
Technische Universität München
Fakultät für Elektrotechnik und Informationstechnik

Lehrstuhl für Medientechnik

Data Compression for
Collaborative Visual SLAM

Dominik Van Opdenbosch, M.Sc. (hons)

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Gerhard Kramer

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Eckehard Steinbach

2. apl. Prof. Dr.-Ing. Walter Stechele

Die Dissertation wurde am 18.04.2019 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 13.07.2019 angenom-
men.

Abstract

State-of-the-art visual Simultaneous Localization and Mapping (SLAM) systems achieve a
level of accuracy that makes them well suited as alternatives to methods relying on expen-
sive hardware, such as laser scanners. Using low-complexity local binary visual features
enables visual SLAM systems to run in real-time on commodity hardware using the input
of inexpensive visual sensors. Incorporating features such as relocalization and loop closure
detection allows for the deployment in large-scale scenarios ranging from buildings up to
city-scale environments and beyond.

However, today’s visual SLAM systems are not yet able to run in real-time and for an
extended period on a mobile device due to their computational complexity, the resultant
battery drain, and the memory consumption when handling large visual maps. This pre-
vents visual SLAM systems to be deployed on robots and mobile devices operating outside
a confined lab environment. To provide accurate location and map information based on
visual SLAM, alternative architectures apart from local processing on the device have to be
investigated.

A promising approach uses cloud computing to outsource the computationally demand-
ing parts of a visual SLAM system. To allow low-latency and real-time capabilities, an edge
cloud can be used that moves the computing power close to the location where it is needed.
In addition, this allows to process, merge, and store visual information about the surround-
ing area simultaneously acquired from multiple nearby clients. This approach requires a
data-efficient exchange of visual information between client and server, a collaborative map-
ping scheme, and the possibility to store and exchange visual maps with neighboring com-
puting edges.

To address these issues, first, this thesis investigates an Analyze-Then-Compress archi-
tecture. In this scheme, the visual information in the form of local binary features is extracted
at the client, compressed exploiting temporal and spatial redundancies, and sent to a server
capable of generating a visual SLAM map. Second, a collaborative mapping scheme is added
to fuse multiple maps from different agents into a joint representation by detecting overlap
based on visual similarity. Third, the issue of exchanging static map information obtained
by a visual SLAM system is investigated. The map size is reduced in a lossless fashion by
exploiting the inherent structure of the map to encode the contained visual information dif-
ferentially. Adding a lossy map compression method that discards potentially uninformative
points further reduces the required map size. Experimental results verify the feasibility and
applicability of the proposed methods.

Kurzfassung

Moderne Systeme zur gleichzeitigen Lokalisierung und Kartierung (engl. Simultaneous Lo-
calization and Mapping - SLAM) erreichen eine Genauigkeit, welche ihnen erlaubt, Verfah-
ren basierend auf teurer Lasersensorik abzulösen. Durch die Verwendung von lokalen bi-
nären visuellen Bildmerkmalen ist es mittlerweile praktikabel, visuelle SLAM Systeme in
Echtzeit auf handelsüblicher Hardware laufen zu lassen. Durch die Verwendung von Kom-
ponenten zur Relokalisierung und Schleifenschließung ist es möglich, diese Verfahren in Sze-
narien, wie beispielsweise in Gebäuden, Städten und darüber hinaus anzuwenden.

Trotzdem sind heutige visuelle SLAM Systeme nicht in der Lage in Echtzeit und für eine
längere Zeit auf einem mobilen Gerät zu laufen. Gründe hierfür sind die Komplexität, der
resultierende Stromverbrauch und der benötigte Speicherplatz zur Archivierung der Karten.
Dies verhindert die Verbreitung von solchen Systemen auf Roboterplattformen und mobilen
Endgeräten außerhalb einer Laborumgebung. Um dennoch entsprechende Systeme realisie-
ren zu können, werden Alternativen zur lokalen Verarbeitung auf dem Gerät untersucht.

Ein vielversprechender Ansatz verwendet hierbei Cloud-Computing um anspruchsvol-
le Berechnungen des Systems auszulagern. Durch die Verwendung einer Edge-Cloud rückt
die Verarbeitung näher an den Ort, an dem die Ergebnisse benötigt werden und verringert
dadurch die Latenzzeit für Echtzeitanwendungen. Zusätzlich erlaubt diese Architektur das
gleichzeitige Sammeln, Verarbeiten und Speichern visueller Informationen von mehreren
Endgeräten. Dieser Ansatz benötigt einen effizienten Austausch von visuellen Merkmalen
zwischen dem Endgerät und dem Server, einen kollaborativen Ansatz zur Kartierung und
die Möglichkeit, Karten zu speichern und mit benachbarten Cloud-Knoten auszutauschen.

Um diese Herausforderungen anzugehen, wird zuerst eine Systemarchitektur unter-
sucht, bei der die visuelle Information in Form von lokalen binären Merkmalen am End-
gerät extrahiert wird. Diese Information wird, unter Ausnutzung zeitlicher und räumlicher
Zusammenhänge, komprimiert und zu einem Server geschickt, welcher daraus eine visuelle
Karte generiert. Zweitens wird das System um einen Ansatz zum Zusammenführen meh-
rerer Karten in eine gemeinsame Repräsentation erweitert. Als Drittes beschäftigt sich die
Arbeit mit dem Austausch von statischen Karten. Die Kartengröße wird dabei verlustlos
unter Ausnutzung der Kartenstruktur komprimiert, indem die enthaltene visuelle Informa-
tion differentiell abgespeichert wird. Durch eine zusätzliche verlustbehaftete Komprimie-
rung, welche potentiell uninformative Kartenpunkte entfernt, kann die Kartengröße weiter
reduziert werden. Experimentelle Ergebnisse verifizieren hierbei jeweils die Machbarkeit der
vorgeschlagenen Methoden.

Acknowledgements

The work presented in this dissertation was carried out as a member of the academic staff at
the Chair of Media Technology (LMT) at the Technical University of Munich (TUM).

First of all, I would like to express my gratitude to my supervisor Prof. Dr.-Ing. Eckehard
Steinbach for giving me the opportunity to be part of the "Navvis II" and "VaMEx-VIPE"
projects. I want to thank Prof. Dr.-Ing. Steinbach for his continuous support and for provid-
ing me numerous opportunities in research and beyond. This includes the supervision of
a summer school course and being a guest lecturer at Tongji University in Shanghai for the
CDHK.

Furthermore, I would like to thank the second examiner Prof. Dr.-Ing. Walter Stechele to
review this thesis and Prof. Dr. sc. tech. Gerhard Kramer for chairing the examination com-
mittee.

I would also like to thank Dr.-Ing. Georg Schroth, Robert Huitl, and Sebastian Hilsenbeck.
Besides being great colleagues, they initially raised my interest in the topic and supported me
during my first steps in academia. On the same note, I would like to thank Dr.-Ing. Dmytro
Bobkov and Adrian Garcea who accompanied me through my time at the chair.

A special thanks goes out to all my colleagues and friends for their support, the many fruit-
ful discussions, and activities in and beyond academia. First and foremost, I would like to
thank Dr.-Ing. Tamay Aykut and Dr.-Ing. Christoph Bachhuber for their valuable feedback on
this thesis. I also want to thank Dr.-Ing. Nicolas Alt, Stefan Lochbrunner, Dr.-Ing. Clemens
Schuwerk, Matti Strese, and Jingyi Xu for creating such an enjoyable atmosphere. I also
would like to thank Dr.-Ing. Anas Al-Nuaimi, Martin Oelsch, and all other colleagues and
students that accompanied me on this journey. I would like to express my sincere thanks to
Dr.-Ing. Martin Maier, Martina Schmidt, Marta Giunta, and Simon Krapf for their adminis-
trative support.

Last but not least, I would also like to thank my family. In particular, my parents for their
support over the years and my grandparents, who are, unfortunately, not able to see the
result anymore.

Dominik Van Opdenbosch Munich, April, 2019

Contents

Notation v

1 Introduction 1
1.1 Major contributions . 3
1.2 Thesis organization . 5

2 Background and related work 7
2.1 Data compression . 7

2.1.1 Fixed-length coding . 8
2.1.2 Variable-length coding . 8

2.2 Visual content description . 10
2.2.1 Local visual features . 10
2.2.2 Global visual features . 15

2.3 Visual SLAM . 16
2.3.1 Visual SLAM systems . 16
2.3.2 Collaborative visual SLAM . 19
2.3.3 Feature selection . 20
2.3.4 Map compression . 21

2.4 Visual content coding . 21
2.4.1 Local processing . 22
2.4.2 Compress-then-Analyze . 23
2.4.3 Analyze-then-Compress . 23

2.5 Cloud architecture . 24
2.5.1 Centralized cloud computing . 25
2.5.2 Edge cloud computing . 26

2.6 Datasets . 27
2.7 Summary . 28

3 Feature coding framework 29
3.1 Problem statement . 29
3.2 System architecture . 29
3.3 Notation . 32
3.4 Summary . 33

i

ii Contents

4 Intra coding and rate allocation 35
4.1 Problem statement . 35
4.2 System architecture . 35
4.3 Feature coding . 37

4.3.1 Intra coding . 37
4.4 Rate allocation . 43

4.4.1 Residual reordering . 43
4.4.2 Feature classification . 44
4.4.3 Rate optimization . 44

4.5 Experimental evaluation . 46
4.5.1 Intra coding . 46
4.5.2 Homography estimation . 51
4.5.3 Rate allocation . 52

4.6 Summary . 56

5 Monocular remote visual SLAM 57
5.1 Problem statement . 57
5.2 System architecture . 57
5.3 Feature coding . 58

5.3.1 Inter coding . 58
5.3.2 Skip mode . 61
5.3.3 Mode decision . 61
5.3.4 Rate adaption . 62
5.3.5 Feedback channel . 63

5.4 Experimental evaluation . 64
5.4.1 Feature coding . 64
5.4.2 Feature selection . 65
5.4.3 Computational complexity . 67

5.5 Summary . 68

6 Stereo remote visual SLAM 69
6.1 Problem statement . 69
6.2 System architecture . 69
6.3 Feature coding . 70

6.3.1 Depth coding . 71
6.3.2 Inter-view coding . 72

6.4 Experimental evaluation . 74
6.4.1 Depth coding . 75
6.4.2 Stereo coding . 76
6.4.3 Mode configurations . 78

6.5 Summary . 81

Contents iii

7 Collaborative visual SLAM 83
7.1 Problem statement . 83
7.2 System architecture . 83
7.3 Map merging . 84
7.4 Joint mapping . 85
7.5 Experimental evaluation . 85
7.6 Summary . 88

8 Map compression for visual SLAM 89
8.1 Problem statement . 89
8.2 System architecture . 90
8.3 Lossless map compression . 92

8.3.1 Intra observation coding . 92
8.3.2 Minimum spanning tree coding . 94
8.3.3 Map point coding . 96

8.4 Lossy map sparsification . 97
8.5 Experimental evaluation . 99

8.5.1 Map compression . 99
8.5.2 Map sparsification . 100
8.5.3 Relocalization performance . 102

8.6 Summary . 104

9 Conclusion and outlook 107
9.1 Conclusion . 107
9.2 Outlook . 108

Bibliography 111

List of Figures 123

List of Tables 125

Notation

Abbreviations

Abbreviation Description Definition

AGAST Adaptive and Generic Accelerated Segment Test page 12
ATC Analyze-then-Compress page 21
ATE Absolute Trajectory Error page 65
BRIEF Binary Robust Independent Elementary Features page 13
BRISK Binary Robust Invariant Scalable Keypoints page 14
CDVA Compact Descriptors for Video Analysis page 24
CDVS Compact Descriptors for Visual Search page 23
CNN Convolutional Neural Networks page 12
CTA Compress-then-Analyze page 21
DSO Direct Sparse Odometry page 17
DTAM Dense Tracking and Mapping page 16
FAST Features from Accelerated Segment Test page 12
FREAK Fast Retina Keypoints page 14
HEP Homography Estimation Precision page 51
IMU Interial Measurement Unit page 18
LBS Location-based Service page 2
LIFT Learned Invariant Feature Transform page 14
LSD Large-Scale Direct page 17
MAV Micro Aerial Vehicle page 1
MPEG Moving Picture Experts Group page 23
MST Minimum Spanning Tree page 92
ORB Oriented FAST and Rotated BRIEF page 14
PnP Perspective-n-Point page 20
PTAM Parallel Tracking and Mapping page 17
RANSAC Random Sample Consensus page 10
SFM Structure From Motion page 16
SIFT Scale Invariant Feature Transform page 11
SLAM Simultaneous Localization and Mapping page 1
SSD Sum of Squared Difference page 12
SURF Speeded Up Robust Features page 11
SVO Fast Semi-Direct Monocular Visual Odometry page 17
VLAD Vector of Locally Aggregated Descriptors page 15
VO Visual Odometry page 1

v

vi Notation

Scalars, vectors and matrices

Scalars are denoted by letters in italic type. Vectors are denoted by lower case letters in bold-
face type. Matrices are denoted by upper case letters in boldface type.

x scalar
x̂ quantized scalar
x vector
X matrix

Subscripts
i feature/observation index
j descriptor entry index
n image index
u map point index

Superscripts
m coding mode
I intra coding mode
P inter coding mode
S skip mode
M multi-view coding mode
D depth coding
T minimum spanning tree coding mode

Symbols
C transmission capacity
d descriptor
dj descriptor element j

H entropy
R measured bits

Nd dimensionality of a descriptor
ND number of bits for depth value coding
Nf number of features per frame
Nr number of reference frames
Nv visual vocabulary size
Nŝ number of quantization bins for the detector response
Nθ̂ number of quantization bins for the keypoint orientation

Nk number of keyframes
Np number of map points

Nh frame height
Nw frame width

pm0 probability of a string entry being zero for coding mode m

σ keypoint scale-space level
θ keypoint orientation
x, y keypoint x and y position
xs, ys keypoint x and y position in the scale-space level

Chapter 1

Introduction

Simultaneous Localization and Mapping (SLAM) is one of the most fundamental problems
in robotics. One of the major driving forces for the development of SLAM solutions has
been the need for reliable localization and perception approaches in applications, such as
autonomous robotic exploration missions and self-driving cars. Although being subject of
research for several decades, SLAM has received a considerable boost with the advent of
inexpensive sensors. In particular, visual cues have become one of the primary input modal-
ities for various SLAM systems. Due to the mass production of affordable, versatile, and
compact visual sensors, initially targeted at the consumer market for smartphones, it is now
possible to equip robots and micro aerial vehicles (MAV) with lightweight optical sensors.
These robotic systems using visual SLAM are capable of exploring the environment and cre-
ating a map while performing localization at the same time. SLAM is also often referred to
as the kidnapped robot problem [13], as the robot has to deduce its position and surroundings
by itself with no additional infrastructure at hand. In outdoor scenarios, the satellite-based
Global Positioning System (GPS) can provide feedback on the absolute location but does
not provide information about the structure of the environment, which is essential to per-
form path planning and facilitate collision avoidance. However, many possible application
scenarios, such as urban canyons, indoor spaces, or even other planets, are considered as
GPS-denied environments and used to require additional costly infrastructure for localiza-
tion. The list of available solutions ranges from rather low-cost Wi-Fi-based approaches,
which allow for room-level accuracy, up to cost-intensive radar-based methods providing
centimeter-accuracy. However, many approaches provide no information about obstacles.

Thanks to almost four decades of research on estimating the motion from visual infor-
mation [14], [15], there exists a broad variety of algorithms ranging from visual odometry
(VO), which estimates the motion between frames, up to fully-fledged visual SLAM sys-
tems, which build a globally consistent map of the environment [15], [16]. In addition to
inexpensive visual sensors, three essential aspects have fueled the usage of visual SLAM in
the past: First, recent visual SLAM systems have achieved a high level of accuracy in the
sub-centimeter range. Second, state-of-the-art frameworks achieve real-time capabilities on
desktop computers. Third, they can map and handle large-scale environments efficiently.
With all these requirements fulfilled, current research focuses on collaborative aspects in
multi-agent scenarios and distributed SLAM systems.

1

2 Chapter 1. Introduction

In collaborative scenarios, multiple agents equipped with visual sensors jointly explore an
unknown environment. An exploration team can consist of different types of agents such as
aerial vehicles, humanoid robots, rovers, or mobile devices carried by a human. Using mul-
tiple agents allows to efficiently explore unknown environments by splitting the target area
into individual mapping tasks with each one being assigned to a team member. In the case of
a heterogeneous agent team, the resulting map can capture the environment from different
perspectives, such as ground-based views taken from a mobile device or in the form of aerial
views taken by a drone. Besides, multi-agent teams can be used to provide certain fault
tolerance in critical robotic exploration missions allowing to take over the task of a failed
agent by another team member. Moreover, the different maps generated by the individual
team members can be exchanged, which allows for creating a global map and enables other
agents to benefit from previously mapped areas as prior knowledge. The map information
can be exchanged with other team members or further processed at a centralized instance
depending on the architecture of the distributed SLAM system.

There is a myriad of application scenarios for multi-agent teams. A large-scale aerial
survey allows for crop monitoring, whereas ground-based vehicles could augment the data
with information about the soil conditions. Archiving the data acquired from observing ar-
eas over a longer period allows documenting its evolution and studying the morphology of
objects and nature over time. Rapid exploration of a disaster area enables first responders to
obtain an overview of the situation and take appropriate action. Possible scenarios include,
but are not limited to, natural disasters, such as earthquakes or floods, but also human-made
disasters, such as fires. Providing an initial map of the environment allows the rescue forces
to identify regions where survivors are likely to be found quickly.

Besides the application in robotics, collaborative visual exploration can also aid personal
navigation. While we spend most of our time indoors, where no GPS signal is available, it is
indeed beneficial to have a position estimate available on our smartphone to enable location-
based services (LBS), such as navigation instructions. Similar to multi-agent robot teams, a
crowd-based approach could be used to gather information from multiple users using smart-
phone cameras. A globally consistent representation of a building can be obtained by fusing
the partial information into a common map. This map can be enriched with further infor-
mation such as semantic information in the form of labels for different rooms and objects. In
return, these maps can be used to enable localization and other LBS for new users. The maps
can be kept up-to-date by including further crowd-based visual information. Local maps of
the environment can be captured by multiple users, transmitted to a server, and successively
combined to obtain an up-to-date digital twin of the building.

Another application scenario that is gaining attention is the domain of virtual reality ap-
plications, where inside-out tracking enables head-mounted displays to get rid of external
sensors to track the device position. Until now, external infrared sensors are often employed
for determining the position. A significant drawback is the limited space that the external
sensors can cover. Using built-in wide-angle cameras allows deducing the device position
by observing the environment using visual SLAM. This allows overcoming the restriction to
single rooms imposed by the use of the external sensors.

1.1. Major contributions 3

However, there are still some problems and room for improvement, especially when con-
sidering practical application scenarios. While visual SLAM algorithms reach maturity in
terms of accuracy, the computational complexity, and hence the battery life is still an imped-
iment when it comes to mobile and embedded applications. For example, exploring larger
areas with a micro aerial vehicle requires returning to the base station and charging the bat-
teries several times, resulting in considerable delay. Also, embedded computers are often
restricted regarding their onboard memory, thus prohibiting large maps. Therefore alterna-
tives to running the visual SLAM on the client have to be investigated.

When considering a typical indoor robotic application, the fundamental appearance of a
building interior is rather static. While there might be several movable objects, most parts
of the infrastructure, such as the floor, the ceiling, and heavy furniture remain located at the
same position with the same visual outline during the typical operation time of a robot. This
information can be collected after the construction of the site during an initial mapping. This
information can be made available as prior knowledge in the form of a visual SLAM map to
improve the task performance of other robots. Moreover, this map can be updated with the
robots adding new visual information during their operating hours. This updated map can
then again be redistributed to other robots operating in the same environment.

These are only two examples that serve as the initial motivation to further investigate the
efficient data exchange and the collaborative aspect in the context of visual SLAM applica-
tions. In the following, the key contributions of this thesis are listed.

1.1 Major contributions

The focus of this thesis is on the efficient exchange of information in the context of collab-
orative feature-based visual SLAM systems. The necessary information can mainly be ex-
changed at three different representation levels: First, the visual information can be trans-
ferred between team members in the form of image information, e.g., as a video stream. Sec-
ond, the information can be transmitted in the form of an image abstraction, e.g., a sequence
of local features. Third, local maps created by the visual SLAM system can be shared among
the team members. As the first two approaches require a visual SLAM system running in a
remote environment to build a map using the visual information, these approaches are re-
ferred to as remote visual SLAM throughout the text. When running a visual SLAM system
in a remote environment, such as cloud-based infrastructure, a natural extension is to use
the information collected by multiple agents in a collaborative architecture. The concepts,
application scenarios, and the key challenges of visual information exchange, remote visual
SLAM, collaborative visual SLAM, and exchanging map information addressed in this thesis
are stated in the following.

4 Chapter 1. Introduction

Visual feature exchange: Providing accurate results for any demanding computer vision
task on energy-constrained devices is possible by outsourcing the task to a powerful server.
In this thesis, an approach where only the local visual features are extracted, compressed, and
transmitted to the server is investigated. To this end, an efficient compression framework for
local binary features and global image signatures is introduced. In addition, temporal and
spatial correlations are exploited. Approaches for information selection complete the frame-
work.

Remote visual SLAM: In order to allow visual SLAM to run on energy-restricted devices,
the computationally demanding parts are outsourced to a more powerful server, possibly
located in an edge cloud. To this end, a system architecture allowing for monocular remote
visual SLAM is proposed incorporating the aforementioned feature compression framework.
This system architecture is then extended to support stereo or depth sensor setups in order
to provide metric scale information for the visual SLAM maps.

Collaborative visual SLAM: In this work, a centralized architecture is implemented to col-
lect visual information from multiple agents at a central instance. This scheme allows join-
ing the individual maps from different agents into a more comprehensive global map based
on overlap detection using visual similarities. Further applications employing the resulting
map, such as the orchestration of an exploration team, can be implemented on top.

Map exchange: This thesis introduces a lossless approach for compressing and storing the
visual information of a static visual SLAM map by exploiting visual similarities and geo-
metric constraints inherent in the map structure. Furthermore, a minimization problem is
formulated to store only useful map points. This measure of usefulness is based on the costs
in bits for storing a point in combination with a visibility metric. The proposed lossy opti-
mization problem is tightly coupled with the compression scheme to store only information
that achieves a good compression ratio and is presumably useful for a relocalization task.

This thesis contains the following contributions to address the aforementioned challenges:

1. Joint compression of local binary features and their Bag-of-Words representation.

2. Flexible rate allocation scheme for the proposed compression framework.

3. Monocular remote visual SLAM, including a selection of binary local visual features.

4. Metric scale remote visual SLAM, including depth value and stereo feature coding.

5. Collaborative remote visual SLAM using a centralized system architecture.

6. Rate-aware map compression exploiting visual dependencies in a visual SLAM map.

1.2. Thesis organization 5

1.2 Thesis organization

This dissertation is structured as follows: In Chapter 2, the related work, and the relevant
background are discussed. An overview of the feature coding framework is presented in
Chapter 3. The concept for a joint compression of local binary features and their corre-
sponding Bag-of-Words representation alongside a method for rate allocation is introduced
in Chapter 4. In Chapter 5, a monocular remote visual SLAM system exploiting temporal re-
dundancies between features from successive frames and a feature selection are introduced.
Feature coding methods for both stereo and depth information to facilitate metric scale vi-
sual SLAM are presented in Chapter 6. An extension of the remote visual SLAM framework
to a centralized collaborative approach is detailed in Chapter 7. A method for efficient map
compression and sparsification is presented in Chapter 8. The dissertation is concluded in
Chapter 9. Parts of this thesis have been published in [1]–[5].

Chapter 2

Background and related work

This chapter presents an overview of the relevant background and the related work for this
thesis. Section 2.1 provides the prerequisites on data compression. Section 2.2 introduces
relevant methods for visual content description. Concepts for distributed, collaborative vi-
sual SLAM, and map compression are discussed in Section 2.3. Related work addressing the
compression of the visual information and especially local visual features is reviewed in Sec-
tion 2.4. Cloud-based architectures are discussed in Section 2.5 and employed datasets are
introduced in Section 2.6. For an in-depth discussion of the individual topics, the interested
reader is referred to the provided references.

2.1 Data compression

Information theory lays the foundation for measuring information contained in symbols pro-
duced by a source. In his seminal work on information theory [17], Claude E. Shannon de-
fined the entropy H as an appropriate measure for the information. To quantify the entropy,
a discrete, memory-less source is modeled by a random variableX with an associated alpha-
betAx = {α1, α2, . . . , αNx} containing a total number ofNx possible symbols. An occurrence
probability pq for each symbol αq ∈ Ax is given by the associated probability mass function
fX(αq) = P (X = αq) = pq. Shannon’s requirements regarding the definition of the entropy
were:

1. H has to be defined continuously in pq.

2. If all symbols have the same probability pq, thenH should monotonically increase with
the number of symbols produced by the source.

3. If a decision is reformulated into two successive decisions, the originalH should be the
weighted sum of the individual values of H .

With all these requirements, Shannon formulated the entropy as the weighted sum of the
self-information I(αq) = − log2(pq) over all the symbols produced by a discrete random
variable X as:

H(X) = −
Nx∑
q=1

pq log2(pq). (2.1)

7

8 Chapter 2. Background and related work

When using the logarithm to base 2, the unit is defined as bits. The entropy hereby defines
the theoretical lower bound for the number of bits that are needed to transmit a symbol
produced by the source. This theoretical limit can be approached using different methods,
where the most important ones used in this work are introduced in the following. Consid-
ering the notation, the entropy is denoted with H , whereas the experimentally measured
rate is denoted by R with equal subscript and superscripts. For the sake of readability, the
dependency of H(X) from the random variable X is dropped.

2.1.1 Fixed-length coding

A straightforward way to encode symbols from a source with uniform probability distri-
bution is fixed-length coding. The theoretical number of bits necessary to transmit a symbol
produced by a random variable with uniform probability pq = 1

Nx
is given by

H = −
Nx∑
q=1

pq · log2(pq) = −Nx ·
1

Nx
· log2(

1

Nx
) = log2(Nx). (2.2)

However, most sources in practical applications produce non-uniform probability distribu-
tions. Using a fixed-length code implies that only an integer number of bits can be transmit-
ted resulting in a loss of R−H = dlog2(Nx)e− log2(Nx) bits per symbol, as Nx is usually not
presentable as Nx = 2i with i being a non-negative integer number. The difference is often
referred to as the code redundancy. The input symbol is mapped onto a binary code of fixed
length at the encoder, transmitted, and mapped back to its original symbol at the decoder
using a common codeword table. The key advantage of fixed-length coding is that it can be
implemented with very low complexity resulting in a fast encoding and decoding process.

2.1.2 Variable-length coding

Arbitrary probability distributions of the source symbols can be exploited by variable-length
coding. The process of transforming symbols produced by a random variable into a sequence
of bits close to the theoretical limit given by the entropy is also referred to as entropy cod-
ing. Intuitively, symbols with higher probability should result in a shorter representation,
whereas very unlikely symbols should result in a longer representation. As the short sym-
bols are used more often, the average codeword length (i.e., the average number of bits) is
reduced. The number of bits for encoding a symbol should behave proportionally to the
self-information of the symbol.

A prominent example is Huffman coding [18]. The algorithm uses a tree structure to assign
the shortest bit representation to the likeliest symbol. An important property of Huffman
and many other codes is that no bit representation of a symbol occurs at the beginning of a
representation of another symbol (prefix-free code). A drawback of Huffman coding is that
it only performs optimally if all probabilities are powers of two as pq = 2−i with i being
a non-negative integer number. In addition, Huffman codes do not perform very well for
symbols with a self-information smaller than 1 bit (i.e., pq > 0.5), as it requires at least one bit

2.1. Data compression 9

for the most probable symbol. The aforementioned drawbacks can be overcome by grouping
several symbols in a block and encode them jointly.

Another approach of entropy coding is arithmetic coding [19]. Here, a message is repre-
sented as a real-valued number between zero and one. The basic idea is to split the interval
between zero and one into sub-intervals proportional to the probabilities of the source sym-
bols. The symbol arriving at the encoder defines, which sub-interval is considered next.
Now, this interval is treated as the current interval and is split again into different sub-
intervals proportional to the source symbol probabilities. By transmitting a real-valued num-
ber falling into this interval, the decoder can uniquely reconstruct the original sequence of
symbols. Hence, arithmetic coding is theoretically able to encode a message into a real-
valued number with arbitrary precision between zero and one. This approach is usually
more efficient than Huffman coding. In practical applications, however, real-valued num-
bers can only be represented with a limited precision, which requires renormalization tech-
niques to be applied. Also, using floating-point arithmetic adds to the complexity of the
algorithm resulting in longer encoding and decoding times compared to fixed-length and
Huffman coding.

Regardless of the entropy coding method, the probability tables have to be either fixed
beforehand or measured during the encoding process using probability adaption. The latter
determines the individual probabilities based on the already encoded symbols. The pro-
cess is started with the same probability tables at the encoder and the decoder. Typically,
uniformly distributed probabilities are assumed if no further prior knowledge is available.
Then, the probabilities can be simultaneously adapted to the underlying data at both the en-
coder and the decoder based on the observed symbols. However, this technique comes with
two drawbacks. First, a single transmission error renders the remaining data undecodable
as the probability tables are not synchronized between the encoder and the decoder. Second,
this adds computational overhead as the probabilities have to be updated regularly to benefit
from the adapted probability estimates.

To complete the list, a recent promising development in entropy coding is the approach
of asymmetric numeral systems introduced by Duda et al. [20]. In general, to add a symbol
αq ∈ {0, 1} from a binary source with uniform distribution to a natural number x, the bit
representation is shifted and the bit is added in the least significant position resulting in the
new number x′ = 2x + αq. The information added is log2(x) + log2(1

0.5) = log2(x
0.5). The

asymmetric numeral systems idea is based on the assumption that the probabilities are not
uniformly distributed. In consequence, another rule has to be found to calculate x′ based on
x and αq, such that the added information is approximately log2(x) + log2(1

pq
) = log2(xpq),

resulting in x′ ≈ x
pq

. The authors claim to consistently outperform Huffman coding, as well
as arithmetic coding in terms of speed and coding efficiency.

Throughout this thesis, fixed-length coding is usually employed for properties, where no
additional information about the probability distribution is exploited, and a uniform distri-
bution is assumed, if not noted otherwise. For all symbols with different probability dis-
tributions, arithmetic coding without probability adaption is used for encoding. However,
both approaches can be easily replaced by any other coding method.

10 Chapter 2. Background and related work

2.2 Visual content description

A fundamental building block of many computer vision algorithms is the ability to compare
and associate visually similar parts of images. Although there exist algorithms that employ
the raw pixel intensities, most computer vision algorithms use image abstractions, such as
visual features. In content-based image retrieval, global features are often used to describe the
visual outline of an image. However, a global representation cannot capture local patterns
or relations among different image parts. Instead, local features are used to describe salient
parts of the images individually. Generally speaking, having a compact representation of
well-localized interest points in an image allows matching points across multiple images de-
picting the same object in the scene. This forms the basis for many applications in computer
vision ranging from geometric verification in the context of content-based image retrieval up
to 3D reconstruction techniques and visual SLAM.

2.2.1 Local visual features

Extracting local features in an image can usually be described as a two-stage process. First,
salient parts of the image have to be identified. The outcome of a local feature detector is
a keypoint that describes the location, spatial extent, and orientation of a point of interest.
After local feature detection, the keypoints are fed into the local feature descriptor, which
tries to translate the visual information contained in a local patch around the keypoint into a
fixed-length representation. In order to provide good matching capabilities, both the detec-
tor and descriptor have to fulfill certain requirements [21]:

Brightness: Invariance to lighting due to changes in the environment or camera
settings, such as exposure times.

Scale: Invariance to changes in scale due to the movement of the camera or
the objects in the scene.

Locality: The keypoint should be localized as accurately as possible, and the de-
scriptor should only consider a small patch around the keypoint.

Rotation: Invariance to in-plane rotations.

Viewpoint: Stable detection and description in the presence of substantial view-
point changes.

Quantity: A sufficient amount of local features should be extracted in order to
allow for the use of random sample consensus (RANSAC) schemes to
increase the robustness.

Distinctiveness: Similar patches should result in similar feature descriptors. Dissimilar
patches should be placed further apart in the feature space.

Efficiency: Feature extraction should be real-time capable.

Storage: Memory footprint per feature should be as low as possible in order to
allow for the storage of large-scale visual information.

2.2. Visual content description 11

In the following, the most important fundamental concepts of local feature detectors and de-
scriptors are introduced. In particular, binary local feature detectors and descriptors, which
are used throughout this thesis because of their small memory footprint and real-time capa-
bilities, are highlighted in the following. For more details on the evaluation and comparison
of different algorithms, the reader is referred to the related work [21]–[27].

2.2.1.1 Local feature detectors

Traditional hand-crafted feature detectors can be roughly categorized into three categories:
edge, blob, and corner detection. There exists a more recent class of feature detectors, which
are learned features trained beforehand on a set of images to produce keypoint locations using
machine learning approaches.

Edge detectors: The first category is the class of edge detectors, which are used to detect mostly
discontinuities in surfaces, boundaries, or changing material properties of objects observable
within an image. While edge detectors, such as Sobbel-Feldman [28] and Canny [29], have
been around for more than five decades and are well suited for applications such as iden-
tifying boundaries for image segmentation, the keypoints are not well localized in terms of
position along the edge tangential to the gradient direction.

