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Abstract 

With the widespread use of location sensing technologies such as GPS-enabled vehicles, huge 

volumes of vehicle trajectory data are increasingly generated. The growing availability of such data 

opens up new opportunities for performing more sophisticated and comprehensive spatial and 

temporal analyses for planning and management of transportation systems. One of the most useful 

types of analysis in this context is traffic data clustering, which can help in understanding and 

revealing valuable insights into urban mobility patterns and travel behavior.  

In this thesis, a six-day dataset of floating car data (FCD) from Munich city is used to extract 

meaningful urban mobility patterns. Hierarchical clustering analysis is used first to spatially cluster 

the trips in each day based on the coordinates of their origin and destination points, such that each 

cluster contains the trips that travel from one specific origin zone to another destination zone. Next, 

an innovative tool, called Relative Deviation Area (RDA), is introduced to help in understanding 

travel behavior in the resulting clusters. RDA aims to find the relative area by which a given 

trajectory is deviating from a referential trajectory (typically the least-cost path). RDA is computed 

for each trip in each cluster on each day. This is followed by investigating the relationship between 

trip average speed (V) and RDA for each day using Kernel regression method. The resulting 

regression curves are found sensible and consistent throughout all days, which indicates a potential 

association between the two variables. In addition, the relationship is temporally investigated at 

peak and off-peak periods. V values at peak periods are found to be lower than those at off-peak 

periods for the same value of RDA. Another case is tested where only private cars are considered, 

excluding all other vehicle types like taxicabs and trucks. The results showed that RDA values in 

private cars case are higher than those in all vehicle types case. 

The output illustrates the potential of using Big Data to infer mobility patterns and travel behavior. 

The developed RDA tool is expected to have several applications in different fields such as urban 

and transportation planning, transportation demand management, and traffic monitoring. 

Keywords: Floating car data (FCD), Spatial Clustering, Origin-Destination (OD) points, Mobility 

Patterns, Travel Behavior, Relative Deviation Area (RDA), Kernel Regression, R Software, 

Trajectory Analysis. 
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1. Introduction 

1.1 Background and Problem Statement  

How people move in cities, where they are likely to go from a given location, and what they do in 

various locations at different times form human mobility and activity patterns (Huang, Li, & Xu, 

2016). Understanding mobility patterns and human travel behavior plays a key role in urban 

planning, traffic forecasting, public transport management and location-based mobile applications, 

among others (Lian, Li, Gu, Huang, & Zhang, 2018).  

Understanding and discovering mobility patterns require reliable and high-quality traffic 

information. With the advent of ubiquitous sensing technology, massive amount of rich mobility 

data (e.g., human daily activities and vehicle trajectories) has become increasingly available from 

various sources such as cellular network data, geo-tagged social media data, and GPS floating car 

data (FCD) (Guo, Zhu, Jin, Gao, & Andris, 2012; Lian et al., 2018). These new data sources have 

the ability to improve data quality and accuracy and the potential to complement data collected 

using conventional methods. 

Mobility data analysis is of great importance in revealing valuable insights and advancing our 

understanding of complex space-time dynamics in a variety of domains, especially in urban 

planning and transportation management (Guo & Zhu, 2014). However, there are great challenges 

for mobility data analysis due to the massive data volume and the complexity of dealing with the 

spatial and temporal dimensions (Kim & Mahmassani, 2015). One of the most popular big data 

techniques used to deal with such challenges in analyzing mobility data is spatial clustering, which 

identifies distinct groups of trips or trajectories based on their geographical characteristics, such 

that there is greater similarity within each group than between groups (Kumar et al., 2018). The 

resulting clusters can provide useful insights into traffic flow patterns, trip planning, predicting 

passenger demand, traffic monitoring, and location-based services. 

For decades, in order to provide long-term guidance and short-term strategies for transportation 

planning and urban development, several studies have been conducted to identify, understand and 

predict human mobility patterns and travel behavior. For instance, some studies tried to investigate 

drivers’ route choice and the factors influencing their decisions (Levinson & Shanjiang, 2013; Sun, 

Zhang, Zhang, Chen, & Peng, 2014). However, there were no studies found in the literature that 
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investigated the area-based deviation between drivers’ actual chosen route and the least-cost route 

between two zones. Therefore, this thesis tries to find a way to fill this gap by presenting a novel 

tool that computes the deviation area between any two trajectories sharing the same origin and 

destination zone, with the help of ALCAMP algorithm presented by Mueller, Perelman, & Veinott 

(2016). This tool can help leveraging trajectory data collected by passive collection methods, such 

as FCD and cell phone GPS data to detect mobility patterns, and understand drivers’ travel behavior 

and route choice decision. 

1.2 Objectives and Research Question 

This thesis aims to leverage traffic data collected via FCD technique in inferring mobility patterns 

and investigating users’ travel behavior. Since the raw data contains a large number of trips with 

multiple attributes, it is not feasible to extract meaningful well-structured patterns from it. 

Therefore, it is necessary to group trips that have similar origin and destination points into spatial 

clusters first.  

For a better understanding of travel behavior and especially route choice, this thesis also seeks to 

develop a way to compute the area by which a vehicle traveling from one zone to another is 

deviating from the least-cost route between these two zones. In addition, the relationship between 

this deviation area and trip average speed is investigated in this thesis. 

Given the aforementioned thesis objectives, the main research question is formulated to be how to 

understand travel behavior within a given set of spatial clusters of trips? 

The research question to be answered introduces a wide spectrum of secondary research questions 

such as: 

 How to preprocess and clean the raw data? 

 Which similarity measure between trips shall be selected in clustering process? 

 Which clustering method shall be used to group the trips? 

 How many clusters shall the clustering produce? (What is the optimal number of clusters?) 

 How to compute the deviation area between two trajectories in a given cluster? 

 How to select the least-cost (referential) paths in each pair of zones? 

 How to investigate the relationship between deviation area and average speed? And which 

regression method to use? 
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1.3 Expected Contributions 

It is expected that this study and its findings will contribute both methodologically and practically 

as follows: 

 This research presents a spatial clustering of trips in a trajectory dataset based on their start 

and end points, where each resulting cluster represents an origin-destination (OD) pair. 

These OD pairs can be utilized for different uses, such as estimating OD matrices. 

 Criteria are developed in this thesis to help in determining the optimal number of spatial 

trip clusters, especially when the statistical methods fail to provide meaningful optimal 

number of clusters in this context. 

 A new tool is introduced in this thesis that aims to determine the deviation area between 

two vehicle trajectories. This tool is expected to have several applications in different fields. 

For instance, this tool might help better understanding drivers’ travel behavior (e.g., route 

choice). In addition, it can be employed as a part of the performance measures to determine 

the level of service of roads in a network. 

1.4 Research Framework 

This thesis consists of four main phases; Preliminary Study, Data Modeling,  Data Analysis, and 

Conclusion. A framework is developed to proceed through the research systematically. Figure 1.1 

illustrates the followed framework. 

Phase 1: Preliminary Study phase comprises several steps including reviewing the literature and 

describing the existing problem that is needed to be addressed. This step generates the research 

questions which the research aims to answer, followed by the research goals and objectives. 

Simultaneously, Phase 1 contains raw data exploring and preprocessing in preparation for modeling 

and analysis phases. 

Phase 2: Data Modeling phase consists of examining and testing different data clustering methods 

on a sample of the preprocessed data in order to select the method that gives the best results, 

spatially clustering dataset’s trips based on the location of their origin and destination points using 

the selected clustering method via R software, and developing criteria to choose the optimal 

number of clusters. 
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Phase 3: Data Analysis phase aims to understand the travel behavior in the study area through 

applying an innovative analysis factor called Relative Deviation area (RDA) on the resulting 

clusters. This phase also contains investigating the relationship between this factor and some 

attributes of dataset’s trips and especially trip average speed. 

Phase 4: Conclusion phase synthesizes and discusses the research findings, describes the 

limitations of this research, refers to the research questions attempting to answer them, suggests 

potential future research, and indicates real-world insights and practical implications of this 

research. 

 

Figure 1.1: Research framework 

1.5 Report Structure 

The rest of the report is organized as follows. Chapter 2 presents a detailed overall literature review 

on FCD, spatial clustering applications in transportation, and travel behavior research. Chapter 3 

describes the structure of the raw data and explains how it has been preprocessed and prepared to 

be used in the following chapters. Chapter 4 presents data modeling and analysis including 

clustering process and developing and applying RDA tool on the resulting clusters. Chapter 5 

shows and discusses the results of the modeling and analysis step which include investigating some 
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travel behavior relationships and characteristics. The study’s key findings as well as suggestions 

for further research are concluded in chapter 6. 
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2. Literature Review 

In this chapter, related work is reviewed and analyzed in order to acquire a deeper understanding 

of the problem in hand, and find the most appropriate methodologies to identify gaps in the 

literature and guide towards the development of methods that answer the research questions. This 

chapter is divided into three sections, section 2.1 describes FCD technique and its applications in 

transportation field. Section 2.2 covers spatial clustering of FCD, whether Origin-Destination (OD) 

points clustering or whole trajectory clustering, and the main approaches used in this domain. The 

related work on understanding and inferring urban travel behavior and mobility patterns using 

different analysis tools is summarized and covered in section 2.3. 

2.1 FCD Concept and Applications 

2.1.1 Background and Concept of FCD 

Accurate and reliable real-time traffic information is the foundation of most Intelligent 

Transportation Systems (ITS) applications, and a crucial part of traffic management and control 

especially on urban roads. Traditionally, a variety of traffic data sources such as inductive loops, 

road tubes, video processing, radar, and bluetooth have been used to estimate traffic parameters 

such as link occupancy, average speed and corridor density. However, these methods have some 

limitations. For instance, an inductive-loop sensor can only provide traffic estimation in a certain 

road segment which is not an accurate representative for all road segments. Moreover, installation 

of inductive-loop sensor requires breaking up road surface. Finally, these sensors are relatively 

expensive (Burnos et al., 2007). Video image detection has a main disadvantage of reduced 

visibility where the detection rate depends on the ambient lighting and meteorological conditions 

(Leduc, 2008). 

More recently, FCD has become another essential traffic data source and has an increasing usage 

due to its lower cost and higher coverage (Altintasi, Tuydes-Yaman, & Tuncay, 2017). FCD is 

mainly used to determine the status of  traffic, average speed and travel time on roads based on the 

accumulated collection of vehicles’ positions, instantaneous speed, time information, and direction 

of travel. The principle of FCD is to collect real-time traffic data by locating the vehicles via mobile 

phones or GPS over the entire road network, which means that every vehicle acts as a sensor for 

the road network (Ayala, Lin, Wolfson, Rishe, & Tanizaki, 2010).  
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FCD can be collected at a relatively low cost and can provides up-to-date and high-quality 

information in ITS (Huber, Lädke, & Ogger, 1999). In contrast to the traditional traffic data 

collection methods, FCD needs less maintenance and it doesn’t require installation of any 

additional infrastructure or hardware on the road network.  

Basically, there are two main types of FCD, namely GPS and cellular-based systems: 

GPS-based FCD 

Higher percentage of vehicles have been equipped with GPS system as it is becoming more and 

more useful and practical. GPS system utilizes the GPS receiver system, which is already attached 

to the vehicle, to gather information about it through transferring the data to the service provider 

(Wang, 2015). Therefore, the system can locate the exact location and movement of that specific 

vehicle and calculate the instantaneous speed for example. GPS probe data is widely used as a 

source of real-time traffic information by many service providers, but it suffers from the high 

equipment costs compared to floating cellular data (Leduc, 2008). 

Cellular-based FCD 

The mobile phone location data is regularly transmitted to the cellular network, and thus travel 

times and further data can be estimated over a series of road segments before being converted into 

useful information by traffic centers (Leduc, 2008). In contrast to GPS-based system, no special 

device/hardware is necessary as every mobile phone acts as a sensor. However, more complicated 

algorithms are required to extract high-quality information. 

2.1.2 FCD Applications 

FCD has some disadvantages including not providing direct information on traffic flow or density, 

infrequently sampling and occurring at irregular intervals, as well as involving potential privacy 

issues (Jones, Geng, Nikovski, & Hirata, 2013). However, FCD is an efficient emerging technology 

that collects accurate real-time traffic information covering an entire road network at a relatively 

low cost. These characteristics make this technology gain in popularity for the provision of data 

for traffic control and management systems.  

There are several applications that can benefit from the implementation of FCD, especially in 

transportation field. Congestion monitoring, OD matrices estimation, incident management, traffic 

queue detection, and dynamic route guidance are some examples of the potential application areas.  
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There have been many conducted studies that have leveraged FCD technology in such areas. Many 

studies benefited from FCD in traffic control and management applications. For instance, Kerner 

et al. (2005) presented a method to estimate traffic state and detect incidents on road networks 

using FCD. The presented method can detect incidents with at least 20 minutes duration with a 

probability of 65% and a penetration rate of 1.5% FCD vehicles out of the whole number of 

vehicles. Brockfeld, Lorkowski, Mieth, & Wagner (2007) tested travel time data extracted from 

taxi-based FCD system, using about 500 taxis, with estimated travel time data obtained from a 4-

day measurement campaign conducted along a main street in Nuremberg, Germany using license 

plate recognition technology. The study found that FCD system is particularly able to detect 

jammed situations, and the travel times calculated by the system deliver valuable data for mobility 

and traffic information systems. However, the authors suggested data fusion with locally 

continuous detecting sensors like inductive loops for applications like real-time traffic state 

detection and controlling traffic lights in real-time in order to improve the system performance that 

might be affected by the stochastic coverage by FCD. 

