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Energy metering has gained popularity as conventional meters are replaced by electronic smart meters that
promise energy savings and higher comfort levels for occupants. Achieving these goals requires a deeper
understanding of consumption patterns to reduce the energy footprint: load profile forecasting, power
disaggregation, appliance identification, startup event detection, etc. Publicly available datasets are used to
test, verify, and benchmark possible solutions to these problems. For this purpose, we present the BLOND
dataset: continuous energy measurements of a typical office environment at high sampling rates with
common appliances and load profiles. We provide voltage and current readings for aggregated circuits and
matching fully-labeled ground truth data (individual appliance measurements). The dataset contains 53
appliances (16 classes) in a 3-phase power grid. BLOND-50 contains 213 days of measurements sampled at
50 kSps (aggregate) and 6.4 kSps (individual appliances). BLOND-250 consists of the same setup: 50 days,
250 kSps (aggregate), 50 kSps (individual appliances). These are the longest continuous measurements at
such high sampling rates and fully-labeled ground truth we are aware of.

Design Type(s) observation design • time series design

Measurement Type(s)
whole building energy consumption • appliance-by-appliance energy
consumption

Technology Type(s) mains electricity meter • plug-in individual appliance monitors

Factor Type(s)

Sample Characteristic(s) Germany • office building
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Background & Summary
Electrical energy metering (EEM) has experienced an influx of research activity in recent years due to the
shift from mechanical to electronic metering technology. Metering devices used for measuring electrical
energy consumption (EEC) and billing consumers are subjected to increased scrutiny over accuracy and
reliability. The migration to fully digital EEM is often motivated by energy saving promises and higher
comfort levels for occupants. EEC profiles can be generated in smaller time intervals (e.g., daily, hourly,
by minute), since smart meters allow for automated meter readings.

Recent studies into the psychological effects of EEM feedback have shown that saving energy and
actively managing one's EEC requires frequent feedback over long periods, ideally with an appliance-
specific breakdown1. However, this requires a significant investment in metering hardware,
infrastructure, and reliable communication channels to collect the data from a fleet of smaller meters.
Non-intrusive appliance load monitoring (NIALM) attempts to solve this by relying on single-point
EEM, ideally utilizing an existing smart meter, to provide a disaggregated view of the whole-building
EEC2. Researchers make use of public datasets to study the characteristics of appliances and to build
models representing load profiles and per-appliance usage. This can be beneficial for energy reduction3,4,
pattern recognition5–8, energy demand forecasting9, and similar fields of study.

Existing datasets predominately cover household and residential environments10–22 due to the cost
savings potential for their occupants. Large appliances (e.g., space heating, HVAC, washing machines,
etc.) are being targeted first to achieve an immediate reduction in EEC since households typically contain
a manageable number of them. These devices are easier to detect than multiple smaller ones, therefore,
most datasets use measurement intervals of 1 sample per second (Sps), 1 min, or lower. Using sampling
rates above 10 kSps is beneficial to the total number and types of distinguishable appliances in a circuit
with NIALM and appliance identification research questions23. The amount of information contained in
electricity signals increases steadily with sampling rates ranging up to 1MHz. Higher sampling rates can
capture subtle changes (high frequency ripples), which are useful for appliance identification5,23–25.
Capturing the voltage and current waveforms allows energy disaggregation algorithms such as BOLT6 to
extract patterns directly from the raw measurement data. To the best of our knowledge, only the datasets
in (refs 10–12) provide aggregated sampling rates above 10 kSps. In contrast to the aggregate
measurements, the ground truth is only available with low sampling rates, making it difficult to correlate
data of individual appliances to the mains EEC with high timing accuracy (see Table 1).

Office buildings have a large potential for EEC reduction since most office workers are unaware of the
energy costs they cause26. Modern office environments contain a well-defined set of appliances equipped
with switched-mode power supplies (SMPS). Information and Communication Technology (ICT)
devices, including computers, monitors, networking equipment, and battery chargers, mostly use direct
current (DC) and require a power supply module. Recently, field research and trials have been conducted
with buildings offering DC power sockets, removing the need for SMPSs27,28. Recent studies found that
SMPSs can have a significant effect on EEM accuracy and can cause deviations of up to 582% when
comparing smart meters to conventional meters29. This is primarily caused by magnetic interference due
to non-linear and fast-switching loads causing distortions in current sensor readings. A significant
portion of the reported errors are caused by ripple currents in the frequency range of up to 150 kHz,
which is currently not covered by any dataset. The authors found a significant correlation between sensor
type and their measurement accuracy. While Rogowski coil-based sensors showed a positive deviation
(higher readings), Hall effect-based sensors were found to predominately return negative deviations,
compared to conventional electromechanical meters.