Blob detectors: The representatives of the second category are the blob detection algorithms,
where the goal is to identify image regions, or more specifically interest points, describing re-
gions with constant brightness properties. One of the most prominent local features is prob-
ably the Scale Invariant Feature Transform (SIFT) [30], [31], which is a combination of both
a feature detector and descriptor. The detection stage of SIFT achieves the desired property
of scale invariance by using a scale-space representation, namely the Difference of Gaussians
(DoG). The difference of Gaussians can be interpreted as an approximation to applying the
Laplacian operation to a Gaussian filtered image [32]. The Laplacian operator is commonly
used to create strong responses for blobs of a typical radius associated with the currently
considered scale-space level. In SIFT, the locality is achieved by calculating sub-pixel accu-
rate positions using a three-dimensional quadratic function fitted to the DoG scale-space.
Subsequently, features detected at edges are rejected as they tend to be poorly localized. Fi-
nally, the dominant orientation is estimated from a gradient histogram around the keypoint.
The quantity of local features is usually dependent on a detection threshold, which can be
adjusted for the desired purpose and depends on the image properties, such as the contrast.
Although the SIFT detector provides accurate keypoints, it suffers from the required com-
putation time. This issue was addressed by the feature detection stage of the Speeded-Up
Robust Features (SURF) [33]. It employs the Fast-Hessian detector, which uses the determi-
nant of the Hessian matrix to determine the position and scale of a keypoint. The entries of
the Hessian matrix are obtained by a convolution of the Gaussian second-order derivatives
with the image at a possible keypoint position. In order to speed up the convolution, box fil-
ters are used in combination with integral images to approximate the second-order Gaussian
derivative calculation.

12 Chapter 2. Background and related work

Corner detectors: The third category is the class of corner detectors, where preferably only
points located at sharp corners are detected. Many corner detection algorithms are based
on the property of two dominant gradient directions present at corner points. Moravec [14]
proposed to use small windows to calculate the sum of squared differences (SSD) for differ-
ent directions (horizontal, vertical, two diagonals) with respect to a window centered at the
point of interest. If the current point is located on a planar surface with constant brightness,
then the SSD values for all displacements are relatively small. If located at an edge, the SSD
along the edge direction is small, and if located at an isolated corner point, the SSD in all di-
rections is relatively high. This basic concept was extended by Harris et al. [34] by evaluating
the eigenvalues of a second-moment matrix built from the partial derivatives, thus avoiding
the evaluation of the shifted patches. Another example for corner detectors is the Features
from Accelerated Segment Test (FAST) by Rosten et al. [35]. They proposed to evaluate pixels
located on a Bresenham circle around the potential keypoint position. A corner is detected if
N contiguous pixels are either darker or brighter then the central pixel by a previously de-
fined margin. A speed-up is achievable by evaluating not all pixels on the circle but evaluate
first a minimal subset of pixels that is necessary to fulfill the corner conditions. Additionally,
they proposed to improve this approach by applying machine learning to the problem. They
generated a decision tree that quickly identifies corners, given the pixels on the circle. An
improvement that is able to adapt to the specific scene structure was proposed as Adaptive
and Generic Corner Detection Based on the Accelerated Segment Test (AGAST) [36].

Learned detectors: The representatives of the fourth category are the recently proposed
learned detectors. A distinction between algorithms that decide based on hand-crafted de-
tectors whether a keypoint is likely to be useful and algorithms that return a new keypoint
can be made. Algorithms telling the usefulness based on hand-crafted detectors include the
previously mentioned machine learning parts of FAST and AGAST, intuitive properties such
as the detector response [37], a random forest trained on the descriptors [38] or Convolu-
tional Neural Networks (CNN) trained on image patches [39]. Recently, different algorithms
have been proposed to directly extract keypoints from the images based on learned convo-
lutional filters [40], piece-wise linear regression [41], and a CNN-based decision whether an
image patch is centered on a good keypoint [42], [43].

2.2.1.2 Local feature descriptors

Local feature descriptors can roughly be categorized into three categories: Real-valued, bi-
nary, and learned feature descriptors. Similar to the feature detectors, the first two classes are
typically hand-crafted descriptors, whereas the third category includes learned descriptors. The
differentiation between real-valued and binary descriptors is typically based on the output
of the algorithm. A local image patch located at a keypoint position with an appropriate
scale, orientation, and size is analyzed according to the employed algorithm. The result is
stored as a fixed-length vector representation describing the local neighborhood of the key-
point. The entries of this representation can be real-valued numbers or the outcome of a set
of binary decisions.

2.2. Visual content description 13

Real-valued descriptors: Probably, the most famous representative of real-valued descriptor
algorithms is the descriptor part of SIFT. It achieves brightness invariance by calculating its
128 descriptor entries based on a histogram of the gradients located around a keypoint. Us-
ing second-order statistics yields improved invariance towards changing lighting conditions
compared to first-order statistics such as the raw intensity values provided by the sensor. Ac-
cording to experimental evaluation [31], SIFT features achieve a matching accuracy of above
50% at a 50-degree viewpoint change. Both the distinctiveness and matching performance
have been validated in many experimental evaluations, such as [23], [25]. However, SIFT
has two major drawbacks, which are the computational efficiency and storage requirements.
The time required to detect and describe SIFT features can range up to several hundred mil-
liseconds per image. This prohibits the usage in real-time applications where tens of images
are processed per second. Regarding the storage requirements, a SIFT descriptor without
keypoint information has 128 floating-point entries, which require 512 bytes and accumulate
when detecting several hundred or thousand features per image. In order to address the two
issues, alternative descriptors have been proposed. A famous example is the SURF descrip-
tor part [33], which is based on similar concepts as SIFT but introduces several approxima-
tions to speed up the description process. As a result, SURF requires less computation time
and stores only 64 floating-point descriptor entries.

Binary descriptors: Another category of local features are the binary descriptors, which are
typically based on pairwise tests between smoothed pixel intensities. One of the first pro-
posed algorithms is the Binary Robust Independent Elementary Features (BRIEF) [44] de-
scriptor, which produces a Nd dimensional binary vector d ∈ {0, 1}Nd as local visual repre-
sentation. The individual descriptor entries dj with j ∈ {z ∈ N | 1 ≤ z ≤ Nd} are derived
from a set of intensity comparisons between pixel intensities I(x1

j , y
1
j) and I(x2

j , y
2
j) centered

around a keypoint as

dj =

1 if I(x1
j , y

1
j) < I(x2

j , y
2
j)

0 if I(x1
j , y

1
j) ≥ I(x2

j , y
2
j),

(2.3)

where x1
j , y

1
j and x2

j , y
2
j denote the pixel locations for the test pair j extracted from the im-

age I . Gaussian smoothing is applied prior to the pixel tests to reduce the pixel noise. The
set of pixel tests is obtained beforehand from sampling an isotropic Gaussian distribution
around the central pixel. The approach of using pairwise pixel tests turned out to be very
successful and comes with a great advantage in terms of computation speed due to its sim-
plicity. In addition to the computational efficiency, the binary representation allows for a
rapid distance calculation between feature vectors using the Hamming distance. Modern
CPUs feature specific instructions that allow evaluating the Hamming distance between two
vectors with hardware acceleration. Large-scale retrieval can be facilitated due to the fact
that each binary descriptor (typically NBRIEF

d = 256) requires only 32 bytes to be stored and
can be efficiently retrieved by using algorithms such as Locality Sensitive Hashing [45].

While the BRIEF features laid the foundation for many efficient binary local features, they
come with several drawbacks. The main limitation is the missing invariance towards scale
changes and rotation, which has been addressed by its successors, such as Oriented FAST

14 Chapter 2. Background and related work

and Rotated BRIEF (ORB) [46] features. ORB uses the FAST feature detection in combina-
tion with a scale-space representation and an orientation estimation based on the intensity
centroid. The orientation can be used to rotate the pairwise pixel test pattern accordingly.
In addition, the authors proposed a greedy algorithm to determine the NORB

d = 256 pair-
wise pixel tests instead of sampling. The pixel test candidates are sorted according to their
mean value and their degree of correlation compared to already selected pixel tests. Ideally,
the individual pixel tests feature a probability of p0 = p1 = 0.5 for the binary symbols and
are uncorrelated to any other test to capture as much information about the local patch as
possible.

Another representative of binary descriptors is the Binary Robust Invariant Scalable Key-
points (BRISK) algorithm [47]. BRISK employs the AGAST detector with a scale-space repre-
sentation but additionally refines the scale of a keypoint between the octaves. The sampling
points for the pixel tests are located on concentric circles centered at the keypoint. Long-
distance sampling point pairs are used to estimate the orientation of the keypoint, and short-
distance pairs are used to build the descriptors by comparing the intensities resulting in a
binary descriptor of size NBRISK

d = 512.
A slightly different approach for determining the sampling pattern is used by the Fast

Retina Keypoints (FREAK) [48] algorithm. Inspired by the human visual system, the authors
proposed to mimic the retinal ganglion cell distribution and their receptive fields in the pixel
test sampling pattern. The result is a binary descriptor of size NFREAK

d = 512.

Learned Descriptors: While the aforementioned approaches are hand-crafted to be invari-
ant against the effects mentioned in the beginning, the question arises whether it is possi-
ble to learn a compact description. This learned descriptor representation has to ensure that
matched local features are co-located in the feature space regardless of different perspectives
or image perturbations. With the advent of CNNs, first approaches have been proposed
to extract meaningful patch representations such as MatchNet [49], DeepCompare [50], de-
scriptors learned using siamese networks [51], or a Learned Invariant Feature Transform
(LIFT) [43]. Recently, deep-learned descriptors are specifically optimized for large-scale lo-
calization tasks [52]. An overview of this nascent technology and the evolution from hand-
crafted to learned descriptors is given in [53].

2.2.1.3 Discussion

Figure 2.1 shows a comparison of the time and storage requirements of common real-valued
and binary feature description algorithms. The keypoints for all descriptors were provided
using the BRISK feature detector part and selecting the 1k best features according to the de-
tector response. The experiment was conducted using the MH01 sequence of the EuRoC
dataset [54] using OpenCV 3.4.1 [55] feature implementations with their default parameters
on an Intel Core i7-7700 CPU running at 3.60 GHz. While this evaluation does not provide
details about the matching performance, it demonstrates that SIFT and SURF features are not
suitable for large-scale and real-time applications due to the computation time and storage

2.2. Visual content description 15

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544
descriptor size in bytes

0

10

20

30

40

50

d
es

cr
ip

to
r

co
m

p
u

ta
ti

o
n

 t
im

e
in

 m
s

p
er

 f
ra

m
e

SIFT
SURF
ORB
FREAK
BRISK

Figure 2.1: Comparison of different feature descriptors with respect to their size and the time required
to compute 1k local descriptors. Keypoints were provided by the BRISK feature detector using the
top features according to their detector response.

requirements. Although there are some optimized implementations available [56], [57], they
further introduce approximations or restrict the algorithm to certain hardware.

2.2.2 Global visual features

Global image signatures are often used in content-based image retrieval to identify possible
matches from a vast reference database quickly. Afterward, geometric verification using lo-
cal features can be carried out to validate the result or to re-order the list of retrieved matches.
A common approach for global image signatures is to aggregate the variable number of lo-
cal features into a fixed-length representation. A prominent example is the Bag-of-Words
model [58], where the feature space is first clustered using k-means in an offline procedure.
The cluster centers, also denoted as visual words, are used as representative feature descrip-
tors forming a visual vocabulary. Each feature in an image is quantized to the nearest visual
word, and subsequently, the number of occurrences (term frequency) weighted with the im-
portance (inverse document frequency) is aggregated into a histogram thus forming a global
image signature. While local features provide the robustness against viewpoint changes,
brightness differences, rotation, and scaling, this pooling approach provides additional ro-
bustness against partial occlusion and different fields-of-view. A fast retrieval can be facili-
tated using the inverted index structure. Here, only images featuring a similar set of visual
words have to be traversed using a tree structure. An alternative global image represen-
tation named Vector of Locally Aggregated Descriptors (VLAD) was proposed by Jégou et
al. [59], [60] and several improvements have been suggested [61], [62], [6], [7]. In contrast

16 Chapter 2. Background and related work

to Bag-of-Words, where visual words are counted, a VLAD descriptor is formed by storing
the sum of the residuals, which is the difference vector between a feature descriptor and
its closest visual word. The result is a Nv · Nd dimensional vector, where Nv denotes the
number of cluster centers (equivalent to the visual words in the context of Bag-of-Words)
and Nd the dimensionality of the local feature. Subsequent dimensionality reduction tech-
niques, such as Principal Component Analysis, allow for a compact image representation.
This approach was integrated into CNN architectures as an additional layer by interpreting
the output of the CNN as a set of descriptors and feeding this representation into a so-called
NetVLAD layer [63]. Another VLAD-related technique is the image description using Fisher
Vectors [64], where a Gaussian Mixture Model is fitted to the local descriptors. Both VLAD
and Fisher vectors contain information about the distribution of the descriptor entries for the
features assigned to a cluster center.

2.3 Visual SLAM

2.3.1 Visual SLAM systems

The term visual SLAM refers to the problem of simultaneously estimating the position and
a map of the surroundings by using primarily the information obtained by one or multiple
visual sensors. Visual SLAM keeps track of a globally consistent map of the environment
allowing for relocalization or loop-closing to reduce drift [15]. Visual odometry, on the other
hand, provides only a locally consistent pose estimate relative to the last frame. Another
important term in this context is Structure-from-Motion (SFM), where a three-dimensional
representation of a scene is estimated from multi-view image information. However, SFM
techniques usually are not required to run in real-time, the input images must not be an or-
dered image sequence, and it usually scales better to larger environments such as a city or
even a planet-level scale. This is partly due to the relaxed processing time and due to the
possibility of using arbitrary images from different crowd-based sources, such as Flickr [65].
In this work, the focus is on real-time visual SLAM systems, which can be categorized ac-
cording to four key properties [66], [67]:

Front-end: Direct vs. indirect

Back-end: Filtering vs. bundle adjustment

Density: Dense vs. sparse

Sensor: Monocular, stereo, depth, IMU, ...

Front-end: First, the visual SLAM systems can be differentiated based on the information
fed into the system. This describes how visual information is extracted and associated with
the visual SLAM front-end. A visual SLAM approach can either be direct or indirect. While
indirect methods use an intermediate image abstraction, such as local features or templates
extracted from feature patches, the direct methods employ the information contained in the
raw pixel intensities by minimizing the photometric error between neighboring frames. Di-
rect methods, such as Dense Tracking and Mapping (DTAM) [68], are also referred to as

2.3. Visual SLAM 17

advantages disadvantages

direct + no image abstraction
- susceptible to brightness variations
- prone to image distortions

indirect + compact visual information
- additional feature extraction
- ignores image information

Table 2.1: Advantages and disadvantages of direct and indirect SLAM approaches.

appearance-based approaches [15]. A recent representative of indirect methods is ORB-
SLAM2 [69], [70], which is a SLAM framework capable of parallel tracking and mapping
using local binary ORB features [46]. There are also hybrid forms using both direct and in-
direct methods such as the Fast Semi-Direct Monocular Visual Odometry (SVO) [71], [72]
approach. The advantages and disadvantages between direct and indirect methods are sum-
marized in Table 2.1.

Back-end: Next, a categorization can be made based on the method used to calculate the
current camera pose. The estimation of the pose based on the coherences of sensor inputs
detected by the front-end is often referred to as state estimation or, more generally, as the vi-
sual SLAM back-end. The predominant approaches are filtering-based methods and graph-
based methods [66]. The first class uses algorithms such as Kalman Filters or Extended
Kalman Filters to estimate the current position and state. Examples are MonoSLAM [73],
[74] or the Multi-State Constraint Kalman Filter [75]. Visual SLAM systems belonging to the
optimization-based approaches typically use a subset of frames, so-called keyframes, to build
the map and perform bundle adjustment using nonlinear least-squares optimization on a
graph structure. Instead of using global bundle adjustment, which quickly becomes infea-
sible with an increasing number of map points and keyframes, windowed optimization is
often employed to ensure constant time visual SLAM [76]. One of the important represen-
tatives of this class introducing the concept of splitting the tracking and map building into
different threads is Parallel Tracking and Mapping (PTAM) [77]. This concept decouples the
graph optimization back-end from the tracking front-end, thus allowing continuous tracking
without blocking the construction of the map.

Density: Additionally, a categorization based on the reconstruction density can be made.
Dense methods, such as DTAM, try to reconstruct a comprehensive 3D model of the envi-
ronment based on the visual information from every pixel, whereas sparse methods only
operate on a subset of image points to create 3D points. In between, there are some direct
approaches such as Large-Scale Direct SLAM (LSD SLAM) [78] trying to reduce the complex-
ity by employing only a subset of pixels, which results in a semi-dense representation. Some
methods, such as Direct Sparse Odometry (DSO) [67], combine the direct with the sparse ap-
proach trying to use the raw image information and keep the complexity reasonable. Image
points with high gradients or well localized corner points are usually preferred for determin-
ing the sparser subset of image points. The main advantages and disadvantages of methods
using different densities are summarized in Table 2.2.

18 Chapter 2. Background and related work

advantages disadvantages

sparse
+ computational complexity
+ compact map

- ignores image information

dense
+ uses all information
+ dense point-cloud

- complexity
- map size

Table 2.2: Advantages and disadvantages of sparse and dense SLAM approaches.

Sensor: The last categorization can be made based on the used sensor suite. The input can
range from monocular [67], [69], [78] and stereo [70], [79], [80] over multi-camera setups [81]
to panoramic cameras [82], [83]. Some systems support additional input, such as data from
an Inertial Measurement Unit (IMU) [84]–[86]. In addition, combinations with sensors such
as range scanners, infrared, ultrasonic, global navigation satellite systems, or other modali-
ties are possible.

A categorization of visual SLAM algorithms depending on the visual information and map
representation, as well as the underlying back-end methods, is illustrated in Figure 2.2. In
order to pick a suitable approach for a collaborative visual SLAM system, not only the accu-
racy in terms of estimated trajectory, but also the input to the visual SLAM system, as well as
the internal map representation is of interest. Most related works concerning collaborative or
distributed SLAM systems are based on both indirect and sparse visual SLAM methods. One
of the main reasons is the required data rate to exchange visual cues or the map information.
Direct dense approaches require the raw pixel intensities to be available, which leads to a
considerable amount of data to be transmitted for running the visual SLAM task at a remote
site. Indirect sparse methods on the other hand usually require only a set of local features
extracted at a limited number of pixel positions to be exchanged. In addition, a sparse map
contains by definition fewer data than a dense representation.

sparse dense

direct

indirect

DTAMLSD-SLAM

SVO*

DSO*

PTAM
ORB-SLAM

MonoSLAM

MSCKF

(a) Categorization of visual SLAM systems based on
visual information and map representation.

filtering optimization

LSD-SLAM

SVO*

PTAM

ORB-SLAM

MonoSLAM

MSCKF
DSO*

(b) Categorization of visual SLAM systems based on
the underlying state estimation approach.

Figure 2.2: Categorization of visual SLAM systems based on the information and the estimation ap-
proaches. DSO* and SVO* provide only visual odometry.

2.3. Visual SLAM 19

2.3.2 Collaborative visual SLAM

With real-time capable accurate visual SLAM systems becoming available, some attention
has recently been attracted by collaborative visual SLAM. In this section, an overview of
collaborative, decentralized and distributed visual SLAM systems is presented. The term col-
laborative SLAM often refers to collecting information from multiple agents to build a joint
map. The terminology decentralized or distributed SLAM is often used to describe systems
where the individual components (e.g., the front-end and back-end) of the visual SLAM tasks
are placed at different processing entities.

Zou et al. [87] proposed a collaborative system coined CoSLAM using multiple cameras
simultaneously. First, the authors differentiate between map points adhered to static scene
objects and dynamic map points from transient observations. If enough static map points
are visible, they track each camera individually. If temporary objects are visible, they use
inter-camera pose estimation to obtain the camera position based on neighboring cameras
sharing the same field of view. They assume that the video frames from all cameras are
available at a central processing unit. Forster et al. [88] described a monocular SLAM system
for collaborative mapping using micro aerial vehicles. They propose to run visual odometry
on the MAVs and send selected keyframes to a central ground station. The ground station
uses this information to build a map for each MAV. By detecting overlap and subsequent
merging of the maps, a common representation is obtained. They specifically account for
the scale differences and drift between the monocular visual odometry and the map at the
central station. However, they do not provide feedback to the agent. Riazuelo et al. [89] in-
troduced a cloud-based approach named C2TAM for cooperative tracking and mapping. The
authors outsource the costly optimization process to more powerful hardware located in the
cloud and keep only a lightweight tracking on the local device. However, they transmit the
raw keyframes requiring a considerable amount of transmission capacity. In addition, they
send a complete copy of the map after every map optimization back, which is prohibitive
in large-scale scenarios. Schmuck et al. [90] introduced a collaborative SLAM system based
on ORB-SLAM2 with the support for multiple MAVs. In their approach, each MAV runs a
lightweight visual SLAM system by keeping only a limited map in the local memory. All in-
formation is collected at a central server, where the computationally expensive tasks, such as
global map optimization, are carried out. Schneider et al. [85] provided an extended frame-
work for visual-inertial SLAM that supports multi-session mappings and allows merging
maps obtained from multiple sessions into a joint representation.

Fully decentralized systems were proposed by Cieslewski et al. [91]. In their scenario,
multiple agents building individual maps are considered. The maps are merged when an
overlap is detected among them. The authors proposed a decentralized visual place recog-
nition approach. This approach is based on previous work [92], [93] addressing the issue of
data-efficient distributed overlap detection. To facilitate distributed place recognition, a part
of the feature space from a global image signature is assigned to each agent. On each new
keyframe, an agent sends its global image signature only to the agent responsible for the part
of the feature space for this signature. With this approach, no central entity has to collect all
image signatures in order to detect overlap, but each agent is responsible for detecting over-

20 Chapter 2. Background and related work

lap within its part of the feature space, which reduces the amount of data to be transmitted.
On overlap, inter-robot pose measurements in the form of local features and landmark in-
formation are exchanged to estimate the relative pose between the two agents. In order to
ensure that data is efficiently exchanged and the required locking of a shared map does not
prevent real-time capabilities, several approaches for map synchronization based on version
control systems [94], [95] have been proposed.

2.3.3 Feature selection

In order to adapt the amount of data that needs to be processed for the targeted computer
vision task, several data reduction methods have been proposed. For the domain of visual
search, Francini et al. [37] proposed to use keypoint properties such as the scale-space level,
response value, and distance to the image center for calculating a score for the usefulness of
a feature. By ranking the local features within an image according to this score and transmit-
ting the features only up to a certain bit budget allows adapting to the available transmission
capacity. However, the demands for visual SLAM tasks are different. Features should be dis-
tributed over all scales and the whole image to avoid degenerated cases when using, for
example, Perspective-n-Point (PnP) algorithms to estimate the camera position. Spreading
features has a substantial impact on the performance of visual odometry systems [16]. Dis-
tributing features has already been used in early visual odometry [96] systems and is still
used in state-of-the-art visual SLAM systems [70]. Also, sparse and direct methods benefit
from distributing the used pixels among the image [67]. Hartmann et al. [38] argue that pre-
dicting the matchability based on the keypoint properties, such as detector response, is not
the best solution. They proposed to train a random forest offline on the descriptors them-
selves. They achieve a considerable reduction in feature matching time when using the fea-
ture classification prior to the matching process. Instead of relying on handcrafted selection
criteria, Dymczyk et al. [39] proposed to use a CNN network to classify a local feature based
on the image patch around the keypoint into stable and unstable features. According to their
evaluation, they are able to reduce the resulting map size of a visual SLAM system by 70%
while being able to relocalize about 80% of their keyframes. However, they report the clas-
sification time of a single landmark with 2.7 ms using a GPU. The question arises how this
method scales with the number of features, as a single frame can easily contain hundreds of
local features. While the aforementioned approaches try to predict the usefulness of already
extracted features, Cieslewski et al. [97] used a different approach, where they try to detect
the minimum set of interest points that is required to run visual odometry or a visual SLAM
system. They propose to use a CNN with a Structure-from-Motion algorithm in the loop to
detect succinct features and report roughly 20 ms per image for a forward pass through the
network when using a shallow network architecture.

2.4. Visual content coding 21

2.3.4 Map compression

A key challenge in collaborative SLAM systems is to exchange map information between
multiple agents efficiently. Usually, a reduction in the required data rate is achieved by in-
troducing a certain amount of loss before saving or exchanging the map. When exchanging
the 3D information, point-cloud compression approaches such as octrees [98] or more en-
riched variants, such as OctoMap [99] containing additional information, whether a voxel is
occupied, can be used. Some approaches take the trajectory of the camera into account [100].
In their most recent version [101], the authors proposed to split the trajectory into smaller
subsets and model the partial trajectories using non-uniform rational B-splines. Afterward,
they only consider the map points that are visible from each keyframe in a segment. Ly-
nen et al. [102] proposed a greedy method for map sparsification by iteratively removing
map points while ensuring that each keyframe has a minimum number of observations left.
Dymczyk et al. [103] compared different criteria such as the number of observations, the
covariance of the map point pose, and the descriptor variance of each map point. They
also discussed the influence of overlapping parts of the trajectory and extended their work
in [104]. Park et al. [105] proposed to formulate the map sparsification as an optimization
problem, which is solved by mixed-integer quadratic programming. The problem is related
to the maximum cover problem, where a subset of map points should be retained such that
every keyframe is covered at least b times. Dymczyk et al. [104] reduced the complexity of
the optimization problem by partitioning the map into sub-maps. Cheng et al. [106] pro-
posed to formulate the problem as a weighted k-cover problem with a prediction step for the
parameters involved. Merzić et al. [107] derived a quality metric for assessing the quality of
a given map. While most of the approaches achieve a data reduction by discarding some of
the map information, the lossless compression possibilities using the map structure and the
encoding of the visual information is often neglected.

2.4 Visual content coding

In the following, three key system architectures for performing computer vision tasks, as
described in [108]–[110], are revisited.

First of all, the image data can be processed at the client device itself, which is referred to
as local processing. The second architecture employs a client-server setup, where traditional
image and video compression techniques are used to transmit the visual content from the
client to the server. This server performs the desired computer vision task and sends the
result back to the client, which is coined Compress-then-Analyze (CTA). The third approach
is the Analyze-then-Compress (ATC) architecture, where an image abstraction, such as local
features, is extracted at the client, compressed, and sent to the server. The server decodes
the visual information, performs the computer vision task, and sends the information back
to the client. The system architectures are illustrated in Figure 2.3, whereas the advantages
and disadvantages are discussed in more detail in the following.

22 Chapter 2. Background and related work

camera feature
extraction

CV
task

results
client

(a) Local processing architecture. All information is obtained and processed locally on the device.

image
decodingcamera image

encoding

results

CV
tasknetwork

feature
extraction

client server

(b) Compress-then-Analyze architecture. A compressed image representation is transmitted to a server, which
carries out the computer vision task and signals back the results.

feature
decodingcamera feature

extraction
feature

encoding

results

CV
tasknetwork

client server

(c) Analyze-then-Compress architecture. An image abstraction is created using features. A compressed feature
representation is transmitted to a server, which carries out the computer vision task and signals back the results.

Figure 2.3: Comparison of architectures for mobile computer vision tasks.

2.4.1 Local processing

The local processing architecture (Figure 2.3a) is only feasible if enough computational
power is available. A major advantage of running a certain task directly at the client is the
independence of a network connection to a server. As the processing is carried out locally, no
information has to be exchanged, and no delay is introduced by network transmission. How-
ever, there is a considerable performance gap between the energy-constrained hardware on
a mobile robot platform and a powerful server. This discrepancy in computational power is
observable when trying to run computer vision frameworks that are capable of running in
real-time on commodity computers on embedded devices. In order to enable real-time ap-
plications on the client, considerable effort has to be made to simplify, adapt, and speed up
the process. This affects the image processing, such as local feature extraction [111], as well
as the computer vision task, such as visual SLAM [112], [113]. Despite all the effort, there is a
considerable gap in performance or sacrifice in terms of accuracy. Another approach is taken
by HoloLens [114], where parts of the tracking and mapping algorithm are implemented in
a hardware chip called the Holographic Processing Unit that paves the way for always-on
computer vision. This hardware-based solution has several drawbacks, such as the consid-
erable amount of initial investment required to develop such a chip, reduced flexibility, and
the restriction to devices shipped with matching hardware acceleration. While other visual
SLAM systems are solely based on software that can be rolled out at virtually any device that
is fast enough, the necessity to deploy hardware hinders the roll-out for the mass market.

2.4. Visual content coding 23

2.4.2 Compress-then-Analyze

In the Compress-then-Analyze architecture, the visual information is exchanged by using
available image and video compression techniques such as JPEG [115], H.264 [116], or
H.265 [117] as shown in Figure 2.3b. The computer vision task is carried out at the server
using the information of the previously decoded image. A major advantage is the possibility
to reuse mature image and video compression standards. The availability of application-
specific integrated circuits allows hardware acceleration of the main encoding and decoding
steps, which facilitates both real-time capabilities and energy-efficient compression of visual
content. In contrast to specific hardware for visual SLAM, image and video compression ac-
celeration hardware made its way into most mobile and embedded devices due to the ubiq-
uitous demand for mobile video. A further advantage is the availability of visual information
at the server-side. This can be used for manual inspection, to archive the data, or to replace
the computer vision algorithm. This is desired in case future technologies might be able to
improve on the performance, for example, by using upcoming local features. However, this
also comes at a cost. A drawback is that today’s compression techniques are optimized for
the human visual system and are not well suited for machine-based analysis. Some effort
was made towards adapting image [118] and video coding [119] approaches for better fea-
ture preservation. One of the main problems when using block-based coding methods is the
introduction of artificial corners at block boundaries, where features extracted using corner
detectors falsely adhere. In order to alleviate this problem, a hybrid method between CTA
and ATC here named Hybrid-Compress-then-Analyze was introduced by Chao et al. [120]. The
authors propose to extract only the keypoints at the client and use this information about
the feature locations to compute the descriptors on the decoded images at the server-side.
According to their evaluation, this results in improved feature quality at the cost of signal-
ing the keypoint locations as side information. The most important drawback of CTA is the
squandering of resources by transmitting the actual visual information. While for a specific
task, only parts of the image might be sufficient, a considerable amount of bits is allocated
for transmitting visual information that might not be helpful.

2.4.3 Analyze-then-Compress

In order to tackle the limitations of CTA, Analyze-then-Compress was considered [108]. In
this concept, local features are extracted at the client-side and sent to the server instead of
the pixel information, as illustrated in Figure 2.3c. Starting with real-valued descriptors such
as SIFT and SURF, Baroffio et al. [121] proposed to code visual features extracted from video
sequences using a scheme similar to hybrid video coding. They extended their approach
to local binary features in [122], [123]. For visual feature coding, the Compact Descrip-
tors for Visual Search (CDVS) standard was proposed by the Moving Picture Experts Group
(MPEG) [110]. It consists of different normative blocks for local feature detection, selection,
description, and compression. It is based on computationally demanding SIFT-like [31] fea-
tures and is specifically optimized for a visual search task. A feature selection based on the
previously introduced work of Francini et al. [37] enables to adapt the data rate to differ-

24 Chapter 2. Background and related work

advantages disadvantages

local + no network connection required - local processing power required

CTA
+ hardware acceleration available
+ images for inspection available

- coding optimized for humans
- required data-rate
- network connection required

ATC + compact visual information
- restriction to selected features
- network connection required

Table 2.3: Advantages and disadvantages of different processing architectures.

ent transmission capacities. In addition, the standard includes a normative block for a global
image signature based on the Scalable Compressed Fisher Vector [124]. For local feature com-
pression, it includes a transform-based compression scheme followed by scalar quantization
and entropy coding. The proposed compression method for the keypoint locations within
the MPEG-CDVS standard uses a location histogram [125], [126], which includes a quantiza-
tion step leading to a loss in accuracy. At the time of writing, the upcoming MPEG Compact
Descriptors for Video Analysis (CDVA) standard has reached Committee Draft level [127].
Instead of still images, it focuses on the task of video analysis, including the temporal cor-
relation between visual content extracted from video sequences. An early overview of the
expected techniques is given by Duan et al. [128]. The draft proposes a keyframe-based
structure and temporal prediction for the local and global descriptors, which are adapted
from CDVS. Another novel aspect is the support for deep-learned descriptors. To this end,
a framework for CNN based image analysis was proposed with paying special attention
to network compression, as the storage required to store the weights defining a CNN can
easily exceed several hundred megabytes. In extension to Hybrid-Compress-then-Analyze,
a diametrical approach under the name of Hybrid-Analyze-then-Compress was proposed by
Baroffio et al. [129]. In this scheme, features are extracted from both the original image and
the decoded image representation, including the coding artifacts. The authors suggest cal-
culating the differences between the descriptor extracted from the original image and the
reconstructed image after compression. They propose to send the compressed image, the
keypoint location, and, additionally, the difference vector necessary to compensate for the
distortion introduced by the image coding algorithm. A more detailed overview of compact
features and different compression methods is given in [26]. The advantages of the different
approaches are summarized in Table 2.3.

2.5 Cloud architecture

With regard to the actual deployment of the ATC and CTA-based approaches, several strate-
gies are possible [130], [131]. Approaches using a single server quickly reach their limits
and become unfeasible with a growing number of clients querying the service. Today, many
applications make use of cloud-based infrastructures, where a scalable number of comput-
ing entities is available. The hardware in the form of virtual machines in the cloud can be

2.5. Cloud architecture 25

adaptively scaled, as more clients are requesting services (on-demand hardware). The visual
SLAM solution can also run on a higher level of abstraction as Software as a Service (SaaS,
on-demand software) or, more specifically, in this context: SLAM as a Service (on-demand
SLAM). In CTA-based approaches, the user can be provided with an interface to upload or
stream video data and receive the fused map information. This can happen either in real-time
or in the form of a reconstructed map. In ATC-based solutions, the suitable image abstrac-
tion for the targeted visual SLAM task has to be provided. Different architectures exist in the
domain of cloud computing. A centralized cloud computing and an edge cloud computing
architecture are discussed in the following.

