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Zusammenfassung 

Böden können große Mengen an organischem Material (OM) und damit auch an 

organischem Kohlenstoff (OC) speichern. Dieser OC ist allerdings nicht 

gleichmäßig verteilt - weder vertikal im Bodenprofil, noch lateral in der Landschaft. 

Böden sind die Grundlage für die Produktion von Lebensmitteln, leisten aber auch 

ihren Beitrag im Klimawandel. Dabei können sie sowohl eine wichtige Senke als 

auch eine große Quelle für Treibhausgase wie z.B. CO2 sein. Das Ziel der 

vorliegenden publikationsbasierten Dissertation war es daher, die maßgeblichen 

Faktoren für die laterale und vertikale Verteilung des Boden-OC (SOC) zu 

identifizieren. Besonderes Augenmerk lag dabei auf der Frage, ob die 

Einflussfaktoren für die OC-Speicherung im Oberboden von denen im Unterboden 

abweichen. Mit einem Anteil von 47% an der Gesamtfläche ist fast die Hälfte der 

Fläche Bayerns landwirtschaftlich genutzt. Zusammen mit einer guten 

Datenverfügbarkeit eignete sich der Freistaat daher gut als Grundlage für die 

vorliegenden Untersuchungen über landwirtschaftlich genutzte Böden in 

gemäßigtem Klima. Die Forschungsfragen wurden anhand von drei Studien 

untersucht, in denen schrittweise das analytische Detail erhöht wurde. So wurden 

zunächst die OC-Faktoren der Böden in Gesamtbayern (692 Profile), dann 

innerhalb einer Catena (16 Profile verteilt auf vier Geländepositionen) und 

schließlich nur innerhalb von Auenböden an zwei verschiedenen Standorten 

(jeweils vier Profile) in Bayern untersucht. Es wurde zunächst die Gesamtmenge 

an OC im Boden und in einer Detailstudie die Zugehörigkeit des OC zu 

bestimmten Fraktionen und dessen Zusammensetzung bestimmt. Neben den 

Einflussfaktoren sollten auch diejenigen Ober- und Unterböden in Bayern 

identifiziert werden, die die jeweils höchsten OC-Vorräte besitzen, und es sollte 

bewertet werden, inwiefern diese von möglichen OC-Verlusten bedroht sind.  

Bezüglich der OC Vorräte im Oberboden war die langjährige Landnutzung der 

relevanteste Einflussfaktor. Oberböden unter konstanter Grünlandnutzung wiesen 

im Vergleich zu Oberböden unter Wechselland oder unter konstanter 

Ackernutzung die höchsten OC-Vorräte auf. Nicht nur die Menge des 

gespeicherten OC, sondern auch dessen chemische Zusammensetzung wurde 

stark durch die langjährige Landnutzung beeinflusst. Die Zusammensetzung des 
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partikulären organischen Materials der Grünland-Oberböden ähnelte dabei stark 

derer von nur teilweise abgebauten Pflanzenresten. 

Im Unterboden wurden die höchsten OC-Vorräte in alluvialen, kolluvialen und 

grundwasser-beeinflussten Böden, sowie in tiefliegenden Geländepositionen 

nachgewiesen. Diese Ergebnisse zeigen, dass Relief und Bodentyp in Bezug auf 

die Kohlenstoffspeicherung im Unterboden eng miteinander verbunden sind. Das 

Relief repräsentiert dabei den lateralen Transport von OC-reichem Oberboden 

aufgrund von Erosion und dessen anschließende Akkumulation in tiefliegenden 

Geländepositionen. Dort begrenzen die periodische oder permanente 

Wassersättigung und die damit einhergehende reduzierte Sauerstoffzufuhr den 

mikrobiellen Abbau von OC. Als Folge dieser Prozesse enthalten alluviale und 

kolluviale Böden sowie Grundwasserböden hohe OC-Vorräte im Unterboden. 

Anthropogene Eingriffe wie Bodenbearbeitung verstärken dabei den lateralen 

Transport und somit die Menge an sedimentiertem OC. Anthropogene 

Veränderungen des hydrologischen Regimes im Einzugsgebiet durch 

Flussregulierungen und Drainage können darüber hinaus entweder die 

Ufererosion verringern (verursacht höhere OC-Vorräte) oder sie verstärken und die 

Oxidation des Unterbodens hervorrufen (verursacht OC-Verluste).  

In den drei zugrundeliegenden Studien wurden die Auen als überaus wichtige OC-

Reservoirs identifiziert, da sie typischerweise unter Grünlandnutzung sind (hoher 

Oberboden-OC-Vorrat) und aus alluvialen Sedimenten entstanden (hoher 

Unterboden-OC-Vorrat). Die chemische Zusammensetzung des OC im 

Unterboden der Auen ist dabei sehr variabel. Sie hängt weitgehend von der 

Zusammensetzung des abgelagerten Sediments sowie vom Grad dessen 

Wassersättigung ab. In den Unterböden der Auen wurden bemerkenswert hohe 

Anteile an leichten und vermutlich leicht abbaubaren OC-Fraktionen gefunden - 

entweder als freie Partikel oder eingeschlossen in Aggregaten. Aufgrund des 

großen wirtschaftlichen Drucks zu einem intensiveren Anbau, durch Drainage und 

mögliche Erosionsverluste wurden die großen OC-Reservoirs der Auenböden als 

gefährdet für OC-Verluste eingestuft.  

Die vorliegende Dissertation zeigt, dass die Menge und Zusammensetzung des 

OC in landwirtschaftlichen Böden in Bayern eng mit dem Bodentyp, dem Relief 

und der Landnutzung verbunden sind. Die Detailstudien bestätigten dabei die 

Ergebnisse für Gesamtbayern. Alle drei Studien zeigten den Wert von Auen als 
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hochrelevante OC-Reservoirs (Oberboden und Unterboden). Dabei wurde 

geschlussfolgert, dass Auenböden potentiell anfällig für die Freisetzung von CO2 

sind, da Landnutzungsänderungen und Drainage die Zersetzung des inhärenten 

OC der Auen beschleunigen können. Anthropogene Aktivitäten betreffen letztlich 

nicht nur den OC-Vorrat im Oberboden. Vielmehr beeinflusst das Erbe 

anthropogener Eingriffe in das Landschaftsökosystem die Menge an OC, die 

heute im gesamten Bodenprofil gespeichert ist. Dies wird in den alten 

Kulturlandschaften Europas und Bayerns und dessen Böden besonders deutlich. 
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Summary 

Soils can store large amounts of organic matter (OM) and with that large amounts 

of organic carbon (OC). This OC is neither evenly distributed in the vertical soil 

profile nor laterally in the landscape. Soils may be highly productive sites for 

agricultural use and the production of food. They may also contribute to climate 

change, as they can be a source of greenhouse gases such as CO2 – or enhance 

their mitigation. The aim of this publication-based dissertation was to decipher 

the factors that led to this heterogeneous vertical and lateral distribution of soil 

OC. It was further analysed if the factors that control the amount of topsoil OC 

differ from those of subsoil OC. With a proportion of 47%, almost half of the 

surface of the Federal State of Bavaria is under agricultural use. Therefore and 

along with a good data availability, Bavaria was well suited for the studies on 

agricultural temperate soils. In a stepwise approach of three studies located in 

Bavaria, the research questions were answered by increasing the analytical detail. 

Thus, the OC controlling factors were first investigated using a data set on the 

whole state of Bavaria (692 soil profiles), followed by the analysis of one catena 

(sixteen soil profiles distributed over four distinct landform positions) and finally of 

only floodplain soils in two distinct study sites (four profiles, respectively). The 

analytical detail also increased from broad bulk soil OC quantification to the 

determination of the specific chemical components of the OM. The objective was 

further to identify key areas of topsoil and subsoil OC storage and to deduce if 

these are particularly vulnerable to OC losses.  

With respect to topsoil OC storage, the legacy of the land use was the most 

relevant controlling factor. Topsoils under constant grassland use displayed 

highest OC stocks compared to topsoils under alternating land uses or constant 

cropland use. Not only the amount of OC stored but also the chemical 

composition of this OC was highly affected by the land use. Particulate OM of the 

grassland topsoils closely resembled the composition of partially degraded plant 

residues.  

