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V. Summary 

Nitric oxide (NO) is naturally present in the atmosphere as part of earth’s nitrogen 

cycle and is regarded as a molecular signal in plant, which plays significant role 

in the regulation of several biological processes. Phytoglobins are ubiquitously 

distributed in plants and can metabolize NO into nitrate during hypoxic stress.  

In this research, we demonstrated that phytoglobin-dependent NO-fixation results 

in enhanced nitrogen meboblism and better growth for hydroponic Arabidopsis 

under high concentrations (3000 ppb) of NO fumigation. Such NO-fixation allows 

a channeling of atmospheric NO into the plant N metabolism and results in a 

decreased atmospheric NO level.  

The NO-fixation were also studied in the crop plant barley. We performed a long-

term study with barley “Goden Promise” wild type, class 1 phytoglobin 

knockdown (Pgb1.1-) and overexpression (Pgb1.1+) lines fumigated with 

different NO concentration during the whole growth period. Analysis of fresh 

weight, stem number, chlorophyll content, and the effective quantum yield of PSII 

showed that NO fumigation promoted plant growth and tillering significantly in 

the HvPgb1.1+ line. After 80 days of NO fumigation, dry matter weight, spikes 

number, kernel number, and plant kernel weight were significantly increased in 

HvPgb1.1+ plants with increasing NO concentration. In contrast, yield decreased 

in WT and HvPgb1.1- plants the higher the NO levels. Application of atmospheric 

15NO and 15NO2 demonstrated NO-specificity of phytoglobins. 15N of 15NO could 

be detected in RNA, DNA and proteins of barley leaves and the 15N levels were 

significantly higher in HvPgb1.1+ plants in comparison to HvPgb1.1- and WT 

plants. These results demonstrate that overexpression of phytoglobins allows the 

plants more efficiently using atmospheric NO as N source.  
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The plant-based NO uptake could lower the concentration of atmospheric NOx, 

which has a beneficial effect on air quality and human health. Thus, the uptake 

capacity of NO and NO2 were analyzed in different species of city trees. We found 

that the NO uptake capacity in different plant species has a positive correlation 

with leaf moisture content. Besides, overexpression of phytoglobins significantly 

enhanced the NO uptake capacity in Arabidopsis, barley and poplar, which 

provides a potential biotechnological application to improve the NO uptake 

capacity in city trees.  
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1 Introduction 

1.1 NO signaling in plants 

NO is an important signalling molecule with diverse physiological functions in 

plants. Since NO was identified as mediator of plant defense responses in plants 

(Durner et al., 1998; Delledonne et al., 1998), the functions of NO in plants have 

been widely studied over the past decades and a significant amount of evidence 

demonstrated the involvement of NO in the regulation of several biological 

processes (Neill et al., 2002; Garcia-Mata et al., 2003; He et al., 2004; Huang et 

al., 2004; Bethke et al., 2006, 2007; Grün et al., 2006; Corpas et al., 2011). In this 

part, we introduce the biosynthesis and homeostasis of NO in plant and summarize 

the function of NO in plant growth and development, biotic and abiotic stress, and 

hormonal signalling. 

 

1.1.1 Biosynthesis and homeostasis of NO in plants 

Plants have various pathways for NO synthesis, which can be can be classified as 

either reductive pathway or oxidative pathway (Figure 1). The reductive pathways 

dependent on nitrite as a primary substrate, while the oxidative pathways depend 

on L-Arginine, hydroxylamine or polyamines as substrates (Gupta et al., 2011a, 

Figure 1). 

The best-characterized production pathway for NO in plants is the NAD(P)H-

dependent nitrate reductase (NR) pathway. NR is localized in cytosol and catalyzes 

the reduction of nitrate to nitrite. This enzyme is encoded by two homologous 

genes NIA1 and NIA2 (Wilkinson and Crawford, 1993) in Arabidopsis, and can 

also catalyze the reduction of nitrite to NO via the reaction: NAD(P)H + 3H3O+ 

+2NO2- → NAD+ + 2NO + 5H2O. Since the discovery that plant NR could produce 

NO both under in vitro and in vivo conditions (Harper, 1981), a great deal of 
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evidences have indicated this enzyme as one of the major plant biosynthetic 

sources of NO (Rockel et al., 2002; Meyer et al., 2005). NR-mediated NO 

production is involved in response to various abiotic and biotic factors, such as 

fungal plant pathogens (Yamamoto-Katou et al., 2006; Shi and Li, 2008; 

Srivastava et al., 2009), osmotic stress (Kolbert et al., 2010) water stress (Sang et 

al., 2008), and hypoxia (Benamar et al., 2008 Blokhinaand and Fagerstedt, 2010). 

Nitrite-derived NO production was also determined in membrane fractions 

isolated from tobacco (Nicotiana tabacum) roots (Stöhr et al., 2001) Nitrite, 

produced by apoplasmic plasma membrane-bound NR, is substrate for NiNOR. 

NiNOR is bound to the plasma membrane of roots and lead to the NO release at 

the apoplasmic side of the membrane. The root specific plasma membrane-bound 

NR:NiNOR system has been suggested to be involved in the sensing of nitrate 

availability in the soil (Meyer and Stöhr, 2002). Furthermore, NiNOR mediated 

NO production also plays a role in the regulation of root infection by mycorrhizal 

fungi (Moche et al., 2010) 

Figure 1 Overview of NO biosynthesis and homeostasis in plant cells. 

The oxidative pathway involves a NO synthase (NOS)-like enzyme and two other ways of NO 
production using polyamines and hydroxylamines as substrates. The reductive pathway of NO 
synthesis includes: nitrate reductase pathway, plasma membrane nitrate reductase (NR)/ nitrite-NO 
reductase (NiNOR) system, mitochondrial electron transport chain, xanthine oxidoreductase and a 
non-enzymatic way of NO formation under acidic pH or through the reduction of NO2- by 
carotenoids. NO can react with reduced glutathione (GSH) to form S-nitrosoglutathione (GSNO), 
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which, in turn, can be converted into oxidized GSSG and ammonia by the action of GSNO 
reductase (GSNOR). Phytoglobins (Pgbs), can scavenge NO in presence of oxygen to produce 
nitrate. Modified from Arc et al., 2013.   
 

Another nitrite-derived reduction occurs in the mitochondrial inner membrane, 

probably via cytochrome c oxidase and/or reductase. Nitrite is the substrate and 

NAD(P)H provides electrons via ubiquinone and the mitochondrial electron 

transport chain. Mitochondrial nitrite reduction produces small amounts of ATP 

during anoxia (Stoimenova et al., 2007). 

Nitrite reduction to NO can also be catalyzed by the peroxisomal enzyme xanthine 

oxidoreductase (XOR). Under anaerobic conditions, XOR can reduce nitrite to NO, 

using NADH or xanthine as reducing substrate. The XOR mediated NO production 

has been demonstrated to be involved in phosphate deficiency stress (Wang et al., 

2010). 

In addition, nitrite-derived NO production can be produced through non-

enzymatic reactions. For instance, an increase in cellular NO levels was 

demonstrated under acidic conditions (Bethke et al., 2007; Freschi et al., 2010), 

and the light-mediated reduction of nitrite to NO by carotenoids has been reported 

(Neill et al., 2008). 

Production of NO via the oxidative pathway is based on the existence of NOS-like 

activity in plants, which was first found in animals. In animals, NO synthase (NOS) 

is the enzyme that generates NO in an oxidative pathway using arginine as 

substrate and producing NO and citrulline in the presence of O2, whereas 

NAD(P)H acts as an electron donor. NOS-like activity has been found in plant 

chloroplasts (Jasid et al., 2006) and peroxisomes (Ribeiro et al., 1999; Barroso et 

al., 1999; Corpas et al., 2009). (NOS)-like activity is involved in the induction of 

cadmium accumulation and cadmium-induced programmed cell death (Besson-

Bard et al., 2009; De Michele et al., 2009, Ma et al., 2010), pathogen signaling 

induced by specific elicitors (Delledonne et al., 1998; Asai and Yoshioka 2009; 

Besson-Bard et al., 2008), mediation of protective responses against UV-B 
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radiation (Tossi et al. 2009), ABA-induced stomatal closure (Guo et al., 2003; 

Bright et al., 2006) and root development (Wang et al., 2010). However, the 

existence of NOS-like activity in plants is exclusively supported by biochemical 

and pharmacological evidence since a canonical NOS gene or a mutant deficient 

in NOS-like-dependent NO production has not been identified in higher plants yet. 

Recently, the 1000 plant genome project 1KP international consortium, including 

the expression analysis in plants and algae, have depicted an embryonic picture of 

the NOS presence in photosynthetic organisms, concluding that no NOS gene is 

present in land plant genomes (Jeandroz et al., 2016). Besides the NOS-like 

activity, it was also suggested that polyamine oxidases and copper containing 

amine oxidases participate in oxidative NO production (Tun et al., 2006; 

Wimalasekera et al., 2011). However, the biochemical mechanisms are still not 

clear. 

NO homeostasis is relying on the biosynthesis, but also the buffering and 

scavenging of NO. NO can react with reduced glutathione (GSH) to form S-

nitrosoglutathione (GSNO), which, in turn, can be converted into oxidized GSSG 

and ammonia by the action of GSNO reductase (GSNOR) (Liu et al., 2001). 

GSNO is considered a cellular reservoir of NO and its abundance influences the 

activity of enzymes and transcription factors via nitrosylation. Besides, 

phytoglobins (Pgbs), a kind of plant globular proteins that can scavenge NO in 

presence of oxygen to produce nitrate and play a significant role in the NO 

homeostasis.  

 

1.1.2 NO function in plant development 

As a signaling molecular, NO is thought to modulate a variety of developmental 

processes. In this part, we discuss the role of NO plays in dormancy and 

germination, root growth and formation, leaf senescence, flowering and fruit 

ripening.  
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NO can efficiently break the dormancy, promote seeds germination, and play a 

pivotal role in sensing environmental conditions appropriate for seed germination 

(Kopyra and Gwóźdź, 2003; Krasuska et al., 2015, Bethke et al., 2004, 2006, 2007; 

Beligni and Lamattina, 2000). NO is produced rapidly after seed imbibition and 

promotes germination by inducing the expression of the abscisic acid 8-

hydroxylase gene, CYP707A2, and stimulating ethylene (ET) production (Bethke 

et al., 2007; Yang et al., 2006). Moreover, enhanced expression of gibberellic acid 

3 oxidase genes by NO was observed in dormant seeds whereby these genes play 

an important role in breaking dormancy (Liu et al., 2010). 

NO has been reported to regulate lateral root formation (Correa-Aragunde et al., 

2004, 2008), primary root growth (Fernández-Marcos et al., 2011), adventitious 

roots formation (Pagnussat et al., 2002, 2004) and root hair development 

(Lombardo et al., 2006). Auxin plays central role in modulating root architecture. 

NO is thought to act as a downstream messenger in auxin signaling (Chen et al., 

2010). Further, NO can indirectly increase auxin levels by reduceing auxin 

degradation by inhibiting IAA oxidase activity and acts positively on auxin 

signalling through S-nitrosylation of the auxin receptor F-box protein TIR1 

(Terrile et al., 2012). Moreover, NO is able to induce lateral root formation even 

in the absence of auxin treatment (Correa-Aragunde et al., 2004).   

The body of evidences reveal that NO acts as a negative regulator of leaf 

senescence in several plant species. In pea leaves, it was found that NO donor 

inhibited ET biosynthesis and thus decreased ET level and ultimately inhibited 

senescence in pea leaves (Leshem and Haramaty, 1996). In rice leaves, NO 

mediates inhibition of senescence by increasing superoxide dismutase activity and 

plays a protective role in methyl jasmonate-induced senescence (Hung and Kao, 

2003, 2004). In Arabidopsis, NO-deficient mutants were more prone to senescence 

as compared to wild type plants and massive upregulation of senescence-
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associated genes resulted in early senescence (Du et al., 2014). These studies 

demonstrated that NO possibly acts as an anti-senescence agent.  

NO is also involved in plant flowering. NO was found to delay floral transition in 

Arabidopsis (He et al., 2004). The expression of MADS box transcription factor, 

FLOWERING LOCUS C (FLC), a key repressor of flowering is enhanced by NO 

(Kolbert et al., 2011; Astie et al., 2011). In contrast, AtNOA1 mutants (loss of 

function of NOS-like activity) shows reduced expression of FLC and enhanced 

expression of floral promoter CONSTANS results in early flowering (He et al., 

2004; Crawford et al., 2006) 

NO participates in the fruit ripening. NO fumigation suppressed respiration and 

ET production and thus leading to a delay in ripening of commercial fruits 

(Leshem and Pinchasov, 2000; Singh et al., 2009; Manjunatha et al., 2010, 2012). 

In sweet pepper, it has been demonstrated that NO content diminishes during 

ripening, whereas other elements of the RNS metabolism change following 

patterns, such as an increase of protein nitration and SNO content accompanied by 

a decreased S-nitrosoglutahione reductase activity (Chaki et al., 2015; Rodríguez-

Ruiz et al., 2017). 

 

1.1.3 Crosstalk between NO and hormones 

NO is one of the major players in plant signaling networks. Emerging evidences 

support that NO interplays with signaling pathways of auxins (AUX), cytokinins 

(CK), abscisic acid (ABA), gibberellins (GA), ET and other plant hormones to 

regulate plant metabolism, growth, and development (Freschi, 2013; Sanz et at., 

2015; Nawaz et al., 2017; Sami et al., 2018).  Generally, NO interplay with other 

hormonal signals through three ways: i. NO act as upstream signal of hormonal; ii. 

NO act as downstream signal of hormones; iii. NO-dependent post-translational 

modifications (PTMs) in biosynthesis, distribution, degradation, and conjugation 

of elements involved in hormone transport and signaling (Freschi, 2013).   
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Synergistic effects of NO and auxin have been observed during the regulation of 

a series of plant development and stress responses, including root organogenesis 

(Pagnussat et al., 2002, 2003, 2004; Lanteri et al., 2006), gravitropic responses 

(Hu et al., 2005), root nodule formation (Pii et al., 2007), root responses to iron 

deficiency (Chen et al., 2010), cell division and formation (Ötvös et al., 2005). In 

most cases, NO was shown to function as downstream of auxins, apparently 

through linear signaling pathways. NO production was increased after exogenous 

auxin application (Pagnussat et al., 2002; Correa-Aragunde et al., 2004; Hu et al., 

2005; Lombardo et al., 2006) or in auxin overproducer mutants (Chen et al., 2010). 

However, no stimulation or weak stimulation in NO production by auxins was also 

reported in some particular experimental conditions or cell types (Tun et al., 2001; 

Guo et al., 2003), suggesting that the auxin-dependent NO production may occur 

exclusively under specific temporal and spatial contexts (Hu et al., 2005). 

It has been shown that NO and CKs are intricately interconnected to regulate leaf 

senescence, photosynthesis, cell division and differentiation, and drought stress 

(Shen et al., 2013; Simontacchi et al., 2015). CKs can increase NO production. 

Several studies reported about rapid and dose-dependent increases in NO 

production triggered by CKs in both plant cell cultures (Tun et al., 2001; Carimi 

et al., 2005) and intact seedlings (Tun et al., 2008; Shen et al., 2013). Besides, 

potential action of CKs in scavenging NO produced under dark conditions was 

also found (Xiao-Ping and Xi-Gui, 2006). 

As important “stress-related” molecules, NO and ABA intensively crosstalk 

during certain signaling cascades triggered by environmental stresses, such as 

water limitation and UV-B radiation, which ultimately leads to the induction of 

plant adaptive responses, such as stomatal closure and antioxidant defenses (Neill 

et al., 2008; Tossi et al., 2009; Hancock et al., 2011). During the regulation of 

stomatal movements, NO apparently acts downstream of ABA and upstream of 

cytosolic calcium in the ABA-dependent signaling cascade leading to the up-
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regulation of the crassulacean acid metabolism and does not participate in the 

ABA-independent pathway (Freschi et al., 2010). Besides, it was also 

demonstrated that NO can regulate ABA level via enhancing the transcript and 

protein levels of the ABA 8ꞌ-hydroxylase gene CYP707A2, a key enzyme in ABA 

catabolism (Liu et al., 2009; Arc et al., 2013). 

NO influences several plant developmental events in which GA play crucial roles, 

such as seeds germination, hypocotyl elongation, photomorphogenesis, primary 

root growth, reorientation, and growth of pollen tubes (Beligni and Lamattina, 

2000; Prado et al., 2008; Tonón et al., 2010; Lozano-Juste and Leon, 2011). 

During these responses, NO has been described to act upstream of GA (Bethke et 

al., 2007), regulating both GA biosynthesis and transduction (Lozano-Juste and 

Leon, 2011). 

As important gas molecules, NO and ET play significant role in fruit ripening and 

leaf/flower senescence. A large number of reports on the interaction between NO 

and ET suggest an antagonistic relationship between these two gaseous molecules 

(Leshem et al., 1998; Lamattina et al., 2003; Manjunatha et al., 2010). NO was 

demonstrated to inhibit ET production and action in fruit ripening and leaf/flower 

senescence (Leshem et al., 1998; Manjunatha et al., 2010). Additional studies 

revealed that exogenous application of NO, either by direct fumigation or by 

means of NO donors, delays senescence of both vegetative and reproductive 

organs by negatively regulating a number of elements involved in ET production 

(Leshem and Haramaty, 1996; Leshem et al., 1998; Wills et al., 2000; Zhu et al., 

2006; Liu et al., 2007; Manjunatha et al., 2010, 2012).  Recent studies have 

revealed that the inhibition of fruit ET production by NO may be attributed to a 

reduction in the transcript level and activity of key ET biosynthetic enzymes 

(Manjunatha et al., 2010).  
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1.1.4 NO function in biotic and abiotic stress 

Plants are continuously exposed to a wide range of adverse environmental 

conditions, including drought, salinity, heavy metals, nutrient deficiencies, and 

pathogens, among other factors, which usually limit agricultural production 

considerably. NO has been regarded as an important endogenous signaling 

molecule in the adaptation of plants to various biotic and abiotic stresses (Durner 

et al., 1998; Delledonne et al., 1998; Arasimowicz and Floryszak-Wieczorek, 

2007; Lindermayr et al., 2010; Fancy et al., 2017).  