2.5.1 Centralized cloud computing

Regardless whether ATC or CTA-based approaches are used, employing a centralized cloud
architecture (Figure 2.4) allows an efficient and energy-saving servicing. An important aspect
orthogonal to the previously discussed choice of architecture is the server location. In this ex-
ample, a centralized cloud means that all the hardware is located in a few data centers. These
data centers are designed with a high-speed interconnection between all contained servers.
The load of the visual SLAM processing systems can be distributed among the shared com-
puting resources using a suitable load balancing algorithm, allowing to utilize the existing
hardware better. In addition, if all the map information from different clients is available in
a centralized cloud architecture, the exchange and fusion of multiple maps into a joint repre-
sentation require less data exchange outside the data center or outside the high-speed cloud
infrastructure. However, one of the main drawbacks of centralized cloud-based computing
in the context of real-time visual SLAM is the delay introduced by sending the visual infor-
mation to the cloud and receiving the response. In the case of centralized cloud data-centers,
the client and the server that is currently responsible for processing the request could be lo-
cated on different continents. This adds a considerable amount of transmission time, which
is not acceptable in low delay applications. In this case, an edge cloud infrastructure is ad-
vantageous.

centralized cloud visual SLAM
clients

Figure 2.4: Centralized cloud computing architecture using a few centralized data centers.

26 Chapter 2. Background and related work

2.5.2 Edge cloud computing

In traditional cloud computing, the traffic has to be transported from the client to the cen-
tralized data centers. With the concept of edge clouds, as shown in Figure 2.5, the processing
is shifted closer to the client’s location. Computing capabilities could be integrated with the
hardware of mobile communication networks [131] or located on-premise in factories that
use visual localization in their automation strategy. The edge cloud adds an additional layer
between a centralized cloud and the client, allowing to perform tasks that require low latency
in the proximity of the clients. This could be in the base station, where the client is currently
situated. Besides the removed latency, this also reduces the data load from the client on the
core network towards the centralized data centers. Another important advantage of local-
ized processing of the data is location awareness. A base station could collect and store the
local maps which were captured by users in the current mobile cell. If the local map is up-
dated or substantially extended, the map could be uploaded to the central cloud to aggregate
the local maps in a city, a regional, national, or even a planet-covering representation. Also,
local maps could be stored at the base station and provided as prior knowledge to newly
registered devices. It also adds a certain fault tolerance as the visual SLAM processing is
distributed among several separated locations. Besides the advantages, there are also some
drawbacks. The base stations have to be equipped with computing hardware, which might
not everywhere be profitable. However, in this case, a fall-back solution using the centralized
cloud infrastructure could be realized. Another technical difficulty is the issue of roaming if
the device is requesting a seamless handover to the neighboring mobile cell. In this case, the
SLAM process has to be migrated from a base station to the next without noticeable service
interruption.

centralized cloud
edge cloudclients

edge cloud visual SLAM

Figure 2.5: Edge cloud computing architecture, where the processing takes place in distributed data
centers to reduce the communication delay. They can be connected via a centralized cloud.

2.6. Datasets 27

2.6 Datasets

This section introduces the datasets used throughout this thesis. An overview of the individ-
ual properties of the SLAM evaluation datasets is provided in Table 2.4.

MIRFlickr1M: A dataset predominantly used for training in this work is the MIRFlickr
1M [132] dataset. It comprises 1 million Flickr images with manual annotation. While the
dataset is designed for retrieval applications, it is used in this work primarily to train the vi-
sual vocabularies due to the wide variety of image categories featuring many facets of visual
appearances, which ensures generalization of the algorithms.

Tracking: For assessing the resulting compression on a homography estimation task, the
public dataset from Gauglitz et al. [24] is used. The dataset provides a variety of videos con-
taining a planar texture each. The dataset was introduced to evaluate the performance of
different interest point detectors and feature descriptors for visual tracking. For each cate-
gory, several sequences exist, showing the scene subject to different motion patterns, such as
panning, rotation, zoom, and unconstrained motion. Ground truth is provided as a homog-
raphy matrix warping the planar texture into a common reference frame. In this work, the
unconstrained motion sequence is used, which features a resolution of 640 x 480 pixels and
500 frames captured at a frame rate of 15 fps using a Unibrain Fire-i camera.

KITTI: One prominent SLAM dataset is the KITTI visual odometry dataset [133]. It features
different sequences in an urban environment captured from a driving car. The images were
captured by a stereo grayscale camera system with a baseline of roughly 53.7 cm and a frame
rate of 10 Hz. The images have been taken at a resolution of 1392 × 512 pixels and are pro-
vided with a resolution of 1241 x 376 pixels after rectification. Ground truth is provided
by a GPS/IMU localization unit with real-time kinematic correction of the GPS signal. The
dataset additionally features color images and 3D laser scanner data, which are not used in
this work.

EuRoC: The EuRoC micro aerial vehicle SLAM dataset [54] consists of several sequences
collected in an industrial environment and a room scenario using an AscTec Firefly MAV.
The image sequences were acquired using a global shutter stereo camera setup based on
an MT9V034 sensor providing a WVGA (more specifically 752 x 480 pixels) resolution at a
frame rate of 20 Hz for the left and right view. The baseline between the cameras is about
11 cm. The camera calibration parameters for the sequences are provided by the authors.

environment properties sensor calibration

KITTI urban 1241 x 376 @ 10 Hz stereo rectified, undistorted

EuRoC industrial, room 752 x 480 @ 20 Hz stereo parameters provided

TUM RGB-D industrial, office 640 x 480 @ 30 Hz RGB-D parameters provided

Table 2.4: Tabular overview over the datasets.

28 Chapter 2. Background and related work

The dataset provides ground truth data acquired from a Leica Nova MS50 in the case of the
industrial scenario, and a Vicon tracking system in case of the room scenario.

TUM RGB-D: Another well-known dataset is the TUM RGB-D dataset [134]. It consists of
39 sequences captured by a Microsoft Kinect camera in both office and industry hall scenar-
ios. The sequences contain color and depth images at a resolution of 640 x 480 frames with
a sampling rate of 30 Hz. The intrinsic camera calibration is available. Some sequences are
already undistorted. The ground truth data was obtained using a MotionAnalysis motion
capturing system.

2.7 Summary

In this chapter, the relevant related work regarding image content description, such as local
and global features, has been discussed. An overview of existing visual SLAM techniques
has been provided. In addition, challenges and existing methods of collaborative SLAM and
map exchange have been introduced. Different architectures for exchanging visual infor-
mation have been discussed, including their advantages and disadvantages. A summary of
cloud-based processing architectures has been presented. Several well-known datasets for
evaluating visual SLAM systems have been covered.

The lack of related work addressing the efficient compression of data in collaborative
visual SLAM systems serves as motivation to further investigate different aspects, require-
ments, and discover the untapped potential of compression in this context:

1. An efficient compression algorithm for local features in the context of visual SLAM is
necessary.

2. The compression approach should be able to support typical visual sensor data ob-
tained by a stereo camera setup to allow metric scale visual SLAM.

3. A data-efficient collaborative visual SLAM architecture where multiple agents send
compressed visual information to a server to build a common map is lacking.

4. In order to provide prior knowledge to other agents, an efficient map compression al-
gorithm is required that not only discards information but also exploits dependencies
between visual information in a visual SLAM map to facilitate lossless compression.

Chapter 3

Feature coding framework

3.1 Problem statement

A comprehensive framework capable of coding local binary features, as used in recent visual
SLAM applications, should be investigated. The requirements for source coding are three-
fold. First, it should reduce the number of bits required to transmit a set of features. To
this end, the coding should provide independent coding of features, as well as exploiting
temporal and spatial redundancies. Second, the framework should be capable of achieving
real-time performance, even on embedded devices. Third, the amount of information should
be adaptable to the channel conditions. In contrast to the existing solutions in this field [123],
this work incorporates the specific properties of the targeted computer vision task into its
solution. This chapter provides an overview of the techniques used to approach these goals.
The individual parts are then subsequently introduced throughout this thesis, accompanied
by their respective experimental evaluation.

3.2 System architecture

The coding framework for binary feature coding developed in this work is based on [123]
and inspired by hybrid video coding. Different coding schemes have evolved during the
development of hybrid video coding standards (MPEG-X, H.26x). For example, the coding
of still images is achieved by techniques summarized as intra coding. In order to exploit
temporal redundancies in an ordered video sequence, inter coding is used. When consid-
ering multiple views, extensions to multi-view coding have been proposed. Following [123]
some of these principles are adapted for coding local binary features extracted from indi-
vidual frames, video sequences, or stereo-camera setups. A comprehensive block diagram
of the proposed framework is provided in Figure 3.1. Camera images obtained by a stereo
camera setup serve as input. Subsequently, the features are extracted from both views and
stereo matching is performed to estimate the depth information. The depth values can be
encoded using a separate depth coding mode. Based on a mode decision module, different
coding modes can be selected. In the following, the different coding modes, as well as the
advantages and disadvantages, are discussed. The results are summarized in Table 3.1. For
an in-depth explanation of the individual coding modes, the reader is referred to the corre-

29

30 Chapter 3. Feature coding framework

intra-frame coding
(Chapter 4+5)

decoding

binary
features

residual coding

keypoint coding

BoW index coding

residual coding

keypoint coding

reference coding

reference coding

feature selection
(Chapter 4+5)

inter-frame coding
(Chapter 5)

buffer

mode decision

visual vocabulary

inter-frame skipping
(Chapter 5)

residual coding

keypoint coding

reference coding

stereo-view coding
(Chapter 6)

binary
features

left
camera

right
camera

stereo matching

depth quantizationdepth coding
(Chapter 6)

Figure 3.1: Overview of the proposed feature coding framework.

sponding chapters.
Intra-frame coding: This mode provides the possibility to encode features without any de-
pendency on previous frames or neighboring views. Hence, every feature is compressed in-
dividually and can be independently decoded. When encoding all features contained within
a frame using intra coding, this frame can be decoded without any prior knowledge about
the history of the sequence. This allows starting the decoding of a sequence at any interme-
diate frame, also called random access. This independent decoding has the advantage that the
effect of previous transmission errors are mitigated and do not influence future frames. As
no reference has to be searched, this is expected to be comparably fast in terms of computa-
tion time at the cost of increased bitrate as no prior knowledge about the properties of the
frames can be exploited. The intra-frame coding is discussed in Chapter 4.

Inter-frame coding: To exploit temporal redundancies, features should be tracked across
frames and only the differences should be transmitted. This scheme, denoted in the fol-
lowing as inter-frame coding mode, is inspired by the motion-compensated prediction used
in hybrid video coding. It has been introduced to features by Baroffio et al. [123]. Similar
to video coding, this concept is responsible for a comparably high gain in terms of bitrate
reduction at the drawback of adding computational complexity to find the best reference
feature. Another drawback is the added dependency between the frames. If previous frames
containing the reference features are affected by transmission errors, the dependent features
cannot be decoded without errors. This work goes beyond the related work and extends this
mode to multiple reference frames. The inter coding method is detailed in Chapter 5.

3.2. System architecture 31

advantages disadvantages

intra coding
+ random access possible
+ lowest complexity

- highest bitrate per feature

inter coding + lower bitrate compared to intra
- additional complexity
- prone to transmission errors

stereo coding + lower bitrate compared to intra
- additional complexity
- only in stereo-setups available

Table 3.1: Advantages and disadvantages of the main coding methods.

Depth coding: Visual SLAM using solely monocular information is only capable of estimat-
ing a map of the environment up to an arbitrary scaling factor. In order to allow metric
scale SLAM, additional information collected by an IMU, range scanners, or other sensors
is required. However, this work primarily focuses on visual SLAM using additional depth
information acquired by either a depth camera or a stereo camera system. The latter can es-
timate metric scale depth information from matching features across neighboring views in a
calibrated stereo camera setup with a known baseline. Hence, the feature coding framework
is extended by a specific coding mode to add compressed depth information to the stream of
features in Chapter 6.

Stereo coding: More general, features from a stereo camera can be transmitted by exploiting
the spatial redundancies between neighboring views. This can be achieved by sending only
differences between local features extracted from both views describing the same physical
entity. The concept has been proposed for general visual sensor networks [135] and is here
adapted for calibrated stereo setups, denoted as stereo-view coding. While reducing the bi-
trate per feature, this method increases the complexity and is only available in a stereo setup.
The stereo coding method is introduced in Chapter 6.

Rate control: The overall goal of reducing the required data rate can be achieved by lossless
compression exploiting the signal statistics. However, similar to lossless video coding, the
lossless data reduction is bounded by the entropy of the visual data. With lossy approaches,
an adaption to arbitrary data rates can be facilitated by removing presumably uninformative
parts of the data. In this work, two different approaches for rate control and rate allocation
are evaluated. First of all, a selection of features to transmit is proposed. Based on keypoint
properties and the targeted task, a score can be calculated for every feature. Ranking the
features according to their score and stopping the feature coding when a given time frame or
a bit budget is exhausted efficiently reduces the required data rate. This method is included
in Chapter 5. The second approach is more flexible and allows to transmit features with a
certain accuracy. To this end, features are sorted into different classes and for each class,
only a certain part of the original descriptor is reconstructed with the aim of maximizing the
overall task performance. This approach is detailed in Chapter 4.

32 Chapter 3. Feature coding framework

3.3 Notation

In the following, the notation used throughout this work is introduced. For the sake of
consistency, a similar notation, as used by [123], is employed to describe the local feature
properties.

The first part necessary to define a local feature is a keypoint describing the location
where the local feature has been detected. In order to make a feature invariant towards
rotation and scaling, an orientation and a patch size is usually estimated during feature de-
tection. Hence, the vector containing the keypoint properties for feature i extracted from the
n-th image in a sequence is denoted as kn,i = [x, y, σ, θ], where x ∈ {z ∈ R | 1 ≤ z ≤ Nw} and
y ∈ {z ∈ R | 1 ≤ z ≤ Nh} describe the keypoint positions in pixels, σ ∈ {z ∈ N | 0 ≤ z < Nσ}
denotes the scale-space level and θ ∈ {z ∈ R | 0 ≤ z < 2π} indicates the keypoint orientation.
Nw, Nh, and Nσ denote the image width, the height, and the number of scale-space levels.
Further keypoint information, such as the detector response, is neglected in this work but
can accompany a feature as additional side information.

The second part contains information about the visual outline of a local feature patch in
form of a fixed-length binary representation. This image patch descriptor is usually the out-
come of a set of pairwise pixel tests contained in a binary vector dn,i ∈ {0, 1}Nd with length
Nd. For example, the ORB descriptor has NORB

d = 256 entries, whereas FREAK and BRISK
have NFREAK

d = NBRISK
d = 512 dimensions. A specific descriptor element dj is indexed with

the subscript j.
An entry of a binary descriptor can be seen as an outcome of an experiment described

by a random variable X with an associated binary alphabet Ax = {0, 1}. The probability
of the outcome being zero is defined by the corresponding probability mass function as
fX(0) = P (X = 0) = p0. The probability of being one is defined as fX(1) = P (X = 1) = p1

with p1 = 1− p0. It is worth noticing that in this notation, the same probability is assumed
for all descriptor entries. If individual probabilities for each descriptor entry are used, each
entry is modeled with a binary random variable Xj with associated probability mass func-
tion fXj (dj) = Pr(Xj = dj). In this case, the probability for entry dj being zero is denoted as
p0,j = fXj (0) = P (Xj = 0) and conversely p1,j = 1− p0,j for being one.

More general, the entropy function H(X) for binary random variables is parameterized
with the probability of one of both symbols, i.e., in this work the zero symbol as H(p0). This
is also referred to as the binary entropy function [136]. As both symbols are mutually exclu-
sive, this allows inferring the missing probability of the other symbol directly. The entropy
for non-binary sources is denoted with H , where the dependency of the random variable X
is dropped for the sake of readability. The entropy is denoted with H , whereas the experi-
mentally measured rate is denoted by R with equal subscript and superscripts.

3.4. Summary 33

3.4 Summary

In this chapter, a summary of the binary feature coding framework has been provided. The
coding modes have been briefly discussed, including their individual advantages and dis-
advantages. In addition, the notation used to describe the keypoints, the descriptors, the
calculated entropy, and the rate are introduced.

In the following chapters, the details of the coding modes and the rate allocation tech-
niques are introduced step by step, starting with the intra coding and a rate allocation
method.

Chapter 4

Intra coding and rate allocation

4.1 Problem statement

A fundamental problem of data reduction in the context of feature-based visual SLAM is
the compression of the visual information. Regardless of whether a visual map or the visual
information contained in individual frames should be transmitted, efficient compression of
the local visual features, including the keypoint and descriptor information is required. The
requirements of the compression introduced in this chapter are threefold. First, the coding
should be as efficient in terms of the required data rate as possible. Second, the individual
features should not rely on any previously observed feature in a visual SLAM map or video
stream. Third, the descriptor coding should provide the possibility of adapting the amount
of data. If enough transmission rate is available, the lossless transmission of both the de-
scriptor and the keypoint should be possible to enable accurate geometric reconstruction of
the scene.

An analysis of the feature properties of recent binary features reveals possibilities to ap-
proach or to achieve the above-stated goals for feature coding and to enable a flexible rate
allocation by discarding some of the visual information. Parts of this chapter have been
published in [2], [5].

4.2 System architecture

In the work of Baroffio et al. [123], compression of individual features is achieved by exploit-
ing the statistical dependencies among the descriptor entries dj . To this end, the authors
propose to resort the individual descriptor elements according to their mutual correlation.
The coding gain stems from modeling the descriptor elements as first-order Markov sources
and from coding the current element dj based on the value of the preceding element dj−1.

While this method works well for specific descriptors, it does not perform well for all
feature types. More specifically, the approach was evaluated using BRISK features where
the sampling pattern for the pixel tests is defined on concentrically equally spaced circles
located around the keypoint position [47]. A drawback of this sampling pattern is that the
pixel tests tend to be correlated. In contrast to this approach, a greedy strategy to select pixel
tests that are preferably uncorrelated is used in ORB [46]. Similarly, FREAK [48] includes a

35

36 Chapter 4. Intra coding and rate allocation

(a) ORB features. (b) FREAK features. (c) BRISK features.

Figure 4.1: Absolute values of the Pearson correlation coefficient evaluated between the first
64 descriptor entries for ORB (a), FREAK (b), and BRISK features (c). The BRISK features show the
highest correlation among the descriptor entries.

step to learn the best tests based on a training dataset. The result is illustrated in Figure 4.1,
where the absolute values of the Pearson correlation coefficients [137] are shown for the first
64 dimensions of ORB, FREAK and BRISK features evaluated on the EuRoC MH01 sequence
using 1k features per frame. A value near zero indicates no correlation between the descrip-
tor entries and values closer to one indicate a higher correlation. The method proposed by
Baroffio et al. using the Markov source assumption works for BRISK features as some de-
scriptor entries show a significant correlation mainly due to the missing selection step. On
the other hand, this technique is not expected to work well for ORB and FREAK features, as
the descriptor entries are selected to minimize the correlation.

To overcome this limitation and to find a coding method that works well for ideal binary
feature descriptors with mutual independence of the descriptor elements, the use of visual
information in the primary target application, namely ORB-SLAM2, is analyzed. First, local
binary ORB features are used to describe salient points in the image, which are then matched
for tracking and mapping. Second, a global image signature, namely the Bag-of-Words rep-
resentation, is employed for rapid feature matching, relocalization, and loop-closing.

The main idea behind rapid feature matching is to quantize all features to their nearest
visual words and to consider only features as matching candidates that share the same or
similar visual words. The similar visual words matching can be facilitated by allowing to
match a visual word to visual words that are connected to the same parent node in the hier-
archical vocabulary tree structure (Figure 4.2). The Bag-of-Words representation can also be
used to identify visually similar images to perform loop closing.

The visual word representation is already a good approximation of the actual descriptor.
Inspired by the use of both these partially redundant representations, the key idea for trans-

L=1

L=2
visual words

Figure 4.2: Hierachical vocabulary tree. At each level, the descriptor is compared to the child descrip-
tors of the current node in terms of Hamming distance, until a leaf node is reached.

4.3. Feature coding 37

intra-frame codingbinary
features

bitstream

residual coding

keypoint coding

BoW index coding

visual vocabulary

camera

Figure 4.3: Overview of the proposed intra coding mode.

mitting the visual information is to exploit a common visual vocabulary available at both the
client and the server. Hence, only an identifier of the closest visual word and the differences
between the visual word and the actual descriptor have to be transmitted. As the difference
contains mostly zeros, it can be compressed efficiently using entropy coding. The proposed
intra coding mode is denoted with I , where m defines the used coding mode for a specific
feature as m ∈ {I}. The available set of coding modes is extended throughout the work. The
client-side processing of the intra coding mode is illustrated in Figure 4.3, which is explained
in detail in the following.

4.3 Feature coding

4.3.1 Intra coding

First, a binary hierarchical visual vocabulary tree [138] is trained offline and placed at both
the client and the server-side. Based on binary features extracted from images in a train-
ing dataset, the feature space is consecutively subdivided using successively applied binary
k-median clustering. Each resulting quantization cell is further subdivided, forming a hier-
archical representation. In the binary case, the distance function between the cluster cell (i.e.,
visual word) and the local feature descriptor is evaluated using the Hamming distance. This
clustering is used to assign the descriptors to their closest visual word at the leaf nodes of the
tree (see Figure 4.2). The visual word index, the keypoint information, and the residual form
the information that needs to be compressed. The encoded representation of the individual
features contained in a single frame is concatenated into a bitstream and transmitted to the
server. At the decoder, the inverse operation is applied to reconstruct the features.

More specifically: First, the descriptor dn,i describing the outline of visual feature i from
image n is assigned to its closest visual word v∗ from the vocabulary C = {c1 . . . cNv} formed
by the leaf nodes of the hierarchical representation, such that

v∗ = arg min
v

h(dn,i, cv), (4.1)

where h defines the Hamming distance between descriptor dn,i and visual word cv. In
the hierarchical clustering scheme, the maximum vocabulary size Nv can be calculated as
Nv = KL, where the branching factor is denoted with K and the depth of the tree with L.
The advantage of the hierarchically structured tree is that it can be efficiently traversed even
on power-restricted devices.

The visual word index is transmitted to the server alongside the residual vector contain-
ing the differences between the actual descriptor and the visual word. By determining the

38 Chapter 4. Intra coding and rate allocation

probabilities of an entry being zero in combination with entropy coding, a substantial re-
duction in terms of bitrate can be achieved. The larger the vocabulary size, the smaller the
Hamming distance between the descriptor and the closest visual word, and therefore the
higher the expected coding gain. On the downside, the larger the vocabulary, the more bits
are required to signal the visual word index. The lower bound for the number of bits for a
feature using intra coding can be calculated as

HI
n,i = HI,BoW

n,i +HI,res
n,i +HI,kpt

n,i , (4.2)

whereHI,BoW
n,i denotes the entropy in bits required for signaling the visual word index,HI,res

n,i

defines the minimum costs for coding the residual vector necessary to reconstruct the de-
scriptor, and HI,kpt

n,i are the bits required to transmit the keypoint information.

4.3.1.1 Bag-of-Words index coding

First, the probability of the visual word occurrences is analyzed in Figure 4.4, showing an
excerpt of the probability mass function for a visual vocabulary of size Nv = 1m. The oc-
currences of the first 10k visual words are shown obtained by quantizing ORB features from
the first 1k images of the EuRoC MH01 and the V101 sequence. Based on the observation
that obtaining sample data from two different sequences results in two different probability
mass functions, a common distribution cannot be found. Instead, a uniform distribution of
the visual words is assumed. Based on Equation (2.2), the number of bits for signaling the
visual word index can be derived using pv = 1

Nv
resulting in

HI,BoW
n,i = log2(Nv) (4.3)

bits required to signal the visual word index for feature i from image n. For the visual word
index coding, arithmetic coding with uniform probabilities is used throughout the work.

4.3.1.2 Residual coding

The residual vector is computed as the binary difference between the descriptor dn,i and the
closest visual word cv∗ using the XOR operation as rIn,i = dn,i⊕ cv∗ . Starting with the binary
entropy function for a string of length Nd, the entropy contained in the residual vector can
be determined as

Hm(pm0) =

Nd∑
j=1

(−pm0 · log2(pm0)− (1− pm0) · log2(1− pm0))

= −
Nd∑
j=1

pm0 · log2(pm0)−
Nd∑
j=1

(1− pm0) · log2(1− pm0)

= −Nd · pm0 · log2(pm0)−Nd · (1− pm0) · log2(1− pm0),

(4.4)

where pm0 denotes the probability of an entry being zero for the coding mode m. As coding a
binary residual vector is also used in other coding modes, the definition of the mode is kept

4.3. Feature coding 39

general. Here, Nd · pm0 is the expected number of zero elements in the binary string of length
Nd and conversely Nd · (1− pm0) is the expected number of non-zero elements.

In the case of intra-frame coding, the number of non-zero entries hIn,i of the residual
vector rIn,i corresponds to the Hamming distance between the descriptor and the matching
visual word as

hIn,i = h(dn,i, cv∗). (4.5)

Using Equation (4.4) and Equation (4.5), the lower bound for transmitting the residual infor-
mation for a specific feature descriptor i from image n can be calculated as

HI,res
n,i = −(Nd − hIn,i) · log2(pI0)− hIn,i · log2(1− pI0), (4.6)

which is approached by using entropy coding techniques, such as arithmetic coding. In
Equation (4.6), the assumption is made that each residual vector entry has the same proba-
bility of being zero. Violating this assumption would result in more bits required per feature.
So, in contrast of using a common probability pI0 for the entire residual vector, individual
probabilities pI0,j for each residual element rn,i,j ∈ {0, 1} can be obtained resulting in the
coding costs for the residual vector denoted as

HI,res
n,i,+ = −

Nd∑
j=1

(1− rn,i,j) · log2(pI0,j)−
Nd∑
j=1

rn,i,j · log2(1− pI0,j). (4.7)

From an encoding perspective, using Equation (4.7) allows an adaption of the probabilities to
the individual descriptor entries, but adds the overhead of providing the respective probabil-
ity tables. Following Equation (4.6) is sufficient, if the probabilities do not vary much among

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
visual word index

0

0.005

0.01

0.015

0.02

p
ro

b
ab

ili
ty

(a) Probability tables measured for the EuRoC V101 sequence.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
visual word index

0

0.005

0.01

0.015

0.02

p
ro

b
ab

ili
ty

(b) Probability tables measured for the EuRoC MH01 sequence.

Figure 4.4: Probability of the visual word occurrences for the first 10k visual words in a vocabulary
of size Nv = 1m using ORB features extracted from 1k images from two different sequences.

40 Chapter 4. Intra coding and rate allocation

the descriptor elements. A detailed comparison of coding the residual vector with Equation
(4.6) and Equation (4.7) for different features is included in the experimental evaluation.

4.3.1.3 Keypoint coding

Most computer vision tasks leverage information about the keypoint location. In order to
provide the location and the shape information of the local feature, the keypoint properties
have to be transmitted as well. This includes the pixel coordinates of the feature, the scale-
space level, and the orientation information. In this work, a distinction between generic and
ORB keypoints is made. For generic keypoints, the lossy approach by Baroffio et al. [121]
is adapted to transmit the feature location. They propose to quantize the x and y coordi-
nates to avoid using a real-valued floating-point representation at the drawback of losing
precision. Many local binary features use an interpolation step to determine the keypoint
position down to sub-pixel accuracy. BRISK features, for example, fit a 1D parabola to the
scale axis to determine a more accurate estimate of the scale. Subsequently, the keypoint
position is interpolated, allowing sub-pixel accurate feature locations. On the other hand,
features like ORB do not use an interpolation step, which opens the possibility to exploit the
scale-space representation to transmit the keypoint location in a lossless fashion.

Generic keypoint coding: For generic keypoint position coding, the keypoint locations are
quantized to quarter-pixel accuracy. The orientation information is quantized into Nθ̂ = 32

equally spaced bins of size π
16 . For signaling the scale-space level, the number of bits required

is defined by the settings of the local feature.
A floating-point representation with 32 bits for each the x and y coordinates of the key-

point, 32 bits for the orientation, and 8 bit for the pyramid level is assumed for an uncom-
pressed keypoint location. The number of bits required for an uncompressed keypoint is
then given as Rkptn,i = 32 + 32 + 32 + 8 = 104 bits. The minimum number of bits for the
intra coded keypoint depends on the image width Nw, the image height Nh, the number of
pyramid levels Nσ, and the number of bins Nθ̂ used for the orientation. In summary, it is
given by

HI,kpt
n,i = log2(4 ·Nw) + log2(4 ·Nh) + log2(Nσ) + log2(Nθ̂). (4.8)

Adding additional properties such as the patch size or the detector response strength is
straightforward, but is not needed in many application scenarios and therefore omitted.

ORB keypoint coding: For ORB features, the structure of the scale-space representation is
exploited to avoid the lossy quantization step for the keypoint position. In Figure 4.5a, a
typical scale-space pyramid representation for three levels is illustrated. At the bottom, the
original image is shown. Moving to the top of the pyramid, the image is blurred by apply-
ing a low-pass filter and subsampled to create smaller versions of the image. The feature
detection is then performed on all scale-space representations. The ORB feature extractor,
for instance, uses a FAST corner detector operating on integer pixel positions within every
scale. For the final keypoint, the positions within the scale-space are transformed to their
corresponding position at full image resolution as indicated in Figure 4.5b. The subsampling

4.3. Feature coding 41

σ

= 0σ

= 2σ

= 1σ

(a) Scale-space representation.

σ

= 0σ

= 2σ

= 1σ

(b) Keypoint in scale-space.

Figure 4.5: Illustration of the scale-space representation using three levels. Features are detected in
scaled versions of the original image. The feature locations in each scale-space representation for ORB
features are located at integer positions. For the final keypoint location, they are scaled to the original
resolution resulting in real-valued keypoint positions (red arrow).

factor between the levels is defined by the algorithm or the application. For example, the
default scaling factor between two layers of the image pyramid used in ORB-SLAM2 is 1.2.
This results in a total scaling factor f(σ) from any level σ to the original image size of:

fs(σ) = 1.2σ. (4.9)

The conversion from the scale-space coordinates xsσ, ysσ to the full-size image is given by

x = xsσ · fs(σ), y = ysσ · fs(σ). (4.10)

Conversely, the scaling factor from the image coordinates x, y back to scale-space level coor-
dinates xsσ, ysσ can be written as

xsσ =
x

fs(σ)
, ysσ =

y

fs(σ)
. (4.11)

This also allows for adapting the number of bits spent for coding the keypoint position ac-
cording to the image size in the corresponding scale-space level. The image dimensions
N s
w(σ) and N s

h(σ) per level of the scale pyramid are calculated as

N s
w(σ) =

Nw

fs(σ)
, N s

h(σ) =
Nh

fs(σ)
, (4.12)

where Nw and Nh denote the original image height and width, respectively. The cost for
coding the keypoint kn,i is the sum of the costs for coding the keypoint positions xsσ and ysσ,
the scale level σ, and the quantized orientation θ̂ as

HI,kpt
n,i = log2(N s

w(σn,i)) + log2(N s
h(σn,i)) + log2(Nσ) + log2(Nθ̂), (4.13)

42 Chapter 4. Intra coding and rate allocation

assuming uniform probability. This coding scheme allows for lossless coding of the keypoint
position, while at the same time lowering the costs for the transmission. This assertion is
true, because N s

w(σ) and N s
h(σ) are always smaller than 4 ·Nw and 4 ·Nh, which is used for

generic keypoints in Equation (4.8). The scale-space level has to be transmitted and decoded
first in order to use the correct parameters for the position decoding.

4.4. Rate allocation 43

4.4 Rate allocation

The source coding approach introduced previously can assist in reducing the number of
transmitted bits in a lossless way. Naturally, the question arises, whether introducing loss
could further reduce the number of bits without severely deteriorating the task performance.
Following this key idea, two different levels to adapt to the amount of information transmit-
ted to the server have been identified. A reduction can either happen on the feature level by
sending only the presumably useful features. The data rate can also be adapted more fine-
grained at the descriptor element level by sending only partial descriptors. In the following,
a solution that enables a combination of both approaches is proposed. Local features are
grouped according to their usefulness and a varying number of bits is spent per group on
the descriptors to exchange visual information. In low-bitrate scenarios, a group of features
can be completely skipped. The proposed algorithm for flexible rate allocation is tightly
coupled to the previously introduced intra coding mode and consists of two steps:

• First, a coarse approximation of the visual descriptor using the shared visual vocab-
ulary is transmitted in the form of the visual word index. To (partially) reconstruct
the original descriptor, the binary residual vector containing the missing information
is (partially) transmitted. In the proposed rate allocation scheme, the residual elements
are reordered to reconstruct the descriptor elements with the highest entropy first.

• Second, the detector response is used as an indicator of the usefulness of a specific
feature. According to the response, the features are sorted into Ng different classes. A
utility function is used for each class, defining how much gain is expected when adding
additional residual elements. As an extension to the intra-frame coding mode, partial
residual vectors can be transmitted, thus providing the possibility to approximate the
original descriptor at different accuracy levels depending on the available transmission
rate. If enough rate is available, the entire residuals can be transmitted, resulting in a
lossless reconstruction of the descriptors.

The reordering of the residual and the grouping of the features are described in the following.

4.4.1 Residual reordering

The proposed coding scheme of Baroffio et al. [123] uses the concept of descriptor element
reordering to exploit the conditional entropy for coding the elements based on the value of
their predecessor. In contrast to this reordering, an entropy prioritization strategy is lever-
aged here for rate allocation. The key idea is to sort the descriptor elements according to their
entropy in descending order. With this particular ranking, the elements containing the most
information are prioritized and reconstructed first. The algorithm is similar to the greedy
selection strategy of the binary test selection included in ORB and related to the approach
of [122].

