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Abstract

We present the modeling of a single-link flexible manipulator test rig, which consists
of lumped and distributed parameter subsystems, in the port-Hamiltonian (PH) framework.
We focus on discretization issues for the flexible structure and the interconnection of the
subsystems to obtain the complete PH model. The flexible structure is modeled as a
Timoshenko beam, and the finite-dimensional model is obtained by a geometric pseudo-
spectral discretization that preserves the PH structure. The overall manipulator model
serves as a basis for feedforward and feedback control design, where structural properties
of the PH formulation are exploited to achieve highly dynamic motion control on the test
rig.

1 Introduction

Light-weight manipulators have been developed in order to realize highly dynamic motion at a
large payload-to-mass ratio and with low energy consumption compared to conventional heavy
rigid robot, see e. g. [11]. The structural and joint elasticity requires to treat them as flexible
multi-body mechanical systems, which increases the complexity for modeling, motion planning
and control [5]. As pointed out in [13], the port-Hamiltonian (PH) approach represents a quite
natural perspective to tackle problems in multi-body flexible systems: All components (e. g.
rigid bodies, flexible links and kinematic pairs) are modeled separately as PH subsystems. Their
coupling via power-preserving interconnections produces an overall system model, in which the
PH structure is preserved. The existence of structural invariants (so-called Casimir functionals)
is the basis for output feedback control of flexible structures in the PH framework, see e.g.
[16]. To obtain finite-dimensional PH models of distributed parameter subsystems, a structure-
preserving discretization, see e.g. [6], [15] must be performed. The resulting discrete models
can also be exploited for feedback control [12]. See [2] for a general overview of the PH
approach to modeling and control of multiphysics systems.
In this contribution, we consider the modeling of a single-link flexible manipulator which is the
first stage of a modular test rig, currently set up at the Chair of Automatic Control. An elastic
steel beam is fixed on a rigid hub and driven by a gear motor in the horizontal plane. The gear
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Figure 1: Flexible link test rig. Figure 2: Sketch of a gear motor, cf. [4].

motor and rotating Timoshenko beam are described separately in PH form. A geometric spatial
discretization of the beam model is performed with the pseudo-spectral approach presented in
[15]. The PH structure is exploited to couple both finite-dimensional subsystem models by
interconnection.
The contribution is organized as followed: Section 2 presents the PH models of the gear motor
and the Timoshenko beam. A structure-preserving spatial discretization is performed for the
latter, before the models are interconnected. Section 3 contains a discussion on the choice
of collocation points for the pseudo-spectral discretization of the beam and the assessment of
the approximation quality in terms of the spectrum, eigenfunctions and frequency response.
Conclusion and an outlook to future work are given in Section 4.

2 Modeling

Figure 1 depicts the lab setup for the single-link flexible manipulator. The beam, which is
connected to the gear motor via a hub, exerts a planar motion. The core task for modeling and
control of the light-weight manipulator is to deal with the vibration of the flexible structure,
which is described by partial differential equations. Timoshenko theory provides an accurate
description of the dynamics by taking into account the shear forces and rotatory inertia. The
Timoshenko beam is a popular example for modeling and control based on the port-Hamiltonian
(PH) representation of distributed parameter systems, while the gear motor system can be easily
described by ordinary differential equations.

2.1 Gear motor

The drive system of the manipulator consists of a brushless DC electric motor (BLDC motor)
with a Harmonic Drive R© gear and a rigid hub. The gear elasticity can be approximated by a
linear torsion spring (see e. g. [4]). Instead of directly connecting on the gear box, the beam is
fixed on a rigid hub whose mass and moment of inertia shouldn’t be neglected.

Equations of motion. Figure 2 shows a sketch of the gear motor, similar to [4], page 58.
According to the Newton’s second law, the equations of motion can be described by two degrees
of freedom at the driven side:

IM θ̈M = MM − cs(θM − θh) (1)

Ihθ̈h = cs(θM − θh)−Mh −Qhrh. (2)



The indices m and M refer to quantities on the driving and driven side, respectively.

