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Abstract

Cancer is still one of the biggest challenges for medicine in modern societies. �erapy with ionizing radiation
such as x-rays or protons, together with surgery and chemotherapy, has been one of the main treatment options
for decades, and even the development of new methods such as immunotherapy is not likely to render it obsolete.
�e advent of more advanced delivery techniques, such as linear accelerators (linacs), and multi-leaf-collimators
(MLCs), for precise shaping of the treatment beam has lead to increasingly sophisticated radiation treatment
options.
State-of-the-art treatment planning almost always involves the so-called inverse-planning approach: Dosimetric
parameters crucial for the clinical outcome, like the dose prescribed to the tumor, or dose limits for important
radiation sensitive organs at risk (OARs), are speci�ed beforehand, while complex optimization algorithms try to
�nd machine control parameters which lead to the desired dose distribution in the patient’s body. Modern dose
delivery techniques, like intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy
(VMAT), are based on an inverse optimization approach.
�is inverse optimization problem, however, almost always tries to satisfy highly contradictory optimization
objectives, such as maximizing the dose in the tumor while doing minimal damage to the neighboring healthy
tissue. �e trade-o� between these goals can be controlled by various adjustable parameters. In this type of
problem, called multi-criteria optimization (MCO), an a-priori de�nition of a global optimum is not possible any
more, up to an in�nite number of equally ’optimal’ solutions exist, and the �nal choice is o�en still le� to a human
decision-maker.
�is thesis focuses on two aspects which could facilitate the MCO radiotherapy treatment planning work�ow:
First, the prediction of the outcome of the optimization process for a speci�c parameter se�ing without having to
perform a time-consuming complete optimization. �is is done via trilinear dose interpolation using pre-calculated
results for speci�c parameter values. In contrast to existing research, this work is more focused on seeing whether
useful predictions can be achieved without being able to make strong assumptions on the mathematical properties
of the underlying optimizer. In addition, the optimization process studied here is governed by a small number of
highly composite parameters only, each of these parameters controlling a number of important aspects of the
optimization process simultaneously. �e feasibility of this approach is investigated by comparison of actual result
and approximation for a number of selected cranial and spinal cases and two di�erent levels of interpolation
resolution.
�e second part consists of the application of machine learning models trained on existing optimization results
and the underlying variation in the patient geometry for predicting the parameter se�ings which have the biggest
potential impact on changing the optimization result. With this knowledge, a be�er approximation of the set
of possible solutions can be achieved. �e user can be provided with a more streamlined planning experience,
because identi�cation of the most relevant regions in the parameter space is possible. Comparisons are performed
using support-vector-machine (SVM), random-forest (RF) and arti�cial neural network (ANN) classi�ers. Again, a
number of spinal and cranial cases are investigated and the feasibility and e�ectiveness of such a methodology is
shown.
Finally, an outlook is given on how, when combined, the results of those two studies can be used to develop an
optimized treatment planning work�ow, which can be expected to be far more time-e�cient than the existing
current procedure.
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Zusammenfassung

Die Behandlung von Krebserkrankungen stellt nach wie vor eine der größten Herausforderungen in der modernen
Medizin dar. Zusammen mit der chirurgischen Tumorentfernung und der Chemotherapie ist die Behandlung mit
ionisierender Strahlung wie Röntgenstrahlen oder Protonen seit Jahrzehnten eine der Haup�herapiemöglichkeiten.
Auch die laufende Entwicklung von neuen �erapieoptionen wie der Immunotherapie wird die Bedeutung der
Strahlentherapie aller Vorraussicht nach nicht schmälern, sondern trägt nur zum Trend zu immer di�erenzierteren
und patientenspezi�scheren Behandlungsmethoden bei.
Die Verfügbarkeit von technologisch zunehmend ausgerei�eren Bestrahlungsgeräten wie z.B. klinischen Lin-
earbeschleunigern mit Lamellenblende zur exakten Anpassung des Strahlungsfeldes, hat immer anspruchsvollere
Möglichkeiten der Strahlenbehandlung ermöglicht. Modernste Bestrahlungsplanung für z.B. intensitätsmodulierte
Radiotherapie (IMRT) und volumetrisch-modulierte Rotationsbestrahlung (VMAT) beinhaltet fast immer den
sogenannten inversen Planungsansatz: Dosimetrische Parameter, die für das klinische Ergebnis entscheidend sind,
wie z.B. die dem Tumor verordnete Strahlendosis oder Dosisgrenzwerte für besonders strahlungsemp�ndliche
Risikoorgane (OARs), werden im Vorfeld spezi�ziert. Komplexe computergestützte Optimierungsalgorithmen
versuchen, die Maschinensteuerungsparameter, die zu der gewünschten Dosisverteilung im Körper des Patienten
führen, zu ermi�eln.
Eine besondere Eigenscha� eines derartigen Optimierungsproblems ist die gleichzeitige Verfolgung von teils stark
gegensätzlichen Zielen, so setzt z.B. die Maximierung der Dosisabdeckung im Zielvolumen der gleichzeitigen
bestmöglichen Schonung des unmi�elbar umgebenden gesunden Gewebes technisch bedingt Grenzen.
Bei so einem, auch multikriterielle Optimierung (MCO) genannten Problem, ist in der Regel die a-priori De�nition
eines globalen Optimums nicht mehr möglich, es existieren teils unbegrenzt viele mathematisch gleichwertige
Optima, und die letztendliche Entscheidung muss individuell getro�en werden.
Diese Dissertation konzentriert sich auf zwei Aspekte, die eine auf MCO basierende Bestrahlungsplanung erle-
ichtern können:
Zum einen die Vorhersage des Ergebnisses des Optimierungsprozesses für eine spezi�sche Wahl der Startpa-
rameter, ohne daß jedes mal ein zeitaufwändiger komple�er Optimierungsprozess durchlaufen werden muss.
Dies erfolgt hier durch trilineare Dosisinterpolation ausgehend von vorberechneten Ergebnissen für spezi�sch
ausgewählte Parameterwerte. Im Gegensatz zur bestehenden Forschung konzentriert sich diese Arbeit mehr
darauf, zu untersuchen, ob nützliche Vorhersagen erreicht werden können, ohne stark einschränkende Annahmen
bezüglich der mathematischen Eigenscha�en des zugrunde liegenden Optimierers machen zu müssen. Darüber
hinaus wird der hier untersuchte Optimierungsprozess nur durch eine kleine Anzahl von einstellbaren Parametern,
die in sich jedoch vielfältige Aspekte des Optimierungsprozesses vereinen, gesteuert, während in vielen bisherigen
Ansätzen eine unüberschaubare Zahl von Einzelparametern möglich ist. Die Durchführbarkeit solch einer Strategie
wird durch den Vergleich von tatsächlichem Ergebnis und Approximation für eine Reihe ausgewählter kranieller
und spinaler Patientengeometrien und trilinearer Interpolation mit zwei verschiedenen Au�ösungsstufen gezeigt.
Der zweite Teil besteht in der Entwicklung und Anwendung eines maschinellen Lernmodells, das an vorberech-
neten Optimierungsergebnissen trainiert wird, und unter Berücksichtigung der zugrundeliegenden Variation
in der Patientengeometrie die Vorhersage der Parameter-Bereiche, in denen die Optimierungsergebnisse am
meisten Variabilität aufweisen, ermöglicht. Hierdurch kann der Planungsprozess zielgerichteter und zeitsparender
gestaltet werden.



viii Zusammenfassung

Die folgenden maschinellen Lernverfahren werden eingesetzt und bezüglich der erreichten Vorhersagequalität
verglichen: Support-Vektor-Maschine (SVM), Klassi�kation mi�els Random-Forest (RF) Entscheidungsbäumen
und künstliche neuronale Netze (ANN). Auch hier wird die E�ektivität des Verfahrens anhand der oben erwähn-
ten spinalen und kraniellen Testgeometrien gezeigt. Schließlich erfolgt ein Ausblick, wie die Ergebnisse dieser
beiden Studien kombiniert werden können, um den Prozess der Bestrahlungsplanung noch einheitlicher und
zeite�zienter zu gestalten.
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Introduction



2 1. Introduction

1.1 Introduction

Cancer is still one of the leading causes of death in modern societies, and recent studies show
that in western countries, cancer is even likely to replace heart disease as main cause of death
within the next couple of years [29].
�erapy with ionizing radiation such as x-rays or protons, together with surgery and chemother-
apy, has been one of the main treatment options for decades [3], and even the development of
new methods such as immunotherapy is not likely to render it obsolete[80]. �e advent of more
advanced delivery techniques such as linear accelerators (linacs) and multi-leaf-collimators
(MLCs) for precise shaping of the treatment beam has lead to increasingly sophisticated radia-
tion treatment options[9].
In recent years, radiotherapy treatment planning in the clinical practice has changed tremen-
dously. �e cumbersome forward planning process, where the dosimetrist had to manually
change treatment shapes and leaf positions, evaluate the resulting dose distribution, and itera-
tively change parameters again and again in order to achieve an acceptable treatment plan, is
being abandoned more and more. State-of-the-art treatment planning almost always involves
the so-called inverse-planning approach: Dosimetric parameters crucial for the clinical outcome,
like the dose prescribed to the tumor or dose limits for important radiation sensitive organs at
risk (OARs) are speci�ed beforehand, while complex computerized optimization algorithms
try to �nd machine parameters like leaf positions, table and gantry angles, which yield the
desired dose distribution[35] [85]. Modern dose delivery techniques like intensity modulated
radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are based on the
inverse optimization approach.
�is inverse optimization problem, however, almost always consists of highly contradictory
optimization objectives: Creating a homogeneously high dose inside the planning target volume
(PTV) is very likely to inadvertently also deliver an unwanted radiation dose to OARs in the
proximity to the tumor site. If, on the other hand, in order to keep toxic side e�ects at bay, the
emphasis during the optimization process is placed on healthy tissue sparing, the chances of
depositing the desired radiation dose in the complete target volume will be lowered as well.
�e above type of optimization problem, where a trade-o� between contradicting objectives
has to be achieved, is generally known as multi-criteria optimization (MCO), and has been
widely analyzed in operations research. A single global optimum does not exist any more
and is replaced by an (o�en in�nite) number of equally optimal (also called Pareto-optimal)
solutions[24]. �e term Pareto-optimal is credited to the Italian economist Vilfredo Pareto
(1848-1923) and describes a state in certain optimization problems, where no single objective
value can be improved without simultaneously worsening another, the set of all Pareto-optimal
solutions is called Pareto surface[5]. In terms of radiotherapy treatment planning, this means
that the operator is le� with the task of deciding which of these Pareto-optimal plans is most
likely to lead to the desired clinical outcome.
Since optimization of a radiosurgery treatment plan can take anywhere between a minute
and a couple of hours, depending on the complexity of the plan and the available computer
hardware, navigating the Pareto surface in real time without pre-calculated results is not
practicable. �e most common approach for dealing with this problem is to calculate a num-
ber of representative Pareto-optimal optimization results [15] and to provide the user with
a navigable approximation of the Pareto surface[14] [49]. �e feasibility of this approach is
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vastly depending on the formulation of the optimization problem and the numerical algorithms
applied to it. One method for tackling this challenging task is to formulate the problem as a
convex optimization problem. �is method has some tremendous advantages, like the fact
that the theory of convex optimization problems is mathematically well understood, very fast
o�-the-shelf optimization algorithms exist, and any found optimum can be guaranteed to be a
global optimum[17]. However, when applied to radiotherapy treatment planning, there are
also a couple of downsides to this approach:
�e concept of convex optimization does not really agree with the realistic circumstances
of radiation therapy. Common optimization objectives, like dose volume constraints, break
convexity and have to be re-formulated or approximated instead [32]. Optimization is o�en
performed on dose �uences, and the result has to be transformed into a deliverable treatment
plan in a post processing step [20]. Even with very e�cient leaf-sequencing algorithms, the
found optimal �uence pa�ern is not necessarily the one which is �nally delivered to the patient.
In commercially available solutions dose metrics like the equivalent uniform dose (EUD)[60]
or the maximum dose delivered to a speci�c organ at risk can be directly speci�ed as hard
optimization constraints via slider control tools in the user interface. �is allows for a vast
number of variations in the optimization result and a highly customized dosimetric outcome.
However, as soon as the number of organs at risk increases, modi�cations of one slider can
severely impair the allowed range of the other, and the suitable slider positions to achieve the
desired outcome are not always obvious.
�e research presented in this work is based on the VMAT optimization algorithm used in
the Brainlab Elements Cranial and Brainlab Elements Spine radiosurgery treatment planning
so�ware. �is system follows a di�erent approach: Instead of providing individual controls
for each speci�c dosimetric criterion, the main optimization process is controlled by means
of three main slider controls only. Each of these slider controls in�uences the optimization
process in a number of composite non-trivial aspects, grouped into management of the OAR
sparing vs PTV prescription ful�llment, general sparing of non-tumorous healthy tissue (even
though it might be not explicitly delineated as organ-at-risk), and �nally, the degree of dose
modulation contained in the �nal treatment plan. �e la�er refers to features such as the
size and complexity of allowed treatment beam-shapes and the modulation of the amount of
radiation dose delivered per second over the time of the treatment.
�e main purpose of this work is the exploration of this speci�c optimization approach using a
low number of composite optimization objectives under the scope of multi-criteria optimization
in cranial and spinal radiosurgery applications with the goal of improving the current treatment
planning work�ow in terms of speed and e�ciency. �is thesis is structured as follows:
First, a�er a short introduction to radiotherapy and the relevant treatment planning and deliv-
ery methods, all the theoretical concepts relevant for this work are introduced. �ese consist
of:

• An introduction to the mathematical background of multi-criteria optimization and
important solution methods

• Presentation of selected methods for approximation of function values in a multi-dimensional
parameter space

• A mathematical method for describing the mutual spatial relationship of objects in a
discretized 3-D space
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• A short introduction to machine learning and important arti�cial-intelligence (AI) algo-
rithms

• An overview of the VMAT planning capabilities of the optimizer used in this study

�e main part focuses on two aspects which could facilitate the MCO treatment planning
work�ow:
First, the prediction of the outcome of the optimization process for a speci�c position of each
control slider without having to perform a time-consuming complete optimization for each
parameter con�guration. �is is done via approximation using pre-calculated results for speci�c
slider positions. A lot of work has been done in that area for convex optimization problems
and single dosimetric value objectives. �is work, however, is more focused on seeing whether
useful predictions can be also achieved without being able to make strong assumptions on
the mathematical properties of the underlying optimizer. �e feasibility of this approach is
investigated by comparison of actual result and approximation for a number of selected cranial
and spinal cases.
�e second part consists in the application of a machine learning model trained on existing
optimization results for predicting the slider positions which have the biggest potential impact
on changing the optimization result. With this knowledge, a be�er approximation of the Pareto
surface might be achieved and the user could be provided with a more streamlined planning
experience. Again, a number of spinal and cranial cases are investigated.
Finally, an outlook is given on how, in combination, the results of those two studies could be
combined to develop a streamlined treatment planning work�ow which can expected to be far
more time-e�cient than the existing current procedure.
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2.1 Radiotherapy and treatment planning

2.1.1 Radiobiology
Ionizing radiation consisting of particles such as photons, electrons or protons can seriously
damage or even kill living tissue by two main e�ects:

• Damage caused by direct hits on the cell’s DNA. Even though the DNA takes up only
a tiny part of a cell’s total volume, there is a slight chance that an ionizing particle
directly hits the DNA helix contained in the nucleus. Biological cells posses sophisticated
DNA repair mechanisms, but there is a slight chance that the damages surpasses these
self-repair-capabilities, or only partial repair is possible. In severe cases this can lead to
self-induced controlled cell death (apoptosis) or an inability to perform successful cell
division (mitosis).

• Damage caused indirectly by ionizing events in the cell body. �is is the predominant
damage mechanism caused by ionizing radiation. �e particles can change the chemical
structure of the cell, especially creation of free radicals such oxygen atoms can cause
ionization and oxidation damage to the DNA. �e consequences are comparable to direct
DNA hits: if the damage cannot be repaired, the cell dies or is unable to divide.

During their life cycle cells are susceptible to radiation damage in a varying degree, but fast-
dividing cells such as tumor cells are generally more vulnerable due to their higher rate of
mitosis and impaired repair mechanisms. In radiation therapy this e�ect is used for fractionated
irradiation: �e tumor is irradiated in a number of consecutive fractions, giving healthy tissue
time to repair possible damage and increasing the chance of hi�ing a cancer cell in a vulnerable
state.
�ere exists a lot of literature dealing with radiobiology, a good overview can be found in
Hall[34] .

2.1.2 Radiation therapy
Radiation therapy (RT) has been used for more than a century to treat varying illnesses[30][51][67].
Nowadays one of the most important applications is treatment of cancers, especially in body
regions which are very hard or even impossible to reach by surgical intervention. In other cases
it is used as adjuvant therapy in combination with conventional surgery and chemotherapy.
�e application of radiation therapy can be distinguished in external beam radiotherapy where
the irradiating source is placed outside of the body, and brachytherapy, where the source is
temporarily directly placed in the tissue which is to be irradiated. �is thesis covers topics
related to external photon-beam radiotherapy only.
While some modern treatment units for external photon beam therapy use decaying radioactive
isotopes such asCo60 for a photon source (such as the Gamma Knife), most of the time a clinical
linear accelerator (�gure 2.1) is used for producing the radiation. Electrons are accelerated to an
energy of typically 4-18 MV and hit a tungsten target which releases photon bremsstrahlung.
�e photon beam is usually focused by a two pairs of primary collimators also called jaws while
the �nal shape of the treatment beam is achieved via two stacks of movable tungsten leaves
called multileaf-collimator (MLC). �e movable treatment unit containing the linear accelerator
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Figure 2.1: Modern clinical Linac with MLC, patient positioning system and treatment couch [1]

and treatment head is called gantry. �e Linac head also contains an ionization chamber where
the delivery dose-rate in (MU )

s is measured (MU stands for Monitor Unit). For dose calculations
in the treatment planning process a calibrated chamber in a water tank is used to measure
the Linac calibration in Gy

100MU at a speci�c calibration-depth and -�eld size. Figure 2.2 shows
typical relative-depth-dose curves for a 6MV photon beam and di�erent �eld sizes in water.
A�er an initial dose build-up the absorbed dose gradually declines with increasing depth.

Figure 2.2: Normalized relative depth dose (PDD) of a 6MV photon beam for 10x10mm(green), 60x60mm(red)
and 100x100mm(blue) MLC square �eld size

Further information on the physics of radiation therapy can be e.g. found in Khan[45].
Treatment delivery is usually done from a number of di�erent couch and gantry positions in
order to minimize radiation exposure of healthy tissue. Delivery techniques can be categorized
into

• Conformal Forward-Planning delivery methods
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Figure 2.3: Schematic overview of target-outline (red), primary jaws (gray) and MLC leaves shaping the cross-
section of the treatment beam (in reality, MLCs can have up to 120 leaf-pairs).

• Intensity-modulated Inverse-Planning delivery methods

Conformal radiation therapy

During purely conformal treatments, the MLC leaves adapt to the projected outline of the
target volume at the speci�c couch-, gantry- and collimator angle as seen in �gure 2.3. �e
term ’forward-planning’ refers to the corresponding treatment planning method. Gantry- and
collimator angles are selected manually and the expected dose distribution in the tissue is
calculated. In an iterative process angle adjustments and dose calculations are repeated until
the user is satis�ed with the resulting dose distribution.
Delivery can be either performed in static �elds where gantry, MLC and couch remain �xed
when the photon beam is enabled, or via dynamic conformal treatments, where the gantry
moves around the treatment site in an arc and the MLC leaves dynamically adapt to the shape
of the target.

Intensity-modulated radiation therapy

Intensity-modulated radiation treatments (IMRT) and volumetric modulated arc treatments
(VMAT) are characterized by the inverse-planning method. In this case, the operator �rst
speci�es the desired dose distribution and and each MLC aperture is discretized into �uence
beamlets. An optimization algorithm then tries to achieve this dose distribution by assigning
each beamlet a certain intensity and determining deliverable MLC apertures realizing these
beamlet intensities.
Figure 2.4 shows a sample IMRT treatment �eld and the discretization into beamlets with
varying �uence intensity. A darker beamlet color means that the speci�c beamlet contributes
more dose than a lighter colored one. In practice this is achieved by closing leaves over lower-
intensity beamlets during the treatment, leading to MLC apertures which are not necessarily
conformal to the target outline any longer. IMRT treatments are usually delivered from a num-
ber of di�erent couch- and gantry angles which do not change while the beam is switched on.
A lot of literature is available on IMRT, detailed information is provided e.g. by Webb[84][85]
and Bortfeld[6].
During VMAT treatments there is an additional gantry movement during treatment and the
gantry speed and MU delivery rate can vary, which adds additional degrees of freedom. While
dosimetric outcomes of IMRT and VMAT are comparable in terms of tumor control and mitiga-
tion of radiation-induced toxicity in healthy tissue and both are generally superior to purely
conformal delivery, VMAT treatments are more time e�cient and have become state-of-the art
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for many treatment sites[65][77]. �is thesis is covering topics concerning VMAT treatment
planning exclusively.

Figure 2.4: Aperture of an IMRT beam with beamlet discretization and �uence

2.1.3 RT treatment planning
�e treatment planning process generally consists of several planning steps. Image sets acquired
by di�erent imaging modalities are used to create a 3D tissue model where organ structures
are delineated. �e tissue model and all structures are discretized into tiny volume elements
called voxels. �e planning target volume (PTV) consists of the actual visible tumor tissue plus
margins which take into account biological and technical uncertainties. Such uncertainties can
arise due to positioning errors during treatment or due to issues when delineating the tumor
in the image sets. Tissue areas and organs which are of special concern for radiation treatment,
because toxic side-e�ects would occur if they received excessive dose, are also delineated as
organs-at-risk (OAR).

Dose-Volume-Histogram (DVH)

Once a 3D dose distribution is present a�er the optimization process, the dosimetric outcome
for each organ can be reviewed. �is is done by binning the radiation dose received by the
voxels of each organ and plo�ing a cumulative histogram of the values which is called dose-
volume-histogram (DVH). A sample DVH is shown in �gure 2.5.

Dosimetric planning criteria

Desired dosimetric planning criteria can be speci�ed by the user and are internally processed
by the optimizer and used as optimization constraints. Such constraints can be

• Absolute values, such as the maximum, minimum or mean dose which should not be
exceeded or which should at least be met, here denoted as Dmax ,Dmin,Dmean

• Dose-at-volume-constraints, meaning that a certain relative or absolute volumetric part of
a structure shall at least receive or not receive more than a speci�c dose. �is is wri�en
as e.g. D99% for relative volumes or D10ccm for absolute volumes

• Volume-at-dose-constraints, referring to the volumetric part (relative or absolute) of a
structure receiving a certain amount of dose. �is is wri�en as e.g. V10 for the volume
which receives at least 10Gy.