Some studies applied FCD to integrate urban mobility patterns with land use applications. Liu, 

Biderman, & Ratti (2009) used multiple real time data sources including 5,000 floating car GPS 

data in South China for the real time evaluation of urban mobility dynamics. The research provided 

accurate and dynamic method to understand daily urban mobility patterns and explore the 

relationship between mobility and land use on the one hand, and between mobility and social-

economic changes on the other. 

Other studies focused on deriving mobility patterns and investigating travel behavior using FCD. 

For example, Ding, Jahnke, Wang, & Karja (2016) used FCD to analyze the spatio-temporal 

mobility patterns of transport hubs such as airports and railway stations. As a test dataset, the 

authors used one-week FCD in Shanghai, China to uncover the mobility patterns related to 

Hongqiao International Airport, attempting to understand passenger’s travel behavior. The research 

results showed that there are obvious hourly and daily temporal mobility patterns as well as 

significant spatial hotspots related to transport hubs. In this thesis, FCD is used to infer travel 

behavior and spatial and temporal mobility patterns within the middle ring of Munich city. In 

contrast to Ding et al. (2016), the whole study area is divided into smaller pairs of OD zones, and 

then the travel behavior of passengers within each OD pair (cluster) is investigated. 
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2.2 Spatial Clustering  

2.2.1 Background and Concept of Spatial Clustering 

Clustering is the process of grouping a set of objects into groups or clusters in such a way that 

objects in the same group (cluster) are more similar to each other than to those in the other groups 

(clusters) (Ghuman, 2016). Cluster analysis has been studied in the field of machine learning as a 

kind of unsupervised learning since it learns from test data that has not yet been labeled, classified, 

or categorized. As a branch of statistics, clustering has also been studied extensively for many 

years. However, efforts to perform efficient clustering on large datasets only started in recent years 

due to the emergence of Big Data (Wang, 2016).  

In spatial clustering, the objects to be grouped have certain dimensions and coordinates. Spatial 

clustering is an essential part of spatial data mining as it provides certain insights into the 

distribution of data and characteristics of the resulting spatial clusters (Neethu & Surendran, 2013). 

Spatial clustering methods are mainly categorized into four methods: hierarchical, partitioning, 

density-based, and grid-based (Neethu & Surendran, 2013). All these categorizations are based on 

the specific criteria used in grouping similar objects. Many factors shall be considered before 

deciding on the clustering method to be used in a particular application. Such factors include 

application goal, desired clustering quality and speed, type and dimensionality of the data, and 

amount of noise in data (Wang, 2016).  

The following is a brief definition of these clustering methods, noting that they are covered in more 

detail in chapter 4. 

Partitioning Methods 

In partitioning methods, the data is considered as a one big group which then will be divided into 

certain predefined numbers of clusters (K). Therefore, K centers are initially selected in a random 

way and each object is assigned to the nearest cluster center. Next, objects are relocated from one 

cluster to another such that the sum of squared errors is minimized (Maimon & Rokach, 2005).  

Hierarchical Methods 

These methods build nested clusters by recursively partitioning data objects in either a bottom-up 

(agglomerative) or top-down (divisive) form (Maimon & Rokach, 2005). The output of hierarchical 
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clustering is a tree diagram called dendrogram, which illustrates the arrangement of the produced 

clusters. 

Density-based Methods 

Density-based clustering locates regions (neighborhoods) of high density that are separated from 

one another by regions of low density, where the density of a region is measured by the number of 

objects that belong to it. The key idea is that the density of a neighborhood with a given radius has 

to exceed some threshold (Moise & Pournaras, 2017). 

Grid-based Methods 

In grid-based methods, the space is divided into a finite number of cells first. Next, cells which 

contain more than a certain number of objects are considered as dense areas (Wang, 2016). 

2.2.2 Spatial Clustering in Transportation 

With the continuous progress in information and communication technologies in the past few 

decades, ITS have compiled massive amounts of data regarding the movement of people and goods 

(Lin, 2015). In addition to the traditional traffic data sources, new emerging sources and approaches 

such as FCD, social media, and crowdsourcing can be used to extract traffic information. To take 

advantage of all these data and to address the associated challenges, big data techniques are 

currently receiving increasing attention. Such techniques employ theories and tools from many 

fields such as statistics, machine learning, data mining, analytical models, and computer 

programming to solve the data analysis task (Lin, 2015). Therefore, it is vital to explore how big 

data techniques may be best employed for the analysis of transportation data.  

Clustering, typically spatial clustering, is the most common big data technique used in 

transportation data analysis (Anand, Padmanabham, Govardhan, & Kulkarni, 2017). It has several 

applications in transportation engineering. Such applications include dynamic traffic forecasting, 

spatio-temporal mobility patterns detection, pavement management, accident analysis, transport 

and urban planning, traffic and congestion management, and hotspot recognition. 

Several studies have applied spatial clustering in traffic management and control field. For 

instance, Liu & Ban (2013) used over 85 million taxicab GPS points (floating car data) collected 

in Wuhan, China to measure the degree of traffic congestion within the road network through 

spatio-temporal clustering of the low-speed GPS points. Zamani, Pourmand, & Saraee (2010) 
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applied hierarchical clustering to aid in the development of traffic control by automatically 

generating traffic signal timing plans. 

Other studies leveraged clustering algorithms in accidents analysis field. Dogru & Subasi (2014) 

tested different cluster analysis techniques to detect traffic accidents using vehicles’ velocity and 

location values. Results of this study showed that Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) and hierarchical clustering methods successfully detected accidents with 

average accident detection rate of 100%. 

Spatial clustering methods have been widely used in hotspot detection applications. For example, 

Yue, Zhuang, Li, & Mao (2009) employed taxi trajectory data collected in Wuhan, China to 

discover attractive areas in terms of frequency and density of passenger pick-up and drop-off 

events. The authors used hierarchical clustering method to spatio-temporally group the similar 

pick-up and drop-off points. According to Yue et al. (2009), hierarchical clustering was chosen 

over K-means (a common partitioning clustering method) since the latter requires a pre-knowledge 

of clusters number and the shape of all clusters is convex. 

Another important application of clustering analysis in transportation engineering is detecting 

mobility patterns. Some studies derived mobility patterns by spatially clustering trips using their 

whole trajectory, while other studies clustered trips using only their start (origin) and end 

(destination) points. Most of the studies that performed clustering on whole trajectories had 

developed new clustering algorithms or modified existing algorithms as the traditional clustering 

methods are usually applicable for points only. Chen, Hu, Zhang, & Shi (2014) provided an 

improved DBSCAN clustering algorithm in which GPS trajectories are partitioned into a group of 

line segments that are used to find out individual clusters with similar track segments. The output 

of the algorithm is discovering the spatial distribution and temporal evolution characteristics of 

people’s stay hot spots from their GPS trajectories data. Kumar et al. (2018) proposed a new 

clustering algorithm based on a novel Dijkstra-based dynamic time warping distance measure, 

which is suitable for extracting urban traffic patterns from large numbers of overlapping trajectories 

in dense road networks. Kim and Mahmassani (2015) introduced a trajectory clustering method to 

discover spatial and temporal travel patterns in a traffic network. The output of the proposed 

clustering approach is some spatially distinct traffic stream clusters, which together represent the 

major network traffic streams. The authors applied extended DBSCAN algorithm that uses Longest 

Common Subsequence (LCS) tool as a similarity measure among trajectories. LCS is an algorithm 
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for finding the longest common subsequence of two sequences. It originates in the field of string 

matching, where two strings with different lengths are given to find a set of characters that appear 

left-to-right, not necessarily consecutively, in both strings (Bergroth, Hakonen, & Raita, 2000). 

LCS has been used as a similarity measure between two time series or trajectories in several studies. 

The similarity between two trajectories is usually expressed as the number of matched elements 

between two sequences as illustrated in Figure 2.1. There are several ways for determining whether 

two points in two sequences are matched or not. One way is to consider spatial proximity only and 

another way is to consider both spatial and temporal proximity together (Kim and Mahmassani, 

2015). 

On the other hand, several studies detected mobility patterns through spatial clustering of trips’ 

origin and destination points. Guo et al. (2012) spatially clustered origin and destination points of 

taxi trajectories collected in Shenzhen, China to extract traffic flow measures, location patterns, 

and temporal structures embedded in the resulting clusters which represent the meaningful places. 

The authors applied hierarchical clustering method based on the Shared Nearest Neighbors (SNN) 

as a distance measure. The study excluded DBSCAN and K-means methods as the former is unable 

to identify clusters of different point densities, while the latter tends to assume a predetermined 

circular shape to find clusters. Ding, Meng, Yang, & Krisp (2018) propose a visual analytics 

approach for the exploration of spatiotemporal interaction patterns of massive OD data. The authors 

used hierarchical clustering of OD floating car data from Shanghai, China to extract OD hotspots 

and their spatial interaction patterns. In 2016, Kumar, Wu, Lu, Krishnaswamy, & Palaniswami 

applied DBSCAN algorithm to cluster OD pairs of large amount of passenger taxi rides collected 

in the city of Singapore to provide useful insight into mobility patterns and road network usage 

Figure 2.1: Concept of LCS tool in vehicle trajectories 
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within the resulting clusters. Whereas, in this thesis, three of the most common clustering 

algorithms, i.e., K-means, hierarchical, and DBSCAN, are practically tested on a dataset sample, 

and then theoretically compared against each other in order to select the most appropriate method 

to cluster trips’ OD points, such that each cluster presents a traffic flow from one specific zone to 

another within the middle ring of  Munich city. Next, a novel analysis factor is computed for each 

resulting cluster attempting to infer passengers’ travel behavior.   

2.3 Travel Behavior 

2.3.1 Travel Behavior Concept  

Travel behavior can be defined as “the study of what people do over space, and how people use 

transportation” (CTI Reviews, 2016). Travel behavior tries to answer questions like: Why do 

people travel? What mode do they take and why? How many trips do they make? Where do they 

go? What route choices do they make and why? and other questions related to people’s behavioral 

aspects of traveling and using transportation systems.  

As technologies have progressed, emerging passively collected traffic information sources have 

been promising in helping transportation experts better understand people’s movements through 

space and time (Rojas, Sadeghvaziri, & Jin, 2016). Traditional travel surveys have the 

disadvantages of  low response rates, high respondent burden, and significant implementation costs 

(Wolf, Oliveira, & Thompson, 2003). Data from passive collection methods, such as FCD, GPS 

data, mobile network data, and cell phone GPS data, might be able to supplement or complement 

the traditional household travel surveys and overcome the existing issues (Rojas et al., 2016). These 

data present different opportunities to reflect aspects of people’s travel behavior and mobility 

patterns. 

Studying, understanding, and sometimes changing people’s travel behavior have been a vital issue 

in transportation planning. Knowledge about travel behavior across transportation modes and 

demographics shall be considered to better predict future transportation requirements (SINTEF, 

n.d.). The ultimate objective of transportation planning is to design efficient and sustainable 

transportation infrastructures and services to meet the needs for accessibility and mobility 

(Montello & Goulias, 2018). Understanding human travel behavior, through applying different 

analytical tools and methods, is at the center of this design. 
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2.3.2 Travel Behavior Research and Applications 

For decades, in order to provide long-term guidance and short-term strategies for transportation 

planning and urban development, many studies have been conducted to identify, understand and 

predict human travel behavior (Buliung & Kanaroglou, 2007; Yue, Lan, Yeh, & Li, 2014; French 

Barchers, & Zhang, 2015). Traditionally, data that support travel behavior research mainly came 

from travel surveys, which have numerous shortcomings that have restricted data collection and 

further obstructed travel behavior research progress to some extent (Mitchell, 2014; Liu, Li, Li, & 

Wu, 2015). In the era of Big Data, along with the development of Information and Communication 

Technology (ICT), various novel data sources have arisen to supplement or substitute for the 

traditional sources to support travel behavior research (Wang, He, & Leung, 2017). Examples 

include smartcard records data, floating car data, roadside sensor data, and mobile phone data. 

There have been several applications of these data collected from the novel sources in the context 

of travel behavior research. Applications of OD matrix, travel patterns, choice model, and traffic 

monitoring are examples of such applications (Rojas et al., 2016; Wang et al., 2017). 

Several studies were able to leverage the available data to produce different facets of OD tables. 

Some studies proposed a method that used Call Detail Records (CDR) data to infer trips and then 

estimate largescale OD matrices (Fang, Xue, & Qiu, 2014; Iqbal, Choudhury, Wang, & Gonzalez, 

2014; Wang, Schrock, Broek, & Mulinazzi, 2013). These studies found that the data were most 

effective at the aggregate level. In an attempt to obtain more-detailed information, Rokib, Karim, 

Qiu, & Kim (2015) used similar CDR data in combination with Foursquare check-in data to 

reproduce OD matrices. Through the incorporation of time of day data, Li (2015) found that it was 

possible to create OD sample characteristics, mobile OD flow distributions, directional patterns, 

flow analysis for each OD pair, and spatial analysis. 