IM = n2Im, MM = nMm, θM =
θm
n
, (3)

are the motor moment of inertia3, the motor torque and the rotation angle at the driven side
for a gear ratio n > 1. The motor output torque MM will be considered the system input. θh
indicates the hub angle, which is in general θh 6= θM . The linear spring forceMs = cs(θM−θh)
represents the gear elasticity. Mh and Qh are the bending torque and shear force due to the
beam reaction.

Port-Hamiltonian representation. We define the the state vector

xa(t) =
[
θM θh pM ph

]T
, (4)

which is composed of the drive angles θM and θh as well as the angular momenta pM = IM θ̇M
and ph = Ihθ̇h. The energy of the drive system consists of the kinetic and elastic potential part:

Ha =
1

2
(
p2M
IM

+
p2h
Ih

+ cs(θM − θh)2). (5)

The co-energy variables are defined by the gradient of the Hamiltonian,

(
∂Ha

∂xa

)T
=


cs(θM − θh)
−cs(θM − θh)

θ̇M
θ̇h

 , (6)

and represent the spring forces, the motor driven and the hub angular speed, respectively. The
equations of motion (1) can now be rewritten in port-Hamiltonian form as

ẋa = Ja

(
∂Ha

∂xa

)T
+ Baua

ya = BT
a

(
∂Ha

∂xa

)T (7)

with the interconnection and input matrix

Ja =

[
02×2 I2

−I2 02×2

]
, Ba =

0 0 1 1
0 0 0 rh
0 0 0 1

T .
The vectors ua,ya ∈ R3 of inputs and collocated, power-conjugated outputs are

ua =

 MM

−Qh

−Mh

 =

[
ua1
ua2

]
, ya =

 θ̇M
vh
θ̇h

 =

[
ya1
ya2

]
, (8)

where vh = θ̇h
rh

denotes the translational velocity of the hub and ua2 contains the reaction force
and torque of the beam.

3Im consists of the moment of inertia of the rotor and fast rotating gear part.



Figure 3: Beam with coordinate systems [3]

Parameter Value Unit
Length 0.65 m
Width 0.03 m
Depth 0.005 m
Volumetric mass density 7850 kgm−3

Young’s modulus 210 GPa
Poisson’s ratio 0.34 –
Shear correction factor 5

6 –

Table 1: Parameters of a steel beam

2.2 Timoshenko beam

We introduce the model of the Timoshenko beam in PH form and summarize its structure-
preserving discretization that leads to a finite-dimensional PH state space model as in [19].

2.2.1 Distributed parameter model

Figure 3 depicts the total motion of Timoshenko beam which consists of a rigid rotation θh(t),
the flexible displacement from the equilibrium position we(t, z) and the rotation of the beam’s
cross section due to bending ψe(t, z) at a point z along the beam length4. The shear angle
γ = ∂zwe(t, z) − ψe(t, z) is non-zero according to the Timoshenko theory. Additionally, we
assume that the beam length doesn’t change during the movement.

Classical beam equations. In many engineering applications, as well as in our case, only
small deformations with respect to a reference configuration occur, so that the linearized model
can be used, see e. g. [3]. The two linear second order PDEs on R+ × [0, L] are considered

ρ∂2tw −Ks(∂
2
zw − ∂zψ) = 0

Iρ∂
2
t ψ −Kb∂

2
zψ +Ks(ψ − ∂zw) = 0,

(9)

describe the total deflection w(t, z) and rotation ψ(t, z) of the beam’s cross section

w(t, z) = we(t, z) + zθh(t), ψ(t, z) = ψe(t, z) + θh(t). (10)

The physical parameters ρ, Iρ, Ks and Kb are respectively the line density, mass moment of
inertia of cross section, shear and flexural stiffness. In most references, the latter are defined
by Ks = κGA and Kb = EI , where the shear correction factor κ depends on the shape of the
cross section. A is the cross sectional area, G is the shear modulus, E is Young’s Modulus and
I is the area moment of inertia. For θh(t) = 0, Eqs. (9) describe the quasistatic Timoshenko
beam model (see [10]).

