts a modification of catchment response 

and thus a possible change of the physical characteristics of the basin between 1970s and 2000s. 

In the UBNRB, the areal coverage of rainfed cropland, grassland, water body and barren land 

showed a growth of 81%, 56%, 14% and 241%, respectively from 1973 to 2000. On the other 

hand, wooded grassland, woodland, shrubs and bushes, natural forest, afro-alpine vegetation 

showed a decline by 61%, 31%, 8%, 51%, and 5%, respectively. 

Kidane et al. (2018) analyzed the impacts of climate and LULC dynamics on the Hydrological 

Responses of the Upper Blue Nile in the Guder sub-watershed. The watershed area is 46,654 ha 

with an elevation range between 1820 and 3271 masl. They used the Landsat satellite imageries 

to identify the LULC of the watershed during 3 periods: 1973, 1995 and 2015. According to their 

classification and change detection result, the area coverage of cultivated land raised from 62.7 

to 67.1 % from 1973 to 2015. They also reported that during these periods the forest coverage 

decreases from 14% in 1973 to 9% in 2015, which indicates that about 37.5% of the forest 

ecosystems were converted to other LULC during the period 1973 to 2015.  
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Chapter 3 Description of study area 

3.1 Location 
 

The Nile River is regarded as the longest river in the world flowing to the north originated from 

northeastern Africa, which covers a drainage area of 3,400,000 km
2
 (Onyutha and Willems, 

2015). It is 6,853 km long, and it is a trans-boundary river as its drainage basin covers eleven 

African countries, namely, Tanzania, Uganda, Rwanda, Burundi, Democratic Republic of the 

Congo, Kenya, Ethiopia, Eritrea, South Sudan, Republic of the Sudan and Egypt (Figure 3-1). It 

has two major water supply sources, the White Nile and the Blue Nile. The White Nile originates 

in the Great Equatorial Lakes region, is considered the headwaters the Nile. The Blue Nile, 

however, is the major water resource contributor (85%) of the Nile water resource.  

 

The Upper Blue Nile River basin (UBNRB) is the part of the Blue Nile basin which is under the 

Ethiopian territory (Cherie, 2013).The UBNRB (known as the Abay River in Ethiopia) is 

originated at the Lake Tana (largest fresh water Lake in Ethiopia) at an elevation of 1,800 m 

(Figure 3-1). It leaves the southeastern corner of the Lake, flowing first to the southeast, before 

looping back and flowing west and then turning north-west crossing the Sudan border and 

joining the White Nile at Khartum. In this analysis, the total area of UBNRB at El Diem station, 

excluding the Rahad and Dinder tributaries, which do not flow along the main stem of the Abay 

River, is 172,760 km
2
.  It is located between 7

o
45’ and 13

o
N, and 34

o
30’ and 39

o
45’ E (see 

Figure 3-1). It shares common boundaries with the Tekeze basin to the north, the Awash basin to 

the east and southeast, the Omo-Gibe basin to the south, and the Baro-Akobo basin to the south-

west.  
 

 
Figure 3-1: Location map of the study area 
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The UBNRB has 14 major sub-basins: Anger, Beles, Beshelo, Dabus, Didessa, Fincha, Guder, 

Jemma, Tana, Muger, North Gojam, South Gojam, Weleka and Wembera (Figure 3-1 and Table 

3-5).  
 

 
 

Figure 3-2: Administrative regions of the UBNRB 

The administrative structure of Ethiopia is hierarchical, from regional states, to Zones, Weredas 

and Kebeles. According to the current regional structure, the study area covers some parts of 

three regional states; namely, Amhara regional state, Oromia regional state and Benshangul-

Gumuz regional state Figure 3-2. The basin also contains 22 Zones (9 from Amhara, 8 from 

Oromia and 5 from Benshangul-Gumuz) and 237 Weredas from the three regions (Authority, 

2015). About 46% of the basin area falls within the Amhara region, 31% corresponding for 

Oromiya and for Benshangul-Gumuz 22% (BCEOM, 1998a).  

 

The Abay basin accounts for a major share of the country’s irrigation and hydropower potential, 

however, to date, Ethiopia has utilized very little of the Blue Nile water. Until recently, only 

three relatively minor hydraulic structures have been constructed. The Chara-Chara weir and 

Finchaa dam were built primarily to provide hydropower. They regulate flow from Lake Tana 

and the Finchaa River respectively. In 2010, a new power station on the Beles River, which 

utilizes water diverted from Lake Tana started operation. According to the data collected from 

the Tana-Beles project office, an average 99 m
3
s

-1
 of water is diverted to Tana Beles hydropower 

project (HPP) from Lake Tana reservoir to generate mean annual electricity of 2,230 GWh 
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during the period 2011-2016. Within the Blue Nile basin, the usable installed capacity is 

currently 639.4 MW, 16% of the country’s current 3,814.6 MW. The Tis Abay I and Tis Abay II 

hydropower projects are standing as back up after the operation of Tana Beles hydropower, since 

water is subtracted from Lake Tana to operate the Tana-Beles hydropower project. Agriculture, 

the main occupation of the inhabitants in the basin, is primarily rain-fed with almost no 

irrigation. Currently, the only formal large and medium scale irrigation schemes are the Finchaa 

sugar cane plantation (8,145 ha), which utilizes water after it has passed through the Finchaa 

hydropower plant and the Koga scheme (7,020 ha), which uses water flowing into Lake Tana 

and was constructed in 2010. Apart from the irrigation schemes, modern irrigation is entirely in 

small-scale irrigation. 

3.2 Topography 
 

The topography of the UBNRB has high disproportion and variations  which include high 

mountains, rolling ridges, deep gorges and flat areas (Girma, 2013). The elevations in UBNRB 

range between 483 masl at the El Diem near to the Sudan border, to 4,248 masl in the 

northeastern highlands (Figure 3-3). UBNRB is characterized by the plateau highlands, in the 

central Ethiopian highlands with elevations ranging between 2,000–2,500 masl;  the plateau 

valleys, in the eastern part of the basin which contain the main tributaries of the Abay; and the 

lower plains and hill lands in the western part of the basin close to the Sudanese border (Girma, 

2013).  
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Figure 3-3: Topography of UBNRB, DEM (top) and slope (bottom) 

The highlands extend from 1500 masl up to as high as 4248 masl, with a slope of greater than 

30% in the eastern part (Figure 3-3), causes the rain-bearing air masses to uplift, leading to the 

dominantly plentiful rainfall which provides for both agriculture and hydro-power (BCEOM, 

1998a). The high altitudes (above 1500 masl), of the dominant highland part of the basin (62%) 

have favored human settlement and agriculture by minimizing disease problem such as malaria. 

The deep dissection provides for rapid drops in altitude, providing the head benefiting for 

hydropower development. Conversely, extensive soil erosion due to steep slopes is becoming the 

big challenge and threatening for the country, which bases its economy on agriculture. The 

frequent and deep dissection also creates major barriers to communication, restricts the extension 

of groundwater reservoirs and their storage capacity. The lowlands flatten to 1000 masl to less 

than 500 masl with a slope of less than 5% is located in the western part of the basin, which is 

characterized by high temperature is almost untouched for developments.  

 

3.3  Land cover 
 

Land cover classification is used for many applications like: conservation measures, biodiversity 

assessment, water quality assessment, and for land cover change detection. It has also a great role 

for analyzing the impacts of soil moisture at a certain catchment because it directly affects the 
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infiltration capacity of the soil and the amount of evapotranspiration takes place (Mekonnen, 

2009). BCEOM (1998a) classified the land use/land cover (LULC) based on the food and 

agriculture organization (FAO) classification system for the purpose of basin master plan studies. 

The land cover of the basin essentially follows the divide between highland and lowland. The 

highland area is dominantly covered with cultivation (Figure 3-4), which is a strong indicator of 

the upland soil erosion and problems faced by smallholders in extending cultivation into the 

lowlands. Forest leftovers remain in the south-west, where they are either under active 

conversion to cultivation or as shade for coffee trees, and along the divide line between the 

highlands and lowlands on steep slopes. The other major highland land cover is grassland, which 

occurs primarily in poorly drained depressions, within farmlands and on exposed high altitude 

locations. Similarly, bush and shrub occur as inclusions throughout the landscape, but rarely 

form significant areas. 
 

 

 
 

Figure 3-4: Land use/Land cover map of the UBNRB (BCEOM, 1998a) 

On the map, areas with high conversion to farmland have been classed as ‘dominantly cultivated’ 

whereas those with lower land use for farmland are defined as ‘moderately cultivated’. 

According to the LULC classification by BCEOM (1998a), the three dominant land covers of the 

basin are cultivation, woodland and grassland (Table 3-1). Cultivation is the major land cover of 

the upper Blue Nile basin occupying about 57.8% of the basin. Most of the cultivation occurs in 

the highlands where the elevation is higher than 1500 masl. Woodland, which can be defined as 
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continuous stand of a single storey trees with a crown density of between 20–80% (Teferi et al., 

2013), bush land and shrub land cover 28.4% of the basin, which are dominantly found mainly in 

the western lowlands of the basin. Grassland covers 5.4 % of the basin, it occurs in both the 

lowlands and highlands and inter mixed to farmlands. The low land grasses occupy the lower 

humid valleys of the Beles, Anger, Dabus and Didessa sub-basins. Forestland covers only about 

3.2% of the basin area and it is found mostly in the uplands. Plantations mainly include 

Eucalyptus tree species. These plantations are located around villages or in specialized areas set 

aside for reforestation and income generation used for fuel and construction material. Bamboo 

occupies about 1.8% of the upper Blue Nile basin. It is found in the lower areas of the western 

part of the basin. Afro-alpine vegetation, which is found in areas above 3,200 masl such as 

mount Guna and Choke area, covers only 0.5%. Rock cover accounts about 0.4% of the 

UBNRB. This is mostly consisting of exposed rock on ridges, escarpment sides and the Abay 

gorge as a result of geologic erosion.  

 
Table 3-1: Summary of land cover in the Abbay River Basin (BCEOM, 1998a) 

 

Land cover Area (Km
2
) Area (%) 

Afro alpine 852.3  0.5 

Bamboo 3,120.0  1.8 

Bushland 3,032.2  1.7 

Dominated cultivated 38,948.8  22.3 

Forest 5,527.3  3.2 

Grassland 9,401.4  5.4 

Irrigation land 41.3  0.0 

Moderatly cultivated 61,088.6  34.9 

Perenial crops 139.5  0.1 

Plantations 62.0  0.0 

Rockland 764.5  0.4 

Shrubland 3,187.2  1.8 

State farm 914.3  0.5 

Swamp 604.4  0.3 

Urban 170.5  0.1 

Water body 3,507.5  2.0 

Woodland  43,520.3  24.9 

Total 174,882.1    

 

3.4 Soil 
 

A soil can be defined as a continues natural body which has three spatial and one temporal 

dimension. The soils of the basin reflect the combined effects of the five factors including  

climate; biota; topography; time and geology, where numerous physical, chemical and biological 

processes takes place. These processes are driven by the changes in different kinds of energy. A 

portion of solar energy is converted into heat energy which results in an increase of soil 
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temperature in the soil surface (Mekonnen, 2009). The increase of soil temperature results in 

high evaporation of water inside the soil particle. The seasonal soil moisture pattern in the study 

area follows the pattern of rainfall. In the dry season, the soil moisture content is quite low, while 

the rainy season the soil moisture content increases. Soil classification is the categorization of 

soils into groups at varying levels of generalization according to their physical, mineralogical 

and chemical properties. The soils that covered the basin are classified based on technical 

classifications following the classifications of  FAO (WRB, 2015). 

 

Nitosols (30.8%), Cambisols (28.2%), Fluvisols (15.9%) and Arenosols (13.5%) dominate the 

soil type in the basin (see Table 3-2). The Nitosols are the most common and dominant soil types 

in the UBNRB, which is found in the central highlands, north-west and south- east part of the 

basin. It is deep, well-drained, red tropical soils with at least 30 percent clay, considerably more 

fertile (WRB, 2015). The deep and the stable soil structure of Nitosols permit deep rooting and 

make these soils quite resistant to erosion. The favorable physical properties (good workability, 

good internal drainage and fair water holding properties) complemented by chemical (fertility) 

properties makes the most productive soils of the humid tropics. Nitosols are formed by fine-

textured material weathered from intermediate to basic parent rock (WRB, 2015). Leaching has 

left the soils nutrient poor and acid to very acid. The soil acidity further decreases nutrient 

availability and, in the extreme, can mobilize aluminum and lead to aluminum toxicity (BCEOM, 

1998a).  
 

Cambisols are the second largest dominant soil type in the basin, which are found in the north, 

north-west and northeast highlands of the basin (Table 3-2 and Figure 3-5). Erosion and 

deposition cycles explain the occurrence of Cambisols in mountain regions, and this is evident 

from weak, brownish discoloration and structure formation in its soil profile. It is characterized 

by slight or moderate weathering of parent material. Cambisols are mostly occurred in temperate 

and boreal regions where the parent material of the soil is young and the soil formation is slow. 

Cambisols also occur in dry regions but are less common in the humid tropics and subtropics 

where weathering and soil formation proceed at much faster rates than in temperate regions. The 

reason for the occurrence of the Cambisols in the UBNRB, where the climate is characterized by 

humid sub-tropical region is because of active geologic erosion, where they may occur in 

association with mature tropical soils (Polanco, 2017). Cambisols are considered the most 

productive and suitable for agriculture and are used intensively. 

 

Fluvisols are the third largest soil types that covered the majority of western lowland of the 

UBNRB. Fluvisols occur on all continents and in all climates on level topography along rivers 

and lakes, in deltaic areas, that are flooded by surface water. Arenosols which comprise deep 

sandy soils are covered the deep gorges of the UBNRB following the river flows. Arenosols 

occupy large parts of arid and semi-arid regions in the world, and they characterized by coarse 

texture, accounting for high permeability and low water and nutrient storage capacity and high 

sensitivity to erosion. High percolation losses may make surface irrigation impracticable in areas 

where covered by Arenosols. 
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Figure 3-5: Spatial distributions of UBNRB soil type (BCEOM, 1998a) 

 
Table 3-2: Soil types and distribution in the upper Blue Nile Basin (BCEOM, 1998a) 

 

Soil type Area Area (%) 

Cambic Arenosols      23,449.64  13.5 

Chromic Vertisols        3,897.92  2.2 

Dystric Cambisols        8,077.01  4.6 

Eutric Cambisols      41,088.48  23.6 

Eutric Fluvisols        3,473.49  2.0 

Eutric Nitosols      53,530.89  30.8 

Eutric Regosols        4,871.98  2.8 

Humic Fluvisols      27,663.93  15.9 

Orthic Acrisols        1,230.40  0.7 

Pellic Vertisols        3,187.59  1.8 

Water Bodies        3,571.18  2.1 

Total   174,042.52  100.0 

 

 

 



28 

 

3.5 Climate 
 

The climate of the UBNRB is characterized by high seasonal and inter- annual variations which 

is predominantly influenced by strongly varying altitudes and latitudes. The influence of these 

factors determine a rich variety of local climates, ranging from hot and arid along the Ethiopia-

Sudan border to temperate at the highlands and even humid-cold at the mountain peaks in 

Ethiopia (Tekleab et al., 2014). The basin has three main seasons: a main rainy season, the wet 

summer season, which occurs between June and September (Kiremet), during which 

southwestern winds bring rains from the Atlantic Ocean. Some 70 %–90 % of the total rainfall 

occurs during this season. A dry winter season lasts from October to January (Bega) and the 

short rains of spring which may occur between February and May (BCEOM, 1998a; NMA, 

2013). The short rains, originating from the Indian Ocean, are brought by south-east winds, while 

the heavy rains in the wet season originate mainly from the Atlantic Ocean and are related to 

south-west winds (BCEOM, 1998a). The spatial and temporal distribution of rainfall in Ethiopia 

is governed by the movement of air masses associated with the inter-tropical convergence zone 

(ITCZ),which moves seasonally from the South to the North and back (Conway, 2000). 

  

According to Conway (2000), during the dry season (traditionally known as Bega) the ITCZ lies 

south of Ethiopia and rainfall may not occurs over the Blue Nile region, as it is affected by north-

east continental air, which produces the dry season. From March, the ITCZ returns bringing 

small rains to the southern, and southwestern of the basin. This short period of rainfall is known 

as the Belg. In May, the northward movement of the ITCZ producing a short dry season before 

the main wet season, the Kiremet. Around June, the ITCZ moves further north and the south-

west air stream extends over all highlands of Ethiopia to produce the main rainy season.   

 

3.5.1 Rainfall 

 

The UBNRB is relatively wet and its rainfall has a mono-modal pattern. Conway (2000) reported 

the mean annual rainfall values range between 1148-1757 mm during the period 1900-1998 and 

has a mean annual value of 1421 mm estimated from eleven rainfall gauges. 70 % of the rainfall 

falls between June and September. Awulachew et al. (2008) reported the average annual rainfall 

between 1400 and 1800 mm, ranging from an average of about 1000 mm near the Ethiopia–

Sudan border to 1400 mm in the upper part of the basin, and in excess of 2000 mm in the 

Didessa and Beles sub basins. Abtew et al. (2009) studied the spatial and temporal distribution of 

meteorological parameters in the basin. According to their study, the mean annual rainfall is 

1423 mm for the period of 1960-1990 based on the rainfall statistics of 32 stations. According to 

(Mekonnen and Disse, 2018a), the long term mean annual rainfall values calculated from 15 

rainfall stations located in and around the study area using Thiessen polygon method in the 

period 1984-2011 range from 826.5 mm in the north (Wegel Tena) to 2366 mm in central 

highlands (Enjibara) with mean annual value of 1452 mm (Figure 4-1). The mean seasonal 

rainfall based on the above data showed that about 238, 1065 and 148mm occurred in Belg 

(October–January), Kiremet (June–September) and Bega (February–May) respectively, in which 

about 74% of rainfall is concentrated between June and September (Kiremet season), which has 

strong connection to the influence from the Indian Ocean (Onyutha et al., 2015). The differences 

could be due to the period and length of data analyzed and the failure to consider the influence of 

multi-decadal oscillations.   
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Figure 3-6: Annual rainfall and mean annual Tmax and Tmin for the UBNRB 

 

Rainfall tends to increase with altitude while also being greatly affected by local rain-shadow 

and related effects as a result of the combination of these various a very substantial spatial 

variations in rainfall existed in the basin (BCEOM, 1998a). They identified four areas with 

distinct rainfalls, two with relatively high rainfall and two with relatively low rainfall: 

i) A southeastern area is characterized by relatively high rainfall (1400-2200 mm) and a long wet 

season, which provides good conditions for agriculture.  

ii) A central area also has relatively high rainfall (1400-2200 mm) but there is a more 

pronounced seasonal pattern, typified by a shorter wet season and longer dry season. The area 

provides the main grain surpluses in the basin. 
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iii) An area covering most of the eastern part of the basin, is characterized by relatively low 

annual rainfall (less than 1200 mm) distributed in both rainy seasons according to a bimodal 

pattern. It represents the main drought-prone area in the basin. 

iv) A west and north-west area has relatively low rainfall (less than 1200 mm) falling 

predominantly in the main rainy season, and high average rates of evapotranspiration. 

 

3.5.2 Temperature 

 

Air temperature is a crucial parameter influencing numerous natural processes, for instance the 

plant growth, evaporation rates, wind movement, precipitation patterns and evapotranspiration 

variations (Polanco, 2017). The temperature in the basin is highly influenced with altitude and 

latitude. The climate is generally temperate at higher elevations and tropical at lower elevations 

(Conway, 2000). According to Conway (2000), on average temperatures fall by 5.3 -5.8
o
C for 

every 1000 meters increase in elevation. The maximum average air temperatures in the UBNRB 

occur between March and June, while the lowest average air temperatures occur in December. 

During the summer, between July and September, high temperatures are reduced because of the 

rainfall, and cloudy conditions. Thus, the hottest period is experienced between March and May, 

before the major rainy season (Conway, 2000). Furthermore, Tekleab et al. (2014) reported the 

mean annual temperature ranges from 13
o
C in south eastern parts to 26°C in the lower areas of 

the south western part near to the Ethiopia-Sudan border for the period 1995-2004. The 

traditional Ethiopian classification of climate is based on elevation and recognizes at least three 

zones: the Kolla zone below 1800 meters with mean annual temperatures of 20-28°C; the Woina 

Dega zone between 1800 and 2400 meters with mean annual temperatures of 16-20°C; the Dega 

zone above 2400 meters with mean annual temperatures of 6-16°C. 

 

According to the data analyzed in this dissertation, the long term mean annual maximum 

temperature ranges from 18.1º C at Mehal Meda  to 30.9ºC at Dedesa from years (1984–2011). 

Meanwhile, the mean annual minimum temperature ranges from 6.33ºC at Debre Birhan to 

16.19ºC at Anger Appendix 1. The mean annual minimum and maximum areal temperature of 

the UBNRB calculated from 26 temperature stations using Thiessen polygon method are  

11.37
o
C and 24.67 

o
C respectively Figure 3-6. 

 

3.5.3 Hydrology 
 

The Abay River (UBNR) in Ethiopia starts its journey from Lake Tana as an outflow and 

develops its course in a clockwise spiral. Shortly after leaving the lake, the river reaches the Tis 

Abay falls, which has a drop of 50 m, thereafter flowing in a deep gorge to the Sudan border. 

Deep ravines or canyons in which the Blue Nile and other rivers flow cut the basin. The valley of 

the Blue Nile is 1300 m deep in places, and the course of the river is often difficult to cross 

(Sutcliffe and Parks, 1999).  Majority of the tributaries are found on the left bank, which include 

the Beshilo, Welaka, Jemma, Muger, Guder, Finchaa and Didessa. Right bank tributaries from 

the central highlands tend to be smaller, and include the Abeya, Suha, Chemoga, Birr, Fettam 

and Dura. Two major tributaries join in the lowlands, the Dabus on the left bank and the Beles 

the only major right bank tributary see Figure 4-2.  
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Table 3-3: Mean monthly flows (Mm
3
) at Lake Tana outlet and El Diem (Sutcliffe et al., 1999) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Flow at outlet of Lake Tana  (1920-1933) 

208 124 83 43 28 26 97 503 995 841 519 344 3810 

Flow at El Diem (1912-1960) 

796 468 376 331 621 1648 6651 15647 12859 6889 2684 1385 50355 

Flow at El Diem (1961-1997)  

716 417 348 315 600 1672 6911 14672 11119 5946 2394 1299 46411 

Flow at El Diem (1912-1997) 

762 446 364 324 612 1659 6763 15963 14931 8245 2889 1497 52791 

 

 

Table 3-4: Observed seasonal streamflow of the gauging stations (1971-2010), see their locations on the Figure 

4-2 

 

 
Mean flow (m

3
s

-1
) Mean volume (Bm

3
) Contribution (%) 

Stations 

Area 

(km
2
) Daily LRS DS SRS Annual LRS DS SRS LRS DS SRS 

Eldiem 172,254 1645.1 3627.0 999.7 323.6 51.9 37.9 10.5 3.4 73.1 20.1 6.5 

Kessi 65,784 613.3 1396.0 301.0 147.0 19.3 14.6 3.1 1.5 75.5 16.3 7.9 

Tana 15,154 125.0 147.4 164.6 62.0 3.9 1.5 1.7 0.6 39.1 43.7 16.4 

Gumara 1,394 36.2 86.3 14.9 8.0 1.1 0.9 0.2 0.1 79.0 13.7 7.3 

Gilgel abay 1,664 52.1 128.2 23.4 5.3 1.6 1.3 0.2 0.1 81.6 14.9 3.4 

Rib 1,664 15.5 40.8 4.2 1.8 0.5 0.4 0.0 0.0 87.2 9.0 3.8 

Megech 462 7.8 18.8 3.0 1.8 0.2 0.2 0.0 0.0 79.6 12.9 7.6 

Main beles 3,431 57.0 143.3 27.1 2.5 1.8 1.5 0.3 0.0 83.4 15.8 1.5 

Gilgel beles 675 5.1 10.9 3.1 1.3 0.2 0.1 0.0 0.0 70.6 20.0 8.4 

Koga 244 17.7 41.2 11.0 1.4 0.6 0.4 0.1 0.0 77.2 20.6 2.6 

Andasa 573 5.3 11.5 3.4 1.0 0.2 0.1 0.0 0.0 71.8 21.1 6.2 

Note:LRS; long rainy season, DS; dry season, SRS; short rainy season 

The estimated mean annual discharge of UBNRB at El Diem (Ethio-Sudan boarder) varies 

considerably with the data period considered. Moreover, the flow in the basin is highly seasonal 

following the seasonality of rainfall in the basin. Sutcliffe et al. (1999) has summarized the flow 

records at the main sites Table 3-3. The runoff from Lake Tana is 3.8 km
3
 in the period 1920-

1933, with a range between 5.6 km
3
 in 1929 and 1.9 km

3
 in 1925 and 1930. The peak outflow 

occurs in September and October, with a long low flow recession from January to June, which 

indicated that its seasonal distribution is not greatly damped by the lake storage. The lake 

outflow contributes only some 7.7 % of the flow at El Diem. The long-term mean annual flow at 

El Diem from 1912 -1997 was 48.6 km
3
 with a variation from low annual totals of 20.69 km

3
 in 

1913 and 29.6 km
3
 in 1984, to high 69.7 km

3
 in 1917 and 69.8 km

3
 in 1929. The seasonal 

distribution of flows is very noticeable, with maximum mean monthly flows 15.23 km
3
 in 

August contrasting with 0.32 km
3
 in April Table 3-3. About 84% of the runoff occurs during the 

main rainy season (June - October). The mean annual flow of UBNRB for periods 1912-1960, 
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1961-1997 and 1912-1997 is 50.3, 46.4 and 48.6 km
3
 respectively. Table 3-4 shows the observed 

mean daily and seasonal flows at different flow measuring stations, which are located in the 

UBNRB (see Figure 4-2 for their locations) 
 

Conway (2000) reported that the occurrence of high fluctuation in the flow of UBNRB ranging 

from a 79.1km
3

 in 1909 to a lowest 20.7km
3

 in 1913. Moreover, the recent study by Tekleab et 

al. (2014) indicated that the mean annual flow at El Diem gauging station was 47.48 km
3

 in the 

period 1965-2010, excluding the data gap and the whole 2005 data series.  

 

According to BCEOM (1998a), at El Diem, average annual discharge is 49.4 km
3
, with the low 

flow month (April) equivalent to less than 2.5 % of that for the high flow month (August). Four 

months (July-October) account for 82% of the annual total and the four low flow months 

(February-May) for only 4 %. The largest tributaries, Dabus, Didessa and Tana account for about 

10%, 8.5% and 7% of the total flow at the border respectively.  In general, the runoff generated 

from the UBNRB accounts approximately 40% of Ethiopia’s total surface water resources of 

122km
3
.  

 
Table 3-5: Main drainage sub-basins of UBN Basin and their mean annual runoff 

S.No 

Sub-basin 

Name Area (km
2
) 

Gross 

Runoff 

(mm) S.No 

Sub-

basin 

Name 

Area 

(km
2
) 

Gross 

Runoff 

(mm) 

1 Tana 15,054 514 8 Guder 7,011 537 

2 

North 

Gojam 14,389 486 9 Fincha 4,089 450 

3 Beshlo 13,242 455 10 Didessa 19,630 651 

4 Welaka 6,415 410 11 Anger 7,901 527 

5 Jimma 15,782 422 12 Wonbera 12,957 410 

6 

South 

Gojam 16,762 543 13 Dabus 21,030 466 

7 Muger 8,188 423 14 Beless 14,200 378 

Total Basin Area 176,652           
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Chapter 4 Hydro-Meteorological data analysis  

4.1 General  
 

Understanding hydrological and climate variability both in space and time is essential for 

managing the available water resources for humans and ecosystem needs. The availability of 

reliable time series of rainfall and river flow data are therefore the key assets for the success of 

any climate and LULC changes impact assessment. The completeness of records is a crucial 

component for their utilization. Hydrological and meteorological understanding in the UBNRB is 

poor due to the sparseness of field data (limited operational data collection) poorly distributed 

across the basin and the poor quality measurement (Woldesenbet et al., 2017a). Ground-based 

measurements are either missing or of poor quality for predicting and investigating changes in 

the hydrological system. In UBNRB, the spatial distribution of meteorological stations is poor, 

with the least coverage over remote and non-accessible areas, many stations are non-functioning, 

with significant missing data, and in some cases inefficient quality control systems. Encountering 

missing data in meteorological time series is inevitable because of instrument malfunctions, 

network reinstallation, communication-line breakdown, observation recording errors, absence 

and limited knowledge of observers, and civil war incidents. If data gaps are large, incomplete 

time series may hide the pattern of the data, and they may considerably distort the results of any 

statistical analysis and raise uncertainty in modeling results (Campozano et al., 2014).  

 

The availability of reliable, serially complete sets, and homogenous meteorological data on 

different spatial and temporal scales are vital for climate impact assessment, hydrological 

modeling and analysis, and design of water resource systems in this basin (Woldesenbet et al., 

2017a). The low quality and incompleteness of time series data strongly hinders and effects the 

planning, operation and management of water resources systems, hindering the calibration and 

validation of modeling tools and their use for predicting the hydrological responses under 

changed climate conditions (Adeloye, 1996). Estimations of missing data are therefore vital 

where meteorological stations are scarce and the observed data are influenced by topography. 

Regarding the issue of missing climatological data, it is essential to handle in a careful manner 

using one of the many available optimal infilling the missing data techniques. Woldesenbet et al. 

(2017a) reviewed the previous studies related to water balance for the UBNRB, and conclude 

that all studies overlooked gap filling and/or in homogeneities in climate time series. To 

minimize this data-limitation, huge efforts and different techniques are tried in this study to 

improve the quality and extend the length of available meteorological data.  
 

4.2 Meteorological and hydrological data description  
 

The meteorological data analyzed in this study include rainfall (RF), maximum (Tmax), 

minimum temperatures (Tmin), relative humidity (RH), wind speed (WS), and sunshine hours 

(SH). Although there are many meteorological gauging stations in the study area, most of the 

gauges either have short record periods, or have abundance of missing and erroneous data. 

Among the stations in the UBNRB, 40 rainfall and 35 temperature stations are considered for 

further analysis (see Figure 4-1). The basic characteristics of the meteorological gauging stations 

used are listed in Appendix 1. The data from these stations are collected from the Ethiopian 

National Meteorological Service Agency (ENMSA) in the period 1952-2015. In spite of this 73-
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years long record length, most of the stations suffer from a variety of errors which include 

significant missing records and recording errors, such as, for example, that the minimum 

temperature is greater than the maximum temperature within a particular period. The occurrences 

of civil war, defective and outdated devices were the main causes for the missing data records. 

After screening and rigorous analyses of the weather data, stations were selected for daily 

maximum and minimum temperatures and rainfall time series, depending on the length of record, 

percent of the missing record and purpose of the studies. As a result, only the 15 stations, in 

which rainfall data is relatively more complete, proved to be suitable for trend analysis. Some 10 

stations having complete climate variables, such as Tmax, Tmin, RH, WS, and SH were used as 

input for the SWAT model for analyzing the impacts of combined and isolated effects to the 

changes of climate and LULC (Figure 4-1). All errors, except those due to missing records, such 

as misplaced decimal digits and zero value for missing records are corrected by a careful 

investigation using UBNRB master plan study and by communicating professionals and experts 

from the ENMSA. As indicated in Appendix 1, the percentage of missing daily rainfall ranges 

from 0.4 % to 60.8% while for temperature it ranges from 1.2% to 48.1%.  

 

 

 

Figure 4-1: Locations of study area and meteorological and discharge stations, with the Digital Elevation 

Model (DEM) data as the background. where: 1: Stations used for SWAT model; 2: Stations used for trend 

analysis; 3: Stations used for  basin wide areal rainfall  analysis.  

Similarly, streamflow data for sixty stations were collected from Ministry of water, irrigation and 

energy (MWIE) of Ethiopia as indicated in Figure 4-2 and Appendix 2.  
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Figure 4-2: Sub-basins and flow measuring stations in the UBNRB
  

Where, 1 and 2  from the map denote stations considered for filling the missing records for stations which have records from 

(1971-2010) and (1984-2011) respectively, 3 denotes stations discarded from the analysis 

 

4.3  Methods used for infilling  
 

Hydro-meteorological observations are unique in space and time. If they are not observed at a 

given location and time, the values can only be estimated. Many applications, such as the 

calculation of water balances, calibration of hydrological models require full datasets. Thus, a 

reliable estimation of the missing observations is of great importance. The sparse gauge networks 

of the UBNRB exacerbate the problem. We define infilling as the process of repairing data sets 

where observations are missing due to many reasons.  According to Campozano et al. (2016), the 

infill methods can be grouped in three major classes: (i) the deterministic, (ii) stochastic and (iii) 

artificial intelligence methods. In this study, we resort to both deterministic and stochastic 

methods or approaches for estimating missing precipitation, maximum temperature (Tmax), 

minimum temperature (Tmin) and streamflow datasets. Coefficient of correlation weighting 

(CCW), linear regression (LR), multiple linear regressions (MLR) and the inverse distance 

weighting method (IDW) are grouped under deterministic technique, whereas weather generator 
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(LARS-WG) is among many others of the stochastic methods. For precipitation data, CCW, 

IDW, LARS-WG methods are used for filling the missing data. Linear regression (LR) and 

LARS-WG were tested for infilling the missing data of Tmax and Tmin. For streamflow, missing 

data were fitted using eight different infilling techniques listed in Table 4-1. Let 

X(t)=(X1(t),...,Xi(t),...,Xm(t)) be the vector of observed values at time t. For a set of time steps 

Tk(1), observations are available at location k and for the rest of the time Tk(2) data for location 

k are missing. The purpose of infilling is to provide an estimate        for all t ϵ Tk(2).  
 

Table 4-1: Deterministic infilling techniques with their respective acronym for the missed streamflow data 

Acronym Details 

LR-R Linear regression of single highly correlated station 

LR-ln R As above but using log transformed streamflow 

LR-D Linear regression of single closest station 

LR-ln D As above but using log transformed streamflow 

MLR-R Multiple Linear regression of highly correlated multi/stations 

MLR-ln R As above but using log transformed streamflow 

MLR- D Multiple Linear regression of closest multi-stations 

MLR-ln D As above but using log transformed streamflow 

 

4.3.1 Inverse distance weighting method (IDW) 

 

The inverse distance weighting method is the most commonly used for the estimation of missing 

data in hydrology and geographical sciences (Di Piazza et al., 2011). This method is based on the 

proximity of neighboring stations to the target station. The weighted distance method is given as 

eqn. (4-1): 

 

 
   

   
  

    
 
   

 (4-1) 

 

 

Where dit is the distance between the target station and the ith neighboring station, and N is 

number of neighboring stations. The weight decreases as the distance from the target station 

increases. Greater values of m assign greater influence to values closer to the target station. The 

value of m usually ranges from 1.0 to 6.0, and in this study the most commonly adopted value of 

2 is used. Although the success of IDW method depends on the existence of a positive spatial 

autocorrelation, one problem of the IDW method is the arbitrary selection of time series data 

from neighboring stations (Di Piazza et al., 2011). The selection and number of adjacent stations 

for interpolations are important for the accuracy of interpolated values. As mentioned by 

Woldesenbet et al. (2017a), different authors used different criteria to select neighboring 

stations. Because of the relatively low number of network stations, a geographic distance of 100 

km was considered for most stations when selecting neighboring stations. If no station is located 

within 100 km of the target station, then the search distance is increased until at least two 

suitable stations are reached.  
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4.3.2 Coefficient of correlation weighting method (CCW) 

 

The weighting factor in this method is based on correlation coefficients instead of distance. The 

weighting factor is computed as eqn.(4-2): 

 

    
    

    
 
   

 

 
(4-2) 

 

 

where rit is the correlation coefficient of daily time series data between the target station and ith 

neighboring station, N is number of neighboring stations, and Wi is the weighting factor. 
 

Neighboring stations were selected for the target station with Pearson's correlation coefficient R
2
 

≥ 0.25 for daily rainfall time series. A minimum of three and a maximum of four neighboring 

stations were selected in this study. When the concurrent records of neighboring stations were 

not able to fill the missing data completely, the next neighboring station within 100 km radius 

and R
2
 greater than 0.25 were selected and used to fill the gaps in the climate dataset.  

 

4.3.3 Linear (LR) and multiple linear regression technique (MLR)  

 

LR is a method used for estimating climatological data at stations with other stations, which has 

similar conditions. In statistics, LR is an approach for modeling the relationship between scalar 

dependent variable px and one independent parameter denoted pi. In a method the similar station 

is selected by either based on the closets distance (D; lnD) or the higher Pearson correlation 

coefficient (R
2
;lnR

2
). A linear fit between the target station and the selected station is calculated 

using eqn. (4-3) to obtain the parameters a0 and b. 

 

                   (4-3) 
 
 

MLR is a statistical method for estimating the relationship between a dependent variable and two 

or more independent, or predictor variables instead of a single variable. In essence, the additional 

predictors are used to explain the variation in the response not explained by a simple linear 

regression. It identifies the best combination of independent variables to predict the dependent 

variable. Eischeid et al. (1995) highlighted many advantages and robustness of this method in 

data interpolation and estimation of missing data. The missing data (Px) is estimated from eqn. 

(4-4).  

 

 
                  

 

   

 (4-4) 

 

 

Where Px is the dependent variable at target station x. a0 is regression constant, ai, is the 

regression coefficient for station i. pi is predictor or independent variable for station i. n is the 

number of stations. The distance (D, lnD) and the Pearson correlation coefficient (R
2
, lnR

2
) 
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criteria are also used to select stations. A maximum number of four stations (n = 4) were used for 

the infilling of missed data at target station. 
 

4.3.4 Weather generator (LARS-WG) 
 

LARS-WG is a stochastic weather generator, which can be used for the simulation of weather 

data at a single station under both current and future climate conditions. These data are in the 

form of daily time series for a group of climate variables, namely precipitation, maximum 

temperature and minimum temperature, and solar radiation (Chen et al., 2013; Semenov et al., 

1997). LARS-WG uses a semi-empirical distribution (SED) that is defined as the cumulative 

probability distribution function (CDF) to approximate probability distributions of dry and wet 

series, daily precipitation, minimum temperatures and maximum temperatures. The observed 

daily weather data at a given site is used to determine a set of parameters for probability 

distributions of weather variables. These parameters are used to generate a synthetic weather 

time series of arbitrary length by randomly selecting values from the appropriate distributions, 

with the same statistical characteristics as the original observed data but differing on a day-to-

day basis. It can also be used to synthesize and fill in missing values daily climatic variables such 

as precipitation, temperature and solar radiation (Cherie, 2013). Detailed description and steps of 

the approach are described in Chapter 6.  
 

 

4.3.5 Goodness of Fit Criteria 

To establish our confidence in the outputs of such methods or techniques and justifying their 

continuing use, assessing model performance with quantitative tools is found to be useful, indeed 

most often necessary. For the performance assessment of the infilling methods 10% of the data 

for all stations in the time series was sampled at random and considered for cross validation with 

in filled values (Campozano et al., 2016). This means that for a selected station 10% of observed 

values was treated as missing and was estimated based on the other 90% of observations. 

Quantitative testing or level of goodness of fit evaluation involves the calculation of suitable 

numerical metrics to characterize model performance. The use of metric values also minimizes 

potential inconsistencies arising from human judgment. The level of goodness of fit evaluation is 

mainly done in two different ways:  

 

1. Visually inspecting and comparing the simulated and the observed variables. The most 

fundamental approach for assessing model performance in terms of behaviors is through visual 

inspection of the graphs between the simulated and observed data. In this approach, a modeler 

may formulate subjective assessments of the model behavior that are generally related to the 

systematic (e.g., over- or under prediction) and dynamic (e.g., timing, rising limb, falling limb, 

and base flow) behavior of the model. 

 

2. Calculating objective functions. That measure the level of agreement between observed and 

the model output, which requires the use of a mathematical estimate of the error between the 

simulated and observed i.e. objective or efficiency criteria (Booij et al., 2007). Usually, two 

different objective functions are considered, which can measure the goodness for the water 

balance and overall goodness agreement of shape of the hydrograph. In this study, we applied 
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different objective functions for measuring quantitative performance as suggested by Bennett et 

al. (2013) 

 

Relative error and residual methods 
 

Residual methods that calculate the difference between observed and modeled data points are the 

most widely used methods for model evaluation. Of the many possible numerical calculations, 

the most common are bias, mean absolute error (MAE), mean square error (MSE) and root mean 

square error (RMSE). Bias eqn.(4-8) is simply the mean of the residuals, indicating whether the 

model tends to under- or over-estimate the measured data, with an ideal value zero. However, 

positive and negative errors tend to cancel each other out. To prevent such cancellation, the MSE 

eqn.(4-6) criterion squares the residuals before calculating the mean, making all contributions 

positive and penalizing greater errors more heavily. The RMSE eqn.(4-7) takes the square root of 

the MSE to express the error metric in the same units as the original data. MAE eqn.(4-5) is 

similar to RMSE except absolute value is used instead. The MSE, RMSE and MAE can vary 

between 0 and  but performs best when a value of 0 is generated when no difference between 

simulated and observed data occurs. Similar to bias measurements, a low value does not mean 

low errors, just balanced errors. However, at the same time the distribution of the observed and 

simulated data throughout the modeling period can be completely wrong. Therefore, this 

objective function should always be used in combination with another objective function that 

considers the overall shape agreement.  
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     (4-8) 

 

 

Preserving the data pattern 
 

To test the ability of the model in preserving the pattern of data, performance metrics must 

include consideration of how data points and how their errors relate to each other. To test the 

ability of the model to preserve the pattern of data, performance metrics must include 

consideration of how data points and how their errors relate to each other. A simple quantitative 
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and graphical measure is the cross-correlation between measured and calculated values. It 

measures how the similarity of the two series varies with delay along one dimension (usually 

time). Perhaps the best-known performance metrics in this category are the correlation 

coefficient and Nash-Sutcliffe coefficient.  

 

Correlation coefficient: It is used to indicate how variation of one variable is explained by a 

second variable, but it is important to remember it does not indicate causal dependence. 

Coefficient of determination (R
2
) is a commonly used to measure the efficiency of a model, but 

only varies between 0 and 1 eqn.(4-9). Zero indicates that the model explains none of the 

variability of the response data around its mean while 1 indicates that the model explains all the 

variability of the response data around its mean. In general, the higher the R
2
, the better the 

model fits your data. However, R
2
 cannot determine whether the coefficient estimates and 

predictions are biased. A perfect model would result in an R
2
 equal to 1. However, normally the 

R
2
 ends up somewhere between 0.8 and 0.95 when there are good quality input data 

 

 
   

                   
 
    

 

         
  

            
  

   

 (4-9) 

 

 

Nash-Sutcliffe coefficient: It measures the efficiency of the model by relating the goodness of fit 

of the model to the variance of the measured data. It can range from - to 1 eqn.(4-10). An 

efficiency of 1 corresponds to a perfect match of modeled discharge to the observed data. An 

efficiency of 0 indicates that the model predictions are as accurate as the mean of the observed 

data, where as an efficiency less than 0 (-<NS<0) occurs when the observed mean is a better 

predictor than the model. Besides, due to frequent use of this coefficient, it is known that when 

values between 0.6 and 0.8 are generated, the model performs reasonably. Values between 0.8 

and 0.9 tells that the model performs well and between 0.9 and 1 indicates that the model 

performs extremely well (Wale, 2008).  

 

 
      

       
  

   

         
  

   

 (4-10) 

 

In the above equations, Xi and Yi are i
th

 observation and simulated data by the model, 

respectively. µx and µy are the average of all data of Xi and Yi in the study population and n is 

the number of all samples to be tested. Furthermore, graphical comparisons of the simulated and 

observed data were used.  

 

The statistical performance indices such as correlation coefficient (R
2
), Nash Sutcliffe coefficient 

(NSE), mean absolute error (MAE), root mean square error (RMSE) and percent bias (% bias) 

eqn. (4-5) to eqn.(4-10) between observed and estimated values are used to evaluate the 

performance of the candidate methods for filling the missing data of the target stations. Equally 

weighted statistical metrics are applied to compare the performances of selected methods at 

target stations and to establish the ranking. A score was assigned to each candidate method 

according to the individual metrics. For example, the candidate achieving the smallest values of 

RMSE and MAE, or % bias and highest values of NSE and R
2
 received score 1. The final score 
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is obtained by summing up the score pertaining to each candidate approach at each station. The 

method with the smallest score is the best. While filling the missing data, uncertainty is expected 

due to low station density, poor correlations, and the large number of missing records.  

 

4.4 Results and discussions of infilling missing data 
 

Evaluation of infilling methods for precipitation and temperature data 
 

Daily precipitation data for 24 stations, maximum and minimum temperature for 28 and 15 

weather stations respectively, for the period January 1984 to December 2010 were used for this 

study. For the daily rainfall data, three infilling methods were applied. For daily temperature 

data, two infilling methods were applied. The infilling methods were evaluated on the basis of 

their estimation errors and preserving the pattern of the observed data. For each station,  R
2
, 

NSE, RMSE, MAE and percentage bias, between observed and estimated values of the climate 

variables were calculated. The ranking procedure is carried out based on the aforementioned 

performance indicators and candidate approaches for each target station for daily time series 

data. The values of performance indicators of the applied methods at Addis Ababa station 

(randomly chosen) for daily rainfall, Tmax and Tmin time series data are shown in Table 4-2. 

The result show that R
2
, RMSE and MAE value between observed and in filled daily rainfall 

using the CCW approach exhibits better performance than other methods at Addis Ababa station. 

For the Tmax and Tmin at Addis Ababa station, LR has a slightly smaller value for RMSE, MAE 

and percentage bias, and higher R
2
 and NSE than LARS-WG. The outcome of the ranking 

process from all target stations is summarized in Table 4-3 , showing the total scores for different 

candidate approaches for daily time series data of rainfall, Tmax and Tmin. Considering the daily 

time series for the rainfall, the total score is lowest for CCW and highest for LARS-WG. For 

maximum temperature and minimum temperature, LR has low score whereas LARS-WG has the 

highest score. 

 

 
Table 4-2: Performance indices value, score and ranking for daily rainfall, Tmax and Tmin at  Addis Ababa 

station 

 
Variable 

Infilling 

method 

Values Score 

Total 

score Rank 

R
2
 

R
M

S
E

 

M
A

E
 

N
S

E
 

%
 b

ia
s 

R
2
 

R
M

S
E

 

M
A

E
 

N
S

E
 

%
 b

ia
s 

 

 

Rainfall 

LARS-WG 0.02 7.85 3.41 

-

0.76 -0.18 3 3 3 3 1 13 3 

IDW 0.14 5.41 2.46 

-

0.05 10.35 2 1 2 2 2 9 2 

CCW 0.16 5.46 2.41 0.04 11.86 1 2 1 1 3 8 1 

Tmax LR 0.53 3.97 1.80 0.97 -2.56 1 1 1 1 2 6 1 

LARS-WG 0.20 4.38 2.29 0.96 0.12 2 2 2 2 1 9 2 

Tmin LR 0.10 2.74 2.02 0.91 0.77 2 1 1 1 2 7 1 

LARS-WG 0.22 3.01 2.23 0.90 0.18 1 2 2 2 1 8 2 
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Table 4-3: Total score of the candidate methods over the study period for  each target station for daily time 

series data of rainfall, Tmax and Tmin 

 

Rainfall Tmax Tmin 

Station 

LARS-

WG IDW CCW  Station LR 

LARS-

WG  Station LR 

RARS-

WG 

Abaysheleko 14 9 7 Abaysheleko 6 9 AddisAbaba 7 8 

Addis Ababa 13 10 7 AddisAbaba 7 8 Adet 5 10 

Adet 13 9 8 Adet 6 9 Ayehu 5 10 

Alemketema 13 7 10 AlemKetema 6 9 Bahirdar 6 9 

Angergutten 9 12 9 Angergutten 6 9 Bedele 6 9 

Assosa 13 6 11 Arjo 6 9 Chagnie 5 10 

BahirDar 13 10 7 Assosa 5 7 Kombolicha 5 10 

Bedele 13 8 9 Ayehu 6 9 Dangila 6 9 

Kombolicha 13 10 7 Ayira 6 9 Debre Birhan 6 9 

Dangila 13 11 6 Bahirdar 9 6 Debre Markos 5 10 

Debre Berhan 13 11 6 Bedele 5 6 Fitche 6 9 

Debre Tabor 13 11 6 Chagnie 6 9 Gondar 6 9 

Dedessa 13 9 8 Kombolicha 6 9 Nedjo 5 10 

Dmarkos 13 10 7 Dangila 6 9 Nekemit 5 10 

Fiche 13 9 8 Debre Birhan 6 9 Yege 5 10 

Gimijabet  13 10 7 Debre Markos 6 9 Total score 83 142 

Gidaya 13 9 8 Debre Tabor 5 10 Rank 1 2 

Gondar 13 10 7 Dedesa 6 9    

Motta 13 7 10 Fitche 6 9    

Mekaneselam 13 11 6 Gondar 6 9    

Nedjo 13 8 9 Mekaneselam 6 9    

Nekemit 13 10 7 Mmeda 5 9    

Shambu 13 10 7 Motta 9 5    

Yetnora 13 11 6 Nedjo 6 9    

Total score 309 228 183 Nekemit 6 9    

Rank 3 2 1 Shambo 6 9    

    

Yetnora 7 8    

    

Zege 6 9    

    

 Total score 172 239    

    

Rank 1 2    

 

 

Table 4-4 summarized the outcome of the rankings and the total scores for different performance 

indices and candidate approaches. Considering the R
2 

performance indicator for the rainfall 

dataset, the total score is the lowest for CCW and the highest for LARS-WG. When RMSE is 

considered as a performance indicator at target stations, again CCW score is the lowest and 

LARS-WG is the highest for the rainfall. Similarly, considering MAE as a performance indicator 

for rainfall IDW shows the lowest score, LARS-WG portrays the highest score. LARS-WG 

scores lowest value only when the percentage bias is considered as performance index for the 

daily rainfall. For Tmax and Tmin, LR has comparably low scores whereas LARS-WG has the 

highest score, when R
2
, RMSE, MAE, NSE and percentage bias are considered as a performance 
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indicator at target stations.  In general, LARS-WG shows the highest score in all performance 

indices for Tmax and Tmin, when summing up the scores of the indices and, hence, less 

performance for filling gaps in the daily Tmax and Tmin datasets as compared to LR.  

 
 

Table 4-4: Total score for each performance indices summed up from all stations for rainfall, Tmax and Tmin 

using different methods  

 

Performance 

indices Rainfall Tmax Tmin 

 

LARS-WG IDW CCW LR LARS-WG LR LARS-WG 

R
2
 72 44 28 29 54 16 29 

% bias 70 42 32 31 51 15 30 

RMSE 70 42 32 30 52 15 30 

MAE 72 41 31 31 52 15 30 

NSE 25 59 60 51 30 22 23 

Total score 309 228 183 172 239 83 142 

Rank 3 2 1 1 2 1 2 

 

 
 

 

RainL on the figure denotes for lowest R
2
 value of rainfall, RainH denotes for highest R2 value of rainfall, TmaxL 

denotes lowest R2 for Tmax, TmaxHdenotes highest R
2
 for Tmax, TminL denotes lowest R2 for Tmin and TminH 

denotes for highest R
2
 for Tmin. 

 

Figure 4-3: Highest and lowest value of R
2
 between target and neighboring stations for daily rainfall, 

maximum and minimum temperatures at the target stations.  

Figure 4-4, Figure 4-5 and Figure 4-6 present the R
2
, RMSE and MAE values calculated for 

daily rainfall between the observed and estimated at all rainfall stations respectively. The result 

from Figure 4-4 revealed that CCW method outperforms in 20 rainfall stations from 24 (i.e. 83.3 
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%), while IDW outperforms at 4 stations (16.7%) when considering the R
2
 as performance index. 

When RMSE is considered as a performance index at target stations,  again CCW obtained 

lowest RMSE values at 16 rainfall target stations from 24 (i.e. 66.7 %), IDW obtained less 

RMSE at 7 stations (29.2%) and LARS-WG obtained less error at 1 station (4.2%) as it is shown 

in (Figure 4-5). Similarly, considering MAE as performance index at target stations, the result 

from Figure 4-6 depict a similar pattern as RMSE, in which CCW outperforms 66.7%, IDW 

29.2% and LARS-WG 4.2%. However, LARS-WG outperforms at 17 target rainfall stations 

(95.8%) and IDW 29.2%, when considering NSE as a performance index. In summary the 

analysis reveal that based on the total score and individual R
2
, RMSE and MAE values, for all 

stations, CCW is the best performing method for infilling the daily rainfall in the UBNRB. In 

case one single method should be used for the daily rainfall analysis, the CCW would be most 

advisable, because the weighting considers Pearson's correlation, which is most appropriate for 

study regions with high spatial variability.  

 

For maximum temperature, the performance comparison of the infilling methods for the 

performance indices of (R
2
, RMSE and MAE) are shown in Figure 4-7, Figure 4-8 and Figure 

4-9 respectively for all target stations. The result analysis revealed that LR method obtained 

higher R
2
 and less error (RMSE and MAE) at more than 90 % of the stations, when observed and 

estimated daily Tmax are compared. This high performance of LR could be due to the existence 

of high correlation between the target stations and neighboring stations. Hence, LR method can 

be proposed the best infilling method for daily maximum and minimum temperature data at 

target stations in the UBNRB. According to Woldesenbet et al. (2017a), LARS-WG weather 

generator infilling method is suitable for short gaps; however, the percentage of missing records 

for the target stations in the study area has longer gaps. As a result, the climate variability may 

not be captured if gap filling is performed using weather generators.  

 

 
 

Figure 4-4: Correlation of observed and infilled daily rainfall using different filling methods  
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Figure 4-5: RMSE value of the observed and infilled daily rainfall using different filling methods  

 

 
 
Figure 4-6: MAE value of the observed and infilled daily rainfall using different filling methods  

 

 
 
Figure 4-7: Correlation coefficient of the observed and infilled daily Tmax using different filling methods  
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Figure 4-8: RMSE value of the observed and infilled daily Tmax using different filling methods  

 

 
 
Figure 4-9: MAE value of the observed and infilled daily Tmax using different filling methods  

In Ethiopia, the weather station density is less than the minimum station density (i.e. 250 km
2
 per 

non-recording station for mountainous areas) recommended by the World Meteorological 

Organization (WMO); moreover, the distribution of the available stations is very uneven (WMO, 

2008). In the study area, most of the stations are concentrated in the central highlands with very 

few stations present in the western lowlands (see Figure 4-1). While selecting neighboring 

stations, maximum temperature showed higher correlation between stations than minimum 

temperature and rainfall did (see Figure 4-3). The rainfall shows the least correlation between 

target stations and neighboring stations. Woldesenbet et al. (2017a) also reported that the CCW 

method performs better than other traditional gap-filling methods they considered in the same 

study area. As the success of IDW is based on simple distance between target and neighboring 

stations rather than correlation between stations (Teegavarapu and Chandramouli, 2005), its 

performance is lower than that of CCW for rainfall. Linear regression method is not used as 

infilling method for daily rainfall due to the low correlation exists between the target and 

neighboring stations (Figure 4-3), and also it does not satisfy the basic assumptions for linear 

regression (Woldesenbet et al., 2017a).  

 

Long-term, serially complete climate time series are critical in many meteorological and 

hydrological research applications, including for understanding climate variability and trends, 

planning and managing the water resources, formulating appropriate policies to increase 

production and productivity and reduce poverty. Hence, the present serially completed, quality-
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controlled rainfall, and temperature dataset in the UBNRB could be used for the aforementioned 

purposes. The low correlation between the observed and the in filled daily rainfall (Figure 4-4) as 

compared to the correlation between the observed and in filled daily Tmax (Figure 4-7) might be 

due to high spatial and temporal variability of rainfall in the study area.  

 
Evaluation of infilling methods for streamflow data 

 
Table 4-5 presents the values of performance indices between the observed and in filled daily 

streamflow and score of candidate methods at El Diem station. The result analysis shows that 

LR-lnD method outperforms than the others at El Diem station to fill the missing streamflow 

data, whereas LR-D performs least. The summary of total score and ranking of the methods 

applied for infilling the missed streamflow data at four stations which have long time record and 

better quality data is shown in Table 4-6. The result revealed that LR-R
2
 method has scored the 

highest score both at Kessi and Gilgel Abay stations while MLR-R
2
 method score highest at 

Gumara station. However, the linear or multiple linear regression method using geometrical 

distance as criteria for selecting the neighbor station gives poor results. This indicates that the 

presence of high spatial variability of streamflow in the UBNRB. 

 
Table 4-5: Performance evaluation of the infilling the missed flow data methods at El Diem station 

 
Performance 

indices Observed 
LR-

D LR-R
2 

LR-

lnD 
LR-

lnR
2 

MLR-

D 
MLR-

R
2 

MLR-

lnD 
MLR-

lnR
2 

Mean (m
3
s

-1
) 1795 1808 1865 1275 1639 1518 1595 1170 1064 

R
2   0.36 0.61 0.46 0.72 0.39 0.71 0.50 0.42 

RMSE (m
3
s

-1
)   1641 1281 1505 1088 1598 1119 1440 1559 

MAE (m
3
s

-1
)   1254 822 996 625 1062 690 801 967 

NSE   0.35 0.60 0.39 0.71 0.37 0.69 0.41 0.29 

Score 

R
2   8 3 5 1 7 2 4 6 

RMSE    8 3 5 1 7 2 4 6 

MAE    8 4 6 1 7 2 3 5 

NSE   7 3 5 1 6 2 4 8 

Total score   31 13 21 4 27 8 15 25 

Rank   8 3 5 1 7 2 4 6 

 

 

 

 



1 
Based on: Mekonnen, D.F., Duan, Z., Rientjes, T., Disse, M.: Analysis of combined and 

isolated effects of land-use and land-cover changes and climate change on the upper Blue Nile 

River basin's streamflow. Hydrology and Earth System Sciences, 22(12), 6187-6207, 2018  48 
 

 
Table 4-6: Summary of total score and ranking for the methods for the four main streamflow stations 

 

Station 

LR-

D LR-R
2
 

LR-

lnD 

LR-

lnR
2
 

MLR-

D 

MLR-

R
2
 

MLR-

lnD 

MLR-

lnR
2
 

El Diem 31 13 21 4 27 8 15 25 

Kessi 8 4 16 12 27 29 27 20 

Gilgel 

Abay 32 8 16 17 9 13 22 25 

Gumara 15 18 13 25 7 5 32 27 

Rank 

El Diem 8 3 5 1 7 2 4 6 

Kessi 2 1 4 3 6 8 6 5 

Gilgel 

Abay 8 1 4 5 2 3 6 7 

Gumara 4 5 3 6 2 1 8 7 

 

 

4.5 Hydro-climatic trend test and change point detection1  
 

Trend test 

 

Investigating the presence of trends in hydro-meteorological variables is important for existing 

and future water resources developments in the Nile basin. The existence of trends in the time 

series of rainfall, temperature, and streamflow of the UBNRB were evaluated. Daily streamflow 

data sets based on manual water level measurements for four gauging stations in the UBNRB for 

the period (1971-2011) were collected from the MWIE. Similarly, daily precipitation data for 15 

stations and temperature data for 10 stations were obtained from the ENMA. The areal rainfall 

for the selected sub-basins (UBNRB, Kessi sub-basin, Gilgel Abay sub-basin and Gumara sub-

basin) was calculated using the well-known Thiessen Polygon method from the stations located 

inside and around the sub-basins. Similarly, the daily, monthly and annual streamflow data from 

1971 to 2010 at respective four gauging stations (El Diem, Kessi, Gilgel Abay and Gumara) 

were used to assess the trends of flow. The selection of study sub-basins and gauging stations 

was based on availability of data, catchment size (representing small, medium and large) and 

short missing records. The location of sub-basins, gauging stations, rainfall and temperature 

stations is shown in Figure 4-10. Streamflow was generated from the staff gauge readings of 

water level recorded twice a day at (06:00 a.m. and 06:00 p.m.). Rating curve equations were 

developed and regularly updated from flows measured using current meters three or four times 

per year at each gauging station.  
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The non-parametric Mann-Kendal (MK) test originally proposed by Mann (1945) and later 

reformulated by Kendall (1975) statistic is chosen to detect trends for rainfall, Tmax, Tmin and 

streamflow time series data, as it is widely used for water resource planning, design, and 

management (Yue and Wang, 2004). Its advantage over parametric tests such as t test is that the 

MK test is more suitable for non-normally distributed and missing data, which are frequently 

encountered in hydrological time series (Yue et al., 2004). MK test is nonparametric approaches 

and does not require any assumptions about the distribution of the variables and effective when 

the sample data are serially independent. The advantage of the nonparametric tests over the 

parametric tests, such as t-test, is that the nonparametric tests are more suitable for non normally 

distributed, censored, missing data, which are frequently encountered in hydrological time series 

(Yue et al., 2004).  

 

 

 
 

Figure 4-10: Location map of the study area, gauging stations, rainfall and temperature stations. The number 

(1) in the map is represnting stations, which haverecords of both rainfall and temperature variables and (2) 

representing the stations, which have rainfall data only. 
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However, the existence of positive serial correlation in time series data affects the MK test 

results. If serial correlation exists in time series data, the MK test rejects the null hypothesis of 

no trend detection more often than specified by the significance level (Von Storch, 1995). Von 

Storch (1995) proposed a prewhitening technique to limit the influence of serial correlation on 

the MK test. The effective or equivalent sample size (ESS) method developed by Hamed and 

Rao (1998) has also been proposed to modify the variance. However, the study by Yue et al. 

(2002) reported that von Storch’s prewhitening is effective only when no trend exists, and the 

ESS approach’s rejection rate after modifying the variance is much higher than the actual (Yue et 

al., 2004). Yue et al. (2002) then proposed trend free prewhitening (TFPW) technique prior to 

applying the MK trend test in order to minimize its limitation. This study therefore employed 

TFPW to remove the serial correlation and to detect a trend in time data series with significant 

serial correlation. Further details can be found in (Yue et al., 2002). All the trend results in this 

study have been evaluated at the 5% level of significance to ensure the effective exploration of 

the trend.  

 

MK calculates Kendall’s statistics (S), the sum of difference between data points and a measure 

of associations between two samples (Kendall’s tau) to indicate increasing or decreasing trend 

using eqn.(4-11). Positive values of those parameters indicate a general tendency towards an 

increasing trend while negative values show a decreasing trend.  Furthermore, a two-tailed 

probability (p-value) was computed and compared with the user defined significance level (in 

this study 5%) in order to identify the trend of variables. When the calculated p-value is greater 

than the defined significance level (5%), then it indicates acceptance of null hypothesis (no 

trend) and the reverse is true.  

