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Keilhacker, Dr. Miray Közen, Sebastian Malicki, Layla Martin, Santiago Nieto-Isaza,

Thitinan Pholsook, Dr. Partricia Rogetzer, Dr. Martin Stößlein, Josef Svoboda, Dr.
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Abstract

Volatile prices constitute a challenge for both commodity-processing and commodity-

trading firms. This thesis investigates the implications of price uncertainty on the op-

timal operating policies in multi-period procurement and inventory control. A central

contribution to the existing literature that addresses the full information problem is the

focus on the implications of price model uncertainty, i.e., incomplete information about

the underlying price process. Based on advances in stochastic and data-driven optimiza-

tion, we propose mathematical models for practical decision support and test them on

real data. Hence, this thesis gives guidance to managers in the digital age on how to

use real-time information and Big Data in combination with methods from statistical

learning theory (Bayesian learning, machine learning) in an optimization framework in

order to improve commodity procurement and inventory management decisions.

The first problem considers operational hedging via inventory control. We show how

a Bayesian belief structure can be used to express uncertainty about the price process,

which is subject to switches in regimes. We prove the structure of the optimal storage

policy and test its cost impact relative to several more practical but suboptimal control

policies. We find that Bayesian learning yields significant cost savings.

The second problem addresses commodity procurement via forward contracting. We

propose a data-driven and machine learning-enabled mixed integer linear programming

model that jointly optimizes forecasts and decisions by training optimal purchase signals

as functions of features related to the price. Finally, we quantify the performance loss

caused by ignoring feature information in procurement.

The third problem considers optimal commodity storage from the perspective of a mer-

chant with buying, storing and reselling opportunities. We propose several data-driven

models for storage optimization. Based on empirical data of six major exchange-traded

commodities, we find that optimally structured data-driven policies can outperform

state-of-the-art reoptimization approaches.

Keywords: price uncertainty; procurement; inventory control; stochastic and data-

driven optimization
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Chapter 1.

Introduction

1.1. Motivation

Price uncertainty at commodity markets constitutes a significant exogenous risk factor

for companies. Almost all (manufacturing) firms are exposed to commodity price risk

that affects the direct costs of raw materials, packaging materials, energy consumed

in operations or transportation costs. Companies that purchase material in foreign

currencies face a similar risk due to exchange rate fluctuations. According to Beschaf-

fungsmanagement (2009), commodities make up 27% of the total costs of a firm in the

sector of mechanical and plant engineering, 47% in the automotive supply industry, 56%

in the packaging industry and 66% in the agri-food industry.

Moreover, commodity markets have undergone some dramatic changes during the last

decades: commodities exhibit rising price volatility and at the same time the liquidity of

forward markets has increased, which enabled hedging activities (Geman, 2005, pp. 21).

While commodity-processing firms intend to hedge against the adverse effects of price

risk, commodity merchants strive to exploit inter-temporal price differentials (purchase

low, store, sell high). However, for both purchasers and merchants, wrong decisions on

managing price uncertainty can quickly lower profit margins.

Therefore, firms apply various price risk mitigation strategies, such as substituting

raw materials, negotiating contractual price escalator clauses for risk sharing with both

suppliers and customers, financial hedging through forward contracting or operational

hedging through effective inventory control (Zsidisin and Hartley, 2012, chap. 5).

However, decision-making under price uncertainty is a complex and challenging opti-

mization task. It requires an adequate stochastic model of the commodity price evolution

(finance discipline) and a stochastic optimization model that determines the optimal

operating policy for managing procurement and storage with respect to operational
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constraints, such as demand satisfaction, capacity restrictions or storage injection and

withdrawal rate limits (operations research discipline).

Traditionally, literature treats operations and financial decisions independently. This

is consistent with the Modigliani-Miller theorem (Modigliani and Miller, 1958) that

states that in the absence of agency costs, taxes, bankruptcy costs, asymmetric infor-

mation and market inefficiencies, the value of a firm is not affected by its financial (e.g.,

hedging) decisions. However, those assumptions are hardly ever met in practice, which

provides rationale for risk management. Markets are not frictionless and often ineffi-

cient to some extent, taxes exist (Smith and Stulz, 1985), market participants do not

necessarily have identical information (DeMarzo and Duffie, 1991), or suffer from hard

budget constraints and costly external capital (Froot et al., 1993). Furthermore, firms

might be risk-averse (Gaur and Seshadri, 2005). Consequently, commodity risk man-

agement can increase or decrease the value of a firm such that operational and financial

risk management can be beneficial (or harmful).

A specific example for operational decision-making under price uncertainty, that refers

to Chapter 4 of this thesis, is optimal inventory management under random demand and

price, i.e., how to effectively control inventory in order to avoid stock-outs and simulta-

neously exploit low purchase prices. If a commodity’s price is anticipated to increase,

an inventory manager may purchase more than required and if the price is expected to

decrease, one may wait with purchasing. Stockpiling inventory is particularly prevalent

for firms that want to exploit inter-temporal price differentials (e.g., commodity-trading

firms) and for firms that have warehouse space available. According to the Metals Ser-

vice Centers Institute, the stock of steel-processing companies increased from 2.4 to 2.7

months of inventory in November 2010 due to raising prices and the firms’ anticipation

of further price increases (Wall Street Journal, 2011b). Companies that actively use in-

ventory management for price risk mitigation are, for instance, Unilever and Caterpillar

(Unilever, 2016; Wall Street Journal, 2011b, p. 39).

A second example, that refers to Chapter 5 of this thesis, is financial hedging through

optimal forward contracting, i.e., the optimization of the firm’s procurement position in

the forward contract market that exhibits a growing liquidity during the past decades.

The number of exchange-traded financial derivatives on energy, agriculture, precious

metals and non-precious metals increased by 22.6% to 4.6 billion contracts between

2014 and 2015 (FIA, 2015). A large-scale empirical study by Bartram et al. (2009)

shows that 50.4% of the oil-processing companies and 30.5% of the steel-processing

companies have implemented some kind of commodity price risk hedging using financial
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contracts. Financial contracting might especially be relevant for firms that act in just-in-

time environments (e.g., the automotive industry with copper or aluminum as important

raw materials) or firms that purchase commodities that can hardly be stored (e.g., energy

or freight capacity). A prominent example for a firm that has benefited greatly from

commodity hedging is the food manufacturer General Mills, which realized hedging gains

of $151 million in volatile agricultural and energy markets during the first quarter of

2008 (Wall Street Journal, 2008). On the other hand, by contractually hedging future

demand, firms become inflexible to react to price declines. In 2015, the world’s second-

largest airline United lost $960 million, the world’s third-largest airline Delta even $2.3

billion by hedging 100% of their fuel costs via long-term contracts prior to the big drop

in crude oil prices (Wall Street Journal, 2016a).

A third example, that refers to Chapter 6 of this thesis, is integrated commodity

storage and physical trading1 at storage assets that are typically owned by trading com-

panies and serve as a link between commodity producers and commodity processors.

Maximizing the merchant’s profit requires the integration of trading and operational de-

cisions since storage constraints affect the optimal trading policy. Gas storage facilities,

for instance, are characterized by rate constraints that limit the amount of gas injection

and withdrawal, which increases the complexity of optimal storage control.

Lately, in the course of digitalization, both academia and industry increase the fo-

cus on data-driven decision support. Companies started to routinely collect immense

amounts of data and have access to real-time information from financial databases, such

as Bloomberg, Quandl or Thomson Reuters. However, due to a lack of prescriptive an-

alytics approaches that prescribe an optimal data-driven course of action, it is still an

open question how to effectively exploit the value of data, such as economic indicators,

analyst forecasts or weather information, for commodity procurement and inventory

management. On the one hand, existing machine learning techniques focus on accurate

predictions Y = f(X) of Y based on observations X = x (supervised learning), however

they do not address optimal decision-making since they do not exploit the structure of

the underlying optimization problem. And on the other hand, existing stochastic op-

timization techniques that explicitly exploit the structure of the optimization problem

presume full information about the price model with a perfect out-of-sample general-

ization, which is not realistic2. In reality, procurement and inventory managers need to

1Throughout this thesis, we focus on physical commodity trading rather than financial trading.
2A generalization error (also referred to as the out-of-sample error) occurs, which is the prediction

error over an independent test sample (Hastie et al., 2013, p. 220) and accordingly the out-of-sample
cost of in-sample decisions in the operations research context (Ban and Rudin, 2019).
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decide about order quantities without having complete knowledge of the price process.

Hence, it might be beneficial to integrate the fields of statistical learning and math-

ematical optimization (learning-enabled optimization) in order to identify optimal pro-

curement and inventory plans and measuring the value of data from a decision rather

than from a prediction perspective. Practical decision support is needed in the form of

simple-to-use policies that are interpretable and accessible to managers in practice.

1.2. Classification, Contribution and Research Questions

Operating policies under price uncertainty, such as inventory replenishment or contract-

ing policies for commodity-processing and commodity-trading firms are typically derived

based on exogenous price models that are assumed to be fully known to the decision

maker in both the price process class and the parameters (full information problem3).

This typically results in the optimality of state-dependent threshold-based operating

policies for inventory and procurement control.

However, the full information optimum is only optimal with respect to the true

stochastic process that is typically not known to the decision maker. An accurate as-

sessment of the underlying price process (and therefore the characterization of the state

of the system) is difficult, especially if the commodity price time series contain struc-

tural breaks. Consequently, misspecified price models might yield unfavorable inventory

replenishment and contracting decisions.

This thesis provides an integrated finance and operations perspective on commodity

procurement and trading and develops practical decision support. A key contribution

of this work is the focus on the operational performance implications of price model

uncertainty. We rely on several fundamental operational problem settings, such as the

inventory control problem under random price and demand introduced by Kalymon

(1971) or the stochastic commodity warehouse problem studied by Charnes et al. (1966).

The underlying problems and our proposed solution approaches are sufficiently general

to allow for an application at various commodity-processing and commodity-trading

firms. We test them on real data for specific commodities in the field of metals, energy

and agriculturals.

3Following Bertsimas and Kallus (2016), we refer to the full information problem as optimization
problems under price uncertainty with the underlying stochastic price process known in both class
and parameters. Note the difference to the perfect foresight problem without any uncertainty.
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The three main chapters of this thesis are based on three working papers. We consider

two inventory control problems and one contracting problem. We furthermore distin-

guish between two perspectives of a risk-neutral firm: (i) the commodity procurement

perspective under stochastic purchase prices that aims at minimizing the firm’s cost

and (ii) the commodity merchant perspective under stochastic purchase and sales prices

that aims at maximizing the firm’s profit. All chapters consider problems of multi-stage

sequential decision-making under uncertainty that require dynamic optimization models

under the consideration of the stochastic evolution of both exogenous state variables

(e.g., price and demand) and endogenous state variables (e.g., inventory level or cur-

rent sourcing position in the forward market). In other words, decisions taken today

determine the available action space for managing price risk tomorrow and at the same

time the anticipation of future inventory or contracting decisions might affect optimal

decisions today. We restrict our analysis to finite-horizon problems and use dynamic

programming to characterize the structure of the optimal operating policies. The ab-

sence of analytical closed-form solutions asks for numerical approaches (Williams and

Wright, 1991, p. 3).

From a methodological perspective, this thesis contributes to the stochastic and data-

driven optimization literature. To solve the underlying operational decision problems,

methods from finance and economics (price modeling) and from the statistical learning

theory (Bayesian learning, machine learning) are combined with stochastic optimization

(e.g., dynamic programming and approximations, such as certainty equivalent control

and decision rules). To deal with price and price model uncertainty, Chapter 4 employs

a Bayesian approach to learn a price model given price observations, while Chapters 5

and 6 use concepts from supervised learning in order to exploit feature information.

Focus: Operational performance implications of price and price model uncertainty

Procurement Merchant operations

Inventory
perspective
(Chapter 4)

Contracting
perspective
(Chapter 5)

Inventory
perspective
(Chapter 6)

Bayesian SDP,
MRS models

SDP, MILP,
ML algorithms

SDP, MILP,
ML algorithms

Figure 1.1.: Problem perspectives of this thesis and applied methodologies
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Chapter 4 is based on Mandl and Minner (2019a) and addresses the multi-period pro-

curement and inventory control problem under random purchase prices and demand. It

aims at minimizing the sum of purchasing, holding and shortage costs. The standard

literature derives procurement and inventory policies under the assumption of having

full information about the stochastic price process (estimated, e.g., from historical data).

However, price behavior might be non-stationary, i.e., the price process may change over

time (e.g., due to regime switches), which we can infer by unsupervised learning algo-

rithms. In order to capture uncertainty in both price and price model, we propose a

Markov regime switching (MRS) approach with a Bayesian belief structure and dynamic

information updates based on recent market price observations. By means of Bayesian

stochastic dynamic programming (SDP), we compute optimal procurement and inven-

tory policies under stochastic demand and purchase prices. We prove the structure of the

optimal policy and find that Bayesian learning yields significant cost savings. However,

computing the optimal policy parameters is difficult due to the curse of dimensionality.

Therefore, we test and compare the performance of various suboptimal control policies

that ignore Bayesian updates or ignore price uncertainty in general. More specifically,

we answer the following research questions:

• How do partially observable spot price regimes affect the structure of the optimal

inventory control policy?

• What is the cost of price regime misspecification, i.e., misspecification of the un-

derlying price process?

• Under which conditions is it beneficial to deal with MRS price models from an

inventory control perspective and when is it adequate to ignore price regimes or

price uncertainty in general?

• When does a more accurate price forecast lead to better inventory decisions and is

price forecast accuracy necessarily a good indicator for operational performance?

Chapter 5 is based on Mandl and Minner (2019b) and addresses the multi-period

forward contracting problem under random purchase prices. Besides operational hedging

via the procurement in commodity spot markets (see Chapter 4), the decision maker can

also optimize the firm’s position in the forward contract market. We present a mixed

integer linear programming (MILP)-based non-parametric and data-driven approach

for solving the problem. As opposed to the standard literature that assumes that the

price process is fully known in its parametric form and parameters, our model relies
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on the machine learning (ML) principle of Empirical Risk Minimization (ERM) and

trains policy parameters in the form of procurement signals directly from feature data

that may have an impact on commodity prices and hence on optimal positions in the

forward market. Furthermore, we combine optimization with machine learning (i.e.,

performance-based regularization for feature selection) in order to improve the out-of-

sample performance. Based on both simulated and real data, we find that ignoring

feature information can yield a significant performance loss in commodity procurement.

More specifically, we answer the following research questions:

• How can firms efficiently operationalize Big Data for commodity procurement un-

der price uncertainty?

• How to combine data-driven procurement with ML concepts in order to support

the selection of decision-relevant (rather than prediction-relevant) features?

• What is the economic value of Big Data and analytics for commodity-purchasing

firms?

Chapter 6 is based on Mandl et al. (2019) and addresses the multi-period inventory

trading problem under random purchase and selling prices, which is referred to as the

Stochastic Commodity Warehouse Problem (SCWP). In contrast to the previous chap-

ters, this chapter studies commodity operations from the perspective of a merchant with

purchase, storage and sales options restricted by operational constraints with regard

to injection and withdrawal, which turn off the simple all-or-nothing property of the

optimal storage policy. Based on six major exchange-traded commodities, we quantify

the weaknesses of the state-of-the-art rolling intrinsic approach (RIA) when applied to

real data. We present several learning-enabled optimization models and find that data-

driven policies, if optimally structured, can significantly improve the profit of commodity

storage facilities. More specifically, we answer the following research questions:

• How does the state-of-the-art RIA policy perform in backtesting settings on real

data?

• How to effectively solve the SCWP in a data-driven and learning-enabled way?

• What is the out-of-sample value of data-driven storage policies for the fundamental

SCWP and what is the value of exploiting known policy properties in data-driven

optimization?
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Chapter 2.

Fundamentals of Commodity Markets

This chapter should help those readers with a strong operations background who are

not familiar with the specific characteristics of commodity markets. Readers who know

the fundamentals and terminology of commodity trading can easily skip this chapter.

Readers who are interested in even more details might want to take a look in the fol-

lowing excellent textbooks and review papers: Geman (2005) and Pirrong (2011) give a

comprehensive introduction to commodity finance. Haksöz and Seshadri (2007) present

literature on optimization under price risk mainly from the procurement perspective and

Secomandi and Seppi (2012) focus on the commodity merchant perspective.

2.1. Commodity Price Risk

According to the Cambridge Dictionary, a commodity is “a substance or product that

can be traded, bought, or sold”1. Commodities have in common that their prices fluc-

tuate over time due to shifts in supply and demand. Based on their physical nature,

the literature typically distinguishes between storable and non-storable commodities.

Storable commodities include metals (precious and industrial metals) and agricultural

products, while non-storable commodities are mainly those in the energy field charac-

terized by storage limitations or storage inefficiencies (e.g., electricity). Freight capacity

and weather are also often referred to as non-storable commodities, which is due to their

shared characteristic of being traded on both spot and forward markets in the form of

freight forward agreements and weather derivatives (Pirrong, 2011, p. 5).

Figure 2.1 shows the annualized volatilities2 at the main commodity spot markets.

1https://dictionary.cambridge.org/dictionary/english/commodity
2Standardized measure based on the standard deviation of daily spot price returns. For the exact

mathematical definition, we refer to Geman (2005, p. 60).

9

https://dictionary.cambridge.org/dictionary/english/commodity


Chapter 2. Fundamentals of Commodity Markets

We observe that commodities are significantly more volatile than exchange rates and

stocks (Geman, 2005, p. 60). Consequently, commodity operations incorporate a huge

risk potential for commodity-processing and commodity-trading firms. The particularly

high volatility of gas prices can be explained, besides other factors, by high storage costs,

storage restrictions as well as by its strong relationship to electricity, which is the most

volatile commodity of all (Geman, 2005, p. 59).
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Figure 2.1.: Mean annualized price volatility σ of major commodities from 2000 to 2017
relative to corporate stocks and exchange rates (Data source: Thomson Reuters
Datastream).

2.2. Financial and Operational Risk Management

In this section, we give some theoretical justification for commodity risk management

of risk-neutral firms. We also point out the distinction between hedging, arbitrage and

speculation and give a brief overview of financial and operational commodity risk man-

agement instruments.

Rationale for Corporate Risk Management

While risk-averse firms, per se, have an incentive to hedge (Gaur and Seshadri, 2005),

risk-neutral firms are indifferent between two investments if their expected values are

the same. Therefore, according to classical finance theory, a risk-neutral firm has no

incentive to hedge price risk if the assumptions of Modigliani and Miller (1958) hold.

According to Modigliani and Miller (1958), risk management in terms of operational or

10
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financial hedging has no effect on the firm’s value as long as taxes, agency costs and

bankruptcy costs are absent and information asymmetry does not exist. If at least one

of those assumptions is violated, there is indeed rationale for risk management even for

risk-neutral firms. For theoretical validation, we refer to Bessembinder (1991), DeMarzo

and Duffie (1995), Froot et al. (1993), Smith and Stulz (1985), Stulz (1984), and Tufano

(1998). Additionally, there is also empirical validation for different types of commodities

(Carter et al., 2006; Haushalter, 2000; Tufano, 1996).

Furthermore, the Efficient Market Hypothesis (EMH) introduced by Eugene Fama in

1970 states that markets are efficient if all the available information (including past spot

and forward prices) is incorporated into the current market price such that technical3

and fundamental4 analysis cannot lead to profits above average in the long-run. How-

ever, EMH is strongly debated in the empirical and behavioral finance literature (see,

e.g., Malkiel, 2003).

Arbitrage, Speculation and Hedging

Price risk at commodity markets can either be hedged with contracts (e.g., with long-

term supply contracts, risk-sharing agreements or financial derivatives, such as forwards,

futures and options) or physically (e.g., with inventories). Before describing the most

common operational and financial hedging instruments, we want to distinguish between

the important but often misused terms arbitrage, speculation and hedging.

Arbitrage is the risk-free exploitation of price differentials. The common characteristics

of all types of arbitrage is that the arbitrageur achieves profit with certainty and knows

this profit with certainty at the time of decision. Let us assume that the arbitrageur buys

a commodity at the spot market at a deterministic spot price and simultaneously sells

it at the forward market at a deterministic forward price. If the marginal convenience

yield is negative, the arbitrageur simultaneously buys on spot, pays for storage and sells

at the forward market while earning a risk-free profit. Marginal convenience yield is

defined as the cost of holding a commodity in inventory, i.e., the difference between the

spot price minus the futures contract price plus inventory holding costs. To prevent

arbitrage through storage, the marginal convenience yield must be greater than or equal

to zero. The no-arbitrage condition states that, in the long-term, it is not possible to

generate risk-free profit at financial markets as prices will converge. Financial markets

are typically arbitrage-free or allow for arbitrage only within a very short period of time.

3Technical analysis refers to a chart analysis based on the historical price evolution.
4Fundamental analysis uses additional data (features) to explain price movements.
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Chapter 4 and Chapter 5 deal with procurement settings and do not allow for reselling

and Chapter 6 that allows for reselling does not include forward trading. Hence, cash-

and-carry arbitrage situations between spot and forward markets do per se not happen.

Speculation refers to the risky exploitation of expected price differentials at different

points in time, i.e., the speculator decides under uncertainty. Let us assume that the

speculator buys a commodity at the forward market at a deterministic forward price in

order to sell it later at the spot market at a stochastic spot price. Hence, the speculator

aims at exploiting favorable price movements.

Hedging aims at limiting the risk of adverse price movements through financial con-

tracts, such as forwards, futures, swaps or options (financial risk management) or through

forward buying and stockpiling (operational risk management). We want to describe the

nature of these risk management instruments in the following.

Financial Risk Management: Forward, Futures, Swaps and Options Contracts

Forward contracts are agreements made in period t to buy or sell a commodity at a

pre-specified price (i.e., the forward price) at a fixed future date τ > t (often called

maturity or expiration date). The forward price is paid at delivery.

Futures contracts are financial derivatives that have very similar characteristics. How-

ever, while forward contracts are over-the-counter (OTC) agreements directly between

two parties, futures contracts are exchange-traded and highly standardized in terms of

quantity, quality, delivery dates and delivery locations (Zsidisin and Hartley, 2012, p.

83). The main commodity exchanges are the New York Mercantile Exchange (NYMEX),

the Chicago Mercantile Exchange (CME), the London Metal Exchange (LME), the Com-

modity Exchange (COMEX) as part of NYMEX for metals and the Chicago Board

of Trade (CBOT) as part of CME for mainly agricultural commodities. At those ex-

changes, futures contracts are available for different (typically monthly) maturities, from

one month (front-month contract) up to several years in the future (whereas typically

only close maturities are liquidly traded). Swaps are generalizations of forward contracts

with the agreement made over a specified period of time.

In contrast, options contracts give the commodity purchaser the right but not the

obligation to take off a pre-specified quantity at a pre-specified price (exercise or strike

price) at a future date τ (European option) or until a future date τ (American option)

by paying a certain reservation price or premium. As we focus on forward and futures

contracts in this thesis, we highlight these contract types in more detail in the following.

For details on options and swaps, we refer the reader to, e.g., Hull (2005, 2018).
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Note that, similar to Borovkova and Geman (2008, p. 10), we use the terms futures

and forwards interchangeably throughout this thesis keeping in mind that forward and

futures prices are identical only under non-stochastic interest rates (Geman, 2005, p.

42). This is reasonable since the interest rate risk is negligible (Geman, 2005, p. 44).

The relationship between the forward price ft,τ for any future maturity τ ≥ t and the

spot price pt is given by the cost-of-carry model, i.e.,

ft,τ = pte
(r+ch−Ỹ )(τ−t) = pte

(r−Y )(τ−t), (2.1)

with fτ,τ ≡ pτ (convergence property). r is the risk-free interest rate and ch are the

storage costs per unit and per unit of time typically expressed as a percentage of pt. Ỹ

is the marginal convenience yield on the commodity, which is sometimes aggregated to

Y = Ỹ − ch (Geman, 2005, p. 35). The marginal convenience yield is the benefit of

physically holding an additional unit of inventory, rather than a forward contract. It is

an indicator for the market’s expectation about the future availability of a commodity.

The greater the possibility that a supply shortage might occur, the higher Y (Hull, 2018,

p. 145).

Equation (2.1) is often referred to as the no-arbitrage condition as it avoids cash-

and-carry arbitrage through buying at the spot market and simultaneously selling at

the forward market. Equation (2.1) furthermore characterizes the forward curve ~Ft =

(ft,τ : τ > t) (sometimes referred to as the term structure): if (r − Y ) > 0, then the

forward curve is an increasing function of the maturity τ and the market is said to be in

contango (normal market). In case of contango, speculators experience so-called negative

roll yield by rolling positions across the forward curve. Purchasers have incentives to

purchase commodities and put them into storage if storage is possible at a price less than

the curve differential. If (r − Y ) < 0, then the forward curve is a decreasing function

of the maturity τ and the market is said to be in backwardation (inverted market).

Backwardation typically happens when commodity availability is expected to be low

and therefore supply is instable such that the convenience yield is large (Geman, 2005,

p. 12). In case of backwardation, speculators experience positive roll yield.

The difference between spot and forward price is called the basis Bt,τ = pt − ft,τ

(Geman, 2005, p. 14). It can be explained by the Theory of Storage (Brennan, 1958;

Kaldor, 1939; Telser, 1958; Working, 1949) and equals the forgone interest by a purchase

in period t plus the marginal cost of storage from period t until period τ minus the

marginal convenience yield (Fama and French, 1987). An important implication of the
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Theory of Storage is that the price and the price volatility of commodities are both

negatively correlated with the level of global inventories (Geman, 2005, p. 28).

Under the Rational Expectations Hypothesis, the forward price ft,τ determines the

best estimator of the future spot price pτ under the risk-neutral probability measure Q
(sometimes also referred to as the equivalent martingale measure), i.e.,

ft,τ = EQt [pτ ]. (2.2)

However, statistical tests on empirical data reject the hypothesis in most cases (Ge-

man, 2005, p. 33). If equation (2.2) is violated, then ft,τ is a biased estimator of pτ ,

which is typically explained by a risk premium, i.e., ft,τ reflects both the forecast of the

future spot price and the risk premium the decision maker is willing to pay to secure a

fixed price in t for delivery in τ (Geman, 2005, chap. 2.4).

The difference between forward price ft,τ and future spot price at maturity pτ deter-

mines the forecast ability of futures prices to predict spot prices. However, it turns out

that the forecast ability of futures prices is rather poor (Borovkova and Geman, 2008,

p. 10) and might be outperformed by no-change (näıve) forecasts (Alquist and Kilian,

2010) or analyst forecasts of major financial institutions (Cortazar et al., 2018). In this

thesis, we use analyst forecast data to improve inventory decisions in Chapter 6.

Operational Risk Management: Physical Inventories

Compared to forward contracts, spot markets provide a higher flexibility in procurement.

Due to the fact that there is no equilibrium in inventory holding costs (i.e., some firms

may store cheaper than the market), a firm might also operationally hedge price risk via

forward buying at the spot market and carrying inventory.

In the following, we give a brief introduction to operational hedging via inventories.

For an early but fundamental discussion on inventory control under stochastic raw mate-

rial prices, we refer to Kingsman (1985). For a more general view of commodity storage

from an economist’s perspective, we refer to Williams and Wright (1991).

According to Arrow (1958), there are three motives for holding inventories: safety

motives, speculation motives and transaction motives. Stochastic inventory control the-

ory traditionally focuses on uncertain demand in order to address safety motives, i.e.,

keeping a safety stock to guarantee defined customer service levels. However, in volatile

commodity markets, also speculation motives play a potentially important role in terms

of procurement in advance and stockpiling of commodities for which one expects a price

14



2.2. Financial and Operational Risk Management

increase pt+1− pt that is larger than the inventory holding costs ch (Gavirneni and Mor-

ton, 1999). Suppose a multi-period setting with a planning horizon of n periods and

deterministic period demand dt ∀t = 1, ..., n that takes place uniformly over the period

and needs to be satisfied. One chooses the order quantity yt that minimizes the expected

cost Ct over the planning horizon by solving the dynamic programming equation

Ct(It, pt) = min
yt+It≥dt
yt≥0

{
ptyt + ch(yt + It −

1

2
dt) + Et[Ct+1(It+1, pt+1)]

}
∀t = 1, ..., n, (2.3)

with the system state zt = (It, pt) characterized by the inventory level It that evolves

according to It+1 = It + yt − dt (endogenous state information) and the spot price pt

(exogenous state information). According to the seminal work by Kingsman (1969), the

optimal procurement policy is of the form

y∗t (zt) =


(dt − It)+ if pt > P2,

(Dk − It)+ if Pk+1 < pt ≤ Pk ∀k = 2, ..., n− 1,

(Dn − It)+ if pt ≤ Pn.