Port-Hamiltonian formulation. According to [9], we define a vector of distributed state
variables xb(t, z) ∈ R4 as

xb =
[
pt pr εt εr

]T
=
[
ρ∂tw Iρ∂tψ ∂zw − ψ ∂zψ

]T (11)

4We consider only a planar motion of beam in the rectangular coordinate system, so that we define a generalized
coordinate z as the spatial coordinate along the beam to describe the 1D deformation.



with pt(t, z), pr(t, z) the translational and angular momentum densities, and εt(t, z), εr(t, z) the
shear and rotational strains. The total Hamiltonian is Hb =

∫ L
0
Hbdz with energy density

Hb =
1

2ρ
p2t +

1

2Iρ
p2r +

1

2
Ksε

2
t +

1

2
Kbε

2
r. (12)

Due to the horizontal configuration of the manipulator, no gravitational energy terms occur. The
vector of (distributed) effort variables eb(t, z) can be expressed as eb = (∂xb

Hb)
T = (δxb

Hb)
T ,

where δxb
Hb denotes the (row) vector of variational derivatives of the energy functional:

eb(t, z) =


ept

epr

eεt

eεr

 =


δptHb

δprHb

δεtHb

δεrHb

 =


pt/ρ
pr/Iρ
Ksεt
Kbεr

 . (13)

The effort or co-state variables represent translational and angular velocity as well as shear
force and bending moment. The two second order PDEs (9) can be rewritten as a system of
forth order equations:

ẋb = (P 1∂z + P 0)(δxb
Hb)

T , P 1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , P 0 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 . (14)

P 1∂z + P 0 is a formally skew-adjoint differential operator, see e. g. [9]. Defining the vector of
flows f b(t, z) = −ẋb, the time derivative of Hb can be written as

Ḣb =

∫ L

0

δxb
Hb ẋb dz = −

∫ L

0

eTb (z)f b(z) dz. (15)

Replacing the right hand side of (14) for the flows and applying integration by parts, we obtain

Ḣb = (epteεt + epreεr)|L0 , (16)

which gives rise to define the boundary flow and effort variables[
f t∂ f r∂ et∂ er∂

]T
=
[
ept |∂Z epr |∂Z eεt |∂Z eεr |∂Z

]T (17)

where eν |∂Z = {eν(0), eν(L)}, ν ∈ {pt, pr, εt, εr} denotes the restriction of the effort variables
to the boundary of Z = [0, L]. Comparing (15) and (16), we get the power continuity equation∫

Z

eb(t, z)f b(t, z) dz + (et∂(t)f
t
∂(t) + er∂(t)f

r
∂ (t))

∣∣
∂Z

= 0. (18)

The validity (18), is only due to the linear relation −f b = (P 1∂z + P 0)eb, the application
of integration by parts (or Stokes theorem, in general) and the definition of boundary port
variables (17). The (Stokes-)Dirac structure D is defined by the corresponding subset of the
bond space (i. e. the space of conjugated power variables), where power continuity holds. For
the subsequent geometric discretization, it is useful to write the distributed part of the (Stokes-
)Dirac structure without dissipation5 as

−f b = P 1∂zeb + P 0eb∗, eb∗ = eb. (19)

We use two different notations for the identical effort vector, depending on whether it is subject
to differentiation or not.

5The case of dissipation is also discussed in [19].



2.2.2 Structure-preserving spatial discretization

In [19], we performed a geometric or structure-preserving discretization to approximate the
infinite-dimensional (Stokes-)Dirac structure by a finite-dimensional counterpart. It is based
on the pseudo-spectral method presented in [15] where it has been proposed for canonical
systems of two conservation laws. Different polynomial approximation bases are used to take
into account the different geometric nature of flow and effort variables. The discretization
of the PH system is completed with the finite-dimensional approximation of the energy and
the constitutive relations in the approximation spaces. Note that during the whole process the
boundary port variables are preserved and appear as (interconnection) port variables (inputs and
outputs) in the resulting lumped PH model. The (geometric or structural) properties retained in
the lumped model make this method outstanding.