 

 
          

 

     

   

   

      (4-11) 

 

 

If S is a positive number, it indicates, observations obtained later in time tend to be larger than 

observations made earlier. If S is a negative number, then observations made later in time tend to 

be smaller than observations made earlier. Where n is the data record length and kj and kx are 

data sequential values and the function sgn(x) the sign of all n (n - 1)/2 possible differences of Kj 

- Kx where j > x is defined as 

 

 
        

        
         
         

  (4-12) 

 

 

(Mann, 1945) and (Kendall, 1975) have documented that when n > 8, the statistic S is 

approximately normally distributed with the mean and the variance as follows: 

 

The mean of S is E(s) =0, and the variance   2 
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  (4-13) 

 

 

Where p is the number of tied groups in the data set and tj is the number of data points in the j
th

 

tied group. The statistic S is approximately normally distributed provided that the following Z 

transformation is employed 

 

 

  

 
 
 

 
 
   

 
       

        
   

 
         

 
 

 
 

 (4-14) 

 

A positive (negative) value of Z indicates that the data tend to increase (decrease) with time. If 

the computed value of |Z| > Z1-(α/2), the null hypothesis (H0) is rejected at α level of significance 

in a two-sided test. In this analysis, the null hypothesis was tested at 95% confidence level. 

 

The statistic S is closely related to Kendall's   as given by 

 

   
 

 
  (4-15) 

 

Where  

 

 

   
 

 
       

 

 
         

 

   

 

 
  

 
 

 
       

 
  

 (4-16) 

 

Time series homogeneity or change-point detection (Pettitt's test) 

 

The Pettitt test is a non-parametric test that requires no assumption about the distribution of the 

data and is used to identify if there is a change point in the data series (Pettitt, 1979). The Pettittt 

test has been widely applied to detect changes in the observed climatic as well as observed 

hydrological time series (Salarijazi et al., 2012). This method detects one unknown change point 

by considering a sequence of random variables Xt=X 1, X 2, …,XN, XN+1,..., XT that may have a 

change point at N.  If Xt for t = 1, 2,..., N has a common distribution function F 1(x) and Xt for 

t = N + 1, …, T has a common distribution function F2(x), where, F1(x) ≠ F2(x). The null 

hypothesis (H0, no change, or N = T) is tested against the alternative hypothesis (Ha, change, or 

1 < N < T) using the non-parametric statistic: The non-parametric statistic is computed as 

follows: 

 

The first step is to compute XN statistic using eqn.(4-17)- eqn.(4-20). 
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              (4-17) 

 

The next step is to define the statistical change point test (SCP) as follows: 

 

 
             

 

     

 

   

     (4-18) 

 

The change-point of the series is located at XN, if the statistic is significant. XN+ for downward 

shift and KN- for upward shift (Kahya and Kalaycı, 2004). The confidence level associated with 

KN+ or KN− is determined approximately by: 

 

 

         
    

 

     
  (4-19) 

 

When p is smaller than the specific significance level, e.g. 0.05 in this study, the null hypothesis 

is rejected. The time, N, when XN occurs is the change point time. If a significant change point 

exists, the time series is divided into two parts at the location of the change point, and the 

approximate significance probability for the change point is 1– p. 

OR 

When UN,T  attains maximum value of K in a series, then a change point will occur in the series. 

The critical value is obtained by: 

 

 

        
       

 
  

 
  

 (4-20) 

 

Where T is number of observations and α is level of significance, which determines the critical 

value. 

 

Sen’s slope estimator 

The trend magnitude is estimated using a non-parametric median-based slope estimator proposed 

by (Sen, 1968), as it is not greatly affected by gross data errors or outliers and can be computed 

when data are missing. The slope estimation is given by eqn. (4-21). 

 

          
     

   
   for all k < j, (4-21) 

 

Where xj and xk are the sequential data values and n is the number of the recorded data. 1 < k < j 

< n, and is considered as the median of all possible combinations of pairs for the whole data set.  

A positive value of β indicates an upward (increasing) trend, and a negative value indicates a 

downward (decreasing) trend in the time series. All MK trend tests, Pettittt change-point 

detections, and Sen’s slope analyses were conducted using the XLSTAT add-in tool from Excel 

(https://www.xlstat.com). 
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4.6 Results and discussion of trend and change point detection analysis   
 

4.6.1 Rainfall  
 

The summary results of the MK trend test for the rainfall recorded at the 15 selected stations 

located in and around the UBNRB revealed mixed trends (increasing, decreasing, and no change) 

as shown in the appendices from Appendix 3 to Appendix 5. For daily time series, the computed 

probability values (p-values) for seven stations was greater, although for eight stations it was 

less, than the selected significance level (α = 5 %). This means that no statistically significant 

trend existed in seven stations, but a monotonic trend occurred in the remaining eight. Positive 

trends developed only at six stations, four of which were concentrated in the northern and central 

highlands (Bahir Dar, Dangila, Debre Markos, and Gimijabet). The other two stations, Assosa 

and Angergutten, are located in the southwestern and southern lowlands. The remained two 

stations, Alem Ketema and Nedjo, which are located in the east and south-west of the UBNRB, 

respectively, showed a decreasing trend, see Figure 4-10. On a monthly basis, the MK trend test 

result showed that no trend existed in 11 stations, while statistically non-significant increasing 

trends exist in 3 stations (Dangila, Gimijabet, and Shambu) and a decreasing trend exists in Alem 

Ketema station. On an annual timescale, MK trend test could not find any trend in 11 stations, 

but did exhibit a trend in 4 stations. The annual total rainfall of Dangila and Shambu stations 

showed statistically non-significant increasing trend, while Gimijabet and Alem Ketema showed 

statistically significant positive trends and non-significant decreasing trends, respectively.  

 

The results from Pettitt test reveal that for the majority of the stations statistically significant 

upward shift have been detected for daily rainfall (Appendix 3), 11 stations showed upward shift, 

3 stations downward shift and 1 station does not exhibit any change. On monthly total rainfall 

(Appendix 4), none of the 15 stations has shown change points, whereas, for the annual total 

rainfall (Appendix 5), 3 stations exhibit up ward shift, 1 station down ward shift and 11 stations 

did not exhibit any shift during the study period. The change points occurred for different 

stations are different. 

 

The basin and sub-basin wide rainfall trend and change point detection analysis was again 

carried out on daily, monthly, seasonal, and annual timescales using the MK and Pettittt tests. 

We applied a widely used spatial interpolation technique, the Thiessen polygon method, to 

calculate basin and sub-basin wide rainfall series from station data. A summary results of 

investigated rainfall trend and change point tests for 4 sub-basins including UBNRB are 

provided in Table 4-7, Figure 4-11 and Figure 4-12. The MK test showed statistically significant 

increasing trends for annual, monthly, and long rainy-season rainfall series of UBNRB, whereas 

no trend for daily, short rainy and dry season rainfall series appeared. In contrast, Kessi sub-

basin depicted no significant trends for daily, monthly, annual, and seasonal rainfall. For Gilgel 

Abay sub-basin, MK test result showed increasing trend for monthly and short rainy season 

rainfall, while no trend for daily, annual, long and short rainy season rainfall. Meanwhile, the 

MK test results indicate mixed trends for Gumara sub-basin. On daily, monthly, annual, and long 

rainy season rainfall, MK test could not find any trend for Gumara sub-basin. However, MK test 

indicate significant decreasing for dry season rainfall and significant increasing trend for short 
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rainy season rainfall at Gumara sub-basin. The results from the Pettit test showed daily rainfall 

over UBNRB, Kessi and Gilgel Abay sub-basins exhibited an upward shift, occurred around 

1988, 1975 and 1983, respectively. While the daily rainfall at Gumara showed downward shift 

that occurred around 2001. However, the Pettittt test could not detect any jump point for 

monthly, annual and seasonal rainfall series in all sub-basins except for Gumara sub-basin. For 

Gumara sub-basin, Pettittt test indicate the presence of strong downward shift for long rainy and 

dry season rainfall. 

 
Table 4-7: Mann-Kendal trend test and statistical summary of areal daily, monthly, annual and seasonal rainfall 

of the four sub-basins; (+) sign indicate upward shift and (-) sign indicate downward shift, numbers in bold 

designate p value for statistically significant trend and change points  

 

Time 

period Sub-basin 

Kendall's 

tau 

Sen's 

slope 

MK test 

p-value  

Pettittt test 

(change time) 

Pettitt test  

(p-value) 

Daily 

UBNRB 0.000 5.783E-5 0.387 1998(+) 0.001 

Kessi 0.006 5.146E-5 0.511 1975(+) 0.000 

Gilgel Abay 0.009 1.123E-4 0.150 1983 (+) <0.0001 

Gumara -0.006 7.189E-5 0.983 2001 (-) 0.014 

Monthly 

UBNRB 0.014 0.009 0.010 1988 0.98 

Kessi -0.002 -7.377E-4 0.603 1998 0.99 

Gilgel Abay 0.029 0.005 < 0.0001 1988 0.71 

Gumara 0.015 0.002 0.080  1992 0.92 

Yearly 

UBNRB 0.126 1.886 0.006 1987  0.06 

Kessi -0.054 -0.629 0.123 2000 0.5 

Gilgel Abay 0.033 1.188 0.342 1987  0.9 

Gumara -0.103 -2.819 0.129 1980 0.08 

Long 

rainy-

season 

UBNRB 0.105 1.364 0.010 1987 0.21 

Kessi 0.021 0.102 0.483 1998 0.98 

Gilgel Abay 0.010 0.193 0.851 1976 0.74 

Gumara -0.126 -2.4 0.095 1981(-) 0.03 

Dry season UBNRB 0.036 0.169 0.527 1996 0.32 

Kessi -0.031 -0.23 0.468 1983 0.83 

Gilgel abay -0.031 -0.332 0.535 2000 0.69 

Gumara -0.208 -1.676 < 0.0001 1982 (-) 0.04 

Short rainy 

season 
UBNRB 0.010 0.068 0.822 1997 0.9 

Kessi -0.095 -0.543 0.114 1998 0.14 

Gilgel abay 0.108 1.464 0.017 1990 0.28 

Gumara 0.115 0.732 0.001 1992 0.56 
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Figure 4-11: The Pettitt homogeneity test for the daily areal precipitation of the four sub-basins. The dash lines 

represented by  mean1 and mean2  are the mean of the time series before and after the change point 

respectively.  

 

The results of trend analysis in rainfall found in this work are in agreement with past research 

works in the area (e.g.(Gebremicael et al., 2013; Tekleab et al., 2013)). Tekleab et al. (2013) 

analyzed the result of MK test for the 13 rainfall stations in UBNRB and reported no significant 

trend existed both at monthly and seasonal scale for the majority of investigated climate stations. 

Gebremicael et al. (2013) reported no significant trend existed for the annual rainfall at eight out 

of nine climate stations during the 1973–2005 periods. Furthermore, (Conway, 2000; 

Gebremicael et al., 2013; Tesemma et al., 2010) conducted trend analyses of basin-wide rainfall 

and reported that no significant change in annual and seasonal rainfall series across the UBNRB 

exists, which contradicts the results of this study. This disagreement could be due to the number 

of stations and their spatial distribution across the basin, period of the analysis, approach used to 

calculate basin-wide rainfall from gauging stations, and data sources. Tesemma et al. (2010) used 

monthly rainfall data downloaded from Global Historical Climatology Network (GHCN) 
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database and 10-day rainfall data for the 10 selected stations obtained from the National 

Meteorological Service Agency of Ethiopia from 1963 to 2003. Conway (2000) also constructed 

basin-wide annual rainfall in the UBNRB for the 1900–1998 periods from the mean of 11 

gauges. Furthermore, Conway (2000) employed simple linear regressions technique to detect 

trends in annual rainfall series without removing the serial autocorrelation effect. Gebremicael et 

al. (2013) used only nine stations from the 1970–2005 periods. However, in this study, we used 

daily-observed rainfall data from 15 stations collected from ENMA from 1971 to 2010. The 

stations are more or less evenly distributed over the UBNRB. 

 

    
 

  
 
 Figure 4-12: The Pettitt homogeneity test for the annual areal precipitation of the four sub-basins. The dash 

lines represented by  mean1 and mean2  are the mean of the time series before and after the change point 

respectively.  
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4.6.2 Temperature 
 

Ten meteorological stations were selected for analyzing the trends of Tmax and Tmin. Appendix 

6, Appendix 7 and Appendix 8 summarized the MK and Pettittt test results for maximum 

temperature while Appendix 9, Appendix 10 and Appendix 11 presented the results for minimum 

temperature. The MK test result showed that maximum temperature exhibited increasing trend in 

all stations except Assosa station, which showed no change for daily, monthly and annual time 

series. For the minimum temperature, the MK test also showed increasing trend for all stations 

except Assosa and Debre Tabor stations. Assosa station did not exhibit any trend for daily, 

monthly and annual time series while Debre Tabor showed no change for daily and monthly time 

series.  

 

Detection of change point for temperature time series results from Pettitt test reveal that for the 

majority of the stations statistically significant increasing shift have been detected Appendix 6 to 

Appendix 11. The Pettitt test results indicate that daily and mean annual maximum temperature 

exhibited upward shift at all stations except Dangila. On monthly time series maximum 

temperature, Assosa and Debre Markos stations did not exhibit any change, while Dangila 

showed downward shift. The Pettitt test showed upward shift for daily minimum temperature at 

all stations except Debre Tabor, which showed downward shift. For the mean monthly minimum 

temperature, the Pettittt test showed no change for Debre Tabor and decreasing trend for Nedjo 

station while increasing trend for the remaining eight stations. For the mean annual minimum 

temperature data, Nedjo and Assosa stations showed no change while Debre tabor station 

exhibited downward shift and the remained seven stations experienced upward shift respectively. 

It can be observed that the time for change points is quite different. It is apparent that the change 

point for those stations occurred around early 1980s and 1990s and mid 1980s and 1990s.  

 
Table 4-8: Summary of MK trend test and Pettitt change point test for Tmax and Tmin for the four sub-basins; 

(+) sign indicate upward shift and (-) sign indicate downward shift, numbers in bold designate p value for 

statistically significant trend and change points. 

 
  maximum temperature minimum temperature 

 

Stations 

MK test 

p-value  

Sen's 

slope 

Pettitt  

Change 

time 

Pettitt  

p-value MK test 

p-value  

Sen's 

slope 

Pettitt 

change 

time 

Pettitt  

p-value 

Daily El Diem < 0.0001 3.80E-5 2001(+) <0.0001 < 0.0001 9.399E-5 1980 (+) <0.0001 

Kessi < 0.0001 6.58E-5 1993 (+) <0.0001 < 0.0001 1.020E-4 1987 (+) <0.0001 

Gilgel 

Abay 
< 0.0001 -1.4E-4 1988(-) <0.0001 < 0.0001 2.022E-4 1979 (+) <0.0001 

Gumara < 0.0001 8.56E-5 1993(+) <0.0001 0.376 -2.57E-6 1979 (+) <0.0001 

Monthly El Diem 0.086 0.014 2001 0.34 < 0.0001 0.003 1980 (+) <0.0001 

Kessi 0.000 0.025 1993 (+) 0.000 < 0.0001 0.003 1987 (+) <0.0001 

Gilgel 

Abay 
< 0.0001 -0.026 1988(-) <0.0001 < 0.0001 0.006 1979 (+) <0.0001 

Gumara 0.000 0.037 1993(+) <0.0001 0.653 -1.94E-4 1977 0.24 

Annually El Diem 0.005 0.014 2001(+) 0.009 < 0.0001 0.03 1979 (+) 0.00 

Kessi < 0.0001 0.025 1993 (+) <0.0001 < 0.0001 0.034 1986 (+) <0.0001 

Gilgel 

Abay 
0.130 -0.026 1988 (-) <0.0001 < 0.0001 0.057 1979 (+) 0.001 

Gumara < 0.0001 0.037 1993 (+) <0.0001 0.377 -0.003 1998 0.17 
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Figure 4-13: Mean annual time series plots of Tmax for the change of time. The dash lines represented by  

mean1 and mean2  are the mean of the time series before and after the change point respectively. 

 

At basin and sub-basin scale, the results of MK test for the temperature showed that statistically 

significant increasing trends were observed in minimum and maximum temperature for the 

UBNRB and other three sub-basins (Table 4-8). The Pettitt test results showed that UBNRB 

exhibited upward shift on daily and annual average maximum temperature. Kessi and Gumara 

sub-basins experienced upward shift on daily, mean monthly and mean annual maximum 

temperature. Gilgel Abay sub-basin, major tributaries of Lake Tana exhibited downward shift on 

daily, mean monthly and mean annual maximum temperature. Similarly, the Pettitt test detected 

upward shift for the daily, mean monthly and mean annual minimum temperature over the 

UBNRB, Kessi and Gilgel Abay sub basins. Daily minimum temperature at Gumara sub-basin 
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also showed upward shift, whereas mean monthly and mean annual minimum temperature of 

Gumara sub-basin showed downward shift.  

 

 
 

 
 
Figure 4-14: Mean annual time series plots of Tmin for the change of time. The dash lines represented by  

mean1 and mean2  are the mean of the time series before and after the change point respectively. 

Figure 4-15 illustrates the mean annual temperature trend magnitude for the selected sub basins 

and UBNRB. The maximum temperature has increased about 0.14, 0.24, and 0.3 
o
C per decade 

for UBNRB, Kessi and Gumara sub-basins respectively. Similarly, the mean annual minimum 

temperature has increased by 0.3, 0.4, and 0.7 
o
C respectively for UBNRB, Kessi and Gumara 

sub-basins. The mean annual maximum for Gilgel Abay sub-basin and minimum temperature for 

Gumara sub-basin have decreased by 0.5 and 0.1 
o
C per decade respectively. The slope 

magnitudes for the change of mean annual Tmax and Tmin using standard linear regression 

(Figure 4-15) are similar with the corresponding magnitudes of Sen's slope (Table 4-8). The 

good agreement of the results from MK trend test and Pettitt change point detection indicates the 

robustness of the methods applied.  
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a)       b) 

 

  
 

c)       d) 

  
 

Figure 4-15: Time series plots of mean annual Tmax and Tmin for (a) UBNR basin, (b) Kessi, (c) Gilgel Abay, 

and (d) Gumara sub-basins. 

4.6.3 Streamflow 
 

The trend and change point detection analysis of daily, monthly, seasonal and annual streamflow 

at the four flow-gauging stations were computed by the MK and Pettitt tests. Table 4-9 and Table 

4-10 summarized the results of MK trend test and Pettitt test for change point detection. The 

change point detection for the selected sub-basins are illustrated in Figure 4-16 and Figure 4-17 

for daily and mean annual streamflow respectively. The MK test’s result for daily, monthly, 

annual, and seasonal (long and short rainy season) streamflow time series showed a positive 

trend, the magnitude of which is statistically significant in all flow gauging stations except Gilgel 

Abay. For the Gilgel Abay station, MK test showed no change for monthly and seasonal (long 

rainy, dry and short rainy season) streamflow while decreasing trend for daily and mean annual 

streamflow. For the dry season, streamflow at El Diem and Kessie stations showed statistically 

significant increasing trend whereas no changes were observed at Gumara and Gilgel Abay 

stations. 

 

The Pettitt test also detected upward shift for daily, annual, and long rainy season streamflow at 

El Diem, Kessi and Gumara stations. Exceptionally, Gilgel Abay exhibited downward shift for 

the daily time series streamflow and no change point observed for mean monthly, annual and 
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seasonal time series streamflow. For the monthly time series streamflow, Pettitt test detects 

increasing trends at Kessi and Gumara flow stations while no change at El Diem flow stations. 

For the dry season streamflow, the Pettitt test could not detect any change point at El Diem, 

Gilgel Abay and Gumara flow stations but Kessi flow station exhibited upward shift. The change 

points for mean annual stream flows at El Diem, Kessi and Gumara gauging stations occurred 

around 1995, 1990 and 1987, respectively. However, the mean annual flow at Gilgel Abay 

showed downward shift that occurred around 2000, though it is not statistically significant at 5% 

level.  

 

The result obtained from the MK test agrees well with the findings in Gebremicael et al. (2013), 

who reported an increasing trend in the observed annual, short, and long rain seasons’ 

streamflow at the El Diem and Kessi gauging stations, but our results disagree with findings for 

dry-season streamflow. Furthermore, the increasing trend of long rainy-season streamflow at El 

Diem agrees well with the result of (Tesemma et al., 2010), but it disagrees with the results of 

short rainy season and annual flows. (Tesemma et al., 2010) reported statistically significant 

increasing streamflow during the long rainy season at El Diem station while short rainy season 

and the annual flows are constant for the 1964–2003 periods. They also reported that dry season 

streamflow shows a significant decreasing trend at El Diem. This disagreement is likely 

attributable to the difference in analysis period, as can be seen from Figure 4-18, the last 7 years, 

2004–2010, had relatively higher streamflow records. However, this study has a good agreement 

with their result for Kessi station. They reported significant increasing trend of long-rainy, short-

rainy season and annual streamflow but no change for the dry season streamflow at Kessi station.  

 

In general, the MK trend test and Pettitt change point detection have a good agreement in most of 

the cases showing the robustness of the methods and approaches applied. Furthermore, the 

magnitudes of Sen's slope and slope from standard linear regression are comparable in most 

cases. The slope magnitude difference of Sen's slope and linear regression slope (Figure 4-18) 

for the annual rainfall and streamflow could be due to the outliers, as Sen's slope does not 

affected by them. Although the magnitudes of mean annual streamflow at El Diem and annual 

total rainfall of UBNRB are equivalent, the magnitude of slope for streamflow (10.5 m
3
s

-1
) is 

much greater than it is for rainfall (1.8 mmyr
-1

), see (Figure 4-18). Furthermore, the MK trend 

test results indicated that the annual total rainfall of UBNRB, Kessi and Gumara sub-basins did 

not reveal changes while the annual streamflow at El Diem, Kessi and Gumara increased 

significantly from 1971 to 2010. The Pettit test results for the change of point also display 

different times which are not consistent for both rainfall and streamflow data series. Pettitt’s test 

shows that there was a change point for annual streamflow series around the year 1995, 1990 and 

1987 at El Diem, Kessi and Gumara stations respectively while there was no change point 

identified for the annual precipitation series during the study period over the corresponding sub-

basins.  

 

This indicates that the relationship between the annual precipitation and streamflow presented a 

non-stationary state. These heterogeneous results may suggest that the degree of human 

interventions and natural causes, which can be attributed to the change in streamflow are 

different across the examined sub-basins. The responses of streamflow to the changes in rainfall 

could be associated with evapotranspiration and could be attributable to the combined effect of 

LULC change, climate change, the infiltration rate due to changing soil properties, rainfall 
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intensity, and rainfall extreme events. Moreover, different results for the investigated sub-basins 

might be related to difference in contributory factors both human interferences and 

physiographic characteristics like climate, vegetation, soil, geologic and topography lead to 

differences in responsive characteristics of the catchments. For instance, for the Gilgel Abay sub-

basin, the significant decreasing trends for the annual streamflow could be related to water 

abstraction for irrigation and expansion of Eucalyptus plantation that extracts significant amount 

of ground water. Therefore, there is a need for more research linking land use change detection 

using remote sensing and statistical analysis of hydro-meteorological variables as it is crucial for 

proper utilization of the limited water resources in the region. Hence, in this dissertation 

quantifying the effects of LULC and climate change using hydrological modeling is carried out 

and discussed in (Chapter 5).  

 
Table 4-9: Mann-Kendall trend test and statistical summary of daily, monthly and annual streamflow of the 4 

sub-basins before and after TFPW; (+) sign indicate upward shift and (-) sign indicate downward shift, 

numbers in bold designate p value for statistically significant trend and change points 

 

Time 

scale Station 

Kendall's 

tau 

MK test 

p-value 

Sen's 

slope 

 Pettitt test 

change time 

Pettitt test 

p-value 

Daily 

 

El Diem 0.068 < 0.0001 0.013 1987 (+) <0.0001 

Kessi 0.188 < 0.0001 0.013 1996 (+) <0.0001 

Gilgel Abay -0.016 0.032 1.269E-4 2005 (-) <0.0001 

Gumara 0.101 < 0.0001 1.664E-4 1992 (+) <0.0001 

Monthly 

 

El Diem 0.066 < 0.0001 0.377 1987 0.13 

Kessi 0.196 < 0.0001 0.422 1996 (+) <0.0001 

Gilgel Abay -0.009 0.192 -0.001 2005 0.41 

Gumara 0.111 < 0.0001 0.006 1991 (+) 0.000 

Annual 

 

El Diem 0.290 < 0.0001 9.548 1995 (+) 0.03 

Kessi 0.413 < 0.0001 9.623 1990 (+) <0.0001 

Gilgel Abay -0.105 0.348 -0.101 2000 0.34 

Gumara 0.336 0.002 0.374 1987 (+) 0.003 

 

The results of this study in general are characterized by statistically significant increasing trends 

in maximum and minimum temperatures, no significant changes in mean annual or mean 

seasonal precipitation and both statistically significant increasing and decreasing streamflow 

trends in daily, monthly, annual and seasonal streamflow. From the climate variables, the 

minimum temperature showed more significant increase than the maximum and mean 

temperatures (Figure 4-15). The results from present study are in agreement with previous study 

in the basin done by Tekleab et al. (2013), who reported increasing trends of temperature and  no 

statistically significant trends in mean annual and seasonal rainfall across the examined stations. 

For the hydrological variables in the Koga, Rib, Jedeb and Chemoga catchments, they reported 

no significant changes were seen on mean annual, seasonal and extreme flows. In contrary in the 

El Diem, Gumara and Neshi catchments, the annual and main rainy season mean flows exhibit 

significant increasing trends. However, the small rainy season mean flow show significant 

decreasing trend in Gilgel Abay and significant increasing trends in Gumara and Guder 

catchment.  
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Table 4-10: Mann-Kendall trend test and statistical summary of sesonal flow of the 4 sub-basins before and 

after TFPW; (+) sign indicate upward shift and (-) sign indicate downward shift, numbers in bold designate p 

value for statistically significant trend and change points 

 

Time scale 

Stations 

Kendall's 

tau 

MK test 

p-value  

Sen's 

slope 

 Pettitt test 

change time 

Pettitt 

test 

p-value 

Long rainy 

season 
El Diem 0.27 < 0.0001 20.3 1995 0.06 

Kessi 0.34 < 0.0001 18.6 1990 (+) <0.0001 

Gilgel Abay -0.20 0.07 -0.5 2001 0.29 

Gumara 0.34 0.00 1.0 1987 (+) 0.01 

Dry 

season 
El Diem 0.318 0.004 3.593 1985 (+) 0.01 

Kessi 0.623 < 0.0001 4.639 1995 (+) <0.0001 

Gilgel Abay -0.018 0.880 -0.002 2005 0.3 

Gumara 0.485 < 0.0001 0.048 1991 (+) <0.0001 

Short 

rainy 

season 

El Diem 0.138 0.000 4.832 1995 0.06 

Kessi 0.174 0.006 2.202 1991 (+) 0.019 

Gilgel Abay -0.008 0.916 -0.014 2000 0.85 

Gumara 0.072 0.318 0.047 1991 0.48 
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Figure 4-16: The Pettitt homogeneity test for the daily streamflows of the four sub-basins. The dash lines 

represented by  mean1 and mean2  are the mean of the time series before and after the change point 

respectively. 

 
 

 
   
Figure 4-17: The Pettitt homogeneity test for the mean annual streamflows of the four sub-basins.  
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a)       b) 

  
 

c)       d) 

  
 
Figure 4-18: Linear trends and  mean annual time series plots of rainfall and streamflow for a) El Diem b) 

Kessi, c) Gilgel Abay, d) Gumara sub-basins 
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River basin's streamflow. Hydrology and Earth System Sciences, 22(12), 6187-6207, 2018   66 
 

Chapter 5 Hydrological responses of the streamflow of upper Blue Nile 
River to the changes in land use/land cover and climate2  

 

5.1 SWAT hydrological model 

5.1.1  Basic concepts of the SWAT Model 
 

The Soil and Water Assessment Tool (SWAT) is an open-source-code, semi-distributed model 

with a large and growing number of model applications in a variety of studies ranging from 

catchment to continental scales (Allen et al., 1998; Arnold et al., 2012; Neitsch et al., 2002). It 

enables the impact of LULC change and climate change on water resources to be evaluated in a 

basin with varying soil, land use, and management practices over a set period of time (Arnold et 

al., 2012).  

 

In SWAT, the watershed is divided into multiple sub-basins, which are further subdivided into 

hydrological response units (HRUs) consisting of homogeneous land use management, slope, 

and soil characteristics (Arnold et al., 1998; Arnold et al., 2012). The descritization method 

employed by SWAT enables the model to simulate catchment processes in detail and to 

understand the response of unique HRUs to hydrological processes. HRUs are the smallest units 

of the watershed in which relevant hydrologic components and sediment yield can be estimated. 

The hydrological processes involved in the water balance include: precipitation, evaporation and 

transpiration, Revap from shallow aquifer, surface runoff, lateral flow, return flow, water 

infiltration to the root zone and vadose zone, percolation to shallow aquifer, recharge to deep 

aquifer and flow out of the watershed (Figure 5-1) . Water balance is the driving force behind all 

of the processes in the SWAT calculated using eqn. (5-1),  

 

                                               
     (5-1) 

 

Where SWt is the final soil-water content (mm H2O), SWo is the initial soil-water content on day 

i (mm H2O), t is the time (days), Rday is the amount of precipitation on day i (mm H2O), Qs is the 

amount of surface runoff on day i (mm H2O), Ql is the amount of return flow on dayi (mm H2O), 

Qb is the return flow from shallow aquifer on dayi (mm H2O), Ea is the amount of 

evapotranspiration from the canopy and soil surface on dayi (mm H2O), Revap is the amount of 

water transferred from the underlying shallow aquifer reverse upward to the soil-moisture 

storage on dayi (mm H2O) in response to water demand for evapotranspiration, and DA_recharge 

is the amount of water recharge to deep aquifer on dayi (mm H2O).  
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Figure 5-1: Hydrologic cycle in SWAT (Neitsch et al., 2011) 

 
SWAT has four storages: canopy storage (CS), soil moisture (SM), shallow aquifer (SA) and 

deep aquifer (DA).  The potential pathway of water movement simulated by HRU in the SWAT 

is illustrated in Figure 5-1. The descended precipitation may be intercepted and held by the plant 

canopy or fall directly on the soil surface. The amount of water held by the plant canopy will lost 

in the form of canopy evaporation. Water fallen on the soil surface will infiltrate into the soil 

profile or flow overland as runoff. Infiltrated water may be held in the soil and later 

evapotranspired or it may come out to the surface water through lateral flow. The excess amount 

of infiltrated water further percolated to shallow aquifer. Water movement from the soil-moisture 

storage to the shallow aquifer is due to percolation, whereas water movement from the shallow 

aquifer reverse upward to the soil-moisture storage is Revap and water movement further from 

shallow aquifer to the deep aquifer is recharge. This study focused on the effects of LULC 

change and climate change on the basin’s water balance components, which include the 

components of inflows, outflows, evapotranspiration, losses and the change in storage as shown 

in the general water balance (5-2).  

 

                    (5-2) 
 

 

                                      , as it is shown in Figure 5-2. P is the 

amount of precipitation (mm d
-1

) as the main inflow, Qt is the total amount of streamflow (mm d
-

1
) as outflow, TAE is the total actual evapotranspiration (mm d

-1
),    is evaporation from the 
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canopy surface (mm d
-1

),    is the amount of plant transpiration (mm d
-1

),    is evaporation from 

the soil surface (mm d
-1

) and    or Revap is evaporation from the shallow aquifer (mm d
-1

) 

(Abiodun et al., 2018), Losses are the amount of water lost from the system as a recharge to the 

deep aquifer (DA_recharge) (mm d
-1

) and     is the change in soil water storage (mm d
-1

).  
 

.  

 
Figure 5-2: Schematic representation of the SWAT model structure modified from (Marhaento et al., 2017).  

Where: P is precipitation; CS is canopy storage; TAE is total actual evapotranspiration; Ec is 

evaporation from the canopy surface; Es is evaporation from the soil surface; Et is transpiration 

from plants; perc is percolation from the soil storage to shallow aquifer; SM is soil moisture 

storage; SA is shallow aquifer; Er=Revap is evaporation from the shallow aquifer; Qt is total 

streamflow; DA is deep aquifer; HRU is hydrological response unit; Qb is base flow; Ql is lateral 

flow; Qs is surface runoff. 
 

Surface runoff (the SCS-CN Method) 

 

Runoff is calculated separately for each HRU and routed to obtain the total streamflow for the 

watershed using either the soil conservation service (SCS) curve number (CN) method (Mockus, 

1964) or Green & Ampt infiltration method (GAIM;(Green and Ampt, 1911); see Figure 5-2). 

However, spatial connectivity and interactions among HRUs are ignored. Instead, the cumulative 

output of each spatially discontinuous HRU at the sub-watershed outlet is directly routed to the 

channel (Pignotti et al., 2017). This lack of spatial connectivity among HRUs makes 

implementation and impact analysis of spatially targeted management such as soil and water 

conservation structure difficult to incorporate into the model. Different authors have made efforts 

to overcome this problem for instance, a grid-based version of the SWAT model (Rathjens et al., 

2015) or landscape simulation on a regularized grid (Rathjens and Oppelt, 2012). Moreover, 

(Arnold et al., 2010) and (Bosch et al., 2010) further modified SWAT so that it allows 

landscapes to be subdivided into catenas comprising upland, hill slope, and floodplain units, and 

flow to be routed through these catenas. However, SWATgrid, developed to overcome this 

limitation, remains largely untested and computationally demanding (Rathjens et al., 2015).  
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Hence, the standard SWAT CN method eqn.(5-3), was chosen for this study because it was 

applied in many Ethiopian watersheds such as (Gashaw et al., 2018; Gebremicael et al., 2013; 

Setegn et al., 2008; Woldesenbet et al., 2017b). Furthermore, its ability to use daily input data 

(Arnold et al., 1998; Neitsch et al., 2011; Setegn et al., 2008) as compared to GAIM, which 

requires sub daily precipitation as a model input, and that can be difficult to obtain in data-scare 

regions like the UBNRB. 

 

The Soil Conservation Service (SCS) Curve Number (CN) method developed by United States 

Development of Agriculture (USDA, 1972) which uses local land use, soil type, and antecedent 

moisture conditions can be calculated as shown in eqn.(5-3).  

 

 
      

         

           

 

 (5-3) 

 

Where Qsurf is accumulated runoff or rainfall excess (mm H2O), Rday is rainfall depth for the 

day (mm H2O), Ia is initial abstraction which includes surface storage, interception and 

infiltration prior to runoff (mm H2O), and S is the retention parameter (mm H2O). The Ia was 

commonly approximated as 0.2S (USDA, 1972). Therefore, the surface runoff will occur when 

Rday>Ia. The retention parameter S was computed as presented in the following Equation 3.  

 

 
       

    

  
     (5-4) 

 

Where CN is curve number for the day, which is a function of soils permeability, land use and 

antecedent soil water condition. SWAT calculates CN for antecedent moisture condition II and 

for 5% slope.  

 
Evapotranspiration 

 

The second most important hydrologic component for water balance modeling next to surface 

runoff is evapotranspiration. It is the primary mechanism by which water is removed from a 

watershed. Hence, an accurate estimation of evapotranspiration is critical in the assessment of 

water resources and the impact of climate and land use change on those resources. Although 

SWAT provides three different methods for estimating potential evapotranspiration, which are 

Penman–Monteith (Monteith, 1965), Priestly–Taylor (Priestley and Taylor, 1972), and 

Hargreaves methods (Hargreaves et al., 1985), the Penman–Monteith method was used in this 

study since the water balance simulated with this method in SWAT better matches with the 

observed flow of the basin.  SWAT initially calculates the potential evapotranspiration (PET) for 

a reference crop (alfalfa) using the Penman–Monteith equation for well-watered plants (Jensen et 

al., 1990) 

 

 

 

    
              

   
       

       

             
 (5-5) 
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Where,   ETo  reference evapotranspiration [mm day
-1

], 

   Rn  net radiation at the crop surface [MJ m
-2

 day
-1

], 

  G  soil heat flux density [MJ m
-2

 day
-1

], 

  T  air temperature at 2 m height [°C], 

  u2  wind speed at 2 m height [m s
-1

], 

  es  saturation vapor pressure [kPa], 

  ea  actual vapor pressure [kPa], 

   slope vapor pressure curve [kPa °C
-1

], 

   psychrometric constant [kPa °C
-1

]. 

 

Total actual evapotranspiration (TAE) in SWAT is made up of four components: canopy 

evaporation, transpiration, soil evaporation and groundwater ET (Revap) (see Figure 5-2). The 

TAE components are calculated from the PET starting with the canopy evaporation. For a more 

detailed explanation and equations of AET, refer to Abiodun et al. (2018).  For a more detailed 

description of the SWAT model and other water balance components, refer to Neitsch et al. 

(2011). 

 

5.1.2 SWAT model setup 
 

According to Setegn et al. (2008), the model setup involved six steps: (1) Input data 

preparation;(2) watershed delineation and sub-basin descritization: (3) HRU definition; (4) 

parameter sensitivity analysis; (5) calibration and uncertainty analysis 6) validating the model. 

The SWAT model setup and data preparation was done using arcSWAT2012 tool in the arcGIS 

environment, whereas parameter sensitivity analysis, and model calibration and validation was 

performed using the SWAT-CUP (Calibration and Uncertainty Procedures) interface Sequential 

Uncertainty Fitting (SUFI-2) algorithm (Abbaspour, 2008). 

 

The required spatial datasets (DEM, LULC map and soil map) were prepared and projected to 

the same projection called Adindan UTM Zone 37N, which is the transverse mercator projection 

parameters for Ethiopia, using ArcGIS 10.1. The detail procedure of input data preparation is 

described under section 5.2. The DEM was used to delineate the watershed and to analyze the 

drainage patterns of the land surface terrain. The watershed and sub watershed delineation was 

also done using DEM data. The watershed delineation process include five major steps, DEM 

setup, stream definition, outlet and inlet definition, watershed outlets selection and definition and 

calculation of sub basin parameters. For the stream definition, the threshold based stream 

definition option was used to define the minimum size of the sub basin. The ArcSWAT interface 

allows the user to fix the number of sub basins by deciding the initial threshold area. The 

threshold area defines the minimum drainage area required to form the origin of a stream. 

 

The LULC spatial data were reclassified into SWAT land cover/plant types. A user look up table 

was created to identify the SWAT code for the different categories of LULC on the map as per 

the required format. The soil map was linked with the soil database which is a soil database 

designed to hold data for soils not included in the U.S. For the stream definition, the threshold 

based stream definition option was used to define the minimum size of the sub basin. To study 

the differences in evapotranspiration and other hydrologic conditions for different land covers, 
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soils and slopes, the sub-basins further sub divided into HRUs having unique land use, soil and 

slope. In order to do so, the land use, soil and slope datasets were imported overlaid and linked 

with the SWAT2012 databases. To define the distributions of HRUs both single and multiple 

HRU definition options are available. For this study, multiple HRU definition option is used. 

Detail steps and procedures for SWAT model setup can be found in (Winchell et al., 2013) 
 

5.1.3  SWAT sensitivity analysis 
 

Sensitivity analysis is a technique used for identifying the most important influence parameters 

in the model by assessing the ratio of the relative change of model output to the relative change 

of that parameter. Sensitivity analysis then shows the impact of input parameters on the objective 

function. Since parameters represent hydrological processes, sensitivity analysis can provides 

information on the most important processes in the study region. It also helps to decrease the 

number of iterations in the calibration procedure by eliminating the parameters identified as not 

sensitive (Abbaspour et al., 2017). Sensitivity analysis was undertaken by using a SWAT CUP  

that uses Automated Latin Hypercube One-factor-At-a-Time (LH-OAT) global sensitivity 

analysis procedure.  

 

Two general types of sensitivity analysis are usually performed. These are one-at-a-time (OAT) 

or local sensitivity analysis, and all-at-a-time (AAT) or global sensitivity analysis. In OAT, all 

parameters are held constant while changing one to identify its effect on some model output or 

objective function. In the AAT, however, all parameters are changing. Hence, a larger number of 

runs are needed for the AAT in order to see the impact of each parameter on the objective 

function while only few model runs are sufficient for OAT. In SWAT-CUP, OAT is used to 

directly compare the impact of three to five parameter values on the output signal, whereas AAT 

uses a multiple regression approach to quantify sensitivity of each parameter (Abbaspour et al., 

2017). 

 

 Global Sensitivity Analysis (AAT) was used to carry out sensitivity analysis of the parameters 

chosen for the calibration process. In this process, multiple regression system as shown in eqn. 

(5-6) regress Latin hypercube generated parameters against objective function to determine 

sensitivity of the parameters. 

 

 
         

 

   

 (5-6) 

 

Where g is the objective function, α and β are the variables and bi is parameter. A t-test was then 

used to identify the relative significance of each parameter bi through the application of inverse 

optimization approach. 

 

Sensitivity analyses were done prior to calibration process in order to identify important 

parameters for SWAT. SWAT-CUP uses t test and p-value to rank the most sensitive parameter 

that corresponds to direct change in stream flow response. As statistical measurements, t-stat and 

p-value were used. A t-stat is the coefficient of a parameter divided by its standard error and is a 

measure of the precision with which the regression coefficient is measured. Therefore, the 



 

72 

 

parameter is sensitive when the coefficient is larger than the standard error. A p-value was 

determined from student’s t-distribution table with the values obtained for t-stat for a parameter; 

where a lower p-value suggests higher sensitivity of the parameter, and vice-versa. The overall 

uncertainty in the output was computed by 95 Percent Prediction Uncertainty (95 ppu) and dotty 

plots for each parameter. This helped in determining the new ranges and best fitted values that 

were applied for further iterations to maximize the objective function. The 95ppu was calculated 

at 2.5 and 97.5% levels of the cumulative distribution of an output variable obtained through 

Latin hypercube sampling. Two indices (the P-factor and R-factor) were used to quantify the 

goodness of calibration/uncertainty performance. P-factor  is the percentage of data bracketed by 

the 95 PPU band (ideal value should approach closer to 1) and the R-factor, which is a measure 

of the thickness of the 95ppu band and calculated as the average 95ppu thickness divided by the 

standard deviation of the corresponding observed variable (ideal value should be close to 0). To 

minimize uncertainties and maximize the objective function, the number of sampling round was 

increased with the set of new parameter ranges.  
 

 

          

 
  
    

           
        

  
    

   
 (5-7) 

 

Where   
         and   

        are the upper and lower boundary of the 95ppu of the time step t 

and simulation i, nj is the number of data points, and     is the standard deviation of the jth 

observation.  

 

5.1.4  SWAT calibration and validation 
 

The subsequent step after sensitivity analysis is model calibration. Both manual and automatic 

calibration strategies were applied to attain the minimum differences between observed and 

simulated streamflow in terms of surface flow, and peak and total flow following the steps 

recommended by Arnold et al. (2012), using the SUFI-2 approach within SWAT-CUP. There 

have been numerous local and regional hydrological modeling studies across the world carried 

out to assess the potential impact of climate change and LULC changes on streamflow. In these 

studies, hydrological models were first calibrated against baseline streamflow data, and then 

driven with changed climate and LULC data, with the same optimized parameter values. Then 

after, the modeled and baseline streamflow are compared to estimate the effects of climate 

change and LULC on streamflow (Kidane et al., 2018; Li et al., 2009; Teklay et al., 2019; 

Woldesenbet et al., 2018; Yin et al., 2017). A common assumption implicit in most of these 

studies is that hydrological models calibrated over the historical period are valid for use in the 

altered regime. However, future climate and LULC changes may possibly alter the model 

parameters (Vaze et al., 2010). There are number of factors that can affect the hydrologic 

responses (in particular the rainfall-runoff relationship), which include the changes in intensity of 

rainfall, rainfall timing, vegetation cover that affects evapotranspiration and soil infiltration rate.  

 

Hence, to understand the dynamics of SWAT parameter values in the rainfall–runoff relationship 

under different climate and LULC conditions, the SWAT model is calibrated against observed 

monthly streamflow data for each of the four individual calibration periods representing different 

LULC and climate. In the model calibration, the model parameters are optimized to maximize 
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the objective functions. For this purpose, the period 1971–2010 was divided into four decadal 

periods hereafter referred as the 1970s (1971–1980), 1980s (1981–1990), 1990s (1991–2000) 

and 2000s (2001–2010). The SWAT model was then calibrated and validated for each decadal 

period by splitting 10 years of monthly record data into three data sets. The first two years were 

used to warm-up the model, the next five years were used for the model calibration, and the last 

three years were used for the model validation. For example, for the 1970s data, 1971 and 1972 

used for warming-up, 1973-1977 used for calibration and 1978-1980 was used for validation. 

This approach also helps to analyze the combined effects of LULC and climate change on the 

water balance components as it can simulate the observed data better than using single parameter 

value for baseline and altered conditions. However, for further analysis of the isolated effects of 

LULC and climate changes on the streamflow and water balance components, the calibrated 

parameters of the baseline period (1970s) were held constant for modeling the altered conditions.   
 

The model’s performance for the streamflow was then evaluated using statistical methods 

(Moriasi et al., 2007) such as NSE, R
2
, and RVE %, which are shown by eqn.(4-5) to eqn.(4-10). 

Furthermore, graphical comparisons of the simulated and observed data, as well as water balance 

checks, were used to evaluate the model’s performance. Validation is used to build confidence in 

the calibrated parameters. For this purpose, the calibrated parameter values are applied to an 

independent measured dataset without further changes. The analysis is required to do one 

iteration with the same number of simulations as the last calibration iteration. It is important that 

the data in validation period meet more or less the same physical criteria as the calibration 

period. For example, climate and land‐use of the validation period should pertain the same kind 

of climate and land uses as the calibration period.  

 

5.1.5 SWAT simulations   
 

The general steps used to analyze the combined and isolated effects of LULC changes and 

climate change is shown Figure 5-3. Three different approaches were applied for assessing the 

effects of LULC change and climate change on streamflow and water balance components 

during the period 1971-2010. The first approach is to assess the response of streamflow for the 

combined effects of LULC change and climate change. We followed the approach in (Marhaento 

et al., 2017) and divided the analysis period, 1971–2010, into four periods of similar length (four 

decades). These are periods when land use changes are expected to change the hydrological 

regime within a catchment (Marhaento et al., 2017; Yin et al., 2017). The first period, the 1970s, 

was regarded as the baseline period. The other periods, the 1980s, 1990s, and 2000s were 

regarded as altered periods. LULC maps of 1973, 1985, 1995, and 2010 were used to represent 

LULC patterns during the 1970s, 1980s, 1990s, and 2000s respectively. The baseline and altered 

periods were calibrated and validated separately using the respective dynamic LULC and climate 

data. The SWAT model simulations using the calibrated parameters for baseline and altered 

periods were used for analyzing the combined effects of LULC and climate changes (Table 5-1). 

The DEM and soil data sets remained unchanged. The differences between the simulation result 

of the baseline and altered periods represent the combined effects of LULC and climate changes 

on streamflow and water balance components.  
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Table 5-1: Data sets of the baseline and altered periods for the SWAT simulation used to analyze the combined 

and isolated effect of LULC and climate changes on streamflow and water balance components 

Scenario  Description LULC Climate Remark 

1(Qbase1) LULC and meteorological data from the 1970s 1973 1970s baseline period 

2(Qbase2) LULC and meteorological data from the 1980s 1985 1980s altered period1(ap1) 

3(Qbase3) LULC and meteorological data from the 1990s 1995 1990s altered period2 (ap2) 

4(Qbase4) LULC and meteorological data from the 1970s 2010 2000s alteredperiod3(ap3) 

5(Qsim,Lc1) Changing LULC while holding climate constant 1985 1970s effect of LULC alone  

6(Qsim,Lc2) Changing LULC while holding climate constant 1995 1970s effect of LULC alone  

7(Qsim,Lc3) Changing LULC while holding climate constant 2010 1970s effect of LULC alone  

8(Qsim,Cc1) Changing climate while holding LULC constant 1973 1980s effect of climate alone  

9(Qsim,Cc2) Changing climate while holding LULC constant 1973 1990s effect of climate alone  

10(Qsim,Cc3) Changing climate while holding LULC constant 1973 2000s effect of climate alone  

 

The second approach included simulations to attribute effects from LULC changes alone. It 

aimed to investigate whether LULC change is the main driver for changes in water balance 

components. To identify the hydrological impacts caused solely by LULC, "A fixing-changing" 

method was used (Marhaento et al., 2017; Teklay et al., 2019; Woldesenbet et al., 2017b; Yan et 

al., 2013; Yin et al., 2017). A fixing -changing method used dynamic LULC data of 1973, 1985, 

1995, and 2010 but static climate data of 1970s (1971-1980) to run the models with fixed 

calibrated parameters of the baseline period. The DEM and soil data remained constant as 

suggested by (Hassaballah et al., 2017b; Marhaento et al., 2017; Woldesenbet et al., 2017b; Yin 

et al., 2017). This is simply running  the calibrated SWAT model for the baseline period (1970s) 

four times changing only the LULC map for the years 1973, 1985, 1995, and 2010 and retaining 

the constant weather data set from the 1970s (Table 5-1). The third approach is similar to the 

second, but the simulations are attributed only for climate changes. The calibrated models for the 

base line period was run again four times, corresponding to the LULC periods using a unique 

LULC map of the year 1973 but altering the four different periods of weather data sets for 

respective periods using fixed calibrated parameter values of the baseline period.    
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Figure 5-3: Flow chart showing the analysis of combined and single effect of LULC and climate changes on 

the water balnce using SWAT model 

In summary, combined and isolated effects of the changes to LULC and climate on the 

streamflow and water balance components were evaluated by comparing the SWAT outputs of 

10 scenarios. Each scenario represented 1 decade, and each simulation required an LULC map 

and a meteorological data set (Table 5-1). If the LULC map and the meteorological data were 

within the same decade (i.e., the 1970s, 1980s, 1990s, or 2000s), the simulation results 

represented “real streamflow” or a “baseline” affected by the combination of LULC and climate 

changes. Alternatively, the simulation results with varying one driving factor while holding 

others constant represented the effects of the variable factor alone on streamflow and water 

balance components (Li et al., 2009; Teklay et al., 2019; Yin et al., 2017). For example, to 

assess the response of streamflow to combined LULC and climate changes in the 1970s and 

1980s, the simulation of the 1970s (1971–1980) (Qbase1), which is used as a baseline, should be 

based on the current LULC (year 1973) and current climate (years 1971– 1980). The simulation 

of the 1980s (1980–1989) (Qbase2) should be based on LULC (year 1985) and future climate 

(years 1981–1990). The difference between the first and second simulations (Table 5-1) 

represents the combined effects of LULC and climate changes on streamflow. Regarding LULC 

changes, the fifth simulation (Qsim,Lc1) was based on the current climate (years 1971–1980) and 

the LULC in the next period, (in this example, 1985). The difference between the first and fifth 

simulations is the effect of the LULC change on streamflow. Similarly, the difference between 

the first simulation and the eighth simulation (Qsim,Cc1) based on the current LULC (year 1973) 

and climate of next period (in this example, 1981–1990) represents the impact of climate change 

alone on streamflow.  
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The combined effects of LULC and climate changes on streamflow (Rcomb%) and the isolated 

effects of LULC (Riso,Lc%) and climate (Riso,Cc%) can be assessed using eqs. (5-8) to (5-10):  
 

 
          

                 

       
      (5-8) 

 

 
             

                 

       
      (5-9) 

 

 

 
             

                 

       
      (5-10) 

 

 

5.2 Input data preparation for SWAT 
 

The final quality of a hydrological model is highly dependent on the quality of the input data. 

Two types of datasets were used in this study: the spatially distributed data (GIS input) needed 

for the ArcSWAT interface include the Digital Elevation Model (DEM), tabular and spatial soil 

data, tabular and spatial LULC information and stream network layers, and data on weather and 

river discharge which are also used for prediction of streamflow and calibration purposes. 

 

Digital elevation model (DEM) 

Topography was defined by a DEM that describes the elevation of any point in a given area at a 

specific spatial resolution. A Shuttle Radar Topographic Mission Digital Elevation Model 

(SRTM DEM) of 90 meters’ resolution from the Consultative Group on International 

Agricultural Research-Consortium for Spatial Information (CGIAR-CSI; 

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp) was used to represent land surface 

drainage patterns. Terrain characteristics such as slope gradient, slope length of the terrain, and 

stream network characteristics such as channel slope, length, and width were derived from the 

DEM.  

 

Soil data 

The soil map (1:5000000) developed by the Food and Agriculture Organization of the United 

Nations (FAO-UNESCO) was downloaded from http://www.fao.org/soils-portal/soil-survey/soil-

maps-and-databases/faounesco-soil-map-ofthe-world/en/. Soil information such as soil textural 

and physiochemical properties needed for the SWAT model were extracted from Harmonized 

World Soil Database v1.2, a database that combines existing regional and national soil 

information (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-

world-soil-databasev12/en/) with information provided by the FAO-UNESCO soil map (Polanco 

et al., 2017). The soil map was linked with the soil database which is a soil database designed to 

hold data for soils not included in the U.S. 
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LULC map 

The LULC maps were produced from satellite-remote-sensing Landsat images for 1973, 1985, 

1995, and 2010 at a scale of 30 m x 30 m resolution. Detailed descriptions on image processing 

and land cover classification are available in the next section 5.3. The classified LULC spatial 

data were reclassified into SWAT land cover/plant types. A user look up table was created to 

identify the SWAT code for the different categories of LULC on the map as per the required 

format.  
 
Weather data 

SWAT requires daily meteorological data that can either be read from a measured data set or be 

generated by a weather generator model. The daily weather variables used in this study for 

driving the hydrological balance are daily precipitation, minimum and maximum air temperature 

for the period 1971– 2010. These data were obtained from ENMA for stations located within and 

around the watershed (Figure 4-1). For the detail description, please refer section Chapter 4. 

5.3 Remote sensing land use/cover map (LULC) 
 

Landsat image acquisition   
Landsat images from the years 1973, 1985, 1995, and 2010 were accessed from the US 

Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) via 

http://glovis.usgs.gov. The Landsat images were selected based on the criteria of the acquisition 

period, availability, and percentage of cloud cover. Hayes and Sader (2001), recommend 

acquiring images from the same acquisition period to reduce image-to-image variation caused by 

sun angle, soil moisture, atmospheric condition, and vegetation-phenology differences. Cloud 

free-images were hence collected for the dry months of January to May. However, as the basin 

covers a large area, each of the LULC map’s periods comprised 16 Landsat images. Accessing 

all the images during a dry season in a single year was therefore difficult. Hence, images were 

acquired ±1 year for each period and some images were acquired in the months of November and 

December. For example, 16 Landsat MSS image scenes were acquired in 1973 (10 images in 

January, 4 images in December and 2 images in November; ±1 years) and merged to arrive at 

one LULC representation for selected years. Please see supplement Table 5-2for the details on 

Landsat images. 

 

Preprocessing and processing images  

Several standard preprocessing methods including geometric and radiometric correction were 

implemented to prepare the LULC maps from Landsat images. Although many different 

classification methods exist, supervised and unsupervised classifications are the two most widely 

used methods for land cover classification from remote-sensing images. Hence, in this study, a 

hybrid supervised/unsupervised classification approach was adopted to classify the images from 

2010 (Landsat TM). Iterative Self-Organizing Data Analysis (ISODATA) clustering was first 

performed to determine the image’s spectral classes or land cover classes. Polygons for all of the 

training samples based on the identified LULC classes were then digitized using ground truth 

data. The samples for each land cover type were then aggregated. Finally, a supervised 

classification was performed using a maximum likelihood algorithm to extract four LULC 

classes. 
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Table 5-2: Summary of Landsat images and their acquisition dates 

 

 

1985 1995 2010 1973 

1. General information 

 

Landsat 

MSS Landsat TM Landsat TM Landsat TM 

Number of scene 16 16 16 18 

Pixel resolution(m) 60 30 30 30 

2. Image acquisition date 

Paths/Rows 

acquisition 

date 

acquisition 

date 

acquisition 

date Paths/Rows 

acquisition 

date 

168/052 01/18/1985 12/13/1994 11/04/2009 180/053 01/30/1973 

168/053 04/22/1985 12/13/1994 11/04/2009 181/052 01/30/1973 

168/054 01/18/1985 01/14/1985 12/09/2010 181/053 12/26/1972 

169/051 11/12/1986 12/04/1994 01/30/2010 181/054 01/31/1973 

169/052 11/09/1986 12/04/1994 01/30/2010 181/055 01/31/1973 

169/053 04/15/1985 01/21/1995 01/14/2010 182/051 12/09/1972 

169/054 03/14/1985 01/21/1995 01/14/2020 182/052 02/01/1973 

170/051 02/17/1985 02/13/1995 12/23/2010 182/053 12/09/1972 

170/052 02/17/1985 02/13/1995 01/08/2011 182/054 02/01/1973 

170/053 02/01/1985 02/13/1995 01/08/2011 182/055 02/01/1973 

170/054 02/01/1985 12/27/1994 01/21/2010 183/051 11/04/1972 

170/055 01/19/1986 01/12/1995 11/05/2010 183/052 01/15/1973 

171/052 04/13/1985 02/20/1995 01/28/2010 183/053 01/15/1973 

171/053 04/13/1985 01/03/1995 01/12/2010 183/054 01/15/1973 

171/054 12/28/1985 01/19/1995 01/12/2010 184/051 12/11/1972 

171/055 04/16/1985 04/09/1995 11/05/2010 184/052 11/05/1972 

        184/053 12/11/1972 

        184/054 02/03/1973 

 
 

A total of 488 Ground Control Points (GCPs) regarding land cover types and their spatial 

locations were collected from field observation in March and April 2017 using a Global 

Positioning System (GPS). Reference data were collected and taken from areas, where there had 

not been any significant land cover change between 2017 and 2010. These areas were identified 

by interviewing local elderly people, and supplemented using high resolution Google Earth 

Images and the first author’s prior knowledge. As many as 288 GCPs were used for accuracy 

assessment and 200 points served as training sites to generate a signature for each land-cover 

type. The classifications’ accuracy was assessed by computing the error matrix (also known as 

the confusion matrix), which compares the classification result with ground truth information as 

suggested by DeFries and Chan (2000). A confusion matrix lists the values for the reference 

data’s known cover types in the columns and for the classified data in the rows (Banko, 1998). 

From the confusion matrix, a statistical metrics of overall accuracy, producers' accuracy and 
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users' accuracy are used. Another discrete multivariate technique useful in accuracy assessment 

is called KAPPA (Congalton, 1991). The statistical metric for KAPPA analysis is the Kappa 

coefficient, which is another measure of the proportion of agreement or accuracy. The Kappa 

coefficient is computed as 

 

 
  

                
 
   

   
   

             
 
   

 (5-11) 

 

 
Where r is the number of rows in the matrix, xii is the number of observations in row i and 

column i, xi+ and x+i are the marginal totals of row i and column i, respectively. N is the total 

number of observations.  

 

Once the land cover classification of the year 2010 Landsat image had been completed and its 

accuracy checked, the normalized difference vegetation index (NDVI) differencing technique 

(Mancino et al., 2014) was applied to classify the images from 1973, 1985, and 1995. This 

technique was chosen to increase the accuracy of classification, as it is hard to find an accurately 

classified digital or analog LULC map of the study area during 1973, 1985, and 1995. The 

information obtained from the elders is also more subjective and its reliability is questionable 

when there is a considerable time gap. We first calculated the NDVI from the Landsat MSS 

(1973) and three preprocessed Landsat TM images (1985, 1995, and 2010) following the general 

normalized difference between band TM4 and band TM3 images (5-12). The resulting 

successive NDVI images were subtracted from each other to assess the ΔNDVI image with 

positive (vegetation increase), negative (vegetation cleared) and no change at a 30 m x 30 m 

pixel resolution eqn. (5-13) to (5-15). The Landsat MSS 60 m x 60 m pixel-size data sets were 

resampled to a 30 m x 30 m pixel size using the “nearest neighbor” technique to have equal pixel 

sizes for the different images without altering the image data’s original pixel values. 

 
 

     
         

         
    

           

           
 (5-12) 

 
                                  

(5-13) 

 
                                  

(5-14) 

 
                                  

(5-15) 

 
The ΔNDVI image was then reclassified using a threshold value calculated as μ ± n*σ; where μ 

represents the ΔNDVI pixels value mean, and σ the standard deviation. The threshold identifies 

three ranges in the normal distribution: (a) the left tail (ΔNDVI < μ − n*σ), (b) the right tail 

(ΔNDVI > μ + n*σ), and (c) the central region of the normal distribution (μ − n*σ < ΔNDVI < μ 

+ n*σ). Pixels within the two tails of the distribution are characterized by significant land cover 

changes, whereas pixels in the central region represent no change. To be more conservative, n = 
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1 was selected for this study to narrow the threshold ranges for reliable classification. The 

standard deviation (σ) is one of the most widely applied threshold identification approaches for 

different natural environments based on different remotely sensed imagery (Hu et al., 2004; 

Jensen, 1996; Lu et al., 2004; Mancino et al., 2014; Singh, 1989) as cited by Mancino et al. 

(2014).  

 

ΔNDVI pixel values (2010–1995) in the central region of the normal distribution (μ − n*σ < 

ΔNDVI < μ + n*σ) represent an absence of land cover change between two different periods 

(i.e., 1995 and 2010); therefore, pixels from 1995 corresponding to no land cover change can be 

classified as similar to the 2010 land cover classes. Pixels with significant NDVI change are 

reclassified using supervised classification, taking signatures from the already classified, no-

change pixels. Likewise, 1985 and 1973 land cover images were classified based on the 

classified images of 1995 and 1985 respectively.  

 

Finally, after classifying the raw Landsat images into different land cover classes, change 

detection, which requires the comparison of independently produced classified images (Singb, 

1989), was performed by the post classification method. The post classification change-detection 

comparison was conducted to determine changes in LULC between two independently classified 

maps from images of two different dates. Although this technique has some limitations, it is the 

most common approach because it does not require data normalization between two dates 

(Singh, 1989). This is because data from two dates are separately classified, thereby minimizing 

the problem of normalizing for atmospheric and sensor differences between two dates.  

 

 
 
Figure 5-4: Schematic  representation of Landcover classification 

 

Unchanged 

NDVI

Supervised 

classification

Unchanged 

NDVI

1995 

LTM 

1985 

LTM

1973 

LMSS

2010 

LTM 

Suppervised 

Landcover 2010

Accuracy 

analysis

Select training 

samples

LC change 

detection (1995-

2010)

LC change 

detection

(1985-1995)

LC change 

detection 

(1973-1985)

NDVI

NDVI  

change 

1985 landcover 

map
1975 

GCP

GCP

NDVI  Map 

(2010) NDVI Map NDVI NDVI 

NDVI

NDVI  

change 

Changed 

NDVI

NDVI

NDVI  

change 

Changed 

NDVI

Supervised 

classification

Convert DN 

to TOA

Layer 

Mosaicing

NDVI 

threshold (μ -

n·σ < ΔNDVI 

< μ + n·σ

1995 

Changed 

NDVI

Supervised 

classification

Unchanged 

NDVI

Pre 

processing



 

81 

 

5.4 Results and Discussions 

5.4.1 Land-cover classification, accuracy assessment and change detection 
 

According to the confusion-matrix report, overall accuracy of 83 %, producer’s accuracy values 

for all classes ranged from 75.4 % to 100 %, user's accuracy values ranging from 83.7 % to 91.7 

% and a kappa coefficient (k) of 77% were attained for the 2010 classified image (Table 5-3). 