(2.4)

Dk denotes the cumulative demand up to period k including the current period. The

optimal policy is characterized by price thresholds Pk that are interpreted as the price

at which the purchaser is indifferent between covering the cumulative demands for the

next k or k− 1 periods ahead including the present period. This is the lowest price that

the purchaser expects to pay over the next k − 1 periods for each unit of consumption

in the kth period ahead in time, unless it is bought now at the price offer pt. Under the

assumption of serially independent prices modeled by distribution function φ (Kingsman,

1969), Pk can be determined analytically by

Pk =

Pk−1∫
0

pt+1 φt+1(p)dpt+1 +

∞∫
Pk−1

Pk−1 φt+1(p)dpt+1 − ch ∀k = 3, 4, ..., n, (2.5)

P2 =

∞∫
0

pt+1 φt+1(p)dpt+1 − ch. (2.6)

However, under stochastic demand structures and more advanced and realistic price

models (see Section 2.3), the inventory control problem becomes much more complicated,

which is addressed in Chapter 4 of this thesis.
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Chapter 2. Fundamentals of Commodity Markets

2.3. Stochastic Modeling of Commodity Prices

Not only future spot prices but also future forward prices are random. While forward

curves (see Figure 2.2) capture price seasonality (gas prices are expected to be higher

during winter than during summer), they do not necessarily capture price uncertainty.

In order to capture commodity price uncertainty in operational decision-making (e.g.,

inventory control), operations management typically relies on exogenous price models φ

for dynamic modeling of spot prices pt and the term structure ~Ft = (ft,τ : τ > t). Even if

we trust in the Rational Expectations Hypothesis, which implies that ft,τ = EQt [pτ ], due

to the stochastic evolution of the forward curve ~Ft, the decision maker cannot be certain

about the market’s expectation in period t+1, i.e., about ft+1,τ = Et+1[pτ ] without using

a price model. However, expectations in period t + 1 affect decisions in period t + 1,

which might have an impact on the here-and-now decision in period t.
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Figure 2.2.: NYMEX natural gas futures curves from 01-2017 to 12-2017 (Prices in
USD/mmbtu refer to closing prices at the first trading day of the corresponding
month)
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2.3. Stochastic Modeling of Commodity Prices

In the following, we give a brief overview of prevalent commodity price models from

the empirical finance and economics literature. For more details, we refer the reader to

specific chapters of Geman (2005, chap. 3), Secomandi and Seppi (2012, chap. 4) and

Eydeland and Wolyniec (2003, chap. 4, 5).

Basic Reduced-Form Price Models

The simplest way to capture the stochastic nature of commodity prices is a probability

density function under the assumption of independent and identically distributed (i.i.d.)

prices. However, if the value of the random variable (i.e., the price) evolves over time

(as in case of commodity prices that are highly correlated across periods), a stochastic

process, which typically is Markovian with the subsequent price depending on the current

price, might be more appropriate.

The finance literature distinguishes between continuous-time and discrete-time stochas-

tic processes for modeling commodity prices. The most basic process with Markov prop-

erty is the Brownian motion that describes the basis for many others. The two most

common classes of stochastic processes for modeling commodity prices are the geometric

Brownian motion (GBM) and the Ornstein-Uhlenbeck process (Geman, 2005, chap. 3).

GBM is a continuous-time stochastic process and can be described by the stochastic

differential equation dpt = µptdt + σptdWt, with dpt being the price change, µ the drift

of the process and σ > 0 the volatility. Wt is the Wiener process.

If drift µ = 0, GBM is a martingale with the conditional expectation that the future

price equals the current price. In contrast, the Ornstein-Uhlenbeck process is described

by dpt = κ(µ− pt)dt+σdWt with the property of mean reversion towards the price level

µ under speed κ > 0. If pt < µ, the expected price change is positive, if pt > µ, the

expected price change is negative. Note that either the price or the logarithm of the

price might be modeled by the mentioned stochastic processes.

For discrete-time problems, such as the multi-stage decision problems that we regard in

this thesis, first-order autoregressive processes (AR(1)) are frequently used for modeling

commodity price time series (see, e.g., Inderfurth et al. (2018) in the inventory control

context). An AR(1) price process can be expressed by

pt = β0 + β1pt−1 + εt, (2.7)

with normally distributed random error term εt ∼ N(0, σ2
t ). If (β0, β1) = (0, 1), the

AR(1) process describes a random walk (RW) without drift. A mean-reverting (MR)
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Chapter 2. Fundamentals of Commodity Markets

price process is characterized by (β0, β1) = (κµp, 1 − κ), with κ ∈ [0, 1) as the mean

reversion speed and µp as the mean price level. A momentum (MO) price process with

β1 > 1 models price trends (explosive behavior) (Williams and Wright, 1991, p. 162).

Non-Linear and High-Dimensional Price Models

In reality, time series typically do not behave linearly. They are rather characterized by

abrupt jumps and drops, which is due to, e.g., switches in regimes (e.g., during economic

boom and bust cycles).

The state-of-the-art economic forecasting literature (see, e.g., Clements et al., 2004)

presents various non-linear approaches, such as neural networks, jump diffusion models

(JD), stochastic volatility models (GARCH-type models) and Markov regime switching

models (MRS) that allow for time-varying parameters of the price process.

pt =

β
(1)
0 + β

(1)
1 pt−1 + ε

(1)
t if st = 1

β
(2)
0 + β

(2)
1 pt−1 + ε

(2)
t if st = 2

(2.8)

In MRS models as described by equation (2.8), the price pt is modeled by several

stochastic processes with distinct parameters that depend on the current state st of a

Markov chain. These states are typically not directly observable and must be learned

from price observations (Hidden Markov models).

However, these methods and their implications are still not well investigated in the

operational context. We investigate policy and performance implications of MRS models

for an inventory control problem in Chapter 4.

Furthermore, multi-factor models that incorporate several exogenous variables (fea-

tures) typically allow for a more accurate price model than one-factor models, however

with a higher computational complexity (Geman, 2005, p. 69, p. 369).

The operational policy and the performance implications of multi-factor models are

typically derived under the assumption of full information in terms of relevant factors

and their impact. We relax full information assumptions and propose learning-enabled

optimization approaches that exploit high-dimensional feature data for forward con-

tracting in Chapter 5 and for inventory control at commodity storage assets in Chapter

6.
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Chapter 3.

Related Literature

This chapter presents the related literature from three relevant fields: (i) commodity

finance with focus on explaining and modeling commodity price dynamics (Section 3.1),

(ii) commodity operations with focus on operational decision-making (i.e., forward con-

tracting and inventory control) in volatile commodity markets (Section 3.2) and (iii)

methodology of stochastic and data-driven optimization under partial information and

learning (Section 3.3).

3.1. Commodity Finance

Based on Cootner (1964), who describes the random character of stock prices, commodity

prices are typically modeled by stochastic diffusion processes, such as geometric Brown-

ian motions (GBM) (Samuelson, 1965), mean reverting processes (MR) (Vasicek, 1977)

or jump diffusions (JD) (Merton, 1976). These processes are already well-established in

stochastic inventory and procurement problems (see Section 3.2).

However, the operations literature assumes that the price process φ is fully known in

both the class and the parameters and does not change over time. But stationarity of

the price structure is unrealistic due to changing market conditions.

Markov Regime Switching Price Models

For modeling non-linearities in time series, empirical finance suggests for instance Markov

regime switching (MRS) models (Hamilton, 1989, 1990). In MRS models, the time series

is divided into different phases (regimes), e.g., bull and bear markets, with different un-

derlying stochastic processes or process parameters. Regimes are latent, i.e., not directly

observable, and modeled as hidden Markov chains. MRS applications in general and in
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Chapter 3. Related Literature

the field of commodity prices in particular show that a multi-regime consideration out-

performs single-regime settings in terms of accuracy for modeling spot market dynamics

with a reduction of the mean absolute forecast error by 10 to 40% (for electricity see,

e.g., Janczura and Weron (2012) or Yu and Sheblé (2006), for crude oil see, e.g., Vo

(2009), for natural gas see, e.g., Chen and Forsyth (2010), for lumber see, e.g., Chen

and Insley (2012), for copper see, e.g., Choi and Hammoudeh (2010)).

The implications of MRS price models on the optimal inventory policy structure and

on the operational performance of an inventory system are studied in Chapter 4.

Multi-Factor and Feature-Based Price Models

Moreover, the commodity finance and econometrics literature proposes high-dimensional

multi-factor models in order to explain commodity price and forward curve dynamics

with a set of exogenous variables.

Gibson and Schwartz (1990), Schwartz (1997) and Schwartz and Smith (2000) suggest

one-, two- and three-factor models for commodity prices that include the factors spot

price, convenience yield and interest rate. Pindyck and Rotemberg (1990) investigate

the explanatory power of variables, such as growth in industrial production, inflation

and price correlation with other commodities. Geman and Nguyen (2005) empirically

identify global inventory to inversely explain soybean price movements. To predict

oil prices, Heath (2018) recommends measures for the economic activity and Cortazar

et al. (2018) suggest a combination of futures prices and analyst forecasts. Stoll and

Wiebauer (2010) propose a gas price model that considers temperature, while Brown

and Yücel (2008) study natural gas prices under the explanatory variables oil price,

weather, inventories and shut in production.

Chapter 5 and Chapter 6 are motivated by the idea to explain price movements by fea-

ture data and therefore improve operating policies, such as forward contracting (Chapter

5) and inventory control (Chapter 6).

3.2. Commodity Operations

We consider three streams of literature within commodity operations. Section 3.2.1 re-

views literature on optimal inventory control from a commodity purchaser’s perspective

and builds the foundation for Chapter 4. Section 3.2.2 studies optimal inventory con-

trol from a commodity merchant’s perspective and builds the foundation for Chapter 6.

Section 3.2.3 studies optimal contracting under purchase price risk and builds the foun-
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3.2. Commodity Operations

dation for Chapter 5. Note that there is valuable literature on commodity operations

either presenting stylized two-period or deterministic models (e.g., Arnold and Minner,

2011; Arnold et al., 2011), as well as literature on commodity risk management from a

supply chain perspective focusing on buyer-supplier contracting (e.g., Li and Kouvelis,

1999; Turcic et al., 2015). However, both is not the focus of this thesis and therefore

not explicitly reviewed in the following.

3.2.1. Inventory Control under Stochastic Purchase Price

In their review on spot market operations, Haksöz and Seshadri (2007) recognize that

price uncertainty, as opposed to demand uncertainty, has been addressed quite late.

Stochastic Price, Deterministic Demand

Starting with Fabian et al. (1959) and followed by Kingsman (1969) and Golabi (1985),

inventory policies are derived with the price modeled by an i.i.d. probability density

aiming at minimizing the sum of purchasing and holding costs. In this setting, the op-

timal inventory control policy is driven by speculation motives and characterized by a

series of price thresholds Pk (referred to as price breaks) that, if compared to the current

market price pt, indicate how many periods k to purchase in advance (see Section 2.2).

Stochastic Price, Stochastic Demand

Under stochastic price and stochastic demand, the optimal inventory policy is driven

by speculation motives and safety motives with the objective of minimizing the sum of

purchasing, holding and penalty costs. Kalymon (1971) is the first to study the more

complex setting with both purchase price and demand being random and modeled by

a Markovian process. He proves under the assumption of non-zero setup costs, the

optimality of (st(pt), St(pt)) control policies, i.e., reorder point st and order-up-to level

St are both functions of the current price observation pt. If setup costs are zero, it follows

that st = St − 1 (base-stock policy). Yang and Xia (2009) extend Kalymon (1971) to

the continuous review case. Gavirneni and Morton (1999) explicitly study the impact

of speculation motives, i.e., forward buying due to an expected price increase larger

than the inventory holding costs and propose effective heuristic solution procedures.

Gavirneni (2004) considers changing purchasing costs due to fluctuating exchange rates

modeled by a first-order Markovian approach. Inderfurth et al. (2018) study operational

hedging against purchase price risk via combined inventory control in the presence of
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spot markets and real options contracts in the form of a capacity reservation contract.

They model the purchase price as an MR process and study the cost impact of ignoring

the autocorrelation between subsequent prices. They show that spot price-dependent

order-up-to levels are optimal for both contract purchases and spot purchases. They

furthermore show that modeling price-demand correlation has no impact on the policy

structure and only a minor impact on policy parameter values and performance. Berling

and Mart́ınez-de-Albeńız (2011) and Berling and Xie (2014) consider a continuous review

inventory system and model the spot price via continuous-time stochastic processes, i.e.,

GBM respectively an MR process. They compute optimal price-dependent base-stock

policies. Berling and Mart́ınez-de-Albeńız (2011) focus on finding efficient algorithms

for the exact determination of the optimal policy parameters, whereas Berling and Xie

(2014) present approximative methods, yet still under the assumption of full information

about the price process φ, rather than on real backtesting settings.

So far, changing market environments affecting the price process have not been part of

any research from an inventory perspective. According to Haksöz and Seshadri (2007),

there is a lack of integrating the dynamics of information revelation of spot prices, which

motivates Chapter 4 of this thesis.

3.2.2. Inventory Control under Stochastic Purchase and Sales Price

After reviewing commodity inventory control from a procurement perspective, we now

want to focus on the merchant’s perspective, which is the scope of Chapter 6. Other

than the procurement literature (Section 3.2.1), the commodity merchant and inven-

tory trading literature typically does not incorporate an explicit demand component,

but models demand indirectly by stochastic sales prices. For a more detailed review

on commodity merchant operations, we additionally refer the reader to Secomandi and

Seppi (2012), however with a strong focus on energy commodities.

The Stochastic Commodity Warehouse Problem (Full Flexibility Case)

The commodity trading problem dates back to the warehouse management problem in-

troduced by Cahn (1948). It studies the optimal procurement, storage and sale of a single

commodity under initial inventory and finite warehouse space, but under deterministic

price variations and full warehouse flexibility, i.e., without injection or withdrawal ca-

pacity limits. This setting is sometimes referred to as the uncapacitated storage or fast

storage setting as the warehouse can be filled and emptied within one period.
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Different solution approaches, such as linear programming (Charnes and Cooper, 1955)

or dynamic programming (Bellman, 1956), have been presented. Dreyfus (1957) char-

acterizes the optimal policy under deterministic but seasonal purchase and selling price

variations by recursive application of a decision rule. It consists of four regions, i.e.,

sell all the available inventory, buy up to the warehouse capacity, sell all the available

inventory and buy up to the warehouse capacity, and do nothing.

Charnes et al. (1966) extend the problem to include uncertain purchase and sales

prices. They show that the optimal policy for the Stochastic Commodity Warehouse

Problem (SCWP) is still of a simple threshold structure (bang-bang-type) and indepen-

dent of the available inventory: given the current input and output prices, it is optimal

to purchase/sell (fill up/empty warehouse) and do nothing otherwise.

The Stochastic Commodity Warehouse Problem (Limited Flexibility Case)

Several variants of the SCWP have been studied in terms of high-dimensional stochastic

price processes or additional operational constraints that limit the flexibility of storage

operations. This case is sometimes referred to as the capacitated or slow storage case

as the warehouse cannot be filled and emptied within one period due to, e.g., technical,

logistical or market constraints.

Motivated by a gas storage asset, Secomandi (2010) extends Charnes et al. (1966)

for commodity trading under injection and withdrawal capacity limits. The spot price

is modeled by an exogenous Markov process. He establishes the optimality of a price-

dependent double base-stock policy, i.e., procure-up-to and sell-down-to thresholds par-

tition the policy into three regions (buy and inject, do nothing, withdraw and sell). If

the storage asset is fully flexible and can be filled and emptied fast (within a single

review period), the policy structure is the same as in Charnes et al. (1966).

However, the optimal policy parameters of the SCWP can only be derived numeri-

cally by means of stochastic dynamic programming (SDP). This yields computational

intractability for real-world problem sizes in terms of, e.g., planning horizons and high-

dimensional price processes (Secomandi, 2015). Hence, approximate dynamic program-

ming (ADP) (Lai et al., 2010; Nadarajah and Secomandi, 2018; Nadarajah et al., 2015;

Nascimento and Powell, 2008), approximate linear programming (ALP) (Nadarajah et

al., 2015), or reoptimization heuristics, such as the rolling intrinsic policy (Lai et al.,

2010; Secomandi, 2010, 2015; Wu et al., 2012), are used to efficiently solve the SCWP.

Other papers related to the SCWP deal with commodity conversion rather than stor-

age settings (see, e.g., Devalkar et al. (2011, 2018) for soybean-to-meal and soybean-to-
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oil conversion or Goel and Tanrisever (2017) for corn-to-ethanol conversion). Note that

even though we focus on storage settings in this thesis, the general models presented in

Chapter 6 can easily be extended to conversion settings as well.

3.2.3. Financial Contracting under Stochastic Purchase Price

Besides inventory control in the presence of volatile commodity spot markets, there is

another stream of literature that optimizes procurement positions in the forwards, fu-

tures or options market, which is related to the practice-motivated setting from Chapter

5 of this thesis.

Risk-Neutral Buyers

While risk-averse buyers, per se, have an incentive to hedge (Gaur and Seshadri, 2005),

risk-neutral buyers are indifferent between two investments if their expected values are

the same. Therefore, according to classical finance theory, a risk-neutral firm has no

incentive to hedge price risk if the assumptions of Modigliani and Miller (1958) hold.

However, due to market frictions, hedging can increase the value of a firm (Froot et al.,

1993; Smith and Stulz, 1985). From Smith and Stulz (1985) follows that it is optimal to

hedge fully or not at all. Froot et al. (1993) show that partial hedging can be optimal

under multiple (correlated) sources of uncertainty.

Goel and Gutierrez (2011) study procurement control under the availability of both

spot and forward markets and therefore incorporate contracting decisions. Secomandi

and Kekre (2014) study a real options approach without storage opportunity, as it is

reasonable for energy commodities. Mart́ınez-de-Albeńız and Simchi-Levi (2005) allow

for a portfolio of options contracts besides spot purchasing. Wu and Kleindorfer (2005)

integrate contract and spot purchasing by using capacity options and forwards.

Risk-Averse Buyers

Even though we restrict our analysis to risk-neutral firms in this thesis, we want to briefly

refer to literature on optimal risk-averse commodity procurement. Seifert et al. (2004)

use a mean-variance approach for a single-period problem to determine the optimal mix

of forward and spot quantities under random price and demand. Mart́ınez-de-Albeńız

and Simchi-Levi (2006) apply mean-variance analysis to support the decision between

spot and options purchases. Kleindorfer and Li (2005) study a multi-period commodity

contracting problem subject to value-at-risk (VaR) constraints.
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3.3. Stochastic Optimization with Partial Information and Learning

3.3. Stochastic Optimization with Partial Information

and Learning

Section 3.3 builds the methodological foundation for the subsequent chapters. Section

3.3.1 reviews inventory control with partial information and Bayesian learning, which

refers to Chapter 4 of this thesis. Section 3.3.2 reviews the literature on data-driven

optimization and machine learning, which is particularly relevant for Chapter 5 and

Chapter 6.

3.3.1. Bayesian Inventory Control under Partial Information

Inventory models based only on a single stochastic process do typically not account for

situations where changing information or a sharp and persistent change in the market

leads to structural breaks. Therefore, inventory research proposes approaches for cov-

ering non-stationarity, however particularly addressing uncertain demand. We want to

build on some of the ideas for our inventory control model in Chapter 4.

Markov-Modulated Demand Models with Observable States

In Markov-modulated demand inventory models, the effects of changing environments

are considered, as uncertainty is not only described by one, but by various distributions

characterized by the states of a Markov chain. Song and Zipkin (1993) model demand by

a Poisson process with a demand rate λi, where i denotes the state of the world (regime).

Chen and Song (2001) consider different demand states, assuming that the current state

is observable. At the beginning of each period, the current state is observed, an order is

placed and a shipment is received. A state-dependent base-stock policy is optimal. For

the case of non-zero setup costs, Beyer and Sethi (1997) and Sethi and Cheng (1997)

establish the optimality of state-dependent (s, S) policies for the full backlog case and

Cheng and Sethi (1999) for the case of lost sales.

Markov-Modulated Demand Models with Unobservable States and Bayesian Learning

However, demand regimes are typically not directly observable. Hence, the random

variable needs to be described by a hidden Markov model, where distributions (or its

parameters) are not known with certainty and are subject to learning. Scarf (1959),

Azoury (1985) and Lovejoy (1990) introduce parameter-adaptive models where the de-

mand distribution is not entirely known and current observations are used for updating
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distribution parameters. Treharne and Sox (2002) model demand as a partially observ-

able process where the distribution parameters in each period are determined by the

state of a Markov chain. They use Bayesian techniques to derive probabilistic informa-

tion about the current unobservable state. Treharne and Sox (2002) and more recently

Wang and Mersereau (2017) show that a belief-dependent base-stock policy is optimal.

For each period t, there exists an optimal base-stock St(~πt) that depends on the prior

belief ~πt = (πst ) about being in state s in period t. For the finite horizon case, Treharne

and Sox (2002) compare suboptimal control policies in order to overcome computational

challenges induced by the curse of dimensionality of dynamic programming.

Other papers study partially observable inventory problems where demand is censored

(Bayraktar and Ludkovski, 2010) or where supply is Markov-modulated (Arifoğlu and

Özekici, 2010). All contributions establish the optimality of state-dependent base-stock

or (st, St) policies with the manager’s prior belief ~πt about the demand process as a state

variable.

3.3.2. Data-Driven and Machine Learning-Enabled Optimization

In the emerging field of data-driven optimization, uncertainty about certain parameters

is represented in a distribution-free way by historical data itself, rather than by para-

metric models (e.g., specific stochastic processes) (Bertsimas and Thiele, 2006). The

data might be historical data about the random variable of interest (in the case of this

thesis the commodity price) or feature data1 (such as economic indicators or temper-

ature), which is expected to have an impact on the evolution of the random variable

of interest. However, data-driven optimization does not penalize model complexity per

se and hence might boost overfitting issues, which favors generalization error. While

model generalization is a central target in statistical learning theory (Vapnik, 1998), it

was widely overlooked in the operations literature for a long time. Only recently, out-

of-sample generalization and decision-based feature selection raise the idea of combining

data-driven optimization with ML. For recent tutorials on integrating data-driven op-

timization and ML (referred to as prescriptive analytics), we want to point the reader

towards Bertsimas and Kallus (2016) and Curtis and Scheinberg (2017).

As the current research output in the field of data-driven optimization is overwhelming,

we mainly want to focus on papers from the fields of inventory control under demand

uncertainty and portfolio optimization under return uncertainty that motivated us to

1often referred to as auxiliary data, covariate information or causal factors.
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develop data-driven and learning-enabled models for optimizing procurement positions in

commodity forward markets (Chapter 5) and optimizing storage policies for commodity

merchants (Chapter 6).

Beutel and Minner (2012) and Sachs and Minner (2014) study a retail-inspired newsven-

dor problem with the required inventory level as a linear function of features, i.e., price,

temperature and weekdays. Ban and Rudin (2019) study a similar setting with the

newsvendor order quantity linearly explained by a huge amount of features (Big Data).

They extend the data-driven newsvendor setting to regularization techniques from ML

in order to select decision-relevant features and for controlling model complexity. They

show that high-dimensional feature data (Big Data) yields significant out-of-sample cost

reductions over the featureless approach (Small Data). Elmachtoub and Grigas (2017)

study data-driven shortest path problems, assignment problems and portfolio optimiza-

tion problems, using a loss function that accounts for the structure of the underlying

optimization problem. Cohen et al. (2016) study data-driven dynamic pricing prob-

lems, using covariates on product characteristics and demand. Ban et al. (2018b) solve

the data-driven portfolio optimization problem by means of performance-based regu-

larization. In doing so, they improve out-of-sample generalization by obtaining more

stable and less complex feature models (Occam’s razor). Ban et al. (2018a) study a

practice-motivated dynamic procurement problem with stochastic demand of new prod-

ucts modeled in a data-driven way by using covariates, such as the demand of similar

products and product characteristics.
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Chapter 4.

Operational Hedging from a Bayesian

Inventory Control Perspective

Based on

Mandl, C. and S. Minner (2019a). When do commodity spot price regimes

matter for inventory managers?

A large number of firms buy commodities at spot markets that are characterized by

volatile prices. Due to different market regimes (e.g., bull and bear), spot price dy-

namics are non-stationary and only partially observable; neither the underlying stochas-

tic price process nor its parameters are known with certainty. To capture uncertainty

in both price and price model, we exploit recent spot price observations to dynami-

cally update (learning) probabilistic price regime information in the context of inven-

tory control for a storable commodity under random demand and purchase price. By

means of Bayesian dynamic programming, we prove that, if prices evolve according to

doubly embedded stochastic processes described by a hidden Markov regime switch-

ing (MRS) model, price(s)- and regime-belief-dependent base-stock policies, rather than

price-dependent policies, are optimal. We distinguish between independent and Marko-

vian price processes and demonstrate the difference concerning optimal base-stock func-

tions and monotonicity properties. We find that ignoring regime shifts leads to sub-

optimal inventory decisions and we quantify the cost of misspecifying the spot price

model. We find that Bayesian learning can yield significant cost savings that are par-

ticularly high when demand volatility and inventory holding costs are low and regime

persistence is high. With regard to the curse of dimensionality at computing the optimal

state-dependent base-stock levels, we propose and test different simpler heuristics (e.g.,

certainty equivalent control or näıve control policies) and evaluate their effectiveness.
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4.1. Introduction

A significant number of firms buy raw materials at spot markets, rather than signing

long-term fixed-price supply contracts (Wall Street Journal, 2002). There are several

reasons: flexibility, speculation opportunities or independence from single suppliers and

therefore a decrease in supply disruption risk. However, commodity spot prices possess

annualized volatilities of up to 40%, with a tendency to grow (Geman, 2005, p. 2). For

instance, between 2000 and 2014, price volatilities of aluminum and wheat increased

on average by 8% and 6% p.a., respectively, which translates into a soaring risk for

commodity-processing companies and a challenge for inventory managers.

To derive optimal inventory decisions, it is intuitively necessary to accurately model

the stochastic nature of commodity prices. However, history shows that price dynamics

of spot-traded commodities are not stationary over time. Changing market supply and

demand due to economic boom and bust cycles, legal and political risk, innovations,

weather events or commodity buffering strategies of national economies can lead to

an abrupt and sharp change in price. Especially in metal and agricultural markets,

purchasers may have to cope with price shifts in the future since almost half of the new

mining projects and 80% of the available arable land are located in regions with a high

political risk (McKinsey & Company, 2013). A raise in frequency of extreme weather

events like hurricanes and floods reinforces these expectations. Furthermore, strongly

increasing volatilities in commodity prices are expected in the next couple of years

(Bloomberg, 2015), intensified by the observation that prices at commodity exchanges do

represent market actors’ anticipations of the future, rather than the economic equilibrium

between today’s supply and demand.
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Figure 4.1.: Spot price of CBOT corn [Cts per bushel] and LME zinc [USD per ton]

Figure 4.1 shows the prices of corn at the CBOT and zinc as traded at the LME.

Several structural breaks in the time series are obvious in terms of price level and/or
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4.1. Introduction

volatility: in 2007/2008, the world food price crisis, along with an announcement by the

U.S. government to push ethanol as a renewable fuel, increased corn prices dramatically;

in early 2011, a mixture of heat, drought and flooding in the U.S. corn belt, which

accounts for more than one third of the worldwide production, led to a price jump of

almost 100%; in summer 2013, rain and favorable temperatures in the Midwest of the

U.S. led to a persistent price drop. In contrast, prices for zinc were affected by metal

deficits in 2006 and by the financial crisis in 2007/2008. An AR(1) coefficient of β1 = 0.96

supports a RW regime of zinc from Jan-04 to Jul-09, whereas β1 = 0.69 rather indicates

an underlying MR price process from Aug-09 to Mar-16. Unit root tests confirm that

there is evidence of different states of the price process that make predictions harder and

less reliable, such that The Wall Street Journal even proclaimed “The End of Economic

Forecasting” (Wall Street Journal, 2016b).

Structural changes in the underlying stochastic price process can be considered by

Markov regime switching (MRS) models with each regime itself characterized by a spe-

cific stochastic process (Hamilton, 1989, 1990), which allows for changing economic

environments. Even though these non-linear doubly stochastic time series models are

well-established in empirical finance and have been shown to provide significant forecast

improvements (see Section 3.1), the inventory control literature (see Section 3.2.1) still

assumes full information about the purchase price process and its parameters (e.g., in

the form of a RW or a MR process) and hence ignores regimes and the ability of learn-

ing based on new information that becomes available. We fill this gap and investigate

the implications of the price process (and its misspecification) on the performance of

an inventory system in more detail. The additional evaluation of parametric stochastic

price models on empirical spot price data provides insights into the context of mislead-

ing speculation, resulting in an undesired excess of stocks (misspeculative inventory).

More specifically, the following questions remain unanswered in the growing literature

at the interface of finance and operations: (Q1) How do partially observable spot price

regimes and information revelation via Bayesian learning affect the structure of the op-

timal inventory policy? (Q2) What is the cost of price regime misspecification, i.e.,

misspecification of the price process? (Q3) If there is evidence for different regimes in

commodity prices, under which conditions is it particularly beneficial to use Bayesian

models and when is it adequate to use simpler control policies that ignore learning (e.g.,

certainty equivalent control), ignore regime switches (single regime control) or ignore

price uncertainty in general (näıve control)? (Q4) Do more accurate price forecasts

per se lead to better inventory decisions and is price forecast accuracy (e.g., MAPE)
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Chapter 4. Operational Hedging from a Bayesian Inventory Control Perspective

necessarily a good indicator for operational performance?

We study a single-item, multi-period, discrete-time, periodic-review inventory problem

under random demand and purchase price and use an MRS model and a Bayesian

updating scheme to deal with incomplete information about the underlying stochastic

price process.