First, all pair-wise pixel tests of a feature algorithm are part of a set T . For each pixel test,
the entropy indicating the information contained in a single descriptor element is estimated

44 Chapter 4. Intra coding and rate allocation

by evaluating feature descriptors obtained from a training dataset in an offline procedure.
The information is given by the binary entropy function [136] for the descriptor element j as

H(p0,j) = −p0,j · log2(p0,j)− (1− p0,j) · log2(1− p0,j). (4.14)

The maximum of the entropy is located at the probability of the element being zero of
p0,j = 0.5, which corresponds to an entropy ofH(0.5) = −0.5·log2(0.5)−0.5·log2(0.5) = 1 bit.
Any different probability results in a lower entropy, thus lower information. Iteratively, the
element j with the highest entropy is selected from T , added to the result set U , and removed
from T . As side constraint, the element j is only added to U if the correlation between de-
scriptor element j and every other element already in U is lower than a threshold. The corre-
lation among the tests can be calculated using the Pearson correlation coefficient [137]. Oth-
erwise, the next best element in terms of entropy is selected from T . If no element is found
fulfilling the correlation criterion, the threshold is increased, and the algorithm is restarted.
In the end, an ordered set sorted according to the entropy of the descriptor elements is gath-
ered in U with correlated elements placed further at the end of the list. This order is used to
transmit the residual elements that correspond to the descriptor elements with the highest
entropy first. However, as ORB and FREAK already employ a similar approach, the impact
on these descriptors is expected to be rather limited. In this work, the step is added regard-
less of the underlying feature descriptor. It is worth noticing that an ideal binary descriptor
has only elements with entropy close to H(p0,j) = 1 and mutual independence among the
descriptor elements.

4.4.2 Feature classification

The visual features are categorized according to their detector response into Ng different
classes. As pointed out in [37], the detector response can be used as a basic indicator for the
repeatability of features. Local features with high detector response usually correspond to
high-contrast corners, which are likely to be rediscovered in related views, whereas low de-
tector responses might be caused by sensor noise and are therefore irreproducible. Each class
g ∈ {z ∈ N | 1 ≤ z ≤ Ng} holds a fixed percentage pg ∈ {z ∈ R | 0 ≤ z ≤ 1}with

∑Ng

g=1 pg = 1

of the total number of features contained in one frame. The advantages of this sorting are
twofold: First, this splitting is independent of the contrast properties of the images, thus
avoiding fixed response thresholds. Second, fixing the percentage of features per class al-
lows using a look-up table with pre-calculated decisions for the number of sent elements.

4.4.3 Rate optimization

The optimal number of bits to reconstruct the descriptor within each class is determined
by a utility function Ug(ng), where g denotes the feature class index and ng the number of
transmitted residual elements for class g. The function returns a score estimating the task
performance depending on the number of the residual elements ng ∈ {z ∈ N | 0 ≤ z ≤ Nd}.
Regarding the corner cases, sending no residual elements (ng = 0) corresponds to recon-
structing only the visual word signaled by the visual word index. Adding a residual element

4.4. Rate allocation 45

Nd

Nf

g=4

g=3

g=2

g=1

n2 n3 n4n1

Figure 4.6: Illustration of the transmitted data. All Nf features extracted from a frame are appox-
imated by their visual word (grey). For class g = 4, containing the features with highest detector
response, the residual information (blue) is added to reconstruct the full descriptor n4 = Nd. For the
remaining classes, less residual elements are transmitted to approximate the original descriptors.

for every descriptor element (ng = Nd) for a descriptor of length Nd translates into a loss-
less reconstruction of the original descriptor. Hence, the number of bits R(ng) spent on each
residual vector depends on the elements ng. The rate allocation problem is given by

Us = arg max
ng

Ng∑
g=1

pg · Ug(ng)

subject to Nf ·
Ng∑
g=1

pg ·R(ng) ≤ C.

(4.15)

The number of residual elements in each class should be assigned in such a way that the sum
over the utility functions weighted with the share of features of each class pg is maximized.
As side constraint, the calculated total rate should obey the upper bound for the number of
bits given by the available transmission rate C. The total rate is calculated as the sum over
the shares pg of each class multiplied by the total number of features Nf multiplied with
the rate R(ng) used for this particular class. The concept is illustrated in Figure 4.6, where
features are sorted according to their detector response into four classes and approximated
with different numbers of residual elements ng.

The utility function Ug(ng) for each class is obtained by measuring the results of a feature
matching task. Finding corresponding features across several frames is one of the most fun-
damental challenges and used in many computer vision tasks. Hence, the utility function
is defined as the share of successfully matched features in a homography estimation setup,
depending on the number of residual elements ng used for reconstruction. The features are
matched across two frames and verified using the available ground truth. More details about
the utility function will be provided in the experimental evaluation. In this work, the rate
allocation approach has been used in conjunction with the intra coding mode, as detailed
previously. However, the method is applicable to other coding methods as well.

46 Chapter 4. Intra coding and rate allocation

4.5 Experimental evaluation

4.5.1 Intra coding

In order to evaluate the proposed intra coding scheme, different features were extracted
using OpenCV and the MIRFlickr1M dataset as training data. Several vocabularies were
trained using a hierarchical implementation of the Bag-of-Words approach for binary de-
scriptors, namely DBoW2 [139], with branching factor K = 10 and the depths in the range
of L ∈ {z ∈ N | 1 ≤ z ≤ 6} using the descriptors from the first 100k images of the dataset. A
more detailed introduction of the datasets is provided in Section 2.6.

Figure 4.7 shows the Hamming distance between the descriptors and their corresponding
visual word representation for different tree depthsL and various features for a fixed branch-
ing factor of K = 10. The outlier distance denotes the Hamming distance when assigning a
descriptor to a random non-matching visual word. The results are averaged over all visual
words included in a particular vocabulary and are obtained using the 100k last images of
the MIRFlickr dataset. The first observation is that the probabilities for Hamming distances
resemble a Gaussian distribution. The second observation is that the mean values shift to
lower Hamming distances when using a larger vocabulary tree. A lower Hamming dis-
tance translates into a higher probability of having zeros in the residual vector and therefore
increasing the effectiveness of the residual coding. The drawback is the increased computa-
tional complexity by adding additional levels to the tree or by incrementing the branching
factor. Besides, additional bits are required to cover the larger range of possible visual word
indices. Increasing the vocabulary size also increases the memory footprint required to ex-
change the visual vocabulary or to keep the vocabulary tree structure in the memory.

Next, the resulting compression is evaluated on the public dataset from [24], as described
in Section 2.6. To this end, the performance of a homography estimation task is assessed. In
order to increase the motion between the frames, the sequence was downsampled by a factor
of five, as proposed by Baroffio et al. [121]. The results of the intra coding method are summa-
rized for ORB features in Table 4.1, for FREAK features in Table 4.2, and for BRISK features
in Table 4.3. The results were obtained by using 500 features extracted on each frame of the
sunset unconstrained motion sequence. As FREAK defines only the descriptor part, the BRISK
detector was used to provide the keypoint information, as proposed by the authors [48]. The
keypoint properties for all features were encoded using the generic keypoint coding accord-
ing to Equation (4.8) in combination with fixed length coding requiring:

RI,kptn,i = dlog2(4 · 640)e+ dlog2(4 · 480)e+ dlog2(8)e+ dlog2(32)e = 31 bits (4.16)

For the sake of completeness, the ORB keypoint coding requires RI,kptORB = 24.6 bits on this
sequence. Further analysis of the lossless ORB keypoint coding is provided in Chapter 5.
Additionally, the results of Equation (4.6) are marked as RI,res, whereas the results using
Equation (4.7) are denoted as RI,res+ .

4.5. Experimental evaluation 47

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
Hamming distance

0

0.01

0.02

0.03

0.04
p

ro
b

ab
ili

ty
inlier distance L=1
inlier distance L=2
inlier distance L=3
inlier distance L=4
inlier distance L=5
inlier distance L=6
outlier distance

(a) ORB features.

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Hamming distance

0

0.005

0.01

0.015

0.02

p
ro

b
ab

ili
ty

inlier distance L=1
inlier distance L=2
inlier distance L=3
inlier distance L=4
inlier distance L=5
inlier distance L=6
outlier distance

(b) FREAK features.

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Hamming distance

0

0.005

0.01

0.015

0.02

p
ro

b
ab

ili
ty

inlier distance L=1
inlier distance L=2
inlier distance L=3
inlier distance L=4
inlier distance L=5
inlier distance L=6
outlier distance

(c) BRISK features.

Figure 4.7: Histogram of Hamming distances between the descriptors and their corresponding visual
word for K = 10 for varying tree depth L and for ORB (a), FREAK (b), and BRISK features (c). The
outlier distance denotes the Hamming distance between the descriptor and a non-matching visual
word.

48 Chapter 4. Intra coding and rate allocation

Nv RI,BoW RI,res RI,res
+ RI,kpt R R+

10 3.3 229.2 230.1

31

263.5 264.4

100 6.7 212.1 212.4 249.8 250.0

1k 10.0 198.6 197.3 239.5 238.2

10k 13.3 186.7 186.4 231.0 230.7

100k 16.6 176.5 175.7 224.1 223.3

1m 20.0 167.8 167.3 218.8 218.2

Table 4.1: Intra coding results in average number of bits for ORB features with generic keypoint cod-
ing for the sunset unconstrained motion sequence. ORB keypoint coding requires RI,kptORB = 24.6 bits. R
is the total number of bits, when using the same probability table for all residual vector entries. R+

uses individual probability tables for each residual element j as in RI,res+ .

Nv RI,BoW RI,res RI,res
+ RI,kpt R R+

10 3.3 412.9 408.7

31

447.2 443.1

100 6.7 386.7 384.3 424.4 422.0

1k 10.0 364.9 362.6 405.8 403.6

10k 13.3 346.4 344.2 390.7 388.5

100k 16.6 329.3 327.1 376.9 374.7

1m 20.0 315.0 312.6 366.0 363.6

Table 4.2: Intra coding results in average number of bits for FREAK features for the sunset uncon-
strained motion sequence. R is the total number of bits, when using the same probability table for all
residual vector entries. R+ uses individual probability tables for each residual element j as in RI,res+ .

Nv RI,BoW RI,res RI,res
+ RI,kpt R R+

10 3.3 461.9 448.5

31

496.2 482.8

100 6.7 439.8 423.1 477.5 460.7

1k 10.0 422.3 402.7 463.3 443.7

10k 13.3 408.4 386.1 452.7 430.5

100k 16.6 396.5 371.7 444.1 419.4

1m 20.0 386.1 358.9 437.1 409.8

Table 4.3: Intra coding results in average number of bits for BRISK features for the sunset unconstrained
motion sequence. R is the total number of bits, when using the same probability table for all residual
vector entries. R+ uses individual probability tables for each residual element j as in RI,res+ .

4.5. Experimental evaluation 49

100.00%

73.45%
69.45%

66.16% 64.07% 62.04% 60.62%

orig 10 100 1k 10k 100k 1m
vocabulary size

0

50

100

150

200

250

300

350

400

b
it

s
p

er
 f

ea
tu

re

descriptor
residual
keypoint
BoW

Figure 4.8: Comparison of the average number of bits per ORB feature for different vocabulary sizes
extracted from the sunset unconstrained motion sequence (adapted from [2] ©2017 IEEE).

For ORB and FREAK, both formulations yield similar results in the evaluation. However,
for the BRISK feature, the results improve when using individual probabilities. For ORB fea-
tures, the number of bits used to store the descriptor is reduced by 34.7% from 256 bits to
167.3 bits. A reduction by 39% from 512 bits to 312.6 bits per descriptor is achievable for
FREAK features. BRISK descriptors can be compressed by 30% down to 358.9 bits.

The size of the keypoint information can be reduced from 104 bits to 31 bits leading to a
reduction by 70.1%. For the specific ORB feature keypoint encoding, a reduction by 76.4%
from 104 bits to 24.6 bits without losing any information is possible.

In total, ORB features can be compressed by 39.4% from 360 bits to 218.2 bits per feature,
FREAK features by 41% from 616 bits (512 bits + 104 bits) to 363.6 bits, and BRISK features
by 33.5% from 616 bits to 409.8 bits. It worth mentioning that the compressed representation
includes besides the descriptor and the keypoint information also the visual word index,
which can directly be reused in the Bag-of-Words representation.

The results of the compression for ORB features using the element-wise probabilities as in
Equation (4.7) for different vocabulary sizes evaluated on the sunset unconstrained motion se-
quence are visualized in more detail in Figure 4.8. As discussed previously, the compression
of the descriptor part is getting more efficient with growing vocabulary size. Although more
bits are spent on signaling the visual word, the efficiency of the residual coding outweighs
the additional cost for signaling values in the broader range of visual word indices.

In order to provide further insights, the expected values of the descriptor elements and
the entropy were measured on the sunset unconstrained motion sequence and compared in Fig-
ure 4.9 for FREAK and BRISK features. The impact of the pixel test selection is visible with
the first dimensions showing mean values closer to 0.5 for FREAK features (Figure 4.9a),
whereas the elements at the end of the descriptor significantly deviate from this desired

50 Chapter 4. Intra coding and rate allocation

1 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

descriptor element

0

0.5

1

m
ea

n
 v

al
u

e

0

0.5

1

en
tr

o
p

y

(a) Mean values and entropy for the descriptor entries of FREAK features.

1 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

descriptor element

0

0.5

1

m
ea

n
 v

al
u

e

0

0.5

1

en
tr

o
p

y

(b) Mean values and entropy for the descriptor entries of BRISK features.

Figure 4.9: Expected values and entropy per descriptor dimension evaluated on the sunset uncon-
strained motion sequence for FREAK features and BRISK features.

1 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

residual element

0

0.5

1

m
ea

n
 v

al
u

e

0

0.5

1

en
tr

o
p

y

(a) Mean values and entropy for the residual entries of FREAK features.

1 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

residual element

0

0.5

1

m
ea

n
 v

al
u

e

0

0.5

1

en
tr

o
p

y

(b) Mean values and entropy for the residual entries of BRISK features.

Figure 4.10: Expected values and entropy per residual dimension evaluated on the sunset uncon-
strained motion sequence for FREAK features and BRISK features.

4.5. Experimental evaluation 51

value resulting in a lower entropy. BRISK features (Figure 4.9b) do not exhibit this ascend-
ing order in terms of the expected value. It is worth mentioning that the resorting directly
exploits this lack of order in the proposed rate allocation approach.

The mean values and the entropy per entry of the residual vectors using a vocabulary size
of 100k are shown in Figure 4.10. While for FREAK (Figure 4.10a), the measured expected
values were more or less in a small range around 0.16, the mean values increased for the
BRISK features (Figure 4.10b) towards the end of the descriptor. Here, the mean values di-
rectly correspond to the probabilities for a residual vector entry being a one, where pI0 = 1−pI1
is used in intra coding. This indicates that the splitting of the hierarchical vocabulary tree
was not able to reduce the entropy for every descriptor element equally. In consequence, the
approach of defining the probabilities of the residual being zero for each descriptor element
individually is advantageous in this case. However, it also adds a computational overhead
for changing the probability tables for each element.

A direct comparison of the mean values for the descriptor elements and the residual ele-
ments reveals the source of the compression gain for the intra coding mode. While the mean
entropy for the first five FREAK descriptor entries is about 0.97 bit per dimension, the mean
entropy for the first five elements after subtraction of the visual word is about 0.56 bit. This
gap is responsible for the rate reduction.

4.5.2 Homography estimation

In order to prove the advantage of having the descriptors available, the performance of a
typical computer vision task is assessed using the homography estimation precision (HEP) met-
ric from [121], which is defined as follows: A set of ORB features is extracted for each frame
of the sequence within the region of the planar texture as defined by the ground truth. These
features are then encoded and decoded using the proposed method. A homography is esti-
mated using feature matches between decoded features of the current and the previous frame
using a RANSAC-based scheme. The four corner coordinates of the bounding box of the pla-
nar texture from the ground truth data are warped from the previous image into the current
image using the estimated homography and compared with the coordinates obtained by us-
ing the ground truth directly. If the mean error is larger than 3 pixels, the estimated homog-
raphy is considered as an outlier. Finally, the homography estimation precision is defined as
the ratio between the number of correct estimates and the total number of estimates.

The results for the homography estimation precision are shown in Figure 4.11, where a
comparison between feature and Bag-of-Words matching over varying vocabulary sizes Nv

is presented. The descriptor-based matching is carried out using the minimum Hamming
distance between the descriptors and additional cross-checking. This means a feature pair
is only considered a match when the features are considered to be mutually the best match-
ing feature. The Bag-of-Words matching uses only the visual word indices to establish the
point correspondences. The decoded keypoints, quantized to quarter pixel resolution, are
used for all experiments. For small vocabulary sizes, the number of false matches for the
visual word index matching is predominant, leading the RANSAC-based estimation scheme
to fail. Starting with vocabulary sizes of about Nv = 1k, the matching allows a reliable esti-

52 Chapter 4. Intra coding and rate allocation

mation of the homography matrix. The performance decreases again for larger vocabulary
sizes when similar feature descriptors are assigned to different visual words. Although the
Bag-of-Words representation provided reasonable performance, it is still outperformed by
matching the reconstructed descriptors.

4.5.3 Rate allocation

Next, the performance was evaluated using the proposed rate allocation scheme. To this end,
the homography estimation task was reused. Visual vocabularies for the ORB, BRISK, and
FREAK features using the implementations from OpenCV 3.4.1 with their default settings
have been pre-trained using the DBoW2 [139] library with a branching factor K = 10 and
depth of L = 5 using the MIRFlickr1M dataset [132]. Again, the public dataset from Gauglitz
et al. [24] was used for testing and obtaining the utility curves. Here, the temporally down-
sampled sunset unconstrained motion sequence was used to obtain the utility functions by
matching features across two frames and verifying the results using the provided ground
truth. In total, Ng = 4 classes were used and the features were distributed (pg = 0.25,∀g)
among all classes according to their detector response, with g = 4 containing the features
with highest response. The utility curves for ORB, FREAK, and BRISK features with and
without entropy reordering are depicted in Figure 4.12, Figure 4.13, and Figure 4.14. As ex-
pected, the curves with and without reordering for ORB and FREAK features are similar due
to the training step employed in the pixel test selection, whereas for BRISK features, the curve
indicates an increased performance for a reduced set of reconstructed descriptor elements.
If sufficient transmission capacity is available, the entire residual vector can be transmitted.
If the rate limit is reached, the remaining classes and the contained features can be skipped.
The saturation of the curves when approaching the full descriptor size is worth noticing.

descriptors 10 100 1k 10k 100k 1m
vocabulary size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h
o

m
o

g
ra

p
h

y
es

ti
m

at
io

n
 p

re
ci

si
o

n

Brick
Building
Mission
Paris
Sunset
Wood

Figure 4.11: Homography estimation precision for different vocabulary sizes for different sequences.
On the left, the original descriptors are used for establishing point correspondences. On the right, the
visual words are used for matching (adapted from [2] ©2017 IEEE).

4.5. Experimental evaluation 53

0 64 128 192 256
n

g

0

0.2

0.4

0.6

0.8

1

U
g

(n
g

)

g=1
g=2
g=3
g=4

(a) ORB: Without reordering.

0 64 128 192 256
n

g

0

0.2

0.4

0.6

0.8

1

U
g

(n
g

)

g=1
g=2
g=3
g=4

(b) ORB: With reordering.

Figure 4.12: Utility functions Ug(ng) for ORB features using four classes at a vocabulary size of
Nv = 100k over varying number of residual elements. Without and with reordering.

0 64 128 192 256 320 384 448 512
n

g

0

0.2

0.4

0.6

0.8

1

U
g

(n
g

)

g=1
g=2
g=3
g=4

(a) FREAK: Without reordering.

0 64 128 192 256 320 384 448 512
n

g

0

0.2

0.4

0.6

0.8

1

U
g

(n
g

)

g=1
g=2
g=3
g=4

(b) FREAK: With reordering.

Figure 4.13: Utility functions Ug(ng) for FREAK features using four classes at a vocabulary size of
Nv = 100k over varying number of residual elements. Without and with reordering.

0 64 128 192 256 320 384 448 512
n

g

0

0.2

0.4

0.6

0.8

1

U
g

(n
g

)

g=1
g=2
g=3
g=4

(a) BRISK: Without reordering.

0 64 128 192 256 320 384 448 512
n

g

0

0.2

0.4

0.6

0.8

1

U
g

(n
g

)

g=1
g=2
g=3
g=4

(b) BRISK: With reordering.

Figure 4.14: Utility functions Ug(ng) for BRISK features using four classes at a vocabulary size of
Nv = 100k over varying number of residual elements. Without and with reordering (adapted from [5]
©2018 IEEE).

54 Chapter 4. Intra coding and rate allocation

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

(a) Summed utility function Us.

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

re

si
d

u
al

 e
le

m
en

ts

g=1
g=2
g=3
g=4

(b) Residual element selection.

Figure 4.15: Evolution of the summed utility function Us and the descriptor element selection per
class over a varying number of average bits per BRISK feature.

Especially for the reordered BRISK features, a saturation of the utility curves is observable
around 400 descriptor entries. This indicates that a similar performance of the descriptor
could be achieved using fewer highly descriptive residual entries to approximate the origi-
nal descriptor. While this reduces the amount of data to be transmitted, further investigation
if the whole descriptor can be reduced to incorporate only the descriptor entries with high
entropy can be made, but are beyond the scope of this thesis. However, this would reduce
the computational complexity when extracting, storing, and matching the descriptors.

In Figure 4.15a, the evolution of the weighted sum of the utility functions Us is shown
as a function of the maximum available transmission rate C normalized by the number of
features per image Nf . Figure 4.15b shows the optimal number of residual elements selected
to achieve the operating point on Us. The selection scheme was computed using a brute-
force approach in an offline process beforehand. While the function Us is a monotonically
increasing function depending on the available transmission capacity C or the average bits
spent per feature C

Nf
, the number of selected residual elements depends on the characteris-

tics of the utility curves for all classes. In the range of very limited channel capacities, it is
beneficial to assign all bits to the highest class and skip the remaining classes. At some point
(here at around 35 bits per feature), it is more advantageous to add a second class and reduce
the number of bits for the highest class. In the end, the four utility curves from Figure 4.14b
reach a saturation, which is also reflected with no further residual vector entries being added
in Figure 4.15b. Generally speaking, residual elements from the class with the steepest utility
curve at the current operating point are added. Due to noise, the measured utility curves are
not monotonically increasing and thus lead to cases where residual elements are removed
from a class in favor of additional residual elements from another class.

The proposed method was evaluated using the remaining sequences. Again, the HEP
was employed as a quality metric. The coding costs of the individual features for this par-
ticular setup are reported in the following. The costs for keypoint coding using the generic
keypoint coding and the number of bits for transmitting the Bag-of-Words indices were mea-
sured as RI,kpt = 31 and RI,BoW = 16.6 bits, respectively. It is worth noticing that the values

4.5. Experimental evaluation 55

0 10 20 30 40 50 60 70 80 90 100
rate in kbits per frame

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h
o

m
o

g
ra

p
h

y
es

ti
m

at
io

n
 p

re
ci

si
o

n

BRISK rate allocation
BRISK feature skipping
FREAK rate allocation
FREAK feature skipping
ORB rate allocation
ORB feature skipping

Figure 4.16: Homography estimation precision over varying bitrates obtained for the brick, building,
mission, pairs, and wood sequences. The proposed rate allocation scheme is compared with feature
skipping when exhausting the bit budget (adapted from [5] ©2018 IEEE).

for the intra coding in Table 4.1, Table 4.2, and Table 4.3 are reported for the sunset uncon-
strained motion sequence whereas here, the remaining sequences were used. For ORB fea-
tures, the full residuals required 181.6 bits, FREAK features required 334.9 bits and BRISK
features 383.7 bits using individual probabilities for the residual elements as described by
Equation (4.7).

The results of the proposed rate allocation scheme are shown in Figure 4.16, where the
HEP over varying target bitratesC for the different features is presented. The scheme is com-
pared to a feature skipping mechanism, which is a selection on the feature level. Here, the
features are sorted according to their detector response and the features with the highest de-
tector response are prioritized for transmission. If the bit budget is exhausted, the remaining
features are skipped. The results indicate a quite substantial gain in performance, especially
at low bitrates. At 7 kbits per frame, the HEP for BRISK features is improved from 0.18 to
0.83. It is worth noting that it is crucial allowing to skip features of classes when operating
at low bitrates, as every visual feature has fixed coding costs for keypoint and visual word
information, which makes it impossible to reach very low bitrates without a feature skipping
mechanism. In this setup, skipping all features in a particular class is allowed. The exper-
iments show the results for using four classes and the features being equally distributed
among the classes to keep the signaling overhead reasonable. Depending on the target task
and the visual feature algorithm, other choices might also be suitable.

56 Chapter 4. Intra coding and rate allocation

4.6 Summary

In this chapter, a novel intra coding mode for local binary features has been introduced. A vi-
sual vocabulary is used as shared knowledge to reduce the amount of data to be transmitted.
Regarding keypoint coding, a generic keypoint coding has been added based on previous
work. In addition, a novel lossless keypoint coding method exploiting the scale-space rep-
resentation of ORB features has been proposed. Extensive evaluations using a homography
estimation task have demonstrated an achievable reduction in required data rate between
33.5% and 41%.

In order to select the most relevant descriptor elements for transmission over a resource-
constrained communication channel, a novel rate allocation scheme has been proposed. The
local binary descriptors are grouped into classes according to their usefulness. The num-
ber of reconstructed descriptor elements is obtained by evaluating utility functions for each
class. To transmit the most useful information first, the descriptor elements are rearranged
according to their entropy. A substantial improvement has been shown for all tested fea-
tures. While the approach has been evaluated in conjunction with the intra coding mode, the
key idea can also be combined with alternative coding algorithms.

Chapter 5

Monocular remote visual SLAM

5.1 Problem statement

Many computer vision applications are still not feasible in real-time on mobile and embed-
ded devices. One of the many examples is the task of performing visual SLAM. Although
some authors argue that their algorithms run on mobile devices, these algorithms are typ-
ically constrained to small-scale workspaces [77], do not provide the same accuracy com-
pared to using commodity desktop hardware or need to make sacrifices in terms of image
resolution [113]. While the mobile hardware usually lags behind the current development of
desktop hardware, alternative system architectures to local processing need to be considered.
Parts of this chapter have been published in [3].

5.2 System architecture

In this chapter, a client-server ATC-based concept for visual SLAM is investigated to provide
the results of accurate visual SLAM on embedded and mobile devices. To this end, a state-
of-the-art visual SLAM system is combined with the feature coding introduced in Chapter 4.
The concept is illustrated in Figure 5.1. A client extracts and encodes local binary ORB fea-
tures. The server receives the compressed visual information over a communication chan-
nel, performs decoding, and runs an ORB-SLAM2 instance. A feedback channel provides
information about the current tracking status of the visual SLAM system. In this chapter,
the feature coding framework from Chapter 4 is extended. In order to exploit the temporal

camera

network

ORB
extraction

feature
encoding

client

feature
decoding

ORB
SLAM2

server

Figure 5.1: Illustration of the proposed monocular remote SLAM system. The client is responsible
for acquiring the images, then extracts and encodes ORB features. A server receives the compressed
features, decodes the features, and passes them to ORB-SLAM2 (adapted from [3] ©2018 IEEE).

57

58 Chapter 5. Monocular remote visual SLAM

intra-frame coding

decoding

binary
features

residual coding

keypoint coding

BoW index coding

residual coding

keypoint coding

reference coding

reference coding

feature selection

inter-frame coding

buffermode decision

visual vocabulary

inter-frame skipping

camera

Figure 5.2: Overview of the monocular coding framework. In contrast to the previous chapter, an
inter-frame coding, as well as an inter-frame skipping, is added to the existing intra coding mode.
The feature prediction requires an additional buffer storing the visual information from the previous
frames. A mode decision mechanism determines the best coding mode for each feature (adapted
from [3] ©2018 IEEE).

redundancies in a video sequence, an inter-frame predictive coding method is added. An
additional skip mode enables the algorithm to copy features from previous frames in static
scenarios. A rate adaptation scheme implemented as a feature selection mechanism rapidly
decides whether a feature should be transmitted over a resource-constrained communication
channel or not. Information such as the tracking state is fed back to the feature encoder to
adapt the transmitted data to the state of the visual SLAM system. Different aspects, such
as the required data rate, real-time capability, and the trajectory error, are evaluated in an
experimental setup. An overview of the coding framework used in this chapter is shown in
Figure 5.2.

5.3 Feature coding

The newly proposed feature coding modes, namely the inter coding and the skip mode, im-
plemented as an addition to the coding framework introduced in Chapter 4, are detailed in
the following.

5.3.1 Inter coding

With the ability to encode individual local binary features using intra coding, the next step
is to exploit temporal redundancies inherent in a video sequence. To this end, a predictive
coding mode based on the method by Baroffio et al. [121], [123] is added. This approach
is inspired by motion-compensated prediction in hybrid video coding. In the domain of
video coding, this technique is one of the main reasons for the remarkable compression ra-
tios achievable today. The key idea is to search in the history of previous frames for features

5.3. Feature coding 59

inter-frame

t

inter-frame

Figure 5.3: Illustration of the inter coding mode. Features from the past Nr frames can serve as a ref-
erence for predicting the current feature. In this example, the feature from the past frame is selected
as a reference (adapted from [1] ©2018 IEEE).

in the near vicinity that could serve as a reference for the current feature, as illustrated in
Figure 5.3. After having found and signaled a suitable candidate feature, only the differ-
ences of the keypoint properties such as the position, the orientation, and the scale-space
level alongside a residual vector containing the binary differences between the descriptors
need to be transmitted. The set of available coding modes is now extended to {I, P}, where
I is the previously introduced intra coding mode, and P denotes the newly added predictive
inter-frame coding mode. In contrast to previous work [123], the implemented inter coding
mode is not restricted to a single reference frame, which allows for an efficient feature coding
in the presence of short-term occlusions using a longer history of reference frames.

The number of bits for coding a local feature i from the n-th image using predictive
coding is given by the costs HP,ref

n,i for signaling the reference feature, the cost HP,res
n,i (w)

for the residual vector and the required bits HP,kpt
n,i (w) for the differential keypoint infor-

mation between the current and the reference feature. The reference feature is index by
w ∈ {z ∈ N | 1 ≤ z ≤ NP

ref} with NP
ref denoting the number of reference features. The total

cost in minimally required bits is then given by

HP
n,i = HP,ref

n,i +HP,res
n,i (w) +HP,kpt

n,i (w). (5.1)

To minimize the bitrate, the most suitable feature indexed by w∗ according to the estimated
number of bits is determined from the previous frames as

w∗ = arg min
w

(HP,res
n,i (w) +HP,kpt

n,i (w)). (5.2)

In order to speed up the search, the search range is restricted to a window of size ∆x, y = ±20

pixels around the current keypoint location and to neighboring scale-space levels as ∆σ =

±1 in the past Nr frames. The individual parts of the coding costs are detailed in the follow-
ing.

5.3.1.1 Reference coding

First, an index indicating the reference feature has to be signaled using

HP,ref
n,i = log2(NP

ref) (5.3)

bits assuming uniform probabilities. In the current scenario, the costs HP,ref
n,i for coding the

reference features is assumed to be static for a fixed number of Nf features per frame and a

60 Chapter 5. Monocular remote visual SLAM

fixed number of Nr reference frames calculated as

NP
ref = Nf ·Nr. (5.4)

5.3.1.2 Residual coding

The costs for transmitting the residual vector can be derived similarly to the costs for the
intra coding mode. The Hamming distance between the current feature descriptor dn,i and
the reference feature descriptor dw∗ is given by

hPn,i(w
∗) = h(dn,i,dw∗). (5.5)

The lower bound in bits for a specific feature descriptor i from image n can be calculated
similar to Equation (4.6) as

HP,res
n,i (w∗) = −(Nd − hPn,i(w∗)) · log2(pP0)− hPn,i(w∗) · log2(1− pP0), (5.6)

where pP0 is the specific probability of a zero value in the residual vector for the predictive
inter coding mode.

5.3.1.3 Keypoint coding

In contrast to the intra-frame keypoint coding, only the differences with respect to the ref-
erence feature have to be transmitted. Again, a differentiation between generic keypoint
coding and a novel ORB specific keypoint coding method is possible.

Generic keypoint coding: The number of bits required to transmit the differences is given
by the sum of bits needed to transmit the difference in the location ∆xn,i(w

∗),∆yn,i(w
∗), the

scale-space level ∆σn,i(w
∗), and the orientation ∆θ̂n,i(w

∗). For the sake of readability, the
dependence of the values on w∗ is dropped in the following notation. The number of bits for
the keypoint differences is then given as

HP,kpt
n,i (w∗) = − log2(f∆p(∆xn,i,∆yn,i))− log2(f∆σ(∆σn,i))− log2(f∆θ̂(∆θ̂n,i)). (5.7)

Here, the assumption is made that smaller displacements in terms of pixel coordinates occur
more often. The same holds for the differences in scale-space level and orientation. There-
fore, different probability mass functions f∆ for each entity are measured and used in com-
bination with arithmetic coding to signal the differences.

ORB keypoint coding: For the ORB specific coding, the probability mass functions f s∆p for
the difference in keypoint location are obtained individually for each scale-space level. For
the keypoint displacement, the difference is scaled back to the scale-space level of the current
keypoint to ensure integer accuracy using Equation (4.9) as

∆xsn,i = round(
xn,i − xw∗
fs(σn,i)

) ∆ysn,i = round(
yn,i − yw∗
fs(σn,i)

), (5.8)

5.3. Feature coding 61

0
20

0.02

10 20

0.04

p
ro

b
ab

ili
ty

10 0

0.06

0 -10 -10-20 -20

(a) Position difference at σ = 0.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

p
ro

b
ab

ili
ty

(b) Scale-space level difference.