In the subsoil, highest OC stocks were found in alluvial, colluvial and groundwater 

affected soils as well as in low lying landform positions. These findings 

demonstrated that topography and the generic soil type are closely tied together 

with respect to subsoil OC storage. The topography represents the lateral 
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transport of OC-rich topsoil due to erosion and its subsequent deposition in low 

lying landform positions. There, periodical or permanent water saturation and the 

concomitant reduced oxygen supply limits the microbial decomposition of OC. As 

a result of these processes, alluvial, colluvial as well as groundwater soils contain 

high subsoil OC stocks. Human activities such as tillage amplify the lateral OC 

transport and therefore the amount of buried OC. Anthropogenic modifications of 

the catchment’s hydrologic regime, such as river regulations and drainage, further 

affect OC storage by altering bank erosion and the oxidation of the subsoil.  

The three underlying studies revealed floodplain soils as major OC reservoirs, as 

most of them are under grassland use (high topsoil OC stocks) and due to their 

development on alluvial sediments (high subsoil OC stocks). The chemical 

composition of the subsoil OC in floodplains is highly variable. It is largely 

depending on the composition of the deposited OC-rich sediments as well as the 

degree of permanent water saturation. Remarkably high proportions of light and 

presumably easily decomposable OC fractions were found in the alluvial subsoils 

– either as free particulate OM or occluded in aggregates. Due to economic 

pressures to more intensive cultivation as well as drainage and erosional mass 

losses, it was concluded that the large OC reservoirs of floodplain soils are 

vulnerable to OC losses. 

The presented dissertation demonstrated that the amount and composition of OC 

of agricultural soils in Bavaria are closely linked to the generic soil type, landform 

and land use. The in-depth studies confirmed thereby the findings for total 

Bavaria. All three studies demonstrated the value of floodplain soils as highly 

relevant OC reservoirs (topsoil and subsoil). Based on the findings, floodplain soils 

may be prone to the release of CO2, as land-use changes and drainage may alter 

the decomposition of the floodplain’s inherent OC. To conclude, human activities 

not solely affect topsoil OC storage. Moreover, the legacy of human activities in 

the ecosystem of decades and centuries had a strong influence on the amount of 

OC that is today stored within the whole soil profile. This becomes particularly 

clear in Europe and Bavaria with its old cultural landscapes and soils.  
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1.  Introduction 

With an estimated amount of roughly 1,500 Pg, the soils of the world are a major 

reservoir for organic carbon (OC), which even exceeds the amount of OC stored 

in the biosphere (560 Pg) and the atmosphere (867 Pg) (Batjes, 2014; Lal, 2018). 

This reservoir is not static but one compartment of the global carbon cycle that 

may record gains and losses. With respect to the scientific discourse on global 

climate change, the question is discussed if soils are a sink or rather a source of 

greenhouse gasses such as CO2. Within the last few years, numerous papers have 

examined the potential of soils to sequester CO2 and to mitigate greenhouse 

gases (Conant et al., 2011; Oertel et al., 2016; Paustian et al., 2016; Schmidt et 

al., 2011; Smith et al., 2018; Smith, 2012). Here, particularly agricultural soils take 

a central role, as practices such as tillage generally increase the decomposition 

of SOM and therefore increases the emission, whereas the use of cover crops, 

retention of residues and organic amendments have the potential to sequester C 

(Burney et al., 2010; Paustian et al., 2016; Smith et al., 2008; Tubiello et al., 2015). 

The debate on the sequestration potential of agricultural soils was furthermore 

intensified after the “4 per mill initiative” launched at the United Nations Climate 

Change Conference in Paris 2015. As reviewed by Minasny et al. (2017), the 

overall goal to increase global OC stocks in agricultural soils by 4 per mill to 

compensate anthropogenic greenhouse gas emissions could be achieved under 

best management practices. However, not all regions and not all soils are equally 

suited (Minasny et al., 2017). With 51% of the area of Germany and 47% of 

Bavaria, agricultural soils constitute a significant proportion of the surface 

(Bayerisches Landesamt für Statistik, 2016; Bundesministerium für Umwelt, 

2016). Hence, agricultural soils hold a fundamental civic value beyond greenhouse 

gas mitigation due to their function as productive site for food.  

The soil OC is not homogeneously distributed and this includes the vertical 

distribution in the soil profile. In most soils, the amount of OC decreases with 

depth and largest proportions of the stocks are stored within the uppermost 

centimetres of the profile (Jobbágy and Jackson, 2000). Looking beyond the 

topsoils into greater depth revealed that large amounts of OC are stored in the 

deep soil (Gregory et al., 2014; Jobbágy and Jackson, 2000; Rumpel and Kögel-

Knabner, 2010; Rumpel et al., 2012). This is particularly relevant for soils that have 

1 Introduction 



developed on alluvial or colluvial sediments. The stratification of allochthonous 

sediments, i.e. fluvial deposits or material that has moved down a slope by 

gravitational action as a result of erosional wash, may lead to large accumulations 

of OC buried in depth (Aldana Jague et al., 2016; Chaopricha and Marín-Spiotta, 

2014; D'Elia et al., 2017). The transport and deposition of sediments not only lead 

to a vertical reallocation but also to lateral fluxes of OC within the field, 

toposequence or catchment (Doetterl et al., 2012a; Gregorich et al., 1998; Kirkels 

et al., 2014; VandenBygaart et al., 2012). Studies that follow the catena concept 

clearly illustrate the variations in OC distribution that result from reallocations of 

matter depending on the specific landform position. Amongst others, Ritchie et 

al. (2007) showed that eroding areas contained significantly less OC than 

depositional sites and that soil OC decreased with increasing slope gradient. The 

overall amount of such OC reallocations can be enormous, as Doetterl et al. 

(2012b) calculated a global flux of 403.5 ± 201.8 Tg OC per year due to agricultural 

erosion.  

Besides alluvial and colluvial OC reallocations, not all soils store the same amount 

of OC. There are several biotic, abiotic, climatic or topographic factors that are 

assumed to impact OC storage. Wiesmeier et al. (2019) reviewed that climate, 

topography, parent material, land use as well as biotic factors such as 

microorganisms, soil fauna, natural vegetation or soil inherent factors such as 

aggregation, texture, clay mineralogy, specific surface area, metal oxides, Ca and 

Mg cations affect OC storage - with varying importance depending on the 

observed spatial scale. As such, metal oxides and specific surface area may be 

highly relevant for OC storage at the microscale, but the type of land use or 

climatic factors may superimpose these factors at the regional and global scale 

(Wiesmeier et al., 2019). Some studies provide evidence that the impact of OC 

factors may vary depending on soil depth. Based on several global soil data 

bases, Jobbágy and Jackson (2000) showed that climate and vegetation largely 

controlled the OC content of the uppermost 20 cm of the soil profile, whereas the 

clay content as binding agent for SOM, dominated OC content of the subsoil. The 

increasing amount of available soil data provides an ever more accurate picture 

of the complex interactions between soil OC factors. However, it is difficult to 

detect and understand all these interactions between predictors in large data sets. 

Statistical methods such as data mining and particularly random forest (RF) 
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modelling have therefore become useful tools to analyse these large data sets. 

The RF model approach as established by Breiman (2001), can be used for 

variable selection and prediction of the target variable for large data sets. This 

technique combines the predictions of a large number of decision trees and works 

with continuous as well as categorical predictor variables (Cutler et al., 2007; 

Strobl et al., 2008). Results of studies that have implemented RF techniques to 

determine factors controlling OC storage with respect to soil depth underline the 

hypothesis that the importance of factors may vary vertically (Hobley et al., 2015; 

Vos et al., 2019).  

For the evaluation if OC is particularly vulnerable for decomposition, it is not only 

decisive to know the vertical and lateral distribution of OC stocks in the landscape. 