Another common application encountered in the literature was travel patterns. One of the most 

fundamental applications of the emerging traffic data sources in travel behavior research is to detect 

stays (visits) and extract trips (Wang et al., 2017). Clustering methods such as distance-based 

methods are usually used to identify stays and trips from mobile phone data (Ye, Zheng, Chen, 

Feng, & Xie, 2009). After stays are detected, trips can be extracted, and travel patterns can be 

identified on different scales, such as the travel frequency and distance on the individual level, and 

OD matrices and travel flow distributions on the aggregated level (Zhang, Hong, Nasri, & Shen, 
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2012; Calabrese, Di Lorenzo, Liu, & Ratti, 2011). Besides the detection of stays and trips, activities 

and corresponding trip types have also been frequently explored. Most studies detect activities that 

frequently take place and last for a considerable time period, such as staying at home and working 

in a workplace, and thus the most common identified trip type is home-based-work trips (Colak, 

Alexander, Alvim, Mehndiratta, & Gonzalez, 2015).  

Route choice has been the focus of several studies in choice model application (Rojas et al., 2016). 

Levinson & Shanjiang (2013) used GPS data to explore the application of route choice portfolios, 

which had the potential to solve the traffic assignment problem. The results indicated that the 

participants did not have a single dominant route. Another study considered the application of 

general route choice models based on real-world GPS data (Tawfik & Rakha, 2012). The study had 

three main findings. First, the observed route choice percentages varied from those derived through 

the use of stochastic user equilibrium expectations but were converging to specific values. Second, 

four types of heterogeneous driver learning and choice evolution pattern were identified. Third, 

driver and choice situation variables could predict the identified learning patterns.  

Spissu, Meloni, & Sanjust (2011) successfully converted GPS data into routes to characterize route 

choice variability and compare the least-cost route to the actual route. The authors found that 

discretionary trips generally displayed greater intraindividual variability, while work and study 

trips displayed greater interindividual variability and deviation from the least-cost routes. One 

paper studied the factors that influence commuters’ route choice and route switching based on real-

world observations of travel behavior (Sun et al., 2014). Possible factors that may affect driver’s 

route choice were then analyzed and regression methods were introduced, but the result indicated 

that a relationship between route choice and these factors was difficult to be established. However, 

travel distance, travel time and road preference were found to have comparable higher influence 

on drivers’ route choice than other factors. In this thesis, a novel tool is introduced which might 

help in detecting mobility patterns, and understanding drivers’ travel behavior and route choice 

decision. This tool computes the area by which a vehicle, travelling from one zone to another on a 

specific route, is deviating from the least-cost routes between these two zones, where the least-cost 

route can be the fastest route (i.e., with highest average speed), the shortest distance route, or any 

other desired criterion. 
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3. Data Collection and Preprocessing 

3.1 Data Description 

The technology of FCD is an emerging traffic information gathering method and an essential data 

source for most ITS. FCD is mainly used to determine the average traffic speed and travel time on 

roads based on the accumulated collection of vehicles’ positions, instantaneous speed, time 

information, and direction of travel. In this technology, traveling cars act as moving sensors that 

are equipped with a location detecting device, such as a GPS unit, and a communication device, 

such as a cellular phone (Ayala et al., 2010). 

The available FCD for this thesis was collected by INRIX, which is a leading software company 

that specializes in connected car services and transportation analytics. INRIX provides real-time 

traffic information, traffic forecasts, and travel times to government agencies, businesses, and 

individuals in more than 37 countries including the United States and most of Europe, for a better 

understanding of the movement of people, vehicles and goods (INRIX, 2018). 

The FCD used in the thesis was collected in the city of Munich, Germany for 6 days from Sunday, 

February 25, 2018 to Friday, March 2, 2018. The raw data consists of two main data frames; Trips 

data frame and Waypoints data frame.  

Trips data frame contains trips with metadata such as trip ID, start (end) GPS coordinates, start 

(end) date and time, provider ID, device ID, origin and destination zone, trip length, vehicle weight 

class, average speed, maximum speed, provider driving profile (consumer, taxi, etc.) and other 

fields. The data frame comprises 303,549 recorded trips within the city of Munich (whether starts, 

ends, starts and ends, or just passes through Munich city). 

Waypoints data frame contains full GPS waypoint data, listed trip by trip. The data includes trip 

ID, waypoint sequence, waypoint GPS coordinates, capture date and time, zone name, road class, 

and raw speed. In total, there are 10,190,930 waypoints for these 303,549 trips. Therefore, each 

trip in the first data frame has several waypoints in the second data frame (around 34 waypoints/trip 

on average) which together form the trajectory of that trip. 

The overviews of the general structure of Trips data frame and Waypoints data frame are described 

in Table 3.1 and Table 3.2 respectively, which give a listing of the most substantial available 

attributes contained in the FCD of Munich. 
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Table 3.1: Description of the data format of Trips data frame 

Field name* Field value  Units/notes 

Trip ID 00a7da9f4b503f36fc937f386b11ca58 In a serial number of 32 digits 

Start Date 2018-02-25T19:24:04.000Z UTC ISO-8601 format (yyyy-mm-

ddThh:mm:ss.sssZ) 

Start Loc Lon 11.573 

 

In decimal degrees; accurate to the 

3rd decimal place 

Start Loc Lat 48.178 

 

In decimal degrees; accurate to the 

3rd decimal place 

Geospatial Type EI  II for internal to internal, IE for 

internal to external, EI for external to 

internal, EE for external to external 

Trip Mean 

Speed 

31.5709577312315 In kilometer/hour (kph) 

Trip Distance 7498.10246116749 In meters (m) 

* According to INRIX 

Table 3.2: Description of the data format of Waypoints data frame 

Field name* Field value  Units/notes 

Trip ID 00ecb452acfaa03053a3827d3418fa20 In a serial number of 32 digits 

Waypoint 

Sequence 

0 Waypoints order starting from 0 and 

incrementing by 1 

Capture Date 2018-02-27T16:35:46.000Z UTC ISO-8601 format (yyyy-mm-

ddThh:mm:ss.sssZ) 

Longitude 11.56688 In decimal degrees; accurate to the 

5th decimal place 

Latitude 48.18158 In decimal degrees; accurate to the 

5th decimal place 

Raw Speed 20 In kilometer/hour (kph) 

* According to INRIX 
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The following is the detailed description of each attribute in each data frame: 

1) Trips data frame: 

 Trip ID: a trip's unique identifier. 

 Start Date: the trip's start date and time in UTC, ISO-8601 format. 

 End Date: the trip's end date and time in UTC, ISO-8601 format. 

 Start Loc Lon: the longitude coordinates of the trip's start point in decimal degrees. 

 Start Loc Lat: the latitude coordinates of the trip's start point in decimal degrees. 

 End Loc Lon: the longitude coordinates of the trip's end point in decimal degree. 

 End Loc Lat: the latitude coordinates of the trip's end point in decimal degrees. 

 Geospatial Type: describes the trip's geospatial intersection with the middle ring 

zone of Munich (II - Internal to Internal: trips that start and end within the middle 

ring zone; IE – Internal to External: trips that start within the middle ring zone and 

end outside of it; EI – External to Internal: trips that start outside of the middle ring 

zone and end within it; EE – External to External: trips that start and end outside of 

the middle ring zone, but were selected because of an intersection with it). 

 Trip Mean Speed: the average speed of the trip in kph. It is computed by dividing 

total trip length by total travel time. 

 Trip Distance: the total length of the trip in meters. 

 

2) Waypoints data frame: 

 Trip ID: a trip's unique identifier. 

 Waypoint Sequence: the order of the waypoint within the trip starting with "0" and 

incrementing by one. 

 Capture Date: the capture date and time of the waypoint in UTC, ISO-8601 format. 

 Longitude: the decimal degree longitude coordinates of the waypoint. 

 Latitude: the decimal degree latitude coordinates of the waypoint. 

 Raw Speed: the instantaneous trip speed in kph. 

Figure 3.1 shows the spatial distribution of the origin and destination points for all trips, where 

origin points are in blue, while destination points are in red. Most of the points are concentrated in 

Munich city. However, a considerable percentage of the points are located in other German cities 

or in the neighboring countries of Germany. 
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3.2 Data Limitations: 

Raw dataset has a few limitations that resulted in narrowing down the scope of the thesis. The main 

limitations are as follows: 

I. Although the available dataset contains a considerable amount of the trips occurred in 

Munich city during the survey period, it does not represent all trips as it contains only the 

trips surveyed by INRIX.  

II. Around 90% of all surveyed vehicles have only one recorded trip, as shown in Figure 3.2. 

As a result, the scope of the study is shifted from focusing on mobility patterns for 

individuals to focusing on mobility patterns on a trip-level. 

III. As can be noticed from Figure 3.1, there are a lot of outlying trips that started or ended far 

away from Munich city. It was concluded, during data modeling process, that these trips 

have a direct negative impact on clustering results. As a result, only internal to internal (II) 

Figure 3.1: Spatial distribution of origin and destination points 
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trips (i.e., trips that start and end within the middle ring of Munich) are considered in this 

thesis. There are 106,400 II trips which form almost 35% of all trips. Consequently, the 

middle ring zone is selected as the study area for this thesis, which is shown in Figure 3.3. 

Furthermore, this way mobility patterns and travel behavior within the middle ring zone 

can be further focused on, considering that this area is usually known to be suffering from 

serious traffic congestion problems. 

Figure 3.3: Study area 

Figure 3.2: Number of surveyed trips per vehicle 
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3.3 Data Preprocessing 

Before using the available data and proceeding with data modeling and processing, there is a 

necessity to prepare and preprocess the raw data first, since real-world data is often incomplete, 

inconsistent, and/or lacking certain behaviors or trends, and is likely to contain some errors. Hence, 

data preprocessing is a proven technique to resolve such issues. Data preprocessing aims at 

improving the quality of raw data and, consequently, the quality of mining results, and preparing 

it for further analysis (Jambhorkar & Jondhale, 2015). Figure 3.4 shows the data preprocessing 

technique used in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

This technique consists of four steps; data cleaning, data integration, data transformation, and data 

reduction. Of course, these steps are not mutually exclusive, and they might be applied 

simultaneously. All data preprocessing techniques and steps in this thesis are applied using 

Microsoft Excel spreadsheet and R software. 

In the following, each step is briefly described and what is done to raw data within each step is 

outlined: 

1) Data cleaning: this step is applied to remove noise from raw data and to correct the 

inconsistences by filling in missing values, smoothing outlier values, and resolving 

blunders (Jambhorkar & Jondhale, 2015). 

Figure 3.4: Data preprocessing technique used in the thesis 
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Raw data was checked and found to be plausible, almost clean, and well-organized in 

general. For instance, all values of all attributes in both data frames are checked and verified 

that they are not noisy and lie within a reasonable range; all start (end) dates and times are 

within the data collection timeframe (from February 25, 2018 to March 2, 2018), all 

longitude and latitude coordinates are in Germany or the neighboring countries, all speed 

values are positive, within the range from 0 to 200 kph, and follow the commonly observed 

skew distribution as illustrated in Figure 3.5, and the same applies for all other attributes.  

 

However, in Waypoints data frame, all attributes for consecutive 71,056 trips found to be 

completely missing. As all attributes are missing, it is not possible/feasible to fill in the 

missing values, and thus all attributes for these trips are totally ignored and deleted from 

both data frames (Trips data frame and Waypoints data frame). As a result, number of trips 

in the dataset is modified from 374,605 to 303,549 trips only, where the latter number is 

the one mentioned in section 3.1. 

2) Data integration: this step is used to merge data from multiple sources into a coherent 

database. Data with different representations are put together, and conflicts within the data 

are resolved (Jambhorkar & Jondhale, 2015). 

In this thesis, Trips data frame and Waypoints data frame are merged into one coherent 

database by matching the common attribute “Trip ID” in both data frames. 

Figure 3.5: Average speed distribution of all trips 
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3) Data transformation: in this step, data is converted from one form into another which is 

appropriate for mining process. Data transformation is applied to aggregate, generalize, or 

normalize data. For example, normalization is usually used to improve the efficiency of 

data mining algorithms involving distance measurements (Han, Kamber, & Pei, 2012). 

In this thesis, some attributes’ values are transformed into forms appropriate for data 

modeling and processing. For instance, Trip ID values, as indicated in section 3.1, are in 

the form of serial numbers of 32 digits (Figure 3.6a), which is not practical at all for coding 

(especially for loops). Therefore, Trip ID values/rows in Waypoints data frame are sorted 

to match Trip ID values in Trips data frame (Figure 3.6b). Next, identical Trip ID values in 

both data frames are given the same number out of a group of consecutive numbers from 1 

to 303,549 (total number of trips) (Figure 3.6c). As a result, Trip ID values in both data 

frames are in the form of consecutive numbers -which is easier to deal with in 

programming- instead of the form of arbitrary long serial numbers. Figure 3.6 shows a 

sample of Trip ID transformation. 

As for Start (End) Date attributes, first, Trips data frame and Waypoints data frame are 

divided into 6 parts for each data frame; one part for each day. Each part contains all rows 

for that specific day only. The reason behind this division is that each day will be modeled 

and analyzed separately to compare their results in the end. Next, dates in Start (End) Date 

values in each part are deleted, and time values are normalized/transformed form the 24-hr 

system (hh:mm:ss) (Figure 3.7a) to values between 0 and 1; where 0 is equivalent to 00:00 

and 1 is equivalent to 24:00 (Figure 3.7b). Thus, it is easier to deal with them along with 

the other numeric attributes, especially in clustering process. Figure 3.7 shows a sample of 

Start Date transformation. 