In order to study typical office appliances, in particular, ICT devices equipped with SMPSs, in the
context of NIALM and EEM, we present BLOND: a Building-Level Office eNvironment Dataset. We
provide long-term continuous measurements of voltage and current waveforms in a 3-phase power grid
of a typical office environment collected in Germany between October 2016 and May 2017. The dataset
contains readings for aggregated circuits (smart meter) and the matching fully-labeled ground truth
waveform of voltage and current with a high sampling rate for individual appliances. In total, 53
appliance types and 74 appliance instances, grouped into 16 classes, are distributed across 111 recorded
channels. All signal traces are precisely timestamped with a globally synchronized clock. The dataset

Dataset Circuits Phases Aggregate Sampling Ground Truth Sampling Duration Classes Appliances

REDD10

BLUED11

UK-DALE12

2
2
1

15000 Sps
12000 Sps
16000 Sps

1 Sps
1 Sps

0:1 _6 Sps

119 days
7 days

655 days

8
9
16

82
43
53

BLOND-50
BLOND-250

3
3

50000 Sps
250000 Sps

6400 Sps
50000 Sps

213 days
50 days

16
16

53
53

Table 1. Overview of long-term energy datasets with high sampling rates. This includes only datasets
with long-term recordings of aggregate (above 10 kSps) and per-appliance measurements. In contrast to
existing datasets, BLOND also provides ground truth data with a high sampling rate.
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consists of two measurement series in the same environment with different sampling rates. BLOND-50
contains 213 days of continuous readings of all 3 phases (aggregated) at 50 kSps, with ground truth data
(individual appliances) at 6.4 kSps. BLOND-250 contains 50 days at 250 kSps (aggregate) and 50 kSps
(individual appliances). The setup incorporates one data acquisition system for the aggregated circuits
and 15 units to record individual appliances, each capable of measuring up to 6 appliances. We also
provide a precomputed 1-second data summary to enable research on data with lower sampling rates.

Methods
In order to create a new dataset focused on ICT devices equipped with SMPSs, which provides a benefit
over existing public datasets, and applicable to NIALM-related areas, we define the following
requirements and desirable attributes:

High sampling rates are necessary to extract high-frequency features from SMPS and other non-
linear loads. Existing datasets (Table 1) cover the range between 10 to 20 kilosamples per second (kSps),
only covering the lower region of the sampling frequency bins described in (ref. 23). New research
questions can be posed with higher sampling rates, which could lead to improved accuracy and new types
of algorithms.

Ground truth waveforms provide additional information compared to lower sampling rates (e.g., one
seconds mean values). Therefore, it is beneficial to collect the per-appliance EEC with sampling rates that
are capable of representing the actual mains waveform for voltage and current.

Raw data streams are useful if the desired information cannot easily be extracted during data
collection, either because the use case is not known yet or different algorithms and filters might omit
import data. This allows us to calibrate and optimize the signal quality for a given task.

Long-term continuous recording results in a gap-less data capture of the entire electrical circuit.
Previously recorded datasets contain large gaps where simply no data was recorded or received due to
various reasons. While technical systems always have a certain margin of error, integrity and
completeness should be a high priority when it comes to high-frequency energy datasets.

Clock synchronization allows for a precise matching between aggregate and ground truth samples.
The time-stamping accuracy is a side-effect of high sampling rates. Since most dataset collections happen
with a distributed fleet of sensors, maintaining a precise world clock is crucial to the overall timing
accuracy. Without proper synchronization, some sensors might drift in time and blur the aggregate-to-
ground-truth relation.

Environment
The BLOND dataset was collected at a typical office building in Germany, with the main occupants being
academic institutes and their researchers. The measured circuits are part of a single floor with 9 dedicated
offices and 160 m2 of office space with central (non-electric) heating. The average weekday power density
over the entire measurement period was 11.7W/m2-which fits into the category of typical office buildings
of 9.5 to 13.5W/m2 (ref. 30). Throughout the collection of the dataset the population working in the
monitored offices varied from 15 to 20 people.

Periods of occupancy are closely aligned with the office work schedule in Germany: Monday to Friday
with a majority of occupants being present between 9:00 and 18:00. Weekends show almost no usage of
the office spaces and therefore also no electricity consumption. Major public holidays, such as Christmas
and New Year, also show minimal presence in the building, as well as personal vacation days taken by
occupants individually. This includes business trips, sick days, and other ‘out-of-office’ days. Due to
privacy restrictions, no such data were collected.

All occupants perform light-duty office work, utilizing personal computers, monitors, and other
electrical appliances typical for this environment. Individuals working in this building spend the majority
of their work time at the desk, with certain breaks for meetings or other activities outside their assigned
offices. Some occupants are involved in academic work and teaching, giving weekly lectures or attending
meetings.