10 2. �eoretical background

0

25%

50%

75%

100%

2 4 6 8 10 12 14

Dose[Gy]

R
e
l.
 V

o
lu

m
e

V12Gy

D50%

OAR

PTV

Figure 2.5: Dose-Volume-Histogram (DVH) graphs for two objects: PTV (red) and OAR (blue)

�e terms de�ned above are also illustrated in �gure 2.5. In the Brainlab Elements treatment
planning so�ware a list of all organs taken into account for optimization and the desired speci�c
DVH constraints, as well as desired dose coverage volumes for the PTV can be speci�ed.

Additional treatment plan evaluation criteria used in this thesis

In the studies conducted for this thesis the following additional plan evaluation criteria are
examined:

• �e inverse conformity index (CI). �is widely used criterion was introduced by Pad-
dick[62] and provides information how well the region receiving the prescribed dose
correlates with the actual PTV. An ideal treatment plan would have CI = 1, in reality
values greater than one are common.

• �e gradient index (GI). �is criterion provides information on the steepness of the dose
fall-o� outside the PTV. A steep fall-o� ensures be�er sparing of the healthy tissue
surrounding the PTV. A de�nition of the GI can be found at Paddick[63]. �e CI value
decreases with increased dose fall-o� outside the PTV, thus treatment plans with low GI
are usually preferred.

• �e modulation complexity score (MCS) is a measure for gauging the delivery- and QA-
complexity of a treatment plan. �is takes into account number, sizes and shape (area
and perimeter) of the MLC apertures, as well as the number of MUs to deliver. Such a
measure was �rst introduced by McNiven et al[56] and later extended to VMAT delivery
by Younge et al[88] and Masi et al[52]. Usually plans with low complexity are preferred
because they promise a faster delivery and a more exact real-world reproduction of the
planned dose distribution.

• �e amount of Monitor Units (MU) needed to deliver the treatment plan. Here generally
lower values are preferred since a lower MU value means faster delivery and thus reduced
treatment time.
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2.2 Introduction to multi-criteria optimization
Many real-world optimization problems deal with ful�lling con�icting criteria. A simple exam-
ple is the construction of an internal combustion engine, where the wish to maximize power
output is con�icting with the desire for high fuel-e�ciency. In general, e�cient production
of any goods where high quality and low cost are desired impose con�icting optimization
goals, since higher quality o�en comes at the cost of an expensive manufacturing process and
high-quality (and thus more expensive) raw materials.

In these cases a single obvious optimal solution does not exist any more, there is always
a trade-o� to be made between contradicting objectives and the �nal decision on which so-
lution is optimal in each speci�c se�ing is not uniquely de�ned [22]. �e following sections
are intended to give a basic understanding of the mathematical concept of multi-criteria opti-
mization (MCO), introduce important terms and de�nitions and to present some basic solution
strategies.

2.2.1 Problem formulation
A general MCO optimization problem can be formulated as follows [76], [24]:

min
x∈X
{ f1 (x) , f2 (x) , . . . , fk (x)} (2.2.1)

where X is called feasible set and the fi : Rn → R, i ∈ (1, . . . ,k) , k ≥ 2 are con�icting objective
functions. �e feasible set consists of all x ∈ Rn satisfying certain constraints imposed on
allowed solutions, which can be user de�ned or caused by technical or physical limitations due
to the nature of the underlying problem. In mathematical terms, this can be described as [5]

cj(x) ≤ 0, (2.2.2)
Ax ≤ b (2.2.3)

Equation 2.2.2 denotes user-de�ned optimization constraints, while equation 2.2.3 limits the
solution space to the technically and physically feasible set.
�e objective functions fi transform the feasible set X into the objective space f (X ). A solution
x ∈ X is called weakly Pareto optimal if the vector f (x) ∈ Rk := (f1 (x) f2 (x) . . . fk (x))T ful�lls
the following condition:
�ere exists no other x′ ∈ X such that fi (x′) < fi (x) ∀i = 1, . . . ,k .
A solution x ∈ X is called Pareto optimal if the vector f (x) ∈ Rk := (f1 (x) f2 (x) . . . fk (x))T
ful�lls the following condition:
�ere exists no other x′ ∈ X such that fi (x′) ≤ fi (x) ∀i = 1, . . . ,k and fj (x

′) < fj (x) for at
least one index j.

2.2.2 Pareto surfaces, convexity
A set X ⊂ Rn is called convex if for any x,y ∈ X ,α ∈ [0, 1] it holds that

αx + (1 − α)y ∈ X (2.2.4)
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A function f (x) is called convex on X if for any x,y ∈ X ,α ∈ [0, 1] it holds that

f (αx + (1 − α)y) ≤ f (αx) + f ((1 − α)y) (2.2.5)

�e fact that generally the cost function components fi of a MCO problem are contradicting
implies that the exact meaning of ’min’ in 2.2.1 is not clearly de�ned. Depending on the
de�nition of ’min’ are possibly several or even in�nitely many Pareto optimal solutions. In the
case of an in�nite amount of Pareto optimal solutions xp , they span a k dimensional hyperplane
in the objective space which is called Pareto front or Pareto surface.
Figure 2.6 shows a simple two-dimensional example for the problem

min
x∈X
{ f1 (x) , f2 (x)} (2.2.6)

�e �gure shows the two dimensional objective space de�ned by f1, f2. f (X ) is the image of
the feasible set X in the objective space. �e image of the Pareto optimal points in X is shown
in red. �e dashed lines show that in the red area no further decrease in f1(x) can be achieved
without simultaneously increasing the value of f2(x) and vice versa.
In the example the fi are convex functions and X is a convex set, rendering the image f (X ) a
convex set in the objective space. Convexity is a very important and desirable feature when it
comes to exploration of the Pareto front, however, many real-life problems are not inherently
convex.

f1(x)

f2(x)

f(X)

Figure 2.6: 2D example of Pareto optimality

2.2.3 Solution strategies
�ere exist numerous methods for dealing with the contradicting nature of the single compo-
nents of the objective function vector f . In the following a couple of these strategies will be
brie�y outlined.

Weighted sum method

�e multi-objective optimization problem 2.2.1 can be transformed into a single-objective
optimization problem by replacing the objective function vector with a weighted sum of its
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components as follows:
min
x∈X

∑
k

λk fk (x), λk ∈ R+0 (2.2.7)

�e weights λk can be used to put more emphasis on single components of the objective
function and model the trade-o� between single objectives. �e new optimization problem
2.2.7 can be solved with a suitable optimizer, and it can be shown[24] that optimal solutions
of 2.2.7 are always weakly Pareto optimal or (in case of strictly non-negative weights) Pareto
optimal.

ϵ- constraint method

Another widely used option is the ϵ-constraint method. Optimization is only performed with
respect to a single component fj of the objective function, the remaining components are
transformed into constraints:

min
x∈X

fj (x) ,

fi (x) ≤ ϵi i = 1, . . . ,k i , j

ϵi ∈ R

(2.2.8)

It can be shown [24] that solutions of 2.2.8 are at least weakly Pareto optimal.

Lexicographic order method

Another way of concretizing 2.2.1 is to de�ne a lexicographic order <lex on the fk . 2.2.1 can
then be re-wri�en as follows:

lexmin
x∈X

{ f1 (x) , f2 (x) , . . . , fk (x)} (2.2.9)

A feasible solution x ∈ X is called lexicographically optimal if

f (x) ≤lex f (x′)∀x′ ∈ X , x′ , x, (2.2.10)

which means that

f (x1) ≤lex f (x2) =⇒ f ∗k (x1) < f ∗k (x2) ∨ f (x1) = f (x2). (2.2.11)

k∗ denotes the smallest index k where fk(x1) , fk(x2).
While scalarization methods like the weighted sum or the ϵ-constraint method try to model
a trade-o� between contradicting objectives, the lexicographic order method implies that
optimization with respect to fk is only performed, if several competing solutions with respect
to f1, . . . fk−1 have been found. While this means that a trade-o� between competing fi is not
feasible, the strict order of priorities allows for an e�cient iterative optimization process.
All three methods shown here have their own advantages and disadvantages when applied to
speci�c real-life optimization problems. However, the choice of the weights λi , the constraints
ϵi or the de�nition of a lexicographic order on the fk is still a highly individual process. If a
number of equally Pareto optimal solutions exist, the �nal choice of the actual optimal solution
of a MCO problem remains dependent on a human decision maker and the main task of MCO
is to facilitate the decision maker’s choice.
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2.3 MCO in RT treatment planning
�e optimization problem encountered in the inverse radiotherapy treatment planning approach
presented in the previous chapter is a good example for an MCO task. Dose coverage of the
PTV is o�en not possible without unwanted irradiation of OARs and vice versa. If the DVH
constraints chosen and used as optimization objectives for each organ can be met, a high
number of Pareto-optimal solutions exist.
In this case, a feasible strategy is to present these solutions in a graphical way and leave the
�nal choice to the planner. �is is is usually done by providing slider controls where the value
of each single DVH constraint can be adjusted in such a way, that when one value is changed,
the remaining sliders also adjust and only Pareto optimal solutions are allowed. In reality that
would mean obtaining the whole set of Pareto-optimal treatment plans in advance, a process
which can take days or even weeks, which is not possible in clinical practice.
�e established method of overcoming this challenge is the pre-computation of a number of
speci�c treatment plans, o�en called ’anchor plans’ or ’anchors’. �ese plans have to be chosen
in a sophisticated way in order to get a good representation of the available solution range
for the chosen treatment objectives. If the user navigates to a choice of objective values not
contained in the set of pre-calculated plans, an approximation is performed by means of a
mathematical combination of the existing results. Various studies have shown that such an
approach facilitates the treatment planning process[47] and leads to higher plan quality and
improved clinical outcomes[11][38][40][18]. A general introduction into the mathematical
background application of MCO techniques in that speci�c context can be found at Küfer et
al[49] Hamacher [35] and Bokrantz[5]
In the case of more atomic planning objectives, such as dose volume constraints or max/min
dose limits, and a clear (ideally convex) mathematical formulation of the optimization problem,
numerous solutions exist[49][32]. Research on Pareto-surface approximation[57][16][15] and
dealing with approximation errors has been published[17][4][12]. MCO treatment planning
has been developed for IMRT[49][50][68][58] and VMAT delivery[19][11]. A good general
introduction into the current state of research is given by Cra�[14].

2.4 Continuous function value approximation in cubic a�ne
parameter spaces

�is section gives some theoretical background on di�erent methods for approximating a
continuous function in a 3-dimensional a�ne parameter space. In the scope of this work, a�ne
is de�ned as follows:

De�nition 1. Let x1, . . . , xm ∈ Rn. �e a�ne space Xa� spanned by the xi is de�ned as

Xa� =

{
x : x =

m∑
i=1

λixi ; 0 ≤ λi ≤ 1 ∀i ∈ {1, . . . ,m}
}

(2.4.1)

Let
D : Rn → R (2.4.2)
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de�ne a function which is continuous on Xaf f .
�e problem consists of approximating unknown function values D (x) for any x ∈ Xaf f as a
weighted sum of a limited amount of known function values Dxk :

Dapprox (x) =
∑
k

λkD (xk) ; (2.4.3)

2.4.1 Approximation with 7 anchor points and its limitations
�e �rst choice for an approximation base set under investigation consists of a subset of seven
pre-calculated anchor points. Function values D on the three-dimensional a�ne parameter
space spanned by the three coordinate axes:

©­«
x
y
z

ª®¬ (2.4.4)

with x,y, z ∈ [0, 2] are approximated using the exact values Dxyz at the following coordinates:

D1 := D
©­«
0
1
1

ª®¬ ; D2 := D
©­«
1
1
1

ª®¬ ; D3 := D
©­«
2
1
1

ª®¬ ; D4 := D
©­«
1
1
0

ª®¬ ;

D5 := D
©­«
1
1
2

ª®¬ ; D6 := D
©­«
1
0
1

ª®¬ ; D7 := D
©­«
1
2
1

ª®¬
(2.4.5)

�e approximation base points given in 2.4.5 is illustrated in �gure 2.7. �e unknown value D

y

z

x

D1 D2

D5

D7

D4

D3

D6

Figure 2.7: Illustration of 7D-approximation base

at position ©­«
x1
y1
z1

ª®¬ (2.4.6)
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is approximated as follows, depending on the octant where D is located (in the case of the
example shown in �gure 2.7 it is the octant de�ned by D2,D3,D7,D5):

D =
1
3 [ ((x1 − 1)D2 + (2 − x1)D3)

+ ((y1 − 1)D2 + (2 − y1)D7)

+ ((z1 − 1)D2 + (2 − z1)D5)]

(2.4.7)

�is is the equivalent of a linear interpolation in the direction of each coordinate axis and
averaging all three results. �is process is illustrated in �gure 2.8. �e �rst summand of 2.4.7

y

z

x

D1 D2

D5

D7

D4

D3

D6

Figure 2.8: Illustration of the approximation steps with a 7D-approximation base

which represents the interpolation in x direction is represented by the pink circle, the second
summand representing the approximation in y direction is shown as a green circle and the
�nal summand in z direction is drawn in blue. While this approach seems to be plausible if the
desired parameter coordinates lie on one of the coordinate axes close to D2, the generalization
leads to an unacceptable loss in accuracy.
�is is due to the fact that for a proper balanced (in this case linear) approximation the function
values at the points

D8 := D
©­«
2
2
1

ª®¬ ; D9 := D
©­«
2
2
2

ª®¬ ; D10 := D
©­«
1
2
2

ª®¬ ; (2.4.8)

have to be taken into account, too. In this case, however, this is by no means the case and it
is clear that an approximation which is functional in the complete parameter space has to be
performed di�erently. �is is presented in the following section.

2.4.2 Trilinear interpolation with 8 anchor points
Trilinear interpolation is a mathematical technique o�en used in scienti�c applications where
exact values only exist on the nodes of a speci�c parameter grid. �ese values can e.g. be color
intensities in computer graphics, or temperatures during the simulation of physical processes
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inside a component of some machine. �e underlying task always consists of creating an
approximation of the unknown value at a speci�c coordinate by combining the known values
of the nearest neighboring grid points in a meaningful way. [41]
Figure 2.9 serves as an illustration of this task. Like in the previous section D1 . . .D8 span a
three-dimensional a�ne parameter space and continuous function D is de�ned �e values Di

at the corner points of the parameter space are known and we want to approximate the value

D (x y z)T ; 0 ≤ x,y, z ≤ 1 (2.4.9)

utilizing the known values. For a more detailed description of the approximation process,

y

z

x

Figure 2.9: Illustration of the general trilinear interpolation problem

which consists of three consecutive interpolations along each parameter axis, we de�ne

D1 := D
©­«
0
0
0

ª®¬ ; D2 := D
©­«
1
0
0

ª®¬ ; D3 := D
©­«
1
1
0

ª®¬ ; D4 := D
©­«
0
1
0

ª®¬ ;

D5 := D
©­«
0
0
1

ª®¬ ; D6 := D
©­«
1
0
1

ª®¬ ; D7 := D
©­«
1
1
1

ª®¬ ; D8 := D
©­«
0
1
1

ª®¬
(2.4.10)

�e �rst step illustrated in �gure 2.10 is composed of four simultaneous linear interpolations
in x-direction, resulting in the four value approximations D00, D01, D10 and D11 drawn in blue,
all having the same x-value as D. �e second step illustrated in �gure 2.11 is composed of two
simultaneous linear interpolations in y-direction, resulting in the two value approximations Dp

and Dq drawn in pink, both having the same x- and y-value as D. Figure 2.12 shows the �nal
linear interpolation along the z-axis which yields the wanted value D.

Re-substititution and mathematical simpli�cation gives raise to the following:

D =
8∑

i=1
αiDi (2.4.11)

�e coe�cients αi are given by

0 ≤ αi ≤ 1 ∀ i ∈ {1, . . . , 8} ;
8∑

i=1
αi = 1 (2.4.12)
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Figure 2.10: First interpolation step
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Figure 2.11: Second interpolation step

with

α1 = (1 − x) (1 − y) (1 − z)
α2 = x (1 − y) (1 − z)
α3 = x y (1 − z)
α4 = (1 − x) y (1 − z)
α5 = (1 − x) (1 − y) z
α6 = x (1 − y) z
α7 = x y z

α8 = (1 − x) y z

(2.4.13)

Simple re-calculation shows that a di�erent order of the parameter axes x,y, z in the interpola-
tion process yields the same coe�cients, the order of interpolation directions is not important
for the �nal result.

2.4.3 Subdivision of feature space, 27 anchor points
Approximation of function values over the whole parameter space with only eight known
function values as shown in 2.9 has the property that the approximation error gets smaller
with increasing proximity to a position of known function value. �is means that the best
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Figure 2.12: Final interpolation step

approximation quality will be achieved close to the corner points of the parameter space.
However, in real-world applications it is o�en more likely that the function value to be ap-
proximated has a balanced parameter con�guration, which means that the point de�ned by
its parameter set in the parameter space is located more towards the center of the parameter
cube. In this case, it would be more suitable to have pre-calculated function values in the center
region available to improve the approximation quality.
Figure 2.13 shows a suitable parametrization taking central positions into account.

y

z

x

Figure 2.13: Parameter space sub-division

�e �rst step when approximating D by trilinear interpolation is to determine the sub-space
where its parameters x,y, z are located and its eight boundary data points Di . �e remaining
steps are identical to 2.4.11. While this procedure requires 27 data points Di , the approximation
accuracy, especially in the central area of the parameter space can be expected to be much
be�er.

2.4.4 Adaptive-grid trilinear interpolation
�e method presented in the previous section can be generalized, since it is su�cient for the
eight nodes used for interpolation to be aligned in a cuboid manner instead of a perfect cube. If
a higher approximation accuracy with respect to one parameter is needed, the parameter space
can be discretized more densely in that direction or even whole partitions of the parameter
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space can be discretized with a higher resolution. According to the parameter coordinates of
the desired function value, the eight relevant nodes encompassing the desired coordinate can
be determined, and the value is approximated as shown in 2.4.11. An example for such an
adaptive discretization of the parameter grid is shown in �gure 2.14.

y

z

x

Figure 2.14: Adaptive resolution of the parameter space discretization

2.5 Mathematical characterization of patient geometry

2.5.1 Overlap-volume-histogram (OVH)
�e overlap-volume-histogram (OVH) is a way to describe the spatial relationship of 3D objects
by means of a 1D function. It has seen various uses in radiotherapy planning applications [87]
[43] [86] [39]. Sometimes it is also referred to as distance-to-target-histogram (DTH) [91].
�e OVH for a certain OAR with respect to a planning target T and the radius (r) describes
the relative fraction of the total volume VOAR of the OAR located within the distance r of the
surface of T :

OVH (r ) =
V (pOAR |d(pOAR,T ) ≤ r )

VOAR
(2.5.1)

where pOAR denotes a subset of of the OAR and d(pOAR,T ) denotes the distance between the
points contained in pOAR and the target. In case of overlapping OAR and PTV negative radius
values are applied until OVH (r ) = 0.
Figure 2.15 illustrates this method for three examples in 2D. �e red shape is the target T and
and the blue shapes represent OARs. A qualitative sketch of the corresponding OVH graph is
plo�ed next to each object constellation.
�e whole OVH graph can be used as a feature to describe the spatial relationship between the
two objects, as well as characteristic properties such as the mean slope, number of in�ection
points, or the penumbra width, only.

2.5.2 Inverse overlap-volume-histogram
In certain cases it makes more sense to switch object roles and consider the relative volume of
the PTV with respect to the OAR object. While the original OVH graph is suitable for use-cases
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Figure 2.15: Generation of Overlap-Volume-Histograms(OVH)

with rather uniform PTV object and a number of OAR objects varying a lot in size and shape,
with increasing radius r the shape characteristics of the central PTV object become increasingly
insigni�cant for the shape of the OVH graph. In some cases the shape of the PTV object is
more complicated and of more interest for characterizing the geometry than the OAR object,
such as in spinal radiosurgery cases, where the most important OAR consists of the spinal
cord or the spinal canal, which are both more or less cylindrical structures, while the PTV is a
vertebral body or a section of it, which is a geometrically rather complex object.
�is overlap histogram with inverted object roles will be referred to as inverse OVH. It also solves
another problem arising in spinal cases. Usually not the complete spinal cord is delineated,
since only the section in the proximity of the tumor site is clinically signi�cant. For di�erent
delineation lengths of the OAR object the resulting OVH graphs look very di�erent, even
though the important area close to the PTV object is identical. �e inverse OVH graph is not
a�ected by this issue. Figure 2.16 shows a comparison of PTV object (red) and the same OAR
object (blue) in two di�erent delineation versions.
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Figure 2.16: OVH (blue) and inverse OVH (red, dashed) for OAR objects of di�erent length with otherwise
identical geometrical setup

Figure 2.17: 2-D object(blue) and its convex hull(red)

2.5.3 Concavity/convexity of anatomical structures

�e shape of an individual 3D object can be mathematically characterized by its concavity C ,
which describes the relationship between the surface area a of an object O and the surface area
of its convex hull Hconv(O):

C =
a (O)

a (Hconv(O))
(2.5.2)

�e convex hull of an object O is de�ned as the smallest convex object which contains O
completely (for a de�nition of convexity see equation 2.2.4). �is is illustrated in �gure 2.17 in
a 2D example. �e dashed red line shows the convex hull of the blue object. Concavity of the
involved organ structures can have a huge impact on whether the desired PTV dose coverage
and OAR sparing can be achieved, since concave objects require complicated MLC shapes.
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2.6 Arti�cial intelligence and machine learning
�is section shall provide an introduction into the principles of arti�cial intelligence (AI)
and machine learning (ML), present the speci�c algorithms applied in this thesis and de�ne
some important quality metrics. More detailed information can be found e.g. in Goodfellow et
al[31], Hastie et al[36] and Nielsen[59]. While these methods and algorithms are basically a
part of applied statistics, and some of the theoretical background has already been published
some decades ago, the recent rise of arti�cial intelligence (AI) due to the enormous amount of
readily available computation power, has lead to increased activity in this area, especially in
the sub-�eld called machine learning.

