Institute for Communications Engineering Department of Electrical and Computer Engineering **Technical University of Munich**

Cyclic Construction for Masking Partially Stuck-at-1 Memory Cells

Haider Al Kim, Antonia Wachter-Zeh, Sven Puchinger

haider.alkim@tum.de, antonia.wachter-zeh@tum.de, sven.puchinger@tum.de

Introduction

The dominance of non-volatile memories and PCMs(phase change memories) as memory solu-

Algorithm

1. Define H_0 as $H_0^{(n-k_0)*n} = (1111, ..., 1), r = n - k_0 = 1$. Then $h_0(x) = \sum_{i=0}^{k_0} h_0 X^i = 1 + x + x^2 + x^2$

- tions for variety of applications have brought the attention to the pros and cons of these types of memories.
- Problem Description : the memory cells are stuck at a state where it cannot change its level [1]. Different PCM cells' levels (q-ary cells) have multi-level states [3]."Stuck" means that the cell's charge is trapped in the cell. The trapped scenario might happened due to a defect in a cell.
- Solution : store new information is by increasing its trapped level. We need to find a codeword that matches the states of the partially stuck at cells.
- The Process : we create a new vector that will be used to mask the partially stuck at-1 memory cells. Then we add it to the information vector, so that the resulted vector will hide the stuck-at levels of the memory.
- Previous works : as shown in [1] and [2], the researchers in [1] have proposed different solutions for stuck at cell. However, the redundancy was sacrificed.

While in [2], more improvements are achieved in terms of the redundancy to be 1 and even less than 1 (lower bound speaking). However, additional error correcting besides the cyclic construction were not considered in [2].

• The Focus : this work will present the cyclic construction for masking partially-stuck-at-1 level. Future coming work is about improving this theorem to correct additional random errors happening while storing or retrieving information from the memory cells.

Figure shows Partially Stuck At Least 1 Memory Scenario

Message to be stored Codeword matches stuck at — Partially stuck at Levels Partially stuck at positions

 $\dots + x^{n-1}$, since $k_0 = n-1$.

2. So, $g_0(x) = 1 + x$, since $g_0(x) \cdot h_0(x) = x^n - 1$.

- 3. Choose $z(x) = \sum_{i=0}^{n-k_0-1} z_i X^i \Rightarrow z(x) = \sum_{i=0}^{n-(n-1)-1} z_i X^i$, where $k_0 = n-1 \Rightarrow z(x) = \sum_{i=0}^{0} z_i X^i \Rightarrow z_i X^i$ $z(x) = z_0$, a specific scalar(single value).
- 4. The partially stuck at memory level should not go below 1.
- 5. So, fulfill the following:

 $w_{\phi_i} + (z(x).h_0(x))_{\phi_i} = \mathbf{q} - \mathbf{s_i}, \forall i \in [u] \& s_i = 1 \iff z_0.H_{0,u} = (q - 1 - w_{\phi_0}, \dots, q - 1 - w_{\phi_{u-1}})$, then $\rightarrow z_0, z_0, z_0, \dots, z_{u-1} = (q-1-w_{\phi_0}, \dots, q-1-w_{\phi_{u-1}})$ 6. $z_0 = (q - 1 - w_{\phi_0}, \dots, q - 1 - w_{\phi_{u-1}})$, and $z_0 \neq 0$.

7. $C_0(x) = \vec{w} + \vec{x} \Rightarrow C_0(x) = \vec{w} + z_0 H_0$. \Rightarrow output vector **c** masks all **u** partially stack-at-1 cells.

Encoding Example

Let q = 3 and $n = |F_{q^2}| - 1 = 3^2 - 1 = 8$ and we want to store the message *m* that is (0210210) $\in F_q^{\mathbf{k_0}}$. The partially stuck positions named ϕ_i are ϕ_2 and ϕ_5 , $\forall i \in u \leq n$ and u is the number of stuck at cells. Then according to the process we need to find the following:

- 1. First calculate w(x). • $m(x) = 2x + x^2 + 2x^4 + x^5$. • $g_0(x) = 1 + x$. $w(x) = m(x) \cdot g_0(x) = (2x + x^2 + 2x^4 + x^5) \cdot (1 + x)$ $\Rightarrow w(x) = 2x + x^2 + 2x^4 + x^5 + 2x^2 + x^3 + 2x^5 + x^6$, coefficients mod 3, then we get: $w(x) = 2x + x^3 + 2x^4 + x^6$ • Or we can write it as a vector (02012010) $\in F_a^n$.
- 2. Second calculate the x(x). • $x(x) = z(x) \cdot h_0(x)$.