Our methodological contribution is the generalization and extension of the seminal

work by Kingsman (1969) (for i.i.d. price processes) and Kalymon (1971) (for Markovian

price processes) to partially observable price regimes with dynamic market information

updates (learning) via Bayesian dynamic programming. In addition to recent spot price

information, the manager may have an initial belief (which may be right or wrong)

about the price dynamics. We prove that a state-dependent base-stock policy is optimal

with the base-stock level St, in addition to the current spot price pt, depending on

the manager’s prior regime belief ~πt for i.i.d. processes respectively on his posterior

belief ~πt+1 for Markovian processes. We further analyze the violation of monotonicity

properties in this context, i.e., under which regime and belief conditions to order more

at higher prices and less at lower prices.

As a managerial contribution, we find that the evaluation of price models based only

on forecast accuracy measures is insufficient and that operational implications need to

be considered. On the basis of both a controlled numerical study and empirical spot

market data, we sensitize managers to how structural changes in commodity prices affect

the optimal inventory policy and that traditional policies that ignore price information

updates (no learning) can lead to an increase in expected cost by up to 13%. We show

under which circumstances Bayesian MRS control through St(pt, ~πt) is beneficial and

when price model misspecification plays a minor role from an inventory perspective.

For the latter case, we examine suboptimal control policies that are more practical

with regard to the curse of dimensionality, such as certainty equivalent control without

Bayesian learning (St(pt, ~π0)), single regime control (St(pt)) and näıve control (St).

In general, there are two reasons for divergent order decisions under different price

processes: (i) safety motives, i.e., increased orders as protection against shortage penalty

cost and (ii) speculation motives, i.e., hedging price risk through forward buying, expect-

ing a price increase that is larger than the inventory holding cost. Dealing with market

frictions, e.g., imperfect capital markets that imply that there is no homogeneous interest

rate and hence no equilibrium in inventory holding cost (disabled separation property of

financial and operational decisions according to Modigliani and Miller (1958)), hedging

via financial contracts or, as in this chapter, physical inventories can increase (but also
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decrease) a firm’s value (Froot et al., 1993; Smith and Stulz, 1985). There is also em-

pirical evidence that firms use stockpiling for price risk mitigation (Wall Street Journal,

2011a). E.g., Unilever and Caterpillar actively manage price risk through forward buy-

ing (Unilever 2016, p. 39, Wall Street Journal 2011b). Accordingly, we explicitly study

both motives and show that speculation motives dominate safety motives in their im-

pact on the cost of price process misspecification and the cost of ignoring price regimes.

The cost of price process misspecification furthermore strongly depends on the degree of

demand uncertainty (rather low than high) and the type of price regimes (rather level

than volatility). However, on real data, misleading speculation induced by stochastic

models can, under certain conditions, even favor a näıve policy, which is also shown in

recent literature from finance (e.g., Wang et al., 2015).

Section 4.2 presents the MRS price model, the Bayesian updating scheme and the

inventory control model. Section 4.3 characterizes and illustrates the structure of the

optimal inventory policy and monotonicity of its parameters. In a controlled numerical

study, Section 4.4 quantifies both the cost of price regime misspecification and the value

of the Bayesian MRS approach relative to several suboptimal control policies. Section

4.5 tests the policies on empirical spot market data. Section 4.6 highlights managerial

insights and concludes. Appendix A includes proofs of the structural results from Section

4.3 and extensive tables of the numerical results from Section 4.4.

4.2. Model Formulation

The MRS price model including the Bayesian updating scheme is described in Section

4.2.1 and the inventory control problem is characterized in Section 4.2.2.

4.2.1. MRS Spot Price Model and Bayesian Updating Scheme

Hidden Markov Regime Switching Model

The discrete time MRS model consists of a finite number of m unobservable states, i.e.,

price regimes s = (1, ...,m), defined by distinct underlying time-homogeneous stochastic

processes φs = (pt)t=1,...,n to model the evolution of the commodity spot price pt. The

regimes are not directly observable, i.e., at a certain point in time t, it is not known with

certainty whether the price follows, for instance, a RW or an MR process. However, the

current spot price pt is observable. Hence, by using Bayesian statistics, the probability

P(st|pt) of being in a certain regime st can be deduced from price observation pt and the
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Chapter 4. Operational Hedging from a Bayesian Inventory Control Perspective

prior regime belief πt = (πst )s∈M (for the discrete case, belief vector ~πt = (π1
t , ..., π

m
t ))

that defines a probability distribution over the regime space M = {1, ...,m}. Hence, the

MRS model describes a doubly embedded stochastic process where the regimes switch

in a Markovian way and each regime s ∈M emits a stochastic price process φs.

s = 1 s = 2

p1 p2

k12

k21

k11 k22

P(p1|s = 2) P(p2|s = 1)

P(p1|s = 1) P(p2|s = 2)

Unobservable states,
i.e., regimes (internal
Markov chain)

Observable prices (re-
sponse)

Figure 4.2.: Concept of MRS in the spot market context

Figure 4.2 gives a simplified example with regime space M = {1, 2}, two potential

prices p1 and p2 and transition probabilities kij = P(st+1 = j|st = i), i.e., the proba-

bilities of switching from regime i at time t to regime j at time t + 1 for (i, j) ∈ M .

P(p|s) is the probability of spot price p under regime s (state emission probability) and

is specified by the underlying stochastic regime process φs. Since it is common in the

MRS literature (Hamilton, 1989, 1990), we assume kij to be time-invariant.

Regime Estimation

The MRS parameter set (φs, πst , kij) is either estimated based on experts’ knowledge or

past time series data (p1, ..., pt) using recursive filtering techniques such as the Baum-

Welch algorithm (Baum et al., 1970), a specific instance of the expectation-maximization

(EM) algorithm. This unsupervised learning method is based on maximum likelihood

estimation extended to the case of incomplete data. The main goal is to achieve a

good fit between regimes s and observations (p1, ..., pt) in order to predict the actual

hidden state price process from the known sequence of observed parameters. Applying

the Baum-Welch algorithm, transition probabilities kij can be estimated and the initial

(first prior) belief ~π0 = (πj0) about being in price regime j can be derived by solving a

set of linear equations πj0 =
∑m

i=1 kij π
i
0 ∀j ∈M with

∑m
i=1 π

i
0 = 1.

Bayesian Regime Belief Updates

After the current spot price pt = p1 has been observed, the prior (prior to observation

pt) belief πjt about being in spot price regime j is dynamically updated according to the
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4.2. Model Formulation

Bayes’ theorem, which defines the learning process.

Definition 1 (Learning Process). The posterior belief πjt+1 about being in regime j in

the next period t+ 1 given pt = p1 and pt−1 = p2, is defined for all j ∈M by

πjt+1 = P(st+1 = j|(pt = p1, pt−1 = p2)) =

m∑
i=1

πit kij P((pt = p1 ∩ pt−1 = p2)|st = i)

m∑
i=1

πit P((pt = p1 ∩ pt−1 = p2)|st = i)
.

(4.1)

For first-order Markovian price processes φs(pt+1|pt) inside the regimes s, e.g., of the

structure pt = β0 + β1pt−1 + εt (AR(1)), information about pt−1 is inevitably needed for

updating πst . For i.i.d. price processes φs(pt+1), the information about the current price

observation pt is sufficient for updating, i.e., πjt+1 = P(st+1 = j|(pt = p1, pt−1 = p2)) =

P(st+1 = j|pt = p1). If a certain price pt = p1 can be exclusively assigned to a regime

st = i′ and a price pt = p1 is observed, then, since P(pt = p1|st = i′) = 1, equation (4.1)

reduces to πjt+1 = ki′j for any j ∈M .

4.2.2. Inventory Control Model

We consider the single-item, single-echelon, discrete-time, finite-horizon, periodic-review

inventory problem as described by Kalymon (1971) with the spot market as single pro-

curement option and without reselling (no trading). Future prices pt+1 follow a stochastic

process φ(pt+1). φ(pt+1) is described by a convex combination of the regime processes

φs(pt+1) weighted by the posterior regime belief πst+1 about being in a certain price

regime s in t+ 1, i.e., φ(pt+1) =
∑m

s=1 π
s
t+1 φ

s(pt+1). The regime processes φs can either

be i.i.d. (hereafter denoted as φs(pt+1)) or Markovian (hereafter denoted as φs(pt+1|pt)).
We assume the following sequential structure of the decision problem in every period

t = 1, ..., n (Figure 4.3).

Price real-
ization pt

Bayesian updates
πst → πst+1

Decision yt
and receipt

Demand
realization dt

...t+ 1

Figure 4.3.: Intra-period sequence of events

After observing price pt, the prior belief πst about being in price regime s ∈ M =

{1, ...,m} in period t + 1 is updated according to equation (4.1). Then, commodity
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amount yt is ordered to satisfy random demand dt (safety motives) and to exploit po-

tential forward buying benefits (speculation motives). Demand for the finished product

is assumed to be i.i.d. stochastic with cumulative distribution function F . Without

loss of generality, we assume lost sales (see, e.g., Gavirneni, 2004; Turcic et al., 2015).

This is reasonable supposing the customer can substitute the finished product or buy

the product elsewhere. In line with commodity operations literature (see, e.g., Berling

and Mart́ınez-de-Albeńız, 2011; Goel and Gutierrez, 2011), we assume independence of

spot prices and the finished product’s demand. This is realistic if the firm cannot pass

higher or lower input prices on to the customer. The inventory manager is a price taker

and risk-neutral. Unit inventory holding cost ch incurs per time unit and shortages are

penalized with a unit shortage cost cp. There are no setup costs and the purchase costs

equal the spot price pt. Lead time is zero, which is reasonable for spot markets (Goel

and Gutierrez, 2011). Without loss of generality, the discount factor for expected future

costs is set to α = 1. It is the inventory before and I∗t is the inventory after ordering

but before demand realization dt. The order quantity is yt = (I∗t − It)+ and inventory

balance follows It+1 = (I∗t −dt)+. Being in state zt ∈ Zt, yt minimizes the total expected

cost Ct over an n-period horizon that consists of ordering costs pt · yt, expected holding

and shortage costs L(I∗t ) = Edt [ch(I∗t − dt)+ + cp(dt − I∗t )+] and cost-to-go Ct+1
1:

Ct(zt) = min
I∗t ≥It

{
ptyt + L(I∗t ) +

∞∫
0

∞∫
0

Ct+1(zt+1)dφ(pt+1)dF (dt+1)

}
∀t = 1, ..., n. (4.2)

Since πst+1 is a function of (pt, ~πt) for i.i.d. price processes and a function of (pt, pt−1, ~πt)

for first-order Markovian (AR(1)) price processes and in order not to violate the Markov

property, the state zt of the inventory problem is described by a multi-dimensional state

space zt = (It, pt, ~πt) for i.i.d. processes φs(pt+1) and zt = (It, pt, pt−1, ~πt︸ ︷︷ ︸
~πt+1

) for AR(1)

processes φs(pt+1|pt).

1One might model the salvage value on final inventories by Cn+1 ≡ −E[pn+1] · In+1 or Cn+1 ≡
−(E[pn] − ch) · In+1. Without loss of generality, we set Cn+1 = 0 in our numerical experiments,
i.e., inventory at the end of the planning horizon is lost, which ensures that one does not order in
advance for periods beyond the planning horizon. We argue in Section 4.5 why this assumption does
not affect the general results.
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4.3. Optimal Policy Structure and Monotonicity

Properties

We characterize the optimal inventory control policy in Section 4.3.1 and present mono-

tonicity properties of the policy parameters in Section 4.3.2, i.e., when do increasing

spot prices result in increasing orders. We numerically illustrate both policy structure

and monotonicity properties in Section 4.3.3.

4.3.1. Optimality of Price(s)- and Belief-Dependent Base-Stock

Policies

From Kalymon (1971) follows that no matter whether prices evolve according to an

i.i.d. process φ(pt+1) or a Markovian process φ(pt+1|pt), a state-dependent base-stock

policy St(pt) is optimal for zero setup costs. This is also true if the price process is non-

stationary but fully known, which is equivalent to multi-regime settings with observable

regimes (full information case). We instead prove that if prices follow a doubly embedded

stochastic process with unobservable regimes and learning (partial information case), the

optimal base-stock is belief-dependent.

Theorem 1 (Optimal Policy Structure).

(i) Under partially observable price regimes with i.i.d. regime processes φs(pt+1), there

exists an optimal order quantity y∗t , such that for all 1 ≤ t ≤ n,

y∗t (zt) = y∗t (It, pt, ~πt) =
[
St(pt, ~πt)− It

]+
, (4.3)

i.e., base-stock level St is fully characterized by price pt and prior regime belief ~πt.

(ii) Under partially observable price regimes with Markovian regime processes φs(pt+1|pt),

there exists an optimal order quantity y∗t such that for all 1 ≤ t ≤ n,

y∗t (zt) = y∗t (It, pt, pt−1, ~πt) =
[
St(pt, pt−1, ~πt)− It

]+
=
[
St(pt, ~πt+1)− It

]+
, (4.4)

i.e., base-stock level St is fully characterized by price pt and posterior regime

belief ~πt+1 or equivalently by price pt, previous price pt−1 and prior regime belief

~πt.

Proof. see A.1
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Consequently, the optimal inventory policy under partial price process information is

a generalization of the policy of the full information discussed by Kalymon (1971). The

practical reasoning for the dependence on pt−1 in the Markovian case is that in order

to statistically infer the conditional probability (posterior belief ~πt+1) about Markovian

(AR(1)) regimes, the relationship between subsequent prices (pt−1 → pt) is needed.

4.3.2. Monotonicity of the Optimal Base-Stock Functions

We want to investigate under which regime and belief conditions increasing prices result

in decreasing base-stocks and when the reverse, more counter-intuitive, is the case where

monotonicity is violated. We translate and extend the findings for the full information

case by Gavirneni (2004) and Yang and Xia (2009) to the case of partial price process

information with learning. The base-stock level St is non-increasing in the current spot

price pt, i.e., St(p
′
t) ≤ St(pt) for p′t > pt, if the following sufficient, but not necessary,

conditions (a1) and/or (a2.1)+(a2.2) are satisfied:

No-Autocorrelation Condition (a1). The no-autocorrelation condition states that fu-

ture price pt+1 (as well as demand dt and expected holding and shortage cost function

L(I∗)) is independent of the current price pt, i.e., φ(pt+1|pt) = φ(pt+1). Intuitively, even

though a huge price jump is expected, as long as the magnitude of the price jump is

independent of the current price observation, a procurement manager would not order

more at higher prices.

Mean Reversion Condition (a2.1) and Time Continuity Condition (a2.2). The mean

reversion condition (a2.1) states that the expected one-period price increase at a higher

price p′t is at most of the magnitude of the expected one-period price increase at a lower

price pt, i.e., p̄′t+1 − p′t ≤ p̄t+1 − pt, where p̄t+1 denotes the expected price subsequent

to pt and p̄′t+1 denotes the expected price subsequent to p′t. Transferred to the case of

multiple unobservable price regimes with Bayesian learning, (a2.1) is fulfilled if

m∑
s=1

p̄st+1 π
′s
t+1 − p′t ≤

m∑
s=1

p̄st+1 π
s
t+1 − pt ∀ pt, (4.5)

where p̄st+1 is the expected price resulting from the corresponding regime process φs(pt+1)

and πst+1 (respectively π
′s
t+1) is the posterior regime belief after price observation pt

(respectively p′t). This condition is violated by momentum (MO) price processes, which

are the counterparts of MR price processes and indicate that small prices lead to small

(or even smaller) prices and high prices lead to high (or even higher) prices.
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The time continuity condition (a2.2) states that the price is not expected to change

drastically in a short period of time. We define a set of prices p1 < p2 < p3 < ... < pL

and eij as the price transition probabilities from pit to pjt+1. Then the probability that

the price of the next period is at most pjt+1, based on the current price pit, is
∑j

l=1 eil.

To satisfy condition (a2.2), for all values of j, it must be ensured that

j∑
l=1

eil ≥
j∑
l=1

ei+1,l ∀ 1 < i < L− 1. (4.6)

In the regime framework, eij :=
∑m

s=1 π
s
t+1 P((pjt+1 ∩ pit)|s). Note that if (a1) is fulfilled

and there is no Bayesian learning based on price observations pt, then conditions (a2.1)

and (a2.2) are also fulfilled by definition as π′st+1 = πst+1.

Accordingly, for multi-regime settings, we distinguish between four monotonicity cases.

Proposition 1 (Monotonicity Properties).

(i) If regime processes φs(pt+1) are i.i.d. and regime beliefs ~πt are not dynamically

updated (learned) based on price information pt, St is non-increasing in pt.

(ii) If regime processes φs(pt+1) are i.i.d. and regime beliefs ~πt are updated (learned)

based on price information pt, St is non-increasing in pt under sufficient, but not

necessary, conditions (a2.1) and (a2.2). If regimes differ in variance but not in

mean (i.e., volatility regimes), (a2.1) is not violated and St is non-increasing in pt

if (a2.2) is satisfied. Furthermore, more frequent regime changes, i.e., a decreasing

r, where kij =
(

0.5+r 0.5−r
0.5−r 0.5+r

)
, support the monotonicity behavior of St in pt.

(iii) If regime processes φs(pt+1) are Markovian and regime beliefs ~πt are not updated

(learned) based on price information pt−1 and pt, St is non-increasing in pt under

sufficient, but not necessary, conditions (a2.1) and (a2.2).

(iv) If regime processes φs(pt+1) are Markovian and regime beliefs ~πt are updated (learned)

based on price information pt−1 and pt, St is non-increasing in pt if φ(pt+1) fulfills

the sufficient, but not necessary, conditions (a2.1) and (a2.2). If all regime pro-

cesses φs(pt+1) satisfy the monotonicity conditions, monotonicity per se is given

for the MRS case.

Proof. see A.2
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Table 4.1.: Summary of optimality and monotonicity results

Regime
Observability

Stochastic Regime Process
i.i.d. Markovian

Observable
(Full Information)

Optimality St(pt) St(pt)

Monotonicity St non-increasing in pt

St non-increasing in pt if the
observed process φs(pt+1)
fulfills (a2.1) and (a2.2)

Unobservable
w/o Bayesian
Updates
(w/o Learning)

Optimality St(pt, ~π0) St(pt, ~π0)

Monotonicity St non-increasing in pt

St is non-increasing in pt if
φ(pt+1) fulfills (a2.1) and

(a2.2)
Unobservable
w/ Bayesian
Updates
(w/ Learning)

Optimality St(pt, ~πt) St(pt, ~πt+1)
∆
= St(pt, pt−1, ~πt)

Monotonicity
St non-increasing in pt if
φ(pt+1) fulfills (a2.1) and

(a2.2)

St non-increasing in pt if
φ(pt+1) fulfills (a2.1) and

(a2.2)

Table 4.1 summarizes that a base-stock policy is still optimal, but the base-stock

functions St are multi-dimensional for the MRS case. Furthermore, for i.i.d. price

processes, St is no longer necessarily non-increasing in the current spot price pt.

4.3.3. Illustration of Policy Structure and Monotonicity Properties

Numerical Setup

We suppose discretized gamma distributed prices on a price set p ∈ {10, 15, 20, 25, 30}
for two types of i.i.d. regime settings (m = 2): (i) high-level-low-level (HL-LL) regimes

(µHL = 25, µLL = 15, σHL = σLL = 3) and (ii) low-volatility-high-volatility (LV-HV)

regimes (µLV = µHV = 20, σLV = 2, σHV = 10). Furthermore, we consider three com-

mon types of Markovian price processes φ(pt+1|pt) with empirical evidence for modeling

commodity prices: random walk (RW), mean reversion (MR) and momentum (MO).

Following Gavirneni (2004), the price transition matrices are given by

RW :


.5 .5 0 0 0
.5 0 .5 0 0
0 .5 0 .5 0
0 0 .5 0 .5
0 0 0 .5 .5

 ,MR :


.2 .8 0 0 0
.1 .3 .6 0 0
0 .1 .8 .1 0
0 0 .6 .3 .1
0 0 0 .8 .2

 ,MO :


.8 .2 0 0 0
.6 .3 .1 0 0
0 .5 0 .5 0
0 0 .1 .3 .6
0 0 0 .2 .8

 .

Shortage cost is cp = 40 and holding cost is ch = 1. For illustration purposes, a plan-

ning horizon of n = 2 (t = 1 with deterministic price and random demand plus t = 2

with random price and random demand) is chosen and Cn+1 = 0. Demand follows a
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4.3. Optimal Policy Structure and Monotonicity Properties

discretized and rescaled normal distribution with µ = 5 and σ = 1. Regime transition

probabilities are kij = ( .99 .01
.01 .99 ), which is reasonable for real market data (see Section 4.5).

Policy Illustration

If prices follow i.i.d. stochastic processes within the regimes, then the base-stock level

St is a function of the spot price pt and the prior regime belief ~πt (Figure 4.4).
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Figure 4.4.: Optimal inventory policy St(pt, ~πt) for i.i.d. regime specifications

Note. (a1) and (b1) illustrate St as a function of pt and ~πt. Since m = 2, πLL
t = 1 − πHL

t and πHV
t =

1 − πLV
t . Red arrows highlight settings where St increases in pt due to the violation of monotonicity

conditions. (a2) and (b2) illustrate the posterior beliefs πst+1 for different pt given prior beliefs πst .

In Figure 4.4a, regimes differ in their price level. A high (low) price pt increases

(decreases) the posterior belief πHL
t+1 of being in the HL regime (Figure 4.4a2). The

higher the prior belief πHL
t , the higher St anticipating the prices not to decrease (Figure

4.4a1). St is non-decreasing in πHL
t for all pt and increasing in pt for πHL

t ∈ [0.6; 0.97].

The latter is because the price increase from pt = 15 to pt = 20 is small compared to

the belief jump of being in HL in t + 1 (πHL
t+1|(pt = 15) vs. πHL

t+1|(pt = 20)). Hence, the

mean reversion condition of monotonicity (a2.1) is violated.
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Chapter 4. Operational Hedging from a Bayesian Inventory Control Perspective

In Figure 4.4b, regimes differ in price volatility. Even though the expected price is the

same under both regimes, St can vary given the same price (see at pt = 15) depending

on πst : if pt is smaller than the expected price and one has a strong belief about being in

the LV regime, i.e., πLV
t is relatively large, then one will tend to order more than under

a strong belief about being in HV, where there is a relatively higher chance that the

price will further decrease. At rather low prices, a price process with higher volatility

bears more chance than risk compared to a process with lower volatility. Consequently,

at a given price level, a higher price uncertainty reduces the optimal base-stock level,

whereas demand uncertainty yields the opposite effect.
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Figure 4.5.: Optimal inventory policy St(pt, pt−1, ~πt) for Markovian regime specifications

Note. Figure 4.5 illustrates St as a function of pt, pt−1 and ~πt (equivalently, we could illustrate St as
a function of pt and πst+1). Since m = 2, for (a) πMR

t = 1 − πRW
t , for (b) πMO

t = 1 − πRW
t and for (c)

πMO
t = 1− πMR

t . Inventory policies for the instances pt−1 ∈ {15, 25} are not explicitly shown here.

If the regime processes φs are AR(1), then St is a function of pt and the posterior regime

belief ~πt+1 or equivalently of pt−1, pt and the prior belief ~πt. This is demonstrated in

Figure 4.5 for the regime combinations of RW, MR and MO. St is monotone in ~πt for all
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pt and pt−1. Since both price processes, RW and MR, satisfy the monotonicity conditions

(a2.1) and (a2.2), for the setting RW-MR, St is non-increasing in pt for any pt−1 and

~πt as the resulting MRS price process is a convex combination of the distinct regime

processes. MO violates (a2.1). Hence, for RW-MO and MR-MO, St is not necessarily

non-increasing in pt for any pt−1 and ~πt. With a high impact of the MO regime, i.e.,

with a sufficiently low πRW
t or πMR

t , St increases in pt, since one would order more at

high prices, expecting the price continue to increase.

4.4. Controlled Numerical Study

In order to answer our research questions (Q2)-(Q4), we examine the cost impact in

numerical experiments. Due to the curse of dimensionality, we test several more practical

inventory control policies (see Section 4.4.3). All SDPs were solved with Matlab2016a

on an Intel(R) Core(TM) i7-3770, 3.4 GHz processor with 16 GB RAM.

4.4.1. Setup

We consider the same regime setups HL-LL, LV-HV, RW-MR, RW-MO and MR-MO

within a full factorial design: we vary the initial prior regime beliefs

πst ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, with πst = 0.5 representing maximum uncertainty about

regime s. We distinguish between three demand settings: high volatility (uniformly dis-

tributed on [0; 30]), medium volatility (normally distributed with µ = 15 and σ2 = 32)

and no volatility (deterministic with a value of 15). The initial inventory level is

zero. The planning horizon is n = 4. We vary the regime transition probabilities

kij(r) =
(

0.5+r 0.5−r
0.5−r 0.5+r

)
with r ∈ {0.25, 0.4, 0.49}. For r → 0, Bayesian learning is less

effective and price pt implies less confidence for regime predictions. To study the impact

of speculation motives and safety motives, we vary ch ∈ {1, 6, 15}. For ch = 15 (for

HL-LL and LV-HV) and ch ∈ {6, 15} (for RW-MR, RW-MO, MR-MO), equation (4.7)

holds for all instances, i.e., inventory decisions are driven exclusively by safety motives.

Definition 2 (Non-Speculative Condition). The expected one-period price increase per

unit is less than or equal to the inventory holding costs per unit and unit of time, i.e.,

m∑
s=1

p̄st+1 π
s
t+1 − pt ≤ ch, (4.7)

with p̄st+1 being the expected price for t+ 1 under regime s induced by price pt.
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4.4.2. Cost of Price Regime Misspecification

Prior to evaluating the performance of MRS relative to several suboptimal control poli-

cies in Section 4.4.3, we measure the performance loss from misspecifying the price

process φs by calculating the relative cost deviation

∆COST(φ(1)(φ(2))) :=

(
COSTφ(2) − COSTφ(1)

COSTφ(1)

)
· 100%, (4.8)

where φ(1) is the true price process and φ(2) is the supposed price process (supposed

by the inventory manager). COSTφ(1)

is the minimum total expected cost over the

planning horizon t = 1, ..., n induced by optimal first-stage purchase decision y
(1)
1 , and

COSTφ(2)

is the total expected cost induced by a (potentially) suboptimal first-stage

decision y
(2)
1 (which is optimal for φ(2)), evaluated based on φ(1). ∆COST(φ(1)(φ(2)))

is an upper bound for cost savings of MRS under stochastic regime switches (Section

4.4.3). Therefore, ∆COST is an indicator of the potential to use MRS.

Table A.1 (see Appendix A) summarizes the computational results across all instances.

By deciding based on the high-level regime in a low-level environment (LL(HL)), a firm

may end up 35.00% above the optimal total expected cost. Supposing that the price

reverts to its long-run mean but actually being in a momentum environment (MO(MR))

yields a cost increase of up to 26.29%. Table A.1 shows that the largest ∆COST occur

under ch = 1 (i.e., strong speculation motives), low demand volatility and level regimes or

Markovian regimes with opposing characteristics of the price process (MR versus MO).

Under ch = 6, the speculation motive is eliminated for the Markovian regime settings

(non-speculative condition (4.7) holds) and strongly reduced for i.i.d. regime settings.

Accordingly, the cost saving potential (∆COST) decreases or even disappears. From

Table A.1, we can deduce the following four main conclusions.
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Figure 4.6.: Cost of correlation misspecification (Instances: ch = 1, deterministic demand;
Results for all other instances are reported in Table A.1; Boxplot characteristics
throughout this thesis: minimum, 1st-, 2nd-, 3rd-quartile, maximum, mean (×))
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(i) Misspecifying price autocorrelation yields significant performance losses (Figure

4.6). HL(MO) and LL(MO) represent settings where autocorrelation is supposed but vi-

olated by, e.g., unexpected price jumps and drops. In the case of MO(HL) and MO(LL),

existing autocorrelation is ignored. The maximum of ∆COST = 80.78% occurs for

HL(MO) at a price of pt = 10 where the inventory manager ignores the price jump and

orders yMO
1 = 15, rather than yHL

1 = 60. For MO(LL) at a price pt = 10, yLL
1 = 60,

whereas yMO
1 = 15 would have been optimal. However, as for MO the price is expected

to remain low and ch is low, the misspecification yields a cost increase of only 5.00%.

(ii) ∆COST is particularly high if the expected prices under the regimes differ, which

is true for level and Markovian regimes. In volatility regimes (HV, LV) with equal price

expectations, ∆COST is at most 2.61% and therefore rather negligible (Figure 4.7).
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Figure 4.7.: Cost of price process misspecification (Instances: ch = 1; Results for all other
instances are reported in Table A.1)

(iii) The lower the demand volatility, the higher the cost of regime misspecification

(Figure 4.7) - as long as speculation motives dominate. Figure 4.8 shows in a more illus-

trative way that under speculation motives, ∆COST decreases with increasing demand

volatility, which is not the case under pure safety motives, due to the additional effect

that with an increasing demand volatility, the importance of the safety motive increases.