The power system consists of a 50Hz mains with 3 circuits with a nominal phase shift of 120° (typical
3-phase supply): L1, L2, and L3. Each office room is connected to one or two circuits, with neighboring
offices being on alternating circuits (see Figure 1). The building is not equipped with electric space heaters
or air conditioning. Therefore, the dataset only contains user-operated appliances and base loads.

In order to keep rewiring efforts to a minimum, the existing independent circuits for regular and
emergency lighting was excluded from the measurements, and only the user-accessible wall sockets were
part of the measurements. The offices are electrically grouped into two sectors, each with an independent
3-phase breaker switch, resulting in 6 circuits. Since the goal of this dataset is to collect aggregated mains
EEC, every two circuits per phase are combined for measurement purposes, allowing us to use a 3-phase
energy data acquisition system.

Aggregated mains measurements
Mains EEM was performed in the distribution board with a CLEAR unit31, which was designed to meet
the BLOND requirements. CLEAR, a circuit-level energy appliance radar, is a specialized data acquisition
system capable of measuring voltage and current waveforms with high sampling rates and bit-rate for a
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Figure 1. The measurement architecture of BLOND with physical placement of DAQ systems and

connected appliances. A CLEAR unit is used as an EEC meter at the mains input to measure all 3 circuits in

the electric cabinet. Multiple MEDAL units are placed in office rooms and connected to different circuits. Each

MEDAL can be used to measure up to six appliances simultaneously in a single phase. Only a subset of

MEDAL units is depicted; see Table 5 for a full circuit mapping.

Figure 2. CLEAR current sensors installed in the electric cabinet. The open-loop Hall-effect sensors employ

multiple turns of the mains wiring to increase the usable output signal. A small connection board distributes

supply voltage and output signals. All changes and alterations were authorized and conducted by certified

personnel.
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3-phase power grid. The power necessary to operate the sensors and the CLEAR system itself is drawn
from a different circuit and not part of the measurement setup.

The CLEAR system utilizes three Hall-effect based current sensors, installed in the electric cabinet
(Figure 2), and a measurement box in the adjacent room that contains all electronics and processing
units. The electric cabinet and sensors are connected to the measurement box via 2 CAT-6 cables to
provide shielded signal transmission and power. The voltage signals are directly tapped off the incoming
mains line.

The employed analog-to-digital converter AD7656A samples all six channels (3 phases: voltage and
current) simultaneously with up to 250 kSps (ref. 32). Each signal channel is converted with 16-bit
precision and bipolar value range, allowing for a direct mapping of the AC mains waveform into a digital
data stream.

The ADC is controlled by a Lattice XO2 7000-HC FPGA to trigger the single-shot and read the data
into memory for buffering. The resulting data packets are forwarded to a USB interface chip to allow for
direct communication with a single-board PC. The Linux-based single-board PC receives the data and
stores it into files, which then can be sent over the network into the data center for storage.

Each circuit in each room is protected by a 16 A breaker; each mains phase is protected by a 25 A
breaker. A preliminary check showed typically less than 16 A per phase of total EEC over the course of a
single day. Using LEM HAL50-S current sensors, we can utilize 3 primary turns to boost the effective
signal bandwidth without exceeding the primary nominal current of 50 A per sensor33. The sensors come
pre-calibrated and the calibration factor (linear mapping) was computed according to the data sheet.

The voltage signal is generated by an AC-AC transformer, which depends only on the open-circuit
voltage and the minimal load during measurements. The calibration factor for the voltage ADC signal
was computed by taking multiple RMS readings of a calibrated high-precision voltmeter and mapping it
into the ADC signal.

Individual appliance measurements
The individual appliance EEM was performed by a fleet of 15 MEDAL units34 acting as ground truth data
for the aggregated mains measurements. MEDAL, a mobile energy data acquisition laboratory, is an off-
the-shelf 6-port power strip (Figure 3), augmented with voltage and current sensing infrastructure in a
compact and portable enclosure. A single-board PC is used to collect EEC data from the sensing
hardware and to run the same software packages as CLEAR. Therefore, the fleet of MEDAL systems and
CLEAR behave identically during setup and operation.

Each MEDAL unit measures up to 6 user appliances simultaneously with labeled sockets: #1 to #6. All
power sockets in the offices are directly connected to a MEDAL system, used for base load equipment, or
rendered unusable to prevent unmonitored appliances from being used. All monitored energy
consumption is included in the CLEAR measurements and exactly one MEDAL data stream. MEDAL
uses the same voltage sensing circuit and calibration as CLEAR.

