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Summary

This dissertation investigates several aspects of stochastic modeling in space and
time with Lévy-driven random fields and is organized as follows.

In Chapter 1 we propose a novel class of tempo-spatial Ornstein-Uhlenbeck pro-
cesses as solutions to Lévy-driven Volterra equations with additive noise and multi-
plicative drift. Subsequent to formulating conditions for the existence and uniqueness
of solutions, we derive an explicit solution formula and study distributional prop-
erties such as stationarity, second-order structure and short versus long memory.
Furthermore, we analyze in detail the path properties of the solution process. In
particular, we introduce different notions of càdlàg paths in space and time and es-
tablish conditions for the existence of versions with these regularity properties. The
theoretical results are accompanied by illustrative examples.

In Chapter 2 we introduce Lévy-driven causal CARMA random fields on Rd,
extending the class of CARMA processes. The definition is based on a system of
stochastic partial differential equations which generalizes the classical state-space
representation of CARMA processes. The resulting CARMA model differs funda-
mentally from the CARMA random field of Brockwell and Matsuda. We show exis-
tence of the model under mild assumptions and examine some of its features includ-
ing the second-order structure and path properties. In particular, we investigate the
sampling behavior and formulate conditions for the causal CARMA random field to
be an ARMA random field when sampled on an equidistant lattice. Moreover, we
link the CARMA model to the processes studied in Chapter 1.

In Chapter 3 we estimate model parameters of Lévy-driven causal CARMA ran-
dom fields by fitting the empirical variogram to the theoretical counterpart using a
weighted least squares (WLS) approach. After deriving asymptotic results for the
variogram estimator, we show strong consistency and asymptotic normality of the
parameter estimator. Furthermore, we conduct a simulation study to assess the qual-
ity of the WLS estimator for finite samples. For the simulation we utilize numerical
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approximation schemes based on truncation and discretization of stochastic inte-
grals and we analyze the associated simulation errors in detail. Finally, we apply
our results to real data of the cosmic microwave background.

In Chapter 4 we study the autocovariance functions of moving average random
fields over the integer lattice Zd from an algebraic perspective. These autocovariances
are parametrized polynomially by the moving average coefficients, hence tracing out
algebraic varieties. We derive dimension and degree of these varieties and we use
their algebraic properties to obtain statistical consequences such as identifiability of
model parameters. We connect the problem of parameter estimation to the algebraic
invariants known as euclidean distance degree and maximum likelihood degree. In
our simulation study we use tools from numerical algebraic geometry and compare
them with classical local search methods for maximum likelihood estimation.
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Zusammenfassung

Diese Dissertation untersucht einige Aspekte stochastischer Modellierung in Raum
und Zeit mit Lévy-getriebenen Zufallsfeldern und ist folgendermaßen strukturiert.

In Kapitel 1 führen wir eine neuartige Klasse räumlich-zeitlicher Ornstein-Uhlen-
beck-Prozesse als Lösungen von Lévy-getriebenen Volterra-Gleichungen mit addi-
tiven Rauschen und multiplikativen Drift ein. Nachdem wir Bedingungen für die Ex-
istenz und Eindeutigkeit von Lösungen formulieren, leiten wir eine explizite Lösungs-
formel her und studieren Verteilungseigenschaften wie Stationarität, die Struktur der
Autokovarianz sowie die Gegenüberstellung von Kurzzeit- und Langzeitkorrelation.
Außerdem analysieren wir im Detail die Pfadeigenschaften des Lösungsprozesses.
Insbesondere formulieren wir verschiedene Càdlàg-Begriffe in Raum und Zeit und
leiten Voraussetzungen für die Existenz von Versionen mit diesen Regularitätseigen-
schaften her. Die theoretischen Resultate werden durch illustrative Beispiele be-
gleitet.

In Kapitel 2 stellen wir Lévy-getriebene kausale CARMA-Zufallsfelder auf Rd

vor, welche die Klasse der CARMA-Prozesse erweitert. Die Definition basiert auf
einem System von stochastischen partiellen Differentialgleichungen, welches die klas-
sische Zustandsraumdarstellung von CARMA-Prozessen verallgemeinert. Das resul-
tierende CARMA-Modell unterscheidet sich fundamental von dem CARMA-Modell
von Brockwell und Matsuda. Wir zeigen die Existenz des Modells unter milden
Voraussetzungen und ermitteln einige seiner Merkmale inklusive der Struktur der
Autokovarianz und Pfadeigenschaften. Im Speziellen formulieren wir Bedingungen
dafür, dass ein auf einem gleichmäßigen Gitter beobachtetes kausales CARMA-
Zufallsfeld ein ARMA-Zufallsfeld ist. Weiterhin stellen wir die Verbindung zu den
in Kapitel 1 studierten Prozessen her.

In Kapitel 3 schätzen wir die Modellparameter von Lévy-getriebenen kausalen
CARMA-Zufallsfeldern indem wir das empirische Variogramm unter Verwendung
einer gewichteten Methode kleinster Quadrate an das theoretische Variogramm an-
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passen. Nachdem wir asymptotische Eigenschaften für den Variogrammschätzer her-
leiten, zeigen wir starke Konsistenz und asymptotische Normalität des Parameter-
schätzers. Außerdem, führen wir eine Simulationsstudie durch, um die Qualität des
Parameterschätzers bei endlichen Stichproben zu überprüfen. Für die Simulation
verwenden wir numerische Approximationsschemata, welche auf dem Abschneiden
und Diskretisieren von stochastischen Integralen basieren, und analysieren deren
Simulationsfehler im Detail. Zum Abschluss wenden wir unsere Resultate auf reale
Daten der kosmischen Hintergrundstrahlung an.

In Kapitel 4 studieren wir die Autokovarianzfunktionen von Moving-Average-
Zufallsfeldern auf Zd von einem algebraischen Gesichtspunkt. Diese Autokovarianzen
sind polynomiell durch die Modellparameter parametrisiert und erzeugen daher al-
gebraische Varietäten. Wir leiten Dimension und Grad dieser Varietäten her und
benutzen deren algebraischen Eigenschaften um statistische Konsequenzen zu er-
halten, wie beispielsweise die Identifizierbarkeit von Modellparametern. Wir stellen
eine Verbindung zwischen dem Problem der Parameterschätzung und Größen aus der
algebraischen Statistik, wie euklidischer Abstandsgrad oder Maximum-Likelihood-
Grad, her. In einer Simulationsstudie vergleichen wir Werkzeuge aus der numerischen
algebraischen Geometrie mit klassischen lokalen Suchmethoden für die Maximum-
Likelihood-Methode.
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Introduction

A set of data recorded repeatedly over time is called a time series. These kind of data
sets appear in virtually every area of modern science, from Archaeology to Zoology.
Consequently, time series analysis is an important field of research in probability
theory and statistics. Theoretical studies in this field started in the beginning of
the last century and nowadays its literature is comprehensive, see for instance the
classical monographs Box and Jenkins [18], Brockwell and Davis [23] and Hamilton
[51], or Shumway and Stoffer [81] for a more recent approach. Parallel to the ad-
vancements in time series analysis, Itô developed the theory of stochastic integration
with respect to Brownian motion in his seminal work [55]. This theory opened the
door to a whole new class of continuous-time models based on stochastic integral
processes or stochastic differential equations and soon after, Brownian motion as the
integrator was replaced by Lévy processes with jumps [6] and more general semi-
martingales [56]. Continuous-time processes are particularly useful for irregularly
spaced or high-frequency data. In many cases however, one has to deal with data
which is observed in both time and space, such as in meteorology, geology, image
processing or social media. Analyzing and handling this type of data requires novel
statistical models since purely temporal models are not sufficient. Unsurprisingly,
there has been a growing interest in the field of tempo-spatial statistical modeling in
recent years. New phenomena and hurdles emerge with the additional spatial struc-
ture and the challenge for statisticians lies in providing stochastic models which are
both flexible and analytically tractable for applications.

The goal of the present thesis is to introduce two different stochastic models in
space and time which satisfy the aforementioned criteria. We structure the thesis as
follows: the starting point in Chapter 1 is the Lévy-driven Ornstein-Uhlenbeck (OU)
process, which has applications in molecular physics [88] and stochastic volatility
modeling [10]. We extend the OU process with the objective of modeling phenom-
ena in space and time and indeed, such extensions already exist in the literature
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(see [9, 47]). However, instead of modifying the process itself, in our novel approach
we extend the stochastic differential equation defining the OU process and arrive at

X(t, x) =X(0, x)−∫
t

0
∫
Rd
X(t− s, x− y)µ(ds,dy)+∫

t

0
∫
Rd
g(t− s, x− y)Λ(ds,dy),

(1)
where Λ is a homogeneous Lévy basis, g is a function such that the integral in (1)
makes sense and µ is a signed Borel measure. Equation (1) is a stochastic Volterra
integral equation and we call any process solving this equation a Volterra-type
Ornstein-Uhlenbeck (VOU) process. Employing the theory of deterministic convo-
lutional Volterra equations [49], we derive in Theorem 1.3.1 of this chapter sufficient
conditions on Λ, g and µ that imply the existence and uniqueness of solutions to
(1). One advantage of the VOU model is that under additional mild conditions, we
are able to find an explicit solution formula, namely

X(t, x) = ∫
t

−∞
∫
Rd

(g − ρ ∗ g)(t − s, x − y)Λ(ds,dy), (t, x) ∈ R+ ×Rd, (2)

which is a stochastic convolution integral, where ρ is the so-called resolvent of µ.
Apart from studying solution criteria, we investigate several distributional proper-
ties such as strict stationarity or second-order structure. We find that the model is
flexible enough to incorporate both tempo-spatial short-range and long-range depen-
dency (see Proposition 1.4.5). Last but not least, we analyze the path properties of
VOU processes. As in the classical one-dimensional case, Hölder-continuous sample
paths can be established if the noise Λ is Gaussian (see Theorem 1.5.1). If on the
other hand the noise exhibits jumps, path properties can heavily vary depending on
the function g. We define two new notions of tempo-spatial càdlàg properties and
give sufficient conditions for them to hold in Theorems 1.5.3 and 1.5.5.

The VOU process in Equation (2) depends on the infinite-dimensional objects g
and ρ, which makes model estimation a difficult task. By contrast, the second model
in this thesis, which we introduce in Chapter 2, only depends on finitely many
parameters and is therefore more suited for statistical inference. In a similar fashion
as in Chapter 1, we extend the state-space representation which defines the well-
known class of continuous-time autoregressive moving average (CARMA) processes
and obtain the system of stochastic partial differential equations

(Ip∂d −Ad)⋯(Ip∂1 −A1)Z(t) = cL̇(t), t ∈ Rd,

Y (t) = b⊺Z(t), t ∈ Rd,
(3)
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where ∂i denotes partial differentiation with respect to the i’th coordinate, Ip is the
identity matrix in Rp×p, Ai are companion matrices and L̇ is Lévy white noise. We
show in Theorem 2.3.5 that the random field

Y (t) = ∫
t1

−∞
⋯∫

td

−∞
b⊺eA1(t1−s1)⋯eAd(td−sd)cdL(s), t = (t1, ..., td) ∈ Rd,

is a mild solution to (3) and call Y a causal CARMA random field. Due to its similar
structure, the random field Y possesses many of the commonly known features of
CARMA processes. This includes for instance exponentially decaying autocovariance
functions, rational spectral densities and the property that equidistant sampling
results in an ARMA random field. Causal CARMA random fields generate a versatile
family of covariance functions which are in general anisotropic and non-separable. We
also discuss path properties of Y and prove that it has càdlàg sample paths, where
the càdlàg notion differs from those in Chapter 1 (see Theorem 1.5). In particular, we
show that causal CARMA random fields indeed constitute a parametric submodel
of VOU processes and establish the link to Chapter 1.

While Chapter 2 considers stochastic properties of causal CARMA random fields,
we tackle the problem of parameter estimation in Chapter 3. We use the variogram,
which is a popular dependence measure in spatial statistics, as our main tool and
estimate the parameters of a causal CARMA random field in two steps. First, we
compute non-parametrically an empirical version of the variogram at several lags
assuming that observations of the random field are given on a regular lattice. Sec-
ond, we use a weighted least squares (WLS) method in order to fit the empirical
variogram to the theoretical one. Subsequent to establishing asymptotic properties
of the variogram estimator, we show strong consistency and asymptotic normality
of the WLS estimator under suitable identifiability conditions in Theorem 3.4.1. For
our simulation study in Section 3.6 we utilize simulation algorithms which are based
on truncation and discretization of stochastic integrals. Another contribution of this
chapter is that we also compute the mean-squared errors for these algorithms in
Section 3.5. This chapter ends with an application to cosmic microwave data.

In contrast to the previous chapters, the final Chapter 4 contains a more algebraic
perspective. There, the main objects of study are the autocovariance functions of
discrete-parameter moving average random fields. This type of random fields have
only finitely many non-zero autocovariance values which depend polynomially on
the moving average parameters, giving rise to algebraic varieties, which haven’t been
studied in the literature before. We call these autocovariance varieties and derive
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their dimension and degree in Theorem 4.3.9. Moreover, we exploit their algebraic
properties and study their consequences for statistical inference. For instance, we
observe that it is easier to identify model parameters in higher dimensions than
in one dimension (see Section 4.4). Furthermore, we find in a simulation study
that maximum likelihood estimation can be facilitated by using numerical algebraic
geometry methods instead of classical local search methods, since the latter may
converge to a local optimum (see Section 4.5).

We remark at the end of this introduction that the following chapters are all self-
contained. Necessary literature review and definitions will be given in each chapter
separately. In addition, notational conventions are given in each introductory section
and might differ slightly among chapters. Each chapter is based on a publication or
submitted preprint:

• Chapter 1 is based on the paper [74] that is published as:

V.S. Pham and C. Chong. Volterra-type Ornstein–Uhlenbeck processes in
space and time. Stoch. Process. Appl., 128(9):3082–3117, 2018.

• Chapter 2 is based on the paper [73] that is submitted for publication as:

V.S. Pham. Lévy-driven causal CARMA random fields. 2018. Submitted. arXiv:
1805.08807.

• Chapter 3 is based on the paper [60] that is submitted for publication as:

C. Klüppelberg and V.S. Pham. Estimation of causal CARMA random fields.
2019. Submitted. arXiv:1902.04962.

• Chapter 4 is based on the paper [2] that is submitted for publication as:

C. Améndola and V.S. Pham. Autocovariance varieties of moving average ran-
dom fields. 2019. Submitted. arXiv:1903.08611.

x



Contents

Summary i

Zusammenfassung iii

Acknowledgments v

Introduction vii

Contents xi

1 Volterra-type Ornstein-Uhlenbeck processes in space and time 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Lévy bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Deterministic Volterra equations . . . . . . . . . . . . . . . . . . 6

1.3 Solution to the VOU equation . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Distributional properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Path properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.1 Proofs for Section 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6.2 Proofs for Section 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.3 Proofs for Section 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6.4 Proof of Proposition 1.2.2 . . . . . . . . . . . . . . . . . . . . . . 40

1.7 Examples of resolvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.8 Integrability properties of resolvents . . . . . . . . . . . . . . . . . . . . 44

xi



2 Lévy-driven causal CARMA random fields 47
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 Lévy bases and Lévy sheets . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3 Causal CARMA random fields as mild solutions to a system of SPDEs 53
2.4 Distributional and path properties . . . . . . . . . . . . . . . . . . . . . 61

2.4.1 Second-order structure . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4.2 Path properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.4.3 Sampling on an equidistant lattice . . . . . . . . . . . . . . . . . 70

2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3 Estimation of causal CARMA random fields 81
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3 Asymptotic properties of the empirical variogram . . . . . . . . . . . . 88
3.4 Estimation of CARMA random fields . . . . . . . . . . . . . . . . . . . . 91
3.5 Simulation of CARMA random fields on a lattice . . . . . . . . . . . . 101

3.5.1 Compound Poisson noise . . . . . . . . . . . . . . . . . . . . . . . 101
3.5.2 General Lévy noise . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.6 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.7 Application to cosmic microwave background data . . . . . . . . . . . . 110

4 Autocovariance varieties of moving average random fields 117
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2 Moving average random fields . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3 Autocovariance varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.1 Moving average processes . . . . . . . . . . . . . . . . . . . . . . 121
4.3.2 Moving average random fields . . . . . . . . . . . . . . . . . . . . 122

4.4 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.4.1 Moving average processes . . . . . . . . . . . . . . . . . . . . . . 125
4.4.2 Moving average random fields . . . . . . . . . . . . . . . . . . . . 127

4.5 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.5.1 Least squares estimation . . . . . . . . . . . . . . . . . . . . . . . 130
4.5.2 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . 133

Bibliography 139

xii



Chapter 1:
Volterra-type Ornstein-Uhlenbeck processes
in space and time

1.1 Introduction

In 1908 Langevin [65] introduced the following equation as a model for the movement
of a particle in a surrounding medium:

m
dv(t)

dt
= −λv(t) + Ẇ (t). (1.1.1)

Here v(t) denotes the velocity of the considered particle at time t, m its mass,
λ a friction parameter that accounts for the friction forces acting on the particle,
and Ẇ (t) the formal derivative of a Brownian motion that governs the random
movement of the particle. The solution to the Langevin equation (1.1.1) is nowadays
called Ornstein-Uhlenbeck (OU) process, named after the 1930 paper [88]. Employing
Itô’s calculus, it is well known that the stochastic differential equation (1.1.1) has a
unique solution given by

v(t) = e−λtv(0) + ∫
t

0
e−λ(t−s) dW (s), t ≥ 0, (1.1.2)

where v(0) is the initial velocity. Meanwhile, OU processes have found many appli-
cations beyond molecular physics, so for example, in stochastic volatility modeling
[10]. Moreover, the relatively simple model (1.1.2) has been extended in several
directions, for instance, to supOU processes [8], generalized OU processes [13] or
CARMA processes [20]. For all these models, the noise W in (1.1.2) no longer needs
to be Gaussian, but can also be a Lévy process with jumps.



2 1. Volterra-type Ornstein-Uhlenbeck processes in space and time

The goal of this chapter is to extend the class of OU processes to space and
time and obtain a tempo-spatial statistical model that is both flexible for modeling
purposes and analytically tractable. In fact, extensions of OU processes to several
parameters already exist: see [9, 25, 47, 69] and the first chapter of [90] for various
approaches. They all have in common that they start from (1.1.2) and generalize
this formula to several parameters. In this way the main stochastic properties of the
one-parameter OU process are preserved because the structure of the exponential
kernel is kept. However, in these multi-parameter generalizations, the relation to
the original differential equation (1.1.1) is no longer clear. And this is exactly the
starting point of our present work: we consider tempo-spatial extensions of OU
processes based on the differential equation (1.1.1). As we shall see, we recover some
of the aforementioned extensions as particular cases of our approach.

The rationale behind our approach is based on two properties of Equation (1.1.1)
which are characteristic to the Langevin equation and which we want to maintain
in our generalization. First, the noise W is additive, that is, its effect on the process
v is independent of the latter. Second, the drift term of v is a scalar multiple of its
current value. Based on these observations, we propose the following model as a first
step towards a tempo-spatial version of (1.1.1):

dX(t, x) = −λX(t, x)dt + ∫
Rd
g(x − y)Λ(dt,dy), t ≥ 0, x ∈ Rd, (1.1.3)

subjected to some initial condition X(0, x) for x ∈ Rd. Here Λ is a homogeneous
Lévy basis on [0,∞)×Rd (also called an infinitely divisible independently scattered
random measure or a Lévy sheet in the literature), which can be thought of as a
multi-parameter analogue of a Lévy process. The function g is such that the integral
in (1.1.3) makes sense, and the differential operation d on the left-hand side of
(1.1.3) is taken with respect to time t. It is immediate to see that for each fixed
x, the process t ↦ ∫Rd g(x − y)Λ([0, t],dy) is a Lévy process and, as a result, the
process t ↦ X(t, x) an OU process in time. Therefore, (1.1.3) defines a system
(X(⋅, x))x∈Rd of dependent OU processes. Furthermore, if g is strictly positive, every
jump of Λ induces simultaneous jumps of all OU processes X(⋅, x), so innovations
of Λ propagate with an infinite speed through the system. In order to include the
case of finite propagation speed, we modify (1.1.3) by allowing g to depend on time
as well:

X(t, x) =X(0, x)−λ∫
t

0
X(s, x)ds+∫

t

0
∫
Rd
g(t− s, x− y)Λ(ds,dy), t ≥ 0, x ∈ Rd.

(1.1.4)



1.1. Introduction 3

The integral form here is preferable because the kernel is time-dependent. Even more,
we can allow the drift term to depend on different neighboring sites, if required, with
time delay:

X(t, x) =X(0, x)−∫
t

0
∫
Rd
µ(t−s, x−y)X(s, y)d(s, y)+∫

t

0
∫
Rd
g(t−s, x−y)Λ(ds,dy),

(1.1.5)
where µ is another kernel function. Unfortunately, model (1.1.5) no longer contains
(1.1.4) as a special case, but we can remedy this problem by taking a measure µ
instead of a function. So the final class of processes we consider in this chapter is

X(t, x) =X(0, x)−∫
t

0
∫
Rd
X(t− s, x− y)µ(ds,dy)+∫

t

0
∫
Rd
g(t− s, x− y)Λ(ds,dy).

(1.1.6)
If µ has a density with respect to the Lebesgue measure on R+ ×Rd, the last model
reduces to (1.1.5); if µ = −λLebR+ ⊗ δ0,Rd (where LebR+ is the Lebesgue measure on
R+ and δ0,Rd the Dirac measure in the origin of Rd), then it reduces to (1.1.4). Hence-
forth, we refer to (1.1.6) as the Volterra-type Ornstein-Uhlenbeck (VOU) equation
and any solution to it as a VOU process. We call µ the drift measure and g the noise
propagation function.

VOU processes have connections to other classes of space–time processes. They
are submodels of the general class of ambit fields (we refer to the recent survey [12]),
which have applications in several areas such as turbulence, finance and biological
growth modeling. Furthermore, VOU processes are, as we shall show, generalizations
of the OU∧ process considered in [9, 69], which has been applied to data of radiation
anomalies in the latter reference. In contrast to the OU∧ process, the autocorrelation
of a VOU process may exhibit long-range dependence and jumps may occur simul-
taneously for all space locations. In addition to that, VOU processes are solutions
to stochastic Volterra equations [31, 32] with multiplicative drift and additive noise.
The VOU model that we investigate in Example 1.3.7 below is a generalization of
the stochastic wave equation in dimension 1, see [37].

The remaining chapter is devoted to a probabilistic analysis of the VOU model
and is organized as follows. In Section 1.2 we recall the necessary background on
Lévy bases and present some results on deterministic Volterra equations that we
need throughout the chapter. The main theorems of Section 1.3, Theorems 1.3.1 and
1.3.3, give sufficient conditions on Λ, g and µ to ensure the existence and uniqueness
of solutions to the VOU equation (1.1.6) and their convergence in distribution as
time tends to infinity, respectively. The solution to (1.1.6) can be expressed as an
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explicit stochastic convolution integral, revealing the interplay between the theory of
deterministic Volterra equations and stochastic convolutions. Section 1.3 concludes
with a detailed investigation of two Examples 1.3.6 and 1.3.7. In Section 1.4 we first
summarize key distributional properties of the VOU process in Proposition 1.4.1 and
Corollary 1.4.2 before we discuss conditions for the VOU model to exhibit tempo-
spatial short- or long-range dependence. As Examples 1.4.6 and 1.4.7 demonstrate,
long memory in (1.1.6) can arise both through a drift measure with slow decay in
time and a measure with slow decay in space. Section 1.5 examines the path regu-
larity of the VOU model. If the noise Λ is Gaussian, Hölder continuous sample paths
can be obtained under mild assumptions, see Theorem 1.5.1. When the noise exhibits
jumps, the path properties of the VOU process are basically dictated by the noise
propagation function g. If it is sufficiently smooth, we show in Theorem 1.5.3 that
the VOU process has a t-càdlàg version, see Definition 1.5.2. If g is discontinuous, we
only have results if the spatial dimension is 1 and g = 1−Ah, where A is a “triangular”
ambit set in space–time and h is smooth enough. In this case, by Theorem 1.5.5, the
VOU process has a version which is càdlàg with respect to the triangular shape of
A, see Definition 1.5.4 for a precise statement. Section 1.6 contains the proofs of the
main results. Section 1.6.4 proves Proposition 1.2.2 regarding deterministic Volterra
equations, Section 1.7 gives several examples for resolvent measures, and Section 1.8
lists some of their integrability properties.

1.2 Preliminaries

1.2.1 Lévy bases

We consider a complete probability space (Ω,F ,P) that supports a homogeneous
Lévy basis Λ on I ×Rd where, depending on the context, I = R+ = [0,∞) or I = R.
That is, we assume that (Λ(A))A∈Bb(I×Rd) is a collection of random variables indexed
by bounded Borel subsets of I ×Rd such that for all such A we have

Λ(A) = bLebI×Rd(A) + σW (A) + ∫
I
∫
Rd
∫
R
1A(t, x)z1{∣z∣≤1} (p − q)(dt,dx,dz)

+ ∫
I
∫
Rd
∫
R
1A(t, x)z1{∣z∣>1} p(dt,dx,dz), (1.2.1)

where

• b ∈ R and σ ∈ R+ are constants,
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• W is Gaussian white noise on I ×Rd such that W (A) has variance LebI×Rd(A)
(see e.g. Chapter I of [90]),

• p is a Poisson random measure on I×Rd×R with intensity measure q(dt,dx,dz)
= LebI×Rd ⊗ ν, where ν is a Lévy measure on R (see e.g. Definition II.1.20 in
[56]).

The triplet (b, σ2, ν) is referred to as the characteristics of Λ. Analogously to the
Lévy-Itô decomposition of Lévy processes, a Lévy basis is the sum of a deterministic
part, a Gaussian part, a compensated sum of small jumps, and a large jumps part.
For more information about the meaning of the integrals with respect to p or p −
q, we refer to Chapter II of [56]. If ∫R ∣z∣1{∣z∣>1} ν(dz) < ∞, we define b1 ∶= b +
∫R z1{∣z∣>1} ν(dz) as the mean of Λ. Similarly, if ∫R ∣z∣1{∣z∣≤1} ν(dz) < ∞, we say that
Λ has jumps of finite variation and define the drift of Λ as b0 ∶= b−∫R z1{∣z∣≤1} ν(dz).
Finally, Λ is said to be symmetric if b = 0 and ν is a symmetric measure on R.

In this chapter we only need Wiener-type stochastic integrals with respect to
Lévy bases since only deterministic integrands will appear. This theory is classic
[75] and we only summarize the most important results we need.

Proposition 1.2.1. Suppose that g∶ I × Rd → R is a measurable function. The
stochastic integral of g with respect to Λ, denoted by

∫
I×Rd

g dΛ = ∫
I×Rd

g(t, x)Λ(dt,dx) = ∫
I
∫
Rd
g(t, x)Λ(dt,dx)

either way, is well defined as a limit in probability of approximating simple integrals
in the sense of [75] if and only if

(1) ∫
I×Rd

∣bg(t, x) + ∫
R
(zg(t, x)1{∣zg(t,x)∣≤1} − g(t, x)z1{∣z∣≤1})ν(dz)∣ d(t, x) < ∞,

(2) ∫
I×Rd

σ2∣g(t, x)∣2 d(t, x) < ∞,

(3) ∫
I×Rd

∫
R
(1 ∧ ∣zg(t, x)∣2)ν(dz)d(t, x) < ∞.

In this case, the stochastic integral ∫I×Rd g dΛ has an infinitely divisible distribution
with characteristic triplet (bg, σ2

g , νg) given by

• bg = ∫
I×Rd

(bg(t, x) + ∫
R
(zg(t, x)1{∣zg(t,x)∣≤1} − g(t, x)z1{∣z∣≤1})ν(dz))d(t, x),
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• σ2
g = ∫

I×Rd
σ2∣g(t, x)∣2 d(t, x),

• νg(B) = ∫
I×Rd

∫
R
1{g(t,x)z∈B} ν(dz)d(t, x) for any Borel set B ∈ B(R).

A set of sufficient conditions for the integrability of g with respect to Λ, which
are typically easier to check in practice, is given in Lemma 1.6.1.

1.2.2 Deterministic Volterra equations

We summarize those results on deterministic convolutional Volterra equations that
will be useful in the following sections. The monograph [49] is an excellent reference
for single parameter Volterra equations. In our tempo-spatial setting, the equation
of interest is given by

X(t, x) = F (t, x) + ∫
t

0
∫
Rd
X(t − s, x − y)µ(ds,dy), (t, x) ∈ R+ ×Rd, (1.2.2)

where X is the unknown function, µ is a signed Borel measure on R+ × Rd and
F ∶R+×Rd → R is a measurable forcing function. Actually, the VOU equation (1.1.6)
is exactly of the form (1.2.2), except that the forcing function F is stochastic. There-
fore, understanding the solution theory to the deterministic problem (1.2.2) is crucial
to solving the VOU equation (1.1.6).

Before we proceed to Equation (1.2.2), let us fix some terminology. For any Borel
subset S ⊆ Rd+1 we denote by M(S) the space of all signed complete Borel measures
on S with finite total variation. As a matter of fact, M(S) becomes a Banach space
when equipped with the total variation norm ∥µ∥ ∶= ∣µ∣(S), where ∣µ∣ is the total
variation measure of µ. We also introduce the notation Mloc(R+ × Rd) for signed
measures on R+ ×Rd which belong to M([0, T ] ×Rd) when restricted to [0, T ] ×Rd

for all positive T .
Similarly, for p ∈ (0,∞], the space Lploc(R+ × Rd) denotes the collection of all

functions R+ ×Rd → R whose restrictions to [0, T ] ×Rd belong to Lp([0, T ] ×Rd) ∶=
Lp([0, T ] ×Rd,B([0, T ] ×Rd),Leb[0,T ]×Rd) for all T ∈ R+.

Next, for two measures µ, η ∈M(Rd+1) the convolution µ∗η is the completion of
the measure that assigns to each Borel set B ⊆ Rd+1 the value

(µ ∗ η)(B) = ∫
Rd+1

η(B − z)µ(dz), (1.2.3)

where B −z = {s−z∶ s ∈ B}. Since the function z ↦ η(B −z) is Borel measurable and
bounded, the integral (1.2.3) is always well-defined. If µ and η belong to M(S) for
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some S ∈ B(Rd+1), we first extend µ and η to Rd+1 by setting µ̄(B) = µ(B ∩ S) and
η̄(B) = η(B∩S), then obtain µ̄∗ η̄ as above and finally define the convolution µ∗η as
the restriction of µ̄∗ η̄ to S. It is customary to write µ∗0 = δ0,Rd+1 and µ∗j = µ∗µ∗(j−1)

for j ∈ N. In a similar way, if µ ∈ M(R+ × Rd) and h∶R+ × Rd → R is a measurable
function, we define the convolution of h with respect to µ as the function h∗µ = µ∗h
that is given by

(h ∗ µ)(t, x) = (µ ∗ h)(t, x) ∶= ∫
t

0
∫
Rd
h(t − s, x − y)µ(ds,dy),

which is defined for those (t, x) ∈ R+×Rd for which the integral exists. Note that the
measures considered in this chapter may have atoms. Hence we use the convention
that integrals over an interval always include the endpoints.

The next theorem is the key result from the theory of convolutional Volterra
equations that we need in Section 1.3. It determines conditions under which (1.2.2)
has a unique solution. By a solution to (1.2.2) we understand a measurable function
X ∶R+ × Rd → R such that (1.2.2) holds for (Lebesgue-)almost all (t, x) ∈ R+ × Rd.
Two solutions are identified if they agree almost everywhere on R+ ×Rd.

Proposition 1.2.2. Let µ ∈Mloc(R+ ×Rd) be such that µ({0} ×Rd) = 0.

(1) There exists a unique measure ρ ∈Mloc(R+ ×Rd), called the resolvent of µ, such
that

ρ + µ = µ ∗ ρ.

(2) If F ∈ Lploc(R+ × Rd) for some p ∈ [1,∞], then there exists a unique solution
X ∈ Lploc(R+ ×Rd) to (1.2.2). This solution is given by

X(t, x) = F (t, x) − ∫
t

0
∫
Rd
F (t − s, x − y)ρ(ds,dy), (t, x) ∈ R+ ×Rd, (1.2.4)

or in short X = F − ρ ∗ F , where ρ is the resolvent of µ.

(3) For every F ∈ F(µ), where

F(µ) ∶= {F measurable∶ ∣µ∣∗ ∣F ∣, ∣ρ∣∗ ∣F ∣, (∣µ∣∗ ∣ρ∣)∗ ∣F ∣, (∣µ∣∗ ∣ρ∣∗2)∗ ∣F ∣ < ∞ a.e.},

the function X in (1.2.4) is the unique solution to (1.2.2) in the space

L(µ) ∶= {L measurable∶ ∣µ∣ ∗ ∣L∣, ∣ρ∣ ∗ ∣L∣, (∣µ∣ ∗ ∣ρ∣) ∗ ∣L∣ < ∞ a.e.}. (1.2.5)

A proof of this theorem, together with some properties and examples of convo-
lutions and resolvents, is given in Sections 1.6.4,1.7 and 1.8. Note that in a Banach
algebra framework the resolvent is also called quasi-inverse (cf. Section 2.1 of [71]).
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1.3 Solution to the VOU equation

In this section we prove existence and uniqueness of solutions to the VOU equation
under general assumptions. In fact, we consider a slightly more general equation
than (1.1.6), namely

X(t, x) = V (t, x) + ∫
t

0
∫
Rd
X(t − s, x − y)µ(ds,dy) + ∫

t

0
∫
Rd
g(t − s, x − y)Λ(ds,dy)

(1.3.1)
for (t, x) ∈ R+×Rd, where µ is the drift measure, g is the noise propagation function,
V is a measurable stochastic process and Λ is a homogeneous Lévy basis. As usual,
we say that a process X̃ is a version of the process X on R+ × Rd if for every
(t, x) ∈ R+ ×Rd we have X̃(t, x) =X(t, x) almost surely.

Theorem 1.3.1. Let µ be a measure in Mloc(R+ × Rd) with µ({0} × Rd) = 0 and
resolvent ρ, g∶R+ ×Rd → R be a measurable function and Λ be a homogeneous Lévy
basis on R+ ×Rd with characteristics (b, σ2, ν). We assume that

∫
R
(∣z∣α1{∣z∣>1} + ∣z∣β1{∣z∣≤1}) ν(dz) < ∞ (1.3.2)

and g ∈ Lαloc(R+×Rd)∩Lβloc(R+×Rd) for some α ∈ (0,1], and some β ∈ [1,2] if σ = 0,
and β = 2 if σ ≠ 0.

If α < 1, we further suppose that there exists a submultiplicative weight function
ϕ∶Rd → R+ (that is, a measurable function with ϕ(0) = 1 and ϕ(x + y) ≤ ϕ(x)ϕ(y)
for x, y ∈ Rd, such that ϕ is locally bounded and locally bounded away from zero)
satisfying ϕ−α ∈ L1(Rd), ϕ(∣µ∣ ∗ ∣g∣) ∈ L∞loc(R+ ×Rd) and ϕµ ∈Mloc(R+ ×Rd) (where
(ϕµ)(dt,dx) ∶= ϕ(x)µ(dt,dx)).

Then there exists a measurable version of the process

∫
t

0
∫
Rd
g(t − s, x − y)Λ(ds,dy), (t, x) ∈ R+ ×Rd,

in F(µ), and for this version and every measurable process V with almost all paths
in F(µ), Equation (1.3.1) has a solution with almost all paths in L(µ) as in (1.2.5).
A version of this solution is given by

X(t, x) = V (t, x)−(ρ∗V )(t, x)+∫
t

0
∫
Rd

(g−ρ∗g)(t−s, x−y)Λ(ds,dy), (t, x) ∈ R+×Rd,

(1.3.3)
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or in short X = V − ρ ∗ V + (g − ρ ∗ g) ∗Λ.
Moreover, this solution is unique in the sense that for any other solution X̃ with

almost all paths in L(µ), we have that almost surely, the paths of X and X̃ are equal
almost everywhere on R+ ×Rd.

Remark 1.3.2 (1) A simple sufficient condition for V to have paths in F(µ) is,
for example, when the function (t, x) ↦ E[∣V (t, x)∣] belongs to L∞loc(R+ × Rd).
Another would be that the paths of V almost surely belong to Lploc(R+ ×Rd) for
some p ∈ [1,∞].

(2) Regarding the case α ∈ (0,1), typical examples for submultiplicative weight
functions include ϕ(x) = (1+∣x∣)η(log(e∨∣x∣))γ and ϕ(x) = exp(∣x∣γ) for η, γ ≥ 0.
The reason why we impose additional conditions when α is smaller than one
is that in our proof we have to ensure (∣ρ∣ ∗ ∣g∣)α ∈ L1

loc(R+ × Rd). Instead of
formulating conditions on ρ, which may not be known explicitly, the assumptions
in Theorem 1.3.1 are solely on µ.

◻

We also remark that the condition in (1.3.2) on the Lévy measure ν are not
necessary in general. For instance, it is well known that the OU process is defined
for all Lévy processes without any restrictions on ν. But this is different to our
case because the spatial coordinate is in the non-compact space Rd and the noise
propagation function g is not necessarily bounded. For given classes of g and µ it
may be possible to relax the assumptions of Theorem 1.3.1. But given that these
are already general enough to cover most practical cases, we refrain from doing so.

Having clarified the local existence of solutions to (1.3.1), our next aim is to
investigate their long-term behavior and the existence of stationary solutions. A
stochastic process X on R+ ×Rd is called strictly stationary if for every n ∈ N and
(τ, ξ), (t1, x1), . . . , (tn, xn) ∈ R+×Rd the distributions of (X(t1, x1), ...,X(tn, xn)) and
(X(t1 + τ, x1 + ξ), ...,X(tn + τ, xn + ξ)) are equal.

Theorem 1.3.3. Let Λ be a homogeneous Lévy basis on R ×Rd, the conditions of
Theorem 1.3.1 be valid with α,β ∈ (0,2] and additionally g ∈ L1

loc(R+ ×Rd) such that
the process X as given in (1.3.3) is the solution to (1.3.1). Moreover, we assume the
following hypotheses:

(1) For all x1, . . . , xn ∈ Rd we have that

(V (t, x1)−(ρ∗V )(t, x1), . . . , V (t, xn)−(ρ∗V )(t, xn))
dÐ→ (F∞(x1), . . . , F∞(xn))
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as t→∞ for some deterministic measurable function F∞∶Rd → R.

(2) We have g − ρ ∗ g ∈ Lα(R+ ×Rd) ∩Lβ(R+ ×Rd).

(3) Conditions (1.6.1) and (1.6.2) are satisfied with K(A) ∶= A1−α and k(a) ∶= a1−β.

Then we have for all n ∈ N and x1, . . . , xn ∈ Rd that

(X(t, x1), . . . ,X(t, xn))
dÐ→ (X∞(x1), . . . ,X∞(xn)), t→∞,

where X∞ is the spatial process

X∞(x) ∶= F∞(x) + ∫
∞

0
∫
Rd

(g − ρ ∗ g)(s, x − y)Λ(ds,dy), x ∈ Rd.

Furthermore, if g is integrable with respect to Λ and V is independent of Λ with
the same finite-dimensional distributions as

∫
0

−∞
∫
Rd
g(t − s, x − y)Λ(ds,dy), (t, x) ∈ R+ ×Rd, (1.3.4)

then X is a strictly stationary process on R+ × Rd. In particular, if V equals the
process in (1.3.4), X can be written as the two-sided strictly stationary process

X(t, x) = ∫
t

−∞
∫
Rd

(g − ρ ∗ g)(t − s, x − y)Λ(ds,dy), (t, x) ∈ R ×Rd. (1.3.5)

We give various possibilities of how to ensure the requirements in Theorem 1.3.3.

Lemma 1.3.4. In the following cases, condition (1.6.1) with K(A) ∶= A1−α (resp.
(1.6.2) with k(a) ∶= a1−β) is already implied by (1.3.2):

(1) α ∈ (0,1] (resp. β ∈ [1,2]).

(2) α ∈ (1,2] and b1 = 0 (resp. β ∈ (0,1) and b0 = 0).

(3) Λ is symmetric.

Lemma 1.3.5. For p ∈ [1,∞] we have g − ρ ∗ g ∈ Lp(R+ × Rd) under each of the
following assumptions:

(1) ρ ∈M(R+ ×Rd) and g ∈ Lp(R+ ×Rd).

(2) ρ ∈M(R+ ×Rd) satisfies ρ(R+ ×Rd) = 1 and there exists a constant g∞ ∈ R such
that g − g∞ ∈ Lp(R+ ×Rd).
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(3) For some q, s ∈ [1,∞] satisfying s−1 + q−1 = 1 + p−1 we have g ∈ Lp(R+ × Rd) ∩
Ls(R+ ×Rd) and ρ(dt,dx) = r(t, x)d(t, x) with r ∈ Lq(R+ ×Rd).