NO acts as a stress-coping factor in plants. Similar as ROS, the production of NO 

was induced after both abiotic stress and biotic stress stimulation. In soybean and 

tobacco cell, a rapid NO burst was found after 1h treatment with incompatible P. 

syringae (Delledonne et al., 1998). In pelargonium leaves, a transient NO burst is 

also observed among the earliest responses to wounding (Arasimowicz et al., 

2009). In Arabidopsis, drought and salt stresses are also suggested to induce NO 

production, which activates cellular processes that afford some protection against 

the oxidative stress under these conditions (Neill et al., 2008). In wheat, the NR-

mediated NO burst was found to maintain root function and enhance antioxidant 

enzyme activities under Al toxicity (Sun et al., 2014) 

NO can interact with plant hormonals to help plants to adapt stress, such as the 

crosstalk of with ABA and CKs in drought stress, which has already been 

discussed in 1.2.3. Besides, the NO-meditated PTMs were also shown to regulate 

plant stress responses (Lindermayr et al., 2010; Begara-Morales et al., 2016). 

 

1.2 Effect of NO and NO2 on plant growth  

In atmospheric chemistry, NOx is a generic term for the nitrogen oxides that are 

most relevant for air pollution, namely NO and NO2. NO and its oxidation product 

NO2 are involved in many environmental effects, including global warming, 

formation of smog, acid rain, and depletion of the ozone layer (Figure 2, Singh 
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and Agrawal, 2008; Thomson et al. 2012; Kanter et al. 2013). In plants, not only 

NO, but also NO2 has been widely regarded as signal molecules, which play 

significant role in plant growth and development (Simontacchi et al., 2015; 

Takahashi et al., 2005, 2014). Plants themselves can produce and emit NO and 

NO2 (Chen et al. 2012; Klepper, 1979, 1990; Dean and Harper, 1986). Besides, 

atmospheric NO and NO2 can be taken up by plants. Moreover, there is also NO 

and NO2 exchange from soils, which involves both microbial activity and chemical 

reactions (Pilegaard 2013; Vinken et al. 2014) where nitrous oxide (N2O) 

chemistry also contributes (Figure 2, Hu et al. 2015).  

 

Figure 2 Simple model of NO/NO2 emission/uptake among plants, atmosphere, and soil 
bacteria.  

In the atmosphere several chemical reactions take place contributing to the nitric acid rain and 
ozone (O3) layer depletion through the photolytic nitrogen dioxide (•NO2) cycle. Acid rain takes 
place as a consequence of the formation of nitric acid through a series of reactions which involve 
nitrogen oxides (•NO and •NO2). Both plants and soil bacteria can contribute by emission/uptake 
to the NO/NO2 atmospheric pool of nitrogen oxides (NOx). As molecular signal, NO and NO2 also 
play significant role in plant growth and development. Bacterial action in the soil can release 
nitrous oxide (N2O) to the atmosphere where it can react with atomic oxygen to form •NO. 
Modified from Corpas et al., 2016. 
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1.2.1 Effects of atmospheric NO and NO2 on plant growth and development 

Atmospheric NOx has long been discussed as either detrimental or beneficial for 

plant growth and development (Capron and Mansfield, 1976; Sandhu and Gupta, 

1989; Wellburn, 1990; Saxe, 1994). High concentrations of NOx were found to 

impair plant growth in several species. In tomato, more than 400 ppb NO treatment 

caused an inhibition in photosynthesis and a reduction in plant biomass (Capron 

and Mansfield, 1976; Anderson and Mansfield, 1979; Bruggink et al., 1988). In 

Lolium perenne, long-term exposure to 400 ppb NO leads to 32–39% reduction in 

shoot growth (Lane and Bell, 1984). In Arabidopsis, more than 500 ppb NO2 

fumigation leading to a decrease in chlorophyll content and photosynthetic rate 

and caused injury (Xu et al., 2010).  

Low concentrations of NOx, however, can stimulate plant growth by affecting 

plant biochemical, physiological and growth aspects. A shoot biomass increase 

was observed in Arabidopsis plants exposed to 50 ppb NO (Takahashi et al., 2014), 

and positive effects on vegetative growth were found in pea leaf discs and spinach 

(Leshem and Haramaty, 1996; Jin et al., 2009). In spinach, the shoot biomass of 

soil cultivated spinach plants became significantly increased after treatment with 

additional low concentrations (200 ppb) of NO. Moreover, the photosynthetic rate 

of leaves is increased in NO-treated plants, indicating that enhanced biomass 

accumulation is based on NO-induced increase of photosynthetic activity.  

Exogenous NO2 fumigation at ambient concentrations can nearly double the total 

leaf area, nutrient uptake and shoot biomass in plants fed root N (Takahashi et al., 

2005). Similar results have been reported in various plant species, including 

Arabidopsis and various horticultural species (Ma et al., 2007; Adam et al., 2008; 

Takahashi et al., 2008, 2013; Xu et al., 2010). Except the atmospheric 

concentration, the biological effect of NOx on plants also depends on exposure 

time, plant species, and soil fertility (Anderson and Mansfield, 1979; Wellburn et 

al., 1980).  
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All these studies in different plant species demonstrate the positive effect of 

NO/NO2 on plant growth and development under available concentrations. 

However, the molecular mode of action underlying these effects has often 

remained elusive. Lindermayr and Hebelstrup (2016) suggested the possible 

function of these molecules either as signaling which affect N uptake through root 

system and promote activity of plant hormone, or NOx can be directly used as N 

source for plant growth (Figure 3). There is no doubt that both NO and NO2 can 

act as a molecular signal and regulate plant growth and development. However, 

different to NO2, which can directly react with H2O in plant cell forming nitrate 

and nitrite, NO is converted to nitrate in the presence of Pgbs (Figure 3).  

 

Figure 3 Pathways by which atmospheric NO and NO2 could enter in plant N metabolism 
and affect plant growth and development.  

Pathways by which atmospheric NO and NO2 could enter in plant N metabolism and affect plant 
growth and development. As lipophilic molecule NO can enter the plant cell and act as signaling 
molecule. In the presence of phytoglobins, NO can be converted to NO3-, which can be reduced in 
a two-step reaction (catalyzed by nitrate reductase [NIA] and nitrite reductase [NIR]) to ammonium 
(NH4+). NO2 can react in water, depending on the chemical conditions, to NO, NO2, and/or NO3-. 
All these molecules can be converted to NH4+ in the same way as described above and finally can 
result in improved plant growth and development. From Lindermayr and Hebelstrup, 2016.  
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1.2.2 NO and NO2 uptake of plants 

It is well known that plants act as a major ‘sink’ for atmospheric pollutants in 

terrestrial ecosystems (Hill, 1971). Trees and other plant species offer the ability 

to remove significant amounts of air pollutants and consequently improve 

environmental quality and human healthy. Plants remove gaseous air pollution 

primarily by uptake via leaf stomata, though some gases are deposited on plant 

surface (Nowak et al., 2006).  

The NO2 uptake by plants has been reported in a large numbers of plant species.  

Uptake of NO2 by different species including corn (Zea mays), soybean (Glycine 

max), loblolly pine (Pinus taeda), and white oak (Quercus alba) was found 

increased with the level of photosynthetic radiation (Rogers et al., 1979). Besides, 

similar uptake level of NO2 among the different species suggested that this process 

could be mediated by a physical exchange but not by a metabolic process. Since 

guard cells regulate plant gas exchange and transpiration by modulation of 

stomatal aperture, it was suggested that the NOx uptake capacity should be related 

to the stomatal behavior. Indeed, several studies found that the NO2 uptake 

capacity depends on stomatal opening (Chaparro-Suarez et al., 2011). Besides, 

other researches also indicated that the NO2 uptake could be affected by nitrogen 

status, leaf growth state, rate of photosynthesis, and height within the canopy 

(Sparks et al., 2001; Hu and Sun, 2010, Morikawa et al., 1998). Unlike NO2, 

researches about the NO uptake by plants are relatively scarce. Nevertheless, the 

analysis of NO concentrations in the atmosphere in the presence of horticultural 

crops, including lettuce, strawberry, apple, and banana, demonstrated a significant 

reduction of NO in the atmosphere, indicating the capacity of these plants to uptake 

NO (Soegiarto et al. 2003). 
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1.3 Phytoglobins 

Hemoglobins (Hbs) are heme proteins that reversibly bind to oxygen and are 

known to exist ubiquitously across unicellular (archaea, bacteria, and protozoans) 

and multicellular organisms (fungi, plants, and animals) (Vinogradov et al., 2006, 

2011). Besides oxygen, Hbs also bind to other gaseous ligands such as NO, carbon 

monoxide (CO), hydrogen sulphide (H2S), and with some organic molecules (Frey 

and Kallio, 2005; D'Angelo et al., 2004; Rinaldi et al., 2006), which suggests that 

they are multifunctional proteins in living organisms (Garrocho-Villegas et al., 

2007).  

In plants, Hbs are termed as phytoglobins (Pgbs). Pgbs were discovered in 1939 

by Kubo after spectroscopic and chemical analysis of the red pigment of soybean 

root nodules (Kubo, 1939). The isolation of Pgb gene from Trema tomentosa, was 

the first demonstration of the presence of Hb in a non-nodulating plant (Bogusz et 

al., 1988). After that, Pgbs were identified in many evolved and primitive plants, 

including monocots such as maize, teosinte (Aréchaga-Ocampo et al., 2001) and 

wheat (Larsen, 2003), dicots such as soybean (Andersson et al., 1996), 

Arabidopsis (Trevaskis et al., 1997), chicory (Hendriks et al., 1998) and tomato 

(Wang et al., 2003), and bryophytes and evolved angiosperms (Garrocho-Villegas 

andArredondo-Peter, 2008; Vázquez-Limón et al., 2012). The presence of Pgbs is 

widespread in the plant kingdom suggests that Pgbs are likely to have an important 

role in the metabolism of plants. 

 

1.3.1 Classification and characteristics of phytoglobins 

The different types of Pgbs consist of Pgb class 0 (Pgb0), Pgb class 1 (Pgb1), Pgb 

class 2 (Pgb2), symbiotic Pgb (sPgb), legPgb (Lb) and Pgb class 3 (Pgb3) (Hill et 

al., 2016). The Pgb0 is primitive Pgbs found in algae, bryophytes and 

gymnosperms. sPgb is specifically localized in N2-fixing nodules of nonlegume 

land plants, whereas Lbs are found in nodules of N2-fixing legumes (Hill et al., 
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2016). Pgb1 and Pgb2 are both found in any plant organ of angiosperms. Pgb1 has 

an extremely high affinity for O2 (Km in the order of 2 nM, Smagghe et al., 2009; 

Hargrove et al., 2000) while Pgb2 varies between a moderate to high affinity (Km 

100–200 nM, Dordas, 2009; Vigeolas et al., 2011). The Phytogbs 3 are structurally 

similar to the bacterial truncated globins and are found in algae and land plants, 

with a very low similarity to Pgb1 and Pgb2, and having low affinity to O2. (Km 

1500 nM, Watts et al., 2001). The evolution of different types of Pgbs and new 

functions has shown to parallel major transitions in plant evolution (Vázquez-

Limón et al., 2012).  

Biochemically, Pgbs share structural similarity with animal Hbs as they contain a 

globular structure that is further attached to prosthetic groups facilitating the 

binding of ligands such as O2, NO, CO H2S and certain membrane lipids (Kundu 

et al. 2003, Figure 4). The heme prosthetic group contains an iron atom with four 

of the six coordination sites occupied by the heme pyrrole nitrogens. It is further 

attached to histidines of the globin moiety through coordination of either one or 

two histidine side chains. Based on coordination of heme iron, Pgbs can be hexa-

coordinated and penta-coordinated (Gupta et al., 2011b). The Pgb2, sPgb and Lbs 

are predominantly penta-coordinate whereas Pgb1 are predominantly hexa-

coordinate and Pgb0 and Pgb3 are a combination of penta- and hexa-coordinate. 

In the penta-coordinated structure, only the proximal histidine coordinates with 

the fifth site of the heme iron, leaving the sixth site open for reversible binding of 

ligands such as O2 and NO (Figure 4). However, in the hexa-coordinated structure, 

both the proximal and distal histidine coordinate with the heme iron, facilitating 

tight binding of O2 that can further accept an electron from iron and oxygenate NO 

to form nitrate (Gupta et al., 2011b, Figure 4). 

Pgbs are expressed in callus, cell suspension, seed, root and stem tissue of both 

dicot and monocot plants (Hill, 1998). However, Pgbs are generally found at low 

concentrations (1-20 µM) in plant organs except the legPgb, which can reach 0.7 
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mM in nodules rendering them with their characteristic red color (Gupta et al., 

2011b). The number of Pgbs varies amongst plant species. It has been suggested 

that it is likely that all dicots have both class 1 and class 2 Pgbs (Trevaskis et al., 

1997), whereas in monocots only class 1 genes have been detected (Hunt et al., 

2001).  

 

Figure 4 Chemical structures of phytoglobins showing Penta coordination and Hexa 
coordination.  

Coordination of proximal (HP) and distal (HD) histidines in pentacoordinate and hexacoordinate 
heme. The pentacoordinate structure is open for reversible binding of ligands such as O2 and NO, 
while the hexacoordinate structure facilitates tight binding of oxygen that can further accept an 
electron from iron and oxygenate NO resulting in formation of nitrate. From Gupta et al., 2011. 
 

1.3.2 Phytoglobins and NO 

Like other globins, penta-coordinate Pgbs reversibly bind and transport O2. 

Wittenberg’s group (Wittenberg et al., 1974) elucidated the function of Lbs in 

nodules. The apparent function of Lbs in nodules is to facilitate the diffusion of O2 

to the respiring bacteroids for nitrogen-fixation. At the same time, Lb contributes 

to maintain low O2 levels (10 nM) to avoid inactivation of the O2-sensitive 

nitrogenase that fixes the atmospheric nitrogen (Appleby, 1984). Furthermore, 

Pgbs bind other gaseous ligands, most notably NO, and exhibit a NO dioxygenase 

activity (Smagghe et al., 2008). Work by Hill and collaborators during the last ~15 

years has shown that levels of endogenous NO vary with the concentration of Pgb1 

in transgenic maize and alfalfa (Hill, 2012). Based on these observations, they 
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have proposed that a function of oxygenated Pgbs is to modulate levels of NO via 

a NO dioxygenase activity and to indirectly regulate a wide variety of cell 

functions that are modulated by levels of NO. The NO dioxygenase activity was 

mainly researched in Pgb1. The structural properties of Pgb1 allow them to serve 

as soluble electron transport proteins in the enzymatic system scavenging NO 

produced in low oxygen conditions primarily via reduction of nitrite in plants, 

which is called the Pgb/NO cycle (Perazzolli et al., 2004; Berger et al., 2018). 

Class 1 Pgbs possess weak penta-coordination characteristic and are expressed in 

cells under low oxygen tension (Hargrove et al., 2000). Upon binding of a ligand, 

such as oxygen, the distal histidine moves away from the iron atom and the protein 

attains in a more stable conformation (Hoy et al., 2008) which allows a very tight 

but slow oxygen binding during the scavenging of NO under near anaerobic 

conditions (Perazzolli et al. 2004). During this interaction, Pgbs and oxygen 

interacts to form oxyPgb that participates in oxygen dependent NO binding and/or 

scavenging under oxygen deficit conditions and produces nitrate and metPgb 

(Igamberdiev and Hill, 2004; Nienhaus et al., 2010). At the same time, reductase 

activity is needed to convert the ferric state in metPgb to the ferrous state 

(Igamberdiev et al., 2006, Figure 5).  

Class 2 Pgb (Pgb2), on the other hand, has very low affinity for O2 because it is 

completely penta-coordinated in the physiological conditions. This makes them 

less efficient in NO scavenging but increases the possibility of functions related to 

sensing low levels of oxygen and to oxygen storage and diffusion by Vigeolas et 

al., 2011. However, an optimum for stimulation of growth at 25 µM SNP for wild 

type seedlings, whereas seedlings with overexpression of Pgb2 had an optimum 

shifted towards a higher concentration, indicating that class 2 Pgb is also part of a 

NO dioxygenase activity (Hebelstrup and Jensen, 2008). 
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Figure 5 Scavenging of NO by class 1 phytoglobins.   

NO is converted to NO3- by the oxygenated ferrous (Fe2+) phytoglobin (Pgb), which turns to the 
MetPgb (ferric, Fe3+) form. The latter can be reduced by a corresponding reductase (MetPgbR) and 
oxygenated again. NO3- is converted to NO2- by NR, while NO2- can form NO in reactions of 
hemeproteins and other redox systems possessing nitrite: NO reductase (NiNOR) activity. 
Modified from Gupta et al., 2011. 

Unlike the well-documented role of Pgb1 and Pgb2 in plants metabolism, 

development and various abiotic and biotic stresses, there is lack of evidence 

pertaining to the physiological significance of Pgb3 in plants. However, NO 

dioxygenase activity of Arabidopsis Pgb3 was suggested by crystallographic 

studies in vitro (Mukhi et al., 2016), and was then confirmed in vivo (Mukhi et al., 

2017). 
 

1.3.3 Physiological functions of phytoglobins 

Pgb has been found to play a significant role in plant growth and development. 

The reverse genetic approaches on Pgbs in Arabidopsis thaliana have emphasized 

their paramount role during plant growth and development by demonstrating that 

at least one functional Pgb gene is necessary for survival of young seedlings 

(Hebelstrup et al., 2013; Hill, 2012). Silencing of Pgb1 results in abnormal 



Introduction 

 28 

development of leaf hydathodes, flowers and floral buds (Hebelstrup et al., 2006), 

Pgb2 knockout and overexpression lines show normal growth and development. 

Overexpression of Pgb1 in Arabidopsis induces the onset of flowering (Hebelstrup 

and Jensen, 2008). In barley, overexpression of Pgb1 also leads to changes in 

development associated with the modulation of NO levels (Hebelstrup et al., 2014). 

However, in barley, the ectopic overexpression delayed growth and development, 

and seed specific overexpression reduced seed yield, which was different from that 

in Arabidopsis (Hebelstrup et al., 2014). 

Pgbs are essential to plant survival in response to both biotic and abiotic stress. 

Pgbs has been demonstrated play a role in various stresses, including hypoxia, 

nutrient deprivation, osmotic, cold, nutrition deficiency, oxidative, drought and 

nitrative stress (Arredondo-Peter et al., 2014; Mira et al., 2016; Mira et al., 2017; 

Montilla-Bascón et al., 2016; Shankar et al., 2018). Pgb also plays a very 

important role during plant pathogen interaction. Production of transgenic tobacco 

plants overexpressing the alfalfa Pgb showed altered necrotic symptoms after 

treatment with NO generating compounds or infection by necrotic pathogens 

(Seregélyes et al., 2004). Overexpression of the Gossypium sp. Pgb1 in 

Arabidopsis increased pathogen resistance as well as enhanced tolerance to NO 

(Qu et al., 2006). Overexpression of Pgb in barley influenced the status of plants 

infected with B. graminis, expressed as a shift in the defence response against 

avirulent genotypes and resulting in higher tolerance response to virulent pathogen 

genotypes (Sørensen et al., 2018). 