Monserud (1990) suggested a kappa value of <40 % as poor, 40–55 % fair, 55–70 % good, 70–

85 % very good, and >85 % as excellent. According to these ranges, the classification in this 

study has very good agreement with the validation data set and meets the minimum accuracy 

requirements to be used for further change detection and impact analysis.  

 
Table 5-3: Confusion (error) matrix for the 2010 land use/cover classification map 

 
 

 

Classified data 

 

LULC class Water Forest Cultivated  

Bushes and 

shrubs 

Row 

total 

Producers’ 

accuracy 

R
ef

er
en

ce
 d

at
a
 

Water 44 0 0 0 44 100 

Forest 1 46 6 8 61 75.4 

Cultivated land 2 3 77 15 97 79.4 

Bushes and shrubs 1 3 9 73 86 84.9 

Column total 48 52 92 86 288   

User's accuracy (%) 91.7 88.5 83.7 84.9     

Over all accuracy (%) 83           

Kappa (%) 77           

 
The classified images of the basin (Figure 5-5) have shown different LULC proportions at four 

distinct periods. Cultivated land dominantly covers (62.9 %) of UBNRB, followed by bushes and 

shrubs (18 %), forest (17.4 %), and water (1.74 %) in 1973. In 1985, cultivated land area 

increased to 65.6 %, followed by bushes and shrubs (18.3 %), while forest decreased to 14.4 %, 

and water remained unchanged at 1.7 %. In 1995, cultivated land area further increased to 67.5 

%, followed by bushes and shrubs (18.5 %). Forest further decreased to 12.2 % and water 

remained unchanged at 1.7 %. In 2010, cultivated land decreased to 63.9 %, bushes and shrubs 

increased to 18.8 %, forest increased to 15.6 %, and water remained unchanged at 1.7 %. During 

the entire 1973–2010 period, cultivated land, along with bushes and shrubs remained the major 

proportions compared to the other LULC classes. The highest increase (2.7 %) and the largest 

decrease (−3.6 %) in cultivated land occurred during the 1973–1985 and 1995–2010 periods 

respectively. The largest increase in bushes and shrubs was 0.3 % from 1973 to 1985, whereas 

the largest increase in forest coverage (3.4 %) was recorded during the 1995–2010 period. Water 

coverage remained unchanged from 1973 to 2010.  
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Figure 5-5: Landcover map of UBNRB derived from Landsat images for the years a) 1973, b) 1985, c) 1995, 

and d) 2010 

 
Although, the image classification results show very good accuracy, uncertainties in 

classification could be expected. First, as elsewhere in Ethiopia, LULC may change rapidly over 

the land surface of the basin and image reflectance may be confusing due to the topography and 

variation in the image acquisition date. Landsat images were not all available for one particular 

year or one season (as described under section 5.3); images from different years and different 

seasons might harbor errors. Secondly, the workflow associated with LULC classification 

involves many steps and can be a source of uncertainty. The errors are observed in the classified 

LULC map as shown in Figure 5-5. On the western side of the map in Figure 4 (a) a rectangular 

section with forest appears, that completely disappears in 4(b). Rectangular forest cover appears 

in the northern part of the country in 4(b), which again disappears completely in 4(c). In 4(d), 

forest cover with linear edges (North-South) appears on the map’s eastern side. That being 

a) b) 

d) c) 
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recognized, the land-cover mapping is reasonably accurate overall, providing a good base for 

land-cover estimation and for providing basic information for the hydrological impact analysis.  

 
Table 5-4: Transition matrix of Landuse/Cover change 

 

1973/1985 

 (Area Km
2
) Water Forest 

Bushes & 

Shrubs Cultivated Total 

Coverage 

(%) 

Water 3013.3 11.7 9.8 7.8 3,042.6 1.7 

Forest 2.1 17,321.2 3,641.6 9,310.5 30,275.4 17.4 

Bushes & Shrubs 13.1 1,385.4 25,254.6 4,651.4 31,304.4 18.0 

Cultivated 2.6 6,316.6 2,947.2 100,278.0 109,544.4 62.9 

Total 3,031.1 25,035.0 31,853.2 114,247.6 174,166.9 

 Coverage (%) 1.7 14.4 18.3 65.6 100.0 

 Change (%) -0.4 -17.3 1.8 4.3 

  1985/1995 (Area km
2
) 

Water 3,027.1 1.4 0.5 2.1 3031.1 1.74 

Forest 1.6 14,668.9 1,349.5 9,020.6 25,040.5 14.37 

Bushes  & 

Shrubs 0.0 875.2 27,571.3 3,409.1 31,855.6 18.28 

Cultivated 7.8 5,772.9 3,382.8 105,103.0 114,266.5 65.59 

Total 3,036.5 21,318.4 32,304.1 117,534.7 174,193.7 

 Coverage (%) 1.7 12.2 18.5 67.5 

  Change (%) 0.2 -14.9 1.4 2.9 

  1995/2010 (Area km
2
) 

Water 3,009.7 15.0 6.1 5.7 3036.5 1.7 

Forest 0.7 16,251.6 710.7 4,355.4 21318.4 12.2 

Bushes & Shrubs 1.2 1,089.5 27,766.5 3,446.9 32304.1 18.5 

Cultivated 4.3 9,861.1 4,222.2 103,447.2 117534.7 67.5 

Total 30,16.0 27,217.1 32,705.5 111,255.1 174,193.7 

 Coverage (%) 1.7 15.6 18.8 63.9 

  Change (%) -0.7 27.7 1.2 -5.3 

   

Table 5-4 and Figure 5-5 depict LULC classification during the period 1973, 1985, 1995 and 

2010. In 1973, the upper Blue Nile basin was dominated by cultivated land (62.9%), followed by 

bushes & shrubs (18%), forest (17.4%), and water (1.74%). In 1985, the cultivated land 

increased to (65.6%), followed by bushes & shrubs (18.3%), forest decreased to (14.4%), and 

water remained unchanged to (1.7%). In 1995, cultivated land further increased to (67.5%), 

followed by bushes & shrubs (18.5%), forest further decreased to (12.2%), and water remained 

(1.7%). In 2010, the cultivated land decreased to (63.9%), bushes and shrubs increased to 18.8 

%, forest increased to 15.6 % and water remained unchanged to 1.7%.  
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Table 5-5: Summary of  LULC change detection for the UBNRB 

  Area (km
2
) Change 

Landcover 1973 1985 1995 2010 1973-1985 1985 -1995 1995 -2010 1973-2010 

Water 3,042 3,031  3,036.5  3,016.0  -0.4 0.2 -0.7 -0.9 

Forest 30,275  25,040 21,318  27,217  -17.3 -14.9 27.7 -10.1 

Bushes 

&Shrubs 31,304  31,856  32,304  32,705  1.8 1.4 1.2 4.5 

Cultivated 109,544 114,266  117,535  111,255  4.3 2.9 -5.3 1.6 

Total 174,166  174,194  174,194  174,194         

 

Table 5-5 and Figure 5-6 show the proportion of each land cover class that made a transition 

from one category to another for each of the study periods. During the whole period (1973–

2010), cultivated land and bushes & shrubs were the major proportions as compared to the other 

land use/cover classes. The highest gain (4.3%) and the highest loss (5.3%) in cultivated land 

occurred during the period 1973–1985 and 1995-2010 respectively. The highest gain in bushes 

and shrubs was (1.8%) from the period 1973 to1985, while the highest gain in forest (27.7%) 

was experienced during the period 1995–2010. The water coverage persists unchanged during 

1973-2010.  In other words, in the period 1973–1985, a decrease in the natural forest cover by 

17.3% was observed while  bushes & shrubs and cultivated land increases by 1.8% and 4.3% 

respectively from the initial states.  In the period 1985-1995, a decrease of 14.9 % in forest 

coverage was observed while bushes &shrubs and cultivated land increased by 1.4 % and 2.9% 

respectively. In the period of 1995-2010, in reverse to the past periods, the forest coverage 

increased by 27.7% while cultivated land decreased by 5.3%, and bushes and shrubs again 

increased by 1.2%.  

 

a)         b)     c)         
   

   
 
Figure 5-6: a) LULC composition, b) LULC change from consecutive periods c) LULC change in the UBNRB 

from the baseline period 1973  

 
The rate of expansion of cultivated land before 1995 was higher than after 1995. Conversely, the 

area of the forestland decreased in 1985 and 1995 with reference to the 1973 baseline. However, 

after 1995, the forest’s size increased again whereas cultivated land decreased. The increased 

forest coverage and the decrease in cultivated land over the period 1995 to 2010 showed that the 
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environment was recovering from the devastating drought, and forest clearing for firewood and 

cultivation due to population growth has been minimized. This could be due to the afforestation 

program, which the Ethiopian government initiated, and to the extensive soil and water 

conservation measures carried out by the community. Since 1995, eucalyptus tree plantation 

expanded significantly across the country at homestead level for fire wood, construction 

material, charcoal production, and income generation (Woldesenbet et al., 2017b). In summary, 

forest coverage decreased by 1.8 %, while both bushes and shrubs as well as cultivated land 

increased by 0.8 % and 1 % respectively during the 2010 period from the original 1973 level 

(Figure 5-6 c). This result agrees well with other studies (Gebremicael et al., 2013; Rientjes et 

al., 2011a; Teferi et al., 2013; Woldesenbet et al., 2017b), who reported a significant conversion 

of natural vegetation cover into agricultural land.   

5.4.2  SWAT model performance evaluation  
 

Parameter sensitivity  

The SWAT model’s most sensitive parameters for simulating streamflow were identified using 

global sensitivity analysis of SWAT-CUP. The most sensitive input hydrologic parameters 

identified based on global sensitivity analysis of SWAT-CUP and used for streamflow 

simulations are presented in Table 5-7. Eight parameters were found to be sensitive with the 

relative sensitivity p values range from 0.0 to 0.50 and t values range from -6.21 to -0.67. The 

ranking of the parameters were different for different model runs where sensitivity test was 

carried out. However, the curve number (CN2) was the main sensitive parameter for all model 

setups. This is due to the fact that the curve number depends on several factors including soil 

types, soil textures, soil permeability, land use properties etc. In addition,  base flow alpha factor 

(ALPHA_BF), soil evaporation compensation factor (ESCO), threshold water depth in the 

shallow aquifer required for return flow to occur (GWQMN), groundwater “revap” coefficient 

(GW_REVAP), and available water capacity (SOL_AWC) were found to be the most sensitive 

parameters for the calibration process. These sensitive parameters were considered for model 

calibration. Their optimized values were determined by the calibration process that Arnold et al. 

(2012) recommended.  

 
Calibration and validation of SWAT model  

 

The performance of the model was evaluated by comparing the simulated monthly streamflow 

from the model setups, which represent the four different decades, with the observed streamflow 

data. The model performance statistics for the calibration and validation periods are presented in 

Table 5-6.  For calibration and uncertainty evaluation, 200 simulations have been performed in 

each iteration for each model run. Initial parameter estimates were taken from the default lower 

and upper bound values of the SWAT model database and from earlier studies in the basin 

e.g.(Gebremicael et al., 2013). The calibration parameters were derived for four independent 

models that were setup for the periods 1970s, 1980s, 1990s and 2000s.  Figure 5-7 shows the 

calibration and the validation results for monthly streamflow hydrographs for each model. These 

results revealed that the model represents the monthly hydrographs well as also indicated by  R
2
, 

NSE, and RVE (%) statistical performance measures (Table 5-6). For the calibration period, the 

values of R
2
,
 
NSE, and RVE (%) range from 0.79 to 0.91, 0.74 to 0.91, and −3.4 % to 4 %, 

respectively. According to the rating of Moriasi et al. (2007), the SWAT model’s performance 

over the UBNRB can be categorized as very good.  
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Table 5-6: The SWAT model’s statistical performance measure values  

 

Period 

 

R
2
 NSE RVE (%) P-factor R-factor 

1970s 

Calibration (1973–1977) 0.79 0.74 −3.41 0.87 1.13 

Validation (1978–1980) 0.84 0.83 7.18 0.89 1.33 

1980s 

Calibration (1983–1987) 0.80 0.74 −0.72 0.95 1.87 

Validation (1988–1990) 0.86 0.82 0.73 0.92 1.61 

1990s 

Calibration (1993–1997) 0.91 0.91 1.79 0.67 0.96 

Validation (1998–2000) 0.87 0.84 −3.56 0.64 0.88 

2000s 

Calibration (2003–2007) 0.86 0.86 3.99 0.98 0.92 

Validation (2008–2010) 0.94 0.92 −7.51 0.83 0.95 

 

 
Table 5-7: SWAT sensitive model parameters and their (final) calibrated values for the four model runs 

 
Parameter Optimum value 

 1970s 1980s 1990s 2000s 

R-CN2 0.88 0.91 0.92 0.9 

a-Alpha-BF 0.028 0.028 0.028 0.028 

V-GW_REVAPMN 0.7 0.45 0.7 0.34 

V-GWQMN 750 750 750 750 

V-REVAPMN 550 450 425 550 

a-ESCO −0.85 −0.85 −0.85 −0.85 

R-SOL_AWC 6.5 6.5 6.5 6.5 

R: value from the SWAT database is multiplied by a given value; V: replace the initial parameter by the given value; 

a: adding the given value to initial parameter value. 

 

The higher R
2
 for both model setups indicated a very good linear relationship between simulated 

and observed streamflow data. Positive and negative values of RVE (%) indicated a tendency for 

underestimation and over estimation of monthly streamflow respectively. However, the low 

magnitude of RVE values corresponded to a performance rating of “very good”. The RVE result 

showed a very small accumulation of difference in streamflow volume between the simulated 

and observed data for the calibration period. The optimal parameter values of the four calibrated-

model runs are shown in Table 5-7. A change was obtained for CN2 parameter values, which can 

be attributed to the catchment’s response behavior mainly because of the difference in the LULC 

data between the four model setups. For instance, an increase in the absolute average (basin-

wide) CN2 value in the 1980s and 1990s from 72.9 to 74.7 and 75.6 compared to the 1970s 

respectively, indicate a reduction in forest coverage and expansion of cultivated land. On the 

contrary, a decrease in CN2 value was attained during the period 1990s to 2000s from 75.6 to 

73.6, attributed to the increase in forest coverage and reduction in cultivated land. These final 

fitted parameter values were incorporated into the SWAT2012 model for validation and further 
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applications.  For the validation period, the values of R
2
,
 
NSE, and RVE (%) ranged from 0.84 to 

0.94, 0.82 to 0.92 and −7.5 % to 7.2 % respectively. 

 

a)       b) 
 

 
 
c)       d) 
 

 
 
Figure 5-7: Calibration and validation of the SWAT hydrological model (left and right) respectively at 

monthly time scale; a) 1970s, b) 1980s, c) 1990s, and d) 2000s  

 

Uncertainty analysis 

 

Hydrological modeling obviously contains uncertainties in particular from (1) the uncertainty of 

measured or recorded spatial and temporal field data (Abbaspour, 2008), and (2) the uncertainty 

of the applied hydrological model itself . In this way, the present research has clear limitations. 

Each of the above sources of uncertainty applies, and not all of them can be quantified. Thus, the 

results should be treated with appropriate caution. The hydrographs of 95 PPU plots derived 

from four different SWAT model runs are presented in Figure 5-8. The model produced P-factor, 

which is the percentage of observations bracketed by the 95% prediction uncertainty (95PPU), 

values in the range of 0.67 to 0.98 and R-factor values in the range of  0.92 to 1.87 during 

calibration and from 0.64 to 0.92 and 0.88 to 1.61 during validation respectively (Table 5-7). The 

uncertainty factors showed acceptable model uncertainty estimates. Although performance 

indicators yielded fair and acceptable results, the P-factor during the period 1990s was still 

below the recommended model performance of 70% (Abbaspour, 2008). This problem indicates 
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that there is high uncertainty of simulated streamflow due to errors either in spatial or temporal 

inputs data. Generally, there was a good agreement between the observed and simulated flows in 

both model setups, but a few baseflow was underestimated. 
 

a)               b) 

      
 

c)        d) 

       
 
Figure 5-8: 95 PPU plots derived from running SUFI-2 within the SWAT-CUP for different model runs during 

calibration a) 1970s, b) 1980s, c)1990s and d) 2000s. 

 

5.4.3  Combined effects of climate change and LULC changes 
 

The simulation results of the four independent, decadal-time-scale calibrated and validated 

SWAT model runs reflect the combined effect of both LULC and climate change during the past 

40 years (Table 5-9). From the simulation result, mean annual streamflow increased by 16.9 % 

between the 1970s and the 2000s, while the observed mean annual streamflow increased by 15.3 

% for the same period. However, the rate of change is different in different decades. For 

example, it increased by 3.4 % and 9.9 % during the 1980s and 1990s respectively from the 

baseline 1970s period.  

 

The ratio of mean annual streamflow to mean annual precipitation (Qt/P) increased from 19.4 % 

to 22.1 % while the actual evaporation to precipitation (Ea/P) ratio decreased from 61.1 % to 

60.5 % from the 1970s to 2000s. Moreover, the ratio of surface runoff to streamflow (Qs/Qt) 

increased notably from 40.7 % in the 1970s to 50.1 % and 55.4 % in the 1980s and 1990s 

respectively, and decreased to 43.7 % in the 2000s. In contrast, the base flow to streamflow ratio 

(Qb/Qt) notably decreased from 17.1 % in the 1970s to 10.3 % and 3.2 % respectively during the 

1980s and 1990s, but has increased to 20 % in the 2000s. The result for surface runoff agrees to 

findings in (Gebremicael et al., 2013), but disagreement is observed for baseflow. The study 

reported that surface runoff (Qs) contribution to the total river discharge increased by 75 %, 

while the baseflow (Qb) decreased by 50 % from the 1970s to 2000s.  
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Furthermore, the SWAT simulation result from Table 5-9 and Figure 5-9 revealed that the Revap 

is a significant contributor to the total actual evapoation (TAE) in the UBNRB for the last 40 

years. The mean annual contribution of Revap ranged from 21.4–25.6 %, this could be due to the 

large coverage of deep rooted Eucalyptus tree species that can access the saturated zone (Neitsch 

et al., 2011). The Revap component in this study appears consistent with the results of (Abiodun 

et al., 2018; Benyon et al., 2006), who reported the annual Revap contribution to TAE ranged 

from 13–72 % and 20 % respectively for south-eastern Australia and Sixth Creek Catchments. 

 
Table 5-8: Summary of the UBNRB’s precipitation indices on daily time series data 

Indices 1970s 1980s 1990s 2000s 

Mean (mm) 4.17 4.05 4.42 4.16 

95 percentile (mm) 12.57 12.52 13.66 13.31 

99 percentile (mm) 17.34 17.77 19.44 19.65 

1-day max (mm) 27.15 25.67 32.24 32.38 

R20mm (days) 16 15 30 35 

SDII (mm/day) 7.22 7.38 7.66 7.77 
SDII is the ratio of total precipitation (mm) to R1mm (days). 

 

In general, 1.8 % forest cover loss and 1 % increased cultivated land combined with 2.2 % 

increased rainfall from the 1970s to the 2000s led to a 16.9 % increase in simulated streamflow. 

The 1990s was the period during which the greatest deforestation and expansion of cultivated 

land was reported. Meanwhile, it was the time when the rainfall intensity and the number of 

rainfall events have significantly increased compared to the 1970s and 1980s, as shown in Table 

5-8. Hence, the increased mean annual streamflow could be ascribed to the combined effects of 

LULC and climate change.  

 

In the case of (Qs/Qt), the increasing pattern could be ascribed to increasing rainfall intensities 

and the expansion of cultivated land and diminution of forest coverage, which might adversely 

affect soil/water storage and decrease rainfall infiltration, thereby increasing water yield or 

streamflow. In contrast, the decreasing Qb/Qt is positively related to the increasing 

evapotranspiration linked to both LULC and climate factors (Table 5-9). This hypothesis can be 

explained with the change in CN2 parameter values obtained during calibration of the four 

SWAT model runs. The CN2 parameter value, which is a function of evapotranspiration derived 

from LULC, soil type, and slope increased in the 1980s and 1990s relative to the 1970s, and 

could be associated with the expansion of cultivated land and shrinkage of forestland. The 

increasing CN2 results reflect more surface runoff and less baseflow being generated. 
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Figure 5-9: Ratio of water balance component analysis at the El Diem station using an isolated effect 

(LULC/climate change) 

 
Table 5-9: Mean annual water-balance-components analysis in the UBNRB by considering LULC and climate 

change over respective periods. All streamflow estimates are for El Diem station. 

 

  Unit 1970s 1980s 1990s 2000s Change (%) 

 

 

    

1970s-
1980s 

1970s-
1990s 

1970s-
2000s 

Precipitation (P) mm 1428 1397 1522 1462 -2.2 6.6 2.4 

Observed streamflow  (m
3
s

-1
) 1549 1583 1686 1787 2.2 8.8 15.3 

Surface flow (Qs) mm 112.8 143.4 168.6 141.4 27.1 49.5 25.4 

Lateral flow (Ql) mm 116.8 113.4 125.9 117.6 -3.0 7.8 0.7 

Base flow (Qb) mm 47.3 29.6 9.8 64.7 -37.4 -79.3 36.8 

Total water yield (Qt) mm 276.9 286.3 304.3 323.7 3.4 9.9 16.9 

Er=Revap  mm 269.2 257.2 310.6 241.0 -2.2 3.8 1.5 

Ea (Ec+Et+Es) mm 871.6 852.6 904.3 885.0 -4.5 15.4 -10.5 

TAE mm 1141 1110 1215 1126 -2.7 6.5 -1.3 

Recharge (deep aquifer) mm 16.7 15.0 16.7 16.3 -10.2 0.0 -2.4 

Change in soil water  mm -6.3 -14.0 -13.7 -3.5    

Qs/Qt % 40.7 50.1 55.4 43.7    

Qb/Qt % 17.1 10.3 3.2 20.0    

Qt/P % 19.4 20.5 20.0 22.1    

Er (Revap)/TAE % 23.6 23.2 25.6 21.4    

Ea/P % 61.0 61.0 59.4 60.5    

where: water yield (Qt) =Qs+ Ql + Qb; Change in soil storage =P-Qs-Ql-Qb-Ea-Revap-Recharge 
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Another important factor contributing to decreasing of surface runoff and increasing base flow 

ratio from 1990s to the 2000s could be the establishment of soil and water conservation (SWC) 

measures. According to Haregeweyn et al. (2015), various nationwide SWC initiatives such as 

Food for Work (FFW), Managing Environmental Resources to Enable Transition (MERET) to 

more sustainable livelihoods, Productive Safety Net Programs (PSNP), Community Mobilization 

through free-labor days, and the National Sustainable Land Management Project (SLMP) have 

been undertaken since the 1980s. Haregeweyn et al. (2015) evaluated these initiatives’ 

effectiveness and concluded that community labor mobilization seems to be the best approach. 

This can reduce mean seasonal surface runoff by 40 %, with broad spatial variability ranging 

from 4 % in Andit Tid (northwest Ethiopia) to 62 % in Gununo (south Ethiopia).  

 

5.4.4 Single impacts of LULC changes 
 

(Yan et al., 2013) used "A fixing -changing" method, which was also applied to this study, to 

identify the hydrological impacts of LULC change alone. The calibrated and validated SWAT 

model and its parameter settings in the baseline period was forced by weather data from the 

baseline 1973–1980 period while changing only the LULC maps from 1985, 1995, and 2010, 

keeping the DEM and soil data constant as suggested by Hassaballah et al. (2017a). The result 

from Figure 5-9 indicated that Qs/Qt ratio changed from 40.7 % to 41.2 %, 41.9 %, and 40.9 % 

respectively by using the LULC maps from 1973, 1985, 1995 and 2010, whereas the Qb/Qt ratio 

changed from 17.1 % to 16.8 %, 16.5 %, and 16.9 % respectively. The largest Qs/Qt ratio (41.9 

%) and the smallest Qb/Qt ratio (16.5 %) were recorded with the 1995 LULC map. This could be 

attributed to the 5.1 % reduction in forest coverage and 4.6 % increase in cultivated land with the 

1995 LULC map relative to the 1973 LULC map.  

 

On a basin scale over a decadal period, water gains mainly from precipitation. The losses are 

mainly due to runoff and evapotranspiration (Oki et al., 2006) as the losses due to the deep 

percolation over the whole UBNRB is negligible (Steenhuis et al., 2009). The long-term mean 

annual deep percolation simulated in this study is about 16.7 mm constant in four decadal 

periods, which is about 6 % of the total water yield. With the fixing-changing approach, the 

change in streamflow attributable to LULC change was essentially the change in 

evapotranspiration between the two periods, as the amount of precipitation was constant (1970s) 

and the change in water storage during the two periods was similar (Yan et al., 2013). Annual Ea 

losses from seasonal crops are smaller than those from forests, because seasonal crops transpire 

during a relatively shorter time interval than perennial trees do (Yan et al., 2013). As a result, the 

actual mean annual Ea simulated by the SWAT model was 871.6 mm at the baseline. It 

decreased to 871.4 mm and 871 mm in 1985 and 1995 respectively and increased to 872.1 mm in 

2010. This could be due to simultaneous expansion of cultivated land and shrinkage in forest 

coverage in the 1985 and 1995 LULC maps relative to the 1973 base line. Furthermore, this 

deforestation may reduce canopy interception of the rainfall, decrease soil infiltration by 

increasing raindrop impacts, and reducing plant transpiration, which can significantly increase 

surface runoff and reducing base flow (Huang et al., 2013). Here, the evapotranspiration change 

caused by the LULC change is minimal. As a result, the change for surface runoff and baseflow 

is not significant. 
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5.4.5  Single impacts of climate change 
 

The impacts of climate change are analyzed by running the four models using a unique LULC 

map from 1973 with its model parameters while changing only the weather data sets from 1970s, 

1980s, 1990s, and 2000s. The simulated water balance components shown in Figure 5-9 indicate 

that the Qs/Qt ratio increased from 40.7 % to 45.2 %, 45.6 %, and 46.2 % during the 1970s, 

1980s, 1990s and 2000s respectively, while the Qb/Qt ratio changed from 17.1 % to 13.5 %, 14.9 

%, and 12.7 % for the same simulation periods. The decreasing Qb/Qt ratio for the altered 

periods compared to the baseline period could be attributed to evapotranspiration changing from 

872 mm to 854 mm, 906 mm, and 884 mm respectively in 1970s, 1980s, 1990s, and 2000s, 

which can be linked to temperature and amount of rainfall. However, to understand the effect of 

climate change on the water balance components, it is important to know the dominant rainfall-

runoff process in the study area.   

 

Although, no detailed research has been conducted on the Upper Blue Nile basin to investigate 

the runoff-generation processes, Liu et al. (2008) investigated the rainfall-runoff processes at 

three small watersheds located inside and around the Upper Blue Nile basin, namely, Mayber, 

AnditTid, and Anjeni. Their analysis showed that, unlike in temperate watersheds, in monsoonal 

climates, a given rainfall volume at the onset of the monsoon produces a different runoff volume 

than the same rainfall at the end of the monsoon. Liu et al. (2008) and Steenhuis et al. (2009) 

showed that the ratio of discharge to precipitation minus evapotranspiration, Q/(P − ET), 

increases with cumulative precipitation from the onset of monsoon. This suggests that saturation 

excess processes play an important role in watershed response.  

 

Furthermore, the infiltration rates that Engda (2009) measured in 2008 were compared with 

rainfall intensities in the Maybar and Andit Tid watersheds located inside and around the 

UBNRB. In the Andit Tid watershed, which has an area of less than 500 ha, the measured 

infiltration rates at 10 locations were compared with rainfall intensities considered from the 1986 

–2004 period. The analysis showed that only 7.8 % of rainfall intensities were found to be higher 

than the lowest soil infiltration rate of 25mm h
-1

. Derib (2005) performed a similar analysis in 

the Maybar watershed (with a catchment area of 113 ha). The infiltration rates measured from 16 

measurements ranged from 19 mm h
-1

 to 600 mm h
-1

 with a 240 mm h
-1

 average and 180 mm h
-1

 

median whereas the average daily rainfall intensity from 1996 to 2004 was 8.5 mm hr
-1

. Hence, 

he suggested from these infiltration measurements that infiltration excess runoff is not a common 

feature in these watersheds.  

 

From the above discussion points, it is to be noted that surface runoff could increase with 

increasing total rainfall amount regardless of rainfall intensity. However, the mean annual 

rainfall amount in this study was decreasing from the 1970s to the 1980s (1428 mm and 1397 

mm respectively) while the (Qs/Qt) ratio increased from 40.7 % to 45.2 %. Similarly, the mean 

annual rainfall amount in the 1990s (1522 mm) was greater than the mean annual rainfall amount 

in the 2000s (1462 mm) while the (Qs/Qt) increased from 45.6 % to 46.2 %. In contrast, climate 

indexes such as 99-percentile rainfall, SDII (ratio of total precipitation amount to number of days 

when rainfall >1 mm (R1mm)), and number of days when rainfall >20 mm (R20mm) increase 

consistently from 1970 to the 2000s, as shown in Table 5-8. This indicates that the increasing of 

surface runoff might be due to an increasing of number of extreme rainfall events and rainfall 
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intensity. Although, we did not use hourly rainfall data for the SWAT model, this study 

suggested that infiltration excess of overland flow dominates the rainfall-runoff processes in the 

UBNRB, not saturation excess of overland flow. The contradiction from the previous studies 

might be due either to the limitation of the SWAT- CN method when applied in monsoonal 

climates or the overlooked of tillage activities, which significantly affect the soil infiltration rate. 

Extensive tillage activities are carried out across the basin at the beginning of the rainy season. 

Soils get disturbed as a result, which can increase the infiltration rate and ultimately decrease the 

amount of rainfall converted to runoff.  

 

Although the CN method is easy to use and provides acceptable results for discharge at the 

watershed outlet in many cases, researchers have concerns about its use in watershed models 

(Steenhuis et al., 1995; White et al., 2011). The SWAT-CN model relies with a statistical 

relationship between soil moisture condition and CN value obtained from plot data in the United 

States with a temperate climate that was never tested in a monsoonal climate exhibiting two 

extreme soil moisture conditions. In monsoonal climates, long periods of rain can lead to 

prolonged soil saturation whereas during the dry period, the soil dries out completely, which may 

not happen in temperate climates (Steenhuis et al., 2009). Hence, to assess the rainfall-runoff 

processes properly, further research that considers biophysical activities such as tillage and 

seasonal effects on soil moisture at representative watersheds of the basin is necessary.  

 
Table 5-10: The mean annual hydrological response in the combined and isolated LULC and climate change 

effect. 

  Simulated (mm) Change (mm) Contribution (%) 

    1970s 1980s 1990s 2000s 

1970s

-

1980s 

1970s

-

1990s 

1970s

-

2000s 

1970s

-

1980s 

1970

-

1990 

1970 

- 

2000 

P 

 

Cld 1428 1397 1522 1463             

Cls 1428 1428 1428 1428             

LUL

C 

 

LUs 1973 1973 1973 1973             

LUd 1973 1985 1995 2010             

Qs 

 

 

ClCe 112.8 125.8 147.0 132.8 13.0 34.2 20.0 87.6 90 95.7 

LuCe 112.8 114.4 115.8 113.1 1.6 3.0 0.3 10.8 7.9 1.4 

Combe 112.8 127.6 150.8 133.7 14.8 38.0 20.9       

Ql 

 

 

ClCe 116.8 115.1 127.3 118.3 -1.7 10.5 1.5 82.9 98 100 

LuCe 116.8 116.4 117.0 116.8 -0.4 0.2 0.0 19.0 1.9 0.0 

Combe 116.8 114.7 127.5 118.3 -2.1 10.7 1.5       

Qb 

 

 

ClCe 47.3 37.5 48.0 36.4 -9.8 0.7 -10.9 93.7 -100 94.8 

LuCe 47.3 46.7 45.9 46.7 -0.6 -1.4 -0.6 5.7 200 5.2 

Combe 47.3 36.8 46.6 35.8 -10.5 -0.7 -11.5       
Note: Cld in the table denotes climate dynamics, Cls: climate static, LUs: LULC static, LUd: LULC dynamics, 

ClCe: climate change effect, LuCe: LULC change effect and Combe: combined effect.  
 

The contrast between the isolated climate change and isolated LULC changes (Table 5-10) 

indicated that surface runoff simulation due to combined effect increased by 14.8 mm between 

1970s and 1980s periods while the isolated climate changes effect increased the surface runoff 

simulation by 13 mm, which accounted for about 87.6 % of the total surface runoff increment. 
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The isolated LULC changes increased surface runoff by 1.6 mm, which accounted for 10.8 % of 

the total surface runoff change (14.8 mm). Between this simulation period, combined LULC 

change and climate variation decreased baseflow by -10.5 mm, and the percent contributions 

were 93.7 % (-9.8 mm) for the climate variation and 5.7 % (-0.6 mm) for the LULC changes. 

The integrated effect of LULC change and climate variability increased surface runoff by 38 mm 

between 1970s and 1990s while the isolated effect of climate variation increased surface runoff 

by 34.2 mm, which accounted for 90 % of the total surface runoff change. Between these 

periods, the LULC changes alone increased surface runoff by 3 mm that contributed 7.9 % of the 

total change due to combined effects. Between this simulation period, the combined changes of 

LULC and climate decreased baseflow by -0.7 mm and the percent contribution were -100 % 

(0.7 mm) for the climate change and 200 % (-1.4 mm) for LULC change. For the period between 

1970s and 2000ss, the combined effects of LULC changes and climate change increased surface 

runoff by 20.9 mm while the isolated effect of climate change contributed about 95.7 % (20 mm) 

of the total surface runoff changes (20.9 mm). During this period, the surface runoff increased by 

0.3 mm due to LULC change alone, this accounted for 1.4 % of the total surface runoff change. 

Between this simulation period, combined changes of LULC and climate decreased baseflow by 

-11.5 mm, and the percent contributions were 94.8 % (-10.9 mm) for the climate change and 5.2 

% (-0.6 mm) for the LULC change.  

 

In conclusion, the above results showed that LULC change and climate variation during 1970s 

and 2000s increased surface runoff and decreased baseflow, but the contribution of climate 

change was significantly higher than that of LULC change. Teklay et al. (2019) showed similar 

findings in Gumara watershed, Lake Tana sub-basin. Likewise, Yin et al. (2017) reported a 

similar findings in a semi-humid and semi-arid transition zone in northwest China. 
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Chapter 6  Analyzing future climate changes of the upper Blue Nile 
River basin3 

 

6.1 Statistical downscaling methods for climate change analysis 
 

Due to the coarse spatial resolution of Global climate models (GCMs), they cannot be used at 

local or regional scale for impact studies; hence, there is need to bridge the gap between the 

large-scale variables (predictors) and local scale variables (predictands). The methods used to 

convert the coarse spatial resolution of GCM outputs into high-spatial resolution of point data are 

usually referred to as downscaling techniques (Chisanga et al., 2017). Generally, downscaling 

methods are classified in to dynamic and statistical downscaling (Fowler et al., 2007; Wilby et 

al., 2002). Dynamic downscaling nests higher resolution Regional Climate Models (RCMs) into 

coarse resolution GCMs to produce complete set of meteorological variables, which are 

consistent each other. The outputs from this method are still not at required scale to what the 

hydrological model require. These models are mostly complex and computationally expensive. 

In Statistical Downscaling methodologies, local climate information is derived by first 

determining statistical models which relate large-scale climate variables (or "predictors") to 

regional and local variables (or "predictands") (Wilby et al., 2004a). Statistical downscaling 

overcomes this challenge moreover it is computationally undemanding, simple to apply and 

provides the possibility of uncertainty analysis (Dibike et al., 2005; Semenov et al., 1997; Wilby 

et al., 2002). Extensive details on the strength and weakness of the two methods can be found 

(Wilby et al., 2007; Wilby et al., 1997).  Among the different possibilities, two well recognized 

statistical downscaling tools, a regression based Statistical Down-Scaling Model (SDSM) (Wilby 

et al., 2002) and a stochastic weather generator called Long Ashton Research Station Weather 

Generator (LARS-WG) (Semenov et al., 1997; Semenov et al., 2002) were chosen for this study. 

They have been tested in various regions e.g., (Chen et al., 2013; Dibike et al., 2005; Dile et al., 

2013; Elshamy et al., 2009b; Fiseha et al., 2012; Hashmi et al., 2011; Hassan et al., 2014; 

Maurer and Hidalgo, 2008; Yimer et al., 2009) under different climatic conditions of the world.  
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6.1.1 Description and approaches of LARS-WG Model  
 

LARS-WG is a stochastic weather generator, which can be used for the simulation of weather 

data at a single station under both current and future climate conditions. These data are in the 

form of daily time-series for a group of climate variables, namely, precipitation, maximum and 

minimum temperature and solar radiation (Chen et al., 2013; Semenov et al., 1997).  

 

Stochastic weather generators were originally developed for two main purposes: 

1. To provide a means of simulating synthetic weather time-series with statistical characteristics 

corresponding to the observed statistics at a site, but which were long enough to be used in an 

assessment of risk in hydrological or agricultural applications. 

2. To provide a means of extending the simulation of weather time-series to unobserved 

locations, through the interpolation of the weather generator parameters obtained from running 

the models at neighboring sites. 

 

It is worth noting that a stochastic weather generator is not a predictive tool that can be used in 

weather forecasting, but is simply a means of generating time-series of synthetic weather 

statistically ‘identical’ to the observations. New interest in local stochastic weather simulation 

has arisen because of climate change studies. At present, output from GCMs is of insufficient 

spatial and temporal resolution and reliability to be used directly in impact models. A stochastic 

weather generator, however, can serve as a computationally inexpensive tool to produce 

multiple-year climate change scenarios at the daily time scale which incorporate changes in both 

mean climate and in climate variability (Semenov et al., 1997). 

 

LARS-WG uses a semi-empirical distribution (EPM) that is defined as the cumulative 

probability distribution function(CDF) to approximate probability distributions of dry and wet 

series, daily precipitation, minimum and maximum temperatures.  

 
                         (6-1) 

 
EPM is a histogram of the distribution of 23 different intervals (ai-1, ai) where ai-1 < ai (Semenov 

et al., 2002), which offers more accurate representation of the observed distribution compared 

with the 10 used in the previous version. By perturbing parameters of distributions for a site with 

the predicted changes of climate derived from global or regional climate models, a daily climate 

scenario for this site could be generated, which can be used in conjunction with a process-based 

impact model for assessing the impacts. In general, the process of generating synthetic weather 

data can be categorized in three distinct steps: model calibration, model validation and scenario 

generation as represented in Figure 6-1 (a), which are briefly described by (Semenov et al., 

2002) as follows. LARS-WG will be able to generate synthetic weather data based on as little as 

a single year of observed daily weather data. However, since the generated weather data will be 

based on probability distributions derived from this observed data, so the more data observed 

used the closer LARS-WG be able to match the climate for the target site. The use of at least 20-

30 years of daily weather data is recommended.  
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Model calibration 

 

The inputs to LARS-WG are the series of daily-observed data (precipitation, minimum and 

maximum temperature) of the base period (1984-2011) and site information (latitude, longitude 

and altitude). After the input data preparation and quality control, model calibration is done to 

use the function “SITE ANALYSIS” in LARS-WG. In model calibration, the observed daily 

weather data at a given site were used to determine a set of parameters for probability 

distributions of weather variables. These parameters are used to generate a synthetic weather 

time series of arbitrary length by randomly selecting values from the appropriate distributions, 

having the same statistical characteristics as the original observed data but differing on a day-to-

day basis. The LARS-WG distinguishes wet days from dry days based on whether the 

precipitation is greater than zero. The occurrence of precipitation is modeled by alternating wet 

and dry series approximated by semi empirical probability distributions. 

 
Model validation 

 

Model validation is to analyze and compare the statistical characteristics of the observed and 

synthetic weather data to assess the ability of LARS-WG to simulate the precipitation, Tmax, 

and Tmin at the chosen sites in order to determine whether it is suitable for use in the study or 

not. The statistical characteristics of the observed and synthetic weather data are analyzed to 

determine if there are any statistically-significant differences using Chi-square goodness of fit 

test (KS) and the means and standard deviation using t and F test respectively by changing the 

parameters of LARS-WG (number of years and seed number).  Each of the tests computes a test 

statistics and a corresponding p-value, which indicate how likely that generated and observed 

data are coming from the same distribution. If p-value is very low and below the significance 

level, set to 0.05 in this study, then the generated simulated climate is unlikely to be the same as 

the ‘true’ climate. 
 

Generation of synthetic weather data  

 

The parameter files derived from observed weather data during the model calibration process are 

used to generate synthetic weather data having the same statistical characteristics as the original 

observed data.  
 

Generation of climate scenarios  

 

To generate climate scenarios at a site for a certain future period and an emission scenario, the 

LARS-WG baseline parameters, which are calculated from observed weather for a baseline 

period (1984-2011), are adjusted by the Δ-changes for the future period and the emissions 

predicted by a GCM for each climatic variable for the grid covering the site. In this study, the 

local-scale climate scenarios based on the SRES A2, A1B and B1 scenario simulated by the 

selected six GCMs are generated for the periods of 2011–2030, 2046–2065, and 2080–2099 to 

predict the future change of precipitation and temperature in UBNRB. 

 
 -changes were calculated as relative changes for precipitation and absolute changes for 

minimum and maximum temperatures eqn. (6-2) and (6-3), respectively. No adjustments for 

distributions of dry and wet series and temperature variability were made, because this would 
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require daily output from the GCMs which is not readily available from LARS-WG data set 

(Semenov and Stratonovitch, 2010). 

 
                                 (6-2) 

 
 

     
           

             
   

(6-3) 

 
In above equations, ΔTi and ΔPi are climate change scenarios of the temperature and 

precipitation, respectively, for long-term average for each month (1 ≤ i ≤ 12);              the 

long term average temperature simulated by the atmospheric observation global climate model 

(AOGCM) in the future periods per month for three time periods;                is the long term 

average temperature simulated by the model in the period similar to observation period (in this 

study 1984-2011) for each month. The above calculations are true for precipitation as well.  

 

For obtaining time series of future climate scenarios, climate change scenarios are added to the 

observations values by employing the change factor (CF) method eqns. (6-4) and (6-5) (in this 

study 1984-2011):  

 
            (6-4) 

 
             (6-5) 

 
T and P are time series of the future climate scenarios of temperature and precipitation (2011-

2100); Tobs and Pobs are observed temperature and precipitation. So, in LARS-WG downscaling 

unlike SDSM, large-scale atmospheric variables are not directly used in the model, rather, based 

on the relative mean monthly changes between current and future periods predicted by a GCM, 

local station climate variables are adjusted proportionately to represent climate change (Dibike et 

al., 2005).  

6.1.2  Description and approaches of SDSM 
 

The SDSM can be described as a hybrid of the stochastic weather generator and regression based 

in the family of transfer function methods.  A multiple linear regression model is developed 

between a few selected large-scale predictor variables and local-scale predictands such as 

temperature and precipitation to condition local scale weather parameters from large-scale 

circulation patterns. The stochastic component of SDSM enables the generation of multiple 

simulations with slightly different time series attributes, but the same overall statistical 

properties. (Wilby et al., 2002). It requires two types of daily data, the first type corresponds to 

local predictands of interest (e.g. temperature, precipitation) and the second type corresponds to 

the data of large-scale predictors (NCEP and GCM) of a grid box closest to the station.  
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The SDSM model categorizes the task of downscaling into a series of discrete processes such as 

quality control and data transformation, screening of predictor variables, model calibration, 

synthesize observed data, generation of climate change scenario, and diagnostic testing and 

statistical analysis as shown in Figure 6-1(b). Detail procedures and steps can be found (Wilby et 

al., 2002) for further reading. Screening potentially useful predictor-predictands relationships for 

model calibration is one of the most challenging but very crucial stages in the development of 

any statistical down scaling model. It is because of the fact that the selection of appropriate 

predictor variables largely determines the success of SDSM and also the character of the 

downscaled climate scenario (Wilby et al., 2007). After  routine  screening  procedures, the  

predictor  variables  that  provide  physically  sensible meaning  in  terms  of  their high 

explained variance,  correlation  coefficient (r)  and  the magnitude  of  their  probability  (p 

value) were  selected.   

 

a)                                                                                                  b) 

 

  

 
Figure 6-1: Schematic diagram of a) LARS WG analysis b) SDSM analysis source (Wilby et al., 2002) 

 

The model calibration process in SDSM was used to construct downscaled data based on 

multiple regression equations given daily weather data (predictands) and the selected predictor 

variables at each station. The model was structured as monthly model for both daily precipitation 

and temperature using the same set of the selected NCEP predictors for the calibration period. 

Hence, 12 regression equations were developed for 12 months. Bias correction and variance 

inflation factor was adjusted until the model replicates the observed data. Model validation was 

carried out by testing the model using independent data set. To compare the observed and 

simulated data, SDSM has provided summary statistics function that summarizes the result of 
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both the observed and simulated data. Time series of station data and large-scale predictor 

variable (NCEP reanalysis data) were divided into two groups, for the period from 1984-1995/ 

1984-2000 and 1996-2001/2001-2005 for model calibration and validation of 

HadCM3/canESM2 GCMs respectively.  

 

The Scenario Generator operation produces ensembles of synthetic daily weather series given 

observed daily atmospheric predictor variables supplied by a GCM either for current or future 

climate (Wilby et al., 2002). The scenario generation produced 20 ensemble members of 

synthetic weather data for 139 years (1961-2099) from HadCM3 A2a and B2a scenarios and for 

95 years (2006-2100) from canESM2 for RCP2.6, 4.5 and 8.5 scenarios, and the mean of the 

ensemble members was calculated and used for further climate change analysis. The generated 

scenario was divided into three time windows of 30 years of data (2011-2040), (2041-2070) and 

(2071-2100) henceforth called 2030s, 2050s and 2080s, respectively.  

 

6.1.3 Model performance evaluation criteria 
 

A number of statistical tests were carried out to compare the skills of the two downscaling 

models categorized into two main classes. First, quantitative statistical tests, measure the average 

magnitude of the errors in a set of predictions without considering their direction. Performance 

evaluation metrics such as MAE, RMSE and bias were applied. These metrics are by far the most 

widely used and accepted of the many possible numerical metrics (Amirabadizadeh et al., 2016; 

Bennett et al., 2013) to evaluate the comparative performance of the models to simulate the 

current climate variable of precipitation on the basis of long-term monthly averages defined by 

using eqns.(4-5) to (4-10). In this study correlation and correlation-based measures such as 

coefficient of determination (R
2
) and coefficient of efficiency (Nash–Sutcliffe efficiency, NSE) 

are not included due to the fact that these measures are oversensitive to extreme values and are 

insensitive to additive and proportional differences between model simulations and observations 

(Legates and McCabe, 1999). Evaluation was done in two steps as suggested by Goly et al. 

(2014): (i) equally weighing the metrics and (ii) varying the weights of metrics. For the case of 

equally weighted, the following steps were applied. (a) Compare the values of the performance 

metrics among the models and ranking (obtaining individual model rankings for each 

performance metrics) at station level. Here, score 1 will be given to the model that has smaller 

metrics value and score 3 to the one having larger value and 2 for the model having the value in 

between. (b) Summing up the score pertained to each model across all the stations. (c) Once the 

final scores are obtained for each evaluation metric, the models are ranked again based on the 

totals by summing up the metrics score value for each models. 

 

Additionally, the varying weights technique was applied to the performance metrics as given in 

eqn. (6-6) to rank the models according to their skills. To avoid the discrepancy in weighing the 

performance measures because of differences in the order of their magnitudes, each performance 

measure is normalized (divided by the maximum value) and then the cumulative weighted 

performance measure for each downscaling model is calculated (Goly et al., 2014). The weights 

of metrics are arranged in such a way that more emphasis is given to MAE and RMSE, followed 

by bias (0.5, 0.35 and 0.15 respectively). 
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 (6-6) 

 

Where the index i refers to a downscaling model, Wi refers to overall performance measure, and 

0 < Wi <1. 

 

Secondly, qualitative tests, comparing the skill of models about capturing the distribution of the 

whole range observed data and in capturing the extreme precipitation events. For this purpose, 

statistical metrics such as IRF, ABC, 99p, 95p, 1daymax, R1, R10, R20 and SDII and graphical 

representations of box–whisker plots and KS cumulative distribution test were applied. KS is 

used to compare the probability distribution function (PDF) of the observations to the PDF of the 

simulated precipitation (Simard and L’Ecuyer, 2011). These plots provide a convenient visual 

summary of several statistical properties of the data set as they vary over time. A scoring 

technique is applied to compare the accuracy of the models. In this scoring technique, the bias of 

an evaluation metric for each station is used: score 1 will be given to the model that has smaller 

bias, score 3 to the one with a larger bias and 2 for the model with a value in between. 

Afterwards, evaluation was carried out using an equally weighted method only due to the 

assumption that the metrics have equal weights, as discussed above for model ranking. For the 

Kolmogorov–Smirnov (KS) cumulative distribution test, the observed and the simulated 

precipitation data from each model were compared using a p value at the significance level of 

5% for each station. The computed p value is lower than the significance level α= 0.05, which 

indicates the simulated fail to follow the same distribution as the observed. Furthermore, the F 

test and t test are applied to test the equality of monthly variances of precipitation and equality of 

monthly mean respectively. 

 

IRF and ABC are recommended by (Campozano et al., 2016), while 95p, 99p, 1day max, R1, 

R10, R20 and SDII are recommended by Expert on Climate Change Detection and Indices 

(ETCCDI). The inter-quartile relative fraction (IRF): to evaluate the modeled variability 

representation relative to the observed is defined by eqn. (6-7) 

 

 
     

  
    

 

  
    

  (6-7) 

 

A value of IRF > 1 represents overestimation of the variability, IRF = 1 is a perfect 

representation of the variability, and IRF < 1 is an underestimation of the variability; Q
m

3 and 

Q
o
3 and the 75th modeled and observed percentile;Q

m
1 and Q

o
 1 and the 25th modeled and 

observed percentile.  

 

The absolute cumulative bias (ACB):  This can be used to evaluate the bias of the 25th, 50th, and 

75th percentiles eqn.(6-8);  
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   (6-8) 

 

Where Q
m

3 and Q
o
3 are the 75th modeled and observed percentile, Q

m
2 and Q

o
2 are the 50th 

modeled and observed percentile Q
m

1, and Q
o
1 are the 25th modeled and observed percentile 

respectively. A value of ACB= 0 is a perfect representation of the modeled and observed 

distributions, while under- or overestimation indicates a divergence of ACB from zero to positive 

values. The terms 95p and 99p denote the 95th and 99th percentiles of daily precipitation amount 

respectively. 1 daymax is the highest 1-day precipitation amount. R1, R10 and R20 are number 

of precipitation days (≥1 mm), heavy precipitation days (≥10 mm) and extreme heavy 

precipitation days (≥20mm) respectively. SDII is the simple daily intensity index calculated as 

the ratio of total precipitation to the number of wet days (≥1 mm). 

 

6.2 Datasets  

6.2.1 Local data sets 
 

The historical rainfall, maximum and minimum temperature data for the study area were 

obtained from ENMA, which were analyzed and checked for further quality control as described 

in section 4.2. Networks of 40 meteorological stations were chosen to represent the UBNRB. 

These were selected to cover a large range of time, space and altitude within the region. The less 

performed stations during calibration and validation were removed from further analysis so that 

the number of stations considered for SDSM and LARS-WG are different. For example, 15, 29 

and 24 rainfall stations were representing for SDSM (canESM2), CMIP3 GCMs (LARS-WG) 

and CMIP5 GCMs (LARS-WG) respectively..  

6.2.2 Large scale datasets  
 

Global climate models (GCMs) 

 

The GCMs used in this study were from both phases 3 and 5 of the Coupled Model 

Intercomparison Project phase 3 and phase 5 (CMIP3 and CMIP5) through different databases. A 

new version of the LARS-WG5.5 was applied for this study that incorporates predictions from 

15 GCMs which were used in the intergovernmental panel on climate change fourth assessment 

report (IPCC's AR4) based on  Special Emissions Scenarios SRES B1, A1B and A2 for three 

time windows as listed in Table 6-1.  Furthermore, LARS-WG that incorporates three GCMs 

from CMIP5 climate models based on the new radiative forcing scenarios (Representative 

Concentration Pathway, RCP) was used for this study.  

 

As it is difficult to process all the incorporated 15 CMIP3 GCMs and large differences in 

predictions of climate variables among the GCMs are expected, the performance of GCMs in 

simulating the current climate variables of the study area (UBNRB) should be evaluated, and the 

best performing GCMs were selected. The MAGICC/SCEGEN computer program tool was used 

for the performance evaluation of the 15 GCMs found in the LARS-WG5.5 database, as it is a 

standard method for selecting models based on their ability to represent current climate 

accurately, either for a particular region or for the globe. In this study, we used a semi 
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quantitative skill score that rewards relatively good models and penalizes relatively bad models 

as suggested by the Wigley (2008) user manual. The statistics used for model selection are 

pattern correlation (R
2
), Root mean square error (RMSE), bias (B), and a bias-corrected RMSE 

(RMSE-corr). The analysis was done separately for precipitation and temperature and finally an 

average score value was taken for model selection. The six best-performing GCMs have been 

selected for this study, namely HadCM3, GFDL-CM2.1, ECHAM5-OM, CCSM3, MRI-

CGCM2.3.2 and CSIRO-MK3 in the order of their performance to construct future precipitation, 

maximum temperature and minimum temperature in the UBNRB for the time periods of the 

2030s, 2050s and 2080s under A1B, A2 and B1 scenarios; see (Table 6-1). 

 
Table 6-1:  Selected Global climate models from IPCC AR4 incorporated into the LARS-WG  

 

Research centre Country GCM Model 

acronym 

Grid 

Resolution 

Emission 

Scenarios 

CMIP 3 GCMs 

Common Wealth 

Scientific and Industrial 

Research Organization  

Australia CSIRO-MK3 CSMK3 1.9x1.9
o
 A1B, B1 

Max-Plank Institute for 

Meteorology 

Germany ECHAM5-OM MPEH5 1,9x1.9
o
 A1B,A2,B1 

National Institute for 

Environmental Studies 

Japan MRI-

CGCM2.3. 

MIHR 2.8x2.8
o
 A1B,B1 

UK Meteorological 

Office 

UK HadCM3  HADCM

3 

2.5x3.75
o
 A1B,A2,B1 

Geophysical Fluid 

Dynamics Lab 

USA GFDL-CM2.1  GFCM2

1 

2x2.5
o
 A1B,A2,B1 

National Centre for 

Atmospheric Research 

USA CCSM3  NCCCS 1.4x1.4
o
 A1B,B1 

CMIP 5 GCMs used to derived the range of future climate projections 

(https://portal.enes.org/data/enes-model-data/cmip5/resolution) 

EC‐EARTH consortium  EC-EARTH EARTH 1.12x1.12
o
 RCP4.5, 8.5 

NOAA/Geophysical 

Fluid Dynamics 

Laboratory 

USA GFDL-CM3 GFDL 2x2.5
o
 RCP4.5, 8.5 

Met Office Hadley 

Centre 

United 

Kingdom 

HadGEM2-ES HadGE

M2 

1.25x1.875
o
 RCP2.6,4.5,8

.5 

Atmosphere and Ocean 

Research Institute  

Japan MIROC5 MIROC 1.4x1.4
o
 RCP4.5,8.5 

Max Planck Institute for 

Meteorology  

Germany MPI-ESM-MR MPI 1.8x1.88
o
 RCP4.5,8.5 

 

Canadian Centre for 

Climate Modeling and 

Analysis (CCCma)  
 

Canada canESM2  2.8x2.8
o
 RCP2.6, 4.5, 

8.5 

B: baseline; T1:  2011–2030; T2: 2046–2065; T3: 2081–2100 
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Moreover, atmospheric large-scale predictor variables used for representing the present condition 

were obtained from the National Centre for Environmental Prediction (NCEP) reanalysis data 

set. CanESM2, a second-generation Canadian earth system model (ESM) developed by Canadian 

Centre for Climate Modeling and Analysis (CCCma) of Environment Canada that represents 

CMIP5 and HadCM3 outputs from the Hadley Centre, United Kingdom (UK) representing 

CMIP3 were used in SDSM for the construction of daily local meteorological variables 

corresponding to their future climate scenario. 

 

The reason for selecting these two GCMs was that they are models that made daily predictor 

variables freely available to be directly fed into the SDSM, covering the study area with a better 

resolution. Additionally, HadCM3 is the most used GCMs in previous studies such as (Dibike et 

al., 2005; Dile et al., 2013; Hassan et al., 2014; Yimer et al., 2009), and HadCM3 ranked first in 

performance evolution done by MAGICC/SCEGEN computer program tools and its downscaled 

results match with the ensemble mean of the six GCMs used in LARS-WG model.  

 

Furthermore, they can represent two different scenario generations describing the amount of 

greenhouse gases (GHGs) in the atmosphere in the future. HadCM3 GCM used emission 

scenarios of A2  and B2   that were used in the CMIP3 for the IPCC’s AR4 (IPCC, 2007) . 

Further explanation of SRES scenario and representative concentration pathways (RCPs) is 

presented in Table 6-2, Table 6-3 and Appendix 27.  

 
 

Table 6-2: CO2 concentrations (ppm) for selected climate scenarios specified in the Special Report on 

Emissions Scenarios (SRES) (Semenov et al., 2010).  

 
scenario 
 

Key assumptions CO2 concentration 

2011-

2030 

2046-

2065 

2081-

2100 

B1 ‘The 

sustainable 

world’ 

Rapid change in economic structures, 'dematerialization' 

including improved equity and environmental concern. 

There is a global concern regarding environmental and 

social sustainability and more effort in introducing clean 

technologies. The global population reaches 7 billion by 2100. 

410 492 538 

B2 ‘The world of 

technological in 

equalities 

A heterogeneous society emphasizing local solutions to  

economic, social and environmental sustainability rather than 

global solutions. Human welfare, equality and environmental 

protections all have high priority. 

406 486 581 

A1B ‘The rich 

world’ 

Characterized by very rapid economic growth (3% yr–1), low 

population growth (0.27% yr–1) and rapid introduction of new 

and more efficient technology. Globally there is economic and 

cultural convergence and capacity building, with a substantial 

reduction in regional differences in per capita income. 

418 541 674 

A2 ‘The 

separated world’ 

Cultural identities separate the different regions, making the  

world more heterogeneous and international cooperation less 

likely. ‘Family values’, local traditions and high population 

growths (0.83% yr–1) are emphasized. Less focus on economic 

growth (1.65% yr–1) and material wealth. 

414 545 754 

Note: CO2 concentration for the baseline scenario, 1960–1990, is 334 ppm 
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Table 6-3: Types of the RCP scenarios (Moss et al., 2008) 

Name Radiative forcing
1 Concentration (ppm)

2 Pathway 
RCP8.5 >8.5Wm

-2
 in 2100 >1,370 CO2-equiv. In 2100 Rising 

RCP6.5 
6Wm

-2
 at stabilization 

after 2100 
850CO2-equiv.(at stabilization 

after 2100)  
Stabilization without 

overshoot 

RCP4.5 
4.5Wm

-2
 at stabilization 

after 2100 
650 CO2-equiv.(at stabilization 

after 2100)  
Stabilization without 

overshoot 

RCP2.6 

Peak at 3Wm
-2

 at 

stabilization before 2100 

and then declines 
peak 490 CO2-equiv. before 

2100 and then declines  peak and decline 
Notes: 
1 

Approximate radiative forcing levels were defined as ±5% of the stated level in Wm
-2

. Radiative forcing values 

include the net effect of all anthropogenic GHGs and other forcing agents. 
2
 Approximate CO2 equivalent (CO2-eq) concentrations. The CO2-eq concentrations were calculated with the 

simple formula Conc = 278 * exp(forcing/5.325). Note that the best estimate of CO2-eq concentration in 2005 for 

long-lived GHGs only is about 455 ppm, while the corresponding value including the net effect of all anthropogenic 

forcing agents (consistent with the table) would be 375 ppm CO2-eq.. 

 

The NCEP dataset were normalized over the complete 1961-1990 period data, and interpolated 

to the same grid as HadCM3 (2.5
o
 latitude x 3.75

o
 longitude) and canESM2 (2.8125

o
 latitude x 

2.8125
o
 longitude) from its horizontal resolution of (2.5

o
 latitude x 2.5

o
 longitude), to represent 

the current climate conditions. NCEP reanalysis data were normalized and interpolated using 

eqn. (6-9) as (Hassan et al., 2014): 
 
 

   
       

  
 

(6-9) 

 
In which un is the normalized atmospheric variable at time t, ut is the original data at time t, ua is 

the multiyear average during the period, and σu is the standard deviation. 

 

The canESM2 outputs for three different climate scenarios namely: RCP 2.6, RCP 4.5 and RCP 

8.5 for the period 2006-2100 while the outputs of HadCM3 for A2a (medium-high) and B2a 

(medium-low) emission scenarios for the period 1961-2099 were obtained on a grid by grid box 

basis for the study area from the Environment Canada website http://ccds-

dscc.ec.gc.ca/index.php?page=dst-sdi (the “a” in A2a and B2a refers the ensemble member in the 

HadCM3 A2 and B2 experiments). The archive of canESM2 and HadCM3 GCM output contains 

26 daily predictor variables each as listed in Table 6-4. 
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Table 6-4:  Name and description of all NCEP predictors on HadCM3 & canESM2 grid  

 

Variables Descriptions variables Descriptions 

temp  Mean temperature at 2 m  s500 + Specific humidity at 500 hpa height 

mslp  Mean sea level pressure  s850+  Specific humidity at 850 hpa 

height 

p500  500 hpa geopotential height  b_f  Geostrophic air flow velocity 

p850  850 hpa geopotential height  b_z  Vorticity 

rhum 
a
 Near surface relative humidity  b_u  Zonal velocity component 

r500
a
  Relative humidity at 500 hpa   b_v  Meridional velocity component 

r850
a
  Relative humidity at 850 hpa   bzh  Divergence 

shum  Near surface specific humidity  bthas  Wind direction 

Prec+ Total precipitation   

(a) refers to different atmospheric levels: the surface (p_), 850 hpa height (p8), and 500 hpa 

height (p5), (b) refers predictors only found from HadCM3,  (+) refers predictors only for 

canESM2 

 

6.3 Results and discussions 

6.3.1 Calibration and validation of LARS-WG  
 

To verify the performance of LARS-WG, in addition to the graphic comparison, some statistical 

tests were performed. The KS test is performed to test equality of the seasonal distributions of 

wet and dry series (WDSeries), distributions of daily rainfall (RainD), and distributions of daily 

maximum (TmaxD) and minimum (TminD) temperature. The F-test is performed on testing 

equality of monthly variances of precipitation (RMV) while the t test is performed on verifying 

equality of monthly mean rainfall (RMM), monthly mean of daily maximum temperature 

(TmaxM), and monthly mean of daily minimum temperature (TminM). All of the tests calculate 

a p-value, which is used to accept or reject the hypotheses that the two sets of data (observed and 

generated) could have come from the same distribution at the 5% significance level. Therefore, 

the average number of p-values less than 5% recorded from 29 stations and percentage failed 

from the total of 8 seasons or 12 months has been presented in Appendix 12. It can be seen from 

the result LARS-WG performs very well for all parameters except RMM and RMV. On the other 

hand, an average of 2.9 % and 17.5% of the months of a year were recorded a p value < 5 % for 

the monthly mean and variance of precipitation respectively.  From these numbers, it can be 

noted that the model is less capable in simulating the monthly variances than the other 

parameters.  