In contrast to Theorem 1.3.1, the conditions imposed in Theorem 1.3.3 (and also
in Lemma 1.3.5) explicitly depend on the behavior of the resolvent measure ρ, instead
merely on µ. In fact, there are no general necessary and sufficient conditions for a
measure µ to have a resolvent with certain integrability properties. In Section 1.8
we present several results in this respect.

We conclude this section by investigating two variants of a VOU process sharing
the same drift measure as in the classical Ornstein-Uhlenbeck process, namely

µ = −λLebR+ ⊗ δ0,Rd , (1.3.6)

and different choices for the noise propagation function g.

Example 1.3.6 (VOU process with infinite speed propagation of noise)
As a first example we investigate the equation

X(t, x) = −λ∫
t

0
X(s, x)ds + ∫

t

0
∫
Rd

e−λ
′∣x−y∣ Λ(ds,dy), (t, x) ∈ R+ ×Rd, (1.3.7)

where λ ∈ R and λ′ > 0 and ∣ ⋅ ∣ denotes the Euclidean norm in Rd. A closer inspection
reveals two characteristic features of this model: first, the parameter λ leads to a
mean-reverting behavior in time like in the classical OU case if λ > 0; second, since
the noise propagation function g(t, x) = e−λ

′∣x∣ does not depend on t and is strictly
positive, each innovation of Λ (and jump if the Lévy measure is not zero) affects
X(⋅, x) for all x simultaneously. However, as controlled by λ′, the impact of an
innovation decreases exponentially in the distance between the current location x

and the point of origin y. For fixed x, we further observe that the second summand
on the right-hand side of (1.3.7) is a Lévy process, so the solution of (1.3.7) is in
fact a system (X(⋅, x)∶x ∈ Rd) of dependent classical OU processes.

Since the resolvent measure of (1.3.6) is ρ(dt,dx) = λe−λt dt δ0,Rd(dx) (see Lemma
1.7.1), a simple calculation yields (g − ρ ∗ g)(t, x) = e−λt−λ

′∣x∣. Therefore, as soon as
the Lévy measure ν of Λ satisfies

∫
R
∣z∣α1{∣z∣>1} ν(dz) < ∞ (1.3.8)

for some α > 0, we derive from Theorem 1.3.1 that the unique solution to (1.3.7) is
given by

X(t, x) = ∫
t

0
∫
Rd

e−λ(t−s)−λ
′∣x−y∣ Λ(ds,dy), (t, x) ∈ R+ ×Rd. (1.3.9)
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Indeed, we can choose α as above and β = 2 in (1.3.2) because g ∈ Lploc(R+ ×Rd) for
all p ∈ (0,∞]. If α < 1, we can take ϕ(x) ∶= (1 + ∣x∣)(d+1)/α.

Against the background that X(⋅, x) is an OU process for fixed x, it is not
surprising that also Theorem 1.3.3 applies if λ > 0 (then g − ρ ∗ g ∈ Lp(R+ ×Rd) for
all p ∈ (0,∞]). In this case the strictly stationary process (1.3.5) is given by

X(t, x) = ∫
t

−∞
∫
Rd

e−λ(t−s)+λ
′∣x−y∣ Λ(ds,dy), (t, x) ∈ R ×Rd. (1.3.10)

◻

In the previous example innovations of Λ at a given site have an instantaneous
effect on all other sites. In contrast to this, the next model incorporates a traveling
waves mechanism such that a certain amount of time is needed for the propagation
of innovations from one to another point in space.

Example 1.3.7 (VOU process with finite speed propagation of noise)
We consider

X(t, x) = −λ∫
t

0
X(s, x)ds+∫

t

0
∫
Rd
1{∣x−y∣≤c(t−s)}e

−λ′∣x−y∣ Λ(ds,dy), (t, x) ∈ R+×Rd,

(1.3.11)
with parameters c > 0 and λ,λ′ ∈ R. As a result, the time until an innovation of Λ

at a site y arrives at another site x amounts to ∣x−y∣/c. With g(t, x) = 1{∣x∣≤ct}e−λ
′∣x∣,

an elementary computation shows that

(g − ρ ∗ g)(t, x) = 1{∣x∣≤ct}e
−λt−(λ′−λ/c)∣x∣, (t, x) ∈ R+ ×Rd.

Consequently, under assumption (1.3.8), Equation (1.3.11) has the unique solution

X(t, x) = ∫
t

0
∫
Rd
1{∣x−y∣≤c(t−s)}e

−λ(t−s)−(λ′−λ/c)∣x−y∣ Λ(ds,dy), (t, x) ∈ R+ ×Rd.

(1.3.12)
In order to determine the long-term behavior of (1.3.12), we can use Fubini’s

theorem to verify that only for λ > 0 and λ′ > 0 the integral

∫
∞

0
∫
Rd

(g − ρ ∗ g)p(t, x)d(t, x) = 2πd/2

Γ(d2)
∫

∞

0
e−λpt∫

ct

0
e−(λ

′−λ/c)prrd−1 dr dt

= 2πd/2

Γ(d2)
∫

∞

0

e−rλp/c

λp
e−(λ

′−λ/c)prrd−1 dr

= 2πd/2

Γ(d2)λp
∫

∞

0
e−λ

′prrd−1 dr
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is finite for p ∈ (0,∞). So only in this case, the finite-dimensional distributions of
(1.3.12) converge to that of the process

X(t, x) = ∫
t

−∞
∫
Rd
1{∣x−y∣≤c(t−s)}e

−λ(t−s)−(λ′−λ/c)∣x−y∣ Λ(ds,dy), (t, x) ∈ R ×Rd.

(1.3.13)
We notice that if λ′ = λ/c, the process X in (1.3.12) is exactly the so-called OU∧
model investigated in [9, 69]. ◻

Remark 1.3.8 At the end of this section we want to highlight a connection to
stochastic partial differential equations as studied in [72]. For this purpose assume
in addition to the conditions of Theorem 1.3.1 that Λ has mean zero and a finite
second moment. Let U be a Hilbert space such that the embedding of H ∶= L2(Rd)
into U is dense and Hilbert-Schmidt (see Example 14.25 of [72] for an example of
U). Then the process W ∶ [0,∞) ×H → L2(Ω) defined by

W (t, φ) ∶= ∫
t

0
∫
Rd
φ(y)Λ(ds,dy)

is the sum of a cylindrical Wiener process and an impulsive cylindrical process on
H (cf. Definitions 7.11 and 7.23 of [72]). Combining Theorems 7.13 and 7.22 of [72]
we obtain a U -valued square-integrable Lévy martingale L satisfying

L(t) = ∑
n∈N

W (t, en)en

for any fixed orthonormal basis (en)n∈N in H (cf. Remark 7.14 of [72]).
If we extend the convolution operators

S(t)∶H → H, φ(x) ↦ ∫
Rd
g(t, x − y)φ(y)dy

onto U , we may rewrite

∫
t

0
∫
Rd
g(t − s, x − y)Λ(ds,dy)

= ∫
t

0
∫
Rd
∑
n∈N
∫
Rd
g(t − s, x − z)en(z)dz en(y)Λ(ds,dy)

= ∑
n∈N
∫

t

0
∫
Rd
g(t − s, x − z)en(z)dz ∫

Rd
en(y)Λ(ds,dy)

= ∑
n∈N
∫

t

0
S(t − s)en dW (s, en) = ∫

t

0
S(t − s)dL(s).
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From the solution formula (1.3.3) (with V ≡ 0) we see that X(t, x) belongs to
L2(Rd, (1 + ∣x∣r)−1) for fixed t and r > d/2, where a function φ is an element of
L2(Rd, η) if and only if ηφ ∈ L2(Rd).

Further assuming that µ(dt,dx) = νt(dx)dt for a transition kernel ν (as in Ex-
amples 1.3.6 and 1.3.7) and that the mapping

Q(t)∶ g(x) ↦ ∫
Rd
g(x − y)νt(dy)

is a linear convolution operator from L2(Rd, (1 + ∣x∣r)−1) into itself, we obtain

∫
t

0
∫
Rd
X(t−s, x−y)µ(ds,dy) = ∫

t

0
∫
Rd
X(s, x−y)νt−s(dy)ds = ∫

t

0
Q(t−s)X(s)ds,

(1.3.14)
where X(t) ∶=X(t, ⋅). In short, under the conditions above, the VOU equation

X(t, x) =X(0, x) + ∫
t

0
∫
Rd
X(t− s, x− y)µ(ds,dy) + ∫

t

0
∫
Rd
g(t− s, x− y)Λ(ds,dy)

is equivalent to the infinite-dimensional equation

X(t) =X(0) + ∫
t

0
Q(t − s)X(s)ds + ∫

t

0
S(t − s)dL(s).

In the literature for stochastic partial differential equations several criteria are known
for t↦X(t), viewed as a process with values in a Hilbert space, to have continuous
or càdlàg sample paths (see for instance Theorem 11.8 of [72] or Theorem 4.5 and
Remark 4.6 of [85]). By contrast, the random field approach to the VOU equation
allows for a detailed analysis of the tempo-spatial path properties of (t, x) ↦X(t, x)
as in Section 1.5. ◻

1.4 Distributional properties

A convenient tool for characterizing the distribution of tempo-spatial processes is
the generalized cumulant functional introduced in [11]. For the solution process X
in (1.3.3), we obtain the following result.

Proposition 1.4.1. Suppose that the conditions of Theorem 1.3.1 are satisfied with
V ≡ 0 and that X is the solution to (1.3.1) given in (1.3.3). If m ∈M(R+×Rd) is sup-
ported on a compact subset of R+×Rd, the integral m[X] ∶= ∫R+ ∫Rd X(t, x)m(dt,dx)
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is well defined and the generalized cumulant functional of X with respect to m is
given by

logE [eium[X]] = ibGu −
1

2
σ2
Gu

2 + ∫
R
(eiuz − 1 − iuz1{∣z∣≤1}) νG(dz), u ∈ R,

where (bG, σ2
G, νG) are the characteristics as given in Proposition 1.2.1 for the func-

tion

G(s, y) = ∫
∞

s
∫
Rd

(g − ρ ∗ g)(t − s, x − y)m(dt,dx), (s, y) ∈ R+ ×Rd.

For example, if one takes m(dt,dx) = θ1δ(t1,x1) + ⋅ ⋅ ⋅ + θnδ(tn,xn), one obtains the
cumulant-generating function of (X(t1, x1), . . . ,X(tn, xn)). Based on this, it is also
possible to derive the second-order structure for X, see Proposition 2 in [11] for a
proof.

Corollary 1.4.2. Suppose that the assumptions of Theorem 1.3.1 are satisfied with
V ≡ 0 and that X is the solution process (1.3.3).

(1) If the assumptions of Theorem 1.3.1 hold with α = 1, X(t, x) has a finite first
moment for all (t, x) ∈ R+ ×Rd given by

E[X(t, x)] = b1∫
t

0
∫
Rd

(g − ρ ∗ g)(s, y)d(s, y). (1.4.1)

(2) If the assumptions of Theorem 1.3.1 are additionally satisfied with α = 2, X(t, x)
has a finite second moment for all (t, x) ∈ R+ ×Rd and

Var[X(t, x)] = (σ2 + ∫
R
z2 ν(dz))∫

t

0
∫
Rd

(g − ρ ∗ g)2(s, y)d(s, y). (1.4.2)

Moreover, for (t, x), (τ, ξ) ∈ R+ ×Rd we have

Cov[X(t, x),X(t + τ, x + ξ)]

= (σ2 + ∫
R
z2 ν(dz))∫

t

0
∫
Rd

(g − ρ ∗ g)(s, y)(g − ρ ∗ g)(s + τ, y + ξ)d(s, y).

(1.4.3)

Furthermore, in the setting of Theorem 1.3.3, if X is the strictly stationary process
(1.3.5), then the formulae (1.4.1), (1.4.2) and (1.4.3) remain valid if we replace t by
∞ on the right-hand sides.
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For illustration we calculate the autocorrelation functions for the models in Ex-
amples 1.3.6 and 1.3.7.

Example 1.4.3 (Second-order structure for Example 1.3.6)
Under the moment assumptions of Corollary 1.4.2, the mean and the autocovariance
function of the stationary process X in (1.3.10) are given by

E[X(t, x)] = b1∫
R+
∫
Rd

e−λs−λ
′∣y∣ d(s, y) = 2b1πd/2Γ(d)

λ(λ′)dΓ(d2)
, (t, x) ∈ R ×Rd, (1.4.4)

and, denoting m2 ∶= σ2 + ∫R z2 ν(dz),

Cov[X(t, x),X(t + τ, x + ξ)] = m2∫
R+
∫
Rd

e−λs−λ
′∣y∣e−λ(s+τ)−λ

′∣y+ξ∣ d(s, y)

= m2e−λτ

2λ ∫
Rd

e−λ
′∣y∣−λ′∣y+ξ∣ dy =∶ m2e−λτ

2λ
E(ξ).

The integral E(ξ) is the convolution of the function f(ξ) = e−λ
′∣ξ∣ with itself in Rd.

Since the Fourier transform of f is known (see Theorem I.1.14 in [82]), E(ξ) is the
inverse Fourier transform of the function

c2
da

2

(a2 + ∣x∣2)d+1
,

where a ∶= λ′/(2π) and cd ∶= Γ((d + 1)/2)π−(d+1)/2. Hence, using Theorem IV.3.3
of [82] and denoting by Jα and Kα the Bessel functions of the first kind and the
modified Bessel functions of the second kind, respectively, we obtain

E(ξ) = 2π∣ξ∣1−d/2c2
da

2∫
∞

0

Jd/2−1(2π∣ξ∣r)rd/2

(a2 + ∣r∣2)d+1
dr

=
2Γ(d+1

2 )2

Γ(d + 1)
( λ

′

2π
)

1−d/2
∣ξ∣1+d/2K1+d/2(λ′∣ξ∣).

This yields for (t, x) ∈ R ×Rd and (τ, ξ) ∈ R+ ×Rd

Cov[X(t, x),X(t + τ, x + ξ)] =
m2Γ(d+1

2 )2

λΓ(d + 1)
( λ

′

2π
)

1−d/2
e−λτ ∣ξ∣1+d/2K1+d/2(λ′∣ξ∣).

Since limx↓0 xαKα(x) = 2α−1Γ(α) for α ≥ 0, the autocorrelation function reads as

corr[X(t, x),X(t + τ, x + ξ)] = (λ′)1+d/2

2d/2Γ(1 + d
2)

e−λτ ∣ξ∣1+d/2K1+d/2(λ′∣ξ∣).
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If d = 1, d = 2 or d = 3, this formula reduces to

corr[X(t, x),X(t + τ, x + ξ)] = e−λτ(λ′∣ξ∣ + 1)e−λ′∣ξ∣, (τ, ξ) ∈ R+ ×R,

corr[X(t, x),X(t + τ, x + ξ)] = (λ′)2
2 e−λτ ∣ξ∣2K2(λ′∣ξ∣), (τ, ξ) ∈ R+ ×R2,

corr[X(t, x),X(t + τ, x + ξ)] = e−λτ ( (λ′)2
3 ∣ξ∣2 + λ′∣ξ∣ + 1) e−λ

′∣ξ∣, (τ, ξ) ∈ R+ ×R3,

respectively. ◻

Example 1.4.4 (Second-order structure for Example 1.3.7)
We obtain the same value as in (1.4.4) for the expectation of (1.3.13):

E[X(t, x)] = b1∫
R+
∫
Rd
1{∣y∣≤cs}e

−λs−(λ′−λ/c)∣y∣ d(s, y) = 2b1πd/2Γ(d)
λ(λ′)dΓ(d2)

, (t, x) ∈ R ×Rd.

Regarding the autocovariance function, a straightforward calculation for d = 1 shows
that

Cov[X(t, x),X(t + τ, x + ξ)]

= m2

4λ
e−λτe(λ/c−λ

′)∣ξ∣( c
λ
(e−λ(∣ξ∣/c−τ)+ + e−2λ(∣ξ∣/c−τ)eλ(∣ξ∣/c−τ)+ − e−2λ(∣ξ∣/c−τ))

+ 1

λ′
e−2λ(∣ξ∣/c−τ)+) + m2

4λ
e−λτe−(λ/c+λ

′)∣ξ∣ ( 1

λ′
− c

λ
)

for all (t, x) ∈ R ×R and (τ, ξ) ∈ R+ ×R. ◻

The autocovariance function in the last example exhibits an exponential decay in
both t and x, so the corresponding processX has a short-range dependence structure.
However, as we shall see, under suitable choices of g and µ, it may happen that the
autocovariance function is not integrable, i.e.

∫
∞

0
∫
Rd

∣Cov[X(t, x),X(t + τ, x + ξ)]∣d(τ, ξ) = ∞, (1.4.5)

hence giving rise to models with long-range dependence. A first result concerning
short- versus long-range dependence is the following.

Proposition 1.4.5. Let ρ ∈ Mloc(R+ × Rd) be the resolvent measure associated to
some measure µ ∈ Mloc(R+ × Rd) with µ({0} × Rd) = 0 and suppose that the Lévy
basis Λ has a finite second moment, that is ∫{∣z∣>1} ∣z∣2 ν(dz) < ∞.
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(1) If in addition g−ρ∗g ∈ L1(R+×Rd)∩L2(R+×Rd), then the process X in (1.3.5)
is well defined, has a finite second moment and

∫
∞

0
∫
Rd

∣Cov[X(t, x),X(t + τ, x + ξ)]∣d(τ, ξ) < ∞.

(2) If Λ has zero mean, g−ρ∗g ∈ L1
loc(R+×Rd)∩L2(R+×Rd) but g−ρ∗g ∉ L1(R+×Rd),

and g − ρ ∗ g is non-negative or non-positive for all (t, x) ∈ R+ × Rd, then the
process X in (1.3.5) is well defined, has a finite second moment and is long-range
dependent in the sense of (1.4.5).

Example 1.4.6 (Long-range dependence by temporal regular variation)
We consider a measure µ of the form µ(dt,dx) = k(t)dt δ0,Rd(dx) with some k ∈
L1

loc(R+). By Lemma 1.7.1, the resolvent of µ has the form ρ(dt,dx) = r(t)dt δ0,Rd(dx)
for some r ∈ L1

loc(R+), which is the temporal resolvent of the function k (i.e., we have
r + k = r ∗ k where ∗ stands for convolution on R+). Now suppose that the function
k satisfies the following assumptions:

• k(t) = −t−αL(t) for all t ∈ R+, some α ∈ (0,1/2) and some function L∶R+ →
(0,∞) that is slowly varying at infinity.

• k is differentiable with a continuous strictly positive derivative that belongs
to L1(R+).

• The function t↦ log(−k(t)) is convex in t.

Then, by Theorem 3.2 of [7],

lim
t→∞

(1 − ∫
t

0
r(s)ds) t1−αL(t) = sin(απ)

π
. (1.4.6)

If now g(t, x) = g0(x) for some non-negative (or non-positive) g0 ∈ L1(Rd) ∩L2(Rd),
then

(g − ρ ∗ g)(t, x) = g0(x) (1 − ∫
t

0
r(s)ds) , (t, x) ∈ R+ ×Rd,

is, because of (1.4.6) and Corollary 8.8 of Chapter 9 in [49], non-negative (or non-
positive), belongs to L1

loc(R+ × Rd) ∩ L2(R+ × Rd), but not to L1(R+ × Rd). Hence
we conclude from Proposition 1.4.5 that the resulting stationary process in (1.3.5)
has long-range dependence. One possible choice of k is k(t) = −1/(α(1 + t)α) with
α ∈ (0,1/2), cf. Example 3.5 in [7]. ◻
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In the previous example, the non-integrability of the resolvent measure is essen-
tially due to the regular variation of the function k. In the next example, long-range
dependence arises through a drift measure of the form µ = −λLebR+ ⊗m with some
λ > 0 and m ∈M(Rd).

Example 1.4.7 (Long-range dependence by spatial regular variation)
Consider the measure µ(dt,dx) = −dt f(x)dx with f(x) = 1/(π(1 + x2)). In Exam-
ple 1.7.2(2) the resolvent measure is found to have the Lebesgue density r(t, x) =
(2πx)−1G(t, x) where G is the function given in (1.7.2). We use the software package
Mathematica to check that r ∉ L1(R+×R). However, we do have that r ∈ L2(R+×R).
Indeed, if

f̃(x) ∶= 1√
2π
∫
R

e−ixzf(z)dz, x ∈ R,

denotes the Fourier transform of a function f ∈ L2(R), we can use the fact that
f̃∗n = f̃n and f̃(x) = (2π)−1/2e−∣x∣ for f(x) = 1/(π(1 + x2)) to calculate the Fourier
transform of r(t, ⋅) for fixed t ∈ R+:

r̃(t, x) =
∞
∑
n=1

(−t)n−1

(n − 1)!
(f̃(x))n = 1√

2π
e−∣x∣e−t(2π)

−1/2e−∣x∣ , (t, x) ∈ R+ ×R.

Since Fourier transformation is unitary on L2(R), by Plancherel’s theorem, we have

∫
R+
∫
R
r(t, x)2 d(t, x) = ∫

R+
∫
R
r̃(t, x)2 d(t, x)

= 1

2π ∫R+

π − e−
√

2/πt(π +
√

2πt)
t2

dt = 1√
2π
.

◻

1.5 Path properties

The classical OU process (1.1.2) has nice path properties: if W is Gaussian, the
process has a continuous version; if W has jumps, the solution has a càdlàg version.
In contrast, the notion of solution in Theorem 1.3.1 basically says nothing about
the paths of a VOU process (apart from being measurable and elements of the set
L(µ) in (1.2.5)). The goal of this section is to fill in this gap, at least partially, and
to prove the existence of versions with nice regularity for the VOU process. In the
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presence of jumps, it turns out that tempo-spatial path properties are much harder
to establish than for processes indexed by time. But before discussing this in detail,
we first consider the case where the driving noise is Gaussian and mild conditions
already ensure the existence of a Hölder continuous version.

Theorem 1.5.1. Suppose that the conditions of Theorem 1.3.1 are satisfied with
V ≡ 0, ν ≡ 0 and that X is the solution to (1.3.1) given in (1.3.3). Further assume:

• There exists an exponent u > 0 such that for every T > 0 there is a non-negative
constant CT and we have

∫
T

0
∫
Rd

∣g(s, y) − g(s + τ, y + ξ)∣2 d(s, y) ≤ CT ∣(τ, ξ)∣u (1.5.1)

whenever ∣(τ, ξ)∣ is sufficiently small.

• For some p > 1 we have for every T > 0 that

∫
T

0
(∫

Rd
g(s, y)2 dy)

p

ds < ∞. (1.5.2)

Then the process X has a version which is locally Hölder continuous with any expo-
nent in (0, p−1

4p ∧ u
4).

As usual for Gaussian processes, continuity of sample paths can be established
under weaker conditions than those formulated in Theorem 1.5.1. Given that g ∈
L2

loc(R+ × Rd) already implies that the left-hand side of (1.5.1) converges to 0 as
∣(τ, ξ)∣ → 0 and (1.5.2) holds with p = 1, the assumptions of Theorem 1.5.1 are
reasonably general for practical purposes, so we do not pursue this direction further
and only refer to [1]

If the noise does feature jumps, we are not able to construct path properties in
general. Informally speaking, if the noise propagation function g is too irregular, it
is unclear how a jump at a certain time and location affects the process at other
times and locations. However, the situation is different if g is smooth enough. In this
case, we are able to establish versions with the following regularity property.

Definition 1.5.2 A function Ψ∶R+×Rd → R is t-càdlàg if for every (t, x) ∈ R+×Rd,

lim
(t̃,x̃)→(t,x)

t̃≥t

Ψ(t̃, x̃) = Ψ(t, x) and lim
(t̃,x̃)→(t,x)

t̃<t

Ψ(t̃, x̃) exists.

◻
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In the following ∂γg denotes the partial derivative ∂γ0t ∂
γ1
x1⋯∂

γd
xdg for a function

g∶R+ ×Rd → R and a multi-index γ = (γ0, . . . , γd) ∈ Nd+1
0 .

Theorem 1.5.3. Suppose that the conditions of Theorem 1.3.1 are satisfied with
V ≡ 0 and that X is the solution to (1.3.1) given in (1.3.3). We assume that g is
(d + 1)-times continuously differentiable on R+ × Rd such that for all multi-indices
γ ∈ {0,1}d+1 the partial derivative ∂γg belongs to L1

loc(R+ ×Rd).
If α < 1, we further assume that there is a non-negative decreasing function

G∶R+ → R+ such that G(∣x∣) belongs to Lα(Rd) and we have ∣g(t, x)∣ ≤ CTG(∣x∣) for
all T ≥ 0 and (t, x) ∈ [0, T ] ×Rd, where CT is a non-negative constant depending on
T .

Then the process X has a t-càdlàg version. This version is continuous if g addi-
tionally satisfies g(0, x) = 0 for all x ∈ Rd.

The solution may display a fundamentally different path behavior if the under-
lying noise propagation function is not smooth. Here we only have results for the
spatial dimension 1 and g(t, x) = 1{∣x∣≤ct}h(t, x) with some c > 0 and some smooth
function h. This choice for g is motivated by Example 1.3.7 and, as we shall see in
the proofs, enables us to utilize maximal inequalities of multi-parameter martingales
as in [89].

In order to state our result, we introduce a partial order ⪯ on R+ ×R by setting
(t, x) ⪯ (t̃, x̃) if t ≤ t̃ and ∣x̃ − x∣ ≤ c(t̃ − t). As usual, we write (t, x) ≺ (t̃, x̃) if
(t, x) ⪯ (t̃, x̃) and (t, x) ≠ (t̃, x̃). The following tempo-spatial càdlàg property is
weaker than the t-càdlàg property of Definition 1.5.2.

Definition 1.5.4 A function Ψ∶R+×Rd → R is ⪯-càdlàg if for every (t, x) ∈ R+×Rd,

lim
(t̃,x̃)→(t,x)
(t,x)⪯(t̃,x̃)

Ψ(t̃, x̃) = Ψ(t, x) and lim
(t̃,x̃)→(t,x)
(t,x)≻(t̃,x̃)

Ψ(t̃, x̃) exists.

◻

Theorem 1.5.5. Suppose that the conditions of Theorem 1.3.1 are satisfied with
d = 1, V ≡ 0 and that X is the solution to (1.3.1) given in (1.3.3). Further let h ∈
Lαloc(R+×R)∩Lβloc(R+×R) be twice continuously differentiable with partial derivatives
∂th(t, x), ∂xh(t, x) and ∂t∂xh(t, x) in L1

loc(R+×R). If the noise propagation function
takes the form g(t, x) = 1{∣x∣≤ct}h(t, x) for some c > 0, then the process X has a
⪯-càdlàg version.
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Remark 1.5.6 (1) The conditions of Theorem 1.5.3 and Theorem 1.5.5 imply in
particular that g is bounded. It is important to notice that the assertions of
these theorems are false when g has a singularity at, for example, the origin.

(2) Under the assumptions of Theorem 1.5.5 and with virtually no change of its
proof, we even have a version of the process X which is not only ⪯-càdlàg but
also has limits from the flanks, that is, both limits

lim
(t̃,x̃)→(t,x)

x̃>x, c∣t−t̃∣≤x̃−x

X(t̃, x̃) and lim
(t̃,x̃)→(t,x)

x̃<x, c∣t−t̃∣≤x−x̃

X(t̃, x̃) exist.

(3) There exist other notions of càdlàg sample paths for multi-parameter stochastic
processes, see e.g. [68]. In contrast to the definition in that reference, our Defi-
nitions 1.5.2 and 1.5.4 take into account that time has a natural direction, while
space has none.

(4) It suffices for Theorem 1.5.3 (resp. Theorem 1.5.5) in dimension d = 1 that,
instead of being twice continuously differentiable, g (resp. h) is continuous on
R+ ×R and that there exist β ∈ [1,2] (resp. β ∈ (1,2]) and functions g1, g2, g12 ∈
Lβloc(R+ ×R) (resp. h1, h2, h12 ∈ Lβloc(R+ ×R)) such that ∫R ∣z∣β1{∣z∣≤1} ν(dz) < ∞,
Equation (1.6.8) (resp. Equation (1.6.12)) holds and, if α = 1 in Theorem 1.5.3,
that also g1, g2, g12 ∈ L1

loc(R+ ×R). For higher dimensions in Theorem 1.5.3, this
comment applies analogously.

◻

We apply the derived theorems to the VOU model considered in Examples 1.3.6
and 1.3.7.

Example 1.5.7 (Path properties for Examples 1.3.6 and 1.3.7)

(1) By induction we can show that the partial derivatives of the noise propagation
function g(t, x) = e−λ

′∣x∣ can be written as

∂x1 . . . ∂xng(t, x) =
2n−1

∑
j=n

cje
−λ′∣x∣x1 . . . xn

∣x∣j
,

for all n ≤ d and constants cj independent of (t, x). As a consequence, ev-
ery partial derivative ∂γg, where γ is some multi-index in {0,1}d+1, belongs to
Lploc(R+×Rd) for every 0 < p < d

d−1 . For α < 1 we may choose the function G from
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Theorem 1.5.3 as G(u) = e−λ
′u. Therefore, as soon as the Lévy measure ν of Λ

satisfies (1.3.2) for some α > 0 and β ∈ (0, d
d−1), Theorem 1.5.3 and Remark 1.5.6

imply that the unique solution X in (1.3.9) has a t-càdlàg version.

(2) Since the partial derivatives ∂th(t, x), ∂xh(t, x) and ∂t∂xh(t, x) of the function
h(t, x) = e−λ

′∣x∣ satisfy ∂th(t, x) = 0, ∂xh(t, x) = −λ′e−λ′∣x∣ x∣x∣ and ∂t∂xh(t, x) = 0

and lie in Lploc(R+ ×Rd) for every p > 0, Theorem 1.5.5 and Remark 1.5.6 apply
to Example 1.3.7. Hence, we obtain a ⪯-càdlàg version for the process X in
(1.3.12). ◻

1.6 Proofs

For the rest of this chapter, CT denotes a real constant which may depend on T ≥ 0

and change its value from line to line.

1.6.1 Proofs for Section 1.3

For the proofs of Theorems 1.3.1 and 1.3.3 we must guarantee that the stochastic
convolution of g with Λ is well defined on [0, T ] × Rd or on the whole R+ × Rd,
respectively. The conditions listed in Proposition 1.2.1 are necessary and sufficient,
but may be too complicated to verify in general. The following lemma provides some
simpler sufficient criteria.

Lemma 1.6.1. Suppose that Λ is a homogeneous Lévy basis on I ×Rd with charac-
teristics (b, σ2, ν) and that g∶ I ×Rd → R is a measurable function.

(1) Condition (1) of Proposition 1.2.1 is satisfied if there exist measurable functions
k,K ∶R+ → R+ such that

∣b + ∫
R
z1{∣z∣∈(1,A]} ν(dz)∣ = O(K(A)), A→∞, (1.6.1)

∣b − ∫
R
z1{∣z∣∈(a,1]} ν(dz)∣ = O(k(a)), a→ 0, and (1.6.2)

∫
I
∫
Rd

∣g(t, x)∣(k(∣g(t, x)∣−1)1{∣g(t,x)∣>1} +K(∣g(t, x)∣−1)1{∣g(t,x)∣≤1})d(t, x) < ∞.
(1.6.3)
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(2) Condition (3) of Proposition 1.2.1 is satisfied if there is an increasing function
h∶R+ → R+ such that for some constant C ∈ R+ we have u2h(∣x∣) ≤ Ch(u∣x∣) for
all u ∈ [0,1] and x ∈ R, and

∫
I
∫
Rd
h(∣g(t, x)∣)d(t, x) < ∞ and ∫

R
h(∣z∣−1)−1 ν(dz) < ∞.

Proof. (1) The left-hand side of condition (1) of Proposition 1.2.1 is bounded by

∫
I
∫
Rd

∣g(t, x)∣ ∣b − ∫
R
z1{∣z∣∈(∣g(t,x)∣−1,1]} ν(dz)∣1{∣g(t,x)∣>1} d(t, x)

+ ∫
I
∫
Rd

∣g(t, x)∣ ∣b + ∫
R
z1{∣z∣∈(1,∣g(t,x)∣−1]} ν(dz)∣1{∣g(t,x)∣≤1} d(t, x),

which, because of (1.6.1) and (1.6.2), is in turn bounded by (1.6.3).

(2) We divide the integral term in condition (3) of Proposition 1.2.1 into

J1+J2 ∶= (LebI×Rd⊗ν)({∣zg(t, x)∣ > 1})+∫
I
∫
Rd
∫
R
∣zg(t, x)∣21{∣zg(t,x)∣≤1} ν(dz)d(t, x).

For J1 we can now use Markov’s inequality to obtain

J1 ≤ ∫
R
h(∣z∣−1)−1 ν(dz)∫

I
∫
Rd
h(∣g(t, x)∣)d(t, x) < ∞,

while for J2 the assumption that ∣zg(t, x)∣2 ≤ Ch(∣g(t, x)∣)h−1(∣z∣−1) on {∣zg(t, x)∣ ≤
1} implies

J2 ≤ C ∫
I
∫
Rd
h(∣g(t, x)∣)d(t, x)∫

R
h(∣z∣−1)−1 ν(dz) < ∞.

◻

Possible choices for the functions h, k and K are h(x) ∶= xq1[0,1](x)+xp1(1,∞)(x),
k(a) ∶= a1−p and K(A) ∶= A1−q with some 0 < p, q ≤ 2.

Proof. (of Theorem 1.3.1) We wish to apply part (3) of Proposition 1.2.2 to the
stochastic forcing function defined by

F (t, x) ∶= V (t, x) + ∫
t

0
∫
Rd
g(t − s, x − y)Λ(ds,dy), (t, x) ∈ R+ ×Rd.

This would yield the existence and uniqueness statement of Theorem 1.3.1. Since V
has paths in F(µ) by hypotheses, it suffices to prove that

Y (t, x) ∶= ∫
t

0
∫
Rd
g(t − s, x − y)Λ(ds,dy)
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is well defined for all (t, x) ∈ R+ ×Rd and that Y has a version with paths in F(µ).
The existence of the stochastic convolution is equivalent to the integrability of g
with respect to Λ. But this follows from Lemma 1.6.1 with h(x) ∶= xα1[0,1](x) +
xβ1(1,∞)(x), k(a) ∶= a1−β and K(A) ∶= A1−α because we have g ∈ Lαloc(R+ × Rd) ∩
Lβloc(R+ ×Rd) on the one hand, and (1.3.2) on the other hand. Note that the latter
also implies (1.6.1) and (1.6.2) with our choices of k and K. Furthermore, from the
well-definedness of Y we can already deduce the existence of a measurable version,
see Theorem 1 of [66].

Next, we prove that this measurable version of Y belongs to F(µ) almost surely.
We begin with the case α = 1 and notice that applying the Jensen and the Burkholder-
Davis-Gundy inequalities yields

E[∣Y (t, x)∣] ≤ ∣b∣ ∫
t

0
∫
Rd

∣g(s, y)∣d(s, y) + (∫
t

0
∫
Rd
σ2∣g(s, y)∣2 d(s, y))

1/2

+CTE [(∫
t

0
∫
Rd
∫
R
∣g(t − s, x − y)z∣21{∣z∣≤1} p(ds,dy,dz))

β/2
]

1/β

+E [∫
t

0
∫
Rd
∫
R
∣g(t − s, x − y)z∣1{∣z∣>1} p(ds,dy,dz)]

≤ ∣b∣ ∫
t

0
∫
Rd

∣g(s, y)∣d(s, y) + (∫
t

0
∫
Rd
σ2∣g(s, y)∣2 d(s, y))

1/2

+CT (∫
t

0
∫
Rd

∣g(s, y)∣β d(s, y)∫
R
∣z∣β1{∣z∣≤1} ν(dz))

1/β

+ ∫
t

0
∫
Rd

∣g(s, y)∣d(s, y)∫
R
∣z∣1{∣z∣>1} ν(dz). (1.6.4)

Therefore, the function (t, x) ↦ E[∣Y (t, x)∣] belongs to L∞loc(R+×Rd), so Lemma 1.6.4
and Fubini’s theorem imply that Y has paths in F(µ) almost surely.

If α ∈ (0,1), it is enough to prove Y 1 ∈ F(µ) almost surely where Y 1 is defined
in the same way as Y but with Λ replaced by its large jumps part Λ1(dt,dx) ∶=
∫R z1{∣z∣>1} p(dt,dx,dz). For the convolution of g with Λ−Λ1 the arguments as in the
case α = 1 would apply. Letting η ∈ {∣µ∣, ∣ρ∣, ∣µ∣ ∗ ∣ρ∣, ∣µ∣ ∗ ∣ρ∣∗2}, we prove that η ∗ ∣Y 1∣
exists almost everywhere. Since the realizations of Λ1 are measures on R+ × Rd,
Fubini’s theorem yields

(η ∗ ∣Y 1∣)(t, x)

= ∫
t

0
∫
Rd

∣Y 1(t − s, x − y)∣ η(ds,dy)
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≤ ∫
t

0
∫
Rd
∫

t−s

0
∫
Rd
∫
R
∣g(t − s − r, x − y −w)z∣1{∣z∣>1} p(dr,dw,dz) η(ds,dy)

= ∫
t

0
∫
Rd
∫
R
(η ∗ ∣g∣)(t − s, x − y)∣z∣1{∣z∣>1} p(ds,dy,dz).

Now raising the last inequality to the power α, moving the exponent into the integral
and taking expectation result in

E[((η ∗ ∣Y 1∣)(t, x))α]

≤ ∫
t

0
∫
Rd

(η ∗ ∣g∣)α(s, y)d(s, y)∫
R
∣z∣α1{∣z∣>1} ν(dz)

= ∫
t

0
∫
Rd

(ϕ(y)(η ∗ ∣g∣)(s, y))αϕ−α(y)d(s, y)∫
R
∣z∣α1{∣z∣>1} ν(dz).

Since ϕ−α ∈ L1(Rd), the assertion that Y 1 ∈ F(µ) almost surely is proved once we can
show that ϕ(η∗∣g∣) ∈ L∞loc(R+×Rd). For η = ∣µ∣ this holds by assumption. For η = ∣ρ∣ we
use the fact that ρ = ρ∗µ−µ, so we only need to prove ϕ(∣ρ∣∗(∣µ∣∗∣g∣)) ∈ L∞loc(R+×Rd).
Notice that ϕµ ∈Mloc(R+×Rd) implies ϕρ ∈Mloc(R+×Rd) by the same arguments as
in Proposition 1.2.2. More precisely, one has to work in the weighted measure spaces
M([0, T ] × Rd;ϕ), T ∈ R+, which consist of all signed complete Borel measures µ
such that ϕµ ∈ M([0, T ] × Rd) and are complete with the weighted total variation
norm ∥ ⋅ ∥ϕ ∶= ∥ϕ ⋅ ∥ (the proof of the temporal analogue, Theorem 4.3.4 of [49], can
be extended to the tempo-spatial setting in a straightforward manner). Thus, the
hypothesis that ϕ(∣µ∣∗∣g∣) ∈ L∞loc(R+×Rd) yields ϕ(∣ρ∣∗(∣µ∣∗∣g∣)) ∈ L∞loc(R+×Rd) as well
(like before, one can extend Theorem 4.3.5 in [49]). Finally, for η = ∣µ∣∗∣ρ∣∗2 the same
arguments apply because we have already established ϕ(∣ρ∣∗(∣µ∣∗∣g∣)) ∈ L∞loc(R+×Rd).

It remains to demonstrate that (1.3.3) defines a version of the solution to (1.3.1).
To this end, we first observe that the solution in Proposition 1.2.2 takes the form

X(t, x) = V (t, x) − (ρ ∗ V )(t, x) + ∫
t

0
∫
Rd
g(t − s, x − y)Λ(ds,dy)

− ∫
t

0
∫
Rd
∫

t−s

0
∫
Rd
g(t − s − r, x − y −w)Λ(dr,dw)ρ(ds,dy).

Formula (1.3.3) immediately follows if we can interchange the integrals with respect
to Λ and ρ, that is, if we can apply a stochastic Fubini theorem. For the large jumps
part Λ1 of Λ the ordinary Fubini theorem is sufficient because the realizations of Λ1

are true measures and integrability has already been shown in the proof for ∣ρ∣ ∗ ∣Y 1∣
above. For the remaining part Y 2 ∶= Y −Y 1 Theorem 2 in [66] is applicable because,
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by the same reasoning as in (1.6.4), we have that

∫
t

0
∫
Rd

E [(∫
t−s

0
∫
Rd
∫
R
∣g(t − s − r, x − y −w)z∣21{∣z∣≤1} p(dr,dw,dz))

1/2
] ∣ρ∣(ds,dy)

is finite. ◻

Proof. (of Theorem 1.3.3) Our first observation is that X∞ is well defined because
g − ρ ∗ g is integrable with respect to Λ on R+ × Rd. This in turn is a consequence
of assumptions (2) and (3) together with Lemma 1.6.1 (and of course, that β = 2 if
σ2 ≠ 0). Next, regarding the convergence statement, it suffices by Slutsky’s theorem
and hypothesis (1) to prove the convergence of the finite-dimensional distributions
of the stochastic convolution in (1.3.3) when time tends to infinity. For one spatial
point x ∈ Rd, the claim readily follows from

∫
t

0
∫
Rd

(g − ρ ∗ g)(t − s, x − y)Λ(ds,dy) d= ∫
t

0
∫
Rd

(g − ρ ∗ g)(s, x − y)Λ(t − ds,dy)

d= ∫
t

0
∫
Rd

(g − ρ ∗ g)(s, x − y)Λ(ds,dy)
dÐ→ ∫

∞

0
∫
Rd

(g − ρ ∗ g)(s, x − y)Λ(ds,dy).