2.6.1 �e supervised learning problem
�e task of predicting output values y∗ of an unknown function f : Rn → R with y∗ = f (x∗)
by using information contained in a given set of examples x1, . . . , xm;x∗ < {x1, . . . , xm} and
the corresponding function values y1, . . . ,ym by means of a mathematical algorithm is called
supervised learning problem.
In this case the term supervised is used because the algorithm has access to a number of
corresponding input-value output-value data pairs which are guaranteed to be correct.
Typically the xi are arranged in am × n matrix X , each row representing one sample xi , each
described by n numerical values called features. �is matrix is o�en called the input matrix or
feature matrix. �e corresponding function values yi are grouped in them-dimensional output
vector or target vector y. �e set X ,y is o�en referred to as training data or training set, since it
is used to �t an existing prediction model P(x) to the speci�c training data. During the training
process weights and parameters of P(x) are adjusted with the goal of optimizing the prediction
with respect to a quality metric or cost function C .
Let yP := P(X ) be the predicted output values of the training data X and

C(y,yP ) := 1
m

m∑
i=1
(yi − P(xi))

2 (2.6.1)

denote the mean squared error as a measure of deviation between predicted and actual values in
y. �e goal of the training process is the minimization of this cost function. �is minimization
process is o�en done by applying some sort of gradient descent method, where the gradient of
the cost function is calculated and P is updated iteratively by performing steps in the direction
of the gradient.
In order to prevent over��ing, a case where the model fails to generalize well to the actual
problem but merely exactly replicates the information contained in the training data, usually a
partition of the training data is le� out of the training process and is later used to asses the
quality of the model. �is partition is o�en referred to as test set.
Many machine learning algorithms can be adjusted by certain meta-parameters. A third
partition of the data called validation data is therefore o�en set aside. �e complete model
development process consists of training the model on the training set, with di�erent meta-
parameter con�gurations. A�er each training process the model is tested on the validation
set. �e version performing best on the validation set is then applied to the test set for �nal
assessment of the generalization quality of the model. O�en many (k) di�erent sub-partitions
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of the same available data into training set, validation set and test set are evaluated in order to
mitigate over��ing, this process is called k-fold cross-validation.

2.6.2 Regression vs classi�cation
If the function f which shall be approximated is a continuous function in R, the problem
of predicting the unknown value f (x) is called regression problem. If only a limited amount
of function values is possible, e.g. f (x) ∈ {y1, ..,yj}∀x ∈ Rn the input values are assigned
a speci�c label or class, the problem is called classi�cation problem. �e biggest part of the
chapters of this thesis which are related to machine learning deal with such classi�cation tasks.

2.6.3 Important concepts in model training and assessment
Data preparation: regularization and oversampling

Since individual features in real life problems (the coordinates of the xi ) can exist in value
ranges which di�er signi�cantly, single features might completely dominate the evaluation of
the cost function and the information contained in other features can be obscured. �erefore
some sort of regularization of the data has to be performed. �is is achieved by rescaling X so
that the values of each column range from -1 to 1 with expectation 0.
�e training data in classi�cation problems o�en su�ers from a high data imbalance. �is
means there are a lot more samples belonging to the one category than the other categories
available. �is can lead to a model where the algorithm is biased towards the numerically
overrepresented category. A reliable technique to mitigate this problem is called oversampling.
Additional samples of the underrepresented class are arti�cially generated from existing ones
or, which is an extremely simple yet still very e�ective way, samples of the underrepresented
class are randomly selected and duplicated until the classes are numerically balanced. �e la�er
technique is called random oversampling (RO), while examples for arti�cial data generation are
the SMOTE[10] and ADASYN [37] techniques.

Binary classi�cation terminology

For evaluation of the model quality we consider a binary classi�cation problem. �e data
instances are assigned exactly one of only 2 possible classes/labels:

• class N (hugely overrepresented, e.g. a high percentage of data points are of this class)

• class P

�e following terms are important:

• True Positive (TP): Sample classi�ed as having label P and its real label is P

• False Positive (FP): Sample classi�ed as having label P even though its real label is N

• True Negative (TN): Sample classi�ed as having label N and its real label is N

• False Negative (FN): Sample classi�ed as having label N even though its real label is P



2.6 Arti�cial intelligence and machine learning 25

�e cardinality of each class or classi�cation partition is denoted by vertical strokes | |, such as
e.g. the number of samples with label P |P | or the number of false positives |FP |.

Sensitivity/Speci�city

A high-quality binary classi�cation predictor aims to maximize correct detection of both classes
and thus maximize both

sensitivity =
|TP |

|TP | + |FN |
(2.6.2)

and

specificity =
|TN |

|TN | + |FP |
(2.6.3)

Precision/Recall/Accuracy

�e terms precision and recall are o�en also used in the literature. Recall is identical to
sensitivity(2.6.2) while precision is de�ned as

precision =
|TP |

|TP | + |FP |
(2.6.4)

�e general accuracy of a model can be calculated as

accuracy =
|TP | + |TN |

|P | + |N |
(2.6.5)

While this has the advantage of describing the prediction quality of the model in a single value,
it can give misleading information in the case of highly imbalanced data.

ROC curves/AUC

A graphical illustration of the prediction quality of binary classi�ers can be obtained by means
of the receiver-operator-characteristic (ROC) curve. Usually the classi�cation output of a model
is not directly the label N or P , but the probability that the current sample has this label.
Depending on the selected decision threshold, the trade-o� between sensitivity(2.6.2) and the
false-positive-rate (FPR)

FPR =
|FP |

|N |
(2.6.6)

can be visualized. �is is shown in �gure 2.18. �e ROC curve of a high-quality model tends to
rise steeply and �a�en out at a value close to one, the ideal ROC curve would immediately rise
to 1 and remain constant at that value, while a ROC curve close to the diagonal means that the
prediction quality is not much be�er than a coin toss.
Calculating the area-under-curve (AUC) allows for a numerical description of the quality of the
ROC curve, usually a higher AUC value means a be�er model.
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Figure 2.18: ROC-curve (red) and AUC (green)

2.6.4 Machine learning algorithms used in this thesis
Support-vector-machines (SVM)

Support-vector-machines are a type of classi�er trying to establish an optimally (with as big a
margin as possible) separating hyperplane between the data [13]. A basic illustration is given
in �gure 2.19. Most of the time the data is not perfectly separable by a linear hyperplane. In
this case the algorithm tries to create as few wrong classi�cations as possible, or have wrongly
classi�ed samples as close to the separating hyperplane as possible.
Application of the kernel-trick [21] allows for complex non-linear separation planes. However,
a too complex kernel-based SVM model increases the risk of over��ing. SVMs are basic yet
powerful classi�ers and therefore a useful �rst tool for data exploration.

separating 

hyperplane

border region of

optimal margin

support vectors

Figure 2.19: 2D-example of SVM with separable data

Random-forest-classi�er (RF)

�e random-forest-classi�er is a learning algorithm based on decision trees. It was �rst
presented by Breiman in 2001[8]. A detailed overview about recent developments is given by
Fawagreh et al[26]. Common decision trees su�er from the problem that they can represent
the existing data really well but fail to generalize on unknown data. RF classi�ers bypass this
problem by generating a large number of trees generated from a randomly selected partition of
the available data. In addition, each of these trees only uses a random subset of the available
features, which mitigates the risk of over��ing, or one feature dominating the whole decision
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process.
�e RF decision process is schematically illustrated in �gure 2.20. In reality a much higher

T3T1 T2

Figure 2.20: structure of the Random-Forest(RF) method

number of trees is generated (Mayumi Oshiro et. al[61] suggest between 64 and 128 trees),
each using a random selection of the available features. In the �gure the current sample would
receive the red label. It is important that both the choice and order of features in each tree is
random. �e �nal quality of the predictor is evaluated with the remaining data which has not
yet been chosen for training.
�e generation of a large number of decision trees in the RF training process yields other
important additional information about the input data: For each feature of the input data, the
RF classi�er can calculate its relative importance for the decision process. �is can be very
helpful when evaluating the e�ciency of the current features or trying to engineer additional
features to replace or supplement existing ones.

Arti�cial neural networks (ANN)

Arti�cial neural networks (ANN), also o�en referred to as neural networks (NN) have be-
come the predominant type of machine learning algorithm for many applications in recent
years, achieving competition-winning results in image classi�cation[48] and super-human
performance in highly complex games such as Go [74]. Recently NNs have been also used
successfully in radiotherapy planning[72][71] and patient QA[79]. Only a short introduction
into the mechanism of a neural network shall be given at this place, more detailed information
can be found in Nielsen[59] Goodfellow et al[31] and Hastie et al[36].
�e smallest functional unit of an ANN is called a neuron. It is characterized by a weight w

x1

x2

n f(w(x1 + x2)+b)

Figure 2.21: Input and output of as single neuron n

and a bias b (see �gure 2.21). �e neuron receives a single or multiple numerical input values
xi and produces a single numerical output value y via its activation function f as follows:

y = f

(
w

(∑
i

xi

)
+ b

)
(2.6.7)
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0 1

1 f(x)

Figure 2.22: Sigmoid activation function f (x)

�e input variable of f is a weighted sum of the input values xi shi�ed by the bias b. For the
activation function f various options exist, the most natural choice being some sort of sigmoid
function (�gure 2.22. However, for numerical reasons one of the most popular variety is the
Recti�ed Linear Unit (ReLU) depicted in �gure 2.23. In a NN, as shown in �gure 2.24, a high

0 1

1
f(x)

Figure 2.23: ReLU activation function f (x)

number of neurons are interconnected in a number of layers. �e �rst layer, o�en called input
layer serves as input channel for the features xi (without weighting, bias of activation function).
�e following layers are called hidden layers. �e example in �gure 2.24 has one hidden layer
consisting of 5 neurons ni , each working as shown in equation 2.6.7. �e �nal layer which is
called output layer usually has as many output units yi as there are classes in the classi�cation
task. �e output value of each yi is the predicted likelihood of the sample characterized by the
features xi having the correct label yi .
�e objective of training the NN is to �nd weights and biases for each neuron minimizing the
error between the predicted label of the input data x and the correct output label y. As with
activation functions, lots of di�erent ways for de�ning this cost- or loss-function exist. �e
iterative process used for training NNs is called backpropagation algorithm. �e loss value for a
certain number or batch of training data is calculated and a the gradient of the loss function
with respect to changes in speci�c weights and biases is evaluated. Using a gradient descent
method, weights and biases are updated in the direction of the gradient in order to decrease
the loss value. Running the whole training data through this process once is called an epoch,
and the training process usually consists of a high number (e.g. hundreds) of epochs.
Due to the high computational demand of this process, calculations are o�en run on powerful
computation clusters in the cloud or on graphics processing units (GPUs) which work highly
parallelized. In contrast to the expensive training procedure, prediction of the output value for
an unknown sample with the �nal model is a straight forward and very fast procedure.
In contrary to this simple example, NNs for solving complicated tasks, such as image recognition,
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consist of thousands of input values and a high number of large hidden layers, this type of NN
is o�en referred to as deep neural networks and their application is called deep learning.
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n1

n3

n4

n5

Figure 2.24: �ree-layer neural network with 5 neurons in the hidden layer
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Chapter3
The VMAT planning Element from an MCO

perspective
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3.1 �e Brainlab Elements VMAT planning system (Cra-
nial SRS/Spine SRS)

3.1.1 �e Brainlab Elements VMAT planning system
General overview

�e Brainlab Elements suite is an indication speci�c RT treatment planning so�ware solution
providing image processing and contouring functionality as well as radiotherapy treatment
planning and DICOM export. Figure 3.1 shows the graphical user interface (GUI) for planning

Figure 3.1: Screenshot of the main planning GUI of the Cranial Element

a cranial VMAT treatment. �ree of the four views on the right show axial, coronal and sagi�al
views of the currently selected image set, including the contours of previously delineated
organs. �e remaining section of the central screen area is used to display a 3D view of the
geometric structures as well as a 3D representation of the VMAT arc trajectories.
�e le� side of the screen shows a list of all structures including relevant dosimetric information
concerning the optimization process. �e organ listed directly a�er the PTV (in this case the
brainstem) is explicitly selected by the user as the clinically most relevant OAR and receives a
special treatment during optimization, which will be explained later.
�e duration of the �rst optimization run is signi�cantly longer than the duration of subsequent
optimizations, since important pre-calculation steps, such as discretization of the �uence
beamlets, have to be performed. Once this is achieved, further optimizations are fairly quick
(about 1-2 minutes for a typical cranial case, depending on the planning hardware). However,
in spinal cases, where the PTV consists of a section or the total body of a vertebra, a single
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optimization can take up to one hour or longer. �is is due to the complicated PTV shape
which is addressed with a customized version of the optimization algorithm.
A�er an optimization run the calculated dose distribution is shown in the slice views and the
DVH histograms for each organ and the PTV can be reviewed (�gure 3.2).

Figure 3.2: Screenshot a�er optimization showing dose distributions and DVH

3.1.2 Con�guration of planning objectives and constraints
Constraints are externally imposed mandatory dosimetric properties a treatment plan has to
ful�ll in order to be clinically acceptable. Optimization objectives are internally used to generate
the optimizer’s cost function in order to meet the constraints. Constraints and objectives can
be identical, but it is also possible that objectives are stricter or that the number of optimization
objectives exceeds the number of constraints. More strict objectives can be used to force the
optimizer towards ful�llment of the clinical constraints.
�e organs which are to be considered for optimization, as well as their individual DVH
constraint types (such as maximum/minimum dose, dose received by a volume percentage)
and -values, as well as the dose prescription to the PTV, are described in a clinical protocol
�le, which can be prepared outside the planning application and is selected upon entering the
planning work�ow. �e state of each OAR constraint can be adjusted by a slider control to one
of the three options:

1. O� : �is dose-volume (DV) value is ignored during optimization

2. Smart: �is DV value is considered for optimization but violations are allowed to a
certain extent if needed.
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3. Strict: �is DV value is considered for optimization as a non-negotiable constraint, any
violation will be punished in the optimizer’s cost function.

3.1.3 High-level composite optimizationmodi�cation sliders and their
functionality

�e main part of this thesis is related to the functionality of the slider controls in the upper le�
corner of the screen (�gure 3.3) and their in�uence on the generated treatment plans.
In many existing solutions there exist similar slider controls enabling the user to perform some
sort of multi-criteria optimization (MCO) work�ow. �e tolerated threshold for user-speci�c
DVH values can be adjusted for one value, and by means of information taken from some
model of the Pareto surface of the solution space, the slider value ranges for the remaining
DVH values are adjusted so that only feasible solutions remain.
In contrast to this approach, the VMAT optimizer used in the Elements planning system has

Figure 3.3: �e three slider controls for adjusting the composite meta-objectives

only three main controls for individualizing the outcome of the optimization process. Each of
them is dedicated to the modi�cation of a certain quality aspect of the resulting treatment plan.
In contrast to the o�en used approach mentioned above, all possible constellations of slider
positions can be used as input for the optimizer and each slider control is not dedicated to a
single DVH value only, but modi�es a whole group of dosimetric aspects. Pareto optimality in
this context does not mean strict dosimetric ful�llment of all optimization goals, but producing
the best feasible result with the current slider positions.

�e target-OAR-weighting control

�e target-OAR-weighting slider generally controls the planning compromise between the
PTV and the OARs, e.g.:

• �e importance of the PTV versus all existing OARs

• �e special emphasis on a user-de�ned most important OAR during the optimization
process

• �e importance of ful�lling the upper dose constraint of the PTV
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• �e tolerated PTV volume prescription reduction in case a constraint of the most impor-
tant OAR is violated, and in which region of the PTV this reduction shall be allowed

�e normal tissue sparing control

�e normal tissue sparing slider controls the importance of sparing the normal tissue surround-
ing the PTV by

• Reducing the dose in explicitly speci�ed OARs in the vicinity of the tumor

• Reducing the dose in tissue surrounding the tumor, even if it is not part of a delineated
organ

• Adjusting size and handling of arti�cially generated helper structures which are internally
used during optimization

• Maximizing the conformity of the prescription dose region with the PTV (CI) and the
steepness of the dose fall-o� outside the PTV (GI)

�e dose modulation control

�e modulation slider controls the amount of dose modulation in the resulting treatment plan.
�e term ’modulation’ refers to

• �e overall number of monitor units (MU)

• �e variability of the number of MU per arc segment

• �e amount of leaf movement between control points

• �e amount of leaf movement within one segment

• �e size of the segments (smaller �eld sizes correspond to higher modulation)

Slider range and discretization

�e internal numerical range of the sliders is internally �xed to numerical ranges suited best
for most typical planning situations.
While the numerical value space for each slider is a continuum, for the sake of usability each
slider range was discretized into seven equidistant positions.
In the commercially available version of the so�ware, the le�most weighting slider position
automatically changes the mode of the OAR constraints from ’Strict’ to ’Smart’ to put even
more emphasis on ful�llment of the PTV coverage. For continuity reasons this functionality
has been disabled in the research version of the optimizer used for this thesis.
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3.2 Elements SRS VMAT planning from an MCO perspec-
tive

3.2.1 Weighting-, normal tissue sparing- and dose modulation slider
values as base of a 3D-parameter space(3DPS)

In the context of multi-criteria optimization, the three previously described sliders can be
considered as follows:
Each dose distribution achieved a�er optimization for a certain con�guration of slider positions
is optimal in the sense, that with the chosen se�ings, there is no be�er result possible. �erefore
it can be conceived as Pareto optimal in the context of this speci�c optimization problem. �us,
all three sliders span a space of Pareto optimal solutions. �e user can explore this solution
space interactively in order to �nd the preferred trade-o� between OAR sparing, PTV coverage,
normal tissue sparing and dose modulation (e.g. complexity of the resulting treatment plan in
terms of quality assurance (QA), delivery and duration). A brute-force implementation would
simply calculate the individual optimized treatment plans instantaneously, once the slider
positions are changed. In reality, such a procedure is possible but far too time consuming. Even
in straight-forward cranial cases the waiting time for each optimization process makes a �uid
exploration of the solution space too cumbersome to be of practical relevance.
�erefore, within the scope of the composite ’meta-objectives’, in combination with the non-
convex nature of the optimization problem and the heuristic brute-force optimization approach
used in the Brainlab Elements optimizer, a feasible approach for Pareto surface approximation
has to be found.
A good set of anchor plans should have the following properties:

• Low number of pre-calculated plans in order to allow for an expeditious planning process

• Good and fast approximation of points on the approximated Pareto surface

• Possibility to increase approximation quality by subsequent addition of optimized plans

3.2.2 Analysis of the solution space generated in the 3DPS by means
of the Brainlab VMAT optimizer

In order to �nd an approximation method satisfying the items mentioned in 3.2.1, it is necessary
to perform an exploratory evaluation of the feasible solution space. To this purpose a dataset
comprised of cranial and spinal patient geometries with varying PTV sizes, shapes and positions
was chosen. �e sample data consisted of a total of 18 spinal and 44 cranial test geometries. An
overview of the most relevant organ structures available in the data is given in Table 3.1.
For all cranial cases the brainstem was labeled as most crucial OAR, while for the spine data

two studies were performed. In one case the spinal canal was speci�ed as the crucial OAR, in
the other the spinal cord. Selecting the spinal canal makes the task more challenging for the
optimizer, due to its greater volume and direct connection to the vertebral body. PTV volumes
ranged from 1cm3 up to 113.2cm3 in the cranial geometries and 29.4cm3 to 61.3cm3 in the spinal
data. PTV concavity ranged from 1.12 - 2.03 (cranial) and 1.34 - 2.92 (spine). More detailed
information on the properties of the patient geometries used for data acquisition can be found
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Table 3.1: Geometric organ structures in the data

Indication OAR objects available in
all geometries

additional OAR objects OAR speci�ed for special
treatment

Cranial brainstem, optic nerves, optic
tract, chiasm

hippocampus le�, hippocam-
pus right [42]

brainstem

Spinal spinal cord, spinal canal - spinal cord, spinal canal

in the appendix of this thesis 6.1.1.
Figure 3.4 illustrates some of the spinal patient geometries. PTV concavity and complexity of
the optimization problem decline from le� to right. Some examples for the cranial geometries
used throughout this thesis are shown in �gure 3.5. In the le� case it is much easier for the
optimizer to satisfy the optimization constraints since the PTV is of limited size and within a
safe distance from the brainstem.

Figure 3.4: Patient geometries of spine cases #7-#9. PTV (orange) and cropped spinal canal (OAR, purple).

Figure 3.5: Patient geometry images of cranial cases #5 and #36 including PTV (orange) and brainstem (OAR,
purple). Other objects shown are the optical structures including the eyes. Case #5 is a much harder task for the
optimizer due to PTV shape and size. In addition the PTV is directly engul�ng large parts of the OAR.

Detailed information on planning constraints and machine setup used for optimization can
be found in table 3.2. In terms of the constraint mode options introduced in section 3.1.2, for
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Table 3.2: Planning constraints

Indication PTV Dose Prescription Planning constraints for
special OAR

OAR speci�ed for special
treatment

Cranial 15Gy 1 Fraction 99% PTV cov-
erage,
70% min. allowed PTV cover-
age,
max. Dose 18Gy
delivery method:
3 arcs symmetric setup
machine model:
6MV �a�ened
Varian HD120 MLC

max.Dose 12.5 Gy,
D10% < 10Gy

Brainstem

Spinal 16Gy 1 Fraction 95% PTV cov-
erage,
70% min. allowed PTV cover-
age,
max. Dose 20Gy
delivery method:
1 360° arc
machine model:
6MV �a�ened
Varian HD120 MLC

max. Dose 14 Gy,
V10Gy < 0.25cm3,
V7Gy < 1.2cm3

Spinal Canal/Spinal Cord

consistency reasons all OAR constraints were set to Strict for generation of any result data
used in this thesis.

3.3 Cranial data

3.3.1 PTV coverage

Figure 3.6 shows the relative coverage of the PTV for all cranial cases. Values range from 0.7
up to the desired value of 0.99 with median values ranging from 0.78 - 0.99. Values do not go
beyond the minimum coverage of 0.7 because this user adjustable minimum value is enforced
by the optimizer. �e achievable value range per case varied from 0.00 (case #26, #29) to 0.29
(case #1, #5, #42). �e variation in the results can be explained by the fact that the PTV in case
#1 has a volume of 29.8cm3, a concavity of 1.61 and is at some points directly touching the
brainstem (OAR) which makes for a challenging optimization task.
Geometries like in case #26, with a PTV volume of 1cm3, a PTV concavity of 1.18 and a mini-
mum distance of 9mm between PTV and brainstem (OAR) are much simpler and the optimizer
is able to achieve the desired coverage for almost any parameter con�guration.
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Figure 3.6: Boxplots for relative PTV coverage, 343 optimizations per case
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Figure 3.7: Boxplots for relative PTV coverage, only ’Modulation’ values of 3 or higher allowed

A lot of the outliers with low coverage can be explained by the ’Modulation’ parameter
value. While some cases like case #1 are so complex that a harsh trade-o� is almost unavoidable,
allowing for more complicated MLC shapes can vastly improve the results. Figure 3.7 shows
the coverage results if only ’Modulation’ values greater than 2 are allowed. Especially in cases
#36 - #42 the outliers disappear, which is also visible in �gure 3.8 showing the Pareto surfaces
of achievable coverage values in case of Modulation = 0 (le�), Modulation = 3 (middle) and
Modulation = 6 right. Even for high ’Normal Tissue Sparing’ values and maximum OAR
sparing the PTV coverage values in the middle and right �gure are much higher than on the
le� surface.