 

For illustrative purpose, graphical representation of monthly mean and standard deviation of the 

simulated and observed precipitation, Tmax and Tmin were constructed in Figure 6-2 for 

randomly chosen Gondar station, as it has been difficult to present the result of all stations. 

Please see Appendix 24 for the other stations. It can be seen from the result that observed and 

simulated monthly mean precipitation, Tmax and Tmin matches very well. However, as it is 

known for being difficult to simulate the standard deviations in most statistical downscaling 
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studies, the performance of the standard deviation is less accurate as compared to the mean 

(Figure 6-2b).  

 

 

a)          b) 

 

  

  

Figure 6-2: Observed and simulated a) mean monthly precipitation,Tmax and Tmin ; b) standard deviation of 

precipitation, Tmax and Tmin using LARS-WG 

 

6.3.2 Screening variable, model calibration and validation of SDSM 
 

 

Initially, offline correlation analysis was performed using SPSS software between predictands 

and NCEP reanalysis predictors to identify an optimal lag and physically sensible predictors for 

climate variables of precipitation, Tmax and Tmin. Analysis of the offline correlation revealed 

that an optimal lag or time shift does not improve the correlation of predictands and predictors 

for this particular study. Average partial correlation of observed precipitation with predictors as 

shown in Figure 6-3 indicates all stations followed the same correlation pattern (both in 

magnitude and direction) that illustrates all stations can have identical physically sensible 

predictors, with a few exceptions. Furthermore, there are predictors that have correlation 

coefficient values in the range of 20 to 45% for precipitation across all stations. This range is 

considered to be acceptable when dealing with precipitation downscaling (Wilby et al., 2002) 

because of its complexity and high spatial and temporal variability to downscale.  

 

The predictor variables identified for each downscaling GCM and for the corresponding local 

climate variables showed that different large-scale atmospheric variables control different local 

variables. For instance, the set of temp, mslp, s500, s850, p8_v, p500, shum comprises the most 

potential or meaningful predictors for temperature. While, the set of s500, s850, p8_u, p_z, pzh, 

p500 performs best for predicting precipitation of the study area, which is consistent with the 

result of offline correlation analysis. After carefully screening predictor variables, model 

calibration and validation was carried out. The graphical comparison between the observed and 

generated rainfall, Tmax and Tmin, was run to enhance the confidence of the model 

performance, as shown in Figure 6-4 and Figure 6-5 for Gondar station only. For the other 
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stations, see Appendix 25 and Appendix 26. Examination of Figure 6-4 shows that the calibrated 

models reproduces the monthly mean precipitation and mean standard deviation of daily Tmax 

and Tmin values quite well. However, the model is less accurate in reproducing variance of 

observed precipitation. As Wilby et al. (2004a) point out, downscaling models are often regarded 

as less able to model the variance of the observed precipitation with great accuracy. 
 

 

 
  

Figure 6-3: Average partial correlation coefficient values of all stations for precipitation and Tmax  with 

NCEP- reanalysis predictors  

 

    
 

   
 

  Figure 6-4: Calibration of observed and simulated of precipitation, maximum and minimum temperature for 

the Gondar station using SDSM from canESM2 and HadCM3 from top to bottom  
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 Figure 6-5: Validation of observed and simulated of precipitation, maximum and minimum temperature for 

Gondar station using SDSM from canESM2 and HadCM3 from left to right respectively 

 

The statistical performance metrics of MAE and RMSE values for the monthly precipitation 

modeled from canESM2 range from 3.5 to 14.8 mm and 4.9 to 22.4 mm, which shows that 

canESM2 performs better than HadCM3, with the MAE and RMSE values ranging from 6.2 to 

48.6mm and 7.6 to 73.4mm respectively. The result of statistical analysis revealed that the model 

is much better in simulating Tmax and Tmin than precipitation, because the high dynamical 

properties of precipitation make it difficult to simulate. Researchers such as (Chisanga et al., 

2017) and (Hassan et al., 2014) indicated that downscaling of precipitation was more complex 

and difficult to obtain a good agreement between observed and generated values compared to 

downscaling of temperature. This was due to the conditional process, which depended on 

intermediate processes within the rainfall process such as an occurrence of humidity, cloud 

cover, and/or wet-days. After accomplishing a satisfactory calibration, the multiple regression 

models are validated using an independent set of data outside the period for which the model is 

calibrated. The validation result revealed that the model is successfully validated but with less 

accuracy compared to calibration for both GCMs as shown in Figure 6-5. In general, the result 

analysis of performance measure and graphical representation of observed and simulated 

scenarios, both for calibration and validation, revealed that the model performs very well in 

simulating the climate variables. 
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6.3.3 Future climate projections with LARS-WG 
 

Downscaling using CMIP3 GCM3 

 

Since the performance of LARS-WG during calibration and validation was very good, 

downscaling of the climate scenario can be done from six selected multimodal CMIP3 GCMs 

under three scenarios (A1B, B1 and A2) for three periods. After the downscaling of future 

climate scenarios at all stations from the selected six GCMs, the projected precipitation analysis 

for the areal UBNRB was calculated from the point rainfall stations using the Thiessen polygon 

method as it is the most appropriate method for the UBNRB (Kim et al., 2008b). The result 

analysis (Figure 6-6 (a) and Table 6-5) revealed that GCMs disagree on the direction of 

precipitation change: two GCMs (CSMK3 and GFCM21) showed decreasing trends, and a 

majority, or four, GCMs (NCCSM, Hadcm3, MPEH5 and MIHR) showed increasing trends from 

the reference period in all three time periods. By the 2030s, the relative change in mean annual 

precipitation is projected in the range between -2.3 and 6.5% for A1B, -2.3 and 7.8% for B1, and 

-3.7 and 6.4% for A2 emission scenarios. In the 2050s, the relative changes in precipitation range 

between -8 and 22.7% for A1B, -2.7 and 22% for B1, and -7.4 and 8.7% for A2 scenarios. In the 

time of 2080s, the relative changes in precipitation projected may vary between -7.5 and 29.9% 

for A1B, -5.3 and 13.7% for B1, and -5.9 and 43.8% for A2 emission scenarios. The multimodal 

average result showed that in the future precipitation might generally increase over the basin in 

the range of 1 to 14.4 %, which is in line with the result from the HadCM3 GCM (0.8 to 16.6 %). 

 

In a different way from precipitation, the projections of mean annual Tmax and Tmin have 

showed coherent increasing trends from the six GCMs under all scenarios in all three future 

periods (Figure 6-6 (b) and Table 6-5). The result calculated from the ensemble mean showed 

that mean annual Tmax may increase up to 0.5, 1.8 and 3.6
o
C by 2030s, 2050s and 2080s 

respectively under the A2 scenario, which is in line with the results from both GFCM21 and 

HadCM3 GCMs.  Likewise, the UBNRB may experience an increase in mean annual Tmin up to 

0.6, 1.8 and 3.6
o
C by the 2030s, 2050s and 2080s respectively from the multimodal average. 
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Table 6-5: Relative change mean annual precipitation, change in Tmax and Tmin modeled from six GCMs for 

three time periods of UBNRB as compared from the reference period of 1984-2011 by using LARS-WG 

 

  

1984-

2011 2030s (2011-2035) 2050s (2046-2065) 2080s (2080-2099) 

GCMs/Scenario   A1B B1 A2 A1B B1 A2 A1B B1 A2 

Co2 concentration (ppm)   410 418 414 492 541 545 538 674 754 

mean annual rainfall 

(mm) 1417.5 

                  

CSMK3 
R

el
at

iv
e 

C
h
an

g
e 

o
f 

p
re

ci
p
it

at
io

n
(%

) 

-2.3 -2.3   -4.2 -2.7   -7.0 -5.3   

GFCM21 -1.4 -0.6 -3.7 -8.0 0.7 -7.4 -7.5 -2.2 -5.9 

HADCM3 2.1 0.8 1.7 4.4 2.1 3.5 12.9 4.1 16.7 

MIHR 1.9 3.7   5.5 5.5   10.2 6.0   

MPEH5 1.8 3.3 -0.5 2.5 5.8 4.2 6.0 1.4 3.3 

NCCCS 6.5 7.8 6.4 22.8 22.0 8.7 29.9 13.7 43.8 

Model average 1.4 2.1 1.0 3.8 5.6 2.2 7.4 3.0 14.5 

Mean daily Tmax  (
o
C) 24.7                   

CSMK3 

C
h
an

g
e 

in
 

m
ax

im
u
m

T
em

p
er

at
u
r

e 
(o

c)
 

0.4 0.4   1.3 0.9   2.2 1.5   

GFCM21 0.7 0.6 0.7 2.2 1.4 1.9 3.1 2.0 3.6 

HADCM3 0.5 0.5 0.4 1.7 1.4 1.8 3.1 2.0 3.7 

MIHR 0.6 0.6   2.0 1.6   3.5 2.6   

MPEH5 0.5 0.4 0.6 1.8 1.4 1.8 4.1 2.7 4.3 

NCCCS 0.6 0.5 0.6 1.5 0.9 1.7 2.2 1.4 3.0 

Model average 0.6 0.5 0.6 1.8 1.3 1.8 3.0 2.0 3.6 

Mean daily Tmin  (
o
C) 11.4                   

CSMK3 

C
h
an

g
e 

in
 m

in
im

u
m

 

T
em

p
er

at
u
re

 (
o
c)

 0.3 0.3   1.1 0.8   1.9 1.3   

GFCM21 0.7 0.6 0.7 2.2 1.4 1.9 3.1 2.0 3.6 

HADCM3 0.5 0.5 0.4 1.7 1.4 1.8 3.1 2.0 3.7 

MIHR 0.7 0.7   2.1 1.8   3.6 2.7   

MPEH5 0.5 0.4 0.6 1.8 1.5 1.8 4.1 2.7 4.1 

NCCCS 0.6 0.5 0.6 1.5 0.9 1.7 2.2 1.4 3.0 

Model average 0.6 0.5 0.6 1.7 1.3 1.8 3.0 2.0 3.6 
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Figure 6-6: (a) Relative change mean annual precipitation and (b) change in Tmax and Tmin modeled from six 

GCMs for three time periods of UBNRB under three scenarios as compared from the reference period of 1984-

2011 by using LARS-WG 

 

Downscaling using CMIP5 GCMs 

 

The downscaled precipitation from three CMIP5 GCMs using representative concentration 

pathways (RCP 4.5 and RCP 8.5) showed a greater tendency towards a decrease in the future in 

the UBNRB (Table 6-6). Two CMIP 5 GCMs showed decreasing while the other (HadGEM2) 

showed increasing trend. The model average result showed decreasing relative change of the 

long-term mean annual precipitation Figure 6-7. The magnitudes of the relative change of 

precipitation among the models are different. Particularly, GFDL model predicted maximum 

decreasing change in precipitation than the other GCM models over the basin. HadGEM2-ES 

GCM model projected relatively an increase average annual precipitation over the basin. MPI 

GCM model also projected minimum decreasing mean annual change for the basin. The long-

term mean annual precipitation output may decreases in the range of -8.5% to -10.6% under 

RCP8.5 scenario of GFDL GCM in the period 2030s and 2080s respectively. The projected mean 

annual precipitation from HadGEM2 GCM showed mixed results. From HadGEM2 GCM, the 

mean annual precipitation may increase by maximum of 4.5% relative change under RCP4.5 by 

2080s while it may decrease by a maximum of -1.7% under RCP 8.5 scenario by 2050s. 

Similarly, mean annual precipitation will increase by a maximum of 1.3% under RCP8.5 in the 

period 2030s and will decrease by a maximum of -2.1% under RCP4.5 in the period 2030s. 

However, the multi-model average result showed that precipitation might decrease in the future 

in the range of -4 % to -1.4 % under RCP4.5 and RCP8.5. For 2030`s average annual 

precipitation relative change projected between (-9.5 % and +0.8 %) for RCP 4.5 and between (-

10.6% and +2.6%) for RCP 8.5. At 2050`s average annual precipitation change projected 

between (-10% and -0.7%) for RCP 4.5 and between (-10% and +0%) for RCP 8.5 emission 

scenario. For 2080s, average annual precipitation relative change projected between (-9.3% and 

+4.5%) for RCP 4.5 and between (-8.5% and +4.4%) for RCP 8.5 emission scenario.  
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Figure 6-7: Relative change (%) of mean annual precipitation downscaled from CMIP 5 GCMs  

 
Table 6-6: Relative change mean annual precipitation, change in Tmax and Tmin modeled from three CMIP5 

GCMs for three time periods of UBNRB as compared from the reference period of 1984-2011 by using LARS-

WG 
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Baseline 1407.7 mm 11.8 
o
C 25.3 

o
C 

RCP4.5-30 -9.5 0.8 -2.1 -3.6 1.2 1.8 0.9 1.3 1.0 1.5 1.0 1.2 

RCP4.5-50 -10.0 -0.1 -0.7 -3.6 2.0 2.9 1.7 2.2 2.0 2.3 1.9 2.1 

RCP4.5-80 -9.3 4.5 0.8 -1.4 2.9 4.0 2.2 3.0 2.1 3.0 2.3 2.5 

RCP8.5-30 -10.6 2.6 1.3 -2.3 1.5 1.8 1.1 1.5 1.2 1.6 1.2 1.3 

RCP8.5-50 -10.0 -1.7 0.0 -4.0 2.9 3.0 2.0 2.7 2.3 2.8 2.2 2.4 

RCP8.5-80 -8.5 4.4 -0.5 -1.6 4.8 5.4 4.1 4.8 4.0 4.6 3.9 4.2 

 

Average annual minimum and maximum temperature significantly increases in all future periods 

under RCP4.5 and RCP8.5 scenarios Table 6-6, Figure 6-8 and Figure 6-9. At 2080s of RCP4.5 

and RCP8.5, the change in average maximum and minimum temperature is magnificent 

compared to 2030s and 2050s. At 2030s, average annual minimum temperature may increases in 

the range from +0.9
o
C to +1.8

o
C for RCP 4.5 and from +1.1

o
C to +1.8

o
C for RCP 8.5 emission 

scenario. At 2050s, mean annual minimum temperature will increase in the range of +1.7
o
C to 

2.9
o
C under RCP4.5 and from +2

o
C to +3

o
C under RCP8.5. At the end of 21st century, 2080s, 

the mean annual minimum temperature change may increase in the range of +2.2
o
C to +4

o
C for 

RCP4.5 and between +4.1
o
C and +5.4

o
C under RCP8.5. Furthermore, the mean annual 

maximum temperature may increases in the range from +1
o
C to +1.5

o
C for RCP 4.5 and from 
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+1.2
o
C to +1.6

o
C for RCP 8.5 emission scenario by 2030s. At 2050s, mean annual maximum 

temperature will increase in the range of +1.9
o
C to 2.3

o
C under RCP4.5 and from +2.2

o
C to 

+2.8
o
C under RCP8.5. At the end of 21

st
 century, 2080s, the mean annual maximum temperature 

may increase in the range of +2.3
o
C to +3

o
C for RCP4.5 and between +3.9

o
C and +4.6

o
C under 

RCP8.5. 

 

 

 
 

Figure 6-8: Change in mean anuual Tmin from CMIP5 GCMs 

 

 

 
 
Figure 6-9: Change in mean annual Tmax from CMIP 5 GCMs 
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6.3.4 Future climate projections with SDSM 
 

Here, as it is difficult to process all the selected six CMIP3 GCMs using SDSM, we choose the 

HadCM3 GCM as the best due to the fact that the downscaling result of HadCM3 using LARS-

WG fits with the downscaling result of the ensemble mean model. In addition, canESM2 from 

the CMIP5 GCMs was selected to test the improvements of CMIP5 over CMIP3. Results of 

downscaling future climate scenario of areal UBNRB using SDSM calculated from all stations 

using Thiessen polygon methods are summarized in Figure 6-10. The overall analysis of the 

result indicates a general increase in mean annual precipitation for three time windows (2030s, 

2050s and 2080s) for all five scenarios (A2a and B2a for HadCM3 and RCP2.6, RCP4.5 and 

RCP8.5 for canESM2) in the range of 2.1 to 43.8 %. The maximum (minimum) relative change 

of mean annual precipitation is projected to be 43.8% (6.2 %), 29.5% (3.5 %) and 19% (2.1 %) 

in the 2080s, 2050s and 2030s under the RCP8.5 scenario of canESM2 (B2a) scenario of 

HadCM3. In general, the RCP8.5 scenario of canESM2 GCM resulted in pronounced increases 

in all three-time periods, whereas scenario B2a of the HadCM3 GCM reported minimum change 

over the study area. 

 

Regarding temperature, the downscaling result of Tmax and Tmin showed an increasing trend 

consistently in all months and seasons in three periods under all scenarios with mean annual 

value ranging from 0.5 to 2.6
o
C and 0.3 to 1.6

o
C under scenario RCP8.5 and B2a respectively. 

The RCP8.5 scenario reported maximum change while B2a scenario reported minimum change 

for both Tmax and Tmin in all three-time periods compared to other scenarios. The analysis of 

the downscaling result illustrates maximum temperature may become much hotter compared to 

minimum temperature in all scenarios and periods in the future across the UBNRB. 

 

    
 

 Figure 6-10: (a) Relative change of mean annual precipitation, and (b) change of mean annual Tmax and Tmin 

for three time periods as compared to the baseline period of UBNRB  using SDSM for HadCM3 and canESM2 

GCMs under different scenarios 

 

The wide-range of downscaled future precipitation results from multi-model GCMs over 

UBNRB showed the uncertainties of GCMs outputs. For example,  at the end of 21
st
 century 

(2080s), the CMIP 5 GFDL GCM downscaled using LARS-WG for precipitation decreases by 

relative change of -9.3 % and canESM2 GCM downscaled using SDSM increases mean annual 
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precipitation by 43.8%, which can be classified as extremes of mean precipitation. Previous 

studies have shown different projections of annual precipitation changes for the same basin. 

Conway (1996) obtained -2 to 7% by the 2025s, Yates et al. (1998b) obtained -9 to 55% for the 

double carbon dioxide condition, Kim et al. (2008b) projected mean annual precipitation in the 

range of 61 and -28 % by the 2050s from six GCMs and Conway (2005) projected -40 to 100% 

for the 2080s. In other studies a mild increase in rainfall over the UBNRB is expected in the 

2050s with a spatial mean increase over all seasons of basin 11%  (Kim, 2008).  Note that each 

study used the different target years, grid points, downscaling methods, and GCMs (Kim et al., 

2008b). Considering the overall results of previous studies, this study suggests a moderate range 

(-9.3 to 48 %) of mean annual precipitation changes for the 2080s. Since no GCM is perfect as 

discussed later, an ensemble value of results from the 10 GCMs of 27 different scenarios can 

provide a meaningful estimate. Based on this argument, the plausible  mean annual precipitation 

might increase by 2.4%, 4.6% and 8.1%   in the period 2030s, 2050s and 2080s respectively 

(Appendix 13).   

 

According to Zaitchik et al. (2012), the results of multi-model CMIP3 GCMs and emerging 

results from CMIP5 have exhibited large uncertainty in regional to sub regional precipitation. 

This uncertainty is evident in the UBNRB, which falls in a region of particularly high uncertainty 

in projections of precipitation change. According to Hawkins and Sutton (2009), uncertainty in 

climate predictions arises from three distinct sources. The first is the internal variability of the 

climate system, that is, the natural fluctuations that arise in the absence of any radiative forcing 

of the planet that are associated with anthropogenic climate change. The second is model 

uncertainty (also known as response uncertainty). It is also a product of divergent representation 

of thresholds and feedbacks between GCMs and  the computational difficulty of running large 

ensembles of GCMs at a spatial resolution capable of resolving local atmospheric processes. 

Additionally, as GCMs increase in sophistication, there is a tendency for model divergence to 

increase as additional coupled processes are included in increasingly complex modeling systems 

(Zaitchik et al., 2012). The third is scenario uncertainty: uncertainty in future emissions of 

greenhouse gases, as it is difficult to predict what will be socio-economic and technological 

development over the next century that will lead to different emission pathways. There are 

extensive efforts underway to improve the skill of climate models, raising the possibility that the 

spread in future predictions will ultimately be reduced. It is unlikely, however, that the range of 

uncertainty in regional predictions will be narrowed to any significant extent in the near future.  

 

Recognizing that planning for climate change is fundamentally a process of risk characterization 

rather than a problem for deterministic prediction, uncertain climate projections can be applied to 

enhance climate resilience. In this respect, applying climate model information to adaptation is 

not unlike many other scenario-based planning processes. Climate projections from GCMs 

provide scenarios that inform analysis of potential outcomes, allowing stakeholders to evaluate 

their risk exposures and adaptation options. Such a risk-based approach differs from 

conventional vulnerability assessments in that it includes a formal assessment of likelihood of 

impacts, clearly defined for a sector, time horizon, and time scale (i.e., events, variability, and/or 

trends) of interest (Zaitchik et al., 2012). 
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6.3.5 Spatio-temporal distribution 
 

The characteristics of spatial variation of rainfall over a basin are of great interest to 

agriculturalists and resource managers. Climate change across the UBNRB needs to be 

communicated rather than just allowing planning to be based on basin averages that ignore clear 

patterns across the basin. Furthermore, the amount of rains in the main rainy and dry seasons 

may be more important for rain-fed agriculture in order to match the growing period of the staple 

crops. The amount of rains in the main rainy season (Kiremet) has major impacts on rainfed 

agricultural crop production. The limited availability of water resources for irrigation during the 

dry season (bega) in the basin has been exacerbated by the characteristic of climate with a long 

dry season in conjunction with a population increase and human impacts on the landscape.  The 

boundary conditions for sustainability in the UBNRB are closely linked to the climate as the 

productivity of agriculture is sensitive to the timing as well as the amount of rainfall (Mellander 

et al., 2013). Hence, the spatial pattern of future prediction in seasonal distribution was exploited 

to improve the understanding how future climate changes might influence the Kiremet and its 

associated Bega on the basin. The future prediction of canESM2 GCM and GFDL GCM under 

RCP4.5 scenario outputs were selected for further analysis as they are representing the extremes 

of future climate predictions of the basin.  

 

While the variability of mean annual precipitation is useful in long-term water resources 

planning and management, the variation of seasonal precipitation can affect the agricultural 

activities as well as the functioning of the ecosystem. Figure 6-11shows the variations of 

monthly precipitation of the base case and future predictions of canESM2 and GFDL GCMs. 

The canESM2 simulate a large increase of rainfall in the extended months of (Jun-Oct) while the 

GFDL simulates a large increase in the months of only (Sep-Oct) and a significant decrease in 

the remaining months. October is the month when most agricultural crops get matured and start 

harvesting, while, the months (June-August) are months when about 80 % of the annual rainfall 

occurred and by far the most important months for agriculture over the basin. Hence, this climate 

variability can be potential threat for the farmers, who have limited ability to cope with the 

negative impacts.  

 

Table 6-7 and Table 6-8provide quantitative details of projected rainfall for annual and seasons 

of the investigated stations from canESM2 and GFDL GCMs respectively. The result show that 

mean annual rainfall can have extreme changes in the range of -18.3 to 70 % from canESM2 

GCM while the GFDL GCM from 23 stations show in the range -18.1 to 6.2%. For Kiremet 

season, the relative change of the downscaled values of the selected stations show a range of -

13.4 to 72 % and -19.7 to 0.3 %. For Bega (Dry season), the relative change of precipitation for 

the selected stations are in the range of -24 to 294 % and 3.9 to 89 % from canESM2 and GFDL 

GCMs respectively for the period 2080s.  

 

The observed and predicted precipitation series were spatially interpolated from15 and 24 

rainfall stations for canESM2 and GFDL GCMs respectively for communicating the amount of 

rain falling during the rainy and dry seasons (Figure 6-12 and Figure 6-14). This could be useful 

for the long-term planning of water resource management within the basin, even if the 

interpolation of rainfall distribution over the  UBNRB does not take the topography over the 

region into account. An isohyetal map was produced using the Kriging interpolation package 
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ArcGIS with default spherical variogram. Since the Kriging method is a best linear unbiased 

estimator, the spatial distribution of average annual rainfall over the basin is the best reflection of 

spatial variation of annual rainfall for the given rain gauge network (Abtew et al., 2009). Figure 

6-13 and Figure 6-15 show the variations of annual and seasonal precipitation of the base case 

and downscaled precipitation from canESM2 and GFDL CMIP5 GCMs under RCP4.5 scenario 

for the period 2080s. For the baseline period, the mean annual rainfall amount varies generally 

from the central highland and south-west (>2000 mm) to the north and east (around 1000 mm). 

The highest annual average rainfall of 2082 mm is in the southern tip of the basin at Nekemit and 

the lowest average annual rainfall of 916 mm is in the northeast at Debre Birhan (Figure 

6-14(a)). A basin-wide time series of annual rainfall constructed from 24 gauges for the period 

1984 to 2011 has a mean of 1418 mm and 1465 mm for the period 1984-2005 constructed from 

15 rainfall stations (Table 6-7 and Table 6-8). Abtew et al. (2009) reported a mean annual 

rainfall of 1423 mm and standard deviation of 125 mm constructed from 32 stations for a period 

(1960–2002). Conway (2000) reported a mean annual rainfall of 1421 mm based on 11 gauges 

for a period of record of 1900–1998.  

 

 

  
 
Figure 6-11: Projected areal mean monthly rainfall and relative changes from CMIP5 of   canESM2 GCM and  

GFDL GCM under RCP 4.5 for 2080s over the UBNRB. 

 

The noticeable result is that the canESM2 GCM simulated a significantly large increase in 

annual and Kiremet season rainfall Figure 6-13 (a) to (c), while GFDL GCM simulated large 

decrease in precipitation in annual and Kiremet season over the basin Figure 6-15 (a) to (c). The 

variation of annual precipitation from each GCM follows the pattern of Kiremet that controls the 

majority of precipitation of the study area. Both canESM2 and GFDL GCMs simulated a large 

increase of precipitation in bega seasons. The increase or decrease in annual and seasonal rainfall 

predicted for the future did not appear to be evenly distributed over the basin. A large amount of 

mean annual and Kiremet rainfall were expected to increase in the southeast and northeast of the 

basin from canESM2 GCM. However, the annual and seasonal rainfalls in the central highland 

and west of the basin predicted from canESM2 were expected to decrease while from GFDL a 

small increase was expected.  
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 (a) 

 
 

(b) 

 
 

(c) 

 
 
Figure 6-12: Spatial distributions  of baseline (left) and simulated rainfall for the 2080s from canESM2 GCM 

(right): (a) annual, (b) kiremit and (c) bega seasons 
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(a)     (b)    (c) 

  
 

Figure 6-13: Spatial distributions  of relative percent changes in annual, kiremit and bega rainfall by the 2080s 

from the canESM2 GCM:  (a) annual, (b) kiremit and (c) bega seaon 

 

The positive change of rainfall simulated from canESM2 GCM in the future can be a good 

opportunity for the farmers who are engaged in rain fed agriculture to maximize their agricultural 

production and to change their livelihoods. However, this information cannot be a guarantee for 

irrigation farming because precipitation is not the only factor contributing to affect the flow of 

the river, which is the main source for irrigation. Evapotranspiration, dynamics of LULC, proper 

water resource management and other climatic factors can influence the flow of the river directly 

and indirectly. In the other way, the decrease of rainfall simulated from GFDL GCM in the 

future might reduce the amount of streamflow, which leads to recurrent droughts and physical 

water scarcity of the basin. More frequent and longer periods of drought reduce the amount of 

runoff into rivers, streams and lakes; also, the ground water table drops. So, there is less 

groundwater to supply springs and shallow wells for domestic water supply. As a consequence, 

school dropout is expected to be high because of extra time and labor is needed to collect water 

from unprotected sources. Shortage of domestic and non-domestic water supply has multiple 

socio-economic impacts such as poor sanitation and hygiene, less industrialization and food 

insecurity.  
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(a) 

 
 

 

(b) 

 
(c) 

 
 

Figure 6-14: Spatial distributions  of baseline and simulated rainfall for the 2080s from canESM2 GCM: (a) 
annual, (b) kiremit and (c) bega seasons 
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(a)     (b)    (c) 

   
 

Figure 6-15: Spatial distributions  of relative percent changes in annual, kiremit and bega rainfall by the 2080s 

from the canESM2 GCM:  (a) annual, (b) kiremit and (c) bega seaon 

 

 
Table 6-7: Baseline and future downscaled mean annual and seasonal rainfall data from the canESM2 GCMs 

under RCP4.5 scenario for the 15 selected stations in the UBNRB by the 2080s 

 

Annual 

Kiremet 

 (long rainy 

season) 

Bega  

(dry season) Relative change (%) 

Station Baseline 2080 
Base 
line 2080 Baseline 2080 Annual Kiremet Bega 

Abaysheleko 1073 1400 816 925 82 234 30.5 13.4 186.5 

Alemketema 1055 1557 826 1072 50 198 47.6 29.8 294.2 

Anger 1549 2049 1126 1395 164 363 32.3 23.8 121.7 

Angergutten 1580 1929 1168 1314 158 336 22.1 12.6 113.2 

Bahir Dar  1401 1709 1180 1359 109 195 22.0 15.2 78.5 

Bedele 1808 2474 1188 1412 211 583 36.9 18.8 176.5 

Dangila 1554 2136 1203 1509 156 374 37.4 25.4 139.3 

Debre 

Markos 1316 1336 960 896 135 270 1.5 -6.7 99.7 

Debre Tabor 1391 2361 1094 1881 123 266 69.8 72.0 116.1 

Dedessa 1468 2356 1078 1731 144 329 60.4 60.6 128.4 

Fiche 1106 1694 836 1260 49 133 53.2 50.7 170.2 

Gimija Bet 1986 1623 1557 1347 201 152 -18.3 -13.4 -24.3 

Gondar 1056 1456 823 1021 103 231 37.8 24.1 123.9 

Nedjo 1596 1869 1146 1191 147 318 17.1 3.9 115.6 

Shambu 1557 1378 1082 1041 113 94 -11.5 -3.8 -16.6 

Basin wide 

(UBNRB) 1465 1781 1098 1274 129 252 21.7 16.0 95.0 
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Table 6-8: Baseline and future downscaled mean annual and seasonal rainfall data from the GFDL GCMs 

under RCP4.5 scenario for the 24 selected stations in the UBNRB by the 2080s 

 

Annual 

Kiremet (long 

rainy season) 

Bega (dry 

season) Relative change (%) 

Station Baseline 2080 Baseline 2080 Baseline 2080 Annual Kiremet Bega 

Abaysheleko 1101 1086 835 799 85 150 -1.3 -4.3 76.9 

Addis Ababa 1052 899 736 622 61 96 -14.5 -15.6 58.5 

Adet 1246 1202 910 834 144 237 -3.5 -8.3 64.6 

Alemketema 1054 988 843 776 48 82 -6.2 -7.9 71.9 

Anger 1492 1442 1142 1073 123 211 -3.3 -6.0 70.7 

Assosa 1144 965 779 636 154 215 -15.7 -18.4 39.5 

Bahir Dar  1436 1212 1205 969 116 179 -15.6 -19.6 54.8 

Bedele 1851 1553 1215 989 217 311 -16.1 -18.6 42.8 

Kombolicha 1006 1068 656 658 99 188 6.2 0.2 88.6 

Dangila 1568 1449 1220 1074 158 261 -7.6 -11.9 65.7 

Debre Birhan 916 831 720 636 39 67 -9.3 -11.8 68.8 

Debre 

Markos 1333 1225 968 857 134 222 -8.1 -11.4 65.1 

Debre Tabor 1540 1552 1232 1176 136 245 0.8 -4.6 80.3 

Dedessa 1501 1244 1095 883 152 222 -17.1 -19.3 45.9 

Fiche  1134 1023 878 777 53 90 -9.8 -11.4 70.7 

Gidayana 1719 1731 1216 1219 173 180 0.7 0.3 3.9 

Gimijabet 1927 1726 1500 1277 203 328 -10.4 -14.9 61.4 

Gondar 1089 1059 847 782 100 177 -2.7 -7.7 75.9 

Mekane 

Selam 924 896 635 590 85 146 -3.0 -7.0 71.6 

Motta 1180 1188 875 824 151 255 0.7 -5.8 69.4 

Nedjo 1562 1279 1123 912 137 199 -18.1 -18.7 45.1 

Nekemit 2082 1733 1449 1163 232 346 -16.8 -19.7 49.5 

Shambu 1582 1409 1105 935 184 289 -10.9 -15.4 57.4 

Yetnora  1246 1136 910 778 144 224 -8.8 -14.5 56.0 

Basin wide 

(UBNRB) 1418 1281 928 888 49 83 -9.6 -4.3 68.8 

6.3.6 Comparative performance evaluation of LARS-WG and SDSM 
 

Chen et al. (2013) argued that though major source of uncertainty are linked to GCMs and 

emission scenarios, uncertainty related to the choice of downscaling methods give less attention 

on climate change analysis. Therefore, in this study, comparative performance evaluation of the 

downscaling methods has given due emphasis and carried out in a number of statistical and 

graphical tests both quantitatively and qualitatively. The model skill was evaluated and ranked at 

each target sites for each metrics. The results are shown in Appendix 14, Appendix 15 and 

Appendix 16 for RMSE, MAE and bias metrics respectively. The overall rank obtained by 
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summing up the score of each model for each metric is presented in Table 6-9, Appendix 17 and 

Table 6-10 for quantitative equally weighted and varying weights respectively. Table 6-11 and 

Table 6-12 are showing summary results for qualitative measures. The result revealed that 

SDSM/canESM2 narrowly performed best in simulating the long-term average values in both 

equally weighted and varying weights of the quantitative metrics. However, LARS-WG 

performed best in qualitative measures in reproducing the distribution and extreme events of 

daily precipitation Table 6-11. For instance, absolute bias for the 95th percentile of daily 

precipitation (95p) ranges from 4.35 to 12.4mm for SDSM/canESM2, from 3.2 to 12.2mm for 

SDSM/HadCM3 and from 0.07 to 3.7mm for LARS-WG. For the mean of daily precipitation 

amount (SDII), absolute bias ranges from 1.3 to 6.3mm for SDSM/canESM2, from 2.1 to 5.6mm 

for SDSM/HadCM3 and from 0.01 to 3mm for LARS-WG. 

 
Table 6-9: Summary of the total scores of each metric and methods during the baseline period (1984–2011) for 

equally weighted quantitative measures.  

 

 

Equally weighted overall score 

Evaluation 

metrics SDSM/canESM2 SDSM/HadCM3 LARS-WG 

RMSE 24 41 25 

MAE 24 41 25 

BIAS 31 39 20 

Total 79 121 70 

Rank 2 3 1 
Note: The numbers in the table show the total scores summed up from 15 stations and model rankings. 
 
Table 6-10: Summary of the total scores of each metric and methods during the baseline period (1984–2011) 

for varying weights quantitative measure. 

 

 

SDSM/canESM2 SDSM/HadCM3 LARS-WG 

MAE 2.67 4.85 2.88 

RMSE 3.86 7.22 4.47 

Bias 1.29 1.83 0.70 

  7.81 13.90 8.05 

  1 3 2 
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Table 6-11: Ranking of statistical downscaling models during base line period (1984-2011) for qualitative 

measure (distribution and extreme events of daily precipitation).  

Evaluation 

metrics SDSM/canESM2 SDSM/HadCM3 

LARS-

WG 

95p 52 41 14 

99p 53 45 17 

1-day max 50 48 15 

SDII 47 49 19 

R20 52 42 16 

R10 40 36 19 

R1 50 45 17 

1-IRF 38 34 28 

ACB 37 39 35 

Total 419 379 180 

Rank 3 2 1 

Note: The numbers in the table show the total ranking scores obtained from 15 stations.     

 

Furthermore, Kolmogorov-Smirnov test from Table 6-12 shows, LARS-WG captures the 

distribution of the observed precipitation 93.3% from all stations while SDSM captures only 

20% of the 15 stations equally both from canESM2 and from HadCM3 GCMs at 5% significance 

level. The t-test result from all the three models revealed that 93.3% of the simulated 

precipitations are capturing their perspective mean values from all stations. The F test showed 

that 93.3% of the simulated and the observed precipitation are normally distributed around their 

respective variance value in LARS-WG model while only 80% from 15 stations simulate the 

variance correctly using SDSM. In general, the comparative performance test revealed that 

LARS-WG model performed best in qualitative measures while SDSM/canESM2 is best in 

quantitative measures in UBNRB. In addition, Figure 6-16 and Figure 6-17 confirmed 

graphically the ability of LARS-WG model in capturing the distribution and extreme events of 

the precipitation in representative stations (randomly chosen) respectively by Whisker box plot 

and Kolmogorov-Smirnov test. The better performance of canESM2 in quantitative measure 

could be attributed to the increasing performance of GCMs from time to time. CMIP5 GCMs 

performs better than CMIP3 GCMs due to the fact that modeling was based on the new set of 

radiative forcing scenario (RCPs) that replaced SRES emission scenarios, constructed for IPCC 

AR5 where the impacts of land use and land cover change on the environment and climate is 

explicitly included (Das et al., 2012). Furthermore, it also includes models with improved 

physical parameterization schemes regarding cloud and radiation processes (Dolinar et al., 2015). 

The better performance of  LARS-WG in capturing the distribution and extreme events of the 

daily precipitation may be associated with the use of 23 interval histograms for the construction 

of semi-empirical distribution, which offers more accurate representation of the observed 

distribution compared with the 10 interval used in the previous version (Semenov et al., 2010). 
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Table 6-12: Ranking of statistical down scaling models during base line period (1984-2011) based on quality 

measure metrics 

 

  Kolmogorov t-test F-test 

Station model 1 model 2 model 3 model1 model2 model3 model 1 model 2 mode3 

Abaysheleko 0.0 0.0 0.29 0.49 0.59 0.57 0.01 0.31 0.16 

Alemketema 0.0 0.0 1.00 0.91 0.33 0.99 0.18 0.0 0.45 

Anger 0.087 0.007 0.829 0.65 0.93 0.50 0.16 0.15 0.20 

Angergutten 0.17 0.09 0.89 0.56 0.98 0.51 0.05 0.06 0.25 

Bahirdar 0.00 0.00 0.94 0.55 0.64 0.74 0.57 0.09 0.37 

Bedele 0.03 0.37 0.67 0.06 0.95 0.97 0.77 0.35 0.37 

Dangila 0.05 0.07 0.37 0.76 0.01 0.03 0.07 0.0 0.0 

Dedesa 0.01 0.02 0.94 0.77 0.98 0.97 0.38 0.38 0.98 

Dmarkos 0.01 0.00 0.59 0.39 0.88 0.89 0.28 0.19 0.95 

Debre Tabor 0.01 0.00 0.26 0.35 0.69 0.67 0.02 0.58 0.80 

Fitche 0.02 0.00 0.94 0.99 0.77 0.95 0.09 0.96 0.87 

Gimijabet 0.21 0.09 0.26 0.75 0.62 0.82 0.29 0.84 0.08 

Gondar 0.00 0.01 0.67 0.98 0.53 0.76 0.91 0.03 0.83 

Nedjo 0.00 0.01 0.97 0.57 0.68 0.98 0.80 0.30 0.97 

Shambu 0.01 0.00 0.14 0.77 0.83 0.82 0.38 0.15 0.28 

Total 15 15 15 15 15 15 15 15 15 

No. Passed 3 3 14 14 14 14 12 12 14 

% passed 20.0 20.0 93.3 93.3 93.3 93.3 80.0 80.0 93.3 

model 1 in the table represents HadCM3/SDSM, model 2 represents canESM2/SDSM and model 3 represents 

LARS/WG 
 

LARS-WG produces synthetic climate data of any length with the same characteristics as the 

input record; it simulates weather separately for single site. Therefore, the resulting weather 

series for different sites are independent of each other, which can lose a very strong spatial 

correlation that exists in real weather data during simulation. A few stochastic models have been 

developed to produce weather series simultaneously at multiple sites preserving the spatial 

correlation, mainly for daily precipitation, such as space–time models, non-homogeneous hidden 

Markov model and nonparametric models typically use a K-Nearest Neighbor (K-NN) procedure 

(King et al., 2015). However, they are complicated in both calibration and implementation and 

are unable to adequately reproduce the observed correlations (Khalili et al., 2007). In this study, 

the simple Pearson's correlation coefficient (R
2
) value was checked in two stations before and 

after simulation of the observed data to test the capability of LARS-WG in preserving the spatial 

correlation of stations. The result revealed that the spatial correlation of the stations distorted 

/decreased/ from the original is insignificant. Further relative performance of downscaling 

techniques for other climatic variables such as Tmax, Tmin, dry spell length, wet spell length, 

inter-annual and seasonal cycle of precipitation using additional PDF-based metrics such as the 

Brier score and the skill score might counteract the limitations of this paper. 
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 Figure 6-16: Kolmogorov-Smirnov test to compare the skill of the models for the observed precipitation 

distribution (Upper three Alemketema station, lower three Debre markos station) 

  

    
 
  Figure 6-17: Box plot showing the model performance at three stations. Box boundaries indicate the 25th and 

75th percentiles, the line within the box marks the median, whiskers below and above the box indicate the 10th 

and 90th percentiles, dots indicate the extremes.  

 

For future simulation, the HadCM3 GCM A2 scenario was used in common for two (LARS-WG 

and SDSM) downscaling methods to test whether the downscaling methods may affect the GCM 

result under the same forcing scenario. The results obtained from the two downscaling models 

were found reasonably comparable and both approaches showed increasing trends for 

precipitation, Tmax and Tmin. However, the magnitude of the downscaled climate data from the 

two methods as presented in Figure 6-18 indicates that LARS-WG over predicts precipitation 
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and temperature compared to SDSM. The relative change of mean annual precipitation using 

LARS-WG is about 16.1% and an average increase in mean annual Tmax and Tmin is about 3.7 

and 3.6
o
C respectively in the 2080s. SDSM predicts the relative change of mean annual 

precipitation of only about 9.7% and an average increase in Tmax and Tmin of about 2 and 1.3
o
C 

respectively in the same period. The differences in the future predictions are the result of the 

differences in the basic concepts behind the two downscaling techniques. The SDSM uses large-

scale predictor variables from GCM outputs, which can be considered as more reliable for 

climate change prediction using multiple linear regressions. However, the LARS-WG uses the 

relative change factors (RCFs) derived from the direct GCM output of only those variables, 

which directly correspond to the predictands. Hence, because of the well-known fact that GCMs 

are not very reliable in simulating precipitation, the error induced from the GCM output for 

precipitation will propagate the error of downscaling that makes the performance of LARS-WG 

to downscale precipitation needs more caution (Dibike et al., 2005).  

 

 
 
 Figure 6-18: Comparison of climate change scenario downscaled using LARS-WG and SDSM from HadCM3 

GCM for a2 scenario  
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Chapter 7 Combined impacts of climate change and water resource 
developments on the hydrology of the upper Blue Nile basin 

 

7.1 Model selection and description 
 

Application of models in hydrological studies has become an indispensible tool for 

understanding of the natural processes occurring at the watershed scale. Plenty of computer-

based hydrological models have been developed and available to analyze the quantity and quality 

of stream flow, flood forecasting, reservoir system operations,  water use, climate and land use 

change impact study, ecology and a range of water management activities (Dhami and Pandey, 

2013). There is wide variability in their characteristics and potential applications, for example, 

spatial and temporal scale, processes modeled and the basis of relationships and algorithm used. 

With this increasing number of availability, wide ranging characteristics and potential 

applications of the models, it is becoming challenging task for the potential model users to 

choose a particular model best suited for the given objectives of a particular study in an 

individual catchment (Otieno et al., 2014). Cunderlik (2003) reviewed and evaluated a large 

number of existing hydrologic models (over 40) that are potentially suitable for the project aimed 

at assessing  the potential impact of climate change on a wide range of hydrologic processes and 

existing water management practices. The author used a two-level selection approach to 

determine the most suitable model objectively. At the first level, a large number of existing 

hydrologic models are reviewed according to four fundamental selection criteria, and a subset of 

18 models is identified.  

 

The selected 18 models are then ranked according to several evaluation criteria reflecting 

different aspects of hydrologic processes that need to be modeled, required parameters to be 

estimated by the model, required input data and investment cost for the model.  At the second 

level, total ranks attributed to the 18 selected models serve as an objective measure for 

determining the most appropriate model(s). Lumped, semi-distributed and fully distributed 

models were compared separately, since they reflect different approaches to hydrologic 

modeling. With respect to the objective of this study, a more attractive choice would be to opt for 

a semi-distributed model, which will be a good compromise between generally high 

simplification of the governing hydrologic processes used in lumped models, and extensive data 

requirements of distributed models. The result suggested that HEC-HMS, HFAM hydrological 

models were the best among the nine selected semi-distributed hydrological model category 

including (SWAT, HBV, TOPMODEL, HSPF, PRMS, SSARR, and SWMM) in the order of 

their rank.  

 

Previously, SWAT models was tested and proved to reproduce all main hydrologic processes 

with high accuracy in the UBNRB (Gebremicael et al., 2013; Mekonnen et al., 2018b; Setegn et 

al., 2008). However, the performance of the model on controlled reservoir operation remained 

questionable (Cunderlik, 2003). In SWAT, reservoir control module calculated the outflow using 

one of four different methods Figure 7-1: measured daily outflow, measured monthly outflow, 

average annual release rate for uncontrolled reservoir, and controlled outflow with target release 

(Winchell et al., 2013). All methods or options require predefined or measured data format to 

input the outflow data, which are not available for the hydropower reservoirs planned to 
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construct in the UBNRB. Usually these methods are used when the discharge is either observed 

or completely specified by an external decision processes. The method can then be used to 

preserve the specified release and track the storage using the inflow, outflow, and conservation 

of mass. SWAT reservoir simulation may suite only for irrigation dams, when the irrigation 

water requirement calculated externally can be used as specified released discharges. 

Furthermore, SWAT has limitations to simulate reservoir level that is key variable to calculate 

power and energy. Thus, the SWAT reservoir control module needs improvement or 

modification by adding the reservoir level simulation tool, and it also needs external optimization 

tool such as Genetic Algorithm (Holland, 1975) to obtain the optimum daily or monthly outflow 

for optimum power production from the unconditional inflow (Kangrang et al., 2018; Zhang et 

al., 2012). This modification or improvement of SWAT controlled reservoir module is beyond 

the scope of this study.  

 

When measured daily outflow method is selected, the flow rate for every day of reservoir 

operation is required. If measured monthly outflow method is selected, the average daily flow 

rate for every month of operation of the reservoir is required. When the average annual release 

rate option is selected, the volume of water in the reservoir should be between the principal and 

emergency spillway volume. If the amount of water exceeding the principal spillway volume can 

be released at a rate <= V flowout, than all of the water volume in excess of the principal spillway 

volume is released. Otherwise, the release rate, Vflowout is used. When the water volume exceeds 

the emergency spillway volume, all water in excess of the emergency spillway volume is 

released plus the volume of water corresponding to the release rate from the principal spillway 

defined by V flowout. If a target release is selected, beginning and ending month of non-flood 

season, number of days to reach target storage from current reservoir storage and monthly target 

reservoir storage is needed as input. For the details see (Arnold et al., 2013). 

 

HFAM (Hydrocomp Forecast and Analysis Modeling) is a semi-distributed model developed by 

Hydrocomp Inc., based on the widely used Stanford Watershed Model (SWM) and the 

Hydrologic Simulation Program-Fortran (HSPF). The HFAM system consists of a hydrologic 

simulation model and a river-reservoir model. For the hydrologic simulation, the basin is divided 

into hydrologically homogeneous land segments. Each segment is simulated independently using 

local precipitation, evapotranspiration, temperature, solar radiation and wind. HFAM simulates 

various hydrologic processes and currently utilized in the following applications. Optimize the 

design and operations of reservoirs, the effects of climate change and LULC changes on the 

hydrologic processes and understand the connection between groundwater and surface water to 

track overall water balance in a watershed.  For further details, see https://hydrocomp.com/. With 

respect to HFAM, the concerns are its extensive data demand, not public domain (commercial) 

and limited technical support.  

 

The new HEC-HMS version has substantial improvements to the model structure, including 

reservoir outlet structures, dam break, and user extensions. With these features, the new HEC-

HMS outperforms the other semi-distributed models. Hence, HEC-HMS model found to be 

appropriate and selected for this study. 
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Figure 7-1: Reservoir control module of chart of the SWAT model (Zhang et al., 2012) 

 

7.1.1 HEC-HMS hydrological model 
 

HEC-HMS is designed to simulate the complete hydrologic processes of dendritic watershed 

systems (Scharffenberg, 2015) to solve widespread possible hydrological problems (e.g., flood 

hydrology, large basin water supply, surface erosion and sediment studies and reservoir design) 

in a wide range of geographic regions. It has the capability to simulate both continuous and 
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event-based hydrological phenomena. The primary distinction is that evapotranspiration and 

groundwater seepage flow can be ignored for event-based modeling, but not in continuous 

hydrological modeling. Soil moisture has a significant influence on the hydrological response of 

a watershed; still, it is rarely tracked in simulation models, due to the complexity of the model 

structure and challenge of parameter estimation (Holberg, 2015). In HEC-HMS, the Soil 

Moisture Accounting Algorithm (SMA) and deficit-constant methods are the only loss methods 

that account for the evapotranspiration process (Scharffenberg, 2015). The HEC-HMS model is 

public domain software tool. The documentation and the latest version of the software can be 

downloaded from https://www.hec.usace.army.mil/software/hec-hms/. 

 

The SMA loss method was applied for this study to simulate the movement of water over time 

through a series of storage layers as illustrated by Figure 7-3. According to Holberg (2015), 

SMA takes a precipitation as its input and routes it through canopy, surface, and soil storages 

while taking into account groundwater, baseflow, and evapotranspiration processes before 

outputting a streamflow hydrograph. When precipitation occurs, the canopy storage is first filled; 

the precipitation amount not captured by canopy storage and in excess of infiltration rate 

becomes inflow to the surface. Once the volume of surface interception exceeded, this excess 

water contributes to surface water. Furthermore, if the precipitation intensity is greater than the 

maximum infiltration capacity of the soil profile, the excess precipitation will become surface 

runoff instead of infiltrating. The infiltrated precipitation fills the tension zone first and then the 

upper zone. Precipitation can percolate from the upper zone, but not from the tension zone, into 

the groundwater layer one storage (GW1). Some water in GW1 will be routed to the first 

baseflow reservoir while the rest percolates down to groundwater layer two (GW2). From GW2, 

water can be transferred to the second baseflow reservoir; otherwise, it percolates down to a deep 

aquifer, which is considered lost from the system. Water in the baseflow reservoirs is 

transformed to streamflow based on the characteristics of the reservoirs, such as quantity and the 

flow coefficient. 

 

Evapotranspiration first occurs from the canopy storage, then from the surface storage. If 

sufficient water is not present in the first two storage components, water is then removed from 

the upper zone storage to fulfill the evapotranspiration potential. If evapotranspiration is still not 

satisfied, water is then removed from the tension zone storage. Evapotranspiration from the 

tension zone storage occurs at a decreased rate based on the current soil storage depth and the 

maximum storage capacity of the tension zone. If potential evapotranspiration is not satisfied 

from the first two storage components, the algorithm removes the water from tension zone 

storage. Water removal from tension zone occurs at a slower pace based on maximum storage 

capacity of the tension zone and depth of the soil storage (Holberg, 2015; Samady, 2017). 

 

HEC-HMS model setup (Figure 7-2) consists of a basin model, meteorological model, control 

specifications, time series and paired data manager (Scharffenberg, 2015). The basin model for 

instance, contains the hydrologic elements (sub-basin, reach, junction, reservoir, source and 

sink), their connectivity that represent the movement of water through the drainage system and 

streamflow parameters. Control specifications manager are one of the main component of the 

project, principally used to control time interval of simulation. The meteorological component is 

also the first computational element in which precipitation is distributing spatially and 

temporally over the river basin. The spatio-temporal precipitation distribution was accomplished 



 

134 

 

by the gauge weight method. The Thiessen polygon technique is used to determine the gauge 

weights of the sub-basins in order to  calculate the areal rainfall depth of each sub-basins, based 

on an assumption that the precipitation depth at any point within the sub-basin is the same as the 

precipitation depth at the nearest gage (Feldman, 2000). The input data are consisting of both 

time series and spatial data. It requires daily precipitation, long-term average monthly potential 

evapotranspiration, daily streamflow and geographical information digital elevation model 

(DEM) of the basin as input. The paired data manager is consisting of many functions such as the 

physical reservoir characteristics (elevation-reservoir area function, elevation-storage function, 

storage-discharge function, elevation-discharge function, inflow-diversion function). 

 

In the present study, the SMA method for a runoff volume model, the Clark unit hydrograph 

(CUH) for direct runoff model, Muskingum for channel routing, and exponential recession 

method for base flow modeling are employed. 

 

 
 

Figure 7-2: HEC-HMS model flow chart 

Simulate the streamflow  for 
diefferent scenarios

Impact analysis

Time series data 
manager (rainfall,  
ETo, streamflow, 

irrigation demand)

Basin model manager
(basin, reach, junction, 

reservoir)

Simple canopy 
method

Simple surface 
method

SMA loss 
method

Clark UH 
method

Linear reservoir 
method

Meteorological 
model manager 
(Rainfall, ETo)

Conrol 
specification 

manager

Paired data 
manager

Calibrate the 
model

Evaluate performance (R2, 
NSE, RVE)

Muskingum 
method

Future climate 
change scenario 

(GFDL and 

Irrigation 
scenario

Reservoir  rule 
curves

No (Change the parameters) 

Yes 



 

135 

 

 
 

Figure 7-3: Schematic diagram of HEC-HMS soil moisture accounting model adapted from Feldman (2000) 

 

7.1.2 Model calibration and performance assessment 

Manual adjustment of model parameters using the trial-and-error method is the initial step in 

model calibration, which enables the modeler to make a subjective adjustment of parameters that 

gives an appropriate fit between observed and simulated hydrographs (Zhang et al., 2013). There 

are many different approaches for the calibration of watershed models such as lumped, semi-

distributed, 1-factor and regionalization (Wallner et al., 2012). The lumped is the simplest one 

that can be performed in two ways either with the number of sub-basins or eliminating the sub-

basins. In either of the two, the parameters value is the same for all sub-basins eqn.(7-1 ). In a  

semi-distributed HEC-HMS model, for each sub-basin the parameters Φi, j needs to be estimated, 

where the index i stand for the parameter and the index j for the sub-basin.  

 

For the Lumped method, all particular parameter values are equal: 
 

 Φi,1 = Φi,2 = Φi,3 = Φi,4 ; i = 1, . . . ,N (7-1) 
 

Where, N is the number of parameters.  

 

According to Wallner et al. (2012), employing the lumped method, the spatial variability of the 

climate forcing is still represented due to the attribution of time series to the sub-basins, but the 



 

136 

 

spatial variability of the parameters is lost. The 1-Factor (1-F) method is the modified version of 

lumped method. Initial parameter values can be defined in a pre-processing step based on basin 

characteristics such as soil, land use and topography. As a result, spatially variable initial values 

for the parameters are obtained eqn. (7-2). 

 

 Φi,1 ≠ Φi,2 ≠ Φi,3 ≠ Φi,4 ; i = 1, . . . ,N (7-2) 

 

 

Although, the initial parameter values do not provide reliable model result, one factor is created 

for each parameter for the next step. These factors are calibrated and then multiplied with the 

particular parameter values. Hence, both (lumped and 1-factor) strategies are limiting the 

variability of the parameter values. Either there is no spatial variability (lumped) or the 

variability is given by pre-processing which depends on the modeler's subjective assessment of 

the catchment (1-factor). 

 

Distributed calibration strategy (DIS) is a method, which considers all parameters for all sub-

basins independently while regionalization method (REG) is assuming that the parameters of the 

hydrological model can be related to basin characteristics. In regionalization technique, each 

parameter value is calculated via transfer functions with a statistical relationship of pre-defined 

catchment characteristics value and the model parameters value using either linear or multiple 

linear regression techniques eqn.(7-3).  

 

 

Φ                                    

 

   

 

   

 (7-3) 

 
i=1,...,N; j=1,...,N', 

 

where: N is number of parameters, N' is number of sub-basins, Sj,n and Lj,m are relative areas of 

soil- and land use classes, respectively and k and u are the number of different soil/land use 

classes defined for each sub-basin. In REG techniques, the parameters are not calibrated but the 

coefficients of the transfer function (    ,      ,   . . . ).  
 

Therefore, semi-distributed method was employed due to the high spatial variability's of the 

catchment characteristics of the basin and the nature of HEC-HMS model. The entire UBNRB is 

sub divided into 42 different sub-basins as shown in Figure 7-4 to use the model as semi-

distributed for HEC-HMS. Model parameter estimation of the sub-basins was carried out based 

on the observed streamflow records at eight different gauging stations namely: Gilgel Abay, 

Koga, Gumara, Rib, Megech, Tana, Kessi and El Diem. At Tana gauging station, we calibrated 

and validated for both Lake level elevation and outflow. In order to get the optimum parameter 

values after manually calibrating the model, an automatic optimization method was applied. The 

Nelder and Mead optimization method used than the univarient method. The reason behind is, 

the Nelder and Mead method uses downhill simplex to evaluate all parameters simultaneously 

and which parameters to adjust. The level of goodness of fit evaluation is mainly done using 

eqn.(4-5) to (4-10).  
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Figure 7-4: Watershed subdivision for calibrating HEC-HMS model  

 

7.2 Input data preparation 
 

The various types of input data needed for HEC-HMS model are:  

 Geospatial data (DEM, LULC map and soil data) 

 daily time series of rainfall, streamflow, and mean monthly evaporation for different sub-

catchments and reservoirs  

 Irrigation areas and demands for each scenario  

 Characteristics of the hydropower stations (installed capacity, rated heads and discharges, 

etc.,)  

 Reservoir characteristics (area-capacity curves, rule curves, evaporation etc.)  

 Lake Tana elevation-area-capacity relationship and operation rule curves 
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This study uses ArcGIS; Geographic Information System (GIS) software developed by ESRI 

arcGIS, a Geographic Information, and manipulates spatial information. HEC-GeoHMS 

(https://www.hec.usace.army.mil/software/hec-geohms/) extension within the ArcGIS 10.2.1 

environment is used for creating the basin model describing the physical characteristics of the 

watershed (slope, low accumulation, stream network, etc). It is specifically designed to process 

Geospatial data and create input files for HEC-HMS. It provides the connection for translating 

GIS spatial information into model files for HEC-HMS. 
 

 

7.2.1 Hydro-meteorological data 

 

The future climate projections generated from down scaling climate model (i.e., rainfall, 

temperature;(Mekonnen et al., 2018a) are used as input to a hydrological model (HEC-HMS) to 

assess the combined impacts of climate change and water resource developments. Daily 

precipitation and mean monthly evapotranspiration are the main climate variables used for 

driving the water balance model. For the baseline scenario and for calibrating and validating the 

model, the weather data and flow data were obtained from the ENMA and from the Federal 

Ministry of Water Irrigation and Electricity of Ethiopia for the period 1971-2010 respectively. 

For the details of preprocessing and analysis of hydro-meteorological data please see Chapter 4 

and from  (Mekonnen et al., 2018a; Mekonnen et al., 2018b).  

 

For the future period, six GCMs from CMIP3 and three GCMs from CMIP5 are employing in 

the present work. However, only two forcing data sources are selected and employed to drive 

HEC-HMS hydrological model. The two forcing data sources are the outputs of the downscaled 

canESM2 and GFDL GCMs from CMIP5 climate models under RCP4.5 scenario. The databases 

of the two GCMs contain precipitation and temperature data from 1984 to 2100 at monthly and 

daily time steps. The downscaling methods applied for the daily data are SDSM and LARS-WG, 

which are widely used and validated in a number of studies. The details of downscaling the 

future climate scenario is described under Chapter 6 of this dissertation.    
 

These two GCMs are selected for further impact analysis for the following reasons.  

 They are from CMIP5 generation climate models, which were used for the IPCC AR5. 

In the CMIP5 project, significant efforts were incorporated to reduce uncertainty in the 

model simulations, which led to a new generation of global climate models known as 

Earth system models (ESMs) such as canESM2 (Taylor et al., 2012). These models were 

designed with the added capability to explicitly represent biogeochemical processes that 

interact with the physical climate in addition to a more detailed representation of 

aerosols and carbon cycles (Flato, 2011). It also includes models with improved physical 

parameterization schemes regarding cloud and radiation processes (Dolinar et al., 2015). 

Therefore, CMIP5 GCMs are expected to produce more realistic results than CMIP3 as 

models tend to improve across generations (Das et al., 2012; Mekonnen et al., 2018a).  

 The maximum increase of the future precipitation for the UBNRB was obtained from the 

downscaling canESM2 GCM while GFDL CMIP5 GCM produced the maximum 

decrease for the future precipitation in the UBNRB.  
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 Although it is hard to predict the future plausible climate scenario, RCP4.5 has chosen 

for this impact analysis study. Because it is the medium class radiative forcing scenario 

and the most likely scenario to happen in the future over the UBNRB as compared to 

RCP2.6 (best case scenario) and RCP8.5 the worst case scenario in terms of GHG 

emission. RCP 2.6 requires powerful climate politics close to the ambition of the Paris 

agreement 2
o
C “goal” for the rise of global temperature at the end of 21

st
 century 

(Agreement, 2015). The RCP 8.5 scenario may also become less likely in years to come, 

even if the current climate most closely tracked RCP 8.5 scenario. The global coal 

industry should be seven times bigger than it is today to rise the world’s average 

temperature by 4.9
o
C that represents the RCP8.5 

https://www.theatlantic.com/science/archive/2019/01/RCP-85-the-climate-change-

disaster-scenario/579700/. These can be a real ground to exclude RCP8.5 for further 

impact analysis.  