The n-dimensional case can be treated completely analogously. For the second part
of the theorem, we suppose that also g is integrable with respect to Λ and that V
is a process independent of Λ and with the same finite-dimensional distributions as
the process given in (1.3.4). Then by the stochastic Fubini theorem (cf. the proof of
Theorem 1.3.1) we obtain

V (t, x) − (ρ ∗ V )(t, x)
d= ∫

0

−∞
∫
Rd
g(t − s, x − y)Λ(ds,dy)

− ∫
t

0
∫
Rd
∫

0

−∞
∫
Rd
g(t − s − r, x − y −w)Λ(dr,dw)ρ(ds,dy)

d= ∫
0

−∞
∫
Rd
g(t − s, x − y)Λ(ds,dy) − ∫

0

−∞
∫
Rd

(ρ ∗ g)(t − s, x − y)Λ(ds,dy).

Again, the reader can convince herself that the previous calculations also apply to
n time and space points. The strict stationarity of X is now a consequence of that
of the process (1.3.5). ◻
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Proof. (of Lemma 1.3.4) (1) We have already used this tacitly in the proof of
Theorem 1.3.1. In fact, if α ∈ (0,1], then

∣b + ∫
R
z1{∣z∣∈(1,A]} ν(dz)∣ ≤ ∣b∣ + ∫

R
∣z∣α∣z∣1−α1{∣z∣∈(1,A]} ν(dz)

≤ ∣b∣ +A1−α∫
R
∣z∣α1{∣z∣>1} ν(dz),

while for β ∈ [1,2] we have

∣b − ∫
R
z1{∣z∣∈(a,1]} ν(dz)∣ ≤ ∣b∣ + ∫

R
∣z∣β ∣z∣1−β1{∣z∣∈(a,1]} ν(dz)

≤ ∣b∣ + a1−β ∫
R
∣z∣β1{∣z∣≤1} ν(dz).

(2) If α ∈ (1,2] and b1 = 0, then we have for A ≥ 1 that

∣b + ∫
R
z1{∣z∣∈(1,A]} ν(dz)∣ ≤ ∫

R
∣z∣1{∣z∣∈(A,∞)} ν(dz) = ∫

R
∣z∣α∣z∣1−α1{∣z∣∈(A,∞)} ν(dz)

≤ A1−α∫
R
∣z∣α1{∣z∣>1} ν(dz).

If β ∈ (0,1) and b0 = 0, then

∣b − ∫
R
z1{∣z∣∈(a,1]} ν(dz)∣ ≤ ∫

R
∣z∣1{∣z∣∈(0,a]} ν(dz) = ∫

R
∣z∣β ∣z∣1−β1{∣z∣∈(0,a]} ν(dz)

≤ a1−β ∫
R
∣z∣β1{∣z∣≤1} ν(dz).

(3) If Λ is symmetric, then the left-hand sides of (1.6.1) and (1.6.2) are identically
zero. ◻

Proof. (of Lemma 1.3.5) (1) follows from Lemma 1.6.4, (2) holds because ρ(R+ ×
Rd) = 1 implies that g − ρ ∗ g = (g − g∞) − ρ ∗ (g − g∞), and (3) is simply Young’s
inequality. ◻

1.6.2 Proofs for Section 1.4

Proof. (of Proposition 1.4.1) That m[X] < ∞ almost surely can be verified in a
similar way to Theorem 1.3.1. Also by essentially the same arguments given there,
the stochastic Fubini theorem is applicable for m[X] and the result follows from
Proposition 1.2.1. ◻
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Proof. (of Proposition 1.4.5) (1) By assumption the function h∶R×Rd → R defined
by h(t, x) = (g − ρ ∗ g)(t, x)1R+(t) belongs to L1(R × Rd). Therefore, the claim
follows from Young’s inequality and the observation that, up to a multiplicative
constant, Cov[X(t, x),X(t + τ, x + ξ)] equals the convolution of h with h− where
h−(t, x) = h(−t,−x).

(2) That X is well defined and has a finite second moment, follows from b1 = 0 and
g − ρ ∗ g ∈ L2(R+ ×Rd). Moreover, as g − ρ ∗ g does not change signs, we have

∫
∞

0
∫
Rd

∣∫
∞

0
∫
Rd

(g − ρ ∗ g)(s, y)(g − ρ ∗ g)(s + τ, y + ξ)d(s, y)∣ d(τ, ξ)

= ∫
∞

0
∫
Rd
∫

∞

0
∫
Rd

∣g − ρ ∗ g∣(s, y)∣g − ρ ∗ g∣(s + τ, y + ξ)d(s, y)d(τ, ξ)

= ∫
∞

0
∫
Rd

∣g − ρ ∗ g∣(s, y) (∫
∞

0
∫
Rd

∣g − ρ ∗ g∣(s + τ, y + ξ)d(τ, ξ)) d(s, y).

Since g − ρ ∗ g ∉ L1(R+ ×Rd), the inner integral is infinite for all (s, y), so the whole
integral is infinite as well. This shows that (τ, ξ) ↦ ∣Cov[X(t, x),X(t + τ, x + ξ)]∣ is
not an element of L1(R+ ×Rd). ◻

1.6.3 Proofs for Section 1.5

Proof. (of Theorem 1.5.1) For g̃ ∶= g − ρ ∗ g we have that

∫
t

0
∫
Rd
g̃(t − s, x − y)d(s, y) = ∫

t

0
∫
Rd
g̃(s, y)d(s, y)

is continuous in (t, x). Hence, we may assume without loss of generality that b = 0.
The additional conditions on g in Theorem 1.5.1, together with Hölder’s inequality
and Fubini’s theorem, imply for ρ∗g (we extend g on the negative half space (−∞,0)×
Rd by zero):

∫
T

0
∫
Rd

∣(ρ ∗ g)(s, y) − (ρ ∗ g)(s + τ, y + ξ)∣2 d(s, y)

= ∫
T

0
∫
Rd

∣ ∫
s

0
∫
Rd
g(s − r, y − z)ρ(dr,dz)

− ∫
s+τ

0
∫
Rd
g(s + τ − r, y + ξ − z)ρ(dr,dz)∣

2

d(s, y)

≤ CT ∫
T

0
∫
Rd
∫

T

0
∫
Rd

∣g(s − r, y − z) − g(s + τ − r, y + ξ − z)∣2 d(s, y) ∣ρ∣(dr,dz)
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+CT ∫
T

0
∫
Rd
∫

T

0
∫
Rd

∣1[s,s+τ](r)g(s + τ − r, y + ξ − z)∣
2

d(s, y) ∣ρ∣(dr,dz)

≤ CT ∫
T

0
∫
Rd

∣(τ, ξ)∣u ∣ρ∣(dr,dz) +CT ∫
τ

0
∫
Rd

∣g(s, y)∣2 d(s, y)

≤ CT ∣(τ, ξ)∣u +CT (∫
τ

0
1 ds)

p−1
p

(∫
τ

0
(∫

Rd
g(s, y)2 dy)

p

ds)
1
p

≤ CT ∣(τ, ξ)∣u +CT ∣(τ, ξ)∣
p−1
p , (1.6.5)

where ∣(τ, ξ)∣ is small enough. Furthermore, we have by another application of
Hölder’s inequality and Fubini’s theorem

∫
T

0
(∫

Rd
(ρ ∗ g)(s, y)2 dy)

p

ds

≤ CT ∫
T

0
(∫

Rd
∫

s

0
∫
Rd
g(s − r, y − z)2 ∣ρ∣(dr,dz)dy)

p

ds

≤ CT ∫
T

0
∫

s

0
∫
Rd

(∫
Rd
g(s − r, y)2 dy)

p

∣ρ∣(dr,dz)ds

≤ CT ∫
T

0
∫
Rd
∫

T

0
(∫

Rd
g(s, y)2 dy)

p

ds ∣ρ∣(dr,dz) < ∞. (1.6.6)

Next, by Corollary 1.4.2 we have for all (t, x), (τ, ξ) ∈ R+ ×Rd that

E[∣X(t, x) −X(t + τ, x + ξ)∣2]

= σ2∫
t

0
∫
Rd
g̃2(s, y)d(s, y) − 2σ2∫

t

0
∫
Rd
g̃(s, y)g̃(s + τ, y + ξ)d(s, y)

+ σ2∫
t+τ

0
∫
Rd
g̃2(s, y)d(s, y)

= 2σ2∫
t

0
∫
Rd
g̃(s, y)[g̃(s, y) − g̃(s + τ, y + ξ)]d(s, y)

+ σ2∫
t+τ

t
∫
Rd
g̃2(s, y)d(s, y).

The assumptions on g and the inequalities (1.6.5) and (1.6.6) yield

∫
t

0
∫
Rd
g̃(s, y)[g̃(s, y) − g̃(s + τ, y + ξ)]d(s, y) ≤ CT ∣(τ, ξ)∣u/2 +CT ∣(τ, ξ)∣

p−1
2p

for small ∣(τ, ξ)∣ and

∫
t+τ

t
∫
Rd
g̃2(s, y)d(s, y) ≤ (∫

t+τ

t
1 ds)

p−1
p

(∫
t+τ

t
(∫

Rd
g̃(s, y)2 dy)

p

ds)
1
p

≤ CT ∣(τ, ξ)∣
p−1
p ,
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where we have used the Cauchy-Schwarz inequality in the first and Hölder’s inequal-
ity in the second step. Adding both inequalities together and using the fact that X
is a Gaussian process, Kolmogorov’s continuity theorem (see e.g. Theorem 3.23 of
[57]) finishes the proof. ◻

Proof. (of Theorem 1.5.3) We prove the case when space is one-dimensional, i.e.
d = 1. For higher dimensions the proof is similar. Clearly, it suffices to show the path
property separately for the drift and Gaussian part, the compensated small jumps
part, and the large jumps part.

Case 1: Λ(dt,dx) = bd(t, x) + σW (dt,dx).

The assumptions on g imply that g∣[0,T ]×Rd belongs to the Sobolev spaceW 1,2([0, T ]×
Rd) for all T ∈ R+ if σ ≠ 0. Therefore, Theorem 3 in Section 5.8 of [43], a char-
acterization of the Sobolev space W 1,2([0, T ] × Rd), ensures the first condition in
Theorem 1.5.1. Moreover, since g, ∂tg ∈ L2

loc(R+ × R), the fundamental theorem of
calculus yields that s↦ ∫Rd g2(s, y)dy is continuous in s. Hence, by Theorem 1.5.1,
X has a continuous version.

Case 2: Λ(dt,dx) = ∫R z1{∣z∣≤1} (p − q)(dt,dx,dz).

We define Λn(dt,dx) ∶= ∫R z1{1/n≤∣z∣≤1}1{∣x∣≤n} (p − q)(dt,dx,dz). Since Λn has only
finitely many jumps on [0, T ] ×R almost surely, it is easy to see that the paths of
Fn ∶= g∗Λn are almost surely t-càdlàg and in L∞loc(R+×Rd) due to the boundedness of
g. Hence, also the process ρ∗Fn has almost surely t-càdlàg realizations by dominated
convergence. We now show that ρ∗F n ∶= ρ∗F−ρ∗Fn converges uniformly on compacts
in probability to 0. To this end, consider for any T > 0 and U = [−K,K] ⊆ R

E [ sup
(t,x)∈[0,T ]×U

∣(ρ ∗ F n)(t, x)∣] = E [ sup
(t,x)∈[0,T ]×U

∣∫
t

0
∫
R
F n(t − s, x − y)ρ(ds,dy)∣]

≤ ∫
T

0
∫
R
E [ sup

(t,x)∈[0,T ]×U
∣F n(t − s, x − y)∣] ∣ρ∣(ds,dy)

= ∫
T

0
∫
R
E [ sup

(t,x)∈[0,T ]×U
∣F n(t, x − y)∣] ∣ρ∣(ds,dy).

(1.6.7)
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Now use the fundamental theorem of calculus to decompose g as

g(t − s, x − η − y) = g(0, x − η − y) + ∫
t

s
g1(r − s, x − η − y)dr

= g(0,−η − y) + ∫
x−η

−η
g2(0, z − y)dz + ∫

t

s
g1(r − s,−η − y)dr

+ ∫
t

s
∫

x−η

−η
g12(r − s, z − y)dz dr, (1.6.8)

where η ∈ R, g1(t, x) = ∂tg(t, x), g2(t, x) = ∂xg(t, x) and g12(t, x) = ∂t∂xg(t, x). With
the same reasoning as in the proof of Theorem 1.3.1, the assumptions imply that
the stochastic Fubini theorem is applicable and this gives us

F n(t, x − η) ∶= ∫
t

0
∫
R
g(t − s, x − η − y)Λn(ds,dy)

= ∫
t

0
∫
R
g(0,−η − y)Λn(ds,dy) + ∫

t

0
∫
R
∫

x−η

−η
g2(0, z − y)dzΛn(ds,dy)

+ ∫
t

0
∫
R
∫

t

s
g1(r − s,−η − y)drΛn(ds,dy)

+ ∫
t

0
∫
R
∫

t

s
∫

x−η

−η
g12(r − s, z − y)dz drΛn(ds,dy)

= ∫
t

0
∫
R
g(0,−η − y)Λn(ds,dy) + ∫

x−η

−η
∫

t

0
∫
R
g2(0, z − y)Λn(ds,dy)dz

+ ∫
t

0
∫

r

0
∫
R
g1(r − s,−η − y)Λn(ds,dy)dr

+ ∫
t

0
∫

x−η

−η
∫

r

0
∫
R
g12(r − s, z − y)Λn(ds,dy)dz dr

=∶ I1,n(t, x, η) + I2,n(t, x, η) + I3,n(t, x, η) + I4,n(t, x, η),

where Λn ∶= Λ −Λn. Therefore, we have for fixed η ∈ R

E [ sup
(t,x)∈[0,T ]×U

∣F n(t, x − η)∣] ≤
4

∑
j=1

E [ sup
(t,x)∈[0,T ]×U

∣Ij,n(t, x, η)∣] .

Since I1,n(t, x) does not depend on x and is a martingale in t, we have by the
Burkholder-Davis-Gundy inequalities that

E [ sup
(t,x)∈[0,T ]×U

∣I1,n(t, x, η)∣2]

= E
⎡⎢⎢⎢⎢⎣

sup
t∈[0,T ]

∣ ∫
t

0
∫
R
∫
R
g(0,−η − y)z(1{∣y∣>n}1{∣z∣≤1}
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+ 1{∣y∣≤n}1{∣z∣<1/n})(p − q)(ds,dy,dz)∣
2⎤⎥⎥⎥⎥⎦

≤ CTE
⎡⎢⎢⎢⎢⎣
∫

T

0
∫
R
∫
R
∣g∣2(0,−η − y)∣z∣2

× (1{∣y∣>n}1{∣z∣≤1} + 1{∣y∣≤n}1{∣z∣<1/n})p(ds,dy,dz)
⎤⎥⎥⎥⎥⎦

= CT ∫
T

0
∫
R
∣g∣2(0,−η − y)1{∣y∣>n} d(s, y)∫

R
∣z∣21{∣z∣≤1} ν(dz)

+CT ∫
T

0
∫
R
∣g∣2(0,−η − y)1{∣y∣≤n} d(s, y)∫

R
∣z∣21{∣z∣<1/n} ν(dz) → 0 (1.6.9)

as n → ∞ and that E [sup(t,x)∈[0,T ]×U ∣I1,n(t, x, η)∣2] is bounded in n and η. Here we
have used that g ∈ L2

loc(R+ × R) since it is continuous on R+ × R and belongs to
Lαloc(R+ ×R). By similar arguments, we have that

E [ sup
(t,x)∈[0,T ]×U

∣I2,n(t, x, η)∣2]

= E [ sup
(t,x)∈[0,T ]×U

∣∫
x−η

−η
∫

t

0
∫
R
g2(0, z − y)Λn(ds,dy)dz∣

2

]

≤ CT ∫
K−η

−K−η
E [ sup

(t,x)∈[0,T ]×U
∣∫

t

0
∫
R
g2(0, z − y)Λn(ds,dy)∣

2

] dz

≤ CT ∫
K−η

−K−η
∫

T

0
∫
R
∣g2∣2(0, z − y)1{∣y∣>n} d(s, y)∫

R
∣ζ ∣21{∣ζ∣≤1} ν(dζ)dz

+CT ∫
K−η

−K−η
∫

T

0
∫
R
∣g2∣2(0, z − y)1{∣y∣≤n} d(s, y)∫

R
∣ζ ∣21{∣ζ∣<1/n} ν(dζ)dz

≤ CT ∫
T

0
∫
R
∣g2∣2(0, y)1{∣y∣>n−K−∣η∣} d(s, y)∫

R
∣ζ ∣21{∣ζ∣≤1} ν(dζ)

+CT ∫
T

0
∫
R
∣g2∣2(0, y)d(s, y)∫

R
∣ζ ∣21{∣ζ∣<1/n} ν(dζ) → 0

as n→ 0 and that E [sup(t,x)∈[0,T ]×U ∣I2,n(t, x, η)∣2] is bounded in n and η. Because I3,n

and I4,n can be treated analogously to I2,n, ρ ∗Fn converges uniformly on compacts
in probability to ρ ∗ F due to (1.6.7) and dominated convergence. This gives us a
t-càdlàg version of ρ∗F . By setting η = 0, we also obtain that Fn converges uniformly
on compacts in probability to F . As a consequence, X has a t-càdlàg version.

Case 3: Λ(dt,dx) = ∫R z1{∣z∣>1} p(dt,dx,dz).
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Here we assume α < 1 because in the situation α = 1 we can split the Lévy basis
according to

Λ(dt,dx) = ∫
R
z1{∣z∣>1} (p − q)(dt,dx,dz) + ∫

R
z1{∣z∣>1} q(dt,dx,dz),

treating the first summand as in Case 2 and the second summand as in Case 1.
We consider the truncated Lévy basis Λn(dt,dx) ∶= ∫R z1{∣z∣≥1}1{∣x∣≤n} p(dt,dx,dz),
which almost surely has finitely many jumps on [0, T ]×R. As in Case 2, the processes
Fn = g∗Λn and ρ∗Fn have t-càdlàg paths almost surely. It suffices therefore to prove
that they converge uniformly on compacts in probability to F and ρ∗F , respectively.
We can estimate (note that we can interchange convolution with Λ and convolution
with ρ as shown in Theorem 1.3.1)

E [ sup
(t,x)∈[0,T ]×U

∣(ρ ∗ F − ρ ∗ Fn)(t, x)∣α]

= E [ sup
(t,x)∈[0,T ]×U

∣∫
t

0
∫
R
(ρ ∗ g)(t − s, x − y) (Λ −Λn)(ds,dy)∣

α

]

≤ ∫
T

0
∫
R

sup
(t,x)∈[0,T ]×U

∣(ρ ∗ g)∣α (t − s, x − y)1{∣y∣>n} d(s, y)∫
R
∣z∣α1{∣z∣≥1} ν(dz)

≤ CT ∫
R

sup
(t,x)∈[0,T ]×U

∣(ρ ∗ g)∣α (t, x − y)1{∣y∣>n} dy

= CT ∫
R

sup
(t,x)∈[0,T ]×U

∣ϕ(−y)(ρ ∗ g)(t, x − y)∣α 1{∣y∣>n}ϕ(−y)−α dy,

where ϕ is the function from Theorem 1.3.1. Since ϕ−α ∈ L1(R), the right-hand side
of the last inequality tends to zero by dominated convergence if we can show that

sup
(t,x)∈[0,T ]×U

ϕ(−y)∣ρ ∗ g∣(t, x − y)

is bounded in y. But this follows because for every y ∈ R we have

sup
(t,x)∈[0,T ]×U

ϕ(−y)∣ρ ∗ g∣(t, x − y) ≤ sup
(t,x)∈[0,T ]×U

ϕ(x − y)∣ρ ∗ g∣(t, x − y)ϕ(−x)

≤ CT sup
x∈U

ϕ(−x) < ∞,

where we have used that ϕ(∣ρ∣ ∗ ∣g∣) ∈ L∞loc(R+ ×R) as shown in the proof of Theo-
rem 1.3.1 and that ϕ is submultiplicative and locally bounded. Similar arguments
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applied to the pair Fn and F yield

E [ sup
(t,x)∈[0,T ]×U

∣(F − Fn)(t, x)∣α] ≤ CT ∫
R

sup
(t,x)∈[0,T ]×U

∣g∣α (t, x − y)1{∣y∣>n} dy

≤ CT ∫
R

sup
x∈U

Gα(∣x − y∣)1{∣y∣>n} dy

≤ CT ∫
R
Gα((∣y∣ −K) ∨ 0)1{∣y∣>n} dy, (1.6.10)

where we used the monotonicity of G. Now the last line goes to 0 by dominated
convergence because G(∣x∣) ∈ Lα(R). Altogether we obtain a t-càdlàg version of X.
◻

For the proof of Theorem 1.5.5 we need to resort to maximal inequalities for
multi-parameter martingales in line with [59, 89]. To this end, let ≤ denote the
partial order on R2 such that v = (v1, v2) ≤ w = (w1,w2) if and only if v1 ≤ w1 and
v2 ≤ w2. For two subsets I1 and I2 of R set I = I1 × I2. Now a family of sub-σ-
algebras G = (G(v))v∈I is called a filtration if G(v) ⊆ G(w) for all v ≤ w in I. A
stochastic process X indexed by I is called a martingale with respect G if X is
adapted to G, X(v) is integrable for all v ∈ I and E[X(w) ∣ G(v)] = X(v) for all
v ≤ w in I. Furthermore, we define the marginal filtrations G1 = (G1(v1))v1∈I1 and
G2 = (G2(v2))v2∈I2 through G1(v1) ∶= ⋁ξ∈I2 G(v1, ξ) and G2(v2) ∶= ⋁ξ∈I1 G(ξ, v2) and
set G∗(v1, v2) ∶= G1(v1) ∨ G2(v2). Then a martingale X is called an orthomartingale
if for each (i, j) ∈ {(1,2), (2,1)} and each fixed vi ∈ Ii, vj ↦X(v) is a one-parameter
martingale with respect toGj. Moreover, a martingaleX is called a strong martingale
if it satisfies the condition E[X((v1, v2), (w1,w2)] ∣ G∗(v1, v2)] = 0 for all (v1, v2) ≤
(w1,w2) in I, where X((v1, v2), (w1,w2)] ∶= X(w1,w2) − X(w1, v2) − X(v1,w2) +
X(v1, v2) is the two-dimensional increment. Further notation includes [v,w]≤ ∶= {u ∈
R2∶ v ≤ u ≤ w} for the closed interval from v to w with respect to the partial order ≤.
Similarly, for (t, x), (t̃, x̃) ∈ R+ ×R, [(t, x), (t̃, x̃)]⪯ ∶= {(s, y) ∈ R+ ×R∶ (t, x) ⪯ (s, y) ⪯
(t̃, x̃)} denotes the closed interval from (t, x) to (t̃, x̃) with respect to the partial
order ⪯ as defined in Section 1.5. Also, we use the abbreviations A ∶= −{(t, x) ∈
R+ ×R∶ ∣x∣ ≤ ct}, A(t, x) ∶= A + (t, x) and A+(t, x) ∶= A(t, x) ∩ (R+ ×R).

The following lemma extends the previously known maximal inequalities for
multi-parameter martingales [59, 89] to processes that are not martingales them-
selves but can be seen as “rotated martingales”. For later purposes, we also need the
situation where Λ is a not necessarily homogeneous Lévy basis (i.e., the coefficients
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b, σ and ν in (1.2.1) may depend on (t, x) in such a way that Λ(A) is well defined
for all A ∈ Bb(R+ ×Rd)).

Lemma 1.6.2. (1) If Λ is a (not necessarily homogeneous) Lévy basis with mean
0, the process

X(t, x) = ∫
t

0
∫
R
1A(t,x)(s, y)Λ(ds,dy) = Λ(A+(t, x)), (t, x) ∈ R+ ×R,

satisfies the maximal inequality

λP
⎡⎢⎢⎢⎣

sup
(s,y)∈[(t̃,x̃),(t,x)]⪯

∣X(s, y)∣ ≥ λ
⎤⎥⎥⎥⎦
≤ 13E [∣X(t, x)∣]

for every λ > 0 and (t̃, x̃) ⪯ (t, x) in R+ ×R.

(2) If Λ further has a finite p’th moment with some p > 1, then X satisfies

E
⎡⎢⎢⎢⎣

sup
(s,y)∈[(t̃,x̃),(t,x)]⪯

∣X(s, y)∣p
⎤⎥⎥⎥⎦
≤ ( p

p − 1
)

2p

E[∣X(t, x)∣p]

for every (t̃, x̃) ⪯ (t, x) in R+ ×R.

Proof. Without loss of generality we assume (t̃, x̃) = (0,0) and define a family of
sub-σ-algebras F = (F(s, y))(s,y)∈[(0,0),(t,x)]⪯ by

F(s, y) ∶= σ(X(τ, ξ)∶ (τ, ξ) ∈ R+ ×R, (τ, ξ) ⪯ (s, y)).

Then we have F(s̃, ỹ) ⊆ F(s, y) for every (s̃, ỹ) ⪯ (s, y) and the process X is inte-
grable and adapted to F on [(0,0), (t, x)]⪯. Next, we define for any (s̃, ỹ) ⪯ (s, y) in
[(0,0), (t, x)]⪯

M(s̃, ỹ) ∶= {{X(s1, y1) ∈ B1, ...,X(sn, yn) ∈ Bn}∶n ∈ N, (si, yi) ⪯ (s̃, ỹ),Bi ∈ B(R)}.

Then the properties of a Lévy basis implyX(s, y)−X(s̃, ỹ) ⊥⊥M(s̃, ỹ). SinceM(s̃, ỹ)
is intersection-stable, we get X(s, y)−X(s̃, ỹ) ⊥⊥ σ(M(s̃, ỹ)) = F(s̃, ỹ) and therefore

E[X(s, y) ∣ F(s̃, ỹ)] = E[Λ(A+(s̃, ỹ)) +Λ(A+(s, y)/A+(s̃, ỹ)) ∣ F(s̃, ỹ)]
= Λ(A+(s̃, ỹ)) +E[Λ(A+(s, y)/A+(s̃, ỹ)) ∣ F(s̃, ỹ)]
= Λ(A+(s̃, ỹ)) =X(s̃, ỹ). (1.6.11)
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We now transform X into a strong martingale by considering the function

H ∶ [(0,0), (t, x)]⪯ → [(0,0),H(t, x)]≤

given by

H(s, y) =
⎛
⎝

1√
2

− 1√
2

1√
2

1√
2

⎞
⎠
(1 0

0 1
c

)(s
y
) .

Note that the first matrix is the rotation matrix about 45 degrees counter-clockwise
and the second matrix is a rescaling in the space coordinate. It is easy to see that
H is in fact order-preserving and bijective. Now let X̃ be the push-forward process
of X through H, i.e. X̃(v1, v2) ∶= X(H−1(v1, v2)), and F̃ be the push-forward of
F through H, i.e. F̃(v1, v2) ∶= F(H−1(v1, v2)) for every (v1, v2) ∈ [(0,0),H(t, x)]≤.
Then F̃ is a filtration on [(0,0),H(t, x)]≤ and X̃ is a martingale with respect to
F̃ since the property in (1.6.11) of X is inherited through H. In fact, X̃ is even a
strong martingale because we have for (v1, v2) ≤ (w1,w2) in [(0,0),H(t, x)]≤ that

X̃((v1, v2), (w1,w2)]
= X̃(w1,w2) − X̃(v1,w2) − X̃(w1, v2) + X̃(v1, v2)
=X(H−1(w1,w2)) −X(H−1(v1,w2)) −X(H−1(w1, v2)) +X(H−1(w1,w2))
= Λ(A+(H−1(w1,w2))) −Λ(A+(H−1(v1,w2))) −Λ(A+(H−1(w1, v2)))
+Λ(A+(H−1(w1,w2)))

= Λ([H−1(v1, v2),H−1(w1,w2)]⪯),

where the last inequality follows from the triangular shape of A+. Moreover, letting
(u1, u2) ∶=H(t, x), we have

F̃∗(v1, v2) = F̃1(v1) ∨ F̃2(v2) = F̃(v1, u2) ∨ F̃(u1, v2)
= F(H−1(v1, u2)) ∨ F(H−1(u1, v2))
= σ (X(s, y)∶ (s, y) ∈ A+(H−1(v1, u2)) ∪A+(H−1(u1, v2))) .

With the same argument as in (1.6.11), we can show that

Λ([H−1(v1, v2),H−1(w1,w2)]⪯)

is independent of σ(X(s, y)∶ (s, y) ∈ A+(H−1(v1, u2)) ∪A+(H−1(u1, v2))), which im-
plies

E[X̃((v1, v2), (w1,w2)] ∣ F̃∗(v1, v2)] = 0.
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Therefore X̃ is a strong martingale with respect to F̃. This allows us to use Walsh’s
maximal inequality for strong martingales: by Corollary 3.4 in [89] we get

λP [ sup
(s,y)∈[(0,0),H(t,x)]≤

∣X̃(u1, u2)∣ ≥ λ] ≤ 13 sup
(s,y)∈[(0,0),H(t,x)]≤

E[∣X̃(u1, u2)∣]

= 13E[∣X̃(H(t, x))∣]

for all λ > 0. By the definition of X̃ this is equivalent to

λP [ sup
(s,y)∈[(0,0),(t,x)]⪯

∣X(s, y)∣ ≥ λ] ≤ 13E[∣X(t, x)∣].

The second part of the lemma can be proved similarly, using Cairoli’s maximal
inequality for orthomartingales (see e.g. Corollary 2.3.1 in [59]) and the fact that
a strong martingale is always an orthomartingale (see e.g. Proposition 1.1 in [89]).
◻

Proof. (of Theorem 1.5.5)
The cases where Λ is equal to the drift and Gaussian part, the compensated

small jumps part, or the large jumps part are considered separately.

Case 1: Λ(dt,dx) = bd(t, x) + σW (dt,dx).

Our assertion is proved once we can show both conditions of Theorem 1.5.1. The
second condition is obviously satisfied and the first condition follows similarly as in
Case 1 of the proof of Theorem 1.5.3 in conjunction with the boundedness of h. We
omit the details here.

Case 2: Λ(dt,dx) = ∫R z1{∣z∣≤1} (p − q)(dt,dx,dz).

The argument is similar to Case 2 of the proof of Theorem 1.5.3. Therefore, we only
highlight the major differences. Again, we take advantage of the fact that the Lévy
basis Λn(dt,dx) ∶= ∫R z1{1/n≤∣z∣≤1}1{∣x∣≤n} (p − q)(dt,dx,dz) has only finitely many
jumps on [0, T ] × R almost surely. Therefore, both Fn ∶= g ∗ Λn and ρ ∗ Fn have
⪯-càdlàg paths almost surely. Our claim is proved if we show that F n ∶= F −Fn and
ρ ∗F n = ρ ∗F − ρ ∗Fn both converge to 0, uniformly on compacts in probability. To
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this end, we estimate for (t1, x1) ⪯ (t2, x2) in R+ ×R and a sufficiently big T > 0

E
⎡⎢⎢⎢⎣

sup
(t,x)∈[(t1,x1),(t2,x2)]⪯

∣(ρ ∗ Fn)(t, x)∣
⎤⎥⎥⎥⎦

≤ ∫
T

0
∫
R
E
⎡⎢⎢⎢⎣

sup
(t,x)∈[(t1,x1),(t2,x2)]⪯

∣Fn(t − s, x − y)∣
⎤⎥⎥⎥⎦
∣ρ∣(ds,dy)

and use the fundamental theorem of calculus and the stochastic Fubini theorem to
split the last integrand into four parts according to

F n(t − u,x − η) = ∫
t−u

0
∫
R
1A(t−u,x−η)(s, y)h(t − u − s, x − η − y)Λn(ds,dy)

= ∫
t−u

0
∫
R
1A(t−u,x−η)(s, y)h(0,−η − y)Λn(ds,dy)

+ ∫
x−η

−η
∫

t−u

0
∫
R
1A(t−u,x−η)(s, y)h2(0, z − y)Λn(ds,dy)dz

+ ∫
t−u

0
∫

r

0
∫
R
1A(t−u,x−η)(s, y)h1(r − s,−η − y)Λn(ds,dy)dr

+ ∫
t−u

0
∫

x−η

−η
∫

r

0
∫
R
1A(t−u,x−η)(s, y)h12(r − s, z − y)Λn(ds,dy)dz dr, (1.6.12)

where (u, η) ∈ [0, t]×R, h1(t, x) = ∂th(t, x), h2(t, x) = ∂xh(t, x), h12(t, x) = ∂t∂xh(t, x)
and Λn = Λ − Λn. For the first summand, we have by Lemma 1.6.2 and a similar
reasoning as in (1.6.9) that

E [ sup
(t,x)∈[(t1,x1),(t2,x2)]⪯

∣∫
t−u

0
∫
R
1A(t−u,x−η)(s, y)h(0,−η − y)Λn(ds,dy)∣

2

]

≤ CTE [∣∫
t2−u

0
∫
R
1A(t2−u,x2−η)(s, y)h(0,−η − y)Λn(ds,dy)∣

2

]

converges to 0 as n→∞ and is bounded in (u, η) and n. Note that we have used that
h belongs to L2

loc(R+ ×R) since it is a bounded function in Lαloc(R+ ×R). Regarding
the second summand we have for sufficiently big ξ > 0 that

E [ sup
(t,x)∈[(t1,x1),(t2,x2)]⪯

∣∫
x−η

−η
∫

t−u

0
∫
R
1A(t−u,x−η)(s, y)h2(0, z − y)Λn(ds,dy)dz∣

2

]

≤ CT ∫
ξ−η

−ξ−η
E [ sup

(t,x)∈[(t1,x1),(t2,x2)]⪯
∣∫

t−u

0
∫
R
1A(t−u,x−η)(s, y)h2(0, z − y)Λn(ds,dy)∣

2

] dz

≤ CT ∫
ξ−η

−ξ−η
E [∣∫

t2−u

0
∫
R
1A(t2−u,x2−η)(s, y)h2(0, z − y)Λn(ds,dy)∣

2

] dz → 0,
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where we have used Lemma 1.6.2 and that h2 also belongs to L2
loc(R+×R). Analogous

calculations hold for the third and fourth summand. As a consequence, both F n and
ρ∗F n converge uniformly on compacts in probability to 0 by dominated convergence.

Case 3: Λ(dt,dx) = ∫R z1{∣z∣>1} p(dt,dx,dz).

In this case the same argument as in Case 3 of the proof of Theorem 1.5.3 applies
with 1−Ah instead of g. Notice that, under the current setting, the first integral in
(1.6.10) is actually taken for a bounded function on a compact subset of R (due to
the indicator 1−A), is therefore finite and tends to zero as n→∞. The only difference
appears in the case α = 1, where we cannot copy the proof of Theorem 1.5.3 since
Lemma 1.6.2(2) requires p > 1. Instead, we observe for any T > 0 and U = [−K,K] ⊆
R that

E [ sup
(t,x)∈[0,T ]×U

∣(ρ ∗ F − ρ ∗ Fn)(t, x)∣]

= E [ sup
(t,x)∈[0,T ]×U

∣∫
t

0
∫
R
(ρ ∗ g)(t − s, x − y) (Λ −Λn)(ds,dy)∣]

≤ ∫
T

0
∫
R

sup
(t,x)∈[0,T ]×U

∣(ρ ∗ g)∣ (t − s, x − y)1{∣y∣>n} d(s, y)∫
R
∣z∣1{∣z∣≥1} ν(dz)

≤ CT ∫
R

sup
(t,x)∈[0,T ]×U

∣(ρ ∗ g)∣ (t, x − y)1{∣y∣>n} dy

≤ CT ∫
R

sup
(t,x)∈[0,T ]×U

∫
t

0
∫
R
∣g(t − u,x − y − v)∣ ∣ρ∣(du,dv)1{∣y∣>n} dy

≤ CT ∫
T

0
∫
R
∫
R

sup
(t,x)∈[0,T ]×U

∣g(t − u,x − y − v)∣1{∣y∣>n} dy ∣ρ∣(du,dv), (1.6.13)

and that ∫R sup(t,x)∈[0,T ]×U ∣g(t−u,x−y−v)∣1{∣y∣>n} dy is bounded in (n,u, v) and goes
to 0 by dominated convergence since g = 1−Ah. Consequently also (1.6.13) tends to
0 by dominated convergence. The pair F and Fn can be treated analogously. ◻

1.6.4 Proof of Proposition 1.2.2

We first collect some useful properties of convolutions. The proof of the following
two lemmata is analogous to the one-parameter case (see Section 4.1 of [49] or
Example 10.3 of [77] for the first result, and Section 3.6 of [49] for the second
result).
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Lemma 1.6.3. Let S be Rd+1, R+ ×Rd or [0, T ] ×Rd and µ, η and π be measures
in M(S). Then

(1) µ ∗ η ∈M(S) and ∥µ ∗ η∥ ≤ ∥µ∥∥η∥,

(2) (µ ∗ η) ∗ π = µ ∗ (η ∗ π),

(3) µ ∗ η = η ∗ µ.

The statement is still valid if M(S) is replaced by Mloc(R+ ×Rd) and ∥ ⋅ ∥ in (1) is
replaced by the total variation norm on [0, T ] ×Rd for some arbitrary T ∈ R+.

Lemma 1.6.4. Let µ and η be measures in Mloc(R+ × Rd) and h ∈ Lploc(R+ × Rd).
Then the following statements hold for all p ∈ [1,∞].

(1) h ∗ µ ∈ Lploc(R+ ×Rd).

(2) (h ∗ µ) ∗ η = h ∗ (µ ∗ η) and (µ ∗ h) ∗ η = µ ∗ (h ∗ η).

(3) If additionally µ ∈M(R+ ×Rd) and h ∈ Lp(R+ ×Rd), then h ∗ µ also belongs to
Lp(R+ ×Rd).

Proof. (of Proposition 1.2.2) (1) Our proof extends Theorem 4.1.5 of [49], and
for the reader’s convenience we present the details in short. Note that this part can
alternatively be proven in a more abstract framework using Theorem 4.3.6(b) of
[71] involving the Jacobson radical of the commutative Banachalgebra (M([0, T ] ×
Rd),+,∗). First we show that for each positive T there is a unique ρT in M([0, T ] ×
Rd) such that

ρT + µT = µT ∗ ρT .

Here µT is the restriction of µ on [0, T ]×Rd. To show the existence of ρT we construct
a geometric series and use a Banach space argument. We first consider the special
case ∥µT ∥ = ∣µT ∣([0, T ] ×Rd) < 1. Defining

ρm ∶= −
m

∑
j=1

µ∗jT , m ∈ N,

we obtain

ρm + µT = −
m

∑
j=1

µ∗jT + µT = −
m

∑
j=2

µ∗jT = µT ∗ (−
m−1

∑
j=1

µ∗jT ) = µT ∗ ρm−1, m ∈ N/{1}.
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By Lemma 1.6.3, we have ∥µ∗jT ∥ ≤ ∥µT ∥j, so (ρm) is a Cauchy sequence and converges
to some ρT ∈M([0, T ] ×Rd) because M([0, T ] ×Rd) is a Banach space. In addition,
µT ∗ρm → µT ∗ρT inM([0, T ]×Rd) by Lemma 1.6.3, so that we get ρT +µT = µT ∗ρT .

In the general case where ∥µT ∥ is not necessarily smaller than one, we consider
the measure λm(ds,dy) ∶= e−ms µT (ds,dy) and note that for sufficiently large m
we have ∥λm∥ < 1 because µ({0} × Rd) = 0. In this case, by what we have already
proved, there exists a measure ηm satisfying ηm+λm = λm∗ηm. But then ρT (ds,dy) ∶=
ems ηm(ds,dy) satisfies

(ρT + µT )(ds,dy)
= ems ηm(ds,dy) + emse−ms µT (ds,dy) = ems ηm(ds,dy) + ems λm(ds,dy)
= ems (ηm(ds,dy) + λm(ds,dy)) = ems (λm ∗ ηm)(ds,dy)
= ([ems λm(ds,dy)] ∗ [ems ηm(ds,dy)])(ds,dy) = (µT ∗ ρT )(ds,dy),

where the fifth equation follows from the definition of the convolution. Thus ρT +µT =
µT ∗ ρT .