Approximation bases. The idea, see [15], is to define different approximation bases for the
flows f ν ∈ {fpt , f pr , f εt , f εr} and the efforts eν ∈ {ept , epr , eεt , eεr}. Different approximation
bases are chosen for eν and eν∗ , depending on whether the effort is differentiated or not:

f ν(t, z)≈
N−1∑
k=0

f νk (t)wfk(z), eν∗(t, z)≈
N−1∑
k=0

eν∗,k(t)w
f
k(z), eν(t, z)≈

N∑
i=0

eνi (t)w
e
i (z). (20)

The time dependent coefficients are collected in the vectors6

f ν , eν∗ ∈ RN and eν ∈ RN+1, ν ∈ {pt, pr, εt, εr}. (21)

wfk(z) andwei (z) are the basis functions for flows and efforts that satisfy the exact differentiation
or compatibility condition

span{∂zwe0, . . . , ∂zweN} ⊆ span{wf0 , . . . , w
f
N−1} (22)

see e. g. [17]. In our problem, the interpolating Lagrange polynomials of degree N and N − 1
are a suitable choice:

wei (z) =
N∏

j=0,j 6=i

z − ξj
ξi − ξj

, wfk(z) =
N−1∏

j=0,j 6=k

z − zk
zk − zj

. (23)

ξi ∈ [0, L], i = 0, . . . , N and zk ∈ [0, L], k = 0, . . . , N − 1 are the collocation points for wei
and wfk , respectively, and wei (ξj) = δij , w

f
k(zj) = δkj hold. The choice of the collocation points

will be discussed in detail in Section 3.

Approximation of the structure. Denote we = [we0, . . . , w
e
N ]T the vector of effort basis

functions and

Φ =

[
we(0)T

we(L)T

]
. (24)

Let f t/r∂ = [f
t/r
0 , f

t/r
L ]T and e

t/r
∂ = [e

t/r
0 , e

t/r
L ]T be the vectors of boundary flows and efforts

corresponding to translational and rotational motion. Inserting (20) into (19) and (17), one

6Recall that we use the placeholder ν ∈ {pt, pr, εt, εr}.



obtains the linear system of equations

−


f pt

f pr

f εt

f εr

 =


0 0 D 0
0 0 0 D
D 0 0 0
0 D 0 0



ept

epr

eεt

eεr

+


0 0 0 0
0 0 IN 0
0 −IN 0 0
0 0 0 0



ept∗
epr∗
eεt∗
eεr∗



f t∂
f r∂
et∂
er∂

 =


Φ 0 0 0
0 Φ 0 0
0 0 Φ 0
0 0 0 Φ



ept

epr

eεt

eεr

 .
(25)

The elements of the derivative matrix D ∈ RN×(N+1) are given by the spatial derivative of the
effort basis functions at the flow collocation points:

[D]k+1,i+1 = ∂zw
e
i (zk), i = 0, . . . , N, k = 0, . . . , N − 1. (26)

In accordance with the distributed-parameter model, additional couplings through the identity
matrices IN appear on the right hand side of (25).The energy balance (15) is approximated by
degenerate bilinear forms between the vectors of discrete flows and efforts (for details see [19]):

Ḣb ≈
∑

ν∈{pt,pr,εt,εr}

(eν)TMf ν . (27)

The elements of the non-square mass matrix M ∈ R(N+1)×N are defined as

[M ]i,k =

∫ L

0

wei (z)wfk(z) dz.

The subspace of the discrete bond space, on which (25) is defined, is not a Dirac structure. The
latter requires a non-degenerate power pairing, which is obtained by defining vectors of reduced
effort variables ẽν ∈ RN ,

ẽν = MTeν . (28)

Constitutive equations. The energy is approximated by

H̄b ≈
1

2

∑
ν

cν(xν)TSxν , cν ∈ {1

ρ
,

1

Iρ
, Ks, Kb}, (29)

where the matrix S ∈ RN×N is made of the elements

[S]i,j =

∫ L

0

wfi (z)wfj (z)dz. (30)

On the one hand, we can derive the discretized constitutive

ẽν =

(
∂H̄b

∂xν

)T
= cνSxν ∀ν. (31)

On the other hand, the discretized effort vectors eν∗ are defined with respect to the same basis as
the states, such that the following relation follows immediately:

eν∗ = cνxν = S−1ẽν = S−1MTeν . (32)



Input-output representation. The I/O representation, see [19], is derived from elementary
matrix operations and assigning the roles of in- and outputs to the boundary port variables. In