All sockets produce an independent current signal with a Hall-effect-based IC from the Allegro
ACS712 family, providing a range of 5 / 20 / 30 Apeak per socket. Due to the expected ICT devices with
SMPSs, we chose to configure each MEDAL unit with one high-power socket (up to 3600W on
socket #1), and 5 low-power sockets (up to 815W, sockets #2 through #6). The maximum safe wattage is
properly marked on the enclosure next to the socket. In case the plugged-in appliance exceeds that limit,

Figure 3. The MEDAL system used to collect ground truth appliance energy consumption data. The laser-

cut acrylic enclosure contains a power strip and two boards to measure the voltage and current of each

connected appliance.
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Class Manufacturer Type Power Count

Battery Charger Kraftmax BC4000 Pro 18 W 1

DJI Phantom 3 100 W 1

Daylight Philips HF3430 10 W 1

Desktop Computer generic Intel Xeon E5-1640 v4, NVIDIA TITAN X 1200 W 1

Dell OptiPlex 7040 65 W 1

Dell OptiPlex 9020 65 W 2

Dell T3600 635 W 1

Dev Board FPGA Xilinx ML505 30 W 1

FPGA Tegra Jetson 90 W 1

MEDAL Prototype 5 W 1

Electric Toothbrush generic inductive charging 5 W 1

Fan Eurom VS 16 45 W 1

VOV VTS-1641 50 W 1

Kettle Clatronic WK3445 2000 W 1

Severin WK3364 1800 W 1

Laptop Computer Apple MacBook Air 13'' Early-2014 45 W 1

Apple MacBook Pro 13'' Mid-2014 60 W 3

Apple MacBook Pro 15'' Mid-2014 85 W 2

ASUS N750JV 120 W 1

Dell E6540 130 W 1

Dell XPS13 45 W 1

Lenovo Carbon X1 90 W 1

Lenovo B560 65 W 1

Lenovo L540 90 W 1

Lenovo T420 90 W 1

Lenovo T450 65 W 1

Lenovo T530 90 W 1

Lenovo X230 i7 65 W 1

Lenovo X230 i5 170 W 1

Schenker W502 180 W 1

Sony Vaio VGN FW54M 92 W 1

generic SMPS, 19V 100 W 1

Monitor Dell P2210 22 W 1

Dell U2711 133 W 6

Dell U2713Hb 130 W 8

Dell UP2716D 45 W 2

Fujitsu-Siemens P17-1 36 W 1

Multi-Tool Mannesmann M92577 135 W 1

Paper Shredder HSM Shredstar 250 W 1

Printer HP LaserJet Pro 400 425 W 1

Projector Epson EB-65950 450 W 1

Screen Motor Projecta DC 485 210 W 1

Space Heater Heller ASY 1507 1500 W 1

USB Charger generic single USB power adapter 10 W 2

inateck UC2001 15 W 1

Aukru BS-522 20 W 1

Apple MD836ZM EU 12 W 1

Apple MD813ZM EU 5 W 2

Chromecast single USB power adapter 10 W 1

Hama 00091321 10 W 1

Samsung Travel 10 W 3

Sony single USB power adapter 10 W 1

Sony Ericsson EP 800 10 W 1

Table 2. List of appliances observed in the BLOND dataset. This list was extracted from the appliance log
and contains all devices used in the BLOND environment. A class label was assigned to group similar
appliances. The manufacturer, type, and power information was taken from an attached name plate (if
available) or the suppliers datasheet.
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the signal is limited to the maximum value, while still being electrically safe to operate. The EEC of a
MEDAL system is less than 5W and not measured in the ground truth data.

Most commonly available ADCs that offer simultaneous sampling of all channels can be expensive
and are not suitable for a large-scale DAQ system. Therefore, MEDAL uses seven independent single-
channel ADCs: MCP3201 with 12-bit resolution and up to 50 kSps (ref. 35). Precise timing and
simultaneous sampling are achieved by using an ATmega324PA microcontroller as command &
control IC.

Appliance logs
An office environment with a moving and size-varying population can be an ever-changing setting to
collect energy data. A list of observed appliances and their grouping into classes is available in Table 2.
Most of these devices are small and portable, which means they can be moved around, plugged into
different sockets, or simply appear and disappear on a daily basis. To prevent the incorrect labeling of
appliance ground truth, a mapping between MEDAL sockets and actually plugged in devices was
recorded in the appliance log: a spreadsheet containing timestamps, class name, appliance name, nominal
power consumption, and socket numbers. The full log for each MEDAL is available in a JSON-based file
format and as a spreadsheet file for easy printing and visual inspection. Although the appliance log is
mostly based on self-reporting and periodic checks by trained professionals, a certain margin of error
cannot be avoided. The curation of this data was carried out to the best of our capabilities and with due
skill, care, and diligence.