RCP 4.5 is a stabilization scenario in which total radiative forcing is stabilized at 4.5Wm
-2

 

(approximately 650-ppm CO2 equivalent) shortly after 2100 relative to the pre-industrial 

period, without overshooting the long-run radiative forcing target level. The RCP 4.5 

scenario is developed with the following assumptions.  

  Lower energy intensity  

  Strong reforestation programmes  

  Decreasing use of croplands and grasslands due to yield increases and dietary changes  

  Stringent climate policies  

  Stable methane emissions  

  CO2 emissions increase only slightly before decline commences around 2040 

For the details of climate projections, please see (Mekonnen et al., 2018a) 

 

7.2.2 The evapo-transpiration data  

Evapotranspiration is the combination of soil evaporation and crop transpiration. Weather 

parameters, crop characteristics, management and environmental aspects affect 

evapotranspiration. The evapotranspiration rate from a reference surface (i.e. for hypothetical 

grass cover of 12 cm high with no moisture constraints, surface resistance of 70 sm
-1

 and an 

albedo of 0.23) calculated from eqn.(5-5) is called the reference evapotranspiration and is 

denoted as ETo. Due to the difficulty of obtaining accurate field measurements, ETo is 

commonly computed from weather data. A large number of empirical or semi-empirical 

equations have been developed for assessing reference evapotranspiration from meteorological 

data. Experts consultation held in May 1990 recommended the FAO Penman-Monteith method 

eqn.(5-5) as the standard method for the definition and computation of the ETo (Allen et al., 

1998). This method has been selected by FAO as the reference because it closely approximates 

grass ETo at the locations where evaluated, is physically based, and explicitly incorporates both 

physiological and aerodynamic parameters.  

 

Hence, the daily evapotranspiration was calculated using FAO ETo calculator V3.2 software by 

means of the FAO Penman-Monteith equation at 12 stations, which have a complete 

climatological data sets, i.e., maximum and minimum temperature, mean relative humidity, 
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sunshine hours and wind speed from 1987 to 2011. The ETo Calculator is public domain 

software obtained from http://www.fao.org/nr/water/eto.html. After calculating ETo at station 

level, the areal evapotranspiration for the selected sub-basins were calculated using Thiessen 

polygon method based on the stations information inside and around the sub-basins. Finally, the 

future scenario of evapotranspiration was calculated from daily evapotranspiration at station 

level using SDSM from canESM2 and GFDL GCMs for the scenarios of RCP4.5. Before 

generating future scenarios of ETo, the statistical down scaling model (SDSM) is calibrated and 

validated and the potential predictors for ETo for each 12 stations were selected. Detail 

explanation and procedure of SDSM can be found from (Mekonnen et al., 2018a). For stations, 

which do not have complete climatological data sets such as mean relative humidity, sunshine 

hours and wind speed, the baseline and future ETo was calculated using the same software based 

on Tmax and Tmin data. In case humidity data, wind speed data or radiation data is not available 

for a particular day, the software will make use of the information specified in the corresponding 

boxes (missing air humidity, wind speed or radiation data) to estimate the missing 

meteorological data.  

 

7.2.3 Water resource development and management scenarios  

In order to assess the downstream effect of the planned irrigation and hydropower projects as 

well as the climate change effects, thirteen development and management scenarios are 

established Table 7-1. The baseline scenario (s0) includes the natural flows of the UBNR before 

Tana Beles transfer being operational, without any man-made changes. Scenario s1 represents 

the current situation that consists of the currently operating irrigation schemes (Koga, Fincha 

sugar factory and Anger) and Tana Beles hydropower project. The remaining eleven scenarios 

are based on the irrigation and hydropower development combined with and without climate 

change. The development scenarios are classified as short term (2017-2025), medium-term 

(2026-2040), long term A from (2041-2070) and long term B (2071-2100). The classification of 

long term A and B are similar in the irrigation and hydropower developments but different for 

climate change scenarios.  

 

s2, s3 and s4 scenarios are scenarios with different level of water resource development but they 

are not addressing the climate change effect (climate remained constant), these are used to 

analyze the single impacts of water infrastructure developments at different levels. S5, s6, s7 and 

s8 scenarios are based on the assumption that climate is changing under RCP 4.5 scenario of 

canESM2 GCM combined with different level of irrigation and hydropower developments, when 

the precipitation and streamflow might increase across the basin. S9, s10, s11 and s12 scenarios 

are based on the assumption that climate change of RCP 4.5 scenario of GFDL GCM combined 

with different level of irrigation and hydropower developments might occur in the future, when 

precipitation and streamflow might decrease over the basin. Detail descriptions of the scenario 

development can be found in Appendix 18. For each model scenario, the impacts on the 

hydrology, irrigation and hydropower developments are explored. Estimates of current and 

future irrigation and hydropower development plan were derived from data provided by 

government ministries and agencies or from previous studies, as well as from the basin master 

plan study report Appendix 20.  
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Table 7-1: Proposed scenario development 

 

  Water resources development scenarios 

  

Base 

line 

Current 

condition 

Short 

term  

Medium 

term 

Long 

term  

Short 

term  

Medium 

term 

Long 

term A 

Long 

term B 

Scenario s0 s1 s2 s3 s4 s5,s9 s6,s10 s7,s11 s8,s12 

Irrigation 

(*1000ha) 0 23.5 214.9 382.6 424.4 214.9 382.6 424.4 424.4 

MAD(Mm
3
) 0 169.2 1694.9 3209.5 3583.3 1694.9 3209.5 3583.3 3583.3 

AID (m
3
ha

-1
) 0 7172.2 7887.5 8387.8 8524.1 7887.5 8387.8 8443.8 8443.8 

Hydropower 

Tana Beles X √ √ √ √ √ √ √ √ 

Beko Abo X X X X √ X X √ √ 

Karadobi X X X X √ X X √ √ 

Mendiya X X X X √ X X √ √ 

GERD X X √ √ √ √ √ √ √ 

Climate change X X X X X √ √ √ √ 
Short term (2018-2025); medium term (2026-2040); long term A (2041-2070); long term B (2071-2100); MAD: mean annual 

water demand; AID: annual irrigation demand per hectare; s9, s10, s11 and s12 are based on GFDL CMIP5 GCM while s5, s6, s7 

and s8 are based on canESM2 CMIP5 GCM
. 

 

Safe drinking water is one of the necessities for human beings. However, billions of people in the 

world have not access to it today particularly the population from the developing countries like 

Ethiopia. To improve this situation, the Government of Ethiopia has prepared the Second Growth 

and Transformation Plan (GTP-2) covering the period from 2016-2020. The GTP-2 plan has two 

main goals regarding to water supply and sanitation sector to accelerate the provision of safe and 

adequate water.  

Goal 1: Provide rural water supply access with minimum service level of 25 l/c/day within a 

distance of 1 km from the water delivery point for 85 % of the rural population.  

Goal 2: Provide urban water supply access for 75 % of the urban population with GTP-2 

minimum service level standards.  

The domestic and non-domestic water supply demand calculated based on the central statistics 

agency (CSA) population projection and revised standards of per capita demand of each sector at 

the end of 21
st
 century is estimated about 7302 Mm

3
. However, it is not considered in the 

scenarios for impact analysis due to the fact that more than 90% of the domestic water supply 

source is from ground water and its impact both currently and in the future is insignificant 

(SMEC, 2008).  

 

7.2.3.1  Irrigation development 
 

Irrigation led development and effective use of water resource potential is a strategic direction 

for the Government of Ethiopia for means of livelihood improvement. Irrigation can provide an 
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opportunity to improve the productivity of land and labor that increase production volumes and 

play a great role in confronting poverty and drought significantly. Although, irrigation potentials 

are not exhaustively identified, different studies reported different results. For instance, BCEOM 

(1998a), identified 578,000 ha net irrigable land which are economically feasible with an average 

water requirements calculated at 4,895Mm
3
 annually. WAPCOS (1990) reported the identified 

1,001,000 ha potential large and medium irrigable lands in Abay basin including the sub-basins 

of Rhad and Gelegu, which are not included in the current research. Hence, to maximize the 

advantage of irrigation development, the Ethiopian government is increasingly investing in the 

water sector. To this end, at the end of GTP II, the ministry of water, irrigation and electricity has 

been planned to carry out the construction of 280,385 hectares irrigation and drainage projects. 

The irrigation potential and irrigation water requirements identified and calculated by BCEOM 

(1998a) during the master plan study is adapted for this study see Appendix 19.  

 

Irrigation water requirements 

 

Diversion for the irrigation projects has designed to have two outflows, main and diverted, and 

one or more inflows. Six methods are available for computing the diverted flow that will be 

taken out of the channel. All flow that is not diverted becomes the main outflow. The specified 

flow diversion method designed for the known quantity of flow (irrigation demand) diverted 

from the channel is selected for this dissertation. In this case, a time series of specified 

discharges for the irrigation calculated externally based on their irrigation water requirement to 

be diverted from the channel can be entered in the model time series data manager.    

 

Irrigation water requirements calculated by BCEOM (1998b) for the Abay master plan study 

were adopted for this dissertation. The ET0 values were calculated based on reviewed and 

corrected climatic data, including altitude, average temperature, humidity, wind speed and 

sunshine duration for 22 stations. In order to calculate the ETo values according to the Penman-

Monteith formula, the FAO CROPWAT program, version 5.7 was used. Annual effective rainfall 

values ranging between 50 and 70% of the annual average rainfall was considered to be on the 

safe side. Seven different cropping patterns had been developed with different assumptions. Here 

it is to be noticed that evapotranspiration for the calculation of irrigation water requirement is not 

considering the future climate projection due to the conservative recommended value for 

irrigation efficiency and assuming the irrigation efficiency in the future might improve. Gross 

Irrigation water requirement for the planned irrigation projects can be found on Appendix 19. 
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Table 7-2: Monthly average evaporation of the planned and existed reservoirs (mmday
-1

) 
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Jan 130 143 133 133 130 133 133 168 166 196 194 202 

Feb 137 148 143 140 134 140 139 163 161 190 188 196 

Mar 167 180 174 171 161 171 164 178 176 172 170 182 

Apr 174 174 171 165 168 174 178 168 166 197 196 208 

May 152 164 155 155 149 155 162 152 151 241 239 251 

Jun 123 141 129 129 120 120 133 96 95 174 173 186 

Jul 93 90 90 93 90 93 117 67 66 15 15 46 

Aug 93 90 90 90 93 93 123 65 64 87 87 115 

Sep 129 132 129 126 126 132 133 88 87 212 211 225 

Oct 143 155 146 146 140 143 140 128 127 251 250 259 

Nov 129 138 132 129 126 129 131 138 136 170 169 176 

Dec 121 130 124 124 118 121 123 149 147 184 182 189 

Total 1591 1685 1615 1600 1555 1603 1676 1560 1542 2088 2073 2236 

 

7.2.3.2  Defining reservoirs data and model simulation 
 

Being rich with hydraulic power potentials, dense river network, abundant rainfall and large 

runoff volume, the UBNRB is the most important and prospective basin for the water resource 

developments. According to the basin master plan studies (BCEOM, 1998a),  water resource 

management policies and strategies, large scale reservoirs for irrigation and hydropower had 

been built up or under construction on the UBNRB, and planned to be constructed in the future. 

Because of population and socio-economic growth within the basin, assessing the demand and 

supply of available water turns out to be essentially urgent. 

 

A reservoir is an element with one or more inflow and one computed outflow. Inflow comes 

from other elements in the basin model. If there is more than one inflow, all inflow is added 

together before computing the outflow. Storage reservoirs identified in the Abay basin area 

during the Abay master plan study (BCEOM, 1998a) are listed in Table 7-3. Their location is 

indicated in Figure 7-5, together with their upstream catchments. In this dissertation, one 

existing, three under construction and two planned reservoirs for the purpose of irrigation and 

three planned and one under construction reservoirs for the purpose of hydropower generation 

and one natural reservoir, Lake Tana, which is served to regulate the natural flow for the Tana 

Beles hydropower production is included in the simulation. Hence, HEC-HMS model requires 

physical reservoirs data as well as operational reservoirs data for simulating the required 

streamflow variable. The main sources for the physical data for all the reservoirs are previous 
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studies, feasibility studies of the projects and Hydropower Toolkits developed by Eastern Nile 

Technical Regional Office (ENTRO).  

 

Reservoir routing and storage method 

 

Several methods are available for defining the storage properties of the reservoir and for routing 

the reservoir. While a reservoir element conceptually represents a natural lake or a reservoir 

behind a dam, the actual storage calculation method is performed by a routing method contained 

within the reservoir. Four different routing methods are available in HEC-HMS. The first one is 

simply designed to represent the reservoir with a known storage-outflow relationship (Outflow 

curve). The second method uses a specified release and computes the storage that would result 

(specified release option). The third method is designed to represent individual components of 

the outlet works (outflow structures). The fourth method is a choice for none routing method 

(none). This option assumes no storage in the reservoir and all inflow is passed as outflow for 

each time interval of the simulation (Scharffenberg, 2015). In this dissertation, outflow structures 

routing method is selected because of two main reasons. First, evaporation and seepage from a 

reservoir can only be included using this method. Seepage loss from the reservoir is not included 

in this study due to data limitation. Second, there is no any developed relationship between the 

storage and discharge for each reservoir, which is unique. It is also possible to develop additional 

releases based on an operations plan for the reservoir. This is a best option to develop the 

different time series releases for the Lake Tana reservoir pumped irrigation based on the future 

development scenarios. 

 

 Elevation-Area storage method, which requires the selection of an elevation-area curve from the 

available curves in the paired data manager, is selected. With this choice, the model 

automatically transforms the elevation-area curve into an elevation-storage curve using the conic 

formula. After the routing is complete, the program will compute the elevation, surface area and 

storage for each time interval (Scharffenberg, 2015). The operational and physical data for 

reservoirs were taken from previous studies such as (Halcrow and GIRD, 2010; SMEC, 2008), 

Hydropower Toolkits and mathematical relations formulated from the long time record of Lake 

outflow and elevation. Elevation-Area-capacity tabulated data is entered in the paired data 

manager. 

 

Reservoir evaporation 

 

Water losses due to evaporation are an important part of water balance for a reservoir especially 

in dry or desert environment like GERD. The evaporation losses are different from other 

structures because they do not contribute to either main or auxiliary outflow. An evaporation 

depth is computed for each time interval and then multiplied by the corrosponding surface area. 

The monthly evaporation rate method is used to specify a separate evaporation rate for each 

month of the year, entered as a total depth for the month. Mean monthly evaporation data at the 

locations of reservoirs collected from previous studies is shown in Appendix 22.   
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Figure 7-5: Locations of existing and proposed irrigation projects across the UBNRB 

 
Table 7-3: Characteristics of irrigation dams identified by BCEOM (1998a) 

(a) Reservoir volume characteristics 

 

Irrigation 

Dam 

Catchment 

area (km
2
) 

Average 

discharge 

(m
3
s

-1
) 

Dead 

storage 

volume 

(Mm
3
) 

Live 

storage 

volume 

(Mm
3
) 

Total 

storage 

volume 

(Mm
3
) 

Irrigation 

area (ha) 

mean 

annual 

demand 

(Mm
3
) 

Jemma 218 5.5 10 163 173 7,786 60 

Koga 165 2.75 4 73 77 7,000 54 

Gilgel Abbay 1,980 70 144 419 563 16,499 160 

Megech 424 5.58 20.3 161.6 181 7,311 62 

Ribb 685 6.82 27 206 233 19,925 196 

Gumara 410 8.15 35.9 187.1 223 13,776 117 

Didessa 5537 112 537.2 1515.8 2053 88,000 477 
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b) Elevation characteristics 

 
Dam Name Bottom level 

(masl) 

Top of dead 

storage (masl) 

Normal water 

level (masl) 

Spillway 

level (masl) 

Megech 1867 1910 1947.1 1947.1 

Rib 1875 1901.2 1932 1932.5 

Gumara 1920 1942 1972.5 1972.5 

Jemma 2055 2092.5 2130 2130 

Koga 2004 2007 2015.2 2015.2 

Gilgel Abay 1840 1862 1890 1890 

Didessa 1312 1344 1355.2 1355.2 

 

7.2.3.3  Hydropower development 
 

Ethiopia needs high power to meet the growing electricity demand and help speed up the 

economic and social development in the country, as well as to increase the power supply 

reliability and earn foreign currency by exporting electricity. From the outflow at Lake Tana 

until the Sudanese border the Abay drops from 1800 to 500 masl over 900 km. Along this stretch 

its mean annual flow increases from around 110 m
3
s

-1
 (outflow of Lake Tana) to 1700 m

3
s

-1
 at El 

Diem (NORPLAN et al., 2006). Due to its slope and large discharge the Abay river has 

enormous theoretical hydroelectric power potential estimated about 55,000 GWh as identified by 

(BCEOM, 1998a). However, up to the present, two small hydropower's (Tis Abay I &II), and 

one medium hydropower (Tana-Beles transfer HPP) schemes have been implemented in the 

Abay catchment Table 7-4.  

 

Currently only Tana Beles hydropower, which can generate 460 MW is under operation in the 

basin. The Tana Beles hydropower scheme involves the transfer of water from Lake Tana 

through a 12 km long and 7.1 m diameter tunnel with 311 m elevation difference between the 

Lake Tana and Beles River (Salini and Pietrangeli, 2006). This enables far more electricity to 

generate than the power generated from Tis Abay I and II power stations. It was intended to 

divert approximately 2,985 Mm
3

 annually through the tunnel to generate 2,310 GWh of 

electricity each year with a firm production estimated at 1,866 GWh (SMEC 2008). According to 

the data obtained from the Tana-Beles HP project office, approximately 3,139Mm
3
 volume of 

water is diverted through the tunnel to the Tana-Beles HP each year and able to generate 2,230 

GWh of electricity for the first six years operation (2011-2016).  

 

Tis Abay I and II hydropower projects, located some 45 km downstream of Lake Tana outlet, 

which have total capacities of 84.4 MW are used as standby. Some part of the flow after leaving 

the Chara-Chara weir is diverted to these plants and the remaining part will flow to the Tis-Issat 

waterfall. Tis-Abay I power plant was designed for a total maximum discharge of 30 m
3
s

-1
 with 

three turbines each 10 m
3
s

-1
, rated net head of 46 m, power factor of 0.8, and installed capacity of 

11.4 MW Table 7-4. Tis-Abay II power station was designed for total maximum discharge of 

150 m
3
s

-1
 with 2 turbines each 75m

3
s

-1
, rated head of 53.2 m, power factor of 0.90, and with 73 

MW installed capacity.  
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Table 7-4: Characteristics of existed operational hydropower plants in the Abbay river 

Hydropower 

plant 

 

No of 

turbines 

 

Maximum 

discharge 

(m
3
s

-1
) 

 

Net head 

(m) 

 

Installed 

capacity 

(MW) 

 

Plant 

factor 

 

Tis-Abay I 3 30 46 11.4 0.8 

Tis-Abay II 2 150 53.2 73 0.9 

Tana-Beles 4 160 311 460 0.48 

 

Tana-Beles hydropower project 

 

According to Halcrow et al. (2010), the Tana-Beles HPP located in the Beles river catchment is 

part of a multipurpose 50 year development plan for the Tana-Beles basins. It inaugurated on 14 

May 2010, is now operational, and involves the diversion of water from Lake Tana through an 

11km long and 7.1m diameter tunnel into the adjacent water deficient Beles catchment. 

Hydropower is generating by using the natural head difference of 311m between Lake Tana 

water level and the Beles riverbed level. Water from the tunnel feeds a vertical penstock shaft 

connected to a powerhouse with four turbines with a total installed capacity of 460 MW. The 

hydropower plant is operating with an average plant factor of 48%. The average discharge 

through the tunnel is 77 m
3
s

-1
 with discharge peaking at 160 m

3
s

-1
 at high lake levels. The aim of 

the Tana-Beles Scheme is to divert on average about 2,985 Mm
3
 (70% of the natural outflow of 

Lake Tana) per annum from Lake Tana to the Beles river basin through the Tana-Beles 

hydropower plant generating 2,310 GWh of electricity, assuming existing development 

conditions in the Lake Tana basin and a minimum operation level of 1,784.0 masl. However, 

diversion of water to the Beles catchment will decline to 2,493 Mm
3
 per annum and generate 

1,907 GWh of electricity once full water resource development in the Lake Tana basin is 

complete and if the minimum operation level of 1,784.75 masl for Lake Tana is adopted as 

recommended by SMEC (2008).  

 

According to Salini et al. (2006) the Beles multipurpose project has the following basic 

parameters: 

 1784 masl inlet minimum operating level 

 1455.5 masl tail water level in the Jehana river for 160 m
3
s

-1
 

 331.5 m gross head 

 77 m
3
s

-1
 average annual flow 

 0.48 Plant factor 

 160 m
3
s

-1
 design flow 

 420 MW Installed power 

 7.20 m Headrace and tailrace tunnel internal diameter 

 6.5 m Penstock shaft diameter 

 19.46 Total losses 

 31.80 Total head losses 

 299.7 Net Head 
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The average annual energy production can be calculated with the following expression: 

 

En= 9.81*ρ*Q*η*Hn *PF*hy*10
-9

 =1719 GWhyr
-1

 where: 

 

ρ is water unit weight= 1000 kgm
-3
, η is Plant overall efficiency= 0.87, Q is rated flow = 160 

m
3
s

-1
, Hn is net head = 299.7m, PF is plant factor= 0.48 and hy is  8,760 hours yr

-1
 

 

Cascade hydropower projects 

 

The future large scale cascaded hydropower projects to be implemented along the main stem of 

Abay river that has been identified by (BCEOM, 1998a) are as follows. 

 

Karadobi hydropower project  

 

On the middle course of the Abay, some 400 km downstream of the outflow of Lake Tana, and 

around 65 km downstream of the Kessi road bridge, the (USBR, 1964) identified topographically 

suitable Karadobi sites for a large hydropower development. The proposed Karadobi dam and 

power plant is located on Abay River, approximately 55km south of Debre Markos, 65km 

downstream of the Kessi Bridge and 1.7km downstream of the confluence of the Abay and 

Guder rivers. The main characteristics of Karadobi dam is shown in Appendix 23.  

 

The analysis of 50 years data from the hydrometric station at Kessi station reported by 

(NORPLAN et al., 2006) concluded that the reliable average inflow of 640 m
3
s

-1 
was recorded. 

Based on the average inflow of 640 m
3
s

-1
, Karadobi hydropower project had been identified with 

the installed capacity of 1,600MW that could produce 9,708GWh annual average energy, of 

which 9308GWh is firm energy without Tana Beles transfer (Appendix 23). Assuming upstream 

transfer of water to Beles catchment, the best Karadobi development option is found to be 

1280MW. The annual energy production potential at Karadobi is then reduced to 8,693 GWh. A 

proposed of 250 m high dam on the Abay river at Karadobi will facilitate a regulated firm 

outflow of 526 m
3
s

-1
 from the reservoir. The live storage of the reservoir between full supply 

level (FSL) at 1146 and minimum operating level (MOL) at 1100 masl is 17,300 Mm
3
 

corresponding to 85% of the annual average inflow. 

 

Beko-Abo hydropower project 

 

The proposed Beko-Abo dam and power plant will be located approximately 2 km north of the 

bridge on the road Nekemte-Bahir Dar crossing the Abay River, which is some 90 km (air 

distance) downstream of the Karadobi dam site. The distance from Addis Ababa is 

approximately 460 km via Debre Markos and some 530 via Nekemte (NORPLAN et al., 2013). 

The main features of Beko-Abo high dam is shown in Appendix 23. The 1940 MW Beko-Abo 

project alone can produce 12,096 GWh annual average energy, of which 11,937 GWh is firm 

energy in the interconnected system to Egypt. The mean annual inflow analysis carried out by 

NORPLAN et al. (2013) is 675m
3
s

-1
 after deduction of the Beles abstraction of 77m

3
s

-1
, and this 

quantity is considered to be reliable (see, Appendix 23). 

 



 

149 

 

One alternative to avoid the over toping effect of on the Kessi Bridge is to introduce a Beko-Abo 

low scheme with a FSL of 910 masl, equivalent to the tailrace outlet elevation of the Karadobi 

project. The installed capacity is taken as 800 MW resulting in a predicted yield of 4 664 GWh. 

A low Beko-Abo scheme is considered to be as viable as the main Beko-Abo High (NORPLAN 

et al., 2013). 

 

Mandaya  

 

Mandaya project is located at sites 220 km from Beko-Abo. While Beko-Abo and Mandaya are 

separate projects, the headwaters of the lower Mendiya scheme will extend all the way up to the 

location of Beko-Abo. Mendiya dam height 170 m, crest length 1,400m and reservoir live 

storage 10.3×10
6
 Mm

3
, Capacity 1,700MW and 8,220 GWhyr

-1
 (Appendix 23).  

 

A Mandaya low is introduced as an alternative to regulate only the average annual additional 

inflow downstream of a main upstream regulating reservoir. A Mandaya Low scheme with FSL 

760 masl and 20 m range of regulation will have a live storage of 9.5 Bm
3
. The gross storage 

would be 25 Bm
3
 compared to 49.2 Bm

3
 for the high scheme, a factor of 50 %, with significant 

implications for fill of the reservoir. The average annual spill (only occurring a few years under 

very high floods) is increased to 50 m
3
s

-1
 from 23 m

3
s

-1
. The installed capacity is taken as 1,500 

MW resulting in a predicted yield of between 9,400-9,625 GWh. To maintain the approximate 

production of 625 GWh achieved from the additional inflow from Didessa a 100 MW power 

plant with a 40-50 m high could be constructed in this river.  

 

Mabil Low and High  

 

Further variants on cascade options is the introduction of  Mabil low and high schemes between 

Beko-Abo and Mandaya dam sites, the high or low variant being adopted dependant on which of 

the up-stream schemes is the main regulating reservoir. The Mabil low scheme with an FSL 800 

masl and 10 m range of regulation will have a live storage of 0.3 Bm
3
. After a number of years of 

operation due to siltation, the project will revert to a run of the river scheme, but should retain 

sufficient reservoir capacity to enable operation to provide a peaking regime. The installed 

capacity and predicted energy yield is 290 MW and 1,872 GWh respectively. The Mabil High 

scheme with an FSL 910 masl and 30 m range of regulation will have a live storage of 3.4 Bm
3
. 

The installed capacity and predicted energy yield is 1,200 MW and 7 393 GWh respectively 

(Arnold et al., 2010).  
 

Grand Ethiopian Renaissance Dam (GERD) 
 

The GERD is a hydroelectric power project under construction on the Abay River (UBNR) by 

the Government of Ethiopia, some 20 to 40 km upstream of Ethio-Sudan boarder. The dam has 

planned to support the economic and social development of the whole country, both in rural and 

urban areas. There will be exports, only if there is a total surplus of energy generated in Ethiopia 

to support the country's shortage of foreign currency. This is expected to happen during rainy 

seasons, when there is plenty of water for hydropower generation.  

 

The electrical parameters and the storage parameters are changed from the original design 

parameters from 2011-2017. Originally, in 2011, the hydropower plant was designed to install 15 
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generating units with 350 MW each, resulting in a total installed capacity of 5,250 MW with an 

expected power generation of 15,128 GWh per annum. However, due to the upgrading made on 

the power plant, its generation capacity was uplifted to 6,000 MW from 5,250 MW, with a power 

generation of 15,692 GWh per annum through 16 generating units with 375 MW capacities each. 

In 2017, the design has again been changed to add another 450 MW, with a power generation of 

16,153 GWh per annum. Upgrading 14 of the 16 generating units from 375MW to 400MW 

achieved that without changing the generating capacity. Not only was the electrical power 

parameters changed over time, but also the storage parameters. Originally, in 2011, the dam was 

considered 145 m height to have a volume of 66Bm
3
 and a surface area of 1,680 km

2
 at full 

supply level. In 2013, International Panel of Experts, IPoE (2013) assessed the dam and its 

technological parameters. At that time, the reservoir sizes were changed already. The size of the 

reservoir at full supply level (FSL) of 640 masl went up to 1,874 km
2
. The storage volume 

at FSL had increased to 74 km
3
. After the international panel of experts (IPoE) made its 

recommendations, in 2013, the dam parameters were changed to account for higher flow 

volumes in case of extreme floods a main dam height of 155 m with a length of 1,780 m. The 

outlet parameters did not change, only the crest of the main dam was raised.  

 

The zero level of the main dam, the ground level, will be at a height of almost exactly 500 m 

masl, corresponding roughly to the level of the riverbed of the Blue Nile. From the ground level, 

the main gravity dam will be 155 m tall, 1,780m long. The crest of the dam will be at a height of 

655 m above sea level. To support the main dam and reservoir, there is a curved 5.2 km long and 

50 m high rock-fill saddle dam. The ground level of the saddle dam is at an elevation of about 

600 m above sea level. Hydropower generation can happen between reservoir MOLs of 590 m, 

and 640 m, the FSL. The live storage volume, usable for power generation between both levels is 

then 59.2 Bm
3
. The first 90 m of the height of the dam will be a dead height for the reservoir, 

leading to a dead storage volume of the reservoir of 14.8Bm
3
 (see, Appendix 23). 

https://en.wikipedia.org/wiki/Saddle_dam
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Figure 7-6: Location of GERD Reservoir 

 

In this study, the reservoir surface area and volume were calculated via Arc GIS software based 

on different water level scenarios. These scenarios included storing water at different elevations 

behind the dam beginning from 500 m, i.e. and by increasing 10 meter in each scenario up to 

640, which gives water level at 140 m. According to the elevations of the ground in the study 

area, the model results showed different suggestions for the area and volume of the reservoir as 

shown in Figure 7-6. A result showed that at level of 640 masl, i.e. 140 m behind the dam, the 

reservoir has 1911 km
2
 and a volume of water equal to 80.5Bm

3
.  

 

7.2.4 Operational rules for planned hydropower dams 
 

River water flow varies with time and hence water is stored in reservoirs when available in 

plenty and used later when it is needed. If the reservoir is properly managed and operated, it has 

the ability to boost the dependability of water supply in fostering livelihoods, increasing 

agricultural yield, and reducing the susceptibility of farmers to droughts (Neelakantan and 

Sasireka, 2013). The major task of reservoir operation is to decide how much water should be 

released in the current period and how much should be retained in storage within the reservoirs 

for future use, give some available and/or forecast information at the beginning of the current 

time period. Operating policies of reservoirs have been aimed for regulating the release of water 
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by keeping in mind the interests of the reservoir stakeholders and decision makers, volume of 

water impounded, inflows, demands of water, release capacity, and downstream constraints 

(Anand et al., 2018).  
 

Reservoir Operation has the potential to alter flow regimes, such as inter-annual and seasonal 

variations in inflow to the reservoir, which can affect the volume of water available for operating 

the turbines. It is a complex problem that involves numerous hydrological, technical, 

economical, environmental, institutional and political considerations (Mythili et al., 2013). It 

also involves many decision variables, multiple objectives as well as considerable risk and 

uncertainty (Reddy and Kumar, 2006). However, effective reservoir operation is required for the 

sustainable water resource development in areas where there is limited water resources. 

Improving the reservoir operation for increased efficiency is another way of maximizing the 

limited supply, which does not require the physical development of reservoir.  

 

Rule curve for reservoir system is system of curves that represent the relationship between 

outflow from a reservoir at any time of year and the reservoir state (current reservoir capacity 

and inflow to reservoir). Optimal multi-objective rule curve for reservoir system is determined 

such that the reservoir operation according to optimal rule curve will maximize the given 

objectives while satisfying all constraints. According to (Kangrang et al., 2018), the purpose of 

the rule curves for reservoir operation was divided into two main areas. (i) Variation of 

hydrological conditions, such as precipitation and inflow that flows into the reservoir were 

affected by climate change, and (ii) water allocation for social, economic, and engineering 

purposes in downstream areas has changed due to the population growth and land use 

management. The main purpose is therefore to avoid the risk of water shortages for downstream 

users, minimize reservoir evaporation and maximize energy generation. During the dry season, 

reservoirs need to maintain water volume to reduce the risk of water levels lower than minimum 

storage. During the rainy season, the reservoir must release large water to reduce the storage 

volume, which can reduce spillage due to the increased precipitation and inflow into the 

reservoir (Kangrang et al., 2018). Typically, reservoir operating system has been large and 

complex, especially in UBNRB having long dry seasons and short peak flow seasons.  

 

Optimization models are based on clearly defined objective functions, decision variables, and 

constraints as limitations during optimization. Reservoir optimization models, objective 

functions such as efficiency (i.e. maximizing hydropower generation, irrigation area and 

downstream flow), and sustainability should be incorporated. The criteria are economic, social 

and environmental issues. The typical constraints in a reservoir optimization model, (including 

conservation of mass and other hydrological and hydraulic constraints, minimum and maximum 

storage and release, hydropower and water requirements as well as hydropower generation 

limitations) are presented in eqn. (7-4) to eqn.(7-8) as adapted from (Olukanni et al., 2018) and 

with reference to (Le Ngo, 2007). 
 

 Constraints 

Generally, the constraints for the optimization/simulation model can be categorized into five 

main types: 

 

a) Hydrologic constraints are defined by the rainfall-runoff relationships such as sub-basins 

areas, rainfall losses due to canopy interceptions, depression storage and soil infiltration, 
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effective rainfall transform methods, watershed runoff routing methods, internal boundary 

conditions and initial conditions that depict the rainfall-runoff process in different components of 

a watershed system (Che and Mays, 2015), 
 

 

 

                    
(7-4) 

 

Where Pi, t is the matrix of precipitation data in the system; Hi, t is the rainfall losses matrix of the 

watershed system; Qi, t is the watershed and reaches discharge matrix of the system. All the 

hydrologic constraints are in matrix form is because of the problem has dimension of space, i, 

and time, t. These constraints are solved implicitly using the HEC-HMS model each time they 

are required. 

 

b) The mass balance or continuity equation between the inflows and the outflows is given as 

Eqn. (7-5) where:  

 

                                 (7-5) 
 

St+1 = final storage (initial storage of the next season) for period t + 1, (Mm
3
) St = initial storage 

for period t, (Mm
3
) It = reservoir inflow for period t, (Mm

3
) Rt = turbine release for period t, 

(Mm
3
); Lt = evaporation losses for period t, (Mm

3
),   t = excess release for period t, (Mm

3
). 

 

a)       b) 

 

 
 

Figure 7-7: Relationship of a) water level and evaporation,  b) Evaporation and reservoir are of GERD  

 

Reservoir evaporation depth entered as monthly evaporation (Table 7-2) is multiplied by the 

corresponding current simulated surface area of the reservoir for each time interval. Meanwhile, 

a relationship of reservoir evaporation with the reservoir elevation can be established as shown in  

Figure 7-7 as an example for GERD.  
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c) Constraints on discharge defined by maximum and minimum permissible reservoir releases: 

  

                  (7-6) 
 t = 1,2,…,T; where Rt min = Minimum turbine release at any time t (m

3
s

-1
); Rt max = Maximum 

turbine release at any time t (m
3
s

-1
); Rt = The turbine release at any time t (m

3
s

-1
);  

 

Eqns. (7-6) and (7-7) indicate the lower and upper bounds on reservoir storage releases and 

storages, respectively.  

 

d) Constraints on storages defined by maximum and minimum permissible reservoir storages:  

 

                  (7-7) 
 

Where: t = 1, 2,…, T; Stmin = minimum reservoir capacity at any time t (Mm
3
); Stmax = maximum 

reservoir capacity at any time t (Mm
3
); St = the storage at any time t (Mm

3
)  

 

e) Constraints on elevations defined by maximum and minimum permissible water level at 

specified sites:  

 

                  (7-8) 
 

Where: t = 1, 2,…, T; ht min = Minimum reservoir operating water level (MOL) at any time t 

(masl);  htmax = Maximum reservoir water level (FRL) at any time t (masl); ht = the storage at any 

time t (masl). Eqn. (7-8) illustrates the minimum and maximum reservoir water level. 

 

Finally, the available water for downstream users (Q, t), depends on the turbine release, excess 

release (spillage). This is expressed mathematically in eqn. (7-9) as;  

 

             (7-9) 
 

Where: Q t = incremental flow from GERD to Sudan in time t, (m
3
s

-1
)   t = excess release at 

GERD (spillage) in time t, (m
3
s

-1
) 

 

Objective function  

 

According to Olukanni et al. (2018), optimization problems can generally be either single 

objective or multi-objective. The single objective is just measuring the goal of operation of a 

single purpose reservoir. The main concern of single-objective optimization is to define the 

minimum or maximum value of an objective function, depending on the goal. However, in most 

cases operation objectives have trade-offs, and hence single-objective optimization cannot 

provide a unique optimum solution. In such situations, improvement of some objectives cannot 

be achieved without the sacrifice of others. The goal of the single-objective analysis should be 

replaced by the concept of “non-inferiority" in the multi-objective analysis.  
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Multi-objective optimization refers to problems with several objectives that are expected to be 

fulfilled simultaneously. The objectives are however often in conflict with each other and 

measured by different units. For a reservoir built for the purpose of hydroelectric generation like 

GERD, the objective function should be to maximize the annual energy production, but for trans-

boundary River like Abay River, the downstream release flow should also be into account as 

objective function. Furthermore, in order to maximize energy production, water level in the 

reservoir requires being as high as possible. In contrary, the reservoir evaporation becomes high, 

which is not recommended as it reduces the down streamflow. There is conflict between these 

two objectives; therefore, it needs critical attention while establishing the operation rule curves.  
 

Hence, the primary objective function in this study is maximizing the annual energy generation 

for the GERD hydropower plants as shown in eqn. (7-10):  

  

 
         

 

   

 (7-10) 

 

Where: Z is total annual energy generation (GWh); E2t is daily energy generation at GERD dam 

(GWh)  

 

Energy can be calculated as shown in eqn. (7-11) as  

 

                      (7-11) 
 

Then, the objective function for maximizing energy generation becomes  

 

 
                          

 

   

 (7-12) 

 

Furthermore, the generating head H(2t) in eqn. (7-12) can be expressed in terms of reservoir 

storage and minimum operating reservoir elevation as given in eqn. (7-13), which on substituting 

in eqn. (7-14) will give Equation (12). 

 

                            (7-13) 
 

 
             

 

   

                                   (7-14) 

 

Where: H r f S(2t) is the average reservoir elevation expressed as a function of the average 

reservoir storage. It can be obtained by regression of reservoir elevation as a dependant variable 

and reservoir storage as the predictor. R2t = turbine release at time t, (m
3
s

-1
) H2t = generating 

head (m) Hmin2t = minimum operating reservoir elevation (m),   = efficiency S2t = reservoir 

storage at time t, (Mm
3
). The regression analysis of reservoir elevation and reservoir storage for 

the GERD is shown in Figure 7-8.  

 



 

156 

 

 
 
Figure 7-8: Regression relationship of water level and storage for the GERD reservoir 

 

7.2.5 Operation rule curves for Lake Tana reservoir 
 

Multi-purpose Lake Tana reservoir operation is a complicated process that involves a number of 

conflicting objectives, including the amount of water releases from reservoirs ensuring 

ecological and environmental flow for the downstream areas, the storage and water level in the 

reservoir, and ensuring reservoir releases for maximizing the energy production from Tana-Beles 

HPP. Hence, the operation of reservoir is critical to meet the intended objectives for the planned 

water resource development projects around and downstream the Lake Tana. Optimum operation 

of Lake Tana gives priority to maximize the energy generation of Tana-Beles HPP without 

affecting adversely on the environment. For the different years of the time the operations of Lake 

Tana was changed due to the development of new projects in and around Tana and Beles sub-

basins. Before 1995, Lake Tana reservoir had no any flow regulation structures. In 1995, Chara-

Chara weir with two radial gates each with a capacity of 70 m
3
s

-1
 was built to regulate the flow 

to Tis Abay I HPP. In 2001, five additional new gates were constructed and become operational 

to increase the ability to regulate Lake Tana outflows and improve the flow to Tis Abay I and  II 

HPPs. The rules attempt to maximize lake storage at the end of the wet season as a buffer for the 

coming dry year and this is achieved by preventing spillage over the Chara-Chara weir.  

 

The adopted minimum operation level of the Chara-Chara weir is 1784 masl and the maximum 

operation level is 1987 masl. The Lake storage between 1784 and 1787 masl is about 9100 Mm
3
. 

If all gates are opened, the total calibrated discharge at the minimum operation level is 75 m
3
s

-1 

and at the maximum operation level (spillway level) 490 m
3
s

-1
 (Salini et al., 2006).  

 

Regulation for power production has modified the natural lake-level regime, resulting in reduced 

seasonal but greater inter annual variability. The lowest level ever-recorded (1,784.4 masl) was 

in June 2003. This was a drought year in much of Ethiopia and hydropower production was 

constrained in many places. In an attempt to maintain electricity supplies, production at both Tis 

Abay power stations was maximized and as a result, lake levels dropped sharply. As a 

consequence of the low lake levels in 2003, navigation ceased for approximately four months 

(i.e., when lake levels dropped below 1,785 masl, the minimum level at which ships can 
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currently operate safely). Large areas of papyrus reed were destroyed, there was significant 

encroachment of agriculture on the exposed lake bed and there was a decrease in fisheries 

production (McCartney et al., 2010). In addition, Tana-Beles hydropower scheme was 

commissioned on 14 May 2010, whereby releases from the tunnel generated 460 MW hydro-

electricity and passed downstream along the Beles River. 

 

Hence, in order to keep the lake level safe for navigation and prevent environmental hazards 

caused by low lake level, different operational rule curves were proposed at different times for 

the multi-purpose Tana-Beles project (Halcrow et al., 2010; Salini et al., 2006; SMEC, 2008) as 

summarized below. 

 

According to Salini et al. (2006), a minimum level for Lake Tana of 1,784.0 masl was set to 

prevent difficulties with lake navigation and impacting on the environment. An average turbine 

discharge of 77 m
3
s

-1
was assumed for a wide range of lake levels (i.e. >1,784.3 but <1,787.0 

masl) while the discharge to the turbines are increased to 160 m
3
s

-1
 at high lake level (i.e. 

>1,787.0 masl).  Meanwhile, the regulated outflow to the Abay River is fixed at 17 m
3
s

-1
.  

 

SMEC (2008) recommended a minimum operational level of 1,784.75 masl to prevent serious 

navigation problems for shipping on Lake Tana, and an average turbine discharge of 77 m
3
s

-1
. 

The discharge from the turbines increases to 160 m
3
s

-1
 at the high Lake level to prevent spillage 

over the Chara-Chara weir (>1,787 masl). The regulated outflow to the Abay River was fixed for 

some months to 10 m
3
s

-1
 (i.e. March to June) with higher flows in other months. Comparison of 

the simulation results of the two operation rules were made by (SMEC, 2008). They reported that 

electricity production can be increased by more than 10% and spillage over the Chara-Chara weir 

can be reduced by almost 40% with the operation rule curves of (SMEC, 2008). 

 

Halcrow et al. (2010) operational rule is suggesting increasing the Lake storage to store more 

water by the end of the wet season compared to other rules. The increasing of Lake Storage 

allows releasing more water during the high demands of water for upper Beles irrigation and 

electricity production from the months of January to April. This is achieved by releasing less 

water to the Tana- Beles scheme compared to the recommended (SMEC, 2008) operational rule 

during the wet season from July to September providing a greater buffer for the dry seasons. 

 

In this study, the operation rule curves of the Lake Tana reservoir for model calibration and for 

impact analysis are different as the periods of analysis are different. Model calibration is carried 

out during the natural flow condition before 1995, while impact assessments are carried out post 

construction of Chara-Chara weir and Tana-Beles HPP. When plotting the mean daily measured 

discharges versus the water level of Lake Tana before and after the operation of Chara-Chara 

weir. The results have quite different patterns (see Figure 7-9). There existed a perfect 

relationship between lake level and outflow before the Chara-Chara weir with r
2
=0.99 but after 

the Chara-Chara weir the relationship is becoming poor. Hence, based on the plotting of the 

measured Lake Tana’s water levels and outflows for the period 1962 – 1995, the rating curve 

used for calibrating the hydrological model in the paired data manager is simplified to 

eqn.(7-15):  
 

                     (7-15) 
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Where: Q = discharge (m
3
s

-1
), H = Lake Tana water level (masl) 

 

(a)                                            (b) 

 

  
 
Figure 7-9: Mean daily lake level-outflow relation of Lake Tana (a) before regulation (1962-1995) and (b) 

after Chara-Chara weir 

 

The rating curve of Lake Tana established for the calibration purpose above is not used any more 

for impact analysis because of the different operational conditions. Calibration was done in the 

period before the existence of Chara-Chara weir (natural flow) while the impact analysis 

considers the different operational scenarios of Chara-Chara weir. Hence, modifying the 

operation rule curve of the multi- purpose of Lake Tana reservoir is essential.  
 

In order to do so, assumptions were made and constraints are fixed. 

 The Chara-Chara weir will continue its operation in the future for regulating the outflow 

to the Abay River and Tana-Beles HPP.  

 To preserve the Tis Issat falls as a major tourist attraction, environmental flow 

recommended by McCartney et al. (2010) has to be guaranteed through regulated outflow 

from the Chara-Chara weir. All other excess outflows from the lake to the Abay will then 

result from unregulated spills at the Chara-Chara weir during the rainy season.  

 Restrictions on drawdown were applied to reduce abstractions as lake levels dropped 

below 1,787 masl and to ensure levels did not drop lower than the minimum operating 

level of 1,784.75 masl recommended by (SMEC, 2008). 

 An average turbine discharge of 77 m
3
s

-1
 was assumed over a wide range of lake levels 

and increased to 160 m
3
s

-1
 at high lake level. 

Optimization model 

 

There are many optimization techniques that are applied to connect with the reservoir simulation 

model to search optimal rule curves of the reservoir such as dynamic programming , genetic 

algorithm (GA), and simulated annealing algorithm (Kangrang et al., 2018). In this study, GA 

optimization model using analytic solver optimization and reservoir operation HEC-HMS model 

by adjusting the stage discharge curve of the reservoir from the paired data manager are applied. 
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Analytic Solver Optimization is an add-in for Microsoft Excel used for conventional 

optimization. It includes the PSI Interpreter, five built-in Solvers (LP/Quadratic, SOCP Barrier, 

GRG Nonlinear, Interval Global, and Evolutionary), solves linear models up to 8,000 variables 

and nonlinear models up to 1,000 variables. It can be downloaded from https://www.solver.com/.  

Both measured and forecasted rainfall is used to run simulations of the watershed rainfall-runoff 

model, HEC-HMS, and then the hydrographs are used as inputs of the optimization model to 

determine the reservoir water level elevation and the downstream releases of the reservoir with 

the objective of maximizing energy generation. The development of the optimal future rule 

curves use data from the future inflow flowing into the Reservoir considering the effects of 

climate change using different climate scenarios and land and water management scenarios. 

Thus, the inflows for different climate change and water and land management scenarios 

produced using the HEC-HMS simulation hydrological model is transferred to the optimization 

model as input to determine the decision variables with the set objectives. In this paper, the main 

objective is to maximize the energy generation and to optimize the downstream releases from 

GERD reservoir.  
 

 
 

Figure 7-10: Basic steps of the optimization/simulation model 

 

Figure 7-10shows the basic steps of the optimization/simulation model algorithm. First, the 

model requires rainfall data to start the rainfall-runoff simulation; once the watershed 

hydrographs are obtained then they are entered into an optimization model to compute the 

decision variables and determines whether the objective is met and pre-conditions of constraints 

are fulfilled, for example, are the  maximum and minimum water levels under the desirable 
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Develope relationships
Reservoir torage  Vs water level
Reservoir evaporation Vs water 

level

Develope  optimization model  
solver addins in excel

Finetuning the relationship of 
discharge and water level 

maximizing energy production

Analyze the result (energy 
genarated)

Finish

Parameter 
adjustment

Run HEC-HMS model 
trial and error approach 
Adjust the water level vs 
discharge relation under 

paired data manager 

Analyze the result using the 
excel spreadsheet

Finish

Parameter 
adjustment

Optimization 
using Solver

Optimization 
using HEC-HMS 
model directly
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level? Are the energy generated is maximized? If the answer is no, the model returns to the 

reservoir operation optimization process to determine an improved reservoir operation. When the 

objective is met, then the model stops. 

 

In this dissertation, two optimization methods are applied. These are trial and error approach 

using the reservoir operation HEC-HMS model coupled with Excel spreadsheets and GA 

optimization model using analytic solver optimization in MS Excel. In trial and error approach, the 

constraints and the objective function described above are met by adjusting the stage discharge 

relationship using trial and error. Another optimization methods used in this study is genetic 

algorithm (GA), originally developed in the 1970’s, is a model or abstraction of biological 

evolution based on Charles Darwin’s theory of natural selection (Golberg, 1989).   
 

The reservoir operation model must keep the storage level above the inactive storage, and below 

the maximum flood storage. The initial storages of the reservoirs are arbitrarily set to be at 

minimum operating level (MOL). Reservoir operation for irrigation supplies, the water demand 

is fixed and the release is based on the demand and water availability in the reservoir. If available 

water is sufficient to meet the demand, it satisfies the entire demand, if not, whatever the 

available water is utilized to meet the demand. However, this is not suitable for reservoir 

operation during drought periods, since it is likely to increase the maximum single period deficit. 

In addition, the specified release reservoir routing method in HEC-HMS model has no option to 

release excess water above the reservoir full supply level (FSL) when it is not needed, therefore, 

the excess volume of water may accumulate and exceed above the FSL.  

 

Hence, the operation rule curves for the irrigation dams are establishing using outflows structure 

routing method for the following objectives. 

1. Distributes the deficits in water supply across time to minimize the impact of drought and 

allow the spillage of excess water above the FRL to keep the dam safe. 

2.  Balancing the water release schedule and minimize the irrigation water deficit 

3. It includes the evaporation losses of the reservoir, which is an important of the water balance 

for a reservoir. 

 

Systematical representation and links of different planned and existed water resources 

developments, including inter basin transfer between Lake Tana sub-basin and Beles sub-basin 

through Tana-Beles HPP, existed and future planned reservoirs, reaches and diversion (irrigation 

projects) is shown below in the Figure 7-11. The model simulation starts from upstream of Lake 

Tana to downstream of the Blue Nile at El Diem.  
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Figure 7-11: Schematic of HEC-HMS simulation model 

 

 

7.3 Results and discussions 

7.3.1 HEC-HMS model performance assessment 

 

Before calibrating the model, the basin divided into multiple catchments by considering the 

spatial variability of land cover, soil properties, climate, and topography/altitude and with 

gauged and un-gauged catchments. Manual calibration using trial and error method was applied 

as the first step for calibrating the model. Calibration was performed at six flow-gauging stations 

separately as listed in Table 7-5. Model performance is assessed using three performance 

indicators, namely the ENS, R
2
, RVE and graphical representation at the outlets of 6 flow-

measuring stations, where the observed data are relatively complete.  

 

The statistics of the observed and simulated daily streamflow during calibration and validation 

results in terms of criteria of fit are presented in Table 7-6. The percent volume error (RVE) 

calculates the volume difference between simulated and observed flows, with a positive value 

indicating that the model over predicts observed flows. The result indicated that HEC-HMS 

model underestimated the observed flow by a maximum of 6.2% and overestimated flow by a 
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maximum of 6.7% during the calibration period. The Nash-Sutcliff coefficient value attained 

during calibration is ranged from 0.77 to 0.89. Finally, according to the coefficient of 

determination (R
2
), there is a relatively good correlation between the simulated flows and the 

observed flows at the gauged outlets. The R
2
 value varies from 0.78 at the Ribb outlet to 0.9 at El 

Diem flow station. In general, according to the result depicted above using the three statistical 

performance indices, the model efficiency during calibration show very good result throughout 

calibration period.  

 

Once the model is calibrated successfully, it is validated with separate data sets. Figure 7-13 

show the graphical representation of the model performance during validation periods. The 

percent relative volume error (RVE) calculated during the validation period show that the model 

over predicts the daily time series flow with a maximum of 12.5% and under estimated the flow 

by 7.6% except Ribb outlet in which the model under estimated the flow by 35 % during 

validation period. The Nash-Sutcliff coefficient values obtained during the validation period 

varies from 0.53 to 0.90. Finally, the R
2
 value varies from 0.70 at the Ribb outlet to 0.91 at El 

Diem flow station, which indicate the model performance is very good. Similar model efficiency 

also obtained during validation period; however, the model overestimates the simulated 

discharge in validation period a bit higher. Here, it is important to note that HEC-HMS model 

performs best for large area sub-basins (El Diem and Kessie) stations than for smaller area sub-

basins like Rib, Gilgel Abay and Gumara sub-basins. The less performance of the model at Rib 

River could be due to the backwater effect of Lake Tana reservoir as the flow meter flooded with 

the backwater from the Lake Tana during the rainy season.  

 

  
Table 7-5: Calibration and validation periods 

 

Flow station 

Time period 

  

Number of years 

  

Calibration Validation Calibration Validation 

El-Diem 1999-2005 2006-2009 7 4 

Kessi 1999-2006 1992-1996 7 4 

Gilgel Abay 1992-2000 2001-2005 9 5 

Gumara 1990-1997 2001-2005 8 5 

Rib 2000-2007 1996-1999 8 4 

Tana 1985-1992 1992-1995 8 4 
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Table 7-6: Calibration and validation results 
P

er
fo

rm
an

ce
 

In
d
ex

 
Calibration Validation 

E
l 

D
ie

m
 

K
es

si
 

G
il

g
el

 

A
b
ay

 

G
u
m

ar
a 

R
ib

 

T
an

a 

E
l-

D
ie

m
 

K
es

si
 

G
il

g
el

 

A
b
ay

 

G
u
m

ar
a 

T
an

a 

R
ib

 

R
2
 0.90 0.87 0.81 0.79 0.78 0.80 0.91 0.86 0.81 0.80 0.88 0.70 

RVE 6.2 -3.2 1.5 -0.1 2.4 -6.7 11.5 -7.6 -2.5 -5.7 12.5 -34.9 

NSE 0.89 0.87 0.81 0.79 0.77 0.80 0.90 0.86 0.81 0.79 0.82 0.53 

 

The following figures show the comparison between daily simulated and observed streamflow at 

six discharge-measuring stations during calibration and validation periods. Figure 7-12 shows 

daily time series comparison between the simulated and observed flows at the gauging stations 

during the calibration period. The plots of observed and simulated daily streamflow indicate that 

the HEC-HMS well captured the observed flow relatively well at daily time step at all gauging 

stations. Time series comparisons between the simulated and observed flows during the 

validation (verification) period are shown in Figure 7-13. The hydrograph comparison also 

indicates that the HEC-HMS model performed well in matching the observed flows during the 

validation period.  The visual inspection of the hydrographs of  Figure 7-12 indicates generally 

good streamflow simulations in particular during the recession flows, while the short-term 

fluctuations during the high-flow season were not modeled well, in particular for the Gumara and 

Gilgel Abay catchments. The inability of the model to simulate the daily pattern of flood flows, 

could be caused by three factors. First, the given network of rainfall stations (see Figure 7-4) 

may not capture the areal variability of daily rainfall patterns well enough (i.e. only three stations 

in and around Gilgel Abay and two in Gumara  were available). That interpolation errors may 

directly influence runoff predictions stronger in the smaller Gumra  and Gilgle Abay as 

compared to the larger Kessi and UBNRB. Second, the daily observed discharges derived from 

two water level measurements (at 06:00 a.m. and 06:00 p.m.) may have smoothened a very rapid 

flow characteristics at the site (Uhlenbrook et al., 2010). A  mean rating curve may not properly 

capture the dynamic nature of the water level discharge relationship. Third, during floods , as the 

flow meter  at the Gumara River is flooded with the backwater from Lake Tana may have 

smoothened the very dynamic natural flow. 
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Figure 7-12: Graphical representation of model calibration 
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Figure 7-13: Graphical representation of model validation 

In addition, performance evaluation of the model was assessed for the seasonal flows as it is 

necessary to make sure that the model is reliable for capturing the high and low flows so as to 

evaluate the effects of water resource development projects on the water availability. Dry and 

short rainy season flows are most important than the long rainy season flow for irrigation. Figure 
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7-14, and Table 7-7 show the seasonal flow comparison between the observed and simulated 

during the calibration period. The result revealed that the model simulation has a good agreement 

with the observed seasonal flows except short rainy season flows. The poor performance of the 

short rainy season flow could be due to the artificial extraction of water for the irrigation purpose 

upstream of the gauged outlets. This condition is worse in small size sub-basins than large size 

basin, as it has shown in Table 7-7.  

 

The various performances evaluation measures computed for the daily streamflow including with 

graphical comparison of observed and simulated in the calibration and validation periods are a 

means to confirm the behavior of the model to represent the physical processes in UBNRB basin. 

Moreover as one can see, from the above graphical comparisons in both cases the simulated 

streamflow is in a satisfactory agreement with the observed one, and the seasonal dynamics also 

well reproduced, high and low flows captured very well by the model, which shows, that the 

capability of the model in simulating the extreme events like high flow. Overall, the calibration 

and validation result of HEC-HMS model revealed that the model has a good performance in the 

UBNRB so that it can be used for further impact assessment.  

 
Table 7-7: Performance evaluation metrics for seasonal flows during calibration and validation 

 

    LRS DS SRS 

  Stations R
2
 NSE RVE (%) R

2
 NSE RVE (%) R

2
 NSE RVE (%) 

C
al

ib
ra

ti
o

n
 

El Diem 0.77 0.88 4.37 0.85 0.90 11.29 0.35 -0.12 6.39 

Kessi 0.79 0.88 -3.90 0.85 0.89 3.15 0.66 0.77 -9.25 

Tana 0.75 0.86 -1.26 0.80 0.87 -8.87 0.10 0.29 -17.63 

Gilgel Abay 0.54 0.72 2.20 0.69 0.81 -2.94 0.39 0.61 12.70 

Gumara 0.63 0.79 1.99 0.66 0.80 -13.23 0.19 0.42 6.36 

Rib 0.61 0.78 3.66 0.67 0.66 -27.20 0.09 -0.23 47.02 

V
al

id
at

io
n

 

El Diem 0.80 0.77 8.86 0.85 0.90 11.29 0.35 -0.12 6.39 

Kessi 0.78 0.78 -5.48 0.82 0.76 4.21 0.51 -1.05 -96.38 

Tana 0.85 0.79 21.46 0.85 0.73 13.71 0.70 -0.16 -49.69 

Gilgel Abay 0.56 0.52 3.16 0.77 0.46 -44.41 0.24 0.19 -2.54 

Gumara 0.63 0.60 -2.55 0.60 0.50 -41.93 0.25 -1.60 46.85 

Rib 0.57 0.35 -29.91 0.23 -2.83 -143.53 0.00 -3.37 12.45 
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Figure 7-14: Graphical representation of model calibration for the seasonal flow 

Water Balance of Lake Tana 

The water balance components of the Lake Tana includes the direct rainfall over the lake surface 

(P), inflow from gauged rivers (Qg), surface runoff inflow from unmonitored sub-catchments 

(Qug), Outflow from the Lake ((Qout), Lake evaporation (El), change in water balance (closure 

term) (  ) is calculated after model calibration and validation. The general water balance 

equation to the Lake is shown in eqn. (7-16). 
 

                     (7-16) 
 

The prediction of Lake Tana water balance is based on the simulation result from 1984 to 1995 

that represents the natural flow condition. The estimated annual precipitation falling on the lake 

calculated using Thiessen polygon methods from the stations located around the Lake is 1234 

mm and the evaporation loss from the Lake is about 1650 mm adapted from (SMEC, 2008). The 

model simulation of the inflow from the gauged Rivers, surface runoff from un-gauged sub-

catchments and Lake outflow fluxes are indicated in Table 7-8. The analysis of the Lake Tana 
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water balance has shown that there is an annual surplus of 195 Mm
3
 of water, which can be used 

for the planned pumped irrigation, domestic water supply and other unidentified abstractions. A 

quantitative assessment indicates that the change in storage is as large as 65mmyr
−1

 of the total 

Lake inflow that comprised rainfall on the lake, and stream flow from gauged and un-gauged 

catchments. The change in storage accounts for 2.2% of the total lake inflow.  In Rientjes et al. 

(2011b), the closure error was 85 mm and accounted for 2.7% of the total lake inflow or the 

period 1994-2000. Wale (2008) estimated the change in storage about -170 mm yr
-1

 for the 

period of analysis 1995-2000 and accounted for 5% of the total lake inflow.  

 
Table 7-8: Lake Tana water balance components simulated for the period 1984–1995 (Natural flow). 

Water Balance term mmyr
-1

 Mm
3
yr

-1
 

Lake areal rainfall 1234.0 3730.3 

Gauged inflow 1138.7 3442.2 

Ungauged inflow 592.8 1792.1 

Lake evaporation 1650.0 4988.0 

Lake outflow 1250.8 3781.1 

Change in storage 64.7 195.6 
 

7.3.2 Future climate change impacts on monthly, seasonal, annual, low and high 

streamflow of the UBNRB using HEC-HMS 

 

One of the objectives of this study was to estimate the future water availability in the basin under 

climate change scenarios. However, the no change assumption was made in land use patterns 

between the baseline and scenario periods for the future streamflow simulation. So, land use is 

considered stationary for the whole simulation time because its impact is less significant as 

compared to climate change (see Chapter 5). Therefore, the influence of the changing in land use 

pattern is ignored while investigating the combined impacts of climate change and water 

resource developments on the availability of water for power production, irrigation development 

and downstream streamflow of the UBNRB.   
 

HEC-HMS model was calibrating at six discharge-measuring stations of the UBNRB with 

satisfactory performance results and negligible differences in volume of water. Hence, the 

calibrated model parameters are used for the simulation of the streamflow for the future period. It 

is a normal trend that, the impacts of climate change on the basin hydrology are assessed by 

comparing the present and projected streamflow estimates. As a result, the potential effects of 

climate change on the hydrology of the UBNRB can be assessed by comparing the simulated 

streamflow derived from downscaled climate scenarios to observed baseline (1984 - 2011) 

streamflow data sets. 

 

Impacts of climate change on mean annual streamflow 

 

In this section, we analyze the inferred changes in streamflow that would accompany the 

precipitation and temperature changes summarized in Chapter 6. Table 7-9 summarizes future 

projection of the key climatic variables and streamflow simulations using HEC-HMS 
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hydrological models and the relative changes as compared to baseline period. There is 

disagreement between the two GCMs (canESM2 and GFDL) as to the streamflow predictions 

under RCP4.5 scenario over the UBNRB both in magnitudes and in directions. Changes in 

precipitation and temperature result in disproportional changes in the hydrologic response of a 

river basin. Under RCP4.5 scenario from canESM2 GCM, the relative changes of the mean 

annual precipitation may increase by 17%, 22.8% and 26.3% by the period 2030s, 2050s and 

2080s respectively. These changes associated with the increasing changes in Tmax(Tmin) by 

0.7(0.4), 1.1(0.7), and 1.4(0.8)
 o

C resulted an increasing the long-term mean annual streamflow 

at El Diem by  22.6%, 43% and 55% by the period 2030s, 2050s and 2080s respectively.  In 

contrary, under RCP4.5 scenario of CMIP5 GFDL GCM, the relative changes in mean annual 

precipitation may decrease by -9.5%, -9.9% and -9.3% in the period 2030s, 2050s and 2080s 

respectively. These decreasing of precipitation associated with the increasing of Tmax(Tmin) by 

1.1(1.2), 2.1(2.0), 2.2(2.9)
o
C resulted in a decreasing of long term mean annual streamflow by -

20.6%, -25% and -21% respectively in the period 2030s, 2050s and 2080s. In general, the above 

results indicate that precipitation is a key driving force in altering the streamflow of UBNRB.  