Pgbs can modulate many hormonal signal transduction pathways through their 

metabolism of NO (Hill, 2012). In dicot somatic embryogenesis, Pgbs affect the 

expression of auxin and jasmonic acid genes through modulation of cellular NO 

(Elhiti et al., 2013; Mira et al., 2016). Pgbs also induce program cell death by 

altering the expression of genes encoding ABA and ET signaling in developing 

somatic embryos (Stasolla and Hill, 2017; Kapoor et al., 2018). 
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 Figure 6 Schematic function of phytoglobins and NO in plants.  

Phytoglobins and NO play significant role in biotic and abiotic stress, hormones regulation, nutrient, 
and plant development. Modified from Hill, 2012. 

As shown in Figure 6, Pgbs have extensive functions, including but not limited to, 

plant growth and development, abiotic and biotic stress responses, interaction with 

hormonal signal. NO acts as a signalling molecule in the appropriate signal 

transduction pathway, resulting in a specific biological outcome. If Pgb is induced 

as a result of the induction process, it can interact with NO to produce metHb (Fe3+) 

and nitrate, reducing the levels of NO and modulating the biological response.  

 

1.4 Aim of the study 

NO is an air pollutant, which contributes to the formation of smog and acid rain 

together with its oxidation product NO2. NO is also regarded as a ubiquitous 

signaling molecular which mediates many developmental and physiological 

processes. In our previous studies, we observed a positive effect of NO fumigation 

on plant growth in soil grown Arabidopsis and identified the phytoglobin 
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dependent NO-fixation pathway. However, until now, little is known about the 

effect of atmospheric NO on important crops, e.g. barley. 

The plant-based NO-fixation lowers the concentration of atmospheric NOx and in 

this context, plants have a beneficial effect on air quality and human health. With 

regard to the air quality in cities with high concentrations of nitrogen oxides, the 

NO fixing capability of city trees could contribute significantly to the reduction of 

NOx and thus improve air quality. 

Therefore, the aims of the study are:  

i. Analyzing NO-fixation under N-limited conditions in Arabidopsis;  

ii. Investigating the effect of atmospheric NO on the crop plants barley and 

the role of Pgbs under these conditions;  

iii. Determining the NO-uptake using 15NO;  

iv. Analyzing the NO-N metabolism in transgenic plants to obtain insights 

into NO-fixing pathway;  

v. Analyzing the NOx uptake capacity of different city trees and verifying the 

enhanced NOx uptake capacity in Pgb transgenic trees. 
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2 Materials and methods 

2.1 Plant material 

The plants used in this study and their sources have been summarized in Table 1.  

Arabidopsis with overexpressing class 1 Pgb (AtPgb1+) or class 2 Pgb (AtPgb2+), 

as well as plants with reduced (AtPgb1-) or knocked out (AtPgb2-) Pgb expression 

were obtained in Aarhus University as described (Hebelstrup et al., 2006). Barley 

plants overexpressing class 1 Pgb (HvPgb1.1+) and silenced (HvPgb1.1-) lines 

were described Hebelstrup et al. (2014). Transgenic poplar PcPgb1+ line is 

overexpressing Arabidopsis class 1 Pgb gene (AtPgb1); transgenic poplar 

PcPgb2+ is overexpressing Arabidopsis class 2-Pgb gene (AtPgb2).  

Table 1 Plant species used in this study. 

Species Ecotype Plant line Source of the Plant/Seed 

Arabidopsis thaliana Columbia-0 Wild-type Lindermayr C, HMGU, BIOP 

Arabidopsis thaliana Columbia-0 
AtPgb1-
(glb1-
RNAi) 

Hebelstrup K, MBG, Aarhus 
Univ. 

Arabidopsis thaliana Columbia-0 
AtPgb1+ 
(GLB1-Ox) 

Hebelstrup K, MBG, Aarhus 
Univ.  

Arabidopsis thaliana Columbia-0 
AtPgb2- 
(glb2-KO) 

Hebelstrup K, MBG, Aarhus 
Univ.  

Arabidopsis thaliana Columbia-0 
AtPgb2+ 
(GLB2-Ox) 

Hebelstrup K, MBG, Aarhus 
Univ.  

Hordeum vulgare  
Golden 
Promise 

Wild-type 
Hebelstrup K, MBG, Aarhus 
Univ. 

Hordeum vulgare 
Golden 
Promise 

HvPgb1.1- 
Hebelstrup K, MBG, Aarhus 
Univ. 

Hordeum vulgare 
Golden 
Promise 

HvPgb1.1+ 
Hebelstrup K, MBG, Aarhus 
Univ 

Poplulus canescens 
syn. P. tremula 
× P. alba 

Wild-type Lindermayr C, HMGU, BIOP 

Poplulus canescens 
syn. P. tremula 
× P. alba 

PcPgb1+ Lindermayr C, HMGU, BIOP 
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Poplulus canescens 
syn. P. tremula 
× P. alba 

PcPgb2+ Lindermayr C, HMGU, BIOP 

Carpinus betulus   Frans Fontaine Wild-type Wilhelm Ley Baumschulen 

Fraxinus ornus   Loisa Lady Wild-type Wilhelm Ley Baumschulen 

Fraxinus 
pennsylvanica 

Summit Wild-type Wilhelm Ley Baumschulen 

Ostrya carpinifolia   Wild-type Wilhelm Ley Baumschulen 

Celtis australis  Wild-type Wilhelm Ley Baumschulen 

Alnus spaethii  Wild-type Wilhelm Ley Baumschulen 

Alnus glutinosa Imperialias Wild-type Wilhelm Ley Baumschulen 

Tilia henryana  Wild-type Wilhelm Ley Baumschulen 

 

2.2 Hydroponic culture system for Arabidopsis 

Nutrient solutions for hydroponic cultures were prepared according to Table 2. 

Tips, 1.5 ml eppendorf tubes in the ranks with the lids, tooth sticks and ddH2O 

were autoclaved for later use. Prepared the 0.65% (0.65 g/100 mL) bacto agar 

(dissolved the agar with ddH2O) and then heated it in the micro oven until 

transparent. After the agar cooling down enough, filled 1.7 ml in the sterilized 

eppendorf tubes and put them at 4 centi-degrees at least overnight or 2 days with 

the lids covered after about 10 minutes.  

Sterilized the seeds (2 times with 90%EtOH – pipette 2 × 1 ml to the seeds on a 

filter paper under the sterile bench). Cut the bottom by the machine at the position 

about 0.5 mL and planted the seeds on the agar (2 seeds in each tube). Added 

available prepared nutrient solutions to plant growth box and put the tubes in the 

hole of the box plate and covered them with the preservative film (cling film) 

before putting them in the chamber at 11.5h/12.5h light/dark cycle to ensure the 

roots growth. One week later, open the cling film a little bit to avoid the fungal 

growth and supply enough fresh air for the plants. At the same time, checked the 

root of the plants can straightly grow into the agar and removed the other one 

whose root cannot grow straightly and have too much lateral roots. 
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Table 2 Hydroponic nutrient solutions for Arabidopsis. 

With Nitrogen Without Nitrogen 
Reagents Concentration Reagents Concentration 
KNO3 1.25 mM   

Ca(NO3)2 1.5 mM CaCl2 1.5 mM 

MgSO4 0.75 mM MgSO4 0.75 mM 

KH2PO4 0.5 mM KH2PO4 0.5 mM 

KCl 50 uM KCl 1 mM 

H3BO3 50 uM H3BO3 50 uM 

CuSO4 1.5 uM CuSO4 1.5 uM 

MnSO4 10 uM MnSO4 10 uM 

ZnSO4 2.0 uM ZnSO4 2.0 uM 

(NH4)6MoO24  0.075 uM Na2MoO4 0.075 uM 

Na2SiO3  0.1 mM Na2SiO3 0.1 mM 

Fe-EDTA 72 uM Fe-EDTA 72 uM 

Note: Add 0.5g/L MES and adjust the PH to 5.7 with KOH. 
 

2.3 NO and NO2 fumigation treatment 

All experiments were performed in climate chambers under controled. The 

chambers and NO treatment facilities were provided by the Research unit of 

Environmental Simulation in the Department of Biochemical Plant Pathology 

(BIOP) at Helmholtz Zentrum Munich, Germany. In all experiments, the NO and 

NO2 levels in the chambers were monitored with an AC32M (Ansyco, Karlsruhe, 

Germany) chemiluminescent NOx analyser. NO was obtained from Air Liquide 

(Düsseldorf, Germany) in cylinders containing 2 or 15% NO in N2. 

 

2.3.1 NO fumigation of hydroponic Arabidopsis    

Arabidopsis grown in the hydroponic culture system were used (Gilbert et al., 

1997) in three NO fumigation experiments.  

1) Hydroponically grown plants germinated and grew in N-containing 

medium for 12 days. Then, they were transferred to medium without any 
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N-source (1.25 mM KNO3, Ca(NO3)2 and 0.075 µM (NH4)MoO24 were 

replaced by 1.5 mM CaCl2, 1mM KCl and 0.075 µM Na2MoO4, 

respectively, table 1) and fumigated with 3000 ppb NO for 30 days 

(day/night 24 h), purified air with ambient NO was used as control; 

2) 30-days-old hydroponic Arabidopsis were transferred to medium without 

any N-source and fumigated with 250 ppb 15NO for 11 days (day/night 24 

h); 

3) 30-days-old hydroponic Arabidopsis were transferred to medium with or 

without N-source and fumigated with 200 ppb 15NO for 5 days (day/night 

24 h). 

Growth conditions: light – 300 µmolm-2 s-1, photosynthetically active radiation 

(PAR: 400–700 nm); temperature – day: 20 °C (14 h) and night: 16 °C (10 h); and 

relative humidity – 80%.    

                     

2.3.2 NO fumigation of barley plants 

Transgenic barley (Hordeum vulgare L. var. Golden Promise) plants 

overexpressing Pgb (Pgb1.1+) and Pgb knockdown (Pgb1.1-) lines were obtained 

from Kim Hebelstrup (Aarhus University). Plants (1 plant/pot, Square Pot 10 × 10 

× 11cm) were grown in the matrix with mixed Floragard B, meteorite and sand 

(floragard B: vermiculite: sand=2:2:1, Floragard B containing 140 mg/L N, 80 

mg/L P2O5 and 190 mg/L K2O). The NO fumigation of the soil grown plants was 

continuous day/night 24h, starting on the 4th day after germination, and was 

performed in climatic fumigation chambers whose internal NO levels were 

constantly monitored (Figure 7).  
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Figure 7 Growth conditions for barley plants during long term NO fumigation treatment.  

Barley plants were treated with various concentrations of NO in specially designed exposure 
chambers (A). The NO levels inside these chambers were continuously monitored using 
chemiluminescence detection method sensitive to as low as 1 ppb of NO. The plant growth 
conditions are showed in graph B, the photosynthetic photon flux density (PPFD) of light at 100% 
from 9:00-15:00 is 300 µmol m-2 s-1, the photosynthetically active radiation (PAR) is 400 – 700 
nm. The concentration monitored during the experiment is showed in graph C. All the chambers 
were supplied with ambient air that was directly drawn from the campus of Helmholtz Zentrum 
München, Germany. 

Air was purified using filter pads in combination with activated-carbon filters and 

silica particles coated with permanganate (Purex International, Rotherham, UK) 

(ambient air) and supplemented with different concentrations of NO (800, 1500 or 

3000 ppb, Figure 7). During the experiment, 100 ml modified Hoagland nutrient 

solution without any N-source (KNO3, Ca (NO3)2 were replaced by CaCl2, KCl, 
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respectively) was added every two weeks.  Growth conditions: light ‒ <300 µmol 

m-2 s-1; photosynthetically active radiation (PAR: 400–700 nm);  

Temperature ‒ night: 15°C (8 h), daytime: 15-20°C (16 h); humidity ‒ (60%-90%). 

Detailed growth conditions are shown in Figure 7. 

 

2.3.3 15NO/15NO2 fumigation of Arabidopsis and barley 

20 day-old barley (4 plants/pot, square pot 10 × 10 × 11cm) and 28 day-old 

Arabidopsis (5 plants/pot, square pot 5 × 5 × 5 cm) grown in the substrate 

(Floragard B: Meteorite: Sand=3:1:1) were used in 15NO/15NO2 fumigation 

experiment. 15N-NO/ 15N-NO2 (99 % atom isotopic enrichment) was obtained 

from Linde (Pullach, Germany) and diluted to 2% with nitrogen by Westfalen AG 

(Münster, Germany). 15NO/15NO2 (90 ppb) fumigation treatment was performed 

12 hours (8:00-20:00) of daytime for 7 days. 90 ppb NO/NO2 fumigation was used 

as control. Growth conditions: light - 300 µmol m-2 s-1; photosynthetically active 

radiation (PAR: 400–700 nm); temperature ‒ day: 20°C (14 h) and night: 16°C (10 

h); relative humidity ‒ 80%. 

 

2.3.4 NO and NO2 fumigation of trees 

Four different kinds of trees (Carpinus betulus, Fraxinus ornus, Fraxinus 

pennsylvanica and Ostrya carpinifolia; Figure 8) were used for the NO/NO2 

fumigation. Plants were moved to climate chamber two days before treatment to 

adapt the environment. Mature and healthy shoots were choosed and drew a blade 

shape on the paper for measuring leaf area. Choosed shoots were tighten together 

with a gas tube as air inlet in one side of the open plastic bag, the second gas tube 

were tightened at another side of plastic bag as air outlet (Figure 8). 
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Figure 8 NO and NO2 fumigation system for trees.  

A. Experement was set up in climate chamber. The black arrow represents the air inlet and red 
arrow represents the outlet. B. Phenotype of four different trees (from left to right, Carpinus betulus, 
Fraxinus ornus, Fraxinus pennsylvanica and Ostrya carpinifolia) used in this experiment. 

During the fumigation experiment, the airflow was around 1000 ml/min. Fixed 

concentrations of NO and NO2 were controlled and monitored for fumigation. 

Growth conditions: light - 300 µmol m-2 s-1; photosynthetically active radiation 

(PAR: 400–700 nm); temperature ‒ day: 20°C (14 h) and night: 16°C (10 h); 

relative humidity ‒ 80%. 

 

2.3.5 15NO fumigation with trees, Arabidopsis, and barley 

15 day-old barley, 30 day-old Arabidopsis, 15 day-old poplar (the height was 

around 15 cm) and 40 day-old poplar (the height was around 50 cm), and 8 

different trees (Carpinus betulus, Fraxinus ornus, Fraxinus pennsylvanica, Ostrya 

carpinifolia, Celtis australis, Alnus spaethii, Alnus glutinosa, and Tilia henryana) 

were used in this fumigation experiment. All plants were transferred to climate 

chamber 2 days before. 15N-NO (99 % atom isotopic enrichment) was obtained 

from Linde (Pullach, Germany) and diluted to 2% with nitrogen by Westfalen AG 

(Münster, Germany). 15NO (50 ppb) fumigation treatment was performed for 5 

days. 50 ppb NO fumigation was used as control. Growth conditions: Growth 

conditions: light - 300 µmol m-2 s-1; photosynthetically active radiation (PAR: 
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400–700 nm); temperature ‒ night: 16°C (8 h), daytime: 20°C (14 h); humidity ‒ 

80%. 

2.4 15NO3- tracer application  

30 day-old Arabidopsis plants were germinated and grown under the hydroponic 

culture system and moved to climate chamber for NO fumigation 2 days before 

treatment. 15N tacer nutrient solutions (Table 1, 50% of KNO3 was replaced with 

15KNO3 (60-atom % 15N, from Sigma-Aldrich, Deisenhofen, Germany) were 

added to replace the normal nutrient solutions before NO fumigation. Plants were 

fumigated with 3000 ppb NO, the ambient NO was used as control.  

Barley plants were germinated and grown in the matrix without soil (Meteorite: 

Sand=4:1, 4 plants/pot, square pot 10 ×10 ×11cm). 7 days after sowing, 50 ml 

nutrient solutions with 0.3 mM 15NO3- were added for each pot every day. The 

nutrient solution contains 1 mM KH2PO4, 0.5 mM 15KNO3 (60 atom % 15N, from 

Sigma-Aldrich, Deisenhofen, Germany), 0.5 mM Ca (NO3)2, 0.9 mM MgSO4, 50 

uM Fe-EDTA, 16 uM H3BO3, 0.3 uM ZnSO4, 0.3 uM CuSO4, 0.4 uM Na2MoO4. 

Leaf samples were taken after 2 days, 9 days and 12 days for 15N measurement.  

2.5 Growth and yield parameters 

For Arabidopsis, the rosette size, shoot length and yield were measured. Rosette 

size was measured by measuring the diameter (in cm) of the biggest circle that was 

occupied in at least two opposite directions. Shoot length (in cm) was measured 

by scaling the distance between bottom-most part of the vegetative shoot to its top 

most part. Yield was measured by measuring the siliques number and seed weight. 

All measurements were performed with 15-20 plants. 

For barley, after 20, 30 and 45 days NO fumigation, at least 4 plants were taken 

for the measurement of the plant height, leaf number, stem number, and plant 

weight. After 80 days treatment, 15 plants were taken for the measurements of 8 

traits: dry matter weight per plant (DWP), plant height (PH), spike length 
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excluding awns (SL), spikes per plant (SP), spike weight (SW), kernel numbers 

per plant (KNP), kernel weight (KW), kernel weight per plant (KWP). 

For all plants, fresh weight (in g) was measured by weighing the freshly processed 

plant leaves after NO fumigation. These leaves were then dried in the hot air oven 

for more than 48 hours at 60 °C to measure the dry weight (in g). The moisture 

content of leaves was calculated as: (fresh weight - dry weight) / fresh weight. 

2.6 Measuring NO levels in closed reaction chamber 

Pots with plants were placed in a closed system/cuvette and levels of accumulated 

NO were measured after 30 min. Afterward, the plants were cut, and the levels of 

accumulated NO was determined again after 30min. The difference between the 

levels with and without plants reflects the amount of NO taken up in 30min by the 

different genotypes. Gaseous NO was measured using a CLD88 CY p analyzer 

(ECOPHYSICS, Germany).  