(
f pt

−et∂0

)
(

f pr

−er∂0

)
(
f εt

f t∂L

)
(
f εr

f r∂L

)


= J̃ b



(
ẽpt

f t∂0

)
(
ẽpr

f r∂0

)
(
ẽεt

et∂L

)
(
ẽεr

er∂L

)


, (33)

the skew-symmetric (global) interconnection matrix J̃ b ∈ R(4N+4)×(4N+4) (notation: we
0 =

we(0)T , we
L = we(L)T ) reads

J̃ b=



0 0

(
−D
−we

0

)(
MT

we
L

)−1

0

0 0

(
−S−1MT

0

)(
MT

we
L

)−1 (
−D
−we

0

)(
MT

we
L

)−1

(
−D
−we

L

)(
MT

we
0

)−1 (
S−1MT

0

)(
MT

we
0

)−1

0 0

0

(
−D
−we

L

)(
MT

we
0

)−1

0 0


. (34)

The following approximate power continuity equation holds:∑
ν∈{pt,pr,εt,εr}

(ẽν)Tf ν +
∑

µ∈{t,r}

(eµ∂)Tfµ∂ = 0. (35)

We denote U ,Y ∈ R4 the vectors of boundary inputs, and collocated, power-conjugated
outputs, which are composed of the elements of the boundary flow and effort vectors f t∂ , f r∂ , et∂ ,
er∂ , see e. g. [9]. In terms of the physical boundary variables we have

U(t) =


ẇ(0)

ψ̇(0)
Qs(L)
Mb(L)

 =

[
U 0

UL

]
, Y (t) =


−Qs(0)
−Mb(0)
ẇ(L)

ψ̇(L)

 =

[
Y 0

Y L

]
, (36)

where ẇ and ψ̇ denote translational and angular velocity and Qs and Mb are the shear force
and bending moment, respectively. Merging the vectors xν ∈ RN to the overall state vector
X ∈ R4N , we obtain the discretized model in linear PH form:

Ẋ = J b

(
∂H̄b

∂X

)T
+ BbU

Y = BT
b

(
∂H̄b

∂X

)T
+ DbU

(37)

where J b, Bb and Db are composed of the corresponding submatrices of J̃ . In particular, we
write the input and feedthrough7 matrices

Bb =
[
B0 BL

]
, Db =

[
D0 DI

−DT
I DL

]
, D0 = −DT

0 , DL = −DT
L. (38)

7The feedthrough stems from the rigid body motion.



Figure 4: Symbolic representation of the interconnected system. The half arrows indicate the
direction of the power flow.

2.3 Coupling of the subsystems

The flexible beam is attached to the rigid hub. The point z = 0 along the beam corresponds
to the radius of the hub. Here, the (reaction) shear force is localized. The power-preserving
interconnection conditions, which are visualized in Fig. 4, are

ua2 =
[
−Qh −Mh

]T
=−Y 0 =

[
Qs(0) Mb(0)

]T
,

ya2 =
[
vh θ̇h

]T
= U 0 =

[
ẇ(0) ψ̇(0)

]T
.

(39)

Inserting the corresponding parts of (33) and (8) into (39), we obtain

ua2 = −Y 0=−

(
BT

0

(
∂H̄b

∂X

)T
+ DIUL

)
,

U 0 = Y a2 = BT
a2

(
∂Ha

∂xa

)T
.

(40)

We can rewrite the differential equations for the drive system and the discretized beam as

ẋa = Ja

(
∂Ha

∂xa

)T
−Ba2B

T
0

(
∂H̄b

∂X

)T
+ Ba1ua1 −Ba2DIUL

Ẋ = B0B
T
a2

(
∂Ha

∂xa

)T
+ J b

(
∂H̄b

∂X

)T
+ BLUL,

(41)

With the global state vector x̃ = [xTa , X
T ]T ∈ R4N+4, the total energy H̃(x̃) = Ha(xa) +

Hb(X) and the definition of the global inputs and their collocated, power-conjugated outputs

ũ =

[
ua1
UL

]
=

 MM

Qs(L)
Mb(L)

 , ỹ =

[
ya1
Y L

]
=

 θ̇M
ẇ(L)

ψ̇(L)

 , (42)

we obtain the state space model in standard PH form

˙̃x =

[
Ja −Ba2B

T
0

B0B
T
a2

J b

](∂H̃
∂x̃

)T
+

[
Ba1 −Ba2DI

0 BL

]
ũ

ỹ =

[
BT
a1

0
−DT

I B
T
a2

BL

](∂H̃
∂x̃

)T
.