Monthly checks were conducted to update the appliance log. Occupants were instructed to give notice
about changes, so an update can be entered into the appliance log. An in-depth evaluation of the daily
EEC was conducted retroactively to further improve the data quality. In cases a mismatch with the actual
metered data was found, the appliance log was augmented with additional entries. This was only
applicable in cases where a mismatch was deterministically resolvable by either using data from adjacent
days, or by questioning the occupant responsible for the MEDAL system. Sockets marked as empty in the
appliance log were manually verified by inspecting the daily EEC of the MEDAL system in question. If a
mismatch was detected, the log was updated accordingly. Entries in the log dedicate one socket to one
specific appliance. This does not include information about being turned on or being plugged in, but only
serves as a booking.

Data collection
BLOND aims for long-term continuous measurements, which requires some fault tolerance in the
transmission layer; rendering wireless or mesh-based networks unfit for this task. The building is
equipped with spare Ethernet connections in each room, which were used as a reliable transmission
network to forward all data into a centralized storage system. Ethernet, IPv4, TCP, and SSH all provide
mechanisms to ensure data integrity and to automatically detect and retransmit faulty data with a very
high probability.

BLOND-50 employed a pull-strategy, in which a single central server periodically pulled new data files
from each measurement unit and moved them into a distributed storage system. CLEAR and MEDAL
convert the raw data into HDF5 files and can buffer data for multiple hours or days if nobody collects
new data. The central server only has to move data between systems and also buffers data for up to 24 h
in case the storage system is unavailable. This architecture decouples the various stages to allow for
outages and planned maintenance. Buffer sizes and temporary storage devices were chosen carefully to
maximize the allowed time before data loss occurs.

BLOND-250 uses a significant higher sampling rate, which renders a pull-strategy unusable due to
memory and compute performance limits. Therefore, a push-strategy was used in which each
measurement system directly sends raw data files (chunked) to the data center. The files are then
converted and moved to the storage system by the server. Due to the higher sampling rate and file sizes,
the available buffer time in each stage is also reduced.

CLEAR and MEDAL are built with the same software stack, which enables us to reuse large portions
of the collection software and buffering strategies. Each measurement system is capable of buffering
multiple gigabytes of raw data to a local storage device (SD-card or USB flash storage) in case of network
failures or data center errors. This allows us to survive multiple days of data collection without any
transmission capabilities. Upon reestablishing network connectivity, all buffered files are transmitted in
bulk at a limited rate to prevent network congestion. Additional actions to further increase fault tolerance
were implemented by using ‘RAM-first’ buffering to keep I/O access to a minimum and reduce the risk of
memory wear (write endurance of NOR/NAND flash memory). Although the underlying hardware of
CLEAR and MEDAL are general-purpose computing devices, some low-level measurement tasks require
real-time capabilities, which have been implemented by carefully choosing data structures, in-memory
buffer sizes, and I/O access patterns to guarantee error-free data collection.

All networked devices are connected to the same Ethernet and share a synchronized clock via NTP.
Two stratum-3 time servers are available on the same layer-2 Ethernet. The internal system clock is
connected to a dedicated real-time clock chip with a backup battery. A daemon process runs in the
background to synchronize the system clock continuously; CLEAR uses systemd-timesyncd and MEDAL
uses ntpd.
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Known issues
● Only user-operated appliances are measured as ground truth. Some static appliances (e.g., network switches

and wireless access points) that are not user-operated are directly connected to the wall socket and can be
considered as base load or static background in the CLEAR measurements (including MEDAL's own
energy draw).

● MEDAL uses a unipolar ADC that can cause a slight DC-bias in the signal due to changes in the DC
reference voltage. This can easily be accommodated for via proper signal calibration and filtering as part of a
preprocessing stage.

● The appliance log was regularly updated and room-to-room checks were conducted. However, there could
still be gaps in the log for unknown activity by students bringing their own devices for a short time period
without entering the correct details into the appliance log.

● All measurement units were calibrated at the start of the BLOND data collection. Slight deviations in resistor
value precision could cause a difference between CLEAR and MEDAL units connected to the same circuit.

Code availability
We have implemented most of the data collection, technical validation, data processing, and utility tools
in Python 3. The individual source files are available under the MIT license in the BLOND repository36.

Due to the extensive amounts of data, processing is most reasonably done in a distributed and
parallelized approach. We provide usage examples that can be scaled up and run in a distributed compute
environment.

Software to convert and collect measurement data from a fleet of DAQ units is provided as it was used
during the BLOND data collection. All steps in the Technical Validation section can be reproduced with
the supplied scripts. The 1-second data summary was created from the raw measurements, and can be
fully recreated.

Data Records
We provide raw voltage and current measurements of multiple circuits and appliances with high
sampling rates. Additionally, we derived a data summary by computing various energy-related metrics
into 1-second values.