2.7 Chlorophyll ratio and chlorophyll fluorescence measurement 

Dualex Scientific+™ (FORCE-A, France) was used to measure the chlorophyll 

ratio. The second leaves of 10 plants per accession were measured at the middle 

surface for both sides. Chlorophyll fluorescence was measured with MINI-PAM-

II Photosynthesis Yield Analyzer WALZ, Germany. The effective quantum yield 

of PSII (ΔF/Fm') was determined according to Genty et al. (1989). ∆F/ Fm' was 

calculated as ΔF/ Fm' = (Fm' – F)/ Fm'. F is the fluorescence yield of the 

irradiation-adapted sample and Fm' is the maximum irradiation adapted 

fluorescence yield when a saturating pulse of 800 ms duration is superimposed 

upon the prevailing natural photosynthetic photon flux density (PPFD). All the 

measurements were performed between 13:00 - 15:00. 

2.8 Nitrate and nitrite measurement in leaves 

The total nitrite and nitrate concentration were estimated using a Sievers280i nitric 

oxide analyser (GE Analytical Instruments, Boulder CO, USA). Rosette proteins 
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were extracted with extraction buffer (137 mM NaCl, 0.027 mM KCl, 0.081 mM 

Na2HPO4.2H2O and 0.018 mM NaH2PO4) from 300 – 500 mg of plant tissue. 100 

µL of leaf protein extraction was injected into the purging vessel of NOA 

containing 3.5 mL of acidified KI/I3 solution (reducing agent) at 30°C. The 

recorded mV signals were plotted against a standard curve produced using known 

concentrations of sodium nitrite solution to quantify the nitrite level. For nitrate 

quantification, the reducing agent was replaced with vanadium chloride at 95°C. 

The recorded mV signals were plotted against a standard curve produced using 

known concentrations of sodium nitrate solution to quantify the nitrate levels 

2.9 cDNA synthesis and polymerase chain reaction (PCR) 

100 mg of plant material was ground to powder, followed by RNA extraction using 

the RNeasy Plant Mini Kit (Qiagen, Cat No. 74904) according to the 

manufacturer’s instruction. RNA concentration and quality were determined 

spectrophotmetrically (NanoDrop 1000). 1 µg of total RNA were used for cDNA 

synthesis with the QuantiTect Rev. Transcription Kit (Qiagen, Cat No. 205311).  

A real time PCR reaction was composed of 10 µl of Sybr green (Bioline, Cat No. 

QT625-05), 5 µl of ddH2O, 0.5 µl of 10 µM specific primers and 4 µl of 1:20 

diluted cDNA template. Cycling conditions were 95 0C for 10 minutes followed 

by 45 cycles of 95 0C for 15 s, 55 0C for 15 s, and 72 0C for 45 s. Each sample was 

run in triplicates. HvGADPH and Hvactin were used as housekeeping genes. 

Primers used are listed in Table 3.  

A semi-quantitative reverse transcriptase PCR analysis was composed of 2 µl 20 

mM dNTPs, 0.5 µl of 10 µM specific primers, 0.2 µl iProof High-fidelityTM 

Phusion Polymerase (Biorad, Cat No. 1725300, 2 U/µl), and 4 ul of 1:20 diluted 

cDNA template. Cycling conditions were 98 0C for 5 minutes followed by 35 

cycles of 98 0C for 10 s, 55 0C for 30 s and 72 0C for 45 s, and then 72 0C for 10 

minutes. The separation of amplified DNA fragments after PCR was done in 

agarose gels using TAE buffer. 1% agarose gel (1 g agarose ultra-pure solved in 
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100 ml of TAE buffer) supplemented with ethidium bromide (Carl Roth GmbH, 

Karlsruhe, Germany) was used. Samples were mixed with 6 × loading dye (MBI 

Fermentas, St Leon-Rot, Germany) solution before loading and the gels were run 

at voltage of 120 volts for 30 minutes and was visulalized on UV transilluminator 

(UVP, Inc, Jena, Germany). Primers used are listed in Table 3. 

Table 3 Primers used for Real-Time PCR and semi-quantitative reverse transcriptase PCR 
analysis. 

2.10 Phytoglobins phylogenetic and expression pattern analysis 

All Pgb protein sequences from different plant species were aligned using Clustal 

W. The phylogenetic analysis was carried out by the Neighbor–Joining method 

with JTT+G model using the MEGA 6.06 program. Amico acid sequences 

Gene 
identifier 

 Name Forward primer Reverse primer 

AY145451.1 HvActin GCCGTGCTTTCCCTCTATG
C 

GCTTCTCCTTGATGTC
CCTTAC 

X60343.1 HvGADPH  GCTCAAGGGTATCATGGG
TTACG 

GCAATTCCACCCTTAG
CATCAAAG 

U94968.1 HvPgb1.1 TCGTCTTCAGCGAGGAGA
AG 

GATCTCGAAGATCTTG
AGGAAG 

AK376331.1 HvPgb1.2 ATGTGGACGCCGGAGATG
AA 

GCAGAGGCAGCGAGC
TTCAT 

AF376063.1 HvPgb3 CCTCTCCACCAACTTCTAC
ACCA 

TGGCCGATGTCGTCCT
ATCAAG 

X57844.1 HvNR GTCGACGCCGAGCTCGCC
AA 

GCGCACCTCGGACATG
GT 

LC097012.1 HvNiR TCAAGTGGCTCGGCCTCTT ACGCACACGTTCCACT
TCCT 

X53580.1 HvGS2 TGCTCGACATGGACACCA CGTTTGTTAGTAGGGA
TGGGT 

S58774.1 HvFd-
GOGAT 

TGCATGGAGCACCGTGGT CCATCTAGGGCTTGTA
TTGGTACT 

XM0022989
46 

PtActin CGGAGAGAGGTTACACAT
TCAC 

CGTTTCAAGCTCCTGC
TCATA 

U94998.1 AtPgb1 TCCAAAGCTCAAGCCTCA
CGCA 

AGCCTGACCCCAAGCC
ACCT 

U94999.1 AtPgb2 GAGATGGGAGAGATTGGG
TTTAC 

GTGAGAAGAAGTGAA
GGCTGTAT 
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alignment were analyzed by online software - Pairwise Sequence Alignment 

(https://www.ebi.ac.uk/Tools/psa/). Accession numbers of Pgb sequences 

employed in the multiple alignments and used to generate the phylogenetic tree 

are listed in supplementary Table 1. The expression pattern analysis was 

performed based on the collected data from morexGenes-Barley RNA-seq 

Database. 

2.11 Nitrate and ammonium measurement in soil samples 

After totally removing roots, a mixture of 5 g of soil was shaken with 20 ml of 0.1% 

CaCl2 for two hours. After centrifugation (Rotanta 460R, Hettich AG, Bäch, 

Schweiz) for 20 minutes at 4000 rpm, the supernatant was filtered using black 

ribbon filter paper. The concentrations of ammonium and nitrate were determined 

simultaneously with an N-autoanalyzer (Skalar 5100, Skalar Analytic GmbH, 

Erkelenz), which operates in continuous flow. Specific chemical reactions produce 

soluble dyes from ammonium or nitrate, respectively, which are photometrically 

quantified. Ammonium forms a green indophenol dye after the Berthelot reaction 

with salycilate. Nitrate is first reduced to NO2 and detected as a red-colored azo 

complex.  

2.12 DNA, RNA and protein extraction for 15N measurement 

Genomic DNA was extracted with a modified CTAB method according to 

Krizman et al., 2016. TRIzol reagent (Ambion, Life technologies, Austin, USA) 

was used to extract RNA from the leaves, following the manufacturer's instruction. 

Purified total DNA and RNA were quantified using the Nanodrop ND -1000 

spectrophotometer (Thermo Fischer Scientific, Waltham, MA, USA). 

For protein extraction, homogenised frozen rosette material (400 mg) was 

vortexed using 1 mL extraction buffer (100 mM Tris/HCl-pH 8.0, 10 mM EDTA, 

1 mM MgCl2.H2O). Homogenate was centrifuged (12000 g for 20 min at 4°C) and 

supernatant was filtered using 70 µm nylon membrane. Protein extraction was then 
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desalted using PD-10 desalting columns (GE Healthcare, Freiburg, Germany) 

according to the manufacture’s instruction. Bradford reagent (Bio-Rad 

Laboratories, Munich, Germany) was used to determine protein concentration. To 

measure and plot a standard curve of protein concentration versus absorbance at 

595nm, a series of dilutions of bovine serum albumin (BSA) protein standard stock 

solution was prepared. One milliliter of reaction mixture contained 790 µL of 

water, 200 µL of Bradford reagent and 10 µL of known concentration of BSA. A 

standard curve was plotted and used as a reference to quantify protein extraction.  

2.13 Determination of 15N content in leaves and N content in soil 

Plant and soil materials were dried at 60 °C for 48 h and ground to a homogenous 

powder using a ball mill (Tissue Lyser II, Qiagen, Venlo, Netherlands). Aliquots 

of about 2 mg leaf material and 5 mg soil material were transferred into tin capsules 

(IVA Analysentechnik, Meerbusch, Germany). 15N abundance and N content were 

determined with an Isotope Ratio Mass Spectrometer (IRMS, delta V Advantage, 

Thermo Fisher, Dreieich, Germany) coupled to an Elemental Analyzer (Euro EA, 

Eurovector, Milano, Italy). 

As carrier gas, Helium 5.0 was used with a flow of approx. 80 ml/min. The 

Autosampler introduced the samples into a combustion column, which was heated 

up to 1000 °C and filled with tungsten oxide and silver coated cobalt oxide to 

improve the oxidation and adsorb halogens. Oxidation took place in an excess of 

oxygen. The exothermic oxidation of tin leaded to a local temperature of about 

1700 °C, which ensured a quantitative oxidation of the samples. The combustion 

products like CO2, NOx and water were passed into a reduction reactor filled with 

metallic copper at 650 °C, where nitrous gases were reduced to molecular nitrogen 

and oxygen was removed by reacting with copper. After elimination of water with 

magnesium perchlorate, only CO2 and N2 were left for separation on a packed 

column.  
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Only a small part of both gases was introduced to the ion source of the IRMS using 

a so-called ConFlow Interface. The flow into the ion source was about 0.3 ml/min. 

In the ion source, ions (N2+, CO2+) were generated by colliding with electrons. The 

ions were accelerated in an electric and separated in a magnetic field depending 

on their masses. Heavy (29N2) and light (28N2) ions were detected in so-called 

Faraday cups and a ratio between both was calculated. 

IRMS measurements always need the comparison with one or more standards with 

known isotope composition in the same range of the analyzed samples. For that 

reason, a lab standard (acetanilide), being part of every sequence in intervals, was 

used. A series of lab standards of different weights was measured to determine 

isotope linearity of the system. All standard measurements were also base for the 

calibration of N content calculation. The lab standard itself was calibrated against 

several suitable international isotope standards (International Atomic Energy 

Agency: IAEA; Vienna). International and lab isotope standards were also part of 

every sequence to create a final correction of 15N: e.g. IAEA 600, USGS 40, IAEA 

N2, USGS 26, USGS 32, IAEA 310 B, IAEA 305 B covering all 15N results of this 

sequence. 15N results of higher enriched samples were finally corrected with 

enriched standards delivered from Fischer Analysen Instrumente (Leipzig, 

Germany). 

Different to solid (plant and soil) samples, aliquots of DNA-, RNA- and protein 

samples, which exists in solution, were pipet to 4 × 6 mm tin capsules and dried 

over night at 60 °C. In this case Bovine serum albumin “BSA” was used as a lab 

standard: calibrated as a solid against international isotope standards but used in 

solution as lab standard in the measuring sequence, also in different amounts. 

Volume of sample aliquots were chosen depending on their expected N 

concentrations to get about 5 to 20 µg for each single measurement. For treating 

such small amounts of N, some modifications to the Elemental analyzer were done. 

E.g. using columns with smaller inner diameter and working with only about 30 
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ml/min. helium flow to increase the share of sample gas getting to the ion source. 

Final isotope correction was done with the same standards but all in solution with 

similar N concentration like the samples. 

2.14 Stomatal conductance 

Stomatal conductance (gs, mmol m-² s-1) of 20 days barley and 28 days 

Arabidopsis leaves were measured with a portable leaf porometer (SC-1 Leaf 

porometer, Decagon Devices, Pullman, USA) during midday (10:00-12:00). 

Measurements were done in the auto mode using the first 30 s of stomatal 

conductance data to predict the final stomatal conductance under true steady state 

conditions.  

2.15 NO and NO2 deposition measurement of trees 

Rates of transpiration (FH2O) (mmol m-2 s-1) and exchange of NO (FNO) and  

NO2 (FNO2) (nmol m-2 s-1) were calculated as F= (Co-Ci)·Q/A (Chaparro-Suarez 

et al., 2011), based on the concentration differences between the outlet ports of the 

branch cuvette and the empty Cuvette (Co and Ci, respectively, mmol m-3 or nmol 

m-3), the enclosed leaf area (A, m2), and the air flow rate through the cuvettes (Q) 

(m3 s-1). The linear relationship was made between FNO/FNO2 and the fumigated 

NO/NO2 concentration: y = kx+b (x represents the fumigated NO/NO2 

concentration; y represents the transpiration rate of NO (FNO) or NO2 (FNO2)). 

The deposition potential is determined as the slope (k) value, and the compensation 

point is determined as the x value when y is zero. 

2.16 Statistical analysis 

All data were statistically analysed by student t-test or one way anova with Tukey's 

test (P < 0.05) using sigmaplot 12.0.
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3 Results 

3.1 NO-fixation by phytoglobins in Arabidopsis 

In previous study, we found that treatment with up to 3000 ppb gaseous NO had 

no negative/toxic effects on plant growth and development but activated plant 

primary metabolism and improved plant growth in soil grown Arabidopsis 

(Kuruthukulangarakoola et al., 2017).  Plants overexpressing Pgb 1 or Pgb 2 

genes showed enhanced growth of rosette and vegetative shoot compared to WT 

controls under NO treatment. These results indicated that Pgb play significant role 

in the NO induced promoting effect in Arabidopsis.  

To further demonstrate effect of NO on Arabidopsis and exclude the effect of soil 

microbes, hydroponic Pgb transgenic Arabidopsis were used for the NO 

fumigation and nitrate tracer experiment. Besides, 15NO tracer experiment were 

also performed to verify the NO-fixation metabolism by Pgbs.  

 

3.1.1 NO fumigation enhanced Arabidopsis growth 

Arabidopsis WT plants and plants with altered Pgb1 and Pgb2 expression (Pgb 1 

overexpression line (Pgb1+), phyroglobin 1 silence line (Pgb1-), Pgb 2 

overexpression line (Pgb2+), and Pgb knockout line (Pgb2-) were hydroponically 

cultivated in N-containing medium for 12 days (Gilbert et al., 1997). Then, these 

plants were transferred to medium without any N-source and fumigated with 

ambient (as control) or 3000 ppb NO. 

Phenotypes were analyzed after 20 days (Figure 9) and 30 days (Figure 10) 

treatments. Compared with ambient control plants, plants treated with 3000 ppb 

NO showed a better growth in all 5 lines (Figure 9 and Fig 10). However, the 

promoting effect differed in the 5 lines. For Pgb silence or knock out (Pgb1- or 

Pgb2-) Arahidopsis, NO fumigation had a slight promoting effect. While for Pgb 
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overexpression Arabidopsis (Pgb1+ and Pgb2+), NO fumigation had an obvious 

and significant promoting effect (Figure 9 and Fig 10). Especially in Pgb 2 

overexpression plants, the red senescence phenotype was significantly delayed 

after 20 days 3000 ppb NO treatment, and the shoot looks much higher after 30 

days 3000 ppb NO treatment. 

 

Figure 9 NO fumigation has different growth effect in phytoglobin transgenic lines. 

Plants germinated and grew for twelve days in N-containing hydroponic medium. Afterwards, they 
were transferred in N-free medium and fumigated with air supplemented with 0 (-NO) or 3000 ppb 
NO (+NO). Photos were taken after ca. 20 days of treatment. Modified from 
Kuruthukulangarakoola et al., 2017. 
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Figure 10 NO fumigation promote shoot growth after 30 days treatment. 

Plants germinated and grew for twelve days in N-containing hydroponic medium. Afterwards, they 
were transferred in N-free medium and fumigated with air supplemented 0 (-NO) or with 3000 ppb 
NO (+NO). Photos were taken after ca. 30 days of treatment. Modified from 
Kuruthukulangarakoola et al., 2017. 

After 30 days of treatment, the rosette size, shoot length, number of siliques and 

seed yield of Arabidopsis were measured (Figure 11). Generally, the rosette size, 

shoot length, number of siliques and seed yield was increased in NO-treated Pgb 

overexpressing lines, especially in Pgb2+ Arabidopsis (Figure 11). The rosette 

diameter was increased in WT, AtPgb1+ and AtPgb2- plants, but was not affected 

in AtPgb1- and AtPgb2+ plants. The siliques per plant was increased around 20% 

and 100% in AtPgb1+ and AtPgb2+ lines, respectively. The shoot length in 
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AtPgb2+ plants was increased from 60 mm to 100 mm after NO treatment. 

Moreover, the seed weight was significantly increased in AtPgb1+, AtPgb2+ and 

AtPgb2- lines after NO treatment, but no differences for WT and AtPgb1- plants.  

 

Figure 11 Phenotypical parameters of hydroponically cultivated Arabidopsis plants. 

Rosette size of plants (a, 32-old-day plants), shoot length (b, 42-old-day plants), number of siliques 
(c, 42-old-day plants) and seed yield (d, 42-old-day plants) in hydroponically cultivated 
Arabidopsis plants with altered AtPgb1 or AtPgb2 expression. Plants were exposed to ambient 
(black) and 3000 ppb NO (grey). Data represent means ± SE of 15-20 plants for phenotypical 
parameters. Asterisks indicate statistically significant differences from WT (Student´s t-test; 
*P<0.05, **P<0.01, ***P<0.001). Modified from Kuruthukulangarakoola et al., 2017. 

3.1.2 NO fumigation increased RSNO, nitrite and nitrate level 

The uptake of NO by plants through stomata was proposed in the 1990s (Wellburn, 

1990; Stulen et al., 1998), and this hypothesis was supported by a study that 

showed the expansion of the leaf disc in pea plants after NO fumigation (Leshem 

et al., 1998). To demonstrate the NO uptake by plant leaves, we measure the 

RSNO, nitrite and nitrate level in Arabidopsis leaves.  
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Figure 12 NO fumigation increases RSNO and N-containing ion levels in plant leaves.  