In addition, Longitude and Latitude attributes in Waypoints data frame, and Start (End) Loc 

Lon and Start (End) Loc Lat attributes in Trips data frame, are transformed from 

Geographic Coordinate System (GCS) in Decimal Degrees (DD) (Figure 3.8a) to Universal 

Transverse Mercator (UTM) system in meters (m) (Figure 3.8b). Therefore, the Relative 

Deviation Area (RDA), which is a new tool introduced in this thesis which will be presented 

in detail in chapter 4, can be computed in metric units. Figure 3.8 shows a sample of 

coordinates transformation. 
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(a) (b) 

(a) 

Figure 3.6: Trip ID transformation sample, where Columns A and B represent Trip ID attributes in 
Trips data frame and Waypoints data frame respectively 

Figure 3.7: Start Date transformation sample 

Figure 3.8: Coordinates transformation sample from GCS to UTM 
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4) Data reduction: this step is applied to obtain reduced and smaller, in volume or number of 

attributes, representation of the raw data. Mining on reduced data should be faster and more 

efficient, yet produce almost the same analytical results (Han et al., 2012). Original dataset 

can be reduced by aggregating, eliminating redundant features, or clustering, for instance. 

In this thesis, raw data was reduced by spatially clustering trips based on the start and end 

points location (clustering is explained in more detail in chapter 4). In addition, the 

superfluous attributes are eliminated. The most relevant attributes used in this thesis are: 

 In Trips data frame: Trip ID, Start Date, Start Loc Lon, Start Loc Lat, End Loc Lon, 

End Loc Lat, Trip Mean Speed, Trip Distance, and Geospatial Type. Trip ID is used 

to distinguish the trips; Start Loc Lon, Start Loc Lat, End Loc Lon, and End Loc 

Lat are used to spatially cluster the trips based on their origins and destinations; Trip 

Mean Speed and Trip Distance are used to investigate the relationship between RDA 

and average speed; Start Date is used to divide data (based on date) into 6 parts (one 

for each day); and Geospatial Type is used to filter out trips with all geospatial types 

other than II trips (i.e., IE, EI, and EE trips). 

 In Waypoints data frame: Trip ID, Waypoint Sequence, Longitude, and Latitude. 

Trip ID is used to distinguish the trips; and Waypoint Sequence, Longitude, and 

Latitude are used to establish trips’ trajectories in order to compute RDA. 

Therefore, all attributes, other than the mentioned above, are redundant, and thus, are 

removed from the raw dataset. 
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4. Data Modeling and Analysis 

4.1 Approach Overview 

In order to obtain meaningful output, data shall be modeled and analyzed effectively. This step is 

based on the preprocessed data resulted from chapter 3. Attempting to infer mobility patterns and 

understand travel behavior characteristics and relationships, first, data is clustered into groups 

based on the location of trips’ start points and end points. Afterward, a novel analysis factor, called 

Relative Deviation Area (RDA), is computed for each trip within each cluster. At the end, the 

relationship between RDA and average trip speed is investigated for each day, attempting to 

understand people’s travel behavior within the middle ring of Munich city. Figure 4.1 briefly 

presents the algorithm used in this thesis showing the main three data modeling steps mentioned 

above. These steps are covered in more detail in the following sections. 

 

Step 1: Spatial Clustering 

dist(data records, method)   # Establishing distance matrix 

hclust(distance matrix, method)   # Clustering of trips 

 

Step2: RDA computing 

CreateMap(path1, path2)   # Computing deviation area between two trajectories (DA) 

DA/PathDist(path1)   # Computing relative deviation area (RDA) 

 

Step 3: Investigating relationship between average speed (V) and RDA 

npreg(RDA ~ V, bandwidth)   # Performing nonparametric regression 

plot(regression curve)   # Plotting relationship between V and RDA 

 

 

 

Figure 4.1: Summary of the applied algorithm 

4.2 Spatial Clustering of Trips 

4.2.1 Clustering Methods Overview 

Clustering is the task of grouping a set of objects in such a way that objects in the same group 

(cluster) are more similar to each other than to those in the other groups (clusters). In other words, 

a cluster is a closely-packed group of objects (Rohde, 2007). The main difference between 
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classification and clustering is that in classification, the groups and number of groups are 

predefined (supervised learning), whereas in clustering, number of groups is unknown in advance, 

and therefore objects are grouped according to a selected similarity measure (unsupervised 

learning).  

Clustering analysis is usually performed to find representatives for homogenous groups, to discover 

natural clusters and describe their unknown properties, to recognize useful and meaningful patterns, 

or to detect unusual data objects (outliers) (Ahuja, 2014). 

In this thesis, trips within the study area are spatially grouped into clusters, where each cluster 

contains the trips travelling from one zone to another zone within the middle ring of Munich. The 

first question that arises while trying to do so is: Which clustering method to use? 

There are several clustering methods and many clustering techniques. Clustering methods can be 

classified into five main approaches: 

1) Density-based methods: these methods assume that points belong to each cluster are drawn 

from specific probability distribution, and therefore, the overall distribution is assumed to 

be a mixture of several distributions (Banfield & Raftery, 1993). Density-based methods 

produce clusters of arbitrary shape, which are not necessarily convex. The idea here is to 

continuously expand a given cluster as long as the density (number of objects) in the 

neighborhood -which has a given maximum radius- exceeds a predetermined threshold 

(Maimon & Rokach, 2005). Density-based methods are robust to outliers which are existing 

within low-density regions. 

The most popular density-based method is DBSCAN. Two parameters are to be 

predetermined by the user: 

 Eps: Maximum radius of the neighborhood. 

 MinPts:  Minimum number of points in an Eps-neighborhood of a given point. 

The algorithm creates clusters by checking if the Eps-neighborhood of each object contains 

more than the MinPts (Ester, Kriegel, Sander, & Xu, 1996). 

2) Partitioning methods: these methods relocate data objects from one cluster to another, 

starting from an initial partitioning, and then evaluate the different partitions by some 
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criterion, e.g., minimizing the Sum of Squared Errors (SSE) (Maimon & Rokach, 2005). 

Partitioning methods typically require predefining the desired number of clusters (K) by 

the user. These methods tend usually to create clusters with a spherical shape and similar 

size (Wang, 2015). 

The most common partitioning algorithms are: K-means and K-medoids or PAM (Partition 

Around Medoids). In K-means, each cluster is represented by its center. While clusters in 

K-medoids are represented by one of the objects in each cluster (Zaiane, 1999).  

3) Hierarchical methods: these methods build nested clusters by recursively partitioning data 

objects in either a top-down or bottom-up form (Maimon & Rokach, 2005). Hierarchical 

methods can be subdivided into two categories; agglomerative (more common) and 

divisive. Agglomerative hierarchical clustering, where each object initially represents a 

cluster of its own. Then, at each step, the two most similar clusters are merged, until at the 

top level all objects are joined into a single cluster (Hennig, Meila, Murtagh, & Rocci, 

2015). Whereas, in divisive hierarchical clustering, all objects initially belong to one 

cluster. Thereafter the cluster is divided into sub-clusters, which are then successively 

divided into their own sub-clusters, until the desired level of clustering structure is obtained 

(Maimon & Rokach, 2005). 

The output of hierarchical clustering is a tree diagram called dendrogram, which illustrates 

the arrangement of the produced clusters. A clustering of the data objects is obtained by 

cutting the dendrogram at a specific desired similarity level. 

4) Grid-based methods: these methods divide the space into a finite number of cells, forming 

a grid on which all the clustering operations are performed (Maimon & Rokach, 2005). 

5) Model-based clustering methods: these methods try to optimize the fit between the database 

and some mathematical models. Model-based methods do not only create groups of objects, 

but they also find characteristic descriptions of the created groups (Maimon & Rokach, 

2005). The most frequently used induction methods are decision trees and neural networks. 

4.2.2 Clustering Methods Testing 

In this thesis, the first three methods above are preliminary tested on a sample of the available data. 

Afterward, a comparison between the methods that work well in the preliminary test is conducted. 
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In the end, only one method is chosen to proceed with data modeling and analysis. All tests and 

analyses are performed using R software.  The following is a description of each test of the three 

methods: 

4.2.2.1 Density-Based Method  

DBSCAN algorithm is tested on a sample (II trips sample) which is randomly taken out of II trips 

only. II trips sample contains 10,606 trips which accounts for 10% of all II trips. Figure 4.2 shows 

the spatial distribution of the trips’ origin and destination points of II trips sample, before 

clustering, within the middle ring zone of Munich. The red dot in the figure indicates the location 

of Munich city center (Marienplatz). 

DBSCAN algorithm does not require to determine the desired number of clusters in advance. 

However, in order to cluster the origin and destination points of all trips sample, two parameters 

(i.e., Eps and MinPts) have to be determined first. According to “dbscan” R package, “MinPts is 

often set to be dimensionality of the data plus one or higher” (Hahsler & Piekenbrock, 2018, p. 3). 

In this case, there are 4 dimensions of the data to be clustered (i.e., Start Loc Lon, Start Loc Lat, 

End Loc Lon, and End Loc Lat). Therefore, MinPts should be 5 or higher. As for Eps, the curve 

knee in the k-Nearest Neighbor Distance (kNNdist) plot can be used to find suitable values for it 

(Hahsler & Piekenbrock, 2018). Plotting the kNNdist graph with MinPts equals 5, a value of 1,000 

m can be assigned to Eps. Figure 4.3 shows the resulting kNNdist plot along with a straight line 

passing through the curve knee. 

Figure 4.2: Spatial distribution of trips’ origin and destination points of II trips sample 
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Therefore, MinPts parameter is set to 5 and Eps parameter is set to 1,000. Using these values, 

DBSCAN clustering algorithm is applied to II trips sample. The clustering resulted in 3 clusters 

only; one enormous cluster with 10,439 trips out of the 10,606 trips (around 98% of II trips sample 

size), in which the origin and destination zones cover the whole middle ring area, and another two 

very small clusters with 5 and 8 trips only. In addition, 154 trips are classified as outliers. Figure 

4.4 and Figure 4.5 show the enormous cluster and one of the small clusters respectively, where 

each trip is represented by two points; the first one represents the trip start point (trip origin), and 

the other one represents the trip end point (trip destination). Origin points are in blue, while 

destination points are in red. 
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Figure 4.4: The resulting enormous cluster from DBSCAN clustering of II trips sample 

Figure 4.3: kNNdist plot to select Eps value 
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From the results above, it can be concluded that it is neither feasible to compare the enormous 

cluster with the other small ones, nor possible to get meaningful mobility patterns out of them. 

Although different combinations of the two parameters are considered, the results do not differ a 

lot. The potential reason behind such results is that density-based clustering methods are somewhat 

not able to divide II area into different clusters, since the trips density is almost the same 

everywhere within this area. In other words, there is no big difference in trips’ densities within II 

area, and therefore only 3 clusters are created. As a result, if dense areas—with large number of 

points—are desired to be partitioned into more clusters so that patterns at finer resolutions can be 

found, instead of grouping these points into a single cluster, then these methods are not the best 

choice in this case (Guo et al., 2012). 

DBSCAN clustering method is also tested on another sample (all trips sample) which is randomly 

taken out of all trips, and not only of II trips this time. All trips sample contains 37,460 trips which 

accounts for 10% of all trips. Figure 4.6 shows the spatial distribution of the trips’ origin and 

destination points of all trips sample before clustering. The red dot in Figure 4.6 indicates the 

location of Munich city center (Marienplatz). 

Following the same procedure before, MinPts and Eps parameters are determined. MinPts is set to 

5, and Eps is set to 17,000. Next, DBSCAN algorithm is applied to all trips sample. The clustering 

resulted in 19 clusters; again, one enormous cluster contains around 98% of all trips of the sample, 

and another 18 very small clusters. Figure 4.7 shows the enormous resulting cluster. Origin points 

are in blue, while destination points are in red. 
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Figure 4.5: One of the small resulting clusters from DBSCAN clustering of II trips sample 



32 
 

Obviously, the results are not satisfactory. The potential reason behind such results is that density-

based clustering methods are somewhat unable to cluster dataset with big differences in densities; 

setting of Eps and MinPts for identifying the neighborhood points will vary from cluster to cluster 

when the density varies, and thus, the parameters can’t be chosen perfectly. 

4.2.2.2 Partitioning Method  

K-Means algorithm is applied to II trips sample. In K-Means clustering, the number of desired 

clusters has to be determined in advance. Selection of number of clusters is not an easy task, and 

depends on several factors. Some factors are related to statistical measures (e.g., elbow method and 

silhouette method), and others are related to application goals, characteristics of data, and 

meaningfulness of desired results. For this preliminary test, different numbers of clusters are 

considered to check whether this method is suitable for this thesis’ dataset and gives meaningful 

Figure 4.7: The resulting enormous cluster from DBSCAN clustering of all trips sample 

Figure 4.6: Spatial distribution of origin and destination points of all trips sample 
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results. In subsection 4.2.5, detailed criteria are developed to choose the optimal number of clusters 

for the clustering method that will eventually be selected. 

For the preliminary test, 3 numbers of clusters are selected; 50, 100, and 200, and are tested on II 

trips sample. Figure 4.8 shows boxplot of the resulting clustering in terms of number of trips/cluster 

for the different number of clusters. Additionally, Figure 4.9 shows a sample of the resulting 

clusters for each case, where origin points are in blue and destination points are in red. Convex 

hulls are plotted to enclose the origin and destination area for each cluster. 