In order to show the uniqueness of ρT , we assume that there are ρT and ηT in
M([0, T ] ×Rd) with ρT + µT = µT ∗ ρT and ηT + µT = µT ∗ ηT . Then

ρT = µT ∗ ρt − µT = (µT ∗ ηT − ηT ) ∗ ρT − µT = ηT ∗ (µT ∗ ρT − ρT ) − µT = ηT ∗ µT − µT
= ηT .

Now, having constructed ρT for every positive T and noting that for every j ∈ N
the restriction of ρj+1 to [0, j] × Rd must be equal to ρj by uniqueness, we define
ρ to be the unique measure on R+ × Rd with ρ = ρT on [0, T ] × Rd. We still have
ρ ∈Mloc(R+ ×Rd) and ρ + µ = µ ∗ ρ, so the proof of (1) is complete.

(2) Let ρ be the resolvent of µ as in part (1). Then for F ∈ Lploc(R+ ×Rd) define X
by (1.2.4), which is well defined by Lemma 1.6.4. Also by Lemma 1.6.4, we obtain
X ∈ Lploc(R+ ×Rd) and

X − µ ∗X =X − µ ∗ (F − ρ ∗ F ) =X − (µ − µ ∗ ρ) ∗ F =X + ρ ∗ F = F,

thus X is a solution of (1.2.2). To show uniqueness let X̃ be an arbitrary solution
of (1.2.2) in Lploc(R+ ×Rd). Then

X̃ = F + µ ∗ X̃ = F + (ρ ∗ µ − ρ) ∗ X̃ = F − ρ ∗ (X̃ − µ ∗ X̃) = F − ρ ∗ F,
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hence X̃ =X.

(3) The assumptions on F guarantee thatX belongs to L(µ) and that all calculations
in the previous part remain valid. ◻

1.7 Examples of resolvents

In this section we derive formulae for tempo-spatial resolvents in various examples.
They are based on the following lemma whose proof follows directly from the defi-
nition of the resolvent measure.

Lemma 1.7.1. Suppose that µ ∈Mloc(R+×Rd) has a resolvent measure ρ ∈Mloc(R+×
Rd).

(1) If µ = m ⊗ δ0,Rd with some m ∈ Mloc(R+) satisfying m({0}) = 0 and r is the
temporal resolvent measure ofm (i.e., the unique r ∈Mloc(R+) with r∗m = r+m),
then ρ = r ⊗ δ0,Rd.

(2) If µ has a Lebesgue density k ∈ L1
loc(R+×Rd), then also ρ has a Lebesgue density

r ∈ L1
loc(R+ ×Rd), which is given by

r(t, x) = −
∞
∑
n=1

k∗n(t, x), (1.7.1)

where the series converges absolutely for almost every (t, x) ∈ R+ ×Rd.

(3) If in the situation of (2) we have that k(t, x) = −λf(x) with some f ∈ L1(Rd)
λ ∈ R, then (1.7.1) takes the form

r(t, x) = λ
∞
∑
n=1

(−λt)n−1

(n − 1)!
f∗n(x), (t, x) ∈ R+ ×Rd.

Example 1.7.2 We present some applications of Lemma 1.7.1.

(1) If µ = −λLebR+ ⊗ δ0,Rd is the measure considered in Examples 1.3.6 and 1.3.7,
the resolvent measure is given by ρ(dt,dx) = λe−λt dt δ0,Rd(dx).
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(2) Let f(x) = 1/(π(1 + x2)) be the density of the one-dimensional Cauchy(0,1)-
distribution. Then f∗n(x) = n/(π(x2 + n2)) is the density of the Cauchy(0, n)-
distribution and

r(t, x) = λ
∞
∑
n=1

(−λt)n−1

(n − 1)!
n

π(x2 + n2)
= λ

2πx
G(λt, x), (t, x) ∈ R+ ×R,

where G is the (real-valued) function given by

G(t, x) ∶= i(t−(1+ix)(Γ(1 + ix) − Γ(1 + ix, t) − Γ(2 + ix) + Γ(2 + ix, t))

− t−(1−ix)(Γ(1 − ix) − Γ(1 − ix, t) − Γ(2 − ix) + Γ(2 − ix, t))) (1.7.2)

and Γ(⋅, ⋅) is the upper incomplete gamma function.

(3) If f(x) = e−x1R+(x), then f∗n(x) = e−xxn−1((n − 1)!)−11R+(x) and hence

r(t, x) = λ
∞
∑
n=1

(−λt)n−1

(n − 1)!
xn−1e−x

(n − 1)!
1R+(x) =

⎧⎪⎪⎨⎪⎪⎩

λe−xJ0(
√

2λtx)1R+(x) if λ ≥ 0,

λe−xI0(
√

∣2λtx∣)1R+(x) if λ < 0,

where J0 (I0) is the (modified) zeroth order Bessel function of the first kind.

(4) If k is a multiple of the heat kernel, that is,

k(t, x) = λ(4πt)−d/2 exp(−∣x∣2/(4t))1(0,∞)(t),

for some λ ∈ R, we have k∗n(t, x) = (λt)n−1/(n − 1)!k(t, x) and therefore

r(t, x) = −
∞
∑
n=1

(λt)n−1

(n − 1)!
k(t, x) = −eλtk(t, x), (t, x) ∈ R+ ×Rd.

◻

1.8 Integrability properties of resolvents

In many cases integrability properties of resolvents are of interest, see for example
Theorem 1.3.3. In this section we present criteria for the resolvent ρ to lie inM(R+×
Rd). The conditions of the lemmata below are given in terms of the Laplace transform
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of the drift measure µ which is defined as follows: for a measure µ in M(Rd) the
Laplace transform µ̂(z) is the function

µ̂(z) = ∫
Rd

e−z⋅u µ(du),

defined for those z ∈ Cd for which the integral exists and where z ⋅ u denotes the
standard scalar product in Cd. Every µ ∈M(Rd) can be split into three parts, namely
the absolutely continuous part µc, the discrete part µd and the singular continuous
part µs. The next lemma can be proved analogously to the one-parameter case (see
Theorem 4.4.3 of [49]). We use the notation Re(z) for the real part of a complex
number z and iRd for the subspace of Cd consisting of all vectors whose entries have
all real part zero.

Lemma 1.8.1. Let µ ∈M(R+ ×Rd) satisfy

• µ({0} ×Rd) = 0,

• µ̂(τ, ξ) ≠ 1 for all Re(τ) ≥ 0, ξ ∈ iRd and

• infRe(τ)≥0,ξ∈iRd ∣µ̂d(τ, ξ) − 1∣ > ∥µs∥.

Then the resolvent ρ of µ belongs to M(R+ ×Rd).

In the special case where µ is absolutely continuous we can give a condition
which is both sufficient and necessary. Once again, the proof is analogous to the
one-parameter case, cf. Theorem 2.4.1 of [49].

Lemma 1.8.2. Let µ ∈M(R+ ×Rd) be absolutely continuous. Then the resolvent ρ
of µ belongs to M(R+ ×Rd) if and only if µ̂(τ, ξ) ≠ 1 for all Re(τ) ≥ 0 and ξ ∈ iRd.

Integrability of ρ is sufficient, but not necessary for the convolution operator
g ↦ ρ∗g to map L2

loc(R+×Rd) into L2
loc(R+×Rd). The following lemma is analogous

to the one-parameter case in Theorem 2.6.2 of [49] and provides a criterion in this
respect.

Lemma 1.8.3. Let µ ∈M(R+ ×Rd) be absolutely continuous and satisfy the condi-
tions

• supσ>0,(τ,ξ)∈Rd ∣ µ̂(σ+iτ,iξ)
µ̂(σ+iτ,iξ)−1 ∣ < ∞,

• ∫R+×Rd e−σt ∣µ∣(dt,dx) < ∞ for all σ > 0.

Then the convolution operator g ↦ ρ ∗ g maps L2
loc(R+ × Rd) continuously into

L2
loc(R+ ×Rd), where ρ is the resolvent of µ.
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Chapter 2:
Lévy-driven causal CARMA random fields

2.1 Introduction

Originally appearing in Doob [39], continuous-time autoregressive moving average
processes, or CARMA processes in short, are the continuous-time analogs of the
well-known ARMA processes (cf. Brockwell and Davis [23] for details on ARMA
processes). Nowadays, CARMA processes are well-studied objects due to the ex-
tensive research in recent years, which partially stems from the successful usage of
these processes as stochastic models for irregularly spaced or high-frequency data
(cf. the review article Brockwell [21] and the references therein). Applications can
be found in turbulence modeling [28], stochastic volatility modeling [10, 27, 87] and
the electricity market [14, 45], just to name a few.

Given two non-negative integers q < p and real coefficients a1, ..., ap, b0, ..., bp−1

such that bq ≠ 0 and bi = 0 for i > q, the CARMA(p, q) process (Y (t))t∈R is defined
as the solution to the observation and state equations

Y (t) = b⊺X(t), t ∈ R,
dX(t) = AX(t)dt + cdL(t), t ∈ R,

(2.1.1)

where b = (b0, ..., bp−1)⊺ ∈ Rp, c = (0, ...,0,1)⊺ ∈ Rp and the matrix A is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0

0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

−ap −ap−1 −ap−2 ⋯ −a1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

∈ Rp×p

if p > 1, and A = (−a1) if p = 1. Here it is assumed that L is a one-dimensional
Lévy process, that is, a process with independent and stationary increments, càdlàg
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sample paths and L(0) = 0 almost surely (cf. Sato [78] for details on Lévy processes).
Equations (2.1.1) can be interpreted as the pth-order stochastic differential equation

a(∂t)Y (t) = b(∂t)∂tL(t), t ∈ R, (2.1.2)

where the polynomials a(⋅) and b(⋅) are defined as

a(z) = zp + a1z
p−1 +⋯ + ap, and b(z) = b0 + b1z +⋯ + bp−1z

p−1. (2.1.3)

In fact, Equation (2.1.2) constitutes the continuous-time analog of the well-known
ARMA equations, which define the ARMA process in discrete time. However, since
the sample paths of a Lévy process are in general not differentiable, the definition of
CARMA processes is based on the state-space representation (2.1.1). Note that A is
the companion matrix of the polynomial a(⋅) and therefore the eigenvalues of A are
equal to the roots of a(⋅). Under the assumptions that a(⋅) and b(⋅) have no common
roots, the roots of a(⋅) have strictly negative real parts and the Lévy process L has a
finite logarithmic moment, it was shown in Brockwell and Lindner [24, Theorem 3.3]
that the CARMA equations have a unique strictly stationary solution Y on R with
representation

Y (t) = ∫
t

−∞
b⊺eA(t−s)cdL(s), t ∈ R. (2.1.4)

Moreover, the CARMA process is a causal function of the driving Lévy process
under the assumptions above, i.e., the value of Y (t) depends only on the values of
(L(s))s≤t and is independent of (L(s))s>t.

The aim of this chapter is to extend CARMA processes to multiple parameters in
order to obtain a tractable class of random fields indexed by Rd, which can be used
to model spatial or even tempo-spatial phenomena. A spatial extension has in fact
already been introduced in Brockwell and Matsuda [25]. Their isotropic CARMA
random field is defined as

Y (t) = ∫
Rd
g(t − s)dL(s), t ∈ Rd, (2.1.5)

where the radially symmetric kernel g is given by g(t) = ∑p
i=1 eλi∥t∥θ(λi)/φ′(λi),

t ∈ Rd, and the polynomials φ(⋅) and θ(⋅) have the forms φ(z) = ∏p
i=1(z2 − λ2

i ) and
θ(z) = ∏q

i=1(z2 − ξ2
i ) with λi, ξi ∈ C. Furthermore, each λi has a strictly negative

real part and L is a Lévy sheet on Rd, which is the multi-parameter analog of a
Lévy process. This procedure generates a versatile family of isotropic covariance
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functions in space, which are neither necessarily monotonically decreasing nor non-
negative. However, the CARMA process is classically defined through the state-space
representation (2.1.1), and the connection to these defining equations is unclear
in [25]. Therefore, we propose a different class of CARMA random fields based
on a system of stochastic partial differential equations (SPDEs) that constitutes a
generalization of (2.1.1). We will show that this system has a mild solution given by

Y (t) = ∫
t1

−∞
⋯∫

td

−∞
b⊺eA1(t1−s1)⋯eAd(td−sd)cdL(s), t = (t1, ..., td) ∈ Rd, (2.1.6)

and define the random field Y in (2.1.6) as the causal CARMA random field on Rd,
where A1, ...,Ad are companion matrices.

It turns out that many of the commonly known features of CARMA processes
can be recovered for this model, including for instance exponentially decaying au-
tocovariance functions and rational spectral densities. Moreover, the autocovariance
is in general anisotropic and non-separable. The path properties are also similar to
those we have in the one-dimensional case. More precisely, there exists a Hölder
continuous version under Gaussian noise, and in the presence of jumps, we may
use maximal inequalities for multi-parameter martingales in order to show the ex-
istence of càdlàg sample paths (see Definition 2.4.6). Furthermore, (2.1.6) reduces
to (2.1.4) if d = 1 and sampling on an equidistant lattice leads to an ARMA ran-
dom field under mild conditions. However, the moving average part has in general
infinitely many terms in contrast to the one-dimensional case. This is due to the
fact that a (q1, q2)-dependent random field is not always a MA(q1, q2) random field
(see Definition 2.4.9). We examine this issue in Examples 2.4.15 and 2.4.16.

The CARMA random field in this chapter is causal with respect to the spa-
tial partial order ≤ on Rd, which is taken componentwise. This quarter-plane-type
causality can be interpreted as a directional influence and has been incorporated in
several articles in the literature. For example, both Tjøstheim [86] and Drapatz [41]
consider quarter-plane ARMA models and they refer to applications in economet-
rics, veterinary epidemiology, geography, geology and image analysis. Furthermore,
[86] points out that causal representations exist for a wide class of random fields
and [41] mentions that statistical inference for such representations is often easier
to conduct.

The causal CARMA random field is related to some other classes of random fields.
It belongs to the class of ambit fields (see e.g. Barndorff-Nielsen et al. [12]), which
has applications in biology, finance or turbulence. In particular, causal CARMA
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random fields possess ambit sets which are translation invariant and have the form
of a quadrant if d = 2, an octant if d = 3, an orthant if d > 3, respectively. Additionally,
we will see that they constitute a parametric submodel of the Volterra-type Ornstein-
Uhlenbeck (VOU) processes studied in Pham and Chong [74] and they generalize
the multi-parameter Ornstein-Uhlenbeck process in Graversen and Pedersen [47].

This chapter is organized as follows: in Section 2.2, we first recall the notions of
Lévy bases, Lévy sheets and their integration theory to the extent necessary for this
chapter. At the beginning of Section 2.3 we derive a system of SPDEs (cf. (2.3.2)),
which lays the groundwork for extending the CARMA process. Afterwards, we define
the causal CARMA(p, q) random field and the more general causal GCARMA ran-
dom field, for which we drop the assumption that A1, ...,Ad are in companion form.
In Theorem 2.3.5 we show that these random fields exist under mild assumptions
and solve the SPDE system (2.3.2) in the mild sense. Furthermore, we investigate
the multi-parameter CARMA kernel in more detail and present several alternative
representations. This section concludes with a remark on the connection to the VOU
process studied in [74]. Section 2.4 is devoted to distributional and path properties
of causal CARMA random fields. Expressions for the autocovariance function (cf.
Theorem 2.4.1 and Proposition 2.4.3) and the spectral density (cf. Corollary 2.4.4)
are derived and Theorem 2.4.7 establishes some path properties. Finally, we inves-
tigate sampling properties of causal CARMA random fields. Under a mild spectral
condition, Theorem 2.4.13 shows that sampling on an equidistant lattice leads to a
spatial ARMA process, which generally has infinitely many moving average terms.
By contrast, Example 2.4.16 depicts a case with finitely many moving average terms.

The following notation will be used throughout this chapter: C denotes a generic
strictly positive constant which may change its value from line to line without affect-
ing any argumentation. We use 1{⋅} for the indicator function so that the Heaviside
function may be written as 1{t≥0}. If A is a matrix (or a vector), then A⊺ denotes the
transpose of A. The prime symbol ′ stands for differentiation of a univariate function.
For multivariate functions, we use ∂z for partial differentiation with respect to the
variable z, or ∂1 for partial differentiation with respect to the first variable. Compo-
nents of a d-dimensional vector u are denoted by u1, ..., ud if not stated otherwise.
Furthermore, ∥u∥ is the Euclidean norm, u ⋅ v ∈ R is the scalar product, u ⊙ v ∈ Rd

is the componentwise product and we write u ≤ v if and only if ui ≤ vi for all for
u, v ∈ Rd and i ∈ {1, ..., d}. The imaginary unit is i and we set R+ = [0,∞).
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2.2 Lévy bases and Lévy sheets

Throughout this chapter we will use homogeneous Lévy bases and we define them
directly through their Lévy-Itô decomposition as a sum of a deterministic drift part,
a Gaussian part, a compensated small jumps part and a large jumps part. From now
on, all stochastic objects live on a fixed complete probability space (Ω,F ,P).

Definition 2.2.1

(1) A homogeneous Lévy basis Λ on Rd is a family of random variables indexed by
the bounded Borel subsets of Rd such that for all A ∈ Bb(Rd) we have

Λ(A) = βLebRd(A) + σW (A) + ∫
Rd
∫
R
1A(s)z1{∣z∣≤1} (p − q)(ds,dz)

+ ∫
Rd
∫
R
1A(s)z1{∣z∣>1} p(ds,dz),

where

• LebRd is the Lebesgue measure on Rd and β ∈ R, σ ∈ R+ are constants,

• W is Gaussian white noise on Rd such that Var(W (A)) = LebRd(A) (for
more details see e.g. Chapter I in Walsh [90]),

• p is a Poisson random measure on Rd × R with intensity measure q =
LebRd ⊗ ν, where ν is a Lévy measure on R (see e.g. Chapter II in Ja-
cod and Shiryaev [56] for more details on Poisson random measures and
their integration theory).

(2) The triplet (β,σ2, ν) is called the characteristics of Λ. If ∫R ∣z∣1{∣z∣>1} ν(dz) < ∞,
we say that Λ has a finite first moment and define κ1 ∶= β + ∫R z1{∣z∣>1} ν(dz) as
the mean of Λ. Likewise, we say that Λ has a finite second moment and define
κ2 ∶= σ2 + ∫R z2 ν(dz) as the variance of Λ if ∫R z2 ν(dz) < ∞. The cumulant
generating function (or Lévy symbol) ζ ∶R→ C of Λ is given by

ζ(u) = iub − 1

2
u2σ2 + ∫

R
(eiuz − 1 − iu1{∣z∣≤1})ν(dz), u ∈ R.

(3) We associate with each homogeneous Lévy basis Λ on Rd a Lévy sheet (L(t))t∈Rd

via the equation

L(t) ∶= Λ({(s1t1, ..., sdtd)⊺∶ s1, ..., sd ∈ [0,1]}), t ∈ Rd.
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◻

The stochastic integral with respect to Lévy bases is for deterministic integrands
classically defined as in Rajput and Rosiński [75, Section II] (this paper uses the
term infinitely divisible independently scattered random measure for Lévy basis),
i.e., it is defined as the limit in probability of stochastic integrals of an approximating
sequence of simple functions, where the stochastic integral for simple functions is de-
fined canonically. We recall an integrability characterization from [75, Theorem 2.7]
in the next proposition.

Proposition 2.2.2. Let g∶Rd → R be a measurable function and Λ be a homogeneous
Lévy basis on Rd with characteristics (β,σ2, ν) and cumulant generating function ζ.
Then the stochastic integral ∫Rd g(s)Λ(ds) is well defined if and only if

(1) ∫
Rd

∣βg(s) + ∫
R
(zg(s)1{∣zg(s)∣≤1} − g(s)z1{∣z∣≤1})ν(dz)∣ ds < ∞,

(2) ∫
Rd
σ2∣g(s)∣2 ds < ∞,

(3) ∫
Rd
∫
R
(1 ∧ ∣zg(s)∣2)ν(dz)ds < ∞.

In this case, the stochastic integral is infinitely divisible with characteristic function

Φ(∫
Rd
g(s)Λ(ds)) (u) = exp{∫

Rd
ζ(ug(s))ds}

= exp{iuβg −
1

2
u2σ2

g + ∫
R
(eiuz − 1 − iu1{∣z∣≤1})νg(dz)} , u ∈ R,

and characteristic triplet (βg, σ2
g , νg) given by

• βg = ∫
Rd

(βg(s) + ∫
R
(zg(s)1{∣zg(s)∣≤1} − g(s)z1{∣z∣≤1})ν(dz))ds,

• σ2
g = ∫

Rd
σ2∣g(s)∣2 ds,

• νg(B) = ∫
Rd
∫
R
1{g(s)z∈B} ν(dz)ds for any Borel set B ∈ B(R).

The following proposition provides a sufficient integrability criterion which is
easier to check and will be useful later on. For its proof, we refer to Berger [15].
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Proposition 2.2.3. Let g∶Rd → R be a measurable function such that ∣g(x)∣ ≤
Ce−η∥x∥ for some positive constants C,η and Λ be a homogeneous Lévy basis on Rd

with ∫R log(∣z∣)d1{∣z∣>1} ν(dz) < ∞. Then g is integrable with respect to Λ.

Finally, the stochastic integral with respect to L is defined for exactly those
functions g which are integrable with respect to Λ and we set

∫
Rd
g(s)dL(s) ∶= ∫

Rd
g(s)Λ(ds).

2.3 Causal CARMA random fields as mild solutions
to a system of SPDEs

Our approach to defining a CARMA random field relies on a generalization of the
state-space Equations (2.1.1). As the first step, we reformulate (2.1.1) as

Y (t) = b⊺X(t), t ∈ R,
(Ip∂t −A)X(t) = cL̇(t), t ∈ R,

(2.3.1)

where Ip is the identity matrix in Rp×p, Ip∂t is a matrix whose entries are ∂t on
the diagonal and zero otherwise, and (Ip∂t −A) is a system of ordinary differential
operators with constant coefficients acting on the state vector X. The symbol L̇
denotes the formal partial differentiation of L in each of t’s components once. In
the purely temporal case, t is one-dimensional and thus L̇(t) coincides with ∂tL(t).
However, in d dimensions we have

L̇(t) = ∂1⋯∂dL(t), t ∈ Rd.

In order to lift Equations (2.3.1) to Rd, we iterate the system of differential operators
for each of t’s components, that is, we consider the system of SPDEs

Y (t) = b⊺X(t), t ∈ Rd,

DdX(t) = cL̇(t), t ∈ Rd,
(2.3.2)

where Dd is the system of linear partial differential operators

Dd = (Ip∂d −Ad)⋯(Ip∂1 −A1),
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Ai is the companion matrix to a monic polynomial ai(⋅) of degree p for each i = 1, ..., d

and L is the Lévy sheet associated to a homogeneous Lévy basis Λ on Rd. We are
interested in solutions to (2.3.2) and use the following notion, which is based on the
random field approach of Walsh [90].

Definition 2.3.1

(1) If G ∈ (D′(Rd))p×p is a matrix with entries in the space of real-valued distri-
butions D′(Rd) and the application of the system of linear partial differential
operators Dd on G satisfies DdG = Ipδ0, where δ0 is the Dirac delta function,
then G is called a fundamental solution of Dd to the right (see e.g. Section 3.8
in Hörmander [53]).

(2) If G ∈ (L1
loc(Rd))p×p is a fundamental solution of Dd to the right with entries in

the space of locally integrable functions L1
loc(Rd) and the random field

G ∗ (cΛ)(t) ∶= ∫
Rd
G(t − s)cΛ(ds), t ∈ Rd,

exists in the sense of Section 2.2, then b⊺(G ∗ (cΛ)) is called a mild solution to
(2.3.2). ◻

Remark 2.3.2 As in the purely temporal case, the derivative L̇ in Equations
(2.3.2) does not exist in the classical sense. Nevertheless, there is a version of L such
that L̇ exists in the distributional sense. It can then be identified with the homo-
geneous Lévy basis Λ in the sense that ⟨L̇, φ⟩ = ∫ φ(s)Λ(ds) for all test functions
φ ∈ D(Rd), where the angle brackets denote the application of the distribution L̇ to
φ (see Lemma 3.6 in Dalang and Humeau [38]). If in addition the Lévy measure ν
satisfies ∫∣x∣>1 ∣x∣α ν(dx) < ∞ for some α > 0, then L̇ is even a random element of the
space of tempered distributions S ′(Rd) (see Theorem 3.13 in [38]). ◻

Motivated by the solution formula (2.1.4) for the CARMA process, we define
the causal CARMA random field and we will subsequently show that it is a mild
solution to (2.3.2).

Definition 2.3.3 Let q and p be two non-negative integers such that q < p, b =
(b0, ..., bp−1)⊺ ∈ Rp with bq ≠ 0 and bi = 0 for i > q, c = (0, ...,0,1)⊺ ∈ Rp, and Ai be the
companion matrix to a monic polynomial ai of degree p with real coefficients and
roots having strictly negative real parts for i = 1, ..., d. A random field (Y (t))t∈Rd is
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called (causal) CARMA(p, q) random field if it satisfies the equations

Y (t) = b⊺X(t), t ∈ Rd,

X(t) = ∫
t1

−∞
⋯∫

td

−∞
eA1(t1−s1)⋯eAd(td−sd)cΛ(ds), t ∈ Rd,

(2.3.3)

where Λ is a homogeneous Lévy basis on Rd with ∫R log(∣z∣)d1{∣z∣>1} ν(dz) < ∞. A
(causal) CARMA(p,0) random field is also called a (causal) CAR(p) random field.
◻

Here causality is understood in the sense that the values of X(t) and Y (t) at
point t ∈ Rd only depend on the values of Λ on the set (−∞, t1] × ⋯ × (−∞, td].
Causal CARMA(p, q) random fields belong to the following class, for which we
drop the requirements that every Ai is a companion matrix and the specific choice
c = (0, ...,0,1)⊺.

Definition 2.3.4 Let p ≥ 1 be an integer, b, c ∈ Rp, Ai ∈ Rp×p with eigenvalues
having strictly negative real parts for i = 1, ..., d, and Λ be a homogeneous Lévy basis
on Rd with ∫R log(∣z∣)d1{∣z∣>1} ν(dz) < ∞. A random field (Y (t))t∈Rd is called (causal)
generalized CARMA (GCARMA) random field if it satisfies Equations (2.3.3). ◻

Since each CARMA(p, q) random field is also a GCARMA random field, every
result which applies to GCARMA random fields also applies to CARMA(p, q) ran-
dom fields. On the other hand, it is easy to find GCARMA random fields which are
not CARMA random fields if we fix the order p (cf. for instance Example 2.5.1).
The next theorem shows existence of GCARMA random fields and establishes the
connection to the system (2.3.2). In what follows, µi(λi) denotes the algebraic mul-
tiplicity of the eigenvalue λi with respect to the matrix Ai.

Theorem 2.3.5. Under the conditions of Definition 2.3.3 (resp. Definition 2.3.4)
the CARMA(p, q) (resp. GCARMA) random field (Y (t))t∈Rd exists and it is a mild
solution to (2.3.2).

Proof. For the existence we have to check that the stochastic integral in (2.3.3)
exists. Let Ai = SiJiS−1

i be a Jordan decomposition of Ai for i = 1, ..., d. Then we
have that eAi(ti−si) = SieJi(ti−si)S−1

i , from which we infer that each entry of the matrix
eAi(ti−si) is a (possibly complex) linear combination of

{(ti − si)kieλi(ti−si)∶λi is an eigenvalue of Ai, 0 ≤ ki ≤ µi(λi) − 1}
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for i = 1, ..., d. Hence, each component of the integrand eA1(t1−s1)⋯eAd(td−sd)c is a
(possibly complex) linear combination of the set

{(t1−s1)k1eλ1(t1−s1)⋯(td−sd)kdeλd(td−sd)∶λi is an eigenvalue of Ai, 0 ≤ ki ≤ µi(λi)−1}.

This shows that the integrability criteria of Proposition 2.2.3 are satisfied.
In order to show that Y is a mild solution to (2.3.2), we have to show that the

matrix-valued function

G(t) = eA1t1⋯eAdtd1{t≥0}, t ∈ Rd,

is a fundamental solution of

Dd = (Ip∂d −Ad)⋯(Ip∂1 −A1)

to the right. By line A.2.2 in the appendix of Ortner and Wagner [70], an application
of Dd on G yields

(Ip∂d −Ad)⋯(Ip∂1 −A1)eA1t1⋯eAdtd1{t1≥0}⋯1{td≥0}

= (Ip∂d −Ad)⋯(Ip∂2 −A2)Ipδ0(t1)eA2t2⋯eAdtd1{t2≥0}⋯1{td≥0}

= Ipδ0(t1)(Ip∂d −Ad)⋯(Ip∂2 −A2)eA2t2⋯eAdtd1{t2≥0}⋯1{td≥0}

= Ipδ0(t1)⋯Ipδ0(td) = Ipδ0(t),

where the derivatives are taken in the distributional sense and we have used the
tensor product of distributions in the last line (see e.g. Section 5.1 in Hörmander
[54]). Since G is also locally integrable, this finishes the proof. ◻

Example 2.3.6 (Stable GCARMA random fields) Let η > 0, 0 < α ≤ 2 and Λ

be a symmetric α-stable homogeneous Lévy basis with cumulant generating function

ζ(u) = −η∣u∣α, u ∈ R.

Since Λ has moments of any order strictly smaller than α, the GCARMA random
field (Y (t))t∈Rd of Definition 2.3.4 exists and Proposition 2.2.2 shows that for each
t ∈ Rd the characteristic function of Y (t) is

Φ (Y (t)) (u) = exp{−η∣u∣α∫
Rd
+

∣b⊺eA1s1⋯eAdsdc∣α ds} , u ∈ R.

Hence, Y (t) is symmetric α-stable with the same stability index as Λ. ◻
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The CARMA process in Equation (2.1.4) is a strictly stationary process. Simi-
larly, we have that every GCARMA random field Y is strictly stationary, that is,
for every n ∈ N and τ, t(1), ..., t(n) ∈ Rd the distributions of (Y (t(1)), ..., Y (t(n))) and
(Y (t(1) + τ), ..., Y (t(n) + τ)) are equal.

Corollary 2.3.7. Suppose that (Y (t))t∈Rd is a CARMA(p, q) (resp. GCARMA)
random field. Then it has the representation

Y (t) = (g ∗Λ)(t) ∶= ∫
Rd
g(t − s)Λ(ds), t ∈ Rd, (2.3.4)

where the CARMA(p, q) kernel (resp. GCARMA kernel) g is given by

g(s) = b⊺eA1s1⋯eAdsdc1{s≥0}

= ∑
λ1

µ1(λ1)−1

∑
k1=0

⋯∑
λd

µd(λd)−1

∑
kd=0

d(λ1, k1, ..., λd, kd)sk11 eλ1s1⋯skdd eλdsd1{s≥0}, (2.3.5)

s = (s1, ..., sd) ∈ Rd, {d(λ1, k1, ..., λd, kd)} is a set of complex coefficients and ∑λi de-
notes the sum over distinct eigenvalues of Ai for i = 1, ..., d. In particular, (Y (t))t∈Rd

is strictly stationary.

Proof. By the proof of Theorem 2.3.5, each component of eA1s1⋯eAdsdc, and there-
fore also b⊺eA1s1⋯eAdsdc, is a (possibly complex) linear combination of the set

{sk11 eλ1s1⋯skdd eλdsd ∶λi is an eigenvalue of Ai, 0 ≤ ki ≤ µi(λi) − 1}.

This fact and Equations (2.3.3) imply Equations (2.3.4) and (2.3.5). The strict
stationarity follows from Equation (2.3.4). ◻

A direct consequence of this representation is that, under the assumption that
each Ai has distinct eigenvalues, Y is the sum of pd dependent and possibly complex
valued CAR(1) random fields (cf. Proposition 2 in [27] for the temporal analog),
though some of which may vanish depending on the coefficients d(λ1, k1, ..., λd, kd).
Moreover, the kernel g in Equation (2.3.5) is anisotropic in contrast to the isotropic
CARMA random field in (2.1.5). Also, g is in general non-separable, i.e., it cannot
be written as a product of the form g(s) = g1(s1)⋯gd(sd).

In general, we do not have explicit formulae for the coefficients d(λ1, k1, ..., λd, kd)
in (2.3.5) since they involve the product of d different matrix exponentials. However,
explicit formulae can be derived in certain special cases. The next two results in
Proposition 2.3.8 and Theorem 2.3.10 give different methods for the calculation of
these coefficients provided that a CARMA(p, q) random field is given.
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Proposition 2.3.8. Suppose that (Y (t))t∈Rd is a CARMA(p, q) random field on Rd

such that A1 = ⋯ = Ad and the polynomials a1(⋅) and b(⋅) given in Definition 2.3.3
and (2.1.3) have no common roots. Then its kernel g as given in (2.3.5) can be
written as

g(s) = ∑
λ1

1

(µ1(λ1) − 1)!
[∂µ1(λ1)−1

z (z − λ1)µ1(λ1)ez(s1+⋯+sd)b(z)/a1(z)]
z=λ1

1{s≥0}

for s ∈ Rd. In particular, if A1 has distinct eigenvalues, the CARMA(p, q) kernel
reduces to

g(s) = ∑
λ1

b(λ1)
a′1(λ1)

eλ1(s1+⋯+sd)1{s≥0}, s ∈ Rd,

where a′1(⋅) is the derivative of the polynomial a1(⋅).

Proof. This follows directly from Lemma 2.3 in [24]. ◻

Lemma 2.3.9. Suppose that φ(⋅) and θ(⋅) are two (complex) polynomials such that
φ(⋅) has distinct roots, which have strictly negative real parts. Furthermore, assume
that ρ is a simple closed curve encircling the roots of φ(⋅) in the complex plane. Then
we have for every s ∈ R that

1

2πi ∫ρ
θ(z)
φ(z)

esz dz = ∑
λ

θ(λ)
φ′(λ)

esλ,

where ∑λ denotes the sum over the distinct roots of φ(⋅).

Proof. Let θ(⋅) has representation θ(z) = ∑n
k=0 θkz

k. Then, we observe that

1

2πi ∫ρ
θ(z)
φ(z)

esz dz =
n

∑
k=0

θk
2πi ∫ρ

zk

φ(z)
esz dz =

n

∑
k=0

θk∑
λ

λk

φ′(λ)
esλ = ∑

λ

θ(λ)
φ′(λ)

esλ,

where in the second equation we have used the residue theorem and evaluated the
residues. ◻

Theorem 2.3.10. Suppose that (Y (t))t∈Rd is a CARMA(p, q) random field such
that the polynomial ai(⋅) as given in Definition 2.3.3 has distinct roots for i = 1, ..., d.
Let ai(z) = ∑p

l=0αi,lz
p−l and define the polynomials

ai,k(z) ∶=
p−k
∑
l=0

αi,lz
p−k−l,
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for k = 1, ..., p and i = 1, ..., d. Then the CARMA(p, q) kernel g of Y as given in
(2.3.5) can be written as

g(s) = ∑
λ1

⋯∑
λd

(
p

∑
k1=1

⋯
p

∑
kd=1

bk1−1

λkd−1
d

a′d(λd)

d−1

∏
i=1

λki−1
i ai,ki+1(λi)
a′i(λi)

) eλ1s1+⋯+λdsd1{s≥0}, s ∈ Rd.

(2.3.6)

Proof. Denoting the (k, l)-entry of the matrix eAisi with m
(i)
k,l , we have by the

definition of the matrix product that

b⊺eA1s1⋯eAdsdc =
p

∑
k1=1

⋯
p

∑
kd+1=1

bk1−1m
(1)
k1,k2

m
(2)
k2,k3

⋯m(d)
kd,kd+1

ckd+1 ,

where we use the convention that b = (b0, ..., bp−1)⊺. Theorem 2.1 in [42] implies that

m
(i)
k,l =

1

2πi ∫ρi
zk−1ai,l(z)
ai(z)

ezsi dz,

where the contour integral is taken over a simple closed curve ρi encircling the
eigenvalues of Ai in the open left half of the complex plane. As a consequence, we
get that

g(s) =
p

∑
k1=1

⋯
p

∑
kd+1=1

bk1−1
1

2πi ∫ρ1
zk1−1a1,k2(z)

a1(z)
ezs1 dz

×⋯ × 1

2πi ∫ρd
zkd−1ad,kd+1(z)

ad(z)
ezsd dzckd+11{s≥0} (2.3.7)

for s ∈ Rd. Applying Lemma 2.3.9, we obtain that

g(s) =
p

∑
k1=1

⋯
p

∑
kd+1=1

∑
λ1

⋯∑
λd

bk1−1

λk1−1
1 a1,k2(λ1)
a′1(λ1)

eλ1s1⋯
λkd−1
d ad,kd+1(λd)

a′d(λd)
eλdsdckd+11{s≥0},

which after rearranging terms and recalling that c = (0, ...,0,1)⊺ yields Equation
(2.3.6). ◻

Remark 2.3.11 In the setting of Theorem 2.3.10, Equation (2.3.6) reduces for
d = 1 to

g(s) = ∑
λ1

b(λ1)
a′1(λ1)

eλ1s11{s≥0}, s ∈ R,
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which is the known kernel representation of a causal CARMA process (cf. Remark 5
in [21]). For d = 2, Equation (2.3.6) reduces to

g(s) = ∑
λ1

∑
λ2

(
p

∑
k=1

b(λ1)a1,k(λ1)λk−1
2

a′1(λ1)a′2(λ2)
) eλ1s1+λ2s21{s≥0}, s ∈ R2.

◻

Remark 2.3.12 At the end of this section we reveal a connection between CARMA
random fields and Volterra-type Ornstein-Uhlenbeck (VOU) processes as studied
in Pham and Chong [74]. A VOU process (W (t, x))(t,x)∈R+×Rd is a solution to the
stochastic tempo-spatial integral equation

W (t, x) = V (t, x) + ∫
t

0
∫
Rd
W (t − s, x − y)µV OU(ds,dy)

+ ∫
t

0
∫
Rd
gV OU(t − s, x − y)Λ(ds,dy),

where µV OU is a signed measure on R+ × Rd, gV OU ∶R+ × Rd → R is a measurable
function, V is a stochastic process on R+ ×Rd and Λ is a homogeneous Lévy basis.
Under the conditions of Theorem 3.3 in [74] and the particular choice of V specified
therein, the unique solution to this equation is given by

W (t, x) = ∫
t

−∞
∫
Rd

(gV OU − ρV OU ∗ gV OU)(t − s, x − y)Λ(ds,dy), (t, x) ∈ R ×Rd,

(2.3.8)
where ∗ denotes convolution and the resolvent ρV OU is another signed measure on
R+ ×Rd which is uniquely determined by µV OU through ρV OU ∗ ρV OU = ρV OU + ρV OU
(cf. Proposition 2.2 in [74]).

We want to show that GCARMA random fields, and thus also CARMA(p, q)
random fields, are parametric examples of VOU processes. In order to do so, we
consider a GCARMA random field Y on Rd+1. Since VOU processes are formulated
in space and time, we write Y as a function of (t, x) = (t, x1, ..., xd) ∈ Rd+1 instead
of t = (t1, ..., td+1) ∈ Rd+1 in this remark. Further, we assume for simplicity that the
matrices A1,...,Ad+1 in the definition of Y all have distinct eigenvalues. In this case,
the GCARMA random field Y satisfies

Y (t, x) = ∫
t

−∞
⋯∫

xd

−∞
∑
λ1

⋯ ∑
λd+1

d(λ1, ..., λd+1)eλ1(t−s)⋯eλd+1(xd−yd) Λ(ds,dy) (2.3.9)
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for (t, x) ∈ R ×Rd, which can be seen from Equations (2.3.4) and (2.3.5). The task
is now to find a suitable function gV OU and a suitable measure µV OU such that the
random field Y is of the form (2.3.8). For µV OU we may choose

µV OU = −λLebR+ ⊗ δ0,Rd

with some arbitrary real number λ > 0. Here, LebR+ denotes the Lebesgue measure
on R+ and δ0,Rd is the Dirac measure on Rd. According to Example B.2 in [74], the
corresponding resolvent ρV OU is then given by

ρV OU(ds,dy) = λe−λs ds δ0,Rd(dy).

With this in mind, we set

gV OU(s, y) = ∑
λ1

(λ1 + λ
λ1

eλ1s − λ

λ1

)(∑
λ2

⋯ ∑
λd+1

d(λ1, ..., λd+1)eλ2y1⋯eλd+1yd1{y≥0})

for (s, y) ∈ R ×Rd, and a basic calculation yields

(ρV OU ∗ gV OU)(s, y)

= ∑
λ1

( λ
λ1

eλ1s − λ

λ1

)(∑
λ2

⋯ ∑
λd+1

d(λ1, ..., λd+1)eλ2y1⋯eλd+1yd1{y≥0}) .

Plugging these two equations into (2.3.8) we observe that the two random fields in
(2.3.8) and (2.3.9) coincide, giving us the desired result. ◻

2.4 Distributional and path properties

In this section we examine several features of CARMA(p, q) random fields. We
investigate their autocovariance and their spectral density, followed by some path
properties. Moreover, we analyze in detail the restriction on an equidistant discrete
lattice.