BLOND datasets
BLOND (Data Citation 1) contains two measurement series with different sampling rates:

● BLOND-50 with 50 kSps (aggregate) and 6.4 kSps (ground truth) over 213 days from September 30,
2016 to April 30, 2017

● BLOND-250 with 250 kSps (aggregate) and 50 kSps (ground truth) over 50 days from May 12, 2017 to
June 30, 2017

Raw data and metadata are stored in HDF5 files that can be processed with a variety of open source
and commercially available tools. Voltage and current samples of aggregate and ground truth
measurements represent the waveform of the underlying electrical signal and are stored as-is from the
sensor input. No permanent data cleaning or preprocessing was performed.

Metadata is embedded in each file and accessible as HDF5 attributes, either directly in the file root, or
on a specific HDF5-dataset, see Table 3. Value types are either short integer, floating point, or ASCII-
encoded byte strings. Generic information from HDF5 attributes matches to individual parts of the
file name.

The structure of each dataset is grouped by date, and unit name into sub-directories: BLOND-50-
/2017-03-25/medal-6/ contains 96 files of MEDAL-6 from March 25, 2017. Files of the
BLOND-250 dataset can be found in the corresponding directory. This hierarchy is also available in the
associated Metadata Record (ISA-Tab). Each file name contains the unit name, date, timestamp of the
first sample in the file, a timezone offset, and a sequence number: medal-6-2017-03-25T17-22-
09.499845T+0100-0016925.hdf5 contains data starting roughly at 17:22 on March 25, 2017,
with a timezone offset of +1 h, and this is the 16925th file in this series of MEDAL-6.

All timestamps and date information are "local time", therefore, special care must be given to the
timezone offset during daylight saving time transitions: on 2016-10-30 at 3:00, DST ends (backwards 1h),
on 2017-03-26 at 2:00 DST, starts (forward 1h). On December 31, 2016, a leap second was observed,
which shifts back all file timestamps by one second.

Since files typically don't start at exactly 0:00 (midnight), the beginning and end of a day can be found
in the previous or following file based on the sequence number.

Each measurement unit automatically splits data into chunks while the data acquisition continuous
uninterrupted. The size of each chunk (number of samples per file) depends on the sampling rate and
type of the unit, see Table 4. In total, BLOND consists of 945,919 files, amounting to 39 TB.
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Appliance log
The appliance log is available in two file formats: appliance_log.{json, xlsx}. Both files
contain the same information and can be used interchangeably. The XLSX representation is human-
readable and suitable for printing, whereas the JSON data is intended as input for data processing tools.

The JSON file was created from the XLSX data with the appliance_log_json_converter.
py script. It contains a list of entries for each MEDAL unit. An entry consists of a timestamp and socket
declarations (one for each socket): class_name, appliance_name, and power. Every
appliance instance from the appliance log is summarized in Table 2.

1-second data summary
Each dataset was augmented with a precomputed 1-second data summary: root-mean-square of voltage
and current, real power, apparent power, power factor, and mains frequency. The resulting data was
stored in one HDF5 file per day per measurement unit, covering all raw data files in each day folder (see
one_second_data_summary.py). This provides quick and easy access to gain an overview of
certain daily characteristics, without the need to download and process thousands of files. The daily data
files are accompanied by a corresponding PDF showing selected plots of time series data, e.g.,
summary-2017-03-25-medal-6.hdf5 and summary-2017-03-25-medal-6.pdf.

Technical Validation
All raw measurements included in the BLOND datasets are provided as-is, without any post-processing,
cleaning, or filtering. This means the raw data must be calibrated and prepared before using the values as
input to an evaluation (see the Usage Notes section). During the collection of BLOND, real world effects

Path Attribute Description

/ name Name of the measurement unit

/ year Year of the first sample in this file

/ month Month of the first sample in this file

/ day Day of the first sample in this file

/ hours Hours of the first sample in this file

/ minutes Minutes of the first sample in this file

/ seconds Seconds of the first sample in this file

/ microseconds Microseconds of the first sample in this file

/ sequence Sequence number in this measurement series

/ timezone Timezone offset (daylight saving time)

/ frequency Nominal sampling rate in

/ first_trigger_id Internal trigger number to detect gaps

/ last_trigger_id Internal trigger number to detect gaps

/odataset> calibration_factor Multiplication factor for calibration to get or

/odataset> removed_offset Removed DC-offset of the signal

/ average_frequency Average sampling rate over 24 h

/ delay_after_midnight Delay in seconds after 00:00

Table 3. HDF5 dataset file metadata. Each attribute is accessible via a HDF5-attribute-path. Values are
provided in base units (Volt, Ampere, Hertz). Some attributes are only available in the 1-second data summary.