 
 

Table 7-9: Future projections of mean annual hydro-climatic variables as compared to the baseline period of 

UBNRB  using SDSM for canESM2 GCMs under RCP 4.5 scenario 

 
Variable Mean annual value Change from the baseline (%) 

  1984-2011 2030s 2050s  2080s 2030s 2050s  2080s 

CMIP5 canESM2 GCM 
Precipitation (mm) 1410.1 1650.1 1731.9 1781.2 17.0% 22.8% 26.3% 

Tmax (
o
C) 24.9 25.6 26.0 26.3 0.7 1.1 1.4 

Tmin (
o
C) 11.6 11.9 12.2 12.3 0.4 0.7 0.8 

Streamflow at El Diem (m
3
s

-1
) 1645.0 2016.5 2345 2542 22.6 % 43 % 55 % 

CMIP5 GFDL GCM 
Precipitation (mm) 1410.1 1274.2 1267.6 1276.2 -9.5% -9.9% -9.3% 

Tmax (
o
C) 24.9 26.0 27.0 27.1 1.1 2.1 2.2 

Tmin (
o
C) 11.6 12.8 13.6 14.5 1.2 2.0 2.9 

Streamflow El Diem (m
3
s

-1
) 1645 1306 1230 1300 -21% -25% -21% 

 

Impacts of climate change on mean monthly flows 

 

The projected mean monthly streamflow for the future time periods of 2030s, 2050s and 2080s at 

six representative flow-measuring stations along the Abay River are shown in Figure 7-15 and 

Figure 7-16 for canESM2 and GFDL GCMs respectively. The results revealed that two GCMs 

have different pattern of mean monthly streamflow as compared to the baseline streamflow. The 

canESM2 GCM showed increasing streamflow in the months from May to December in most of 

the flow stations where as decreasing streamflow in the months of January through April. 

However, the percentage change is different from stations to stations.  
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Figure 7-15: Monthly observed baseline and projected streamflow at six flow gauging stations from canESM2 

GCM 
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Figure 7-16: Monthly observed baseline and projected streamflow at six flow gauging stations from CMIP5 

GFDL GCMs 

 

Impacts of climate change on low and high streamflow 

 

The mean monthly low and high flows for the baseline and future periods simulated from CMIP5 

GCMs of canESM2 and GFDL for six stations is presenting in Table 7-10. The low flows of the 

baseline data set were occurred in the month of March for Gilgel Abay, Rib and El Diem while 

January for Gumara, June for the Lake Tana outlet and February for Kessi station. The future 

projection of low flows from canESM2 GCM showed decreasing trend at five stations except 

Kessi for the period 2030s as compared to the baseline low flow values. In 2030s, the low flow 

may decrease in the range of 9.1% to 63.1% at Gilgel Abay and Rib stations respectively. At 

2050s, the low flow may decrease by 5% at Gilgel Abay and 61.5% at Rib, 32.5% at Lake Tana 

0.0

50.0

100.0

150.0

200.0

Jan Feb Mar Apr May Jun jul Aug Sep Oct Nov Dec

F
lo

w
 (

m
3
s-1

)
Gilgel Abay

Baseline 2030s 2050s 2080s

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Jan Feb Mar Apr May Jun jul Aug Sep Oct Nov Dec

F
lo

w
 (

m
3
s-1

)

Ribb

Baseline 2030s 2050s 2080s

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

Jan Feb Mar Apr May Jun jul Aug Sep Oct Nov Dec

F
lo

w
 (

m
3
s-1

)

Gumara

Baseline 2030s 2050s 2080s

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

Jan Feb Mar Apr May Jun jul Aug Sep Oct Nov Dec

F
lo

w
 (

m
3
s-

1
)

Lake Tana outlet

Baseline 2030s 2050s 2080s

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

Jan Feb Mar Apr May Jun jul Aug Sep Oct Nov Dec

F
lo

w
 (

m
3
s-1

)

Kessi

Baseline 2030s 2050s 2080s

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

Jan Feb Mar Apr May Jun jul Aug Sep Oct Nov Dec

F
lo

w
(m

3
s-

1
)

El Diem

Baseline 2030s 2050s 2080s



 

172 

 

outlet and 13.7% at El Diem stations while it may increase by 2.7% at Gumara and by 7.4% at 

Kessi stations. Similar trend my experience by the period 2080s. The low flow may decrease by 

8.4%, 58.5%, 30% and 9.6% at Gilgel Abay, Rib, Lake Tana outlet and El Diem stations 

respectively, whereas it may increase by 9% at Gumara and 11.8% at Kessi station.   

 

Regarding to the high flow values, all of the projected monthly streamflow from canESM2 GCM 

at six stations attained their high flows in the months of August. The result analysis showed that 

high flow in all stations might increase in the range from a minimum value of 8.2% (Gilgel 

Abay) to a maximum of 73.5% (Lake Tana outlet) at the 2030s period. By 2050s, the projected 

high flow further increase with a minimum by 15% at Gilgel Abay and by a maximum of 122% 

at Lake Tana outlet station. Again, the high flow might also increase in the future by a minimum 

of 19.8% at Gilgel Abay station and by a maximum of 150% at the Lake Tana outlet station in 

the period 2080s.  Generally, the result indicates that, the low flow regime may decrease at four 

stations (Gilgel Abay, Rib, Lake Tana outlet and El Diem) in all three periods but may increase 

at Kessi station. In contrary, the high flow may increase throughout the month of August in the 

future in all stations. The decreasing of low flow value might not be a good opportunity for the 

farmers to produce more as it limits the use of extensive irrigation agriculture.  

 

However, the predictions of low and high flows from CMIP5 GFDL GCM at six stations differ 

substantially with the predictions from canESM2 GCM. The result analysis depicted that low 

flow simulation from GFDL GCM might decrease with a maximum value of -59% at Lake Tana 

outlet to a minimum value of -14.5% at Rib by 2030s. During this period, low flow might 

increase at Gumara station by 30% and at Kessi by 4.7%.  Similarly, by 2050s, the predictions of 

low flow at four stations might decrease with a maximum value of -58.4% at Lake Tana outlet to 

a minimum value of -16% at Rib station. The simulated low flow at Gumara and Kessi stations 

might increase by 38.7% and 4.1% respectively. By 2080s, the low flow simulation might further 

decrease in the range between -54.9% to -7.6% at Lake Tana outlet and Rib station respectively 

but might increase at Gumara and Kessi stations by 37.8% and 8.9% respectively. 

 

Regarding to the high flow prediction, the result showed that high flow might decrease at all six 

stations in all three periods (2030s, 2050s and 2080s) in contrary to the simulation of GFDL 

GCM. By 2030s, the high flow might decrease with a maximum of -50% at Rib station and a 

minimum by -10.2% at Gumara station. In the period 2050s, the high flow might decrease by a 

maximum of -53.8% to a minimum of -9.3% at Kessi and Gumara stations respectively. The 

prediction of the high flow might decrease by a maximum of -44.6% and a minimum of -2.5% 

by the period 2080s at Kessi and Gumara stations respectively. 
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Table 7-10: Comparisons of projected low and high flows as compared to baseline from six gauging stations 

 

 

Low flows High flows 

 

  Relative change (%)   Relative Change (%) 

 

Baseline 

 (m
3
s

-1
) 2030s 2050s 2080s 

Baseline 

 (m
3
s

-1
) 2030s 2050s 2080s 

canESM2 CMIP5 GCM under RCP4.5 scenario 

Gilgel Abay 3.4 -9.3 -4.9 -8.4 185.7 8.2 15.0 19.8 

Rib 1.3 -63.1 -61.5 -58.5 72.1 28.6 64.2 87.6 

Gumara 5.8 -5.2 2.7 9.0 145.1 56.4 76.2 88.1 

Lake Tana 49.6 -38.6 -32.5 -30.0 310.5 73.5 122.3 150.1 

Kessi 131.8 0.6 7.4 11.8 2608.6 15.1 35.2 51.7 

El Diem 268.7 -17.1 -13.7 -9.6 5465.0 14.2 24.9 35.0 

GFDL CMIP5 GCM under RCP4.5 scenario 

Gilgel Abay 3.4 -30.5 -31.7 -27.9 185.7 -17.3 -23.7 -18.3 

Rib 1.3 -14.5 -16.0 -7.6 72.1 -50.0 -48.2 -41.3 

Gumara 5.8 30.0 38.7 37.8 145.1 -10.2 -9.3 -2.5 

Lake Tana 49.6 -59.0 -58.4 -54.9 310.5 -47.7 -51.0 -40.2 

Kessi 131.8 4.7 4.1 8.9 2608.6 -49.2 -53.8 -44.6 

El Diem 268.7 -25.2 -26.1 -21.8 5465.0 -42.2 -48.0 -42.5 

 
Table 7-11: Future projection of seasonal flows at three main gauging stations across UBNRB from canESM2 

GCM under RCP4.5 

Season 2030s 2050s 2080s 

 

Tana Kessi El Diem Tana Kessi El Diem Tana Kessi El Diem 

LRSs (m
3
s

-1
) 218 1623 4111 350 1994 4703 315 2253 5010 

LRSb (m
3
s

-1
) 153 1538 3991 153 1538 3991 153 1538 3991 

R.change (%) 42.5 5.5 3.0 129 30 18 106 47 26 

DSs (m
3
s

-1
)  288 515 1566 348 658 1940 369 732 2209 

DSb (m
3
s

-1
) 177 301 1000 178 301 1000 178 301 1000 

R.change (%) 62.2 71.1 56.6 96 119 94 108 143 121 

SRSs (m
3
s

-1
) 47.8 135.4 352.3 44 155 368 54 154 378 

SRSb (m
3
s

-1
) 63.9 147.0 324.0 64 147 324 64 147 324 

R.change (%) -25.2 -7.9 8.7 -32 5 14 -16 5 17 

MAs (m
3
s

-1
)  185.6 760.2 2016.5 249 939 2345 247 1050 2542 

MAb (m
3
s

-1
)  131.5 613.3 1645.1 132 613 1645 132 613 1645 

R.change (%) 41.1 24.0 22.6 89 53 43 88 71 55 
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Table 7-12: Future projection of seasonal flows at three main gauging stations across UBNRB from GFDL 

GCMs 

Season 2030s 2050s 2080s 

 

Tana Kessi 

El 

Diem Tana Kessi 

El 

Diem Tana Kessi 

El 

Diem 

LRSs (m
3
s

-1
) 66 745 2297 279 1994 4628 315 2253 5010 

LRSb (m
3
s

-1
) 153 1538 3991 153 1538 3991 153 1538 3991 

R. change (%) -57 -52 -42 82 30 16 106 47 26 

DSs (m
3
s

-1
)  181 385 1353 342 658 1927 369 732 2209 

DSb (m
3
s

-1
) 178 301 1000 178 301 1000 178 301 1000 

R. change (%) 2 28 35 93 119 93 108 143 121 

SRSs 

 (m
3
s

-1
) 44 118 255 52 155 376 54 154 378 

SRSb (m
3
s

-1
) 64 147 324 64 147 324 64 147 324 

R. change (%) -31 -20 -21 -19 5 16 -16 5 17 

MAs (m
3
s

-1
)  98 417 1307 95 410 1230 107 453 1300 

MAb (m
3
s

-1
)  132 613 1645 132 613 1645 132 613 1645 

R. change (%) -26 -32 -21 -28 -33 -25 -19 -26 -21 
Note: LRSs: long rainy season simulated; LRSb: long rainy season baseline; DSs: dry season simulated; DSb: dry season baseline; SRSs: short 

rainy season simulated; SRSb: short rainy season baseline; MAs: mean annual simulated; MAb: mean annual baseline 

 

Impacts of climate change on seasonal streamflow 

 

To have a sense of the seasonal inter-model variability of predicted streamflow changes, changes 

for wet, dry and short rainy season for the three time periods (from early to late 21
st
 century) 

were analyzed separately for each GCM. Table 7-11  presented the result of seasonal streamflow 

projection of canESM2 GCM for the future periods of 2030s, 2050s and 2080s at 3 main flow-

measuring stations, as it is not suitable to present the result of all six stations. The seasonal 

projected streamflow analysis revealed that it might exhibit both positive and negative trends in 

the future. For instance, the long rainy season might increase in the range of 3% to 42.5% by 

2030s; this magnitude will further increase in the range of 18% to 129% by 2050s. By 2080s, the 

long rainy season (high flow season), might increase by a minimum of 26% and maximum of 

106%. Similarly, the dry season flow might increase in the future in all three stations in all 

periods. In the period 2030s, the dry season flow may increase by 62.2% at Lake Tana outlet, 

71.1% at Kessi and 56.6% at El Diem. It may further increase by 96% at Lake Tana outlet, 119% 

at Kessi and 94% at El Diem by 2050s. At 2080s, the high flow season streamflow at Lake Tana 

outlet, Kessi and El Dime might increase by 108%, 143% and 121% respectively. During the 

short rainy season, the projected streamflow might exhibit mixed trends. The magnitude of the 

short rainy season (low flow season) might decrease by a maximum of -32% at the Lake Tana 

outlet in the period 2050s and increase to the maximum of 29% at Kessi station in the period 

2080s.  

 

Meanwhile, the simulated seasonal streamflow from GFDL GCM also showed mixed signals. 

During the wet season (JJAS), when the UBNRB receives more than 80% of its annual runoff, 

the future prediction might decrease at 2030s at all three stations by -57.2% at Lake Tana, -
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51.6% at Kessi and -42.5% at El Diem stations. However, it might increase by 82% at Lake 

Tana, 30% at Kessi and by 16% at El Diem at the middle of 21
st
 century by 2050s. At 2080s, the 

predictions of streamflow might increase by 106% at Lake Tana outlet, 47% at Kessi and by 

26% at El Diem station. During dry season (ONDJ), the prediction of the streamflow might 

increase at all three stations for all three time periods in the range from 2.3% at Lake Tana outlet 

by 2030s to 121% at El Diem by 2080s. For short rainy season (FMAM), the predictions of 

streamflow might decrease in the range from -30.7% at Lake Tana outlet to -20% at Kessi by 

2030s. By 2050s, the short rainy season streamflow might decrease by -19% at Lake Tana outlet 

while it might increase by 5% and 16% at Kessi and El Diem stations respectively. This again 

decreases by -16% at Lake Tana outlet and increase at Kessi and El Diem stations by 5% and 

17% respectively at the end of 21st century.  

 

Previous studies of the impact of climate change on Blue Nile River have produced widely 

different results due to the inconsistencies of global emissions scenarios and other aspects of the 

model simulations. Nonetheless, there is some general consistency of our results with other 

studies. For instance, Kim (2008) used the outputs of six GCMs to project future precipitations 

and temperature and analyzed the hydrological responses to the climate change effects using a 

simplified monthly water balance model. The study result suggested that mean annual 

precipitation simulated from the six GCMs might change in the range from -11% to 44% with a 

change of 11% from the weighted average scenario at 2050s. On the other hand, the changes in 

mean annual temperature range from 1.4°C to 2.6
o
C with a change of 2.3

o
C from the weighted 

average scenario. As a result, the relative changes in mean annual runoff are from -32% to 80% 

with an average change of 4%. Beyene et al. (2010) also used 11 CMIP3 GCMs for A2 and B1 

scenarios to analyze the hydrological impacts of climate change on the entire Nile river basin and 

for the two large sub basins including UBNRB using the Variable Infiltration Capacity (VIC) 

model. The multimodal ensemble average annual precipitation relative changes for the Blue Nile 

sub-basin as compared to the baseline (1950–1999) annual average precipitation are 15% 

(19.4%), -9.2% (4.1%) and 5.1% (6.1%) for the A2 (B1) global emission scenario and periods 

2010-2039, 2040-2069 and 2070-2099, respectively.  

 

A more recent comprehensive study by Aich et al. (2014), which used the bias corrected model 

output of five ESMs (HadGEM2-ES, IPSL-5 CM5ALR, MIROC-ESM-CHEM, GFDL-ESM2M, 

NorESM1-M) under scenarios of RCP2.6 and RCP8.5 for analyzing the impacts of climate 

changes on the streamflow in four large African rivers, reported an increasing trend in 

precipitation. Furthermore, the projections of the SWIM model driven by the five corrected 

climate models agree almost completely on positive trends of streamflow at El Diem gauging 

station, which correspond to the precipitation. Another study done by Elshamy et al. (2009a), 

who used 17 GCMs reported that −15 % to +14 % changes in total annual precipitation but the 

ensemble mean of all models showed almost no change in the annual total rainfall. Moreover, all 

models predict the temperature to increase between 2
o
C and 5

o
C. In terms of changes to 

streamflow, more models (eleven) are predicting flow reductions than those showing increases 

(six). The ensemble mean annual streamflow at El Diem might reduce by 15% compared to the 

baseline. In summary, the increases in water availability will play significant benefits for small 

and large-scale farmers engaged in rain fed or irrigation agricultural activities to improve their 

livelihoods. Moreover, it assured the sustainability of water resources development projects, 

which are going to be implemented across the basin.  
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7.3.3 Change in hydrological regime caused by the Chara-Chara Weir 
 

 A gauging station, located immediately downstream of the outlet from Lake Tana (catchment 

area 15,000 km
2
), has operated continuously since 1959. The natural Lake Tana reservoir 

regulated by the artificial man made Chara-Chara weir has an effect for changing the 

hydrological regime of the Lake. Daily time series flow data (1961-2014) collected from the 

Ministry of Water, Irrigation and Electricity were used for analyzing the impacts of Chara-Chara 

weir on the downstream flow to Tis Issat and Tis Abay I & II HPPs.  Turbine discharge data for 

both Tis Abay-I and Tis Abay-II power stations were obtained from (McCartney et al., 2010) and 

used to estimate the monthly flows diverted to produce electricity as well as the water remaining 

in the river to flow over the Falls.  

 

Analyses of outflow from Lake Tana outlet and lake level fluctuation is carried out by dividing 

the time horizon into four periods: January 1961 to December1995, January 1996 to December 

2000, January 2001 to December 2010, and January 2011 to December 2016. These periods 

correspond to different levels of regulation of the Lake Tana outflow.  

 Before 1996, the Lake has no any regulation  

 From the period 1196-2000, two gates Chara- Chara weir became operational  

 From 2001 to 2010, five additional gates at the Chara-Chara weir became operational  

 Since 2011, Tana Beles hydropower starts the full operation and additional flow from 

Lake Tana diverts to Tana Beles hydropower.  

Table 7-13 shows the mean monthly flow measured at the outlet of Lake Tana downstream of the 

Chara-Chara weir for the four different operational periods. The natural outflow regime from 

January 1961 to December 1995 has high extreme seasonal variability, ranging from a mean of 

328 m
3
s

-1
 in September to just 12.4 m

3
s

-1
 in June. On average, only 8.3% of the natural discharge 

from the lake occurred in the five months from February to June. In the period 1996 to 2000, 

both wet and dry season flows were significantly higher than those occurred during the previous 

period. The higher dry season flows were a consequence of partial flow regulation by the two 

gates Chara-Chara Weir. The higher wet season flows were a consequence of above average 

rainfall during these years, particularly in 1997 and 1998. Mean annual flow in 1998 (196 m
3
s

-1
= 

6182Mm
3
) was the highest annual discharge measured in the whole record (Table 7-20).  

 

The outflow from January 2001 to December 2010 characterized by the increasing of dry season 

flows reduced wet season flows and less seasonal variability as compared to the natural outflow 

condition (Figure 7-17 and Table 7-13).  The increasing of dry season flow was because of the 

full flow regulation by the seven gates of the Chara-Chara Weir in order to satisfy the higher 

demands of Tis Abay II while the reduced wet season flow was a consequence of less amount of 

rainfall (Figure 7-18). After full flow regulation, 38% of the discharge from the lake occurred in 

the five months from February to June. In the period 2011 to 2014, after the Tana-Beles 

hydropower started operation, the mean annual discharge measured is 82m
3
s

-1
, which is the 

lowest released flow than the other periods. Furthermore, about 40% of the flow is occurred in 

the month of September while only 17% of the controlled discharge from the Lake Tana 

occurred in seven months from January to July. The highest flow in the months of September 
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indicates that the Lake reservoir reaches at the maximum level due to large river inflows in the 

rainy months (July-August) upstream of the Lake. Once the reservoir level reaches at its 

maximum, it should be discharged (spilling) in order to protect flooding around the periphery of 

the Lake. In general, operation of the Chara-Chara Weir has altered the flow regime of the Abay 

River.  

 
Table 7-13: Mean monthly outflow of Lake Tana in four different periods under different reservoir regulation 

and recommended minimum environmental flow 

 
Month 1961-1995 1996-2000 2001-2010 2011-2014 

1
EIA 

2
DRM 

Jan 68.8 107.2 109.7 15.4 60 25 

Feb 46.9 72.2 108.2 22.0 60 23 

Mar 31.6 50.8 117.6 25.0 10 16 

Apr 19.6 60.1 110.5 23.5 10 11 

May 13.0 41.4 95.1 23.3 10 9 

Jun 12.4 39.1 94.1 20.3 10 8 

July 35.4 75.5 116.4 30.5 20 15 

Aug 157.1 184.6 139.3 111.7 20 31 

Sep 327.8 449.0 207.6 388.2 40 74 

Oct 296.9 423.8 133.7 194.3 40 44 

Nov 187.8 297.4 113.7 84.7 40 42 

Dec 112.3 176.0 102.6 39.1 60 32 

Mean 109.1 164.7 120.7 81.5 31.7 27.5 

Volume (Mm
3
) 3441 5195 3806 2569 999 867 

 

 

 
 
Figure 7-17: Mean monthly flow from Lake Tana for the four periods of different flow regulations and 

recommended minimum environmental flow 
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a) 

 

 
 

b) 

 

 
 
Figure 7-18: a) Annual total rainfall; b) mean annual lake level and outflow from Lake Tana 

 

According to McCartney et al. (2010), when only the Tis Abay-I power station was operational 

(i.e., from 1964-2000) average annual turbine discharge was just 192Mm
3
 (i.e., 6.1 m

3
s

-1
). 

Throughout this period just 4.5% of the average annual discharge at Tis Abay (4,227Mm
3
) was 

diverted. Since 2001, when the Tis Abay-II power station came into operation, the average 

annual turbine discharge has increased to 3,090 Mm
3
 (i.e., 97.9 m

3
s

-1
). This equates to 81.7% of 

the average annual discharge at the outlet of Lake Tana (3770 Mm
3
) between 2001 and 2010. 
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According to McCartney et al. (2010) between 1973 and 2000 average annual discharge over the 

Falls is estimated to have been 128 m
3
s

-1
 (i.e., 4,040 Mm

3
). By comparison, between 2001 and 

2010 the average annual discharge over the fall is estimated to have been just 41m
3
s

-1
 (i.e., 1,305 

Mm
3
) including 19 m

3
s

-1
 from the catchment downstream of Chara-Chara weir.  

 

However, following the operation of the Tana Beles hydropower, Tis Abay I and II hydropower 

are becoming non operational, remained seated as standby. The aim of the intra-basin transfer is 

to generate hydropower by exploiting the 311 m difference in elevation between the lake and the 

Beles River generating a capacity of 460 MW. The Tana-Beles HPP generated far more 

electricity than the power produced by the Tis Abay power stations. Approximately 2,985 Mm3  

volume of water diverted through the tunnel (rather than via the Chara-Chara Weir) each year to 

generate 2,310 GWh of electricity (SMEC, 2008). After passing through the Tana-Beles power 

station, water can be utilized for irrigation.   

 

Consequently, the flow for the Tis Abay I and II HPPs is re-diverting and allowing to flow over 

Tis Issat Fall. The mean annual flow of Lake Tana outlet in the period 2011-2016 (after the 

Tana-Beles intra-basin transfer) has reduced from 121 m
3
s

-1
 (3807Mm

3
) to 82 m

3
s

-1
 (2570Mm

3
) 

as compared to the period when it was fully regulated by seven gates (2001-2010). In contrary, 

the mean annual flow over Tis Issat fall has increased from 41 m
3
s

-1
 to 82 m

3
s

-1
 as there is no 

need to divert (97.9 m
3
s

-1
) to the Tis Abay I and II hydropower for power production. It is to be 

noticed that the mean monthly flow of January, February and December after the operation of 

Tana-Beles HPP scheme are lower than the recommended minimum environmental flow by 

McCartney et al. (2010). 

 

Lake Tana reservoir water level  

In order to operate the Tana-Beles HPP properly and set the operation rules outlined by (Bellier 

et al., 1997; Halcrow et al., 2010; SMEC, 2008), records of Lake Tana water level are important. 

Lake levels fluctuate throughout the year and from day to day as shown in Figure 7-19. The 

regulation of Lake Tana by the Chara-Chara weir for power production at Tis Abay I and II has 

modified the natural lake level pattern, raised the mean lake levels and increased water storage 

Figure 7-19 (b). After 2001, when the Lake Tana was regulated fully by 7 gates, the draw-down 

of lake levels during the dry season increased most notably in June 2003 disrupting shipping, 

causing the desiccation of the shoreline wetlands, and reducing the lake outflow to the Abay 

river. The lake level is lowest at the end of the dry season, in June, and reaches a maximum in 

October-November after the rainy season. 
 

Under natural conditions, outflow from Lake Tana was directly linked to rainfall with a 

significant seasonal variation. After the construction of the Chara-Chara weir, the outflow from 

Lake Tana was determined by the combined effect of the rainfall amount and demands for power 

stations.  
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a) 

 

 
1: pre regulation (before 1995); 2: 2 gates operation; 3: 7 gates operation; 4: current condition with Tana Beles HPP 

 

b) 

 

 
 
Figure 7-19: Lake Tana water level. a) daily lake level(1961-2014); b) mean monthly lake level  

 

7.3.4 Implications of combined climate change and water resource developments to the 

water resource management 

 

Because water resources management is inextricably linked with climate, the prospect of global 

climate change raises serious concerns as to the sustainability of water resources and regional 

development (Beyene et al., 2010). Efforts to provide adequate water resources in the Nile River 

basin will be challenged over the next century by the pressures of increasing population and 

resulting land use change, and with potential hydro ecological consequences. Changes in climate 

and climate variability (which results in droughts and flooding) will inevitably complicate water 
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resources management in the Nile basin. A simple reservoir HEC-HMS model was applied to 

identify the nature of interactions between climate change and the managed water resource 

systems. From both the hydrological sciences and policy-making perspectives, our knowledge 

about the combined impacts of water resource developments and climate change on the 

hydrological responses is still critically limited, particularly in data scarce areas like UBNRB. 

Thirteen different scenarios are developed to assess the combined impacts of climate change and 

water resource developments on the hydrology, hydropower and irrigation.  In each scenario, the 

impacts on lake water levels and lake area, mean annual unmet demand for irrigation projects 

and mean annual downstream flow at the gauged stations and the annual energy productions are 

analyzed.  

 

7.3.4.1  Impacts on the Hydrology 
 

In order to assess the combined impacts of climate change and water resource developments, the 

priori task should be setting up the optimal control variables (i.e. operation rule curve) of the 

natural and artificial reservoirs in the UBNRB.  For the purpose of this dissertation, operating 

rule curves both for the proposed new dams and for the Lake Tana are establishing for different 

scenarios following the assumptions and priorities set discussed under 7.2.4.  The model was run 

several times using a trial and error approach to fix the operation rule curves for the Lake Tana 

reservoir and for the planned new reservoirs. 
  
Table 7-14 summarized the simulated quantity of flow released from Lake Tana reservoir to the 

Tana Beles and Abay River, flow at Kessi and El Diem gauged stations based on different "what 

if" management scenarios.  The mean annual flow entering the Abay River from Lake Tana was 

about 81.8m
3
s

-1
 in the period 2011-2014 after the operation of Tana-Beles HPP started. The 

results under different scenarios indicate that the outflow from the Lake Tana to the Abay River 

may reduce by -65% at maximum and by -8% at the minimum in the scenarios s12 and s5 

respectively. However, the outflow of Lake Tana to the Abay River may increase by 34% at the 

maximum under s8 and 11% at minimum under s6. The area of land planned for irrigation and 

the corresponding irrigation water requirement are the same for s4 s8, and s12 but the outflow of 

Lake Tana to the Abay River under s8 is higher than s4 and s12. This indicates that inflow to the 

Lake might increase under s8 due to the increased of precipitation as the result of climate change 

effect.  

 

The mean annual flow diverted to the Tana Beles hydropower from Lake Tana reservoir during 

the period 2011-2016 was about 98m
3
s

-1
. This flow might decrease by -36% at the maximum and 

by -11% at the minimum under scenarios of s11 and s2 respectively and might increase from 

3.2% to 36% under scenarios of s5 and s8 respectively. Meanwhile the flow at Kessi station 

might decrease in the range from -24% to -48% under s2 and s9 respectively but it might 

increase from 1.6% to 50.6% under s5 and s8 respectively. The inflow at El Diem station might 

also decrease by a maximum of -35% under s11 and a minimum by -1.4% under s2. It might also 

increase maximum by 30% and minimum by 13% under s8 and s5 respectively.  
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Table 7-14: Hydrological response to the combined effect of climate change and large scale water resource 

development at four main stations. 

 

 

Discharge  (m
3
s

-1
) Relative change from the baseline (%) 

 

Abay 

River 

Flow to 

Tana Beles 

HPP Kessi 

El 

Diem 

Abay 

River 

Tana 

Beles 

HPP Kessi 

El 

Diem 

s0 81.8 97.9 613.3 1645.1         

s1 74.9 100.7 613.4 1710.2 -8.4 2.9 0.0 4.0 

s2 46.4 87.1 468.8 1622.2 -43.3 -11.0 -23.6 -1.4 

s3 43.1 83.8 465.5 1586.8 -47.3 -14.4 -24.1 -3.5 

s4 43.5 82.0 464.3 1514.6 -46.8 -16.3 -24.3 -7.9 

s5 75.3 101.0 622.8 1862.3 -7.9 3.2 1.6 13.2 

s6 91.0 105.3 695.3 1979.9 11.3 7.6 13.4 20.4 

s7 100.9 119.0 815.5 2111.7 23.4 21.6 33.0 28.4 

s8 109.3 132.8 923.5 2147.4 33.6 35.7 50.6 30.5 

s9 30.6 74.8 317.1 1178.5 -62.5 -23.5 -48.3 -28.4 

s10 30.3 69.6 365.3 1234.0 -63.0 -28.9 -40.4 -25.0 

s11 28.5 62.3 340.1 1064.9 -65.1 -36.4 -44.5 -35.3 

s12 33.0 69.4 374.6 1124.9 -59.7 -29.1 -38.9 -31.6 

*: represents the period 2001-2010, **: represents for the period 2011-2016 
 

Impacts on the outflow of Lake Tana to the Abay River  
 

For the operation of the Tana-Beles hydropower scheme, about 70% of the natural outflow of 

Lake Tana is diverted to the Tana Beles HPP scheme to generate electricity and supply water for 

the downstream irrigation development. The remaining 30% of lake outflow is planned to release 

to the Abay river as regulated flow or occasionally as unregulated flow when lake levels are 

particularly high spilling over the Chara-Chara weir's spillway (Halcrow et al., 2010). The 

regulation of the Chara-Chara weir will ensure that environmental flow requirements, needed to 

maintain biological life in the river, are sustained. Minimum flow requirement for visual amenity 

of the Tis-Issat waterfall, located downstream of Lake Tana, were estimated during the 

feasibility study of Tis-Abay II hydropower plant prior to the construction of the five gated weir 

by Bellier et al. (1997) named as EIA from Table 7-15. McCartney et al. (2010) also estimated 

the minimum environmental flow requirement to the fall with no allowance for the aesthetic 

quality of the fall after the construction of the seven gates named as DRM from Table 7-15.  

 

Table 7-15 summarizes the results of each scenario. The results indicate the decline in mean 

annual outflow as water resources development in the Tana sub-basin increases. As would be 

expected, the greatest impact of the water resources development occurs during dry climate 

scenario (i.e. GFDL GCM under RCP4.5 scenario) most significantly, from s9-s12 scenario 

simulation. During these periods, the mean annual outflow is less than the recommended 

environmental flow by (Bellier et al., 1997). 
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Table 7-15: Mean monthly outflow (m
3
s

-1
) to the Abbay river from Lake Tana reservoir for different model 

scenarios 

 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 

Vol. 

(Mm
3
) 

s0 15 26 25 24 23 20 30 112 388 194 85 39 82 2580 

s1 62 52 41 33 30 29 35 60 141 199 141 77 75 2362 

s2 49 42 36 30 25 24 27 41 74 83 70 57 46 1463 

s3 49 43 38 29 22 21 24 37 62 71 65 56 43 1361 

s4 54 50 45 30 19 18 23 35 56 65 67 61 43 1372 

s5 64 55 46 36 30 29 34 56 141 200 135 78 75 2376 

s6 71 63 54 39 30 29 34 58 171 259 189 96 91 2871 

s7 58 54 50 39 30 29 34 53 223 332 218 88 101 3183 

s8 77 68 62 49 38 36 43 63 197 339 214 125 109 3446 

s9 39 34 31 25 21 18 19 24 32 40 44 41 31 966 

s10 40 36 33 25 18 12 15 23 32 39 47 43 30 955 

s11 42 40 36 21 9 6 7 19 29 37 49 47 29 899 

s12 46 44 41 26 15 10 13 23 32 41 54 51 33 1040 
1
EIA 60 60 10 10 10 10 20 20 40 40 40 60 32 999 

2
DRM

 
25 23 16 11 9 8 15 31 74 44 42 32 28 867 

Recommended minimum flows at Tis Issat fall by 1(Bellier et al., 1997); 2(McCartney et al., 2010)  

 

(a) Scenarios s0/s1 

The observed flow measured at the Lake outlet to the Abay River was 3,442Mm
3
 (Table 7-13) 

before regulation of the lake outlet by the Chara-Chara weir. Once the Tana-Beles scheme begins 

operating, the observed mean annual flow released to the Abay River significantly reduced to 

2580Mm
3
 (Table 7-15) under the current condition (s0). Although the observed mean annual 

outflow volume to the Abay River is higher than the recommended minimum environmental 

flow volume (Bellier et al., 1997; McCartney et al., 2010), the observed outflow in the months of 

January, February and December is lesser than the monthly recommended environmental flow. 

Meanwhile, the model simulates mean annual outflow of 2362Mm
3
 to the Abay River for the 

current condition (s1) that is equivalent to the observed outflow. The difference between he 

observed and simulated outflow to the Abay River for the current condition could be due to the 

difference of the actual and simulated outflows to the Tana-Beles HPP (Table 7-15). 

 

(b) Scenario s2 

Under s2, 1463Mm
3
 of water is going to be released from the Chara-Chara weir downstream to 

Abay River annually.  Although the outflow is 43.3% less than the observed outflow (s0), it can 

satisfy the total annual environmental flow requirement of 999Mm
3
 recommended by Bellier et 

al. (1997) and 867Mm
3
 estimated by McCartney et al. (2010). However, the mean monthly flows 

in the months of December, January and February are less than the mean monthly flows of the 

recommended minimum environmental flow Table 7-15.  
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Figure 7-20: Mean monthly outflow of Lake Tana to the Abbay river under different model scenarios 

 

(c) Scenario s3 

The total mean annual Lake Tana outflow to the Abay River simulated under s3 is 1361Mm
3
. 

Despite the flow to the Abay River decreased by 47.4% from the baseline, the criteria for 

environmental maintenance flows remain satisfied at the waterfall if the Tis Issat I and II 

hydropower's remained as standby. However, the flow in the months of January, February and 

December are less than the minimum environmental flows recommended by (Bellier et al., 

1997), while the flow in the month of only September is less as compared to the minimum EIA 

flow recommended by McCartney et al. (2010). The reduction of flow to the Abay River is due 

to the abstraction of 615Mm
3
 of water for each year for the 68,754 ha of land to be irrigated 

upstream of Lake Tana Table 7-18.  

 

(d) Scenario s4 

This scenario is similar to the scenarios of s2 and s3 without climate change effect but with full 

irrigation development (106,754 ha) upstream of the Lake Tana. Under this scenario, it is 

expected to withdraw on average 953Mm
3
 of water every year for the intended irrigation 

development upstream of Lake Tana, which is about 30% more from scenario s3. Meanwhile, 

the Chara-Chara weir provides a regulated mean annual outflow of 1372Mm
3
 to the Abay River, 

which is still above the threshold for environmental maintenance flows at Tis Issat.  

 

(e) Scenario s5, s6, s7 and s8 

These scenarios are established based on the existing and future planned water resources 

development combined with the climate change projection under RCP4.5 scenario of canESM2 

GCM. The mean annual streamflow in the future forced by RCP4.5 scenarios of canESM2 GCM 

is expected to increase as explained in section 7.3.2. Hence, the volume of water available for the 
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Tana-Beles HPP and Abay River will also increase in comparison to the respective baseline 

flows as it presented in the Table 7-14, Table 7-15 and Table 7-16. A mean annual flow of 2376, 

2871, 3183 and 3446Mm
3
 will be diverted to the Abay River under s5, s6, s7, and s8 scenarios 

respectively. Although the mean annual flow to the Abay River under these scenarios are higher 

than the other scenarios, the mean annual flows in all scenarios except s8 are less than the mean 

annual outflow of the Lake Tana before the regulation (3441Mm
3
) Table 7-13.  

 

(f) s9, s10, s11 and s12 (scenarios with the climate change effect of GFDL GCM under RCP4.5) 

 

The streamflow projection under RCP4.5 scenario from GFDL GCM might decrease in the 

future, which might have adverse impacts on the hydrology and water resource developments by 

reducing the water availability. The model simulation result (Table 7-14) showed that the 

outflow from Lake Tana to the Abay River might reduce by -60% at the minimum and -65% at 

the maximum under s11 and s12 respectively from the baseline. In addition, the simulated mean 

annual outflows to the Abay River (Table 7-15) under s9, s10 and s11 are 966, 955, 899 and 

1040 Mm
3
. It shows that the mean annual outflows under s9, s10 and s11 are marginally less 

than the minimum environmental flow recommended by (Bellier et al., 1997).  

 

Impacts on the Lake Tana outflow to the Tana-Beles HPP 

 

The variability of inflow to the Lake Tana reservoir due to climate change effect and different 

scenarios of the water resource development might have an effect on the outflow to the Tana-

Beles HPP. The model simulation result under different scenarios is presented in Table 7-16. 

 
Table 7-16: Mean monthly outflow to Tana Beles hydropower scheme under different model scenarios 

Month s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 
Jan 103 97 91 91 93 98 101 128 153 86 87 88 90 

Feb 104 92 88 88 92 94 97 121 145 83 85 87 89 
Mar 104 88 84 85 89 90 93 113 135 79 82 81 87 
Apr 104 83 78 76 75 85 86 93 111 73 71 48 72 
May 103 78 72 63 53 79 79 79 90 65 43 21 34 
Jun 96 77 69 58 45 77 78 78 88 45 21 12 14 
Jul 98 83 75 69 65 82 83 85 100 51 31 15 26 
Aug 96 96 87 84 82 94 95 112 133 71 69 52 68 
Sep 89 130 102 97 94 130 138 155 159 81 81 77 80 
Oct 87 148 106 101 98 148 156 160 160 87 87 84 88 
Nov 92 131 101 99 100 130 144 159 160 89 91 91 93 
Dec 98 104 95 95 97 104 112 146 159 87 89 90 92 
Mean (m

3
s

-1
) 98 101 87 84 82 101 105 119 133 75 70 62 69 

Energy(GWh) 2193 2256 1952 1878 1837 2263 2359 2667 2977 1677 1559 1396 1556 
Vol. (Mm

3
) 3086 3175 2747 2643 2585 3184 3321 3753 4189 2360 2194 1964 2189 

PF 0.61 0.63 0.54 0.52 0.51 0.63 0.66 0.74 0.83 0.47 0.43 0.39 0.43 

 

a) Scenarios s0/s1, 

S0 represents the observed outflow while s1 represents the model simulation of the baseline 

period to the Tana-Beles HPP that helps to evaluate the performance of established operation 

rule curve in representing the current condition (i.e. the condition after the operation of Tana-

Beles HPP). Results from Table 7-15and Table 7-16showed that the observed mean annual 
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outflow both to Abay River and Tana-Beles HPP have the same magnitude with their respective 

simulated mean annual outflows. This indicates that the operation rule curve developed for the 

Lake Tana is able to represent the current operation condition of the Lake Tana reservoir.   

 

b) Scenario s2, s3, s4 (no climate change scenarios) 

These scenarios are scenarios with different level of water resource development upstream of 

Lake Tana but they are not addressing the climate change effect (climate remained constant). 

The model simulation result shows that mean annual outflows to the Tana-Beles HPP in all three 

scenarios ranged from 87m
3
s

-1
 to 82 m

3
s

-
1, which are less than the current mean annual outflow 

(98m
3
s

-1
) but higher than the designed average flow of 77m

3
s

-1
. This indicates that the combined 

effect of climate change and water resource developments upstream of Lake Tana might be 

insignificant when compared the simulated outflows to the designed average flow of 77m
3
s

-1
. 

However, its operation needs high attention during the months of May, June and July to balance, 

as the outflows are less than the designed flow. Currently the project generates 2230 GWh 

energy annually on average, which is 62% of the plant maximum capacity. However, under s2, 

s3 and s4 the simulated flow to the Tana-Beles HPP can generate on average between 1952 

and1837 GWh energy annually.  

 

c) Scenario s5, s6, s7 and s8 (climate change effect under RCP4.5 scenario of canESM2 GCM) 

The future climate change projection downscaled from canESM2 GCM under RCP4.5 scenario 

using SDSM combined with different level of water resource developments upstream of Lake 

Tana reservoir are used as input for the model to assess the combined impacts on the outflow to 

the Tana-Beles HPP. The model simulation result revealed that if the projected climate using 

canESM2 GCM under RCP4.5 scenario occurred in the future, Tana-Beles HPP would receive 

3184, 3321, 3753 and 4189 Mm
3
 volume of water every year under s5, s6, s7 and s8 

respectively. These volumes of water are higher than the observed volume of water released 

from Lake Tana to Tana-Beles HPP. With these amount of released water, Tana-Beles HPP can 

generate on average from 2263 to 2507 GWh energy annually (Table 7-21).  S8 is the only 

scenario in which all the mean monthly flows are higher than the designed mean flow (77m
3
s

-1
) 

(see Figure 7-21).  

 

d) Scenarios s9, s10, s11 and s12 (climate change effecr from GFDL GCM under RCP4.5) 

In contrary to climate change scenario of canESM2 GCM, these scenarios are the worst-case 

scenarios for the Tana-Beles HPP. The mean monthly outflow to the Tana-Beles HPP is lower 

than the mean designed flow (77m
3
s

-1
). The flow below the design average flow of 77 m

3
s

-1
 

might have multiple negative effects on generating electricity and downstream upper Beles 

irrigation particularly during the months of April to June when the irrigation demand is 

becoming high. 
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DM: design mean flow of the project (77m

3
s

-1
) 

 
Figure 7-21: Mean monthly flows to the Tana Beles HP under different scenarios 

In general, the model simulation results for the outflow to the Abay River in Figure 7-20 show 

that the minimum recommended environmental requirements are satisfied and surpassed during 

the wet season and dry season in all scenarios except in the months of December, January and 

February. The outflow below the minimum environmental requirement may have a significant 

negative impact on tourism, navigation and other socio-economic activities.  

 

The seasonal pattern of flow releases to the Tana-Beles HPP is important for determining the 

area of irrigation that can be developed sustainably in the upper Beles irrigation project. The 

flow released from Lake Tana reservoir into the Beles catchment through Tana-Beles HPP has to 

satisfy the water requirement for the downstream irrigation development but also maintain 

electricity production whilst avoiding environmental damage to Lake Tana and downstream on 

the Abay River. Figure 7-21 and Table 7-16 present the mean monthly flow of Tana Beles HPP 

based on operational rules adopted for model scenarios. Salini et al. (2006) designed the scheme 

to have an average discharge of 77m
3
s

-1
 through the tunnel with discharge peaking at 160m

3
s

-1
at 

high lake levels, to operate with an average plant factor of 48%. In all scenarios except canESM2 

scenarios (s5-s8), less volume of flow, below the average of 77 m
3
s

-1
 is released to the Tana 

Beles HP during the driest season (April, May and June) and early rainy season (July).  

 

Impacts on the flow of Kessi and El Diem stations 
 

The mean annual streamflow of the model simulation result at Kessi showed mixed signals. It 

might increase for the s5, s6, s7 and s8 but might decrease under s2, s3, s4, s9, s10, s11 and s12. 

The flow might decrease minimum by -24% under s2 and maximum by -48% under s9 

respectively. However, this flow might increase from 1.6% to 51% under scenarios of s5 and s8 
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respectively. At El Diem, the mean annual inflow might decease by -1.4% at minimum and by -

37% at maximum under scenarios of s2 and s11 respectively while it might increase from 13.2% 

to 29% under scenarios of s5 and s8 respectively. The large decrease of Kessi as compared to El 

Diem from baseline is due to the flow that transferred to the Tana-Beles from Lake Tana 

upstream of Kessi, which joins the main Blue Nile upstream near to GERD. It is noticed that the 

existence of climate change (s5 to s8) may increase the availability of water resources for both 

irrigation and hydropower projects; however, if the climate remained unchanged (s2 to s4) or the 

climate scenario for GFDL GCM occurs, it is undoubtedly, UBNRB may experience the 

reduction of streamflow.  

      

 
 

 
 
Figure 7-22: Mean monthly simulated inflow a) at Kessie and b) at El Diem station under different scenarios 
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Figure 7-22 shows the impact of expected water resource developments on average monthly 

inflows at Kessi and El Diem under different scenarios. Not surprisingly, it shows the seasonal 

pattern of the inflow at GERD might considerably modified under s4, s7, s8, s11 and s12, when 

the upstream three large-scale hydropower projects (Beko-Abo, Karadobi and Mendiya) starting 

operation. As a result, the flow might increase during the dry period (January–May) and a 

decrease of mean monthly discharges during the rainy season when discharges are used to re-fill 

the upstream of three large hydropower reservoirs.  

 

The flow regime of the GERD dam is governed by the operations of the upstream hydroelectric 

power schemes and runoff from the catchments (the incremental flow) between the dams.  The 

upstream reservoirs have influence on the downstream reservoirs inflow. During full operation 

phase of the upstream hydropower projects, in this case (s4, s7, s8, s11 and s12), the downstream 

GERD reservoir will gain maximum flow in the dry months and less peak discharges in wet 

months because of regulating effects of upstream cascades. Figure 7-22 (b) demonstrates mean 

monthly inflow to GERD dam for different climate change and upstream development scenarios. 

Releases from Karadobi, Beko-Abo and Mandaya dams constitute the major inflow into GERD 

dam. The values of the daily inflow coefficient of variance of GERD for scenarios without 

upstream hydropower projects are higher than the coefficients of variances of scenarios with 

upstream reservoirs (Table 7-17). For instance, the coefficients of variance are 1.14 and 0.4 for 

baseline and s4 scenarios respectively. 
 

Table 7-17: Statistics of daily inflow to GERD reservoir for different scenarios 

 

Scenario 

Minimum 

(m
3
s

-1
) 

Maximum 

(m
3
s

-1
) 

Median 

(m
3
s

-1
) 

Mean 

(m
3
s

-1
) 

STDEV 

(m
3
s

-1
) CV 

s0 20.1 10887.1 668.9 1673 1914 1.14 

s1 182.2 10319.9 789.25 1719 1899 1.10 

s2 116.2 10111.4 712.9 1632 1869 1.15 

s3 69.4 10105.3 681.45 1596 1884 1.18 

s4 956.7 7512.4 1297.1 1555 573 0.37 

s5 143.5 7531 854.9 1873 1992 1.06 

s6 88.5 8220.2 889.2 1991 2132 1.07 

s7 1059.9 9325.4 1475.5 2113 1395 0.66 

s8 1082.1 8406.6 1504.3 2150 1400 0.65 

s9 147.5 5294.2 590 1184 1223 1.03 

s10 98.6 5443.1 591.7 1239 1317 1.06 

s11 531.7 3340.8 900.4 1066 452 0.42 

s12 532.9 3178.7 958.4 1126 468 0.42 
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Impacts on Lake Tana water levels and lake area  
 

Figure 7-23 presents a comparison of box plot representation of the time series of simulated lake 

levels for all scenarios. Table 7-19 summarizes the results of each scenario. The results indicate 

the decline in mean annual lake levels, and consequently lake area, as water resources 

development in the catchment increases. As would be expected, the greatest might occur during 

the climate scenarios of RCP4.5 from GFDL GCM under s9, s10, s11 and s12. During these 

periods, lake water levels, depending on the development scenario, up to 0.91 and 1.03m lower 

than natural levels under s12 and s11. 
 

Lake Tana water level data measured at Bahir Dar station is available from 1961 to 2014. Lake 

level fluctuates seasonally and from year to year as shown in Table 7-19 and Figure 7-23. The 

analysis suggested that the Lake level increased by 0.57m in the period 1996-2000 when the 

outlet was regulated by two gates and only Tis Abay I hydropower was operated as compared to 

the natural outflow. In the period 2001-2010, when seven gates regulated the Lake and both Tis 

Abay I and II HPPs operated, the mean Lake water level was reduced by -0.16 m. In the period 

2011-2016, when the Tana Beles hydropower has been in operation and both Tis Abay I and II 

functioning as standby, the mean Lake water level increased by 0.56m Table 7-23. The raising of 

lake level during the period 2011-2016 as compared to the lake level during 2001-2010 (before 

Tana-Beles) could be due to the less demand of the Tana Beles power station (i.e., 3,086Mm
3
yr

-

1
) than demand of the Tis Abay I and II power stations (i.e., 3,469Mm

3
yr

-1
) (McCartney et al., 

2010), which allowed the lake to store more water.  

 
Table 7-18: Planned and ongoing irrigation and hydropower development in the Lake Tana sub-basin 

 

 

Proposed Irrigation area (ha) Irrigation water demand (Mm
3
) 

Project Name 

2011-

2017 

2018-

2025 

2025-

2040 

2041-

2070 Total 

2011-

2017 

2018-

2025 

2025-

2040 

2041-

2070 

Megech Pumping   4,000  8,510  12,000  24,510  0  35  108  212  

Megech gravity   7,311      7,311  0  62  62  62  

North West Tana     2,000  4,720  6,720  0  0  17  58  

North East Tana   3,000  2,475    5,475  0  26  48  48  

Rib    8,000  6,459  5,466  19,925  0  79  143  196  

Gumara     10,000  3,776  13,776  0  0  85  117  

Koga 7,000        7,000  54  54  54  54  

Gilgel Abay   4,000  5,999  6,500  16,499  0  39  97  160  

South West Tana       5,132  5,132  0  0  0  44  

Jemma     7,786    7,786  0  0  60  60  

Grand Total 7,000  26,311  43,229  37,594  114,134  54  295  674  1,012  

 

Table 7-19 summarize the results of each scenarios showing the impacts on water level and lake 

area based on “what if” management options of the Tana-Beles hydropower scheme and 
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upstream irrigation developments (Table 7-18) combined with and without climate change 

scenarios.  

 

(a) Scenario s1 (current condition) 

If the Tana-Beles scheme is operated with a minimum operation Lake, level of 1,784.75 masl, 

with the upstream Koga irrigation development, the mean annual lake level decreased by -0.2m 

from 1,786.6 masl to 1,786.4 masl. The mean lake area will decrease from 3,053.2 km
2
 to 

3,044.3 km
2
, losing 8.9km

2
, which is about 0.3% of its total area.  

 

(b) Scenarios s2 

For the scenario s2 described in Table 7-1, the model simulation result indicates that the mean 

lake level declines by -0.56m to 1,786.1masl. As a result, the mean lake area declines from 

3,053.2 km
2
 to 3,027.4km

2
 a reduction of 25.8 km

2
 of lake area (see Table 7-19). 

 

(c) Scenario s3 

If water transferring from the Lake Tana to the Tana Beles hydropower station continues and 

68,754 ha of land is going to be irrigated upstream of the Lake Tana, the mean lake level falls by 

-0.61 m to a water level of 1,786.0 masl. As a result, the mean annual lake area therefore 

decreases by - 28.2km
2
 to 3,024.9km

2
. Lake water levels remain high, exceeding 1,785 masl for 

100% of the period.  

 

(d) Scenario s4 

In this scenario, the impact analysis is carried out in the situation when full irrigation 

development (106,345ha), which requires 4,092Mm
3
 of water annually (Table 7-18), combined 

with the climate that remain unchanged. The model simulation result suggested that a dramatic 

fall in the mean annual lake level by -0.63 m Table 7-19. Consequently, the mean annual lake 

area is depleted by -29.0 km
2
 to 3,024.2 km

2
.  

 

(e) Scenario s5, s6, s7 and s8 

In the previous scenarios, climate change has not been considered but is likely to have an adverse 

effect on the water resource availability of the basin. Under the conditions of these scenarios, the 

result suggested that the Lake level might not change or the change is insignificant Table 7-19 

and Figure 7-23. The Lake level might increase at the maximum by 0.1m under s8 and as a 

result, the Lake surface area might increase by a maximum of 3.6km
2
 to 3054.1km

2
 and a 

minimum by 1km
2
 to 3054.1km

2
 Table 7-19. The Lake level rise is due to the increased mean 

annual inflow from the tributary rivers as the result of the climate change.  

 

(f) Scenarios s9, s10, s11 and s12 (climate change from GFDL GCM under RCP4.5 scenario) 

As would be expected, the greatest impact of the water resource development occurs when it is 

combined with the climate change scenarios of CMIP5 GFDL GCM under RCP4.5 scenario 

(Table 7-19). In these scenarios, depending on the level of development, lake water levels lower 

up to -0.91m and -1.03m under s12 and s11 respectively as compared to the natural flow 

condition of Lake Tana. The full irrigation water requirement exacerbates the drop of lake water 

levels in all scenarios. For the full development scenarios, the mean lake area might reduce by a 

maximum of -47.4 km
2
 under s11 and a minimum by -42 km

2
 from 3053.2km

2
 to 3005.8km

2
 and 

3011.2 km
2
 respectively.  
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Table 7-19: Lake Tana water level and Lake area 

 

Lake level (masl) 

  

scenario Min.  Max. Mean  

Difference 

(m) Area (km
2
) 

Difference 

(km
2
) 

s0 1785.7 1788.1 1786.6   3053.2   

S1 1785.5 1787.8 1786.4 -0.2 3044.3 -8.8 

s2 1784.9 1787.4 1786.1 -0.56 3027.4 -25.8 

s3 1784.8 1787.3 1786.0 -0.61 3024.9 -28.2 

s4 1784.8 1787.3 1786.0 -0.63 3024.2 -29.0 

s5 1785.3 1787.5 1786.5 -0.17 3045.4 -7.8 

s6 1785.4 1787.6 1786.6 -0.08 3049.7 -3.5 

s7 1785.3 1787.7 1786.7 0.02 3054.1 0.9 

s8 1785.3 1787.7 1786.7 0.08 3056.8 3.6 

s9 1784.8 1786.7 1785.6 -0.99 3007.7 -45.5 

s10 1784.8 1786.8 1785.6 -0.99 3007.4 -45.7 

s11 1784.8 1787.0 1785.6 -1.03 3005.8 -47.4 

s12 1784.8 1787.0 1785.7 -0.91 3011.2 -42.0 

 

 
s0: Lake level before regulation (1973-1995); B1: Lake level regulated by two gates (1996-2000); B2: Lake level regulated by seven gates (2001-

2010) and B3: Current condition (i.e. regulated by seven gates plus Tana Beles transfer) from 2011-2016 

Figure 7-23: Box plot representation for the Lake water level under different scenarios 
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Figure 7-24: Mean monthly Lake Tana water level under different scenarios  

As water resources development increases mean daily lake levels that are below 1,785 masl 

(Figure 7-28) exist longer periods. The result depicted that the lake level exceeds 1,785 masl just 

100% of the time under s1, s5, s6, s7 and s8, when the clime change occurs with the projection 

scenarios of canESM2 GCMs for RCP4.5. Under the climate change scenarios of GFDL 

RCP4.5, the lake level exceeds 1785 masl maximum for 98.5% and minimum for 75% of the 

time under s10 and s11 respectively. For no climate change scenario, the lake level exceeds 1785 

masl 98.5% of the time under s2 and 90% of the time under s4. 

 

7.3.4.2 Impacts on irrigation 
 

The mean annual water demand analysis for the total irrigation area of 23,596 ha (s1), 214,882 

ha (s2,s5,s9), 382,644 ha (s3,s6,s10) and 424,370 ha (s4,s7,s8,s11,s12) in the UBNRB as 

presented in Table 7-20 show that 169.2, 1695, 3210 and 3583Mm
3
 volume of water is required 

annually respectively. The full irrigation demand 3583 Mm
3
 is equivalent to 7 % of the mean 

annual flow of Abay River under natural condition (52 Bm
3
). The HEC-HMS model simulation 

result revealed that water deficit might exist in all scenarios with a value ranged from 31 to 692 

Mm
3
 annually, which is 19.3 % of the required amount. As would be expected, the maximum 

water deficient might occur under s4 while the minimum water deficient might occur for s1 

(current condition) scenario Table 7-20. Shortfall in irrigation significantly increases as the 

irrigation development in the basin increases irrespective of climate change conditions of the 

scenarios. For instance, the shortfall for irrigation under s8, when precipitation increase in the 

future, is higher than the shortfall for s11, when precipitation decrease in the future at basin 

scale. This indicates that spatial distribution of precipitation across the basin might be influenced 

by the climate change as a result scarcity of water for the irrigation projects might occur even 

though the precipitation increases. 
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Table 7-20: Mean annual unmet water demand for the large irrigation developments under different scenarios 

 

 Scenario 

Irrigation 

area (ha) 

Annual 

average 

demand 

(m
3
s

-1
) 

Annual 

Average 

demand 

(Mm
3
) 

Mean 

Annual 

water 

demand 

(m
3
ha

-1
) 

Mean 

annual 

unmet 

demand 

(m
3
s

-1
) 

Mean 

annual 

unmet 

demand 

(Mm
3
) 

Water 

deficient 

(%) 

 s1 23,596 5.4 169.2 7172.2 -1.0 -31.0 -18.3 

s2 214,882 53.7 1694.9 7887.5 -3.9 -123.3 -7.3 

s3 382,644 101.8 3209.5 8387.8 -18.1 -571.4 -17.8 

s4 424,370 113.6 3583.3 8524.1 -22.0 -692.2 -19.3 

s5 214,882 53.7 1694.9 7887.5 -3.3 -102.5 -6.0 

s6 382,644 101.8 3209.5 8387.8 -12.6 -396.7 -12.4 

s7 424,370 113.6 3583.3 8443.8 -12.8 -404.6 -11.3 

s8 424,370 113.6 3583.3 8443.8 -17.2 -543.8 -15.2 

s9 214,882 53.7 1694.9 7887.5 -3.6 -112.1 -6.6 

s10 382,644 101.8 3209.5 8387.8 -15.1 -476.1 -14.8 

s11 424,370 113.6 3583.3 8443.8 -16.3 -514.2 -14.3 

s12 424,370 113.6 3583.3 8443.8 -14.8 -466.1 -13.0 

 

Recently, the water resources in the Upper Blue Nile River (UBNR) basin, was investigated by 

Stamou (2019) for four scenarios: natural, current, short- to medium-term and full development 

within the frame work of NIMA-NEX project. For the full development scenario, the annual 

irrigation requirement for the 584,110 ha of irrigated area was estimated equal to 4,568 Mm³yr
-1

, 

while the annual actual irrigation amount was calculated equal to 4,332 Mm³yr
-1

, while the 

irrigation deficit is equal to 23% of the required amount.  

 

7.3.4.3 Impacts on hydropower production 

Tana  Beles hydropower  project  
 

The operation rules developed by SMEC (2008) is adapted for the model simulation of inter-

basin transfer of water from Lake Tana reservoir to the adjacent Beles catchment through Tana 

Beles tunnel. The operation policy proposed to divert a maximum flow of 160 m
3
s

-1
at very high 

lake levels (> 1787 masl) but at low lake levels (< 1784.75) when water level is at or close to the 

minimum operating level, no water is diverted.  

 

The model simulation result is presented in Table 7-21 for different scenarios. The result 

indicates that mean annual total hydropower to be generated from Tana-Beles hydropower 

scheme may decrease by about -11% to -36% under the s2 and s11 respectively as compared to 

the mean annual baseline power generated for the period (2011-2016). However, the power to be 

generated might increase in the range of 3.2% to 36% for the RCP 4.5 climate change scenarios 

combined with irrigation developments (s5-s8).  
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Table 7-21: Mean annual power generation from Tana Beles hydropower for different scenarios 

 
 Qmean 

(m
3
s

-1
) 

Q98.5% 

(m
3
s

-1
) 

Average energy 

(GWhyr
-1

) 

Change 

(%) 

Plant factor 

s0 97.9 39.3 2193  0.62 

s1 100.7 75.4 2256 2.9 0.67 

s2 87.1 64.3 1952 -11.0 0.56 

s3 83.8 17.0 1878 -14.3 0.56 

s4 82.0 0.0 1837 -16.2 0.54 

s5 101.0 72.5 2263 3.2 0.63 

s6 105.3 75.0 2359 7.6 0.66 

s7 119.0 75.1 2667 21.6 0.68 

s8 132.8 76.8 2977 35.7 0.70 

s9 74.8 20.1 1677 -23.5 0.47 

s10 69.6 0.0 1559 -28.9 0.43 

s11 62.3 0.0 1396 -36.4 0.39 

s12 69.4 0.0 1556 -29.1 0.43 

 

(a) Scenarios s1 

The mean annual flow released to the Tana- Beles HPP during the baseline period (2011-2016) 

was 97.9 m
3
s

-1
 (Table 7-16), which is above the average of 77 m

3
s

-1
. Although, there was a flow 

released 100 % of the time to the Tana-Beles HPP, only 94.3 % of the time remains above 77 

m
3
s

-1
 (Figure 7-21).  Furthermore, it only allows high releases for 18.2% of the time (i.e. >140 

m
3
s

-1
). The analysis result also indicates that an average 2256 GWh energy could produce 

annually with 0.67 average plant factors. The scheme was designed with a maximum flow of 160 

m
3
s

-1
 so as to generate 3585 GWh year

-1 
with plant factor of 0.48 to generate an equivalent 

average energy of 1719 GWh per year (Bellier et al., 1997). It is to be noticed that the mean 

annual energy produced in the baseline period is 30 % higher than the average design capacity.    