-32 -24 -16 -8 0 8 16 24 32
0

0.1

0.2

0.3

0.4

0.5

p
ro

b
ab

ili
ty

(c) Orientation difference.

Figure 5.4: Probabilities used for differential keypoint coding for the keypoint displacement (a), the
scale-space difference (b), and the difference in orientation bins (c). Only very few entries contain
significant probabilities thus making entropy coding efficient.

where ∆xsn,i and ∆ysn,i denote the scaled differences in x and y direction. Depending on the
settings for the scaling factor and the maximum allowed scale-space difference, the calcula-
tion of the keypoint displacements produces unique solutions for features matched across
neighboring scales as well. In order to resolve ambiguity, a restriction to matching feature on
the same scale-space level can be enforced.
The number of bits for coding the keypoint difference is then given by

HP,kpt
n,i (w∗) = − log2(fs∆p(∆x

s
n,i,∆y

s
n,i, σn,i))− log2(f∆σ(∆σn,i))− log2(f∆θ̂(∆θ̂n,i)), (5.9)

where ∆σn,i denotes the difference in scale-space level and ∆θ̂n,i the difference in orienta-
tion bins with respect to the best reference feature w∗. The probability mass functions for
the ORB keypoint coding are illustrated in Figure 5.4. The distribution of the probabilities
indicate that small differences between features are more likely to occur for all properties,
thus motivating the use of entropy coding.

5.3.2 Skip mode

In cases where no camera motion is present and the scene is static, inter coding still produces
a considerable amount of data. In order to address this issue, a feature skipping mode is im-
plemented. A feature situated at exactly the same location with the same keypoint properties
as the current feature has to be present in previous frames. In this case, only the index of the
reference feature is transmitted and the reference feature is copied. In order to account for
sensor noise and flickering lights, a Hamming distance difference of hSn,i < 5 is tolerated. In
consequence, the available set of coding modes is extended by the skip mode S to {I, P, S}.

5.3.3 Mode decision

The central element of the coding framework is the mode decision algorithm. It calculates
the expected number of bits for each coding mode using Equations (4.2, 5.1) and determines
the best coding mode m∗ for each feature as

m∗ = arg min
m

Hm
n,i. (5.10)

62 Chapter 5. Monocular remote visual SLAM

This calculation is done for each feature individually and is implemented in a parallel fash-
ion. Lookup tables are used to speed up the calculation by avoiding the evaluation of the
logarithms contained in the rate calculation.

5.3.4 Rate adaption

To ensure constant time encoding and meeting the bitrate constraints predetermined by the
transmission capacity C, an approach is introduced that facilitates feature selection. It ranks
the features according to a metric that defines how useful a specific local feature is for the tar-
geted task without adding significant overhead. The ORB feature extraction parameters are
not changed, but rather a decision based on the feature properties is made whether a visual
feature is contributing significantly to the result of the remote visual SLAM system or not. In
contrast to the rate allocation introduced in Chapter 4, the feature selection operates on the
feature level rather than on the descriptor level. The main reason for using this technique
here is that it only adds minimal overhead and provides a simple mechanism to stop the
feature encoding when a time budget is exhausted by just skipping the remaining features.

5.3.4.1 Feature selection

Similar to Francini et al. [37], various relevance statistics have been measured for the features
used for map point creation in the visual SLAM system. For this purpose, ORB-SLAM2 was
used to build a map with features processed by the coding framework. The properties of the
features that were successfully triangulated and, thus, serve as observations of map points
were analyzed using this static map. While Francini et al. considered most keypoint prop-
erties, such as position in the image, detector response, scale-space level, and orientation
to determine the usefulness of features for a visual search task, this work focuses on visual
SLAM as the target application with different requirements.

After dissecting the individual properties, both the detector response s given by the FAST
corner detector [35] employed in ORB and the coding mode decisionm from the feature cod-
ing algorithm is used for the relevance score. The underlying assumption is that a stronger
detector response indicates a high contrast corner, which should be more reproducible in
different views of the same scene compared to low contrast corners, which conversely could
be a result of sensor noise. The inter coding mode is used for features that are visible in
consecutive frames. Intuitively, the more often a corner is seen in adjacent views, the higher
the probability of being triangulated to a map point. An analysis of the remaining keypoint
properties, such as the orientation θ̂, the scale σ, and the keypoint locations has additionally
been performed. While the orientation does not provide additional information, it is observ-
able that higher scale-space levels exhibit a higher triangulation probability. However, the
prioritization of certain scale-space levels renders ORB-SLAM2 unable to keep tracking due
to the reduced scale invariance. Regarding the keypoint position, Francini et al. use the dis-
tance from the image center as ranking criteria. In contrast to a visual search task, where
the object of interest is usually located in the center of the image, a visual SLAM system per-
forms best when considering features that are adhered to different objects distributed across

5.3. Feature coding 63

INTRA INTER
coding mode

0

0.1

0.2

0.3

0.4

0.5
p

ro
b

ab
ili

ty

(a) Matching probabilities
depending on the coding modes.

0 1 2 3 4 5 6 7 8
response bins

0

0.1

0.2

0.3

0.4

0.5

p
ro

b
ab

ili
ty

(b) Matching probabilities depending on the quantized
response values.

Figure 5.5: Triangulation probabilities used for the feature selection based on a map of the EuRoC
MH01 sequence (adapted from [3] ©2018 IEEE).

the scene [96], [140]. This increases the stability of the camera pose estimation by avoid-
ing degenerated cases in the pose estimation process. In contrast to the objectives of visual
search, the authors of ORB-SLAM2 specifically try to distribute the feature across both the
image and the scale-space to make the tracking more robust and scale invariant [69].

In order to formulate the problem, the notation of Francini et al. [37] is used. The bi-
nary variable c is introduced to indicate whether a feature serves as an observation of a map
point (c = 1) or has not been associated with the map (c = 0). For the response value
s ∈ {z ∈ N | 0 ≤ z < 180}, a bin size of 20 is used and the response range is quantized ac-
cordingly into bins. Values exceeding this range are assigned to the highest bin. For the
quantized response value ŝ ∈ {z ∈ N | 0 ≤ z < Nŝ} with Nŝ = 8, the probability of correct
matches given a response value is calculated using Bayes formulation as follows

P (c = 1|ŝ = ŝn,i) =
P (c = 1 ∩ ŝ = ŝn,i)

P (ŝ = ŝn,i)
. (5.11)

For the coding mode, a distinction between the intra and inter coding modes is made

P (c = 1|m = mn,i) =
P (c = 1 ∩m = mn,i)

P (m = mn,i)
. (5.12)

The resulting statistics are shown in Figure 5.5. Both the coding mode and the response val-
ues are assumed to be independent and thus allowing to calculate the combined relevance
score rn,i by a multiplication of the individual scores as

rn,i = P (c = 1|ŝ = ŝn,i) · P (c = 1|m = mn,i). (5.13)

Based on these criteria, a score for every feature is calculated and used to sort the features.
Only relevant features up to a certain time limit or bit budget are transmitted.

5.3.5 Feedback channel

A reliable initialization is crucial for a visual SLAM system. If the initial map is erroneous,
the subsequent tracking has very little chance to estimate the correct frame position. The

64 Chapter 5. Monocular remote visual SLAM

authors of ORB-SLAM2 double the number of ORB features for the frames in the uninitial-
ized monocular case. However, they use only the features extracted at the first level of the
scale-space pyramid to estimate the initial transformation between two frames. The features
detected at other scale-space levels are also stored and can later be used for creating map
points or perform loop closing. In order to avoid sending twice the number of features for
initialization, the number of extracted features is also doubled, but the number of features
sent is kept constant. In this scheme, features extracted at the first scale-space level are pri-
oritized during the initialization phase, and features at higher levels are skipped to keep the
number of features constant. The motivation is to avoid a bursty traffic pattern by sending
twice the number of features whenever the SLAM system is initializing or has lost track and
needs to reinitialize. In order to signal when to return to the usual mode decision, a feed-
back channel is added where information about the current tracking state is fed back to the
sender. More specifically, if the initialization is completed or when tracking is lost, feedback
messages are sent. In the latter case, features from the first scale-space level are prioritized.

5.4 Experimental evaluation

5.4.1 Feature coding

For the intra coding scheme, the same approach as introduced in Chapter 4 is used. ORB
features were extracted from the MIRFlickr1M dataset as training data. A hierarchical visual
vocabulary using the DBoW2 library has been trained beforehand. Although ORB-SLAM2
already includes a pre-trained visual vocabulary, which has been created with a branch-
ing factor K = 10 and a tree depth L = 6, a smaller vocabulary with the same branching
factor, but a depth of L = 5 is employed here due to size constraints. The goal is to run
the client on embedded devices with a limited maximum memory footprint. Therefore, a
smaller vocabulary taking only 14.8 MB replaces the original vocabulary, which consumes
145.3 MB. The probabilities pm0 have been pre-trained using the industrial sequences from
the EuRoC dataset. The properties for the feature selection have been obtained from a map
of the EuRoC MH01 sequence. For the evaluation, the TUM RGB-D dataset was employed.
A more detailed introduction of the datasets is provided in Section 2.6.

For all experiments, the default settings for the TUM RGB-D dataset provided by ORB-
SLAM2 were employed extracting 1k features per frame. Both encoder and decoder ran
simultaneously on a single computer equipped with an Intel i7-3770 CPU @ 3.40 GHz and
using the Robotic Operation System (ROS) [141] for the bidirectional communication. First,
the feature sizes of the individual coding modes are shown in Figure 5.6. For the intra-coding
mode, on average 175.4 bits for the residual coding, 24.9 bits for the keypoint properties and
16.9 bits for the visual word indices are spent. The coding mode is signaled with two addi-
tional bits, resulting in 219.2 bits per feature for the intra coding.

For the inter coding, 12 bits are required for signaling the reference features using Nr = 4

reference frames with each Nf = 1k features. About 98.9 bits for the descriptor and 10.4 bits
for the keypoint differences are required, resulting in 123.3 bits per feature including the

5.4. Experimental evaluation 65

INTRA INTER SKIP
coding mode

0

50

100

150

200

250

300

350
b

it
s

p
er

 f
ea

tu
re

residual
keypoint
visual word index
reference feature
coding mode

(a) Bits per coding mode.

INTRA INTER SKIP

coding mode

0

0.2

0.4

0.6

0.8

1

fr
a

c
ti

o
n

 p
e

r
c

o
d

in
g

 m
o

d
e

(b) Fraction per coding mode.

Figure 5.6: Bits per feature for all coding modes using Nr = 4 reference frames on the fr3/long_office
sequence. Intra coding mode consumes the most bits per feature. Exploiting temporal redundancies
results in a substantial reduction of the required bits. In this sequence, the majority of the features are
encoded using the inter coding mode (adapted from [3] ©2018 IEEE).

I I + P1 I + P4

encoding 19.4 ms 21.0 ms 26.3 ms

decoding 25.4 ms 23.0 ms 23.6 ms

kbits/frame 219.2 161.1 140.6

Table 5.1: Timing results are the median over ten executions using 1k features for varying numbers
of reference frames Nr for the inter coding evaluated on the fr3/long_office sequence. The consumed
time increases when using intra coding and moving to more reference frames, whereas the required
number of bits reduces (adapted from [3] ©2018 IEEE).

two bits for the coding mode. The inter-skip mode only needs to send the reference feature
index and the coding mode.

The resulting bitrate and coding times for a different number of reference frames are com-
pared in Table 5.1. The uncompressed size is given with 360 kbits/frame using 1k features
per frame and 360 bits per feature, as calculated in Chapter 4. Intra coding provides a re-
duction by 39.1%, inter coding with a single reference frame a reduction by 55.3%, and four
reference frames a reduction by 61%. The encoding time increases from 19.4 ms using only
intra coding to 26.3 ms using four reference frames.

5.4.2 Feature selection

Next, the feature selection is evaluated by limiting the available bit budget to 75 kbits per
frame. The SLAM performance is measured in terms of absolute trajectory error (ATE) [134]
and is shown in Table 5.2. As monocular SLAM does not provide any scale, the resulting
trajectory is aligned and scaled with the ground truth. Although, the bitrate is drastically
reduced to 75 kbits/frame, which is a reduction by 79.2% compared to the uncompressed
size of 360 kbits/frame, the sequences are processed with only a sub-cm loss in accuracy.

In order to provide additional insights on the effects of the feature selection, Figure 5.7

66 Chapter 5. Monocular remote visual SLAM

sequence 75 kbits/frame [cm] 1k features/frame [cm]

fr2/desk 1.18 1.08

fr2/desk_person 1.35 1.18

fr3/long_office 1.35 1.23

fr3/nostr_tex_near_wl 1.57 1.40

fr3/sit_halfsphere 1.91 1.81

fr3/str_tex_far 1.11 1.14

fr3/str_tex_near 1.37 1.31

Table 5.2: Comparison of the ATE in cm for sequences from TUM RGB-D. Results are reported as
median values over 10 executions for each sequence. The trajectories are aligned and scaled to the
ground truth using 7DoF alignment by similarity transformation using the provided dataset tools.
The results show that accurate results in the range of sub-cm accuracy can be achieved while reduc-
ing the bitrate to 75 kbits/frame (adapted from [3] ©2018 IEEE).

0 500 1000 1500 2000 2500
frame #

40

60

80

100

120

kb
it

s/
fr

am
e

random selection

(a) Bitrate profile.

0 500 1000 1500 2000 2500
frame #

0

100

200

300

400

tr
ac

ke
d

 m
ap

 p
o

in
ts random selection

(b) Map points used for tracking.

0 500 1000 1500 2000 2500
frame #

0

100

200

300

ke
yf

ra
m

es

random selection

(c) Evolution of the number of keyframes in the map.

0 500 1000 1500 2000 2500
frame #

0

2000

4000

6000

8000

m
ap

 p
o

in
ts

random selection

(d) Evolution of the number of map points in the map.

Figure 5.7: Evolution of the map properties using a random selection of 500 features and the pro-
posed feature selection scheme on the fr3/long_office sequence. The bitrate (a), the keyframes (c) and
the map points (d) are reduced, whereas the number tracked map points (b) is increased (adapted
from [3] ©2018 IEEE).

5.4. Experimental evaluation 67

75 kbits/frame [ms] 1k features/frame [ms]

client
ORB 13.5

encoding 17.4 26.3

total 31.4 40.5

server
decoding 13.4 23.6

tracking 11.6 18.8

total 25.4 43.9

Table 5.3: Timing results in ms for fr3/long_office using four reference frames as median over 10 exe-
cutions. Both the bitrate and the timings are reduced when limiting the bitrate allowing for real-time
processing (adapted from [3] ©2018 IEEE).

shows the bitrate profile, the map points used for tracking the current frame, the number
of keyframes and the number of map points present in the map measured at each frame of
the fr3/long_office sequence. The feature selection is compared to random sampling selecting
500 out of the 1k extracted features. It is worth noticing that prioritizing inter coded features
improves both the tracking stability and the bitrate (Figure 5.7a) at the same time. Here, the
number of tracked map points that are connected with features in the current frame can serve
as an indicator for the tracking stability (Figure 5.7b). Intuitively, the more map points are
used for estimating the current frame pose, the more reliable is the result. If the map points
are highly stable and repeatable, fewer map points are required to provide stable tracking.
Hence, the number of both keyframes (Figure 5.7c) and map points (Figure 5.7d) in the map
can be significantly reduced by the selection step. Besides, reducing the number of features,
map points, and keyframes reduces the memory footprint of the map and lowers the com-
putational burden, as shown in the next section.

5.4.3 Computational complexity

The computational complexity is analyzed in Table 5.3. The median time to track a single
frame is reduced to 11.6 ms using only a selected subset of features compared to 18.8 ms
using 1k features. To show the performance in mobile applications, additional tests were
performed on an embedded platform using an NVIDIA Jetson TX2. Without any specific
optimization, 1k features are encoded within 34.2 ms using one and 50.4 ms using four ref-
erence frames at 1.4 GHz while using roughly 5.5 Watts. At 2.0 GHz it takes 25.3 ms and
34.6 ms respectively while consuming about 6.7 Watts. In this evaluation, parallelization
was only used for the mode decision thus leaving room for further improvement.

68 Chapter 5. Monocular remote visual SLAM

5.5 Summary

In this chapter, a monocular remote visual SLAM system architecture has been proposed.
Based on the Analyze-then-Compressed approach, the local features are extracted and com-
pressed at the client-side and transmitted to a server for building a visual SLAM map. A
feature selection method ensures to stay below the upper bounds regarding real-time pro-
cessing and transmission capacity. At the server-side, the local binary features are decoded
and fed into the state-of-the-art ORB-SLAM2 visual SLAM system. The performance was
evaluated on several sequences of the well-known TUM RGB-D dataset. In conclusion, the
system was capable of reducing the bitrate by 39.1% using intra coding, 55.3% using a sin-
gle reference frame, and 61% using four reference frames. Moreover, by skipping features, a
reduction by 79.2% down to 75 kbits/frame is possible while being able to run ORB-SLAM2
with only a sub-centimeter degradation in accuracy. In addition, the computation time of
ORB-SLAM2 and the resulting map size were reduced by using only selected features.

Chapter 6

Stereo remote visual SLAM

6.1 Problem statement

While the remote visual SLAM architecture introduced in the previous chapter is capable of
providing monocular visual SLAM, real-world robotic applications usually require a met-
ric scale map representation. Cues to determine the scaling factor can be obtained by using
additional sensors, such as range scanners, IMUs, or others. Apart from additional sensors,
the size of known objects such as traffic signs [8] or hallways [142] can be used. Another
alternative investigated in this work uses multiple visual sensors in a multi-camera setup. In
this chapter, the focus lies on the scale information extracted from a calibrated stereo camera
setup. Hence, the previously introduced coding methods should be extended by additional
modes for the compression of additional depth or stereo information.

6.2 System architecture

The system architecture used in this chapter is an extension of the system described in Chap-
ter 5 and is depicted in Figure 6.1. The client is equipped with a stereo camera system with
known intrinsic camera calibration and a known stereo baseline between the two cameras.
The ORB feature extraction is running on each stereo image pair and the features are passed
to the feature encoding. The compressed features are then sent over a network connection to
a server instance. The server is running a feature decoding process and passes the decoded
features to a visual SLAM system.

network

client server

camera 1 ORB
extraction feature

encoding
camera 2 ORB

extraction

feature
decoding

ORB
SLAM2

Figure 6.1: Illustration of the ATC-based metric scale visual SLAM architecture. The client extracts
visual features from both views and applies feature encoding. The server receives and decodes the
feature streams. Subsequently, the features are fed into the visual SLAM system (adapted from [1]
©2019 IEEE).

69

70 Chapter 6. Stereo remote visual SLAM

inter-frame

inter-view

left view

t
inter-frameright view

depth

visual vocabulary

intra-frame

inter-frame

Figure 6.2: Illustration of the different coding modes. The prediction modes exploit either a visual
vocabulary (intra-frame), temporal (inter-frame), or spatial correlations (inter-view) between local
features. Alternatively, quantized depth values can be transmitted (adapted from [1] ©2019 IEEE).

For purely vision-based SLAM, a stereo, or more general, a multi-camera setup is essen-
tial to provide metric scale information. Hence, the monocular feature coding is extended
in this chapter to include a depth value coding, where the depth values are acquired either
directly from a depth sensor in an RGB-D camera or by matching features between stereo-
views with a known baseline. The latter is primarily assumed in this work. Instead of
sending the floating-point depth representation, a non-uniform scalar quantization scheme,
which is tailored to typical depth values, is employed to reduce the required amount of data.

If the local features from both views are required, a stereo-view coding scheme exploiting
the spatial correlation between the two views is needed. The concept of coding features ex-
tracted from arbitrary visual sensor networks [135] is used to encode the visual information
efficiently. Similar to the inter coding that exploits temporal redundancies, spatial redun-
dancies are exploited in this scheme by transmitting only the differences between matched
stereo features. This chapter adds the missing parts to complete the framework depicted in
Figure 3.1 in Chapter 3.

6.3 Feature coding

The set of available coding modes is extended to {I, P, S,M}, where I denotes the intra-
frame coding (Chapter 4), P the predictive inter-frame coding, S the skip mode (both Chap-
ter 5), andM the new multi-view stereo coding mode. The presence of additional depth data
is indicated by D. The concepts are illustrated in Figure 6.2. Due to occlusions, estimating
the depth is not always possible, and visual features close to the camera system can result
in considerably aberrant visual descriptors. Hence, the system is designed such that for fea-
tures in the right view, the coding modes introduced for monocular feature coding can be
selected as well. Regarding the mode decision, the rate for all eligible coding modes (I , P ,
S for the left view and M additionally for the right view) is calculated per feature, and the
mode with the lowest number of bits is selected. The number of bits for the depth and the
stereo coding mode is detailed in the following.

6.3. Feature coding 71

0 10 20 30 40 50 60 70 80 90 100
depth [m]

0

0.1

0.2

0.3

0.4
p

ro
b

ab
ili

ty

(a) Depth histogram for the EuRoC V101 sequence.

0 10 20 30 40 50 60 70 80 90 100
depth [m]

0

0.02

0.04

0.06

0.08

0.1

0.12

p
ro

b
ab

ili
ty

(b) Depth histogram for the KITTI 07 sequence.

Figure 6.3: Histogram of the depth values obtained from the EuRoC V101 (a) and the KITTI 07 (b)
sequences. The depth values heavily depend on the dataset scenario (indoor vs. outdoor). Hence,
both datasets have been used to obtain the quantization curves.

6.3.1 Depth coding

The depth coding is used to augment the visual information with additional depth infor-
mation for each feature of the monocular feature stream of the left view. To this end, the
depth is either acquired directly by reading the depth sensor data from an RGB-D camera or
by stereo feature matching in case of a stereo camera setup. For the latter, a pre-calibrated
camera system with known intrinsic and extrinsic camera calibration is required. The feature
correspondences between neighboring views are established by identifying feature matches
located on the same scale-space level along the epipolar line. To account for imperfect cam-
era calibration, a deviation of two pixels from the epipolar line in their respective scale-
space representation is allowed. When estimating the depth, the result is usually stored in
a single-precision floating-point data structure with 32 bits per depth value. Here, the ques-
tion arises, whether a quantized version of this representation is sufficient to create accurate
metric scale visual SLAM maps. To this end, this work proposes to use a non-uniform quanti-
zation scheme, which is trained on different sample trajectories with the goal of minimizing
the reconstruction error. The data rate can be further reduced by exploiting the observation
that, due to occlusion, not every feature can be matched to estimate a corresponding depth
value. Hence, for every feature, a single bit is sent, indicating if the feature is accompanied
by depth information. The depth reconstruction level is then subsequently signaled using
ND bits.

The quantization characteristics for coding the depth values have been obtained on both
the KITTI and the EuRoC Machine Hall sequences to include different depth ranges in indoor
and outdoor scenarios into the pre-trained quantization codebook. Typical depth values ob-
tained from the EuRoC V101 and KITTI 07 sequence are shown in Figure 6.3. The difference
in the depth values in indoor and outdoor scenarios prove the necessity to train the depth
quantization on both scenarios to cover the different environments. For the EuRoC sequence,
the room size for the EuRoC V101 dataset is said to be approximately 8 m x 8.4 m x 4 m [54],
which is reflected in the depth values staying roughly below 10 m. The majority of features

72 Chapter 6. Stereo remote visual SLAM

0 10 20 30 40 50 60 70 80 90 100
original depth values

0
10
20
30
40
50
60
70
80
90

100

q
u

an
ti

ze
d

 d
ep

th
 v

al
u

es

quantizer output
quantization error

(a) ND = 4 bits.

0 10 20 30 40 50 60 70 80 90 100
original depth values

0
10
20
30
40
50
60
70
80
90

100

q
u

an
ti

ze
d

 d
ep

th
 v

al
u

es

quantizer output
quantization error

(b) ND = 6 bits.

0 10 20 30 40 50 60 70 80 90 100
original depth values

0
10
20
30
40
50
60
70
80
90

100

q
u

an
ti

ze
d

 d
ep

th
 v

al
u

es

quantizer output
quantization error

(c) ND = 8 bits.

Figure 6.4: Depth quantization curves for ND = 4 bits (a), ND = 6 bits (b), and ND = 8 bits (c). The
quantization error reduces when using more quantization levels at the cost of increased number of
bits for signaling the level.

-0.5 0 0.5
depth error [m]

0

0.02

0.04

0.06

0.08

0.1

0.12

p
ro

b
ab

ili
ty

(a) Quantization error with ND = 6 bits.

-0.1 -0.05 0 0.05 0.1
depth error [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

p
ro

b
ab

ili
ty

(b) Quantization error with ND = 8 bits.

Figure 6.5: Histogram of the depth quantization error measured on the KITTI 00 sequence for
ND = 6 bits (a) and ND = 8 bits (b).

for the KITTI sequence are placed at about 10 m ranging up to 50 m or more.
The quantization curves including the quantization errors are shown for ND = 4 bit,

ND = 6 bit, and ND = 8 bit quantization in Figure 6.4. The curves show a fine quantization
for small depth values and a coarser resolution for larger depth values. The quantization
scheme trained on EuRoC V101 and KITTI 07 is verified with KITTI 00 as test sequence. The
quantization error reduces significantly from using the coarse ND = 6 bit quantizer to using
ND = 8 bits, as shown in Figure 6.5. The root mean square error for the ND = 6 bit quantizer
is measured with 0.182 m and for ND = 8 bit with 0.015 m.

6.3.2 Inter-view coding

When using a computer vision task or visual SLAM system that makes use of the visual in-
formation extracted from both views, it is required to transmit the set of features from both
cameras. The data rate for the features from the stereo-view can be reduced by exploiting the
inherent spatial correlation between both stereo-views using stereo feature correspondences.
In the proposed scheme, only the differences between the feature descriptors alongside an
index for the reference feature and the missing information to reconstruct the keypoint infor-
mation needs to be transmitted. The stereo matching, as described previously for the depth

6.3. Feature coding 73

value estimation, is used to establish the necessary feature correspondences between a fea-
ture i from the n-th right frame and a reference feature l ∈ {z ∈ N | 1 ≤ z ≤ NM

ref} from the
left view, where NM

ref denotes the number of reference features in the left view.
The coding costs HM

n,i in bits for inter-view coding M contains the individual costs for
signaling the reference feature index HM,ref

n,i , the costs for the differences between the de-
scriptors denoted as HM,res

n,i (l), and the cost for the keypoint properties HM,kpt
n,i as

HM
n,i = HM,ref

n,i +HM,res
n,i (l) +HM,kpt

n,i . (6.1)

After the set of candidate features from the left view near the epipolar line is identified, the
feature l∗ that results in the minimum Hamming distance h between the current visual de-
scriptor dn,i and a reference descriptor dl from the left view is identified as

l∗ = arg min
l

h(dn,i,dl) (6.2)

and subsequently used as the reference feature for the coding process.

6.3.2.1 Reference coding

Assuming uniform probability, the lower bound for the number of bits required for signaling
the reference feature is given by

HM,ref
n,i = log2(NM

ref). (6.3)

In this work, NM
ref includes all features from the left view. Some bits can be saved by deter-

mining the number of possible reference features in the vicinity of the epipolar line and use
this as NM

ref . This is left for future work.

6.3.2.2 Descriptor coding

For coding the residual information, the difference vector between the current descriptor and
the reference descriptor is calculated using the binary XOR operation rMn,i = dn,i ⊕ dl∗ . Simi-
lar to Equation (4.5) introduced for intra coding and Equation (5.5) known from inter coding,
hMn,i(l

∗) denotes the Hamming distance between the current and the reference feature as

hMn,i(l
∗) = h(dn,i,dl∗). (6.4)

The minimum number of bits for a specific feature i can be calculated using the binary en-
tropy function similar to Equation (5.6) as follows

HM,res
n,i (l∗) = −(Nd − hMn,i(l∗)) · log2(pM0)− hMn,i(l∗) · log2(1− pM0), (6.5)

where Nd is the length of the descriptor and pM0 is the probability of any entry of the residual
vector being zero for the proposed inter-view coding mode. This lower bound is approached
using arithmetic coding. It is worth noticing that in this context the selected feature l∗ results
not only in the minimum coding costs, but is also the best stereo match in terms of the Ham-
ming distance. This information can be reused in the targeted visual SLAM task.

74 Chapter 6. Stereo remote visual SLAM

6.3.2.3 Keypoint coding

To signal the keypoint information, the position and the orientation information have to be
transmitted. Feature matches are restricted to the same scale-space level σn,i allowing to
reuse the scale-space level of the reference feature. For coding the keypoint locations, a dif-
ferentiation of generic keypoint coding and ORB keypoint coding is made.

Generic keypoint coding: In the more general case, the keypoint position can be transmitted
by quantizing the x and y coordinates to quarter pixel resolution similar to the intra coding
mode. The quantized keypoint position is not transmitted differentially. The scale-space
level is copied from the reference feature and the orientation is quantized into Nθ̂ bins. This
results in the keypoint cost of

HM,kpt
n,i = log2(4 ·Nw) + log2(4 ·Nh) + log2(Nθ̂). (6.6)

Adding differential encoding of both the y coordinate and the orientation θ̂ can further re-
duce the number of required bits and is left for future work.

ORB keypoint coding: For ORB features, the keypoint position in x direction is scaled into
the scale-space level, where the feature has originally been detected. As explained in Section
4.3.1.3, this results in keypoint coordinates located at integer positions. The x coordinate is
not transmitted differentially. Conversely, for the y coordinate, the discrepancy with respect
to the location of the reference keypoint in the common scale-space is transmitted. A dif-
ference of ± 2 pixels from the epipolar line in the corresponding scale-space representation
is allowed, requiring log2(5) bits for signaling the deviation. The orientation information is
quantized into Nθ̂ bins. With the assumption of uniform distributions, the total keypoint
costs can be written as

HM,kpt
n,i = log2(N s

w(σn,i)) + log2(5) + log2(Nθ̂), (6.7)

where N s
w(σn,i) denotes the width of the image in the respective scale-space representation,

as defined by Equation (4.12). Similar to the generic keypoint coding, adding differential
encoding for the orientation θ̂ can further reduce the required number of bits.

6.4 Experimental evaluation

For the existing coding modes, the same probabilities and vocabularies, as in Chapter 5,
are used to ensure consistency. The probability pM0 for stereo coding has been obtained be-
forehand using the same training dataset as in Chapter 5, namely the EuRoC Machine Hall
sequences. The scheme is evaluated on the KITTI dataset. The KITTI dataset is selected
as a challenging automotive scenario for the feature coding. The large distances between
the frames due to the comparably low frame rate, high camera velocity, and the rather larger
baseline between the neighboring stereo-views pose a difficult scenario for the coding modes
exploiting temporal and spatial correlations.

6.4. Experimental evaluation 75

quantizer KITTI 00 [m]
ND [bit] min / max / median

4 5.41 / 5.77 / 5.52

5 1.89 / 2.01 / 1.97

6 1.38 / 1.47 / 1.41

7 1.27 / 1.32 / 1.29

8 1.23 / 1.28 / 1.24

32 (no quant.) 1.21 / 1.26 / 1.23

Table 6.1: Performance of depth quantizers measured on the KITTI 00 sequence in terms of absolute
trajectory error obtained from five individual runs. Using a depth quantizer with ND = 8 bits results
in similar accuracy as using the original depth information (adapted from [1] ©2019 IEEE).

6.4.1 Depth coding

First, the depth coding is evaluated. The mapping results are shown in terms of ATE in Ta-
ble 6.1. The table shows the values depending on the number of bits used for quantizing the
depth values measured using the KITTI 00 sequence. Throughout the evaluation, the pro-
posed default settings of ORB-SLAM2 for the respective sequences are used. A performance
approximately on par with the original depth values is achieved with ND = 8 bits per depth
value and an additional bit indicating whether a depth value is present. As ORB-SLAM2 em-
ploys the depth information to reproduce the original stereo-view feature coordinates [70],
the result of using either the floating-point depth information or the stereo coding are similar.

Second, an experiment showing the results of the complete feature compression frame-
work was conducted. The results are shown in Figure 6.6 for the KITTI 00 sequence. Fig-
ure 6.6a summarizes the results in terms of bits per mode for the left view. About 225.4 bits
are required for intra coding without depth information. A similar performance compared to
the experimental evaluation from the previous chapters is achieved. Here, the inter coding
mode is restricted to use only the past reference frame for prediction. The inter coding mode
requires 150.3 bits for the left view. Allowing additional frames to be used as a reference
would result in a reduced bitrate, but at the drawback of increased complexity. This effect
and the influence of the frame rate is discussed later. In order to signal the coding mode, all
features include the overhead of two bits.

In this evaluation, the depth values for roughly 47.9% of the features contained in the left
views using the intra coding and 64.5% of the features using the inter mode could be esti-
mated. This results in adding on average 4.8 bits to the intra coding and 6.2 bits to the inter
coding mode in the left view to signal the depth values. Inter coded features are intuitively
considered to be more stable, resulting in a reliable tracking over multiple frames and also
along the epipolar line in the corresponding stereo-view. The skip mode, which encodes only
the reference feature index in the past frame, requires 13.3 bits but is only used by less than
1% of the features in this evaluation. The fraction of features using a particular coding mode
is depicted in Figure 6.6b for the left view.

76 Chapter 6. Stereo remote visual SLAM

INTRA INTER SKIP
coding mode

0

50

100

150

200

250

300

350

b
it

s
p

er
 f

ea
tu

re

residual
keypoint
visual word index
reference feature
depth
coding mode

(a) Bits per mode for the left view.

INTRA INTER SKIP
coding mode

0

0.2

0.4

0.6

0.8

1

fr
a

c
ti

o
n

 p
e

r
c

o
d

in
g

 m
o

d
e

(b) Mode decisions for the left view.