(iv) Speculation drives the cost of price process misspecification. Under non-speculative

condition (4.7), ∆COST is considerably smaller and converging to zero as demand un-

certainty approaches zero (Figure 4.8). This is because both speculation motives and

safety motives diminish. If demand is known (no safety motive) and equation (4.7) holds

(no speculation motive), the price process does not affect order decision yt. Figure 4.8

furthermore shows that the results are not very sensitive to shortage costs cp that do

not affect the dominating speculation motive, but solely the inferior safety motive.
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Figure 4.8.: Impact of demand volatility and speculation on cost of misspecification (n = 2)

4.4.3. Performance of Suboptimal Control Policies

The Bayesian mechanism of the learning process in equation (4.1) makes the state space

zt ∈ Zt grow exponentially in the number of periods n. Each combination of zt =

(pt, pt−1, ~πt) yields a posterior belief ~πt+1 representing a next period’s prior in the state

space. This makes the inventory problem numerically difficult to solve and asks for

practical alternatives. Therefore, we compare the optimal MRS policy St(pt, pt−1, ~πt)

with the following simpler (but suboptimal) policies that (i) ignore price uncertainty

(NAIVE), (ii) ignore regime switches (SRC) or (iii) ignore learning (CEC):

(i) NAIVE Control (St): The NAIVE policy considers demand uncertainty but ne-

glects price uncertainty and assumes that Et[pt+1] = pt. It therefore ignores spec-

ulation motives and is equivalent to just-in-time procurement without forward

buying. This yields price-independent base-stock levels St. If demand dt is deter-

ministic, the NAIVE order quantity is simply given by yt = max{dt − It, 0}.

(ii) Single Regime Control SRC-R1/SRC-R2 (St(pt)): For SRC-R1 (respectively SRC-

R2), inventory decisions are based on price process φ(1) (respectively φ(2)) neglect-

ing switches to price process φ(2) (respectively φ(1)), which yields price-dependent
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base-stock levels St(pt). SRC is equivalent to the policy proposed by Kalymon

(1971) for the full information problem.

(iii) Certainty Equivalent Control CEC (St(pt, ~π0)): CEC replaces the doubly stochas-

tic nature of pt+1 by a single stochastic counterpart in the form of price process

estimate φ̂(pt+1) based on the manager’s first prior regime belief ~π0. Other than

MRS, CEC does not use feedback in terms of dynamic information updates, i.e.,

πst+∆ = πs0 ∀∆ = 1, ..., n − t. Therefore, the price process is characterized by

φ̂(pt+1) =
∑m

s=1 π
s
0 φ

s(pt+1). Since ~π0 does not evolve conditionally on observa-

tions of pt, the size of the state space of CEC equals SRC.

Results

In the following, we benchmark optimal inventory control under regimes (MRS), i.e.,

St(pt, pt−1, ~πt) respectively St(pt, ~πt), by computing the relative cost deviation if we de-

cide (i) based on NAIVE inventory control (St), (ii) based on a specific regime SRC-

R1/SRC-R2 (St(pt)) or (iii) without market information updates, i.e., CEC (St(pt, ~π0)).

Note that for (ii) and (iii), ∆COST from Table A.1 defines upper bounds for the percent-

age above optimal (i.e., MRS) cost. We use the same setup as presented in Section 4.4.1.

We distinguish between stochastic (uniform) and deterministic demand. By varying ch,

we again study strong and reduced (for i.i.d. regime processes) respectively eliminated

(for Markovian regime processes) speculation motives. Additionally, we analyze the ef-

fects of regime persistence by varying the switching parameter r in the way that was

described in Section 4.4.1. A representative instance is presented in Figure 4.9. The

detailed results across all instances are summarized in Table A.2 (see Appendix A).
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Figure 4.9.: Performance of suboptimal control policies (Instances: ch = 1, r = 0.49; Results
for all other instances are reported in Table A.2)
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(i) NAIVE Control. The NAIVE heuristic performs comparatively poor across all

settings. Remarkably, NAIVE can lead to significant losses in a volatility regime en-

vironment where the other heuristics (CEC, SRC-R1, SRC-R2) with price-dependent

base-stock levels perform close to optimum (see Figure 4.9b). The reason is that NAIVE

does not assess the current market price pt as high or low. Therefore, the lowest imag-

inable market price is not even classified as a comparatively low price and the highest

imaginable market price is not classified as a rather high price. We furthermore observe

that with more frequent regime switches, i.e., with increasing uncertainty in the price

process, NAIVE tends to perform slightly worse as it does not capture price stochas-

ticity. However, the cost of ignoring price uncertainty and thus the performance of

the MRS approach relative to the NAIVE policy decreases significantly with decreasing

speculation motives (see Table A.2: ch = 1 vs. ch = 6).

(ii) Single-Regime Control (SRC). Ignoring a multi-regime framework and instead con-

trol inventory based on a specific single regime (SRC-R1, SRC-R2) yields a cost increase

by up to 28.09%. Setting HL-LL implies that, in case of doubt, inventory managers

should tend to underestimate the expected price (SRC-R2), rather than overestimating

it (SRC-R1) to avoid speculative forward buying. In line with Section 4.4.2, the cost

of ignoring regimes increases with decreasing demand volatility (under dominating spec-

ulation motives). The impact of speculation motives is in line with the results of the

NAIVE policy. Concerning the impact of the expected frequency of regime switches,

there are two contrary effects: on the one hand, with an increasing frequency, i.e., with

decreasing r, the price observation gives less indication about the regime in t + 1 and

therefore, the Bayesian mechanism of MRS gets less effective. On the other hand, a

lower r leads to higher uncertainty and more room for (mis)speculation. However, we

find for most instances (especially for those with high potential performance losses), that

relative benefits of Bayesian MRS increase with decreasing frequency of regime switches.

(iii) Certainty Equivalent Control (CEC). The CEC heuristic on average performs very

well especially in Markovian and volatility regimes (see also Figure 4.9). The Bayesian

MRS approach relative to the CEC heuristic has its highest potential under level regimes

and zero demand volatility. In the worst case, ignoring dynamic information updates

(CEC) yields 13.33% higher cost (Table A.2). The results furthermore demonstrate that

if the demand uncertainty is high, it becomes less important to update the price process

beliefs based on new market information received. Under highly volatile demand, a firm

is at most 4.89% above optimal cost, while it can lose significantly more (13.33%) by

not updating the price forecast as demand is less volatile. The values in parentheses
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in Table A.2 show that the cost impact and thus the potential of Bayesian updating is

mainly driven by speculation motives, i.e., updating the belief leads to speculation (i.e.,

forward buys), while not updating avoids speculation or (and mostly) vice versa. The

opposing effects of the frequency of regime switches (explored by switching parameter

r) for SRC are also observed for CEC.

Comparing the overall results of our controlled numerical study, we find that in-

ventory decisions based on the manager’s prior belief (CEC) describe an impressively

effective heuristic in Markovian and volatility price regimes (at most 2.87% above opti-

mal cost), while decisions based on any of the regimes (SRC-R1/SRC-R2) perform far

worse (22.73% and 11.74%, respectively). NAIVE control can yield significant higher ex-

pected cost even and especially in volatility regimes, whereas CEC, SRC-R1 and SRC-R2

perform close to optimum here.

4.5. Results on Empirical Data

Even though an extensive empirical test of different stochastic price models for various

spot-traded commodities is not within the scope of this chapter, we want to exemplarily

illustrate and test the MRS approach based on real spot market data of corn (HL-LL

regimes) and zinc (RW-MR regimes) (see Figure 4.1). We quantify the value of perfect

spot price information for inventory control, investigate the relationship between price

forecast accuracy and operational performance and point out the crucial role of misspec-

ulation induced by stochastic price models in uncontrolled empirical environments.

Procurement of Corn (01-2007 until 04-2016)

Using MS Regress by Perlin (2015) for the corn price from 01-2007 to 04-2016, we identify

a high-level (µ = 651.76, σ = 78.97) and a low-level (µ = 370.03, σ = 46.09) spot price

regime with the transition matrix kij = ( 0.95 0.05
0.03 0.97 ). The regime classification measure

(RCM) (Ang and Bekaert, 2002) gives an ex-post indication for the goodness of regime

specification. It is defined as RCM := 100 ·m2 1
T

∑T
t=1 (

∏m
s=1 π̂

s
t ), where T denotes the

number of historical estimation points (periods) and m the number of regimes. RCM

converging to zero means perfect classification, i.e., all data points can clearly be assigned

to one of the regimes. For the underlying regime estimation, we obtain RCM = 1.33,

which indicates good but not perfect classification (Ang and Bekaert, 2002). As an initial

prior belief, we use ~π0 = (0.375, 0.625) obtained by solving the system of linear equations

from Section 4.2.1. We face a constant deterministic monthly demand of dt = 15, 000 bu
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(bushel) and hence focus on speculation motives only. Restricted by practical capacity

limits of grain bins, we consider a horizon of n = 4 months, i.e., St ∈ {dt, 2dt, 3dt, 4dt}.
The first-stage order quantity is restricted by y1 ≤ (

∑4
t=1 dt − I1)+. Note that in this

capacitated setting with deterministic demand, the terminal valuation of inventory Cn+1

does not affect the first-stage decisions and hence without effect on the solution can be

set to, e.g., Cn+1 = 0 or Cn+1 ≡ −En[pn+1]·In+1. Shortage penalty costs are cp = $10/bu

and inventory holding costs (in $/bu/mo) are ch ∈ {0.01, 0.10, 0.40}. A high variation in

ch is reasonable for perishable commodities that require energy-intensive drying processes

and are characterized by yield losses through storage.

We compare the following inventory control policies: (i) ex-ante optimal policy MRS,

(ii) CEC and (iii) NAIVE. Furthermore, we compare the performance of each policy

to the theoretical ex-post optimal policy under perfect spot price foresight (PF). We

calculate the mean absolute percentage error (FC-MAPE) for three-step-ahead forecasts

(due to three potential forward buying periods) in order to study how price forecast

accuracy affects the operational performance of the inventory system.
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Figure 4.10.: Regime switches and inventory policy implications (ch = $0.4/bu/mo)

Figure 4.10 illustrates (i) the regime switching behavior of the spot price estimated by

the standard Matlab MRS package (see Perlin, 2015) and (ii) the corresponding oper-

ational order patterns (measured in forward buying periods) according to the different

control approaches. Table 4.2 reports the forecast accuracy and operational performance

for different phases within the time series. Figure 4.10 demonstrates that even at high

ch, CEC leads to massive forward buying and overstocking at low prices, expecting them
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to rise. This leads to a significant cost increase (+6.1% or $486, 078) relative to MRS

that detects (learns) the low-price regime and avoids forward buying (Table 4.2). Un-

der reasonably small ch, i.e., with larger speculation opportunities and a smaller cost

of misspeculation, MRS clearly outperforms NAIVE. At high ch, NAIVE, that does not

build up any stocks, performs slightly better than MRS and close to PF. We conclude

that in an empirical environment, NAIVE can be reasonable if ch is high. By deciding

based on stochastic price models, at high ch, the negative consequences of speculating

wrong (and build up unnecessary stock) are more severe than the positive consequences

concerning the average price paid (Table 4.2). We interpret misspeculative inventory as

the inventory surplus compared to PF.

Table 4.2.: Corn: Performance of different control policies

ch = $0.01/bu/mo ch = $0.1/bu/mo ch = $0.4/bu/mo

PF MRS CEC NAIVE PF MRS CEC NAIVE PF MRS CEC NAIVE

01-2007 to 12-2008 (transition phase)

Total cost in 1,000$ 1,360 1,503 1,464 1,516 1,416 1,589 1,525 1,516 1,499 1,558 1,626 1,516

% above PF cost 0 10.6 7.6 11.5 0 12.5 7.7 7.0 0 3.9 8.4 1.1

Av. price paid in $/bu 3.76 4.15 4.05 4.21 3.79 4.25 4.07 4.21 3.96 4.18 4.08 4.21

Av. inventory in 1,000 bu 23.1 37.5 23.8 0.0 21.3 24.4 24.4 0.0 7.5 5.6 16.3 0.0

FC-MAPE in % 0 19.78 28.06 16.13 0 19.78 28.06 16.13 0 19.78 28.06 16.13

01-2009 to 07-2010 (low-level regime)

Total cost in 1,000$ 937 981 999 1,007 965 1,002 1,057 1,007 1,001 1,013 1,168 1,007

% above PF cost 0 4.7 6.6 7.4 0 3.9 9.6 4.3 0 1.2 16.7 0.6

Av. price paid in $/bu 3.28 3.42 3.48 3.53 3.29 3.41 3.48 3.53 3.49 3.49 3.43 3.53

Av. inventory in 1,000 bu 18.2 32.4 35.5 0.0 14.2 16.6 33.9 0.0 0.8 2.4 25.3 0.0

FC-MAPE in % 0 9.60 35.53 9.83 0 9.60 35.53 9.83 0 9.60 35.53 9.83

08-2010 to 06-2011 (transition phase)

Total cost in 1,000$ 799 878 917 961 832 931 925 961 929 967 963 961

% above PF cost 0 9.9 14.8 20.3 0 11.9 11.2 15.5 0 4.1 3.7 3.5

Av. price paid in $/bu 4.82 5.31 5.55 5.83 4.82 5.55 5.55 5.83 5.01 5.79 5.73 5.83

Av. inventory in 1,000 bu 35.5 20.5 8.2 0.0 32.7 13.6 8.2 0.0 23.2 2.7 4.1 0.0

FC-MAPE in % 0 12.92 24.31 12.84 0 12.92 24.31 12.84 0 12.92 24.31 12.84

07-2011 to 09-2013 (high-level regime)

Total cost in 1,000$ 2,565 2,711 2,745 2,745 2,608 2,717 2,745 2,745 2,679 2,745 2,745 2,745

% above PF cost 0 5.7 7.0 7.0 0 4.2 5.3 5.3 0 2.5 2.5 2.5

Av. price paid in $/bu 6.32 6.69 6.78 6.78 6.34 6.69 6.78 6.78 6.44 6.78 6,78 6.78

Av. inventory in 1,000 bu 18.9 2.2 0.0 0.0 14.4 2.2 0.0 0.0 6.7 0.0 0.0 0.0

FC-MAPE in % 0 8.41 29.18 8.17 0 8.41 29.18 8.17 0 8.41 29.18 8.17

10-2013 to 03-2016 (transition phase)

Total cost in 1,000$ 1,637 1,752 1,723 1,719 1,669 1,746 1,809 1,719 1,714 1,734 1,960 1,719

% above PF cost 0 7.0 5.3 5.0 0 4.6 8.4 3.0 0 1.1 14.3 0.3

Av. price paid in $/bu 3.62 3.87 3.81 3.82 3.65 3.79 3.81 3.82 3.78 3.81 3.78 3.82

Av. inventory in 1,000 bu 18.5 31.0 33.5 0.0 9.0 13.0 31.0 0.0 1.0 1.5 21.5 0.0

FC-MAPE in % 0 14.31 26.51 10.20 0 14.31 26.51 10.20 0 14.31 26.51 10.20

01-2007 to 03-2016 (overall)

Total cost in 1,000$ 7,267 7,838 7,838 7,948 7,473 7,995 8,059 7,948 7,821 8,012 8,498 7,948

% above PF cost 0 7.9 7.9 9.4 0 7.0 7.8 6.4 0 2.4 8.7 1.6

Av. price paid in $/bu 4.35 4.69 4.69 4.77 4.37 4.71 4.69 4.77 4.53 4.75 4.70 4.77

Av. inventory in 1,000 bu 22.7 26.5 22.7 0.0 17.4 14.5 21.9 0.0 6.1 2.4 15.3 0.0

FC-MAPE in % 0 12.99 28.83 11.10 0 12.99 28.83 11.10 0 12.99 28.83 11.10
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On average, MRS is a good compromise between (i) CEC as MRS avoids overstocking

(exploitation of low inventories) and (ii) NAIVE as MRS still captures price uncertainty

and allows for forward buys (exploitation of low prices).

Taking a closer look into the performance within the time series, we observe that

MRS strictly outperforms CEC inside the regime phases (01-2009 to 07-2010, 07-2011 to

09-2013). That supports that MRS is mainly beneficial under fewer switches in regimes,

i.e., under high regime retention times. During transition phases, no dominant order

policy is observable. Unsurprisingly, none of the policies can predict sudden switches in

the price behavior as the high percentage cost gap to PF confirms, e.g., for 08-2010 to

06-2011 (high value of perfect spot price information). MRS is unable to forecast regime

switches, but is able to detect them through its Bayesian learning scheme.

Confirming the empirical finance literature, CEC is strictly dominated by MRS in

terms of forecast accuracy. However, the quality of inventory decisions cannot simply

be explained by the quality of price predictions (Figure 4.11). Over all data points

from Table 4.2, FC-MAPE and the percentage cost gap to PF are positively but not

perfectly correlated with Pearson correlation coefficient of ρ = .35 (p < .01). While ch,

and therefore the degree of speculation, does not impact FC-MAPE, it strongly impacts

operational performance. If ch is low (high), one speculates more (less) in terms of for-

ward buying and therefore relies more (less) on forecast accuracy.
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Figure 4.11.: Price forecast accuracy vs. inventory performance

Procurement of Zinc (01-2004 until 04-2016)

By estimating zinc price regimes from 01-2004 to 04-2016, we identify a random walk

(RW) regime with AR(1) coefficient β1 = 0.96 and a mean reversion regime (MR) with

β1 = 0.69. Switching occurs with transition probabilities kij = ( 0.99 0.01
0.01 0.99 ). As an initial
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prior belief, we again use the steady-state probabilities ~π0 = (0.5, 0.5). Price transition

probability matrices are generated from the estimated AR(1) processes using the method

proposed by Tauchen (1986). We assume a constant deterministic monthly demand of

1 ton. Capacity limits restrict the planning horizon to n = 4 periods. Shortage penalty

costs are cp = $6000/ton. Moreover, we vary the inventory holding cost ch as it may

have a major impact on inventory performance. Beside the control policies MRS, CEC

and NAIVE, we additionally investigate the consequences deciding based on the RW

regime (SRC-RW) that characterizes the zinc price evolution from 2004 to 2009.
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Figure 4.12.: Zinc: Performance of different control policies

While we observe that MRS (FC-MAPE: 9.21%) again clearly outperforms CEC

(14.38%) with regard to price forecast accuracy, Figure 4.12 demonstrates the ambigu-

ous character of speculation in the inventory control context. Applied to real market

data, stochastic price models (monotonic increasing curves) from time to time inevitably

lead to misspeculation. At low ch, the cost of inventory from misleading speculation is

less than the benefits of exploiting low purchasing prices (see Table 4.3) and therefore

inventory control based on stochastic price models clearly outperforms NAIVE order

control. With increasing ch, inventory from misleading speculation gets more expensive

and hence, stochastic price models perform worse relative to NAIVE without speculative

inventory.

We furthermore see that pure random walk assumptions (i.e., not updating/learning

the price process) lead to significant performance losses relative to MRS that realizes the
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Table 4.3.: Average inventory in tons and average price paid in USD/ton

ch in USD/ton
Control policy 0 2.5 5 7.5 10 12.5 15 17.5 20
PF 1.48 1.47 1.45 1.41 1.41 1.39 1.39 1.36 1.34
MRS 2.48 2.48 2.48 2.48 2.48 2.39 2.39 2.39 2.39
CEC 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24
SRC-RW 2.42 2.42 2.42 2.42 2.42 2.42 2.42 2.42 2.42
NAIVE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PF 1, 890.1 1, 890.1 1, 890.3 1, 890.4 1, 890.5 1, 890.5 1, 890.5 1, 890.8 1, 890.9
MRS 2, 022.5 2, 022.5 2, 022.5 2, 022.5 2,022.5 2,026.4 2, 026.4 2, 026.4 2, 026.4
CEC 2, 026.9 2, 026.9 2, 026.9 2, 026.9 2, 026.9 2, 026.9 2, 026.9 2, 026.9 2, 026.9
SRC-RW 2, 044.7 2, 044.7 2, 044.7 2, 044.7 2, 044.7 2, 044.7 2, 044.7 2, 044.7 2, 044.7
NAIVE 2, 067.8 2, 067.8 2, 067.8 2, 067.8 2, 067.8 2, 067.8 2, 067.8 2, 067.8 2, 067.8

best purchase prices across all control policies. However, CEC that similar to SRC-RW

does not consider price history (pt−1), but considers both regimes with equal weight (due

to ~π0), seems to be a good approximation in this Markovian setting. At ch = $12.5/ton,

MRS reacts to the increasing cost of inventory and the base-stock levels are adjusted

(i.e., reduced) in order to reduce forward buying. Nevertheless, applied to the real-

market data, reduced average inventory goes along with a higher average purchase price

such that in this specific case it would have been better to stick to the more speculative

MRS control policy from ch ∈ {0, ..., 10} as the dashed line illustrates.

Both case studies give insights about the factor of misleading speculation induced by

model and calibration errors of stochastic price models that are typically neglected in

controlled experiments. In empirical and speculative environments, the costs of mis-

leading speculation (in terms of misspeculative inventory) need to be carefully traded

off against the price benefits from speculation in order to decide whether it might even

be better to ignore price uncertainty and order NAIVE. Furthermore, the case studies

demonstrate that better price forecasts (FC-MAPE) do not necessarily result in better

inventory performance that strongly depends on the ch-structure and hence the degree

of speculation opportunities determined by equation (4.7).

4.6. Conclusion

We present managerial implications and give a summary and research outlook.

Managerial Implications

Our results that are summarized in Table 4.4 show under which conditions it is worth
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it for inventory managers to deal with spot price models and consider the price process

under regimes and Bayesian learning.

Table 4.4.: Potential of MRS price models in inventory control

Setting High potential Low potential
Regime classification strong weak
Demand volatility low high
Regime type level volatility
Non-speculation condition (Holding cost) violated (low) fulfilled (high)
Frequency of regime switches low high

Impact of Regime Classification. There needs to be evidence for different price regimes

that can be identified by, e.g., the Baum-Welch algorithm (Baum et al., 1970). The

regime classification measure (RCM) (Ang and Bekaert, 2002) gives an ex-post indication

for the quality of regime specification. The higher the RCM, the higher the impact of

transition phases, which can hardly be captured by any price model as demonstrated in

Section 4.5.

Impact of Demand Volatility. Under high demand uncertainty, the operational impact

of the price process is smaller than in case of a low demand uncertainty. Therefore, it

is more promising to consider price regimes and Bayesian learning when demand is

less volatile, except when there is a high impact of the safety motive relative to the

speculation motive. We demonstrated that supposing the wrong regime in a regime

switching framework under deterministic demand can lead to 35.00% higher cost, while

supposing the same regime under highly volatile demand in contrast only results in

10.96% higher cost.

Impact of Price Regime Setting. Structural breaks affecting price levels are more

important to consider than breaks in price volatility. In our numerical tests, MRS

volatility models did not have a significant cost impact in inventory control. Supposing

the wrong volatility regime did not exceed values of 2.61% above the optimal cost, while

supposing the wrong level or Markovian regime led to higher cost of 35.00% and 26.29%,

respectively. Even though decisions based on a random regime (SRC-R1, SRC-R2) or

on the manager’s prior belief (CEC, i.e., no learning) seems to be acceptable in case of

volatility regimes, NAIVE control can lead to significant performance losses.

Impact of Speculation. Speculation opportunities give an indication about when it

may be worth considering MRS price models. Our numerical results show that it is

significantly more beneficial to consider a regime switching framework when the non-

speculative condition (4.7) is violated. While in the regime setting MR-MO under vi-
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olated non-speculative condition, the relative cost increase supposing the wrong price

regime (i.e., MR) is 6.71%, 15.77% and 26.29%, respectively, the increase is 0.87%,

0.44% and 0.00% under non-violation. The operational benefit of MRS, and of spot

price models in general, is even zero as soon as demand is deterministic (no safety mo-

tive) and the non-speculative condition holds (no speculation motive). Nevertheless, in

an uncontrolled empirical environment under speculation opportunities but relatively

high holding cost, the impact of misspeculation induced by stochastic price models is

that high that the NAIVE policy performs quite well (and in some cases even better

than sophisticated stochastic price models). However, low holding costs recommend

MRS price models for two reasons: (i) an increase in speculation motives that increases

the potential value of a more accurate price model (in terms of price forecasts) and (ii)

a decrease in the cost of misspeculative inventory that, due to inevitable model and cal-

ibration errors, is inherent in stochastic price models. Contrary to holding costs (that

influence speculation motives), shortage penalty costs (that influence safety motives)

have a minor impact on the cost of price process misspecification.

Impact of Regime Persistence. The performance of the Bayesian MRS approach is in-

fluenced by the expected frequency in regime switches. Counterintuitively, less frequent

switches, i.e., higher regime retention times, support the performance of MRS. If a high

frequency of price process changes is expected, then the current spot price provides less

information about being in a specific regime in the future. Therefore, learning-based

MRS is generally more beneficial if the expected time spent in a specific price cycle is

large. This is also confirmed by the empirical results of the case study since the MRS

approach dominates especially within regime phases.

Summary and Outlook

Spot-traded commodities are characterized by switches in price regimes that are only

partially observable. Based on experimental and empirical data, we demonstrated in

an inventory control context how partially observable spot price processes can be con-

sidered by using non-linear hidden Markov regime switching techniques with learning

via dynamic Bayesian information updates. We showed that considering random regime

shifts can lead to significantly different order patterns compared to expecting the price

to remain in the current business cycle (SRC) or compared to inventory control without

dynamic Bayesian information updates (CEC). Our findings show that, if the regimes are

observable, similar to Kalymon (1971), a price-dependent order-up-to policy is optimal.

If the regimes are partially observable, an order policy that depends only on the current
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spot price is no longer sufficient and prior respectively posterior regime beliefs need to

be considered. We presented regime conditions under which the optimal base-stock level

is non-increasing in prices and illustrated regime settings where the monotonicity of the

base-stock level in the spot price is violated. Furthermore, we empirically showed that

an MRS approach can lead to significant price forecast improvements and cost savings

compared to inventory control based on state-of-the-art price models that neglect price

regimes and wrongly presume full price process information. Conditions under which the

price process matters give managers an indication when it is worth considering sophisti-

cated price forecasting with stochastic spot price models and when it might be adequate

to make näıve inventory decisions. An imperfect correlation between the quality of price

predictions and the quality of inventory decisions implies that finance (spot price mod-

els) and operations (inventory control) cannot be separated and that the suitability of

price models should be evaluated with regard to operational cost implications, rather

than merely by forecast accuracy measures such as MAPE.

Further research opportunities are, e.g., a continuous time analysis of the stochastic

control problem and an extension to an infinite planning horizon that requires partially

observable Markov decision processes (POMDP) (see, e.g., Monahan, 1982). Further-

more, it might be interesting to investigate the operational value of price models if the

assumption of uncorrelated commodity spot price and finished product’s demand is re-

laxed. One could also extend the procurement problem to a trader’s setting with reselling

(to the spot market) opportunities or multiple procurement channels, including financial

derivatives such as forwards, futures and options contracts. Testing the performance of

further suboptimal control policies such as open-loop feedback control or limited look-

ahead policies (see, e.g., Bertsekas, 1995) to overcome the curse of dimensionality of the

partially observable decision problem could also be insightful. Moreover, more extensive

empirical tests of spot price models on a broad range of commodities are needed in the

operational context.
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Chapter 5.

Financial Hedging from a Data-Driven

Procurement Perspective

Based on

Mandl, C. and S. Minner (2019b). Data-driven optimization for

commodity procurement under price uncertainty.

Volatile commodity prices require efficient risk management for purchasing. We study

a practice-motivated multi-period stochastic commodity procurement problem with for-

ward and spot purchase options. Existing approaches for optimizing positions in the

forward contract market are based on parametric price models, which inevitably involve

price model misspecification and generalization error. We propose a non-parametric,

data-driven approach (DDA) that is consistent with the optimal procurement policy

structure but without requiring the a-priori specification and estimation of stochastic

processes. In addition to historical prices, DDA is able to leverage real-time feature data

(Big Data), such as economic indicators, in solving the problem. This chapter provides a

framework for prescriptive analytics in dynamic commodity procurement, with optimal

purchase signals directly learned from data as functions of features, via mixed integer

linear programming (MILP) under cost minimization objectives. Furthermore, we com-

bine optimization with performance-based regularization from machine learning (ML)

to extract decision-relevant data from noise. Based on controlled numerical experiments

and empirical data, we show that there is a significant value of feature data for com-

modity procurement. However, overfitting deteriorates the performance of data-driven

solutions, which asks for ML extensions that improve out-of-sample generalization sig-

nificantly. Our approach is embedded in the IT architecture of an industry partner used

for natural gas procurement. Compared to the firm’s best practice benchmark, DDA

saves on average 9.1 million Euro p.a. (4.33%) for ten years of backtesting.
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5.1. Introduction

Substantial price volatility at commodity markets, along with violated assumptions un-

derlying the Modigliani-Miller theorem (Modigliani and Miller, 1958), i.e., the existence

of market frictions such as transaction costs, taxes, financial distress costs or informa-

tion asymmetry, provide rationale for corporate risk management for both risk-neutral

and risk-averse commodity-processing firms (Froot et al., 1993; Smith and Stulz, 1985).