It is moreover crucial to be aware of the composition and mechanism of 

stabilisation of the detected OC. Soil OM is not a homogeneous mass, but a very 

diverse mixture of organic components such as polysaccharides, lignin, lipids, 

polyphenols, cutin and suberin, originating from plant litter or microbial sources 

(Kögel-Knabner, 2002). Though, the chemical composition of the SOM may not 

solely determine the persistence of SOC in the carbon cycle. As described by 

Tisdall and Oades (1982) the structure of the soil is built up by different sized 

aggregates of SOM and abiotic particles that are tied by binding agents such as 

roots or fungal hyphae. These aggregates may also contain SOM that is sorbed 

to mineral surfaces (Kleber et al., 2007; von Lützow et al., 2006). The specific 

mechanisms to stabilise SOM are systematically summarised as i) the selective 

preservation due to the relative accumulation of recalcitrant molecules, ii) spatial 

occlusion in aggregates and iii) organo-mineral associations (Sollins et al., 1996; 

von Lützow et al., 2006). As a result, SOM components such as carbohydrates, 

which are generally supposed to be easily decomposable by heterotrophic 

microorganisms, may persist for relatively long time in the soil if they are occluded 

in aggregates and therefore not accessible for microbes. OC bound to mineral 

surfaces may persist for thousands of years, as indicated by radiocarbon 

measurements (Rumpel et al., 2002; Torn et al., 1997).  

To separate homogenous SOM pools according to their mean residence time in 

the soil system, a large number of methods have been developed to operationally 

isolate different SOM fractions. Such fractionation methods may include the 

physical fractionation of the sample by ultrasonic dispersion, density separation 
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and sieving to specific particle sizes (von Lützow et al., 2007). The fractions 

isolated by dense liquids such as sodium polytungstate (3Na2WO4·9WO3·H2O) are 

often denominated as light and heavy fractions, because the liquid separates 

those components that are bound to mineral surfaces and have therefore a heavy 

weight. Ultrasound is applied to isolate SOM that is occluded in aggregates. 

These fractions are denominated as occluded particulate organic matter (oPOM) 

in contrast to free particulate organic matter (fPOM), which is loosely available in 

the soil matrix. Additional sieving of the fraction is performed as the size of POM 

mirrors variations in its chemical composition. Hence, smaller particles are 

stronger decomposed that larger ones (Guggenberger et al., 1995). As several 

stabilisation mechanisms may act simultaneously, e.g. aggregation and selective 

preservation or organo-mineral association and selective preservation, the density 

fractionation is often followed by further chemical analysis of the fractions. Since 

the 1980’ies, solid-state 13C nuclear magnetic resonance spectroscopy with cross 

polarization magic angle spinning (13C NMR CPMAS) is increasingly applied to 

investigate the chemical composition of SOC (Kögel-Knabner and Rumpel, 2018; 

Preston, 2001) and has become an established analytical method (Kögel-

Knabner, 1997).  

The presented dissertation examines not only the vertical and lateral distribution 

of OC stocks in agricultural soils of Bavaria, but also analyses the factors that led 

to this distribution. It further assesses the vulnerability of this OC towards potential 

losses. The impetus for this work was provided by the Bavarian State Ministry of 

the Environment and Consumer Protection within the joint project “Bayerische 

Landschaften im Klimawandel – Kohlenstoff- und Stickstoffmobilität in 

Landschaften im Umbruch auf Basis kolluvialer und alluvialer Prozesse” 

(TKP01KPB-66832). This project determined in an interdisciplinary approach the 

OC and N stocks of colluvial and alluvial soils in agricultural sites of Bavaria in 

order to derive adaption strategies for agricultural management in a changing 

climate.  

 

1.3  Objectives and approach 

The aim of this dissertation was to determine the main controlling factors of OC 

storage of temperate agricultural soils (grassland versus cropland use). It was 

4 Introduction 



hypothesised that the impact of the OC controlling factors such as soil inherent 

properties, climate, topography and land use varies between topsoil and subsoil. 

Thus, data was analysed with respect to differing soil depths. The objective was 

further to identify key areas of OC storage within the examined soils. It was then 

aimed to deduce the soil’s mechanisms to stabilise OC, e.g. analyse its allocation 

to specific SOM fractions and its chemical composition. With respect to the 

number of soil types and study sites, the variability of the data reduced from Study 

I to Study III. In contrast, the detail on information within one study site or one 

specific landform position increased from Study I to Study III. Also, the 

informational detail on SOM increased from bulk soil data (Study I and Study II) to 

data on SOM fractions (Study III).  

 

Study I, “Controlling factors of organic carbon stocks in agricultural topsoils and 

subsoils of Bavaria”, was performed in order to identify the relevant controlling 

factors of OC stocks in agricultural soils (cropland and grassland use) for the 

federal state of Bavaria. Bavaria was chosen as an example for highly productive 

soils with a significant proportion of agriculturally used land in a temperate climate 

in Central Europe. The availability of highly resolved environmental data in Bavaria, 

e.g. data on soil parameters, climate and topography, guaranteed a reliable data 

base for the approach. As such, the approach included:  

i.) the prediction of OC stocks by computing a random forest model 

based on a large data set of 692 soil profiles and 13 predictor 

variables including soil type, topographical factors, climate and 

information on land use; 

ii.) the discrimination of distinct factors for OC storage among topsoils 

(0 – 30 cm profile depth) and subsoils (30 – 100 cm); 

iii.) the identification of key areas for OC storage in Bavaria.  

 

Study I revealed that the factors landform position and land use (cropland vs. 

grassland) highly affected SOC storage. Therefore Study II, “Drivers of organic 

carbon allocation in a temperate slope-floodplain catena under agricultural use”, 

was performed in order to closer examine the relationship between soil OC stocks, 

soil inherent properties and these two factors. The approach combined 

geomorphic aspects with highly detailed soil data based on 16 soil profiles along 
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a catena in the Bavarian Forest. The study site was representative, as it was 

agriculturally used for a long period (available historical maps dated back to 1864, 

settlements in the municipally since at least the 10th century) and the river was 

regulated. As such, the approach included: 

i.)  the determination of the lateral and vertical distribution of OC 

stocks. It was thereby differentiated between topsoil (0 – 30 cm 

profile depth) and subsoil (30 – 120 cm) and four distinct landform 

positions (backslope, footslope, toeslope and floodplain);  

ii.)  the evaluation of the persistence of OC in the diverse landform 

positions by analysing the proportion of 14C content of the bulk soil 

OC; 

iii.)  the analysis of pedogenic oxides as a proxy for the redox 

conditions as well as the soil development.  

 

Study III, “Organic matter in temperate cultivated floodplain soils: Light fractions 

highly contribute to subsoil organic carbon”, focussed on floodplain soils, which 

were identified as key areas of OC storage in Study I and Study II. The study was 

performed in order to determine the quantity and quality of SOM allocated in 

representative Bavarian floodplain soils. The selected study sites were 

representative, as the rivers were regulated, the floodplains were under grassland 

use and the parent material varied between carbonaceous and carbonate-free. 

The informational detail on SOM was further increased in Study III, as the 

allocation of the floodplain OM to characteristic pools differing in stabilisation 

mechanisms was analysed. As such, the approach included: 

i.)  the assignment of the floodplain OM to particulate OM and organo-

mineral associations by size and density fractionating (six isolated 

fractions in total) topsoil and subsoil samples (three depth levels in 

total). The fractionation was followed by the analysis of their OC 

contents and chemical composition;  

iii.) the evaluation of possible OC losses originating from Bavarian 

floodplain soils based on the identified main OC stabilisation 

mechanisms. 
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With the selected approach of increasing the analytical detail from regional data 

over a catena to a single landform position as well as from broad bulk soil OC 

quantification to the determination of the specific chemical components of the 

OM, it was expected to gain further insights into the relevant processes that 

determine OC storage in agricultural soils.  

 

2.  Materials and methods 

2.1  Study area and sampling 

All three studies were located in Bavaria, Southeast Germany. The federal state 

of Bavaria stretches over an area of 70,550 km² of which 47% are agriculturally 

used, 37% are under forest and 12% is settlement area and infrastructure 

(Bayerisches Landesamt für Statistik, 2016). As described in Doppler et al. (2004), 

Bavaria can be divided into four major geological structures: the Alps in the south 

with the northward adjacent molasse basin, Mesozoic sedimentary rocks of the 

Franconian cuesta region in the northwest, crystalline basement complexes of the 

Bohemian massif in the northeast and the Spessart as an isolated crystalline area 

in the northwest. All structures may be covered by Quaternary sediments. The 

climate of Bavaria is classified as warm-temperate, fully humid with warm summer 

temperatures (Cfb climate, Köppen-Geiger classification) in the transition between 

maritime in the west and a continental climate in the east (Enders, 1996; Köppen, 

1936; Kottek et al., 2006). On average, Bavaria has a mean annual temperature of 

7.8° C and a mean annual precipitation of 933 mm (long-term mean 1971 - 2000) 

(Bayerisches Landesamt für Umwelt, 2018).   