Plants germinated and grew for twelve days in N-containing hydroponic medium. Afterwards, they 
were transferred in N-free medium and fumigated with air supplemented with 0 ppb or 3000 ppb 
NO. Leaf samples were harvested after 20 d of treatment and nitrosothiols, nitrite and nitrate 
contents were determined. White: Ambient NO; Black: 3000 ppb NO. Data represent means of 5 
plants. The number above the bars for each plant line represents the ratio of the estimated quantity 
for the plants fumigated with 3000 ppb NO gas to that for plants fumigated with ambient NO.  

Clearly, fumigation with 3000 ppb NO strongly increased RSNO, nitrite and 

nitrate level in plant leaves. For RSNO, Pgb 1 silence (Pgb1-) Arabidopsis showed 

the highest level (0.118 nmol /mg protein) after NO treatment, while for nitrite, 

Pgb 1 overexpression line (Pgb1-) showed the highest level (3.3 nmol/mg protein). 

Compared to RSNO and nitrite, the nitrate concentration in Arabidopsis were 

much higher (Figure 12). Among the 5 lines, nitrate level in NO treated Pgb1 and 

Pgb2 overexpressing Arabidopsis were around 360 nmol per mg protein and 250 

nmol per mg protein, which is much higher than in WT (90 nmol per mg protein) 
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(Figure 12). These results support the existence of a NO-fixation mechanism, 

resulting in enhanced N-assimilation in Arabidopsis plants and better growth and 

development. 

 

3.1.3 NO treatment and phytoglobins did not affect the nitrate uptake in 

Arabidopsis 

NO was regard as an important regulator of N assimilation in previous study 

(Frungillo et al., 2014). To check whether NO fumigation and the changed internal 

NO levels in Pgb transgenic lines can affects root-dependent N uptake, we 

performed a 15N- nitrate tracer experiment. Hydroponic Arabidopsis were grown 

in 15NO3- containing medium under ambient NO and 3000 ppb NO fumigation, 

15N level in plant leaves were measured after 1, 4 and 11 days. From the results, 

we found that no significant differences between ambient NO and 3000 ppb NO 

treatment, and no significant differences among Pgb transgenic lines (Figure 13).  

 

Figure 13 15N level in Arabidopsis leaves under 15N nitrate medium or without 3000 ppb NO 
fumigation.  

Plants germinated and grew for 12 days in N-containing hydroponic medium. Afterwards, they 
were transferred in medium with 15NO3--containing medium under ambient NO (-NO) or 3000 ppb 
NO fumigation (+NO). 15N content was determined in plant leaves after 1, 4- and 11-days treatment. 
Data represent means ±SE of 10 plants.  
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3.1.4 Phytoglobin dependent NO uptake by plant leaves 

To further demonstrate NO uptake and the importance of Pgb proteins for N 

accumulation, we fumigated hydroponic cultures of Arabidopsis with 250 ppb 

15NO. Again, the plants were first cultivated in N-containing medium and 

transferred to N-free medium before 15NO fumigation. Samples were harvested 

after 4, 6 and 11 days of fumigation and 15N content in leaves was determined with 

an Isotope Ratio Mass Spectrometer (IRMS, delta V Advantage, Thermo Fisher, 

Dreieich, Germany) coupled to an Elemental Analyzer (Euro EA, Eurovector, 

Milano, Italy). 

A                                      B  

 

Figure 14 15N level in Arabidopsis leaves after 15NO fumigation.  

Plants germinated and grew for 12 days in N-containing hydroponic medium. Afterwards, they 
were transferred in N-free medium. 15N content was determined in plant exposed to 250 ppb 15NO 
for 4, 6 and 11 days (A). The 15N uptake per day was calculated based on the 15N data after four 
days of 15NO fumigation (B). Data represent means ±SE of eight plants. Asterisks indicate 
statistically significant differences from WT (Student’s t-test; *P<0.05, **P<0.01, ***P<0.001). 
 

15N accumulation could be observed in all lines during the treatment. The highest 

accumulation was detected in Pgb2+ plants (Figure 14A, up to almost 7% of total 

N content after 11 days of 15NO fumigation). After 6 days of treatment WT plants 

accumulated the same amount of 15N as the Pgb1+ plants. The lowest 15N 

accumulation was observed in Pgb1- and Pgb2- lines. These results demonstrate 

that overexpression of Pgb1 or Pgb2 positively affects 15N accumulation in plants 
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and that both Pgb isoforms promote the use of NO as N source. Based on the 15N 

data after 4 days of 15NO treatment, we calculated a daily uptake of 250 mg N/kg 

dry matter for Pgb2 overexpressing plants and 170 mg N/kg dry matter for Pgb1 

overexpressing plants, which is almost 100% and 35% more than in WT plants 

(Figure 14B). 

Soil is recognized as an important source of tropospheric NO (Davidson and 

Kingerlee, 1997; Pilegaard, 2013). The estimated global NO emission inventories 

for soil ranged from 6.6 to 33 TgN yr-1 (above soil) or from 4.7 to 26.7 TgN yr-1 

(above canopy) dependent on whether the studies considered canopy reduction 

factor, which is adopted to account for canopy uptake of NOx (Hudman et al., 

2012; Huang and Li, 2014). The NO uptake by the plants was further demonstrated 

by ‘scavenging’ NO released from soil (Figure 15). In a similar experiment, 

reduction of soil-emitted NO has been already demonstrated in WT Arabidopsis 

plants (Mur et al., 2011). 

The experiment was performed in a closed system/cuvette. When placing pots with 

soil and Arabidopsis rosettes in the cuvette, we detected lower NO levels than 

when the plants were cut and removed. When the excised plants were reapplied to 

the surface of the soil, NO levels were again reduced. In our experimental system 

ca. 100 ppb NO accumulated in the closed cuvette within 30 min (Figure 15A), 

when the plants were cut and removed (soil-released NO). In general, compared 

to WT Arabidopsis, Pgb overexpression plants removed higher levels of NO, while 

at the same time, Pgb knockdown or silence plants removed lower levels of NO. 

Pgb2+ plants reduced the levels of soil-released NO up to 4ppb per gram fresh 

weight within 30min, which is more than the double amount of NO removed by 

WT plants and four times more than by Pgb2- plants (Figure 15B).  
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Figure 15 NO uptake of Arabidopsis plants.  

A. NO level in reaction chamber with and without plant. In this experiment two pots containing 2 
four-weeks-old Arabidopsis plants were placed in a closed reaction chamber and the NO level were 
measured after 30 min (grey, L1). Then the plants were cut at the soil surface and the NO levels 
were determined again after 30 min (black, L2). The experiment was done in 9 replicates. In all 
experiments, asterisks indicate statistically significant differences between the measured NO levels 
emitted from pots with plants (grey) and the same pots without plants (black) (Student´s t-test; 
*P<0.05, **P<0.01). B. NO uptake level of different Arabidopsis. The difference between both 
levels (L2–L1) reflects the amount of NO taken up in 30min by the different genotypes. Asterisks 
indicate statistically significant differences from WT (Student’s t-test; *P<0.05, **P<0.01).  
 

3.1.5 Nitrogen supply did not significantly affect the phytoglobin dependent 

NO uptake 

The results above showed that NO uptake by Arabidopsis is Pgb dependent under 

N limited conditions. To analyze whether the N supply affect the NO uptake, we 

performed the 15NO fumigation experiment with hydroponic Arabidopsis grown 

under N deficient (medium without N) or N sufficient (medium with N) conditions. 

15N levels were determined in plant leaves after 2 and 5 days fumigated with 200 

ppb of 15NO (Figure 16). We found that the 15N level plant leaves is Pgb dependent 

in both N deficient and sufficient conditions. 15N level are higher in Pgb 

overexpression Arabidopsis and lower in reduced Pgb lines compared to WT. 

Besides, we noted that the 15N level in WT plants under N deficient conditions are 

higher compared to plants under N sufficient conditions after 5 days treatment 
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(Figure 16). However, we did not observe such differences in other lines (Figure 

16). 

 

 

Figure 16 15N level in Arabidopsis leaves after 15NO fumigation with or without N source. 

Plants germinated and grew for 12 days in N-containing hydroponic medium. Afterwards, they 
were transferred in medium with (+N) or without N (-N). 15N content was determined in plant 
exposed to 200 ppb 15NO for 2 and 5 days. Data represent means ±SE of 5 plants. Asterisks indicate 
statistically significant differences (Student’s t-test; *P<0.05, **P<0.01, ***P<0.001). Medium 
with or without N were prepared as Table 2. 

In summary, these results support the existence of a Pgb dependent NO-fixation 

mechanism, enabling use of atmospheric NO as N source for plant growth. 

Moreover, in this way the level of atmospheric NO is reduced, which could be of 

importance in context of air quality. 
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NO fumigation by Pgb dependent NO-fixation could be of importance for crop 

plants.  

To investigate the effect of high atmospheric NO concentrations on crop plants and 

the role of Pgbs under these conditions, we performed a long-term study on barley 

“Golden Promise” wild type (WT), class 1 Pgb knockdown (HvPgb1.1-) and class 

1 Pgb overexpression (HvPgb1.1+) lines.  

 

3.2.1 Plant phytoglobins ‒ relationships and expression pattern 

In barley, the Pgb gene (HvPgb1.1) was discovered by Taylor’s group (Taylor et 

al. 1994). By using NCBI BLAST and IPK Barley BLAST Server, we could 

identify another Pgb gene in barley (Access number: HORVU1Hr1G076460.3 in 

IPK and AK376331.1 in NCBI).  

 

Figure 17 Phylogenetic tree of Pgbs.  

The tree was constructed with the Neighbor–Joining method (1000 replications of bootstrap test, 
JTT model+Gamma distribution using MEGA 6.06. The NCBI accessions of labelled Pgbs are 
listed in supplementary Table 1. 
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A phylogenetic tree was constructed with Pgb proteins in other plant species by 

the Neighbor–Joining method using MEGA 6.06). Based on the phylogenetic tree 

(Figure 17) and the rules for Pgb genes (Hill et al. 2016), the new gene was named 

HvPgb1.2. The amino acid sequences alignment analysis revealed a 74.7% 

homology of HvPgb1.2 to barley Pgb1.1 and a 70.1% homology to Arabidopsis 

Pgb1 (Figure 18).  
 

 

Figure 18 Amico acid sequences comparison of HvPgb1.1, HvPgb1.2 and AtPgb1.  

The amino acid sequences alignment analysis was performed by online software - Pairwise 
Sequence Alignment. HvPgb1.2 shared 74.7% homology to HvPgb1.1 and 70.1% homology to 
AtPgb1. 
 

We compared the expression patterns of the HvPgb1.1, HvPgb1.2 and HvPgb3 in 

different tissues according to the collected data from morexGenes-Barley RNA-

seq Database. In general, the expression levels of HvPgb1.2 and HvPgb3 are much 

higher in all plant tissues compared to HvPgb1.1 (Figure 19). The highest 

expression levels of HvPgb1.1 in roots (ROO1 and ROO2), etiolated seedlings 

(ETI) and shoots (LEA) compared to other tissues. HvPgb1.2 showed a high 
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expression level in senescing leaves (SEN), roots (ROO1 and ROO2), embryos 

(EMB), shoots (LEA) and epidermal strips (EPI). In contrast, the expression of 

HvPgb3 is relatively balanced in all tissues (Figure 19). 
 

 

Figure 19 Expression patterns of HvPgb1.1, HvPgb1.2 and HvPgb3 in different tissues.  

Data was collected from morexGenes-Barley RNA-seq Data, HvPgb1.1 
(HORVU4Hr1G066200.1), HvPgb1.2 (HORVU1Hr1G076460.3), HvPgb3 
(HORVU0Hr1G021640.3). EMB: 4-day embryos; ROO1: Roots from seedlings (10 cm shoot 
stage); LEA: Shoots from seedlings (10 cm shoot stage); INF1: Young developing inflorescences 
(5mm); INF2: Developing inflorescences (1-1.5 cm); NOD: Developing tillers, 3rd internode (42 
DAP); CAR5: Developing grain (5 DAP); CAR15: Developing grain (15 DAP); ETI: Etiolated 
seedling, dark cond. (10 DAP); LEM: Inflorescences, lemma (42 DAP); LOD: Inflorescences, 
lodicule (42 DAP); PAL: Dissected inflorescences, palea (42 DAP); EPI: Epidermal strips (28 
DAP); RAC: Inflorescences, rachis (35 DAP); ROO2: Roots (28 DAP); SEN: Senescing leaves 
(56 DAP). 
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3.2.2 NO fumigation enhances expression level of HvPgb1.1 

To analyze whether Pgb genes respond to NO fumigation, we examined the gene 

expression level in barley leaves collected from WT plants exposed to different 

NO concentrations for 20 days.  

 

Figure 20 Transcription levels of of HvPgb1.1, HvPgb1.2 and HvPgb3 in barley leaves after 
NO fumigation.  

Leaf samples were taken after 20 days of NO fumigation. HvGADPH and Hvactin were used as 
housekeeping gene. Each data represents means ± SE (n=3). The expression levels of HvPgb1.2 
and HvPgb3 were normalized to HvPgb1.1. 
 

Clearly, NO fumigation significantly enhanced the HvPgb1.1 expression level. 

Concentrations up to 1500 ppb NO resulted in an 8-fold increase in transcript 

abundance of HvPgb1.1, whereas a concentration of 3000 ppb did not further 

enhance the expression level. In contrast, the expression of HvPgb1.2 and HvPgb3 

genes were only slightly or not affected by NO fumigation, respectively (Figure 

20). The expression level of HvPgb1.2 increased only 1.5-fold in presence of 800 

ppb and 1500 ppb of NO (Figure 20) and decreased to the control level if plants 

were fumigated with 3000 ppb. The transcript levels of HvPgb3 decreased in 

presence of NO concentrations higher than 800 ppb. Although accumulation of 

HvPgb1.1 transcript is enhanced after NO fumigation, its transcript levels are still 

clearly lower than the levels of HvPgb1.2 and HvPgb3 (Figure 20). These results 
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indicated that HvPgb1.1 might play an important role in conditions with enhanced 

levels of NO.   

3.2.3 NO fumigation promotes growth of barley plants overexpressing HvPgb 

1.1  

Since HvPgb1.1 might play a role in NO metabolism, growth and development of 

HvPgb1.1 overexpressing (HvPgb1.1+) and knockdown (HvPgb1.1-) barley lines 

were analyzed in presence of different NO concentrations. Barley plants with class 

1 Pgb overexpression (HvPgb1.1+) and silence (HvPgb1.1-) lines were obtained 

from Kim Hebelstrup (Aarhus University, Hebelstrup et al. 2014).  

 

Figure 21 Phenotype of barley plants fumigated with different concentrations of NO for 20 
days, 30 days and 45 days. 

The plants were growth in climate chamber with different NO level (Ambient, 800 ppb, 1500 ppb 
and 3000 ppb). Photos were taken at 20, 30 and 45 days. 
 

For NO treatment, air was purified using filter pads in combination with activated-

carbon filters and silica particles coated with permanganate (ambient, ca. 5 ppb) 

and supplemented with 800 ppb, 1500 ppb and 3000 ppb of NO. Plants were grown 

in climate chambers under highly controlled conditions (Figure 7). During the 
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whole growth phase season, nutrient solutions without N were added every two 

weeks. 

 

Figure 22 Growth parameters of of barley plants fumigated with different concentrations of 
NO for 20 days, 30 days and 45 days. 

The growth prameters of plant height, plant weight and leaf numbers or stem numbers were 
measured. Each data represents means ± SE of at least 4 plants. Different letters indicate significant 
differences among treatments at P < 0.05, according to Tukey's test. 
 

After 20 days of treatment, there were no obvious phenotypic differences – not 

only among the three different lines, but also among the different NO conditions 

(Figure 21). According to leaf number analysis during the first 16 days of growth, 

no obvious difference in development of the different barley lines could be seen 

(Figure S1). The expression level of HvPgb1.2 and HvPgb3 in the HvPgb1.1- and 

HvPgb1.1+ plants is only slightly different from the expression levels in WT plants 
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(Figure S2). Expression of both genes is reduced by ca. 25% in HvPgb1.1+ plants 

under ambient conditions, whereas no differences could be observed when plants 

were fumigated with 3000 ppb of NO (Figure S2). 30 and 45 days after exposure 

to NO, both stem number and plant weight increased in correlation with the 

increasing NO concentration in HvPgb1.1+ plants, while at the same time, no 

significant differences were observed in WT and HvPgb1.1- plants (Figure 22). In 

presence of 3000 ppb NO, the stem number and plant weight of HvPgb1.1+ plants 

increased about 2-fold in comparison to ambient conditions (Figure 22). The plant 

height of HvPgb1.1+ plants showed a slight increase with the increasing NO 

concentration after 30 days treatment, but no differences were observed after 45 

days treatment (Figure 22). These results demonstrate that NO fumigation 

significantly promotes growth of HvPgb1.1+ plants, while the same NO 

concentration has no obvious effect on growth of WT and HvPgb1.1- plants. 
 

3.2.4 NO fumigation increases barley yield in HvPgb1.1 overexpressing line 

To analyze the effect of high concentrations of atmospheric NO on yield of barley 

plants expressing different levels of HvPgb1.1, we measured 8 yield parameters 

including dry matter weight per plant (DWP), plant height (PH), spike length 

excluding awns (SL), spikes per plant (SP), spike weight (SW), kernel numbers 

per plant (KNP), kernel weight (KW), and kernel weight per plant (KWP). 

Figure 23 Phenotypical of barley plants fumigated with different concentrations of NO for 
80 days.  

The plants were growth in climate chamber with different NO level (Ambient, 800 ppb, 1500 ppb 
and 3000 ppb). Photos were taken at 80 days. 
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Figure 24 Yield parameters of barley after 80 days NO fumigation.  

The dry matter weight (DWP), kernel weight (KW), plant height (PH), kernel number per plant 
(KNP), spikes per plant (SP), spike length (SL), spike weight (SW), and kernel weight (KW) 
were measured after 80 days NO fumigation. Each data represents means ± SE (n=15). Different 
letters indicate significant differences among treatments at P < 0.05, according to Tukey's test. 
 