Dataset Unit Type Sampling Rate File Length Samples

BLOND-50 CLEAR
MEDAL

50 kSps
6.4 kSps

5 min
15 min

15,000,000
5,760,000

BLOND-250 CLEAR
MEDAL

250 kSps
50 kSps

2 min
2 min

30,000,000
6,000,000

Table 4. File chunking and length. BLOND-50 and BLOND-250 use different file sizes to chunk the
continuous data stream. The size depends on the available computing resources in each DAQ unit and the
configured sampling rate. The final size of the HDF5 only depends on the number of samples and the
achievable compression ratio.
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and noise are captured in the data. The measurement setup (environment) allowed us to have a data
coverage of over 99.997% across 16 individual DAQ units during a combined period of 263 days. The
missing data amounts to 2.5 h of uncovered EEC.

An example of the captured waveform of voltage and current signals in a 3-phase power grid with
CLEAR can be seen in Figure 4. A typical load profile (with individual contributions of each
measurement system) over the course of multiple hours can be seen in Figure 5. The static base load was
extracted from the day-to-day offset of the total consumption for each circuit. On small time scales
(multiple hours), the base load can be assumed constant; day-to-day changes can be accounted for by
calibrating the static offset during the night or on weekends (constant load with no occupants). The sum
of all MEDAL units matches the measured EEC with CLEAR with reasonable accuracy, however, even
small voltage drops or line noise can induce errors.

Data collection sanity checks
While collecting data, each DAQ unit performs sanity checks for each new data chunk. This includes a
DAQ continuity and generic transmission error checks. Such errors could be caused by internal queues
filling up, full USB transfer queues, or interrupted communication between components. Each chunk
contains a sequential identifier that can be validated to match its immediate predecessor and successor. In
the case a mismatch is detected, the acquisition stops, reinitializes all components and retries. These
identifiers are available in every HDF5 file for offline verification (trigger ids). No errors were detected
during the collection of the BLOND datasets.

Complementing this low-level check, each newly created HDF5 file gets assigned an increasing
sequence number, which marks a continuous uninterrupted series. BLOND-50 and BLOND-250 consist
of a single long-term measurement series for each DAQ unit. Only one interruption was detected: the
CLEAR unit in BLOND-50 on 2016-10-18 (last sequence number: 0005172), due to a manual reboot after
installing security updates. The gap covers only CLEAR measurements for 2 h, 19 min, and 27 s. MEDAL
measurements were not affected.

Sampling rate precision
Each data acquisition system collects data with a fixed sampling rate. An internal oscillator serves as a
precise clock generator to trigger each analog-to-digital conversion. Depending on environmental factors,
this process experiences a small unpredictable shift in speed. The actual average sampling rate was
calculated based on the timestamps (with NTP precision) of the first and last data file over a 24 h period
(see average_sampling_rate.py) since all files contain the same amount of data (samples).

The average sampling rate per day shows an almost constant offset of less than 0.5%, while the actual
variations are smaller than 1 Sps over the course of 24 h, see Figure 6.

For BLOND-50, CLEAR has a nominal sampling rate of 50000 Sps, mean of 49952.355, and a standard
deviation of 0.057. All MEDAL units combined have a nominal sampling rate of 6400 Sps, mean of
6399.880, and a standard deviation of 0.013.

For BLOND-250, CLEAR has a nominal sampling rate of 250000 Sps, mean of 248767.169, and a
standard deviation of 0.084. All MEDAL units have a nominal sampling rate of 50000 Sps, mean of
49984.059, and a standard deviation of 0.092.

Clock synchronization
All timestamps used for marking samples and the beginning of new file chunks are derived from the
system clock of the single-board PC in each measurement unit (CLEAR and MEDAL). The NTP

Figure 4. Waveforms of CLEAR circuits for voltage and current. The 3-phase power grid is characterized by

a 120° phase shift between the circuits. The current consumption shows strong SMPS usage with sharp

increases at each cycle apex. The voltage shows a typical sinusoidal waveform.
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Figure 5. The load profile over multiple hours of the BLOND environment on 2017-03-02. Each stack plot

shows the apparent power consumption of CLEAR (black line) with overlays for the contained MEDAL sub-

meters (colored areas). See Table 5 for the circuit mapping. The individual steps (appliance events) match the

overall load profile of the aggregate EEC. Each circuit shows a base load (gray area) which accounts for static

background consumers. The 1-second data summary was downsampled to 30 s before plotting. Total

consumption stays constant in the hours not shown. For visualization purposes, only the sum of all MEDAL

sockets was plotted, however, the data contains an appliance-specific breakdown.

Figure 6. Boxplot of sampling rate precision per day. This boxplot shows the distribution of average

sampling rates and its variation over 213 / 50 days for each measurement system. The whiskers depict the

minimum and maximum. The mean was subtracted from each entry to compare only the daily fluctuations.

The median is shown as line in the box.
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precision as reported by ntpq -c rl is −20, yielding a theoretical timing accuracy of 0.95 μs. The real-
world delay, offset, and jitter values of ntpq -p show an average of 1ms to 2ms.