Figure 4.8: Boxplot of the resulting K-means clustering of II trips sample 
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Figure 4.9: Sample of the resulting K-means clusters in the different cases: a) 50 clusters, b) 100 clusters 
and c) 200 clusters  
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From Figure 4.8, it can be concluded that there are no big differences in the number of trips/cluster 

within each case of the three cases, with only a few outliers, unlike the resulting clustering using 

DBSCAN method. Moreover, it can be noticed from Figure 4.9 that the clusters, in each case, are 

somewhat similar in size and spatially well-distributed throughout the whole study area. Thus, 

contrary to DBSCAN algorithm, K-means seems able to partition the points in the high-density 

areas into more clusters instead of grouping them into a single cluster. 

4.2.2.3 Hierarchical method 

Agglomerative hierarchical clustering method is tested on II trips sample. As in DBSCAN, there 

is no need to input the number of clusters before applying hierarchical clustering analysis. 

However, it is necessary to predetermine a measure of distance (similarity) and a linkage criterion 

to be used during the clustering process. 

There are several distance metrics used in hierarchical clustering including Euclidean distance, 

Manhattan distance, Hamming distance, etc. The selection of the distance measure should be made 

based on the study domain and goals. 

As the distance between the clusters is spatial and has to be computed based on the length of the 

straight line drawn from one cluster to another, Euclidean distance is the most common distance 

measure used in such situations, especially that the positions of origin and destination points are 

transformed from geographic coordinate system (longitude and latitude) to universal transverse 

mercator (in meters), and these points are located in a relatively small enclosed area. In other words, 

there is no need to use measures such as the great-circle distance to take the curvature of the earth 

into consideration. 

After selecting a distance measure, it is necessary to choose a linkage criterion (i.e., from where to 

where the distance between two clusters should be computed) (Bock, n.d.). For example, it can be 

computed between the nearest two parts in these two clusters (minimum or single-linkage), the 

most distant two bits (maximum or complete-linkage), the centers of the two clusters (mean or 

average-linkage), or some other criterion. However, Ward’s method determines which 

observations to group based on reducing the sum of squared distances of each observation from the 

average observation in a cluster (Bock, n.d.). As with distance metrics, the choice of linkage criteria 

should be made based on the application’s domain and goals. 
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In the preliminary test, and for the above-mentioned reasons, Euclidean distance is used as a 

similarity measure in hierarchical clustering of II trips sample. Two of the most common linkage 

criteria are tested; Wards’ linkage and single-linkage. As for the number of clusters in this test, the 

sample’s trips are grouped into 150 clusters to check whether this method is suitable for this thesis’ 

dataset. However, detailed criteria are introduced in subsection 4.2.5 to select the optimal number 

of clusters for the clustering method that will eventually be selected. 

Single-linkage clustering of II trips sample resulted in one enormous cluster that contains 10,374 

trips (accounts for 98% of II trips sample size), and covers the whole study area. The other clusters 

are very small with an average of 1.5 trips/cluster only. Therefore, the resulting clusters are not 

comparable and can’t be analyzed to obtain meaningful results. Figure 4.10 shows the enormous 

cluster and one of the small clusters produced by single-linkage clustering. 

Whereas, Ward’s method clustering of II trips sample produced more similar clusters in terms of 

size and number of trips/cluster. The resulting clusters have an average of 71 trips/cluster and a 

median of 61 trips/cluster with a few outliers. Thus, the clusters are comparable and may give 

useful results. Figure 4.11 shows a sample of the resulting clusters created by Ward’s hierarchical 

method. In addition, Figure 4.12 represents a boxplot of the clustering results in terms of number 

of trips/cluster. 
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Figure 4.10: Sample of the resulting single-linkage clusters; a) one of the small clusters, b) the enormous 
cluster 
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Figure 4.11: Sample of the produced clusters by Ward’s hierarchical method 
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In conclusion, the preliminary testing clearly shows that density-based clustering methods, like 

DBSCAN, are not suitable for this thesis as they are unable to divide II area into multiple clusters. 

Consequently, these method are excluded. However, partitioning methods, like K-means, and 

agglomerative hierarchical methods, such as Ward’s method, successfully passed the preliminary 

test since they produce comparable, similar in size and number of trips, and well distributed 

clusters. In the next section, the strengths and weaknesses of the two methods are compared, and 

at the end, only one of them will be selected to proceed with data modeling and analysis. 

4.2.3 Comparison between K-means and Hierarchical Clustering 

As both of K-means method and hierarchical method produced similar good results in the 

preliminary test, which was conducted on II trips sample, both of them should practically and 

technically work well in clustering and analysis of the whole dataset. However, since only one 

method will be selected for the next steps, a comparison of both methods’ theoretical advantages 

and disadvantages is conducted. Table 4.1 and Table 4.2 summarize the main advantages and 

disadvantages of K-means method and agglomerative hierarchical method respectively. 

From Table 4.1 and Table 4.2, it can be concluded that K-means is simpler, faster, and needs lower 

computational costs than hierarchical clustering. However, hierarchical method doesn’t require to 

determine number of clusters in advance, has more structured output, and shows more accuracy. 

Moreover, the disadvantages of K-means are much more critical than those of hierarchical method, 

and especially for the characteristics of the available dataset. For instance, K-means is somewhat 

unreliable and lack consistency since it randomly chooses the initial centers of clusters; thus, 

     
Number of trips/cluster

Figure 4.12: Boxplot of the resulting clustering of II trips sample using Ward’s hierarchical method 
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different results are produced on different runs. In addition, it is more sensitive to outliers and noisy 

data. On the contrary, most of the disadvantages of hierarchical clustering are not critical for the 

thesis’ dataset. While hierarchical clustering is relatively slow when applied to big data, works 

poorly with mixed data types, and doesn’t work with missing values in dataset, the available dataset 

is not very big considering that it will be divided into 6 parts (i.e., one part for each day) before 

applying clustering process, it consists of one data type only (numerical values), and it is free of 

any missing values. As a result, hierarchical clustering method is chosen over K-means method, 

and will be used in data modeling and analysis in this thesis. 

Table 4.1: Advantages and disadvantages of K-means method 

aKaushik and Mathur (2014). bFahim, Saake, Salem, Torkey, and Ramadan (2008). c Guo et al. (2012). 
dSonagara and Badheka (2014). eSantini (2016). fSeif (2018). gHu, Qian, Pei, Jin, and Zhu (2015). hKumar, 

Rao, Govardhan, and Sandhya (2015). iTan, Steinbach, and Kumar (2005). 

K-means Advantages 

 Good for large number of variables and large 
datasetsa 

 Suitable when clusters with a spherical shape 
and similar size are desiredb 

 Fast; relatively low runtime complexity 
(linear)a 

 Simple and easy to setup and understanda 
 An instance can change cluster when the 

centroids are recomputed 

K-means Disadvantages 

 Requires a pre-knowledge of clusters number 
(K) which is difficult to predict in most casesa 

 Shape of all clusters is convex; tends to 
assume a predetermined circular shape to 
find clustersc 

 Cannot handle non-globular data of different 
sizes and densitiesd 

 Very sensitive to outliers; Unable to handle 
noisy datad 

 Restricted to data which has the notion of a 
center (centroid)d 

 Initial seeds and order of data have a strong 
impact on the final resultse 

 Randomly choosing of initial clusters’ 
centers 

 Different clustering results on different runs; 
results may not be repeatable and lack 
consistencyf 

 Produces a single partitioningg 
 Uniform effect: often produces clusters with 

relatively uniform size even if the input data 
have different cluster sizeh 

 Empty clusters can be obtained if no points 
are allocated to a cluster during assignment 
stepi 
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Table 4.2: Advantages and disadvantages of hierarchical clustering method 

aRai (2011). bKaushik and Mathur (2014). cChatterjee (2012). dKaur and Kaur (2013). eBock (n.d.). fSantini 

(2016). 

4.2.4 Clustering Process 

As indicated in the previous subsection, hierarchical clustering method is selected to cluster the 

trips of the dataset. This method is used to spatially group the trips, that were surveyed within 

Munich middle ring area, into clusters based on the location of the start and end points of these 

trips. Therefore, trips that have similar origin and destination points are put together in one cluster 

and so on. The clustering is done for each day separately.  

In hierarchical clustering, a distance metric and a linkage criterion shall be selected before running 

the algorithm. The distance metric is important to establish the distance (dissimilarity) matrix, 

which is an n*n table that shows the distance between each pair of the observations in the dataset, 

where n is the total number of observations in the dataset. Euclidean distance is selected as a 

distance metric for the reasons mentioned in the previous section. The linkage criterion determines 

how the selected distance metric will be used to measure the distance between clusters to be 

merged, i.e., from which point in one cluster to which point in the other cluster. Ward’s method is 

selected as a linkage criterion over single-linkage based on the results of the conducted preliminary 

test. In addition, according to Bock (n.d.), Ward’s method is the sensible default where there are 

Hierarchical Clustering Advantages 

 Can give different partitionings depending 
on the level of resolution; Any desired 
number of clusters can be obtained by cutting 
the dendrogram at the proper levela 

 Shows more quality (accuracy) as compared 
to K-means algorithmb 

 Does not require to specify the number of 
clusters in advanceb 

 Easy to understand; Conceptually simple and 
theoretical properties are well understoodb 

 It has a logical structure; well-structured 
output “dendrogram” 

 Gives deep insight of each step of merging 
different clusters 

 Very good for clustering of small datasetsb 
 Any valid measure of distance can be usedc 

Hierarchical Clustering Disadvantages 

 Relatively slow (has to make several 
merge/split decisions) and thus relatively 
high run time complexity (quadratic)a 

 Doesn’t work well on big data; as the number 
of records increases, the performance 
decreasesd 

 Initial seeds might have impacts on final 
results 

 Sometimes it’s difficult to identify the correct 
number of clusters from the dendrogram 

 Works poorly with mixed data typese 
 It is not possible to undo the previous step; 

once the instances are assigned to a cluster, 
they can no longer be moved aroundf 

 Does not work with values are missing in the 
datae 
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no clear theoretical justifications for choice of linkage criteria. Ward’s method groups observations 

based on reducing the sum of squared distances of each observation from the average observation 

in a cluster. This is often appropriate as this concept of distance matches the standard assumptions 

of how to compute differences between groups in statistics (Bock, n.d.). 

Consequently, agglomerative hierarchical clustering based on Euclidean distance metric and 

Ward’s method linkage criterion is applied, using R software, to II dataset to group the trips based 

on the similarity in their origin and destination points. As mentioned earlier, II trips dataset is 

divided into six parts; one part for each day. Thus, clustering process is conducted for each day 

separately. At this step, a hierarchy (dendrogram) is produced as the output of the clustering 

process, which shows the full structure of how trips are clustered. Figure 4.13 shows only the very 

upper part of the dendrogram of one day since it is not possible to display the whole structure here 

due to page size limit. In the dendrogram, the y-axis (Height) is simply the value of the distance 

metric between clusters. For example, if two clusters merged at a height x, it means that the distance 

between those clusters is x. 

4.2.5 Selecting Number of Clusters 

Next step is to cut the dendrogram at a specific level to get the desired number of clusters. However, 

determining the desired number of clusters in not an easy task, and depends on several factors. 
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Figure 4.13: Upper part of the resulting dendrogram for Monday 
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Some factors are related to statistical measures and others are related to application goals, 

characteristics of data, and meaningfulness of the desired results. 

4.2.5.1 Statistical Methods 

Three statistical methods are applied in this thesis on II trips sample attempting to determine the 

optimal number of clusters. Two of them are direct methods (elbow and silhouette) which consist 

of optimizing a criterion, such as the Within-Cluster Sum of Squares (WSS), while the third one 

(gap statistic) is a statistical testing method which consists of comparing evidence against null 

hypothesis (Kassambara, 2017). 

Elbow method looks at the total WSS as a function of the number of clusters. One should choose 

a number of clusters so that adding another cluster doesn’t improve much better the total WSS. The 

location of a bend (knee) in the resulting plot is generally considered as an indicator of the 

appropriate number of clusters (Kassambara, 2017). Figure 4.14 shows the resulting plot from 

applying elbow method on II trips sample. The dashed line passes through the plot’s knee which 

indicates the recommended number of clusters that equals 4 clusters in this case. 

Average silhouette method measures the quality of a clustering by determining how well each 

object lies within its cluster. A high average silhouette width indicates a good clustering. Therefore, 

the location of the maximum in the resulting plot is considered as the appropriate number of clusters 

(Kassambara, 2017). Figure 4.15 shows the resulting plot from applying average silhouette method 
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Figure 4.14: The resulting elbow method’s plot 
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on II trips sample. The dashed line indicates the location of the maximum value (3) that represents 

the recommended number of clusters. 

Figure 4.15: The plot resulting from average silhouette method 

The gap statistic method has been published by Tibshirani, Walther, & Hastie (2001). This method 

compares the total within intra-cluster variation for different values of number of clusters with their 

expected values under null reference distribution of the data. The optimal number of clusters is the 

value that maximizes the gap statistic (i.e., that yields the largest gap statistic). This means that the 

clustering structure is far away from the random uniform distribution of points. Figure 4.16 shows 

the resulting plot from applying gap statistic method on II trips sample. The dashed line indicates 

the value that gives the maximum gap statistic which equals 9 clusters in this case. 