 

Study I was based on a soil survey commissioned by the Bavarian Environmental 

Agency (LfU) with soil data recorded in an 8 x 8 km grid over the whole federal 

state of Bavaria (total of 1461 data points). For the presented Study I, the data set 

was filtered for only mineral soils (no bogs or peat) under cropland or grassland 

use. This resulted in a total number of 692 soil profiles entering the data analysis 

(Figure 1).    
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Figure 1: Distribution of sampling points of Study I (n = 692).  

For Study II, the site was located in the low mountain ranges of the Bavarian 

Forest, east of the city of Regensburg (49°02'06"N, 12°15'10"E) (Figure 2). There, 

at the lower reaches of the Otterbach Valley, 16 soil profiles were excavated in a 

transect from the eastern slope of the Otterbach River over the floodplain to the 

western slope (Figure 2). According to the dominant geomorphic processes and 

deposition dynamics, soils were assigned to four distinct landform positions 

within this catena: backslope (soil profiles OBS1 – OBS4), footslope (OFS1 – 

OFS3), toeslope (OTS1 – OTS3) and floodplain (OFP1 – OFP6). All slope positions 

were constantly used as cropland, whereas floodplain positions were under 

constant grassland use for more than one century. In the lowlands of the study 

site, artificial drainage tiles and ditches were installed. Weirs regulated the river. 

Based on the interpretation of historical maps, river straightening by cutting up 

meanders was carried out between 1864 and 1951, and the riverbed was cleaned 

during land consolidation works, which finished in 1992. The bank crest of the 

river lay approximately 100 cm above the channel (Figure 3), which may have been 

caused by riverbed incisions after the regulations. The parent material of the soils 
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consisted of weathered granite of the Bohemian massif and solifluidal deposits 

with substantial contributions of decarbonised quaternary loess (Völkel, 1995). 

With a mean annual temperature of 9.2° C and a mean annual precipitation of 981 

mm (long-term mean 1981 – 2010) (Deutscher Wetterdienst, 2017), study site II is 

warmer and slightly more humid than the average of Bavaria.  

  

  

Figure 2: Map of the study area of Study II including the location of sampling 
points.  
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Figure 3: Soil profile at the eroded bank crest of the Otterbach River (profile data 
not shown) (Foto: S. Kriegs, 2015).  

 

 

Focussing on floodplain soils in Study III, additionally to soil data of the floodplain 

of Study II, four soil profiles (AFP1, AFP2, AFP3, AFP4) were excavated in a 

floodplain of the Ammer River located in the municipality of Rottenbuch in the 

Alpine Foreland (47°44'13" N, 10°58'22" E) (Figure 4). In contrast to the Otterbach 

site, no artificial drainage measures were observed in the floodplain. Weirs 

regulated the river. The parent material of the soil was a broad mixture of deposits 

of moraine till (Würm glaciation) and layers of the tertiary Lower Freshwater 

Molasse, which have been incised by the Ammer River. It also contained 

deposited sediments and bed load of Rhenodanubian Flysch, Hauptdolomit and 

Dachstein limestone originating from the Northern Calcareous Alps (Bayerisches 

Geologisches Landesamt, 1996). The floodplain was used as extensive grassland. 

The mean annual temperature was 7.2° C and mean annual precipitation was 

1,175 mm (long-term mean 1981 – 2010) (Deutscher Wetterdienst, 2017), so study 

site III is about as warm but more humid than the Bavarian average.  
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Figure 4: Maps of the study areas of Study III including the locations of sampling 
points.  

 

Soils of all studies were classified according to the German soil classification 

(KA5) (Ad-hoc-Arbeitsgruppe Boden, 2005). For Study I, soil classes of the KA5 

were translated to equivalent reference soil groups according to the World 

Reference Base (WRB) for soil resources (IUSS Working Group WRB, 2015). Soils 

of Study II and III were also classified according to the WRB. 
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Samples of all studies were taken by horizon including disturbed, as well as 

undisturbed samples for BD determination. In Study I, soils were sampled down 

to a depth of 100 cm or at least to the parent material. In the case of Study II and 

III, samples were taken to a maximum depth of 180 cm depending on operational 

safety and/or the presence of ground water.  

 

2.2  Analytical methods 

Samples of Study II and III were air dried and sieved to <2 mm. Samples of Study 

I were freshly sieved before drying. Table 1 gives an overview over the determined 

soil parameters and applied methodologies of the three presented studies.   
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Table 1: Overview of determined soil parameters and applied methodologies for 
Study I, II and III.  

Parameter Methodology Study 

BD Drying at 105°C and weighting of undisturbed 
samples 

I, II, III 

Clay mineralogy X-ray diffraction (D5000 diffractometer, Siemens, 
München, Germany) 

III 

FeOX Acid-ammonium-oxalate extraction followed by ICP-
OES (Vista Pro CCD Simultaneous, Varian, 
Darmstadt, Germany) 

II 

FeDCB Dithionite-citrate-bicarbonate extraction followed by 
ICP-OES (Vista Pro CCD Simultaneous, Varian, 
Darmstadt, Germany) 

II 

14C Accelerator mass spectrometry carried out at the 
CologneAMS centre 

II 

OC composition Solid state 13C NMR CPMAS spectroscopy (Brucker 
DSX 200 NMR spectrometer, Karlsruhe, Germany) 

III 

IC Thermal gradient method (RC612, LECO, Saint 
Joseph, USA) 

II, III 

IC Muffling at 500°C followed by dry combustion at 
1,000° C 

I, III 

N Dry combustion at 1,000° C, Elemental Analyzer 
(EuroEA, HekaTech, Wegberg, Germany) 

II, III 

pH 0.01 M CaCl2 solution (1soil:2.5liquid) (pH 340, WTW, 
Weilheim, Germany) 

I, II, III 

SSA N2 BET gas adsorption-desorption (AUTORSORP-1, 
Quantachrome, Odelzhausen, Germany) 

III 

TC Dry combustion at 1,100° C, Elemental Analyzer 
(EuroEA, HEKAtech, Wegberg, Germany) 

I, II, III 

Texture Sieving and sedimentation (Köhn) I 

Texture Wet sieving followed by X-ray sedimentation 
technique (Sedigraph III Plus, Micromeritics, 
Aachen, Germany) 

II, III 
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2.2.1  OC determination and calculation of OC stocks (Study I, II, III) 

All bulk soil samples as well as fractions were analysed for TC as determined by 

dry combustion at 1,000° C using an Elemental Analyser. For soils located at the 

Ammer River as well as for Study I, the content of OC was calculated as the 

difference between TC and IC. Concentrations of IC were assumed as negligible 

at the Otterbach River, as soil pH resulted in strongly to moderately acidic pH, 

and tests on individual samples revealed a concentration of 0.3 ± 0.3 mg IC g-1. 

Therefore, TC was set equal OC for this study site.  

Soil OC stocks of all three studies were calculated using the equation:  

 

𝑆𝑂𝐶ℎ𝑧
=  ∑ 𝑂𝐶𝑠  × ℎ𝑠  × 𝐵𝐷𝑠  × (1 −

𝑆𝐶𝑠

100
) 

ℎ𝑧
𝑠   (1). 

 

The variable SOChz corresponds to the OC stock of all horizons h of the soil profile 

z. Factor hs corresponds to the thickness of the horizon s multiplied with BDs. 

Factor SCS is the mass fraction of the coarse material >2 mm of the horizon s. 

To compare soil characteristics of contrasting depths, generic horizons at three 

depth levels of the profiles investigated in Study II and III, accounting for the 

topsoil and two subsoil horizons, were chosen for further chemical and physical 

analysis (14C content, pedogenic Fe, texture, SOM fractions and SSA). The horizon 

referred to as top was the upper-most horizon of every profile. Sub2 corresponds 

to horizons located between 38 and 57 cm and sub2 between 67 and 128 cm 

profile depth at the Otterbach site. As soil profiles at the Ammer site were shallow, 

corresponding depths shifted upwards: 24 – 66 cm (sub1) and 41 – 90 cm (sub2).    