After 80 days of treatment, we observed a clear promoting effect in Pgb 

overexpression barley (HvPgb1.1+) with increasing NO concentration application, 
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especially under 3000 ppb NO (Figure 23). No differences in PH and SL were 

observed, neither among the three barley lines (WT, HvPgb1.1+ and HvPgb1.1-) 

nor among the different NO conditions (Figure 24). However, NO fumigation 

significantly increased the DWP, KNP, and KWP level in HvPgb1.1+ plants. DWP, 

KNP and KWP in HvPgb1.1+ plants are up to two-fold higher when fumigated 

with 3000 ppb comparison to ambient conditions. In contrast, the SW and KW 

levels were decreased with increasing NO concentration (Figure 24). Such a 

negative correlation between the spike number and kernel weight is often observed 

(Dorostkar et al., 2015). From the results of DWP and KNP, we noted that in WT 

and HvPgb1.1- lines, 800 ppb fumigation had a promoting effect, while 3000 ppb 

fumigation led to a reduction of both parameters. 

 

3.2.5 Effect of enhanced atmospheric NO on nitrogen metabolism in barley 

plants overexpressing HvPgb1.1 

To analyse whether atmospheric NO affects the nitrogen metabolism in WT and 

transgenic Pgb barley, we measure the nitrite, and nitrate levels in leaves of barley 

plants fumigated for 30 days with 3000 ppb of NO. Under ambient conditions, no 

significant differences between the three different lines have been detected. 

However, 3000 ppb NO increased the nitrite and nitrate level in all 3 lines (Figure 

25). The nitrate level in HvPgb1+ plants are increased 3.5-fold, while in HvPgb1- 

and WT plants the nitrate levels only 1.4 and 1.7- times increased, respectively 

(Figure 25B).  
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Figure 25 Nitrite and nitrate content of barley plants after 30 days of NO fumigation.  

The number above the bars indicate the ratio of 3000 ppb NO and ambient NO fumigated plants. 
Each data represents means ± SE (n=4). 

 

Figure 26 Transcription levels of of HvNR, HvNiR, HvGS2 and HvFd-GOGAT in barley 
leaves after NO fumigation. 

Leaf samples were taken after 30 days of NO fumigation. HvGADPH and HvACTIN were used as 
housekeeping genes. Each data represents means ± SE (n=4). Different letters indicate significant 
differences among treatments at P < 0.05, according to Tukey's test. NR, nitrate reductase; NiR, 
nitrite reductase; GS, glutamine synthetase; Fd-GOGAT, ferredoxin-dependent glutamate-
oxoglutarate-aminotransferase.  
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Such an increase in N metabolites activated also genes of the N metabolism. 

Especially in HvPgb1.1+ plants, expression of NR, nitrite reductase (NiR), 

glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate-oxoglutarate-

aminotransferase (Fd-GOGAT) is upregulated in NO fumigated plants in 

comparison to plant grown under ambient level of NO (Figure 26). In WT and 

HvPgb1.1- plants, transcript levels of nitrite reductase and glutamine synthetase 

were increased by NO treatment. 

Since nitrogen supply correlates with leaf chlorophyll concentration (Ercoli et al. 

1993), we measured the chlorophyll content in barley leaves after 20 and 35 days 

of NO fumigation. Twenty days of fumigation did not affect the chlorophyll 

content (Figure 27 and 28). However, as the plants are cultivated under N-limited 

conditions, the chlorophyll content was already decreased under ambient 

conditions from 35 µg cm-2 (20 days of treatment) to 22 µg cm-2 (35 days of 

treatment) (Figure 26A and Figure 27A). In plants fumigated for 35 days, the 

chlorophyll content correlated with increasing NO concentration. Especially in 

plants overexpressing HvPgb1.1 and treated with 3000 ppb of NO the chlorophyll 

content in the older plants (35 days of fumigation) is still as high as in the younger 

plants (20 days of fumigation) (Figure 27A and Figure 28A).  

The effective quantum yield of PSII (∆F/Fm') gives the actual efficiency of energy 

conversion in PSII (Björkman and Demmig-Adams, 1995), which is proportional 

to reduce photosynthetic efficiency and provides a link to diminished 

photosynthetic carbon fixation (Genty et al., 1989; Wilkinson et al., 2015). Using 

a MINI-PAM-II Photosynthesis Yield Analyzer, we measured the chlorophyll 

fluorescence and calculated the effective quantum yield of PSII (∆F/Fm' = (Fm' – 

F)/Fm').  Similar to chlorophyll content, the effective quantum yield of PSII 

(∆F/Fm') in HvPgb1.1+ lines increased with NO concentration increased only in 

older plants (35 days of fumigation, Figure 27B and Figure 28B).  
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Figure 27 Chlorophyll index and effective quantum yield of PSII (ΔF/Fm') of barley leaves 
after 20 days NO fumigation.  

Chlorophyll index was measured with Dualex Scientific+™, effective quantum yield of PSII was 
measured with MINI-PAM-II Photosynthesis Yield Analyzer. Both measurements were performed 
between 13:00 - 15:00. Each data represents means ± SE (n=15). Different letters indicate 
significant differences among treatments at P < 0.05, according to Tukey's test.  

 

Figure 28 Chlorophyll index and effective quantum yield of PSII (ΔF/Fm') of barley leaves 
after 35 days NO fumigation. 

Chlorophyll index was measured with Dualex Scientific+™, effective quantum yield of PSII was 
measured with MINI-PAM-II Photosynthesis Yield Analyzer. Both measurements were performed 
between 13:00 - 15:00. Each data represents means ± SE (n=15). Different letters indicate 
significant differences among treatments at P < 0.05, according to Tukey's test.  
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Figure 29 15N level in barley leaves after 2, 9 and 12 days under nutrient solutions containing 
15NO3-.  

Plants were grown in soilless matrix composed of vermiculite and sand. Nutrient solutions with 
0.3 mM 15NO3- were added every day. Leaves were harvested after 2, 9 and 12 days of treatment, 
dried at 60 °C for 48 h and ground to a homogenous powder. Aliquots of about 2 mg of leaf material 
were transferred into tin capsules and 15N and 14N content were determined with an Isotope Ratio 
Mass Spectrometer coupled to an Elemental Analyzer. Each data represents means ± SE (n=5). 
Different letters indicate significant differences among treatments at P < 0.05, according to Tukey's 
test. 
 

To exclude that the enhanced nitrogen content in the HvPbg1.1+ plants is a result 

of absorption of nitrogen metabolites from the soil, we perform a 15NO3- tracer 

application experiment. Barely plants were grown in soilless matrix with 

additional nutrient solution containing 15NO3-. 15N level in barley leaves after 2, 9 

and 12 days were compared among the 3 lines. No significant differences of the 

15N level among WT, HvPgb1.1- and HvPgb1.1+ plants (Figure 29).  

Then we measured the nitrate and ammonia content in soil of plants treated for 30 

days with 3000 ppb NO. Compared to the unused soil (control), both nitrate and 

ammonia content decreased to a very low level in the soil of plants cultivated under 

ambient and 3000 ppb NO conditions with no significant difference between the 

treatments (Figure 30A and B). Nitrogen ratio in the soil of the different barley 
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lines grown under different NO conditions were also compared. The nitrogen ratio 

is decreased after 30 days of treatment in all samples in comparison to unused soil. 

Interestingly, in the soil of the HvPgb1.1+ plants fumigated with 3000 ppb, the 

nitrogen ratio is higher than in the other samples (Figure 30C). 

Figure 30 Nitrate, ammonium and nitrogen content in soil after 30 days of NO fumigation.  
Nitrate, ammonium and nitrogen content in soil were measured after harvesting plants and totally 
removing plant root. Control means the original soil. For nitrate and ammonium, 15 pots of soil 
were measured. For nitrogen content, each data represents means ± SE (n=5). Different letters 
indicate significant differences among treatments at P < 0.05, according to Tukey's test. 

 

3.2.6 Uptaken NO is used as nitrogen source    

As shown above, long-term exposure to enhanced concentrations of NO promoted 

growth and yield of HvPgb1.1+ plants by using NO as additional N source. To 

further demonstrate the importance of Pgb 1.1 in NO fixation and N accumulation 

in barley, we fumigated 20-day old plants with 90 ppb of 15NO for 7 days and 

determined the 15N level in leaves of WT, HvPgb1.1- and HvPgb1.1+. Although 

such NO values are not present in the atmosphere continuously, they can be 

reached during a day (Figure S3) dependent on weather conditions, season of the 

year, and/or activity of soil bacteria. 
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0.09g N/kg dry matter, which is around 2.5 times higher than in WT and 

HvPgb1.1- plants (Figure 31B).  

DNA, RNA and protein are basic N-containing biological molecules. To 

demonstrate that the uptaken 15N has been transferred to nitrogen metabolism and 

incorporated into N-containing compounds, we measured the 15N level in DNA, 

RNA and protein of the barley leaves. We could detect increased 15N amounts in 

RNA, DNA, and protein in plants fumigated with 15NO. Consistent with the 15N 

level in dry leaves, the increased 15N level in RNA, DNA, and protein of 

HvPgb1.1+ lines are much higher compared to WT and HvPgb1.1- lines (Figure 

31C, D and E). These results confirmed that the Pgb 1.1 dependent uptake NO can 

be used as nitrogen source in barley. 

 

Figure 31 15N level in barley leaves, proteins and nucleic acids.  

20 days barley plants were fumigated with 90 ppb 15NO at daytime (8:00-20:00). 15N content was 
determined in barley leaves from at least 10 plants after 7 days (A). The 15N uptake per day (B) 
was calculated based on the 15N data of A. 15N level in DNA (C), RNA (D) and Protein (E) were 
measured from the extract solutions of barley leaves. Control means plants fumigated with 90 ppb 
NO. For graph C, D and E, each data represents means ± SE (n=3). Different letters indicate 
significant differences among treatments at P < 0.05, according to Tukey's test.   

c

b b

a

15N level in DNA

Control
Pgb1.1- WT

Pgb1.1+

15
N

 c
on

te
nt

 (a
to

m
-%

 o
f t

ot
al

 N
)

0.0

0.2

0.4

0.6

0.8

1.0 a

bb

c

15N level in RNA

Control
Pgb1.1- WT

Pgb1.1+

15
N

 c
on

te
nt

 (a
to

m
-%

 o
f t

ot
al

 N
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 a

bb
c

c
b

b

a

15N level in Protein

Control
Pgb1.1- WT

Pgb1.1+

15
N

 c
on

te
nt

 (a
to

m
-%

 o
f t

ot
al

 N
)

0.0

0.1

0.2

0.3

0.4

0.5 a
b

b
c

A

C D E

Control
Pgb1.1- WT

Pgb1.1+

15
N

 c
on

te
nt

 (a
to

m
-%

 o
f t

ot
al

 N
)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 a

b

b

c

B

Pgb1.1- WT
Pgb1.1+

15
N

 u
pt

ak
e 

pe
r d

ay
 (g

 / 
kg

 d
ry

 w
ei

gh
t)

0.00

0.02

0.04

0.06

0.08

0.10

0.12
a

b b



Results 

 71 

 

 

The 15NO uptake by barley was compared with the uptake by Arabidopsis. 

Consistent with barley, Arabidopsis plants overexpressing either class 1 Pgb 

(AtPgb1+) or class 2 Pgb Arabidopsis (AtPgb2+), contained more 15N, in DNA, 

RNA and protein in comparison to WT plants (Figure 32A). Interestingly, in 

Arabidopsis most of the 15N was found in the protein fraction, whereas in barley 

only low amounts of 15N were detected in this fraction. Here most of the 15N was 

found in the DNA fraction. A daily uptake for HvPgb1.1+ barley of about 0.09g 

20 days barley and 28 days Arabidopsis were 
fumigated with 90 ppb 15NO during daytime (8:00-
20:00). A. 15N content was determined in barley and 
Arabidopsis leaves from at least 10 plants after 7 
days. The dashed line means 15N level under control 
conditions is 0.37%. B The 15N uptake per day of 
Arabidopsis leaves were calculated based on the 15N 
data of A. 

Figure 32 15N level in barely and Arabidopsis 
leaves after 15NO fumigation. 
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N/kg dry matter is even 2 times higher than Pgb2 overexpressing Arabidopsis, and 

almost 8 times higher than WT Arabidopsis (Figure 31 and 32). 

Atmospheric NO is mainly taken up by plants through the stomata. To analyze 

whether Pgb dependent NO uptake is associated with changes in stomata opening, 

stomatal conductance was measured in WT and the different transgenic barley and 

Arabidopsis plants. No differences in stomatal conductance among the three barley 

lines could be observed (Figure 33). In the transgenic Arabidopsis plants, there 

were also no differences in stomata opening observed compared to WT plants, 

except in the class 1 knockdown line (AtPgb1-), which has a higher stomatal 

conductance than WT. 

 

Figure 33 Stomatal conductance of barley and Arabidopsis plants. 
Stomatal conductance was measured with a SC-1 Leaf porometer during 10:00-12:00 from at least 
14 plants per line. Asterisks indicate statistically significant differences from WT (Student’s t-test; 
***P<0.001) 
 

Plants can take up not only NO, but also NO2 (Takahashi et al., 2014). To analyse, 

whether Pgbs can also promote the use of NO2 as N source, barley and Arabidopsis 

plants with different Pgb expression levels were fumigated with 90 ppb of 15NO2 

and 15N content in leaves was determined after 3 and 7 days of fumigation (Figure 

34). In general, the 15N contents in leaves are up to six-fold higher when plants 

were fumigated for seven days with NO2 in comparison to NO (see Figure 32 and 
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34). But Pgb overexpression did not enhance the NO2 uptake demonstrating that 

the Pgb-dependent NO-fixation mechanism is NO-specific. 

Figure 34 15N level in barely and Arabidopsis leaves after 15NO2 fumigation.  

20 days barley and 28 days Arabidopsis were fumigated with 90 ppb 15NO2 during daytime (8:00-
20:00). 15N content was determined in barley (A) and Arabidopsis (B) leaves from at least 10 plants 
after 3 and 7 days.  
 

In summary, we showed that overexpression of the HvPgb1.1 gene promoted 

barley growth and increased yield after long-term exposure to NO concentrations 

higher than 800 ppb. Short-term exposure to close to ambient levels of 15NO (90 

ppb) demonstrated that Pgbs allow barley plants efficiently using atmospheric NO 

as additional nitrogen source. Strengthening this mechanism through classical 

breeding methods or biotechnological approaches could pave the way for a new 

generation of crops that are better able to cope with nitrogen-limited conditions or 

with less fertilization. 

 

3.3 NO and NO2 uptake capability of different trees  
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concentration of atmospheric NOx. In this case, plants have a beneficial effect on 

air quality and human health. With regard to the air quality in cities with high 

concentrations of nitrogen oxides, the NO fixing capability of plants could 

contribute significantly to the reduction of NO and thus improve air quality. This 

finding may be especially significant for future urban planning in metropolitan 

areas and may contribute to improved living conditions there. Therefore, we 

analyzed the NO/NO2-fixing capability of different city tree species and tried to 

explore the potential way to improve the NO-fixing ability using transgenic 

phytolobin plants (Arabidopsis, barley and poplar).  

 

3.3.1 Deposition potential of NO and NO2 in different trees  

The NO and NO2 deposition potential were measured in 4 different kinds of trees: 

Carpinus betulus, Fraxinus omus, Fraxinus pennsyl and Ostrya carpinifolia.  

Experiment was performed in the climate chamber with controlled growth 

conditions. Mature and healthy shoots were tightened together with a gas tube as 

air inlet in one side of the open plastic bag, the second gas tube were tightened at 

another side of plastic bag as air outlet (Figure 8). Different concentrations of NO 

and NO2 were controlled and monitored for fumigation. Transpiration rate of NO 

(FNO) and NO2 (FNO2) (nmol m-2 s-1) were calculated as described in method 

2.3.4. The linear relationship was made between FNO/FNO2 and the fumigated 

NO/NO2 concentration: y = kx+b (x represents the fumigated NO/NO2 

concentration; y represents the transpiration rate of NO (FNO) or NO2 (FNO2)). 

The deposition potential is determined as the slope (k) value. 

We found that Carpinus betulus has a highest NO deposition potential, which is 

almost 3 times higher than the others. And no significant differences among the 

other 3 trees could be observed (Figure 35). Consistent with the NO deposition 

potential, the NO2 deposition potential level in Carpinus betulus were also higher 

than that of the other trees. (Figure 35).  
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Figure 35 NO and NO2 deposition potential of 4 different trees (Carpinus betulus, Fraxinus 
omus, Fraxinus pennsyl and Ostrya carpinifolia).  

Trees were grown in the climate chamber. Mature and healthy shoots were chosen for the NO and 
NO2 deposition potential measurement. Each data represents means ± SE (n=4). Different letters 
indicate significant differences among treatments at P < 0.05, according to Tukey's test. 
 

3.3.2 NO uptake by different trees with 15NO tracer experiment  

The NO uptake capacity of trees was then examined by the 15NO tracer experiment. 

Eight different trees (Carpinus betulus, Fraxinus ornus, Fraxinus pennsylvanica, 

Ostrya carpinifolia, Celtis australis, Alnus spaethii, Alnus glutinosa, and Tilia 

henryana) were chosen for the experiment based on the high resistance to climate 

change. Trees were fumigated with 50 ppb 15NO, 15N level in plant leaves was 

determined after 5 days treatment.  

Clearly, Alnus glutinosa and Carpinus betulus showed a higher 15N level than 

other plants, with the 15N level 0.42% and 0.41% respectively. Followed are Tilia 

henryana, Fraxinus pennsylvanica and Ostrya carpinifolia, the 15N level are 

between 0.39-0.40%. Alnus spaethii and Fraxinus ornus had the lowest level of 

15N, which is no more than 0.39% (Figure 36). 
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Figure 36 15N level in 8 different trees after 5 days 50 ppb 15NO fumigation. 

Trees were grown in the climate chamber with 50 ppb 15NO, leaf samples were taken for 15N 
measurement after 5 days treatment. Carpinus betulus (CB), Fraxinus ornus (FO), Fraxinus 
pennsylvanica (FP), Ostrya carpinifolia (OC), Celtis australis (CA), Alnus spaethii (AS), Alnus 
glutinosa (AG), Tilia henryana (TH). Each data represents means ± SE (n=8). Different letters 
indicate significant differences among treatments at P < 0.05, according to Tukey's test. 