3.3.2 PTV maximum dose
Figure 3.9 shows the maximum dose in the PTV object for all cranial cases. Values range from
15.81 Gy - 20.38 Gy with the median values ranging from 17.66 Gy - 18.69 Gy. �e achievable
value range per case varied from 2.07 Gy (case #23) - 3.84 Gy (case #1).
�e data shows that the optimizer exploits the full range up to the speci�ed desired max. value
of 18 Gy. �e cases where this value is massively exceeded have a complicated geometry (case
#1) and a very big PTV (113.2cm3, case #5).
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Figure 3.8: Pareto surface of feasible PTV coverage in a selected cranial VMAT case (case #40), Modulation slider
in minimum (le� image) middle (center image) and maximum position (right image)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Cranial Case #

16

17

18

19

20

[G
y

]

PTV Max. Dose

44

Figure 3.9: Boxplots of PTV Max. Dose, 343 optimizations per case

3.3.3 PTV minimum dose

Figure 3.10 shows the minimum dose in the PTV object for all cranial cases. Values range from
5.91 Gy to 14.92 Gy with the median values ranging from 9.11 Gy - 14.53 Gy. �e achievable
value range per case varied from 1.1 Gy (case #16) to 7.90 Gy (case #1).
Again, the e�ect of the three meta-parameters is biggest for complicated cases (high PTV
concavity, huge PTV volume close to the OAR) and smallest for cases with a small convex PTV
within a safe distance from the brainstem.
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Figure 3.10: Boxplots of PTV min. Dose, 343 optimizations per case

3.3.4 PTV mean dose
Figure 3.11 shows the mean dose in the PTV object for all cranial cases. Values range from
15.31 Gy to 17.75 Gy with the median values ranging from 16.24 Gy - 17.21 Gy. �e achievable
value range per case varied from 1.62 Gy (case #5) to 2.34 Gy (case #42).
Again, the e�ect of the three meta-parameters is biggest for complicated cases (high PTV
concavity, huge PTV volume close to the OAR) and smallest for cases with a small convex PTV
within a safe distance from the brainstem.
�e values show that in the cranial sample cases the PTV mean dose ranges did not vary a lot,
even though PTV shape and volume di�ered a lot for certain cases.
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Figure 3.11: Boxplots of PTV Mean Dose, 343 optimizations per case

3.3.5 Dose in OAR constraint point
�e �rst OAR value in this analysis of the cranial example cases is the D10% in the brainstem.
�e boxplots in �gure 3.12 imply that the optimization goal of D10% < 10 Gy is safely met
in most cases, however, cases #1,#5 and #27 show severe violations of this constraint value.
Due to their complex geometry, it was to be expected that cases #1 and #5 might need more
sophisticated planning, going beyond simple modi�cations of the three main adjustment sliders
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only, to produce acceptable treatment plans. �e extreme value in case #27 can be explained by
the fact that this is the only case in the data, where the PTV not only touches the brainstem,
but also is a complete subset of this OAR. �erefore, there is no way for a treatment beam to
reach the target without traversing a certain depth of OAR tissue.
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Figure 3.12: Boxplots of Brainstem D10%, 343 optimizations per case

3.3.6 OAR mean dose
Figure 3.13 shows the mean dose in the OAR object ’Brainstem’ for all cranial cases. Values
range from 0.10 Gy to 15.17 Gy with the median values ranging from 0.31 Gy - 11.51 Gy. �e
achievable value range per case varied from 6.44 Gy (case #1) to 0.10 Gy (case #29).
Again the more complicated cases show more e�ectiveness of the slider value changes, while in
the easy cases, where the optimization constraints are already satis�ed, further optimizations
with di�erent slider se�ings are not likely to yield signi�cant improvements.
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Figure 3.13: Boxplots of Brainstem Mean Dose, 343 optimizations per case

3.3.7 OAR minimum dose
Figure 3.14 shows the minimum dose in the OAR object ’Brainstem’ for all cranial cases. Values
range from 0.0 Gy to 6.87 Gy with the median values ranging from 0.0 Gy - 3.0 Gy. �e
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achievable value range per case varied from 0.0 Gy (case #19) to 4.83 Gy (case #1).
As seen before, cases #1 and #5 are again the cases where even the minimal dose received
by the brainstem is signi�cant and the sliders can create the greatest dose variations. In the
remaining cases however, signi�cant parts of the brainstem receive virtually no radiation.
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Figure 3.14: Boxplots of Brainstem Min. Dose, 343 optimizations per case

3.3.8 OAR maximum dose
Figure 3.15 shows the maximum dose in the OAR object ’Brainstem’ for all cranial cases. Values
range from 0.16 Gy to 19.38 Gy with the median values ranging from 0.62 Gy - 17.59 Gy. �e
achievable value range per case varied from 0.48 Gy (case #8) to 6.93 Gy (case #19).
�e cases where the desired maximum dose of 12.5 Gy in the brainstem is signi�cantly surpassed,
are geometries where the PTV is in direct contact with the OAR, so that a certain amount of
OAR voxels inevitably receive a high radiation dose.
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Figure 3.15: Boxplots of Brainstem Max. Dose, 343 optimizations per case

3.3.9 Gradient index (GI)
Figure 3.16 shows the gradient index (GI) for the cranial sample cases. Values range from 2.45
up to 5.71 with the median values ranging from 2.56 up to 4.08. �e achievable value range per
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case varied from 0.46 (case #19) to 2.28 (case #42) and up to 2.66 (case#1).
In most cases GI < 3 could be achieved, with the mean value for the smallest achievable GI for
all cases being 2.69.
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Figure 3.16: Boxplots of Gradient Index (GI), 343 optimizations per case

3.3.10 Conformity index (CI)
Figure 3.17 shows the conformity index (CI) for the cranial sample cases. Values range from an
excellent 1.02 up to 2.69 with the median values ranging from 1.06 up to 1.83 (this occurred in
case #41 where the PTV is of a u-shaped structure and in sub-optimal treatment position for
the �xed three-arc-setup). �e achievable value range per case varied from 0.11 to 1.37.
On average, the minimal CI achievable for all cases was 1.11.
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Figure 3.17: Boxplots of Conformity Index (CI), 343 optimizations per case

3.3.11 Monitor units (MU)
Figure 3.18 shows the amount of monitor units (MU) for the cranial sample cases used when
trying to achieve the desired D99% of 15Gy in the PTV. All cases were planned using the same
6MV �a�ened machine model using a a Varian HD120 MLC. Values range from 1962 up to 5040
with the median values ranging from 2467 up to 3942. �e achievable value range per case
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varied from 424 to 2812.
Especially complex cases with big concave PTVs show a great variation in MU values, since a
be�er coverage and conformity has to be achieved by smaller, more complicated MLC shapes,
resulting in higher overall MU values for the treatment plan.
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Figure 3.18: Boxplots of monitor units (MU), 343 optimizations per case

�e MU value is highly in�uenced by the se�ing of the ’Modulation’ slider, especially the
lower se�ings create a spread in the results. Once the ’Modulation’ slider is at least at the
central position, its in�uence on the amount of MU decreases. �is can be seen in �gure 3.19
which shows the MU values in the cases where ’Modulation’≥ 3. Compared to �gure 3.18 the
values are not that spread out any more, the middle percentiles are grouped noticeably closer.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Cranial Case #

2500

3000

3500

4000

4500

5000

[M
U

]

Monitor Units (MU)

44

Figure 3.19: Boxplots of monitor units (MU), only ’Modulation’ values of 3 or higher allowed

3.3.12 Double resolution
�e complete range of each slider is discretized into 7 equidistant positions in order to make
the user interface consistent and streamline the work�ow. Since the parameters change contin-
uously, it seems unlikely that a �ner resolution, or intermediate slider positions, will produce
optimization results turning out to be extreme outliers in terms of their dosimetric properties
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when compared to the treatment plans produced with the 7 step discretization.
�is hypothesis could be con�rmed by choosing an experimental discretization with 13 equidis-
tant positions per slider which means an increase of the resolution by factor 2. For a selected
cranial case all 2197 (instead of 343) possible optimizations were performed and checked for
consistency. As an example, �gure 3.20 shows the Pareto surface of the constraint point dose
D10% in the brainstem with respect to all possible options for the ’Weighting’ and ’Normal
Tissue Sparing’ slider with the ’Modulation’ parameter �xed in the central position. �e right
picture shows the surface with the standard 7x7 resolution while the le� image displays the
same situation including all intermediate results obtained by the increased parameter resolution.
Other than a certain amount of noise, which is to be expected in a stochastic optimization
process, the le� picture does not contain any additional information.
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Figure 3.20: Pareto surface of feasible D10% values in the Brainstem of a cranial VMAT case, Modulation slider in
middle position, same plan optimized with standard (7 equidistant positions, right) and double (14 equidistant
positions, le�) slider resolution

3.4 Spinal data

3.4.1 PTV coverage

Figure 3.21 shows the relative coverage of the PTV for all spinal cases where the section of
the spinal canal in the vicinity of the relevant vertebra was speci�ed as OAR. Values range
from 0.7 up to the desired value of 0.95, with median values ranging from 0.79 - 0.89. Similarly
to the cranial examples, values do not go beyond the minimum coverage of 0.7 because this
user adjustable minimum value is enforced by the optimizer. In all cases the achieved coverage
values spanned the complete possible value range of 25%.
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Figure 3.21: Boxplots for relative PTV coverage, 343 optimizations per case

3.4.2 PTV maximum dose

Figure 3.22 shows the maximum dose in the PTV object for all spinal cases. Values range
from to 17.12 Gy to 37.92 Gy with the median values ranging from 19.97 Gy - 21.57 Gy. �e
achievable value range per case varied from 4.90 Gy (case #10) to 20.43 Gy (case #9).
�e data shows that the median results generally stay close to the max. value of 20 Gy. Slight
violations of this value frequently still occur frequently. �e infrequent cases where this value is
massively exceeded (cases #3,6,9,12,15,18) are the cases where the PTV consists of the complete
vertebral bodies which have a complicated structure (concavity values ranging from 2.07−2.92).
�e greatest maximum PTV dose correlates with the largest convexity value. Not only the
’Modulation’ value is responsible for the extreme outliers concerning the PTV maximum dose,
but also the value of the ’Normal Tissue Sparing’ parameter. All the data points marked by a
’+’ in �gure 3.22 are results of optimizations performed with both ’Normal Tissue Sparing’ ≤ 3
and ’Modulation’≤ 3.
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Figure 3.22: Boxplots of PTV Max. Dose, 343 optimizations per case
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3.4.3 PTV minimum dose

Figure 3.23 shows the minimum dose in the PTV object for all spinal cases. Values range from
3.03 Gy to 14.10 Gy with the median values ranging from 5.86 Gy - 9.68 Gy. �e achievable
value range per case varied from 6.68 Gy (case #2) to 10.70 Gy (case #13).
�e maximum values all occurred when the ’Weighting’ parameter was completely shi�ed
towards the PTV. Since PTV and OAR share a direct boundary area, even including some slight
overlaps, these values are very sensitive to small shi�s in the dose gradient.
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Figure 3.23: Boxplots of PTV Min. Dose, 343 optimizations per case

3.4.4 PTV mean dose

Figure 3.24 shows the mean dose in the PTV object for all spinal cases. Values range from 15.16
Gy to 19.20 Gy with the median values ranging from 17.01 Gy - 17.52 Gy. �e achievable value
range per case varied from 6.30 Gy (case #5) - 3.94 Gy (case #3).
It is noticeable that the median PTV dose is in all cases higher than the desired prescribed dose
of 16 Gy.
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Figure 3.24: Boxplots of PTV Mean Dose, 343 optimizations per case
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3.4.5 Dose in OAR constraint point

Figure 3.25 shows the D0.25cm3 constraint dose in the OAR object ’Spinal Canal’ for all spinal
cases. Values range from 7.59 Gy to 16.64 Gy with the median values ranging from 9.18 Gy -
9.55 Gy. �e achievable value range per case varied from 5.58 Gy (case #10) to 8.41 Gy (case #5).
�e median values are below the de�ned constraint value of 10 Gy. �e range of achievable
values for this constraint increases with increasing convexity of the PTV. �is can be explained
due to the fact that concave PTVs make the planning situation so challenging that that the
maximum allowed OAR dose has to be exploited in order to be able to maximize PTV coverage.
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Figure 3.25: Boxplots of Spinal Canal D0.25cm3 , 343 optimizations per case

3.4.6 OAR mean dose

Figure 3.26 shows the mean dose in the OAR object ’Spinal Canal’ for all spinal cases. Values
range from 2.4 Gy to 9.21 Gy with the median values ranging from 2.94 Gy - 5.33 Gy. �e
achievable value range per case varied from 2.11 Gy (case #10) to 4.44 Gy (case #3).
�e maximum values all occurred with both ’Weighting’ and ’Modulation’ slider in the le�most
position, e.g. the simplest MLC shapes possible and full focus on PTV dose coverage.
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Figure 3.26: Boxplots of Spinal Canal Mean Dose, 343 optimizations per case
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3.4.7 OAR minimum dose

Figure 3.27 shows the minimum dose in the OAR object ’Spinal Canal’ for all spinal cases.
Values range from 0.19 Gy to 2.74 Gy with the median values ranging from 0.21 Gy - 2.12 Gy.
�e achievable value range per case varied from 0.05 Gy (case #11) to 1.11 Gy (case #9).
In the spinal geometries this value is directly correlated to the cropping length of the OAR and
does not contain much information, since it will become virtually zero if the OAR length is
chosen large enough.
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Figure 3.27: Boxplots of Spinal Canal Min. Dose, 343 optimizations per case

3.4.8 OAR maximum dose

Figure 3.28 shows the maximum dose in the OAR object ’Spinal Canal’ for all spinal cases.
Values range from 8.71 Gy to 18.93 Gy with the median values ranging from 10.83 Gy - 14.08
Gy (case #4). �e achievable value range per case varied from 5.84 Gy (case #11) to 8.49 Gy
(case #3).
With the slight exception of case #4, all median values are well under the desired maximum
dose value of 14 Gy. �e high maximum values cannot be avoided if a good PTV coverage is
desired, with PTV and OAR being so close together, some OAR voxels are bound to receive the
prescription dose.
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Figure 3.28: Boxplots of Spinal Canal Max. Dose, 343 optimizations per case

3.4.9 Gradient index (GI)
Figure 3.29 shows the Gradient Index (GI) for the spinal sample cases. Values range from 2.70
up to 6.52 with the median values ranging from 3.12 up to 4.64. �e achievable value range per
case varied from 1.22 (case #2) to 3.44 (case #6).
In general GI values were not as good as the results in the cranial sample cases. �e results fall
into three distinct clusters, depending on PTV concavity. In the cases where the PTV consists
of the main vertebral body only, without the vertebral arch, and thus has the lowest concavity,
the resulting GI values are lowest as well (case #2, #5, #8, #11, #14, #17). If the whole vertebra
(body and vertebral arch) are irradiated (case #3, #6, #9, #12, #15, #18) and the concavity (and
volume) of the PTV structure is highest, the GI values are highest, too.
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Figure 3.29: Boxplots of Gradient Index (GI), 343 optimizations per case

3.4.10 Conformity index (CI)
Figure 3.30 shows the Conformity Index (CI) for the spinal sample cases. Values range from
1.07 up to 4.78 with the median values ranging from 1.19 up to 1.55. �e achievable value
range per case varied from 0.73 (case #11) to 3.63 (case #6).
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�e results fall into the same but not as distinct cluster structure as the GI values. �e cases
with the largest PTV volume and -concavity all show a group of outliers with extremely bad CI
results.
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Figure 3.30: Boxplots of Conformity Index (CI), 343 optimizations per case

3.4.11 Monitor units (MU)

Figure 3.31 shows the amount of monitor units (MU) used for the spinal sample cases when
trying to achieve the desired D95% of 16Gy in the PTV. All cases were planned using the same
6MV �a�ened machine model as in the cranial cases, using a a Varian HD120 MLC. �is time
MU values range from 2985 up to 14307 with the median values ranging from 5313 up to 10262.
�e achievable value range per case varied from 3031 to 9010.
�e results fall into the same PTV-shape-driven clustering as the CI and GI values and some of
the DVH constraints. In all spinal sample cases the MU values seem to be depending on the
PTV shape to a higher degree than on its volume. �e PTV volume in case #9 is 61.3cm3 and
36.4cm3 in case #12 (a ratio of 1.68) while the median MU values are 9749 MU vs 8864 MU (a
ratio of 1.10) and the concavity values are 2.81 vs 2.26.
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Figure 3.31: Boxplots of monitor units (MU), 343 optimizations per case
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Figure 3.32: Illustration of the trilinear interpolation problem mapped onto the 3D space spanned by the of
VMAT optimization sliders

3.5 Approximation of Pareto surfaces by trilinear dose in-
terpolation

�e previous analysis showed that variation of the three composite parameters ’Weighting’,
’Normal Tissue Sparing’ and ’Modulation’ can have huge a huge in�uence on the dosimetric
characteristics of the resulting treatment plans in some cases, while in other cases (e.g. some of
the cranial examples) the results didn’t change much.
�e optimization results in cases with not very challenging geometry (convex PTV in a reason-
able distance from any OAR), such as cranial case #8, only change marginally with parameter
variation, and given the continuous nature of the parameter space, a low-resolution approxi-
mation of the Pareto surfaces of the solution space might be a completely su�cient strategy
for ge�ing a good overview of the solution space.
In case of more complicated geometries and more challenging optimization constraints a higher
resolution is likely to be necessary.
In extremely challenging cases like cranial case #1, a lot of the results might be ruled out
beforehand (such as e.g. plans with CI ≥ 2). In these cases it might be convenient to identify
the corresponding regions of the solution space in order make the planning process more time
e�cient. �is issue will be addressed later.
In this section a solution-space approximation approach using trilinear dose interpolation
in two di�erent resolutions is presented, and the approximation accuracy in the cranial and
spinal test cases is evaluated. �e theory of the underlying methodology has been introduced
in section 2.4. �e anchor points Di and the value D now correspond to three-dimensional
dose distributions in a speci�c patient geometry as a result of optimization with a certain
choice of the three composite optimization parameters ’Weighting’, ’Normal Tissue Sparing’
and ’Modulation’, which make up the dimensions x,y, z of the parameter space. Due to the
composite nature of these three optimization parameters, where some optimization aspects
are a�ected by more than a single slider, the three axes can not be automatically assumed
to be completely independent. Nevertheless, for easier comprehension the coordinate axes
in the following illustrations are drawn orthogonally. Figure 3.32 shows the mapping of the
approximation of dose distributions onto the a�ne trilinear interpolation space. �e three slider
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Figure 3.33: Linear interpolation along Dose Modulation axis
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Figure 3.34: Linear interpolation along Normal Tissue Sparing axis

positions are mapped onto three coordinate axes. �e order of the three interpolation processes
described below is arbitrary. Mathematically all sequences lead to the same coe�cients αi given
in 2.4.13, with x,y, z replaced with the normalized slider values for Target-OAR-Weighting,
Normal Tissue Sparing and Dose Modulation, respectively.
In the �rst step, 4 linear interpolations along the Dose Modulation axis are performed, yielding
D00,D01,D10,D11, as shown in �gure 3.33.
Starting from those 4 intermediate results, two additional interpolations are performed, this
time strictly in Normal Tissue Sparing direction, which yields Dp,Dq illustrated in �gure 3.34
Finally, �gure 3.35 shows that a single linear interpolation process, this time in Target-OAR-
Weighting direction yields the sought a�er approximation of the dose distribution D.

3.5.1 Considerations concerning the interpolation resolution

�e approach shown in section 3.32, where only the dose distributions obtained by optimizing
for the extremal slider positions are considered as anchor points for interpolation, is likely to
produce rough estimates for the central slider range only. �is potential issue is aggravated
by the observation that the dose distributions obtained for the extremal slider positions o�en
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Figure 3.35: Linear interpolation along PTV vs OAR Weighting axis

Figure 3.36: Pa�ern of additionally pre-calculated slider positions (red) embedded in already available results
(black). 2D slice of the parameter space

di�er strongly from any results obtained for parameters within the central range. However,
given the fact that only 8 optimizations have to be performed, taking approximately 2 min
each, this has to be accepted as the price to pay for being able to get a grasp of achievable
optimization results quickly. In a lot of the cranial example cases, accepting this fact seems
justi�ed. Still, in order to achieve be�er results, it seems appropriate to take at least some
additional optimization results into account. �is is done by choosing a �ner sampling rate of
the slider positions, as shown in �gure 3.36.
�e number of initial optimization runs is increased from 8 to 27, dividing the initial interpola-
tion cube into 9 sub-cubes. Only optimization results from the 8 pre-optimized slider position
con�gurations closest to the one to be approximated are taken into account. �is is shown in
�gure 3.37

Figure 3.37: Optimization results taken into account for approximation at cross shown in green. 2D slice of the
parameter space
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3.5.2 Mathematical behavior of characteristicDVHvalueswith respect
to trilinear interpolation

Even though the concept of trilinear interpolation of dose distributions might seem plausible
and straightforward, the e�ects on dose volume metrics requires further investigation.
In the following sections, an experimental study of the suitability of trilinear dose interpola-
tion for the prediction of inverse optimization dose results will be presented. For a realistic
approximation of a physical phenomenon such as the distribution of ionizing radiation dose
in biological tissue, it is important to make sure that the chosen mathematical approach is
methodologically sound. Interpolation with higher order polynomials, for example, o�en has
unwanted side e�ects. It can create high-amplitude oscillations not related to any physical
phenomenon. �is e�ect is called Runge phenomenon, it always occurs in equidistant interpo-
lation with higher order polynomials[23] [28]. In terms of dose distributions this means that
we have to make sure that e.g. the mean dose of an interpolation Dint of two doses D1,D2 is not
unexpectedly much higher or lower than the mean doses of the two initial dose distributions.
Let

Di =
(
V (i)1 · · ·V

(i)
n

)T
(3.5.1)

denote the set of dose values in a three dimensional tissue model discretized by an arbitrary
grid �xed for all i . De�ning V (i)j as the radiation dose received by voxel j in Di yields for the
dose value in voxel Vj of the interpolated dose distribution:

Vj =
8∑

i=1
αiV

(i)
j (3.5.2)

�e dosimetric criteria for evaluating the treatment plan quality analyzed in this thesis can be
categorized into convex criteria, such as mean dose values, and non-convex criteria, such as
dose/volume constraints and minimum or maximum dose values. Both categories and their
behavior with respect to trilinear interpolation have to be considered. With the de�nitions
given above, we can make the following observations.