2.4.1 Second-order structure

The first result in this section determines the autocovariance function. We use the
convention that Cov[V,W ] denotes the matrix (Cov[Vi,Wj])1≤i,j≤d for any two ran-
dom vectors V,W ∈ Rd.
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Theorem 2.4.1. Suppose that (Y (t))t∈Rd is a CARMA(p, q) (resp. GCARMA) ran-
dom field.

(1) If Λ has a finite first moment, then Y (t) and X(t) have as well for all t ∈ Rd.
They are given for t ∈ Rd by

E[X(t)] = κ1∫
Rd
+

eA1s1⋯eAdsdcds and E[Y (t)] = κ1∫
Rd
+

b⊺eA1s1⋯eAdsdcds.

(2) If Λ has further a finite second moment, then Y (t) and X(t) have as well for
all t ∈ Rd. They are given for t ∈ Rd by

Var[X(t)] = Σ ∶= κ2∫
Rd
+

eA1s1⋯eAdsdcc⊺eA
⊺

d
sd⋯eA

⊺

1s1 ds and Var[Y (t)] = b⊺Σb.

In this case, the autocovariance function γ of Y has the form

γ(t) = κ2∑
λ1

µ1(λ1)−1

∑
k1=0

⋯∑
λd

µd(λd)−1

∑
kd=0

∑
v∈{−1,1}d

dv(λ1, k1, ..., λd, kd)1{t⊙v∈Rd
+
}

× tk11 eλ1∣t1∣⋯tkdd eλd∣td∣, t ∈ Rd, (2.4.1)

where {dv(λ1, k1, ..., λd, kd)} is a set of complex coefficients for every v ∈ {−1,1}d
such that

dv(λ1, k1, ..., λd, kd) = d−v(λ1, k1, ..., λd, kd),

∑λi denotes the sum over distinct eigenvalues of Ai for i = 1, ..., d and µi(λi) is
the algebraic multiplicity of the eigenvalue λi with respect to the matrix Ai.

(3) If even further all Ai, i = 1, ..., d, commute, then the autocovariance function γ
of Y has representation

γ(t) = b⊺eA1∣t1∣1{t1≥0}⋯eAd∣td∣1{td≥0}ΣeA
⊺

1 ∣t1∣1{t1<0}⋯eA
⊺

d
∣td∣1{td<0}b, t ∈ Rd. (2.4.2)

Proof. We prove the statements for d = 2, the proof for higher dimensions is com-
pletely analogous. The expressions for E[X(t)], E[Y (t)], Var[X(t)] and Var[Y (t)]
are consequences of Corollary 4.2 in [74]. Additionally, a consideration of the involved
limits of integration yields for r ∈ R2 and t ∈ R2

+ that

Cov[X(r + t),X(r)] = κ2∫
R2
+

eA1(s1+t1)eA2(s2+t2)cc⊺eA
⊺

2s2eA
⊺

1s1 ds, (2.4.3)
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and

Cov[X(r + (t1,−t2)⊺),X(r)] = κ2∫
R2
+

eA1(s1+t1)eA2s2cc⊺eA
⊺

2(s2+t2)eA
⊺

1s1 ds. (2.4.4)

Since Y (r) = b⊺X(r), we have that Cov[Y (r+t), Y (r)] = b⊺Cov[X(r+t),X(r)]b and
Cov[Y (r + (t1,−t2)⊺), Y (r)] = b⊺Cov[X(r + (t1,−t2)⊺),X(r)]b. Using the symmetry
of γ and a similar argument as in the proof of Theorem 2.3.5, we obtain formula
(2.4.1). If the matrices A1 and A2 commute, then Equations (2.4.3) and (2.4.4)
simplify to

Cov[X(r + t),X(r)] = eA1t1eA2t2Σ,

and
Cov[X(r + (t1,−t2)⊺),X(r)] = eA1t1ΣeA

⊺

2t2 ,

which proves Equation (2.4.2). ◻

Remark 2.4.2 (1) For d = 2 Equations (2.4.1) and (2.4.2) simplify to

γ(t) = κ2∑
λ1

µ1(λ1)−1

∑
k1=0

∑
λ2

µ2(λ2)−1

∑
k2=0

(d(1,1)(λ1, k1, λ2, k2)1{t1t2≥0}

+ d(1,−1)(λ1, k1, λ2, k2)1{t1t2<0})tk11 eλ1∣t1∣tk22 eλ2∣t2∣, t ∈ R2,

and

γ(t) =
⎧⎪⎪⎨⎪⎪⎩

b⊺eA1∣t1∣eA2∣t2∣Σb, if t1t2 ≥ 0,

b⊺eA1∣t1∣ΣeA
⊺

2 ∣t2∣b, if t1t2 < 0.

(2) If all matrices A1, ...,Ad have distinct eigenvalues, then all eigenvalues have
algebraic multiplicity one. We write dv(λ1, ..., λd) instead of dv(λ1,0, ..., λd,0) in
Equation (2.4.1) in this case.

◻

Theorem 2.4.1 tells us that the value of the autocovariance function γ(t) depends
on the quadrant of R2, and more generally on the orthant of Rd, in which t lies. This
unique second-order structure is basically induced by the causality feature of the
random field Y . It is in particular neither isotropic, in contrast to the CARMA
model in [25] (see Theorem 2 in this reference), nor separable. Also, we remark that
two companion matrices commute if and only if they are equal and thus the third
part of Theorem 2.4.1 actually requires A1 = ⋯ = Ad in the case of a CARMA(p, q)
random field Y .
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The next result relates the coefficients dv(λ1, k1, ..., λd, kd) in Equation (2.4.1) to
the the coefficients d(λ1, k1, ..., λd, kd) of the kernel g in Equation (2.3.5). For brevity,
we only deal with the case where each matrix Ai has distinct eigenvalues and d = 2.

Proposition 2.4.3. Suppose that (Y (t))t∈R2 is a CARMA(p, q) (resp. GCARMA)
random field on the plane R2 such that Λ has a finite second moment, both A1 and
A2 have distinct eigenvalues and the GCARMA kernel is given by

g(s) =
p

∑
i1,i2=1

d(i1, i2)eλ1(i1)s1eλ2(i2)s21{s≥0}, s ∈ R2,

where (λn(in))1≤in≤p is an enumeration of the distinct eigenvalues of An for n = 1,2.
Then the autocovariance function of Y is

γ(t) = κ2

p

∑
i1,i2=1

(
p

∑
j1,j2=1

d(i1, i2)d(j1, j2)
(λ1(j1) + λ1(i1))(λ2(j2) + λ2(i2))

) eλ1(i1)t1eλ2(i2)t2 ,

if t1t2 ≥ 0, and

γ(t) = κ2

p

∑
i1,i2=1

(
p

∑
j1,j2=1

d(i1, j2)d(j1, i2)
(λ1(j1) + λ1(i1))(λ2(j2) + λ2(i2))

) eλ1(i1)t1eλ2(i2)t2 ,

if t1t2 < 0. In particular, we have for all i1, i2 = 1, ..., p that

d(1,1)(λ1(i1), λ2(i2)) = d(−1,−1)(λ1(i1), λ2(i2))

=
p

∑
j1,j2=1

d(i1, i2)d(j1, j2)
(λ1(j1) + λ1(i1))(λ2(j2) + λ2(i2))

,

and

d(1,−1)(λ1(i1), λ2(i2)) = d(−1,1)(λ1(i1), λ2(i2))

=
p

∑
j1,j2=1

d(i1, j2)d(j1, i2)
(λ1(j1) + λ1(i1))(λ2(j2) + λ2(i2))

.

Proof. It is sufficient to consider the case when t1 ≥ 0 and t2 ≥ 0 since all other
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cases follow analogously. Once again, Corollary 4.2 in [74] implies that

γ(t) = κ2∫
R2
+

g(s)g(s + t)ds

= κ2∫
R2
+

(
p

∑
i1,i2=1

d(i1, i2)eλ1(i1)s1eλ2(i2)s2)

× (
p

∑
i1,i2=1

d(i1, i2)eλ1(i1)(s1+t1)eλ2(i2)(s2+t2)) ds

= κ2

p

∑
i1,i2=1

d(i1, i2)eλ1(i1)t1eλ2(i2)t2

× (∫
R2
+

p

∑
j1,j2=1

d(j1, j2)e(λ1(j1)+λ1(i1))s1e(λ2(j2)+λ2(i2))s2 ds)

= κ2

p

∑
i1,i2=1

d(i1, i2)eλ1(i1)t1eλ2(i2)t2 (
p

∑
j1,j2=1

d(j1, j2)
(λ1(j1) + λ1(i1))(λ2(j2) + λ2(i2))

)

= κ2

p

∑
i1,i2=1

(
p

∑
j1,j2=1

d(i1, i2)d(j1, j2)
(λ1(j1) + λ1(i1))(λ2(j2) + λ2(i2))

) eλ1(i1)t1eλ2(i2)t2 .

◻

From Theorem 2.4.1 we observe that the autocovariance function γ of a GCARMA
random field is integrable over Rd. This property is also called short-range depen-
dency and it implies that the spectral density f of γ exists, which is defined as

f(ω) = 1

(2π)d ∫Rd
γ(t)e−iω⋅t dt, ω ∈ Rd.

We present an explicit formula in the case when all matrices Ai have distinct eigen-
values.

Corollary 2.4.4. Suppose that (Y (t))t∈Rd is a CARMA(p, q) (resp. GCARMA)
random field such that Λ has a finite second moment and Ai has distinct eigenvalues
for i = 1, ..., d. Then the spectral density f of Y has the form

f(ω) = κ2

(2π)d∑λ1
⋯∑

λd

∑
v∈{−1,1}d

dv(λ1, ..., λd)
(iv1ω1 − λ1)⋯(ivdωd − λd)

, ω ∈ Rd. (2.4.5)

Proof. Equation (2.4.1) shows that

γ(t) = κ2∑
λ1

⋯∑
λd

∑
v∈{−1,1}d

dv(λ1, ..., λd)1{t⊙v∈Rd
+
}e
λ1∣t1∣+⋯+λd∣td∣, t ∈ Rd.
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We also have that
∫
R
1{tivi≥0}e

λi∣ti∣e−iωiti dti =
1

iviωi − λi
for i = 1, ..., d and ωi ∈ R. Hence, we get (2.4.5) by applying the Fourier transform.
◻

Example 2.4.5 (Second-order structure of a CAR(p) random field on the
plane)
Let (Y (t))t∈R2 be a CAR(p) random field on the plane R2 such that Λ has a fi-
nite second moment and both A1 and A2 have distinct eigenvalues. Recall from
Equation (2.3.7) that the CAR(p) kernel g has the representation

g(s) =
p

∑
k=1

1

(2πi)2 ∫ρ1
a1,k(z)
a1(z)

ezs1 dz∫
ρ2

zk−1

a2(z)
ezs2 dz1{s≥0}, s = (s1, s2) ∈ R2,

where we use the notation of Theorem 2.3.10. Since ∣a1,k(z)/a1(z)∣ = O(∣z∣−1) as
z →∞, an application of Theorem 2.2 of Chapter VI in [64] yields

g(s) =
p

∑
k=1

1

(2π)2 ∫R

a1,k(iω1)
a1(iω1)

eiω1s1 dω1∫
R

(iω2)k−1

a2(iω2)
eiω2s2 dω2

= 1

(2π)2 ∫R
∫
R

p

∑
k=1

a1,k(iω1)(iω2)k−1

a1(iω1)a2(iω2)
ei(ω1s1+ω2s2) dω1 dω2, s = (s1, s2) ∈ R2.

This allows us to recognize that the Fourier transform of g is equal to

g̃(ω) =
p

∑
k=1

a1,k(iω1)(iω2)k−1

a1(iω1)a2(iω2)
, ω = (ω1, ω2) ∈ R2,

which immediately implies the spectral density

f(ω) = κ2

(2π)2
∣g̃(ω)∣2 =

κ2

(2π)2
(

p

∑
k=1

a1,k(iω1)(iω2)k−1

a1(iω1)a2(iω2)
)(

p

∑
l=1

a1,l(−iω1)(−iω2)l−1

a1(−iω1)a2(−iω2)
) .

Furthermore, we conclude for the autocovariance function that

γ(t) = ∫
R
∫
R
f(ω)ei(ω1t1+ω2t2) dω1 dω2

= κ2

(2π)2

p

∑
k,l=1

∫
R

a1,k(iω1)a1,l(−iω1)
a1(iω1)a1(−iω1)

eiω1t1 dω1∫
R

(iω2)k−1(−iω2)l−1

a2(iω2)a2(−iω2)
eiω2t2 dω2

= κ2

p

∑
k,l=1

⎛
⎝∑λ1

a1,k(λ1)a1,l(−λ1)1{t1≥0} + a1,k(−λ1)a1,l(λ1)1{t1<0}

a′1(λ1)a1(−λ1)
eλ1∣t1∣

⎞
⎠
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×
⎛
⎝∑λ2

λk−1
2 (−λ2)l−11{t2≥0} + (−λ2)k−1λl−1

2 1{t2<0}

a′2(λ2)a2(−λ2)
eλ2∣t2∣

⎞
⎠

= κ2∑
λ1

∑
λ2

⎡⎢⎢⎢⎢⎣

p

∑
k,l=1

a1,k(λ1)a1,l(−λ1)λk+l−2
2

a′1(λ1)a1(−λ1)a′2(λ2)a2(−λ2)

× ((−1)l−11{t1t2≥0} + (−1)k−11{t1t2<0})
⎤⎥⎥⎥⎥⎦
eλ1∣t1∣+λ2∣t2∣, t = (t1, t2) ∈ R2,

where in the third equation we have used Lemma 2.3.9 and Theorem 2.2 of Chapter
VI in [64]. We remark that the procedure in this example cannot be extended to
CARMA(p, q) random fields with q > 0 since ∣b(z)a1,k(z)/a1(z)∣ = O(∣z∣−1) would
not be satisfied for each k = 1, ..., p. ◻

2.4.2 Path properties

Path properties for CARMA(p, q) processes can easily be deduced from Equations
(2.1.1). The sample paths of each CARMA(p, q) process are (p− q − 2)-times differ-
entiable, provided p > q + 2, or continuous, provided p = q + 2, or càdlàg, provided
p = q + 1 (see e.g. Equation (31) in [21] for more details). If additionally the driving
noise is a Brownian motion, then even more regularity can be obtained.

For the class of spatial CARMA(p, q) random fields it is harder to establish path
properties since the system of SPDEs (2.3.2) does not allow for the same reasoning
as (2.1.1) does. However, by drawing on maximal inequalities for multi-parameter
martingales, we are able to prove the existence of a version having the path property
in Definition 2.4.6, which also represents a possible generalization of the classical
càdlàg property. As usual, we say that a process (Ỹ (t))t∈Rd is a version of the process
(Y (t))t∈Rd if for every t ∈ Rd the equality Ỹ (t) = Y (t) holds almost surely.

Definition 2.4.6

(1) We write v ≰ w if and only if vi > wi for at least one i ∈ {1, ..., d}. Also, for
v,w ∈ Rd we define the interval [v,w] ∶= {s ∈ Rd∶ v ≤ s ≤ w}, which may be
empty.

(2) A function f ∶Rd → R is càdlàg if for every t ∈ Rd,

lim
s→t
s≥t

f(s) = f(t) and lim
s→t
s≱t

f(s) exists.
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◻

Theorem 2.4.7. Suppose that (Y (t))t∈Rd is a CARMA(p, q) (resp. GCARMA) ran-
dom field.

(1) If the homogeneous Lévy basis Λ is Gaussian, then Y has a version which is
Hölder continuous with any exponent in (0,1/2).

(2) If the Lévy measure ν of Λ satisfies ∫∣x∣>1 ∣x∣α ν(dx) < ∞ for some α ∈ (0,1], then
Y has a càdlàg version.

Proof. We only prove the assertions in two dimensions since higher dimensions
can be treated completely analogously.

(1) Without loss of generality, we assume that β = 0, that is, Λ has mean zero. Recall
from Equation (2.4.1) that the autocovariance function is given by

γ(t) = κ2∑
λ1

µ1(λ1)−1

∑
k1=0

∑
λ2

µ2(λ2)−1

∑
k2=0

(d(1,1)(λ1, µ1, λ2, µ2)1{t1t2≥0}

+ d(1,−1)(λ1, µ1, λ2, µ2)1{t1t2<0})tk11 eλ1∣t1∣tk22 eλ2∣t2∣, t ∈ R2.

This allows us to conclude that every t ∈ Rd and every s ∈ Rd with sufficiently small
norm ∥s∥ satisfy

E[∣Y (t) − Y (t + s)∣2] = 2(γ(0) − γ(s)) ≤ C∥s∥.

Hence, applying Kolmogorov’s continuity theorem (see e.g. Theorem 3.23 of [57])
and the fact that Y is a Gaussian process finishes the proof of the first part.

(2) The proof of the second part is similar to the proof of Theorem 5.5 in [74]. We
therefore only sketch the main ideas. Due to the first part above, we may assume
that σ2 = β = 0. The remaining compensated small jumps part and large jumps part
are considered separately.

Case 1: Λ(ds) = ∫R z1{∣z∣≤1} (p − q)(ds,dz).

Referring to Equation (2.3.4), we observe that the claim clearly holds true for the
process g ∗ Λn with Λn(ds) ∶= ∫R z1{1/n≤∣z∣≤1}1{∣s∣≤n} (p − q)(ds,dz) since the latter
has only finitely many jumps. Consequently, we may close this case once we are
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able to show that g ∗Λn converges uniformly on compacts in probability to 0, where
Λn ∶= Λ − Λn. By the fundamental theorem of calculus, we have for the GCARMA
kernel g that

g(t1 − s1, t2 − s2) = g(−s1,−s2) + ∫
t1

0
∂1g(r1 − s1,−s2)dr1

+ ∫
t2

0
∂2g(−s1, r2 − s2)dr2

+ ∫
t1

0
∫

t2

0
∂1∂2g(r1 − s1, r2 − s2)dr2dr1.

Putting this decomposition into g ∗Λn, we end up with four processes which can be
handled one by one. For instance, the last one satisfies

E [ sup
t∈[−v,v]

∣∫
t1

−∞
∫

t2

−∞
∫

t1

0
∫

t2

0
∂1∂2g(r1 − s1, r2 − s2)dr2dr1Λn(ds1,ds2)∣

2

]

≤ C ∫
v1

−v1
∫

v2

−v2
E [ sup

t∈[−v,v]
∣∫

t1

−∞
∫

t2

−∞
∂1∂2g(r1 − s1, r2 − s2)Λn(ds1,ds2)∣

2

] dr2dr1

≤ C ∫
v1

−v1
∫

v2

−v2
E [∣∫

v1

−∞
∫

v2

−∞
∂1∂2g(r1 − s1, r2 − s2)Λn(ds1,ds2)∣

2

] dr2dr1

for some v ∈ R2
+. Note that we have used a stochastic Fubini theorem (see e.g.

Theorem 2 in [66]) in the second line and Cairoli’s maximal inequality (see e.g.
Corollary 2.3.1 of Chapter 7 in [59]) in the third line, which in turn converges to
zero as n tends to infinity due to the dominated convergence theorem. The three
other parts in the decomposition can be dealt with analogously.

Case 2: Λ(ds) = ∫R z1{∣z∣>1} p(ds,dz).

The difference between this case and the previous one is that

Λn(ds) ∶= ∫
R
z1{∣z∣>1}1{∣s∣≤n} p(ds,dz)

and instead of decomposing g, we directly estimate

E [ sup
t∈[−v,v]

∣∫
t1

−∞
∫

t2

−∞
g(t1 − s1, t2 − s2)Λn(ds1,ds2)∣

α

]

≤ E [ sup
t∈[−v,v]

∫
t1

−∞
∫

t2

−∞
∫
R
g(t1 − s1, t2 − s2)α∣z∣α1{∣z∣>1}1{∣s∣>n} p(ds,dz)]

≤ ∫
v1

−∞
∫

v2

−∞
sup

t∈[−v,v]
g(t1 − s1, t2 − s2)α1{∣s∣>n} ds1ds2∫

R
∣z∣α1{∣z∣>1} dz.
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The first integral in the last line is well defined and converges to zero as n →∞ by
dominated convergence. ◻

Remark 2.4.8 The notion of càdlàg functions in Definition 2.4.6 is slightly stronger
than the notion of lamp functions (for limits along monotone paths), which is for
instance defined in [83] and also in [38]. ◻

2.4.3 Sampling on an equidistant lattice

Real-life phenomena and data thereof are usually observed and digitally stored only
for a set of discrete points even if the underlying dynamics are of a continuous na-
ture. Therefore, it is desirable to understand the behavior of a continuous model
when it is discretely sampled. If the driving Lévy process has a finite second mo-
ment, it is known that an equidistantly sampled CARMA(p, q) process is always
an ARMA(p, p − 1) process driven by a weak white noise. This fact follows from
Lemma 2.1 in [24] in conjunction with Proposition 3.2.1 in [23]. We are going to
generalize these two results to higher dimensions. All results in this subsection are
formulated on the plane for simplicity and we use subscripts to indicate discrete
parameters.

Definition 2.4.9

(1) A random field (Yt)t∈Z2 is called weakly stationary if it has finite second moments
and Cov[Yt, Ys] = Cov[Yt−s, Y0] =∶ γ(t − s) for every t, s ∈ Z2. It is called a white
noise if γ(t) = 0 for every 0 ≠ t ∈ Z2. Furthermore, a weakly stationary random
field (Yt)t∈Z2 is called (q1, q2)-dependent if its autocovariance function γ satisfies
γ(t) = 0 whenever ∣t1∣ > q1 or ∣t2∣ > q2, and if there are points u, v ∈ Z2 such that
∣u1∣ = q1, ∣v2∣ = q2, γ(u) ≠ 0 and γ(v) ≠ 0. Its spectral density f is then defined by

f(ω) = 1

(2π)2 ∑
t∈Z2

γ(t)e−iω⋅t, ω ∈ [−π,π]2.

(2) Let p1, p2, q1 and q2 be non-negative integers and (Zt)t∈Z2 be a white noise on
Z2. A random field (Yt)t∈Z2 is called an ARMA((p1, p2), (q1, q2)) random field if
it satisfies the equation

p1

∑
k1=0

p2

∑
k2=0

φkYt−k =
q1

∑
k1=0

q2

∑
k2=0

θkZt−k, t ∈ Z2,
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where φk, θk ∈ C are coefficients such that φ0 ≠ 0, θ0 ≠ 0, at least one of the
coefficients φ(p1,⋅) is non-zero and similarly for φ(q1,⋅),φ(⋅,p2) and φ(⋅,q2). This ran-
dom field is also called AR((p1, p2)) random field if q1 = q2 = 0 and MA((q1, q2))
random field if p1 = p2 = 0.

(3) Let P and Q be two non-empty subsets of Z2 and (Zt)t∈Z2 be a white noise on
Z2. A random field (Yt)t∈Z2 is called an ARMA(P,Q) random field if it satisfies
the equation

∑
k∈P

φkYt−k = ∑
k∈S

θkZt−k, t ∈ Z2,

where φk, θk ∈ C are non-zero coefficients. This random field is also called AR(P )
random field if Q = {(0,0)} and MA(Q) random field if P = {(0,0)}. ◻

Before we investigate the general GCARMA random field, let us consider the
special case of a CAR(1) random field (Y (t))t∈R2 first. Assuming that b = 1, we have
the representation

Y (t) = ∫
t1

−∞
∫

t2

−∞
eλ1(t1−s1)+λ2(t2−s2) Λ(ds), t ∈ R2,

where the real numbers λ1 and λ2 are strictly negative. This allows us to observe
that

Y (t1, t2) = eλ1Y (t1 − 1, t2) + eλ2Y (t1, t2 − 1) − eλ1+λ2Y (t1 − 1, t2 − 1)

+ ∫
t1

t1−1
∫

t2

t2−1
eλ1(t1−s1)+λ2(t2−s2) Λ(ds), t ∈ R2. (2.4.6)

Setting Yt ∶= Y (t) for t ∈ Z2, we conclude that the sampled random field (Yt)t∈Z2 is
an AR((1,1)) random field driven by the i.i.d. noise

Zt ∶= ∫
t1

t1−1
∫

t2

t2−1
eλ1(t1−s1)+λ2(t2−s2) Λ(ds).

With a little more effort, this procedure carries over to a more general case.

Proposition 2.4.10. Suppose that (Y (t))t∈R2 is a GCARMA random field on the
plane R2 such that A1 and A2 commute. Then the sampled random field (Yt)t∈Z2

satisfies the equation

p

∑
k1,k2=0

dkYt−k =
p−1

∑
k1,k2=0

⎛
⎝

k1

∑
l1=0

k2

∑
l2=0

dlb
⊺e(k1−l1)A1+(k2−l2)A2

⎞
⎠
Rt−k, t ∈ Z2, (2.4.7)
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where the coefficients dk ∈ C are given by

d0,0z
p + d1,0z

p−1 +⋯ + dp,0 = χeA1(z) ∶= ∏
λ1

µ1(λ1)−1

∏
k1=0

(z − eλ1)

d0,0z
p + d0,1z

p−1 +⋯ + d0,p = χeA2(z) ∶= ∏
λ2

µ2(λ2)−1

∏
k2=0

(z − eλ1)

dk1,k2 = dk1,0d0,k2 , k1, k2 = 1, ..., p,

and the multivariate i.i.d. noise (Rt)t∈Z2 is given by

Rt = ∫
t1

t1−1
∫

t2

t2−1
eA1(t1−s1)+A2(t2−s2)cΛ(ds), t ∈ Z2.

In particular, the right-hand side of (2.4.7) is a (p−1, p−1)-dependent random field
if Λ has a finite second moment.

Proof. We extend the proof of Lemma 2.1 in Brockwell and Lindner [24] which
requires several additional steps that do not appear in the one-dimensional case. To
this end, we show by induction that for all t ∈ Z2, n ∈ N∪{0} and coefficients fk ∈ C
with k1, k2 = 0,1, ..., n we have

n

∑
k1,k2=0

fkXt−k =
n−1

∑
k1,k2=0

⎛
⎝

k1

∑
l1=0

k2

∑
l2=0

fle
(k1−l1)A1+(k2−l2)A2

⎞
⎠
Rt−k (2.4.8)

+
n−1

∑
k2=0

⎛
⎝

n

∑
k1=0

fke
(n−k1)A1

⎞
⎠
Xt1−n,t2−k2 +

n−1

∑
k1=0

⎛
⎝

n

∑
k2=0

fke
(n−k2)A2

⎞
⎠
Xt1−k1,t2−n

+
⎛
⎝
fn,nIp −

n−1

∑
k1,k2=0

fke
(n−k1)A1+(n−k2)A2

⎞
⎠
Xt1−n,t2−n =∶ S1 + S2 + S3 + S4.

The case n = 0 is trivial. Assuming that the statement is valid for some n, we observe
that

S2 =
⎛
⎝

n

∑
k1=0

fk1,0e(n−k1)A1
⎞
⎠
⎛
⎝
eA1Xt1−n−1,t2 + eA2Xt1−n,t2−1 + eA1+A2Xt1−n−1,t2−1 +Rt1−n,t2

⎞
⎠

+
n−1

∑
k2=1

⎛
⎝

n

∑
k1=0

fke
(n−k1)A1

⎞
⎠
Xt1−n,t2−k2

=
⎛
⎝

n

∑
k1=0

fk1,0e(n+1−k1)A1
⎞
⎠
Xt1−n−1,t2 +

⎛
⎝

n

∑
k1=0

fk1,0e(n−k1)A1
⎞
⎠
Rt1−n,t2
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−
⎛
⎝

n

∑
k1=0

fk1,0e(n+1−k1)A1+A2
⎞
⎠
Xt1−n−1,t2−1 +

⎛
⎝

n

∑
k1=0

fk1,0e(n−k1)A1+A2
⎞
⎠
Xt1−n,t2−1

+
n−1

∑
k2=1

⎛
⎝

n

∑
k1=0

fke
(n−k1)A1

⎞
⎠
Xt1−n,t2−k2

=
M

∑
k2=0

⎛
⎝

n

∑
k1=0

fke
(n+1−k1)A1

⎞
⎠
Xt1−n−1,t2−k2 +

M

∑
k2=0

⎛
⎝

n

∑
l1=0

k2

∑
l2=0

fle
(n−l1)A1+(k2−l2)A2

⎞
⎠
Rt1−n,t2−k2

−
⎛
⎝

M

∑
k2=0

n

∑
k1=0

fke
(n+1−k1)A1+(M+1−k2)A2

⎞
⎠
Xt1−n−1,t2−M−1

+
⎛
⎝

M

∑
k2=0

n

∑
k1=0

fke
(n−k1)A1+(M+1−k2)A2

⎞
⎠
Xt1−n,t2−M−1

+
n−1

∑
k2=M+1

⎛
⎝

n

∑
k1=0

fke
(n−k1)A1

⎞
⎠
Xt1−n,t2−k2

=
n−1

∑
k2=0

⎛
⎝

n

∑
k1=0

fke
(n+1−k1)A1

⎞
⎠
Xt1−n−1,t2−k2 +

n−1

∑
k2=0

⎛
⎝

n

∑
l1=0

k2

∑
l2=0

fle
(n−l1)A1+(k2−l2)A2

⎞
⎠
Rt1−n,t2−k2

−
⎛
⎝

n−1

∑
k2=0

n

∑
k1=0

fke
(n+1−k1)A1+(n−k2)A2

⎞
⎠
Xt1−n−1,t2−n

+
⎛
⎝

n−1

∑
k2=0

n

∑
k1=0

fke
(n−k1)A1+(n−k2)A2

⎞
⎠
Xt1−n,t2−n =∶ U1 +U2 +U3 +U4,

where M is just an induction parameter ranging from 0 to n − 1 and we have used
a similar calculation as in (2.4.6). By symmetry we have that

S3 =
n−1

∑
k1=0

⎛
⎝

n

∑
k2=0

fke
(n+1−k2)A2

⎞
⎠
Xt1−k1,t2−n−1 +

n−1

∑
k1=0

⎛
⎝

k1

∑
l1=0

n

∑
l2=0

fle
(k1−l1)A1+(n−l2)A2

⎞
⎠
Rt1−k1,t2−n

−
⎛
⎝

n

∑
k2=0

n−1

∑
k1=0

fke
(n−k1)A1+(n+1−k2)A2

⎞
⎠
Xt1−n,t2−n−1

+
⎛
⎝

n

∑
k2=0

n−1

∑
k1=0

fke
(n−k1)A1+(n−k2)A2

⎞
⎠
Xt1−n,t2−n =∶ V1 + V2 + V3 + V4.

Moreover, we may sum up

S4 +U4 + V4 =
⎛
⎝

n

∑
k1,k2=0

fke
(n−k1)A1+(n−k2)A2

⎞
⎠
⎛
⎝
eA1Xt1−n−1,t2−n + eA2Xt1−n,t2−n−1
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− eA1+A2Xt1−n−1,t2−n−1 +Rt1−n,t2−n
⎞
⎠
=∶W1 +W2 +W3 +W4,

and also
n

∑
k1,k2=0

fkXt−k = S1 + S2 + S3 + S4

= (S1 +U2 + V2 +W4) + (U1 +U3 +W1) + (V1 + V3 +W2) +W3

=
n

∑
k1,k2=0

⎛
⎝

k1

∑
l1=0

k2

∑
l2=0

fle
(k1−l1)A1+(k2−l2)A2

⎞
⎠
Rt−k

+
n

∑
k2=0

⎛
⎝

n

∑
k1=0

fke
(n+1−k1)A1

⎞
⎠
Xt1−n−1,t2−k2

+
n

∑
k1=0

⎛
⎝

n

∑
k2=0

fke
(n+1−k2)A2

⎞
⎠
Xt1−k1,t2−n−1

−
n

∑
k1,k2=0

fke
(n+1−k1)A1+(n+1−k2)A2Xt1−n−1,t2−n−1,

which is equivalent to equation (2.4.8) with n + 1 instead of n. By choosing n = p
and fk = dk for k1, k2 = 0,1, ..., p, the Cayley-Hamilton theorem implies that S2 and
S3 in (2.4.8) vanish since χeA1(z) and χeA2(z) are the characteristic polynomials of
eA1 and eA2 , respectively. Finally, we have that

dp,pIp −
p−1

∑
k1,k2=0

dke
(p−k1)A1+(p−k2)A2 = dn,nIp −

⎛
⎝

p−1

∑
k1=0

dk1,0e(p−k1)A1
⎞
⎠
⎛
⎝

p−1

∑
k2=0

d0,k2e
(p−k2)A2

⎞
⎠

= dp,pIp − (−dp,0Ip)(−d0,pIp) = 0,

which shows that S4 vanishes, too. By multiplying b⊺ to the left of (2.4.8), we arrive
at equation (2.4.7). ◻

Equation (2.4.7) implies that (Yt)t∈Z2 satisfies an autoregression of order (p, p)
driven by a (p − 1, p − 1)-dependent noise. Proposition 3.2.1 in [23] states that a
stationary time-discrete q-dependent process is a moving average process of order
q, which in turn is established by projecting the process into the past with respect
to the natural order of time in order to create the white noise sequence. However,
projecting on the past with respect to the partial order ≤ on Z2 does not necessarily
lead to spatial white noise since this order is only a partial order and not a total order.
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By contrast, the lexicographic order is total and allows us to generalize Proposition
3.2.1 in [23].

Definition 2.4.11 For v,w ∈ Z2 we define v ⪯ w if and only if v1 = w1 and v2 ≤ w2

or v1 < w1. Furthermore, we write [v,w]⪯ ∶= {s ∈ Z2∶ v ⪯ s ⪯ w}, which might be
empty. ◻

Proposition 2.4.12. Let (Yt)t∈Z2 be a weakly stationary (q1, q2)-dependent random
field. If its spectral density f satisfies log f ∈ L1([−π,π]2), then Y is a
MA([(0,0), (q1, q2)]⪯) random field.

Proof. First of all, the (q1, q2)-dependency of Y implies that its spectral measure
is absolutely continuous. Since log f ∈ L1([−π,π]2), Theorems 1.1.2 and 1.1.4 in
Korezlioglu and Loubaton [61] imply that Y satisfies the Wold decomposition

Yt = ∑
k⪰(0,0)

θkZt−k, t ∈ Z2,

where θk ∈ C are such that θ(0,0) ≠ 0 and ∑k⪰(0,0) ∣θk∣2 < ∞ and the white noise Z is
given by

Zt = Yt − (Yt/H1+
t1−1,t2−1), t ∈ Z2.

Here (Yt/H1+
t1−1,t2−1) denotes the orthogonal projection of Yt on the closed linear

subspace H1+
t1−1,t2−1 of the Hilbert space L2(Ω,F ,P), which is generated by {Ys∶ s1 <

t1, s2 ∈ Z} and {Ys∶ s1 = t1, s2 < t2}. Exploiting the (q1, q2)-dependency once again,
we see that actually

Yt = ∑
(0,0)⪯k⪯(q1,q2)

θkZt−k, t ∈ Z2.

◻

Theorem 2.4.13. Suppose that (Y (t))t∈R2 is a GCARMA random field on the plane
R2 such that A1 and A2 commute and the spectral density f of the right-hand side
of (2.4.7) satisfies log f ∈ L1([−π,π]2). Then the sampled random field (Yt)t∈Z2 is
an ARMA([(0,0), (p, p)], [(0,0), (p − 1, p − 1)]⪯) random field.

Furthermore, the driving spatial white noise of this ARMA random field is i.i.d.
noise in each of the following cases:

• p = 1.

• b⊺ is a common left eigenvector of both A1 and A2.
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• Λ is Gaussian.

Proof. The first part follows from Proposition 2.4.10 and Proposition 2.4.12. As
for the second part, we have seen in Equation (2.4.6) that the driving noise is i.i.d.
for p = 1. If b⊺ is a common left eigenvector of both A1 and A2, then the GCARMA
random field (Y (t))t∈R2 reduces to a CAR(1) random field. In the Gaussian case we
have that every white noise is actually i.i.d. noise.

◻

Remark 2.4.14 (1) The order defined in Definition 2.4.11 is more precisely called
the column-by-column lexicographic order. By symmetry, Theorem 2.4.13 also
holds for the row-by-row lexicographic order correspondingly.

(2) In respect of the second part of Theorem 2.4.13 we note that if both A1 and
A2 have distinct eigenvalues, then they have the same left eigenvectors since we
have assumed that they commute.

(3) If A1 is a companion matrix, then the vector v = (v0, ..., vp−1) is a left eigenvector
of A1 to the eigenvalue λ1 if and only if the polynomial v(z) ∶= vp−1zp−1 + ⋯ +
v1z + v0 satisfies v(z) = vp−1a1(z)/(z − λ1), where a1(z) is the corresponding
polynomial to A1. In particular, b⊺ cannot be a left eigenvector of A1 if we
assume that b(z) and a1(z) do not have common roots.

◻

Every sampled GCARMA random field is an ARMA random field according to
Theorem 2.4.13. However, the MA part of this random field has infinitely many
terms unless p = 1. For instance, if we sample a CARMA(2,1) random field, we ob-
tain an ARMA([(0,0), (2,2)], [(0,0), (1,1)]⪯) random field, where [(0,0), (1,1)]⪯ =
{(0, u) ∈ Z2∶u ≥ 0} ∪ {(1, u) ∈ Z2∶u ≤ 1}. In analogy to the purely temporal case
it would be desirable to have that the (p − 1, p − 1)-dependent random field on the
right-hand side of Equation (2.4.7) has a MA(p − 1, p − 1) representation such that
the sampled random field is an ARMA((p, p), (p − 1, p − 1)) random field. The next
two examples illustrate that unfortunately this is not always the case.

Example 2.4.15 ((1,1)-dependent random field with no MA(1,1) repre-
sentation) Let (Y (t))t∈R2 be a GCARMA random field with parameters b = c =
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(1,1)⊺,

A1 = A2 = (−1 0

0 −2
) ,

and kernel

g(s) = b⊺eA1s1eA2s2c1{s≥0} = (e−(s1+s2) + e−2(s1+s2))1{s≥0}, s ∈ R2.

Further, we assume that the variance of Λ satisfies κ2 = 1 and denote the (1,1)-
dependent right-hand side of Equation (2.4.7) as (Ut)t∈Z2 . By Proposition 2.4.10
and straight forward calculations, the autocovariance γ̂ of U satisfies

γ̂(0,0) = (e2 − 1)2 (77 + 100e2 + 222e4 + 100e6 + 77e8)
144e12

,

γ̂(1,0) = γ̂(0,1) = γ̂(−1,0) = γ̂(0,−1)

= −(e2 − 1)2 (25 + 52e + 59e2 + 16e3 + 59e4 + 52e5 + 25e6)
144e11

,

γ̂(1,1) = γ̂(−1,−1) = 25 + 52e2 − 32e3 − 90e4 − 32e5 + 52e6 + 25e8

144e10
,

γ̂(1,−1) = γ̂(−1,1) = 9 + 32e + 36e2 − 154e4 + 36e6 + 32e7 + 9e8

144e10
.

All other values of γ̂ are zero. Having determined the autocovariance of U explicitly,
we try to match γ̂ with the autocovariance of a MA(1,1) random field. A generic
MA(1,1) random field is given by

Wt =
1

∑
k1,k2=0

θkZt−k, t ∈ Z2,

with spatial white noise Z and complex coefficients θk. Its autocovariance γ satisfies

γ(0,0) = ∣θ00∣2 + ∣θ10∣2 + ∣θ01∣2 + ∣θ11∣2,
γ(1,0) = γ̄(−1,0) = θ00θ̄10 + θ01θ̄11,

γ(0,1) = γ̄(0,−1) = θ10θ̄11 + θ00θ̄01,

γ(1,1) = γ̄(−1,−1) = θ00θ̄11,

γ(1,−1) = γ̄(−1,1) = θ01θ̄10.

Again, all other values of γ are zero. Extracting imaginary and real parts and using
Gröbner bases (see e.g. Chapter 2 of Cox et al. [34] for more details) together with a
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computer algebra system such as Mathematica, we conclude that the system γ̂ = γ
has no complex solutions for {θ00, θ10, θ01, θ11}. Hence, U is not a MA(1,1) random
field. However, the spectral density f of U has representation

f(ω) = 1

(2π)2
(γ̂(0,0) + 2γ̂(1,0) cos(ω1) + 2γ̂(0,1) cos(ω2)

+ 2γ̂(1,1) cos(ω1 + ω2) + 2γ̂(1,−1) cos(ω1 − ω2)), ω ∈ [−π,π]2,

which is strictly positive. Consequently, log f is integrable over [−π,π]2 and Theo-
rem 2.4.13 yields that (Yt)t∈Z2 is an ARMA([(0,0), (2,2)], [(0,0), (1,1)]⪯) random
field. ◻

Example 2.4.16 ((1,1)-dependent random field with a MA(1,1) represen-
tation) We keep the setting of Example 2.4.15 with the only change that

A1 = (−1 0

0 −2
) and A2 = (−1 0

0 −1
) .