(43)



By skew-symmetry of the overall structure matrix and the relation between input and power-
conjugated output, we obtain immediately the overall energy balance

˙̃H = Ḣa + ˙̄Hb = yTaua + Y TU = ỹT ũ. (44)

Without a tip mass, UL =
[
Qs(L) Mb(L)

]T
= 0, i. e. the interconnected model of the flexible

set-up is only driven by the motor torque.

3 Comments on the geometric pseudo-spectral discretization

In this section, we discuss in detail some issues that are related to the application of the geometric
pseudo-spectral method and its approximation quality for the flexible beam example. We
discuss the approximation of the spectrum and the eigenfunctions under homogeneous boundary
conditions and the approximation of a transfer function for a time-varying boundary condition.

3.1 Choice of the collocation points for the basis functions

A core ingredient of the geometric pseudo-spectral method is the choice of the approximation
space. In section 2.2.2, interpolating Lagrange polynomials, which satisfy the compatibility
condition (22), are chosen as basis functions. The collocation points, where the approximate
solution should match the exact one, can be typically either uniformly distributed or chosen as
the zeros of Legendre or Chebyshev polynomials. Since the boundary flows and efforts depend
on the boundary conditions, the two endpoints are also taken into account (see [10]).
Let us consider the clamped-free boundary conditions (θh(t) = 0, free tip) for which the exact
solution can be calculated by separation of variables (see Appendix A.2) with computer algebra
software like Maple R©. The four boundary conditions in terms of boundary flows/efforts are:

Clamped at z = 0: ẇ(t, 0) = 0, ψ̇(t, 0) = 0.

Free at z = L: Qs(t, L) = 0, Mb(t, L) = 0.
(45)

We consider different distributions of collocation points: uniformly distributed and in the zeros
of Gauss-Legendre polynomials plus the two endpoints of the interval. Table 2 shows the natural
frequencies for the discretized system with different N , compared to the exact values according
to Appendix A.2. The method is conservative, i. e. no numerical dissipation occurs in the
approximate models. It is remarkable that the approximate eigenfrequencies do not depend
on the choice of the collocation points8. Note that the first five eigenfrequencies – which are
dominant for control – are very well approximated even with a relatively small number of
collocation points (here N = 12).
Contrary to the eigenfrequencies, the distribution of collocation points has a strong impact on
the approximation of the eigenfunctions. To avoid the occurrence of numerical oscillations at
the boundaries of the interval [0, L] with increasing number N of collocation points (Runge’s
phenomenon, see e. g. [7]), we choose the interior Gauss-Legendre collocation points together
with the two endpoints in this contribution.

3.2 Approximation of the eigenfunctions

We compare the eigenfunctions based on the single fourth order displacement differential equation
as derived in Appendix A with the numerical approximations by the geometric pseudo-spectral

8See also the discussion of this point in [15], p. 1290.



Table 2: First five natural frequencies of the discretized model for the uniform beam in Hz.

Exact frequency
Uniformly distributed Gauss-Legendre
N = 6 N = 12 N = 6 N = 12

9.8873 9.8873 9.8873 9.8873 9.8873
61.9447 61.9463 61.9447 61.9463 61.9447

173.3663 174.294 173.3663 174.2940 173.3663
339.4978 371.4142 339.4978 371.4142 339.4978
560.7196 964.2529 560.7327 964.2529 560.7327

method. Under homogeneous boundary conditions, it is easy to obtain the exact eigenfunctions
(eigenmodes) for the corresponding eigenfrequencies. The approximate eigenfunctions can be
represented as the weighted sum of corresponding flow/state basis functions

X̂i(z) =
N−1∑
k=0

Xi(zk)w
f
k(z) (46)

with Xi(zk) the exact values of the i-th eigenfunction in the collocation points zk (see also
[17]). Figure 5 represents the approximations of the first (left) and fifth (right) eigenfunctions,
compared to the exact eigenfunctions. The first eigenfunction is perfectly approximated with
N = 6, while for the fifth one, N = 12 is large enough to achieve “perfect” matching.
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Figure 5: Exact and approximate eigenfunctions for the first and fifth mode.