Besides operational hedging through speculative stockpiling (Chapter 4), which is of-

ten physically restricted, hedging price risk via contracts plays an increasing role in

practice; especially with growing liquidity of commodity derivatives markets. The num-

ber of exchange-traded financial derivatives on energy, agriculture, precious metals and

non-precious metals increased by 22.6% to 4.6 billion contracts between 2014 and 2015

(FIA, 2015). A large-scale empirical study by Bartram et al. (2009) shows that 50.4%

of the oil-processing companies and 30.5% of the steel-processing companies have imple-

mented some kind of commodity price risk hedging through financial contracts such as

forwards, futures, swaps and call options (Hull, 2005). A prominent example for a firm

that has benefited greatly from commodity hedging is the food manufacturer General

Mills, which realized hedging gains of $151 million in volatile agricultural and energy

markets during the first quarter of 2008 (Wall Street Journal, 2008). On the other hand,

by contractually hedging future demand, firms become too inflexible to react to price

declines. In 2015, the world’s second-largest airline United lost $960 million, the world’s

third-largest airline Delta even $2.3 billion by hedging 100% of its fuel costs via forward

contracts prior to the big drop in oil prices (Wall Street Journal, 2016a).

However, in theory and practice, there is still no consensus on the optimal hedging

strategy (Wang et al., 2015). There is no common answer to the question if a contractu-

ally offered forward price in period t is sufficiently low to hedge demand of t+2 or better

to wait and satisfy the demand from the forward market in t+ 1 or the spot market in

t+ 2 in order to minimize the total cost of purchase.

To support operational decision-making in the multi-period context, stochastic dy-

namic programming (SDP) is used, which supposes full knowledge of the underlying

commodity price process (e.g., Geometric Brownian motions or mean-reverting Ornstein-

Uhlenbeck processes). However, solving stochastic control problems by means of dy-

namic programming is subject to two major drawbacks: (i) due to the curse of dimen-

sionality, SDP is highly impracticable for real-world problems and high-dimensional spot

and forward price models, as they are widely used in commodity finance (see Section
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3.1). (ii) SDP relies on the assumption of being able to fully characterize the underly-

ing stochastic processes and their parameters (full information problem), which is not

true in practice. It therefore ignores the impact of two errors that inevitably affect the

out-of-sample performance: (a) price model error (the error that occurs from model

misspecification) and (b) generalization error (the out-of-sample error that occurs from

in-sample overfitting) (Wang et al., 2015).

In addition, low-dimensional price models that are still manageable by SDP might

not fully exploit all information available. Microeconomics and empirical finance (e.g.,

Pindyck, 2004; Pirrong, 2011) provide evidence of the impact of exogenous variables on

commodity prices such as economic climate, temperature, interdependence with other

commodities, inventories, convenience yield or exchange rates (fundamental analysis).

In this context, Arthur D. Little (2014) states: “Suppose your organization pro-

cures plastic pellets. If your database is linked with market price data for crude oil and

macroeconomic forecast data, a Big Data solution can constantly discover new opportu-

nities and alert your organization to act, e.g., to renegotiate contracts as soon as there

is a significant decrease in the price of crude oil.”

In practice, there is indeed a growing interest in Big Data analytics. Service providers

(e.g., Quandl or Thomson Reuters) enter the market, offering real-time economic and fi-

nancial data specific to commodity purchasers’ needs (Boston Consulting Group, 2017).

Others provide satellite imagery to forecast crop yields (CME Group, 2014) or to track

ships and hence follow the movement of seaborne commodities (Reuters, 2016b), both

of which can give an early indication for price movements.

Motivation from Practice

This chapter is motivated by a collaboration with a large chemical company that runs

its own gas-fired power plants to generate steam and electricity for its energy-intensive

production processes and for the power market. To hedge price risk in purchasing

natural gas, the firm has forward procurement options at the European TTF gas mar-

ket, however no storage capacity. Prior to our collaboration, the firm decided without

optimization-based decision support by distributing its significant gas demand (10×106

MWh p.a.) equally among forward contracts of different maturities (typically 1- to

4-months-ahead futures contracts). However, having access to historical and real-time

price and feature data, the purchase team wondered (i) how to efficiently operationalize

data for optimization-based purchasing and (ii) whether analytics-based decisions yield

significant reduction in total cost of purchase. Therefore, we developed a pragmatic and
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computationally tractable data-driven approach (hereafter, DDA) for dynamic decision-

support that can easily be embedded in the firm’s existing IT architecture of online

databases such as Thomson Reuters Datastream and Eikon and the firm’s existing data

management system (Figure 5.1).

Online
Databases

(Datastream,
Eikon)

Historical
Price and
Feature
Data for
Training

Data
Storage

Data
Processing MILP

Solver

Training
Results

GUI for
Decision

Rule
Application

Real-Time Market
Prices and Feature Data

Figure 5.1.: DDA embedded in the IT architecture of our industry partner

Even though this research is motivated by an industry application, this chapter adds

both methodological and managerial contribution to the existing literature.

Methodological Contribution

We present a generic data-driven approach to compute the parameters of the optimal

policy in multi-period procurement problems, which yields optimally structured pol-

icy rules in the sense of the corresponding full information SDP under full knowledge

of the underlying price process(es). This is fundamentally different from the existing

data-driven literature that trains decisions in single-period problems (see, e.g., Ban

and Rudin, 2019), which is inappropriate for constrained multi-stage problems (Bert-

simas and Kallus, 2016). DDA does not require the specification and estimation of

stochastic price processes or to make any statistical assumptions a-priori to optimization

(distribution-free). It does not demand an explicit analysis of commodity spot and term

structure dynamics and their existing relationship (see Geman, 2005, p. 73). Instead,

DDA learns the underlying stochastic processes from data via Empirical Risk Minimiza-

tion (ERM) (Vapnik, 1998, p. 32) in a robust-regression-like way within a MILP. DDA

is general, as it comprises a variety of standard price models, and is also able to exploit

high-dimensional real-time feature data for dynamic spot and forward procurement de-

cisions. Therefore, DDA exhibits several benefits for generating procurement plans: (i)

It prevents price model misspecification and avoids the curse of dimensionality of SDP

from modeling future spot and forward prices by high-dimensional price models. (ii)

DDA avoids discretization errors, e.g., from lattice approximations of continuous-time

stochastic processes. (iii) DDA works with the true loss function (cost of purchase),

rather than with intermediate loss functions (e.g., least squares). Hence, DDA does not
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separate prediction and optimization and therefore explicitly captures the interplay be-

tween finance and operations in the sense of price modeling and decision-making (e.g.,

(a) if demand is high, the cost of price misspecification is higher than if demand is

low or (b) prediction models with coefficient of determination R2 � 1 are sufficient for

hindsight optimal decisions). (iv) Modeling the problem as a MILP offers additional

flexibility in terms of problem-specific operational constraints.

Moreover, we focus on implications of in-sample optimization on out-of-sample pro-

curement performance. Generalization is a central target in statistical learning theory

(Hastie et al., 2013; Vapnik, 1998), however widely overlooked in the operations liter-

ature (Section 3.2). The generalization error is affected by overfitting or underfitting,

i.e., by using feature data too extensively or too little. We combine data-driven opti-

mization with ML-based regularization for the selection of decision-relevant (rather than

prediction-relevant) features. By these means, the prescription problem is perturbed to

reduce the generalization error by adding bias to the estimator and improving variance.

Managerial Contribution

Even though this research is motivated by the procurement of natural gas, our models

are fairly general and applicable to many different commodity settings. The decision

rules from DDA are easy to interpret and easy to operationalize and allow for real-time

decision-making along the commodity forward curve.

A primary emphasis of the present chapter is to quantify the economic value of high-

dimensional feature data in a multi-period procurement context. Therefore, we introduce

several prescriptive performance measures (e.g., the Prescription Error and the Value

of Feature Information) that evaluate prediction quality based on the cost of decision,

rather than based on prediction error such as least squares loss. We backtest our models

on empirical data for the European gas market TTF. The results that we obtained

in close collaboration with our industry partner demonstrate significant out-of-sample

cost reductions compared to the firm’s status quo and various established benchmarks

from the literature (e.g., reoptimization, AR(1) models and the featureless approach).

We show that some of the best-in-practice benchmarks (e.g., REO and AR(1)) are

special cases of DDA. Additionally, we sensitize the Big Data-driven firm towards the

generalization error, i.e., decisions that perform well in-sample can work quite poorly

out-of-sample. We demonstrate that even (or especially) in a Big Data environment,

the firm needs to investigate carefully which data to use (Smart Data) and we show how

interpretable performance-based machine learning algorithms can provide support.
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Research Questions and Organization

We address the following research questions: (Q1) How can firms efficiently operational-

ize high-dimensional feature data for commodity procurement under price uncertainty?

(Q2) How to combine data-driven procurement with ML in order to support the selec-

tion of decision-relevant (rather than prediction-relevant) features with the objective of

reducing the out-of-sample generalization error? (Q3) What is the economic value of

feature data and analytics for commodity-purchasing firms?

Section 5.2 formalizes the problem and presents the DDA models. Section 5.3 intro-

duces performance bounds and several prescriptive performance metrics. Section 5.4

illustrates the main effects in controlled numerical experiments based on the specifica-

tion of a true but unknown underlying multivariate price model. Section 5.5 tests the

empirical performance for the procurement of natural gas. Section 5.6 concludes.

5.2. Model Formulation

Even though we have developed data-driven models for all major contract types (for-

wards/futures, swaps, European and American call options), we focus on forwards and

futures contracts in the following. The other models are available upon request.

5.2.1. Problem Setting

We consider a multi-period, discrete-time, periodic-review procurement problem. In each

period t (e.g., month), the firm decides on forward procurement quantities yτt for delivery

period t+τ by signing a forward/futures contract with time to maturity τ ∈ F+ = F\{0}
at a nominal unit price pτt quoted at the beginning of period t. Our firm is a price taker

and has no access to storage capacity, which is reasonable for commodities, such as

energy or for just-in-time production environments. Period demand dt ∈ D is known

(accurately forecasted) and needs to be satisfied (forced compliance) at the latest through

the spot market (τ = 0) at a spot price p0
t . Market capacity is infinite, i.e., markets are

supposed to be sufficiently liquid. Delivery lead time at the spot market is zero. Excess

quantities cannot be resold to the market (no trading).

The problem can be formulated as a standard SDP under the Bellman equation

Ct(~It, ~Ft, xt) = min
yτt ≥0

I0
t +y0

t≥dt

{∑
τ∈F

pτt y
τ
t + Et

[
Ct+1(~It+1, ~Ft+1, xt+1)

]}
∀t = 0, ..., n. (5.1)
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Ct+1 denotes the cost-to-go affecting the here-and-now purchase decisions yτt based on

the stochastic evolution of the forward curve ~Ft = (pτt : τ ≥ 0). The state space zt ∈ Zt
of the SDP is characterized by zt = (~It, ~Ft, xt). ~It = (Iτt ) is the position of the firm in the

forward market at the beginning of period t (endogenous state information) that evolves

according to the balance equation Iτt + yτt = Iτ−1
t+1 with I0

t being the forward procure-

ment quantity for delivery period t that has been hedged prior to t. I0
t +y0

t ≥ dt ensures

that dt needs to be satisfied latest through spot purchases y0
t . ~Ft is the deterministic

currently-quoted forward curve including the current spot price p0
t (exogenous state in-

formation). Future forward curves ~Ft+1, including future spot prices p0
t+1, are stochastic

and traditionally modeled by exogenous (high-dimensional) price models φ(pt+1) that

serve as input for the SDP. xt denotes the (unknown) state variables (i.e., features) that

drive the stochastic evolution of ~Ft by the (unknown) function ~Ft+1 = φ(~Ft, xt).

Theorem 2 (Structure of the Optimal Procurement Policy). The optimal procurement

policy is characterized by state-dependent price thresholds P τ
t . For all τ ∈ F+,

yτt
∗(xt) =

[dt+τ − Iτt ]+ if pτt ≤ P τ
t (xt),

0 if pτt > P τ
t (xt),

(5.2)

i.e., if the currently quoted forward price pτt is smaller than or equal to P τ
t (xt), then the

unhedged demand dt+τ is purchased via a forward contract with time to maturity τ .

Proof. see B.1

However, computing P τ
t (xt) via dynamic programming raises two issues: (i) The

curse of dimensionality in the case of multi-factor price models that result in a high-

dimensional state space zt ∈ Zt and (ii) price model error, i.e., we actually cannot

characterize the exogenous feature part xt of the state space zt ∈ Zt (and consequently

P τ
t (xt)) without full information about the true price model φ that is typically not known

(e.g., in terms of relevant price features) since mostly past data is available.

Therefore, we propose an entirely data-driven approach (DDA) without statistical

assumptions when capturing uncertainty. Rather than pre-determining xt and therefore

the state space zt ∈ Zt, DDA exploits the optimal state space characterization z∗t ∈ Zt by

using historical data from periods t = 1, ..., T ⊆ N>0 to train the model for out-of-sample

periods t = T, ..., T ′, with T ′ ≥ T . The firm’s database D = {(~Ft, dt, Xit)}t=1,...,T,i=1,...,N

includes historical forward curves ~Ft = (pτt : τ ≥ 0), demand time series dt ∈ D and time

series for feature realizations Xit ∈ X ⊂ RN×T of features i = 1, ..., N , with X defining
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the feature space. Potential features might include lagged prices (ARIMA models),

analyst forecasts or economic and market indicators. Thus, correlation structures are

considered without explicitly being a-priori modeled. Feature realizations Xit ∈ X and

prices along the forward curve ~Ft are observable prior to decision-making in t, and

decision stages t correspond to contract maturities, which have e.g. monthly occurrence.

t = 1

(~F1,d1,Xi1)

t = 2

(~F2,d2,Xi2)

...

...

t = T

(~FT ,dT ,XiT )

t = T + 1

(~FT+1,dT+1,Xi,T+1)

...

...

t = T ′

(~FT ′ ,dT ′ ,XiT ′ )

In-Sample Optimization Out-of-Sample EvaluationP τt (X)

Figure 5.2.: Training and evaluation framework

We consider two stages: At stage 1, the parameters of the optimal procurement policy

are trained in-sample (t = 1, ..., T ). For each forward contract τ ∈ F+, the training

provides a state-dependent price threshold P τ
t (X) as a function of the feature vector

X = (X1t, X2t, ..., XNt). P
τ
t (X) gives a dynamic purchase signal indicating whether or

not to lock in the currently-quoted forward price pτt . P
τ
t (X) may change in response to

changing information about market states. At stage 2, P τ
t (X) is evaluated out-of-sample

(e.g., t = T, ..., T ′, with T ′ ≥ T ) conditional on new feature realizations Xit.

5.2.2. Linear Decision Rule Approximation

We postulate an affine (i.e., linear plus a constant) decision rule approximation that is

(i) consistent with the optimal procurement policy structure in the sense of the corre-

sponding SDP, (ii) computationally tractable and (iii) easy to operationalize.

Definition 3 (Linear Decision Rule). For all available forward contracts τ ∈ F+ on the

forward curve ~Ft, the firm procures the unhedged demand of period t+τ via contract τ if

the following conditions are satisfied, otherwise procurement is postponed (real option):

(i) Condition I: There are no forward contracts owned in period t for future period

t+τ , i.e., the demand of the corresponding future period is not fully purchased yet.

(ii) Condition II: The linear decision rule (linear as a function of the features) gives

a condition-based purchase signal if

pτt ≤ P τ
t (X) :=

N∑
i=0

βτi Xit. (5.3)
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Note that this approach is fundamentally different from the existing data-driven liter-

ature (e.g., Ban and Rudin, 2019) that trains decisions yτt rather than policy parameters

P τ
t as a linear function of features. The standard LDR approach with yτt :=

∑N
i=0 β

τ
i Xit

would yield inconsistent and potentially suboptimal decisions if yτt > dt+τ−Iτt (overage).

In the regression-like equation (5.3), βτi ∈ B ⊂ R are feature coefficients that are un-

known to the decision maker and must be learned. βτ0 represents the feature-independent

intercept term, i.e., X0t = 1 ∀t = 1, ..., T . Even though the state-dependent price thresh-

old P τ
t (X) is a linear combination of features, this is not restrictive. Non-linearities can

be considered by interaction terms (e.g., P τ
t (X) := βτ0 + βτ1X1t + βτ2X2t + βτ3X1tX2t) or

by polynomial terms (e.g., P τ
t (X) := βτ0 + βτ1X

2
1t). Lagged observations (e.g., ARIMA

models) consider correlation across time periods and offer additional flexibility (e.g.,

P τ
t (X) := βτ0 + βτ1X1,t + βτ2X1,t−1 + βτ3X1,t−2). In this regard, equation (5.3) includes

many time series models as special cases, e.g., linear first-order autoregressive price mod-

els (AR(1)) of the form pt = β0 + β1pt−1 + εt with random error term εt ∼ N(0, σ2
t ).

AR(1) models that are widely used in the commodity procurement literature (see Sec-

tion 3.2) specify typical commodity price behavior, such as random walk (pt = pt−1 +εt),

mean reversion (pt = κµp + (1− κ)pt−1 + εt with κ ∈ [0, 1) as the mean-reversion speed

and µp as the mean reversion level) or momentum (β1 > 1).

However, rather than by a feedforward mechanism (prediction-based procurement

decisions based on price forecasts) via ordinary least squares (OLS) or similar standard

regression techniques, βτi ∈ B of features i = 0, ..., N for each forward contract τ ∈
F+ are trained via a feedback mechanism (prescription-based procurement decisions)

solving an MILP based on the statistical learning theory principle of Empirical Risk

Minimization (ERM; Vapnik 1998, pp. 32), i.e., minβτi ∈B
{

1
T

∑T
t=1 `DDA(Ĉt, C

PF
t )
}

, with

`DDA being the loss function of DDA minimizing the empirical cost Ĉ of DDA relative

to the theoretical perfect foresight policy PF (“oracle problem”). Minimizing the loss

with respect to the nominal optimization problem is equivalent to setting the coefficients

βτi ∈ B of the linear threshold functions P τ
t (X) such that the feature-conditional cost of

purchase is minimized, i.e.,

min
βτi ∈B

{
1

T

T∑
t=1

∑
τ∈F

Ĉt(p
τ
t , β

τ
i )|X

}
. (5.4)

Notationˆemphasizes costs that are estimated from data via the ERM principle, rather

than the expected cost under the full information problem.
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5.2.3. Data-Driven Models for Policy Parameter Optimization

The data-driven nature of the optimization problem (5.4) is similar to a two-stage

stochastic program (see Shapiro et al., 2009), with βτi ∈ B being time-independent

(i.e., scenario-independent) first-stage decisions and all other decision variables being

second-stage scenario decisions (recourse decisions that are pre-determined by βτi and

feature data Xit). Each data observation t = 1, ..., T is per se equally weighted. How-

ever, seasonality in dt ∈ D can give greater weight to periods with high demand, which

is not captured by sequential approaches with price prediction prior to optimization.

Table 5.1.: General notation (Additional notation defined as required)

Sets

t = 1, ..., T In-sample periods (training)
τ ∈ F+ = F\{0} Forward contract with time to maturity τ (τ = 0 denotes the spot market option)
i = 0, ..., N Features (i = 0: feature-independent intercept)

Parameters
pτt Forward price in period t with contract maturity t+ τ
Xit Realization of feature i in period t
dt Demand in period t

Decision variables

qτt Binary purchase indicator for forward contract τ in period t
βτi Regression-like coefficient for feature i under forward contract τ

Additionally, due to regime switches and structural breaks, commodity prices typi-

cally do not come from the same data-generating process, which may yield misleading

OLS estimates. Instead, we apply a least absolute deviation (LAD) regression-like ap-

proach that is robust to violations of the underlying OLS regression assumptions (i.e.,

particularly homoscedasticity and that outliers are rare) (Andersen, 2008, pp. 47).

The following Big Data model (DDA-BD) with the notation given in Table 5.1 trains

the state-dependent purchase signals P τ
t (X) :=

∑N
i=0 β

τ
i Xit of the LDR by exploiting all

available feature information {(Xit)}t=1,...,T,i=0,...,N .

DDA-BD:

min
βτi ∈B

ĈBD =
1

T

T∑
t=1

∑
τ∈F|τ≤T−t

[
pτt dt+τ q

τ
t

]
(5.5)

s.t.
∑

τ∈F|τ≤t−1

qτt−τ = 1 ∀t = 1, ..., T (5.6)
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−M(1− qτt ) ≤
N∑
i=0

βτi Xit − pτt ∀t = 1, ..., T − τ ;

τ ∈ F+ (5.7)

M

(
qτt +

∑
a∈F|a≤t+τ−1∩a>τ

qat+τ−a

)
>

N∑
i=0

βτi Xit − pτt ∀t = 1, ..., T − τ ;

τ ∈ F+ (5.8)

qτt ∈ {0, 1}, βτi ∈ R ∀t = 1, ..., T ; τ ∈ F ;

i = 0, ..., N (5.9)

The objective (5.5) minimizes the historical average period and demand-weighted cost

of spot and forward procurement quantities by means of feature data with respect to

the linear decision rule framework from Definition 3. Because of the all-or-nothing

property of the optimal policy, the ordering part only includes the binary variable qτt .

Constraint (5.6) guarantees that the demand dt ∈ D is either satisfied by spot purchases

(τ = 0) or by a forward contract τ ∈ F+ signed in period t − τ . Constraints (5.7)-

(5.8) control the execution of the threshold rule: First, for all forward contracts F+,

qτt = 0 if pτt >
∑N

i=0 β
τ
i Xit. Second, for all contracts, qτt = 1 if pτt ≤

∑N
i=0 β

τ
i Xit, unless

the demand has not already been satisfied in a previous period, which is captured by

qat+τ−a. Hence, constraint (5.8) disables the execution of the threshold rule if there has

already been an earlier purchase with regard to the period under consideration. Note

that there is no price threshold estimated for the spot market (τ = 0), which is the latest

procurement option.

As a special case of DDA-BD, the Small Data model (DDA-SD) corresponds to the

degenerate featureless intercept-only approach (N = 0) that offers a time- and feature-

independent constant price threshold P τ := βτ0 for each forward contract τ ∈ F+.

To find the model specification with the highest (in-sample) explanatory power for

a given dimension N̄ , we refer to the Best Subset Selection Problem (DDA-BSSP) pre-

sented in Appendix B.2.

As P τ
t (X) :=

∑N
i=0 β

τ
i Xit is unbounded within the MILP (as prediction and optimiza-

tion is done simultaneously), we cannot derive bounds for Big M. However, one may

set M ≥ p̂, with p̂ as upper price limit, determined by, e.g., the price of substitutes.

To avoid Big M and potentially resulting instability issues, we use indicator constraints

(see Appendix B.3) for all our numerical tests in Section 5.4 and Section 5.5.
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Remark 1 (Non-Uniqueness of the β-Solution). In linear OLS regression, the func-

tion minβ∈B
∑T

t=1(pt+∆t −
∑N

i=0 βiXit)
2 has a single local minimum if T ≥ N , i.e., no

other linear model yields more accurate predictions. In least absolute deviation (LAD)

regression, minβ∈B
∑T

t=1 |pt+∆t−
∑N

i=0 βiXit| that can be solved by an LP may possess in-

finitely many optimal solutions. Thus, DDA-BD and DDA-SD, similar to LAD, can lead

to alternate optimal solutions with regard to βτi , i.e., different values for βτi can yield the

same optimal solution qτt , which is due to the threshold structure of the decision problem.

Even though Remark 1 gives interesting insights about the relationship between pre-

diction and prescription (decision), as it implies that differently accurate price forecasts

still might yield optimal procurement decisions, it might not be desirable with regard to

model generalization. Therefore, we extend DDA to performance-based regularization.

5.2.4. Data-Driven Models under ML-Based Regularization

The solutions to the DDA formulation from Section 5.2.3 can be highly unstable with

poor generalization capability (see, e.g., Ban et al. (2018b) in the context of portfolio op-

timization). To avoid that the model fits the noise in the data rather than the underlying

function, we apply `1-regularization for decision-based feature selection. Regularization

penalizes non-zero coefficients in order to keep the model from relying too heavily on in-

dividual data points. We consider two ML-based regularization methods, however with

the objective of high-quality decisions rather than high-quality predictions: (i) Lasso

regression that sets certain coefficients βτi ∈ B to zero and yields sparse solutions and

(ii) ridge regression that shrinks the size of the coefficients βτi ∈ B towards zero.

Performance-Based Lasso Regression

We use `1-norm regularization R(w) = ||w||1 =
∑N

i=1w
τ
i , where wτi is equal to 1 if

|βτi | > 0 and 0 otherwise. We employ `1-norm regularization instead of regularization by

higher norms (e.g., `2 with R(w) = ||w||22 =
∑N

i=1

(
wτi
)2

) for robustness reasons and in

order to avoid non-linear (e.g., quadratic) terms in the objective function. Furthermore,

`1-norm is a sparse predictor, i.e., it tends to produce sparse non-zero coefficients βτi ∈ B
and hence has feature selection property (Hastie et al., 2013, p. 141). Additionally, it

also reduces multicollinearity by removing independent variables.

Lasso regression controls overfitting by selecting a subset of decision-relevant features

rather than selecting prediction-relevant features via model selection criteria, such as

AIC or BIC. The overall objective is to simultaneously minimize cost and model com-
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plexity, which is achieved by the following Lasso-regularized optimization problem.

DDA-ML1:

min
βτi ∈B

1

T

T∑
t=1

∑
τ∈F|τ≤T−t

[
pτt dt+τ q

τ
t

]
︸ ︷︷ ︸

:=ĈML1

+ λ
N∑
i=1

∑
τ∈F+

wτi︸ ︷︷ ︸
Model complexity

(5.10)

s.t. (5.6)− (5.9) (5.11)

Mwτi ≥ βτi ∀i = 1, ..., N ; τ ∈ F+ (5.12)

−Mwτi ≤ βτi ∀i = 1, ..., N ; τ ∈ F+ (5.13)

wτi ∈ {0, 1} ∀i = 1, ..., N ; τ ∈ F+ (5.14)

λ ≥ 0 is a parameter to control regularization. λ is typically calibrated via cross-

validation (see Mohri et al., 2012, p. 28). Constraints (5.12) and (5.13) ensure for all

i = 1, ..., N that wτi = 1 if |βτi | > 0 and zero otherwise. The intercept βτ0 is not regu-

larized, which avoids that P τ
t (X) = 0 for large λ, which would lead to permanent spot

procurement. For λ = 0, DDA-ML1 reduces to DDA-BD. For λ → ∞, DDA-ML1 con-

verges to DDA-SD as for all i = 1, ..., N , βτi is set to zero.

Performance-Based Ridge Regression

In ridge regression, the size of the coefficients βτi ∈ B, rather than the number of non-zero

coefficients, is trimmed. The objective is to minimize both cost and model complexity,

which is achieved by the following regularized optimization problem where βτ,absi denotes

the absolute value of βτi .

DDA-ML2:

min
βτi ∈B

1

T

T∑
t=1

∑
τ∈F|τ≤T−t

[
pτt dt+τ q

τ
t

]
︸ ︷︷ ︸

:=ĈML2

+ λ
N∑
i=1

∑
τ∈F+

βτ,absi︸ ︷︷ ︸
Model complexity

(5.15)

s.t. (5.6)− (5.9) (5.16)

βτ,absi ≥ βτi ∀i = 1, ..., N ; τ ∈ F+ (5.17)

βτ,absi ≥ −βτi ∀i = 1, ..., N ; τ ∈ F+ (5.18)

βτ,absi ∈ R ∀i = 1, ..., N ; τ ∈ F+ (5.19)
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In order to ensure that the objective function for ridge regression works properly,

regularization requires a-priori feature scaling to standardize the magnitude of feature

data (Hastie et al., 2013, p. 63). If features are not comparable in their magnitude,

βτi ∈ B might be of different magnitude as well, which influences shrinkage. For feature

scaling, the ML literature (Hastie et al., 2013, p. 400) typically applies z-scores, with

X ′it as the standardized feature value and σ as the standard deviation:

X ′it =

Xit − 1
T

T∑
t=1

Xit

σXit
(5.20)

5.3. Performance Bounds and Performance Metrics

In this section, we derive bounds on the in-sample performance and introduce different

performance measures for our data-driven prescriptions that are later used to interpret

the numerical results.

We can derive in-sample cost bounds for DDA-BD, DDA-SD and DDA-ML that en-

hance our general understanding of the relationship between the different data-driven

model formulations. An important reference value is the lower cost bound CPF achieved

by the truly optimal policy under perfect (deterministic) price information (“oracle”),

i.e., forward quantity decisions yτt based on perfect predictions of pτt ∀τ ∈ F , t = 1, ..., T .

Note that perfect price predictions are a sufficient, but not necessary, condition to achieve

CPF. CPF can be determined by the following LP:

CPF = min
1

T

T∑
t=1

∑
τ∈F

[
pτt y

τ
t

]
(5.21)

s.t.
∑

τ∈F |τ≤t−1

yτt−τ = dt ∀t = 1, ..., T (5.22)

yτt ≥ 0 ∀t = 1, ..., T ; τ ∈ F (5.23)

Remember that the perfect foresight problem (5.21)-(5.23) is not equivalent to the full

information problem where the decision maker has full information about the price

process φ(pt+1) and its parameters but future prices are still uncertain.
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Proposition 2 (In-Sample Relationships).

(i) CUB ≥ ĈBD ≥ CPF. CUB describes the upper cost bound (worst case procurement

policy) as obtained by solving the optimization model (5.21)-(5.23) as a maximiza-

tion problem.