Mean dose

It holds the following:

�eorem 1. �e mean dose of the interpolation result is equal to the interpolation of the mean
doses of the dose distributions used for the interpolation.

1
n

n∑
j=1

Vj =
1
n

n∑
j=1

8∑
i=1

αiV
(i)
j =

8∑
i=1

αi
1
n

n∑
j=1

V (i)j (3.5.3)
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Proof.
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mean dose of Di

(3.5.4)

�

Max dose

�eorem 2. Let the maximal dose value received by a structure consisting of n voxels be de�ned
as

max
j=1...n

Vj (3.5.5)

�en in general

max
j=1...n

( 8∑
i=1

αiV
(i)
j

)
,

8∑
i=1

αi max
j=1...n

V (i)j (3.5.6)

Proof. Let Di =
(
V (i)1 . . .V

(i)
n

)T
; i = 1 . . . 8 be the a�ne base used for interpolation with Dint

being the interpolated dose distribution at the a�ne coordinates
( 1

2, 0, 0
)
. �en

Dint =
1
2 (D1 + D2) (3.5.7)

Let p,q ∈ {1, . . . ,n} ; p , q be two indices,
D1 :=

(
V (1)1 . . .V

(1)
n

)T
with V (1)p := a ∈ R+ := max

j=1...n

(
V (1)j

)
V (1)j := b ∈ R+ < a ∀ j , p

D2 :=
(
V (2)1 . . .V

(2)
n

)T
with V (2)q := c ∈ R+ := max

j=1...n

(
V (2)j

)
>> a

V (2)p = 0; V (2)j := d ; 0 < d < b ∀j , p,q ⇒ d < b < a < c
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�en the maximum dose value in the interpolated dose distribution

Dint =
1
2

©­­­«(b + d) · · · (b + d) a︸︷︷︸
index p

(b + d) · · · (b + d) (b + c)︸ ︷︷ ︸
index q

ª®®®¬
T

is max
j=1...n

Dint =
1
2 (b + c).

However, 1
2

(
max
j=1...n

(
V (1)j

)
+ max

j=1...n

(
V (2)j

))
= 1

2 (a + c) >
1
2 (b + c). �

Min dose

�eorem 3. Let the minimal dose value received by a structure consisting of n voxels be de�ned
as

min
j=1...n

Vj (3.5.8)

�en in general

min
j=1...n

( 8∑
i=1

αiV
(i)
j

)
,

8∑
i=1

αi min
j=1...n

V (i)j (3.5.9)

Proof. �e proof is done analogously to theorem 2 with min
j=1...n

Vj := max
j=1...n

(
−Vj

)
. �

General dose/volume values, e.g. 99% dose

�eorem 4. Dose/Volume values like the 99% Dose D99 generally do not behave linearly for the
interpolated dose distribution, e.g.

D99

( 8∑
i=1

αiDi

)
,

8∑
i=1

αiD99 (Di) (3.5.10)

Proof. Proof by contradiction with arti�cially constructed dose distributions D1 and D2 similar
to the proof of theorem 2. �

Boundedness of min and max dose

Dint =
∑8

i=1 αiDi ; 0 ≤ αi ≤ 1 ∧
∑8

i=1 αi = 1 (convex combination)

max
(∑

i

αiDi

)
≤ max

(∑
i

αi max (maxDi)

) ∑
αi = 1
≤ max (max (Di)) (3.5.11)

max
(∑

i

αiDi

)
≥ max

(∑
i

αi min (maxDi)

) ∑
αi = 1
≥ min (max (Di)) (3.5.12)

�us, max and min are bounded by the points used for interpolation and max and min show
up on the boundary of the interpolation area. In terms of the physical background of radiation
dose distributions, this is a reasonable expectation. Higher order interpolation might cause
oscillation e�ects leading to unrealistic behavior.
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3.5.3 Trilinear interpolation with 8 anchor points

�e following section provides a comparative overview of the results obtained from approx-
imation with 8 anchor plans obtained for the extremal slider positions only. According to
the categorization and mathematical analysis of DVH values with respect to trilinear dose
interpolation, the PTV dose coverage, OAR mean dose, and the OAR DVH constraint point
for both cranial and spine example cases were selected for comparison. Additionally, Pareto
surfaces for selected cases (cranial case #1 and spine case #4) are presented in order to give a
visualization of the approximation results. For a speci�c DVH value/dosimetric criterionC , the
boxplots show the di�erence

∆(C) := Capproximation −CactualOptimization (3.5.13)

A negative deviation means the approximation is smaller than the actual value, a positive
deviation means the approximated value exceeds the actual value.
�e example Pareto surface plots for each criterion clearly show the strong smoothing e�ect of
such a coarse anchor grid, as well as another important property: �e set of anchor plans only
contains results for either maximum or minimum value of the ’Modulation’ parameter. �e
plots show approximations for the central value in the ’Modulation’ range. As a consequence,
even the corner points of the approximated surfaces do not match the exact values.

PTV coverage cranial

Figure 3.38 shows ∆ (V99%), e.g. the deviation between approximated and actual prescribed dose
coverage for the cranial sample cases. �e maximum deviation occurred in case #1 with an
overestimation of the actual value by 26% in a case where both ’Modulation’ and ’Normal Tissue’
sparing were set to the smallest possible value. Cranial case #1 has already been identi�ed as
being extremely challenging for the optimizer in the previous chapter, especially with a low
degree of ’Modulation’. In general, the distribution of overestimation and underestimation
turned out to be quite balanced, with the median deviation of 1.18% for case #1 and a general
slight underestimation of −1.31% (median) for all 44 cranial cases.
�is is also visible in �gure 3.39 showing the approximated (le�) and actual (right) Pareto
surfaces with respect to the ’Weighting’ and ’Normal Tissue Sparing’ parameters (’Modulation’
is �xed at the central position). Even with 8 anchor plans the general shape is reproduced,
however, the information provided by only 8 pre-calculated dose distributions is not su�cient
to accurately re�ect the steep gradient in the middle of the ’Normal Tissue Sparing’ range.
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Figure 3.38: Boxplots of di�erence between PTV dose coverage in interpolated dose distribution and actual
optimization results. Trilinear interpolation with 8 anchor points, cranial example cases.
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Figure 3.39: Pareto surfaces for the PTV dose coverage in cranial case #1. Trilinear interpolation with 8 anchor
points, ’Modulation’ slider in central position

PTV coverage spine

Figure 3.40 shows ∆ (V95%), e.g. the deviation between approximated and actual prescribed
dose coverage for the spinal sample cases. �e maximum deviation occurred in case #5 with an
overestimation of the actual value by almost 27%, again in a case where both ’Modulation’ and
’Normal Tissue’ sparing were set to the smallest possible value. In case #5 the PTV consists
of a complete lumbar vertebra with a high volume and high concavity value. For all spine
cases, the median of all deviations for the PTV coverage was −2.27% which means a slight
underestimation.
Figure 3.41 shows the approximated (le�) and actual (right) Pareto surfaces with respect to
the ’Weighting’ and ’Normal Tissue Sparing’ parameters (’Modulation’ is �xed at the central
position) for spine case #4. Compared to the cranial example, the surfaces clearly show that 8
anchor plans do not provide enough information for a suitable approximation of the solution
space for complex patient geometries. Since the approximation is done for cases where the
’Modulation’ slider is in the medium position and all available optimization results have obtained
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for a minimal or maximal degree of modulation only, even the corner points of the solution
surface are not corresponding to the actual calculation results.
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Figure 3.40: Boxplots of di�erence between PTV dose coverage in interpolated dose distribution and actual
optimization results. Trilinear interpolation with 8 anchor points, spinal example cases

P
T
V
 c

o
v
e
ra

g
e
 [re

l. V
o
l.]

0.75

0.90

Approximation 8 anchor plans

0.75

0.90

Actual calculation

Comparison of PTV Prescribed Dose Coverage Spine

lo

high
mal Tissue Sparing

lo

high
mal Tissue Sparing

P
T
V

O

P
T
V

O

P
T
V
 c

o
v
e
ra

g
e
 [re

l. V
o
l.]

Figure 3.41: Pareto surfaces for the PTV dose coverage in spine case #4. Trilinear interpolation with 8 anchor
points, ’Modulation’ slider in central position.

OAR mean dose brainstem

Figure 3.42 shows ∆ (Dmean) for the OAR ’Brainstem’, e.g. the deviation between approximated
and actual OAR mean dose for the cranial sample cases. Since this value is very small for both
actual calculation and approximation in a lot of the cranial cases a comparison of the absolute
deviation is more reasonable than looking at percentages. Cranial case #1 has already been
identi�ed as being extremely challenging for the optimizer in the previous chapter, especially
with a low degree of ’Modulation’, and also this time it turned out that in some cases, the
mean dose for the brainstem was overestimated by more than 2 Gy. In general, especially for
e.g. cases #6-17 the deviation between estimated and actual value was only marginal. Still the
nature of how mean values behave in the context of trilinear interpolation has an enormous
smoothing e�ect and erases a lot of information, which can be observed in �gure 3.43.
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Figure 3.42: Boxplots of di�erence between mean dose in OAR ’Brainstem’ in interpolated dose distribution and
actual optimization results. Trilinear interpolation with 8 anchor points, cranial example cases.
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Figure 3.43: Pareto surfaces for the Mean Dose of OAR ’Brainstem’ in cranial case #1. Trilinear interpolation
with 8 anchor points, ’Modulation’ slider in central position

OAR mean dose spinal canal

Figure 3.44 shows∆ (Dmean) for the OAR ’Spinal Canal’, e.g. the deviation between approximated
and actual OAR mean dose for the spinal sample cases. Due to the higher complexity of the
patient geometries the deviations in the case of 8 anchor plans were signi�cantly higher than in
the cranial cases. Again interpolation of the mean values creates a very smooth evenly sloped
surface, which does not re�ect the actual solution space shown in �gure 3.45, in some cases
the actual value was overestimated by more than 80%. �e median deviation for all 18 spinal
cases was still 19.4%.
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Figure 3.44: Boxplots of di�erence between mean dose in OAR ’Spinal Canal’ in interpolated dose distribution
and actual optimization results. Trilinear interpolation with 8 anchor points, spinal example cases.
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Figure 3.45: Pareto surfaces for the Mean Dose of OAR ’Spinal Canal’ in spine case #4. Trilinear interpolation
with 8 anchor points, ’Modulation’ slider in central position.

OAR constraint dose brainstem

Figure 3.46 shows ∆ (D10%) for the OAR ’Brainstem’, e.g. the deviation between approximated
and actual prescribed dose at the DVH constraint point for the cranial sample cases. �e
maximum deviation in terms of absolute values occurred in case #5 with an overestimation of
the actual value by 15.2% of the actual value. In general the mean median deviation was 1.8%
for all 44 cranial cases.
�e Pareto surfaces in �gure 3.47 show that most signi�cant deviations occur in the range of
low ’Normal Tissue Sparing’ values.
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Figure 3.46: Boxplots of di�erence between D10% in OAR ’Brainstem’ in interpolated dose distribution and actual
optimization results. Trilinear interpolation with 8 anchor points, cranial example cases.
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Figure 3.47: Pareto surfaces for D10% of OAR ’Brainstem’ in cranial case #1. Trilinear interpolation with 8 anchor
points, ’Modulation’ slider in central position.

OAR constraint dose spinal canal

Figure 3.48 shows ∆ (D0.25cm3) for the OAR ’Spinal Canal’, e.g. the deviation between approxi-
mated and actual dose at the DVH constraint point for the spine sample cases. �e maximum
deviation in terms of absolute values occurred in case #3 with an overestimation of the actual or
almost 6Gy, corresponding to a relative deviation 54.8%. In general the mean median deviation
was 17.5% for all 18 spine cases.
�e Pareto surfaces in �gure 3.49 show that the most signi�cant deviations occur in the range
of low ’Normal Tissue Sparing’ values. �is information is lost if only results for extremal
parameter values are taken into consideration for approximation.
In summation, the analysis showed that for very simple cranial cases, approximation using 8
anchor plans only might be su�cient, however, for more complicated geometries existing e.g.
in the spinal cases, more information and a higher resolution of the solution parameter space
is needed.
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Figure 3.48: Boxplots of di�erence between D0.25cm3 in OAR ’Spinal Canal’ in interpolated dose distribution and
actual optimization results. Trilinear interpolation with 8 anchor points, spinal example cases.
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Figure 3.49: Pareto surfaces for D0.25cm3 of OAR ’Spinal Canal’ in spine case #4. Trilinear interpolation with 8
anchor points, ’Modulation’ slider in central position.

3.5.4 Trilinear interpolation with 27 anchor points

Originally the sliders for the three composite objectives ’Weighting’, ’Normal Tissue Sparing’
and ’Modulation’ are conceptualized in a way that the chosen values will be somewhere
in the middle of the range and the extremal positions represent rather extreme cases. �e
approximation approach with 8 extremal anchor plans has the advantage of only a limited
number of necessary optimizations before navigation of the Pareto surface can be performed
and approximations can be made for the complete available parameter range. �e evaluation
of the approximation quality achieved with such an approximation base (as performed in the
previous chapter) showed that for non-trivial challenging patient geometries, more information
about the characteristics of the optimization results in the center of the parameter range is
needed. Section 2.4 and 3.5 introduced a method using 27 pre-optimized treatment plans,
including results obtained for the central slider positions. �is discretization of the parameter
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space is shown in �gure 3.37 as a 2D projection, the 3D-subdivision can be seen in �gure 2.13.
�e approximation results using this approach are presented in the following section.

PTV coverage cranial

Figure 3.50 shows ∆ (V99%), e.g. the deviation between approximated and actual prescribed
dose coverage for the cranial sample cases. �e maximum deviation occurred again in case #1
with an overestimation of the actual value by 17.6% in the same case where both ’Modulation’
and ’Normal Tissue’ sparing were set to the smallest possible value. �is is a big improvement
compared to the 26% deviation observed for the approximation with 8 plans. For not so extreme
patient geometries the approximation was even be�er, and the median deviation for all cranial
cases was only -0.33%.
�is is also visible in �gure 3.51 showing the approximated (le�) and actual (right) Pareto
surfaces with respect to the ’Weighting’ and ’Normal Tissue Sparing’ parameters (’Modulation’
is �xed at the central position), only for ’Weighting’ values focusing completely on the PTV
some deviations can still be observed.
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Figure 3.50: Boxplots of di�erence between PTV dose coverage in interpolated dose distribution and actual
optimization results. Trilinear interpolation with 27 anchor points, cranial example cases.
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Figure 3.51: Pareto surfaces for the PTV dose coverage in cranial case #1. Trilinear interpolation with 27 anchor
points, ’Modulation’ slider in central position.

PTV coverage spine

�e approximation results for the PTV coverage in the spinal cases shown in �gure 3.52
still show a lot of outliers, but the general deviation error improved. For single parameter
con�gurations values still deviated up to a maximum of 21% (case #5) for certain regions of the
parameter space, but the mean median deviation for all 18 patient geometries was reduced to
-0.68%.
�e regions with the highest approximation errors can be seen on the le� of the Pareto surfaces
in �gure 3.53 with low ’Normal Tissue Sparing’ values where the approximated surface is still
unable to fully reproduce the steepness of the original slope.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Spinal Case #

0.15

0.10

0.05

0.00

0.05

0.10

0.15

[R
e
.V

o
l.
]

Deviation of PTV Prescribed Dose Coverage

Figure 3.52: Boxplots of di�erence between PTV dose coverage in interpolated dose distribution and actual
optimization results. Trilinear interpolation with 27 anchor points, spinal example cases.
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Figure 3.53: Pareto surfaces for the PTV dose coverage in spine case #4. Trilinear interpolation with 27 anchor
points, ’Modulation’ slider in central position.

OAR mean dose brainstem

Figure 3.54 shows ∆ (Dmean) for the OAR ’Brainstem’, e.g. the deviation between approximated
and actual OAR mean dose for the cranial sample cases for approximation with 27 anchor
plans. Since this value is very small for both actual calculation and approximation in a lot of
the cranial cases, a comparison of the absolute deviation is more reasonable than looking at
percentages. �is time cranial case #5 showed the maximum absolute approximation error,
overestimating the dose by about 1.5 Gy, or 21% when the weighting was fully focused on OAR
sparing and only marginal levels of modulation and normal tissue sparing were allowed. �is
is a rather unusual and not very realistic combination, since it is plausible that in a complex
patient geometry good OAR sparing is only possible with complex MLC shapes, and normal
tissue sparing is basically another means of OAR sparing on its own. In general, in more than
80% of the cases the deviation between estimated and actual value was less than 0.5 Gy. �e
smoothing e�ect of mean dose approximation is just not able to accurately reproduce the
detailed structure of the actual Pareto surface, which can be observed in �gure 3.55 in the
region with low ’Normal Tissue Sparing’ value.
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Figure 3.54: Boxplots of di�erence between mean dose in OAR ’Brainstem’ in interpolated dose distribution and
actual optimization results. Trilinear interpolation with 27 anchor points, cranial example cases.
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Figure 3.55: Pareto surfaces for the Mean Dose of OAR ’Brainstem’ in cranial case #1. Trilinear interpolation
with 27 anchor points, ’Modulation’ slider in central position.

OAR mean dose spinal canal

Figure 3.56 shows∆ (Dmean) for the OAR ’Spinal Canal’, e.g. the deviation between approximated
and actual OAR mean dose for the spinal sample cases. Due to the higher complexity of the
spinal patient geometries, even in the case of 27 anchor plans, the deviations were signi�cantly
higher than in the cranial cases.
Even with information from results obtained in the central parameter range, the interpolation
of the mean values could not completely reproduce the extreme slope observed between the
two lowest possible ’Normal Tissue Sparing’ values in the actual solution space shown in �gure
3.57. In some cases the actual value was still overestimated by more than 60%. �e nature of
the solution spice suggests that in such cases the narrowing of the slider range with a �ner
resolution might cause a higher variation in the solution space. However, the mean median
deviation for all 18 spinal cases still decreased from 19.4% to 2.76%.
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Figure 3.56: Boxplots of di�erence between mean dose in OAR ’Spinal Canal’ in interpolated dose distribution
and actual optimization results. Trilinear interpolation with 27 anchor points, spinal example cases.
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Figure 3.57: Pareto surfaces for the Mean Dose of OAR ’Spinal Canal’ in spine case #4. Trilinear interpolation
with 27 anchor points, ’Modulation’ slider in central position.

OAR constraint dose brainstem

Figure 3.58 shows ∆ (D10%) for the OAR ’Brainstem’, e.g. the deviation between approximated
and actual prescribed dose at the DVH constraint point for the cranial sample cases and 27
pre-optimized treatment plans. �e maximum deviation in terms of absolute values occurred
in case #1 with an underestimation of the actual value by 10.9% of the actual value. In general,
the mean median deviation was −0.31% for all 44 cranial cases.
�e Pareto surfaces in �gure 3.59 show that most signi�cant deviations occur in the range of
low ’Normal Tissue Sparing’ values. In addition, for ’Weighting’ values focusing on the PTV,
the original shape of the surface in ’Normal Tissue Sparing’ direction is concave while the
same region of the approximated Pareto surface is convex due to the initial dose increase.
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Figure 3.58: Boxplots of di�erence between D10% in OAR ’Brainstem’ in interpolated dose distribution and actual
optimization results. Trilinear interpolation with 27 anchor points, cranial example cases.
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Figure 3.59: Pareto surfaces for D10% of OAR ’Brainstem’ in cranial case #1. Trilinear interpolation with 27 anchor
points, ’Modulation’ slider in central position.

OAR constraint dose spinal canal

Figure 3.60 shows ∆ (D0.25cm3) for the OAR ’Spinal Canal’, e.g. the deviation between ap-
proximated and actual dose at the DVH constraint point for the spine sample cases and 27
pre-optimized treatment plans. �e maximum deviation in terms of absolute values occurred
again in case #3 with an overestimation of the actual or more than 4Gy, corresponding to a
relative deviation 52%. In general, the mean median deviation decreased from 17.5% to 2.36%
for all 18 spine cases.
�e Pareto surfaces in �gure 3.61 show that the most signi�cant deviations still occur in the
range of low ’Normal Tissue Sparing’ values due to the extremely steep dose fall-o�.
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Figure 3.60: Boxplots of di�erence between D0.25cm3 in OAR ’Spinal Canal’ in interpolated dose distribution and
actual optimization results. Trilinear interpolation with 27 anchor points, spinal example cases.
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Figure 3.61: Pareto surfaces for D0.25cm3 of OAR ’Spinal Canal’ in spine case #4. Trilinear interpolation with 27
anchor points, ’Modulation’ slider in central position.