3.3.3 NO uptake in phytoglobin transgenic Arabidopsis, barley and poplar  

Poplar is one of the most important economical tree species in temperate regions 

of the world due to its desirable attributes in adaptability, growth rate, woody 

biomass, and versatility of its wood for industry (Confalonieri et al. 2003). In 

Arabidopsis, we already demonstrated the NO-fixation activity of class 1 and class 

2 Pgb. To check whether the NO-fixation by Pgbs can be used to improve air 

quality in trees, we generate the Pgb transgenic poplar with overexpression 

Arabidopsis class 1 or class 2 Pgb gene. Transgenic poplars were identified by 

semi RT-PCR (Figure 37).  
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Figure 37 Semi RT-PCR detection of transgenic poplar with overexpression of AtPgb1 or 
AtPgb2.  

RNA extracted from leaves were used for cDNA synthesis. A semi-quantitative reverse 
transcriptase PCR analysis was composed of 2 µl 20 mM dNTPs, 0.5 µl of 10 µM specific primers, 
0.2 µl polymerase and 4 ul of 1:20 diluted cDNA template. PCR cycles of 32 were used to amplify 
transcripts of AtPgb1 or AtPgb2 from WT, PcPgb1+, and PcPgb2+ poplar. Transcripts of actin 
filaments serve as a positive loading control. 
 
 

Figure 38 15N level transgenic poplar (A), Arabidopsis (B) and barley (C) after 5 days 50 ppb 

15NO fumigation. 

All plants were grown in the climate chamber and fumigated with 50 ppb 15NO. After 5 days, 15N 
level in plant leaves were determined. In A, Old means 40 day-old poplar and young means 15 
day-old poplar. Each data represents means ± SE (n=8). Different letters indicate significant 
differences among treatments at P < 0.05, according to Tukey's test.  

NO uptake capacity was analyzed in Pgbs transgenic plants. Transgenic poplar, 

Arabidopsis and barley with altered Pgbs were used in the 15NO fumigation 

Poplar Arabidopsis Barley

Col-0/WT
AtPgb1-

AtPgb1+
AtPgb2-

AtPgb2+

15
N

 L
ev

el
 (a

to
m

-%
 o

f t
ot

al
 N

)

0.40

0.45

0.50

0.55

0.60

HvPgb1- WT

HvPgb1+

15
N

 L
ev

el
 (a

to
m

-%
 o

f t
ot

al
 N

)

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

WT

PcPgb1+

PcPgb2+

15
N

 L
ev

el
 (a

to
m

-%
 o

f t
ot

al
 N

)

0.40

0.45

0.50

0.55

0.60

Old
Yong

a

c

ab

d
def e

d

c

b

a

b b

a

A B C



Results 

 78 

experiment. All plants were grown in the climate chamber and fumigated with 50 

ppb 15NO. After 5 days, 15N level in plant leaves were determined. 

Obviously, 15N level in Pgb overexpression plants were higher than WT and Pgb 

knockdown/knockout plants (Figure 38). This confirms that overexpression Pgb 

can significantly increase NO uptake capacity. Interestingly, we observed a higher 

15N level in young poplar (15 day-old poplar) leaves in comparison to old poplar 

(40 day-old poplar) leaves (Figure 38A). Since the moisture content in young 

poplar leaves is higher than in old poplar leaves, we assumed that there is probably 

a positive relationship between leaf moisture content and the NO uptake capacity. 

 

3.3.4 NO uptake capacity is related to leaf moisture content  

To examine the relationship of NO uptake capacity and leaf water content, we did 

the linear regression analysis of 15N uptake level with moisture content and ratio 

of fresh weight and dry weight.  

 

Figure 39 Linear analysis of 15N uptake level with moisture content (A) and Fresh weight / 
Dry weight (B) in 8 city trees, poplar, Arabidopsis and barley.  

15N levels in plant leaves were determined after 5 days of 50 ppb 15NO fumigation. The fresh weight 
was measured by weighing the freshly processed plant leaves after NO fumigation, dry weight was 
measured after keeping in oven at 60°C for 48 hours. The moisture content of leaves was calculated 
as: (fresh weight - dry weight) / fresh weight. 
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We found that 15N uptake level showed a positive correlation with moisture 

content (R2=0.811) and ratio of fresh weight and dry weight (R2=0.736) (Figure 

39).  

In summary, we measured the NO uptake capacity of eight trees and NO2 uptake 

capacity of 4 trees, Alnus glutinosa and Carpinus betulus showed higher 

potentiality of NO and NO2 uptake capacity than other trees. Overexpression Pgb 

proteins signigicantly promote the NO uptake capacity in Arabidopsis, poplar and 

barley. Besides, we found that the NO uptake capacity in different plant species 

might have a positive correlation with moisture content. 
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4 Discussion 

NO is naturally present in the atmosphere as part of earth’s nitrogen cycle and is 

regard as a molecular signal in plant, which play significant role in the regulation 

of many biological processes. Pgbs are ubiquitously occurrence across all plant 

species and can scavenge NO.  

Here, we describe the NO-fixation function of Pgbs in Arabidopsis and barley. NO 

fumigation experiments in Arabidopsis and barley demonstrated that a Pgb 

dependent NO-fixation allows the atmospheric NO into N metabolism and 

promote plant growth. Besides, the plant based NO uptake were also investigated 

in city trees, to analyze the function of Pgbs in reducing atmospheric NOx level 

and improving air quality. 

 

4.1 NO-fixation by phytoglobins promote growth of Arabidopsis  

In our previous studies, growth promoting effect of NO treatment was examined 

in soil grown Arabidopsis. The rosette sizes, fresh weight and dry weight of the 

rosettes of Pgb1+ and Pgb2+ plants fumigated with NO gas were significantly 

larger/higher than that of the fumigated WT control plants, the vegetative shoot 

length, shoot thickness and lateral shoot formation were more pronounced in 

Pgb1+ and Pgb2+ plants than in WT plants after NO fumigation 

(Kuruthukulangarakoola et al., 2017). Here, similar promoting effect were found 

in hydroponic Arabidopsis. Rosette size, shoot length, number of siliques and seed 

yield was increased in NO-treated Pgb1-overexpressing and/or Pgb2 

overexpressing plants in comparison to the ambient control plant (Figure 9, 10 and 

11). However, the differences are not as clear as in soil-grown plants. This is 

maybe because of plant growth is limited in our hydroponic system, where the 

medium completely free of an N-source. From this we can conclude that 

atmospheric NO alone cannot substitute N-uptake through the roots. But especially 
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in hydroponic cultures of Pgb2+ plants the red senescence phenotype was delayed 

(Figure 9) further demonstrating an N supply effect of NO fumigation.  

A positive effect of NOx on plants growth and fruit yield has been already 

described previously (Leshem et al., 1998; Takahashi et al., 2005; Takahashi et 

al., 2011; Takahashi et al., 2014). In presence of up to 200 ppb nitrogen dioxide 

(NO2), shoot biomass and total leaf area is increased in many different plant 

species (Takahashi and Morikawa, 2014). Moreover, cell proliferation and 

enlargement seem to be regulated by NO2. A shoot biomass increase was also 

observed in Arabidopsis plants exposed to 50 ppb NO (Takahashi et al., 2014), 

and positive effects on vegetative growth was demonstrated in pea leaf discs and 

spinach (Leshem and Haramaty, 1996; Jin et al., 2009). Furthermore, vegetative 

growth could be enhanced in Arabidopsis seedlings treated with the NO donor 

sodium nitroprusside (He et al., 2004). However, the molecular mode of action 

underlying these effects has often remained elusive. 

The SNO, nitrite, and nitrate content were increased in NO-fumigated plants 

compared to control plants in all lines (Figure 12) indicated that the NO can be 

taken up by plant leaves. In NO-fumigated plants, significantly higher nitrate 

levels were detected in Pgb1 and Pgb2 expression plants compared with WT plants 

confirming that Pgb protein converted NO to nitrate. In Arabidopsis, Pgb1 and 

Pgb2 can scavenge NO (Perazzolli et al., 2004; Hebelstrup et al., 2012). This NO 

scavenge ability of Pgbs has already been demonstrated to be important for 

limiting the loss of cellular N through NO gas emission from plants under hypoxic 

conditions (Hebelstrup et al., 2006; Hebelstrup et al., 2012). Moreover, the role of 

Pgbs in modulating NO metabolism and signalling by functioning as NO 

scavenger has been already discussed in different contexts such as seed 

germination, bolting and nitrogen-fixing symbiosis (Hebelstrup and Jensen, 2008; 

Shimoda et al., 2009; Hebelstrup et al., 2013). Because of its pentacoordinated 

heme iron, Pgb1 is known to convert NO to nitrate. Reducing equivalents were 
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supplied by NADPH (Gupta et al., 2011b). Metabolism of NO by Pgb2+ plants is 

surprising, because Pgb2 is not known for its NO metabolizing function because 

of its low oxygen affinity (Gupta et al., 2011b). But also for Pgb2, which contains 

a hexacoordinated heme iron, seems to be able to interact with NO, because an 

effective NO scavenging activity was already described for this protein 

(Hebelstrup and Jensen, 2008). Moreover, enhanced NO metabolism mediated by 

S-nitrosylation of Pgb2 cannot be ruled out. A similar function is suggested for 

haemoglobin proteins in animals (Foster et al., 2003). 

We demonstrated that application of NO can promote plant growth through the 

Pgb dependent NO fixation mainly by Arabidopsis leaves, but we do not know 

whether external NO application and the inner changed NO level in transgenic Pgb 

plants can affect the N uptake in root. The 15NO3- experiment indicated that the 

application of 3000 ppb and Pgb had no significant effect in the N uptake by root.   

The importance of Pgb proteins for NO uptake was demonstrated by experiments 

using 15NO (Figure 14). The highest 15N uptake was observed in Pgb2+ plants. 

However, also WT plant accumulated already quite high amounts of 15N, which 

was in the range of that in Pgb1+ plants. This is probably due to the NO-induced 

expression of Pgb1 in WT plants (Kuruthukulangarakoola et al., 2017). Of course, 

that would be also expected in Pgb1+ plants, but maybe the induction is higher in 

WT plants, because Pgb levels are already ‘boosted’ in Pgb1+ plants.   

The uptaken 15N can be present in both inorganic (non-as-similated) and organic 

(assimilated) forms. Especially, the composition of the N-containing organic form 

is very complex because it includes different types of compounds, such as amino 

acids/proteins, nucleic acids, secondary metabolites and pigments. Therefore, we 

presented here the total 15N content. Based on the 15N data after 4 days of 15NO 

treatment, we calculated a daily uptake for Pgb2+ plants of 250 mg N/kg dry 

matter, which is almost 50% more than in WT plants (Figure 14B). We tried to 

extrapolate these results to field conditions. The average total N content in well-
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grown healthy plants is ca. 2% of the plant dry matter (Epstein, 1965). This 

corresponds to 50 kg total N in 2500 kg plant dry matter – an amount that can be 

harvested per year on 1 ha grassland. Based on the NO-fixing capacity of Pgb2+ 

plants (250 mg N/kg dry matter) we calculated a NO-based N-uptake of 0.625 kg 

N/ha/year (250 mg N/kg dry matter ×2500). This is in the range of the N-fixation 

capacity of free-living bacteria (ca. 1–3 kg N/ha/year), whereas plant-associated 

N-fixing bacteria fix 100-300 kg N/ha/year. We further demonstrated the Pgb 

dependent NO uptake by plant leaves is not significantly affected under N 

sufficient conditions in short term. Of course, under N-limited conditions N-uptake 

via NO might be of greater importance, but the N-uptake in normal N conditions 

cannot be ignored.   

NO emissions from microbial processes in soils represent around	15% of the 

modern global atmospheric NOx (NO + NO2) source (∼50% in preindustrial times) 

and are a major contribution to the NOx budget outside of cities (Hudman et al., 

2012). The NO uptake by Arabidopsis leaves prevented the loss of N from soil 

emissions. Besides, the NO scavenging by Arabidopsis showed us the potential 

function of the plant based NO uptake, which can reduce the atmospheric NO level 

and improve air quality.  

 

4.2 Phytoglobin overexpression promotes barley growth in presence of NO 

After the barley Pgb 1.1 (HvPgb1.1) gene was cloned in 1994 (Taylor et al. 1994), 

many studies focused on the function of this gene in barley (Nie et al., 2006, 

Igamberdiev et al., 2004, 2006). We found another barley class 1 Pgb HvPgb1.2 

gene (Figure 17 and 18). The expression pattern of HvPgb1.2 in different tissues 

differed to HvPgb1.1 and in general the expression levels of HvPgb1.2 are much 

higher than HvPgb1.1 (Figure 19). This indicates that HvPgb1.2 may have a 

different function in barley. Since little is known about HvPgb1.2, further research 
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is needed to analyze the function of HvPgb1.2 and its relationship to HvPgb1.1 

and HvPgb3.  

In this study we observed that the expression level of HvPgb1.1 was strongly 

increased by NO fumigation (Figure 20), which is consistent with other studies in 

different plant species (Ohwaki et al., 2005; Qu et al., 2006; Sasakura et al., 2006; 

Bustos-Sanmamed et al., 2011; Kuruthukulangarakoola et al., 2017). The 

enhanced Pgb synthesis might be a common mechanism in plant to protect 

differentiated plant cells from the cellular damage caused by excess NO. But Pgbs 

are also involved in plant development. In a previous study, overexpression of 

HvPgb1.1 in barley showed a delayed growth and flowering phenotype and 

reduced yield (Hebelstrup et al., 2014). This is different to Arabidopsis, where 

five-week-old plants overexpressing class 1 Pgb are flowering earlier and have 

more progressed inflorescences than WT plants (Hebelstrup and Jensen, 2008; 

Hebelstrup et al., 2013). Surprisingly, we did not observe significant development 

differences among WT, HvPgb1.1+ and HvPgb1.1- lines, when growing the plants 

under a controlled climate (see growth parameter under ambient conditions in 

Figure 21 and S1), probably because of differences in the environment conditions 

of the two experiments. This is also similar to Arabidopsis, where the effect of Pgb 

overexpression was only very weak in a short-day regime (Hebelstrup and Jensen, 

2008) in comparison to a longer day regime (Hebelstrup et al., 2013). 

 

4.2.1 NO promotes barley growth via phytoglobin-dependent NO-fixation 

The effect of atmospheric NO on barley depends on the NO concentration. 

Fumigation with 800 ppb of NO had a slight promoting effect on the dry matter 

weight (DMW), kernel weight (KW) and kernel number (KN) of WT plants 

(Figure 23 and 24). In contrast, treatment with 1500 ppb and 3000 ppb NO did not 

increase or even decrease dry matter, kernel and spike development (Figure 24). 

These results indicate that different developmental stages of WT and HvPgb1.1- 
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plants showed different sensitivity to high concentrations of NO, whereas at least 

no harmful effects were observed during the vegetative phase (Figure 21 and 23). 

The decrease in DWP and KWP at high NO (1500 and 3000 ppb) levels in WT 

and HvPgb1.1- plants could be explained by toxic effect of NO at these 

concentrations. Interestingly, when fumigated with 3000 ppb of NO for 9 weeks, 

the total seeds yield of Arabidopsis WT plants increased by 14% in comparison to 

ambient conditions (Kuruthukulangarakoola et al., 2017), which means that barely 

is more sensitive to high concentration of NO than Arabidopsis. Maybe the 

expression level of HvPgb1.1 or the NO-fixing activity of the corresponding 

protein is too low (Figure 19) to protect plants from such high concentration of 

NO. 

Based on the results of plant weight and stem number, we observed a clear growth 

promoting effect after 30 and 45 days of NO fumigation in plants, especially in 

HvPgb1.1 overexpressing barley treated with 3000 ppb of NO (Figure 21 and 22). 

This demonstrates that Pgb enabled a better growth especially in presence of high 

NO concentrations. However, the promoting effect was not observed in the early 

stage of development (20 days) (Figure 21 and 22). At this time, there was still 

enough nitrogen supply from the soil. However, after 30 days, nitrogen limitation 

in soil resulted in a nitrogen deficient state of the plants (Figure 30). Therefore, the 

nitrogen supply by Pgb-dependent NO-fixation helps to overcome the N 

deficiency and promote plant growth. Probably a growth promoting effect could 

also be observed at earlier stages of development when plants are growing on N-

limited condition ab initio. In NO-fumigated HvPgb1.1+ barley, we observed 

increased stem number, plant weight, spikes and dry matter weight per plant, and 

kernel number and weight per plant compared to WT and HvPgb1.1- lines (Figure 

24), indicating that the NO promoting effect is Pgb-dependent. The increase 

appears to be more relevant for spike development than for the other parameters. 

Surprisingly, we could not observe a significant difference in the NO-dependent 
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response between WT and HvPgb1.1- plants. Although HvPgb1.1 expression is 

induced by NO, the expression level is generally very low in barley leaves (Figure 

19 and 20). Therefore, the absolute expression level of HvPgb1.1 in WT is not 

much higher than in the HvPgb1.1- line with knocked down transcript levels 

(Figure S2).  

In NO-fumigated HvPgb1.1+ plants, higher nitrate levels were present compared 

to WT plants demonstrating that HvPgb1.1 converted NO to nitrate (Figure 25). 

Previous studies demonstrate that NO is an important regulator of N assimilation 

(Frungillo et al., 2014). In spinach, enhanced nitrate assimilation in presence of 

200 ppb of NO contributes to biomass accumulation (Jin et al., 2009). Therefore, 

the increased nitrate level in NO-fumigated plants might be the result of NO 

induced nitrate assimilation. However, no differences in N content were observed 

in WT plants grown in soil under ambient conditions or fumigated with 3000 ppb 

of NO (Figure 30) indicating that NO fumigation had no obvious effect on nitrogen 

uptake from soil. Moreover, no differences in 15N levels in barley leaves could be 

detected within the three barley lines grown in presence of 15NO3- (Figure 31). This 

confirms that Pgbs did not affect the NO-induced N assimilation. In presence of 

3000 ppb of NO, the higher nitrate level in HvPgb1+ plants (Figure 25) and the 

higher N content in HvPgb1+ grown soil (Figure 30) indicated that the Pgb 

dependent NO-fixation provided significant additional N for plant growth and the 

N absorption from soil was reduced. Thus, Pgb overexpressing plants benefit from 

high levels of atmospheric NO providing significant amounts of N via a NO-

fixation to the plants’ N assimilation. 