In this case, the system γ̂ = γ has eight different real solutions for {θ00, θ10, θ01, θ11}.
The exact algebraic expressions for these solutions are very lengthy and can be
computed with the software Mathematica. For illustration, we present the rounded
values of one of these solutions, namely

θ00 = 0.752991, θ10 = −0.176944, θ01 = −0.277010, θ11 = 0.065094.

Since U has the second-order structure of a MA(1,1) random field, it also is a
MA(1,1) random field due to Theorem 10 in Karhunen [58]. Therefore, (Yt)t∈Z2 is
indeed an ARMA((2,2), (1,1)) random field. ◻

Further research has to be done to determine explicit necessary and sufficient
conditions for the right-hand side of Equation (2.4.7) to be a MA(p−1, p−1) random
field.

2.5 Appendix

Example 2.5.1 (GCARMA but not CARMA) Let (Y (t))t∈R2 be a GCARMA
random field with parameters b = c = (1,1)⊺,

A1 = (−2 0

0 −3
) and A2 = (−5 0

0 −7
) ,
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and kernel

g(s) = b⊺eA1s1eA2s2c1{s≥0} = (e−2s1−5s2 + e−3s1−7s2)1{s≥0}, s ∈ R2.

In order to check whether Y has a CARMA(2,1) representation, we have to find
two companion matrices Â1, Â2 ∈ R2×2 and a vector b̂ = (b̂0, b̂1)⊺ ∈ R2 such that

g(s) = b̂⊺eÂ1s1eÂ2s2(0,1)⊺1{s≥0}, s ∈ R2. (2.5.1)

Observing the exponentials, we conclude that

Â1 = ( 0 1

−6 −5
) and Â2 = ( 0 1

35 −12
)

have to hold. Plugging these into (2.5.1) implies

e−2s1−5s2 + e−3s1−7s2 = e−3s1−7s2

2
[b̂0 (−5 + 3e2s2 + 4es1 − 2es1+2s2)

+ b̂1 (15 − 9e2s2 − 8es1 + 4es1+2s2) ], s ∈ R2,

which has no solution for b̂. ◻
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Chapter 3:
Estimation of causal CARMA random fields

3.1 Introduction

Lévy-driven continuous-time autoregressive moving average (CARMA) processes are
a well-studied class of stochastic processes and enjoy versatile applications in many
disciplines (cf. Brockwell [21] and the references therein). By contrast, considerably
less is known about CARMA random fields indexed by Rd, which have been defined
only recently. To the best of our knowledge, two different classes exist in the litera-
ture: the isotropic CARMA random field was introduced in Brockwell and Matsuda
[25] and the causal CARMA random field in [73]. While Bayesian parameter esti-
mation is included in [25], the paper Pham [73] only provides stochastic properties
of causal CARMA random fields. The goal of this chapter is to provide a semipara-
metric method to estimate model parameters of causal CARMA random fields from
discretely observed samples.

A Lévy-driven causal CARMA random field (Y (t))t∈Rd on Rd is given by the
equation

Y (t) = ∫
t1

−∞
⋯∫

td

−∞
b⊺eA1(t1−s1)⋯eAd(td−sd)ep Λ(ds), t = (t1, ..., td) ∈ Rd, (3.1.1)

where A1, ...,Ad ∈ Rp×p are companion matrices, ep = (0, ...,0,1)⊺, b ∈ Rp and Λ

is a homogeneous Lévy basis, i.e., the multi-parameter analog of a Lévy process
(see Section 3.2 for more details). Due to its similar structure, many commonly
known properties of CARMA processes also hold for Y , such as càdlàg sample paths,
exponentially decreasing autocovariance functions and rational spectral densities. In
fact, the random field Y reduces to a causal CARMA process if d = 1. Moreover, Y
has an autocovariance function which is both anisotropic and non-separable in the
sense of Guttorp and Schmidt [50].
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Since the matrices A1, ...,Ad are in companion form, they are completely deter-
mined by their eigenvalues. These eigenvalues in conjunction with the components
of the vector b will form the model parameters. As our main tool for parameter
estimation we choose the variogram, which is broadly applied in spatial statistics.
It is defined as

ψ(t) = Var[Y (t + s) − Y (s)], t, s ∈ Rd,

for stationary random fields (cf. Section 2.2.1 of Cressie [35]). Furthermore, it is
pointed out in Section 2.4.1 of [35] that variogram estimation performs better
than autocovariance estimation in terms of bias and in the presence of trend con-
tamination. Assuming that observations of Y are given on a regular lattice L =
{∆, ...,N∆}d, we estimate the model parameters by a two-step procedure. First, we
calculate an empirical version of the variogram ψ(⋅) at different lags using a non-
parametric estimator ψ∗N(⋅). Second, we fit the empirical variogram to the theoretical
one using a weighted least squares method. More precisely, for a given set of strictly
positive weights wj, we estimate the true vector of CARMA parameters θ0 by means
of the weighted least squares (WLS) estimator

θ∗N ∶= argminθ∈Θ

⎧⎪⎪⎨⎪⎪⎩

K

∑
j=1

wj (ψ∗N(t(j)) − ψθ(t(j)))
2
⎫⎪⎪⎬⎪⎪⎭
,

where Θ is a compact parameter space containing θ0 and K is the number of lags
used (see also Equation (3.4.1)).

An important task in connection with this approach is to determine sufficiently
many lags t(1), ..., t(K) ∈ Rd in order to obtain identifiability of the model parameters.
We tackle this problem and show that under certain conditions a small number of
lags on the principal axes of the Cartesian coordinate system is already sufficient
to recover the CARMA parameters. In particular, one does not need to assume the
property of invertibility (or an analog thereof) as for CARMA processes. This fact
differentiates the one-dimensional case from the higher dimensional case and we will
investigate this in more detail.

Another part of this chapter is devoted to the study of different numerical sim-
ulation schemes for the causal CARMA random field. We derive approximation
algorithms similar to those presented in Chen et al. [30] and Nguyen and Veraart
[69] which are based on truncation or discretization of the stochastic integral in
Equation (3.1.1). We show that the output converges in mean-square and almost
surely to the underlying CARMA random field. The algorithms are then used to
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conduct a simulation study in order to assess the quality of the WLS estimator.
Subsequently, we apply the estimator to data of the cosmic microwave background.

Our chapter is organized as follows: We recall the definition and basic proper-
ties of causal CARMA random fields in Section 3.2. Therein, a new formula for the
spectral density is also proven. Strong consistency and asymptotic normality of the
non-parametric variogram estimator ψ∗N(⋅) is shown in Section 3.3. Subsequently,
Section 3.4 is concerned with the asymptotic properties of the WLS estimator θ∗N .
Under identifiability conditions, we show strong consistency and asymptotic nor-
mality. While it is easier to show identifiability of CAR parameters, we obtain iden-
tifiability of CARMA parameters by carefully analyzing algebraic properties of the
variogram. In Section 3.5 we consider two different simulation methods and their as-
sociated algorithms. It is shown that the simulations converge pointwise both in L2

and almost surely to the underlying true random fields as the truncation parameter
tends to infinity and the discretization parameter tends to zero. The chapter con-
cludes with a simulation study and an application to cosmic microwave background
data in Section 3.6 and Section 3.7.

We use the following notation throughout this chapter: 1{⋅} denotes the indicator
function such that for instance 1{t≥0} is the Heaviside function. Furthermore, A⊺

denotes the transpose of a matrix (or a vector) A. The components of a vector
u ∈ Rd are given by u1, ..., ud if not stated otherwise. For u, v ∈ Rd, ∥u∥ is the
Euclidean norm, u ⋅ v ∈ R is the scalar product, u ⊙ v ∈ Rd is the componentwise
product, and u ≤ v if and only if ui ≤ vi for all i ∈ {1, ..., d}. The d-dimensional
interval [u, v] is defined as [u, v] ∶= {s ∈ Rd∶u ≤ s ≤ v} and we set R+ = [0,∞).
Additionally, e1, ...,ed are the unit vectors in Rd and e ∶= e1 + ⋯ + ed = (1, ...,1)⊺.
Diagonal matrices are denoted by diag(λ1, ..., λd) ∈ Rd×d and Md(R[z]) is the space
of all matrix polynomials of dimension d × d. Finally, Re(z) and Im(z) are the real
and imaginary part of a complex number z, Leb(⋅) is the Lebesgue measure, and i

is the imaginary unit.

3.2 Preliminaries

First and foremost, we summarize some important properties of causal CARMA
random fields. To this end, let us fix a probability space (Ω,F ,P), supporting all
stochastic objects in this chapter. As stated in the introduction, CARMA random
fields are defined as stochastic integrals driven by homogeneous Lévy bases. These are
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random measures which can be seen as a generalization of Lévy processes and their
integration theory was developed in the seminal paper Rajput and Rosiński [75]. For
a homogeneous Lévy basis Λ we denote its characteristic triplet by (β,σ2, ν), where
β ∈ R, σ ∈ R+ and ν is a Lévy measure. We say that Λ has a finite second moment and
variance κ2 ∶= σ2 +∫R z2 ν(dz) if and only if ∫R z2 ν(dz) < ∞. The variance κ2 always
appears in conjunction with the variogram or mean squared errors throughout this
chapter. For more details on Lévy bases, we refer to Section 2 in [73]. The following
definition of causal CARMA random fields is taken from the same reference.

Definition 3.2.1 Let q and p be two non-negative integers such that q < p, b =
(b0, ..., bp−1)⊺ ∈ Rp with bq ≠ 0 and bi = 0 for i > q, ep = (0, ...,0,1)⊺ ∈ Rp, and Ai be the
companion matrix to a monic polynomial ai of degree p with real coefficients and
roots having strictly negative real parts for i = 1, ..., d. A random field (Y (t))t∈Rd is
called (causal) CARMA(p, q) random field if it satisfies the equations

Y (t) = b⊺X(t), t ∈ Rd,

X(t) = ∫
t1

−∞
⋯∫

td

−∞
eA1(t1−s1)⋯eAd(td−sd)ep Λ(ds), t ∈ Rd,

(3.2.1)

where Λ is a homogeneous Lévy basis on Rd with ∫R log(∣z∣)d1{∣z∣>1} ν(dz) < ∞. A
(causal) CARMA(p,0) random field is also called a (causal) CAR(p) random field.
◻

Under the conditions specified in this definition, it was shown in [73] that CARMA
random fields exist and are well defined. Furthermore, they are by definition causal
since the value of Y (t) at t ∈ Rd only depends on the driving Lévy basis Λ on the
set (−∞, t1] × ⋯ × (−∞, td]. This type of causality can be interpreted as a direc-
tional influence. Also, it is immediate to see that they have the moving average
representation

Y (t) = (g ∗Λ)(t) ∶= ∫
Rd
g(t − s)Λ(ds), t ∈ Rd, (3.2.2)

where the kernel g is given by

g(s) = b⊺eA1s1⋯eAdsdep1{s≥0}, s ∈ Rd. (3.2.3)

The kernel g is anisotropic in contrast to the isotropic CARMA random field in [25].
Additionally, it is non-separable, i.e., it cannot be written as a product of the form
g(s) = g1(s1)⋯gd(sd) with real-valued functions gi except in the CAR(1) case. If
d = 1, we recover the classical kernel of a causal CARMA process (indexed by R).
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Remark 3.2.2 Causal CARMA random fields solve a system of stochastic partial
differential equations, which generalizes the classical state-space representation of
CARMA processes. For more details, see Section 3 in [73]. ◻

In this chapter, we always impose the following additional conditions:

Assumption A

• The Lévy basis Λ has mean zero and a finite second moment.

• The companion matrix Ai has distinct eigenvalues for i = 1, ..., d.

◻

The first part of Assumption A ensures the existence of a second-order structure
of Y , which is crucial for our estimation procedure in Section 3.4. In addition, the
zero mean condition facilitates some computations, however, it is neither necessary
nor restrictive. The autocovariance functions of CARMA random fields are non-
separable (except in the CAR(1) case), anisotropic, and integrable over Rd since
they are exponentially decreasing (cf. [73]). This implies the existence of a spectral
density, which can be shown to be rational as for CARMA processes.

The second part of Assumption A is analogous to Assumption 1 in Brockwell
et al. [27], where it is also pointed out that this condition is not critical since multiple
eigenvalues can be handled as a limiting case. Furthermore, this assumption implies
that the kernel g from Equation (3.2.3) can alternatively be represented as

g(s) = ∑
λ1

⋯∑
λd

d(λ1, ..., λd)eλ1s1⋯eλdsd1{s≥0}, s ∈ Rd, (3.2.4)

where d(λ1, ..., λd) are (possibly complex) coefficients and ∑λi denotes the sum over
distinct eigenvalues of Ai for i = 1, ..., d (cf. Corollary 3.7 in [73]).

It is commonly known that an equidistantly sampled CARMA process is always
an ARMA process. Under certain conditions, we also obtain an ARMA random field
if we sample a CARMA random field on a regular lattice (see Section 4.3 in [73]).
However, these conditions are rather restrictive (one of which is A1 = ⋯ = Ad) and it
is not known whether this sampling property can be generalized to the whole class
of CARMA random fields. Nevertheless, we will see in Section 3.5 that a CARMA
random field sampled on a regular grid can always be approximated arbitrarily well
by a discrete-parameter moving average random field (of finite order) in terms of
the mean squared error and almost surely.
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From Equation (3.2.2) we observe that Y is strictly stationary, which in turn
implies that the variogram

ψ(t) = Var[Y (t) − Y (0)] = Var[Y (t + s) − Y (s)], t, s ∈ Rd,

is translation-invariant, i.e., independent of s. In Section 3.4 we will estimate the
CARMA parameters b and the eigenvalues of A1, ...,Ad by fitting an empirical version
of ψ to its theoretical counterpart. Therefore, it is necessary to have the variogram
structure of CARMA random fields at hand, which is given in the next proposition.

Proposition 3.2.3. Suppose that (Y (t))t∈Rd is a CARMA(p, q) random field such
that Assumption A holds true. Then the variogram ψ of Y has the form

ψ(t) = 2κ2∑
λ1

⋯∑
λd

∑
v∈{−1,1}d

dv(λ1, ..., λd)1{t⊙v∈Rd
+
} (1 − eλ1∣t1∣⋯eλd∣td∣) , t ∈ Rd,

where {dv(λ1, ..., λd)} is a set of complex coefficients for every v ∈ {−1,1}d such that

dv(λ1, ..., λd) = d−v(λ1, ..., λd)

and ∑λi denotes the sum over distinct eigenvalues of Ai for i = 1, ..., d.

Proof. The statement is a combination of Theorem 4.1. in [73] and the relation

ψ(t) = 2(γ(0) − γ(t)), t ∈ Rd,

where
γ(t) = Cov[Y (t), Y (0)] = Cov[Y (t + s), Y (s)], t, s ∈ Rd, (3.2.5)

is the autocovariance function of Y . ◻

As it was argued in [73], it is in general hard to find explicit formulae for
dv(λ1, ..., λd) in terms of d, p, q, b,A1, ...,Ad. However, if we fix the dimension d and
the orders p and q, we are able to compute the variogram explicitly. We consider
the following example.

Example 3.2.4 Let d = 2, p = 2, q = 1 and Λ be a homogeneous Lévy basis
satisfying Assumption A. We assume that the CARMA(2,1) random field

Y (t) = ∫
t1

−∞
∫

t2

−∞
b⊺eA1(t1−s1)eA2(t2−s2)ep Λ(ds), t ∈ R2,
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has parameters b = (b0, b1) ∈ R2,

A1 = ( 0 1

−λ11λ12 λ11 + λ12
) and A2 = ( 0 1

−λ21λ22 λ21 + λ22
) ,

such that the eigenvalues λ11, λ12, λ21, λ22 ∈ R have strictly negative real parts and
satisfy λ11 ≠ λ12 and λ21 ≠ λ22. In this case, the variogram ψ of Y is given by

ψ(t) = 2κ2

12

∑
k=11

22

∑
l=21

(d(1,1)(λk, λl)1{t1t2≥0} + d(1,−1)(λk, λl)1{t1t2<0}) (1 − eλk ∣t1∣eλl∣t2∣) ,

where t ∈ R2,

d(1,1)(λ11, λ21) =
(λ12 − λ21)(b0 + b1λ11)(b0(2λ11 + λ12 + λ21) + b1λ11(λ12 − λ21))

4λ11λ21(λ11 − λ12)(λ11 + λ12)(λ21 − λ22)(λ21 + λ22)

d(1,1)(λ12, λ21) = −
(λ11 − λ21)(b0 + b1λ12)(b0(λ11 + 2λ12 + λ21) + b1λ12(λ11 − λ21))

4λ12λ21(λ11 − λ12)(λ11 + λ12)(λ21 − λ22)(λ21 + λ22)

d(1,1)(λ11, λ22) =
(λ12 − λ22)(b0 + b1λ11)(b0(2λ11 + λ12 + λ22) + b1λ11(λ12 − λ22))

4λ11λ22(λ11 − λ12)(λ11 + λ12)(λ22 − λ21)(λ21 + λ22)

d(1,1)(λ12, λ22) =
(λ11 − λ22)(b0 + b1λ12)(b0(λ11 + 2λ12 + λ22) + b1λ12(λ11 − λ22))

4λ12λ22(λ11 − λ12)(λ11 + λ12)(λ21 − λ22)(λ21 + λ22)

and

d(1,−1)(λ11, λ21) =
(λ12 + λ21)(b0 + b1λ11)(b0(2λ11 + λ12 − λ21) + b1λ11(λ12 + λ21))

4λ11λ21(λ11 − λ12)(λ11 + λ12)(λ21 − λ22)(λ21 + λ22)

d(1,−1)(λ12, λ21) = −
(λ11 + λ21)(b0 + b1λ12)(b0(λ11 + 2λ12 − λ21) + b1λ12(λ11 + λ21))

4λ12λ21(λ11 − λ12)(λ11 + λ12)(λ21 − λ22)(λ21 + λ22)

d(1,−1)(λ11, λ22) = −
(λ12 + λ22)(b0 + b1λ11)(b0(2λ11 + λ12 − λ22) + b1λ11(λ12 + λ22))

4λ11λ22(λ11 − λ12)(λ11 + λ12)(λ21 − λ22)(λ21 + λ22)

d(1,−1)(λ12, λ22) =
(λ11 + λ22)(b0 + b1λ12)(b0(λ11 + 2λ12 − λ22) + b1λ12(λ11 + λ22))

4λ12λ22(λ11 − λ12)(λ11 + λ12)(λ21 − λ22)(λ21 + λ22)

These formulae have been computed with the computer algebra system Mathematica.
◻

The next result, which is of theoretical interest and will be useful later on, con-
tains a formula for the spectral density of Y which is more explicit than Equa-
tion (4.5) in [73].
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Proposition 3.2.5. Suppose that (Y (t))t∈Rd is a CARMA(p, q) random field such
that Λ has a finite second moment. Further, let ai(z) = ∑p

j=0 ai,jz
p−j for i = 1, ..., d be

the monic polynomials in Definition 3.2.1. Then the spectral density f of Y has the
representation

f(ω) = κ2

(2π)d
∣Q(iω)
P (iω)

∣
2

, ω ∈ Rd,

with polynomials
P (z) = a1(z1)⋯ad(zd),

and
Q(z) = b⊺Q1(z1)⋯Qd(zd)c,

and matrix polynomials

Qi(z) = ai(z)(zIp −Ai)−1 ∈Mp(R[z]).

For each i = 1, ..., d, the (k, l)-entry of the matrix polynomial Qi is given by

Qi,k,l(z) =
⎧⎪⎪⎨⎪⎪⎩

zp−1+k−l +∑p−l
j=1 ai,jz

p−1−j+k−l k ≤ l,
−∑p

j=p−l+1 ai,jz
p−1−j+k−l k > l.

Proof. Proposition 11.2.2 in Bernstein [17] and Equation (3.2.3) imply that the
Fourier transform of the kernel g satisfies

g̃(ω) = ∫
Rd
g(s)e−iω⋅s ds = b⊺(iω1Ip −A1)−1⋯(iωdIp −Ad)−1ep, ω ∈ Rd.

Applying Lemma 3.1 in Brockwell and Schlemm [26] and the relation

f(ω) = κ2

(2π)d
g̃(ω)g̃(−ω) = κ2

(2π)d
∣g̃(ω)∣2,

yields the claimed assertion. ◻

3.3 Asymptotic properties of the empirical variogram

Let (Y (t))t∈Rd be a CARMA(p, q) random field satisfying Assumption A. If we are
given observations of Y on a lattice L = {∆, ...,N∆}d, we can estimate the variogram
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ψ(⋅) by Matheron’s method-of-moment estimator (cf. Section 2.4 in Cressie [35] for
more details)

ψ∗N(t) ∶= 1

∣BN,t∣
∑

s∈BN,t

(Y (t + s) − Y (s))2, t ∈ {(1 −N)∆, ..., (N − 1)∆}d,

where

BN,t ∶= {s ∈ ∆Zd∶ s, s + t ∈ {∆, ...,N∆}d} and ∣BN,t∣ =
d

∏
i=1

(N − ∣ti∣)1{∣ti∣≤N}.

We aim to show strong consistency and multivariate asymptotic normality of ψ∗N(⋅)
as N tends to infinity. To this end, we make use of the asymptotic normality of the
autocovariance estimator

γ∗N(t) ∶= 1

∣BN,t∣
∑

s∈BN,t

Y (t + s)Y (s),

which was shown in [15] for moving average random fields by applying a blocking
technique and a central limit theorem for m-dependent random fields.

Theorem 3.3.1. Suppose that (Y (t))t∈Rd is a CARMA(p, q) random field such that
Assumption A holds true, Λ has a finite fourth moment κ4 and observations of Y
are given on the lattice L = {∆, ...,N∆}d. Then we have for all t ∈ ∆Zd that

lim
N→∞

ψ∗N(t) = ψ(t) a.s..

Further let t(1), ..., t(K) ∈ ∆Zd be K distinct lags and t(0) = (0, ...,0)⊺. Then we have

Nd/2(ψ∗N(t(1)) − ψ(t(1)), ..., ψ∗N(t(K)) − ψ(t(K))) d→ N(0, FV F ⊺), as N →∞,

where the two matrices F and V = (vi,j)i,j=0,...,K are given by

F = 2

⎛
⎜⎜⎜⎜
⎝

1 −1 0 ⋯ 0

1 0 −1 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
1 0 0 ⋯ −1

⎞
⎟⎟⎟⎟
⎠

∈ RK×(K+1)

and

vi,j = ∑
l∈∆Zd

(κ4 − 3κ2
2)∫

d

R
g(s)g(s + t(i))g(s + l)g(s + l + t(j))ds

+ γ(l)γ(l + t(i) − t(j)) + γ(l + t(i))γ(l − t(j))

for all i, j = 0, ...,K.
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Proof. First of all, we show strong consistency of the variogram estimator ψ∗N(⋅).
By Corollary 3.18 in [15], we have for all t ∈ ∆Zd that

lim
N→∞

γ∗N(t) = γ(t) a.s..

Considering the following limit

lim
N→∞

ψ∗N(t) − 2(γ∗N(0) − γ∗N(t))

= lim
N→∞

⎛
⎝

1

∣BN,t∣
∑

s∈BN,t

(Y (t + s)2 + Y (s)2) − 1

∣BN,0∣
∑

s∈BN,0

Y (s)2
⎞
⎠

= 2γ(0) − 2γ(0) = 0 a.s.,

we deduce that

lim
N→∞

ψ∗N(t) = lim
N→∞

2(γ∗N(0) − γ∗N(t)) = 2(γ(0) − γ(t)) = ψ(t) a.s.

as desired. It remains to show asymptotic normality of ψ∗N(⋅). Since the kernel g in
Equation (3.2.4) is a sum of exponentials, we have for every i, j = 0, ...,K that

∫
Rd

∣g(s)g(s + k)g(s + t(i))g(s + k + t(j))∣ds = O(e2λmax,1k1+...+2λmax,1kd), k →∞,

where λmax,i ∶= max{Re(λi)∶λi is eigenvalue of Ai} < 0 for i = 1, ..., d. Hence, we
obtain

∑
k∈∆Zd

∫
Rd

∣g(s)g(s + k)g(s + t(i))g(s + k + t(j))∣ds < ∞.

Moreover, by Theorem 4.1. in [73] we also have that

∑
k∈∆Zd

γ(k)2 < ∞.

We conclude that the conditions of Theorem 3.8 in [16] are satisfied, which in turn
shows that

Nd/2(γ∗N(t(0)) − γ(t(0)), ..., γ∗N(t(K)) − γ(t(K))) d→ N(0, V ), as N →∞. (3.3.1)

Consider now the mapping

f ∶RK+1 → RK , f(x0, ..., xK) ↦ (2(x0 − x1), ...,2(x0 − xK)),

whose Jacobian is the matrix F . The multivariate delta method (see e.g. Proposi-
tion 6.4.3 in [23]) in combination with the mapping f and (3.3.1) yields

Nd/2(2(γ∗N(0)−γ∗N(t(1)))−ψ(t(1)), ...,2(γ∗N(0)−γ∗N(t(K)))−ψ(t(K))) d→ N(0, FV F ⊺)

as N →∞, and Slutsky’s theorem finishes the proof. ◻



3.4. Estimation of CARMA random fields 91

3.4 Estimation of CARMA random fields

According to Definition 3.2.1, a CARMA random field is determined by the pair
(p, q), the vector b, the companion matrices A1, ...,Ad and the Lévy basis Λ. To
avoid redundancies in model specification one usually assumes that either b0 or κ2

is known. We assume the latter and thus the goal of this section is to estimate b
and A1, ...,Ad when p, q and κ2 are given. Since every companion matrix is uniquely
determined by its eigenvalues, we define the CARMA parameter vector θ as

θ = (b0, ..., bq, λ11, ..., λ1p, λ21, ..., λdp) ∈ Rq+1 ×Cdp, (3.4.1)

where λi1, ..., λip are the eigenvalues of Ai for i = 1, ..., d. Recall that Ai is real by
definition and thus its eigenvalues are real or appear in pairs of complex conjugates.
In order to estimate θ, we fit the empirical variogram ψ∗N(⋅) of the last section to
the theoretical variogram ψθ(⋅) using a weighted least squares approach. In other
words, we consider the estimator

θ∗N ∶= argminθ∈Θ

⎧⎪⎪⎨⎪⎪⎩

K

∑
j=1

wj (ψ∗N(t(j)) − ψθ(t(j)))
2
⎫⎪⎪⎬⎪⎪⎭

(3.4.2)

where Θ ⊆ Rq+1 ×Cdp is a compact parameter space containing the true parameter
vector θ0, wj > 0 are strictly positive weights and t(1), ..., t(K) ∈ Rd are prescribed
lags. The paper Lahiri et al. [63] determines asymptotic properties of least squares
estimators for parametric variogram models subject to asymptotic properties of the
underlying variogram estimators. We use these results in conjunction with Theo-
rem 3.3.1 to show strong consistency and asymptotic normality of θ∗N . In the follow-
ing, we denote by

ξi(θ) ∶= ((∂/∂θi)ψθ(t(1)), ..., (∂/∂θi)ψθ(t(K)))

the vector of first order partial derivatives of ψθ(t(1)), ..., ψθ(t(K)) with respect to
the i’th coordinate of θ and define

Ξ(θ) ∶= −(ξ1(θ), ..., ξdp+q+1(θ)),

which is the Jacobian matrix of the mapping θ ↦ (ψθ(t(1)), ..., ψθ(t(K))).

Theorem 3.4.1. Suppose that (Y (t))t∈Rd is a CARMA(p, q) random field with true
parameter vector θ0 such that Assumption A holds true, κ2 = 1, Λ has a finite fourth
moment and observations of Y are given on the lattice L = {∆, ...,N∆}d. Further,
assume that
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• the true parameter vector θ0 lies inside a compact parameter space Θ ⊆ Rq+1 ×
Cdp,

• the mapping Θ ∋ θ ↦ (ψθ(t(1)), ..., ψθ(t(K))) is injective (identifiability crite-
rion).

Then we have both
lim
N→∞

θ∗N = θ0 a.s.

and
Nd/2(θ∗N − θ0)

d→ N(0,Σ), as N →∞,

where
Σ = B(θ0)Ξ(θ0)⊺WFV F ⊺WΞ(θ0)B(θ0),

with F and V as in Theorem 3.3.1, W = diag(w1, ...,wK) and

B(θ0) = (Ξ(θ0)⊺WΞ(θ0))−1.

Proof. We only have to check conditions (C.1)-(C.3) in [63] since our assertions
follow directly from Theorems 3.1 and 3.2 of this reference. Since ψθ(t) = 2(γθ(0) −
γθ(t)), it suffices to show that for each t ∈ Rd the autocovariance γθ(t) is continuously
differentiable with respect to θ in order to check (C.2)(ii). Recall that the relation

Ai =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0

0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

−aip −ai(p−1) −ai(p−2) ⋯ −ai1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= V diag(λi1, ..., λip)V −1

is satisfied for companion matrices, where V is the Vandermonde matrix

V =

⎛
⎜⎜⎜⎜
⎝

1 ⋯ 1

λi1 ⋯ λip
⋮ ⋱ ⋮

λp−1
i1 ⋯ λp−1

ip

⎞
⎟⎟⎟⎟
⎠

.

Now assume t ∈ Rd
+ first. Then (the proof of) Theorem 4.1. in [73] implies

γθ(t) = κ2b
⊺ (∫

R2
+

eA1(s1+t1)⋯eAd(sd+td)epe⊺peA
⊺

d
sd⋯eA

⊺

1s1 ds) b. (3.4.3)
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Owing to the exponential structure of the integrand we recognize that γθ(t) is in
fact infinitely often differentiable with respect to θ and therefore condition (C.2)(ii)
holds true for every t ∈ Rd

+. For each t ∈ Rd an analogous argument applies with a
slightly different integrand. Moreover, condition (C.2)(ii) implies both (C.2)(i) and
(C.1) in light of the identifiability criterion and the fact that Θ is compact. Finally,
the condition (C.3) is trivial since W does not depend on θ. ◻

An important task in connection with the previous theorem is to determine a
sufficient set of lags t(1), ..., t(K) such that the identifiability condition is satisfied. For
CAR(p) random fields it is enough to consider finitely many lags on the principal
axes of the Cartesian coordinate system. Before examining this matter, we prepend
an auxiliary lemma which presents a simplified representation of the variogram on
the principal axes.

Lemma 3.4.2. Suppose that (Y (t))t∈Rd is a CARMA(p, q) random field such that
Assumption A holds true. Then there exists a set of complex coefficients

{d∗i (λi)∶λi is an eigenvector of Ai, i = 1, ..., d}

such that the values of the variogram ψ is given on the principal axes by

ψ(τei) = 2κ2∑
λi

d∗i (λi) (1 − eλi∣τ ∣) , τ ∈ R, i = 1, ..., d, (3.4.4)

where ∑λi denotes the sum over distinct eigenvalues of Ai.

Proof. Proposition 3.2.3 implies for every i = 1, ..., d and τ ∈ Rd that

ψ(τei) = 2κ2∑
λ1

⋯∑
λd

de(λ1, ..., λd) (1 − e0⋯eλi∣τ ∣⋯e0)

= 2κ2∑
λi

⎛
⎝ ∑
λj ∶j=1,...,i−1,i+1,...,d

de(λ1, ..., λd)
⎞
⎠
(1 − eλi∣τ ∣)

= 2κ2∑
λi

d∗i (λi) (1 − eλi∣τ ∣) .

◻

The next example displays more explicit formulae for d∗i (λi) in the case of a
CARMA(2,1) random field.
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Example 3.4.3 Let (Y (t))t∈R2 be a CARMA(2,1) random field such that As-
sumption A holds true. Then we have for every t1, t2 ∈ R that

ψ(t1,0) =
2κ2(b0 + b1λ12) (b0 (λ2

11 + 2λ11λ12 + λ21λ22) + b1λ12 (λ2
11 − λ21λ22))

4λ12λ21λ22(λ11 − λ12)(λ11 + λ12)(λ21 + λ22)
× (1 − eλ12∣t1∣)

+
2κ2(b0 + b1λ11) (b0 (2λ11λ12 + λ2

12 + λ21λ22) + b1λ11 (λ2
12 − λ21λ22))

4λ11λ21λ22(λ12 − λ11)(λ11 + λ12)(λ21 + λ22)
× (1 − eλ11∣t1∣)

and

ψ(0, t2)

= 2κ2

b20 (λ2
11 + 3λ11λ12 + λ2

12 − λ2
21) + 2b0b1λ11λ12(λ11 + λ12) + b21λ11λ12 (λ11λ12 − λ2

21)
4λ11λ12λ21(λ11 + λ12)(λ22 − λ21)(λ21 + λ22)

× (1 − eλ21∣t2∣)

+ 2κ2

b20 (λ2
11 + 3λ11λ12 + λ2

12 − λ2
22) + 2b0b1λ11λ12(λ11 + λ12) + b21λ11λ12 (λ11λ12 − λ2

22)
4λ11λ12λ22(λ11 + λ12)(λ21 − λ22)(λ21 + λ22)

× (1 − eλ22∣t2∣).

◻

The next theorem establishes the identifiability of CAR(p) parameters. Note
that replacing the vector b by −b would not change the variogram. Hence, we may
assume that b0 is non-negative.

Theorem 3.4.4. Suppose that (Y (t))t∈Rd is a CAR(p) random field such that As-
sumption A holds true, κ2 is given, b0 ≥ 0, all eigenvalues λ of A1, ...,Ad satisfy
−π/∆ ≤ Im(λ) < π/∆ and all coefficients d∗i (λi) in Lemma 3.4.2 are nonzero.
Then θ is uniquely determined by the variogram ordinates {ψ(j∆ei)∶ i = 1, ..., d; j =
0, ...,2p + 1}.

Proof. Assuming without loss of generality that ∆ = 1 and κ2 = 1/2, and setting
λi0 = 0 and d∗i (λi0) = −∑

p
k=1 d

∗
i (λik), Lemma 3.4.2 implies that

ψ(jei) = −
p

∑
k=0

d∗i (λik)eλikj, i = 1, ..., d, j = 0, ...,2p + 1.
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Note that −d∗i (λi0) = ψ(0) is twice the variance of Y and therefore nonzero. Intro-
ducing the polynomials

Ri(z) ∶=
p

∏
l=0

(z − eλil) =∶
p+1

∑
l=0

rilz
l,

we observe for each i = 1, ..., d and j = 0, ...,2p + 1 that

p+1

∑
l=0

rilψ((j + l)ei) = −
p+1

∑
l=0

ril
p

∑
k=0

d∗i (λik)eλikjeλikl = −
p

∑
k=0

d∗i (λik)eλikj
p+1

∑
l=0

rile
λikl = 0,

where the last equation follows from the definition of Ri(z). Hence, we get the linear
systems

Ψi

⎛
⎜⎜
⎝

ri0
⋮
rip

⎞
⎟⎟
⎠
∶=

⎛
⎜⎜
⎝

ψ(0ei) ⋯ ψ(pei)
⋮ ⋱ ⋮

ψ(pei) ⋯ ψ(2pei)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

ri0
⋮
rip

⎞
⎟⎟
⎠
= −

⎛
⎜⎜
⎝

ψ((p + 1)ei)
⋮

ψ((2p + 1)ei)

⎞
⎟⎟
⎠
, (3.4.5)

where the system matrices Ψi are quadratic Hankel matrices. We show that all Ψi

are invertible. To this end, for fixed i ∈ {1, ..., d}, assume that there is a vector
u = (u0, ..., up) ∈ Rp+1 satisfying

Ψiu = 0,

that is u is an element inside Ψi’s kernel. Defining the polynomial P (z) ∶= ∑p
l=0 ulz

l,
we obtain for all j = 0, ..., p that

0 =
p

∑
l=0

ulψ((l + j)ei) =
p

∑
l=0

ul (−
p

∑
k=0

d∗i (λik)eλik(l+j)) = −
p

∑
k=0

eλikjd∗i (λik)P (eλik).

This gives the linear system

⎛
⎜⎜⎜⎜
⎝

1 ⋯ 1

eλi0 ⋯ eλip

⋮ ⋱ ⋮
eλi0p ⋯ eλipp

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

d∗i (λi0)P (eλi0)
d∗i (λi1)P (eλi1)

⋮
d∗i (λip)P (eλip)

⎞
⎟⎟⎟⎟
⎠

= 0.

Since the system matrix is a regular Vandermonde matrix and the coefficients d∗i (λik)
are nonzero, we conclude that P (eλik) = 0 for k = 0, ..., p. The polynomial P (⋅)
has (p + 1) different roots and is of degree p. Consequently, it has to be the zero
polynomial, which means that u = 0 and Ψi is invertible. By solving the linear
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systems (3.4.5) we get all ril, which gives the eλil by determining the roots of Ri(z).
Finally, all eigenvalues λil can be obtained uniquely using the condition on the
imaginary part Im(λ), and it is trivial to recover b0 in light of Equations (3.2.5) and
(3.4.3). ◻

Remark 3.4.5 (1) The set of parameter vectors θ of CAR random fields which
have at least one vanishing coefficient d∗i (λi) is a lower dimensional algebraic
variety in the parameter space R ×Cdp. Thus, the Lebesgue measure of this set
is zero and almost all θ ∈ R×Cdp satisfy the condition on the coefficients d∗i (λi)
in Theorem 3.4.4. For instance, in the setting of Example 3.4.3, d∗2(λ21) = 0 if
and only if (λ2

11 + 3λ11λ12 + λ2
12 − λ2

21) = 0.

(2) The condition −π/∆ ≤ Im(λ) < π/∆ is necessary due to the complex periodicity
of the exponential function. In time series analysis this problem is associated
with the aliasing effect, i.e., the emergence of redundancies when sampling the
process (cf. e.g. Section 3.4 and Assumption C5 in Schlemm and Stelzer [80]).
◻

Having established identifiability for CAR(p) random fields, we now turn to
CARMA(p, q) random fields. For classical CARMA processes on R it is commonly
known that one needs to impose at least conditions like b0 ≥ 0 and invertibility
in order to identify CARMA parameters from the second-order structure (i.e. ei-
ther autocovariance, spectral density or variogram). For instance, if we consider the
spectral density

f(ω) = 1

2π

∣b(iω)∣2
∣a(iω)∣2

, ω ∈ R,

of a CARMA(p, q) process with AR polynomial a(⋅) and MA polynomial b(⋅), then
the numerator of f yields the polynomial b(z)b(−z). For every root λ of b(z)b(−z),
−λ is also a root, making it impossible to recover b(⋅) from n(⋅). Therefore, as-
suming invertibility, i.e., the condition that every root of b(⋅) has a negative real
part, is necessary to determine the MA polynomial b(⋅) uniquely. However, this
reasoning cannot be carried over to the causal CARMA random field since two ad-
ditional obstacles occur: first, the spectral density f of Proposition 3.2.5 is now a
multi-parameter function and, second, it is in general not separable, i.e., it cannot
be written as a product of the form f(ω) = f1(ω1)⋯fd(ωd). Therefore, we cannot
iterate the previous argument to each dimension. Also, the roots of the numerator
Q(z)Q(−z) are not discrete points in C anymore but, more generally, form algebraic
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varieties in Cd. This makes it harder to formulate a similar condition as invertibility
for the multi-parameter case. However, as we shall see by the end of this section,
an invertibility condition is in fact not necessary. In order to show identifiability of
CARMA random fields, we study the algebraic properties of the variogram and start
with the following result.

Theorem 3.4.6. Suppose that (Y (t))t∈Rd is a CARMA(p, q) random field such that
Assumption A holds true, κ2 = 1, all eigenvalues λ of A1, ...,Ad satisfy −π/∆ ≤
Im(λ) < π/∆ and all coefficients d∗i (λi) in Lemma 3.4.2 are nonzero. Further assume
that the set S = {ψ(j∆ei)∶ i = 1, ..., d; j = 0, ...,2p+1} of variogram ordinates is given.
Then there are at most 2p different parameter values for θ which generate S.

Proof. Analogously to Theorem 3.4.4, we can determine all eigenvalues λ of A1, ...,

Ad from the set S. It remains to show that only finitely many vectors b can gen-
erate S. By Lemma 3.4.2 and Assumption A, we can solve Equations (3.4.4) for
all coefficients d∗i (λi). By Theorem 4.1. in [73] we have that b has to satisfy the
equations

d∗i (λi) = b⊺M(i, λi)b, (3.4.6)

where i = 1, ..., d, λi is an eigenvalue of Ai and M(i, λi) are matrices that only
depend on the (known) eigenvalues of A1, ...,Ad. That is, we are given pd quadratic
equations in q + 1 unknowns b0, ..., bq. Assumption A and Bézout’s theorem (see e.g.
Theorem 18.3 in [52]) conclude the proof.

◻

The previous theorem shows that every fiber of the mapping Θ ∋ θ ↦ S is finite.
This property is also called algebraic identifiability (cf. Section 1 in [4]). To obtain
statistical identifiability, we explicitly compute the variogram coefficients d∗i (λi) in
Equation (3.4.6), which yields a polynomial system in terms of the CARMA param-
eters. One has then to show that this system has a unique solution. We demonstrate
our method for the CARMA(2,1) case and show how it can be applied to higher
(p, q).