Theorem ($s_i = 1, u < q$ **)**

If u < q, then there is a u-PSMC built using cyclic code with generator polynomial $g_0(x)$ and parity check polynomial $h_0(x)$ which is corresponding to the Matrix $H_0 = (1111, \dots, 1)$ such that :

• The length is *n*.

- $k_0 = n 1$, the maximum length of the information aimed to be stored. Then, the cardinality is $M = q^{n-1}$.
- $g_0(x)|(x^n-1)$, Since $h_0(x) = 1 + x + x^2 + \cdots + x^{k_0} \Rightarrow g_0(x) = 1 + x$, single parity symbol for masking the stuck-at-1.

- Find z(x) that should not be zero. So that we need to fulfill the following equation and since $z(x) = z_0$:
- $[z_0, z_0] = [q 1 w_{\phi_1}, q 1 w_{\phi_5}]$, where it is partially stuck at the positions ϕ_2 and ϕ_5 $\Rightarrow [z_0, z_0] = [3 - 1 - 2, 3 - 1 - 0] \Rightarrow$ $\Rightarrow [z_0, z_0] = [0, 2]$, as $z_0 \neq 0$, then $z_0 = 2$. • $x(x) = 2 * (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)$ $\Rightarrow x(x) = 2 + 2x + 2x^{2} + 2x^{3} + 2x^{4} + 2x^{5} + 2x^{6} + 2x^{7}$
- Or can write it as a vector (22222222) $\in F_q^n$.
- 3. Now find $C_0(x) = w(x) + x(x)$. • $C_0(x) = 2x + x^3 + 2x^4 + x^6 + 2 + 2x + 2x^2 + 2x^3 + 2x^4 + 2x^5 + 2x^6 + 2x^7$ $\Rightarrow C_0(x) = 2 + x + 2x^2 + x^4 + 2x^5 + 2x^7$

• Or can write it as a vector (21201202) $\in F_q^n$, as it is shown the positions with partially stuck at cell are masked with at least 1.

Decoding Steps

• Reverse the process.

• First : subtract x(x) from $C_0(x)$ to get w(x) that has the original information.

• Second : from w(x) we get m(x) that equals $w(x)/g_0(x)$. Note that the degree of the term $m(x).g_0(x)$ will be $(\leq n)$.

Next Planned Improvement

- Using cyclic code in this construction for masking partially stuck at 1 did not consider correcting additional errors as the one in [1].
- We need additional symbols to correct t errors and get minimum distance d = 2 * t + 1.

• $s_i = 1$ "partiality stuck", means the level at least (1), there is a scaler z_0 such that it guarantees the masking polynomial called $\mathbf{x}(\mathbf{x}) = \mathbf{z_0} \cdot h_0(x)$ when added to the information polynomial called w(x) will not get **0** values in the partially stuck-at-1 positions $\iff z_0 \neq 0$.

Then, with this code, we can mask u partially stack-at-1 $C_0(x) = w(x) + x(x) \Rightarrow C_0(x) = m(x) \cdot g_0(x) + z_0 \cdot h_0(x)$.

Input

• Message : $\mathbf{m}(\mathbf{x}) \in F_q^{\mathbf{k_0}}$, degree $\leq \mathbf{k_0}$.

• Positions of partially stuck cells: $\phi_0, \phi_1, \phi_2, \ldots, \phi_{u-1} \subseteq [n].$

levels of stuck cells is 1: $s_i = 1 \in F_q$, at least 1, so no need to put it as an input.

The notation [a] = [0, 1, ..., a - 1].

Technische Universität München Department of Electrical and Computer Engineering Institute for Communications Engineering

• This could be applied using BCH code(a sub-filed sub-code) of a GRS code. Both have cyclic properties.

• But, when choose $k_0 = n - 1$ then there is no more left length in n to be used for getting the required symbols for error correction. HAPPY FOR SUGGESTIONS!

References

[1] C. Heegard, "Partitioned linear block codes for computer memory with 'stuck-at' defects," IEEE Trans. Inf. Theory, vol. 29, no. 6, pp. 831-842, Nov. 1983.

[2] A.Wachter-Zeh and E. Yaakobi, "Codes for Partially Stuck-At Memory Cells," IEEE Transactions on Information Theory, vol. 62, no. 2, pp. 639–654, February 2016.

[3] G. W. Burr et al., "Phase change memory technology," J. Vac. Sci. Technol. B, vol. 28, no. 2, pp. 223–262, 2010.