But such high NO levels are not expected to occur in the atmosphere. Therefore, 

for a possible practical application of the NO-fixing pathway would require an 

improvement of the NO-fixation process, e.g. by enhancing the NO binding 

efficiency and improving the reaction of NO3- formation. Moreover, it has to be 

emphasized that this pathway would be rather of importance under N-limited soil 
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conditions. The N content in plants is closely linked to chlorophyll content and 

photosynthetic capacity, because N is an essential chemical element of chlorophyll 

and protein molecules, and thereby affecting chloroplast development and 

chlorophyll accumulation (Bojovic et al., 2005; Bojović and Marković, 2009; 

Akhter et al., 2016). As a signaling molecule, NO also has a function in plant 

photosynthesis. As chloroplasts are the main site of C and N metabolism, as well 

as reactive oxygen species production, NO and related species can potentially 

affect and regulate a wide range of downstream signals through their effects on 

chloroplasts (Procházková et al., 2013). NO effects are mostly found to impair the 

photosynthetic apparatus and inhibit photosynthesis (Procházková et al., 2013). 

Several studies have also demonstrated that NO can prevent chlorophyll losses 

under stress conditions (Uchida et al. 2002; Shi et al. 2005). In the present work 

no differences in chlorophyll content and effective quantum yield of PSII (∆F/Fm') 

could be observed after 20 days of exposure to different NO concentrations (Figure 

27 and 28) concluding that NO fumigation has no effect on plant photosynthesis 

in this early stage of barley development. However, in a later stage under N-limited 

soil conditions (35 days of fumigation) chlorophyll content and photosynthetic rate 

is still high in HvPgb1.1+ plants fumigated with NO. This demonstrates the 

positive effect of N supply due to the enhanced NO-fixing capability of 

HvPgb1.1+ plants in presence of high concentrations of atmospheric NO.  In WT 

and HvPgb1.1- plants the chlorophyll content is clearly lower in older plants in 

comparison to younger plants. However, with increasing NO concentrations the 

decreased is less pronounced (Figure 27 and 28). This demonstrates that WT and 

HvPgb1.1- (knock-down) plants can also fix significant amounts of NO, since both 

lines contain functional Pgb1.1 - of course the levels are lower in comparison to 

Pgb1.1+. The NO uptake by WT and Pgb1.1- barley plants was also demonstrated 

by 15NO fumigation experiments (Figure 31 and 32). Besides the Pgb-dependent 

NO uptake, it cannot be excluded, that traces of NO dissolves in aqueous solutions 
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(e.g. in the apoplast) forming HNO2, which can also “enter” the N metabolism. In 

conclusion, the observed higher biomass accumulation in HvPgb1.1+ plants 

(Figure 23 and 24) is mainly based on the additional N supply through HvPgb1.1-

dependent NO-fixation. 

 

4.2.2 Phytoglobin-dependent NO uptake allows a channeling of atmospheric 

NO into plant N metabolites 

The importance of Pgb for NO uptake was also demonstrated in the 15NO labeling 

experiments. The highest 15N uptake was observed in HvPgb1.1+ plants. In this 

plant line HvPgb1.1 expression is around 3000-fold stronger than WT and 

HvPgb1.1- plants (Figure S2). However, also WT and HvPgb1.1- plants 

accumulated significant amounts of 15N above the background level (Figure 31). 

This is probably due to the NO-induced expression of HvPgb1.1 in these plants 

(Figure 20 and Figure S2) and due to the deposition of 15NO in and on the plants. 

In presence of O2 and H2O this deposited 15NO can be converted to nitrite, thus 

leading to an increased 15N level. Additionally, HvPgb1.2 might also be involved 

in NO-fixation, which could contribute to the increased 15N level in leaves. At least 

expression of HvPgb1.2 is slightly increased in presence of 800 and 1500 ppb of 

NO (Figure 20). A possible NO-fixing ability of barley Pgb1.2 protein needs 

further investigation.  

In the 15NO fumigation experiment, plants were fumigated with 90 ppb 15NO, a 

concentration which can be reached in nature (Corradi et al., 1998; 

Kuruthukulangarakoola et al., 2016). The rate of 0.09 g 15N kg-1 leaf dry weight 

day-1 in HvPgb1.1+ barley is 2.6 times higher the values in WT and HvPgb1.1- 

barley leaves (Figure 31) and is even 2 times higher than the rate in the Pgb2+ 

Arabidopsis (Figure 32). This indicates that the Pgb-dependent NO-fixation 

mechanism is a quite promising trait in crop plants for using atmospheric NO as 

nitrogen source. Moreover, the NO-fixing process is also of importance in in 
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relation to climate gas emissions of agricultural soil. Loss of NO from soil means 

on one side loss of nitrogen and on the other side increase of the amount of 

greenhouse gases, such as N2O. The loss of NO could be limited by effective NO-

fixation. However, as already mentioned above, for a practical application 

improvement of the NO-fixing process is required. 15N level in RNA, DNA, and 

protein demonstrated that the uptaken NO was used as additional N source in 

plants. Much higher 15N level in RNA, DNA, and protein of HvPgb1.1+ barley 

leaves further confirmed the importance of HvPgb1.1 for the NO-fixation process 

(Figure 31 and 32). Consistent with barley, the total leaf 15N level and the 15N level 

in RNA, DNA and protein of Arabidopsis leaves were significantly higher in Pgb 

overexpressing plants (Pgb1+ and Pgb2+) in comparison to WT plants (Figure 32). 

The 15N levels in the DNA, RNA and protein fractions were not as high as in leaves. 

This is maybe related to the incorporation of the label into other N-containing 

compounds, not considered in our comparison. Interestingly, the 15N/Ntotal ratio in 

barley protein was much lower compared to 15N/Ntotal in leaves, while the 15N/Ntotal 

in Arabidopsis protein were more similar to the leaf values (Figure 32). The 

differences of 15N levels in the protein fraction of barley and Arabidopsis could be 

explained by the different developmental stage for Arabidopsis and barley at the 

time point of the 15NO fumigation experiment. Young plants still undergo a strong 

vegetative growth with a need to allocate more N to chlorophyll and other 

biosynthetic processes, while 4-week-old Arabidopsis rosettes, more N is 

demanded for the protein synthesis. In plants, diffusion and biochemical processes 

during photosynthetic CO2 assimilation lead to discrimination against heavier 13C 

isotope because the key photosynthetic enzyme ribulose-1, 5-bisphosphat-

carboxylase/-oxygenase (RuBisCo) favors more strongly 12C (Farquhar et al., 

1989). Thus, the lower 15N level in barley protein could also be the result of the 

activity of a few key protein biosynthetic enzymes that might prefer 14N to 15N. In 

general, it is suggested that fractionation of N during influx into cells is rather 
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weak. In contrast, cytoplasmic pools of both NO3− and NH4+ are commonly 

enriched with 15N, largely due to fractionation during reduction of NO3− to NO2− 

by nitrate reductase, the reduction of NO2− to NH4+ by nitrite reductase, and the 

subsequent assimilation into amino acids by glutamine synthetase–glutamate 

synthase pathway (Needoba et al. 2004). Nitrate reductase and glutamine 

synthetase both fractionate strongly against 15N by ca. 15‰ and 17‰, respectively 

(Robinson 2001).  

As a gaseous molecule, NO is taken up by plant leaves via the stomata. NO also 

plays a significant role as signaling intermediate in ABA-induced stomatal closure 

(Neill et al., 2008; Gayatri et al., 2013). Since the leaf internal NO levels are 

influenced by the NO-Pgb cycle in transgenic Arabidopsis and barley plants with 

alter Pgb expression (Hebelstrup et al., 2012, 2014; Cochrane et al., 2017), the 

stomatal opening could also be changed, affecting NO diffusion and hence NO-

fixation. The stomatal conductance in WT and transgenic barley was similar 

(Figure 33), indicating that the stomatal resistance is not a factor influencing the 

NO uptake. In Pgb1- Arabidopsis, the higher stomatal conductance did not result 

in a higher incorporation of 15N compared to WT Arabidopsis (Figure 32 and 33). 

This demonstrates that stomatal opening is not a key factor for the increased uptake 

of NO in leaves of Pgb overexpressing plants.  

Based on the results above and integrate information from from literatures (Krapp, 

2015; Lindermayr and Hebelstrup, 2016), we made a model to summarize how 

atmospheric NO enter in plant N metabolism in plants (Figure 40). Atmospheric 

NO can enter plant cell through stomatal, and first be converted to nitrate by 

phtoglobins in cytoplasm. Nitrate is reduced in the cytosolasm to nitrite by nitrate 

NR. Nitrite is then transported into the chloroplast and reduced to ammonium by 

NiR. Ammonium is incorporated into glutamine (Gln) and glutamate (Glu) by the 

GS/GOGAT cycle. Glutamate can be used for chlorophyll synthesis in chloroplast. 
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Glutamine and glutamate also contribute to protein, DNA, RNA and other N-

contining compounds synthesis.  

 

Figure 40 Proposed model of atmospheric NO enter in plant N metabolism.  

Fd-GOGAT, ferredoxin-dependent glutamate-oxoglutarate-aminotransferase; GS, glutamine 
synthetase; NiR, nitrite reductase; NR, nitrate reductase. 

In this part, we demonstrated that the Pgb-dependent uptake of NO allows a 

channeling of atmospheric NO into the plant N metabolism in the crop plant barley 

(Figure 40). In general, the effectiveness of this NO-fixation process depends on 

the availability of NO in the atmosphere, an increased content of Pgbs and the 

plant developmental stage triggering the N allocation. Improving the NO-fixing 

process to enable plants an efficient use of low-concentrated atmospheric NO, 

would be a promising approach allowing plants a better growth and development 

under N-limited conditions. Such an improved NO-fixing capability would go 

along with improved N-recycling by preventing loss of N due to release of NO. In 

sum, these positive effects could make the NO-fixing pathway a new economically 
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important breeding trait to enhance the nitrogen use efficiency of crops. However, 

it also has to be mentioned that NO is an important signaling molecule involved in 

plant growth and development and stress response. Overexpression of HvPgb1.1 

might affect NO accumulation and signaling. Indeed, compromised pathogen 

defense response or altered response to abiotic stress was already reported in the 

HvPgb1.1 overexpressing line (Hebelstrup et al., 2014, Sørensen et al., 2018, 

Montilla-Bascón et al., 2017, Gupta et al., 2014). 

 

4.3 NO and NO2 uptake capacity in different plant species  

Natural and artificial (agricultural) vegetation acts as a major ‘sink’ for 

atmospheric pollutants in terrestrial ecosystems (Hill, 1971). Through pollution 

removal and other tree functions (e.g., air temperature reductions), city trees can 

help improve air quality for many different air pollutants in cities, and 

consequently can help improve human health (Nowak et al., 2016). NO and NO2 

are regarded as environmental pollutants and are an important contributor to the 

formation of smog. Therefore, in this research we analyzed the NO and NO2 

uptake capacity of eight different city tree species, Carpinus betulus, Fraxinus 

ornus, Fraxinus pennsylvanica, Ostrya carpinifolia, Celtis australis, Alnus 

spaethii, Alnus glutinosa, and Tilia henryana. The tree species were chosen based 

on their high resistances to climate change. 

The deposition potential of NO and NO2 were measured in Carpinus betulus, 

Fraxinus omus, Fraxinus pennsyl and Ostrya carpinifolia. Obviously, the NO and 

NO2 deposition potential differed in different tree species (Figure 35 and 36). The 

assimilation of NO2 in different plant species is controlled by several factors 

(Morikawa et al., 1998), including the resistance to the entry these include 

resistance to the entry of NO2 gas molecules through the stomata, cuticle layer and 

inter cellular cavity to reach the surface of mesophyll cells (Morikawa et al., 1998), 

permeability of nitrate and nitrite ions as well as neutral molecules through cell 
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walls and plasma membranes (Ammann et al. 1995; Lee and Schwartz, 1981; 

Ramge et al. 1993), and the activity in the primary nitrate assimilation pathway 

through which NO2-nitrogen is reported to be metabolized (Rogers et al., 1979; 

Wellburn, 1990; Yoneyama and Sasakawa 1979). Besides, in the same plant 

species, the NO2 uptake by leaves is affected by by stomatal dynamics, rate of 

photosynthesis, and height within the canopy (Sparks et al., 2001; Chaparro-

Suarez et al., 2011).  

The deposition potential of the 4 different trees were used to predict the total 

deposition estimates in cities. Total deposition estimates of NO2 and NO were 

caculated for the Mitte District /Berlin according to the climate and air pollution 

data of the year 2014 (data from the Berlin Senatsverwaltung). We found that if 

we replace the 4 dominant tree species grown in Mitte (maple, linden, beech, oak) 

with the 4 new species (Carpinus betulus, Fraxinus ornus, Fraxinus Pennsylvania, 

Ostrya carpinifolia), the total NO2 and NO deposition estimates would be 

increased around 100% (Figure S4). Therefore, choosing better city tree species 

that has a higher NO and NO2 uptake capacity could provide a viable means to 

reduce atmospheric NOx level and help meet clean air standards.  

In Arabidopsis and barley, overexpression of Pgb enhanced the NO uptake 

capacity and did not affect the NO2 uptake capacity. Overexpression of 

Arabidopsis Pgb 1 and 2 in poplar also significantly enhanced the NO uptake 

capacity compared to WT control (Figure 38). Recently, Zhang et al (2019) have 

developed a genetically modified a common houseplant, Epipremnum aureum, 

that can remove chloroform and benzene from the air around it. Therefore, the 

transgenic plants, especially city trees with overexpression of Pgb could be another 

potential means to reduce the atmospheric NOx level and improve air quality. 

In this study, the NO uptake capacity showed a positive correlation linear 

relationship with leaf moisture content. However, the plant species are not enough 

for the analyses in this research. More plant species are needed to get a more 



Discussion 

 94 

reliable result. Besides, more factors such as the stomatal conductance, 

photosynthesis rate, and the Pgb expression level should also be included for 

building a model to predict the NO uptake capacity of different plant species.  

 

Figure 41 Proposed model of function of NO-fixation by phytoglobins in plant. 

Atmospheric NO can be fixed by phytoglobins, which provide additional N supply and reduce the 
level of atmospheric NO, which is helpful to air quality. The additional N supply can enhance N 
use efficiency and promote plant growth. 
 

To sum up, we studied the NO-fixation by Pgbs in plants, which can transfer the 

atmospheric NO into plant N metabolism as additional N supply. Under high NO 

concentrations, the additional N supply from NO-fixation increase nitrogen use 

efficiency and has an obvious promoting effect on plant growth, especially in Pgb 

overexpression lines (Figure 41). Besides, the NO-fixation by Pgbs can also result 

in reduction of atmospheric NO, which is helpful to the air quality and maybe more 

useful in city trees (Figure 41). 
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5 Outlook 

It is well known that class 1 Pgbs are efficient NO scavengers converting NO to 

nitrate. Here we show that plants can fix NO from air and demonstrated Pgbs 

dependent NO fixation can promote plant growth under high concentrations of NO. 

Interestingly, we found that Arabidopsis class 2 Pgbs can also fix NO and are 

comparable compared to class 1 Pgbs. Therefore, it is necessary to study the 

structure of class 2 Pgbs and explore the mechanism of NO scavenger ability of 

class 2 Pgbs. 

Besides, we found a new Pgb gene (HvPgb1.2) in barley, which have a higher 

expression level and may have different functions compared to HvPgb1.1. 

Transgenic barley with altered HvPgb1.2 expression should be obtained to check 

the possible NO-fixing ability and other unknown functions of barley Pgb1.2 

protein.  

Moreover, the plant based NO uptake showed a reduction of atmospheric NOx. 

The NOx uptake capacity should be checked in other city tree species. The 

possibility of using transgenic Pgb trees to enhance the NO uptake capacity and 

improve air quality in polluted city areas should also be examined.
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7 Supplements 

Table S1: Accession numbers of Pgb sequences employed in the multiple alignments and used 

to generate the phylogenetic tree.  

 

Protein    Species Accession number 

Class 1 Arabidopsis thaliana Pgb 1 AAD26949.1 

Malus domestica Pgb 1 AAP57676.1 

Pyrus communis Pgb 1 AAP57677.1 

Gossypum hirsutum Pgb 1 AAL09463.1 

Zea mays Pgb 1 AAG01375.1 

Oryza sativa Pgb 1.1 AAC49882.1 

Oryza sativa Pgb 1.4 AAK72231.1 

Oryza sativa Pgb 1.2 NM_001055972.1 

Oryza sativa Pgb 1.3 NM_001056012.1 

Hordeum vulgare Pgb 1.1 AAB70097.1 

Hordeum vulgare Pgb 1.2 BAK07526.1 

Class 2 Arabidopsis thaliana Pgb 2 AAM65188.1 

Brassica napus  Pgb 2 AAK07741.1 

Grossypium hirsurtum  Pgb 2 AAK21604.1 

Beta vulgaris Pgb 2 NP_001290022 

Class3 Arabidopsis thaliana Pgb 3 AEE86104.1 

 Triticum aestivum  Pgb 3.1 ACH86231.1 

 Triticum aestivum  Pgb 3.2 ACH86230.1 

 Hordeum vulgare Pgb 3 AAK55410.1 
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Figure S1 Number of leaves during plant development. 

Leaf numbers of WT, HvPgb1.1- and HvPgb1.1+ were determined at 10, 12, 14 and 16 
days after sowing. 12 plants per line were analyzed.  

 

 
Figure S2 Transcript levels of HvPgb1.1, HvPgb1.2 and HvPgb3 in barley leaves of 
Pgb1.1-, WT and Pgb1.1+ plants after NO fumigation.  
Leaf samples were taken after 20 days of NO fumigation. HvGADPH and HvACTIN were 
used as housekeeping genes. Each data represents means ± SE (n=4). Different letters 
indicate significant differences among treatments at P < 0.05, according to Tukey's test. 
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Figure S3 NO and NO2 measurements from 13.02.2019 – 19.02.2019 at the 
Helmholtz Zentrum München.  
NO (red) and NO2 (black) concentrations were monitored hourly using an Ecophysics 
chemiluminescence NOx Analyzer. Measurements started on 13.02.2019 at 0:00. 
 

Figure S4 Total deposition estimates for Berlin/Mitte (2014).  
The calculations are done with NO2 and NO for the Mitte District only (appox.65 km2, 
78000 trees, (Tigges et al, 2017)) and with climate and air pollution data of the year 2014 
(data from the Berlin Senatsverwaltung). The no species differentiation means actual plant 
composition based on one single standard deposition velocity parameter; actual plant 
composition means literature-based species-specific deposition velocities; scenario 
species composition means trees are replaced by “urban greening” plants, measured 
deposition velocities for the 4 new species (Carpinus betulus, Fraxinus ornus, Fraxinus 
Pennsylvania, Ostrya carpinifolia) that replace the 4 dominant tree species (maple, linden, 
beech, oak). 
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