3.5.5 Limitations and advantages
In this chapter the optimization of cranial and spinal VMAT radiotherapy treatment plans, using
a low number of three partly contradicting composite objectives, focusing on the trade-o�
between PTV dose coverage and sparing of speci�c OARs, the general protection of non-
malignant tissue surrounding the PTV, and the delivery- and quality assurance complexity of
the resulting treatment plans, was considered from a multi-criteria optimization perspective.
�e continuous 3D parameter space was discretized into 343 points. �e three dimensions
comprise the numerical values of the composite objectives ’Weighting’, ’Normal Tissue Sparing’
and ’Modulation’, the range of each dimension being represented by 7 equidistant positions,
including the extremal and central positions. �us, for each individual patient geometry, this
setup provides 343 optimization parameter sets leading to di�erent dose distributions. For
44 cranial and 18 spine patient geometries optimizations for all possible parameter sets were
performed, and the resulting dose distributions were analyzed. Exploratory optimization for
selected geometries with a parameter resolution twice as high was performed, and it could be
observed that the generated high resolution Pareto surfaces did not reveal any previously ob-
scured discontinuities (see �gure 3.20). �e characteristics of the solution space were described
by the achievable variability of a selection of dosimetric criteria such as the coverage of the
PTV with the desired radiation dose, or the maximal dose delivered to a certain partition of the
chosen OARs.
�is analysis revealed that the dose distributions did not vary much, if the patient geometry
(distance, volume and concavity/convexity of the involved organ structures) did not create a
very taxing problem for the optimizer. Such cases e.g. consist of convex objects with moderate
volumes and a distance of 1cm or more from each other. In this case, if the optimizer �nds
a dose distribution satisfying all imposed dosimetric constraints, further optimizations with
di�erent parameter sets are not likely to yield more favorable dose distributions.
For large objects of complex shape (and thus a high concavity value) located close to each
other or even touching, the resulting dose distributions were in�uenced by the choice of the
optimization parameter sets to a much higher degree. However, despite this great variation in
some cases, none of the resulting dose distributions was able to ful�ll all dosimetric constraints
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simultaneously. �is situation tends to occur e.g. if the PTV consists of a complete vertebra
and the most critical OAR is the Spinal Canal. In a clinical se�ing more detailed treatment
planning strategies have to be applied in such a case, of course, and the three slider controls
analyzed in this study are by far not the only means for customizing the optimization process
in the Brainlab Elements treatment planning system. Here, since one objective of this study
was to observe the behavior of the optimizer in extremely challenging situations where the
modi�cation e�ects of the di�erent parameter se�ings were expected to be most pronounced,
clinical acceptability of the resulting dose distributions is not the primary objective.
Since calculation of the complete solution space is much too time consuming even on powerful
hardware, a faster method for exploring the solution space was presented and applied to the
cranial and spinal sample patient geometries, using trilinear dose interpolation with 8 and 27
pre-calculated dose distributions. Some dosimetric properties such as the relative dose coverage
of the PTV in approximated and actual dose distributions matched pre�y well even with only 8
pre-optimized plans available for interpolation. Increasing the number of pre-optimized plans
to 27 improved the approximation accuracy, even for dosimetric properties where interpolation
with 8 dose distributions had performed very poorly. �e observed huge deviations mostly
occurred in the following situations:

• Extremely contradicting parameter choice (e.g. maximal sparing of an irregularly shaped
OAR without allowing the needed degrees of freedom in the MLC shapes)

• �e transition from extremal parameter values to the next adjunct discretization step,
e.g. minimal ’Modulation’ value to the second smallest ’Modulation’ value

• Any Pareto surface with a very inhomogeneous slope

Without additional information on the expected solution space, the �xed choice of the 27
equidistant parameter sets is a straight-forward, but obviously too rigid approach. Fortunately,
this problem might be mitigated by the fact that the trilinear interpolation approach allows for
an adaptive parametrization grid, where a higher parametrization resolution can be chosen
where needed, and areas without much variability in the resulting dose distributions can be
su�ciently described by a low number of grid points. �e theoretical background of such an
approach has already been presented in section 2.4.4. �is leaves the problem of identifying
parameter ranges with an expected high variation in the optimization results. A possible
method for dealing with this problem will be presented in the next chapter.
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4.1 Solution space exploration via machine learning: Mo-
tivation

�e three composite parameters ’Weighting’, ’Normal Tissue Sparing’ and ’Modulation’ in
the Brainlab VMAT optimizer can be adjusted by three individual slider controls in the user
interface and allow for a variety of di�erent optimization results. For a quick exploration of the
feasible solution space, a discretization of the available parameter ranges was performed, and a
method for approximation of the to-be-expected dose distributions resulting from a choice of
not-yet-optimized parameter values was presented. �is approximation technique relies on a
certain number of pre-optimized dose distributions, and the work presented in the previous
section brought up the problem of how to choose the amount and speci�c parameter values of
those so-called ’anchor plans’, or ’anchor points’.
�e analysis of the cranial and spinal test cases indicated that the characteristics of the solution
space, and the Pareto surfaces of the corresponding MCO problem, apparently change with
respect to the geometric properties of the patient model, such as object concavity/convexity,
-volume, and -distances. Based on these observations, this chapter will introduce a method for
predicting important parameter space regions using machine-learning models generated from
previously obtained optimization data.

4.1.1 Regression vs classi�cation in VMAT treatment planning
Section 2.6.2 introduced the two major classes of machine-learning problems: classi�cation and
regression. In the scope of predicting characteristics of optimization results in radiosurgery
treatment plans by making inference based on a large number of previously obtained results,
the most obvious approach for an application of machine learning technology in this area
would be the direct numerical prediction of the desired dosimetric quality criteria (e.g. PTV
dose coverage), in other words: a regression problem [7]. However, for the following reasons,
the research presented in this work takes a classi�cation approach:
Using regression for direct value prediction would demand a really high amount of available
optimization results well spread over the complete range of patient geometries (in the scale
of tens of thousands and above). Obtaining such a massive amount of data is an extremely
challenging task and the methods and standards for the acquisition of such a massive database
and the required data protection issues present a topic of current research on its own [25].
Generalization based on the data available for this study, to a degree that a reliable prediction of
actual numerical values is possible, is an unrealistic expectation. �is assumption was quickly
con�rmed a�er some exploratory research, which showed that the accuracy of the predicted
values was o�en not signi�cantly be�er than random generation of values in the expected
range. Even extremely powerful learning methods, such as arti�cial neural networks (ANN)
presented in section 2.6.4, with a relatively large number of hidden units, can not mitigate this
problem since they are prone to extreme over-��ing (e.g. learning to recognize the training
data, but being unable to generalize well on unknown data) in the absence of a su�cient amount
of training- and test data.
However, even without being able to predict exact values and with only a limited amount of
data available, knowledge on the behavior of the optimizer in previous planning procedures
can help during the exploration of the solution space:
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• Machine-learning driven identi�cation of regions in the parameter space, where the
expected dose distributions are likely to vary strongly, can be used to save the planner
from performing optimizations in a region of parameter values, where the results are not
likely to improve.

• If such regions of large result variability can be identi�ed, the window in the parameter
value range represented by each slider could be adjusted, so that the seven possible
positions really focus on the interval where the optimizer is most sensitive to this
parameter. �is could e.g. mean spreading the whole slider range over half the initial
numerical interval, if it is likely that any slider position exceeding the central position is
going to have only a marginal e�ect on the resulting dose distribution.

• In terms of the approximation method presented in section 3.5 the spacing and number of
the pre-calculated anchor plans could be adjusted to achieve an optimized representation
of the solution space.

4.2 Identi�cation of relevant sections of the parameter
space by prediction of achievable value ranges

In the following section, various approaches for the prediction of the e�ectiveness of the slider
controls for ’Weighting’, ’Normal Tissue Sparing’ and ’Modulation’ will be presented.
An important �rst step in each AI model generation process is the acquisition and pre-processing
of the training data. Later on, this data will be used to create the feature matrix X and the
target vector y introduced in section 2.6.
First of all, since this work strives to be indication-speci�c, in one partition of the data the
treatment site is located in the cranial region, while the other partition deals with spinal cases.
For a selection of patient cases in each treatment site a speci�c treatment setup such as shown
in table 3.2, a pre-de�ned set of objects such as in table 3.1 and a list of plan quality criteria
Ci are chosen. Geometrical features are extracted from the image-sets (CT, MR, ..) and the
segmented organ structures, so that each patient case can be described as an m-dimensional
vector of numerical values. Such features can be the volumes of certain structures, the spatial
relationship represented in surface-to-surface distances, overlap-volume-histograms (OVH)
and similar characteristics. Such features were applied by Kazhdan et al. [43] and Shiraishi et
al. [72]. Altogether, in this work the following data aspects are of possible relevance:

• Values of the geometrical features describing the speci�c patient case

• Value of ’Weighting’ parameter, e.g. Position of ’Weighting’ slider

• Value of ’Normal Tissue Sparing’ parameter, e.g. Position of ’Normal Tissue Sparing’
slider

• Value of ’Modulation’ parameter, e.g. Position of ’Modulation’ slider

�e detailed process for obtaining the training data is shown in �gure 4.1. A�er de�nition of
the treatment setup and the list of dosimetric criteria Ci the geometry vector is created for
each patient. For all possible parameter con�gurations the optimization results are calculated
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Figure 4.1: Generation of Training Data

and the values of the Ci are stored. In contrast to other approaches found in the literature
[72], the complete 3D dose distributions are discarded a�er obtaining the Ci , since storage
of thousands of entire 3D dose matrices, each taking up a couple of MB, would not be very
memory e�cient. �e �nal training database entry for each patient with a certain treatment
setup and list of characteristicsCi consists of the geometry vector and a list of all possible slider
positions, together with the corresponding Ci values. All the various versions of the feature
matrix X and target vector y used in this work are created from this data.
�e idea behind the method presented in this thesis is the hypothesis that the behavior of the
optimizer with respect to various patient geometries can be adequately represented with a high
number of such data, and therefore, for a new case, the expected behavior can be predicted
by inference from existing data. �e structure of the AI-driven work�ow developed in this
work is shown in �gure 4.2. As explained before, the ideal situation would be the availability
of such a huge amount of data so that for a given patient geometry, treatment setup and list of
criteriaCi , the achievable values of theCi , together with the slider positions which are likely to
produce those dose distributions, can be predicted. In such a scenario the user can immediately
start exploring the most relevant part of the solution space. Due to the limited amount of data
available (’limited’ at least in terms of ’big data’), a more general prediction of the behavior
of the optimizer is chosen here. It is a likely scenario that the treatment planner has chosen
a speci�c set of slider positions, and is trying to change a speci�c feature of the resulting
treatment plan (e.g. improving the PTV coverage). At this stage it would be very helpful to
know whether trying out various additional positions of a speci�c parameter slider is likely to
have the desired e�ect or not.
�is consideration is the underlying concept of the presented algorithm. �e le� section of
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Figure 4.2: Schematic view of AI driven prediction algorithm

�gure 4.2 illustrates the input values in this case and describes a certain moment during the
planning process for a speci�c patient. �e user wants to modify the value of a speci�c quality
criterion C of the dose distribution resulting from optimization with the current slider se�ings
via alteration of a speci�c slider control. By inference learned from the training data, the
AI-model can give a prediction on the expected magnitude of the value range ofC which might
achieved by trying out all remaining positions of this speci�c slider. �e fact that the predicted
range exceeds a certain threshold indicates that it is worth-wile to perform more optimizations.
If the range is likely to be under this threshold, the speci�c slider is unlikely to lead to any
major changes of C in the current situation, and another strategy (e.g. focusing on a di�erent
slider �rst) has to be picked. Finding such a threshold, however, is not a straight-forward task.
In the scope of this thesis, threshold values were picked by looking at the histograms of the
available data.
In order to implement this prediction functionality, the following three types of AI models are
evaluated in the remainder of this chapter:

• Support-vector-machine (SVM) with radial-basis-function (RBF) kernel

• Random-forest (RF) model

• Arti�cial neural network (ANN) with �ve hidden units using ReLu activation function
and dropout[75] to avoid over��ing

�is choice was made in order to be able to compare a relatively simple, fast and reliable model
(SVM) as well as a very scalable state-of-the-art technology (ANN).
�e RF has been chosen for its property to generalize well even for a limited amount of data and
its unique capability of not only providing a classi�cation result but also giving information
on the relative importance of each feature in the decision process. �e la�er can be used for
evaluation of the feature choice and feature design. �e literature shows that sometimes also a
combination of di�erent classi�ers leads to good results [89].



80 4. Exploration of the solution space via machine learning

Cmax - Cmin

     >

Threshold

Geometry Vector GT fixed Positions P2 P3

C Value Prediction for Parameter P1

X

Target Value T

y

Cmax - Cmin

     <

Threshold

T=1 T=0

P2

C Value Prediction

P3

P1

P1 P1

...

...

...

Feature Matrix Target Vector

Figure 4.3: Schematic view of Feature Matrix X and Target Vector y

4.2.1 Feature matrix and target vector generation
In order to train a speci�c AI algorithm for the task presented above, preparation of feature
matrix X and target vector y is performed as shown in �gure 4.3. Each row of X represents
one sample optimization scenario, e.g. the geometric characteristics of the speci�c treatment
case represented by the transpose of the geometry vector G and the parameter values P1, P2 of
the two sliders the user is not focused on at the current moment. In this work various versions
of G have been studied, resulting in 3-dimensional, 7-dimensional and 11-dimensional feature
vectors.
Since the prediction task is considered as a classi�cation problem, the prediction result stored
in the target vector y is either 1 or 0, depending on whether the achievable range of Ci values
exceeds a certain threshold or not. �e problem of �nding a suitable threshold has to be
addressed according to the chosen Ci and the treatment type (cranial vs spine) and treatment
setup.
Once target vector and feature matrix are prepared, training and validation of the AI model
can commence.

4.2.2 Generation of geometry vector G
As mentioned before, the geometry of a certain patient case can be described in varying detail.
Focusing only on the PTV and the most relevant OAR, the following obvious values provide
some important information about the spatial relationship and and geometric properties of
these objects:

• Volume

• Concavity/convexity 2.5.3
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Figure 4.4: Overlap-volume-histograms of the ’Brainstem’-objects in the cranial patient geometries analyzed in
this work

• Closest surface-to-surface distance

More detailed geometry information can be extracted by the overlap-volume method (OVH)
presented in section 2.5.1. While in theory the complete OVH data of each object could be
added to the geometry vector G, this would result in a very high-dimensional feature space
demanding a high calculation workload and resulting in poor ��ing results. Figure 4.4 shows
an example of real-word OVH data, and it is obvious that a more concise way of describing
this data is needed.
In this case the distance between PTV and brainstem is de�ned by the smallest radius value
where the �rst overlap occurs. �e penumbra is the di�erence between the radius of the
�rst overlap and the smallest radius value where complete overlap occurs. In addition the
average slope, the number of in�ection points and a triple of slope values (mean slope in the
�rst 20%, middle 60% and �nal 20% section of overlap) were used as geometry features. An
example illustrating these features can be seen in �gure 4.5. In the spinal cases, where the
spinal canal and and the spinal cord represent the OAR object receiving special a�ention, the
inverse OVH 2.5.2 is used instead of the original OVH in order to mitigate the e�ect of varying
cropping lengths of these objects. In this work three di�erent choices of geometry vectors G
are considered. �e three versions used for the cranial cases are shown in table 4.1 and the
geometry vectors for characterization of the the spinal cases can be seen in table 4.2. Adding
the two parameter values P2, P3 to each version of the geometry vector yields the complete
representation of each sample in the 3-dimensional, 7-dimensional or 11-dimensional feature
space. While a high-dimensional feature vector allows for a detailed description of each sample,
this advantage comes with a couple of inevitable downsides. Computation e�ort increases with
dimension of the feature space, resulting in increased training time for the model. While this
might still be acceptable, since application of the �nal model is a very fast computation even
with a lot of features, the features themselves become a problem. Finding a large number of
meaningful features is a hard task, and simply e.g. adding the complete OVH data sampled in
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Figure 4.5: Overlap-volume-histogram and the extracted features

1mm radius steps for each object will create a very high-dimensional feature vector containing
a lot of redundant information. Additionally, due to the ’curse of dimensionality’ phenomenon
(described e.g. in [44]), with increasing dimension exponentially more data is needed to sample
the feature space adequately and guarantee proper applicability of machine learning models.
In tasks like image-recognition, where abundant labeled training data is readily available, this
is not as big of a problem as in medical applications where obtaining training data is not as
easy. �us, a trade-o� between number of features and the required amount of training data
has to be found.

Table 4.1: Geometry vector in cranial cases

1D Geometry Vector 5D Geometry Vector 9D Geometry Vector
PTV Concavity PTV Concavity PTV Concavity
- Volume PTV Volume PTV
- Volume Brainstem Volume Brainstem
- Distance Brainstem-PTV Distance Brainstem-PTV
- OVH Penumbra Brainstem OVH Penumbra Brainstem
- - Slope OVH Brainstem sect. 1
- - Slope OVH Brainstem sect. 2
- - Slope OVH Brainstem sect. 3
- - # of in�ection points OVH Brainstem

Table 4.2: Geometry vector in spine cases

1D Geometry Vector 5D Geometry Vector 9D Geometry Vector
PTV Concavity PTV Concavity PTV Concavity
- Volume PTV Volume PTV
- Volume Spinal Canal Volume Spinal Canal
- Distance Spinal Canal-PTV Distance Spinal Canal-PTV
- Inv. OVH Penumbra Spinal Canal Inv. OVH Penumbra Spinal Canal
- - Slope Inv. OVH Spinal Canal sect. 1
- - Slope Inv. OVH Spinal Canal sect. 2
- - Slope Inv. OVH Spinal Canal sect. 3
- - # of in�ection points Inv. OVH Spinal Canal
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4.2.3 Analysis of cranial cases with brainstem as prioritized OAR
OAR constraint point dose w.r.t. weighting slider

�e �rst quality criterion C concerning the OAR object ’Brainstem’ analyzed in this section is
the D10% of the OAR object. Subject of the analysis is the degree of in�uence of the ’Weighting’
parameter on this value. In other words, the task at hand is to predict in a certain situation
whether trying out more positions of the ’Weighting’ slider are likely to have a big impact on
this criterion.
�e le� plot in �gure 4.6 shows the histogram of the D10% values of the OAR object ’Brainstem’
achieved in all optimization results for all available 44 cranial patient geometries (PTV prescrip-
tion dose 15 Gy). �e value range achievable with changes in the ’Weighting’ slider only can be
seen in the center, and a plausible threshold postulating that the achievable values should di�er
by at least 1 Gy is chosen, which leads to the two classes shown on the right. An important
observation is the fact that the two classes are extremely unbalanced, a situation which has
to be addressed by oversampling techniques (which were brie�y introduced in section2.6).
Without oversampling there are not enough instances of the underrepresented class in each
batch of training data and proper training is not possible. A�er random-oversampling, the
classes are balanced (�gure 4.7).
Figure 4.8 shows the ��ing results for the SVM, ANN and RF classi�ers for both the original
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Figure 4.6: Histograms of OAR D10% values in the Cranial cases (le�), the dose range achievable with the
’Weighting’ slider (center), and the two sample classes resulting by introduction of a 1 Gy OAR Constraint Dose
range threshold (right)
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Figure 4.7: Histograms of the two sample classes resulting by introduction of a 1 Gy OAR Constraint point dose
range threshold a�er random-oversampling

dataset and the balanced data a�er randomly duplicating samples from the underrepresented
class using the random-oversampling technique. All models showed poor performance without
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oversampling, in the case where the lowest number of features is used, only the ANN model
received a prediction quality be�er than a random guess. With increasing number of features,
the prediction quality improved. All three classi�ers performed similarly. �e increment from
seven to eleven features yielded an increase in performance for the ANN model only.
Random-Oversampling had an enormous impact on model performances. With 7 features AUC
values up to 0.95 could be achieved, and with 11 features the ANN model achieved an excellent
AUC value of 0.98.
�e comparison of the two available ANN models, one with 5 hidden units and one with 64
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Figure 4.8: ROC curves for the OAR Constraint point dose classi�cation problem with ANN, RF and SVM classi�er
and 3D-,7D- and 11D-Feature Vector. Upper row is without, lower row with Random-Oversampling to overcome
class-imbalance.

hidden units, con�rmed a common rule-of-thumb in model construction, which postulates
using roughly as many hidden units as the number of available features in the data. �e 64 unit
model achieved a precision of 0.96 and a recall of 1.0. �e 5 unit model achieved a precision of
0.97 and a recall of 0.96. �e training- and validation error and thus the quality of the model
did not improve a�er already about 150 epochs.
Analysis of the information on the relative impact of speci�c features on the decision process in
the RF classi�er showed that in this case the distance between PTV and OAR was the dominant
feature, followed by the slope of the �rst section of the OAR OVH and the PTV volume.

PTV rel. coverage w.r.t. weighting slider

�e �rst quality criterion C concerning the PTV object analyzed in this section is the relative
volume coverage of the PTV object with the prescribed dose of 15 Gy. Subject of the analysis is
the degree of in�uence of the ’Weighting’ parameter on this value and the prediction, whether
trying out more positions of the ’Weighting’ slider are likely to have a big impact on this value.
�e le� plot in �gure 4.9 shows the histogram of the relative PTV volume coverage values
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achieved in all optimization results for all available 44 cranial patient geometries (PTV pre-
scription dose 15 Gy). �e value range achievable with changes in the ’Weighting’ slider only
can be seen in the center, and a threshold postulating that the achievable values should di�er
by at 0.05 (e.g. 5% of the PTV volume) is chosen, which leads to the two classes shown on the
right. Class balancing is again achieved via random-oversampling.
Figure 4.10 shows the ��ing results for the SVM, ANN and RF classi�ers for both the original
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Figure 4.9: Histograms of relative PTV volume dose coverage values in the Cranial cases (le�), the dose range
achievable with the ’Weighting’ slider (center), and the two sample classes resulting by introduction of a 5% PTV
volume range threshold (right)

dataset and the balanced data a�er using the random-oversampling technique. As expected,
without oversampling all models showed poor performance, in the case where the lowest
number of features is used, prediction quality was not be�er than a coin-toss. With increasing
number of features, prediction quality improved a lot and all three classi�ers performed simi-
larly. For predictions concerning this criterion, the increment from seven to eleven features did
not yield an increase in performance.
Random-Oversampling had an enormous impact on model performances. With 7 features
AUC values up to 0.99 could be achieved, and with 11 features the ANN model achieved a
near-perfect AUC value of 0.998.
Prediction performance was hardly in�uenced by increasing the complexity of the ANN model.

Both models achieved a precision of 0.98 and recall of 1.0. In both cases, training- and validation
error and thus the quality of the model did not improve a�er already about 50 epochs.
Analysis of the information on the relative impact of speci�c features on the decision process
in the RF classi�er showed that in this case the position of the ’Modulation’ slider is by far the
dominant feature. �is is in accordance with the previously observed fact that in cranial cases
the prescribed dose coverage could be always almost ful�lled, with deviations only in cases
with very low ’Modulation’.

PTV 1% dose w.r.t. weighting slider

�e second quality criterion C concerning the PTV object analyzed in this section is the
maximum dose received by the lowest volume-percent of the PTV. �is is basically equivalent
to a more robust version of the minimum dose which is not sensitive to a very low number of
extremely cold outlier voxels. Subject of the analysis is the degree of in�uence of the ’Weighting’
parameter on this value.
�e le� plot in �gure 4.11 shows the histogram of the PTV-1%-Dose values achieved in all
optimization results for all available 44 cranial patient geometries. �e value range achievable
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Figure 4.10: ROC curves for the Cranial PTV coverage classi�cation problem with ANN, RF and SVM classi�er
and 3D-,7D- and 11D-Feature Vector. Upper row is without, lower row with Random-Oversampling to overcome
class-imbalance.

with changes in the ’Weighting’ slider only can be seen in the center, and a threshold postulating
that the achievable values should di�er by at least 1 Gy is chosen, which leads to the two
classes shown on the right. Again, the distribution of the classes suggests application of an
oversampling technique.
Figure 4.12 shows the ��ing results for the SVM, ANN and RF classi�ers for both the original
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Figure 4.11: Histograms of PTV 1% Dose values in the Cranial cases (le�), the dose range achievable with the
’Weighting’ slider (center), and the two sample classes resulting by introduction of a 1Gy range threshold (right)

dataset and the balanced data a�er randomly duplicating samples from the underrepresented
class using the random-oversampling technique. Again, without oversampling, all models
showed poor performance, especially in the case where the lowest number of features are used.
By increasing the number of features the prediction quality could be improved, but still not to
an acceptable degree. All three classi�ers performed similarly and the increment from seven to
eleven features did not yield an increase in performance.
Random-oversampling had an enormous impact on model performances. With 7 features AUC
values up to 0.959 could be achieved, and with 11 features the ANN model achieved an excellent
AUC value of 0.987.
A comparison of the two di�erent ANN structures, one with 5 hidden units and one with 64
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Figure 4.12: ROC curves for the Cranial 1% PTV Dose classi�cation problem with ANN, RF and SVM classi�er
and 3D-,7D- and 11D-Feature Vector. Upper row is without, lower row with Random-Oversampling to overcome
class-imbalance.

hidden units showed again that such a massive increase of model complexity had no impact on
the prediction quality. Both models achieved a precision of 0.95 and recall of 0.99, di�erences
showed up only in the 3rd decimal. �e ANN training process also revealed that training- and
validation error and thus the quality of the model did not improve a�er about 100 epochs.
Analysis of the information on the relative impact of speci�c features on the decision process
in the RF classi�er showed that the PTV volume was the predominant feature, followed by the
section-slope values of the OAR-OVH and PTV OAR distance.