INTRA INTER STEREO SKIP
coding mode

0

50

100

150

200

250

300

350

b
it

s
p

er
 f

ea
tu

re

residual
keypoint
visual word index
reference feature
coding mode

(c) Bits per mode for the right view.

INTRA INTER STEREO SKIP
coding mode

0

0.2

0.4

0.6

0.8

1

fr
a

c
ti

o
n

 p
e

r
c

o
d

in
g

 m
o

d
e

(d) Mode decisions for the right view.

Figure 6.6: Number of bits required for intra coding, inter coding, skip mode, and inter-view stereo
prediction as mean values per feature obtained from the KITTI 00 sequence. The left view (a) ad-
ditionally includes the bits for the depth value coding and the right view (c) the bits for the stereo
coding mode. The fractions of features using a particular coding mode are presented for the left view
(b) and the right view (d) (adapted from [1] ©2019 IEEE).

6.4.2 Stereo coding

Figure 6.6 also contains the evaluation of the proposed stereo coding mode. It is worth notic-
ing that although the results are summarized in a single figure, either the depth coding or
the stereo-view coding is used as they contain redundant information. The number of bits
for the right view are depicted in Figure 6.6c. While the intra coding mode requires roughly
the same number of bits for both views, the inter coding mode uses about 145.8 bits for the
right view, which is slightly less than for the left view.

The proposed stereo coding requires about 11.3 bits for indicating the reference feature
from the left view, 144.6 bits for signaling the residual vector, and 16.9 bits for transmitting
the keypoint differences. Including the two bits signaling costs for the mode, a stereo coded
feature takes on average about 174.8 bits. To provide further insights, the fraction of features
coded with a specific coding mode is shown in Figure 6.6d for the right view. As a conse-
quence of the large inter-frame distance in the KITTI sequences, many features are assigned
to the intra coding mode. The amount of inter-coded features for a higher frame rate dataset,
such as the EuRoC dataset, is considerably higher, which makes the coding in those scenarios

6.4. Experimental evaluation 77

INTRA INTER SKIP
coding mode

0

50

100

150

200

250

300

350
b

it
s

p
er

 f
ea

tu
re

residual
keypoint
visual word index
reference feature
depth
coding mode

(a) Bits per mode for the left view.

INTRA INTER SKIP
coding mode

0

0.2

0.4

0.6

0.8

1

fr
a

c
ti

o
n

 p
e

r
c

o
d

in
g

 m
o

d
e

(b) Mode decisions for the left view.

INTRA INTER STEREO SKIP
coding mode

0

50

100

150

200

250

300

350

b
it

s
p

er
 f

ea
tu

re

residual
keypoint
visual word index
reference feature
coding mode

(c) Bits per mode for the right view.

INTRA INTER STEREO SKIP
coding mode

0

0.2

0.4

0.6

0.8

1

fr
a

c
ti

o
n

 p
e

r
c

o
d

in
g

 m
o

d
e

(d) Mode decisions for the right view.

Figure 6.7: Comparison of the number of bits required for intra coding, inter coding, skip mode, and
inter-view stereo prediction as mean values per feature for the EuRoC V101 sequence using a single
reference frame (Nr = 1) for the left view (a) and the right view (c). The fraction of features using a
particular coding mode are shown for the left view (b) and the right view (d). This dataset has higher
frame rate, which allows more features to use the inter coding in comparison to KITTI 00.

more efficient.
In order to show this effect and demonstrate the impact of using multiple reference

frames, the coding results of the EuRoC V101 sequence are discussed in the following. The
results in terms of bits for the individual coding modes are presented in Figure 6.7 for us-
ing a single reference frame for the predictive coding. In direct comparison with the results
obtained from the KITTI 00 dataset in Figure 6.6, the share of the inter coded features is con-
siderably higher. Due to the higher framerate, the feature descriptors matched along the
temporal axis are much more correlated, thus resulting in lower bitrate for the inter coding
mode.

In a second evaluation of the EuRoC V101 sequence, the number of reference frames is
increased to four. The results in Figure 6.8 show that the fraction of inter-coded features in-
creases above 70% for the left view. Due to the smaller baseline of the stereo camera setup in
the EuRoC sequences, the efficiency of the stereo coding mode is slightly higher than in the
wider baseline scenario of the KITTI dataset.

78 Chapter 6. Stereo remote visual SLAM

INTRA INTER SKIP
coding mode

0

50

100

150

200

250

300

350

b
it

s
p

er
 f

ea
tu

re

residual
keypoint
visual word index
reference feature
depth
coding mode

(a) Bits per mode for the left view.

INTRA INTER SKIP

coding mode

0

0.2

0.4

0.6

0.8

1

fr
a

c
ti

o
n

 p
e

r
c

o
d

in
g

 m
o

d
e

(b) Mode decisions for the left view.

INTRA INTER STEREO SKIP
coding mode

0

50

100

150

200

250

300

350

b
it

s
p

er
 f

ea
tu

re

residual
keypoint
visual word index
reference feature
coding mode

(c) Bits per mode for the right view.

INTRA INTER STEREO SKIP

coding mode

0

0.2

0.4

0.6

0.8

1

fr
a

c
ti

o
n

 p
e

r
c

o
d

in
g

 m
o

d
e

(d) Mode decisions for the right view.

Figure 6.8: Comparison of the number of bits required for intra coding, temporal prediction, skip
mode, and inter-view stereo prediction as mean values per feature for the EuRoC V101 sequence us-
ing four reference frames (Nr = 4) for the left view (a) and right view (c). The fraction of features
using a particular coding mode is shown for the left view (b) and the right view (d). Allowing more
reference frames results in more features using the inter coding mode.

6.4.3 Mode configurations

In the following, the impact of different modes on both the coding time and the bitrate is dis-
cussed. The coding time was evaluated on two systems, namely an Intel Core i7-7700 with
3.6 GHz and an NVIDIA Jetson TX2. The NVIDIA Jetson TX2 was used in MAX-P ARM
mode consuming 7.2 Watts at 2.0 GHz.

The results presented in Table 6.2 were obtained using the monocular and depth coding
for two different coding profiles on the KITTI 00 sequence. Although only the 2k features
extracted from the left view are transmitted, the features extracted from both views are re-
quired for the depth estimation. In the evaluation presented in the first column, only intra
mode and additional depth information (I+D) is used. Here, no temporal or spatial correla-
tions are exploited. This enables the server to start the decoding process at any intermediate
frame without any prior knowledge of the frame history. In video coding, this is also known
as random access, as it allows to directly retrieve the information without waiting for a syn-
chronization point. Moreover, it provides the fastest coding method in the evaluation and
can, therefore, be used in low-delay scenarios. On the desktop hardware, it takes 11.1 ms

6.4. Experimental evaluation 79

Intel Core i7-7700 I+D I+P1+S+D

encoding [ms] 11.1 14.5

decoding [ms] 12.4 12.7

TX2 I+D I+P1+S+D

encoding [ms] 26.5 38.6

decoding [ms] 22.9 25.1

[bits] per feature 229.0 210.6

features 2k 2k

Table 6.2: Median timings and bits per feature for monocular + depth encoding and decoding mea-
sured on the KITTI 00 sequence with different mode configurations. Using temporal prediction in-
creases the coding time, but reduces the number of bits per feature (adapted from [1] ©2019 IEEE).

for encoding and 12.4 ms for decoding 2k features. On the TX2, encoding requires 26.5 ms
and decoding takes 22.9 ms. As this mode does not exploit any correlations, it results in a
comparably high bitrate of 229 bits per feature.

Next, both the temporal prediction and feature skipping are allowed (I+P1+S+D). The
temporal prediction uses a single reference frame, which is denoted by the subscript P1.
Searching for reference features increases the run-time, especially for the encoding part.
More specifically, encoding and decoding require 14.5 ms and 12.7 ms on a desktop com-
puter. The embedded system requires 38.6 ms and 25.1 ms for encoding and decoding. The
result of exploiting the temporal information is a substantial reduction of the mean number
of bits per feature down to 210.6 bits per feature.

The results for the stereo coding mode for three different coding profiles are presented in
Table 6.3. First, the results are shown when only intra mode (I) is allowed for coding both
views requiring 224.3 bits per feature and 17.3 ms for encoding 2x2k features on desktop
hardware. Next, the inter-view coding mode (I+M) is added which results in an increase in
encoding time to 18.7 ms but at the advantage of spending only 216.5 bits per feature. At last,
temporal prediction and the skip mode are added (I+P1+S+M), which results in an increase
in processing time to 25.9 ms, but also provides an additional reduction in bitrate down to
201.3 bits per features.

The timings for the embedded systems are included in Table 6.2 and Table 6.3. So far,
no specific adaption or optimization for the embedded platform has been performed. The
ORB feature extraction, running on two images in parallel, poses a bottleneck on running
directly ORB-SLAM2 on the embedded system. The feature extraction also consumes more
time than most of the presented feature coding modes. However, the embedded system is
capable of encoding 2k features, including depth estimation, in about 26.5 ms. For many
computer vision applications or visual SLAM scenarios, fewer features might be sufficient,
thus, lowering the encoding time. In order to further improve the performance of the system,
optimized local binary features for embedded devices are available [111] and need to replace
the time-consuming ORB feature extraction.

80 Chapter 6. Stereo remote visual SLAM

Intel Core i7-7700 I I+M I+P1+S+M

ORB features [ms] 20.9

encoding [ms] 17.3 18.7 25.9

decoding [ms] 20.5 20.7 21.3

TX 2 I I+M I+P1+S+M

ORB features [ms] 67.3

encoding [ms] 52.9 59.5 86.0

decoding [ms] 48.4 48.2 49.5

I I+M I+P1+S+M

[bits] per feature 224.3 216.5 201.3

features 2x2k 2x2k 2x2k

Table 6.3: Median timings and mean bits per feature for stereo encoding and decoding measured
on the KITTI 00 sequence with different mode configurations. Using stereo-view coding reduces the
number of bits at increased computation time (adapted from [1] ©2019 IEEE).

I I+M I+P1+S I+P1+S+M I+P4+S+M

ORB features [ms] 14.5

encoding [ms] 11.5 12.8 15.6 16.4 26.3

decoding [ms] 12.6 13.3 13.8 13.9 13.5

[bits] per feature 224.5 208.9 170.4 165.3 151.5

features 2x1.2k 2x1.2k 2x1.2k 2x1.2k 2x1.2k

Table 6.4: Median timings and mean bits per feature for feature extraction, stereo encoding and de-
coding on a Intel Core i7-7700 using 1.2K features per view measured using the EuRoC V101 sequence
with different mode configurations. Adding more reference frames (P1, P4) further reduces the num-
ber of bits, but increases the coding time by roughly 10 ms.

6.5. Summary 81

The timings for the EuRoC V101 sequence are summarized in Table 6.4. The results
were measured using again an Intel Core i7-7700 with 3.6 GHz and 1.2k features per view
in stereo mode using the ORB-SLAM2 default settings. The first column denotes the intra
only mode. Next, intra and stereo coding are combined adding only dependencies between
the two stereo views. The required bitrate reduces from 224.5 bits per feature to 208.9 bits
per feature at slightly increased coding times for searching corresponding feature pairs be-
tween the views. Next, the intra coding is combined with the predictive coding and the skip
mode using a single reference frame. The coding time increases to 15.6 ms due to the feature
matching with the previous frame. The bitrate reduces to 170.4 bits per feature by exploiting
temporal dependencies. Next, all coding modes are evaluated in the I+P1 +S+M configu-
ration adding the stereo-view coding, where again the coding time increases to 16.4 ms and
the costs decreases to 165.3 bits per feature. Next, four reference frames are tested, which
results in an increase in computation time by roughly 10 ms and a gain of 13.8 bits per fea-
ture compared to using only a single reference. In comparison to the values reported for the
KITTI 00 sequence, the coding for the EuRoC V101 greatly benefits more from the stereo and
the predictive coding due to the high frame rate and smaller stereo baseline.

In total, a reduction by 57.9% from 360 bits uncompressed down to 151.5 bits using stereo-
view coding and four reference frames for the predictive coding is achievable. In contrast to
the timings reported in Chapter 5, the enhanced coding framework benefits from an im-
proved implementation featuring, for example, parallel batch processing of features. Also,
the current evaluation has been carried out using more recent hardware. This allows encod-
ing 2x1.2k features in the same time as 1k features as reported in the evaluation in Table 5.3
from Chapter 5. Further evaluation of the proposed methods is included in the next chapter.

6.5 Summary

In this chapter, the feature coding framework has been completed with additional coding
modes for both depth values and features extracted from a stereo camera setup. The feature
coding framework is not restricted to be used in combination with visual SLAM, but can also
be used standalone for other applications. The approach has extensively been evaluated in
terms of coding efficiency, timing, and absolute trajectory error for the depth value coding
on the KITTI and the EuRoC dataset. A reduction by 57.9% can be achieved on EuRoC V101
by using multiple reference frames and stereo-view coding without the need for skipping
features compared to uncompressed transmission. Real-time processing capabilities can be
achieved on embedded devices when replacing the feature extraction by optimized algo-
rithms.

Chapter 7

Collaborative visual SLAM

7.1 Problem statement

The previous chapters addressed the issue of the efficient exchange of visual information.
When collecting the compressed visual information from a single client at a server, the ques-
tion naturally arises, whether the information collected from other nearby clients could con-
tribute to the goal of building a consistent global map. Especially with regard to the edge-
cloud infrastructure, collaborative mapping is of interest to quickly gather and update maps.
To this end, the system should be extended to include a collaborative visual SLAM server
component to facilitate the joint mapping of the environment. Parts of this chapter have
been published in [1].

7.2 System architecture

The system architecture used in this chapter is an extension of the system described in Chap-
ter 6 and is depicted in Figure 7.1. Each client comes with a stereo camera system with known
intrinsic camera calibration and a known stereo baseline. The ORB extraction is running on
each stereo image pair and the features are passed to the feature encoding process. The com-
pressed features are then sent over a network connection to a server instance. The server

network

client 1

client n

camera 1 ORB
extraction feature

encoding
camera 2 ORB

extraction

feature
decoding

ORB
SLAM2

map 1

map n

server

camera 1 ORB
extraction feature

encoding
camera 2 ORB

extraction

feature
decoding

map
merger

Figure 7.1: Illustration of the ATC-based collaborative mapping architecture. The clients extract vi-
sual features and apply feature encoding. The server receives and decodes the feature streams, and
creates individual maps for each client. A map merging process is triggered by the insertion of new
keyframes. It merges overlapping maps into a unified representation (adapted from [1] ©2019 IEEE).

83

84 Chapter 7. Collaborative visual SLAM

is running multiple feature decoding processes in parallel that reconstruct the features and
pass them on to the collaborative visual SLAM system. Each client starts with an empty map,
which is then incrementally extended using the received features. A map merging module
is running in the background detecting possible overlaps between all maps contained in the
map stack. In case an overlap is detected, the corresponding maps are merged into a unified
representation.

The proposed map merging is based on the relocalization and loop-closing technique
already present in ORB-SLAM2. It uses fast image retrieval, leveraging the Bag-of-Words
representation in combination with an inverted index. Instead of detecting loops within a
local map, overlaps across maps are detected. In this case, the maps can be merged and all
attached clients can henceforth contribute to a common map representation.

7.3 Map merging

Map merging is realized by adopting the existing approaches for relocalization and loop clos-
ing included in ORB-SLAM2 to work not only within, but also across multiple maps. First,
loop candidates are detected by assessing the visual similarity between a newly inserted
keyframe in the source map and all other keyframes contained in any other possible target
map in the map stack. The visual similarity is measured based on the Bag-of-Words repre-
sentation using tf-idf scoring [138]. More specifically, a keyframe is a candidate keyframe if it
achieves a comparable similarity score than keyframes inserted prior to the source keyframe
on the same trajectory. After identifying a set of match candidates, a similarity transforma-
tion is calculated according to the method of Horn [143] using the map points contained in
the matched keyframes. This step serves as a geometric verification of the matches to avert
false map mergers. Following a successful geometric verification of a candidate, the two
maps are merged by migrating all keyframes and map points from the source map to the
target map. During this period, the tracking and the mapping threads of all attached clients
are paused to facilitate merging without concurrent access to the data. Next, the maps are
aligned at the overlap using the estimated similarity transformation. To this end, the poses of
both the keyframes and map points are updated. After the alignment, additional duplicate
map points are detected and merged. In addition, further connections between map points
originally from the source map and keyframes in the target map and vice versa can be es-
tablished. Next, an optimization of the Essential Graph structure is performed. To this end,
both Essential Graphs, which are spanning trees connecting all keyframes of a single map,
need to be attached. At this point, both maps are coarsely aligned and the tracking and the
mapping threads are restarted. At the same time, global bundle adjustment is triggered in
the background to optimize and fine align the common map asynchronously.

7.4. Joint mapping 85

7.4 Joint mapping

In order to facilitate the map merging, both the tracking and the mapping thread of the source
map are paused, detached from the source map, and attached to the target map. In addition,
the loop-closing thread of the source map is stopped and not used any more. From now
on, the loop-closing process of the target map detects loops within the joint map. A shared
locking scheme is implemented to avoid concurrent access to the data and keep consistency
during map updates and migration. Hence, only a single mapping thread at a time is al-
lowed to add new map points to a particular keyframe or is allowed to update a keyframe
or a map point position. Access is provided in a first-come-first-serve manner.

7.5 Experimental evaluation

In the following, the feature coding framework introduced in the previous chapters is com-
bined with the collaborative visual SLAM architecture and evaluated jointly. The same prob-
abilities and training data, as in the previous chapters, have been used. The metric scale
collaborative remote visual SLAM is evaluated on the KITTI sequences. The KITTI dataset
poses a challenging scenario not only for the feature coding but also for the collaborative
mapping due to the spatial extent of the covered area. The centralized collaborative map-
ping was first evaluated in an experiment with two clients operating on the KITTI 00 and
KITTI 07 sequences, as illustrated in Figure 7.2a. The sequences were played back simulta-
neously, and the result was evaluated in terms of feature coding performance and absolute
trajectory error. The experiments were conducted on a virtual machine with 16 virtual CPUs
based on an Intel Xeon Platinum 8124M @ 3.00 GHz running in a cloud environment. A
baseline for the accuracy achievable with the setup was obtained by initial experiments with
map merging deactivated, which is denoted as standalone in the following. Afterward, the
map merging module was activated. This allows incorporating map information from both
clients into a common map. The results for both the baseline and the collaborative mapping
are reported in terms of ATE evaluated on each trajectory individually in Table 7.1. To ac-

-400 -200 0 200 400
x [m]

0

100

200

300

400

500

600

y
[m

]

KITTI 00
KITTI 07

(a) Ground truth for KITTI 00 and KITTI 07.

-400 -200 0 200 400
x [m]

0

100

200

300

400

500

600

y
[m

]

KITTI 00-1
KITTI 00-2
KITTI 00-2

(b) Ground truth for KITTI 00 split into three parts.

Figure 7.2: Overview of the two sequences from the KITTI dataset used for the experimental evalua-
tion shown in a common coordinate system (Figures adapted from [1] ©2019 IEEE).

86 Chapter 7. Collaborative visual SLAM

standalone [m] collaborative [m]
min / max / median min / max / median

KITTI 00 1.21 / 1.26 / 1.23 1.10 / 1.26 / 1.16

KITTI 07 0.60 / 0.70 / 0.65 0.48 / 0.66 / 0.54

Table 7.1: Collaborative SLAM performance on the KITTI 00 and KITTI 07 sequences in terms of abso-
lute trajectory error obtained from five runs. The collaborative approach consistently outperformed
the standalone mapping in this scenario (adapted from [1] ©2019 IEEE).

standalone [m] collaborative [m]
min / max / median min / max / median

KITTI 00-1 0.99 / 1.09 / 1.08 1.17 / 1.26 / 1.21

KITTI 00-2 1.44 / 1.52 / 1.49 1.07 / 1.37 / 1.14

KITTI 00-3 2.17 / 3.45 / 3.11 1.31 / 2.18 / 1.44

Table 7.2: Collaborative SLAM performance on the KITTI 00 sequence in terms of absolute trajectory
error obtained from five runs. The collaborative outperformed the standalone mapping for two out
of three clients (adapted from [1] ©2019 IEEE).

count for the non-deterministic behavior of the system, the results were obtained from five
individual runs. An improvement by 5.7% is achieved for the KITTI 00 and 16.9% for the
KITTI 07 sequence. The result of the mapping process is a fully connected map covering
both sequences.

In a second experiment, three clients simultaneously explored the KITTI 00 sequence.
The sequence was split into the three disjunct parts shown in Figure 7.2b. For each client,
individual maps were created. At some point, a significant overlap between the maps was
detected, and the maps were successively merged into a unified representation. The results
obtained from five individual runs are provided in Table 7.2. The first client is able to reduce
the error in standalone mode, whereas the results significantly improve using the collabo-
rative mapping for the remaining sequences. The error of the third client is reduced from
3.11 m to 1.44 m, which is an improvement by 53.7%. The improvement can be partially
explained by the usage of previously mapped areas as provided by the other clients, but
the error reduction also stems from additional loops detected within the merged maps, thus
allowing to correct for the accumulated drift. An overlay of the ground truth with the indi-
vidual trajectories is shown in Figure 7.3, whereas the final maps are shown in Figure 7.4.

Considering the exchange of visual features, Figure 7.5a shows the data exchanged be-
tween each client and the server. More specifically, the figure compares the cumulative data
rate required to signal the features using uncompressed transmission, the proposed stereo-
view feature coding, and the depth coding for all clients. The bitrate reduction that is achiev-
able ranges from about 44.1% using stereo-view coding up to 70.8% using the monocular
and depth value transmission. Again, 360 bits per uncompressed feature are assumed as

7.5. Experimental evaluation 87

(a) KITTI 00-1. (b) KITTI 00-2. (c) KITTI 00-3.

Figure 7.3: Comparison of the ground truth with the SLAM results for KITTI 00 using three clients
for collaborative mapping. The client collaboratively reconstruct their partial trajectory.

(a) Map from KITTI 00 and KITTI 07. (b) Map from KITTI 00 split into three parts.

Figure 7.4: Globally consistent map after merging individual maps. Obtained from clients operating
on the KITTI 00 and the KITTI 07 sequences (a), and from three clients operating on the KITTI 00
sequence (b). The color indicates, which client created the map points ((b) adapted from [1] ©2019
IEEE).

0 200 400 600 800 1000 1200 1400 1600
frame index [n]

0

50

100

150

200

250

300

350

da
ta

 tr
an

sm
itt

ed
 [M

B
]

Uncompressed
Stereo

KITTI 00-1
KITTI 00-2
KITTI 00-3

Mono+Depth

(a) Cumulative data rate.

0 25 50 75 100 125 150 175
time [s]

0

200

400

600

800

1000

1200

1400

ke

yf
ra

m
es

KITTI 00-1
KITTI 00-2
KITTI 00-3

map merging

(b) Number of keyframes.

0 25 50 75 100 125 150 175
time [s]

0

2.5

5

7.5

10

12.5

15

m

ap
 p

oi
nt

s

10 4

KITTI 00-1
KITTI 00-2
KITTI 00-3

map merging

(c) Number of map points.

Figure 7.5: Cumulative data rate measured at the encoder per client (a), where stereo uses the
I+P1+S+M modes and mono+depth the I+P1+S+D modes. Next to it, the evolution of keyframes
(b) and map points (c) using three clients on the KITTI 00 sequence is shown. The occurrence of map
merging is highlighted in green (adapted from [1] ©2019 IEEE).

88 Chapter 7. Collaborative visual SLAM

detailed in Chapter 4. In addition, the evolution of the maps during the sequences in terms
of the number of keyframes is shown in Figure 7.5b. Besides, the evolution in terms of map
points is shown in Figure 7.5c. The occurrences of map merging are highlighted to indicate
when the existing keyframes and map points were merged into a single map representation.
It is worth noticing that the time required to build a complete map of the KITTI 00 sequence
is reduced to a third of the original length by parallelizing the work using the three clients
simultaneously. Another consequence of the proposed client-server architecture is that the
ORB extraction is carried out at the client, thus reducing the median time required for track-
ing individual frames. For example, the median tracking time at the server was measured
with 28.8 ms for the client operating on KITTI 00-3.

In the proposed centralized system architecture, the number of clients is limited by the
computational power of the central server. For larger teams, extending the system to support
multiple servers that are capable of exchanging information among them is required.

7.6 Summary

In this chapter, both the feature coding and the collaborative visual SLAM have been com-
bined into a unified system architecture, where the computationally intensive visual SLAM
system is running on a powerful server and only the visual features are extracted and com-
pressed at the client-side. The approach has been extensively evaluated in terms of coding
efficiency, timing, and absolute trajectory error on the KITTI dataset. The results show a
substantial reduction in the required data-rate up to 70.8% and an improvement in ATE by
53.7% using the collaborative mapping. Hence, this system closes a gap by addressing the
urgent need for data-efficiency in collaborative visual SLAM setups.

Chapter 8

Map compression for visual SLAM

The previous chapters introduced schemes that reduce the amount of data required to ex-
change visual cues among clients and a server running the actual visual SLAM system.
However, exchanging already processed information in the form of map data has not been
considered so far. In order to facilitate efficient exchange of map information, suitable ap-
proaches for compressing a visual map have to be found. Hence, in this chapter, the map
properties of ORB-SLAM2 [70], as a recent representative of state-of-the-art visual SLAM
systems, have been analyzed. Based on the obtained insights, a lossless compression scheme
using feature coding and exploiting the geometric relationships in such a visual SLAM map
is conceived. In addition, a map sparsification step is added to reduce the required data rate
using lossy compression. Parts of this chapter have been published in [4].

8.1 Problem statement

In order to support the robotic task at hand, it is beneficial to exchange static map infor-
mation either directly between the cooperating clients in a multi-client setup or making the

network

client 1

camera map
compression

ORB
SLAM2

mission control

storagemap
compression

client 2

camera map
compression

ORB
SLAM2

Figure 8.1: Illustration of an application scenario for compressed map exchange. Multiple clients
exchange map information among the team members or with mission control.

89

90 Chapter 8. Map compression for visual SLAM

map point

v3
v4

v2
v1

local feature

observation

keyframe

Figure 8.2: A sample trajectory is shown in dashed grey with keyframe poses illustrated in black.
A map point is shown as a black circle with several observations vi (blue) denoting the connection
to features in the keyframes. The key idea is to exploit that the observations vi should have similar
visual outlines, which facilitates differential encoding (adapted from [4] ©2018 IEEE).

information available in form of prior knowledge obtained from previous mappings. In
many application scenarios, where collaborative exploration is applicable, e.g., creating a
map after a natural disaster, the communication capabilities are usually strongly limited. A
possible system architecture is depicted in Figure 8.1, where multiple clients share map in-
formation over a network with either other clients or mission control. The key tenet is to
reduce the map information without losing its relocalization capabilities, allowing to share
the map information even with limited communication resources.

8.2 System architecture

To tackle the problem, the typical structure of a visual SLAM map is analyzed. A typical ex-
cerpt of a map representation is shown in Figure 8.2. The map usually consists of keyframes
and map points inserted along the traversed trajectory. The keyframes contain information
such as the timestamps, the estimated position, but also the visual outline in the form of local
features. In the process of generating a visual SLAM map, these features are matched with
features situated in neighboring keyframes and are then used for subsequent triangulation.
The result is a map point with observations attached, which denote the local features from
the keyframes that are linked to a map point. In the graph-based optimization back-end, the
keyframes and map points are used as vertices, whereas the observations are used to add
edges as constraints between these vertices. Although the ORB-SLAM2 framework is used
in this work, the same underlying structure and bundle adjustment techniques are found in
many recent visual SLAM systems.

In order to identify the primary source of generated data, the typical parts of a visual
SLAM map from ORB-SLAM2 have been analyzed and evaluated in Table 8.1 using the Eu-
RoC MH01 sequence. Necessary information about the characteristics of the camera and
features are stored in the map constants. Additional information, such as the number of
keyframes and the number of map points, allows storing these entities in a consecutive fash-
ion. Each keyframe includes information such as a timestamp and a parent keyframe. The
first allows comparing the keyframe position to the ground truth by matching the times-
tamps. The latter allows rebuilding the Essential Graph connecting all the keyframes in ORB-

8.2. System architecture 91

full map essential map

map constants < 0.1% < 0.1%
keyframe header < 0.1% 0.2%
keyframe poses <0.1% 0.2%
feature descriptors 56.6% 50.2%
feature keypoints 23.0% 20.4%
feature stereo information 14.1% -
map point poses 0.6% 2.9%
map point observations 5.6% 26.1%
total 33.5 MB 7.2 MB

Table 8.1: Memory footprint of the individual map properties measured on the EuRoC MH01 se-
quence. The full map encompasses all features and stereo information, whereas the essential version
contains only the features attached to map points and no stereo information (adapted from [4] ©2018
IEEE).

SLAM2. In addition, the pose Tn ∈ SE(3) of a keyframe n is stored as quaternion qn ∈ H
for the orientation and translation tn ∈ R3 for the position with respect to the world coordi-
nate frame. The visual information is saved in the form of ORB features extracted from the
keyframes. The typical number of ORB features ranges from 1k to 2k depending on the con-
figuration for the specific dataset or the targeted application scenario. In the case of a stereo
camera setup, the keyframe additionally stores the keypoints in the corresponding stereo-
view. Using an RGB-D or a stereo camera setup, the estimated depth is available through
readings of the depth sensor or is acquired by stereo feature matching. The map points are
defined by their position in the form of a translation vector tp ∈ R3 and by the observations
in the form of local features contained in the keyframes. So each map point stores a list with
the keyframes and the corresponding feature indices to establish the connections.

The map itself could be represented only by the map points and the visual outline in
the form of a single visual descriptor obtained from averaging the visual descriptions from
all attached observations. However, the goal is a representation that allows incorporating
the information from previous mappings into the graph optimization problem. So the map
should include all vertices in the form of map points and keyframes, as well as all the links
between them in the form of observations. This allows extending the map but still including
the optimization constraints from the previous mappings. In order to store only the essential
information necessary to achieve this goal, the ORB features which were not linked to any
map point, i.e., did not serve as observation during map creation, are removed. Additionally,
the stereo and depth information is discarded. This information providing the scale is not
required after the map is completed, and the scale is fixed. This reduced representation is
therefore coined essential map in the following.

A comparison of both the full and the essential map representation is provided in
Table 8.1, where in both cases the feature keypoints and descriptors are responsible for a
major fraction of the storage required for the map representation. This serves as motivation
to apply some of the previously introduced concepts of visual feature coding to reduce the

92 Chapter 8. Map compression for visual SLAM

required amount of storage. While this step is implemented using only lossless compression
techniques ensuring that the original essential map representation can be recovered, a second
step allowing lossy compression is added. To this end, an optimization problem is formulated
keeping only map points that exhibit low coding costs as calculated in the lossless step. To
summarize, the algorithm introduced in this chapter contains two parts:

• First, the approach introduced in Chapter 4 is used for joint coding of the visual de-
scriptors with their corresponding Bag-of-Words representation. The visual similarities
among the observations of map points are exploited by constructing a minimum span-
ning tree (MST) connecting all features using the Hamming distance as the weight for
the edges. The resulting tree structure is exploited to determine the coding order for
differential feature coding. This allows for lossless compression of the visual information
by exploiting geometric dependencies.

• Second, a lossy compression method is proposed. To this end, a map sparsification step
is added to reduce the number of map points to be stored. This step is tightly cou-
pled with the lossless compression scheme and favors map points, which exhibit good
compression properties using Integer Linear Programming (ILP).

8.3 Lossless map compression

The lossless map compression is inspired by the concept of coding visual descriptors ex-
tracted from video sequences, as discussed in the previous chapters. In contrast to the inter
and stereo coding modes, making use of temporal and spatial correlations, the structure of
a visual SLAM map can be exploited for differential feature coding as well. The key idea is
to jointly encode all features attached to a single map point, as these observations describe
the same physical structure in the world. This is ensured by passing several checks based
on visual similarity and geometric consistency within the visual SLAM algorithm. Thus, the
observations should exhibit similar descriptors, which can be used in the proposed scheme
to encode the local feature descriptors differentially. The concept is shown in Figure 8.3. The
observations of a map point are denoted with vi, where i denotes the observation index. The
observations of a single map point are connected using a fully connected graph structure.
The weight wi,j of the edge connecting observation with index i and index j is defined as the
Hamming distance between the descriptors. In order to find the optimal coding order of the
observations, a minimum spanning tree is constructed based on the edge weights. In order
to start the coding process, the observation exhibiting the least coding costs for the intra cod-
ing mode from Chapter 4 is determined. Afterward, the minimum spanning tree is traversed
using the already encoded features as a reference for encoding the remaining features. The
intra observation coding and MST coding are introduced in more detail in the following.