Figure 4.16: The plot resulting from gap statistic method 
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In summary, elbow, average silhouette, and gap statistic methods suggest 4, 3, and 9 clusters 

solution respectively. However, these values are too low and not satisfactory in the context of this 

thesis, where it is desired to preserve the data resolution by constructing as many OD pairs as 

possible (while satisfying the minimum cluster size constraints) in the study area to analyze the 

travel behavior and mobility patterns within these pairs. 

4.2.5.2 Developed Criteria to Determine Optimal Number of Clusters 

As the statistical methods couldn’t provide satisfactory values for optimal number of clusters, 

special criteria are developed in this thesis to decide on number of clusters. 

A cluster in this thesis is defined as a group of trips that travel from one specific zone (origin zone) 

to another (destination zone) within the study area. It is found that the size of the origin and 

destination zones for the resulting clusters differs from one number of clusters to another; the higher 

the number of clusters is, the smaller the origin and destination zones are. This is the starting point 

in the developed criteria where a meaningful size of zones is desired to be determined. In order to 

define this meaningful size of zones, a specific existing zoning system of the middle ring area in 

Munich city shall be selected and referred to. Parking management plan in the state capital of 

Munich (in German: Parkraummanagement in der Landeshauptstadt München) set by Munich city 

planning unit in 2013 (Figure 4.17), is used as a referential zoning system in this thesis. The plan 

is selected since parking zones are somehow related to trips’ origin and destination zones. That is 

to say, most of trips travel within the study area were parked at one of the parking zones before 

starting the trip and will terminate the trip by parking in another one of these parking zones. 

Size of a zone is defined in this thesis as the length of the longest x (easting) or y (northing) 

dimension in that zone. Figure 4.18 illustrates the concept used in determining the size of each 

zone. For example, the longest x dimension in Figure 4.18 is 2.20 km, and the longest y dimension 

is 1.03 km; thus, the size of this zone is the maximum of the two values which is 2.20 km in this 

case. 

The size of parking zones in the parking management plan is found to be ranging from 0.55 to 1.52 

km with an average of 1.02 km. Thus, the average size of origin and destination zones in the 

resulting clusters is desired to be as close as possible to 1.02 km. 
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In addition to the first criterion (average size of origin and destination zones), other criteria are 

taken into consideration in determining the optimal number of clusters. Such criteria are mainly 

considered in order to assure the meaningfulness and usefulness of the resulting clusters, especially 

in the analysis part. For instance, it is important that the number of trips/cluster shall be not less 

than a specific threshold, since the lower the number of trips/cluster is, the less the 

Figure 4.18: The concept used in determining the size of each zone 

Figure 4.17: Parking management plan in the state capital of Munich, 2013. Source: Muenchen.de 
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representativeness of the sample (cluster) is. Another criterion taken into account is regarding the 

overlapping between the origin zone and the destination zone in a given cluster. No overlap of 

these zones in each cluster is desired, such that each cluster shall have only one major traffic 

flowline from one origin zone to another fully separated destination zone. Therefore, the clusters 

with an overlap between their origin and destination zones will not be useful in the analysis, and 

they will be excluded as a result. This is an essential requirement for computing the analysis factor 

that will be explained in more detail in next chapter. Examples of the overlap cases are shown in 

Figure 4.19. 

It is found that the percentage of the clusters with an overlap decreases as the number of clusters 

increases. Hence, in order to exclude as few clusters as possible, a specific threshold for the 

percentage of clusters with no overlap is set. 

To summarize, the following are the criteria developed in this thesis to define the optimal number 

of clusters on each day: 

1) Average size of all origin and destination zones of all clusters shall be as close as possible 

to the average size of the parking zones in the referential zoning system which equals 1.02 

km. 

2) Average number of trips/cluster shall be not less than a threshold of 30 trips/cluster. This 

threshold is selected as a rule of thumb for an adequate sample size according to Hogg & 

Tanis (2005). 

3) Percentage of clusters with no overlap between their origin and destination zones shall be 

not less than 60% of all resulting clusters for each day. 

The applied clustering algorithm in this thesis, taking into consideration the above-mentioned 

criteria, is shown in Figure 4.20. 
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Figure 4.19: Examples of the no overlap case (a) and overlap case (b)  
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Input: Trips data frame includes Start Easting, Start Northing, End Easting, and End Northing attributes   
(Coordinates of origin and destination points of all trips) 

Output: Clusters C1, C2, …, Ck   (Clusters of trips that share same origin and destination zones) 
Procedure: 
1 Trips.dist<- dist(Trips, method= Euclidean)   # Establishing distance matrix using Euclidean distance 
2 Trips.clustering<- hclust(Trips.dist, method= Ward)   # Spatially clustering of trips using hierarchical 

clustering algorithm based on Ward’s linkage method 
3 Trips.clusters<- cutree(Trips.clustering, n)   # Cutting the resulting hierarchy into n clusters 
4 For each cluster Ci in Trips.clusters{ 
5    Compute the size of origin and destination zone} 
6 Determine average size of all origin and destination zones in all clusters (1st Criterion) 
7 mean(table(Trips.clusters))   # Determining average number of trips/cluster (2nd Criterion) 
8 For each cluster Ci in Trips.clusters{ 
9    If gIntersects(Ci Origin, Ci Destination) == False{  
10      r = r + 1}}   # Defining number of clusters with no overlap between origin and destination zones  
11 %no.overlap<- (r/n)*100   # Determining percentage of clusters with no overlap (3rd Criterion) 
12 Trial and error of different numbers of clusters until finding the optimal number (k) based on the 

three criteria above 
13 Trips.clusters<- cutree(Trips.clustering, k)   # Cutting the resulting hierarchy into k clusters 

  
 

Figure 4.20: The applied spatial clustering algorithm 

4.2.6 Clustering Results 

Several iterations to specify the optimal number of clusters for each day are conducted until a trade-

off among these criteria is reached. Table 4.3 shows the summary of the selected number of clusters 

for each day based on the developed criteria. 

Table 4.3: Summary of selected number of clusters for each day 

Day 
Number of 

clusters 

Average size 
of all zones 

(km) 

Average 
number of 

trips/cluster 

Number of 
clusters with 
no overlap 

Percentage of 
clusters with 
no overlap  

Sunday 250 1.62 51 169 68% 
Monday 300 1.61 61 194 65% 
Tuesday 300 1.64 68 191 64% 
Wednesday 300 1.60 60 196 65% 
Thursday 300 1.57 62 200 67% 
Friday 300 1.60 62 197 65% 

 

Figure 4.21 shows a sample of the resulting clusters for Monday. Every cluster has two convex 

polygons in the same color, one of them represents the cluster’s origin zone, while the other 

represents the cluster’s destination zone. Figure 4.22 shows another sample of the resulting clusters 

for Monday, where each cluster is represented by one square and one circle in the same color; the 
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square represents the centroid of the cluster’s origin zone and the circle represents the centroid of 

the cluster’s destination zone. An arrow is drawn from each cluster’s origin zone centroid to its 

destination zone centroid indicating the traffic flow direction in that cluster. 

.  

Figure 4.21: Sample of the resulting clusters represented by their origin and destination zones 

Figure 4.22: Sample of the resulting clusters represented by their origin and destination centroids 
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4.3 Relative Deviation Area (RDA) 

In the previous section, spatial clusters of II trips for each day are created using hierarchical 

clustering method based on the location of trips’ origin and destination points. While at this section, 

a new analysis factor is introduced and computed for the produced clusters. This factor will be used 

in the analysis part to understand the travel behavior within the study area. 

4.3.1 RDA concept 

Relative Deviation Area (RDA) is a novel tool introduced in this thesis that aims at computing the 

relative area by which a vehicle, traveling from one zone (A) to another (B), is deviating from some 

referential path (e.g., the fastest path) from zone A to zone B (Equation 1). Where the relative area 

is defined as the area between a trip’s trajectory and the trajectory of the referential trip divided by 

the length of the section of the trip’s trajectory that extends between the nearest pair (out of the 

four possible pairs) of  OD points of the two trajectories. 

        𝑅𝐷𝐴 =
𝐷𝐴

𝐿
                                                 

Where;  RDA is the relative deviation area (area unit/length unit) 

DA (deviation area) is the area by which a trajectory is deviating from another referential 

trajectory (area unit) 

L is the length of the trajectory’s section that extends between nearest pair of OD points 

of the two trajectories (length unit) 

In this thesis, the fastest paths in each cluster are selected as the referential paths in computing 

RDA. The fastest trip is defined here as the trip that has the highest average speed among all the 

other trips traveling from one zone to another. 

Figure 4.23 illustrates the concept of RDA, where OP1 and OR1 are the origin points of path 1 and 

reference path 1 respectively, and DP1 and DR1 are the destination points of path 1 and reference 

path 1 respectively. The shaded area represents the deviation area of trajectory 1 from the reference 

path 1. The red lines indicate the location of the nearest pair of OD points. 

The idea of this tool is generated from attempting to understand and answer questions related to 

people travel behavior. Examples of such questions include: Why do people choose specific routes 

over others? Do most people travel along the fastest routes? Are people willing to take longer routes 

(1) 
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in order to avoid the traffic congestion on the shorter routes? Is there a relationship between trips 

average speed and the spatial distribution of trips? and other similar questions. 

Moreover, this tool can be used as a part of the performance measures for a given road network. It 

also can be used in transport planning applications such as traffic assignment (route choice) among 

different OD pairs within a specific road network. In addition, it can form a basis for more detailed 

analytical framework. 

4.3.2 RDA Computation 

Next step is finding how to compute RDA between any two trajectories. A trip trajectory, denoted 

by T, is a time-ordered sequence or time-series of 3 tuples (x, y, t) representing the x and y (Easting 

and Northing) coordinates of a trip at time t. Let Ti = (pi
1, pi

2,…, pi
N) denote the trajectory of trip i, 

where pi
n = (x, y, t)i

n is the nth point of the sequence (n = 1,…, N). Given two trip trajectories Ti = 

(pi
1, pi

2,…, pi
N) and Tj = (pj

1, pj
2,…, pj

M) with size N and M, respectively, the trajectory data addressed 

in this thesis have the following characteristics: 

 Different lengths: trajectories may have different lengths in terms of the number of 

waypoints within each trajectory (e.g., N and M can be different for Ti = (pi
1, pi

2,…, pi
N) and 

Tj = (pj
1, pj

2,…, pj
M)). 

 Different and uneven sampling rates: data sampling rates are not necessarily identical across 

trajectories (e.g., pi
1, pi

2,…, pi
N are recorded every 30 seconds while pj

1, pj
2,…, pj

M are recorded 

every 60 seconds). Moreover, the time interval between two consecutive waypoints within 

Figure 4.23: Concept of RDA tool 
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the same trajectory can also vary (e.g., 30 seconds between pi
1 and pi

2 while 45 seconds 

between pi
2 and pi

3). 

 Two or more y values for the same x value and vice versa: unlike trajectories of free moving 

objects in Euclidean space such as animals and hurricanes, vehicle trajectories are 

constrained by the underlying road network (Kim & Mahmassani, 2015). Therefore, two or 

more waypoints within the same trajectory can have the same x (Easting) or y (Northing) 

value, like in U-turn movements (e.g., pi
1 = (691257, 5332638, 0) and pi

2 = (691257, 

5332660, 30)). 

Taking the above trajectory data characteristics into consideration, using the traditional area- 

computing methods to find the area between any two trajectories (Ti and Tj) is not applicable. For 

instance, let y (Northing) values denote a mathematical function of x (Easting) values in both 

trajectories Ti and Tj, such that Ti  has function fi(x) and Tj has function fj(x). Trying to find the 

area between the curves of the two functions by integration will not work due to the third 

consideration above where the same value of x can have two or more y values, and thus estimating 

the functions fi(x) and fj(x) is not possible as any function in general is defined as a set of ordered 

pairs in which each x element has only one y element associated with it. Moreover, using the area 

under curve methods like Simpson’s rule or trapezoidal rule to calculate area between Ti and Tj is 

also not possible, as these methods require that both functions (trajectories) have the same number 

of elements (points) and even the same x values. This requirement conflicts with the first 

characteristic of the available trajectory dataset where trajectories may have different lengths in 

terms of the number of waypoints. 

Consequently, an optimization approach for robustly measuring the area-based deviation between 

two paths, called ALCAMP (Algorithm for finding the Least-Cost Areal Mapping between Paths) 

which was introduced by Mueller et al. (2016), is used in this thesis to compute the deviation area 

between two trajectories. ALCAMP measures the deviation between two paths and produces a 

mapping between corresponding points on the two paths, that produces the least total cost, where 

cost is the area between corresponding points and segments. The method is robust to a number of 

aspects in real path data, such as crossovers, self-intersections, differences in path segmentation, 

and partial or incomplete paths. Figure 4.24 shows example mappings produced by this algorithm, 

where the red and dark gray polylines in each plot represent the two paths, and the light gray area 

represents the computed deviation area between the two paths. 
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Nevertheless, some modifications shall be implemented to the algorithm before applying it to 

dataset’s trajectories. These modifications are related to some considerations linked to the 

characteristics and application of RDA tool. The following is a description of these considerations 

and their consequent modifications: 

 RDA limits: the two trajectories, between which the deviation area shall be calculated, 

might not have very close origin and destination points although they belong to the same 

cluster, as the average size of the origin and destination zones for each cluster is around 

1.60 km. Therefore, limits for the deviation area are set to terminate the trajectories so that 

the unnecessary extensions of one or both trajectories will not be considered in the 

computation of the deviation area. These limits are defined as the nearest (internal) OD pair 

of the two trajectories. Figure 4.25 and Figure 4.26 show an example of the deviation area 

with and without the limits respectively, where the red lines in Figure 4.25 represent the 

RDA limits between the nearest OD pair (i.e., OR1, DR1), and the shaded area in both 

figures represents the deviation area between path 1 and reference 1. 