 

(b) Scenario s2 

If 33,311ha of land could be irrigated upstream, of the Lake Tana that required an amount of 

295Mm
3
 of water annually and the climate does not change in the near future, 77 m

3
s

-1
 flow 

releases to the Tana Beles HP can only sustain for 76% of the time Figure 7-25. As a results the 

mean annual energy generation decreased by -11% from the baseline to 1952GWh Table 7-21. 

Flow might occur 100% of the time but the flow above 120 m
3
s

-1
 might occur only for 3.7% of 

the time and 160 m
3
s

-1
 flow might exist only for 0.5 % of the time.  

 

(c) Scenario S3 

Under this scenario, 615Mm
3
 of water is reduced annually from the inflows of Lake Tana due to 

68,754ha of upstream irrigation from the tributary rivers. In addition, an attempt was made to 

remain the climate unchanged from the baseline. Taking all the above factors into consideration, 

the outflow simulated by the model to the Tana-Beles HPP indicates that 99.5% of the time 

outflow might exist. Releases of 160 m
3
s

-1
 can only be sustained for 0.23% of the time only in 

the months of September and October just after the rainy season. Flows above 77 m
3
s

-1 
occur just 

71.2% of the time and flows above 120 m
3
s

-1
 may occur only 2.1%. As a result, the mean annual 

energy generated may decrease by -14.3% to 1878 GWhyr
-1

with the average plant factor 0.52. 
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Figure 7-25: Probability of exceedence for the flow rate of Tana Beles HPP  

Scenario s4 

Under s4, the full irrigation development (i.e. 106,348ha of land) will be implemented and the 

climate is unchanged from the baseline condition. Although the flow released to the Tana-Beles 

HP exists 98 % of the time, the flow above the average flow of 77 m
3
s

-1
 might occur for 76% of 

the time and flows above 120 m
3
s

-1 
may occur for only 0.7% of the time. A maximum flow of 

160 m
3
s

-1
 may not occur in this scenario.  Due to the combined effect of  953Mm

3
 of withdrawal 

water for the irrigation in the Tana sub-basin with the unchanged climate, the mean annual 

energy to be generated may decrease by -16 % from the baseline to 1837 GWh. Furthermore, the 

average plant factor may also reduce to 0.51.  

 

Scenario s5, s6, s7 and s8 

These scenarios are based on the assumption that climate is changing under RCP 4.5 scenario 

(described in the previous section) combined with different level of irrigation and hydropower 

developments. The result of the scenarios suggested that energy production from Tana-Beles 

HPP might increase in the order of 3.2% to 36% as compared to the. The flow will be released 

100 % of the time to the Tana Beles hydropower. The average flow of 77m
3
s

-1
 will occur in the 

range of 94.4% to 98.3% of the time under s5 and s8 respectively. Furthermore, the high flows of 

160 m
3
s

-1
 may occur from 8% to 32% of the time as shown in the Figure 7-25. As the result, the 

mean annual energy to be generated might increase to 2977 GWh under s8 at maximum and 

2359 GWh minimum under s6, consequently the average plant factor increases in the range of 

0.63 to 0.83.   

   

Scenario s9, s10, s11 and s12 

As it is expected due to the combined effect of irrigation developments upstream of Lake Tana 

with the reduced precipitation climate change scenarios, the mean annual energy to be generated 

from Tana-Beles HPP may decrease at the maximum by -36% under s11 and a minimum by -

24% under s9 from the baseline generated energy. The simulated minimum annual energy could 

be 1396 GWh yr
-1

 under s11 and the maximum would be 1677 GWhyr
-1

 under s9, which all are 
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less than the designed capacity of 1719 GWhyr
-1

. Hence, these are the worst-case scenarios that 

may have significant social and economic impact for the country. 

 

Cascaded hydropower projects on the Abay River 
 

(USBR, 1964) was the first comprehensive study harnessing the maximum hydropower potential 

of Abay River. The Karadobi, Mabil, Mandaya and Border dam sites were among the major 

cascaded hydropower potential sites identified and described. Later, (BCEOM, 1998a) adopted 

these options without further analysis. As the result, Ministry of Water and Energy carried out 

pre-feasibility study for Karadobi project in 2006 by (NORPLAN et al., 2006). Subsequently, the 

Mandaya and Border projects pre-feasibility studies conducted in 2007. Recently, (NORPLAN et 

al., 2013) introduced an additional option of a dam site at Beko-Abo that could be an alternative 

to the Karadobi project, and thereby avoid in-undation of the new bridge at Kessie, or as an 

element of a cascade of dams including Karadobi. Figure 7-28shows the longitudinal profile of 

the Abay River starting at the outflow of Lake Tana and ending at the border with Sudan that 

shows the full cascade development option.  

 

Cascading options  

 

The optimization of a cascade can depend on many factors and therefore at this stage simple 

comparisons are made between various options. NORPLAN et al. (2013) proposed four different 

cascading development options with two alternatives for the main upstream reservoir, Beko-Abo 

and Karadobi both with two downstream development options. The project options are shown as 

Figure 7-28 and the short summary of the cascade development options are presented below. 

 

Option A: Beko-Abo High – Mandaya High  

These two dams can utilize the full available head corresponding to the level just below the new 

Kessie Bridge and Mandaya dam site. The combination of the two full head developments gives 

the highest energy output for these two schemes combined.  

 

Option B: Beko-Abo High – Mabil Low – Mandaya Low  

The purpose of this alternative is to reduce negative impacts of the Mandaya High reservoir. The 

energy output is reduced mainly because of the loss of the 40m head of the Didessa inflow. To 

maintain the loss of this production estimated to 625 GWh a dam would need to be constructed 

in the Didessa River. The Mabil low dam is introduced to utilize the available head due to the 

reduced height of the Mandaya reservoir.   

 

Option C: Karadobi – Beko-Abo Low – Mandaya High  

Utilization of energy potential upstream the Kessie Bridge in a feasible way is found to be by 

development of the Karadobi dam. The Karadobi study implied that the optimum dam could be 

higher than the one presented in the prefeasibility study thus increasing the power and energy 

output. The dam site has the narrowest valley profile indicating the cheapest dam development. 

The Beko-Abo Low is introduced to utilize the head downstream of Karadobi followed by the 

Mandaya High reservoir. This cascade option is viable with small environmental impacts from 

the Beko-Abo Low. With Karadobi as the upstream main reservoir, this option gives the highest 

energy output and therefore chosen for this study for further analysis.  
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Option D: Karadobi - Mabil High – Mandaya Low  

The purpose of this alternative is again to reduce negative impacts of the Mandaya High 

reservoir. The head downstream Karadobi and the Mandaya Low is utilized with a higher dam at 

the site described in Option B. The energy output for this option is only some 200 GWh less than 

Option C.  

 

Impacts on hydropower production 

 

Like many large-scale projects, the GERD is subject to a number of concerns and criticism with 

regard to jeopardizing downstream water security and livelihoods (Taye et al., 2016), which 

created tension particularly between Egypt and Ethiopia (Liersch et al., 2017). An assessment of 

the likely impacts of GERD, which is not in operation mode yet, comes along with a number of 

uncertainties is therefore crucial. Hence, optimizing the hydroelectric generation and the amount 

of water released to satisfy the water demand targets of the downstream countries should be 

taken into account for establishing the operation rule curve. The data for the target demands of 

the downstream countries are not available. Hence, the average historical annual flow of the Blue 

Nile being available for power generation expected to be 1,547 m
3
s

-1
 (IPoE, 2013) during the 

design period was assumed as the average water demands of the downstream countries.  
 

Cascading development option C described above is selected for further impact assessment in 

this study. Before proceeding to model simulation, establishing the operation rule curves for the 

proposed hydropower projects is a priori task. Two optimization models are applied as described 

under section 7.2.4 to attain the maximum energy and optimum downstream flow released to 

satisfy the demands of the downstream countries. The reservoir operation HEC-HMS model 

coupled with Excel spreadsheet and GA are applied for establishing the optimum operation rule 

curves. For the purpose of comparison, the monthly power production using two optimization 

methods are presented in Figure 7-26. Furthermore, the total annual energy generation, power 

production, reservoir evaporation and down stream flows of the two optimization methods are 

depicted in the Figure 7-27 below. The results envisaged that the two-optimization methods have 

a good agreement in all scenarios with minor differences. A trial and error optimization methods 

using HEC-HMS model by adjusting the stage discharge curves of the reservoirs simulates less 

amount of total annual energy for s9-s12 but higher for the other scenarios as compared to the 

simulation results of GA optimization method. However, the downstream outflow from GERD 

using a trial and error approach is higher than GA methods for all scenarios but less than the 

historical average flow with the exception of s7 and s8. Minimizing reservoir evaporation can 

also be another parameter for comparison. Reservoir evaporation at GERD for different 

scenarios using two candidate optimization methods is shown Figure 7-27. The result indicates 

that reservoir evaporations from the two-optimization methods have also a good match. 

Therefore, henceforth, the model outputs of HEC-HMS trial and error optimization methods is 

used for further impact analysis taking into account the high downstream flow simulation as an 

advantage to minimize the impacts of the downstream countries.  
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Table 7-22: Hydropower production and Energy generation simulation using HEC-HMS trial and error 

optimization method for GERD  

 

 

Power (MW)  

col. 1 col. 2 col.3 col. 4 col. 5 col. 6 col. 7 col. 8 col. 9 

 

Min Max Mean St.dev. EP99 EP95 EP90 Energy (GWh) 

s1 367 5577 1559 770 501.4 1134.2 1311.9 14536 

s2 321 4907 1512 548 1092.8 1092.8 1260.2 13699 

s3 305 4750 1479 468 1088.1 1088.1 1212.7 13274 

s4 927 1613 1434 78 1062.0 1062.0 1231.5 12116 

s5 362 4729 1696 802 379.1 643.4 1118.9 14570 

s6 363 4936 1861 1071 395.6 1203.7 1265.1 16274 

s7 945 6271 1949 875 963.9 1149.1 1680.7 18623 

s8 943 5754 1984 995 964.6 1131.9 1659.4 18982 

s9 331 1319 1102 180 337.6 540.4 636.0 8266 

s10 340 1392 1152 185 367.9 638.4 721.3 8913 

s11 558 1126 1004 114 565.3 596.6 629.7 7081 

s12 520 1130 1059 112 557.9 663.8 696.9 7572 
 
 
a)        b) 
 

   
 

Figure 7-26: Average hydropower production of GERD under different climatic and water development 

scenarios: a) using HEC-HMS coupled with Excel spreadsheet rule curves, b) using GA rule curves. 

The impact analysis result of the GERD hydropower projects under twelve different scenarios on 

the power and energy generation is presented in Table 7-22. The second, third and fourth 

columns in Table 7-22 shows the minimum, maximum and average hydropower production for 

different scenarios. The fifth column indicates the variations of the hydropower production   

using standard deviation. The sixth, seventh and eighth columns characterize the level of firm 

energy yields assuming exceedance probabilities (EP) of  90%, 95% and 99% of the daily HPP 

time series. The last column shows the total energy generation in GWhyr
-1

. The installed 

capacity of GERD is 6450 MW with the aim to produce annual total energy of 16,153GWhyr
-1

 

0

1000

2000

3000

4000

5000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P
o

w
e

r 
(M

W
)

s1 s2 s3 s4 s5 s6

s7 s8 s9 s10 s11 s12

0.0

500.0

1000.0

1500.0

2000.0

2500.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P
o

w
e

r 
(M

W
)

s1 s2 s3 s4 s5 s6

s7 s8 s9 s10 s11 s12



 

200 

 

(Wikipedia, 2019). To meet this electricity target, an equivalent power of 1844MW would have 

to be produced. The loss due to seepage is not accounted for in this study, because related data 

are not available and are officially not envisaged.  

 

In the case of no climate change effect, the total annual energy from GERD alone is around 

12,116 to 13,699 GWh. In the case of canESM2 GCM under RCP4.5 climate change scenarios, 

the mean annual energy is increased to around 14,570 to 18,982 GWh, this again decreased to 

7,081 GWhyr
-1

 in GFDL GCM under RCP4.5 climate change scenarios. The total annual energy 

simulated from GERD under the climate scenarios of GFDL GCM is 50% less than the total 

annual designed energy, whereas, the energy generated under canESM2 GCM could be 17 % 

higher than the total annual energy during the design period. Hence, the highest energy could be 

generated under wet climate condition of canESM2 GCM under RCP4.5 scenario and the least 

energy could be generated under the dry climate condition of GFDL GCM under RCP4.5 

scenario.   

 

From an economic or engineering perspective, continuity (variability) and reliability (firm 

yields) of electricity supply are usually more important than average annual hydropower 

production (Liersch et al., 2017). Considering these indicators, the upstream hydropower 

developments and climate change have large impacts on the performance of HPP.  As the 

average annual energy is different among scenarios, the variations of daily power production are 

also different. S5 and s6 scenarios show much higher variations throughout the year with 

standard deviations > 57% of the mean daily power, while s4, s11 and s12 show small variations 

around 10 % of the mean daily power. The small variation under s4, s11 and s12 are because of 

the operation of the upstream hydropower dams. The highest EP values are achieved in the wet 

climatic conditions s7 scenarios with an EP90 of 1681MW, meaning that a daily minimal 

production of 1681MW is guaranteed for 90% of the days. The s8 scenario is in the same order, 

whereas the EP90 in the dry climate condition scenarios (i.e. projected using GFDL GCM) are 

only in the range of 630 to 721 MW. This indicates that the impacts of hydro-climatic conditions 

on the reliability of power generation are significant. For the wet climatic canESM2 GCM 

condition, the reliability of the power generation is high while for the dry climate condition 

(GFDL GCM) the reliability for power generation is low. 

 

The maximal simulated daily hydropower value of GERD in the no climate change scenarios 

(s1-s4) is 5577 MW, which is less than the maximal capacity. This indicates that based on 

current climate condition, the target of 16,153 GWh annual total energy is never reached on 

average in the simulations, although it can be topped in extraordinary wet climatic conditions 

such as canESM2 GCM RCP4.5 climate scenario. The total annual energy generations under the 

current climate condition are 14,536, 13,699, 13,279 and 12,116 GWhyr
-1

 for s1, s2, s3 and s4 

respectively. Under the wet climate condition (canESM2 GCM of RCP 4.5 scenarios), the total 

annual simulated energy generations are increased to 14,570, 16,274, 18,623 and 18,982 GWhyr
-

1
 for s5, s6, s7 and s8 respectively. Under dry climate conditions (GFDL GCM of RCP4.5 

scenario), the total annual simulated energy generations are decreasing to 8,266, 8913, 7081 and 

7572 GWhyr
-1

 for s9, s10, s11 and s12 scenarios respectively. The result envisaged that under 

the current climate scenarios, the highest simulated average annual energy value is 90% of the 

target. Under the wet climate scenarios, the maximum simulated total annual energy value is 



 

201 

 

117% of the target and for dry climate scenarios, the highest simulated total annual energy is 

only 55% of the target.  

 

s1, s2, s3 and s4 are scenarios, used to analyze the single impacts of water resource 

developments with the assumption of no climate change effect. The result from s2 indicates that 

the evaporation loses from GERD alone and water demand for 214,882 ha of irrigation land (i.e. 

abstraction of 1695 Mm
3
) could reduce the power generation of GERD by -15.2 % from the 

design capacity (16,153 GWhyr
-1

). If the irrigation area increase to 382,644 ha and mean annual 

irrigation demand also increased to 3,210Mm
3
 under s3, the power generation will decrease by -

17.8 % from the target. Under s4, full irrigation development, when 42,0370 ha of land is 

irrigated with the mean annual water abstraction of 3,583Mm
3
 associated with the full upstream 

hydropower developments, the power generation capacity of GERD might reduce by -25 % from 

the annual average designed capacity.  

 

The maximum simulated daily hydropower production of GERD could be 6270 MW under s7, 

which is almost equivalent to the design capacity of 6,450MW. The simulation result also 

revealed that the target capacity of GERD generating 16,153GWhyr
-1

 electricity could never be 

reached in all scenarios except s6, s7 and s8. The target energy can be obtained only when the 

canESM2 GCM RCP4.5 climate change scenario occurs. Liersch et al. (2017) carried out detail 

impact assessment of different operation management scenarios of GERD under current and 

future climate change on the hydropower and downstream flows. They applied five operation 

rules under the current and future climate change scenarios. To investigate the potential impact 

of climate change on the management of the GERD, an ensemble of four downscaled and bias-

corrected global Earth System Models (ESMs) and six Regional Climate Models (RCMs) were 

used as input for SWIM hydrological model. Liersch et al. (2017) reported the simulated mean 

annual energy of around 13,000 GWh for low seepage rate scenarios and between 11,000 and 

11,500 GWh for assuming medium seepage rates and around 9,000 GWh for the assumption of 

high seepage rate under current climate scenario (1961-1999). Hence, they concluded that even 

under optimistic conditions, the target is not reached under reference climate conditions, where 

13,000 GWhyr
-1

 are generated on average. In the RCP 8.5 climate scenario at the end of the 21
st
 

Century, the ensemble mean projects the mean annual  energy potentials increasing by 650 

GWhyr
-1

, but the ensemble median a decrease by 340 GWhyr
-1

. The simulated energy of this 

study under climate condition (s1-s4) has a good agreement with the low seepage rate scenario of 

the previous study as expected because seepage is not considered in this study. This indicates the 

robustness of the simulation result of this study.   

 

Another recent study done by Mulat et al. (2018), evaluated the impacts of future water 

developments in the Eastern Nile region on energy generation by considering the current water 

use situation and proposed reservoirs in the UBNR basin in Ethiopia using different scenarios. 

The study was carried out by using a monthly time step and historical ensemble time series data 

as representative of possible near future scenarios. They indicated that at full development level, 

GERD could generate a maximum energy of 16,256 GWhyr
-1

 when there is no cascade upstream 

of GERD. When there are more reservoirs in operation above GERD, there could be slight 

energy reduction of GERD to 15,376GWhyr
-1

.  
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Figure 7-27: Comparisons of the two optimization methods. 

 

This study also evaluates the impact of the four cascade dams for twelve different climate 

change, water, and land management scenarios, with the objective of maximizing power 

generation and releasing the downstream flow to acceptable quantity. The impact analysis result 

of the four cascaded hydropower projects under different scenarios on the energy generation is 

presented in Table 7-23. It is to be noted that for the midterm and short-term development 

scenario, only GERD hydropower project is supposed to be operational.  

 

 The simulation result of energy production for the different scenarios is provided in Tables 7-29.  

At full hydropower development level, maximum total energy of 50,047 GWhyr
-1

 and minimum 

total energy of 24,213 GWhyr
-1

 could be generated from four cascade projects under s8 and s11 

respectively. Meanwhile GERD alone can produce total annual energy in the range from 7,081 

GWhyr
-1

 to 18,982 GWhyr
-1

, and the minimum could be under s11 and the maximum could be 

under s8. The total amount of energy simulated from the four cascaded hydropower projects has 

a good agreement with the result of Abay basin master plan study, which estimated 55,000 GWh 

annual total energy by (BCEOM, 1998a). The preliminary study carried out by NORPLAN et al. 

(2013) during the pre-feasibility study of Beko-Abo hydropower project indicated that 50 year 

average of 31,255 GWh energy can be generated for option A, 30,283 GWh for option B, 

33,062GWh for option C and 32,864 GWh for option D. The result of option C has a good 

agreement with the result of this report under s4 (without climate change condition) that revealed 

to generate 35,293 GWhyr
-1

, see Table 7-23. A difference could be due to the size difference of 

the Border dam considered in the analysis of previous study and GERD in this report. During the 

pre-feasibility study, Border dam now called GERD was designed to the installed capacity of 
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1200 MW but now it is re-designed to 6450 MW. Mulat et al. (2018) also reported the maximum 

mean annual energy production of about 38,200 GWhyr
-1

 under scenario's that combines four 

reservoirs (GERD, Karadobi, Beko-Abo low and Mandaya) in UBNR basin. Stamou (2019) 

calculated the mean annual energy equal to 46,620 GWHyr
-1

 for the full development scenario 

that included 23 HPPs.   

 

The economic damage due to the reduction of total energy production because of climate change 

as compared from the base line would be enormous. The Ethiopian electric utility (EEU), which 

is a public enterprise established for the purpose of selling and purchasing bulk electric power, 

amended a new tariff effected on 1
st
 January 2019 (http://www.eeu.gov.et/index.php/current-

tariff). If we take the average rate of 0.7807 birr/KWh, the annual economic damage due to the 

worst climate change scenario in the UBNRB (s11) will be around 13.7 billion Birr as compared 

to the base line scenario (s0). From this damage around 7.1 billion Birr is from GERD alone. In 

contrary, 6.4 billion birr per year benefit can be gained due to positive climate change effect of 

canESM2 RCP4.5 scenario as compared to the designed energy production capacity of the 

cascaded hydropower projects along the main stem of Abay River. GERD alone has a benefit of 

2.2 billion Birr per year. SMEC (2008) reported a loss of about 200 million birr annually due to 

12 % decrease in power production from only Tana-Beles HPP because of an additional 

irrigation development of 107,000 ha in the Tana Basin. This implies that climate change effect 

on water resource development over the UBNRB is enormous.  
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Figure 7-28: Longitudinal profile of Abbay River (UBNR) and proposed hydropower projects (NORPLAN et al., 2013) 
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Table 7-23: Energy production from the cascaded hydropower projects at the Abbay River for different scenarios 

  Design s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

    Turbine discharge (m
3
s

-1
) 

Karadobi 800       495     708 714     334 370 

Beko-Abo 900       877     847 843     629 678 

Mandaya 1200       782     1163 1158     714 762 

GERD 5400 1559 1512 1479 1434 1696 1861 1949 1984 1102 1152 1004 1059 

    mean annual energy (GWh) 

Karadobi 8634       6829     11882 12066     5425 6133 

Beko-Abo 4662       4352     4819 4698     3131 3603 

Mandaya 12419       11996     14397 14301     8576 9215 

GERD 16153 14536 13699 13274 12116 14570 16274 18623 18982 8266 8913 7081 7572 

Total 41868 14536 13699 13274 35293 14570 16274 49720 50047 8266 8913 24213 26523 

Change (%)   -10.0 -15.2 -17.8 -25.0 -9.8 0.7 15.3 17.5 -48.8 -44.8 -56.2 -53.1 

  

Hydropower production (MW) 

Karadobi 1600       780     1356 1377     619 700 

Beko-Abo 800       497     550 536     357 411 

Mandaya 2000       1369     1643 1633     979 1052 

GERD 6450 1659 1564 1515 1383 1663 1858 2126 2167 944 1017 808 864 

Total   1659 1564 1515 4029 1663 1858 5676 5713 944 1017 2764 3028 
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Impacts of GERD reservoir operation on downstream flow 

 

Discharges released from a reservoir are depend on various factors, such as targets for 

hydropower, inflows into the reservoir (depending on hydro-climatic conditions and upstream 

land and water management), losses by seepage, and evapotranspiration from the reservoir area. 

In the case of GERD, many of these variables are uncertain. Dam operation strategies can have 

major impacts on seasonal discharge patterns, particularly in the Blue Nile River, characterized 

by one peak discharge season and a prolonged low flow period. Figure 7-30 shows the monthly 

pattern of outflow of GERD before and after the operation. Surprisingly, the model simulation 

result of all scenarios indicates an increase of discharges during the dry period (January–May). 

For instance, a comparison is made between the model simulation result of s0 and s1 to analyze 

the impacts of GERD without any climate and anthropogenic effect on the downstream flow. 

The result indicates that the discharge during the dry period increases of up to 450% (from 

around 270–1300 m
3
s

-1
) and a decrease of average monthly discharges during the rainy season 

from maximal 5454m
3
s

-1
 down to 1358 m

3
s

-1
 in August, when discharges are used to re-fill the 

reservoir.  

 

 
 
Figure 7-29: Low, median and high streamflows of GERD under different sceanrios 

Furthermore, GERD can reduce the inter-annual variability of downstream discharges (Figure 

7-30). Given the large capacity of the GERD, this is not surprising. The most obvious simulation 

result that significantly decreases the interannual variability are under s4, s7, s8, s11 and s12, 

where the inflows to GERD are also regulated by the upstream reservoirs. Besides the reduced 

inter-annual variability, daily dynamics are also significantly influenced (Figure 7-29). Not 

surprisingly, with the GERD online, low flows are augmented to the extent that about 1337 m
3
s

-1
 

are secured at least 90% of the time, compared to only 225m
3
s

-1
 under natural condition Figure 

7-29. The low flow (Q90) further increased to a maximum about 1573 m
3
s

-1
 under s7 and a 

minimum about 596 m
3
s

-1
 under s12 due to the climate change effects. In contrast, the high flow 
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(Q10) decrease from 4550 m
3
s

-1
 under natural condition (s0) to 603 m

3
s

-1
 under s12 and 3498 

m
3
s

-1
 under s8, at an exceedance probability of 10%, see Figure 7-29 and Figure 7-30. The flow 

above the average flow of 1547 m
3
s

-1
 under natural condition (s0) might occur for a maximum of 

98.5% of the time under s8 scenario, while under s3; this flow is available only for 24.8 % of the 

time. However, 1547 m
3
s

-1
 may not occur under s9, s10, s11 and s12. Hence, the operational 

strategy of the GERD may change the annual hydrologic cycle, particularly for downstream 

countries.  

 
Table 7-24: Outflow statistics from GERD for different scenarios 

 

Scenario Min Max Median Mean Stdev CV 

s0 20 10887 669 1673 1914 1.14 

s1 496 4839 1331 1559 639 0.41 

s2 440 4291 1441 1512 410 0.27 

s3 419 4160 1434 1479 363 0.25 

s4 1177 1550 1454 1434 84 0.06 

s5 529 3644 1533 1686 605 0.36 

s6 501 4589 1563 1861 857 0.46 

s7 1189 5996 1589 1949 788 0.40 

s8 1188 4985 1589 1984 826 0.42 

s9 456 1370 1153 1102 197 0.18 

s10 468 1407 1219 1152 195 0.17 

s11 744 1302 1012 1004 133 0.13 

s12 701 1304 1073 1059 125 0.12 

 

 

The impact of the GERD on the quantity of discharges released downstream is also influenced 

by losses via reservoir evaporation (ETRes). Table 7-25 shows average annual ETRes, inflows 

and outflows. Mean annual inflow volumes are in the range between 34Bm
3
 and 68Bm

3
 while 

the mean annual outflow volumes are between 32BM
3
 and 63Bm

3
, mean reservoir evaporation 

volume between 1.5Bm
3
 and 5.2Bm

3
. The evaporative losses from the reservoir surface area are 

on average 6.1mmday
-1

 in the reference period (1984-2011), which amounts to approximately 

2235 mmyr
-1

.  The reservoir simulations at GERD for the twelve scenarios indicate that annual 

reservoir evaporation losses relative to the annual inflow volumes into the GERD estimated to 

3.4–6.5 % (Table 7-25). During the design period, evaporation of water from the reservoir was 

estimated to be at 3% of the annual inflow volume of 48.8 km
3
, which corresponds to an average 

volume lost through evaporation of around 1.5 Bm
3
 annually (Wikipedia, 2019).  

 

The simulated reservoir evaporation of this study has an agreement with the previous study done 

by Liersch et al. (2017), which reported evaporative losses values under regular operation in the 

range between 7% and 8% of average annual inflows (3.8 Bm
3
) under reference climate 

conditions that  corresponds to 5.6 mmday
-1 

or 2044 mmyr
-1

. They also reported that the volume 

evaporating from the reservoir area to increase by 0.1 Bm
3
yr

-1 
under ensemble mean of RCP 8.5 
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scenarios of  five CMIP5 Earth system models (ESMs) and 10 regional climate models (RCMs) 

from CORDEX in 2070–2099.  
 

 

 

  
 
Figure 7-30: Outflow of GERD: a) inter-annual variability, b) mean monthly outflow 

 

Table 7-25: Mean annual inflow, outflow and evaporation of GERD 

 

 

Inflow 
(m3s-1) 

Inflow 
(Bm3) 

Outflow 
(m3s-1) 

Outflow 
(Bm3) 

ET 
GERD 
(Bm3) 

Ratio (%) 
EtRes/inflow 

s0 1645 51.9 1645 51.9 0.0  

s1 1709 53.9 1566 49.4 3.5 6.5 

s2 1622 51.2 1511 47.7 2.3 4.5 

s3 1587 50.0 1478 46.6 2.3 4.5 

s4 1552 48.9 1434 45.2 2.9 5.9 

s5 1862 58.7 1695 53.5 2.4 4.1 

s6 1980 62.4 1860 58.7 2.1 3.4 

s7 2110 66.6 1948 61.4 3.7 5.6 

s8 2147 67.7 1983 62.5 3.7 5.5 

s9 1179 37.2 1102 34.8 1.6 4.4 

s10 1234 38.9 1152 36.3 1.7 4.3 

s11 1065 33.6 1004 31.7 1.9 5.7 

s12 1125 35.5 1060 33.4 2.0 5.6 
 

Considering the large capacity of the reservoir, which could store approximately 1.5 years of 

long-term average discharges of the Upper Blue Nile River, and the fact that its main purpose is 

the generation of hydropower, the GERD will significantly alter the discharge regime 

downstream. Almost independent of how the dam will be operated, drastic impacts on the annual 

cycle of discharges can be expected, shifting from a strong seasonal to a completely balanced 

regime with almost constant discharges each month (Liersch et al., 2017). The daily outflow 

coefficient of variance for GERD under natural condition (s0) is higher as compared to other 
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scenarios, when GERD and other upstream hydropower project start operation. The value of the 

coefficient of variance at El Diem under natural condition is 1.14 but for other scenarios, it is 

less than 0.5, see Table 7-24. This is especially important for Sudan due to the limited water 

storage capacity within the country, which is not the case for Egypt with the large storage 

capacity of the Aswan High Dam (AHD). These results are similar to those found by (Arjoon et 

al., 2014; McCartney et al., 2010), who showed a significant reduction in wet season flow and 

increases in dry season flow due to regulation from GERD. The GERD will also retain 

significant amounts of silt within the reservoir, likely extending the effective life of downstream 

hydropower facilities. 

 

Comparison of Lake Tana drawn-down with previous study 

 

The current research output is consistent with the result of the previous studies. For instance, 

McCartney et al. (2010) developed a water balance model of Lake Tana to evaluate current and 

future water resources development in the Lake Tana Basin. McCartney et al. (2010) reported 

the mean annual Lake water level will be lowered by 0.44 m if the full development scenario in 

the Lake Tana catchment is implemented without allowing the environmental flow to the Abay 

River. Furthermore, the average surface area of the lake will decrease by 30 km
2
. In some years, 

this will be reduced by as much as 81km
2
 during the dry season. According to McCartney et al. 

(2010) variable environmental flow requirements exacerbate the  drop in lake water levels. For 

the full development scenario, lake level exceeds 1785 masl just 60% of the time and the mean 

lake area is reduced by 57km
2
. Furthermore, the amount of power produced from Tana-Beles 

HPP is reduced between 1% and 3% depending on the scenario, declines from 2247.0 GWh to 

2207.1 GWh and 2197.1 GWh if all the planned and all the possible irrigation schemes are 

developed respectively.  

 

Halcrow et al. (2010) did detail water balance modeling and impact assessment on different 

development scenarios in the Tana and Beles sub-basins. They reported a reduction of mean lake 

level by 0.45m and mean lake area by 36 km
2
. The Lake level remains above 1785 masl 85 % of 

the time when the Tana-Beles scheme is operated using the SMEC operation rule (min. 1784.75 

masl) under full development scenario. Furthermore, the analysis showed that a 3% reduction of 

mean annual outflow from Lake Tana to Tana-Beles HPP, about 2,305 Mm
3
 annual flows could 

be diverted. Meanwhile, the mean annual lake outflow to the Abay river simulated about 

975Mm3. Despite a small decline in annual flows, the criteria for environmental maintenance 

flows remain satisfied at the waterfall. In regard to hydropower, (Halcrow et al., 2010) also 

reported a reduction of electricity production by 3% to about 1,805 GWhyr
-1

.  

 

SMEC (2008) also assessed some of the scenario impacts in the Tana-Beles sub-basin by 

applying the river basin simulation model MIKE BASIN, using the operation rule curves 

developed by them. The result revealed that the variation between maximum and minimum 

levels is almost 3m as compared with 2.3 m under natural conditions. The annual flow volumes 

entering the Abay from Lake Tana are about 29% of the natural flow volumes in the current 

condition. In the full irrigation development scenario, this percentage decreases to about 19% of 

the natural flow volumes. With regard to the hydropower, the total hydropower production under 

full development scenario decreases by about 11% as compared to the current condition due to 

an additional irrigation development of 107,000 ha in the Tana sub-basin.  
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Chapter 8 Conclusions and recommendations 
 
 

Upper Blue Nile River Basin is one of the prospective basins for Ethiopia to develop huge 

amount of hydropower and irrigation projects, because of its ample water resources potential and 

its geographical landscape providing a good opportunity for hydropower production. Moreover, 

the untouched land in the lowland part of the basin and land suitability for irrigation around Lake 

Tana makes it favorable for irrigation development. Hence, the government of Ethiopia has 

planned large-scale irrigation and hydropower projects across the basin as a strategy for 

alleviating poverty. However, land degradation, deforestation, increasing water demand due to 

population and economic growth, and urbanization are becoming the major challenges and 

threatening issues for future water resource developments by altering the dynamics of the 

hydrology and water availability of the basin. The implication of climate change effect on the 

availability of water resources should also be a great concern for the sustainability of these large 

scale projects otherwise the consequences becomes catastrophic. Under such circumstances 

quantifying the amount of the water resources potential due to the competing demands for power 

generation, irrigation, water supply and other useful developmental projects is becoming crucial 

for sustainability of the developmental projects. 

 

 

This dissertation assessed long-term trends of main driving forces of streamflow such as rainfall 

and temperature, which have an enormous advantage for planning and management of limited 

water resources. A physically based SWAT hydrological model was applied for characterization 

and quantification of catchment processes primarily how changes in LULC and climate have 

affected streamflow and water balance components. This can be essential for setting alternative 

strategies for future developments particularly to the shared water resource in the case of Abay 

River. Statistical downscaling techniques (LARS-WG and SDSM) have been used to assess the 

possible future climate change of UBNRB employing a multi-model approach. Furthermore, 

research on the interdependencies of the water users upstream-downstream in conjunction with 

the future climate change scenarios, on water availability is indispensable for sustainable water 

resources development and for providing concrete and concise information for water managers, 

policy and decision makers. Hence, HEC-HMS semi-distributed model was used to quantify the 

impacts of combined future climate change and water resource developments on the hydrology 

of the basin, Lake Tana water level, irrigation and hydropower sectors. 

 

The long-term trends and change points of hydro-climatic variables such as rainfall, maximum 

temperature, minimum temperature and streamflow in the UBNRB were investigated using 

Mann-Kendall (MK) trend test and Pettitt change point detection (Chapter 4). The results of 

trends of meteorological variable in the basin depict a number of significant trends, both 

increasing and decreasing. With regard to rainfall time series, the study could not find any 

consistent change or patterns of trends among the investigated 15 rainfall stations. Thus, the 

results of the trends across the investigated rainfall stations are heterogeneous. For the daily time 

series, no statistically significant trend existed in seven stations, but a statistically significant 

trend existed in six rainfall stations and decreasing trend in the remaining two. On monthly and 

annual time scale, the MK trend test result showed that no trend existed in 11 stations, while 

statistically non-significant increasing trends exist in three stations and a decreasing trend exists 



 

211 

 

in one station. The MK test showed increasing trends for annual, monthly, and long rainy-season 

basin wide areal rainfall series, whereas no trend for daily, short rainy and dry season rainfall 

series appeared. For streamflow, the MK test’s result for daily, monthly, annual, and seasonal 

(dry, long and short rainy seasons) streamflow time series at El Diem station showed a positive 

trend, the magnitude of which is statistically significant. The Pettitt test also detected increasing 

trends for daily, annual, long-rainy and short rainy-season streamflow at El Diem. For the 

monthly and dry season's streamflow, Pettitt test detects no change at El Diem flow station. 

However, the minimum and maximum temperature in ten stations in the basin reveals 

statistically significant increasing trends. The mismatch between the rainfall and the streamflow 

trend magnitude could be associated with evapotranspiration, which is attributable to the combined 

effect of LULC change and climate change, the infiltration rate due to changing soil properties, 

rainfall intensity and rainfall extreme events.  

 

This dissertation also investigated the driving forces to the observed changes in hydrological 

variables (e.g. the combined and isolated effects of climate change and LULC changes) on the 

streamflow of UBNRB using SWAT hydrological model (Chapter 5). LULC change detection 

during the period 1973-2010 was assessed by comparing the classified Landsat images. The 

results indicated that the expansion of cultivated land and diminish in forest coverage were the 

dominant processes. The rate of deforestation was high during the 1973–1995 periods. This was 

probably due to the severe drought that occurred in the mid-1980s and a large population 

increase resulting from the expansion of agricultural land. On the other hand, forest coverage 

increased by 3.4% during the period 1995 to 2010. This indicates that the environment was 

recovering from the devastating drought in the 1980s, regenerating of forests as the result of 

afforestation program initiated by the Ethiopian government, and due to soil and water 

conservation activities accomplished by the communities. 

 

SWAT was developed in the United States with a temperate climate, which has different 

characteristics with monsoonal climate. In monsoonal climates, long periods of rain can lead to 

prolonged soil saturation whereas during the dry period, the soil dries out completely, which may 

not happened in temperate climates. Nevertheless, the results from calibration and validation 

revealed that the SWAT model represents the monthly hydrographs very well, and therefore, 

SWAT can be applied in the study area if additional site-specific data containing soil and land 

use information is properly integrated into the model with high confidence. For the calibration 

period, the values of coefficient of determination (R
2
),

 
Nash-Sutcliffe coefficient (NSE), and 

Relative volume error (RVE%) range from 0.79 to 0.91, 0.74 to 0.91, and −3.4 % to 4 %, 

respectively.  

 

The SWAT hydrological model result showed that the combined effects of the LULC and 

climate changes increased the mean annual streamflow by 16.9 % from the 1970s to the 2000s. 

The increased mean annual streamflow could be ascribed to the combined effects of LULC and 

climate change. The LULC change alters the catchment responses. As a result, SWAT model 

parameter values could be changed. For instance, the expansion of cultivation land and the 

shrinkage of forest coverage from 1973 to 1995 changed the basin average curve number (CN2) 

parameter values from 72.9 in 1973 to 74.7 and 75.6 in 1985 and 1995 respectively. Increasing 
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of CN2 value might increase surface runoff and decrease base flow. Similarly, the increase in 

rainfall intensity and extreme precipitation events led to a substantial increase in ratio of surface 

runoff to total streamflow (Qs/Qt), a substantial decrease in baseflow to total streamflow ratio ( 

Qb/Qt), and ultimately to an increases in the streamflow during the 1971–2010 simulation 

period.  

The "fixing-changing" approach (changing LULC data of 1973, 1985, 1995, and 2010 but fixing 

constant climate data of 1970s) result revealed that the isolated effect of LULC change could 

potentially alter the streamflow generation processes. The result shows that surface runoff is 

increasing while baseflow is decreasing due to  expansion of cultivated land and reduction of 

forest coverage that reduce evapotranspiration during the periods 1985 and 1995 as compared to 

the baseline period 1973 LULC map. In general, a 5.1 % reduction in forest coverage and a 4.6 

% increase in cultivated land led to a 9.9 % increase in mean annual streamflow from 1973 to 

1995. The contribution of the effects of isolated climate change and isolated LULC changes 

indicated that surface runoff simulation due to combined effect increased by 20.9 mm between 

1970s and 2000s periods while the isolated climate changes effect increased the surface runoff 

simulation by 20 mm, which accounted for about 95.7 % of the total surface runoff increment. 

The isolated LULC changes increased surface runoff by 0.3 mm, which accounted for 1.4 % of 

the total surface runoff change (20.9 mm). Between this simulation period, combined changes of 

LULC and climate decreased baseflow by -10.9 mm, and the percent contributions were 94.8 % 

(-10.9 mm) for the climate change and 5.2 % (-0.6 mm) for the LULC change. The SWAT 

simulation indicated that the impacts of climate change are more substantial than the impacts of 

LULC change. Surface water is no longer used for agriculture and plant consumption in areas 

such as the UBNRB, where water-storage facilities are scarce. On the other hand, base flow 

provides the most reliable source for the irrigation needed to increase agricultural production. 

Hence, the increasing amount of surface water and diminished base flow caused by both LULC 

and climate changes negatively affect socio-economic developments in the basin. The analysis 

provides a better understanding and substantial information about how climate and LULC 

change affects streamflow and water balance components separately and jointly, which is useful 

for basin-wide water resources management. 

 

The future climate change of the UBNRB was analyzed using two widely used statistical 

downscaling techniques (Chapter 6). General circulation models (GCMs) are the prime tools 

used in the projection of climate into the future. However, their coarse resolution hinders their 

direct use in catchment scale studies. Downscaling techniques are therefore used to bridge the 

coarse resolution GCM outputs with the catchment scale climatic variables. Reliability of 

downscaling results is an important issue in climate change impact studies due to the presence of 

model errors and uncertainties associated with the GCMs and downscaling techniques. Hence, in 

order to overcome the uncertainties originating from different GCMs, a multi-model approach 

was employed. In total, 27 systematically selected future climate scenarios were produced for 

each period, which might be representative to understand fully and to project plausibly the future 

climate change in the study area and to retain information about the full variability of GCMs.  

 

 6 CMIP3 GCM3x3 SRES (A1B, B1 and A2) scenarios= 16 scenarios using LARS-WG 

(3 GCMs had no A2 scenarios) 

 3 CMIP5 GCMs x 2 RCP scenarios (RCP4.5, RCP8.5) = 6 scenarios using LARS-WG 
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 1 CMIP5 GCM (canESM2) x 3 RCP scenarios (RCP2.6, RCP4.5, RCP8.5) = 3 scenarios 

using SDSM 

 1 CMIP3 GCM (HadCM3) x 2SRES (A2a, B2a)  scenarios = 2 scenarios using SDSM 

Moreover, two widely used statistical downscaling methods were applied, namely the regression 

downscaling technique (SDSM) and the stochastic weather generation method (LARS WG) for 

this particular study.  

 

Three weather parameters: precipitation, minimum and maximum temperature were simulated 

using LARS-WG for 26 observed stations. The statistical result analysis of performance measure 

between observed and generated climatic variables revealed that both LARS-WG and SDSM 

models perform very well in simulating the climate variables and therefore they can be used with 

high confidence for further climate change studies. 

 

Further comparative performance evaluation between the three models (HadCM3/SDSM, 

canESM2/SDSM and LARS-WG) were tested for the base line period of 1984-2011 in 

representing the current situation quantitatively and qualitatively particularly for precipitation, as 

it is the most difficult climate variables to model. The result suggested that SDSM using 

canESM2 GCM captures the long term monthly average very well at most of the stations and it 

ranked first from others. However, LARS-WG performed best in qualitative measures in 

capturing the distribution and extreme events of the daily precipitation than SDSM. The reason 

for the superiority of one method to another one, can be attributed to each model’s methods of 

modeling. For instance, in SDSM a regression equation is established between the large-scale 

predictor variables and the predictors with local scale. This equation is created by bias correction 

and variance inflation in a way that the model can produce a close output to the observed data. 

While in LARS-WG model no large-scale weather variables is used in the modeling process. But 

this model analyzes the observed data of precipitation and temperature, and calculates the 

statistical characteristics based on the observed data, and in the next step, it changes its statistical 

characteristics based on the change factor in large-scale weather variables. The poor performance 

of SDSM would indicate the difficulty in finding climate variables from the NCEP data that 

could explain well the variability of daily precipitation. Therefore, LARS-WG would be more 

preferred in areas of the UBNRB with its high climatic variability to simulate the distribution 

and extreme events of the precipitation correctly, which is crucial for a realistic assessment of 

flood events and agricultural production.  
 

Future climate projections downscaled by the two statistical down scaling techniques (LARS-

WG and SDSM) are used to assess impacts on the hydrology of the upper Blue Nile River Basin. 

The major interest is to evaluate if the downscaled climate projections provide consistent results 

among the GCMs and downscaling methods. In LARS-WG model, the downscaling result 

reported from the six GCMs showed large inter model differences, two GCMs reported 

precipitation might decrease while four GCMs reported precipitation might increase in the 

future. The multimodal average result showed that the future precipitation may generally 

increases over the basin in the range of 1 % to 14.4 %. The downscaled precipitation from three 

CMIP5 GCMs using representative concentration pathways (RCP 4.5 and RCP 8.5) showed a 

greater tendency towards a decrease in the future in the UBNRB. The multi-model average result 

showed that precipitation might decrease in the future in the range of -4 % to -1.4 % under 
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RCP4.5 and RCP8.5. The downscaling result using SDSM indicates a general increase in mean 

annual precipitation for three time windows of the 21
st
 century period for all five scenarios (A2a 

and B2a for HadCM3 and RCP2.6, RCP4.5 and RCP8.5 for canESM2) in the range of 2.1 to 

43.8 %. Since no GCM is perfect as discussed below, and high uncertainities in simulating 

precipitation in the UBNRB, an ensemble value of results from the 10 GCMs with 27 different 

scenarios can provide a meaningful estimate. Based on this argument, the plausible mean annual 

precipitation might increase by 2.4, 4.6 and 8.1% for the period 2030s, 2050s and 2080s 

respectively. 

 

Regarding temperature, the downscaling result of Tmax and Tmin showed an increasing trend 

consistently in all months and seasons for the 21
th

 century period in all 27 different scenarios. 

The large inter model differences for simulating precipitation or uncertainties in climate 

predictions arises from three distinct sources (the natural variability of the climate system e.g. 

changes in solar activity, scenario and model uncertainties). Usually sequences of steps are 

undertaken to produce a climate change projection at global and regional scales. The first step to 

produce a climate change modeling is generation of scenarios of green house gas (GHG) and 

aerosol emissions based on hypotheses of future socio-economic and technological development. 

It is indeed essentially impossible to predict what will be socio-economic and technological 

development over the next century that will lead to different emission pathways. This source of 

uncertainty thus falls under the category of “intrinsic” and essentially will never be eliminated 

(Giorgi, 2010). GCMs are affected by uncertainties due to poor knowledge of the 

biogeochemical cycles and approximate representation of relevant processes associated with 

their differences of resolution and assumptions of physical atmospheric processes to represent 

local scale climate variables, which are typical characteristics for Africa. Climate model 

projections have generally a low convergence in the area of UBNRB (Gebre and Ludwig, 2015). 

This also illustrates that more GCMs should be considered in the study of climate change to 

reduce the uncertainty of GCMs.  

In addition, climate projections are produced via statistical down scaling tools, which are also 

affected by substantial uncertainties related to our imperfect knowledge and description of 

relevant processes in the climate system. A further comparison between two downscaling 

methods was made for future simulation to understand uncertainties related to modeling tools. 

The HadCM3 GCM A2 scenario was used in common for two (LARS-WG and SDSM) 

downscaling methods to test whether the downscaling methods may affect the GCM result under 

the same forcing scenario. The results obtained from the two downscaling models were found 

reasonably comparable and both approaches showed increasing trends for precipitation, Tmax 

and Tmin. However, the magnitude of the downscaled climate data from the two methods 

indicates that LARS-WG over predicts precipitation and temperature compared to SDSM. The 

differences in the future predictions are the result of the differences in the basic concepts behind 

the two downscaling techniques. The SDSM uses large-scale predictor variables from GCM 

outputs, which can be considered as more reliable for climate change prediction using multiple 

linear regressions. However, the LARS WG uses the relative change factors (RCFs) derived 

from the direct GCM output of only those variables, which directly correspond to the 

predictands. Hence, because of the well-known fact that GCMs are not very reliable in 

simulating precipitation, the error induced from the GCM output for precipitation will propagate 

the error of downscaling. Therefore, the performance of LARS-WG to downscale precipitation 

needs more caution (Dibike et al., 2005). 
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In general, this dissertation has shown that climate change will likely occur that may affect the 

water resources and hydrology of the UBNRB. Moreover, it provides substantial information that 

the choice of downscaling methods has a contribution in the uncertainty of future climate 

prediction. With respect to the future climate in the UBNRB, there is high confidence that 

temperatures will rise. However, there is much less certainty about future precipitation because 

of the low convergence in climate model rainfall projections in the UBNRB (Conway, 2005). 

Based on the performance evaluation results obtained, both SDSM and LARS-WG models can 

be adopted with reasonable confidence as downscaling tools to undertake climate change impact 

assessment studies for the future. However, LARS-WG is more suitable for extreme rainfall 

impact assessment study such as floods and droughts.  

 

Finally, the combined effects of climate change and water resource developments on the 

availability of water, Lake Tana reservoir level fluctuation, irrigation and hydropower production 

was analyzed using HEC-HMS model (Chapter 7). Before applying the model for impact 

assessment, the model is calibrated and validated. The statistical performance indices of NSE, R
2
 

and RVE are used for performance evaluation. The results obtained during the calibration and 

validation periods are satisfactory and acceptable. Once the HEC-HMS hydrological model is 

calibrated and validated the future streamflow projection is simulated under the RCP 4.5 forcing 

scenario of canESM2 and GFDL GCMs. The model simulation results indicate that the changes 

in climate will affect the basin hydrology. Under a midrange climate scenario of (RCP4.5) from 

canESM2 climate model, streamflow at El Diem station may increase by 22.6 %, 43 % and 55 % 

in the period 2030s, 2050s and 2080s respectively over the UBNRB. However, the streamflow 

may decrease by -21 %, -25 % and -21 % using climate variables downscaled from GFDL 

CMIP5 GCM under RCP4.5 scenario as input.   

 

Furthermore, this dissertation also analyzed the possible impacts arising from the combined 

future water managements and the climate changes of the UBNRB basin and its sub-basins. In 

order to analyze the impact assessment, optimization rule curves for the reservoirs and for the 

Lake Tana are established. The reservoir operation HEC-HMS model coupled with Excel 

spreadsheet and genetic algorithm (GA) are tested for establishing the optimum rule curves. The 

simulation results of two methods with regard to energy, outflow from GERD and GERD 

reservoir evaporation are similar. The impact assessment results indicate that the impacts of 

climate change over the UBNRB is significant on the Lake Tana level fluctuation, hydrology and 

water infrastructure developments (irrigation and hydropower) than the impacts arising from 

physical developments of water resources. 

 

Overall, the results from the combined impact assessments in this study and others (Halcrow et 

al., 2010; McCartney et al., 2010; SMEC, 2008) showed that the magnitude of the rise and drop 

of Lake level is depend on the operation of Tana-Beles HPP, future climate change scenario and 

level of future irrigation area developed in the Lake Tana sub-basin. If the climate change 

projection of canESM2 GCM under RCP4.5 scenario occurred and combined with full 

development, (s8) then it would have positive impacts on the Lake Tana level that might increase 

maximum by 0.1m and the reservoir surface area might increase by 4.2 km
2
 when compared with 

the area during the natural flow condition. Meanwhile, under these scenarios, the mean annual 

energy simulated from Tana-Beles HPP might increase to 2977 GWh from 2193 GWh energy 

during the baseline period. In contrary, when climate change projection of GFDL GCM under 
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RCP4.5 scenario is combined with the full planned water developments in the Tana sub-basin 

(s11), the environmental and social impacts arising from the drawing down of water levels and 

reduction of lake area and flow to the Abay River will exacerbate. Under such circumstances, 

lake water levels lower up to by 1.03 m as compared to the natural flow condition of Lake Tana. 

Consequently, the mean lake area might reduce by a maximum of 47.4 km
2
 from 3053.2 km

2
 to 

3005.8 km
2
. The mean annual energy to be generated from Tana-Beles HPP may decrease at the 

maximum by -36 % to 1396 GWHyr
-1

 under s11 from the baseline generated energy (2193 

GWhyr
-1

). 

The decline in water levels is likely to have significant impacts on the ecology of the lake, 

particularly in the littoral zone, and result in the desiccation of the wetlands surrounding the 

lakeshore. The reduction of Lake Area can allow the community who are living around the Lake 

to extend their farming activities towards the receded fringe of the Lake. The expansion of 

recession wetland cultivation has caused the loss of riparian vegetation, increase run off and soil 

erosion (McCartney et al., 2010). Application of fertilizer, insecticide and pesticide chemicals 

for the irrigation and recession wetland cultivation has a direct effect on the Lake water quality. 

As the water level declines and the lake retreats, the natural ecosystem will be seriously 

disrupted.  

 Increased desiccation of reed beds is likely to result in the loss of fish breeding habitats affecting 

the livelihood of many people who depend on fishing from Lake Tana. The potential fish 

production of the lake is estimated to be 10,000 tons yearly (Janko, 2015). However, its current 

fish production is less than 1,000 tons a year due to the spread of the aquatic weed water 

hyacinth around fish spawning grounds. To make matters worse, inflowing rivers carry heavy 

loads of soil and suspended sediment into the lake, which affects the water quality and creates 

favorable conditions for the spread of the weed. A trade-off also exists between the lake 

ecosystem and the ecosystem of the Abay River and the Tis Issat Falls. It is also important that 

Lake outflows attempt to preserve flows over the Tis Issat Falls for aesthetic reasons, as these 

falls are an important tourist attraction in Ethiopia for domestic and international visitors. The 

simulated mean annual outflows to the Abay River under s9, s10 and s11 are 966, 955 and 899 

Mm
3
, which are marginally less than the minimum environmental flow recommended by Bellier 

et al. (1997). A further decline in flows over the Tis Issat Falls would likely impact on tourist 

numbers resulting in a loss of income for many local people who rely on tourist for their 

livelihoods. Since the livelihoods and well-being of many people are directly dependent on Tis 

Issat Falls, careful consideration is needed regarding the partitioning of lake outflows between 

the Abay river and those transferred to the Tana-Beles HPP.  

 

At full irrigation development stage, 114,134 ha of land that corresponds to 24% of the total 

planned irrigation area in the UBNRB is planned to be implemented in the Lake Tana sub-basin, 

which requires 1012 Mm
3
 volume of water annually that accounts 25 % of the natural outflow of 

Lake Tana. From the total irrigation demand 362 Mm
3
 of water is planned to be pumped from 

Lake Tana. Furthermore, an average of 77m
3
s

-1
 equivalent to 2428 Mm

3
 or 61 % of the natural 

flow should be diverted to Tana-Beles HPP. Meanwhile, a minimum environmental requirement 

flow of 867 Mm
3
 recommended by McCartney et al. (2010) should be available annually to the 

main Abay River. This indicates a minimum of 3,657 Mm
3
 of water should be available from 

Lake Tana sub-basin to meet the demands of full water resource developments and 

environmental sustainability. However, the total annual simulated outflow to the Abay River and 

http://www.fao.org/fi/oldsite/FCP/en/ETH/body.htm
https://link.springer.com/chapter/10.1007/978-1-4020-9726-3_9
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to the Tana-Beles HPP from Lake Tana under the full development and dry climate change 

scenario (s11) is about 2,863 Mm
3
, which can satisfy 78.3 % of the minimum demand. This 

revealed that Tana sub-basin is more prone to water scarcity because of the large size future 

planned water resource developments and climate change effects.  

 

This dissertation also provide quantitative analysis of water resources management by 

considering the current and future climate change combined with the proposed cascades 

reservoirs for power generation. The scenarios were evaluated on energy production and on the 

magnitude of released discharges for the downstream countries. The installed capacity of GERD 

is 6450 MW with the aim to produce a total energy of 16,153 GWhyr
-1

 (Wikipedia, 2019). The 

model simulation results indicate that the target energy is not reached under reference and dry 

climatic conditions of GFDL GCM RCP8.5 climate change scenarios. The target might be 

achieved only if the wet climatic condition (canESM2 GCM under RCP8.5 scenario) occurs. In 

the canESM2 GCM RCP 8.5 climate scenario at the end of the 21
st
 century, the total energy 

generation might increase by 2,829 GWhyr
-1

 to 18,982 GWhyr
-1

, but under dry climatic 

condition (i.e. GFDL GCM RCP8.5); it might decrease by 9,072 GWhyr
-1

 to 7,081 GWhyr
-1

. The 

cascaded hydropower projects along the main stem of Abay River can generate a maximum total 

annual energy of 50,047 GWhyr
-1

 and a minimum of 24,213 GWhyr
-1

 under s8 and s11 

respectively.  

 

In order to understand the significance of the single impacts of climate change and water 

resources development, scenarios with similar magnitudes of developments but different climate 

change scenarios were compared. For instance, the impacts of full development and no climate 

change scenario (s4), full development and wet climate change (canESM2) scenario (s8) and full 

development and dry climate condition (GFDL) scenario (s11) were compared. The simulation 

result indicated that mean annual outflow from GERD increased to 1984 m
3
s

-1
 under s8 and 

decrease to 1004 m
3
s

-1
 and 1434 m

3
s

-1
 under s11 and s4 respectively from the natural condition 

streamflow of 1645 m
3
s

-1
. Moreover, under s4 (i.e. the impact arises due to full development 

alone), the simulated total energy generated from GERD decreases by -25 %. However, if the 

climate is changing and precipitation increases by 26 % (s8), total annual energy might increase 

by 17.5 % and If precipitation decreases by 9.9 % (s11), total annual energy decreases by -56.2 

% as compared to baseline scenario. This indicates that climate change effect is more significant 

than the anthropogenic effects for altering the performance of water infrastructure developments 

and hydrology of the basin. It is to be noted that projected climate change adds another 

dimension of uncertainties on future water availability and its variability of the UBNRB, as some 

models project higher others lower rainfall and streamflow. Hence, water storages could be a 

better adaptation option allowing for balancing responses to changing hydrology.  

 

The evaporative losses from the GERD reservoir surface area estimated on average 6.1 mmday
-1

 

in the reference period (1984-2011), which amounts to approximately 2235 mmyr
-1

. This volume 

also be an additional limiting water balance component for altering the quantity of downstream 

flow. The model simulates mean annual reservoir evaporation volume between 1.5 Bm
3
 and 5.2 

Bm
3
, which corresponds to 3.4-6.5% of the mean annual inflow volumes into the GERD. The 

amount of water flowing to the downstream countries Sudan and Egypt will be more regulated 

and more constant due to the upstream cascades.   
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Overall, there are many, often-competing water demands and water user sectors in the UBNRB. 

As agriculture is a major livelihood strategy in the Nile Basin, sustaining hundreds of millions of 

people, and energy is vital to the future growth of the Nile Basin riparian states, water scarcity in 

terms of both physical water scarcity and economic water scarcity remains the major limiting 

factor for agricultural and energy development in the basin. Hence, effective planning, 

management and regulation of water resource developments are essential to prevent conflict 

between competing water users and sectors. Careful management of the energy and irrigation 

sectors are needed to gain the benefit of a future increase in food production but without a 

significant cost in terms of assured electricity production (McCartney et al., 2010).  

 
 

Recommendations  
 

 Based on the statistical performance evaluation results obtained from the calibrations and 

validations, it can be said that SWAT is able to simulate the hydrological process correctly and 

successfully when the simulated streamflow compared with the observed streamflow data. 

However, the SWAT model does not adjust CN2 for slopes greater than 5%. This could be 

significant in areas where the majority of the area has a slope greater than 5%, such as in the 

UBNRB. We therefore suggest adjusting CN2 values for slope >5 % outside of the SWAT 

model might improve the results. Furthermore, the SWAT water balance modeling results 

suggested that the effects of climate change is significant than the effects of LULC change for 

altering the hydrology and water balance components of the UBNRB. However, this is not 

enough to understand the spatial and temporal variability of the dominant hydrological processes 

and runoff generation mechanism in the basin. On the one hand, the heterogeneities in climate, 

topography, soil, vegetation and geology could influence the responses of the basin. Hence, to 

gain further insights about the runoff generation mechanisms, more in-depth studies on runoff 

generation processes involving rainfall intensity, infiltration rate, and event-based analysis of 

hydrographs and critical evaluation of rainfall-runoff processes are recommended.   
 

The large inter model differences of the GCMs for simulating precipitation showed the 

uncertainties of GCMs associated with their differences of resolution and assumptions of 

physical atmospheric processes to represent local scale climate variables which are typical 

characteristics for Africa  and because of low convergence in climate model projections in the 

area of UBNRB (Gebre et al., 2015). This also illustrates that incorporating more GCMs is 

highly recommended in the climate change study to reduce the uncertainty of GCMs particularly 

for precipitation.  
 

In future, there is significant potential for further water resource development with increased 

water demand of water in the Tana sub-basin. However, great care is needed to ensure that such 

development is sustainable and does not adversely affect those communities that depend on the 

natural resources of the lake (fishing, navigation, tourism, agriculture) and the rivers that feed 

into it. Further comprehensive research is needed to improve quantitative understanding of the 

impacts of climate change and future water resource developments on socio-economic and 

environmental sustainability.  
 

Before embarking into implementation of the cascaded hydropower projects, it is highly 

recommended to extend the model to demonstrate more specific downstream impacts, such as:  
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 The effect of the filling rate policy on the electricity generation of the downstream 

hydropower projects,  

 The effects of upstream developments on the downstream water demands (Egypt and 

Sudan).  

 Optimal operational strategies for cascaded water resource development projects both 

from Ethiopia, Sudan and Egypt,  

 Detail cost-benefit analysis from the perspectives of Ethiopia and downstream riparian 

countries Sudan and Egypt.  

Cooperation among the three riparian countries at all stages (planning, designing, construction, 

filling and operational management) is critical for project sustainability and future regional 

developments that increases benefits and reduces downstream risks.  

 

Further research to establish the optimum operation rules that include all planned and existed 

water infrastructure developments in the entire Eastern Nile basin, including irrigation, 

hydropower generation, and domestic/industrial demand would certainly provide added value. 