3.3 Approximation of the transfer function

Neglecting the drive system, we consider the forced rotation of the beam around the joint at z =
0, which means that the second boundary condition in (45) becomes time-varying: ψ̇(t, 0) =
θ̇h(t). The exact transfer function between ψ̇(t, 0) and ψ̇(t, L), is evaluated numerically (see
Appendix A.3). In Fig. 6, this exact amplitude frequency response (solid line) is compared with
the transfer functions of the discretized models withN = 6 (dash-dotted) andN = 12 (dashed).
The latter approximation fits perfectly the exact frequency response in the considered range.
To sum up this section, the geometric discretization approach using interpolating Lagrange
polynomials gives an accurate approximation of eigenfrequencies, eigenfunctions and the transfer
behavior, even for small N .
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Figure 6: Exact and approximate amplitude frequency response from ψ̇(t, 0) to ψ̇(t, L).

4 Conclusions and outlook

We presented the modeling of a single-link light-weight manipulator in the port-Hamiltonian
(PH) framework by interconnecting the drive system with gear elasticity and the flexible link.
The finite-dimensional model for the Timoshenko beam has been obtained using a geometric
pseudo-spectral method in PH formulation. We discussed in some detail the choice of the
collocation points and the approximation accuracy of the beam model in terms of spectrum,
eigenfunctions and the frequency response.
The structure of the PH beam model can be exploited for inversion-based feedforward motion
control [19]. Current work is on implementing the feedforward controller – including the model
of the flexible drive – on the test rig and performing first experiments. In a next step, to achieve
highly dynamic motion control, we will close the loop by observer-based feedback control in the
PH framework [8]. The single flexible-link setup is the simplest configuration of the modular
flexible test rig. The extension to a multibody flexible-link manipulator, and its operation based
on PH models poses a series of interesting research questions in theory and application.
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Appendix A Free and forced vibrations of the Timoshenko beam

We sketch the derivation of exact expressions for the eigenforms and the computation of the
natural frequencies of the Timoshenko beem as described in [14]. Moreover, we summarize the
reasoning of [1] to obtain transfer functions for the case of inhomogeneous boundary conditions.



A.1 Eigenvalue problem

Setting w(t, z) = T (t)X(z) and ψ(t, z) = T (t)Y (z), the two PDEs (9) can be written

ρX(z)T̈ (t)−Ks[X
′′
(z)T (t)− Y ′

(z)T (t)] = 0,

IρY (z)T̈ (t) +Ks[Y (z)T (t)−X ′
(z)T (t)]−KbY

′′
T (t) = 0.

(47)

Separation of variables yields

T̈

T
=
Ks(X

′′ − Y ′)
ρX

=
KbY

′′ −Ks(Y −X ′)
IρY

. (48)

For harmonic vibrations with frequency ω, the time function satisfies T̈ (t)+ω2T (t) = 0. Using
this relation, we arrive quickly at the expressions

Y ′ = X ′′ + a(ω)X (49)
−b(ω)Y = X ′′′ + [a(ω) + c(ω)]X ′ (50)

with the frequency-dependent coefficients

a(ω) =
ρω2

Ks

, b(ω) =
Iρω

2

Kb

− Ks

Kb

, c(ω) =
Ks

Kb

. (51)

From (49), (50), we eliminate Y to obtain the single fourth order differential equation for the
displacement function

X(4) + d(ω)X
′′

+ e(ω)X = 0, (52)

where9

d(ω) = a(ω) + b(ω) + c(ω) = ω2(
Iρ
Kb

+
ρ

Ks

), e(ω) = a(ω)b(ω) =
ρω2

Kb

(
Iρω

2

Ks

− 1). (53)