Proposition 3.4.7. Let (Y (t))t∈R2 be a CARMA(2,1) random field such that As-
sumption A holds true, κ2 = 1, b0 ≥ 0, all eigenvalues λ of A1,A2 satisfy −π/∆ ≤
Im(λ) < π/∆ and all coefficients d∗i (λi) in Lemma 3.4.2 are nonzero. Furthermore,
assume the additional condition λ11λ12 ≠ λ21λ22. Then θ is uniquely determined by
{ψ(j∆ei)∶ i = 1,2; j = 0, ...,5}. ◻
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Proof. First of all, the eigenvalues λ11, λ12, λ21, λ22 and coefficients d∗1(λ11), d∗1(λ12),
d∗2(λ21) and d∗2(λ22) can be recovered exactly as in Theorem 3.4.4. Hence, we only
have to determine the parameters b0 and b1. Using the formulae of Example 3.4.3,
it is an easy task to verify the equations

d∗1(λ11) =
(b0 + b1λ11) (b0 (2λ11λ12 + λ2

12 + λ21λ22) + b1λ11 (λ2
12 − λ21λ22))

4λ11λ21λ22(λ12 − λ11)(λ11 + λ12)(λ21 + λ22)
,

d∗1(λ12) =
(b0 + b1λ12) (b0 (λ2

11 + 2λ11λ12 + λ21λ22) + b1λ12 (λ2
11 − λ21λ22))

4λ12λ21λ22(λ11 − λ12)(λ11 + λ12)(λ21 + λ22)
,

d∗2(λ21) =
b2

0 (λ2
11 + 3λ11λ12 + λ2

12 − λ2
21) + 2b0b1λ11λ12(λ11 + λ12) + b2

1λ11λ12 (λ11λ12 − λ2
21)

4λ11λ12λ21(λ11 + λ12)(λ22 − λ21)(λ21 + λ22)
,

d∗2(λ22) =
b2

0 (λ2
11 + 3λ11λ12 + λ2

12 − λ2
22) + 2b0b1λ11λ12(λ11 + λ12) + b2

1λ11λ12 (λ11λ12 − λ2
22)

4λ11λ12λ22(λ11 + λ12)(λ21 − λ22)(λ21 + λ22)
.

We have to show that b0 and b1 are identifiable from this system, where λ11, λ12, λ21, λ22

and d∗1(λ11), d∗1(λ12), d∗2(λ21), d∗2(λ22) are known. It therefore suffices to consider all
four numerators and show that the system

(b̄0 + b̄1λ11) (b̄0 (2λ11λ12 + λ2
12 + λ21λ22) + b̄1λ11 (λ2

12 − λ21λ22))
= (b0 + b1λ11) (b0 (2λ11λ12 + λ2

12 + λ21λ22) + b1λ11 (λ2
12 − λ21λ22)) ,

(b̄0 + b̄1λ12) (b̄0 (λ2
11 + 2λ11λ12 + λ21λ22) + b̄1λ12 (λ2

11 − λ21λ22))
= (b0 + b1λ12) (b0 (λ2

11 + 2λ11λ12 + λ21λ22) + b1λ12 (λ2
11 − λ21λ22)) ,

b̄2
0 (λ2

11 + 3λ11λ12 + λ2
12 − λ2

21) + 2b̄0b̄1λ11λ12(λ11 + λ12) + b̄2
1λ11λ12 (λ11λ12 − λ2

21)
= b2

0 (λ2
11 + 3λ11λ12 + λ2

12 − λ2
21) + 2b0b1λ11λ12(λ11 + λ12) + b2

1λ11λ12 (λ11λ12 − λ2
21) ,

b̄2
0 (λ2

11 + 3λ11λ12 + λ2
12 − λ2

22) + 2b̄0b̄1λ11λ12(λ11 + λ12) + b̄2
1λ11λ12 (λ11λ12 − λ2

22)
= b2

0 (λ2
11 + 3λ11λ12 + λ2

12 − λ2
22) + 2b0b1λ11λ12(λ11 + λ12) + b2

1λ11λ12 (λ11λ12 − λ2
22) ,

(3.4.7)

implies b̄0 = b0 and b̄1 = b1, where we assume that b̄0 is non-negative and b̄1 ≠ 0.
Defining the variables

x1 = b̄2
0 − b2

0, x2 = b̄0b̄1 − b0b1, x3 = b̄2
1 − b2

1, (3.4.8)

we find the equivalent linear system

⎛
⎜⎜⎜⎜
⎝

2λ11λ12 + λ2
12 + λ21λ22 2λ2

11λ12 + 2λ11λ2
12 λ2

11λ
2
12 − λ2

11λ21λ22

2λ11λ12 + λ2
11 + λ21λ22 2λ2

11λ12 + 2λ11λ2
12 λ2

11λ
2
12 − λ2

12λ21λ22

λ2
11 + 3λ11λ12 + λ2

12 − λ2
21 2λ2

11λ12 + 2λ11λ2
12 λ2

11λ
2
12 − λ11λ12λ2

21

λ2
11 + 3λ11λ12 + λ2

12 − λ2
22 2λ2

11λ12 + 2λ11λ2
12 λ2

11λ
2
12 − λ11λ12λ2

22

⎞
⎟⎟⎟⎟
⎠

x = 0, (3.4.9)
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with x⊺ = (x1, x2, x3)⊺. This system has the unique solution x = 0 if and only if at
least one of the four 3 × 3-minors

2λ11λ12λ21(λ11 − λ12)(λ11 + λ12)2(λ21 + λ22)(λ11λ12 − λ21λ22),
2λ11λ12λ22(λ11 − λ12)(λ11 + λ12)2(λ21 + λ22)(λ11λ12 − λ21λ22),
−2λ2

11λ12(λ11 + λ12)2(λ21 − λ22)(λ21 + λ22)(λ11λ12 − λ21λ22),
−2λ11λ

2
12(λ11 + λ12)2(λ21 − λ22)(λ21 + λ22)(λ11λ12 − λ21λ22),

is not zero. However, this is equivalent to the condition λ11λ12 ≠ λ21λ22. Hence, by
our assumptions we can indeed conclude that x = 0, which yields b̄0 = b0 and b̄1 = b1.
◻

Remark 3.4.8 (1) Note that in Proposition 3.4.7 we have not used the full vari-
ogram but only values on the principal axes. Working with the full variogram,
we are able to dispose of the condition λ11λ12 ≠ λ21λ22. However, imposing this
weak condition has the advantage that we do not have to estimate the full vari-
ogram and the set of parameters which satisfy λ11λ12 = λ21λ22 is a Lebesgue null
set in C4.

(2) In the setting of Proposition 3.4.7 the condition λ11λ12 ≠ λ21λ22 is not only
sufficient but also necessary. For instance, if we choose λ11 = λ21 = −2 and
λ12 = λ22 = −6, then both pairs (b0, b1) = (2,4) and (b0, b1) = (20/

√
7,9/

√
7) will

generate the same variogram on the principal axes. Hence, in this case we do
not have identifiability of the model parameters.

◻

In a similar fashion we can show the following result. Since all factors in (3.4.10)
are nonzero, there is no extra condition like λ11λ12 ≠ λ21λ22 needed as in Proposi-
tion 3.4.7.

Proposition 3.4.9. Let (Y (t))t∈R2 be a CARMA(3,1) random field such that As-
sumption A holds true, κ2 = 1, b0 ≥ 0, all eigenvalues λ of A1,A2 satisfy −π/∆ ≤
Im(λ) < π/∆ and all coefficients d∗i (λi) in Lemma 3.4.2 are nonzero. Then θ is
uniquely determined by {ψ(j∆ei)∶ i = 1,2; j = 0, ...,7}. ◻

Proof. The assertion can be proven analogously to the proof of Proposition 3.4.7.
We therefore only highlight the difference. Instead of 4 we have 6 different d∗i (λi) in
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this case. Defining x1, x2, x3 as before, we obtain a linear system of size 6× 3 similar
to Equation (3.4.9). The system matrix has (6

3
) = 20 different 3 × 3-minors, one of

which is

− 6λ2
11λ

2
12λ

2
13(λ11 + λ12)2(λ11 + λ13)2(λ12 + λ13)2(λ21 − λ22)(λ21 + λ22)

× (λ21 − λ23)(λ21 + λ23)(λ22 − λ23)(λ22 + λ23). (3.4.10)

This minor is always nonzero under our assumptions. Thus, we conclude b̄0 = b0 and
b̄1 = b1.

◻

The method used to show identifiability for CARMA(2,1) and CARMA(3,1)
random fields on R2 relied on the definition of appropriate variables x1, x2, x3 in
Equation (3.4.8) and a system of pd = 4 equations in the first case and pd = 6

equations in the second case. Both systems have a unique solution provided that at
least one of the minors of the coefficient matrix is nonzero. In the first case 4 minors
of the 4× 3 coefficient matrix had to be considered and in the second case 20 of the
6×3 coefficient matrix. The complexity of this method becomes too high to consider
higher order models. Moreover, we have observed that for the CARMA(3,2) model
on R2 the method fails, since the determinant of the corresponding 6 × 6 coefficient
matrix is always zero. However, this does not prevent parameter identifiability, since
– as we note from Equation (3.4.8) – the components of the vector x display algebraic
dependencies, that is, the variables of the corresponding linear systems are not
independent.

As an alternative to the substitution (3.4.8), we can find a solution to the original
system of pd quadratic equations (3.4.6) for the q+1 variables b0, . . . , bq directly tak-
ing resort to representations via Gröbner bases (see e.g. Chapter 2 of Cox et al. [34]).
As a test case we have replicated Proposition 3.4.7 using the software Mathematica,
where the pd = 4 quadratic equations in (3.4.7) were transformed to an equivalent
system of 48 polynomial equations. From these we could read off b̄0 = b0 and b̄1 = b1

immediately and again obtain identifiability.
Note that in Propositions 3.4.7 and 3.4.9 we have not assumed any extra condi-

tions on b except for b0 ≥ 0. In particular, it is not necessary to impose an analogous
condition to invertibility in order to achieve identifiability. This illustrates a fun-
damental difference between CARMA processes and CARMA random fields with
d ≥ 2.
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3.5 Simulation of CARMA random fields on a lattice

In this section we develop two numerical simulation schemes for the causal CARMA
random field. One is designed for compound Poisson noise and the other one for
general Lévy noise. In both cases, we simulate on a lattice L = {∆, ...,N∆}d with
fixed ∆ > 0 and N ∈ N. Techniques for simulating on more general lattices are
discussed as well.

3.5.1 Compound Poisson noise

The homogeneous Lévy basis Λ is assumed to be compound Poisson in this subsec-
tion. That is, the characteristic triplet of Λ satisfies β = c ∫(−1,1) xF (dx), σ = 0 and
ν = cF , where c > 0 is the intensity parameter and F is a probability measure on
R (cf. Section 1.2.4 in Applebaum [6]). As a consequence, the resulting CARMA
random field (Y (t))t∈Rd in Equation (3.2.2) can be represented as

Y (t) = ∑
j∈N
g(t − sj)W (sj), t ∈ Rd,

where sj are the locations of the countably many Lévy jumps of Λ and the i.i.d.
W (sj) are the heights of the Lévy jumps, distributed according to F . Restricted
on a compact domain D ⊂ Rd, there are only finitely many jumps of Λ and their
number NJ follows a Poisson distribution with intensity cLeb(D). Conditionally on
the value of NJ , the jump positions are independently and uniformly distributed on
D. This motivates us to approximate Y with

YS1(t) =
NJ

∑
j=1

g(t − sj)W (sj), t ∈ Rd, sj ∈D.

The random field YS1 has the alternative representation

YS1(t) = (g ∗ΛS1)(t) ∶= ∫
Rd
g(t − s)ΛS1(ds), t ∈ Rd, (3.5.1)

with ΛS1(ds) = 1D(s)Λ(ds), hence it arises by truncating the Lévy basis Λ. The
advantage of YS1 is that we can simulate it exactly. For the simulation algorithm we
choose D = [−M,M]d with a sufficiently large M > 0 such that L ⊂D.
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Algorithm 3.5.1

(1) Input: g,F, c,M,N,∆ such that {∆, ...,N∆}d = L ⊂D = [−M,M]d

(2) Draw NJ from a Poisson distribution with intensity cLeb(D) = c(2M)d.

(3) Draw s1, ..., sNJ
independently and uniformly distributed on D = [−M,M]d.

(4) For each sj, j = 1, ...,NJ , draw W (sj) independently from the distribution F .

(5) For each t ∈ L, compute YS1(t) = ∑NJ
j=1 g(t − sj)W (sj).

(6) Output: YS1(t), t ∈ L = {∆, ...,N∆}d

◻

In order to assess the accuracy of this approximation algorithm, we determine
its mean squared error. Note that as the simulation of YS1 is exact, we only have to
consider the approximation error between Y and YS1. Moreover, we show that the
simulated random field YS1(t) converges for fixed t ∈ L both in L2 and almost surely
to the underlying true random field Y (t) as the truncation parameter M tends to
infinity.

Theorem 3.5.2. Suppose that (Y (t))t∈Rd is a CARMA(p, q) random field such that
Assumption A holds true and Λ is compound Poisson with characteristic triplet
(c ∫(−1,1) xF (dx),0, cF ), where c > 0 and F is a probability distribution. Then the
mean squared error of Algorithm 3.5.1 satisfies

max
t∈L

E[(Y (t) − YS1(t))
2] = κ2∑

λ1

⋯∑
λd

∑
λ′1

⋯∑
λ′
d

d(λ1, ..., λd)d(λ′1, ..., λ′d)

×
⎡⎢⎢⎢⎢⎣

1

∣λ1∣ + ∣λ′1∣
⋯ 1

∣λd∣ + ∣λ′d∣
− 1 − e(λ1+λ

′

1)M

∣λ1∣ + ∣λ′1∣
⋯1 − e(λd+λ

′

d)M

∣λd∣ + ∣λ′d∣

⎤⎥⎥⎥⎥⎦
= O(e−2∣λmax∣M), M →∞, (3.5.2)

where the coefficients d(⋅) are the same as in Equation (3.2.4), both ∑λi and ∑λ′i

denote the sum over distinct eigenvalues of Ai for i = 1, ..., d and

λmax ∶= max{Re(λ)∶λ is eigenvalue of Ai, i = 1, ..., d}.

Furthermore, YS1(t) converges to Y (t) in L2 and almost surely as M → ∞ for
every t ∈ L = {∆, ...,N∆}d.
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Proof. By the properties of Lévy bases and Equations (3.2.2) and (3.5.1) we ob-
serve that

max
t∈L

E[(Y (t) − YS1(t))
2] = max

t∈L
E[(∫

[−∞e,t]/[−Me,t]
g(t − s)Λ(ds))2]

= max
t∈L

κ2 (∫
Rd
+

g2(s)ds − ∫
[0,t+Me]

g2(s)ds)

= κ2∫
Rd
+

g2(s)ds − κ2∫
[0,M]d

g2(s)ds

= E[(Y (0) − YS1(0))
2], (3.5.3)

where in the first equation we have taken into account that the kernel g contains
the indicator function 1{s≥0}. In addition, Equation (3.2.4) implies

g2(s) = ∑
λ1

⋯∑
λd

∑
λ′1

⋯∑
λ′
d

d(λ1, ..., λd)d(λ′1, ..., λ′d)e(λ1+λ
′

1)s1⋯e(λd+λ
′

d)sd1{s≥0}, s ∈ Rd.

Plugging this into (3.5.3), we arrive at Equation (3.5.2), which in turn shows that
YS1(t) converges to Y (t) in L2 for every t ∈ L = {∆, ...,N∆}d. It remains to show
that the convergence also holds almost surely. Owing to Chebyshev’s inequality we
have for each t ∈ L = {∆, ...,N∆}d that

∞
∑
M=1

P [∣Y (t) − YS1,M(t)∣ ≥ 1

M
] ≤

∞
∑
M=1

M2E[∣Y (t) − YS1,M(t)∣2],

where we explicitly include the input parameter M into the subscript of YS1,M(t).
The right-hand side of the latter inequality is finite due to Equation (3.5.2). Finally,
the assertion follows from the Borel-Cantelli lemma. ◻

Remark 3.5.3 (1) Algorithm 3.5.1 can also be applied to pure-jump Lévy bases
if small jumps are truncated. This technique has been analyzed in detail in
Section 3 of Chen et al. [30] for the simulation of stochastic Volterra equations
in space–time. Furthermore, Section 4 of [30] considers a simulation technique
which is based on series representations for Lévy bases (see also Rosiński [76]).
However, we do not pursue this direction. Instead, in the next subsection we
consider a method which are not restricted to pure-jump Lévy bases, easy to
implement and sufficient for our simulation study in Section 3.6.

(2) One can readily replace L = {∆, ...,N∆}d in step (5) of Algorithm 3.5.1 with
any finite subset of points in Rd. Algorithm 3.5.1 is not restricted to simulation
on lattices. ◻
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3.5.2 General Lévy noise

Algorithm 3.5.1 is not suitable for CARMA random fields driven by general Lévy
bases since a drift or a Gaussian part may be part of the noise. A different way to
approximate a CARMA random field (Y (t))t∈Rd is to discretize and truncate the
stochastic integral in Equation (3.2.2). Introducing a truncation parameter M ∈ N,
we first replace the integral in (3.2.2) by

∫
[t−∆Me,t]

g(t − s)Λ(ds), t ∈ Rd.

By discretization of this integral we obtain the sum

YS2(t) ∶ = ∑
s∈[t−∆Me,t]∩∆Zd

g(t − s)Z(s)

= ∑
s∈{0,∆,...,M∆}d

g(s)Z(t − s), t ∈ Rd. (3.5.4)

Here, the random field Z represents spatial increments of Λ, or more precisely

Z(t) ∶= Λ([t −∆, t]), t ∈ Rd.

This approach has also been applied in [69] to simulate the so-called OU∧ process.
Since we evaluate YS2 only on the lattice L = {∆, ...,N∆}d, we actually simulate
a discrete-parameter moving average random field of finite order driven by i.i.d.
spatial noise as given in (3.5.4). The set {g(s)∶ s ∈ {0,∆, ...,M∆}d} plays the role of
the moving average coefficients and YS2 can be simulated exactly. Furthermore, it is
easy to check that the random field YS2 also has the representation

YS2(t) = (gS2 ∗Λ)(t) ∶= ∫
Rd
gS2(t − s)Λ(ds), t ∈ Rd,

where the step function gS2 is given by

gS2(s) = ∑
j∈{0,,...,M}d

b⊺eA1j1∆⋯eAdjd∆ep1[j∆,(j+e)∆](s), s ∈ Rd. (3.5.5)

This allows us to observe that truncation and discretization of the stochastic integral
in Equation (3.2.2) is in fact equivalent to truncation and discretization of the kernel
g, which will be useful for establishing error bounds. We sum up the simulation
scheme in the following algorithm, where (β,σ2, ν) denotes the characteristic triplet
of Λ.
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Algorithm 3.5.4

(1) Input: g, (β,σ2, ν),M,N,∆

(2) Compute g(s) for s ∈ {0,∆, ...,M∆}d.

(3) Draw Z(s), s ∈ {(1−M)∆, ...,N∆}d, independently from the infinitely divisible
distribution with characteristics (∆dβ,∆dσ2,∆dν).

(4) For each t ∈ L = {∆, ...,N∆}d, compute YS2(t) = ∑s∈{0,∆,...,M∆}d g(s)Z(t − s).

(5) Output: YS2(t), t ∈ L = {∆, ...,N∆}d

◻

If we collect the g(s) values from the second step of Algorithm 3.5.4 in an array
Ag, and the Z(s) values from the third step in an array AZ , then the YS2(s) values
from the fourth step can be computed as the discrete convolution of the two arrays
Ag and AZ . This can be carried out efficiently using the fast Fourier transform
(FFT). In-built convolution commands using the FFT exist in computer softwares
such as R or Matlab.

By approximating the CARMA random field Y by YS2 we create two sources
of error, one originates from the kernel truncation, the other one from the kernel
discretization. A more detailed analysis yields the following result.

Theorem 3.5.5. Suppose that (Y (t))t∈Rd is a CARMA(p, q) random field such that
Assumption A holds true. Then YS2(t) converges to Y (t) in L2 as simultaneously
∆→ 0 and ∆M →∞ for every t ∈ L = {∆, ...,N∆}d.

Further, let (∆k)k∈N and (Mk)k∈N be two sequences satisfying ∆k = O(k−1−ε) for
some ε > 0 and ∆kMk → ∞ as k → ∞. Then YS2(t) also converges to Y (t) almost
surely as k →∞ for every t ∈ L = {∆, ...,N∆}d.

Proof. For notational convenience we assume that all eigenvalues of A1, ...,Ad are
real. The complex case can be shown analogously by similar arguments taking care
of imaginary parts. The mean squared error is by stationarity for each t ∈ L =
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{∆, ...,N∆}d the same, namely

E[(Y (t) − YS2(t))
2] = κ2∫

Rd
(g(s) − gS2(s))2 ds (3.5.6)

≤ κ2p
d∑
λ1

⋯∑
λd

d(λ1, ..., λd)2

× ∫
Rd
+

(eλ1s1⋯eλdsd − ∑
j∈{0,,...,M}d

eλ1j1∆⋯eλdjd∆1[j∆,(j+e)∆](s))
2

ds.

Here, we have used the inequality (∑K
j=1 aj)2 ≤K∑K

j=1 a
2
j with a1, ..., aK ∈ R. In order

to evaluate the latter integral, we consider for fixed λ1, ..., λd the identities

∫
Rd
+

e2λ1s1⋯e2λdsd ds = 1

−2λ1

⋯ 1

−2λd
,

− 2∫
Rd
+

eλ1s1⋯eλdsd ∑
j∈{0,,...,M}d

eλ1j1∆⋯eλdjd∆1[j∆,(j+e)∆](s)ds

= −2 ∑
j∈{0,,...,M}d

eλ1(2j1+1)∆ − e2λ1j1∆

λ1

⋯eλd(2jd+1)∆ − e2λdjd∆

λd
,

and

∫
Rd
+

∑
j∈{0,,...,M}d

e2λ1j1∆⋯e2λdjd∆1[j∆,(j+e)∆](s)ds = ∑
j∈{0,,...,M}d

e2λ1j1∆⋯e2λdjd∆∆d.

Summing these up, we obtain

∫
Rd
+

(eλ1s1⋯eλdsd − ∑
j∈{0,,...,M}d

eλ1j1∆⋯eλdjd∆1[j∆,(j+e)∆](s))
2

ds

= 1

−2λ1

⋯ 1

−2λd
+ ∑
j∈{0,,...,M}d

e2λ1j1∆⋯e2λdjd∆ (∆d − 2
eλ1∆ − 1

λ1

⋯eλd∆ − 1

λd
)

= f1(∆M,∆),

where the function f1 is defined as

f1(u, v) ∶=
1

−2λ1

⋯ 1

−2λd

+ (e2λ1(u+v) − 1)v
e2λ1v − 1

⋯(e2λd(u+v) − 1)v
e2λdv − 1

(1 − 2
eλ1v − 1

λ1v
⋯eλdv − 1

λdv
) .



3.5. Simulation of CARMA random fields on a lattice 107

Additionally, we have the limits

lim
u→∞

f1(u, v) =
1

−2λ1

⋯ 1

−2λd
+ −v

e2λ1v − 1
⋯ −v

e2λdv − 1
(1 − 2

eλ1v − 1

λ1v
⋯eλdv − 1

λdv
) (3.5.7)

=∶ f2(v) =∶
1

−2λ1

⋯ 1

−2λd
+ f3(v),

and
lim
v→0

f2(v) = 0. (3.5.8)

Moreover, we observe that

f1(u, v) − f2(v) = f3(v)[(1 − e2λ1(u+v))⋯(1 − e2λd(u+v)) − 1].

For every ε > 0, the function f3(v) is bounded and continuous on (0, ε). We therefore
arrive at

lim
u→∞

sup
v∈(0,ε)

∣f1(u, v) − f2(v)∣ = 0,

which shows that the convergence in Equation (3.5.7) is actually uniform in v.
Combined with (3.5.8), this implies that

lim
u→∞,v→0

f1(u, v) = 0.

Hence, for every t ∈ L = {∆, ...,N∆}d, YS2(t) converges to Y (t) in L2 as simultane-
ously ∆→ 0 and ∆M →∞.

As for the second part of our assertion, we note that if ∆k = O(k−1−ε), then all
λ < 0 satisfy the inequality

∞
∑
k=1

∣λ − e
λ∆k − 1

∆k

∣ < ∞, (3.5.9)

which can be shown with the Taylor expansion of the exponential function. Defining

A1,k ∶=
(e2λ1(∆kMk+∆k) − 1)∆k

e2λ1∆k − 1
⋯(e2λd(∆kMk+∆k) − 1)∆k

e2λd∆k − 1
(2 − 2

eλ1∆k − 1

λ1∆k

⋯eλd∆k − 1

λd∆k

)

and

A2,k ∶=
1

−2λ1

⋯ 1

−2λd
− (e2λ1(∆kMk+∆k) − 1)∆k

e2λ1∆k − 1
⋯(e2λd(∆kMk+∆k) − 1)∆k

e2λd∆k − 1
,
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Inequality (3.5.9) implies ∑∞
k=1 ∣A1,k∣ < ∞ and ∑∞

k=1 ∣A2,k∣ < ∞, and thus

∞
∑
k=1

∣f1(∆kMk,∆k)∣ < ∞.

Finally, the almost sure convergence follows similarly as in the proof of Theorem 3.5.2
by Chebyshev’s inequality and the Borel-Cantelli lemma. ◻

Remark 3.5.6 (1) Instead of simulating on the regular lattice L = {∆, ...,N∆}d,
one can easily adjust Algorithm 3.5.4 for simulating on the more general lattice
L = {∆1, ...,N1∆1} ×⋯ × {∆d, ...,Nd∆d} with ∆1, ...,∆d > 0 and N1, ...,Nd ∈ N.

(2) In Section 4 of [73] it was shown that under mild conditions every CARMA
random field has a version which is càdlàg with respect to the partial order ≤.
By inspection of Algorithm 3.5.1 and Algorithm 3.5.4 it is easy to see that both
YS1 and YS2 are càdlàg as well. ◻

3.6 Simulation study

We conduct a simulation study in order to assess the empirical quality of the WLS
estimator of the previous section for finite samples. We use Algorithm 3.5.4 to sim-
ulate 500 paths of a CARMA(2,1) random field on a two-dimensional grid. As
CARMA parameters we take the estimates from Section 3.7, which are

b0 = 4.8940, b1 = −1.1432, λ11 = −1.7776, λ12 = −2.0948, λ21 = −1.3057, λ22 = −2.5142.

We take a Gaussian Lévy basis Λ with mean zero and variance one. In accordance
with the parameter estimation in Section 3.7, we first choose ∆ = 0.04 for the grid
size of Algorithm 3.5.4, M = 400 for the truncation parameter and N2 = 10002

for the number of points for each path. However, this choice results in relatively
high approximation errors, yielding only poor parameter estimates. By choosing a
higher truncation parameter M and a smaller grid size ∆, the step function gS2 in
(3.5.5) approximates the CARMA kernel g in (3.2.3) better, which by (3.5.6) also
reduces the approximation error of the CARMA random field. We therefore decide
to simulate on a finer grid with ∆ = 0.01, M = 600 and N2 = 40002. After simulation
we save only every fourth point in each of the two axes directions of R2 in order to
be back in the setting of Section 3.7 with ∆ = 0.04 and N2 = 10002 points per path.
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Having simulated the CARMA random fields on a grid, we proceed by estimat-
ing the variogram using the variogram estimator of Section 3.3. We calculate the
empirical variogram at K = 100 different lags, namely

{ψ∗N(j∆ei)∶ i = 1,2; j = 1, ...,50}. (3.6.1)

These lags lie on the principal axes of R2 and are by Proposition 3.4.7 sufficient to
identify the CARMA(2,1) parameters. In the final step we estimate the CARMA
parameter vector θ with the WLS estimator θ∗N given in (3.4.2). We consider the
following choices for weights and number of lags used.

Case 1:

θ∗N ∶= argminθ∈Θ

⎧⎪⎪⎨⎪⎪⎩
∑

j=1,...,50
i=1,2

wj (ψ∗N(j∆ei) − ψθ(j∆ei))2
⎫⎪⎪⎬⎪⎪⎭
, wj = (0.1(j − 1) + 50 − j

49
)

2

.

(3.6.2)
Case 2:

θ∗N ∶= argminθ∈Θ

⎧⎪⎪⎨⎪⎪⎩
∑

j=1,...,25
i=1,2

wj (ψ∗N(j∆ei) − ψθ(j∆ei))2
⎫⎪⎪⎬⎪⎪⎭
, wj = (0.1(j − 1) + 25 − j

24
)

2

.

(3.6.3)
Case 3:

θ∗N ∶= argminθ∈Θ

⎧⎪⎪⎨⎪⎪⎩
∑

j=1,...,50
i=1,2

wj (ψ∗N(j∆ei) − ψθ(j∆ei))2
⎫⎪⎪⎬⎪⎪⎭
, wj = ej∆. (3.6.4)

Case 4:

θ∗N ∶= argminθ∈Θ

⎧⎪⎪⎨⎪⎪⎩
∑

j=1,...,25
i=1,2

wj (ψ∗N(j∆ei) − ψθ(j∆ei))2
⎫⎪⎪⎬⎪⎪⎭
, wj = ej∆. (3.6.5)

Cases 1 and 2 apply quadratically decreasing weights while Cases 3 and 4 ap-
ply exponentially decreasing weights. The compact parameter space Θ is chosen
to be Θ = [0,10] × [−10,10] × [−10,0]4 which contains the true parameter vector
θ0 = (b0, b1, λ11, λ12, λ21, λ22). For minimization of the objective function we use the
command DEoptim of the R package DEoptim which implements the differential
evolution algorithm (for more details see [67]). This algorithm has the advantage
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that we do not need an initial value for the optimization procedure. Instead, one
can directly hand over the parameter space Θ as an input. The output of DEoptim it-
self is then used as an initial value for the standard R command optim. The summary
of the estimation results are given in Tables 3.2 to 3.5 below.

Recall that in our parametrization b0 actually plays the role of the white noise
standard deviation. Comparing Table 3.2 with 3.3 and Table 3.4 with 3.5, we observe
that using K = 50 instead of K = 100 lags generally reduces the standard deviation
(Std) but increases the bias for most of the estimators. This indicates a typical
variance-bias trade-off subject to the number of lags used. Moreover, we find that
using exponential weights as in (3.6.4) and (3.6.5) increases the standard deviation
and the root mean squared error (RMSE) for all components of θ∗N .

According to Theorem 3.4.1, the asymptotic properties of the WLS estimator θ∗N
does not depend on the distribution of the Lévy basis Λ. To examine this statement
for finite samples, we repeat the procedure above with variance gamma noise. More
precisely, we simulate 500 independent CARMA(2,1) paths driven by a variance
gamma basis Λ with mean zero and variance one, compute the empirical variogram
as in (3.6.1) and estimate the CARMA parameters as in Cases 1 to 4. The results
are summarized in Tables 3.6 to 3.9. Comparing the RMSEs in Tables 3.2 to 3.9,
we observe that the WLS estimation is slightly but not significantly better for the
variance gamma case than for the Gaussian case.

3.7 Application to cosmic microwave background data

We apply our theory to cosmic microwave background (CMB) data from the Planck
mission of the European Space Agency. The 2018 data release can be downloaded
publicly from the Planck Legacy Archive https://pla.esac.esa.int. The CMB
maps on this website cover the full sky and have been produced using four different
methods. We choose the data set created by the SMICA method and refer to [33] for
more information. We take data points between 50○ and 70○ longitude and 10○ and
30○ latitude, the unit is given in Kelvin. We save the data with mean −8.7316×10−6

and standard deviation 9.6049 × 10−5 into an N × N -matrix with N = 1000, and
plot column-wise and row-wise means. Since we do not find any deterministic trend
or seasonal component in Figure 3.1, we may assume that the data is stationary.
This is in line with standard assumptions for the CMB (see e.g. Section 2.1.1 of
Giovannini [46]). We perform a normalization of the data to have mean zero and

https://pla.esac.esa.int
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Figure 3.1: Column-wise (left) and row-wise (right) means of the CMB data.

variance one, and plot the data’s empirical density against the standard normal
density. An inspection of Figure 3.2 reveals that the marginal distribution of the
CMB data is Gaussian. Hence, we may also assume that the Lévy basis Λ is Gaussian.
We proceed as in the previous section and compute the empirical variogram at
100 different lags on the principal axes, namely {ψ∗N(j∆ei)∶ i = 1,2; j = 1, ...,50}
with ∆ = 0.04. Assuming that the Lévy basis Λ has variance one, we estimate the
parameters of CAR(1), CAR(2) and CARMA(2,1) random fields with the WLS
estimator in Equation (3.6.2). For the CAR(1) model we obtain:

b∗0 = 1.2268, λ∗11 = −0.4622, λ∗21 = −0.5159.

For the CAR(2) model we obtain:

b∗0 = 4.9991, λ∗11 = −1.7963, λ∗12 = −1.7969, λ∗21 = −1.2859, λ∗22 = −2.2212.

For the CARMA(2,1) model we obtain:

b∗0 = 4.8940, b∗1 = −1.1432, λ∗11 = −1.7776, λ∗12 = −2.0948, λ∗21 = −1.3057, λ∗22 = −2.5142.

Figure 3.3 depicts the estimated variogram of the CMB data along with fitted var-
iogram curves of our three models. Recall that b0 is not, but plays the role of the
white noise standard deviation in our parametrization (see the first paragraph of
Section 3.4). The weighted sum of squares (WSS) values

WSS = ∑
j=1,...,50
i=1,2

wj (ψ∗N(j∆ei) − ψθ∗(j∆ei))2
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Figure 3.2: Empirical density of normalized CMB data (in black) and density of the
standard normal distribution (in red).

are 7.6132 × 10−2 for CAR(1), 2.5769 × 10−2 for CAR(2) and 2.0113 × 10−2 for
CARMA(2,1). For model selection, we compute the Akaike information criterion
(AIC)

AIC = 2P +K log(WSS/K),

where P is the number of model parameters and K the number of lags used to cal-
culate the WSS. The AIC values are −712.0453 for CAR(1), −816.3761 for CAR(2)
and −839.1583 for CARMA(2,1).

Model WSS P K AIC
CAR(1) 7.6132 × 10−2 3 100 −712.0453

CAR(2) 2.5769 × 10−2 5 100 −816.3761

CARMA(2,1) 2.0113 × 10−2 6 100 −839.1583

Table 3.1: Weighted sum of squares (WSS), number of parameters (P), number of
lags used (K) and Akaike Information Criterion (AIC) for the parameter estimation
in Section 3.7.
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These numbers are summarized in Table 3.1 and suggest that the CARMA(2,1)
model is optimal compared to the CAR(1) and CAR(2) models. For a visual com-
parison we plot the heat map of the original CMB data together with heat maps
of simulated fields in Figures 3.4 to 3.7. Although we cannot draw any conclusions
from a single sample path, it is possible to observe some features of the fitted mod-
els. All three models exhibit clusters of high and low values similarly to the original
data. However, the cluster sizes of the CAR(1) random field are larger than those
of the CMB data, whereas the CAR(2) and CARMA(2,1) models display a better
visual fit. Another common feature are horizontal and vertical lines, which is most
visible in Figure 3.5. These lines are the consequences of the non-smoothness of the
kernel function in Equation (3.2.3). One therefore can argue that the fitted CARMA
random fields represent linear approximations to the spatial dependence structures
of the cosmic microwave background.
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Figure 3.3: Empirical variogram ordinates of the CMB data on the horizontal axis
(left) and vertical axis (right) together with fitted variogram curves of the CAR(1)
model (in red), the CAR(2) model (in blue) and the CARMA(2,1) model (in black).
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Figure 3.4: Normalized CMB data
Figure 3.5: Simulated CAR(1) random
field

Figure 3.6: Simulated CAR(2) random
field

Figure 3.7: Simulated CARMA(2,1) ran-
dom field
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True Value Mean Bias Std RMSE
b0 4.8940 4.7882 -0.1058 0.5124 0.5227
b1 -1.1432 -1.2784 -0.1352 0.3962 0.4183
λ11 -1.7776 -1.6283 0.1494 0.2377 0.2806
λ12 -2.0948 -2.3193 -0.2246 0.4183 0.4744
λ21 -1.3057 -1.3136 -0.0079 0.2323 0.2322
λ22 -2.5142 -2.5231 -0.0089 0.4048 0.4045

Table 3.2: Parameter estimation results for CARMA(2,1) on R2 with K = 100 lags,
quadratically decreasing weights as in (3.6.2) and Gaussian basis Λ.

True Value Mean Bias Std RMSE
b0 4.8940 4.6929 -0.2010 0.4597 0.5013
b1 -1.1432 -1.2252 -0.0820 0.3515 0.3606
λ11 -1.7776 -1.6335 0.1442 0.2005 0.2468
λ12 -2.0948 -2.2117 -0.1169 0.3246 0.3447
λ21 -1.3057 -1.2947 0.0110 0.2136 0.2137
λ22 -2.5142 -2.4636 0.0506 0.3065 0.3104

Table 3.3: Parameter estimation results for CARMA(2,1) on R2 with K = 50 lags,
quadratically decreasing weights as in (3.6.3) and Gaussian basis Λ.

True Value Mean Bias Std RMSE
b0 4.8940 4.8329 -0.0610 0.5668 0.5695
b1 -1.1432 -1.2708 -0.1275 0.4250 0.4433
λ11 -1.7776 -1.6234 0.1542 0.2473 0.2912
λ12 -2.0948 -2.3569 -0.2622 0.4754 0.5425
λ21 -1.3057 -1.3182 -0.0125 0.2448 0.2449
λ22 -2.5142 -2.5392 -0.0250 0.4348 0.4351

Table 3.4: Parameter estimation results for CARMA(2,1) on R2 with K = 100 lags,
exponentially decreasing weights as in (3.6.4) and Gaussian basis Λ.

True Value Mean Bias Std RMSE
b0 4.8940 4.7525 -0.1414 0.5267 0.5448
b1 -1.1432 -1.1995 -0.0563 0.3879 0.3915
λ11 -1.7776 -1.5908 0.1868 0.2375 0.3020
λ12 -2.0948 -2.2988 -0.2040 0.4240 0.4701
λ21 -1.3057 -1.2765 0.0292 0.2299 0.2315
λ22 -2.5142 -2.5196 -0.0054 0.3786 0.3783

Table 3.5: Parameter estimation results for CARMA(2,1) on R2 with K = 50 lags,
exponentially decreasing weights as in (3.6.5) and Gaussian basis Λ.
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True Value Mean Bias Std RMSE
b0 4.8940 4.8407 -0.0533 0.5126 0.5148
b1 -1.1432 -1.2383 -0.0951 0.4181 0.4283
λ11 -1.7776 -1.6453 0.1323 0.2202 0.2567
λ12 -2.0948 -2.3054 -0.2106 0.3828 0.4366
λ21 -1.3057 -1.3149 -0.0092 0.2269 0.2269
λ22 -2.5142 -2.5319 -0.0177 0.3716 0.3717

Table 3.6: Parameter estimation results for CARMA(2,1) on R2 with K = 100 lags,
quadratically decreasing weights as in (3.6.2) and variance gamma basis Λ.

True Value Mean Bias Std RMSE
b0 4.8940 4.7474 -0.1466 0.4635 0.4857
b1 -1.1432 -1.2035 -0.0603 0.3578 0.3625
λ11 -1.7776 -1.6325 0.1451 0.2034 0.2497
λ12 -2.0948 -2.2322 -0.1375 0.3246 0.3522
λ21 -1.3057 -1.2866 0.0191 0.2137 0.2144
λ22 -2.5142 -2.4994 0.0148 0.3154 0.3154

Table 3.7: Parameter estimation results for CARMA(2,1) on R2 with K = 50 lags,
quadratically decreasing weights as in (3.6.3) and variance gamma basis Λ.

True Value Mean Bias Std RMSE
b0 4.8940 4.8696 -0.0243 0.5671 0.5671
b1 -1.1432 -1.2780 -0.1348 0.4090 0.4302
λ11 -1.7776 -1.6266 0.1511 0.2543 0.2956
λ12 -2.0948 -2.3773 -0.2825 0.4731 0.5506
λ21 -1.3057 -1.3086 -0.0029 0.2402 0.2400
λ22 -2.5142 -2.5760 -0.0618 0.4262 0.4303

Table 3.8: Parameter estimation results for CARMA(2,1) on R2 with K = 100 lags,
exponentially decreasing weights as in (3.6.4) and variance gamma basis Λ.

True Value Mean Bias Std RMSE
b0 4.8940 4.7422 -0.1518 0.4806 0.5035
b1 -1.1432 -1.2331 -0.0898 0.3942 0.4039
λ11 -1.7776 -1.6102 0.1674 0.2193 0.2758
λ12 -2.0948 -2.2791 -0.1843 0.3626 0.4065
λ21 -1.3057 -1.2816 0.0241 0.2272 0.2283
λ22 -2.5142 -2.5225 -0.0083 0.3532 0.3530

Table 3.9: Parameter estimation results for CARMA(2,1) on R2 with K = 50 lags,
exponentially decreasing weights as in (3.6.5) and variance gamma basis Λ.