Gradient index (GI) w.r.t. normal-tissue-sparing slider

As an example for a criterion C which is largely in�uenced by the ’Normal Tissue Sparing’
parameter, the Gradient Index (GI) is analyzed in this section. Subject of the analysis is the
degree of in�uence of the ’Modulation’ parameter on this value, which gives information on
how quickly the irradiation dose decreases outside the PTV.
�e le� plot in �gure 4.13 shows the histogram of the GI values achieved in all optimization
results for all available 44 cranial patient geometries (PTV prescription dose 15 Gy). �e value
range achievable with changes in the ’Normal Tissue Sparing’ slider only can be seen in the
center, and, in order to identify the instances with a nominal e�ect, a threshold postulating that
the achievable values should di�er by at least 1 is chosen, which leads to the two classes shown
on the right. Again, the two classes are extremely unbalanced, and a�er random-oversampling,
the classes are balanced.
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Figure 4.14 shows the ��ing results for the SVM, ANN and RF classi�ers for both the original
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Figure 4.13: Histograms of GI values in the Cranial cases (le�), the GI range achievable with the ’Normal Tissue
Sparing’ slider (center), and the two sample classes resulting by introduction of a GI range threshold of 1 (right)

dataset and the balanced data a�er randomly duplicating samples from the underrepresented
class using the random-oversampling technique. As expected, without oversampling all models
showed poor performance, in the case where the lowest number of features are used prediction
quality was not be�er than a coin-toss. With increasing number of features the prediction
quality improved slightly. �is time, the RF model and the ANN model had comparable AUC
values, the SVM model could not handle the unbalanced data even with 11 features.
Random-Oversampling lead to a big improvement of model performance. With 7 features AUC
values up to 0.93 could be achieved, and with 11 features the ANN model achieved an very
good AUC value of 0.95.
A comparison of the two ANN structures showed that such a massive increase of model
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Figure 4.14: ROC curves for the Cranial GI classi�cation problem with ANN, RF and SVM classi�er and 3D-,7D-
and 11D-Feature Vector. Upper row is without, lower row with Random-Oversampling to overcome class-
imbalance.

complexity is able to increase the recall value from 0.96 to 1.0, however, both models had
a precision of 0.94 and the ’perfect’ recall of the more complex model probably is due to
over��ing and does not necessarily mean be�er generalization of the model. �e ANN training
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process showed that training- and validation error and thus the quality of the model did
improve massively in the �rst 100 epochs. A�er that, accuracy only improved very slowly with
increasing number of epochs, but even a�er 200 epochs slight changes could be observed.
Analysis of the information on the relative impact of speci�c features on the decision process
in the RF classi�er showed that the PTV volume was the predominant feature.

Monitor units (MU) w.r.t. modulation slider

As an example for a criterion C which is largely in�uenced by the ’Modulation’ parameter, the
amount of dose monitor units (MU) needed to deliver each resulting treatment plan is analyzed
in this section . Subject of the analysis is the degree of in�uence of the ’Modulation’ parameter
on this value.
�e le� plot in �gure 4.15 shows the histogram of the MU values achieved in all optimization
results for all available 44 cranial patient geometries (PTV prescription dose 15 Gy). �e
impressive value range achievable with changes in the ’Modulation’ slider only can be seen
in the center, and, in order to identify the most extreme occurrences, a threshold postulating
that the achievable values should di�er by at least 1000 is chosen, which leads to the two
classes shown on the right. Again, the two classes are extremely unbalanced, and a�er random-
oversampling, the classes are balanced.
Figure 4.16 shows the ��ing results for the SVM, ANN and RF classi�ers for both the original
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Figure 4.15: Histograms of MU values in the Cranial cases (le�), the MU range achievable with the ’Modulation’
slider (center), and the two sample classes resulting by introduction of a 1000 MU range threshold (right)

dataset and the balanced data application of the random-oversampling technique. As expected,
without oversampling all models showed poor performance, in the case where the lowest
number of features are used prediction quality was not be�er than a random guess. With
increasing number of features the prediction quality improved, but still not to an acceptable
degree. �e simpler models (SVM, RF) performed be�er than the ANN, most likely the amount
of data is not su�cient for proper ANN training without oversampling.
Random-oversampling had an enormous impact on model performances. With 7 features AUC
values up to 0.97 could be achieved, and with 11 features the ANN model achieved an excellent
AUC value of 0.99.
A comparison of the two available ANN structures, one with 5 hidden units and one with 64

hidden units showed that such a massive increase of model complexity can increase the recall
value from 0.96 to 1.0, however, also in this case this might be an over��ing issue and does not
necessarily mean be�er generalization of the model. �e ANN training process showed that
training- and validation error and thus the quality of the model did not improve a�er about
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Figure 4.16: ROC curves for the Cranial MU classi�cation problem with ANN, RF and SVM classi�er and
3D-,7D- and 11D-Feature Vector. Upper row is without, lower row with Random-Oversampling to overcome
class-imbalance.

150 epochs.
Analysis of the information on the relative impact of speci�c features on the decision process
in the RF classi�er showed that the OAR volume was the predominant feature, followed by the
PTV concavity.

4.2.4 Analysis of spine cases with spinal canal as prioritized OAR
In the second part of this machine-learning-based analysis the data for spinal indications will
be analyzed. By choosing the same criteria Ci similarities and di�erences to the cranial data
will be discernible.

OAR constraint point dose w.r.t. weighting slider

�e �rst quality criterion C concerning the OAR object ’Spinal Canal’ analyzed in this section
is the D0.25cm3 of the OAR object. Subject of the analysis is the degree of in�uence of the
’Weighting’ parameter on this value. In terms of the problem de�nition presented above,
the task at hand is to predict in a certain situation whether trying out more positions of the
’Weighting’ slider are likely to have a big impact on this value.
�e le� plot in �gure 4.17 shows the histogram of the D0.25cm3 values of the OAR object
’Spinal Canal’ achieved in all optimization results for all available 18 cranial patient geometries
(optimization target for this criterion is not to exceed 10 Gy). �e achievable value range shown
in the central �gure indicates that in most cases a range of 6 Gy is possible and the structure
of the data does not directly suggest a certain threshold. In order to stay consistent with the
methodology applied in this section, the threshold of 6 Gy is chosen, e.g. the model tries to
�nd the samples where the achieved dose range is even bigger than the peak of the histogram
(right �gure)
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Figure 4.18 shows the ��ing results for the SVM, ANN and RF classi�ers for both the original
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Figure 4.17: Histograms of OAR D0.25cm3 values in the Spine cases (le�), the dose range achievable with the
’Weighting’ slider (center), and the two sample classes resulting by introduction of a 6 Gy OAR Constraint Dose
range threshold (right)

dataset and the balanced data a�er randomly duplicating samples from the underrepresented
class using the Random-Oversampling technique. Without oversampling all models showed
poor performance, even with the maximum number of 11 features.
Random-Oversampling improved model performances. With 7 features AUC values up to 0.83
could be achieved, however, adding more features did not lead to noticeable improvements.
Comparison of di�erent ANN structures showed that the 64 unit model achieved a precision of
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Figure 4.18: ROC curves for the OAR Constraint point dose classi�cation problem with ANN, RF and SVM
classi�er and 3D-,7D- and 11D-Feature Vector. Upper row is without, lower row with Random-Oversampling to
overcome class-imbalance.

0.82 and a recall of 0.98. �e 5 unit model achieved a precision of 0.72 and a recall of 0.98. �e
ANN training process also showed that training- and validation error and thus the quality of
the model still continued to improve slightly even a�er 200 training epochs.
Analysis of the information on the relative impact of speci�c features on the decision process
in the RF classi�er showed that in this case the OVH penumbra of the OAR was the dominant
feature.
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PTV rel. coverage w.r.t. weighting slider

�e �rst quality criterion C concerning the spinal PTV object is the relative volume coverage
of the PTV with the prescribed dose of 16 Gy for the spine cases. Subject of the analysis is
the degree of in�uence of the ’Weighting’ parameter on this value. In terms of the problem
de�nition presented above, the task at hand is to predict in a certain situation whether trying
out more positions of the ’Weighting’ slider are likely to have a big impact on this value.
�e le� plot in �gure 4.19 shows the histogram of the relative PTV volume coverage values
achieved in all optimization results for all available 18 spinal patient geometries (PTV prescrip-
tion dose 16 Gy for 95% of the PTV volume). �e value range achievable with changes in the
’Weighting’ slider only can be seen in the center, and a plausible threshold postulating that the
achievable values should di�er by at least 0.15 (e.g. 15% of the PTV volume) is chosen, which
leads to the two classes shown on the right. Even though a slightly higher threshold might
be used in this case, 15% was chosen in order to �nd out if easy-to-memorize rule-of-thumb
threshold values might be established for future research. Compared to the cranial cases, a
wider range of values is achieved. Still, the two classes are unbalanced, a situation which has
to be addressed by oversampling techniques which were brie�y introduced in section2.6 if a
reliable training of an AI model is desired. A�er random oversampling, the classes are balanced.
Figure 4.20 shows the ��ing results for the SVM, ANN and RF classi�ers for both the original
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Figure 4.19: Histograms of relative PTV volume dose coverage values in the Spine cases (le�), the dose range
achievable with the ’Weighting’ slider (center), and the two sample classes resulting by introduction of a 5% PTV
volume range threshold (right)

dataset and the balanced data a�er randomly duplicating samples from the underrepresented
class using the Random-Oversampling technique. As expected, and as seen in the cranial data,
without oversampling all models showed poor performance, and increasing the number of
features did not help much, especially in the ANN model
Random-Oversampling had an impact on model performances, but only with the maximum
number of 11 features an AUC of 0.87 could achieved with the ANN model.
Again, ANN structure comparison indicated that such a massive increase of model complexity

is not re�ected by an increase in performance. �e complex model achieved a precision of 0.87
and recall of 0.93 while the simple model the precision was 0.85 and the recall value was 0.83.
�e ANN training process also showed that training- and validation error and thus the quality
of the model still improved a�er already about 200 epochs.
Analysis of the information on the relative impact of speci�c features on the decision process
in the RF classi�er showed that in this case the object volumes and the PTV concavity had a
high signi�cance, followed by the position of the ’Modulation’ slider.
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Figure 4.20: ROC curves for the spine PTV coverage classi�cation problem with ANN, RF and SVM classi�er
and 3D-,7D- and 11D-Feature Vector. Upper row is without, lower row with Random-Oversampling to overcome
class-imbalance.

PTV 1% dose w.r.t. weighting slider

�e second quality criterion C concerning the PTV object analyzed in this section is the maxi-
mum dose received by the lowest volume-percent of the PTV. �is is basically equivalent to
a more robust version of the minimum dose which is not sensitive to a very low number of
extremely cold outlier voxels. Subject of the analysis is the degree of in�uence of the ’Weighting’
parameter on this value. In other words, the task at hand is to predict in a certain situation
whether trying out more positions of the ’Weighting’ slider is likely to have a big impact on
this value.
�e le� plot in �gure 4.21 shows the histogram of the PTV-1%-Dose values achieved in all
optimization results for all available 18 spinal patient geometries. �e value range achievable
with changes in the ’Weighting’ slider only, and the huge e�ect it has on this criterion for this
indication can be seen in the center. In this case the AI model can be applied in order to rule
out the least e�ective positions. �erefore an threshold postulating that the achievable values
should di�er by less than 4 Gy is chosen, which leads to the two classes shown on the right.
Figure 4.22 shows the ��ing results for the SVM, ANN and RF classi�ers for both the original

dataset and the balanced data a�er using the random-oversampling technique. Without over-
sampling all models showed poor performance and increasing the number of features improved
the prediction quality only slightly.
Random-Oversampling had noticeable impact on model performances. With 7 features AUC
values up to 0.92 could be achieved, and with 11 features the SVM model achieved an AUC
value of 0.94.
A comparison of di�erent ANN structures, one with 5 hidden units and one with 64 hidden

units showed the complex model achieved a precision of 0.95 and recall of 0.98 while the simple
model the precision was 0.89 and the recall value was 0.94. �e ANN training process also
showed that training- and validation error and thus the quality of the model did not decrease
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Figure 4.21: Histograms of PTV 1% Dose values in the Spinal cases (le�), the dose range achievable with the
’Weighting’ slider (center), and the two sample classes resulting by introduction of a 4 Gy range threshold (right)
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Figure 4.22: ROC curves for the Spinal 1% PTV Dose classi�cation problem with ANN, RF and SVM classi�er
and 3D-,7D- and 11D-Feature Vector. Upper row is without, lower row with Random-Oversampling to overcome
class-imbalance.

a�er about 150 epochs.
Analysis of the information on the relative impact of speci�c features on the decision process
in the RF classi�er showed that the PTV volume was the predominant feature, followed by the
PTV concavity.

Gradient index (GI) w.r.t. normal-tissue-sparing slider

As an example for a criterion C which is largely in�uenced by the ’Normal Tissue Sparing’
parameter, the gradient index (GI) is analyzed in this section . Subject of the analysis is the
degree of in�uence of the ’Modulation’ parameter on this value, which gives information on
how quickly the irradiation dose decreases outside the PTV.
�e le� plot in �gure 4.23 shows the histogram of the GI values achieved in all optimization
results for all available 18 spinal patient geometries (PTV Prescription Dose 16 Gy). �e value
range achievable with changes in the ’Normal Tissue Sparing’ slider only can be seen in the
center, and, in order to identify the instances with a nominal e�ect, a threshold postulating
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that the achievable values should di�er by at least 1 is chosen, which leads to the two classes
shown on the right. Again, the data for this problem turns out to be unbalanced.
Figure 4.24 shows the ��ing results for the SVM, ANN and RF classi�ers for both the original
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Figure 4.23: Histograms of GI values in the spine cases (le�), the GI range achievable with the ’Normal Tissue
Sparing’ slider (center), and the two sample classes resulting by introduction of a GI range threshold of 1 (right)

dataset and the balanced data a�er randomly duplicating samples from the underrepresented
class using the random-oversampling technique. For this criterion C and the spinal data,
without oversampling all models showed poor performance, no ma�er which feature set was
used.
As in the previous cases, random-oversampling lead to a big improvement of model performance
while the e�ect of increasing the number of features was not as distinctive as in other analyses
presented in this section.
�e comparison of the 5-unit and the 64-unit ANN showed that such a massive increase
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Figure 4.24: ROC curves for the Spine GI classi�cation problem with ANN, RF and SVM classi�er and 3D-,7D- and
11D-Feature vector. Upper row is without, lower row with random-oversampling to overcome class-imbalance.

of model complexity increases the precision value from 0.83 to 0.91. �e 5-unit-model had a
’perfect’ recall score but this is at the cost of a way worse precision. Even a�er 200 epochs slight
increases in accuracy could be observed, however this is most likely a sign of over��ing.
Analysis of the information on the relative impact of speci�c features on the decision process
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in the RF classi�er showed that the slope of the �rst section of the OAR OVH was the most
e�ective feature, followed by the PTV concavity and PTV volume, which makes sense since all
of them are likely to in�uence feasible dose gradient outside the PTV.

Monitor units (MU) w.r.t. modulation slider

As an example for a criterion C which is largely in�uenced by the ’Modulation’ parameter,
the amount of dose monitor units (MU) needed to deliver each resulting treatment plan is
analyzed in this section. Again, the focus is placed on the degree of in�uence of the ’Modulation’
parameter on this value.
�e le� plot in �gure 4.25 shows the histogram of the MU values achieved in all optimization
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Figure 4.25: Histograms of MU values in the Spine cases (le�), the MU range achievable with the ’Modulation’
slider (center), and the two sample classes resulting by introduction of a 4500 MU range threshold (right)

results for all available 18 spinal patient geometries (PTV prescription dose 16 Gy). �e
impressive value range achievable with changes in the ’Modulation’ slider only can be seen
in the center, and, in order to identify the most extreme occurrences, a threshold postulating
that the achievable values should di�er by at least 4500 MU is chosen, which leads to the two
classes shown on the right. With such a threshold, the data is not as unbalanced as in other
cases, making it an interesting case how the models deal with more equally distributed data.
Figure 4.26 shows the ��ing results for the SVM, ANN and RF classi�ers for both the original
dataset and the balanced data a�er randomly duplicating samples from the underrepresented
class using the Random-Oversampling technique. Interestingly, performance of the SVM and
RF classi�er did not vary much with feature number or the use of random-oversampling or not.
Only the ANN classi�er achieved its highest AUC value of 0.973 with the highest number of
features and oversampled data.
�e comparison of ANN structures with 5 hidden units and one with 64 hidden units showed

that in this case such a massive increase of model complexity does not increase the recall value
of 0.96 and leads to a slightly increase from 0.95 to 0.97 in the precision value, only. �e ANN
training process showed that training- and validation error and thus the quality of the model
did not improve a�er about 100 epochs already.
Analysis of the information on the relative impact of speci�c features on the decision process
in the RF classi�er showed that the PTV concavity was the predominant feature.

4.2.5 Results and discussion
In this chapter a machine-learning based method for evaluation of the slider-de�ned solution
space of the cranial and spinal VMAT optimization problem was presented. �e training and
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Figure 4.26: ROC curves for the Spine MU classi�cation problem with ANN, RF and SVM classi�er and 3D-,7D- and
11D-Feature Vector. Upper row is without, lower row with Random-Oversampling to overcome class-imbalance.

test data for the machine learning process was taken from optimization results obtained from
44 cranial and 18 spinal patient geometries. For each geometry 343 VMAT optimized dosed
distributions were calculated, resulting in a total of 21, 266. For each dose distribution, the
source geometry was described in a 1D, 5D and 9D vector of characterizing numerical values.
�e dose distributions and organ DVH data was not saved as a whole, but condensed down to
a list of dosimetric criterion values Ci .
�e combined data of slider-positions, patient geometry characteristics and dosimetric results
was used to assemble the feature matrix X and target vector y needed for AI model creation.
Despite the high overall number of optimization results, the relative low amount of 62 available
patient geometries is not su�cient to train for direct prediction of dosimetric values based
on slider position and geometrical data. �erefore a more general approach was chosen, not
directly predicting numerical values, but rather giving a suggestion on whether, in a certain
state of slider positions, a modi�cation of the se�ing of a speci�c slider is likely to have a
noticeable e�ect on a speci�c criterion Ci , or not.
For each treatment location (cranial and spine) three criteria were analyzed with respect
to the ’Weighting’ parameter, plus two additional criteria, one with respect to the ’Normal
Tissue Sparing’ parameter, the other one with respect to the ’Modulation’ slider. Based on the
histogram of all values achieved for each speci�c Ci in the data and the corresponding value
range, a threshold discerning ’e�ective’ and ’not e�ective’ was chosen individually, resulting in
a binary classi�cation problem. While in some cases, e.g. the relative PTV dose coverage in
the cranial geometries, the structure of the data naturally suggested a speci�c threshold value,
in other cases the choice was not so straight-forward. Nevertheless, every time a threshold
value suitable for showing the feasibility of the method could be found, and, since the �nal
decision in the MCO treatment planning process is le� to the user anyway, the choice of the
threshold might be made according to the user’s preference, too. �e experiments in this
section demonstrated that the threshold-based e�ciency-prediction approach can be used for:
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• Finding regions in the parameter space with unusually high impact on the Ci in terms of
outlier-detection

• Ruling out regions in the parameter space, where a certain Ci will remain invariant

• Finding parameter regions deemed interesting because of the user’s preference (e.g. the
MU value varying by more than 1000 MU)

Adding the positions of the two slider parameters not under current analysis to the geometry
vectors created feature matrices with 3, 7 and 11 columns, corresponding to a 3-, 7-, or 11D
feature vector describing each sample. Depending on theCi and choice of threshold, the number
of samples for each class varied and was mostly highly imbalanced. In the cranial data typically
only a few hundred of the 2156 samples were labeled as being interesting, in the spine cases,
while the overall number was reduced to 882, the ratios were slightly more balanced. A standard
regularization method was applied on the resulting data in order to eliminate e�ects of the
individual features existing in di�erent numeric scales and orders of magnitude.
�ree types of machine learning model (SVM, RF and ANN) were trained and tested on the data
with varying partitioning into training- and test set, mostly a 50-50 separation with a number
of iterations for cross-validation was chosen. Two ANN models with varying number of hidden
units (5 vs. 64) were evaluated. Prediction quality was measured with the area-under-curve
(AUC) of the corresponding receiver-operating-characteristic curves, and precision- and recall
values.
With the available amount of data, model training took typically less than a minute, with the
ANN training with 200 epochs being the most time-consuming. Here training time could exceed
100s. Without further re�nement of the training data, training in all models was greatly a�ected
by the high grade of class-imbalance, and these problems generally could not be mitigated by
choosing a higher number of features. �e AUC values for all three types of classi�er and the
tree feature vector versions without oversampling can be seen in table 4.3 for the cranial cases
and in table 4.4 for the spine cases.

Table 4.3: AUC values without Random Oversampling, Cranial

Criterion AUC
SVM 3D

AUC
RF 3D

AUC
ANN 3D

AUC
SVM 7D

AUC
RF 7D

AUC
ANN 7D

AUC
SVM 11D

AUC
RF 11D

AUC
ANN 11D

Brainstem D10% 0.500 0.500 0.540 0.758 0.730 0.773 0.758 0.730 0.866
PTV V15Gy rel. 0.500 0.500 0.452 0.942 0.936 0.944 0.942 0.959 0.933
PTV D1% 0.500 0.500 0.383 0.756 0.756 0.814 0.756 0.756 0.816
GI 0.500 0.500 0.453 0.500 0.761 0.657 0.587 0.761 0.792
MU 0.500 0.500 0.473 0.645 0.645 0.487 0.842 0.842 0.721

Table 4.4: AUC values without Random Oversampling, Spine

Criterion AUC
SVM 3D

AUC
RF 3D

AUC
ANN 3D

AUC
SVM 7D

AUC
RF 7D

AUC
ANN 7D

AUC
SVM 11D

AUC
RF 11D

AUC
ANN 11D

Sp. Canal D0.25ccm 0.500 0.500 0.437 0.698 0.571 0.580 0.654 0.591 0.424
PTV V16Gy rel. 0.538 0.546 0.595 0.750 0.740 0.495 0.759 0.711 0.588
PTV D1% 0.500 0.641 0.572 0.705 0.811 0.602 0.712 0.803 0.765
GI 0.616 0.603 0.633 0.651 0.655 0.479 0.668 0.637 0.711
MU 0.857 0.920 0.726 0.948 0.941 0.547 0.949 0.948 0.943

Following a widely used practice in machine learning applications, the Random-Oversampling
technique was applied to remove the class imbalances, which had signi�cant impact on the
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prediction quality. Now excellent precision- and recall values of 0.85 and higher could be
achieved, even with the SVM model, which shows the e�ectiveness of the chosen approach.
�e improvement in prediction quality can also be seen in the AUC values for the cranial cases
(table 4.5) and the spine cases (table 4.6).