 

2.2.2 Random forest modelling and its data base (Study I) 

In Study I, the controlling factors of topsoil (0 – 30 cm) and subsoil (30 – 100 cm) 

OC stocks were determined using 13 predictor variables: clay content, exposition, 

historical land use, IC, land use, major landform, MAT, MAP, pH, rooting depth, 

sand content, soil type and TWI.  

The laboratory analyses of the BD, clay and sand content, IC, OC and pH were 

executed by the Bavarian Environmental Agency (LfU). Data on the historical land 

use originated from the land taxation data of the Bavarian State Ministry for 
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Finance (BayLfSt). Between the thirties and sixties of the 20th century, all 

agricultural sites of Germany were mapped and evaluated in a 50 x 50 m grid. 

Since then a regular review every 20 years is executed. The predictor variable 

historical land use includes four classes: sites permanently used as cropland (C), 

sites permanently used as grassland (Gr) as well as sites with periodical 

alternations between C and Gr with a dominance of grassland use (GrC) and those 

with a dominance of cropland use (CGr) (Rösch and Kurandt, 1950). The predictor 

variable major landform describes the landform by its morphology and is 

subdivided into four major classes: crest (culmination point of the hill), slope 

(located between crest and level land), level land (2 - 6° inclination) and plain (<2° 

inclination). Rooting depth was taken from the 1:1,000,000 map “Soil Depth in 

Germany” (Bug, 2015). Data on MAP and MAT were recorded by the German 

Weather Service (DWD) (1 km resolution, long-time mean 1981 - 2010). The TWI 

was implemented as a proxy for potential soil moisture and the accumulation of 

depositional sediments (Sørensen et al., 2006). As a result of the specific 

contributing area (SCA) and its slope α, the TWI was calculated following the 

equation:  

 

𝑇𝑊𝐼 = ln (
𝑆𝐶𝐴

𝑡𝑎𝑛𝛼
) (2).  

 

The underlying topographic data was based on a Digital Elevation Model (DEM) 

(Bavarian Surveying and Mapping Authority, BVV) (25 m resolution). 

 

The modelling was computed using the random forest (RF) machine learning 

technique established by Breiman (2001). With RF, large data sets can be 

analysed for prediction as well as for variable selection. For computation of the 

model, the “party” package Vol. 1.3 – 0 developed by Hothorn et al. (2006) was 

implemented in the software R (R Core Team, 2016). To minimize bias between 

the individual trees (n = 1,000) of the forest, bootstrap aggregating without 

replacement of the sample was executed (Strobl et al., 2007). Its performance was 

evaluated by the coefficient of variance (R²OOB) as well as the root-mean-squared 

error (RMSEOOB) over the averaged out-of-bag predictions, i.e. the samples that 
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were not included in the bootstrapped samples (Liaw and Wiener, 2002) following 

the equations:  

 

𝑅𝑀𝑆𝐸𝑂𝑂𝐵 =  √
1

𝑛
 ∑ (𝑧𝑖  −  𝑧̂𝑖

𝑂𝑂𝐵)
2𝑛

𝑖=1   (3), 

 

𝑅𝑂𝑂𝐵
2  = 1 −  

𝑀𝑆𝐸𝑂𝑂𝐵

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑧
     (4), 

 

where zi corresponds to the measured OC stock of the depth increment i and 𝑧̂i is 

the predicted value over the averaged out-of-bag samples. Most important 

variables were selected on the base of the variable importance area under the 

curve (Janitza et al., 2013). The relative variable importance area under the curve 

was calculated in order to increase comparability between the two models. This 

is relative to the summed variable importance of the respective RF (Hobley et al., 

2015). 

 

2.2.3  14C content, pedogenic Fe and texture (Study II) 

Study II assesses the vertical and lateral OC distribution as well as OC relevant 

soil properties in a catena. Therefore, not only OC concentrations and stocks were 

calculated but also 14C content, pedogenic Fe and texture measured. Pedogenic 

Fe was extracted as dithionite-citrate-bicarbonate soluble fraction (FeDCB) and 

acid-ammonium-oxalate soluble fraction (FeOX) (Holmgren, 1967; Schwertmann, 

1964). This was followed by inductively coupled plasma optical emission 

spectrometry (ICP-OES). The Fe activity ratio (FeOX:FeDCB) was calculated as a 

measure of pedogenesis according to Schwertmann (1964). 

The 14C content of selected bulk soil samples was determined by the CologneAMS 

centre via accelerator mass spectrometry (AMS). Radiocarbon data was reported 

as Fraction Modern (F14C) with corresponding conventional radiocarbon ages (14C 

age) given as years before 1950 (yBP) (Reimer et al., 2004; Stuiver and Polach, 

1977).  

For texture analysis, samples were treated with 30%-H2O2 to remove OC before 

ultrasonic dispersion at 450 J m-1 in a 0.025 M Na4P2O7 solution. Wet sieving was 

followed by the X-ray sedimentation technique using a sedigraph.     
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2.2.4  Combined density and particle-size fractionation, 13C NMR 

spectroscopy and SSA measurements (Study III) 

Study III focuses on the quantity and quality of OM in floodplain soils, so the 

following analysis were applied for soil profiles OFP1, OFP2, OFP4 and OFP6 of 

the Otterbach site and AFP1, AFP2, AFP3, AFP4 at the Ammer site. They were 

further applied at the three depth levels top, sub1 and sub2 in each soil profile. In 

order to quantify the allocation of SOM to particulate OM and organo-mineral 

associations, bulk soil samples were analysed following a combined stepwise 

density and particle-size fractionation procedure. The implemented procedure 

was elaborated by Kreyling et al. (2013) for the application in dolomite-derived 

soils. They used distinct densities of a sodium polytungstate solution to further 

separate mineral associated OM from OM-free heavy particles such as dolomite. 

To ensure comparability of the results, the procedure was customised for Study 

III on the basis of preliminary tests and applied to the samples of both Ammer and 

Otterbach site. An overview over the procedure and the resulting fractions is given 

in Figure 5. Briefly, sodium polytungstate of a density of 1.8 g cm-1 (SPT1.8) was 

added to 30 g bulk soil. Floating free particulate organic matter (fPOM) was 

separated. The deposited material was dispersed ultrasonically at 450 J ml-1 to 

destroy aggregates and subsequently centrifuged. Now floating particles were 

associated with formerly aggregate-occluded POM (oPOM) and separated. To 

separate the lighter organo-mineral fraction (OMF) from OM-free mineral fraction, 

the remaining material was suspended in sodium polytungstate of a density of 

2.4 g cm-1 (SPT2.4), subsequently centrifuged and decanted. To account for 

differences in the degree of degradation, the oPOM fraction as well as OMF were 

wet sieved to 20 µm resulting in four fractions: oPOM <20µm (oPOMfine), OMF <20 

µm (OMFfine), oPOM >20 µm (oPOMcoarse) and OMF >20 µm (OMFcoarse). All fractions 

were desalted with deionized water before freeze-drying and weighting.    
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As oPOMfine and OMFfine accounted for up to 80% of total OC, the composition of 

these two fractions was further characterised using 13C nuclear magnetic 

resonance (NMR) spectroscopy with cross-polarization magic angle spinning 

technique (CPMAS). Signal intensities of the chemical shifts relative to the 

standard tetramethylsilane (= 0 ppm) were integrated according to four spectral 

regions: alkyl-C (0 – 45 ppm), O-alkyl-C (45 – 110 ppm), aryl-C (110 – 160 ppm) 

and carboxyl-C (160 – 220 ppm) (Wilson, 1987). The ratio between alkyl:O-alkyl-

C was calculated to estimate the degree of decomposition (Baldock et al., 1997). 

A second integration routine following the molecular mixing model of Baldock et 

al. (2004) was applied to infer biomolecular structures. These spectral regions 

were: 0 – 45, 45 – 60, 60 – 95, 95 – 110, 110 – 145, 145 – 165, 165 – 215 ppm.  