(ii) ĈBD → CPF for N → ∞. DDA is trained with respect to the loss function of

the prescription problem, i.e., `DDA = |Ĉ − CPF|. If there is no multicollinearity

between features i = 1, ..., N , then with increasing number of features N , the data-

driven solution converges to the perfect foresight optimum (PF) as the model can

fit the underlying function more accurately.

(iii) For N ≥ T , ĈBD = CPF. If the number of features N is greater than or equal

to the number of demand periods T , the model is able to give an individual price

threshold P τ
t (X) to each in-sample period t (overfitting). Consequently, ĈBD is

equal to CPF. Again, this is only true if the multicollinearity between features

i = 1, ..., N is sufficiently small.

(iv) ĈBD ≤ ĈSD. This follows from (ii).

(v) ĈBD ≤ ĈML. This is true as λ ≥ 0 and for all i = 1, ..., N and τ ∈ F+, wτi ≥ 0

(DDA-ML1) respectively |βτi | ≥ 0 (DDA-ML2). The idea of ML in data-driven op-

timization is to overcome overfitting and therefore accept an in-sample performance

loss.

(vi) ĈBD ≤ CREO. The popular reoptimization approach (REO) (see Section 5.5) uses

deterministic forward curve information from t, i.e., ~Ft, as predictor for future

periods. REO is a special case of DDA-BD if pτt ∀τ ∈ F is used as feature infor-

mation within equation (5.3).

Based on the performance bounds, we introduce several prescriptive performance mea-

sures that measure the value of data from a decision rather than a prediction perspective.

Prescription Error (PE)

In order to evaluate and compare the data-driven models and support model selection, we

introduce the Prescription Error (PE), which is the prescriptive equivalent to prediction

error measures, such as the mean absolute percentage error (MAPE).
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Definition 4 (Prescription Error).

PE :=

(
Ĉ − CPF

CPF

)
· 100% ≥ 0

PE is the percentage cost deviation from the theoretical cost CPF under perfect price

information, i.e., under perfect foresight predictions of pτt ∀τ ∈ F , t = 1, ..., T .

PE can be interpreted as the maximum amount a firm should pay for perfect price

forecasts. However, note that perfect price predictions are a sufficient but not necessary

condition for perfect prescriptions (decisions), i.e., for PE = 0. If PE = 0, the feature

set explains the price evolution as accurately such that the procurement performance

cannot be improved (not even by more accurate price models).

Value of Feature Information (VFI)

In order to assess the overall prescriptive content of the feature data {(Xit)}t=1,...,T,i=1,...,N ,

we adopt the coefficient of prescriptiveness introduced by Bertsimas and Kallus (2016).

Definition 5 (Value of Feature Information).

VFI := 1− ĈBD − CPF

ĈSD − CPF
= 1− PEBD

PESD
≤ 1

VFI is unitless and determines the value of DDA-BD compared to DDA-SD.

VFI is the prescriptive equivalent to R2 from predictive analytics. If VFI is small (low

prescriptiveness), then feature data Xit provides little information for prescribing an

optimal decision, or DDA-BD is unable to effectively use the information in Xit. If VFI

is large (high prescriptiveness), then feature data Xit provides valuable information to

significantly reduce purchasing cost. V FI can be used as an in-sample and out-of-sample

performance indicator: In-sample, VFI is non-decreasing in the number of features N

and bounded by 0 ≤ VFI ≤ 1. Out-of-sample, VFI is bounded by −∞ ≤ VFI ≤ 1

as Xit might provide useless or even disadvantageous (noisy) information for purchase

decisions (i.e., VFI < 0).
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Value of Integrating Estimation and Optimization (VIEO)

A major benefit of the integrated data-driven approach (DDA), if compared to the

sequential separated estimation and optimization approach (SEO), is that there is no

need to conduct regression forecasts for all contract maturities τ on the forward curves.

Instead, the firm only needs to solve a single MILP that can easily be extended to ML

techniques for decision-based feature selection (Section 5.2.4).

However, there might also be a performance value in integrating prediction and op-

timization. SEO follows a feedforward mechanism that determines procurement deci-

sions predictively, based on price forecasts that were made without consideration of cost

objectives. As opposed to SEO, DDA follows a feedback mechanism that determines

procurement decisions prescriptively, by considering cost implications. E.g., price fore-

casts are more important in periods of high demand (e.g., during winter for natural gas)

and less important in periods of low demand. In order to assess the value of integrating

prediction and optimization, we introduce the performance measure VIEO.

Definition 6 (Value of Integrating Estimation and Optimization).

VIEO :=

(
ĈSEO − ĈDDA

ĈDDA

)
· 100%

ĈSEO is the associated purchase cost if βτi ∈ B (and hence P τ
t (X)) is estimated pre-

dictively under OLS or LAD objectives (dependent variable p0
t+τ , independent variables

Xit, normally distributed error term). ĈDDA is the purchase cost if βτi ∈ B is estimated

prescriptively under cost objectives.

There are mainly three reasons for different purchase decisions based on prediction and

prescription: (i) Different objectives of predictive and prescriptive approaches. While

the predictive regression approach aims at minimizing the sum of the squared residuals

(OLS) or absolute residuals (LAD), the prescriptive approach aims at cost minimization.

(ii) Predicting the price thresholds P τ
t (X) in a sequential manner does not leverage any

problem structure. E.g., if a future period’s demand is already hedged, the firm may

not hedge again, even if the current forward price is lower than the expected future

price. (iii) Other than SEO, DDA considers finance-operations interdependencies by

minimizing cost, rather than the sum of the squared residuals. E.g., price predictions

need to be more accurate for high-demand periods and less accurate for low-demand

periods.
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5.4. Controlled Numerical Study

Prior to using real data in Section 5.5, we illustrate the value of DDA in controlled

numerical experiments based on simulation. All solutions were obtained without opti-

mality gap with the Xpress-MP solver (version 7.6) on an Intel(R) Core(TM) i7-3770,

3.4 GHz processor with 16 GB RAM, which is a rather conservative choice compared to

what is available in industry. Computation times are reported in Appendix B.4.

5.4.1. Setup

Inspired by the problem setting at our industry partner, we construct a simulation

experiment with monthly procurement decisions. We simulate time series split into

training periods (t = 1, ..., T ) and evaluation periods (t = T, ..., T ′). To study sample

size effects, we vary the training set size (T ∈ {24, 48, 72}) (e.g., 2 years, 4 years, 6

years). The size of the evaluation period (test set size) is fixed to T ′ − T + 1 = 48

(for exemplary price sample paths, see Figure B.2 of Appendix B.5). All experiments

are based on Monte Carlo simulation. We evaluate every instance on 100 independent

simulation runs. To guarantee fair comparisons, we use common random numbers.

(i) Procurement Options. We assume that the firm has two procurement options:

spot purchases and one-period-ahead forward purchases (front-month contract) with

the relationship between forward price and spot price described by p1
t = p0

t + εt, with

εt ∼ N(0, (
p0
t

100
)2). If εt > 0, the market is in contango (upward sloping forward curve),

if εt < 0, the market is in backwardation (downward sloping forward curve). εt =

0 is reasonable for markets under the spot-future parity condition pτt = p0
t · e(r−Y )τ

with interest rate r = 0 and convenience yield Y = 0 (Geman, 2005, p.35). For ease

of illustration, we only consider one maturity (one-period-ahead forward contracts).

However, in the case study in Section 5.5, we allow for various maturities. The state-

dependent price threshold of the linear decision rule that gives a signal about forward

purchases is defined as Pt(X) := β0 +
∑10

i=1 βiXit, i.e., the firm has access to a database

with 10 features available for decision-making.

(ii) Simulation of Price Trajectories. We suppose that the true but unknown under-

lying multivariate stochastic spot price process φ(p0
t+1) (full information problem) has

the following form:

p0
t+1 = βtrue

0 + βtrue
1 p0

t︸ ︷︷ ︸
AR(1)

+ βtrue
2 X2t︸ ︷︷ ︸

Additional price feature

+εt. (5.24)
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Neither coefficients βtrue
0 , βtrue

1 and βtrue
2 , nor the two price-relevant features from

the available feature set i = 1, ..., 10 are known and both must be learned from data.

Feature i = 1 is assumed to be the current spot price observation p0
t , while i = 2

is an unspecified additional price-relevant feature (e.g., an analyst forecast respectively

forecast adjustment or related commodity prices that have an impact on p0
t+1). The noise

term is supposed to be εt
i.i.d.∼ N(0, σ2

εt). Note that if σ2
εt is small, learning is expected

to be more effective. Furthermore, note that σ2
εt accounts for the difference between

the full information problem and the perfect foresight problem. For the full information

problem, price model (5.24) is known but there is still uncertainty, i.e., σ2
εt > 0. For the

perfect foresight problem with deterministic future prices, εt is known to the firm.

The true but unknown parameters of price process φ over the time horizon t = 1, ..., T ′

are assumed to be (βtrue
0 , βtrue

1 ) = (0, 1) and (βtrue
0 , βtrue

1 ) = (100, 0.5), respectively. The

first setting describes a random walk (RW) price process pt+1 = pt + εt and the second

setting describes a mean reverting (MR) price process pt+1 = κµp + (1 − κ)pt + εt

with long-run mean price level of µp = 200 and mean reversion speed κ = 0.5. As

there is no consensus in the commodity finance literature whether commodity prices

(e.g. of natural gas) follow a random walk or rather are mean-reverting (see, e.g.,

Andersson, 2007; Geman, 2007), DDA does not make any a-priori assumptions but

learns the threshold price over time. The impact of the additional price-relevant feature

i = 2 is determined by βtrue
2 = 1. In the following, we also investigate the loss by

ignoring this additional price feature and deciding based on pure random walk or mean

reversion assumptions, respectively, i.e., price-dependent price threshold Pt(p
0
t ) := β0 +

β1p
0
t . This order-1-autoregressive approach is denoted as DDA-AR1 in the following.

We furthermore distinguish between four different levels of noise in the data, i.e., σεt ∈
{5, 10, 20, 30}. We generate price trajectories using the following procedure: Feature

data X2t is drawn from N(0, 152) for all t = 1, ..., T ′. Initial spot price is set to p0
1 = 200.

Consequently, p0
t+1 can be generated according to equation (5.24) for all t = 1, ..., T ′−1.

Price simulation paths that include negative prices (which occurred for RW in minor

cases) are ignored. For exemplary price paths of RW and MR, see Figure B.2 of Appendix

B.5. Over all simulations, the average monthly spot price change is of the order 6−16%,

which is reasonable for the gas price time series (9%) that we analyze in Section 5.5.

(iii) Simulation of Feature Trajectories. Feature data relevant for price predictions

(i.e., p0
t and X2t) is generated according to the previously described procedure. All

other feature data Xit ∀i = 3, ..., 10 without effect on prices is generated by sampling

randomly from N(10i, (2i)2).
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(iv) Simulation of Demand Trajectories. For the first part of our experiments, we

assume constant demand, as this is the situation at our industry partner. For interpre-

tation purposes, we set dt = 1 for all t = 1, ..., T ′. In the second part, which studies

the Value of Integrating Estimation and Optimization (V IEO), we additionally suppose

a seasonal demand pattern modeled by the following process with mean demand level

µd = 1 and amplitude µd/2:

dt =

[
1 +

1

2
sin

(
π (t− 2)

6

)
µd

]
. (5.25)

(v) Procurement Policies. We compare the Big Data model (DDA-BD) that has access

to all feature data (i = 1, ..., 10) with the featureless approach (DDA-SD), DDA-AR1

that only learns auto-regression in prices (i.e., feature p0
t ) but ignores further feature

data i = 2, ...10, and regularization-based ML extensions (DDA-ML1, DDA-ML2). We

furthermore consider the pure spot procurement policy (P-SPOT) and the pure forward

procurement policy (P-M1). In the second part of the experiments, we additionally

consider the separated estimation and optimization approach (SEO), which we describe

in detail in the corresponding section.

(vi) Choice of Further Model Parameters. To ensure that the ML models (DDA-ML1,

DDA-ML2) work properly, feature data Xit is standardized according to equation (5.20).

We optimize the regularization parameter λ for the ML models (DDA-ML1, DDA-ML2)

with an accuracy of 10−2 within a cross-validation procedure splitting the in-sample data

equally into training and validation sets.

Table 5.2.: Summary of the numerical design

In-sample periods (training) t = 1, ..., T with T ∈ {24, 48, 72}
Out-of-sample periods (evaluation) t = T, ..., T ′ with T ′ − T + 1 = 48
General price process Random walk (RW), mean reversion (MR)
Price process noise σεt 5, 10, 20, 30
Demand process Constant, seasonal
Procurement policies DDA-BD, -SD, -AR1, -ML1, -ML2, P-SPOT, P-M1, SEO
Performance measures PE, VFI, VIEO

In the following, we answer research question (Q3 ). In particular, we want to exploit

the drivers of Prescription Error (PE), Value of Feature Information (VFI) and Value

of Integrating Estimation and Optimization (VIEO) in commodity procurement.
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5.4.2. Results

All results are reported across the 100 independent simulations that we run for each

parameter configuration of Table 5.2. Boxplots report the minimum, 1st-, 2nd-, 3rd-

quartile, maximum and the mean (×) value across the 100 simulations. Note that all

results within a graph allow for fair comparisons as we evaluate on the same out-of-

sample data (common random numbers).

Prescription Error (PE)

Figure 5.3 summarizes the out-of-sample PE of the different procurement policies for

different parameter configurations in terms of training set size T , underlying price be-

havior (RW, MR) and level of price process noise σεt . It shows the rather intuitive result

that PE of DDA-BD decreases with increasing training set size T (sample size effect)

and increases with increasing noise in the price process σεt .

Regularization-based ML extensions (DDA-ML1, DDA-ML2) that decrease the in-

sample performance yield less complex feature models and reduce overfitting, which in-

creases the out-of-sample performance significantly (both average and worst case) except

for the case with RW price behavior and price process noise of large size (σεt = 30), in

which the performance improvements through regularization are still positive but rather

small. If T is sufficiently large and σεt is sufficiently small, regularization-based ML

extensions generate less additional value relative to DDA-BD as there is less overfitting

of the threshold function Pt(X) generated by DDA-BD.

Figure 5.3 furthermore demonstrates that by ignoring additional feature information

and deciding only based on AR(1) assumptions (DDA-AR1), purchase costs are signifi-

cantly higher. The same is true for decisions based on a time-invariant price threshold

(DDA-SD). However, there is a difference in the relative performance of DDA-SD with

regard to the price process φ: If commodity prices are mean-reverting without trend,

the performance loss of DDA-SD relative to DDA-BD, DDA-ML1 and DDA-ML2 is

smaller than under RW assumptions where DDA-SD cannot capture the changing price

levels (trends). If in addition price process noise σεt is large (Figure 5.3b2), then DDA-

SD might even outperform DDA-BD, which misspecifies the price threshold Pt(X) by

overfitting. For the pure policies (P-SPOT and P-M1), the opposite is true: their per-

formance loss relative to the other policies is higher under MR than under RW due to

longer periods of upward and downward trends under the RW regime, for which P-M1

(for bull markets) or P-SPOT (for bear markets), respectively, is beneficial.
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Figure 5.3.: Out-of-sample prescription error (PE) of different procurement policies condi-
tional on training set size T , price process type (RW, MR) and price process
noise levels σεt across 100 simulations (For the results of σεt ∈ {10, 20}, see
Figure B.3 in Appendix B.5)

In general, we observe that regularization-based DDA-ML1 and DDA-ML2 perform

similarly well, and yield the best average out-of-sample procurement performance for all

price processes, training set sizes and noise levels. If σεt is small, DDA-ML1 and DDA-

ML2 come close to PF even for short training cycles. Across the 2,400 out-of-sample

comparisons (2,400 = 2 price process types × 4 noise levels × 3 training set sizes ×
100 simulation runs), DDA-ML1 (DDA-ML2) strictly outperforms DDA-BD in 76.08%

(75.79%) of the settings, DDA-AR1 in 91.71% (91.63%), DDA-SD in 92.04% (92.08%),

P-SPOT in 98.04% (97.88%) and P-M1 in 95.54% (95.38%) of the settings. The min-

imum dominance of DDA-ML1 (DDA-ML2) against DDA-BD is 57.00% (55.00%) for

parameter configuration (RW, T = 24, σεt = 30), against DDA-AR1 62.00% (62.00%)

80



5.4. Controlled Numerical Study

for the same parameter configuration, against DDA-SD 64.00% (62.00%) for parameter

configuration (MR, T = 24, σεt = 30), against P-SPOT 85.00% (87.00%) and against

P-M1 73.00% (74.00%) both for parameter configuration (RW, T = 24, σεt = 30) - all

instances of short training cycles and high level of noise.

Value of Feature Information (VFI)

Figure 5.4 reports the average out-of-sample results of the VFI for our simulation setup.

We observe that VFI increases with increasing training sample size and decreases with

increasing price process noise σεt .
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Figure 5.4.: Average out-of-sample value of feature information (VFI) of DDA-BD (left),
DDA-ML1 (right, solid lines) and DDA-ML2 (right, dashed lines) for different
training set sizes T , price process types (RW, MR) and price process noise levels
σεt across 100 simulations (Full descriptive statistics of the results in Figure B.4
of Appendix B.5)

Regularization-based ML extensions that extract the relevant features from noise re-

duce overfitting and increase VFI significantly compared to DDA-BD for both price

process types RW and MR (plots on the right hand-side of Figure 5.4 compared to plots

on the left hand-side). Furthermore, we notice a concave shape, i.e., more additional
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value is generated by increasing the sample size from T = 24 to T = 48 rather than from

T = 48 to T = 72. Especially for the ML approaches under small price process noise

σεt , the additional value relative to the featureless approach generated from increasing

the training set size from T = 48 to T = 72 is negligible.

We also observe for MR that the average out-of-sample VFI of DDA-BD is negative if

σεt is sufficiently large and T is sufficiently small (Figure 5.4b1). In this case, overfitted

DDA-BD generalizes worse than decisions based on constant feature-independent pur-

chase signals (DDA-SD), i.e., feature data yields disadvantageous information. Conse-

quently, ML extensions that extract decision-relevant features from noise are mandatory

to generate value from covariate data (Figure 5.4b2).

Value of Integrating Estimation and Optimization (VIEO)

Even though we believe that the advantage of DDA compared to SEO comes, in par-

ticular, from reduced effort, the built-in cost-based backtesting opportunity (cost im-

plications of predictions) and the easy to interpret and easy to operationalize decision

rule framework, we still want to study whether there is a significant performance impact

from integrating prediction and optimization.

Therefore, we compare the performance of DDA with the performance of SEO. To ob-

tain price estimates for SEO, we apply OLS regression without (SEO) and with (SEO-

AIC) forward-backward stepwise regression under the complexity criterion AIC. The

OLS equivalent to DDA-BD is SEO, which does not use any complexity criterion for

feature selection. Hence, both DDA-BD and SEO are heavily affected by overfitting,

while DDA-ML and SEO-AIC aim at minimizing overfitting. Price models are esti-

mated with the software R (lm-function for linear OLS models and stepAIC-function for

stepwise forward-backward regression under the AIC model selection criterion). As we

consider a setting with only one forward contract available, the price threshold P 1
t (X)

simply describes the price expectation Et[p0
t+1]. This allows us to evaluate the cost-based

out-of-sample performance of SEO by evaluating prediction-based βi ∀i = 0, ..., 10 from

OLS regression with the MILP of DDA-BD. For fair evaluation, we compare DDA-BD

with SEO and DDA-ML with SEO-AIC based on the same 2,400 experiments (same

100 simulation runs as before for each of the parameter configurations with 2 price

process types, 4 price process noise levels, 3 training set sizes). Therefore, we need to

run 2,400 OLS regressions (SEO) and 2,400 OLS-AIC regressions (SEO-AIC) in total.

Even though we are typically interested in out-of-sample implications, we also report in-

sample results, which provides valuable additional information in this paragraph. Both
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the in-sample and the out-of-sample results across the 2,400 experiments are reported

in Table 5.3 for different noise levels σεt .

Table 5.3.: In-sample and out-of-sample VIEO in % for DDA-BD vs. SEO and DDA-ML vs.
SEO-AIC under constant demand

DDA-BD vs. SEO

In-Sample Out-of-Sample

σεt 5 10 20 30 5 10 20 30
Mean 0.11 0.37 0.92 1.45 -0.73 -0.66 -0.47 -0.52
Min 0.00 0.00 0.00 0.00 -5.56 -10.36 -4.66 -5.02
25% Quantile 0.05 0.21 0.55 0.80 -0.99 -0.95 -0.88 -1.19
50% Quantile 0.09 0.33 0.82 1.35 -0.51 -0.46 -0.37 -0.35
75% Quantile 0.14 0.47 1.18 1.94 -0.22 -0.18 0.03 0.16
Max 0.59 2.08 9.22 4.82 1.72 1.32 3.19 4.52
DDA Dominance 100% 100% 100% 100% 4.8% 11.3% 27.2% 32.2%

DDA-ML vs. SEO-AIC

In-Sample Out-of-Sample

σεt 5 10 20 30 5 10 20 30
Mean 0.06 0.16 0.28 0.35 -0.17 -0.12 0.10 0.24
Min -0.12 -0.51 -1.20 -1.71 -5.13 -3.56 -2.46 -2.03
25% Quantile 0.02 0.05 0.02 -0.01 -0.24 -0.31 -0.33 -0.36
50% Quantile 0.05 0.13 0.23 0.30 -0.07 -0.07 0.08 0.10
75% Quantile 0.09 0.24 0.48 0.71 0.02 0.15 0.45 0.76
Max 0.53 1.34 5.87 2.69 1.72 2.85 4.55 5.33
DDA Dominance 95.7% 89.2% 78.5% 74.3% 31.5% 42.5% 57.0% 60.5%

Note. Due to similar performance of DDA-ML1 and DDA-ML2, we use DDA-ML1 for evaluation;
results aggregated across price process types (RW,MR) and training set sizes T . While in-sample
VIEO ≥ 0 for DDA-BD, the in-sample VIEO of DDA-ML can also be negative due to cost-complexity
objectives rather than pure cost objectives.

DDA-BD versus SEO. The in-sample results demonstrate that fitting the model using

OLS regression rather than fitting the model within the optimization problem yields

on average 0.11 − 1.45% higher cost (with a maximum of 9.22%). This percentage

quantifies the value of a robust regression approach that leverages the optimization

problem structure by minimizing the cost delta between DDA and PF, rather than

minimizing squared residuals between price forecasts and price realizations. However,

we observe that the in-sample benefits of DDA-BD over SEO are overlaid by the poor

generalization of DDA-BD due to massive overfitting and alternate optimal solutions.

Consequently, it is not surprising that, on average, SEO outperforms DDA-BD out-of-

sample (VIEO < 0).
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DDA-ML versus SEO-AIC. We already observed that regularization-based ML ex-

tensions (DDA-ML) increase out-of-sample generalization significantly. However, the

comparison of DDA-ML with SEO would not be fair as DDA-ML uses feature selection

while SEO does not. Therefore, we compare DDA-ML with SEO-AIC. DDA-ML ben-

efits from leveraging the structure of the optimization problem and, at the same time,

reduces the generalization error that deteriorates the performance of DDA-BD. We ob-

serve that DDA-ML outperforms SEO-AIC (in mean and median) when σεt is rather

large (σεt ∈ {20, 30}). In these settings SEO-AIC can yield a 5.33% higher cost. While

with increasing σεt , the predictive power of both DDA-ML and SEO-AIC decreases, it

seems that the performance of SEO-AIC is more strongly affected by this issue. Higher

noise might cause more severe outliers which fosters robust regression-based DDA-ML

compared to OLS-based SEO that gives more weight to outliers.

Effect of Demand Seasonality. Even though we do not address demand patterns

in detail (as our industry partner faces constant gas demand over the year), demand

seasonality might reinforce the gap between DDA and SEO, and hence the value of

leveraging the optimization problem structure for price predictions. When the 2,400

in-sample experiments are repeated under the seasonal demand pattern modeled by

equation (5.25), VIEO increases on average by 2.5% (for maximum instances by 27.3%).

This is because DDA, which aims at minimizing costs, takes demand variations into

account, while price predictions of SEO remain unaffected. Hence, SEO does not capture

that the cost of price misspecification is larger in periods of high demand than in periods

of low demand.

5.5. Results on Empirical Data

We perform backtests of our data-driven approaches for the multi-period procurement

of natural gas at our industry partner and compare them to several benchmark policies.

All models are solved to optimality. Without loss of generality, we set dt = 1 for all

periods since the gas demand of our industry partner is non-seasonal.

5.5.1. Setup

Natural gas is characterized by local markets, storage limitations and particularly high

price volatility compared to other commodities. While for a long time, the European

market has been characterized by long-term contracts, this fundamentally changed with
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its liberalization and the emergence of short-term financial hedging instruments (Geman,

2005, p. 237). For our case study, we use ten years of data from 07-2007 to 06-2017.

In addition to the spot option, we consider monthly futures contracts of different time

to maturity (τ ∈ {1, 2, 3, 4}), i.e., M1-M4, that describe liquid financial products at the

European TTF hub from which our industry partner purchases its gas.

Figure 5.5 shows the historical spot prices capturing various market trends, including

the financial crisis. All price and feature data is retrieved from the databases Thomson

Reuters Datastream and Eikon. Prices refer to closing prices on the last trading day

of the month. Based on the results of empirical studies (see Section 3.1) and exten-
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Figure 5.5.: TTF natural gas spot price evolution from 07-2007 until 06-2017

sive discussions with our industry partner’s experienced gas purchase team, we consider

the following feature categories: price history (e.g., spot price returns and lagged spot

prices), related commodity prices (e.g., coal, Brent oil, Henry Hub gas), gas produc-

tion (e.g., production volumes in Germany), gas consumption (e.g., gas consumption in

Germany), economic indicators (e.g., EUR/USD, Bloomberg Commodity Index, Pro-

ducer Price Index Energy) and environmental factors (e.g., temperature). In total,

N = 20 features are pre-selected and standardized according to equation (5.20). For

a detailed list of data sources, see Table B.1 of Appendix B.6. Similar to Secomandi

et al. (2015), we split the dataset into rolling sub-periods for training and evaluation.

Training (in-sample) and evaluation (out-of-sample) consist of 12 months each. Conse-

quently, we perform 9 in-sample optimizations (07/2007-06/2008, 07/2008-06/2009,...,

07/2015-06/2016) and 9 out-of-sample evaluations (07/2008-06/2009, 07/2009 - 06/2010,

..., 07/2016 - 06/2017). The regularization parameter λ is calibrated with an accuracy

of 10−2 within a cross-validation procedure, with a 50/50 split of in-sample data into

training and validation sets, starting with λ = 0 (DDA-BD) and stopping as soon as

βτi = 0 ∀i = 1, ..., N, τ ∈ F+ (i.e., with convergence to DDA-SD).
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Benchmark Policies and Policy Evaluation

As reference values, we use lower and upper performance bounds of the perfect fore-

sight problem (5.21)-(5.23). Remember that CPF is the theoretical optimal cost from

the ex-post optimal policy (PE = 0%) under perfect price predictions. CUB is the

worst case performance solving the problem (5.21)-(5.23) under maximization objective.

CPF and CUB describe a bandwidth for the hedging potential. If the hedging potential

HP :=
(
CUB−CPF

CPF

)
· 100% is large (low), hedging decisions might strongly (hardly) affect

procurement performance.

Beside DDA-BD, DDA-SD and DDA-ML, we test DDA-AR1, which uses the spot price

p0
t as a single explanatory variable. Remember that DDA-AR1 exploits an AR(1) process

with spot price-dependent thresholds P τ
t (p0

t ) = βτ0 + βτ1p
0
t . Depending on the estimated

values for βτ0 and βτ1 , DDA-AR1 characterizes RW, MR or MO. We furthermore compare

our data-driven models (DDA) with the following procurement policies:

(i) P-SPOT Policy: The pure spot policy (P-SPOT) with y0
t = dt purchases under the

current market prices, i.e., in the absence of risk management with the resulting

purchase cost CP−SPOT =
∑T

t=1 p
0
t dt.

(ii) P-τ Policy: The pure forward policy (P-τ) with yτt = dt+τ hedges demand fully

via forward contracts of a specific time to maturity τ and resulting cost CP−τ =∑T
t=1|t≤τ p

0
t dt+

∑T
t=1|t>τ p

τ
t−τ dt (Note: The beginning of the horizon requires spot

purchases. As this is applied to all policies, it still ensures a fair comparison).

(iii) 1/N Policy (Status Quo): 1/N portfolios allocate demand equally between the

available procurement options (including the spot market). Note that this was the

best-practice policy of our industry partner prior to our collaboration.

(iv) REO Policy: The reoptimization approach (REO) uses the deterministic forward

curve ~Ft as predictor for t + ∆t with ∆t = 1, ..., T − t and considers forward

curve updates by periodic reoptimization. REO avoids model error but ignores

the extrinsic value from the stochastic evolution of the forward curve. REO is

related to the rolling intrinsic policy primarily applied to natural gas storage, i.e.,

buying under random future input price, storage and selling under random future

output price (see Chapter 6). In this context, the forward curve ~Ft is used for spot

price forecasts, i.e., pτt = EQt [p0
t+τ ], which is true under the risk-neutral probability

measure Q. Consequently, pτt = EQt [pτ−1
t+τ−1] ∀τ ≥ 2. However, this is only of

interest if storage opportunities exist. For financial hedging, the rolling intrinsic
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policy under Q would lead to the conclusion that financial hedging decisions do not

matter. Therefore, we modify the rolling intrinsic policy for our problem setting:

REO supposes that the future is equal to the present (näıve forecasts), i.e., the

forward curves of all future periods equal the current forward curve. In this case,

pτt = Et[pτt+∆t] for all τ ∈ F , with ∆t = 1, ..., T − t.
Example. If the forward curve in period t is given by ~Ft = (p0

t , p
1
t , p

2
t ) = (5, 3, 4),

then hedging of dt+2 in period t at a price p2
t = 4 is postponed to period t+ 1 since

Et[p1
t+1] = 3 < 4.