The sampled values from the ADC are buffered and transmitted via USB bulk transfers. The
timestamp is added on the host device (single-board PC), which could add a short delay between the
actual sampling time and the time it gets timestamped. Using USB data packets of 510 bytes containing
36 samples, the resulting average time jitter is 2.81ms at 6.4 kSps, and 0.72ms at 250 kSps. The
preemption latency for CPU-bound tasks is defined with 6ms (Linux kernel v4.4.21).

To verify these theoretical values, we used a space heater to generate a visible appliance switch-on
event in socket 1 of MEDAL-1 on 2017-06-12 at timestamp 11:10:58. The difference of the sharp
transient in the CLEAR to the MEDAL time series data was measured with 6.8ms, which is within our
estimation (see clock_synchronization.py). This allows us to synchronize multiple data
streams with sub-cycle precision on a 50Hz mains.

Per-file data checks
The correctness of the sampled voltage and current signals was validated by analyzing each data file with
15 individual checks to assert various metrics and raw data streams (see per_file_data_checks.
py):

Dataset length is the amount of samples per signal in a given file. This is defined by the sampling rate
and the file size used for chunking. If the data acquisition is briefly interrupted, stopped, or the file got
truncated, the expected length does not match. In BLOND-50, 4 individual files were found that failed
this check. The data collection seems to have continued, however, these files were either corrupted during
transmission or the storage system failed to persist the data. The files in question have a length of 0 bytes
and are not valid HDF5 files. MEDAL 6, 13, and 14 at sequence number 0016123, as well as CLEAR at
0043125 are affected.

Mains frequency is expected to be 50Hz and should only deviate slightly. The mains frequency was
computed using Fast Fourier Transform and selecting the strongest bin. Erroneous readings would
indicate a collapsing power grid or a malfunctioning ADC trigger input (sampling rate). No such errors
were found.

Voltage and current root-mean-squared expected values are based on the measurement unit
capabilities and can be used as a sanity check to check against unexpected high or low values. Voltage
values must be close to 230VRMS, have an almost zero absolute mean, and the crest factor should be
around 1.41. Current values must be below the rated measurement limit of the DAQ unit, have an almost
zero absolute mean, and the crest factor must be greater than 1.2. No such errors were found.

Raw voltage value range and bandwidth is defined by the ADC bit-resolution. A 16-bit ADC can
yield up to 65536 different measurement values. If the measurement range was calibrated or configured
incorrectly, not all values would be used, resulting in degraded accuracy. We checked how many unique
values are present in each signal per file and compared the maximum to the minimum, which must be
within certain threshold limits. No such errors were found.

Voltage bandwidth is defined by the power grid; for BLOND, we expect a nominal voltage of
± 324Vpeak. Including a certain margin of deviation that is allowed during normal operation of the grid,
we checked the minimum and maximum voltage values to be within certain threshold limits. No such
errors were found.

Flat regions are defined as intervals with identical consecutive values. During initial experiments and
prototyping, we detected a malfunction in one of the traces on a PCB. This led to a permanently pulled-
low bit on a data bus. The DAQ unit therefore only received the same value over and over again. We
checked for flat regions longer than a certain threshold by applying a linear convolution with a filter
kernel (length of one mains period) to each signal per file. No such errors were found.

Usage Notes
The BLOND data files are provided in HDF5 format, which is usable in most scientific computing
packages, e.g., Python (h5py/numpy/scipy), MATLAB (h5read), R (rhdf5), Mathematica (Import), and
NILMTK37. The metadata (HDF5 attributes) is documented in Table 3. Each HDF5 dataset was created
with the following filters: gzip compression (reduces file size), shuffle (improves compression ratio), and

CLEAR MEDAL

L1 1, 2, 3, 7, 12

L2 6, 10, 11, 13, 14

L3 4, 5, 8, 9, 15

Table 5. Circuit mapping for each measurement system. Associating a MEDAL unit with its aggregated
circuit in the CLEAR data is fixed and does not change over time. This corresponds to the wiring of individual
office rooms to use one (or more) of three different phases.
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Fletcher (adds checksums to detect data corruption). HDF5 offers a multitude of different filters with
potentially better compression, however, we wanted to retain compatibility with most software packages,
which typically lack support for 3rd-party filters.

Multiple example use cases for data handling and calibration can be found in the provided source
code. We recommend performing a mean-offset normalization for each mains cycle before multiplying
the signal with the calibration factor to remove any unwanted DC-biases in MEDAL signals. We
deliberately did not clean, back-fill, or strip any of the data. This allows us to retain and extract as much
information as possible from seemingly ‘empty’ data (background noise, sampling artifacts, derived data).
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