To evaluate the OC-coverage of the minerals of the OMFfine, the specific surface 

area (SSA) of selected samples of this fraction (OFP1 and AFP2 at top, sub1 and 

sub2) was determined by N2 gas adsorption-desorption at 77 K and the 

application of the Brunauer-Emmett-Teller equation (Brunauer et al., 1938). 

Samples were measured before and after OC removal using 1 M NaOCl at pH 8 

(SSAOC and SSANaOCl, respectively). The loading of the mineral surface was 

calculated as the ratio between OC content of the fraction before OC removal and 

the SSANaOCl. The OC coverage of the mineral was calculated according to the 

equation:  

 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑆𝑆𝐴𝑂𝐶 − 𝑆𝑆𝐴𝑁𝑎𝑂𝐶𝑙

𝑆𝑆𝐴𝑁𝑎𝑂𝐶𝑙
  (5).  

 

 

Figure 5: Scheme of the fractionation procedure. 
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2.3  Statistical analysis 

All statistical analysis were performed in the software R (R Core Team, 2016). 

Normality and homoscedasticity of the data was tested using the Shapiro-Wilk 

and the Levene’s test. Welch’s ANOVA was used for testing significance in case 

of unequal variances. The repeated t-test was used in case of dependent samples 

(Study II). Both were followed by the Scheffé post-hoc test. Due to insufficient 

observations of soil types (Study I, nPodzols = 1), no statistical testing was applied 

for this grouping variable. The level of significance was chosen at p < 0.05.  

 

3. Results and discussion 

3.1  Controlling factors of topsoil OC storage 

Study I and II promoted the assumption that topsoil (0 – 30 cm profile depth) OC 

storage is largely controlled by the legacy of land use. With 34% variable 

importance, the historical land use was the most important predictor variable for 

topsoil OC stocks in Study I. This resulted in highest amounts of topsoil OC found 

under grassland use. In Study II, topsoil OC stocks under constant grassland use 

in the floodplain were significantly higher than stocks under constant cropland 

use. OC stocks under constant cropland did not statistically differ between the 

distinct slope positions observed in Study II.  

It is widely assumed that grassland use promotes the storage of OC in contrast 

to cropland use (Guo and Gifford, 2002; Jones and Donnelly, 2004). Grasslands 

have intensively rooted sods which produce high inputs of fresh OM into the 

topsoil (Kuzyakov and Domanski, 2000). Study III provided evidence that not only 

the amount but also the composition the SOM found in the topsoils of grassland 

floodplains was largely controlled by the grassland use (Baldock and Skjemstad, 

2000; Li et al., 2017). The high amounts of topsoil OC were to large parts organo-

mineral associated in OMFfine, followed by oPOMfine. The 13C NMR spectra of the 

oPOMfine matched with partially degraded, carbohydrate-rich plant residues, as 

large proportions of O-alkyl C, followed by alkyl and carboxyl C were found. This 

is indicative for regular inputs of fresh OC as typical for grassland use. On the 

other hand, it has been shown that constant cropland use leads to OC losses due 

to aggregate breakdown by ploughing, erosional outwash or the export of crop 
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residues by harvesting (Dolan et al., 2006; Gregorich et al., 1998; Six et al., 2000). 

Therefore, grassland use correlates with higher inputs of OC whereas cropland 

use correlates with higher losses of OC. In Study I, a gradient from permanently 

used grasslands (highest stocks) to sites with alternations in grassland and 

cropping (medium stocks) to permanent cropland use (lowest stocks) was found. 

This illustrates the importance of the factor land use history in contrast to the 

actual land use at the time of sampling. The conversion from cropland to 

grassland may result in fast OC losses, whereas OC accumulation after 

conversion from grassland to cropland may be disproportionally slow (“slow in 

fast out”) (Poeplau et al., 2011). In consequence, the current land use may not 

mirror the current OC status and alternating land uses may have an OC 

distribution associated with the dominant land use as seen in Study I. Authors in 

Belgium and the Netherlands showed that specific land uses such as plaggen 

manure, heathland farming or drainage may imprint OC stocks for large time 

periods (Meersmans et al., 2009; Schulp and Verburg, 2009; van Wesemael et al., 

2010).  

Wiesmeier et al. (2012) found land use to be a major controlling factor of OC 

storage analysing the whole soil profile (0 – 100 cm profile depth). The question 

arises to which soil depth the direct impact of this factor lasts. The importance of 

the predictor variable historical land use strongly decreased from 34% in the 

topsoil to 6% in the subsoil and no significant differences between subsoil OC 

stocks grouped by the historical land use were detected. Ward et al. (2016) found 

significant management effects on OC concentrations to 60 cm profile depth in 

English grassland soils. With respect to cropping systems, Hobley et al. (2018) 

detected OC gains in PK fertilised clover systems down to 1 m soil depth. 

However, the RF model of Study I implemented data on general land use and land 

use history, so data on specific management intensities or crop rotations within 

grassland or cropland use is absent in this study.  

To summarise, Studies I, II and III have shown that the amount as well as the 

composition of topsoil OC stocks were determined by the legacy of land use, with 

highest OC stocks under constant grassland sites.  
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3.2  Controlling factors of subsoil OC storage  

In Study I, the most important predictor variable of subsoil (30 – 100 cm profile 

depth) OC storage was soil type (40% relative variable importance) followed by 

major landform (27%) and TWI (12%). This resulted in highest subsoil OC stocks 

found in alluvial, colluvial and groundwater affected soils as well as in soils located 

in level and plain landform positions in Bavaria. In Study II, subsoil (30 – 120 cm 

profile depth) OC stocks gradually increased in a catena between landform 

positions from backslope to floodplain and again, floodplain subsoils contained 

significantly higher stocks than soils on slope. In both studies soils developed on 

sediments and soils affected by water saturation contained highest subsoil OC 

stocks. Both observations are closely related with the landform position and both 

studies disclosed Fluvisols as major subsoil OC reservoir.   

Fluvisols as well as colluvial soils are soils that have developed on allochthonous 

sediments, i.e. fluvial deposits or material that has moved down a slope by 

gravitational action as a result of erosional wash (IUSS Working Group WRB, 

2015). They deposit in floodplains (Fluvisols) or low-grade slopes and depressions 

(colluvial soils) and may contain high amounts of OC (Berhe et al., 2007; Doetterl 

et al., 2012a; Gregorich et al., 1998). Human activities such as clearing, tillage or 

the growing of erosion permitting crops such as Maize, can trigger the erosion of 

OC-rich topsoil and its lateral transport by water and wind (Leopold and Völkel, 

2007; Montgomery, 2007; Pimentel and Kounang, 1998; VandenBygaart et al., 

2012). The successive burial of these sediments can lead to the accumulation of 

large amounts of OC building up the subsoils of these soils (Chaopricha and 

Marín-Spiotta, 2014; D'Elia et al., 2017; Doetterl et al., 2012a). However, its OC 

content may be highly variable and depend on its source (Scott and Wohl, 2018). 

In the case of Study II, missing E layers of the Haplic Luvisols at backslope 

positions suggested that the soils have suffered from erosional mass losses. This 

process may have redistributed topsoil material and its associated OC to the 

lower lying footslope and toeslope of the catena. This hypothesis was supported 

by the low proportion of F14C found in the subsoil OC in footslope positions, 

indicating that the photosynthetic fixation of this carbon was a substantial time 

ago. The stratification of toeslope and floodplain profiles was a strong indicator 

for the deposition of material, which may have originated upslope or upstream or 
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a mixture of that. The relatively high proportion of F14C in the subsoils >30 cm 

depth of toeslope and floodplain OC indicated that the OC found in these 

sediments was photosynthetically fixed more recently. As a consequence, the 

sediments must have been deposited in more recent times than in footslope 

positions. Though, DOC transported by percolating slope water or groundwater 

may have shifted absolute 14C contents and with that the F14C of these soils 

(Sanderman et al., 2009). This, in turn, suggested that old footslope subsoil OC 

was largely decoupled from the atmospheric carbon cycle. 