 Direction of travel: this point is actually related to the first point, where a special attention 

shall be paid to the travel direction of the trajectories before setting the RDA limits. 

Direction of traffic flow differs from one cluster to another (e.g., from north to south in one 

cluster and from east to west in another, etc.). Therefore, all these cases of travel direction 

shall be checked in order to properly define the RDA limits for all trajectories in each 

cluster. 

 Trajectories’ detours: in some cases, a trip’s trajectory may extend beyond the origin and/or 

destination point of the trip. Thus, this extension, that is mainly resulted from road network 

constraints and detours (e.g., U-turn movements or sharp curves), will be terminated by the 

Figure 4.24: Example mappings produced by ALCAMP. Source: Mueller et al. (2016) 
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RDA limits and excluded from calculated deviation area if no improvements done to 

consider it (Figure 4.27). In the algorithm used to compute RDA, particular attention is 

given to such detours so that the consequent extensions are taken into consideration in the 

calculated deviation area (Figure 4.28). In Figure 4.27, it is clear that the deviation area is 

incomplete due to ignoring the sharp curve at the end of reference 1 trajectory. 

 Path simplifying: For paths with relatively few points (fewer than 100), the completion time 

of mapping and computing deviation area using ALCAMP algorithm is tolerable, but when 

mapping one or more complex paths containing hundreds of points, the time to complete 

the mapping can take much longer (Mueller, Perelman, & Veinott, 2016). Although the 

average number of waypoints per trip in the dataset is 34, there are some trips that have 

much higher number of waypoints up to 1700. Therefore, A robust algorithm that has been 

proposed by Latecki & Lakamper (2000) is used to improve the efficiency and reduce the 

computational costs. This algorithm can simplify paths by removing redundant points and 

merging segments that lie on the same line, or that do not contribute significantly to the 

shape of the path. Hence, any individual path can be reduced to a smaller number of critical 

points using this algorithm. Figure 4.29 shows an example of a path that originally has 73 

waypoints. However, in Figure 4.30, the number of waypoints is decreased to only 26 

waypoints after applying the path simplifying algorithm. This helps in improving the 

efficiency without affecting much the shape of the path. In both figures, the blue point 

indicates the start (origin) point of the path, while the red one indicates the end (destination) 

point of the path. 

 

Figure 4.25: Example of deviation area considering the limits between nearest OD pair 
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Figure 4.26: Example of deviation area without considering the limits between nearest OD pair 

Figure 4.27: Example of deviation area without considering trajectories’ detours 

Figure 4.28: Example of deviation area considering trajectories’ detours 
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4.3.3 RDA Application to Dataset 

All points mentioned above are taken into consideration in RDA tool. In this thesis, RDA is 

computed for all clusters on all days. First, fastest seven trips in each cluster are selected as the 

referential trips (references) for that cluster, where fastest trips are defined as the trips that have the 

highest average speed among all other trips within the same cluster. Average speed, in turn, is the 

total distance traveled by a vehicle divided by the elapsed time to cover that distance. Figure 4.31 

shows the trajectory of the seven references of one of the resulting clusters, where each reference 

trajectory is shown in a unique color. Origin points are in blue, while destination points are in red. 

Figure 4.30: Example of a path after applying path simplifying algorithm 

Figure 4.29: Example of a path before applying path simplifying algorithm 
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The fastest trips are also desired to be those that have relatively short travel time, as some of the 

fastest trips might have high average speed but take very long routes and thus high travel distance 

and time. For example, two vehicles travel from zone A to zone B; the first takes a 5-km route with 

a travel time of 10 minutes, while the other vehicle takes a 15-km route with travel time of 30 

minutes, both vehicles have the same average speed of 30 kph; however, the first case is preferable 

as the travel time is shorter. For this reason, it was checked that most of the fast trips have relatively 

short travel time. The scatter plot in Figure 4.32 shows an example of the relationship between 

average speed and travel time for all trips in one of the resulting cluster. It can be noticed that the 

trips with highest average speed have short travel time compared to the other trips. 
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Figure 4.32: Average speed vs. travel time for all trips of one cluster 

Figure 4.31: Trajectory of the seven references in one of the resulting clusters 
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Two reasons behind considering several (seven) references for each cluster; first, to guarantee that 

the references are spatially distributed within the cluster, and thus at least one reference is suitable 

(similar) for each trip. Second, to assure that the high-speed references with relatively long travel 

time (if any) do not affect the RDA final results, as they produce high DA and RDA values and 

thus will not be selected as the minimum RDA in this case. 

Next, DA is calculated seven times for each trip in each cluster (one time for each reference). In 

other words, DA is computed between each trip and each reference that belong to the same cluster. 

Then, RDA is also computed seven times for each trip by dividing each resulting DA from the 

previous step by the respective efficient trajectory length of that trip, where the efficient length is 

the length of the trajectory’s part used in computing DA (i.e., neglecting the unnecessary 

extensions). Finally, only the minimum value out of the seven RDA values resulting from the third 

step is selected as the approved RDA for that trip. This is because the reference that gives the 

minimum RDA of a trip is the most similar one to that trip. Figure 4.33 shows the used algorithm 

to calculate RDA. 

4.4 Relationship between RDA and Average Speed 

In order to understand passenger’s travel behavior, DA and RDA are computed for each trip in 

each cluster on each day according to the steps explained in section 4.3. Next, the relationships 

between trip average speed (V) and RDA, and between the average speed difference between 

respective reference and  trip (∆V) and RDA are investigated. These relationships are examined 

for each day separately and for all days together. In addition, the relations at peak and off-peak 

periods for one weekday and one weekend day are compared. Another case considering private 

cars only , i.e., excluding taxicab services, is tested as well. 

Since the number of clusters for each day is high (i.e., 191 cluster/day on average), it is not possible 

to separately investigate each cluster or each zone in the study area in the context of this thesis. 

Therefore, all resulting RDA and average speed values from all clusters are aggregated for each 

day. Figure 4.34 and Figure 4.35 show the histogram distributions of V and RDA for one weekday 

and one weekend day respectively. It can be noticed that V follows the Gaussian (normal) 

distribution, while RDA follows the exponential distribution. In addition, V values are slightly 

higher on weekends than those on weekdays, which can be explained that peak hours are 

concentrated in relatively short time intervals (i.e., work and school start and end times) on 
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weekdays compared to weekends where peak hours are more distributed throughout the whole day. 

As for RDA values, there is no big difference between weekdays and weekends. 

Input: Clusters C1, C2, …, Ck and waypoints (trajectory) of each trip 
Output: RDA of each trip in each cluster 
Procedure: 
1 for each cluster Ci in Trips.clusters{ 
2    sort(trips in Ci, V, decreasing)   # Sorting trips in descending order based on their average speed 
3    ref(i)<- the fastest seven trips in Ci}   # Defining the referential trips for each cluster 
4 for each cluster Ci in Trips.clusters{ 
5    for each trip tj in Ci{ 
6       path1<- waypoints of tj in Ci   # Defining trajectory of tj in Ci 
7       for each reference refx in Ci{ 
8          path2<- waypoints of refx in Ci   # Defining trajectory of refx in Ci 
9          if O1<D1 && O2<D2{   # Checking the direction of travel for both paths by comparing the 

coordinates of their origin and destination points 
10           if O1<O2 && D1>D2{   # Checking which OD pair is the nearest one 
11              path1.1<- path1 excluding the unnecessary extensions outside the nearest OD pair 
12              path2.1<- path2 excluding the unnecessary extensions outside the nearest OD pair 
13              path1.1<- SimplifyPath(path1.1)   # Simplifying path1.1 by removing redundant waypoints 
14              path2.1<- SimplifyPath(path1.1)   # Simplifying path2.1 by removing redundant waypoints 
15              DA(Ci, tj, refx)<- Createmap(path1.1, path2.1)   # Computing deviation area between tj and 

refx in Ci 
16              RDA(Ci, tj, refx)<- DA(Ci, tj, refx)/ PathDist(path1.1)   # Computing relative deviation area 

between tj and refx in Ci by dividing deviation area by the length of path1.1 
17           } else if O2>O1 && D1<D2{ 
18           …   # Checking all other nearest OD possibilities 
19        } else if O1<D1 && O2>D2{ 
20        …}}}}}  # Checking all other travel direction possibilities for both paths 
21 for each cluster Ci in Trips.clusters{ 
22     for each trip tj in Ci{ 
23        RDA(Ci, tj)<- min(all resulting RDA(Ci, tj, refx))}}   # Determining final RDA value for tj in Ci which 

is the minimum RDA out of the seven calculated values for tj with the seven references in Ci 
 

 

 Figure 4.33: The applied algorithm for computing RDA 

 

Figure 4.34: Histogram distibutions of a) V and b) RDA for a weekday (Monday) 
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Figure 4.36 and Figure 4.37 show the scatter plot of the relationship between V and RDA and 

between ∆V and RDA for all trips in one day respectively. It can be concluded from both figures 

that there are some outliers which are very distant from other observations. These outliers shall be 

detected and handled. Two techniques are usually used to detect outliers; boxplot and bagplot. In 

boxplot, the outliers in each variable are detected separately. Whereas, bagplot is a technique 

proposed by Rousseeuw, Ruts, & Tukey (1999) as a generalization of the boxplot to bivariate data. 

It aims to visualize the location, spread, skewness and outliers of the data set. In bagplot, the outliers 

in both variables are detected simultaneously. Figure 4.38 shows an example of outliers detection 

using bagplot method, where the red stars represent the outliers. 

In this thesis, bagplot method is used to detect outliers. It was observed that the outliers form less 

than 5% of the dataset only and are very far from other normal observations especially regarding 

RDA values, i.e., up to 500 times the values of non-outliers. This can be caused by measurement 

errors, abnormal driving behavior (e.g., taking a very circuitous route, driving around, or trip-

chaining especially by taxi drivers) such as in Figure 4.39, or other unknown reasons. Moreover, a 

considerable percentage of the outliers have average trip speed higher than 50 kph exceeding the 

speed limit within the study area. For these reasons, the outliers are excluded and not considered. 
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Figure 4.36: Scatter plot of V and RDA for Monday 
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Figure 4.35: Histogram distributions of a) V and b) RDA for a weekend day (Sunday) 
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Figure 4.37: Scatter plot of ∆V and RDA for Monday 
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Figure 4.39: An example of the noticed abnormal driving behavior, where the black line represents the 
vehicle’s trajectory 
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Figure 4.38: Example of outliers detection using bagplot method 
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As mentioned earlier, two relationships are investigated in this thesis; relationship between V and 

RDA, and relationship between ∆V and RDA. Figure 4.40 and Figure 4.41 show an example of the 

resulting scatter plots of the relationship between V and RDA, and between ∆V and RDA for all 

trips in one day after excluding the outliers respectively. 

In order to understand these relationships, nonparametric regression analysis is applied. 

Nonparametric regression analysis is usually used when the relationship is nonlinear, and the 

parametric form and the parameters are unknown (Tibshirani & Wasserman, 2015). In 

nonparametric regression, the shape of the functional relationship between the response 

(dependent) and the explanatory (independent) variables are not predetermined, and thus the shape 

of the function is determined from the data (Tibshirani & Wasserman, 2015; Mahmoud, 2014). In 

this thesis, Kernel regression, which is one of the most common nonparametric regression methods, 

is applied. Kernel regression is proposed to estimate the conditional expectation of a random 
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Figure 4.40: Scatter plot of V and RDA for Monday after excluding outliers 
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Figure 4.41: Scatter plot of ∆V and RDA for Monday after excluding outliers 
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variable. In nonparametric regression, the conditional expectation of a variable Y given a variable 

X is written as E(Y|X) = m(X), where the unknown function m is approximated by a locally 

weighted average, using a kernel as the weighting function such that closer points are given higher 

weights (Huang & Sun, 2013).  

Kernel regression is applied using “np” R package developed by Hayfield & Racine (2008). It is 

used to investigate the aforementioned relationships for each day and for all days together as well. 

The applied algorithm to perform the regression and plot the relationships is shown in Figure 4.42.  