8.3.1 Intra observation coding

In order to start the encoding of the information attached to a map point, the first observa-
tion needs to be stored similarly to the approach employed for the intra-frame coding. Here,

8.3. Lossless map compression 93

visual vocabulary

w2,4

w1,2

w1,3
w3,4

w1,4

c1

map point

v3
v4

v2
v1

local feature

w2,4

edge weight

w2,3

Figure 8.3: A sample trajectory is shown in dashed grey with keyframe poses illustrated in black. The
fully connected graph is shown with red lines connecting the observations vi (shown in blue) of a
map point. Based on this graph, a minimum spanning tree is constructed (shown in orange) connect-
ing the observations along the edges with the minimum Hamming distances. The observation with
the least coding costs for intra coding using a shared visual vocabulary is selected as a starting point.
Here, the coding starts at observation v1, continues with MST coding in the following order: v4, v3, v2
(adapted from [4], ©2018 IEEE).

the keypoint and the descriptor have to be stored alongside an additional identifier to which
keyframe and feature this observation belongs. The total number of bits required for intra
observation coding, denoted with Io in the following, is given by

HIo
u,i = HI,BoW

u,i +HI,res
u,i +HI,kpt

u,i +HIo,obs
u,i , (8.1)

where HI,BoW
u,i denotes the cost for coding the visual word index, HI,res

u,i denotes the costs for
transmitting the residual vector between the descriptor and the visual word. HI,kpt

u,i charac-
terizes the costs for transmitting the keypoint information. Both the keyframe information
and the feature indices are included in HIo,obs

u,i .
Throughout this chapter, the index u denotes the map point index and i the observation

index. The visual word index coding, residual coding, and the keypoint coding are equiv-
alent to the intra coding. This is reflected by the usage of the superscript I . The theoretical
limits are approached using arithmetic coding in the experimental evaluation. For the sake
of completeness, all coding costs will be briefly recapitulated. For further details on the intra
coding, the reader is referred to Chapter 4.

8.3.1.1 Bag-of-Words index coding

The number of bits required for signaling the visual word index assuming uniform probabil-
ities for the Nv indices is given by Equation (2.2) as

HI,BoW
u,i = log2(Nv). (8.2)

8.3.1.2 Residual coding

The required number of bits for sending the differences between the descriptor and its near-
est visual word for a specific observation can be written as

HI,res
u,i = −(Nd − hIu,i) · log2(pI0)− hIu,i · log2(1− pI0), (8.3)

with hIu,i being the number of non-zero elements and pI0 the probability of a zero entry.

94 Chapter 8. Map compression for visual SLAM

8.3.1.3 Keypoint coding

Here, the ORB specific keypoint coding is exploited by scaling the feature location back to
the scale-space level where the feature has been originally detected ensuring integer pixel
locations. The cost for coding the keypoint information ku,i is the sum of the costs for cod-
ing the keypoint location, the scale-space level σ, and the quantized orientation θ̂ similar to
Equation (4.13) as

HI,kpt
u,i = log2(N s

w(σu,i)) + log2(N s
h(σu,i)) + log2(Nσ) + log2(Nθ̂), (8.4)

with N s
w(σu,i) and N s

h(σu,i) being the image sizes at the respective scale-space level σu,i of
the observation. The total number of scale-space levels is denoted by Nσ and the number of
bins used to quantize the orientation information is denoted by Nθ̂. The information about
the keyframe and feature indices requires a minimum amount of

HIo,obs
u,i = log2(Nk) + log2(Nf) (8.5)

bits, where Nk denotes the number of keyframes in the map and Nf denotes the number of
features per keyframe. While the number of keyframes is fixed only after the mapping pro-
cess is finished, the number of features per keyframe is usually fixed for all frames defined
by a dataset specific configuration.

8.3.2 Minimum spanning tree coding

The goal is to exploit visual similarities among the visual features attached to the same map
point. The order of observations that minimizes the Hamming distance between succes-
sively encoded features needs to be determined. To this end, the observations of a single
map point u are modeled as vertices vi with connecting edges ei,j in an undirected graph
structure Gn = (Vu, Eu). The weights wi,j assigned to each edge between vertex vi and vj

are defined as the Hamming distance between the respective binary feature descriptors di

and dj . Kruskal’s algorithm [144] is employed to retrieve the minimum spanning tree that
connects all the vertices. The coding of the observations of a map point starts at the ob-
servation i∗ that exhibits the minimum coding costs by evaluating the costs for all attached
observations i ∈ {z ∈ N | 1 ≤ z ≤ |Vu|} as

i∗ = arg min
i

HIo
u,i, (8.6)

where |Vu| is the number of vertices, i.e., features observing a map point u. Then, the mini-
mum spanning tree is traversed, and the observations along the connected edges are differ-
entially encoded using the proposed MST coding, as illustrated in Figure 8.3 and detailed in
the following. Similar to the inter-frame prediction from Chapter 5 or the stereo-view coding
introduced in Chapter 6, the algorithm strives to exploit the similarities between multiple
features by sending only differences between connected features exhibiting minimal differ-
ences, i.e., maximum visual similarities. The concept is not solely restricted to exploiting
either temporal coherence or immediate spatial relations among the keyframes. On the con-
trary, it can utilize observations from keyframes on the trajectory that are both temporally

8.3. Lossless map compression 95

and spatially further apart, as long as they are attached to the same map point by the visual
SLAM system.

The cost for coding an observation using MST coding, which is denoted as HT
u,i in the

following, can be written as

HT
u,i(g(i)) = HI,kpt

u,i +HIo,obs
u,i +HT,vert

u,i +HT,res
u,i (g(i)). (8.7)

The keypoint coding uses the same method as the intra coding mode (Equation (8.4)). In
case features extracted from video sequences are coded, there are usually only small camera
movements between frames, which allows for coding the keypoint properties differentially
as detailed in Chapter 5 and Chapter 6. In the current application scenario, however, obser-
vations of a map point are not necessarily restricted to a consecutive sequence of frames and,
therefore, the positions must neither be located in a similar part of the image nor have the
same feature orientation or scale-space level, so the proposed approach refrains from coding
the keypoint properties differentially.

The observation information is transmitted using the same coding method as for the intra
observation coding introduced in Equation (8.5). The observation information is necessary to
assign the feature to the correct keyframe at a consistent feature index position. In addition,
the index of the reference vertex, i.e., observation, has to be signaled alongside the descrip-
tor residuals. The reference vertex is defined by the function g(i) that returns the connected
feature exhibiting the minimum Hamming distance to the current observation i given by the
MST.

8.3.2.1 Vertex coding

The costs for signaling the reference vertex is denoted as HT,vert
u,i , where the number of bits is

defined by the number of attached observations |Vu| given by

HT,vert
u,i = log2(|Vu|). (8.8)

Further coding gain can be anticipated by exploiting the fact that the number of possible ref-
erence vertices starts at zero and is incremented each time an additional observation has been
coded and becomes available as a reference. However, this work refrains from implemen-
tation, as the result is expected to provide only a minor contribution to the overall coding
performance.

8.3.2.2 Residual coding

The cost for reconstructing the descriptor is denoted as HT,res
u,i (g(i)) and defines the cost for

sending the differences between the reference descriptor dg(i) and the current descriptor di
as

HT,res
u,i (g(i)) = −(Nd − hTu,i(g(i))) · log2(pT0)− hTu,i(g(i)) · log2(1− pT0), (8.9)

where hTu,i(g(i)) denotes the Hamming distance between both descriptors. Here, similar to
the intra coding mode, pT0 denotes the probability of a residual element being zero for the
minimum spanning tree coding.

96 Chapter 8. Map compression for visual SLAM

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
Hamming distance

0

0.01

0.02

0.03

0.04

0.05

re
la

tiv
e

fr
eq

ue
nc

y

intra coding
MST coding

(a) MST coding.

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
Hamming distance

0

0.01

0.02

0.03

0.04

0.05

re
la

tiv
e

fr
eq

ue
nc

y

intra coding
MST coding

(b) Intra+MST coding.

Figure 8.4: Histogram of the Hamming distances between observations and visual words (intra cod-
ing) or reference descriptor (MST coding) respectively. Some of the observations encoded using the
MST coding produce high costs due to large Hamming distances (a). Therefore, intra coding should
be allowed as a fallback solution for each observation (b) (adapted from [4], ©2018 IEEE).

8.3.3 Map point coding

The cost for coding a map point with all observations is given by the sum of coding the
first observation using the intra coding and the remaining observations using the minimum
spanning tree approach as

H
′
u = HI

u,i∗ +

|Vu|∑
i=1,i 6=i∗

HT
u,i(g(i)). (8.10)

In Figure 8.4, the Hamming distances between connected features and the corresponding vi-
sual words obtained from the EuRoC Machine Hall sequences are shown. In Figure 8.4a, the
histogram for using intra coding for the first observation and MST coding for the remaining
features is shown. The comparison provides two main insights:

• First, two salient points can be identified in the curve for MST coding. These corre-
spond to fixed thresholds used in ORB-SLAM2 to determine feature correspondences.
The lower threshold is thl = 50, whereas the higher threshold has a value of thh = 100.
The lower threshold results in a small brink in the probability distribution, whereas no
feature exceeds the upper threshold.

• Second, some edges show a comparably high Hamming distance between connected
observations in the MST, e.g. at Hamming distances larger than 60. This entails ineffi-
ciencies in the coding process as these features require a comparably large amount of
bits using MST coding.

In this case, it is beneficial to allow also intra coding for these observations. The cost for
coding a map point including all observation is then given as

Hu =
∑
i∈V Io

u

HIo
u,i +

∑
j∈V T

u

HT
u,j(g(j)) + |Vu| − 1, (8.11)

where V Io
u denotes the set of indices for intra coded observations, including the starting ob-

8.4. Lossy map sparsification 97

servation i∗ and V T
u the MST coded vertex indices. |Vu| denotes the number of observations

attached to map point u. A supplemental bit per observation, except the first one, is added to
indicate whether intra or MST coding is used. The decision is made based on the minimum
of the estimated coding costs for HIo

u,i and HT
u,i(g(i)). This results in the histogram shown in

Figure 8.4b. The curve for MST coding now resembles a Gaussian curve with the features
resulting in Hamming distances between the lower and the higher threshold almost always
being assigned to intra coding. Compared to the results shown for the intra coding in Fig-
ure 4.7 from Chapter 4, the curves are shifted to the left. Apart from the different properties
of the used datasets, the curves are shifted as each observation has two coding modes avail-
able, where always the best in terms of minimum required bits is selected, resulting in an
overall minimization of the Hamming distances to their respective references.

8.4 Lossy map sparsification

While feature coding techniques provide the opportunity for lossless map compression, the
compression gain is rather limited. Similar to video coding, where lossless approaches pro-
vide only comparably small compression ratios, the majority of today’s compression gains
stem from lossy compression techniques by omitting information that is not perceivable or
not required to achieve a certain goal. While for video coding, the goal is to provide the max-
imum user experience in terms of subjective tests or objective measurements given a target
bitrate or vice versa, the goal of lossy map compression is to maintain the relocalization per-
formance to assist further clients entering the map to determine their current whereabouts.
In other words: Given a set of map points, the target is to identify the subset of points that
is essential for successful relocalization. The identified requirements for the map points are
threefold:

• Most important, the remaining set of map points should cover the whole mapped area.
This ensures that the map covers the same spatial extent before and after map com-
pression.

• Second, frequent observation of the map points is beneficial. The assumption is that
these points are, due to their visibility and stability, also more likely to be discovered
during a relocalization attempt. However, this introduces a bias towards locations that
have been visited more frequently by the sequence used for the map creation.

• Third, the map points should provide a good compression performance using the pro-
posed coding approach. This allows keeping more map points within a fixed bit bud-
get. As a side effect, map points that exhibit good compression ratios implicitly also
match the second requirement, as explained later on.

Following the same key tenet as [104], [105], the problem of map sparsification is formulated
as a minimization problem. In contrast to the previous works, where each map point re-
ceived a weight proportional to a visibility score, each map point is weighted according to

98 Chapter 8. Map compression for visual SLAM

the individual coding costs. Following previous notation, the problem is defined as

minimize qTx + λ11
T ξ + λ2ζ

subject to Ax + ξ ≥ b1
and cTx + ζ = Hp

x ∈ {0, 1}Np ,

ξ ∈ {Z+
0 }

Nk ,

ζ ∈ Z+
0 ,

(8.12)

where x denotes a vector of size Np containing the binary decision whether to keep or to re-
move a map point. Hence, Np is defined as the total number of map points contained in the
map. The vector q contains an integer weight for each map point. In previous work [105],
this vector accounted for the visibility of each map point, where a higher weight is assigned
to the map points that have very few observations. However, in this work, the lossless com-
pression should be tightly coupled with the optimization step.

To this end, the weight vector q is not directly derived from the number of observations,
but uses an estimate of the mean coding costs per observation for a particular map point.
More specifically, each entry qu contains the number of bits required to store a particular
map point u (Equation (8.11)) normalized by the number of attached observations. The en-
tries of q are then obtained by evaluating

qu =
Hu

|Vu|
(8.13)

for each map point. To benefit from Integer Linear Programming, the values are rounded to
the next integer value. The motivation behind this formulation is threefold:

• First, map points that exhibit observations that are visually similar and, therefore, easy
to compress due to their small Hamming distances are favored. A small Hamming
distance indicates that these local features are true matches, whereas high Hamming
distances can be an indicator of unstable features or false correspondences.

• Second, with the coding cost for observations using the minimum spanning tree being
lower than the intra observation coding costs, this approach favors map points with
many observations attached. Hence, this problem formulation implicitly incorporates
the number of observations per map point as optimization criteria. The effect is il-
lustrated in Figure 8.5, where the rate normalized by the number of observations is
shown. The more observations are attached to a map point, the fewer bits are required
for coding each individual observation due to the higher chance of finding a reference
feature with lower Hamming distance in the minimum spanning tree.

• Third, retaining a sparser set of map points, which feature a good compression ratio,
shifts the probabilities pI0 and pT0 to higher values and allows even more efficient cod-
ing. However, this effect is not exploited in this work.

8.5. Experimental evaluation 99

0 5 10 15 20 25 30 35 40
number of observations

160

170

180

190

200

210

220

m
ea

n
 b

it
s

p
er

 o
b

se
rv

at
io

n

Figure 8.5: Average number of bits required to code a map point normalized by the number of obser-
vations. The data has been obtained from all EuRoC Machine Hall sequences. The average number of
bits per observation reduces for map points with many observation attached as the MST tree coding
becomes more efficient due to the increased number of reference features (adapted from [4], ©2018
IEEE).

As pointed out by Dymczyk et al. [104], a formulation as a quadratic optimization problem to
penalize co-visible and co-located map points is omitted here because of the computational
complexity that can quickly render the problem unsolvable in a reasonable time. However,
two side constraints complement the optimization problem.

First, following related works [104], [105], the map points should be retained such that
every keyframe contains at least b observations after the map point reduction. To achieve this
goal, a Nk × Np visibility matrix A is defined where Nk denotes the number of keyframes.
Each entry of A is a binary indicator of whether a keyframe can observe a map point u.

Second, a constraint is added that restricts the size of the map by using c containing the
unnormalized number of bits per map point. The total number of bits for the map points can
be adapted with Hp to reflect the number of bits available. This constraint allows to restrict
the size of the target map and adapt to superimposed constraints such as fixed transmission
rates. Fulfilling the two constraints simultaneously is usually not possible. To relax the op-
timization problem, the slack variables ξ and ζ are added, allowing deviations from the side
constraints.

8.5 Experimental evaluation

8.5.1 Map compression

Following previous chapters, a vocabulary of size Nv = 100k has been used for the intra
observation coding. For the evaluation, ORB-SLAM2 [70] was used in stereo mode in com-
bination with the EuRoC MAV dataset. The experiments were conducted on an Intel i7-3770
CPU @ 3.40 GHz. The probabilities for intra observation and MST coding have been ob-
tained beforehand. The probabilities are set to pI0 = 0.85 and pT0 = 0.86 when using the intra
observation coding only for the first observation. This mode is denoted as MST in the fol-

100 Chapter 8. Map compression for visual SLAM

essential [MB] intra [MB] MST [MB] intra+MST [MB]

MH01 7.2 3.5 3.1 3.0

MH02 9.0 4.4 3.7 3.6

MH03 11.1 5.4 4.6 4.5

MH04 8.2 4.0 3.3 3.2

MH05 10.0 4.9 4.0 3.9

Table 8.2: Comparison of the map sizes without compression in the essential version, with all visual
information coded using intra coding, with all features using the coding order defined by MST and
the possibility to switch for each observation. The values were obtained on different sequences of the
EuRoC dataset (adapted from [4], ©2018 IEEE).

lowing and follows the formulation of Equation (8.10). When allowing both intra and MST
coding, the probabilities are set to pI0 = 0.83 and pT0 = 0.90. This coding mode using Equa-
tion (8.11) is denoted as intra+MST in the following. The main reason for the probability
pI0 for intra+MST coding being lower is that apart from the best observation i∗ in terms of
minimum Hamming distance also features with a high Hamming distance in the minimum
spanning tree are coded with this mode thus increasing the mean Hamming distance. On the
other side, pT0 increases for intra+MST as linked observations with high Hamming distances
are now intra coded. This particular variation of the probabilities can be observed indirectly
in Figure 8.4, where the histograms of the Hamming distances are plotted.

The essential map is compared to compressed versions using different coding modes in
Table 8.2. The column named intra coding shows the results when relying only on intra
coding without the usage of the minimum spanning tree. Next, the results for MST cod-
ing are presented, where only the first observation is intra coded and all other observations
use MST coding as given in Equation (8.10). Finally, intra+MST denotes the possibility to
flexibly switch between intra and MST coding for each observation, as defined in Equation
(8.11). Already more than 50% of the required storage for the map is saved by applying in-
tra coding. The combination of both MST and intra coding result in storage requirements
of only 39% of the uncompressed size for a map of the EuRoC MH04 sequence. Apart from
the quantized keypoint orientation, all coding methods are lossless and contain the same vi-
sual information as the essential map. The number of bits spent to signal the visual word
index is measured with 16.9 bits. The mean size of coding the keypoint information is
RI,kpt = 25.1 bits. This value is dependent on the properties of the sequence, such as the
resolution and the distribution of the scale-space levels. For signaling the observation infor-
mation, RIo,obs = 19.3 bits are required to store the keyframe and feature identifier.

8.5.2 Map sparsification

While λ1 in Equation (8.12) regulates the impact of the coverage constraint, which tries to re-
tain at least b = 50 observations per frame, λ2 has an impact on how close the targeted map
size is approached. For lossless compression, experiments were conducted to determine suit-
able choices of λ1 and λ2. For these experiments, the desired number of bits for storing the

8.5. Experimental evaluation 101

0

0.5

1 25

1

0.1

2 1

0.5 0.05
0.01 0.025

0

0.2

0.4

0.6

0.8

1

fr
am

es
 w

it
h

 m
o

re
 t

h
an

 b
 o

b
se

rv
at

io
n

s

(a) Coverage constraint 0.5 MB.

0

0.5

1 25

1

0.1

2 1

0.5 0.05
0.01 0.025

0

0.2

0.4

0.6

0.8

1

fr
am

es
 w

it
h

 m
o

re
 t

h
an

 b
 o

b
se

rv
at

io
n

s

(b) Coverage constraint 1 MB.

Figure 8.6: Influence of λ1, λ2 on the coverage side constraint as the fraction of keyframes fulfilling
the constraint for a target size of map points of 0.5 MB (a) and 1 MB (b). Higher values of λ1 result in
approaching the coverage constraints (adapted from [4], ©2018 IEEE).

0

5

10 5

1 25

10

0.1

2 1

0.5 0.05
0.01 0.025 0

2

4

6

8

10

to
ta

l s
iz

e
o

f
th

e
m

ap
 p

o
in

ts
 in

 b
yt

es

10 5

(a) Cost constraint 0.5 MB.

0

5

10 5

1 25

10

0.1

2 1

0.5 0.05
0.01 0.025 0

2

4

6

8

10

to
ta

l s
iz

e
o

f
th

e
m

ap
 p

o
in

ts
 in

 b
yt

es

10 5

(b) Cost constraint 1 MB.

Figure 8.7: Influence of λ1, λ2 on the total cost side constraint for a target size of map points of 0.5 MB
(a) and 1 MB (b). Higher values of λ2 result in achieving the cost constraints (adapted from [4], ©2018
IEEE).

map points has been set to 1 MB and 0.5 MB. The influence on the coverage constraint trying
to keep more than b = 50 observations per keyframe is shown in Figure 8.6. The influence on
the cost constraint approaching the desired map size is illustrated in Figure 8.7. For values
of λ1 ≥ 25, a reasonable percentage of frames keep more than 50 observations. For values of
λ2 ≥ 0.1, the target map sizes are achieved. Considering the results of all experiments, the
values are set to fixed values as λ1 = 25.0 and λ2 = 1.0 for the remaining evaluation. It is
worth noticing that other values might be more suitable for other maps and applications.

The tight coupling of the optimization step and the proposed compression approach is
investigated in Table 8.3. Prioritizing map points that feature minimum coding costs per ob-
servations favors map points with many observations attached due to the lower coding costs.
Hence, the mean number of observations per map point |V | increases for higher compres-
sion ratios showing the implicit consideration of the number of observations in the proposed

102 Chapter 8. Map compression for visual SLAM

RT,vert [bits] RI,res [bits] RT,res [bits] |V | Np

full 2.9 167.2 127.2 6.4 17,426

2.0 MB 3.4 166.3 124.6 10.7 7,464

1.0 MB 4.1 165.6 121.6 17.4 2,370

0.5 MB 4.3 162.0 117.1 19.5 1,063

Table 8.3: Mean number of bits for different map compression methods and properties that are af-
fected when combined with map sparsification. Results are mean values obtained from the EuRoC
MH01 sequence. |V | denotes mean number of observations per map point and Np the number of
retained map points. The map with fewer map points contains only map points with high number
of observations showing the implicit consideration when using the cost-aware optimization (adapted
from [4], ©2018 IEEE).

sparsification scheme. In addition, the map points exhibiting smaller coding costs for both
coding methods are preferred. The result is visible for both RI,res and RT,res, where the cost
reduces for the residual when obtaining sparser maps. Regarding the time consumption, the
optimization problem with a target map size of 1 MB takes 5.77 s to converge to the final
solution. Some examples of the resulting maps are shown in Figure 8.8.

The full map of the KITTI 00 sequence requires about 160.9 MB, the essential map 38.5 MB,
and the intra+MST compressed map uses 16.9 MB consisting of 1,392 keyframes and 139,246
map points. Figure 8.9 shows the original map and two reduced versions to 10 MB and 5 MB
preserving 53,863 and 17,606 map points, respectively.

8.5.3 Relocalization performance

In order to gain insights about the influence of the map sparsification on the relocalization
performance, two experiments were conducted. First, the relocalization capabilities of the
reduced maps are evaluated by considering only individual frames for the task using the
Bag-of-Words based relocalization module from ORB-SLAM2. It identifies similar keyframes

(a) Original map (b) 2.0 MB map (c) 1.0 MB map

Figure 8.8: View on different compressed versions of the map obtained from the EuRoC MH01 se-
quence. The keyframes are shown in blue. The map points are color coded depending on the number
of observations ranging from few observations (black) to many observations (red). Although not
explicitly modeled in the optimization, the number of map points with few observations decreases
when moving to higher compression levels (adapted from [4], ©2018 IEEE).

8.5. Experimental evaluation 103

(a) Original map (b) 10.0 MB map (c) 5.0 MB map

Figure 8.9: Top-down view on different compressed versions of the map obtained from the KITTI 00
sequence. The original map occupies 160.9 MB uncompressed and 16.9 MB using intra+MST cod-
ing. The map points are color coded depending on the number of observations ranging from few
observations (black) to many observations (red).

and performs a 6DoF pose estimation by solving the Perspective-n-Point (PnP) problem. To
this end, the relocalization module uses a RANSAC-based scheme with map points observed
by the candidate keyframe. Second, the impact on a system that can estimate the trajectory
by using not only the map information but also additional visual odometry (PnP+VO) is
evaluated. The latter is able to provide a relative motion estimate for frames where no map
points could be associated with the prior map. For example, when the part of the current
camera trajectory is not covered by the prior map. In this case, a relative motion estimate
using the visual odometry can support the relocalization process. For both experiments, a
map of the EuRoC MH01 sequence has been created beforehand. ORB-SLAM2 is evaluated
on the map of EuRoC MH01 using the EuRoC MH02 sequence as a query. First, the full map
of EuRoC MH01 is used to obtain ground truth poses of the EuRoC MH02 sequence in the
map of EuRoC MH01 using the full capabilities of ORB-SLAM2 employing the PnP+VO ap-
proach. Then, the map sparsification is applied to the EuRoC MH01 map and subsequently,
the performance is assessed by performing relocalization. In all experiments, the mapping
capabilities of ORB-SLAM2 are deactivated.

The results for both PnP and PnP+VO are shown in Table 8.4. The relocalization quality
is measured in terms of successfully localized frames that are located in the vicinity of 10
cm to their ground truth position. The proposed approach, including the map point coding
costs in the optimization process (denoted here as MILP), is compared with the results ob-
tained by employing an objective function similar to the one used by [105]. The difference
is that this approach uses the number of observations as the weight for the entries of q as
qu = Vmax − |Vu|, where Vmax denotes the maximum number of observations attached to any
map point in the map and where |Vu| denotes the number of observations attached to the
specific map point u. This formulation is referred to as ILP in the following. The ground
truth experiment is able to successfully localize 3037 frames out of 3040 frames contained
in the MH02 sequence using both the full map information and additional visual odometry.
The same setup using only PnP for relocalization on the full map is able to determine valid
locations for 2161 frames.

104 Chapter 8. Map compression for visual SLAM

method map size PnP PnP+VO Np

full 3.00 MB 2161 3037 17426

ILP

1.00 MB 1777 3036 2290
0.75 MB 1724 2825 1518
0.60 MB 1729 2866 1144
0.50 MB 1520 2859 909
0.40 MB 1226 2681 657
0.30 MB 1085 2615 416
0.20 MB 1011 1959 219

MILP

1.00 MB 1803 2994 2370
0.75 MB 1864 2989 1641
0.60 MB 1824 2991 1302
0.50 MB 1651 2834 1063
0.40 MB 1510 2794 791
0.30 MB 1267 2650 507
0.20 MB 1026 2154 278

Table 8.4: Number of successfully localized frames by querying different sized map representations
of the EuRoC MH01 sequence with frames of the EuRoC MH02 sequence. Localized frames have to
be within 10 cm compared to ground truth poses obtained by PnP+VO on the full map. Np denotes
the number of retained map points. The proposed MILP approach is able to keep more map points
for the same target map size compared to ILP. MILP almost always outperformed the ILP approach
(adapted from [4], ©2018 IEEE).

The first observation from Table 8.4 is that the MILP approach consistently outperforms
the ILP approach in terms of the number of localized frames. Only at 1.0 MB, the results
are slightly worse compared to the ILP approach. The second observation is that due to the
optimization for reducing the costs per map point, more map points could be stored com-
pared to the ILP approach. This enables more frames to be successfully localized for both
PnP and PnP+VO. For larger map sizes above 0.6 MB, a saturation is reached for both PnP
and PnP+VO. At a target map size of 0.6 MB, resulting in a total compression of 91.7% com-
pared to the essential map of size 7.2 MB, the proposed method is able to localize 5.5% more
frames using PnP and 4.4% more frames using PnP+VO compared to the ILP approach.

8.6 Summary

In this chapter, a novel approach for efficiently compressing the visual information contained
in a map from a state-of-the-art visual SLAM system has been proposed. To this end, the map
properties have been analyzed and the visual information has been identified as one of the
major sources of storage requirement. To compress the visual outline, the inherent depen-
dencies within a visual map are exploited to encode the contained visual information differ-
entially. This lossless compression approach has been evaluated on different sequences and
the results show that the size of maps can be reduced to 39% of their original size without
losing relevant visual information.

8.6. Summary 105

Moreover, the properties of the compression are exploited in a subsequent lossy map
sparsification approach, which can be solved through integer linear programming tech-
niques. With the lossy compression, a data reduction by 91.7% is achievable, while similar
tracking capabilities compared to the full map are preserved. The approach can be extended
by quadratic linear programming [104], [105] to include additional constraints. Also, related
work targeting the compression of keyframe poses [101], as well as other visual SLAM sys-
tems relying on local feature descriptors, can be combined with this algorithm.

Chapter 9

Conclusion and outlook

9.1 Conclusion

The recent improvements of visual SLAM systems and the variety of application scenarios
promise a large-scale adoption of visual SLAM in our everyday life. Providing accurate loca-
tions down to centimeter accuracy paves the way for a myriad of applications ranging from
navigation tasks over robotic exploration to fully autonomous driving. However, when us-
ing embedded and mobile devices, sacrifices have to be made considering the accuracy of
a visual SLAM system when enforcing local processing. This thesis focuses on techniques
to provide accurate visual SLAM results on energy-constrained devices by outsourcing the
visual SLAM to a more powerful processing node possibly integrated into an edge-cloud
architecture.

To this end, a complete binary feature coding framework is proposed to transmit the vi-
sual cues to the server efficiently. A novel intra coding mode is introduced in Chapter 4 that
allows the encoding and decoding of individual features using a visual vocabulary as shared
knowledge between client and server. Experimental results show that a bitrate reduction be-
tween 33.5% and 41% can be achieved. Based on this coding method, a novel rate allocation
method is proposed to adapt the amount of information transmitted to the available trans-
mission capacity on the descriptor level. This allows computer vision tasks to be carried out
at low bitrates such as 7 kbits/frame for a homography estimation task with 83% success
rate.

In Chapter 5, an inter-frame coding approach inspired by the block-based motion com-
pensation used in hybrid video coding is added. Going beyond the state-of-the-art, the im-
plemented coding methods are combined with a rate adaptation on feature level tailored to
the specific needs of a visual SLAM system. Consequently, these building blocks are com-
bined to a client-server monocular visual SLAM architecture and are evaluated in terms of
coding gain and visual SLAM results. Experimental results for the TUM RGB-D dataset show
that the proposed system is capable of reducing the bitrate by 39.1% using intra coding, by
55.3% using a single reference frame, and by 61% using four reference frames compared
to uncompressed transmission. In addition, a reduction by 79.2% down to 75 kbits/frame
is possible using feature selection while being able to run ORB-SLAM2 with only a sub-
centimeter degradation in accuracy.

107

108 Chapter 9. Conclusion and outlook

Metric scale remote visual SLAM is achieved in Chapter 6 by extending the existing cod-
ing architecture to support a stereo camera setup. The coding of the necessary information
is facilitated by either sending depth information or the additional visual information ex-
tracted from the stereo-view. A reduction in required bits by 57.9% compared to uncom-
pressed transmission is possible on the EuRoC dataset using multiple reference frames and
stereo-view coding. The coding approaches have been tested on embedded devices and are
able to achieve real-time performance.

In order to include information provided by clients operating in the nearby environment,
the visual SLAM architecture is extended to a collaborative approach in Chapter 7. Individ-
ual maps are created for each client which are merged on the detected overlap. The system
performance is evaluated in terms of coding gain and visual SLAM results using the pro-
posed centralized collaborative scheme on the KITTI dataset. Using the depth value coding
from Chapter 6 allows a reduction in terms of bits of up to 70.8% compared to uncompressed
transmission. The improvement stemming from the collaborative mapping of an environ-
ment is up to 53.7% in terms of ATE compared to individual mapping.

Map exchange is facilitated by using the inherent structure of a visual SLAM map in
Chapter 8. Interpreting the visual features in keyframes as observations of map points al-
lows the differential coding of all attached observations of a map point. Incorporating the
resulting coding costs into an optimization problem for map sparsification tightly couples
the proposed compression method with the map point reduction. The results are evalu-
ated in terms of successful relocalization attempts. The results for the lossless compression
approach show that the size of maps can be reduced to 39% of the original size without los-
ing relevant visual information. With the lossy compression, a data reduction by 91.7% is
achievable, while similar tracking capabilities compared to the original map are preserved.
In contrast to related work between 4.4% and 5.5% more frames can be successfully localized.

In summary, this dissertation closes a gap by focusing on the efficient exchange of infor-
mation in the context of visual SLAM and addresses the urgent need for data-efficiency in
future collaborative mapping scenarios. Although this work provides some steps towards
efficient collaborative visual SLAM, some research is left for future work.

9.2 Outlook

The approaches presented for visual feature coding are evaluated mainly using local binary
ORB features. However, recent advances in deep-learned features are boosting more and
more the performance of computer vision tasks and, hence, also visual SLAM. These fea-
tures are not yet considered here and need further investigation.

Although ORB-SLAM2 condenses the recent advantages in feature-based visual SLAM
into a single framework, alternatives and successors to ORB-SLAM2 might have different
requirements in terms of input and information selection. A straightforward example is di-
rect visual SLAM, which has not been considered. While approaches that are both dense and
direct are not well suited for remote visual SLAM, the nascent technology of sparse direct
approaches, such as DSO, is. In order to compress the information, a pixel selection can be

9.2. Outlook 109

implemented on the client-side. Transmitting only the best pixel intensity patches according
to a gradient-based selection function and reducing the number of required bits by exploiting
statistical properties can be a topic of further research.

If a server-based SLAM processing is employed, the feedback is delayed by the time re-
quired for communication and processing, which still might exceed practical limitations for
certain applications. A typical example would be a drone-based exploration, where imme-
diate feedback at a high frequency is required for the flight controller. To circumvent this
problem, novel technologies such as 5G, in combination with an edge cloud located in the
near vicinity of the client, could be investigated. Alternatively, a lightweight local visual
odometry could be implemented at the client to provide short-term positioning. These small
local maps can be augmented with the more precise and larger-scale mapping carried out at
the server.

When discussing a roll-out of edge-cloud based architectures with a visual SLAM in-
stance running at a base station of a mobile network, more challenges are faced. Technolo-
gies for seamless visual SLAM handover between neighboring cells need to be investigated.
Aggregating the individual proximity-based SLAM maps collected at the edge servers to a
globally consistent map at the central cloud poses further challenges also with respect to
scaling the architecture.

The proposed map exchange approach reaches its limits by considering only complete
static maps. Extending the approach to partial coding of maps, where only newly created
map points and observations have to be transmitted, would be beneficial. Also, approaches
for updating map points and version control play a vitally important role in future applica-
tions.

Bibliography

Publications by the author

Journal publications

[1] D. Van Opdenbosch and E. Steinbach, “Collaborative Visual SLAM using Com-
pressed Feature Exchange,” IEEE Robotics and Automation Letters (RAL), vol. 4, no. 1,
pp. 57–64, 2019.