Chapter 4:
Autocovariance varieties of moving average
random fields

4.1 Introduction

Moving average random fields indexed by the integer lattice Zd generalize the class
of discrete-time moving average processes and constitute an important statistical
spatial model. They are used to model texture images (cf. [44]), as well as in image
segmentation and restoration (cf. [62]). Furthermore, they are connected to ARMA
(autoregressive moving average) random fields (cf. [41] and the references therein)
and the sampling problem of CARMA (continuous autoregressive moving average)
random fields, in which the autocovariance functions of moving average random
fields play a crucial role (cf. [73, Section 4.3]).

A moving average random field (Yt)t∈Zd of order q = (q1, q2, . . . , qd) ∈ Nd is defined
by the equation

Yt =
q1

∑
k1=0

⋯
qd

∑
kd=0

akZt−k, t ∈ Zd,

where k = (k1, . . . , kd), ak are real coefficients and (Zt)t∈Zd is a real-valued zero-mean
white noise (see Definition 4.2.1). The autocovariance function

γ(t) = Cov[Y0, Yt], t ∈ Zd,

for this type of random field is compactly supported, i.e. only finitely many values
are nonzero. More precisely, we have γ(t) = 0 for every t = (t1, . . . , td) ∈ Zd with
entries satisfying ∣ti∣ > qi for at least one i ∈ {1, . . . , d}.

We study the autocovariance functions of moving average random fields from an
algebraic perspective. Our motivation stems from the field of algebraic statistics [84].
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Specifically, inspired by the concept of moment varieties [3], here we introduce au-
tocovariance varieties. The moving average variety MAq ⊆ PN (see Definition 4.3.1)
is parametrized by (q1+1)⋯(qd+1) moving average coefficients ak where the indices
k satisfy 0 ≤ ki ≤ qi for i = 1, . . . , d. These coefficients induce (2q1 + 1)⋯(2qd + 1)
nonzero autocovariance values γ(t). However, we only consider half of them since
the relation γ(−v) = γ(v) holds for all v ∈ Zd.

Example 4.1.1 Let d = 2 and q = (1,1). Then the Q = (1+1)(1+1) = 4 parameters
a00, a01, a10, a11 define the autocovariances

γ(0,0) = a2
00 + a2

10 + a2
01 + a2

11,

γ(1,0) = a00a10 + a11a01,

γ(0,1) = a00a01 + a11a10,

γ(1,−1) = a10a01,

γ(1,1) = a00a11.

The moving average variety MA(1,1) ⊆ P4 is expected to be 3-dimensional. We
characterize it in Theorem 4.3.4.

This chapter is organized as follows. In Section 2, we give the main definition
of a moving average random field and its autocovariance function. We define our
main object of study, namely autocovariance varieties, in Section 3. We contrast
the properties between moving average processes (one-dimensional) from the higher
dimensional moving average random fields. In Theorem 4.3.9 we establish the di-
mension and degree of these varieties. In Section 4 we investigate identifiability of
the associated models and prove that they are algebraically identifiable. In contrast
to the d = 1 case where the degree of the fiber grows with q, we show that for d > 1

there are generically only two sets of parameters that yield the same autocovariance
function. Next, we study two different approaches to estimate model parameters
from given samples in Section 5. First, we fit the empirical autocovariance function
to the theoretical counterpart using a least squares method. Second, we consider
maximum likelihood estimation. Both approaches connect nicely to concepts from
algebraic statistics: respectively the ED degree and the ML degree. In Example
4.5.8, we conduct a simulation study comparing classical local optimization meth-
ods to numerical homotopy continuation, where we find that the numerical algebraic
geometry (NAG) method performs slightly better.
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We use the following notation and terminology in this chapter: The components
of a vector u ∈ Rd are given by u1, ..., ud if not stated otherwise. If u, v ∈ Zd, then we
set [u, v] ∶= {s ∈ Zd∣ui ≤ si ≤ vi,1 ≤ i ≤ d}, which may be an empty set. The symbol ⪯
denotes the lexicographic order and for x ∈ Rd and t ∈ Zd we define xt ∶= xt11 ⋯x

td
d . If

g∶A → B is a mapping and y ∈ g(A), then g−1(y) is called fiber of y and each point
inside the fiber is called preimage.

4.2 Moving average random fields

Throughout this chapter, all stochastic objects are defined on a fixed complete prob-
ability space (Ω,F ,P).

Definition 4.2.1 (1) A random field (Yt)t∈Zd is called weakly stationary if Yt ∈
L2(Ω,F ,P) for every t ∈ Zd and γ(t) ∶= Cov[Y0, Yt] = Cov[Ys, Ys+t] for every
t, s ∈ Zd. It is called a white noise if γ(0) > 0 and γ(t) = 0 for every 0 ≠ t ∈ Zd.
In this case, σ2 ∶= γ(0) is called the white noise variance.

(2) Let q1, ..., qd be positive integers and (Zt)t∈Zd be a real-valued zero-mean white
noise on Zd. A random field (Yt)t∈Zd is called a moving average random field if
it satisfies the equation

Yt = ∑
k∈[0,q]

akZt−k, t ∈ Zd, (4.2.1)

where ak ∈ R such that for each i = 1, ..., d there exist at least two index vectors
l,m ∈ [0, q] satisfying al ≠ 0, am ≠ 0, li = qi and mi = 0.

The last condition on the two index vectors l,m guarantees that the MA(q)
random field has indeed order q and not a smaller order. We associate to each
MA(q) random field the moving average polynomial

θ(x) = ∑
k∈[0,q]

akx
k,

and further, we define the formal backshift operators B1, ...,Bd which act on any
random field (Xt)t∈Zd in the following way:

BiXt =X(t1,...,ti−1,ti−1,ti+1,...,td), t ∈ Zd, i = 1, ..., d.
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With this notation, (4.2.1) can be written in short as

Yt = θ(B)Zt, t ∈ Zd,

where B = (B1, ...,Bd).
The following proposition establishes the link between the moving average poly-

nomial θ and the autocovariance function γ of a MA(q) random field.

Proposition 4.2.2. Suppose that (Yt)t∈Zd is aMA(q) random field driven by a white
noise (Zt)t∈Zd with variance σ2. Then Y is weakly stationary, its autocovariance
function γ is compactly supported and we have

σ2θ(x)θ(x−1) = ∑
t∈Zd

γ(t)xt. (4.2.2)

Proof. The facts that Y is weakly stationary and γ is compactly supported are
straight-forward. Let S = {k ∈ Zd∶ak ≠ 0} denote the set of indexes with non-
vanishing coefficient ak. Then we have that

σ2θ(x)θ(x−1) = σ2
⎛
⎝ ∑
k∈[0,q]

akx
k
⎞
⎠
⎛
⎝ ∑
k∈[0,q]

akx
−k⎞

⎠

= σ2 ∑
t∈Zd

⎛
⎝ ∑
k,k+t∈S

akak+t
⎞
⎠
xt

= ∑
t∈Zd

Cov

⎡⎢⎢⎢⎢⎣
∑

k∈[0,q]
akZ0−k, ∑

k+t∈[0,q]
ak+tZ0−k

⎤⎥⎥⎥⎥⎦
xt

= ∑
t∈Zd

Cov[θ(B)Z0, θ(B)Zt]xt

= ∑
t∈Zd

Cov[Y0, Yt]xt = ∑
t∈Zd

γ(t)xt.

4.3 Autocovariance varieties

We have seen that for q = (q1, q2, . . . , qd) ∈ Nd, the autocovariance function of a
moving average random field is only dependent on the coefficients ak of the moving
average polynomial θ(x) = ∑k∈[0,q] akx

k and the white noise variance σ2. In order to
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avoid redundancies in model specification, one can assume without loss of generality
that σ2 = 1 and we will do so for the rest of this chapter. There are Q+1 ∶= ∏d

i=1(qi+1)
coefficients ak and 2N+1 ∶= ∏d

i=1(2qi+1) non-zero autocovariances γ(t) for t ∈ [−q, q].
Ordering them in two vectors a and γa, we can think of this correspondence as a
polynomial map Γq ∶ RQ+1 ↦ R2N+1 given by a↦ γa.

Since γ(−t) = γ(t) for all t ∈ Zd, we can drop half of the autocovariances and only
consider γ(t) with t ∈ [−q, q] and t ⪰ 0, where ⪰ denotes the lexicographic order. In
this way, we have a map RQ+1 ↦ RN+1 which we still denote by Γq.

The points in the image represent the set of autocovariance functions of moving
average random fields. Geometrically, this is a semialgebraic set, defined by polyno-
mial equalities and inequalities. The closure of the image of this parametrization will
give a real affine algebraic variety. However, as is standard in algebraic statistics, we
will first change the underlying field to be algebraically closed (so the map becomes
Γq ∶ CQ+1 ↦ CN+1 over the complex numbers C) and then we pass to projective
space arriving at Γq ∶ PQ ⇢ PN . This last step requires the polynomials γ(t) to be
homogeneous, and indeed they are in our case.

Definition 4.3.1 Let q = (q1, q2, . . . , qd) ∈ Nd and define Q ∶= ∏d
i=1(qi + 1) − 1 and

N ∶= (∏d
i=1(2qi + 1) − 1)/2. The autocovariance variety MAq is the image of the

autocovariance map Γq ∶ PQ ⇢ PN .

4.3.1 Moving average processes

If d = 1, moving average random fields are also called moving average processes.
These processes are well-studied and belong to the important class of ARMA pro-
cesses (cf. [23, Chapter 3]). Suppose that (Yt)t∈Z is a MA(q) process given by the
equation

Yt =
q

∑
k=0

akZt−k, t ∈ Z.

Then, the autocovariance function γ of Y has the simple expression

γ(t) =
⎧⎪⎪⎨⎪⎪⎩

∑q−∣t∣
k=0 akak+∣t∣, if ∣t∣ ≤ q,

0, if ∣t∣ > q.

For the class of moving average processes we have that Q = N = q. Thus, in this
special case the autocovariance map takes the form

Γq ∶ Pq ⇢ Pq.
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In the next subsection we will see that the map is actually defined in all of Pq (there
are no base points), so we conclude the following.

Proposition 4.3.2. If d = 1, then MAq = Pq.

WhileMAq is not particularly interesting when d = 1, the parametrization com-
ing from Γq ∶ Pq → Pq has interesting fibers and computing them is important for
statistical applications. This issue of identifiability will be explored in Section 4.4.

Remark 4.3.3 Going back for a moment to the real picture (over R), the equality
MAq = Pq is analogous to the statement that when d = 1, any autocovariance
function with support [−q, q] is an autocovariance function of a MA(q) process [23,
Prop 3.2.1].

4.3.2 Moving average random fields

We start by carefully analyzing the caseMA(1,1) mentioned in the introduction.

Theorem 4.3.4. The autocovariance variety MA(1,1) ⊆ P4 is a threefold of degree
4. In the polynomial ring with variables gt = γ(t), it is the hypersurface defined by
the quartic

g2
10g

2
01−g00g10g01g11+g2

10g
2
11+g2

01g
2
11−g00g10g01g1−1+g2

00g11g1−1−2g2
10g11g1−1−2g2

01g11g1−1

− 4g3
11g1−1 + g2

10g
2
1−1 + g2

01g
2
1−1 + 8g2

11g
2
1−1 − 4g11g

3
1−1 = 0. (4.3.1)

Its singular locus is a quadratic surface, which is the union of the three irreducible
components corresponding to the prime ideals

⟨g10 − g01, g00 − 2g11 − 2g1−1,4g11g1−1 − g2
01⟩ , (4.3.2)

⟨g10 + g01, g00 + 2g11 + 2g1−1,4g11g1−1 − g2
01⟩ , (4.3.3)

and
⟨g11 − g1−1, g00g1−1 − g10g01⟩ . (4.3.4)

Proof. The proof is computational. One way to obtain the quartic (4.3.1) is through
the following Macaulay2 [48] commands:
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R = QQ[a00,a01,a10,a11]
S = QQ[g00,g01,gm11,g10,g11]
h = map(R,S,{ a00^2 + a10^2 + a01^2 + a11^2, a00*a01 + a10*a11,

a10*a01, a00*a10 + a01*a11, a00*a11} )
I = kernel h

For the singular locus, we compute the radical ideal of the quartic along with its
vanishing gradient, and then compute its prime decomposition.

Remark 4.3.5 Substituting the parametrization of Example 4.1.1 into (4.3.2) to
(4.3.4), we find that the three irreducible components of the singular locus corre-
spond to the three conditions

a10 = a01 and a00 = a11, (4.3.5)

a10 = −a01 and a00 = −a11, (4.3.6)

and
a00a11 = a01a10. (4.3.7)

These conditions represent submodels and we will analyze Equation (4.3.7) in more
detail in Example 4.4.5.

The complexity of MAq increases rapidly when d > 1. It is computationally
challenging to obtain generators for its prime ideal even for small values of q and d.
Beyond q = (1,1), we were also able to do this for q = (1,2) and q = (1,1,1).

Proposition 4.3.6. The autocovariance variety MA(1,2) ⊆ P7 is 5-dimensional
of degree 16. Its prime ideal is cut out by 7 sextics. The autocovariance variety
MA(1,1,1) ⊆ P13 is 7-dimensional of degree 64. Its prime ideal is cut out by 56 quar-
tics, 90 quintics and 50 sextics.

Table 4.1 presents the basic properties of the first autocovariance varietiesMAq
with q = (q1, q2), that is, for d = 2. The dimension appears to be the expected one,
while the degree follows a clear pattern as a power of two. We will prove that this
actually holds for anyMAq. To that end, we use the next two lemmas.

Lemma 4.3.7. The map Γq ∶ PQ −⇢ PN has no base points.
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q1 q2 dim(MAq) N deg(MAq) generators
1 1 3 4 4 1 quartic
1 2 5 7 16 7 sextics
1 3 7 10 64 ?
2 2 8 12 128 ?

Table 4.1: Summary of first autocovariance varieties for d = 2

Proof. Assume that Γq(a) = 0. We know from (4.2.2) that

θ(x)θ(x−1) = ∑
t∈Zd

γ(t)xt = 0.

Multiplying both sides by the monomial xq = xq11 ⋯x
qd
d , we obtain the product of two

polynomials θ(x) ⋅ xqθ(x−1) that equals the zero polynomial. Since the polynomial
ring K[x] is an integral domain when K is a field, we must have that either θ(x) = 0

or xqθ(x−1) = 0. In particular, all the coefficients ak = 0, that is, a = 0 is the zero
vector.

Lemma 4.3.8. The autocovariance varietyMAq is a linear projection of the Veronese
variety. Furthermore, γ(t) is the sum of exactly (q1−∣t1∣+1)⋯(qd−∣td∣+1) quadratic
monomials for every t ∈ [−q, q] with t ⪰ 0, and each monomial appears exactly once.

Proof. The quadratic Veronese embedding precisely consists of all quadratic mono-
mials. The parametrization of MAq consists of quadrics, each one is a sum of
quadratic monomials. Moreover, Proposition 4.2.2 implies that

γ(t) = ∑
k,k+t∈[0,q]

akak+t, (4.3.8)

for every t ∈ [−q, q], which shows the second part of the assertions.

Now we state the main theorem concerning our varietiesMAq.

Theorem 4.3.9. Let q ∈ Nd. Then

dim(MAq) = Q =
d

∏
i=1

(qi + 1) − 1

and if d > 1, then
deg(MAq) = 2Q−1 = 2∏

d
i=1(qi+1)−2.
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Proof. Let D ∶= dim(MAq) denote the dimension ofMAq and consider the regular
map Γq ∶ PQ Ð→ PN . Since the domain is Q-dimensional, the inequality D ≤ Q has
to hold. However, Γq is not a constant map and has no base points by Lemma 4.3.7.
Consequently, we actually have equality, that is D = Q.

By Lemmas 4.3.7 and 4.3.8, the degree of the map Γq has the same degree as the
quadratic Veronese variety VQ,2, which is 2Q. In addition, we know that deg(Γq) =
deg(MAq)deg(Γ−1(γ)) for γ ∈ MAq generic and the identifiability Theorem 4.4.4
below proves that deg(Γ−1(γ)) = 2. Hence, we conclude that deg(MAq) = 2Q−1.

4.4 Identifiability

We show that all models MA(q) are algebraically identifiable (in the sense of [4]).
This means that the map from the model parameters to the autocovariances is
generically finite to one. A statement that holds generically, or for a generic point
x ∈ Cd, can be interpreted probabilistically as holding for almost all x ∈ Cd with
respect to the Lebesgue measure.

4.4.1 Moving average processes

The following result is the projective version of the known result in the moving
average process literature [23].

Proposition 4.4.1. If d = 1, the fibers of a generic point γ ∈ MAq consist of 2q

points.

Proof. Let α1, ..., αq ∈ C be the q roots of the moving average polynomial

θ(x) =
q

∑
k=0

akx
k = aq(x − α1)⋯(x − αq), x ∈ C.

Using Proposition 4.2.2, we see that there are exactly 2q+1 polynomials which gen-
erate γ as above, all of which have the form

±aq(x − α1)±⋯(x − αq)±,

where
(x − αi)+ ∶= (x − αi) and (x − αi)− ∶= (αix − 1). (4.4.1)

Hence, the fiber of any point in MAq under Γq ∶ Pq → Pq consists in general of 2q

points.
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Proposition 4.4.1 has two consequences. First, it implies that the map Γq is not
injective and the moving average parameters ai are not identifiable from a second
order point of view if d = 1. Second, it is possible to deduce all preimage points from
a single one by inverting the roots of θ as suggested in (4.4.1).

In order to obtain injectivity of Γq, one usually imposes the condition that all
roots αi of the polynomial θ lie strictly outside the unit disk (and a0 > 0). This
property is also called invertibility since it holds if and only if there exists coeffi-
cients π0, π1, ... with ∑∞

k=0 ∣πk∣ < ∞ such that the white noise sequence (Zt)t∈Z can be
expressed as

Zt =
∞
∑
k=0

πkYt−k, t ∈ Z.

Example 4.4.2 Let q = 1. This is the simplest moving average model MA(1). We
have that θ(x) = a0 + a1x and Γ1 ∶ P1 Ð→ P1 is given by

Γ1(a0, a1) = (a2
0 + a2

1, a0a1).

The fiber of a generic point γ = (γ0, γ1) consists of 2 = 21 points in P1. They are
(ã0, ã1) and (ã1, ã0) where

ã0 =

¿
ÁÁÀγ0 +

√
γ2

0 − 4γ2
1

2
, ã1 =

¿
ÁÁÀγ0 −

√
γ2

0 − 4γ2
1

2
. (4.4.2)

The invertibility condition is equivalent to ∣a0∣ > ∣a1∣.

The observed symmetry of the two points (ã0, ã1) and (ã1, ã0) above extends to
higher q. In fact, it holds that

Γq(a0, a1, . . . , aq−1, aq) = Γq(aq, aq−1, . . . , a1, a0). (4.4.3)

This can be seen from (4.2.2), where the reversal occurs by inverting all the roots
in (4.4.1).

For general q > 1, there exist algorithms to numerically approximate the invertible
solution with a0 = 1. A basic one is the innovations algorithm, which recursively
converges to the moving average parameters ak given the autocovariance values γ(t)
under the invertibility condition (we refer to Section 2 in [22] for details). Other
approaches use spectral factorization methods [79]. While we do not pursue this
in this chapter, the fact remains that the desired parameters are solutions to a
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polynomial system of equations, so it would be interesting to compare these with
state-of-the-art algorithms in numerical algebraic geometry. See Example 4.5.8 for
an illustration of such techniques.

Furthermore, the symmetry in the polynomial system means that one does not
necessarily need to find a root of a polynomial of degree 2q even when there are 2q

solutions. We illustrate this with q = 2.

Example 4.4.3 For q = 2 we have θ(x) = a0 + a1x + a2x2 and Γ2 ∶ P2 Ð→ P2 given
by

Γ2(a0, a1, a2) = (a2
0 + a2

1 + a2
2, a0a1 + a1a2, a0a2).

The fiber of a generic point γ = (γ0, γ1, γ2) ∈ MA2 consists of 22 = 4 points. A
Gröbner basis elimination from the system Γ2(a0, a1, a2) = (γ0, γ1, γ2) with order
a2, a0, a1 reveals a triangular system with a quadric in a2

1:

a4
1 − (γ0 + 2γ2)a2

1 + γ2
1 = 0

a2
0a1 − γ1a0 + a1γ2 = 0

a2a1 + a0a1 − γ1 = 0.

And hence the solutions for (a0, a1, a2) in terms of (γ0, γ1, γ2) can be obtained as

a1 =

¿
ÁÁÀγ0 + 2γ2 ±

√
(γ0 + 2γ2)2 − 4γ2

1

2
, a0 =

¿
ÁÁÀγ1 ±

√
γ2

1 − 4a2
1γ2

2a1

, a2 =
γ1 − a0a1

a1

.

4.4.2 Moving average random fields

The following result demonstrates a fundamental difference between d = 1 and d > 1

in terms of identifiability. On the other hand, it shows how the symmetry in (4.4.3)
generalizes to higher dimensions.

Theorem 4.4.4. Suppose that the moving average polynomial θ is generic. Then
for d > 1, the fibers of a point γ ∈ MAq are only two points a and a′ in PQ. One is
obtained from the other by a′k = aq−k for any k ∈ [0, q].

Proof. Let γ be the image of the coefficients ak of a moving average polynomial θ
under the mapping Γq and assume that θ′ is another polynomial which also generates
γ and has coefficients a′k. Due to Proposition 4.2.2, the polynomial equation

θ(x)(xqθ(x−1)) = θ′(x)(xqθ′(x−1)) (4.4.4)
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has to hold. Since generically θ is irreducible, we either have θ′ = θ or θ′ = xqθ(x−1),
which proves the assertion.

Example 4.4.5 We consider again the autocovariance varietyMA(1,1) and assume
that γ ∈ MA(1,1) is generated by a generic moving average polynomial θ as in the
setting of Theorem 4.4.4, that is, θ is irreducible. Then the fiber of γ is given by the
equations

a00 =

¿
ÁÁÀγ00γ11 − γ01γ10 −

√
(γ01γ10 − γ00γ11)2 − 4γ2

11(γ11 − γ1−1)2

2(γ11 − γ1−1)
,

a10 =

¿
ÁÁÀ−γ00γ1−1 + γ01γ10 −

√
(γ01γ10 − γ00γ1−1)2 − 4γ2

1−1(γ11 − γ1−1)2

2(γ11 − γ1−1)
,

a01 =

¿
ÁÁÀ−γ00γ1−1 + γ01γ10 +

√
(γ01γ10 − γ00γ1−1)2 − 4γ2

1−1(γ11 − γ1−1)2

2(γ11 − γ1−1)
,

a11 =

¿
ÁÁÀγ00γ11 − γ01γ10 +

√
(γ01γ10 − γ00γ11)2 − 4γ2

11(γ11 − γ1−1)2

2(γ11 − γ1−1)
,

and a′00 = a11, a′01 = a10, a′10 = a01, a′11 = a00. Substituting in the formulas from
Example 4.1.1, we observe that the discriminants

(γ01γ10 − γ00γ11)2 − 4γ2
11(γ11 − γ1−1)2,

(γ01γ10 − γ00γ1−1)2 − 4γ2
1−1(γ11 − γ1−1)2,

are equal to

(a2
00 − a2

11)
2 (a01a10 − a00a11)2,

(a2
01 − a2

10)
2 (a01a10 − a00a11)2,

which are nonnegative in the real case (as they should be when the moving average
parameters are real).

If however θ is not irreducible, it has to be the product of two linear factors.
Then identifiability from the above theorem fails and we have up to 4 preimages in
the fiber of γ. We note that this explains the irreducible component (4.3.4) of the
singular locus from Theorem 4.3.4, which is equivalent to (4.3.7). In order to see
this, we first assume that Equation (4.3.7) holds. This implies that there exists a
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constant b∗ ∈ R such that we have a01 = b∗a00 and a11 = b∗a10. Thus, the polynomial
θ satisfies

θ(x) = (a00 + a10x1)(1 + b∗x2)

and is therefore reducible. On the other hand, assuming that

θ(x) = a00 + a10x1 + a01x2 + a11x1x2 = (b10 + b11x1)(b20 + b21x2)

for some real-valued coefficients b10, b11, b20, b21, we can deduce (4.3.7). One of the
four preimage points in the fiber of γ is given by the equations

a00 =
1

2

√

γ00 +
√
γ200 − 4 (γ201 + γ210 − 4γ211) −

√
2γ00

√
γ200 − 4 (γ201 + γ210 − 4γ211) + 2γ200 − 4 (γ201 + γ210),

a01 =
1

2

√

γ00 −
√
γ200 − 4 (γ201 + γ210 − 4γ211) −

√
−2γ00

√
γ200 − 4 (γ201 + γ210 − 4γ211) + 2γ200 − 4 (γ201 + γ210),

a10 =
1

2

√

γ00 −
√
γ200 − 4 (γ201 + γ210 − 4γ211) +

√
−2γ00

√
γ200 − 4 (γ201 + γ210 − 4γ211) + 2γ200 − 4 (γ201 + γ210),

a11 =
1

2

√

γ00 +
√
γ200 − 4 (γ201 + γ210 − 4γ211) +

√
2γ00

√
γ200 − 4 (γ201 + γ210 − 4γ211) + 2γ200 − 4 (γ201 + γ210).

Remark 4.4.6 If, in contrast to the setting of Theorem 4.4.4, θ is not irreducible,
then the fiber of γ under Γq consists of more than two preimages, as illustrated in
the previous example. By (4.4.1), the maximum number of preimages is 2q1+⋯+qd and
occurs exactly when θ is completely separable, that is, a product of linear forms.

4.5 Parameter estimation

In this section we go one step further and consider the problem of parameter estima-
tion from observed sample points. We consider two methods: least squares estima-
tion and maximum likelihood estimation. Both involve solving polynomial systems
of equations. Algebraically, the computational complexity of the estimation problem
is measured by the ED degree [40] of the associated variety in the first case and by
the ML degree [5, 29] in the second.
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4.5.1 Least squares estimation

Let (Yt)t∈Zd be a MA(q) random field, which by Definition 4.2.1 has mean zero.
If we are given observations of Y on a lattice L = {1, ..., n}d, we can estimate the
autocovariance function γ(t) by the empirical autocovariance estimator

γ̂n(t) ∶=
1

∣Bn,t∣
∑

s∈Bn,t

Y (t + s)Y (s), t ∈ [−q, q], t ⪰ 0,

where

Bn,t ∶= {s ∈ Zd∣s, s + t ∈ L} and ∣Bn,t∣ =
d

∏
i=1

(n − ∣ti∣)1{∣ti∣≤n}.

If γ̂n(t) were exact values, we would be in the situation of the previous section.
However, these are just numerical estimates which form a point γ̂n that almost
surely lies outside the modelMAq. One approach is to project the estimated vector
γ̂n onto the autocovariance varietyMAq, that is, obtaining γ∗n ∈ MAq which has the
smallest Euclidean distance to γ̂n:

γ∗n ∶= argminγ∈MAq
∥γ − γ̂n∥. (4.5.1)

The number of critical points of this least squares optimization problem is counted
by the Euclidean distance degree (ED degree).

Proposition 4.5.1. The ED degree ofMAq is 1 if d = 1. The ED degree ofMA(1,1)
is 16.

Proof. The first part is a consequence of Proposition 4.3.2. In fact, for d = 1 the
unique critical point for (4.5.1) is γ∗n = γ̂n. For the second we use the following M2
code:

R = QQ[g00,g01,gm11,g10,g11]
I = ideal(g01^2*gm11^2-g00*g01*gm11*g10+g01^2*g10^2+gm11^2*g10^2+

g00^2*gm11*g11-2*g01^2*gm11*g11-4*gm11^3*g11-g00*g01*g10*g11
-2*gm11*g10^2*g11+g01^2*g11^2+8*gm11^2*g11^2+g10^2*g11^2-4*gm11*g11^3)

sing = ideal singularLocus I
u = {5,7,13,11,3};
M = (matrix{apply(# gens R,i->(gens R)_i-u_i)})||(transpose(jacobian I));
time J = saturate(I + minors(2,M), sing);
dim J, degree J
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The vector u represents a generic choice of γ and the saturation is needed to
remove the critical points that lie in the singular locus.

We illustrate with an example:

Example 4.5.2 We simulate 2500 points of a MA(1,1) random field on a 50× 50

grid in R (see Figure 4.1). As white noise we take an i.i.d. standard Gaussian random
field. The moving average parameters are chosen as

a00 = 7, a01 = −5, a10 = 3, a11 = 1

and the corresponding autocovariances values are

γ = (γ00, γ01, γ10, γ11, γ1−1) = (84,16,−32,7,−15).

After centering the sample, we compute the empirical autocovariances

γ̂n = (γ̂n(0,0), γ̂n(0,1), γ̂n(1,0), γ̂n(1,1), γ̂n(1,−1)).

By Proposition 4.5.1, we expect 16 complex critical points, and we compute them
numerically. Six of them are real

(87.1147,18.6511,−33.4739,5.78808,−17.312),
(80.8137,30.7661,−23.1126,−3.96875,−28.7833),
(61.9284,−24.7157,−16.0001,1.76548,19.994),
(55.2165,8.80716,26.5528,0.977029,8.45708),
(71.9207,−7.85594,−8.51067,35.9693,0.649541),
(63.1632,−18.9463,−12.5151,0.0189543,24.6219).

The first line has the lowest Euclidean distance to the estimated point

γ̂n = (86.6439,19.1877,−34.2433,6.6726,−17.3195),

and therefore

γ∗n = (87.1147,18.6511,−33.4739,5.78808,−17.312).

Moreover, we have that

∥γ − γ̂n∥ = 5.2604 and ∥γ − γ∗n∥ = 5.0711,

so that projecting onto the autocovariance variety improves the empirical estimate.
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q ED degree
(1,1) 16
(1,1) 169
(1,2) 1600
(1,4) 14641

Table 4.2: ED degree of the varietyMAq with q = (1, k), k = 1,2,3,4

Figure 4.1: MA(1,1) random field in Example 4.5.2

The computation of the ED degree for MA(1,k) with k > 1 is harder than for
MA(1,1). We therefore resort to numerical methods and obtain Table 4.2. The com-
putations suggest the following pattern.

Conjecture 4.5.3. The ED degree of MA(1,k) equals (3k+1−1)2
4 for all k > 0.

Note that the optimization problem (4.5.1) gives a point in MAq and not a
corresponding a∗ ∈ PQ. Theoretically, one could apply the identifiability results of



4.5. Parameter estimation 133

the last section to obtain such a∗ by a∗n ∶= Γ−1
q (γ∗n). However, since γ∗n will most often

be a numerical approximation, this is not feasible in practice. Instead, one should
solve the optimization problem in parametrized form:

a∗n ∶= argmina∈Θ∥γa − γ̂n∥,

where Θ ⊆ RQ+1 is a compact parameter space. We note then that the ED degree
gets multiplied by the algebraic identifiability degree of the model parametrization.

4.5.2 Maximum likelihood estimation

Suppose as before that (Yt)t∈Zd is a MA(q) random field with mean zero. Further-
more, we assume that n observations Y (t1), ..., Y (tn) are given, where the vectors
t1, ..., tn ∈ Zd are ordered according to the lexicographic order. If the driving white
noise (Zt)t∈Zd is Gaussian, then the vector Y ∶= (Y (t1), ..., Y (tn))⊺ is Gaussian as
well, and its likelihood is of the form

L(a) ∝ ∣Σ∣−1/2 exp(−1

2
Y ⊺Σ−1Y ) ,

where Σ = Σ(a) is the covariance matrix of Y and ∣Σ∣ its determinant. The maximum
likelihood estimator (MLE) is then defined as the value which maximizes the log-
likelihood:

ân ∶= argmaxa∈Θ − 1

2
log(∣Σ∣) − 1

2
Y ⊺Σ−1Y, (4.5.2)

where Θ ⊆ RQ+1 is a compact parameter space. If Z is not Gaussian, then the latter
estimator is called the quasi maximum likelihood estimator (QMLE).

Remark 4.5.4 In [91] it was shown that under mild assumptions including an
invertibility condition, the QMLE ân is consistent as n tends to infinity. Furthermore,
a slightly modified version of ân (to account for the edge effect) is shown to be
asymptotically normal in [91, Theorem 2].

Conveniently, the optimization problem (4.5.2) is still algebraic, in the sense
that the critical or score equations form a system of rational functions of a ∈ Θ. The
number of critical points of the log-likelihood is invariant under generic data Y and
this is known as the maximum likelihood degree (ML degree).

We analyze the first nontrivial case, when q = 1 and n = 2. Even this simple
model is interesting. It has been observed that the MLE can sometimes correspond
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to non-invertible models, which in this case is equivalent to ∣a0∣ = ∣a1∣, and contrary
to what was previously thought, this occurs with positive probability [36].

Proposition 4.5.5. Consider the MA(1) model with observed sample Y = (Y1, Y2).
The ML degree is 4, and these four critical points can be divided into three groups:

(1) The parameters a0 and a1 satisfy the two equations

a0a1 = Y1Y2 and a2
0 + a2

1 =
Y 2

1 + Y 2
2

2
.

(2)

a0 = a1 =
√

Y 2
1 + Y 2

2 − Y1Y2

3

(3)

a0 = −a1 =
√

Y 2
1 + Y 2

2 + Y1Y2

3

If Y1Y2 = 0, then the MLE corresponds to a degenerate model (a0a1 = 0). Otherwise
let W = Y 2

1 +Y 2
2

2Y1Y2
and the MLE is given as:

• the point in (3) if −2 <W < 0

• the point in (2) if 0 <W < 2

• the points in (1) otherwise.

Proof. Since we have a MA(1) process and Y = (Y1, Y2), we have Σ = ( γ(0) γ(1)γ(1) γ(0) ),
and the log-likelihood takes the form

`(a0, a1) = −
1

2
log((a2

0+a2
1)2−a2

0a
2
1)−

1

2
(Y1, Y2)(

a2
0 + a2

1 a0a1

a0a1 a2
0 + a2

1

)
−1

(Y1, Y2)⊺. (4.5.3)

There are generically four solutions to the system ∂`
∂a0

= ∂`
∂a1

= 0. This means the
ML degree is 4. The critical points can be divided into the three groups (1), (2) and
(3) of the statement. In order to find the MLE depending on the values of Y1, Y2, we
evaluate the likelihood function ` at these 3 groups of points. In fact, substituting
a0 and a1 from (1), (2) and (3) into the log-likelihood function, we obtain

(i) −1
2 log ((Y 2

1 − Y 2
2 )2) − 1 + log(2),
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(ii) −1
2 log (1

3 (Y 2
1 − Y1Y2 + Y 2

2 )2) − 1,

(iii) −1
2 log (1

3 (Y 2
1 + Y1Y2 + Y 2

2 )2) − 1.

Computing (i) - (iii) gives the expression

1

2
(log (4 (Y 2

1 − Y1Y2 + Y 2
2 )2) − log (3 (Y 2

1 − Y 2
2 )2)) ,

which is always nonnegative since

4 (Y 2
1 − Y1Y2 + Y 2

2 )2 − 3 (Y 2
1 − Y 2

2 )2 = (Y 2
1 − 4Y1Y2 + Y 2

2 )2 ≥ 0.

Analogously, (i) is greater than or equal to (ii) from (Y 2
1 + 4Y1Y2 + Y 2

2 )2 ≥ 0.

Hence, the first value (i) is always larger than or equal to the values (ii) and (iii),
independently of Y1 and Y2. We would conclude that the maximizers are always
given by (1), but the points may not be real. Indeed, under (1), if

a0a1 ≥ 0 then a2
0 + a2

1 ≥ 2a0a1 and thus W = Y
2

1 + Y 2
2

2Y1Y2

≥ 2

while
a0a1 ≤ 0 implies a2

0 + a2
1 ≤ −2a0a1 and hence W ≤ −2.

Direct inspection reveals that the likelihood for (2) is larger than the one for (3) if
and only if W > 0. Note that when W = −2 the points (1) and (3) coincide, while
W = 2 means that (1) and (2) coincide.

Compare our conditions for W with the similar ones found by [36] in their effort
of computing the distribution of the MLE in this q = 1, n = 2 case (note the different
parametrization in terms of σ, θ). Furthermore, it is gratifying to see that our
computations provide a simple explanation for the ‘curious’ phenomenon that the
MLE can belong to a non-invertible model. Algebraically, the points in (1) always
maximize the likelihood, but for the specified region of Y1, Y2 these points are strictly
complex (even though evaluating at the likelihood yields real values!), which means
then that (2) or (3) becomes the MLE.

In [92], standard numerical optimization routines were used to find the MLE in
samples of MA(q) models with q = 1,2,3,4. The simulations show the MLE can
again lie on the non-invertible boundary.
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Example 4.5.6 Consider aMA(1) process with n = 3 sample points Y = (Y1, Y2, Y3).
The ML degree is now 8. The expressions for the two non-invertible models ∣a0∣ = ∣a1∣
are:

a0 = a1 =
√

3x2
1 + 4x2

2 + 3x2
3 − 4x1x2 + 2x1x3 − 4x2x3

12

a0 = −a1 =
√

3x2
1 + 4x2

2 + 3x2
3 + 4x1x2 + 2x1x3 + 4x2x3

12

Obtaining closed form expressions for the other 6 critical points is also possible.

For n > 2, the matrix Σ is tridiagonal: it has γ(0) in the diagonal and γ(1) in the
upper and lower diagonal. Our ML degree computations of MA(1) for n = 2,3, . . .

reveal the following pattern:

Conjecture 4.5.7. The ML degree of MA(1) for n > 1 sample points is equal to
4(n − 1).

In contrast, the pattern forMA(2) is not as clear. The first values for n = 2,3, . . .

are recorded in Table 4.3.

n ML degree
3 29
4 69
5 129
6 205

Table 4.3: ML degrees of the MA(2) model by number of sample points

Not unusually, Gröbner basis computations quickly become prohibitive. However,
this does not mean that our algebraic approach is not useful. In applied algebraic
geometry, this often means one needs to go into numerical techniques. Indeed, as
far as we know, the algebraic nature of the ML problem has not been exploited yet,
and a numerical algebraic geometry approach brings both a fresh perspective and
efficient computational tools. Knowing the ML degree beforehand helps homotopy
continuation and monodromy methods find all solutions to the critical equations
and thus guarantee that the MLE will be found. In contrast, classical local search
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methods may only find a local maximum of the likelihood function. One way to
compare these methods is to conduct simulation studies such as the one in the next
example.

Example 4.5.8 We simulate 500 independent paths of a MA(1) process with
n = 8 observations for each path. In Figure 4.2 a sample path for this process is
illustrated. As moving average parameters we take

−2

−1

0

1

5 10 15 20

Figure 4.2: Sample path of a MA(1) process.

a0 = 1 and a1 = 0.5.

The MA(1) process is driven by i.i.d. standard Gaussian noise. Having simulated
the MA(1) process, we proceed by estimating the model parameters with the MLE
in (4.5.2) in two different ways.

For our first approach we use the standard R command optim for minimization
of the objective function. As it is standard in time series analysis, we take the output
of the innovations algorithm as the initial value for the optimization routine (cf. [22,
Section 2]).

For our second approach we differentiate the likelihood function with respect to
the moving average parameters and set the derivatives to zero. In order to com-
pute the critical points of the likelihood function we solve the resulting polynomial
system using homotopy continuation. This is implemented in the julia package
HomotopyContinuation [19].
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Finally, we evaluate the likelihood at every critical point and choose the maximal
one. The summary of the estimation results are given in Tables 4.4 and 4.5 below.

True Value Mean Bias Std
a0 1.0000 0.8642 -0.1358 0.2459
a1 0.5000 0.4503 -0.0497 0.4071

Table 4.4: Parameter estimation results for MA(1) with n = 8 and R command
optim.

True Value Mean Bias Std
a0 1.0000 0.8818 -0.1182 0.2129
a1 0.5000 0.4678 -0.0322 0.5094

Table 4.5: Parameter estimation results for MA(1) with n = 8 and homotopy con-
tinuation.

We observe that using homotopy continuation reduces the bias for both a0 and
a1, whereas it increases the standard deviation for a1 and decreases the standard
deviation for a0.

Finally, we close this section by reporting the ML degree of MA(1,1):

Proposition 4.5.9. Assume that n = 4 sample points Y = (Y11, Y12, Y21, Y22) over
the lattice L = {1,2}2 of a MA(1,1) random field are given. The autocovariance
matrix Σ of Y is

Σ =

⎛
⎜⎜⎜⎜
⎝

γ00 γ01 γ10 γ11

γ01 γ00 γ1−1 γ10

γ10 γ1−1 γ00 γ01

γ11 γ10 γ01 γ00

⎞
⎟⎟⎟⎟
⎠

.

The ML degree of the model is 192 over P3.
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