Input: RDA and V values for each trip tj in each cluster Ci 
Output: Relationship plots showing the regression curve 
Procedure: 
1 all.RDA<- do.call(rbind, RDA)   # Aggregating RDA values of all trips in all clusters for each day into 

one object 
2 V.RDA<- cbind(V, all.RDA)   # Defining a matrix contains all V and RDA values for each day 
3 for each cluster Ci in Trips.clusters{ 
4    for each trip tj in Ci{ 
5       ∆V(Ci, tj)<- Vref.min – V(Ci, tj)}}   # Computing average speed difference between each trip and the 

reference that gives minimum RDA for that trip 
6 ∆V.RDA<- cbind(∆V, all.RDA)   # Defining a matrix contains all ∆V and RDA values for each day 
7 compBagplot(V.RDA)   # Detecting and excluding outliers from V.RDA matrix using bagplot  
8 bws<- npregbw(V.RDA)   # Determining V.RDA bandwidth value to be used in Kernel regression 
9 reg.V.RDA<- npreg(V.RDA, bws)   # Performing Kernel regression between V and RDA using 

computed bandwidth 
10 plot(reg.V.RDA, plot.errors.method="asymptotic", plot.errors.style="band")   # Plotting resulting 

Kernel regression curve between V and RDA showing standard error bands 
11 Repeat steps from line 7 to line 10 for relationship between ∆V and RDA 

 
 

Figure 4.42: The applied algorithm to perform Kernel regression and plot the relationships 
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5. Results and Discussion 

In this chapter, the results of Kernel regression applied to examine the relationships between V and 

RDA, and between ∆V and RDA for different cases are presented and discussed. 

Figure 5.1 and Figure 5.3 show the scatter plot of the relationships between V and RDA, and 

between ∆V and RDA for all days respectively, where the blue line indicates the estimated relation 

curve using Kernel regression method. Figure 5.2 and Figure 5.4 show the zoomed-in plot of the 

regression curve for the relations between V and RDA, and between ∆V and RDA for each day 

separately respectively, where the solid line represents the regression curve and the two dotted lines 

on either side indicate the standard error.  

From Figure 5.1 and Figure 5.2, it can be concluded that the regression curves of the relationship 

between V and RDA for each day are broadly similar. RDA value in each day slightly increases at 

the beginning of the curve until reaching a peak point when V value ranges between 10 and 15 kph. 

Next, RDA value starts decreasing slightly at first before considerably dropping, in general, after 

V value approaches 25-30 kph. Therefore, the curve can be divided into two regimes; when V is 

lower than 10-15 kph (before peak point) and when V is higher than 10-15 kph (after peak point). 

In the first regime, V increases when RDA increases. In other words, when vehicles take longer 

routes and deviate more from the fastest routes, they can achieve higher trip average speed. This 

may refer to the situation when the fastest routes are congested, and thus deviating from them will 

achieve a similar or a bit higher average speed. In the second regime, V decreases when RDA 

increases. This means that the higher the deviation area between the route that a vehicle takes and 

the respective fastest route, the lower the trip average speed the vehicle can achieve. This may refer 

to the situation when the fastest routes are not congested, and thus deviating from them will achieve 

a lower average speed. As a result, these figures might indicate a potential relationship between V 

and RDA. 

The regression curves for each day which represent the relationship between ∆V and RDA are also 

somewhat similar. This can be noticed in Figure 5.3 and Figure 5.4 where ∆V values steadily 

increase as RDA values increase. This relation is sensible as it means that the higher the deviation 

area between a trip’s path and the respective fastest path, the higher the average speed difference 

between them, and thus the lower the average speed of that trip. Consequently, these figures might 

denote a potential relationship between ∆V and RDA. 
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Figure 5.1: Estimated curve of the relationship between V and RDA for all days 

Figure 5.2: Resulting regression curves of the relation between V and RDA for a)Monday, b)Tuesday, 
c)Wednesday, d)Thursday, e)Friday, f)Sunday, and g)All days 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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Figure 5.3: Estimated curve of the relationship between ∆V and RDA for all days 

Figure 5.4: Resulting regression curves of the relation between ∆V and RDA for a)Monday, b)Tuesday, 
c)Wednesday, d)Thursday, e)Friday, f)Sunday, and g)All days 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 



64 
 

In addition, the relationship between V and RDA is temporally investigated at peak and off-peak 

periods of one weekday (Wednesday) and one weekend day (Sunday). AM and PM peak periods 

are determined for each day first. Next, V and RDA values during AM and PM peak periods are 

combined together as the values for peak periods. Off-peak periods are defined as all day periods 

other than peak periods. AM peak periods are determined to be 8:00-10:00 and 10:00-12:00 for 

Wednesday and Sunday respectively, whereas PM peak periods are determined to be 17:00-19:00 

and 16:00-18:00 for Wednesday and Sunday respectively. Figure 5.5 and Figure 5.6 show the 

resulting regression curves for the peak and off-peak periods of Wednesday and Sunday 

respectively. 

 From both figures, it can be concluded that there is no big difference in the regression curve 

between weekday and weekend day. However, RDA values are generally a bit higher on 

Wednesday than on Sunday. As for peak and off-peak periods, V values at peak periods are lower 

than those at off-peak periods for the same value of RDA on both days. For instance, at RDA = 

100 m2/m on Sunday, V = 35 kph at peak periods while V = 45 kph at off-peak periods. One 

potential reason for this is because even the routes that drivers take trying to aviod the congestion 

on the fastest routes (references) at peak hours are also congested in varying degrees, and thus thier 

average speed will not be much better. Another potential explaination might be that some of the 

drivers who prefer to deviate from the fastest routes during peak periods to avoid congestion on 

these routes, still do the same during off-peak periods too. 

Figure 5.5: Relation between V and RDA at a) peak periods and b) off-peak periods for Wednesday 

(a) (b) 

Figure 5.6: Relation between V and RDA at a) peak periods and b) off-peak periods for Sunday 

(a) (b) 
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Another case is tested in this thesis where only private passenger cars are considered. Thus, all 

other types including taxicabs, trucks, and local delivery fleets are excluded. The regression curve 

of the relationship between V and RDA for this special case on one weekday (Wednesday) is shown 

in Figure 5.7. 

The trend of the regression curves in each case are roughly similar where RDA values slightly 

increase at first, reach a peak point when V = 10-15 kph, and then steadily decrease. However, 

RDA values decrease more steeply in private cars case. In addition, RDA values in private cars 

case are much higher than those in all vehicle types case almost at every V value. One of the reasons 

behind this might be due to the fact that taxi and local delivery service drivers have better 

knowledge of the road network and thus are more aware of the fastest routes from one zone to 

another, which resulting in lower RDA values compared to private cars’ drivers. 

 

 

 

 

 

 

 

 

Figure 5.7: Relationship between V and RDA considering a) all vehicle types and b) private cars only on 
Wednesday 

(a) (b) 
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6. Conclusion 

This chapter presents a summary of the research findings and the approach followed in this thesis 

to obtain them. It also describes the research limitations, provides some recommendations for 

future work, and indicates potential practical implications of this research.  

6.1 Summary 

With the widespread use of location sensing technologies such as GPS-enabled vehicles, huge 

volumes of vehicle trajectory data are increasingly generated. Compared to traditional traffic data 

obtained from conventional data collection methods like fixed loop detectors, vehicle trajectories 

provide much richer information. The increasing availability of such data opens up new 

opportunities for performing more sophisticated and comprehensive spatial and temporal analyses 

for planning and management of transportation systems. One of the most useful types of analysis 

in this context is traffic data clustering, which can help in understanding and revealing valuable 

insights into urban mobility patterns and travel behavior. 

In this thesis, a six-day dataset of floating car data from Munich city is clustered to extract 

meaningful urban mobility patterns. The trajectory dataset contains information like waypoints’ 

GPS coordinates and speed for approximately 100,000 trips. K-means, hierarchical, and DBSCAN 

are the clustering methods that have been tested on a 10% sample of the dataset’s trips. In addition, 

a theoretical comparison among them is conducted. The comparison and test results showed that 

hierarchical clustering method performs the best out of the three methods in this context. Therefore, 

hierarchical clustering analysis, based on Euclidean distance and Ward’s linkage method, is used 

to spatially cluster the trips in each day according to the coordinates of their origin and destination 

points, such that trips that have similar origin and destination points are put together in one cluster. 

The number of clusters for each day is defined using special criteria that are developed to determine 

the optimal number of clusters, taking into consideration clusters’ dimensions, number of trips per 

cluster, and the percentage of clusters with no overlap between their origin and destination zones. 

The output of this clustering process is clusters of trips, where each cluster represents an OD pair. 

To explore mobility patterns and drivers’ travel behavior within the resulting clusters, a new tool 

is presented in this thesis. Relative Deviation Area (RDA) is a tool that aims to find the deviation 

between two trajectories that share the same origin and destination zone. Ideally, one of the 

trajectories presents the least-cost route (referential path) between the two zones. For instance, the 
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trajectory that has the highest average speed while traveling from one zone to another is considered 

as the least-cost route between the two zones in this thesis. RDA computes the relative area by 

which a vehicle traveling from one zone to another is deviating from the least-cost route, while 

relative area means that the resulting deviation area is divided by the length of the vehicle’s 

trajectory section that extends between the nearest pair of OD points of the two trajectories. In this 

research, seven trips that have the highest average speed in each cluster are defined as the referential 

paths for that cluster. Next, RDA is computed seven times (one time with each referential path) for 

each trip in each cluster, such that the minimum value out of the seven values is considered as the 

final RDA value for that trip.  

Subsequently, all resulting RDA and V values from all clusters are aggregated together in each 

day, as it was not possible to separately investigate each cluster or each zone in the context of this 

thesis. The relationships between V and RDA and between ∆V and RDA are investigated for each 

day attempting to understand drivers’ travel behavior, where ∆V is the average speed difference 

between a given path and the referential path that gives the minimum RDA value. Before applying 

nonparametric regression to understand these relationships, outliers are detected and excluded 

using bagplot method. Afterward, Kernel regression method is applied to investigate the 

aforementioned relationships for each day and for all days together as well. It was found that the 

resulting regression curves in both relationships are almost consistent throughout all weekdays and 

weekend day as well. In the relation between V and RDA, it was found that V, generally, decreases 

as RDA increases. In other words, it was noticed that the higher the deviation area between the 

route that a vehicle takes and the respective fastest route between two zones, the lower the trip 

average speed the vehicle can achieve. As for the other relation between ∆V and RDA, it was found 

that ∆V increases as RDA increases. This means that the higher the deviation area between a trip’s 

path and the respective fastest path, the higher the average speed difference between them, and thus 

the lower the average speed of that trip. The resulting regression curves in both cases are found to 

be sensible and consistent; therefore, this might indicate a potential association between deviation 

area and trip average speed. However, this relationship should be deeper investigated and validated 

by applying the presented methodology on different datasets in different locations for example. 

In addition, the relationship between V and RDA is temporally investigated at peak and off-peak 

periods of one weekday and one weekend day. The regression curves suggest no big difference 

between weekday and weekend day, where RDA values are only a bit higher on weekday than on 
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weekend day. With regard to peak and off-peak periods, V values at peak periods are found to be 

lower than those at off-peak periods for the same value of RDA on both days. Another case is tested 

where only private cars are considered on one weekday, excluding all other vehicle types like 

taxicabs and trucks. The results showed that RDA values in private cars case are much higher and 

decrease more steeply than for those in all vehicle types case. 

6.2 Limitations and Recommendations 

Some of the limitations of the work carried out in this thesis, mainly due to time and computational 

cost constraints, and some recommendations concluded from these limitations are listed below. In 

future research, an attempt should be made to address these limitations in order to improve the 

reliability and validity of the predicted results. 

 The resulting clusters that have an overlap between their own origin and destination zones 

are excluded, as it is required to have only one major traffic flowline for each cluster from 

one origin zone to another fully separated destination zone. It would be ideal if it was 

possible to control clustering process such that only clusters that have fully separated origin 

and destination zones are created. In this way, no clusters have to be excluded and no trips 

are overlooked. 

 In RDA computation, paths are simplified by removing redundant points that lie on the 

same line, or that do not contribute significantly to the shape of the path. Although this step 

noticeably improved the efficiency and reduced the computational costs, the results would 

be a bit more accurate if all points of each path were considered. 

 Waypoints in the raw vehicle trajectory data are recorded unevenly and at relatively long-

time intervals which range from 1 second to 3 minutes with a median of 1 minute. It would 

be better for further studies to use trajectory datasets with higher waypoints frequency such 

that the distance between two consecutive points can be reasonably and safely 

approximated by a straight line connecting the two points. This would help producing more 

reliable RDA values. 

 As the number of the resulting clusters in each day is high, and due to thesis time limit, all 

resulting RDA and V values from all clusters are aggregated together for each day prior to 

studying travel behavior and investigating different relationships. For further studies, it will 

be better and more comprehensive to investigate travel behavior on a cluster-level. 
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 In this thesis, trips are spatially clustered based on the coordinates of their origin and 

destination points. However, for further studies, it might be better to spatiotemporally 

cluster trips, especially if it desired to extract and analyze temporal mobility patterns. 

 GPS coordinates for trips’ start and end points in the raw trajectory data are accurate to the 

3rd decimal place only. Since the trips are clustered based on these points, the clustering 

results would be more accurate if the precision of their coordinates was higher, although 

the current precision didn’t affect much the clustering results. 

 This thesis didn’t take into consideration the semantic meanings of the resulting clusters as 

this was not very relevant in the context of the thesis. Nevertheless, it would be ideal to find 

out where exactly the resulting clusters are and what kind of semantic category they belong 

to by projecting the resulting clusters on the map. 

 Outlying trips that produce very extreme RDA values are detected and excluded in this 

thesis, but it is not guaranteed that all trips with abnormal travel behavior are detected. 

However, the best solution will be to find a way to handle these outliers instead of excluding 

them. 

 Three clustering methods are tested in this thesis, and consequently hierarchical clustering 

was used at the end. For further studies, other clustering techniques might be tested and 

applied in this context as they perhaps will produce better clustering results. 
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