Conference publications

[2] D. Van Opdenbosch, M. Oelsch, A. Garcea, and E. Steinbach, “A Joint Compression
Scheme for Local Binary Feature Descriptors and their Corresponding Bag-of-Words
Representation,” in IEEE Conference on Visual Communications and Image Processing
(VCIP), 2017, pp. 1–4.

[3] D. Van Opdenbosch, M. Oelsch, A. Garcea, T. Aykut, and E. Steinbach, “Selection and
Compression of Local Binary Features for Remote Visual SLAM,” in IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp. 7270–7277.

[4] D. Van Opdenbosch, T. Aykut, M. Oelsch, N. Alt, and E. Steinbach, “Efficient Map
Compression for Collaborative Visual SLAM,” in IEEE Winter Conference on Applica-
tions of Computer Vision (WACV), Lake Tahoe, USA, 2018, pp. 992–1000.

[5] D. Van Opdenbosch and E. Steinbach, “Flexible Rate Allocation for Binary Feature
Compression,” in IEEE International Conference on Image Processing (ICIP), Athens,
Greece, 2018, pp. 3259–3263.

[6] D. Van Opdenbosch, G. Schroth, R. Huitl, S. Hilsenbeck, A. Garcea, and E. Steinbach,
“Camera-based Indoor Positioning using Scalable Streaming of Compressed Binary
Image Signatures,” in IEEE International Conference on Image Processing (ICIP), Paris,
France, 2014, pp. 2804–2808.

[7] D. Van Opdenbosch and E. Steinbach, “AVLAD: Optimizing the VLAD Image Signa-
ture for Specific Feature Descriptors,” in IEEE International Symposium on Multimedia
(ISM), 2016, pp. 545–550.

[8] A. Hanel, A. Mitschke, R. Boerner, D. Van Opdenbosch, D. Brodie, and U. Stilla, “Met-
ric Scale Calculation For Visual Mapping Algorithms,” in ISPRS Technical Commission
II Symposium 2018, Riva del Garda, Italy, 2018, pp. 433–440.

111

112 Bibliography

[9] M. Oelsch, D. Van Opdenbosch, and E. Steinbach, “Survey of Visual Feature Extrac-
tion Algorithms in a Mars-like Environment,” in IEEE International Symposium on Mul-
timedia (ISM), Taichung, Taiwan, 2017, pp. 322–325.

[10] T. Aykut, C. Zou, J. Xu, D. Van Opdenbosch, and E. Steinbach, “A Delay Compensa-
tion Approach for Pan-Tilt-Unit-based Stereoscopic 360° Telepresence Systems Using
Head Motion Prediction,” in IEEE International Conference of Robotics and Automation
(ICRA), Brisbane, Australia, 2018, pp. 1–9.

[11] A. Garcea, J. Zhu, D. Van Opdenbosch, and E. Steinbach, “Robust Map Alignment for
Cooperative Visual SLAM,” in IEEE International Conference on Image Processing (ICIP),
Athens, Greece, 2018, pp. 4083–4087.

[12] A. Dettmann, D. Kuehn, D. Van Opdenbosch, T. Stark, H. Peters, S. Natarajan, S.
Kasperski, A. Boeckmann, A. Garcea, E. Steinbach, and F. Kirchner, “Exploration in
Inaccessible Terrain Using Visual and Proprioceptive Data,” in International Sympo-
sium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Madrid,
Spain, 2018.

General publications

[13] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT Press, 2005.

[14] H. P. Moravec, “Obstacle avoidance and navigation in the real world by a seeing robot
rover.,” Stanford University, Tech. Rep., 1980.

[15] D. Scaramuzza and F. Fraundorfer, “Visual Odometry : Part I: The First 30 Years and
Fundamentals,” IEEE Robotics and Automation Magazine, vol. 18, no. 4, pp. 80–92, 2011.

[16] F. Fraundorfer and D. Scaramuzza, “Visual odometry: Part II: Matching, robustness,
optimization, and applications,” IEEE Robotics and Automation Magazine, vol. 19, no. 2,
pp. 78–90, 2012.

[17] C. Shannon, “The mathematical theory of communication,” The Bell System Technical
Journal, vol. 27, pp. 379–423, 1948.

[18] D. A. Huffman, “A Method for the Construction of Minimum-Redundancy Codes,”
Proceedings of the IRE, 1952.

[19] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic Coding for Data Compression,”
Commun. ACM, vol. 30, no. 6, pp. 520–540, 1987. [Online]. Available: http://doi.acm.
org/10.1145/214762.214771.

[20] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp, “The use of asymmetric numeral sys-
tems as an accurate replacement for Huffman coding,” in Picture Coding Symposium
(PCS 2015), 2015, pp. 65–69.

[21] T. Tuytelaars and K. Mikolajczyk, “Local Invariant Feature Detectors: A Survey,”
Foundations and Trends in Computer Graphics and Vision, vol. 3, no. 3, pp. 177–280, 2008.

http://doi.acm.org/10.1145/214762.214771
http://doi.acm.org/10.1145/214762.214771

113

[22] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615 –1630,
2005.

[23] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T.
Kadir, and L. Van Gool, “A comparison of affine region detectors,” International Jour-
nal of Computer Vision, vol. 65, no. 1, pp. 43–72, 2005.

[24] S. Gauglitz, T. Hoellerer, and M. Turk, “Evaluation of interest point detectors and fea-
ture descriptors for visual tracking,” International Journal of Computer Vision, vol. 94,
no. 3, pp. 335–360, 2011.

[25] J. Heinly, E. Dunn, and J. M. Frahm, “Comparative evaluation of binary features,” in
European Conference on Computer Vision (ECCV), 2012, pp. 759–773.

[26] L. Baroffio, A. Redondi, M. Tagliasacchi, and S. Tubaro, “A survey on compact fea-
tures for visual content analysis,” APSIPA Transactions on Signal and Information Pro-
cessing, vol. 5, pp. 1–22, 2016.

[27] J. L. Schönberger, H. Hardmeier, T. Sattler, and M. Pollefeys, “Comparative evaluation
of hand-crafted and learned local features,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 6959 –6968.

[28] I. Sobel, “History and Definition of the so-called Sobel Operator,” in Pattern Classifica-
tion and Scene Analysis, 1973, pp. 271–272.

[29] J. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679 –698, 1986.

[30] D. G. Lowe, “Object recognition from local scale-invariant features,” in IEEE Interna-
tional Conference on Computer Vision (ICCV), 1999, pp. 1150 –1157.

[31] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Interna-
tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[32] T. Lindeberg, “Scale-space theory: A basic tool for analyzing structures at different
scales,” Journal of Applied Statistics, vol. 21, pp. 224–270, 1994.

[33] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),”
Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008.

[34] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” in Procedings
of the Alvey Vision Conference 1988, 1988, pp. 23.1–23.6.

[35] E. Rosten and T. Drummond, “Machine Learning for High-speed Corner Detection,”
in European Conference on Computer Vision (ECCV), 2006, pp. 430–443.

[36] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger, “Adaptive and
Generic Corner Detection Based on the Accelerated Segment Test,” in European Con-
ference on Computer Vision (ECCV), 2010, pp. 183–196.

[37] G. Francini, S. Lepsoy, and M. Balestri, “Selection of local features for visual search,”
Signal Processing: Image Communication, vol. 28, no. 4, pp. 311–322, 2013.

114 Bibliography

[38] W. Hartmann, M. Havlena, and K. Schindler, “Predicting matchability,” in IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 9 –16.

[39] M. Dymczyk, E. Stumm, J. Nieto, R. Siegwart, and I. Gilitschenski, “Will it last? Learn-
ing stable features for long-term visual localization,” in IEEE International Conference
on 3D Vision (3DV), 2016, pp. 572 –581.

[40] A. Richardson and E. Olson, “Learning convolutional filters for interest point detec-
tion,” in IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 631
–637.

[41] Y. Verdie, K. M. Yi, P. Fua, and V. Lepetit, “TILDE: A Temporally Invariant Learned
DEtector,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 5279 –5288.

[42] H. Altwaijry, A. Veit, S. J. Belongie, and C. Tech, “Learning to Detect and Match Key-
points with Deep Architectures.,” British Machine Vision Conference (BMVC), 2016.

[43] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “LIFT: Learned invariant feature transform,”
in European Conference on Computer Vision (ECCV), 2016, pp. 467–483.

[44] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary Robust Indepen-
dent Elementary Features,” in European Conference on Computer Vision (ECCV), 2010,
pp. 778–792.

[45] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High Dimensions via Hash-
ing,” in International Conference on Very Large Data Bases (VLDB ’99), 1999, pp. 518–529.

[46] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative
to SIFT or SURF,” in IEEE International Conference on Computer Vision (ICCV), 2011,
pp. 2564–2571.

[47] S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: Binary Robust invariant scalable
keypoints,” in IEEE International Conference on Computer Vision (ICCV), 2011, pp. 2548–
2555.

[48] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast retina keypoint,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 510–517.

[49] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, “MatchNet: Unifying feature
and metric learning for patch-based matching,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 3279–3286.

[50] S. Zagoruyko and N. Komodakis, “Learning to compare image patches via convolu-
tional neural networks,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 4353 –4361.

[51] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer, “Dis-
criminative learning of deep convolutional feature point descriptors,” in IEEE Inter-
national Conference on Computer Vision (ICCV), 2015, pp. 118–126.

115

[52] A. Loquercio, M. Dymczyk, B. Zeisl, S. Lynen, I. Gilitschenski, and R. Siegwart, “Effi-
cient descriptor learning for large scale localization,” in IEEE International Conference
on Robotics and Automation (ICRA), 2017, pp. 3170–3177.

[53] L. Zheng, Y. Yang, and Q. Tian, “SIFT Meets CNN: A Decade Survey of Instance Re-
trieval,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 5,
pp. 1224 –1244, 2018.

[54] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and
R. Siegwart, “The EuRoC micro aerial vehicle datasets,” The International Journal of
Robotics Research, vol. 35, no. 10, pp. 1–7, 2016.

[55] G. Bradski, “The OpenCV Library,” Dr Dobbs Journal of Software Tools, 2000.

[56] S. Heymann, K. Müller, A. Smolic, B. Froehlich, and T. Wiegand, “SIFT implemen-
tation and optimization for general-purpose GPU,” International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision, 2007.

[57] F. Schweiger, G. Schroth, R. Huitl, Y. Latif, and E. Steinbach, “Speeded-up SURF: De-
sign of an efficient multiscale feature detector,” in IEEE International Conference on
Image Processing (ICIP), 2013, pp. 3475–3478.

[58] J. Sivic and A. Zisserman, “Video Google: A Text Retrieval Approach to Object Match-
ing in Videos,” IEEE International Conference on Computer Vision (ICCV), pp. 1470–1477,
2003.

[59] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors into
a compact image representation,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2010, pp. 3304–3311.

[60] H. Jégou, F. Perronnin, M. Douze, J. Sanchez, P. Pérez, and C. Schmid, “Aggregating
Local Image Descriptors into Compact Codes,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, no. 9, pp. 1704–1716, 2012.

[61] J. Delhumeau, P.-H. Gosselin, H. Jégou, and P. Pérez, “Revisiting the VLAD image
representation,” in ACM International Conference on Multimedia, 2013, pp. 653–656.

[62] R. Arandjelovic and A. Zisserman, “All About VLAD,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2013, pp. 1578–1585.

[63] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD: CNN Architec-
ture for Weakly Supervised Place Recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 40, no. 6, pp. 1437–1451, 2018.

[64] F. Perronnin, Y. Liu, J. Sanchez, and H. Poirier, “Large-scale image retrieval with com-
pressed Fisher vectors,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2010, pp. 3384–3391.

[65] J. Heinly, J. L. Schönberger, E. Dunn, and J. M. Frahm, “Reconstructing the world in
six days,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 3287–3295.

116 Bibliography

[66] H. Strasdat, J. M. Montiel, and A. J. Davison, “Real-time monocular SLAM: Why fil-
ter?” In IEEE International Conference on Robotics and Automation (ICRA), 2010, pp. 2657–
2664.

[67] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 40, no. 3, pp. 611–625, 2018.

[68] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense tracking and
mapping in real-time,” in IEEE International Conference on Computer Vision (ICCV),
2011, pp. 2320–2327.

[69] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A Versatile and Accu-
rate Monocular SLAM System,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–
1163, 2015.

[70] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source SLAM System for
Monocular, Stereo, and RGB-D Cameras,” IEEE Transactions on Robotics, vol. 33, no. 5,
pp. 1255–1262, 2017.

[71] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct monocular visual
odometry,” in IEEE International Conference on Robotics and Automation (ICRA), 2014,
pp. 15–22.

[72] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, “SVO: Semi-
Direct Visual Odometry for Monocular and Multi-Camera Systems,” IEEE Transac-
tions on Robotics, vol. 33, no. 2, pp. 249–265, 2017.

[73] A. J. Davison, “Real-time simultaneous localisation and mapping with a single cam-
era,” in IEEE International Conference on Computer Vision (ICCV), 2003, p. 1403.

[74] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: Real-time single
camera SLAM,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29,
no. 6, pp. 1052–1067, 2007.

[75] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman filter for vision-
aided inertial navigation,” in IEEE International Conference on Robotics and Automation
(ICRA), 2007, pp. 3565–3572.

[76] H. Strasdat, A. J. Davison, J. M. Montiel, and K. Konolige, “Double window optimi-
sation for constant time visual SLAM,” in IEEE International Conference on Computer
Vision (ICCV), 2011, pp. 2352–2359.

[77] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,”
in IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR),
2007, pp. 225–234.

[78] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Direct Monocular SLAM,” in Euro-
pean Conference on Computer Vision (ECCV), vol. 8690, 2014, pp. 834–849.

[79] J. Engel, J. Stückler, and D. Cremers, “Large-scale direct SLAM with stereo cameras,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015.

117

[80] R. Wang, M. Schwörer, and D. Cremers, “Stereo DSO: Large-Scale Direct Sparse Vi-
sual Odometry with Stereo Cameras,” in IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 3923 –3931.

[81] S. Urban and S. Hinz, “MultiCol-SLAM - A Modular Real-Time Multi-Camera SLAM
System,” arXiv preprint arXiv:1610.07336, 2016.

[82] D. Caruso, J. Engel, and D. Cremers, “Large-scale direct SLAM for omnidirectional
cameras,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 141 –148.

[83] H. Matsuki, L. von Stumberg, V. Usenko, J. Stückler, and D. Cremers, “Omnidirec-
tional DSO: Direct Sparse Odometry with Fisheye Cameras,” IEEE Robotics and Au-
tomation Letters (RAL), vol. 3, no. 4, pp. 3693 –3700, 2018.

[84] R. Mur-Artal and J. D. Tardós, “Visual-Inertial Monocular SLAM With Map Reuse,”
IEEE Robotics and Automation Letters (RAL), vol. 2, no. 2, pp. 796–803, 2017.

[85] T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschenski, and R. Sieg-
wart, “Maplab: An Open Framework for Research in Visual-Inertial Mapping and
Localization,” IEEE Robotics and Automation Letters (RAL), vol. 3, no. 3, pp. 1418–1425,
2018.

[86] L. von Stumberg, V. Usenko, and D. Cremers, “Direct Sparse Visual-Inertial Odome-
try using Dynamic Marginalization,” in IEEE International Conference on Robotics and
Automation (ICRA), 2018, pp. 2510–2517.

[87] D. Zou and P. Tan, “CoSLAM: Collaborative visual SLAM in dynamic environments,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 2, pp. 354–
366, 2013.

[88] C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza, “Collaborative monocular SLAM
with multiple Micro Aerial Vehicles,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2013, pp. 3963–3970.

[89] L. Riazuelo, J. Civera, and J. M. Montiel, “C2TAM: A Cloud framework for coopera-
tive tracking and mapping,” Robotics and Autonomous Systems, vol. 62, no. 4, pp. 401–
413, 2014.

[90] P. Schmuck and M. Chli, “Multi-UAV collaborative monocular SLAM,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2017, pp. 3863–3870.

[91] T. Cieslewski, S. Choudhary, and D. Scaramuzza, “Data-Efficient Decentralized Vi-
sual SLAM,” in IEEE International Conference of Robotics and Automation (ICRA), 2018,
pp. 2466–2473.

[92] T. Cieslewski and D. Scaramuzza, “Efficient Decentralized Visual Place Recognition
Using a Distributed Inverted Index,” IEEE Robotics and Automation Letters (RAL),
vol. 2, no. 2, pp. 1–8, 2017.

118 Bibliography

[93] ——, “Efficient Decentralized Visual Place Recognition From Full-Image Descrip-
tors,” in IEEE International Symposium on Multi-Robot and Multi-Agent Systems (MRS),
2017, pp. 78–82.

[94] T. Cieslewski, S. Lynen, M. Dymczyk, S. Magnenat, and R. Siegwart, “Map API -
Scalable decentralized map building for robots,” in IEEE International Conference on
Robotics and Automation (ICRA), 2015, pp. 6241–6247.

[95] M. Gadd and P. Newman, “Checkout my map: Version control for fleetwide visual
localisation,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016, pp. 5729–5736.

[96] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2004, pp. 1–8.

[97] T. Cieslewski and D. Scaramuzza, “SIPS: Unsupervised Succinct Interest Points,”
arXiv:1805.01358v1, 2018. [Online]. Available: http://arxiv.org/abs/1805.01358.

[98] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and E. Steinbach, “Real-time
compression of point cloud streams,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2012, pp. 778–785.

[99] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap:
An efficient probabilistic 3D mapping framework based on octrees,” Autonomous
Robots, vol. 34, no. 3, pp. 189–206, 2013.

[100] L. Contreras and W. Mayol-Cuevas, “Trajectory-driven point cloud compression tech-
niques for visual SLAM,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015, pp. 133–140.

[101] ——, “O-POCO: Online point cloud compression mapping for visual odometry and
SLAM,” in IEEE International Conference on Robotics and Automation (ICRA), 2017,
pp. 4509–4514.

[102] S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, and R. Siegwart, “Get Out of
My Lab: Large-scale, Real-Time Visual-Inertial Localization,” in Robotics: Science and
Systems XI, 2015.

[103] M. Dymczyk, S. Lynen, T. Cieslewski, M. Bosse, R. Siegwart, and P. Furgale, “The
gist of maps - Summarizing experience for lifelong localization,” in IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 2767–2773.

[104] M. Dymczyk, S. Lynen, M. Bosse, and R. Siegwart, “Keep it brief: Scalable creation
of compressed localization maps,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015, pp. 2536–2542.

[105] H. S. Park, Y Wang, E Nurvitadhi, J. C. Hoe, Y Sheikh, and M Chen, “3D Point Cloud
Reduction Using Mixed-Integer Quadratic Programming,” in IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 2013, pp. 229–236.

http://arxiv.org/abs/1805.01358

119

[106] W. Cheng, W. Lin, X. Zhang, M. Goesele, and M. T. Sun, “A data-driven point cloud
simplification framework for city-scale image-based localization,” IEEE Transactions
on Image Processing, vol. 26, no. 1, pp. 262–275, 2017.

[107] H. Merzić, E. Stumm, M. Dymczyk, R. Siegwart, and I. Gilitschenski, “Map Qual-
ity Evaluation for Visual Localization,” in IEEE International Conference of Robotics and
Automation (ICRA), 2017, pp. 3200–3206.

[108] A. Redondi, L. Baroffio, M. Cesana, and M. Tagliasacchi, “Compress-then-analyze
vs. analyze-then-compress: Two paradigms for image analysis in visual sensor net-
works,” in IEEE International Workshop on Multimedia Signal Processing (MMSP), 2013,
pp. 278 –282.

[109] A. Redondi, L. Baroffio, L. Bianchi, M. Cesana, and M. Tagliasacchi, “Compress-then-
Analyze vs Analyze-then-Compress: what is best in Visual Sensor Networks?” IEEE
Transactions on Mobile Computing, vol. 1233, no. c, pp. 1–1, 2016.

[110] L.-Y. Duan, V. Chandrasekhar, J. Chen, J. Lin, Z. Wang, T. Huang, B. Girod, and W.
Gao, “Overview of the MPEG-CDVS Standard,” IEEE Transactions on Image Process-
ing, vol. 25, no. 1, pp. 179–194, 2016.

[111] L. Baroffio, A. Canclini, M. Cesana, A. Redondi, and M. Tagliasacchi, “Briskola: BRISK
optimized for low-power ARM architectures,” in IEEE International Conference on Im-
age Processing (ICIP), 2014, pp. 5691–5695.

[112] G. Klein and D. Murray, “Parallel tracking and mapping on a camera phone,” in IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), 2009, pp. 83–86.

[113] T. Schöps, J. Engel, and D. Cremers, “Semi-dense visual odometry for AR on a smart-
phone,” in IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
2014, pp. 145–150.

[114] Microsoft, HoloLens HPU, 2018. [Online]. Available: https://www.microsoft.com/en-
us/research/blog/second-version-hololens-hpu-will- incorporate-ai-coprocessor-
implementing-dnns/.

[115] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Transactions on
Consumer Electronics, vol. 38, no. 1, 1992.

[116] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264 /
AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 13, no. 8, pp. 560 –576, 2003.

[117] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the High Efficiency
Video Coding (HEVC) Standard,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp. 1649 –1668, 2012.

[118] J. Chao, H. Chen, and E. Steinbach, “On the design of a novel JPEG quantization ta-
ble for improved feature detection performance,” in IEEE International Conference on
Image Processing (ICIP), 2013, pp. 1675 –1679.

https://www.microsoft.com/en-us/research/blog/second-version-hololens-hpu-will-incorporate-ai-coprocessor-implementing-dnns/
https://www.microsoft.com/en-us/research/blog/second-version-hololens-hpu-will-incorporate-ai-coprocessor-implementing-dnns/
https://www.microsoft.com/en-us/research/blog/second-version-hololens-hpu-will-incorporate-ai-coprocessor-implementing-dnns/

120 Bibliography

[119] J. Chao, R. Huitl, E. Steinbach, and D. Schroeder, “A Novel Rate Control Framework
for SIFT/SURF Feature Preservation in H.264/AVC Video Compression,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 25, no. 6, pp. 958–972, 2015.

[120] J. Chao and E. Steinbach, “Keypoint Encoding for Improved Feature Extraction From
Compressed Video at Low Bitrates,” IEEE Transactions on Multimedia, vol. 18, no. 1,
pp. 25–39, 2016.

[121] L. Baroffio, M. Cesana, A. Redondi, M. Tagliasacchi, and S. Tubaro, “Coding vi-
sual features extracted from video sequences,” IEEE Transactions on Image Processing,
vol. 23, no. 5, pp. 2262–2276, 2014.

[122] A. Redondi, L. Baroffio, J. Ascenso, M. Cesana, and M. Tagliasacchi, “Rate-accuracy
optimization of binary descriptors,” in IEEE International Conference on Image Process-
ing (ICIP), 2013, pp. 2910 –2914.

[123] L. Baroffio, A. Canclini, M. Cesana, A. Redondi, M. Tagliasacchi, and S. Tubaro, “Cod-
ing Local and Global Binary Visual Features Extracted from Video Sequences,” IEEE
Transactions on Image Processing, vol. 24, no. 11, pp. 3546–3560, 2015.

[124] J. Lin, L. Y. Duan, Y. Huang, S. Luo, T. Huang, and W. Gao, “Rate-adaptive compact
fisher codes for mobile visual search,” IEEE Signal Processing Letters, vol. 21, no. 2,
pp. 195 –198, 2014.

[125] S. S. Tsai, D. Chen, G. Takacs, V. Chandrasekhar, J. P. Singh, and B. Girod, “Location
coding for mobile image retrieval,” in Mobile Multimedia Communications Conference
(ICST), 2009, pp. 1–7.

[126] S. S. Tsai, D. Chen, and G. Takacs, “Improved Coding for Image Feature Location
Information,” Proc. SPIE, vol. 8499, pp. 1–10, 2012.

[127] C. Timmerer, MPEG 121 Meeting Report, 2018. [Online]. Available: https : / / mpeg .
chiariglione.org/meetings/121.

[128] L.-Y. Duan, V. Chandrasekhar, S. Wang, Y. Lou, J. Lin, Y. Bai, T. Huang, A. C. Kot, and
W. Gao, “Compact Descriptors for Video Analysis: the Emerging MPEG Standard,”
arXiv:1704.08141, 2017.

[129] L. Baroffio, M. Cesana, A. Redondi, M. Tagliasacchi, and S. Tubaro, “Hybrid coding
of visual content and local image features,” in IEEE International Conference on Image
Processing (ICIP), 2015, pp. 2530–2534.

[130] R. Hastings, Making the Most of the Cloud: How to Choose and Implement the Best Services.
Scarecrow Press Inc., 2013.

[131] Nokia, The edge cloud: an agile foundation to support advanced new services, 2014. [Online].
Available: https://onestore.nokia.com/asset/202184 (visited on 11/28/2018).

[132] M. J. Huiskes and M. S. Lew, “The MIR flickr retrieval evaluation,” in ACM Interna-
tional Conference on Multimedia Information Retrieval, vol. 4, 2008, pp. 39–43.

https://mpeg.chiariglione.org/meetings/121
https://mpeg.chiariglione.org/meetings/121
https://onestore.nokia.com/asset/202184

121

[133] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI
vision benchmark suite,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2012, pp. 3354–3361.

[134] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the
evaluation of RGB-D SLAM systems,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2012, pp. 573–580.

[135] L. Bondi, L. Baroffio, M. Cesana, A. Redondi, and M. Tagliasacchi, “Multi-view cod-
ing of local features in visual sensor networks,” in IEEE International Conference on
Multimedia and Expo Workshops (ICMEW), 2015, pp. 1–6.

[136] D. J. C. MacKay, Information Theory, Inference & Learning Algorithms. New York, NY,
USA: Cambridge University Press, 2002.

[137] K. Pearson, “Note on Regression and Inheritance in the Case of Two Parents,” Pro-
ceedings of the Royal Society of London, vol. 58, pp. 240–242, 1895.

[138] D Nistér and H Stewénius, “Scalable Recognition with a Vocabulary Tree,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2006, pp. 2161–2168.

[139] D. Galvez-López and J. D. Tardós, “Bags of binary words for fast place recognition in
image sequences,” IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188–1197, 2012.

[140] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid, “RSLAM: A system for large-
scale mapping in constant-time using stereo,” International Journal of Computer Vision,
vol. 94, no. 2, pp. 198–214, 2011.

[141] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Mg, “ROS: An open-source Robot Operating System,” in ICRA Workshop on
Open Source Software, 2009.

[142] J. Straub, S. Hilsenbeck, G. Schroth, R. Huitl, A. Möller, and E. Steinbach, “Fast relo-
calization for visual odometry using binary features,” in IEEE International Conference
on Image Processing (ICIP), 2013, pp. 2548–2552.

[143] B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,”
Journal of the Optical Society of America A, vol. 4, no. 4, p. 629, 1987.

[144] J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Traveling Sales-
man Problem,” Proceedings of the American Mathematical Society, vol. 7, no. 1, p. 48,
1956.

List of Figures

2.1 Comparison of different feature descriptors with respect to their size and time. 15
2.2 Categorization of visual SLAM systems based on information and estimation approaches. 18
2.3 Comparison of architectures for mobile computer vision tasks. 22
2.4 Centralized cloud computing architecture. 25
2.5 Edge cloud computing architecture. 26

3.1 Overview of the proposed feature coding framework. 30

4.1 Correlation between descriptor entries for ORB, FREAK, and BRISK. 36
4.2 Hierachical vocabulary tree. 36
4.3 Overview of the proposed intra coding mode. 37
4.4 Probability of visual words for the first 10k visual words out of Nv = 1m 39
4.5 Illustration of the scale-space representation. 41
4.6 Illustration of the rate allocation. 45
4.7 Histogram of Hamming distances between the descriptors and their visual words. 47
4.8 Comparison of the average number of bits per feature. 49
4.9 Expected values per descriptor dimension. 50
4.10 Expected values per residual dimension. 50
4.11 Homography estimation precision. 52
4.12 Utility functions Ug(ng) for ORB features. 53
4.13 Utility functions Ug(ng) for FREAK features. 53
4.14 Utility functions Ug(ng) for BRISK features. 53
4.15 Evolution of Us and descriptor element selection. 54
4.16 Homography estimation precision. 55

5.1 Illustration of the monocular remote SLAM system. 57
5.2 Overview of the monocular coding framework. 58
5.3 Illustration of the inter coding mode. 59
5.4 Probabilities used for differential keypoint coding. 61
5.5 Triangulation probabilities used for the feature selection. 63
5.6 Comparison of the number of bits for the coding modes for fr3/long_office. 65
5.7 Evolution of the map properties using a random selection and the proposed selection. . . . 66

6.1 Illustration of the ATC-based metric scale SLAM architecture. 69
6.2 Illustration of the different coding modes. 70
6.3 Histogram of the depth values obtained from the EuRoC V101 and the KITTI 07 sequences. 71
6.4 Depth quantization curves for ND = 4, ND = 6, and ND = 8. 72
6.5 Histogram of the depth quantization error measured on the KITTI 00 sequence. 72

123

124 List of Figures

6.6 Number of bits for the coding modes for KITTI 00. 76
6.7 Comparison of the number of bits for the coding modes for EuRoC V101 with Nr = 1. . . . 77
6.8 Comparison of the number of bits for the coding modes for EuRoC V101 with Nr = 4. . . . 78

7.1 Illustration of the ATC-based collaborative mapping architecture. 83
7.2 Ground truth for three clients for KITTI 00 and KITTI 00+07. 85
7.3 Comparison of the ground truth with the SLAM results for KITTI 00. 87
7.4 Maps after merging of three individual maps on KITTI 00 and KITTI 00+KITTI 07. 87
7.5 Cumulative data rate, keyframes and map points on KITTI 00. 87

8.1 Illustration of an application scenario for compressed map exchange. 89
8.2 Sample trajectory of a visual SLAM system. 90
8.3 Illustration of a sample trajectory and the MST coding. 93
8.4 Histogram of the Hamming distances between a visual word or a reference descriptor. . . 96
8.5 Number of bits required for a map point normalized by the number of observations. 99
8.6 Evaluation of the influence of λ1, λ2 on the coverage constraint. 101
8.7 Evaluation of the influence of λ1, λ2 on the map size constraint. 101
8.8 Compressed versions of the map of the EuRoC MH01 sequence. 102
8.9 Compressed versions of the map of the KITTI 00 sequence. 103

List of Tables

2.1 Advantages and disadvantages of direct and indirect SLAM approaches. 17
2.2 Advantages and disadvantages of sparse and dense SLAM approaches. 18
2.3 Advantages and disadvantages of different processing architectures. 24
2.4 Tabular overview over the datasets. 27

3.1 Advantages and disadvantages of the main coding methods. 31

4.1 Intra coding results in bits for ORB features for the sunset unconstrained motion sequence. . 48
4.2 Intra coding results in bits for FREAK features for the sunset unconstrained motion sequence. 48
4.3 Intra coding results in bits for BRISK features for the sunset unconstrained motion sequence. 48

5.1 Timing and kbits/frame for monocular remote SLAM for fr3/long_office. 65
5.2 Comparison of the ATE in cm for sequences from TUM RGB-D 66
5.3 Timing results for fr3/long_office using four reference frames 67

6.1 Performance of depth quantizers in terms of ATE for KITTI 00. 75
6.2 Median timings and bits per feature for monocular + depth coding for KITTI 00. 79
6.3 Median timings and bits per feature for stereo coding for KITTI 00. 80
6.4 Median timings and bits per feature for stereo coding for EuRoC V101. 80

7.1 Collaborative SLAM performance in ATE for KITTI 00 and KITTI 07. 86
7.2 Collaborative SLAM performance in ATE for three clients on KITTI 00. 86

8.1 Memory footprint of the individual map properties. 91
8.2 Comparison of the map sizes resulting from the proposed compression approaches. 100
8.3 Mean number of bits for different map compression methods and properties. 102
8.4 Evaluation of the map compression in terms of successful relocalization attempts. 104

125

	Notation
	Introduction
	Major contributions
	Thesis organization

	Background and related work
	Data compression
	Fixed-length coding
	Variable-length coding

	Visual content description
	Local visual features
	Global visual features

	Visual SLAM
	Visual SLAM systems
	Collaborative visual SLAM
	Feature selection
	Map compression

	Visual content coding
	Local processing
	Compress-then-Analyze
	Analyze-then-Compress

	Cloud architecture
	Centralized cloud computing
	Edge cloud computing

	Datasets
	Summary

	Feature coding framework
	Problem statement
	System architecture
	Notation
	Summary

	Intra coding and rate allocation
	Problem statement
	System architecture
	Feature coding
	Intra coding

	Rate allocation
	Residual reordering
	Feature classification
	Rate optimization

	Experimental evaluation
	Intra coding
	Homography estimation
	Rate allocation

	Summary

	Monocular remote visual SLAM
	Problem statement
	System architecture
	Feature coding
	Inter coding
	Skip mode
	Mode decision
	Rate adaption
	Feedback channel

	Experimental evaluation
	Feature coding
	Feature selection
	Computational complexity

	Summary

	Stereo remote visual SLAM
	Problem statement
	System architecture
	Feature coding
	Depth coding
	Inter-view coding

	Experimental evaluation
	Depth coding
	Stereo coding
	Mode configurations

	Summary

	Collaborative visual SLAM
	Problem statement
	System architecture
	Map merging
	Joint mapping
	Experimental evaluation
	Summary

	Map compression for visual SLAM
	Problem statement
	System architecture
	Lossless map compression
	Intra observation coding
	Minimum spanning tree coding
	Map point coding

	Lossy map sparsification
	Experimental evaluation
	Map compression
	Map sparsification
	Relocalization performance

	Summary

	Conclusion and outlook
	Conclusion
	Outlook

	Bibliography
	List of Figures
	List of Tables