By parametrizing the solutions of (52) via X(z) = Ceλz, we obtain the characteristic equation

λ(4) + d(ω)λ2 + e(ω) = 0. (54)

With r := λ2, this becomes a quadratic equation whose roots are given by

r1/2 = −1

2
d(ω)± 1

2

√
∆(ω), ∆(ω) = d2(ω)− 4e(ω) > 0 ∀ω. (55)

At the critical frequency ωc =
√

κGA
Iρv

, the root r1 changes sign, while r2 < 0 for all ω. We
distinguish the cases

1. ω < ωc ⇒ r1 > 0. The resulting pairs of real and complex eigenvalues are

±λ1 = ±
√
r1, ±iλ2 = ±i

√
−r2. (56)

9The coefficients in terms of the volume density ρv = ρ
A and the moment of inertia I =

Iρ
ρv

read

a =
ρvω

2

κG
, b =

ρvω
2

E
− c(ω), c =

κGA

EI
, d = ω2ρv(

1

E
+

1

κG
), e =

ω2

EI
(
Iρ2vω

2

κG
−Aρv).



2. ω > ωc ⇒ r1 < 0. Only pairs of complex eigenvalues occur:

±iλ1 = ±i
√
−r1, ±iλ2 = ±i

√
−r2. (57)

We consider only the first case and describe the eigenvalues and eigenforms for the (dominant)
lower frequencies. The general solution of the displacement function X(z) be written as

X(z) = C1e
λ1z + C2e

−λ1z + C3e
iλ2z + C4e

−iλ2z

= P1 cosh(λ1z) + P2 sinh(λ1z) + P3 cos(λ2z) + P4 sin(λ2z)
(58)

with P1/2 = C1 ± C2 and P3/4 = C3 ± C4.

A.2 Boundary conditions, eigenforms and natural frequencies

The clamped-free boundary conditions with θh = 0 are translated into conditions on X(z):

X(0) = 0, X ′′′(0) + (a(ω) + c(ω))X ′(0) = 0,

X ′′′(L) + dX ′(L) = 0, X ′′(L) + aX(L) = 0.
(59)

With the general solution (58) for X(z) and its derivatives, we can formulate a system of
equations for the free parameters that satisfy the boundary conditions (abbreviations: A =
cosh(λ1L), B = sinh(λ1L), C = cos(λ2L), D = sin(λ2L)):

1 0 1 0
0 λ1((a+ c) + λ21) 0 λ2((a+ c)− λ22)

λ1(λ
2
1 + d)B λ1(λ

2
1 + d)A λ2(λ

2
2 − d)D −λ2(λ22 − d)C

(λ21 + a)A (λ21 + a)B (−λ22 + a)C (−λ22 + a)D



P1

P2

P3

P4

 =


0
0
0
0

 . (60)

This system of equations has the form

M(ω)P = 0 (61)

with a matrix M (ω), whose entries depend on the frequency ω, and P =
[
P1 P2 P3 P4

]T .
The frequencies at which detM (ω) = 0, are the natural frequencies or eigenfrequencies ωi
of the cantilever beam. The corresponding non-zero values of P parametrize the associated
eigenfunctions/eigenforms Xi(z) of the free vibration10.

A.3 Inhomogeneous boundary conditions

To obtain a transfer function from the hub angular velocity to the rotation speed of the tip, we
assume a harmonic excitation θh(ω) of the hub angle. The second boundary condition in (59) is
in this case replaced by

−b(ω)θh(ω) = X ′′′ + (a(ω) + c(ω))X ′. (62)

10The eigenfunctions can be normalized by requiring (see e. g. [18])

〈Xi(z), Xj(z)〉 =

{
δij , i = j

0, i 6= j
, ∀i, j.



The system of equations (61) becomes inhomogeneous,

M (ω)P = K(ω), (63)

with K(ω) =
[
0 −b(ω)θh(ω) 0 0

]T . For detM(ω) 6= 0, we can express the coefficients
of the general solution as P = M−1(ω)K(ω), which allows us to establish the relation

Y (ω, L) = G(ω)θh(ω). (64)

between the hub angle and the rotation of the beam tip. The same transfer function G(ω)
describes the ratio between the angular velocities.