Permanent or periodical water saturation, as the second emerging pedogenetic 

factor, typically affects the subsoils of Fluvisols and Gleysols. The resulting 

anaerobic conditions hamper the degradation of OM, which leads to the 

accumulation of OC in poorly drained soils (Berhe, 2012; Ponnamperuma, 1972; 

Reddy and DeLaune, 2008; Wiesmeier et al., 2012). Hydromorphic soil properties 

in low lying landform positions of Study II showed that soils in the floodplain as 

well as in the toeslope had been affected by groundwater or stagnating slope 

water. Water saturation and reduced oxygen availability most probably preserved 

once the deposited OC from decomposition (Blazejewski et al., 2005; 

Ponnamperuma, 1972; Reddy and DeLaune, 2008). Redoximorphic features, i.e. 

mottles, were found all over the floodplain and toeslope profiles of Study II. Strong 

reductive properties were only found in the deep subsoil at >100 cm profile depth. 

Together with the high absolute amounts of Feox and increasing proportions of 

Feox on FeDCB with depth, it was assumed that now mainly oxic conditions 

(± seasonal fluctuations) dominate in the uppermost 100 cm in these landform 

position and that the pedogenesis was relatively recent (Blume and Schwertmann, 

1969; Lair et al., 2009a). A rapid accumulation of Fe oxides in Bt horizons after 

30 years of drainage was also observed by Hayes and Vepraskas (2000). The 

present river morphology in combination with the findings on pedogenic oxides 

led to the assumption that artificial (weirs and ditches) and semi-natural (riverbed 

incision after regulations) drainage led to the oxidation of the uppermost 100 cm 

of the floodplain within few decades, which altered soil genesis. Such 

pedogenetic shifts from semi-terrestrial towards terrestrial systems in 

anthropogenically modulated floodplains are supported by Lair et al. (2009b), who 

reviewed the dynamics of European river-floodplain systems. Also, Veenstra and 

Lee Burras (2015) found human induced pedogenesis after 50 years of drainage 
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of agricultural soils in Iowa. In contrast, low proportions of Feox as well as intensive 

clay coatings in the subsoils of the Haplic Luvisols of footslope and backslope 

profiles indicated clay migration and therefore a relatively mature pedogenesis 

(Blume and Schwertmann, 1969). The soil type as a result of pedogenesis has 

also been identified as important OC factor in works by Suuster et al. (2012) and 

Wiesmeier et al. (2012). It can be argued if soil type is a truly independent OC 

predictor (Wiesmeier et al., 2019). As shown in Study II, the underlying processes 

that affected OC storage of the subsoils were associated with the reallocation and 

deposition of matter as well as alternations in soil hydrology. Both resulting in the 

genesis of very specific soil types that combine this variety of pedogenic 

properties. Hence, the classification of soil types is valuable for a deeper 

understanding of subsoil OC stocks.  

Interestingly, no correlations were found between SOC stock and clay content, 

neither in Study I nor in Study II or III. The fine fraction particles (<20 µm) including 

2:1 layered clay minerals and Fe oxides and hydroxides are known to stabilize OC 

(Hassink, 1997; Kleber et al., 2007; Mikutta and Kaiser, 2011). Also, clay content 

was found to be associated with the amount of OC stored as oPOM (Kölbl and 

Kögel-Knabner, 2004). Though, missing correlations between OC and clay in the 

presented studies may point to the fact that the soils were not saturated with OC. 

Wiesmeier et al. (2014a) showed the low degree of OC saturation in agricultural 

soils of Bavaria. This demonstrates that clay content is a weak predictor for OC 

storage and rather an indicator for the soils potential to store OC. Despite the low 

OC saturation, clay-rich soils resulted amongst the soil types with highest subsoil 

OC stocks in Study I.  

To summarise, the findings demonstrated that topography and the generic soil 

type are closely linked together with respect to subsoil OC storage. In addition, 

the legacy of human activities not only amplified the lateral OC transport and 

therefore the amount of buried OC. Anthropogenically induced alterations of the 

river dynamics as well as drainage also accelerated pedogenesis within relatively 

few decades.    
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3.3  OC pools of floodplain subsoils 

As shown in Study I and II, the subsoil OC was largely driven by the presence of 

OC-rich sediments as parent material and the degree of water saturation impeding 

composition. As a result floodplains were found to contain large OC reservoirs in 

their subsoils. Though, little is known about the quality of this OC.  

The allocation of OC to particulate OM and organo-mineral associations was 

remarkably, as high proportions of this OC were found in light fractions. The 

contribution of mineral-bound OC to total OC decreased with depth and this was 

valid for the subsoils of both study sites of Study III. Relevant proportions of 

charred C were found in the oPOMfine of the subsoils of both sites, as revealed by 

the molecular mixing model (Baldock et al., 2004). The presence of light fraction 

OM in general and of charred C in particular was explained by the floodplain’s 

development on alluvial sediments and its variable composition with respect to 

the deposited POM (Noe and Hupp, 2009; Rennert et al., 2018). Agricultural 

burning practices are known to have increased the amount of pyrogenic C in 

European soils since the Neolithic (Gerlach et al., 2012; Knicker, 2011). The 

reduced vegetation after burning and the increase of arable land triggered soil 

erosion, which redistributed pyrogenic C from the hillslopes to the valleys (Gerlach 

et al., 2012) and finally its accumulation as alluvial deposits (Coppola et al., 2018; 

Cotrufo et al., 2016).  

At the Otterbach site, subsoil oPOMfine was largely depleted of easily 

decomposable carbohydrates and enriched with recalcitrant components such as 

lipids and proteins. In contrast, subsoil oPOMfine at the Ammer site contained 

partially decomposed plant residues with high proportions of carbohydrates. 

Temporary fluctuations in the groundwater table in combination with high water-

holding capacities due to silty-clay textured soils may have resulted in oxygen 

restrictions in the subsoil of the Otterbach site. This caused anaerobic microsites 

that favoured the preservation of aliphatic compounds (Keiluweit et al., 2016). In 

contrast, numerous worm casts and krotovinas in the subsoil of the Ammer site 

suggested high bioturbation, which provided fresh OM to the subsoil (Don et al., 

2008; Lavelle, 1988). Therefore, it was assumed that the composition of POM was 

modulated by the specific site conditions in the subsoils after deposition. 
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In contrast to the light fraction OC, the organo-mineral associated OC (OMFfine) 

was neither depleted nor enriched of any particular C-component, so it was 

assumed that its composition was independent of the specific site conditions or 

depth. No relationship between OMFfine and fine texture (particles <20 µm) and no 

controls of clay mineralogy on OMFfine were found. The OC coverage of OMFfine 

was higher in all depths at the Ammer site compared with the Otterbach site. This 

observation was explained with abundant resources of Ca2+ and Mg2+ cations 

originating from the calcareous parent material at the Ammer site. As a result, 

cation bridges between clay minerals and the functional group of the OM led to 

higher OC coverages (Rowley et al., 2018). 

To summarize, floodplain subsoils may contain relatively high amounts of light 

fraction OC. Depending on the specific site conditions (hydrologic regime, 

bioturbation) of the floodplain, this OC may be highly degraded or easily 

decomposable. The occurrence of charred C in floodplain soils was associated 

with the legacy of slash and burn practices, followed by erosion and deposition in 

alluvial sediments. The composition of the organo-mineral associated OC was not 

affected by any site condition. The presence of polyvalent cations led to higher 

OC coverages on mineral surfaces. 