Reoptimization has been shown to perform impressively in the inventory context

of gas storage valuation (Lai et al., 2010; Nadarajah et al., 2015; Secomandi,

2010, 2015; Wu et al., 2012) and is part of commercial software (Lacima, 2018;

MathWorks, 2018). Similar to DDA-AR1, REO is a special case of DDA-BD if

the forward curve ~Ft = (pτt : τ ≥ 0) is used as feature and the price threshold is

estimated as P τ ′
t (X) = minτ∈F|τ<τ ′{pτt } ∀τ ′ ∈ F+.

Algorithm 1 Reoptimization Approach (REO)

for t = 1, ..., T do
for τ ′ ∈ F+|t+ τ ′ ≤ T do

if dt+τ ′ is not fully hedged yet then
if pτ

′

t ≤ pτt for all τ with τ ∈ F|τ < τ ′ feasible to hedge dt+τ ′ in t+ 1, ..., t+ τ ′ then
set yτ

′

t = dt+τ ′

else
set yτ

′

t = 0
end if

else
set yτ

′

t = 0
end if

end for
if dt is not fully hedged yet then

set y0t = dt
else

set y0t = 0
end if

end for

5.5.2. Results

Descriptive Statistics

Figure 5.6 illustrates the spot-futures price relations, i.e., the relationship between p0
t

and pτt , τ > 0 (upper plots) and the relationship between p0
t+τ and pτt , τ > 0 (lower plots).
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Figure 5.6.: Relation between monthly TTF spot and futures contract prices [Euro/MWh]
from 07-2007 to 06-2017

In the upper plots, values above the diagonal indicate a normal futures curve (upward

sloping, contango), while values below the diagonal indicate an inverted futures curve

(downward sloping, backwardation). The plots below illustrate that, in some periods, it

would have been better to buy at the spot, while in others hedging with futures is ad-

vantageous. The hedging potential HP shows that the larger the contract maturity, the

higher the potential hedging gains/losses. Allowing the use of all hedging instruments

simultaneously (Spot, M1, M2, M3, M4), then HP = 24.6% with an average purchase

cost of CPF = 18.86 Euro/MWh (best case) and CUB = 23.50 Euro/MWh (worst case).

Performance of Procurement Policies

Table 5.4 presents the performance of the different procurement policies measured by the

Prescription Error (PE), i.e., the cost deviation from the perfect foresight problem (PF).

PE = 0.82% (DDA-AR1) and PE = 1.23% (DDA-SD) indicate that both AR(1) pro-

cesses and constant purchase signals are not able to fully prescribe the problem not even

in-sample. Even though there is a positive out-of-sample value of feature information

VFI = 0.26, the performance of DDA-BD suffers from overfitting and poor generaliza-

tion (on average 2.42 effective features per maturity excluding intercept). Decision-based

feature selection by DDA-ML1 (1.64 features per maturity on average) and DDA-ML2

(1.72 features per maturity on average) adds regularization bias to the in-sample deci-

sion in order to reduce overfitting issues, which improves out-of-sample generalization

significantly and increases VFI to 0.40 (DDA-ML1) and 0.38 (DDA-ML2), respectively.
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Table 5.4.: Prescription error (PE): % above perfect foresight cost CPF

In-Sample Out-of-Sample
Mean StDev Min Max Mean StDev Min Max

DDA-BD 0.00 0.00 0.00 0.00 7.07 6.42 0.93 17.81
DDA-SD 1.23 1.26 0.20 3.59 9.52 5.47 3.47 19.92
DDA-AR1 0.82 1.12 0.00 3.58 9.42 5.25 3.07 17.94
DDA-ML1 0.57 1.19 0.00 3.59 5.68 4.34 0.93 13.09
DDA-ML2 0.59 1.18 0.00 3.59 5.93 4.23 0.93 13.09
REO 6.22 4.53 2.02 15.91 6.88 5.16 2.02 15.91
1/N 10.41 6.93 3.31 25.91 10.47 6.92 3.31 25.91
P-SPOT 6.86 7.02 0.93 21.68 6.14 6.40 0.93 21.68
P-M1 7.73 4.65 3.63 18.46 7.67 4.67 3.63 18.46
P-M2 10.36 7.14 3.02 27.15 10.69 7.05 3.02 27.15
P-M3 12.74 10.02 3.64 37.77 13.04 9.92 3.64 37.77
P-M4 14.59 13.53 2.69 48.78 14.56 13.59 2.69 48.78
UB 21.68 14.81 6.92 54.95 21.53 14.80 6.92 54.95

The most relevant features for DDA-ML1 over all backtests are spot price returns, the

NYMEX front-month gas contract price and the producer price index (PPI) of energy

in Germany. For two sub-periods (i.e., 07-2008 to 06-2009 and 07-2015 to 06-2016),

DDA-ML1 yields, equivalently to DDA-SD, intercept-only purchase signals.

Furthermore, note that based on our analyzed dataset, DDA-ML (neither ML1 nor

ML2) is never dominated by DDA-BD or DDA-SD in any of the out-of-sample sub-

periods due to underfitting (DDA-SD) and overfitting (DDA-BD). Note that the pure

spot policy (P-SPOT) is comparatively strong due to abrupt price declines, especially

in 2008 (financial crisis), that cannot fully and immediately be captured by the other

policies. More detailed results on cost and policy dominance are given in Table B.2 and

B.3 of Appendix B.6.

Table 5.5.: Average annual savings (07-2008 to 06-2017) by DDA-ML1 compared to various
benchmark policies for the real-world setting at our industry partner with annual
gas demand of 10× 106 MWh

DDA-BD DDA-SD DDA-AR1 DDA-ML2 REO 1/N

in Mio Euro 2.634 7.295 7.099 0.400 2.278 9.087
in % 1.30 3.51 3.42 0.20 1.12 4.33

P-SPOT P-M1 P-M2 P-M3 P-M4 UB

in Mio Euro 0.880 3.780 9.514 13.981 16.852 30.084
in % 0.44 1.85 4.53 6.52 7.75 13.04

Supposing an annual demand of 10×106 MWh, as in the case of our industry partner,

the data-driven approach with feature selection (DDA-ML1) yields significant savings
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in procurement cost compared to the firm’s current policy 1/N (9.087 Mio Euro p.a.,

4.33%) as well as compared to other benchmark policies (Table 5.5).

5.6. Conclusion

This chapter arose from collaboration with a chemical company that asked for analytics

support in the field of dynamic natural gas procurement with both spot and forward

purchase options. Optimizing the firm’s position in the forward contract market de-

scribes a challenging multi-stage stochastic optimization problem under price and price

model uncertainty. In addition, covariates related to prices, such as economic indicators,

are available to the firm and might be worth exploiting for optimal decision-making.

In this chapter, we demonstrate how optimization in combination with machine learn-

ing can be used to compute the parameters of the optimal procurement policy. We

propose a novel prescriptive analytics approach that avoids price model error, and is

able to control generalization error by means of performance-based regularization. It

incorporates prediction and optimization rather than executing these tasks sequentially.

Uncertainty in future spot and forward prices is not expressed analytically but by his-

torical (covariate) data. Our approach does not require (i) the a-priori specification and

estimation of the underlying price processes, (ii) an explicit analysis of correlation struc-

tures or (iii) an a-priori selection of relevant price features. The associated decision rules

are easy to interpret and easy to operationalize. We show that, in a Big Data environ-

ment, the firm needs to investigate carefully which data (Smart Data) to use, and that

the performance of data-driven approaches depends significantly on model specification.

Thus, we combine data-driven optimization with regularization methods from machine

learning for a built-in selection of decision-relevant (rather than prediction-relevant)

features, which increases out-of-sample generalization significantly.

The data-driven approach developed has already been implemented and is in use at the

gas purchasing department of our industry partner (see Figure 5.1). Nevertheless, several

extensions to this approach could be considered. Future research could incorporate the

opportunity of keeping inventory and random demand, which may lead to partial hedging

(see Froot et al., 1993). An extension to a merchant’s setting with reselling opportunities

might also be interesting. Furthermore, it would be worth exploring different types of

sparsity penalties for the proposed ML models. Alternative regression techniques, such

as kernel regression, or deep learning (non-linear kernels), can be an extension, although

they might deteriorate interpretability.
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Chapter 6.

Commodity Storage from a

Data-Driven Merchant Perspective

Based on

Mandl, C., S. Nadarajah, S. Minner and S. Gavirneni (2019). Structured data-driven

operating policies for commodity storage.

Storage assets are critical for the temporal trading of commodities under volatile prices.

State-of-the-art methods for managing storage, such as the reoptimization-based rolling

intrinsic approach (RIA), approximate a stochastic dynamic program (SDP) assum-

ing full information regarding the state and the stochastic commodity price process and

hence suffer from price modeling and forecasting errors, respectively, which are instances

of generalization error. Based on extensive backtests, we find that this kind of error can

lead to significantly suboptimal RIA policies, contrary to their known near-optimality

in the full information setting. We develop two classes of non-parametric data-driven

approaches (DDAs) that leverage machine learning and mathematical programming to

overcome generalization error. The first class trains parameters of bang-bang and base-

stock type policies, respectively, by solving linear and mixed integer programs, thereby

extending known DDAs that parameterize decisions as functions of features without en-

forcing a policy structure. The second class trains value function parameters and encodes

a base-stock policy structure via a linear program that can be solved to compute deci-

sions. We backtest their performance on six major exchange-traded commodities from

2000 until 2017 with features constructed using Thomson Reuters and Bloomberg data

streams. We find that DDA can improve the profits obtained by RIA significantly, with

a base-stock policy structure needed to realize this improvement. Overall, our research

advances the state-of-the-art for storage operations and suggests ways of restructuring

commercial storage software to handle generalization error.
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6.1. Introduction

Inter-temporal storage plays a fundamental role in the commodity industry. Examples

for storage facilities are gas storage caverns, grain silos or metal warehouses. E.g., in

2017, more than 600 warehouses across 14 countries were approved by the London Metal

Exchange (LME), one of the major marketplaces for physical metal trading. These ware-

houses are typically owned by trading companies and serve as a link between commodity

producers and commodity processors. In 2015, 2.23 million tons of metal were deliv-

ered to and 3.77 million tons were delivered from LME warehouses (LME, 2017). But

also other market places, such as the Chicago Merchantile Exchange (CME), encourage

warehouse companies to expand their storage network (Reuters, 2016a). At commodity

warehouses, storage volumes tie up a significant amount of money. For example, CME-

registered warehouses in Salt Lake City held 131, 774 tons of copper in January 2018

(Reuters, 2018). As evaluated by the average COMEX copper price for January 2018

(3.19 USD/lb), this translates into an inventory value of 927 million USD.

Besides its operational use as a buffer against unexpected changes in supply and de-

mand, storage also has commercial use by taking advantage of positive price differentials

over time (Williams and Wright, 1991, p.24). Even though most academic papers as-

sume that markets are efficient (frictionless), this is not true in practice due to, e.g.,

transaction costs and information asymmetry. Furthermore, as there is no equilibrium

in inventory holding costs, some warehouses might provide cheaper storage than others.

For instance, during the last couple of years, merchants increasingly shifted commodities

from LME warehouses to cheaper private non-LME warehouses, whose storage rates are

often around a tenth of the LME rates (Wall Street Journal, 2015) or to floating storage,

i.e., offshore storage at vessels (Financial Times, 2015; Reuters, 2009).

In this chapter, we consider the well-known Stochastic Commodity Warehouse Problem

(SCWP), sometimes simply called Warehouse Management Problem or Warehousing

Problem that studies the optimal operating and physical trading policy over a finite

horizon under the objective to buy low, store, and sell high. It optimizes the timing

and quantity of purchase and sale at a storage facility with initial inventory, stochastic

variability in prices, finite warehouse space and potential injection and withdrawal rate

constraints. The optimization of injection and withdrawals thus critically depends on

the movement of commodity prices in the future, which is difficult to predict.

Our analysis of commodity price data over 18 years (2000-2017) for instance shows a

MAPE of 14-31% to predict the corresponding 6-months-ahead spot price by using the
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futures contract price (which is the expected spot price under the risk-neutral measure)

such that even näıve (no-change) forecasts can perform better (see also Alquist and

Kilian, 2010).

Figure 6.1 exemplarily illustrates the gap between futures contract prices and realized

spot prices for natural gas at the New York Merchantile Exchange (NYMEX). It shows

that futures prices might significantly fail in predicting future spot prices (especially for

more distant spot prices).
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Figure 6.1.: NYMEX futures curves (dashed) and realized spot prices (◦) for natural gas

Optimal storage decisions for the SCWP are naturally obtained by solving a stochastic

dynamic program (SDP) with the state described by on-hand inventory (endogenous

state variable) and a price model to describe the evolution of the spot price (exogenous

state variable). The latter is typically high-dimensional when the number of features

that drive the commodity price is large. This makes the SDP intractable to solve and

asks for alternatives. Two fundamental strategies exist: distribution-forecast based

approaches and point-forecast based approaches. The first is related to approximate

dynamic programming (ADP) techniques that approximate the SDP but are still based

on distribution forecasts and a calibration of a stochastic process using historical data.

The second strategy relies on replacing the uncertainty by a point forecast obtained

through market information (e.g., from futures contract markets; see Figure 6.1).

For storage operations, popular examples of distribution-forecast based and point-

forecast based approaches, respectively, are the least square Monte Carlo approach

(LSMCA) and the rolling intrinsic approach (RIA), both of which are part of com-

mercial storage management software (Energy Quants, 2018; Kyos, 2018; Lacima, 2018;

MathWorks, 2018) describing state-of-the-art methods in natural gas storage practice
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(Breslin et al., 2008, 2009; Gray and Khandelwal, 2004a,b). For natural gas storage

valuation, reoptimization-based RIA has been shown to perform near-optimal in simu-

lation settings under a calibrated price model φ (see, e.g., Lai et al., 2010; Nadarajah

and Secomandi, 2018; Secomandi, 2010, 2015; Wu et al., 2012).

Doing so, the existing stochastic optimization literature aims at finding a storage

policy π that minimizes the expected loss function

min
π

{
EXTE

[
V π∗(XTE)− V π(XTE)|XTR

]}
(6.1)

on test data XTE given training data XTR, with V π∗ being the expected profit resulting

from the full information optimum π∗. The expectation about XTE is taken with respect

to the calibrated price model φ (full information problem).

However, to ascertain the true performance of RIA, one needs to consider the inherent

generalization error from price model and forecast error, which can be significant when

employing RIA in practice. While the machine learning literature considers generaliza-

tion error, the stochastic optimization literature at most addresses price model error

due to price model misspecification (Secomandi et al., 2015). Even though zero price

model error yields the full information optimum, only a sufficiently small generalization

error yields the perfect foresight optimum. Hence, under explicit consideration of the

generalization error, the truly desired policy π minimizes the expected loss function

min
π

{
EXTE

[
V PF(XTE)− V π(XTE)|XTR

]}
, (6.2)

with V PF being the theoretically achievable oracle profit from storage under perfect

foresight. Considering generalization error, the performance upper bound is not the

performance of the ex ante optimal policy in the sense of the SDP under the assumption

of full information about the price model (full information problem), but the theoretical

ex post optimal performance under perfect foresight (perfect foresight problem). While

under loss function (6.1), RIA is near-optimal, it is not known whether it is also near-

optimal under loss function (6.2), i.e., once generalization error is accounted for.

Contribution

In this paper, we perform extensive backtesting on publicly available commodity price

data. We show that RIA policies based on forward curves can be highly suboptimal,

contrary to their known near-optimality in the full information setting. We observe that
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some main insights about the performance of RIA change fundamentally when evaluating

its performance on real data affected by generalization error (which is addressed by the

ML community), rather than under the full information paradigm of the stochastic

optimization literature:

• While RIA has been shown to capture on average more than 99% of the value of

the full information optimum (Lai et al., 2010; Secomandi, 2010), we find that

due to generalization error, RIA yields an average value of 11.0% of the perfect

foresight optimum.

• While RIA generates a positive (expected) value for the full information problem,

we find that under generalization error, RIA yields negative profits for 30.1% of

our backtest instances.

• While the value of reoptimization based on forward curve updates is positive for

the full information problem (Secomandi, 2015), we find that under generalization

error, it is negative for 37.0% of our backtest instances.

• While ignoring far-ahead forward price information might not matter for opti-

mal first-stage decisions (Cruise et al., 2019), ignoring information (e.g. myopic

decisions) can even be beneficial under generalization error.

Motivated by the surprising performance results of RIA under generalization error,

we propose learning-enabled data-driven approaches (hereafter, DDA) for the SCWP

in data-rich contexts. There is evidence in empirical commodity finance that the spot

price forecast ability of futures prices that do not include estimates of the risk pre-

mium might be poor and outperformed by näıve forecasts (Alquist and Kilian, 2010),

by a combination of futures prices and analyst forecasts (Cortazar et al., 2018) or by

backward-looking ARMA models (see, e.g., discussions in Williams and Wright 1991,

chap. 7 and references therein such as Fama and French 1987). Furthermore, macroeco-

nomic features can improve predictions (see, e.g., Heath, 2018) as there is no consensus

on the amount of new information already captured by quoted market prices (Cortazar

et al., 2018). Therefore, commodity merchants recently try to take advantage of ML

techniques in order to recognize patterns across commodities to anticipate demand and

supply and its impact on prices (Oliver Wyman, 2017). Hence, while for RIA, the state

space of the inventory system is fully characterized by the inventory level and the cur-

rently quoted forward curve, DDA learns the optimal state space representation directly
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from the data, which might include the aforementioned additional features, such as ana-

lyst forecasts, that are increasingly available in real-time having access to databases like

Thomson Reuters Datastream, Bloomberg or Quandl.

For this purpose, we adapt the standard linear decision rule approach (DDA-LDR)

from the literature (see, e.g., Ban and Rudin, 2019) that trains decisions as linear func-

tions of features. However, this is not necessarily consistent with the optimal inventory

policy structure. Instead of decisions, our novel approaches train optimal inventory

policies (DDA-OSP) and value functions (DDA-VFA), both of which exploit well-known

structural properties with regard to the optimal policy of the SCWP. Consequently,

based on a fundamental multi-stage decision problem, we are the first to exploit the

value of adding structure to data-driven solutions, which is not required for single-period

problems such as the well-studied data-driven newsvendor (e.g., Ban and Rudin, 2019).

To reduce generalization error, we combine DDA with ML-inspired interpretable regu-

larization methods (i.e., lasso regression) for performance-based model selection from a

set of candidate feature models.

We evaluate DDA in backtests based on six major commodities (i.e., copper, gold,

crude oil, natural gas, corn, soybean) by using three feature sets (spot prices, futures

prices and Bloomberg analyst forecasts). We observe that DDA generates a median profit

of 26.7% of the perfect foresight value and hence improves the RIA profits (median of

12.0%) significantly. Furthermore, there is a considerable value in being consistent with

optimal policy structures in multi-stage data-driven optimization. Over all instances

and commodities, the unstructured state-of-the-art linear decision rule approach yields

a median profit of only 2.4% of the perfect foresight profit compared to a value of 26.7%

obtained by structured DDA policies that outperform the unstructured approach in

77.8% out of 1, 152 out-of-sample backtesting instances. Our major performance results

are statistically significant at the 1% level.

Research Questions and Organization

We address the following research questions: (Q1) How does the state-of-the-art software

solution RIA that has been shown to perform near-optimal relative to the full informa-

tion optimum perform in backtesting settings on real data affected by generalization

error? (Q2) How to effectively solve the SCWP in a data-driven and learning-enabled

way that addresses the adverse effects of generalization error? (Q3) What is the out-

of-sample value of data-driven policies for the fundamental SCWP relative to RIA and

can the exploitation of known policy properties improve data-driven solutions?
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Section 6.2 presents the formal model of the SCWP and summarizes structural prop-

erties of the optimal and myopic inventory trading policies. It furthermore presents RIA

as the state-of-the-art solution approach in practice. Section 6.3 presents data-driven

models based on decision rule and value function approximations. Section 6.4 illustrates

the weakness of RIA policies in extensive backtests and compares the results of the DDA

models for various commodities. Section 6.5 concludes.

6.2. Model Formulation

We build on the stochastic variant (SCWP) of the fundamental Warehouse Problem

under full operational flexibility (SCWP-FF) as formulated by Charnes et al. (1966) and

under limited operational flexibility (SCWP-LF) as studied by Secomandi (2010). We

regard the SCWP from the warehouse operator’s perspective (optimal storage operating

decisions), rather than from the investor’s perspective (storage valuation).

6.2.1. Problem Setting

We consider a single-item, multi-period, discrete-time, periodic-review inventory replen-

ishment problem at a single commodity storage facility with a finite planning horizon n.

Periods t = 0, 1, ..., n equal decision stages and might correspond to hours, days, weeks

or months. The state of the warehouse is described by It and denotes the commodity

amount in storage at the beginning of period t. It is bounded by lower and upper inven-

tory levels It and Īt, i.e., It ≤ It ≤ Īt. Without loss of generality, we assume that It = 0

and Īt = C, with C being the warehouse capacity. The per unit of inventory and unit of

time holding costs are denoted as ch ≥ 0. yit ≥ 0 defines the periodic storage injection

quantity and yot ≥ 0 the periodic storage withdrawal quantity.

Definition 7 (Operational Flexibility). It is distinguished between fully flexible facilities

(SCWP-FF) and facilities with limited flexibility (SCWP-LF). SCWP-FF allows for

full injection and withdrawal within one inventory review period, while SCWP-LF is

restricted by injection rate limit Gi ∈ (0, C) and/or withdrawal rate limit Go ∈ (0, C),

i.e.,

yit ≤ min

{
C − It + yot , G

i

}
, yot ≤ min

{
It, G

o

}
.

Limited flexibility (Gi, Go < C) can be due to technical, logistical or market restric-

tions. E.g., certain gas storage facilities require 300 days to be filled (Secomandi, 2010).
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Following the standard literature (Secomandi, 2010; Wu et al., 2012), we assume that

the merchant is risk-neutral, has access to the spot market only (physical rather than

financial trading via futures contracts) and is a price taker, i.e., storage operations do

not affect the spot price. This is reasonable if the warehouse capacity C is restricted

to such an extent that buying and selling has no effect on the spot market equilibrium.

Furthermore, as it is standard in the merchant operations literature (see Section 3.2.2),

we do not use an explicit demand component due to physical trading in spot markets

where prices determine the demand. The unit nominal commodity spot price in period

t is denoted as pt.

Definition 8 (Frictions). The friction-adjusted purchase and selling prices are given by

pit =
1

ηi
pt + ci, pot = ηo pt − co,

with ci ≥ 0 and co ≥ 0 as the marginal injection and withdrawal cost and ηi ∈ (0, 1] and

ηo ∈ (0, 1] as the injection and withdrawal loss.

These can be operational frictions (e.g., gas loss during the injection process due to the

use of gas for running injection pumps) or transaction costs that are linear in the market

price. Secomandi (2010) argues that (ηi, ηo, ci, co)=(0.99,1,$0.02/mmbtu,$0.02/mmbtu)

is reasonable for gas storage facilities. In the following, we distinguish between the

friction case with pit > pot and the frictionless case with pt = pit = pot .

The commodity merchant has precise information about past and present prices but

not about prices in the future. Future market prices pt+1 are random and follow an

unknown price process φ(pt+1).

t

Information
revelation:

ξt := {It, Xit}

Withdraw-and-sell
decision at price pot :

0 ≤ yot ≤
min{It, Go}

Purchase-and-inject
decision at price pit:

0 ≤ yit ≤
min{C − It + yot , G

i}

t+ 1

Inventory state
transition:

It+1 = It − yot + yit

n

Terminal value
of inventory:
Vn ≡ ponIn

Figure 6.2.: Sequence of events

Let ξt := {It, Xit} denote all information available to the merchant at the beginning

of period 0 ≤ t ≤ n where ξ1 ⊆ ξ2 ⊆ ... ⊆ ξn. the inventory level It is endogenous

information, Xit ∈ X is exogenous information, i.e., realizations of features i = 1, ..., N .

This includes the current market price pt, the current forward curve ~Ft and other features

such as lagged prices or price forecasts.
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In every period 0 ≤ t ≤ n, the merchant decides about purchase-and-inject quantities

yit and withdraw-and-sell quantities yot based on the following sequence: (i) Merchant

information revelation ξt. (ii) Merchant’s withdraw-and-sell decision yot ≥ 0 at price pot

with yot ≤ min{It, Go}. (iii) Merchant’s purchase-and-inject decision yit ≥ 0 at price

pit with yit ≤ min{C − It + yot , G
i}. Hence, the amount purchased in t is not sold in t

(no-arbitrage assumption). Inventory state transitions follow It+1 = It − yot + yit. The

initial inventory I0 is known to the merchant. Terminal inventory is valuated by the

market price, i.e., Vn(In, pn) ≡ ponIn, which yields clearance of available inventory in

the last period n as long as pon > 0. This assumption is reasonable if we assume that

forward prices (and hence price forecasts) beyond n are not available or decreasingly

liquid. Furthermore, we demonstrate in our numerical results from Section 6.4.2 that

optimal first-stage decisions are only affected by a limited future horizon. Without loss

of generality, we assume a discount factor of α = 1. This simplification is uncritical as

for all t = 0, ..., n, prices pit and pot can be interpreted as already discounted.

Accordingly, the objective of the SCWP is to maximize profit V0 of the inventory

system over the horizon of n future periods. The corresponding optimization problem

is given by

max
yit,y

o
t

V0 =
n∑
t=0

E
[(
pot y

o
t − pit yit − ch It

)
|Xit

]
(6.3)

s.t. It+1 = It − yot + yit ∀t = 0, 1, ..., n (6.4)

0 ≤ yit ≤ min{C − It + yot , G
i} ∀t = 0, 1, ..., n (6.5)

0 ≤ yot ≤ min{It, Go} ∀t = 0, 1, ..., n. (6.6)

Note that for capturing storage loss (e.g., in terms of agriculturals or electricity),

storage efficiency ρ ∈ (0, 1] as the fraction of stored commodity maintained over one

period can be considered by modifying constraint (6.4), i.e., It+1 = ρ(It−yot +yit). As this

does not affect the structural results, we set ρ = 1 in the following. For model extensions

with regard to positive fixed costs, storage inefficiency, explicit demand component and

market power (price setter), we refer to Appendix C.1.

The corresponding dynamic programming formulation facilitates the analysis of the

optimal policy structure. The problem can be formulated by the following Bellman
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equation:

Vt(zt) = max
0≤yit≤min{C−It+yot ,Gi}

0≤yot ≤min{It,Go}

{
pot y

o
t − pit yit − ch It + Et

[
Vt+1(zt+1)

]}
∀ 0 ≤ t < n

(6.7)

The state zt ∈ Zt of the SDP includes both endogenous and exogenous information.

Endogenous information describes the current operating conditions, i.e., It. Exogenous

information represents the current market conditions Xit. For convenience in notation,

we denote the feature vector as X = (X1t, X2t, ..., XNt) in the following.

Within the existing merchant operations literature (see Section 3.2.2), the price model

φ(pt+1) is assumed to be fully known in both the price process class and the process

parameters (full information problem). The choice of the price model determines the

state of the inventory model zt ∈ Zt. If the price follows a Markovian price process

φ(pt+1|pt) (see, e.g., Secomandi, 2010), then the system state zt is fully characterized by

zt = (It, pt), if the price follows a forward price model φ(pt+1|~Ft) (see, e.g., Lai et al.,

2010), then zt is fully characterized by zt = (It, ~Ft). Intractability of solving the SDP is

mainly due to high-dimensional price models.

In contrast, if the underlying price process φ(pt+1) is not known, the state space

zt ∈ Zt cannot be specified a-priori. Hence, our distribution-free DDA models must

identify the optimal state representation zt ∈ Zt (which might include lagged prices or

other features) directly from the data.

In the following, we distinguish between (i) SCWP-FF, i.e., fully flexible storage

(Charnes et al., 1966) and (ii) SCWP-LF, i.e., storage with limited flexibility due to, e.g.,

injection and withdrawal constraints (Secomandi, 2010) or logistical respectively market

constraints. SCWP-FF and SCWP-LF yield significantly different policy implications

(Proposition 3-6). We make use of these propositions when formulating our data-driven

optimization models in Section 6.3.