Table 4.5: AUC values with Random Oversampling, Cranial

Criterion AUC
SVM 3D

AUC
RF 3D

AUC
ANN 3D

AUC
SVM 7D

AUC
RF 7D

AUC
ANN 7D

AUC
SVM 11D

AUC
RF 11D

AUC
ANN 11D

Brainstem D10% 0.686 0.713 0.678 0.952 0.904 0.950 0.969 0.924 0.982
PTV V15Gy rel. 0.590 0.833 0.552 0.989 0.930 0.991 0.989 0.942 0.998
PTV D1% 0.686 0.790 0.586 0.959 0.895 0.879 0.969 0.938 0.987
GI 0.805 0.805 0.658 0.931 0.843 0.899 0.936 0.848 0.949
MU 0.883 0.934 0.714 0.977 0.933 0.910 0.986 0.930 0.994

Table 4.6: AUC values with Random Oversampling, Spine

Criterion AUC
SVM 3D

AUC
RF 3D

AUC
ANN 3D

AUC
SVM 7D

AUC
RF 7D

AUC
ANN 7D

AUC
SVM 11D

AUC
RF 11D

AUC
ANN 11D

Sp. Canal D0.25ccm 0.631 0.739 0.631 0.830 0.788 0.738 0.829 0.760 0.821
PTV V16Gy rel. 0.608 0.686 0.615 0.837 0.827 0.662 0.850 0.821 0.870
PTV D1% 0.711 0.765 0.734 0.928 0.908 0.811 0.940 0.884 0.908
GI 0.751 0.815 0.786 0.880 0.833 0.816 0.918 0.854 0.894
MU 0.879 0.916 0.873 0.950 0.927 0.929 0.957 0.927 0.973

Still, further analysis of the structure of the labeled data has to be done in order to evaluate
the usefulness of the predictions, and generally more data is needed to re�ne this method.
Some of the resulting precision and recall values are so good, that great care has to be taken in
order to �nd out whether the models also generalize well on unknown data, or whether a big
part of the seemingly good prediction quality has to be a�ributed to over��ing artifacts due to
the limited amount and structure of the training data. An overview of the achieved precision
and recall values can be seen in table 4.7 (cranial) and 4.8 (spine). Only the acquisition of vastly
more data can clarify this issue, and, since the overall work�ow does not contain any elements
negatively a�ecting scalability towards larger amounts of data, except higher training time
and the one-time overhead of data pre-processing, this is a feasible task. �eoretically, the
models and so�ware libraries used for this study can handle training data containing millions
of samples and can be easily extended towards more powerful learning algorithms such as
deep learning [66]. Additionally, with a high amount of data, the regression approach quickly
discussed, and discarded because of lack of su�cient data, can be resumed, providing even
more direct support to the user.

Table 4.7: Precision and recall values with 11D feature vector and Random Oversampling, cranial cases. Compar-
ison of ANNs with 5 and 64 hidden units (HU), a�er 200 training epochs

Criterion Precision
5 HU

Precision
64 HU

Recall
5 HU

Recall
64 HU

Brainstem D10% 0.97 0.96 0.96 1.00
PTV V15Gy rel. 0.98 0.98 1.00 1.00
PTV D1% 0.95 0.95 0.99 0.99
GI 0.94 0.94 0.96 1.00
MU 0.99 0.99 0.96 1.00
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Table 4.8: Precision and recall values with 11D feature vector and Random Oversampling, spine cases. Comparison
of ANNs with 5 and 64 hidden units (HU), a�er 200 training epochs

Criterion Precision
5 HU

Precision
64 HU

Recall
5 HU

Recall
64 HU

Sp. Canal D0.25ccm 0.72 0.82 0.98 0.98
PTV V16Gy rel. 0.85 0.87 0.83 0.93
PTV D1% 0.89 0.95 0.94 0.98
GI 0.83 0.86 0.91 1.00
MU 0.95 0.97 0.96 0.96
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5.1 Outlook: Combination of ML models for rapid explo-
ration of the solution space

With the main parts of the research conducted during in this thesis being covered in the previous
two chapters, this section shall provide an outlook on how all these results can be combined to
create a streamlined treatment planning work�ow with a high degree of automatization. �e
holy grail of radiotherapy treatment planning, of course, would be a completely automated
planning process, where without any user interaction a deliverable optimal treatment sequence
is generated individually for each patient and treatment site [83]. A fully automated MCO
planning work�ow for IMRT treatments has been implemented by Voet et. al [82]. However,
due to the use of a �xed prede�ned lexicographic order imposed on the optimization objectives,
it is only e�cient within a narrow range of treatment indications and treatment sites. �e
nature of the multi-criteria optimization problem makes automatization of a general concept of
optimality almost impossible, since many candidates for ’optimality’ exist, and the �nal choice
is depending on the preferences of a human operator.
In the literature many strategies aiming at �nding a reasonable range of candidates for the
optimal plan and facilitating this decision process for the user can be found. Pareto surface
navigation has been done for IMRT[46] and VMAT[19], and commercially available solutions
have been evaluated as being bene�cial to the planning process, enabling even less experienced
planners to produce excellent treatment plans [47] and achieve be�er sparing of healthy tissue
[40].
With the recent rise of machine learning applications in virtually all areas of technology,
radiotherapy treatment planning has been no exception, and several a�empts have been made
to leverage this powerful technology for saving time [2] [64], improving outcomes,[54] [73]
[81] and facilitating quality assurance (QA) [78].
While promising progress has been made, the application of machine learning technology in
radiotherapy is still in its infancy[27]. �e techniques presented in this work have the advantage
of not relying on any hard mathematical assumptions regarding the optimizer or planning
constraints. In future development, they might be combined to implement the promising
work�ow presented below.

5.1.1 Outline and structure of algorithm
As a �rst enhancement step, the prediction method depicted in �gure 4.2 based on training
data assembled as shown in �gure 4.3, can be repeated for every possible choice of �xed slider
and prediction slider, for each Ci a speci�c model can be trained. �e �nal goal is to be able to
predict, at any given slider position combination and for any quality criterion Ci , which slider
is the best choice for adjusting this speci�c Ci . Of course, this means that a total of three ANN
classi�ers have to be trained, but no additional data has to be acquired since all the necessary
feature matrices and target vectors can be constructed from the database described in �gure
4.1.
To achieve this goal, the most obvious classi�er choice is the ANN predictor. One reason is
its ease of scalability and �exibility for handling huge data sets, the other being the fact that
in contrast to e.g. a SVM classi�er the output is not a binary value, but merely the estimated
probability, that a speci�c sample has a speci�c label. �is property allows for a ranking of
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Figure 5.1: Complete prediction algorithm including all slider controls

predictions, in our case this means that, if more than one slider is a candidate for modi�cation
of a speci�c Ci , the slider with the highest probability can be picked. In terms of a graphical
user interface in the treatment planning so�ware, this might be achieved by a drop-down menu
for selection of the Ci , the recommendation of the predicted slider control can be presented
via a tra�c-light-like color-coding scheme (a schematic overview of this algorithm is given in
�gure 5.1).
So far, only the relative value range of the Ci was considered for predicting slider e�ciency. In
the actual planning process however, absolute values might be more important. In this case, a
di�erent target vector could be used for training and prediction of which slider, when modi�ed,
given the current slider positions, is most likely to cause a speci�c constraint for a Ci to be
ful�lled.

5.1.2 Additional enhancements
Use of big data/cloud-based data management

It is obvious that the database in �gure 4.1 by no means has to end up being a static structure.
Experience in the application of machine learning to various areas has shown that more training
data is the biggest in�uence on training be�er models, and in most cases acquiring more data
beats the application of more sophisticated algorithms in terms of achieving higher prediction
quality [33] [90].
�e models presented in this thesis could thus also bene�t greatly from an ever increasing
pool of training data. Every new case in a treatment center can be potentially immediately
added to the training database, and an automated background process can perform the dose
optimizations for all parameter combinations and re-train the models.
Such an incremental database and training process could even be extended across institution
borders. In the US, pilot studies for national patient data registries for spine and cranial
indications have been started [53], [70]. �e bene�t of data-based research on the outcome
of cranial SRS procedures has already been shown [69], it is an obvious idea that such a vast
amount of data might be used for machine-learning purposes, too. Of course, as pointed out by
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el Naqa et al.[25], the application of machine learning techniques in radiation oncology is still
in a very early developmental stage, and also a lot of bureaucratic and infrastructure-related
problems still have to be dealt with.

Learning of user preferences

It has been mentioned a couple of times in this thesis that the nature of an multi-criteria
optimization problem is its abundance of potentially equally ’optimal’ solutions. Sometimes
some hierarchy of objectives, or some other means of de�ning a global optimum can be
established. However, in many cases the �nal choice is still made by some human operator.
In this context, the slider positions resulting in the �nally chosen treatment plan can be saved
for each patient case. A neural network can be trained using this position data and the geometry
vector G supplemented with additional data concerning the selected treatment regimen such
as prescribed dose, number of arc elements etc. for prediction of likely slider positions in a
new patient case. Once a reasonable amount of data has been accrued, upload of a new patient
case might trigger automatic pre-calculation of the most likely slider positions predicted by
the ANN model. �is procedure would provide a good starting point for the human decision
maker, and with a growing number of training data the model is likely to learn the preferences
of a speci�c user.
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5.2 Summary & conclusion

So far, a number of topics has been covered in this thesis: A�er some general introduction into
the theoretical aspects of radiotherapy treatment planning, the basic principles of multi-criteria
optimization and machine learning, the Brainlab Elements VMAT Treatment Planning System
was introduced. �e concept of VMAT optimization with a low number of composite objectives
grouping di�erent aspects of the optimization process was brie�y discussed and re-evaluated
from a multi-criteria optimization perspective.
For a selection of cranial and spinal patient geometries, a high number of dose optimizations
was performed. �e in�uence of the three composite objective parameters for PTV vs OAR
weighting, sparing of healthy tissue surrounding the PTV, and the amount of dose modulation
in the resulting dose distributions (e.g. variation in dose rate, size and shape of MLC shapes)
was analyzed by comparison of a selection of dosimetric criteria.
�e in�uence of the position of a speci�c parameter slider on a speci�c criterion varied greatly
with respect to the patient geometry, e.g. size, shape, and position of target volume and organ-
at-risk structures, as well as the choice of criterion. In the cranial example cases where the
goals for PTV dose coverage and the dose constraints could be easily ful�lled, the resulting
dose distributions did not vary much. In arti�cially constructed, extremely challenging cases,
those constraints o�en could not be ful�lled completely, but a much greater variation in the
optimization results could be observed. For consistency reasons, all cranial treatment plans
were optimized for the same symmetrical setup of three equidistant VMAT arcs, even if in
some cases a more asymmetrical arrangement of the arcs would have been more favorable. In
addition, the VMAT Elements treatment planning so�ware o�ers more adjustment options than
the three slider controls analyzed here. �erefore, in the scope of this study, the non-ful�llment
of constraints is not of too much concern.
�e spinal cases showed a higher variation in the optimization results and the dosimetric
outcome was highly dependent on the shape of the PTV, the complete vertebral body with all
pedicles being the most challenging one. Especially when the spinal canal was speci�ed as
OAR, the capabilities for modeling the various trade-o�s were noticeable.
A methodology for approximation of the dose distributions resulting from not-yet-calculated
parameter combinations based on trilinear dose interpolation was introduced and evaluated
for two discretizations of the parameter space. Approximation using only eight pre-calculated
optimization results for the extremal positions of the parameter sliders proved to be too coarse
for all but the least challenging cranial cases for a number of reasons: On the one hand the
value range of the slider parameters has been chosen in a way, that a set of intermediate slider
positions is assumed to be the most likely region of the parameter space a potential user is
going to explore. On the other hand, approximation using trilinear interpolation is best if the
sought-a�er position is very close to one of the pre-calculated results (anchors). �is means,
that with only eight pre-calculated plans, the most relevant region of the parameter space
coincides with the region where the deviations between approximated and actual result can
expected to be highest, which is not a desirable condition.
In order to mitigate this issue, optimization results for central slider positions were added
to the pool of pre-calculated dose distributions, increasing the total number of anchors to
27. Even though this means some additional computational overhead, a general decrease of
approximation errors, especially in the challenging geometries where the Pareto surface of
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achievable solutions was of a more convoluted shape, could be observed. However, due to their
�xed position in the parameter space, even this high number of pre-calculated results leads to
problems, if a steep gradient in the solution space has to be approximated, warranting a more
�exible distribution of the anchor dose distributions.
A machine-learning-based approach for �nding regions in the parameter space with high
variation in the resulting dose distributions, and thus steep gradients in the corresponding
Pareto surfaces, was developed. �e optimization data obtained during the experimental
exploration of the solution space and the evaluation of the approximation method was leveraged
to serve as basis for training and evaluation of machine learning models. Patient geometries
were expressed by a vector of characterizing numerical values, such as PTV and OAR volume and
-concavity, relative distance between objects, and properties of the overlap-volume-histograms.
Combined with position information of two of the three composite parameter sliders, 3D-
, 7D- and 13D- feature matrices were assembled. For a number of dosimetric criteria Ci a
binary classi�cation problem was generated as follows: Each sample feature vector was labeled
according to a numerical threshold for Ci , stating whether movement of a speci�c slider is
likely to noticeably in�uence the value of the Ci , or not. �is information can then be used, e.g.
for determining the position and number of anchors needed for approximation of the solution
space. �e classes turned out to be rather imbalanced in most cases, making it necessary to
apply oversampling-techniques to restore class-balance, thus acquiring enough samples of each
class to make a proper learning process possible.
�ree kinds of machine-learning classi�ers were trained and evaluated on the 3D-, 7D- and
13D-data: A support-vector machine (SVM), a random-forest classi�er (RF) and arti�cial neural
networks (ANN) with varying internal structure. Model performance was generally poor
without oversampling, even with the highest number of features per sample. However, a�er
random-oversampling, excellent precision-, recall-, and AUC values could be obtained in all
cases, proving the e�ectiveness of the chosen approach.
In the �nal section, an algorithm for combining a number of such machine learning models
was presented, which serves as a recommendation system for the treatment planner. Based on
information from already planned similar treatments and the characteristics of the patient case
currently at hand, the system automatically points out which slider control to modify, if the
user wants to improve the value of a speci�c Ci . �is has great potential for streamlining the
existing treatment planning work�ow, where the choice of slider positions for optimization is
solely relying on user experience and random exploration.
Of course, there are also a number of limitations to this work to point out: �e trilinear
dose interpolation approach might seem naive at �rst glance, and except for the general
statements presented in section 3.5.2 no exact mathematical error approximation is possible
without demanding strong mathematical properties, such as convexity, from the optimizer.
However, the data-driven approach chosen in this work is also its greatest advantage. Changes
to the optimization algorithm, the exact nature and composition of the composite optimization
parameters do not a�ect the general functionality of the approach. �e possibility of adaptively
distributing the the node points in the parameter space allows for higher resolution where
needed, and the continuity and the choice of the parameter space in the optimizer guarantee
that no massive irregularities in the resulting solution space have to be expected.
�e e�ectiveness of the machine-learning techniques applied in section 4.1 is relying to a large
extent on the amount and quality of the training data available. �e author is completely aware
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of the fact, that the amount of data available for developing the algorithms presented in this
thesis only represents the bare minimum needed for showing feasibility and the potential to
scale with much larger datasets. For widespread applications of machine learning like image
recognition and natural language processing, labeled training sets comprising millions of
samples are readily available for free. In medical applications handling extremely sensitive
data like personal health records, labeled data on such scale is not yet available and, since
topics like anonymization and cyber-security have to be dealt with, its acquisition is likely to
be an expensive and time consuming process which can only be realized as a community e�ort.
Nevertheless, aging populations and increasing cost for healthcare put increasing pressure
on healthcare providers, and more and more resources are needed to provide e�ective and
a�ordable treatment for a growing number of patients. Increasing automation of extremely
labor-intensive tasks, such as radiotherapy treatment planning, with methods like the ones
developed in this work, can play a big role in freeing up those resources.
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6.1 Technical Background

6.1.1 Geometry of test patient data

Table 6.1: Geometry data of cranial test cases

Plan Name (Cranial) Volume PTV [cm3] Volume Brainstem [cm3] Distance Brainstem PTV [mm] OVH penumbra Brainstem[mm] PTV concavity
Cranial Case #1 29.8 21.5 0 15 1.61
Cranial Case #2 9.8 19.6 3 35 1.26
Cranial Case #3 10.1 19.6 8 41 1.27
Cranial Case #4 12.2 19.6 1 43 1.25
Cranial Case #5 113.2 30.2 0 48 1.17
Cranial Case #6 3.9 30.2 5 55 1.15
Cranial Case #7 3.9 30.2 14 64 1.15
Cranial Case #8 3.9 30.2 30 67 1.15
Cranial Case #9 3.9 30.2 48 69 1.15
Cranial Case #10 3.9 30.2 15 50 1.15
Cranial Case #11 3.9 30.2 40 53 1.15
Cranial Case #12 3.7 30.2 1 66 1.18
Cranial Case #13 3.9 30.2 0 69 1.15
Cranial Case #14 3.9 30.2 1 64 1.15
Cranial Case #15 3.9 30.2 16 57 1.15
Cranial Case #16 3.9 30.2 38 54 1.15
Cranial Case #17 3.9 30.2 1 38 1.15
Cranial Case #18 6.7 19.6 0 35 1.27
Cranial Case #19 53.8 31.1 0 59 1.19
Cranial Case #20 7.8 25.3 6 44 1.5
Cranial Case #21 1.2 27.3 3 49 1.24
Cranial Case #22 16.1 27.2 0 38 1.84
Cranial Case #23 30.7 21.4 6 29 1.71
Cranial Case #24 4.1 26.2 5 42 1.26
Cranial Case #25 9.3 38 1 50 1.13
Cranial Case #26 1 13.3 9 38 1.18
Cranial Case #27 8.1 39.1 0 29 1.12
Cranial Case #28 1.5 29.2 6 39 2.03
Cranial Case #29 0.5 27.1 6 46 1.65
Cranial Case #30 3.9 30.2 17 32 1.15
Cranial Case #31 3.9 30.2 36 29 1.15
Cranial Case #32 4.7 21.5 0 32 1.36
Cranial Case #33 4.6 21.5 3 36 1.36
Cranial Case #34 4.7 21.5 1 35 1.36
Cranial Case #35 3.9 30.2 0 67 1.15
Cranial Case #36 3.9 30.2 9 57 1.15
Cranial Case #37 3.9 30.2 8 63 1.15
Cranial Case #38 17.4 30.2 1 60 1.9
Cranial Case #39 18.5 30.2 0 46 1.98
Cranial Case #40 22.1 30.2 0 48 1.66
Cranial Case #41 6.9 21.5 5 29 1.73
Cranial Case #42 8.2 21.5 1 42 1.65
Cranial Case #43 8.9 21.5 5 29 2.11
Cranial Case #44 15.5 21.5 5 26 1.89

Table 6.2: Geometry data of spinal test cases

Plan Name (Spine) Volume PTV [cm3] Volume Spinal Canal [cm3] Distance Spinal Canal PTV [mm] OVH penumbra Spinal Canal[mm] (inverse OVH) PTV concavity
Spinal Case #1 45 22.6 0 38 2.24
Spinal Case #2 36.8 22.6 0 38 1.37
Spinal Case #3 57.3 22.6 0 38 2.92
Spinal Case #4 45.6 17.1 -1 40 1.85
Spinal Case #5 39 17.1 -1 39 1.39
Spinal Case #6 61.3 17.1 -1 40 2.81
Spinal Case #7 35.6 17.1 -1 35 1.82
Spinal Case #8 31.1 17.1 -1 35 1.34
Spinal Case #9 42.1 17.1 -1 35 2.07
Spinal Case #10 29.4 12 -1 35 2.03
Spinal Case #11 25.2 12 -1 35 1.94
Spinal Case #12 36.4 12 -1 35 2.26
Spinal Case #13 39.4 22.6 -1 39 1.84
Spinal Case #14 35.9 22.6 -1 39 1.7
Spinal Case #15 48.4 22.6 -1 39 2.24
Spinal Case #16 41 18.6 -1 41 1.97
Spinal Case #17 36.8 18.6 -1 41 1.55
Spinal Case #18 54.3 18.6 -1 41 2.75
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6.1.2 Data generation and processing/so�ware framework

Table 6.3: Overview of used so�ware packages

Purpose So�ware package Version
Dose optimization BL Elements Cranial Spine var.
Data analysis (General framework) Jupyter Notebook Jupyter Notebook Server 4.3.1
Data analysis (Scienti�c computing) Anaconda Python 2.7x Python 2.7.13 / Anaconda 4.3.1
Data analysis (Data structures) Pandas [55] 0.19.2
Machine learning (Framework RF, SVM) Scikit learn 0.19.0
Machine learning (Framework for ANN) Keras 2.2.2
Machine learning (ANN library) Microso� CNTK 2.6
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[20] David L. Cra�, Dávid Papp, and Jan Unkelbach. Plan averaging for multicriteria navigation
of sliding window imrt and vmat. Medical Physics, 41(2):021709–1–021709–5, 2014.

[21] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[22] Yunfei Cui, Zhiqiang Geng, �nxiong Zhu, and Yongming Han. Review: Multi-objective
optimization methods and application in energy saving. Energy, 125:681 – 704, 2017.
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Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages
51 – 56, 2010.

[56] Andrea L. McNiven, Michael B. Sharpe, and �omas G. Purdie. A new metric for assessing
imrt modulation complexity and plan deliverability. Medical Physics, 37(2):505–515, 2010.

[57] Michael Monz. Pareto Navigation -interactive multiobjective optimisation and its appli-
cation in radiotherapy planning. PhD thesis, Department of Mathematics, Universität
Kaiserslautern, Kaiserslautern, Germany, 2006.
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