 

3.4  Key areas of OC storage in agricultural soils of Bavaria: Value and 
fate of floodplain soils  

The three studies revealed temperate grassland floodplains as highly relevant 

reservoirs for topsoil and subsoil OC storage. The relevance of floodplain soils to 

store large amounts of OC is recognised by a growing number of studies 

(Cierjacks et al., 2010; D'Elia et al., 2017; Graf-Rosenfellner et al., 2016; Hoffmann 

et al., 2009; McCarty and Ritchie, 2002; Ricker et al., 2013; Steger et al., 2019; 

Zehetner et al., 2009). To illustrate, Wiesmeier et al. (2014b) estimated that 

floodplain soils stored 14% (109 Mt) of OC of the total OC stocks of Bavaria, 

occupying 11% of the total area. The question remains how vulnerable these OC 

stocks are to degradation and C losses. Due to the high OC content, floodplain 

soils are highly productive sites (Tockner and Stanford, 2002). Forty-six percent 

of the active floodplains in Germany are intensively used as grasslands and 

roughly 50% of the inactive floodplains, i.e. floodplains without regular 
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inundations and located behind levees, are used as cropland (Brunotte et al., 

2009). In a report about OC stocks of floodplains in Germany, Scholz et al. (2012) 

calculated that active floodplain soils under grassland use stored more than twice 

as much C than under cropland, i.e. 23 Mio. t C and 10 Mio. t. C respectively, 

which was about the magnitude observed in Study II. It is assumed that the 

conversion from grassland to cropland triggers the mineralisation of SOC (Guo 

and Gifford, 2002). So the question arises, if these large amounts of OC stored in 

floodplains are threatened by land-use changes. Krause et al. (2011) observed 

that floodplain meadows in Northern Germany were to large proportions 

transformed to intensively used grasslands since the 1950’ies. Xu et al. (2017) 

observed a general decrease of cropland and grassland on the one hand and on 

the other hand an increase of the total area of riparian forest in active floodplains 

of the upper Danube between 1963 and 2010. Concomitantly, the patch size of 

agricultural land increased, indicating the intensification of the land use. They 

concluded, that the less productive agricultural sites closest to the river were 

abandoned and changed to riparian forests, whereas highly productive sites at 

larger distance to the river were intensified including turning from grassland into 

cropland. With respect to the above discussed findings by Poeplau et al. (2011), 

this would have caused large OC losses in the short term. The German Federal 

Environment Agency (UBA) reported a general decline in permanent grassland 

sites of roughly 3% in Germany since 1991 (Bundesministerium für Umwelt, 2018). 

This trend slightly levelled off after 2013, when the EU’s Common Agriculture 

Policy (CAP) started to financially support farmers for the maintenance of 

permanent grasslands and stop land-use changes (“greening measures”) 

(Bundesministerium für Umwelt, 2018). However, these grants are optional, and 

economic incentives to cultivate corn and energy crops may increase the pressure 

to intensively cultivate the areas, including suitable floodplains.  

Many floodplains have been intensively drained in the past in order to increase 

productivity and improve cultivation, but current data on the extent of drained 

floodplains in Germany and particularly in Bavaria are missing. As discussed 

above and seen in Study II, soils may respond within few decades to such 

modulations in their redox conditions. Meersmans et al. (2009) and van Wesemael 

et al. (2010) observed significant decreases in total OC storage after drainage of 

agricultural soils in Belgium. As seen in Study III, floodplain subsoils may contain 
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large proportions of easily decomposable light fraction OC – partly occluded in 

aggregates as oPOM and partly as fPOM. In the case of drainage, these soils 

generally become more susceptible for decomposition of OM by heterotrophic 

microorganisms (Moyano et al., 2013). In the short term, fPOM is readily available 

for microbes as oPOM in aggregates is spatially not accessible (von Lützow et al., 

2006). As shown by Cressey et al. (2018), floodplain subsoils are not limited to 

metabolically active populations but are capable of rapid mineralisation. However, 

the organic and inorganic agents that bind aggregates may not be permanent 

(Tisdall and Oades, 1982). Soil aggregates have a life cycle (Six et al., 2000) and 

their turnover releases formerly protected oPOM for decomposition (De Gryze et 

al., 2006). Alternations in the drying and wetting cycles induced by drainage 

measures may further destabilise the aggregates. Therefore, it can be assumed 

that in the short term particularly fPOM, but in the medium term also oPOM OC 

becomes vulnerable to decomposition.  

An increasing number of floodplains in Europe is being restored (Szałkiewicz et 

al., 2018). This is a good approach from an ecologic perspective, as valuable 

natural habitats are being re-established (Samaritani et al., 2011). Nevertheless, 

river restoration also means that levees are being deconstructed and floodplain 

soils are destabilised. With that, floodplains are again incorporated into the river’s 

dynamic evolution and bank erosion occurs (Florsheim et al., 2008; Ward and 

Stanford, 1995). Subsequent losses in soil OC might be then at least partly 

replaced by the deposition of woody debris (Cierjacks et al., 2010). The 

redistribution of soil inherent OC should nonetheless accounted for.  

Christensen and Christensen (2003) as well as Kundzewicz et al. (2013) reported 

an increase in the magnitude and number of severe floods in Europe with climate 

change. This would also increase stream flow and sediment load of the rivers and 

finally the amount of exported OC from the floodplain (Glendell and Brazier, 2014; 

Oeurng et al., 2011; Wheater and Evans, 2009).  

To summarise, temperate grassland floodplains are large OC reservoirs, which are 

potentially threatened to degradation. This is due to i.) economic pressures 

towards a more intensive use of the sites and concomitant land-use changes ii.) 

drainage measures that increase the oxidation of the floodplain’s subsoils and 

with that the decomposition of light-fraction OM and iii.) erosional mass losses 

due to more extreme flooding events in a changing climate.   
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4. Conclusions 

The three underlying studies of this dissertation demonstrated how closely tied 

the legacy of land use, landform position and the generic soil type are with respect 

to soil OC storage. The in-depth studies confirmed thereby the findings for total 

Bavaria. With respect to topsoil OC stocks, it was demonstrated that not only the 

amount of OC stored but also the chemical composition of topsoil OC was 

determined by the land use history. Highest amounts of OC stocks were found 

under constantly used grassland sites. The subsoil OC was determined by the 

interactions between landform position and generic soil type. The landform 

position, i.e. topographical factors, indicate the lateral transport of OC-rich topsoil 

due to erosion and its subsequent deposition in low lying positions. There, 

periodical or permanent water saturation and the concomitant reduced oxygen 

supply limits the microbial decomposition of OC. As a result of these processes, 

alluvial and colluvial soils contained highest subsoil OC stocks (Study I and II). The 

legacy of human activities such as slash and burn practices and tillage amplified 

the lateral OC transport and therefore the amount of buried OC in the alluvial and 

colluvial subsoils. This process was also mirrored in the detection of substantial 

amounts of aromatic C in the light fraction OM of the alluvial subsoils (Study III). It 

was furthermore demonstrated that human induced alterations of the catchment’s 

hydrologic regime, such as river regulations and drainage, can accelerate the 

floodplain’s pedogenesis within few decades by increasing bank erosion and the 

oxidation of the subsoil. This was indicated by the occurrence of redoximorphic 

features in the floodplain’s soil profiles as well as the distribution of pedogenic Fe 

oxides of Study II.   

Remarkably high amounts of the subsoil OC in the floodplain were stored in light 

fraction OM, i.e. free and occluded particulate organic matter. The composition of 

this light fraction OC depended on the composition of the respective alluvial 

sediments as well as on the hydrologic conditions in the floodplain. The specific 

site conditions led to large contrasts in the chemical composition of the oPOM: 

strongly decomposed, lipid-rich in less-aerated subsoils and weakly decomposed 

in well-aerated soils with high bioturbation. In well-drained floodplain soils, 

particularly the free POM was assumed to be vulnerable to decomposition in the 

short term, as no further stabilisation mechanism protects it from heterotrophic 
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reduction. In the medium term, also the occluded POM may decompose as the 

turnover of aggregates releases OM. Floodplain OC stocks may not only be 

threatened by drainage. As floodplain soils are highly productive agricultural sites, 

the economic pressure of intensive cultivation and land-use changes from 

grassland to cropland are immanent. Also, erosional mass losses in the case of 

severe floods in a changing climate may cause losses of soil OC.  

Soil type, landform and the legacy of land use were identified as most relevant, 

when disentangling the factors of topsoil and subsoil OC storage in agricultural 

soils of Bavaria. Floodplain soils were disclosed as major OC reservoirs, because 

of the dominant grassland use of these soils on the one hand (high topsoil OC 

stocks) and its development on OC-rich sediments on the other hand (high subsoil 

OC stocks). The presented dissertation demonstrated that these soils may be 

prone to the release of CO2 as land-use changes and drainage may alter the 

decomposition of the floodplain’s inherent OM. Human activities in the ecosystem 

of decades and centuries had a strong influence on the amount and composition 

of the OC that is today stored within the whole soil profile. This becomes 

particularly clear in Europe and Bavaria with its old cultural landscapes and soils. 
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