As well, levels of cooperation or integrating stakeholders during the planning and decision 

processes, other than that explored in this dissertation, could be assessed.  Therefore, designing 

appropriate decision support system (DSS) tool that can provides a framework for sharing 

knowledge, understanding river system behavior, evaluating alternative development and 

management strategies, and supporting informed decision making would be highly 

recommended. 
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Appendices 
 
Appendix 1: List of weather stations and percentage gaps 

 

    

  

Elevation 

 (masl) 

Location Rainfall Temperature  

N

o. Station Name Easting Northing 

Period of 

records 

Percentage 

of missing 

(%) 

Period of 

records 

Percentage of 

missing (%) 

1 Gondar
a
 1967 37.43 12.52 1952-2011 7.5 1952-2012 10.1 

2 Debre Markos
a
 2515 37.67 10.33 1954-2012 1.9 1953-2012 3.0 

3 Debre Tabor
a
 2612 38 11.87 1954-2011 27.8 1951-2011 28.6 

4 Dangila
a
 2116 36.85 11.43 1954-2011 34.2 1954-2011 31.3 

5 Enjibara
d
 2670 36.9 10.97 1954-2011 38.7   

 6 Debark
d
 1900 37.9 13.16 1955-2011 57.7 1973-2011 44.9 

7 Dejen
d
 2420 38.15 10.17 1957-2011 60.8   

 8 Gimijabet
c,b

 2320 36.6 10.75 1958-2011 32.4   

 9 Feres bet
d
 2870 37.61 10.85 1959-2007 54.7   

 10 Bahir Dar 
a,b,c

 1770 37.42 11.6 1961-2012 1.6 1961-2012 1.5 

11 Shambu
c,b

 2460 37.12 9.57 1961-2014 33.5 1974-2014 33.1 

12 Ayikel
d
 2150 37.05 12.53 1968-2011 37.4 1969-2011 31.9 

13 Angerguten
c,b

 1350 36.33 9.27 1972-2011 39.5 1972-2011 33.0 

14 Zege
b
 1800 37.32 11.71 1974-2011 38.9 1974-2011 20.5 

15 Tillili
d
 2570 37.05 10.58 1974-2011 31.9   

 16 Nedjo
a,b,c

 1800 35.45 9.5 1974-2014 20.3 1974-2014 24.9 

17 Abaysheleko
b,c

 1790 38.16 10.11 1983-2011 10.6 1983-2011 33.0 

18 Alem Ketema
c,b

 2280 39.03 10.03 1973-2013 7.6 1973-2013 32.5 

19 Mehal Meda 
d
 3084 39.66 10.31 1984-2014 9.7 1984-2014 12.2 

20 Gidayana
b
 1850 36.62 9.87 1970-2011 7.5 1989-2011 33.6 

21 Dedessa
b
 1310 36.1 9.38 1984-2014 12.7 1984-2014 35.0 

22 Fiche
b
  2784 38.73 9.77 1984-2015 1.4 1984-2014 4.3 

23 Anger
d
 1350 36.33 9.27 1984-2014 14.6 1984-2011 37.6 

24 Gatira
d
 2358 36.2 7.98 1984-2014 14.9 1990-2014 47.3 

25 Wegel Tena
d
 2952 39.22 11.59 1984-2014 21.6 1984-2014 35.3 

26 Chagni
d
 1614 36.5 10.97 1973-2011 14.6 1984-2014 26.9 

27 Debre Berhan
b
 2750 39.5 9.63 1984-2014 1.9 1984-2014 1.2 

28 Bedele
c,b

 2011 36.33 8.45 1970-2011 10.2 1970-2013 17.2 

29 Adet
b
 2179 37.49 11.27 1986-2014 4.5 1986-2014 10.3 

30 Pawe
d
 1119 36.41 11.31 1986-2014 3.1 1986-2014 21.6 

31 Ayira
d
 1555 35.55 9.1 1987-2014 11.4 1987-2014 41.5 

32 Mekane selam
b
 2605 38.76 10.74 1988-2014 29.1 1988-2014 29.5 

33 Yetnora 
b
 2420 38.11 10.24 1988-2014 8.7 1988-2014 38.4 

34 Lay Birr
d
 1707 37.17 10.59 1989-2015 7.4 1989-2012 21.7 
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35 Ayehu
d
 1771 36.79 10.66 1989-2014 12.9 1987-2014 48.1 

36 Motta
b
 2417 37.89 11.07 1990-2014 5.6 1988-2014 6.9 

37 Addis Ababa
a,b,c

 2354 38.75 9.03 1970-2011 0.6 1970-2011 1.8 

38 Kombolcha
a,b,c

 1857 39.72 11.08 1970-2011 0.4 1970-2011 1.2 

39 Nekemit
a,b,c

 2080 36.46 9.08 1970-2011 2.4 1970-2011 8.3 

40 Assosa
a,b,c

 1600 34.52 10.00 1970-2011 20.0 1970-2011 24.8 
c
: stations selected for statistical trend analysis, 

a
: stations selected for SWAT hydrological model, and 

b
: stations 

selected for HEC-HMS model, 
d
: stations discarded for further analysis 

 
Appendix 2: List of hydrology stations and percentage gaps in the UBNRB 

 

No

. 
Station Name Lat. Long. 

Drainage area 

(km
2
) 

Period of 

records 

% of 

missed 

records 

Sub-basin 

1 Abay Nr.Kessie
1
 11.07 38.18 65784 1961-2004 6.80 N/Gojam 

2 Aleltu Nr. Nedjo
2
 9.50 35.00 168 1980-2006 10.19 Dabus 

3 Amen Nr. Dangila
2
 11.27 36.87 89 1988-2005 15.89 Tana 

4 Anger Nr. Nekemte
2
 9.43 36.52 4674 1982-2004 17.52 Anger 

5 Angreb Nr.Gonder
2
 12.63 37.48 41 1983-2005 4.71 Tana 

6 Ardy Nr. Metekel
2
 10.95 36.52 219 1977-2004 5.53 S/Gojam 

7 Ataye Nr Ataye
3
 10.33 39.98 166.4 1981-2004 10.31 

 
8 Azuari Nr. Motta

3
 10.97 38.02 209 1980-2004 13.13 N/Gojam 

9 BorekenaNr. kombolicha
2
 11.05 39.73 281 1976-2001 42.57 

 

01 
Chemoga Nr. Debre 

Markos
1
 

10.30 37.73 364 1973-2007 4.89 S/Gojam 

11 Chena Nr. Estie
2
 11.62 38.03 33 1985-2008 14.63 N/Gojam 

12 Dabana Nr. Bedelle
2
 8.40 36.28 47 1984-2004 8.49 Dedessa 

13 Didesa Nr. Arjo
3
 8.68 34.42 9981 1963-2007 24.05 Dedessa 

14 Dilla Nr. Nedjo
2
 9.45 35.55 69 1981-2005 23.31 Dabus 

15 Dondor Nr. Metekel
2
 10.93 36.52 184 1980-2004 6.76 S/Gojam 

16 Dura Nr. Metekel
1
 10.98 36.48 539 1962-2005 10.97 S/Gojam 

17 Gambella Nr. Asosa
2
 10.00 34.62 5.5 1979-2006 28.87 Dabus 

18 Gelda Nr. Ambesame
2
 11.70 37.63 32 1984-2006 12.94 Tana 

19 Gilgel Abay Nr.Merawi 
1
 11.37 37.03 1664 1970-2011 9.8 Tana 

20 Gilgel Beles Nr. Mandura
2
 11.17 36.37 675 1980-2008 2.72 Beles 

21 Gudla Nr.Denbecha
1
 10.55 37.50 242 1962-2003 8.27 S/Gojam 

22 Gumara Nr. Bahir Dar
1
 11.83 37.63 1394 1970-2009 11 Tana 

23 Hafa Nr. Assosa
2
 9.97 34.67 194 1980-2003 10.68 Dabus 

24 Hoha Nr.Asosa
1
 10.15 34.63 161 1966-2005 10.97 Dabus 

25 Hujur Nr.Nedjo
2
 9.63 35.33 94 1980-2003 18.12 Dabus 

mailto:Borekena@kombolicha
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26 Jara Nr Jara
2
 10.52 39.95 235.4 1981-2003 3.54 

 
27 Koga nr. Merawi

2
 12.37 37.05 244 1980-2008 10.20 Tana 

28 Komis Nr.Gori
2
 9.57 35.38 112 1984-2000 4.62 Dabus 

29 Lah Nr.Finote-Selam
2
 10.68 37.27 288 1984-2003 4.61 S/Gojam 

30 Lake Tana Bahir Dar
1
 11.60 37.38 15154 1961-2014 3.45 Tana 

31 Leza Nr.Jiga
2
 10.67 37.33 175 1981-2003 24.65 S/Gojam 

32 Main Beles Nr.Metekel
1
 11.25 36.45 3431 1962-2005 22.05 Beles 

33 Megech  Azezo
2
 12.48 37.45 462 1980-2008 2.03 Tana 

34 Muga Nr Dejen
2
 10.17 38.15 375 1981-2003 7.72 

 

35 
Quasheni  Nr. Addis 

Kidame
2
 

11.20 36.87 42 1984-2006 13.51 Tana 

36 
Ribb River Nr. Addis 

Zemen
1
 

12.00 37.72 1664 1961-2014 8.23 Tana 

37 Ribb Nr. Debratabor
2
 12.05 37.98 844 1980-2008 7.70 Tana 

38 Robi @ Robit
2
 10.00 39.88 263 1983-2004 14.55 

 
39 Sechi Nr.Mendi

2
 9.70 35.22 562 1979-2003 19.08 Dabus 

40 Suha Nr. Bichena
2
 10.42 38.18 359 1985-2004 7.11 N/Gojam 

41 TemechaNr.Denbecha
1
 10.53 37.50 406 1962-2004 8.21 S/Gojam 

42 Teme Nr. Motta
2
 10.42 37.98 156 1984-2003 2.67 S/Gojam 

43 Upper FettamNr. Tilili
2
 10.85 37.02 282 1980-2004 24.88 S/Gojam 

44 Wenka Nr. Estie
2
 11.62 38.07 110 1987-2003 13.92 N/Gojam 

45 Andasa Nr. Bahir Dar
2
 11.50 37.48 573 1990-2004 3.30 N/Gojam 

46 Tigder Nr. Gumde-Woin
3
 10.88 38.02 NA 1995-2004 6.02 N/Gojam 

47 Neshi Nr. Shambo
3
 9.75 37.25 322 1985-2008 0.99 Fincha 

48 Bongeno Nr.Lummame
3
 10.25 37.95 166 1987-2003 18.23 S/Gojam 

49 Missini Nr.Kossober
3
 10.93 36.87 16 1988-2004 4.80 S/Gojam 

50 Anger Nr. Nekemte
2
 9.43 36.52 4674 1994-2004 11.69 Anger 

51 Sifa Nr. Nekemte
3
 8.87 36.78 951 1962-1967 0.59 Dedessa 

52 Wama Nr. Nekemte
3
 8.78 36.78 844 1980-1985 38.78 Dedessa 

53 Tatto Nr. Gutie Nekemte
3
 9.02 36.65 42.5 1996-2009 0.04 Dedessa 

54 Endris Nr. Sire
3
 9.03 36.85 49 1988-2006 0.23 Dedessa 

55 Dabus Nr. Asosa
3
 9.87 34.90 10139 1963-1979 32.55 Dabus 

56 Mutsa Nr. Bambasi
3
 9.75 34.73 16 1989-1999 41.52 Dabus 

57 Ayo Nr.Kosober
3
 10.97 36.78 398 1995-2004 6.00 S/Gojam 

58 Yeda Nr. Amber
3
 10.25 37.82 125 1988-2005 4.44 S/Gojam 

59 Uke Nr. Nekmete
3
 9.32 36.52 204 1985-2005 2.61 Anger 

60 Mendel Nr. Tis Abay
3
 11.48 37.57 72 1987-2003 4.80 N/Gojam 

1 and 2 in the table denote stations considered for filling the missing records for stations which have records from (1971-2010) 

and (1984-2011) respectively, 3 denotes stations discarded from the analysis and Nr. represents near. 
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Appendix 3: Mann-Kendal trend test and statistical summary of daily rainfall at 15 selected stations of 

UBNRB (1971-2010) ; (+) sign indicate upward shift and (-) sign indicate downward shift, numbers in bold 

designate p value for statistically significant trend and change points 

  

Station 

Kendall's 

tau 

MK test  

p-value Sen's slope 

Pettitt test 

change time 

Pettitt test 

p-value 

Addis Ababa -0.002 0.798 7.651E-5 1983 0.14 

Alemketema -0.018 0.004 6.455E-5 1978 (-) <0.0001 

Angergutten 0.048 < 0.0001 1.059E-4 1989 (+) <0.0001 

Assosa 0.024 < 0.0001 1.221E-4 1989 (+) <0.0001 

Bahirdar 0.016 0.008 1.004E-4 1988 (+) <0.0001 

Bedele -0.001 0.916 1.223E-4 1983 (-) 0.036 

Kombolicha 0.006 0.328 9.884E-5 1986 (+) 0.003 

Dangila 0.014 0.019 1.195E-4 1983 (+) <0.0001 

Debre tabor -0.002 0.764 8.482E-5 1986 (-) 0.002 

Debre Markos 0.019 0.001 1.284E-4 1989 (+) <0.0001 

Gimija-bet 0.019 0.001 0 1980 (+) <0.0001 

Gondar -0.001 0.898 7.889E-5 1977 (-) 0.023 

Nedjo -0.023 0.000 7.394E-5 1977 (-) <0.0001 

Nekemit 0.010 0.080 1.643E-4 1992 (+) <0.0001 

Shambu -0.003 0.591 1.414E-4 1993 (+) 0.012 

 
Appendix 4:  Mann-Kendal trend test and statistical summary of monthly rainfall at 15 selected stations of 

UBNRB (1971-2010) ; (+) sign indicate upward shift and (-) sign indicate downward shift, numbers in bold 

designate p value for statistically significant trend and change points 

Stations 

Kendall's 

tau p-value Sen's slope 

Pettitt test 

change time 

Pettitt test  

p-value 

Addis Ababa -0.003 0.925 -0.003 1998 0.99 

Alemketema -0.029 0.340 -0.002 1993 0.66 

Angergutten 0.003 0.914 0 1989 0.89 

Assosa 0.012 0.709 0 1997 0.37 

Bahirdar 0.009 0.770 0 1988 0.94 

Bedele -0.002 0.956 -6.281E-4 1983 0.98 

Kombolicha -0.009 0.772 0 1998 0.77 

Dangila 0.031 0.317 0.003 1988 0.67 

Debre Tabor 0.018 0.561 8.608E-4 1992 0.98 

Debre Markos 0.020 0.518 0.009 1991 0.89 

Gimija-bet 0.047 0.127 0.031 1984 0.38 

Gondar -0.009 0.765 0 1980 0.88 

Nedjo -0.017 0.584 -3.420E-4 1981 0.65 

Nekemit 0.004 0.897 3.547E-4 1992 0.96 

Shambu 0.028 0.362 0.016 1984 0.64 
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Appendix 5: Mann-Kendal trend test and statistical summary of annual rainfall at 15 selected stations of 

UBNRB (1971-2010) ; (+) sign indicate upward shift and (-) sign indicate downward shift, numbers in bold 

designate p value for statistically significant trend and change points 

Stations 

Kendall's 

tau p-value 

Sen's 

slope 

Pettitt test change 

time 

Pettitt test  

p-value 

Addis Ababa -0.077 0.494 -1.58 1986 0.75 

Alemketema -0.223 0.043 -4.09 1991 (-) 0.015 

Angergutten 0.056 0.619 2.25 1987 0.297 

Assosa 0.018 0.880 0.47 1988 0.51 

Bahirdar -0.013 0.917 -0.69 1976 0.15 

Bedele -0.041 0.720 -1.27 1983 0.45 

Kombolicha 0.008 0.954 0.13 2000 0.22 

Dangila 0.054 0.635 1.58 1982 0.94 

Debre tabor -0.074 0.509 -2.30 1982 0.13 

Debre Markos 0.269 0.014 5.02 1995 (+) 0.012 

Gimija-bet 0.369 0.001 16.21 1986 (+) 0.000 

Gondar 0.064 0.571 1.41 1977 0.27 

Nedjo -0.049 0.669 -2.26 1973 0.57 

Nekemit 0.031 0.790 0.71 1991 0.26 

Shambu 0.259 0.019 6.58 1983 (+) 0.001 

 

 
Appendix 6: Mann-Kendal trend test and statistical summary of daily Tmax at 10 selected stations of UBNRB 

(1971-2010) ; (+) sign indicate upward shift and (-) sign indicate downward shift, numbers in bold designate p 

value for statistically significant trend and change points 

 

Stations p-value Sen's slope 

Pettitt test 

change time 

Pettitt test  

p-value 

Addis Ababa < 0.0001 8.135E-5 1987 (+) <0.0001 

Assosa 0.708 1.256E-5 1979 (+) <0.0001 

Bahirdar < 0.0001 4.390E-5 1994 (+) <0.0001 

Kombolicha < 0.0001 1.225E-4 1997 (-) <0.0001 

Dangila 0.004 -1.601E-4 1988 (-) <0.0001 

Debre Markos 0.000 4.068E-5 1993 (+) <0.0001 

Debre Tabor < 0.0001 8.781E-5 1993 (+) <0.0001 

Gondar < 0.0001 6.470E-5 1993 (+) <0.0001 

Nedjo < 0.0001 7.059E-5 1997 (+) <0.0001 

Nekemit < 0.0001 7.416E-5 1993 (+) <0.0001 
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Appendix 7: Mann-Kendal trend test and statistical summary of monthly Tmax at 10 selected stations of 

UBNRB (1971-2010) ; (+) sign indicate upward shift and (-) sign indicate downward shift, numbers in bold 

designate p value for statistically significant trend and change points 

Stations p-value 

Sen's 

slope 

Pettitt test 

change time 

Pettitt test  

p-value 

Addis Ababa < 0.0001 0.002 1987 (+) <0.0001 

Assosa 0.846 1.849E-4 1979 0.274 

Bahirdar 0.029 0.001 1994 (+) 0.026 

Combolicha < 0.0001 0.004 1994 (+) <0.0001 

Dangila < 0.0001 -0.005 1988 (-) <0.0001 

Debre Markos 0.118 0.001 1993 0.09 

Debre Tabor 0.000 0.003 1993 (+) <0.0001 

Gondar 0.014 0.002 1993 (+) 0.008 

Nedjo 0.017 0.002 1997 (+) 0.036 

Nekemit 0.005 0.002 1993 (+) 0.016 

 
Appendix 8: Mann-Kendal trend test and statistical summary of annual Tmax at 10 selected stations of 

UBNRB (1971-2010) ; (+) sign indicate upward shift and (-) sign indicate downward shift, numbers in bold 

designate p value for statistically significant trend and change points 

Stations p-value 

Sen's 

slope 

Pettitt test 

change time 

Pettitt test  

p-value 

Addis Ababa < 0.0001 0.031 1990 (+) <0.001 

Assosa 0.730 0.002 1979 (+) 0.029 

Bahirdar 0.005 0.021 1994 (+) 0.003 

Combolicha < 0.0001 0.047 1996 (+) <0.0001 

Dangila 0.124 -0.03 1988 (+) <0.0001 

Debre Markos 0.008 0.015 1993 (+) 0.001 

Debre Tabor < 0.0001 0.038 1993 (+) <0.0001 

Gondar 0.000 0.027 1993 (+) <0.0001 

Nedjo < 0.0001 0.027 1997 (+) <0.0001 

Nekemit < 0.0001 0.031 1994 (+) <0.0001 

 

 

 

 

 

 

 

 

 

 

 



 

241 

 

Appendix 9: Mann-Kendal trend test and statistical summary of daily Tmin at 10 selected stations of UBNRB 

(1971-2010) ; (+) sign indicate upward shift and (-) sign indicate downward shift, numbers in bold designate p 

value for statistically significant trend and change points 

 

Stations 

MK test 

p-value Sen's slope 

Pettitt test 

change time 

Pettitt test  

p-value 

Addis Ababa < 0.0001 1.485E-4 1995 (+) <0.0001 

Assosa < 0.0001 6.119E-5 1980 (+) <0.0001 

Bahirdar < 0.0001 1.965E-4 1980 (+) <0.0001 

Kombolicha < 0.0001 1.110E-4 1986 (+) <0.0001 

Dangila < 0.0001 2.035E-4 1979 (+) <0.0001 

Debre Markos < 0.0001 1.209E-4 1991 (+) <0.0001 

Debre tabor < 0.0001 -1.638E-5 1988 (-) <0.0001 

Gondar < 0.0001 8.143E-5 1991 (+) <0.0001 

Nedjo < 0.0001 -3.588E-5 1977 (-) <0.0001 

Nekemit < 0.0001 9.424E-5 1990 (+) <0.0001 

 
 

Appendix 10: Mann-Kendal trend test and statistical summary of monthly Tmin at 10 selected stations of 

UBNRB (1971-2010) ; (+) sign indicate upward shift and (-) sign indicate downward shift, numbers in bold 

designate p value for statistically significant trend and change points 

 

Stations 

MK test 

p-value Sen's slope Pettitt test change time 

Pettitt test  

p-value 

Addis Ababa < 0.0001 0.004 1995 (+) <0.0001 

Assosa 0.010 0.001 1980 (+) <0.0001 

Bahirdar < 0.0001 0.005 1980 (+) <0.0001 

Kombolicha 0.000 0.003 1986 (+) <0.0001 

Dangila < 0.0001 0.006 1979 (+) <0.0001 

Debre Markos < 0.0001 0.003 1991 (+) <0.0001 

Debre tabor 0.078 -7.217E-4 1988 0.079 

Gondar 0.000 0.002 1991 (+) <0.0001 

Nedjo 0.002 -0.002 1987 (-) 0.000 

Nekemit < 0.0001 0.003 1990 (+) <0.0001 
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Appendix 11: Mann-Kendal trend test and statistical summary of annual Tmin at 10 selected stations of 

UBNRB (1971-2010) ; (+) sign indicate upward shift and (-) sign indicate downward shift, numbers in bold 

designate p value for statistically significant trend and change points 

 

Stations 

MK test 

p-value Sen's slope Pettitt test change time 

Pettitt test  

p-value 

Addis Ababa < 0.0001 0.049 1990 (+) <0.0001 

Assosa 0.546 0.006 1980 0.058 

Bahirdar 0.000 0.063 1986 (+) 0.000 

Kombolicha 0.072 0.023 1981 (+) 0.006 

Dangila < 0.0001 0.057 2000 (+) 0.001 

Debre Markos < 0.0001 0.04 1990 (+) <0.0001 

Debre tabor 0.053 -0.01 1998 (-) 0.037 

Gondar 0.000 0.026 1990 (+) <0.0001 

Nedjo 0.079 -0.025 2002 0.086 

Nekemit < 0.0001 0.031 1989 (+) <0.0001 
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Appendix 12: Calibration results of the average statistical tests comparing the observed data from 26 stations 

with synthetic data generated through LARS-WG 6.   

 

 

 

KS t-test 

F-

test 

No

. Station 

WD 

series 

Rain

D 

Tmin

D 

Tmax

D 

RM

M 

Tmin

M 

Tmax

M 

RM

V 

1 Abaysheleko 0 0 0 0 0 0 0 1 

2 Addis Ababa 0 0 0 0 0 0 1 2 

3 Adet 0 0 0 0 0 0 0 2 

4 Alemketema 0 0 0 0 0 0 0 2 

5 Angergutten 0 0 0 0 1 0 0 6 

6 Arijo 0 0 0 0 0 0 0 4 

7 Assosa 0 0 0 0 0 0 0 1 

8 Ayehu 0 0 0 0 0 0 1 2 

9 Ayira 0 0 0 0 0 1 1 2 

10 Bahirdar 0 0 0 0 0 0 1 3 

11 Bedele 0 0 0 0 0 0 1 0 

12 Komibolicha 0 0 0 0 0 0 0 1 

13 Dangila 0 0 0 0 0 0 0 1 

14 Debre Birhan 0 0 0 0 2 0 0 3 

15 Dedesa 0 0 0 0 0 0 0 1 

16 Debre Markos 0 0 0 0 1 0 1 2 

17 Debre Tabor 0 0 0 0 0 0 0 2 

18 Fitche 0 0 0 0 0 0 0 0 

19 Gatira 0 0 0 0 1 0 1 2 

20 Gidayana 0 0 0 0 1 0 1 1 

21 Gimijabet 0 0 0 0 0     7 

22 Gondar 0 0 0 0 2 0 1 1 

23 Motta 0 0 0 0 0 0 0 1 

24 Nedjo 0 0 0 0 0 0 0 2 

25 Nekemit 0 0 0 0 0 0 0 2 

26 Shambu 0 0 0 0 1 0 1 2 

27 Yetnora 0 0 0 0 1 0 0 4 

28 Zege 0 0 0 0 0 0 0 2 

29 Mekane 

Selam 0 0 0 0 0 0 0 2 

 Average 0 0 0 0 0.34 0.036 0.36 2.1 

 Number 8 12 12 12 12 12 12 12 

 % failed 0.0 0.0 0.0 0.0 2.9 0.3 3.0 17.5 

Note: The numbers in the table show the average numbers of tests gave P value less than 5 % 

significance level.   
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Appendix 13: Mean annual and relative percent changes of precipitation statistics by the 2030s, 2050s and 

2080s relative to the mean of the base case. 

 

GCM scenario 2030s 2050s 2080s 2030s 2050s 2080s 

CSMK3-A1B A1B 1385 1358 1319 -2.3 -4.2 -7.0 

CSMK3-B1 B1 1385 1379 1342 -2.3 -2.7 -5.3 

GFCM21-A1B A1B 1397 1305 1311 -1.4 -8.0 -7.5 

GFCM21-B1 B1 1409 1428 1387 -0.6 0.7 -2.2 

GFCM21-A2 A2 1365 1312 1334 -3.7 -7.4 -5.9 

HADCM3-A1B A1B 1448 1480 1600 2.1 4.4 12.9 

HADCM3-B1 B1 1429 1447 1475 0.8 2.1 4.1 

HadCM3-A2 A2 1441 1467 1654 1.7 3.5 16.7 

MIHR-A1B A1B 1445 1495 1563 1.9 5.5 10.2 

MIHR-B1 B1 1470 1496 1502 3.7 5.5 6.0 

MPEH5-A1B A1B 1443 1453 1503 1.8 2.5 6.0 

MPEH5-B1 B1 1465 1499 1437 3.3 5.8 1.4 

MPEH5-A2 A2 1410 1477 1464 -0.5 4.2 3.3 

NCCCSM-A1B A1B 1510 1740 1842 6.5 22.8 29.9 

NCCCSM-B1 B1 1528 1730 1612 7.8 22.0 13.7 

NCCCSM-A2 A2 1508 1541 2038 6.4 8.7 43.7 

GFDL-RCP4.5 RCP4.5 1274 1268 1276 -9.5 -10.0 -9.4 

GFDL-RCP8.5 RCP8.5 1259 1267 1288 -10.6 -10.0 -8.5 

HadGEM2-RCP4.5 RCP4.5 1420 1406 1471 0.8 -0.1 4.5 

HadGEM2-RCP8.5 RCP8.5 1444 1383 1470 2.6 -1.7 4.4 

MPI-RCP4.5 RCP4.5 1378 1398 1419 -2.1 -0.7 0.8 

MPI-RCP8.5 RCP8.5 1426 1408 1401 1.3 0.0 -0.5 

canESM2-RCP2.6 RCP2.6 1663 1711 1694 17.9 21.4 20.2 

canESM2-RCP4.5 RCP4.5 1650 1732 1781 17.0 22.8 26.3 

canESM2-RCP8.5 RCP8.5 1678 1826 2028 19.0 29.5 43.8 

HadCM3-A2a A2a 1553 1583 1670 2.1 4.0 9.7 

HadCM3-B2a B2a 1559 1575 1617 2.4 3.5 6.2 

Model average         2.4 4.6 8.1 
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Appendix 14: Performance measure and ranking of models during the baseline period (1984-2011) for the 

evaluation metric RMSE (equally weighted) 

 

 

Value (mm) Score 

Stations 
canESM2/S

DSM 
HadCM3/S

DSM 
LARS-

WG 
canESM2/S

DSM 
HadCM3/S

DSM 
LARS-

WG 

Abaysheleko 7.42 15.68 18.86 1 2 3 
Alemketema 19.43 7.6 10.48 3 1 2 
Anger 11.05 13.13 10.01 2 3 1 
Angergutten 8.18 16.11 9.81 1 3 2 
Bahirdar 8.49 21.67 11.51 1 3 2 
Bedele 6.42 46.07 14.67 1 3 2 
Dangila 13.18 53.84 8.97 2 3 1 
Dedesa 8.24 18.02 13.84 1 3 2 
Debre Markos 5.04 19.11 12.53 1 3 2 
Debre Tabor 22.39 39.37 10.71 2 3 1 
Fitche 17.75 11.23 10.77 3 2 1 
Gimijabet 14.49 32.4 11.41 2 3 1 
Gondar 4.96 18.19 3.58 2 3 1 
Nedjo 8.35 15.35 11.66 1 3 2 
Shambu 8.6 15.68 10.74 1 3 2 

    

24 41 25 

 
Appendix 15: Performance measure and ranking of models during the baseline period (1984-2011) for the 

evaluation metric MAE (equally weighted) 

 

 Value (mm) Score 

Stations 

canESM2/

SDSM 

HadCM3/

SDSM LARS-WG 

canESM2/

SDSM 

HadCM3/

SDSM LARS-WG 

Abaysheleko 5.35 12.41 12.54 1 2 3 

Alemketema 12.84 6.17 6.79 3 1 2 

Anger 7.9 8.73 7.7 2 3 1 

Angergutten 6.33 12.3 8.22 1 3 2 

Bahirdar 6.05 12.87 7.78 1 3 2 

Bedele 4.44 36.25 10.81 1 3 2 

Dangila 9.32 37.52 7.13 2 3 1 

Dedesa 5.67 11.9 9.89 1 3 2 

Debre Markos 3.66 13.43 9.98 1 3 2 

Debre Tabor 14.82 25.03 8.83 2 3 1 

Fitche 8.39 8.17 7.48 3 2 1 

Gimijabet 11.01 21.87 7.63 2 3 1 
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Gondar 3.52 13.29 2.66 2 3 1 

Nedjo 5.09 11.73 8.98 1 3 2 

Shambu 6.01 12.41 7.99 1 3 2 

 

   

24 41 25 

 

 
Appendix 16: Performance measure and ranking of models during the baseline period (1984-2011) for the 

evaluation metric Bias (equally weighted) 

 

 Value (mm) Score 

Stations 

canESM2/

SDSM 

HadCM3/

SDSM LARS-WG 

canESM2/

SDSM 

HadCM3/

SDSM LARS-WG 

Abaysheleko 2.59 12.17 5.06 1 3 2 

Alemketema 8.42 0.9 -0.53 3 2 1 

Anger -7.08 5.8 1.46 3 2 1 

Angergutten -2.51 7.59 -0.33 2 3 1 

Bahirdar 1.11 8.33 -5.67 1 3 2 

Bedele -1.48 23.89 -0.77 2 3 1 

Dangila -8.86 2.89 1.67 3 2 1 

Dedesa -3.02 3.42 -2.02 2 3 1 

Debre Markos 1.02 8.9 0.58 2 3 1 

Debre Tabor -14.26 -14.6 -4.84 2 3 1 

Fitche -3.9 0.04 2.60 3 1 2 

Gimijabet -5.72 5.4 0.81 3 2 1 

Gondar 0.51 2.16 -0.71 1 3 2 

Nedjo -4.19 -7.23 2.94 2 3 1 

Shambu -0.69 12.17 -3.79 1 3 2 

 

   

31 39 20 
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Appendix 17  : Weighted performance measures for different models based on weights defined under section  6.1.3 during the baseline period (1984-

2011) for all stations. 

 

 

RMSE MAE Bias Overall weight performance Score 

Stations 
canESM2
/SDSM 

HadCM

3/SDS
M 

LARS
-WG 

canESM2/
SDSM 

HadCM3/
SDSM 

LARS
-WG 

canESM2/
SDSM 

HadCM3/
SDSM 

LARS
-WG 

canESM2/
SDSM 

HadCM3/
SDSM 

LARS
-WG 

canESM2
/SDSM 

HadCM3/
SDSM 

LARS
-WG 

Abaysheleko 0.14 0.29 0.35 0.21 0.49 0.50 0.03 0.15 0.06 0.38 0.94 0.91 1 3 2 

Alemketema 0.35 0.14 0.19 0.50 0.24 0.26 0.15 0.02 0.01 1.00 0.39 0.46 3 1 2 

Anger 0.29 0.35 0.27 0.45 0.50 0.44 0.15 0.12 0.03 0.90 0.97 0.74 2 3 1 

Angergutten 0.18 0.35 0.21 0.26 0.50 0.33 0.05 0.15 0.01 0.48 1.00 0.55 1 3 2 

Bahirdar 0.14 0.35 0.19 0.24 0.50 0.30 0.02 0.15 0.10 0.39 1.00 0.59 1 3 2 

Bedele 0.05 0.35 0.11 0.06 0.50 0.15 0.01 0.15 0.00 0.12 1.00 0.27 1 3 2 

Dangila 0.09 0.35 0.06 0.12 0.50 0.10 0.15 0.05 0.06 0.36 0.90 0.21 2 3 1 

Dedesa 0.16 0.35 0.27 0.24 0.50 0.42 0.13 0.15 0.09 0.53 1.00 0.77 1 3 2 

Debre 

Markos 0.09 0.35 0.23 0.14 0.50 0.37 0.02 0.15 0.01 0.25 1.00 0.61 1 3 2 

Debre Tabor 0.20 0.35 0.10 0.30 0.50 0.18 0.15 0.15 0.05 0.64 1.00 0.32 2 3 1 

Fitche 0.35 0.22 0.21 0.50 0.49 0.45 0.15 0.00 0.10 1.00 0.71 0.76 3 1 2 

Gimijabet 0.16 0.35 0.12 0.25 0.50 0.17 0.15 0.14 0.02 0.56 0.99 0.32 2 3 1 

Gondar 0.10 0.35 0.07 0.13 0.50 0.10 0.04 0.15 0.05 0.26 1.00 0.22 2 3 1 

Nedjo 0.19 0.35 0.27 0.22 0.50 0.38 0.09 0.15 0.06 0.49 1.00 0.71 1 3 2 

Shambu 0.19 0.35 0.24 0.24 0.50 0.32 0.01 0.15 0.05 0.44 1.00 0.61 1 3 2 

Total score 

            

24 41 25 

Rank 

            

1 3 2 
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Appendix 18: Scenario developments and their definitions 

 

Name scenario Water resource developments description Climate change 

scenario 

HPP 

installed 

capacity 

(MW) 

Irrigatio

n area 

(ha) 

s0 Natural 

condition 

No development of water resources. The “natural” system 

without any water infrastructure 

Baseline condition 

 (no climate change) 

0 0 

s1 Current 

condition 

Current development of water resources (2018) that includes 

Koga, Fincha and Anger irrigation projects and Tana-Beles 

HPP 

Baseline condition 

 (no climate change) 

460 23596 

s2 Short-term 

development 

Short-term planned water resources development; that 

includes all projects that are existing, under construction and 

anticipated to start operation in the future before 2025 

Baseline condition  

(no climate change) 

6910 214882 

s3 Medium term 

developments 

Medium-term planned development of water resources that 

includes all projects under s2 plus anticipated projects to 

start operation before 2040 

Baseline condition 

 (no climate change) 

6910 382644 

s4 Long term A 

developments 

Long-term planned development of water resources that 

includes all projects that are likely to occur in the future 

before 2070 

Baseline condition 

(no climate change) 

49762 420370 

s5 Short term 

development 

Short-term planned development of water resources; that 

includes all projects that are existing, under construction and 

anticipated to start operation in the future before 2025 

Based on RCP4.5 

scenario of canESM2 

GCM (2017-2025) 

6910 23596 

s6 Medium term 

developments 

Medium-term planned development of water resources that 

includes all projects under s2 plus anticipated projects to 

start operation before 2040 

Based on RCP4.5 

scenario of canESM2 

GCM (2026-2040) 

6910 214882 

s7 Long term A 

developments 

Long-term planned development of water resources that 

includes all projects that are likely to occur in the future 

before 2070 

Based on RCP4.5 

scenario of canESM2 

GCM (2041-2070) 

49762 382644 
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s8 Long term B 

developments 

Long-term planned development of water resources that 

includes all projects that are likely to occur in the future 

before 2100 

Based on RCP4.5 

scenario of canESM2 

GCM (2071-2100) 

49762 420370 

s9 Short term 

development 

Short-term planned development of water resources; that 

includes all projects that are existing, under construction and 

anticipated to start operation in the future before 2025 

Based on RCP4.5 

scenario of GFDL 

GCM (2017-2025) 

6910 23596 

s10 Medium term 

developments 

Medium-term planned development of water resources that 

includes all projects under s2 plus anticipated projects to 

start operation before 2040 

Based on RCP4.5 

scenario of GFDL 

GCM (2026-2040) 

6910 214882 

s11 Long term A 

developments 

Long-term planned development of water resources that 

includes all projects that are likely to occur in the future 

before 2070 

Based on RCP4.5 

scenario of GFDL 

GCM (2041-2070) 

49762 382644 

s12 Long term B 

developments 

Long-term planned development of water resources that 

includes all projects that are likely to occur in the future 

before 2100 

Based on RCP4.5 

scenario of GFDL 

GCM (2071-2100) 

49762 420370 
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Appendix 19: Monthly irrigation water requirment 

 

Project Name sub-basin total area (ha) Monthly irrigation requirement (mm month
-1

) 

      Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Megech 

Pumping 
Lake Tana   24,510.00  

132.1 161.4 196.1 93.5 0.0 0.0 0.0 0.0 0.0 24.0 122.8 136.6 

Megech 

gravity 
Lake Tana     7,311.00  

130.7 159.4 194.2 91.4 0.0 0.0 0.0 0.0 0.0 21.7 121.7 135.9 

North West 

Tana 
Lake Tana     6,720.00  

131.8 161.1 195.8 93.3 0.0 0.0 0.0 0.0 0.0 23.9 122.7 136.5 

North East 

Tana 
Lake Tana     5,475.00  

150.6 191.8 201.4 92.5 0.0 0.0 0.0 0.0 0.0 0.0 113.6 125.7 

Ribb 1800 Lake Tana   19,925.00  289.6 138.2 155.3 197.1 60.0 0.0 0.0 0.0 0.0 53.4 77.9 17.3 

Gumara Lake Tana   13,776.00  143.0 170.6 189.8 97.1 0.0 0.0 0.0 0.0 0.0 0.0 124.6 129.5 

Koga Lake Tana     7,000.00  131.0 177.1 162.7 64.7 0.0 0.0 0.0 0.0 0.0 0.0 116.4 126.8 

Middle Birr  
South 

Gojam 
    8,500.00  

134.1 172.6 143.7 77.4 0.0 0.0 0.0 0.0 0.0 0.0 77.3 135.1 

Lower Birr 
South 

Gojam 
    3,659.00  

146.6 187.0 166.6 95.8 0.0 0.0 0.0 0.0 18.4 2.1 95.5 142.3 

Gilgel Lake Tana   16,499.00  285.1 145.9 136.4 177.3 0.0 0.0 121.1 0.0 0.0 18.1 73.3 14.9 

South West 

Tana 
Lake Tana     5,132.00  

139.4 184.2 201.5 113.4 0.0 0.0 0.0 0.0 0.0 0.0 90.8 139.2 

Tis Abay 

Pumping 

North 

Gojam 
    4,132.00  

139.4 184.2 201.5 113.4 0.0 0.0 0.0 0.0 0.0 0.0 90.8 139.2 

TIS 3-5 
North 

Gojam 
    7,167.00  

139.4 184.2 201.5 113.4 0.0 0.0 0.0 0.0 0.0 0.0 90.8 139.2 

Fettam 
South 

Gojam 
       600.00  

111.7 148.4 103.1 15.2 0.0 0.0 0.0 0.0 0.0 0.0 60.0 102.9 

Azena 
South 

Gojam 
       426.00  

151.5 181.4 173.9 91.7 0.0 0.0 0.0 0.0 0.0 0.0 105.1 135.1 

Jema Jemma     7,786.00  129.5 175.2 160.4 62.0 0.0 0.0 0.0 0.0 0.0 0.0 115.0 125.8 

Weberi Jemma   10,608.00  129.5 175.2 160.4 62.0 0.0 0.0 0.0 0.0 0.0 0.0 115.0 125.8 

Weserbi Jemma     1,000.00  138.1 157.0 93.2 13.2 0.0 0.0 0.0 0.0 0.0 0.0 84.7 111.9 

Lumame Jemma     4,012.00  111.7 148.4 103.1 15.2 0.0 0.0 0.0 0.0 0.0 0.0 60.0 102.9 
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Upper Beles Beles   53,720.00  156.5 163.6 141.1 135.6 43.1 0.0 0.0 0.0 0.0 0.0 151.6 194.5 

Lower Beles Beles   10,000.00  174.5 217.6 203.8 107.9 6.1 0.0 0.0 0.0 0.0 0.0 143.1 148.4 

Anonu Guder        804.00  141.2 166.3 125.0 23.0 0.0 0.0 0.0 0.0 12.0 0.0 63.4 134.4 

Upper Guder Guder     4,896.00  122.8 122.8 65.4 0.0 0.0 0.0 0.0 0.0 0.0 1.4 96.4 141.1 

Kale Guder     1,537.00  142.0 167.5 126.8 24.5 0.0 0.0 0.0 0.0 14.9 0.0 64.2 135.0 

Anonu Guder        803.00  141.2 166.3 125.0 23.0 0.0 0.0 0.0 0.0 12.0 0.0 63.4 134.4 

Neshe Finchaa     7,217.00  137.4 136.6 100.1 76.8 10.4 0.0 0.0 0.0 27.2 105.1 168.9 170.4 

Angar Angar   14,450.00  142.5 168.9 97.1 20.6 0.0 0.0 0.0 0.0 0.0 0.0 87.7 120.1 

Nekemte Angar   11,220.00  142.5 168.9 97.1 20.6 0.0 0.0 0.0 0.0 0.0 0.0 87.7 120.1 

Dembi Gusu Angar        893.00  142.5 168.9 97.1 20.6 0.0 0.0 0.0 0.0 0.0 0.0 87.7 120.1 

Didessa 

Pumping 
Didessa     2,402.00  

138.1 157.0 93.2 13.2 0.0 0.0 0.0 0.0 0.0 0.0 84.7 111.9 

Didiga Didessa     4,633.00  138.1 157.0 93.2 13.2 0.0 0.0 0.0 0.0 0.0 0.0 84.7 111.9 

Dimtu Didessa        534.00  139.1 158.6 95.9 15.5 0.0 0.0 0.0 0.0 0.0 0.0 85.5 113.2 

Negeso Didessa   21,315.00  120.2 137.9 75.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.8 125.2 

Felemtu Dila Dabus     1,092.00  120.3 124.5 105.2 70.6 39.1 0.0 0.0 0.0 1.6 42.2 62.3 84.5 

Upper Dila Dabus     2,669.00  145.9 183.7 155.5 25.4 0.0 0.0 0.0 0.0 0.0 0.0 65.7 142.1 

Arjo-Didessa Didessa   14,280.00  138.1 157.0 93.2 13.2 0.0 0.0 0.0 0.0 0.0 0.0 84.7 111.9 

Dabana Didessa     1,500.00  139.4 159.0 96.6 16.0 0.0 0.0 0.0 0.0 0.0 0.0 85.7 113.5 

Upper Dabana Didessa     1,105.00  138.1 157.0 93.2 13.2 0.0 0.0 0.0 0.0 0.0 0.0 84.7 111.9 

Didessa  Didessa     2,401.00  138.1 157.0 93.2 13.2 0.0 0.0 0.0 0.0 0.0 0.0 84.7 111.9 

Hida Didessa     1,190.00  138.1 157.0 93.2 13.2 0.0 0.0 0.0 0.0 0.0 0.0 84.7 111.9 

Nedi Didessa     3,936.00  138.1 157.0 93.2 13.2 0.0 0.0 0.0 0.0 0.0 0.0 84.7 111.9 

Finicha sugar 

factory 
Finchaa     8,145.00  

113.1 112.0 80.6 61.0 4.3 0.0 0.0 0.0 17.7 85.0 138.8 140.8 

Urgesa Didessa     2,933.00  113.1 112.0 80.6 61.0 4.3 0.0 0.0 0.0 17.7 85.0 138.8 140.8 

Dabus Dabus     9,100.00  120.3 124.5 105.2 70.6 39.1 0.0 0.0 0.0 1.6 42.2 62.3 84.5 

Lugo Didessa        285.00  113.1 112.0 80.6 61.0 4.3 0.0 0.0 0.0 17.7 85.0 138.8 140.8 

Bar Wombera        253.00  179.2 228.5 229.9 107.6 14.7 0.0 0.0 31.9 17.3 0.0 165.9 146.3 

Lower Dura Wombera     1,819.00  179.2 228.5 229.9 107.6 14.7 0.0 0.0 31.9 17.3 0.0 165.9 146.3 

Lower Beles Beles   85,000.00  174.5 217.6 203.8 107.9 6.1 0.0 0.0 0.0 0.0 0.0 143.1 148.4 
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Appendix 20: Proposed Irrigation development during Master plan period (ha) 

 

     Area 

 Proposed Irrigation development during Master plan period 

(ha)  

 Irrigation water  demand 

(MM3MM3)  

 Project Name   sub-basin  (ha)   P1   P2   P3   P4   Total   P1   P2   P3   P4  

 Megech Pumping   Tana  

           

24,510    

             

4,000  

             

8,510  

         

12,000  

           

24,510  

               

-    

               

35  

            

108  

            

212  

 Megech gravity  Tana  

             

7,311    

             

7,311      

             

7,311  

               

-    

               

62  

               

62  

               

62  

 North West Tana   Tana  

             

6,720      

             

2,000  

           

4,720  

             

6,720  

               

-    

                

-    

               

17  

               

58  

 Lower Dindir   Dindir  

           

25,000          

                    

-    

               

-    

                

-    

                

-    

                

-    

 North East Tana  Tana  

             

5,475    

             

3,000  

             

2,475    

             

5,475  

               

-    

               

26  

               

48  

               

48  

 Ribb 1800   Tana  

           

19,925    

             

8,000  

             

6,459  

           

5,466  

           

19,925  

               

-    

               

79  

            

143  

            

196  

 Gumara   Tana  

           

13,776      

           

10,000  

           

3,776  

           

13,776  

               

-    

                

-    

               

85  

            

117  

 Koga  Tana  

             

7,000  

           

7,000        

             

7,000  

              

54  

               

54  

               

54  

               

54  

 Middle Birr (Acres)   South Gojam  

             

8,500    

             

3,500  

             

5,000    

             

8,500  

               

-    

               

26  

               

63  

               

63  

 Lower Birr   South Gojam  

             

3,659    

             

3,659      

             

3,659  

               

-    

               

31  

               

31  

               

31  

 Gilgel   Tana  

           

16,499    

             

4,000  

             

5,999  

           

6,500  

           

16,499  

               

-    

               

39  

               

97  

            

160  

 South West Tana  Tana  

             

5,132        

           

5,132  

             

5,132  

               

-    

                

-    

                

-    

               

44  

 Tis Abbay Pumping   North Gojam  

             

4,132        

           

4,132  

             

4,132  

               

-    

                

-    

                

-    

               

36  

 TIS 3-5   North Gojam  

             

7,167    

             

7,167      

             

7,167  

               

-    

               

62  

               

62  

               

62  

 Fettam   South Gojam  

                 

600    

                 

600      

                 

600  

               

-    

                 

3  

                 

3  

                 

3  

 Azena   South Gojam  

                 

426      

                 

426    

                 

426  

               

-    

                

-    

                 

4  

                 

4  

 Jema   Jemma                    7,786                                                                              
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7,786  7,786  -    -    60  60  

 Weberi   Jemma  

           

10,608      

           

10,608    

           

10,608  

               

-    

                

-    

               

81  

               

81  

 Weserbi   Jemma  

             

1,000      

             

1,000    

             

1,000  

               

-    

                

-    

                 

6  

                 

6  

 Lumame   Jemma  

             

4,012      

             

4,012    

             

4,012  

               

-    

                

-    

               

22  

               

22  

 Upper Beles   Beles  

           

53,720    

           

53,720      

           

53,720  

               

-    

            

528  

            

528  

            

528  

 Lower Beles   Beles  

           

10,000      

           

10,000    

           

10,000  

               

-    

                

-    

            

100  

            

100  

 Gelegu   Gelegu  

             

9,860          

                    

-    

               

-    

                

-    

                

-    

                

-    

 Rahad   Rahad  

           

45,135          

                    

-    

               

-    

                

-    

                

-    

                

-    

    
         

297,953  

           

7,000  

           

94,957  

           

74,275  

         

41,726  

         

217,958  

              

54  

            

946  

         

1,574  

         

1,948  

 Anonu   Guder  

                 

804    

                 

804      

                 

804  

               

-    

                 

5  

                 

5  

                 

5  

 Upper Guder   Guder  

             

4,896    

             

4,896      

             

4,896  

               

-    

               

27  

               

27  

               

27  

 Kale   Guder  

             

1,537      

             

1,537    

             

1,537  

               

-    

                

-    

               

10  

               

10  

 Anonu   Guder  

                 

803    

                 

803      

                 

803  

               

-    

                 

5  

                 

5  

                 

5  

 Neshe   Finchaa  

             

7,217    

             

5,000  

             

2,217    

             

7,217  

               

-    

               

47  

               

67  

               

67  

 Angar   Angar  

           

14,450  

           

8,450  

             

6,000      

           

14,450  

              

54  

               

92  

               

92  

               

92  

 Nekemte   Angar  

           

11,220    

             

3,000  

             

8,220    

           

11,220  

               

-    

               

19  

               

71  

               

71  

 Dembi Gusu   Angar  

                 

893    

                 

893      

                 

893  

               

-    

                 

6  

                 

6  

                 

6  

 Negeso   Didessa  

           

21,315    

           

21,315      

           

21,315  

               

-    

            

113  

            

113  

            

113  

 Felemtu Dila   Dabus  

             

1,092      

             

1,092    

             

1,092  

               

-    

                

-    

                 

7  

                 

7  

 Upper Dila   Dabus  

             

2,669      

             

2,669    

             

2,669  

               

-    

                

-    

               

19  

               

19  
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 Arjo-Didessa   Didessa  

           

80,000    

           

80,000      

           

80,000  

               

-    

            

477  

            

477  

            

477  

 Finicha sugar factory   Finchaa  

             

8,145  

           

8,145        

             

8,145  

              

61  

               

61  

               

61  

               

61  

    
         

155,041  

         

16,595  

         

122,711  

           

15,735    

         

155,041  

            

115  

            

852  

            

961  

            

961  

 Dabus   Dabus  

             

9,100    

             

9,100      

             

9,100  

               

-    

               

59  

               

59  

               

59  

 Bar   Wombera  

                 

253    

                 

253      

                 

253  

               

-    

                 

3  

                 

3  

                 

3  

 Lower Dura   Wombera  

             

1,819      

             

1,819    

             

1,819  

               

-    

                

-    

               

20  

               

20  

 Lower Dindir   Dindir  

           

24,555          

                    

-    
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-    

                

-    

                

-    

 Lower Beles   Beles  

           

85,000    

           

12,000  

           

73,000    

           

85,000  

               

-    

            

120  

            

849  

            

849  

    
         

120,727    

           

21,353  

           

74,819    

           

96,172  

               

-    

            

182  

            

931  

            

931  

    

         

573,721  

         

23,595  

         

239,021  

         

164,829  

         

41,726  

         

469,171  

            

169  

         

2,040  

         

3,622  

         

4,144  

   

23,595  262,616  427,445  469,171  

     Where p1 represents (2017-2025), p2 represents (2026-2040), p3 represents (2041-2070) and p4 represents (2071-2100) 
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Appendix 21: Schematic of existing and planned water resource developments in the UBNRB as simulated in the HEC-HMS model,showing model 

basin, reservoirs and control points (diversions). 
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Basin 

code Basin description 

Basin 

code Basin description 

Reservoir 

code Reservoir description 

Irrigation 

code Irrigation description 

1 Jema basin 22 Muger basin JR Jemma reservoir JI Jemma Irrigation 

2 Upper Gilgel abay basin 23 Guder basin KR Koga reservoir KI Koga Irrigation 

3 Upper Koga basin 24 North Gojjam basin GAR Gilgel abay reservoir GAI Gilgel Abay irrigation 

4 Lower Koga basin 25 South Gojjam basin GR Gumara reservoir GUMI Gumara irrigation 

5 Kilti basin 26 Fincha basin RR Rib reservoir RI Rib Irrigation 

6 Lower Gilgel abay basin 27 Anger basin MR Megech reservoir MI Megech Irrigation 

7 Gelda basin 28 Didesa basin LT Lake Tana  LTPI Lake Tana pump irrigation 

8 Upper Gumara basin 29 Wenibera basin DR Didesa reservoir NGI North Gojjam irrigation 

9 Lower Gumara basin 30 Dabus basin KAR Karadobi reservoir BI Birr irrigation 

10 Rib U/S reservoir1 31 Lower Didesa basin BAR Bekoabo reservoir GUI Guder irrigation 

11 Rib D/S gage station 32 Main beles basin MNR Mendiya reservoir FSFI Finch sugar factory irrigation 

12 Garno basin 33 Gilgel beles basin GERD Grand renaissance dam ARI Arijo Irrigation 

13 Gumero basin 34 Lower beles basin     ANI Anger Nekemit irrigation 

14 Megech U/S reservoir 35 

Gilgel Abay D/S gage 

station     DI Didessa (Negesso) irrigation 

15 Megech D/S gage station 36 Megech D/S reservoir     DABI Dabus irrigation 

16 Gabi Kura basin 37 Rib U/S reservoir2     UBI Upper Beles irrigation 

17 Lake Tana periphery basin 38 Gumara d/s reservoir     LBI Lower Beles irrigation 

18 Andasa basin 39 Rib D/S reservoir         

19 Beshilo basin 40 Anger D/s gage station         

20 Weleka basin 41 Upper Tis isat basin         

21 Jemma basin 42 Lower Dabus 
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Appendix 22: Mean monthly reservoirs evaporation 

 

Month Koga Megech Gumara Rib Jemma Gilgel Abay Lake Tana Beko-Abo Karadobi Didessa Mendiya GERD 

Jan 130 143 133 133 130 133 133 168 166 196 194 202 

Feb 137 148 143 140 134 140 139 163 161 190 188 196 

Mar 167 180 174 171 161 171 164 178 176 172 170 182 

Apr 174 174 171 165 168 174 178 168 166 197 196 208 

May 152 164 155 155 149 155 162 152 151 241 239 251 

Jun 123 141 129 129 120 120 133 96 95 174 173 186 

Jul 93 90 90 93 90 93 117 67 66 15 15 46 

Aug 93 90 90 90 93 93 123 65 64 87 87 115 

Sep 129 132 129 126 126 132 133 88 87 212 211 225 

Oct 143 155 146 146 140 143 140 128 127 251 250 259 

Nov 129 138 132 129 126 129 131 138 136 170 169 176 

Dec 121 130 124 124 118 121 123 149 147 184 182 189 

Total 1591 1685 1615 1600 1555 1603 1676 1560 1542 2088 2073 2236 
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Appendix 23: Key data for the cascade hydropower projects (IPoE, 2013; NORPLAN et al., 2006; NORPLAN 

et al., 2013) 

Data Parameters Karadobi Beko-Abo Mendaya GERD 

Power and 

Energy 

 

 

 

 

 

 

Total rated output  (MW) 1600 1 940 2000 6450 

Mean annual energy  

generation (GWh) 
8634 12096 12119 16,153 

Plant factor 0.67 0.71 0.69 0.29 

Design discharge (m3s-1) 800 900 1200 5400 

Maximum gross head  

(m) 
236 272  133 

Hydrologic 

Data 

 

Abay river catchment 

area upstream of dam 

(km2) 

66 910 93 490 128729 172,250 

Mean river flow at dam 

site (m3s-1) 
649 675 1091 1547 

Reservoir 

 

 

 

 

 

Full Supply Level (masl) 1146 1 062 800 640 

Minimum Operation 

Level (masl) 
1100 1 010 760 590 

Total volume at FSL 

(Bm3) 
40.2 31.7 49.2 74.01 

Active reservoir volume 

(Bm3) 
17.0 17.4 24.6 59.22 

Surface at FSL (km²) 445 403 736 1874 

Extension of reservoir 

towards upstream (Km) 
150 150 300 246 

Dam 

 

 

 

Dam crest elevation 

(masl) 
1150.0 1063.7 803 645 

Maximum height of dam 

above foundation (m) 
260 282 200 145 

Crest length of dam (m) 684 1 080 1400 1780 

Dam volume (Mm3) 6.5 12.8 13 10.1 

Spillway Spillway capacity(m3s-1) 21 450 13 260 30000 38,500 
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Appendix 24: Observed and simulated (left) mean monthly precipitation,Tmax and Tmin; (right) standard 

deviation of precipitation, Tmax and Tmin using LARS-WG 
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Appendix 25: Calibration and validation of observed and simulated of precipitation, maximum and minimum 

temperature for all stations using SDSM from NCEP of HadCM3 GCM from left to right respectively 
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Appendix 26: Calibration and validation of observed and simulated of precipitation, maximum and minimum 

temperature for all stations using SDSM from NCEP-canESM2 GCM from left to right respectively 
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Appendix 27: Emissions Scenarios and Representative Concentration Pathways (RCPs)  

Future greenhouse gas (GHG) emissions are the product of very complex dynamic systems, 

determined by driving forces such as demographic development, socio-economic development, 

and technological change. Their future evolution is highly uncertain. Scenarios are alternative 

images of how the future might unfold and are an appropriate tool with which to analyze how 

driving forces may influence future emission outcomes and to assess the associated 

uncertainties(Nakicenovic et al., 2000). Hence, climate models require data on the time-evolving 

emissions or concentrations of radiatively active constituents, and some have additional 

requirements for information about the time-evolving paths for land use and land cover. Climate 

projections are typically presented for a range of plausible pathways, scenarios, or targets that 

capture the relationships between human choices, emissions, concentrations, and temperature 

change. A set of scenarios was developed to represent the range of driving forces and emissions 

in the scenario literature to reflect current understanding and knowledge about underlying 

uncertainties. New sets of scenarios for climate change research are needed periodically to take 

into account scientific advances in understanding of the climate system as well as to incorporate 

updated data on recent historical emissions, climate change mitigation, and impacts, adaptation, 

and vulnerability. These sets of standard scenarios have become more comprehensive with each 

new generation, as the original Scientific Assessment (SA90) scenarios were replaced by the 

IS92 emission scenarios of the 1990s, which were in turn succeeded by the Special Report on 

Emissions Scenarios in 2000 (SRES) and by the Representative Concentration Pathways in 2010 

(RCPs). These scenarios have been widely used in the analysis of possible climate change, its 

impacts, and options to mitigate climate change (Nakicenovic et al., 2000). 

 

A90 emission scenarios were used in the first Intergovernmental Panel on Climate Change 

Assessment Report (IPCC FAR) in 1990.  IS92-based projections were used in the IPCC Second 

and Third Assessment Reports (SAR and TAR).  Projections based on SRES scenarios were used 

in the IPCC TAR and Fourth Assessment Reports (AR4). The most recent set of time-dependent 

scenarios, RCPs, builds on these two decades of scenario development were used in the most 

recent IPCC Fifth Assessment Report (AR5).  

 

The SRES scenarios are grouped into four scenario families (A1, A2, B1 and B2) that explore 

alternative development pathways, covering a wide range of demographic, social, economic, 

technological and environmental driving forces and resulting green house gas (GHG) emissions 

(Nakicenovic et al., 2000). In simple terms, the four storylines combine two sets of divergent 

tendencies: one set varying between strong economic values and strong environmental values, 

the other set between increasing globalization and increasing regionalization. The A-families are 

characterized by a domination of economic drivers, whereas the B families assume 

environmental concerns to be the driving force. The number associated with the scenario families 

gives a further differentiation. While the A1 and B1 scenario families are rather globally 

orientated, the A2 and B2 scenario families pursue a rather regional policy (Table 6-2).  

 

The storylines are summarized as follows (Nakicenovic et al., 2000): 

 A1 storyline and scenario family: a future world of very rapid economic growth, global 

population that peaks in mid-century and declines thereafter, and rapid introduction of 

new and more efficient technologies. The A1 scenario family develops into three groups 



 

270 

 

that describe alternative directions of technological change in the energy system. The 

three A1 groups are distinguished by their technological emphasis: fossil intensive 

(A1FI), non-fossil energy sources (A1T), or a balance across all sources (A1B). 

 A2 storyline and scenario family: a very heterogeneous world with continuously 

increasing global population and regionally oriented economic growth that is more 

fragmented and slower than in other storylines. 

 B1 storyline and scenario family: a convergent world with the same global population as 

in the A1 storyline but with rapid changes in economic structures toward a service and 

information economy, with reductions in material intensity, and the introduction of clean 

and resource-efficient technologies. 

 B2 storyline and scenario family: a world in which the emphasis is on local solutions to 

economic, social, and environmental sustainability, with continuously increasing 

population (lower than A2) and intermediate economic development. 

 

The IPCC Fifth Assessment Report (AR5) findings were based on a new set of scenarios that 

replace the Special Report on Emissions Scenarios (SRES) standards employed in two previous 

reports (TAR and RA4). The new scenarios are called Representative Concentration Pathways 

(RCPs). According to Moss et al. (2008), the word ‘representative’ signifies that each RCP 

provides only one of many possible scenarios that would lead to the specific radiative forcing 

characteristics. The term ‘pathway’ emphasizes that not only the long-term concentration levels 

are of interest, but also the trajectory taken over time to reach that outcome. In summary, the new 

parallel process starts with the selection of four RCPs (RCP2.6, RCP4.5, RCP6, and RCP8.5), 

and each was named according to the radiative forcing it projected by the year 2100 (Table 6-3). 

Therefore, canESM2 and GFDL CMIP5 GCMs represent the latest plausible radiative forcing 

scenarios, a wide range that includes RCP2.6, RCP4.5, RCP6 and RCP8.5. 

 

RCP2.6 is a very low forcing level, where radiative forcing peaks at approximately 3Wm
-2

 

relative to pre‐industrial values, peaks approximately 490 ppmCO2 equivalent before 2100, and 

then declines to 2.6Wm
-2

 relative to pre‐industrial values. This scenario is close to the ambition 

of the Paris agreement, which aims to strengthen the global response to the threat of climate 

change by keeping a global temperature rise this century well below 2 
o
C above pre-industrial 

levels and to pursue efforts to limit the temperature increase even further to 1.5 
o
C with powerful 

climate politics. 

 

RCP4.5  is one of the two medium stabilization scenarios (RCP6 and RCP 4.5), in which 

strategies for reducing green house gas emissions cause radiative forcing to stabilize at 4.5Wm
-2

 

relative to pre‐industrial values (approximately 650 ppm CO2 equivalent) before 2100. 

RCP 6 is another medium stabilization scenario in which radiative forcing is stabilized at 6Wm
-2

 

relative to pre‐industrial values (approximately 850 ppmCO2 equivalent).  

 

RCP8.5  is a very high baseline emission scenario for which radiative forcing reaches >8.5Wm
-2

 

relative to pre‐industrial values (1370 ppm CO2 equivalent) by 2100 and continues to rise for 

some time (IPCC, 2014b). This scenario is closest to the currently measured trends in green 

house gas concentration. 

 