6.2.2. Optimal and Myopic Policy for Fully Flexible Storage

Proposition 3 (Optimal Policy under Full Operational Flexibility). The optimal policy

under full operational flexibility (FF) is of a bang-bang type. Depending on a state-

dependent price threshold Pt(X), for every stage 0 ≤ t < n, the optimal inventory inflow

and outflow decisions (yit, y
o
t ) only take either the maximum or the minimum. This splits

the policy into three regions: (i) Do nothing, (ii) Fill the warehouse, or (iii) Empty the
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warehouse. The optimal inventory trading policy for SCWP-FF is:

(yi
∗

t , y
o∗

t ) =


(0, 0) if pit ≥ Pt(X) ∧ pot < Pt(X)

(C − It, 0) if pit < Pt(X)

(0, It) if pit ≥ Pt(X) ∧ pot ≥ Pt(X)

The proof by backward induction follows Charnes et al. (1966) with the difference

that the case

(yi
∗

t , y
o∗

t ) = (C, It) if pit < Pt(X) ∧ pot > pit,

i.e., empty and refill the warehouse, is not reachable in our storage setting as by definition

pit ≥ pot if ηi, ηo ∈ (0, 1] and ci, co ≥ 0. Hence, this case might only be relevant for

commodity conversion settings with different input and output commodities.

Proposition 3 demonstrates that the optimal policy is of a state-dependent order-up-

to-C-sell-down-to-0 type and can be fully characterized by a single price threshold Pt(X).

To decide about inventory trading, the merchant compares the current friction-adjusted

spot prices pit and pot with the threshold value Pt(X) regardless of the current inventory

level It.

Pt(X) can be interpreted as an inventory evaluator, i.e., the expected value of holding

a unit of inventory at the beginning of period t+ 1. If we compute Pt(X) via SDP, the

recursive numerical evaluation relies on the assumption that we can fully characterize

the underlying price process φ:

Pt(X) = Eφ
[

max

{
pot+1,min[pit+1, Pt+1(pit+1, p

o
t+1, φ(pt+2))]

}]
− ch (6.8)

Therefore, we can derive lower and upper bounds on the inventory evaluator Pt, i.e.,

Pt ≥ Et[pot+1]− ch and Pt ≤ Et[max{pot+1, Pt+1}]− ch.

Example 1 (Recursive Solution). Suppose a deterministic 3-period SCWP-FF setting

with initial inventory It = 2, capacity C = 4 and holding costs ch = 0. Prices are

(pit, p
i
t+1, p

i
t+2) = (5.50, 6.00, 5.50) and (pot , p

o
t+1, p

o
t+2) = (4.50, 4.00, 5.00). Pt = Et[pot+1]

and Pt = Et[pit+1] yield the suboptimal decisions (yit, y
o
t ) = (0, 2) and (yit, y

o
t ) = (2, 0)

respectively. The recursive character of Pt is required to evaluate the value of inventory

at the beginning of period t+ 2, which yields the optimal decision (yit, y
o
t ) = (0, 0).

Even though this simple numerical example already implies suboptimality of myopic

decision-making, we want to close the gap in literature and formalize myopic policies as
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potential heuristics for the SCWP in the following.

Definition 9 (Myopic Policy Under Full Operational Flexibility). The myopic policy

(MYOPIC) with a limited look-ahead of ∆t = 1 is fully characterized by the price thresh-

old Pt(X) = Et[pot+1]− ch. This leads to the following myopic policy in closed-form:

(yit, y
o
t ) =


(0, 0) if pit ≥ Et[pot+1]− ch ∧ pot < Et[pot+1]− ch
(C − It, 0) if pit < Et[pot+1]− ch
(0, It) if pit ≥ Et[pot+1]− ch ∧ pot ≥ Et[pot+1]− ch

Other than for the optimal policy (OPT), MYOPIC is not characterized by Et[pit+1]

and Et[Pt+1]. If we assume that the marginal friction amounts (ηi, ηo, ci, co) do not

change over time, we can further simplify MYOPIC knowing that pit = 1
ηi
pt + ci,

Et[pot+1] = ηo Et[pt+1]− co and pot = ηo pt − co:

(yit, y
o
t ) =


(0, 0) if pt ≥ (ηo Et[pt+1]− co − ci − ch) ηi ∧ pt < Et[pt+1]− ch

ηo

(C − It, 0) if pt < (ηo Et[pt+1]− co − ci − ch) ηi

(0, It) if pt ≥ (ηo Et[pt+1]− co − ci − ch) ηi ∧ pt ≥ Et[pt+1]− ch
ηo

Note that MYOPIC does not even require a precise one-step-ahead price prediction

Et[pt+1] but allows for a certain prediction error et > 0 without affecting myopic inventory

decisions. The allowable size of et depends on operational parameters such as injection

and withdrawal costs (ci, co), holding costs (ch) and injection and withdrawal loss (ηi, ηo):

(yit, y
o
t ) =


(0, 0) if pt + ch

ηo
< Et[pt+1] ≤

pt
ηi

+co+ci+ch

ηo

(C − It, 0) if
pt
ηi

+co+ci+ch

ηo
< Et[pt+1]

(0, It) if Et[pt+1] ≤ min
{
pt + ch

ηo
,
pt
ηi

+co+ci+ch

ηo

}
Proposition 4 (Optimality of MYOPIC for SCWP-FF without Frictions). For the

frictionless case, MYOPIC is optimal and fully characterized in closed-form by Pt(X) =

Et[pt+1] − ch, i.e., price forecasting and inventory optimization can be fully decoupled,

which results in the following trivial policy:

(yi
∗

t , y
o∗

t ) =

(C − It, 0) if pt < Et[pt+1]− ch
(0, It) if pt ≥ Et[pt+1]− ch
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This is because, for the frictionless case, ηi = ηo = 1 and ci = co = 0. Consequently,

pt = pit = pot and Et[pt+1] = Et[pit+1] = Et[pot+1]. Hence, as equation (6.8) implies that

Pt ≥ Et[pot+1]−ch and Pt ≤ Et[max{pot+1, p
i
t+1}]−ch, Pt = Et[pt+1]−ch for the frictionless

case. Consequently, the optimal policy from Proposition 3 reduces to the myopic policy.

Note that, under the risk-neutral probability measure Q, the period t spot price

expectation for future period τ equals the quoted forward price ft,τ . Consequently, for

the frictionless case Pt(X) = ft,t+1−ch. Hence, SDP, MYOPIC and RIA lead to the same

storage decisions since stochastic changes in the forward curve ~Ft (which is considered

by SDP but not for MYOPIC and RIA) are not relevant (Note that this is only the case

for the frictionless SCWP-FF).

In Section 6.3, we want to compute the inventory evaluator Pt(X) in a data-driven

way by exploiting feature information Xit ∈ X , rather than by SDP under full charac-

terization of φ(pt+1) by, e.g., high-dimensional spot price models.

6.2.3. Optimal and Myopic Policy for Limited Flexible Storage

Proposition 5 (Optimal Policy Under Limited Operational Flexibility). Under limited

operational flexibility (LF), for every stage 0 ≤ t < n, there exists a state-dependent

purchase-up-to base-stock level Si
t(X) and a state-dependent sell-down-to base-stock level

So
t (X) with Si

t(X) ≤ So
t (X) that split the optimal policy into three regions: (i) Do

nothing, (ii) Purchase-and-inject, or (iii) Withdraw-and-sell. The optimal inventory

trading policy for SCWP-LF is:

(yi
∗

t , y
o∗

t ) =


(min{Si

t(X)− It, Gi}, 0) if It < Si
t(X)

(0, 0) if Si
t(X) ≤ It ≤ So

t (X)

(0,min{It − So
t (X), Go}) if It > So

t (X)

The proof follows Secomandi (2010).

Proposition 6 (Monotonicity of Base-Stock Levels). In every stage 0 ≤ t < n, the

optimal base-stock levels Si
t and So

t decrease in the spot price pt (i.e., the optimal purchase

amount yit decreases and the optimal sales amount yot increases in pt) if the following

two conditions hold for the underlying spot price process φ in every stage 0 ≤ t < n:

(i) The distribution function of random variable pt+1 conditional on the spot price

pt stochastically increases in pt, i.e., the one-period-ahead expected spot price in-

creases in the current price,
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(ii) The function Et[pit+1|pt] − pot decreases in pt, i.e., the expected spot price in the

next stage increases at a slower rate than the current spot price.

From Proposition 6, that has been proven by Secomandi (2010), follows that mono-

tonicity of Si
t and So

t strongly depends on the underlying spot price process. A RW

process satisfies conditions (i) and (ii), while a MR process only satisfies (i). However,

we do not rely on parametric price models in this chapter and hence do not determine

monotonicity a-priori for DDA.

Figure 6.3 illustrates the optimal policy and monotonicity structure of SCWP-FF and

SCWP-LF (under the assumptions of Proposition 6).

Si
t

So
t

It

pt

C

Purchase-
up-to-C if:
pit < Pt

Do nothing
if: pit ≥

Pt ∧ pot < Pt
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(a) SCWP-FF

It

pt
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to-Si
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t

So
t

Si
t

(b) SCWP-LF

Figure 6.3.: Policy and monotonicity illustration of SCWP-FF versus SCWP-LF

Definition 10 (Myopic Policy Under Limited Operational Flexibility). Equivalently to

the fully flexible storage case, the myopic policy for the limited flexibility case is fully

characterized by a single price threshold Pt(X) = Et[pot+1]− ch, rather than by base-stock

levels Si
t(X) and So

t (X). This leads to the following myopic policy in closed-form, which

is similar to the myopic policy of fully flexible warehouses from Definition 9:

(yit, y
o
t ) =


(0, 0) if pit ≥ Et[pot+1]− ch ∧ pot < Et[pot+1]− ch
(min{C − It, Gi}, 0) if pit < Et[pot+1]− ch
(0,min{It, Go}) if pit ≥ Et[pot+1]− ch ∧ pot ≥ Et[pot+1]− ch

Proposition 7 (Suboptimality of MYOPIC for SCWP-LF). Other than for the fully

flexible storage case, for storage facilities with limited flexibility, MYOPIC is not optimal

for the frictionless case (ηi = ηo = 1, ci = co = 0) with pt = pit = pot .
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This is because the myopic policy with a limited look-ahead of ∆t = 1 is characterized

by a price threshold Pt(X), rather than by a double base-stock structure (Si
t(X), So

t (X)),

and leads to all-or-nothing decisions ignoring injection and withdrawal rate underuti-

lization except for the trivial case where yit = 0 or yot = 0.

Example 2 (Capacity Underutilization). Suppose the following deterministic three-

period setting of the SCWP-LF without frictions: Spot prices are (pt, pt+1, pt+2) =

(2, 1, 3), warehouse capacity is C = 10, storage cost ch = 0, injection and withdrawal

limits are Gi = 6 and Go = 9, respectively. If It = 0, then yi,MYOPIC
t = 0, while

yi,OPT
t = 3 < min{C − It, G

i} (injection rate underutilization). If It = 10, then

yo,MYOPIC
t = 10, while yo,OPT

t = 7 < min{It, Go} (withdrawal rate underutilization).

In Section 6.3, the base-stock levels Si
t and So

t of the optimal policy should be derived

in a data-driven way by exploiting feature information Xit ∈ X of features i = 1, ..., N ,

rather than by SDP under full characterization of φ(pt+1) by, e.g., high-dimensional spot

price models.

Table 6.1.: Summary of policy parameter characterization

SCWP-FF SCWP-LF
w/o frictions

(pit = pot )
Optimal Pt(X) = Et[pt+1] Si

t(X), So
t (X)

Myopic Pt(X) = Et[pt+1] Pt(X) = Et[pt+1]
w/ frictions

(pit > pot )
Optimal Pt(X) Si

t(X), So
t (X)

Myopic Pt(X) = Et[pot+1] Pt(X) = Et[pot+1]

Table 6.1 summarizes the policy results. The state-dependent threshold price Pt(X)

gives a signal regarding when to order, while state-dependent base-stock levels Si
t(X)

and So
t (X) give signals how much to order.

In our numerical analysis, we additionally test MYOPIC as a heuristic for solving

the SCWP. Even though it is suboptimal (except for the case of fully flexible storage

facilities without frictions), MYOPIC, if applied in a rolling horizon manner, might be a

promising trading policy in the presence of generalization error since it only uses forecast

information about period t + 1, which might be less affected by prediction errors than

forecasts beyond t+ 1.
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6.2.4. Sequential Reoptimization: The Rolling Intrinsic Approach

Since optimal policy parameters are typically too complicated to compute via SDP (Ey-

deland and Wolyniec, 2003, pp. 351), we summarize the state-of-the-art reoptimization

heuristic RIA. Being part of storage management software, such as Lacima (2018), Kyos

(2018), Energy Quants (2018) or MathWorks (2018), RIA is widely used in industry

practice for the valuation of gas storage assets (see, e.g., Breslin et al., 2008, 2009; Gray

and Khandelwal, 2004a,b), where it has been shown to yield near-optimal results relative

to the full information SDP. For instance, Secomandi (2010) reports that RIA is able to

capture on average 99.81% of the value of the full information optimum.

RIA, which is sometimes referred to as forward dynamic optimization (Eydeland and

Wolyniec, 2003, p. 355), is a sequential reoptimization heuristic and a type of certainty

equivalent control (CEC) (Bertsekas, 1995) that makes decisions about yit and yot by

optimizing a tractable LP based on period t point estimates for future spot prices, i.e.,

pτ with τ > t.

Stochastic future spot prices pτ with τ > t are approximated, if available, by the (dis-

counted) deterministic forward curve ~Ft = (ft,τ : τ ∈ F = {t, t + 1, ..., t + n}) with ft,τ

being the quoted forward price in t with contract maturity τ and n denoting the planning

horizon. This is reasonable under rational expectation and the risk neutral measure Q,

i.e., futures prices equal expected spot prices with ft,τ = EQt [fs,τ ], t < s ≤ τ (standard

no-arbitrage assumption). Note that ft,t describes the spot price pt. Equivalently to

spot prices pt, forward prices ft,τ need to be adjusted to frictions, i.e., f i
t,τ = 1

ηi
ft,τ + ci

and fo
t,τ = ηo ft,τ − co.

RIA:

max
yiτ ,y

o
τ

V I
t (It, ~Ft) =

∑
τ∈F

[
fo
t,τ y

o
τ − f i

t,τ y
i
τ − ch Iτ

]
(6.9)

s.t. It +
τ∑

τ ′=t

(yiτ ′ − yoτ ′)︸ ︷︷ ︸
Iτ+1

= Iτ − yoτ + yiτ ∀τ ∈ F = {t, ..., t+ n} (6.10)

0 ≤ yiτ ≤ C − Iτ + yoτ ∀τ ∈ F (6.11)

0 ≤ yoτ ≤ Iτ ∀τ ∈ F (6.12)

yiτ ≤ Gi ∀τ ∈ F (6.13)

yoτ ≤ Go ∀τ ∈ F (6.14)
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The LP ((6.9)-(6.14)) is solved in the current period t based on the available determin-

istic price information ~Ft = (ft,τ : τ ∈ F , τ ≥ t) and the inventory state information It

maximizing the intrinsic value V I
t (It, ~Ft) of storage regardless of the random evolution of

forward curve ~Ft over time. Hence, V I
t (It, ~Ft) comes from the seasonality of the forward

curve (see Figure 6.1). However, other than for the intrinsic policy IA, for RIA only

decisions of the current stage and state yiτ=t and yoτ=t are implemented and the intrinsic

LP is resolved in t + 1 for the updated inventory state information It+1 = It − yot + yit

and the updated forward curve ~Ft+1 = (ft+1,τ : τ ∈ F , τ ≥ t + 1). This determines the

rolling intrinsic value of storage.

RIA is consistent with the deterministic dynamic programming model and hence with

the optimal policy structure. Also note that the myopic policy is a special case of

RIA with n = 1, i.e., F = {t, t + 1}. A major benefit of RIA is its computational

attractiveness. It avoids the curse of dimensionality of dynamic programming. However,

thereby RIA disregards the stochastic evolution of the forward curve ~Ft, i.e., expectations

about ~Ft+1 do not affect yit and yot . Consequently, RIA ignores the extrinsic value of

storage V E
t = V ∗(It, ~Ft) − V I(It, ~Ft), with V ∗ being the expected profit according to

equation (6.7).

Moreover, we identify two further issues of RIA that are not addressed by the current

literature in the SCWP context: (i) Are forward prices ft,τ good estimates for spot

prices pτ? (ii) How to set the planning horizon n? I.e., is the consideration of all

available forward price information ~Ft = (ft,τ : τ ∈ F , τ ≥ t) reasonable in the light of

generalization error? Cruise et al. (2019) show that optimal first-stage decisions only

depend on a short future time horizon n, which is determined by the parameters of the

warehouse (e.g., frictions). However, they ignore generalization error, even though there

is empirical evidence that prediction error increases with maturity τ (see, e.g., Cortazar

et al. (2018) or our analysis in Section 6.4). Hence, large look-ahead horizons might not

only be irrelevant (Cruise et al., 2019), but even disadvantageous.

Example 3 (RIA vs. MYOPIC). We consider fully flexible storage (SCWP-FF) with

frictions ci = co = 0.9 (ηi = ηo = 1). The warehouse with capacity C = 1 is empty

(It = 0). Storage costs are neglected (ch = 0). Available forward prices ft,τ describe spot

price expectations for both approaches RIA and MYOPIC, which is reasonable under

the risk-neutral probability measure Q. We assume that the market is in contango (i.e.,

upward sloping forward curves). Given ~Ft from Figure 6.4, MYOPIC yields yit = yot = 0,

while RIA yields yit = C for expected withdraw-and-sell in t+ 5. However, RIA is highly

affected by prediction errors due to changing forward curves. If price realizations for
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t+1, ..., t+5 are smaller than 11.8 (= 10+0.9+0.9), RIA’s period t decision is not even

profitable. In contrast, MYOPIC is less affected by prediction errors since expectations

about t+ 2, ..., t+ 5 do not affect period t decisions.

t t+1 t+2 t+3 t+4 t+5
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11
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Maturity τ
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~Ft+1Myopic
prediction
error

Figure 6.4.: RIA and MYOPIC with regard to prediction error

To overcome the limitations of RIA (i.e., (i) forward prices might not provide accurate

spot price estimates and (ii) it is an open question how much forward price information

to consider), we present several learning-enabled data-driven approaches in the following.

6.3. Data-Driven Optimization for the SCWP

In this section, we propose data-driven approaches (DDA) for solving the SCWP under

the relaxation of full information problem assumptions, i.e., full characterization of a

price model φ(pt+1) and therefore of the state space zt ∈ Zt. The DDA models are based

on decision rule approximations (Section 6.3.1), policy rule approximations (Section

6.3.2) and value function approximations (Section 6.3.3). DDA-LDR trains decisions as

functions of features, DDA-OSP trains policy parameters as functions of features and

DDA-VFA trains the value-to-go function based on features.

6.3.1. Unstructured Linear Decision Rule Approach (DDA-LDR)

DDA-LDR trains decisions via decision rule approximations as applied in the data-driven

and non-parametric stochastic optimization literature (see Section 3.3.2 and particularly

Ban and Rudin (2019) for the newsvendor problem). Decision rules map observations of
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random variables to decisions such as the newsvendor order quantity. In the following, we

focus on affine (intercept plus slope) linear decision rules (see Garstka and Wets (1974)

and Georghiou et al. (2005) for comprehensive tutorials on decision rule approximations).

Definition 11 (Linear Decision Rule Approximation for the SCWP). The injection and

withdrawal quantities yit and yot are approximated by affine linear decision rules (LDR)

of the form

yit(X) :=
N∑
i=0

βi
iXit, yot (X) :=

N∑
i=0

βo
i Xit.

In this regression-like equation, βi
i ∈ B ⊂ R and βo

i ∈ B ⊂ R are feature coefficients

that are unknown to the merchant and must be learned from historical time series data

t ∈ T = {1, ..., T} of length T . To allow for a feature-independent intercept term, we

set X0t = 1 ∀t ∈ T .

Even though yit and yot are linear in feature observations Xit, this is not restrictive.

Non-linearities can be considered by interaction terms (e.g., yit(X) := βi
0+βi

1X1t+β
i
2X2t+

βi
3X1tX2t) or by polynomial terms (e.g., yit(X) := βi

0 +βi
1X

2
1t). Lagged observations offer

additional flexibility (e.g., yit(X) := βi
0 + βi

1X1t + βi
2X1,t−1).

The coefficients βi
i , β

o
i ∈ B are determined based on the statistical learning theory princi-

ple of ERM (Vapnik, 1998, pp. 32) through minβi
i,β

o
i ∈B

1
T

∑T
t=1 `DDA(V̂t, V

PF
t ) with `DDA

being the profit-based loss function of the data-driven approach relative to the theoret-

ical profit V PF of the perfect foresight problem. Notationˆemphasizes that the profit is

estimated from data via the ERM principle, rather than under the full information prob-

lem. Minimizing the loss with respect to the nominal optimization problem is equivalent

to setting βi
i , β

o
i ∈ B of the LDR such that the average period feature-conditional (Big-

Data-conditional) inventory trading profit is maximized over the training set t = 1, ..., T :

max
βi
i,β

o
i ∈B

{
1

T

T∑
t=1

V̂t(It, pt)|X
}

(6.15)

Figure 6.5 illustrates the framework of in-sample optimization (training) and out-of-

sample evaluation of feature coefficients βi
i , β

o
i ∈ B.

Once the coefficients βi
i , β

o
i ∈ B are trained via DDA-LDR, injection and withdrawal

quantities for t = T s, ..., T ′ are determined by yit = max{min{C−It+yot , Gi,
∑N

i=0 β
i
iXit}, 0}

and yot = max{min{It, Go,
∑N

i=0 β
o
i Xit}, 0} respectively. However, the training is differ-

ent to the standard ERM approach in the data-driven optimization literature that only
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t = 1 t = T s
t = T s + T f

Spot optimization Forward optimization

In-sample optimization (Training)

t = T s t = T ′

Out-of-sample evaluation

Figure 6.5.: Optimization (training) and evaluation framework

optimizes the in-sample profit/cost over historical periods (i.e., t = 1, ..., T s) and does

not exploit available forward-looking information during the training. However, for com-

modities, estimates for future periods t = T s + 1, ..., T s + T f are available at t = T s in

the form of the quoted forward curve ~Ft that might be worth considering for the train-

ing of the feature coefficients (forward optimization). Therefore, the ERM objective is

extended to capture the current best-estimate of future profits by considering available

forward prices. Injection and withdrawal decisions are trained via the following LP.

DDA-LDR:

max
yit(X)
yot (X)

V̂ =
1

T s + T f

[ T s∑
t=1

(pot y
o
t − pityit − chIt)︸ ︷︷ ︸

Standard ERM

+
T f∑
t=1

(fo
T s,T s+t y

o
T s+t − f i

T s,T s+t y
i
T s+t − chIT s+t)︸ ︷︷ ︸

Forward optimization: Estimate of future profit

] (6.16)

s.t. I1 +
t∑

t′=1

(yit′ − yot′)︸ ︷︷ ︸
It+1

= It − yot (X) + yit(X) ∀t ∈ T = {1, ..., T s + T f} (6.17)

0 ≤ yit(X) ≤ C − It + yot (X) ∀t ∈ T (6.18)

0 ≤ yot (X) ≤ It ∀t ∈ T (6.19)

yit(X) ≤ Gi ∀t ∈ T (6.20)

yot (X) ≤ Go ∀t ∈ T (6.21)
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Note that βi
i , β

o
i ∈ B ⊂ R are decision variables. If pt is used as a feature, a price-

dependent base-stock policy can be estimated by the feature models yit = βi · 1
pt
− It

and yot = It − βo · 1
pt

. However, yit = (Si
t − It)

+ and yot = (It − So
t )+ are nonlinear

equations, i.e., there is no foundation to assume that a base-stock policy is close to

an LDR. Consequently, DDA-LDR is not necessarily consistent with the optimal policy

structure (e.g., it is feasible to simultaneously purchase and sell). One can measure the

suboptimality of LDRs by solving the dual problem (Georghiou et al., 2005). The dual

variable of constraint (6.17) denotes the value of having an additional unit of inventory

in t+1. Especially when decisions are constrained, LDRs might be highly inappropriate

(Bertsimas and Kallus, 2016). While this is not an issue for newsvendor-like problems

(see, e.g., Ban and Rudin, 2019), multi-period problems exhibit structural properties

that might be valuable to exploit in data-driven optimization. Therefore, we extend

DDA-LDR in the next section in order to guarantee consistency with the optimal policy

structure from Section 6.2.

6.3.2. Optimally Structured Policy Approach (DDA-OSP)

In this section, we explicitly use the knowledge about structural properties for data-

driven optimization. DDA-OSP trains policy parameters, rather than decisions, by

mapping feature observations Xit to inventory control parameters. This approach en-

sures policy consistency by construction and is related to Iyer and Schrage (1992), who

directly compute the (s, S) parameters that would have been optimal for the original

deterministic demand stream. However, they focus on the inventory problem under

uncertain demand rather than price and also do not consider feature-based learning.

Due to different policy characterizations (see Section 6.2), we distinguish between full

operational flexibility (SCWP-FF) and limited operational flexibility (SCWP-LF) being

aware that SCWP-FF is a special case of SCWP-LF.

DDA-OSP-FF for SCWP-FF

Definition 12 (Linear Policy Rule Approximation for SCWP-FF). The inventory eval-

uator Pt(X) from Proposition 3 that gives purchase-and-inject and withdraw-and-sell

signals is approximated by an affine policy rule of the form

Pt(X) :=
N∑
i=0

βiXit.
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The following MILP models are consistent with the optimal policy structure in the

sense of the full information SDP under full knowledge about the price process (Propo-

sition 3). The goal is to train inventory evaluator Pt(X) as a function of feature vector X.

DDA-OSP-FF:

max
Pt(X)

V̂ =
1

T s + T f

[ T s∑
t=1

(pot y
o
t − pityit − chIt)

+
T f∑
t=1

(fo
T s,T s+t y

o
T s+t − f i

T s,T s+t y
i
T s+t − chIT s+t)

] (6.22)

s.t. I1 +
t∑

t′=1

(yit′ − yot′) = It − yot + yit ∀t ∈ T = {1, ..., T s + T f} (6.23)

0 ≤ yit ≤ C − It + yot ∀t ∈ T (6.24)

0 ≤ yot ≤ It ∀t ∈ T (6.25)

Mqt ≥ Pt(X)− pit ∀t = 1, ..., T s (6.26)

−M(1− qt) < Pt(X)− pit ∀t = 1, ..., T s (6.27)

Mrt > pot − Pt(X) ∀t = 1, ..., T s (6.28)

−M(1− rt) ≤ pot − Pt(X) ∀t = 1, ..., T s (6.29)

Mqt ≥ Pt(X)− f i
T s,t ∀t = T s + 1, ..., T s + T f (6.30)

−M(1− qt) < Pt(X)− f i
T s,t ∀t = T s + 1, ..., T s + T f (6.31)

Mrt > fo
T s,t − Pt(X) ∀t = T s + 1, ..., T s + T f (6.32)

−M(1− rt) ≤ fo
T s,t − Pt(X) ∀t = T s + 1, ..., T s + T f (6.33)

yit ≤ Cqt ∀t ∈ T (6.34)

yit ≥ C − It − C(1− qt) ∀t ∈ T (6.35)

yot ≤ Crt ∀t ∈ T (6.36)

yot ≥ It − C(1− rt) ∀t ∈ T (6.37)

Pt(X) ∈ R, qt, rt ∈ {0, 1} ∀t ∈ T ; i = 0, ..., N (6.38)

Besides the deterministic formulation of the SCWP ((6.22)-(6.25)), additional con-

straints (6.26)-(6.38) are required to preserve the optimal policy structure of SCWP-FF

(see Proposition 3) and to derive Pt(X) :=
∑N

i=0 βiXit accordingly. Constraints (6.26)-
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(6.27) and (6.28)-(6.29) determine the relationship between pit and Pt(X) respectively

between pot and Pt(X), i.e., qt = 0 if pit ≥ Pt(X) and qt = 1 otherwise, respectively

rt = 0 if Pt(X) > pot and rt = 1 otherwise. Constraints (6.30)-(6.33) are duplications

of constraints (6.26)-(6.29) that are required for the forward optimization extension.

Constraint (6.34) ensures that yit = 0, if pit ≥ Pt(X) (i.e., qt = 0) independent of pot .

Constraint (6.35) ensures that yit = C − It if pit < Pt(X) (i.e., qt = 1). Constraint (6.36)

ensures that yot = 0 if pot < Pt(X) (i.e., rt = 0). Constraint (6.37) ensures that yot = It

if pot ≥ Pt(X) (i.e., rt = 1).

In order to improve model generalization, we extend our DDA formulations to regu-

larization. We illustrate this procedure for DDA-OSP-FF in the following.

We apply `1-norm regularization for feature selection to avoid that the model fits the

noise in the data, rather than the underlying functions (over-fitting). We use Lasso

regression that penalizes non-zero coefficients βi ∈ B in order to keep the model from

relying too heavily on individual data points. The objective are high-quality decisions,

rather than high-quality predictions, which is a benefit over model selection criteria such

as AIC or BIC in standard regression that aim at selecting prediction-relevant features.

DDA-OSP-FF with regularization:

max
βi∈B

V̂ − λ
N∑
i=1

wi︸ ︷︷ ︸
Model complexity

(6.39)

s.t. (6.23)− (6.38) (6.40)

Mwi ≥ βi ∀i = 1, ..., N (6.41)

−Mwi ≤ βi ∀i = 1, ..., N (6.42)

wi ∈ {0, 1} ∀i = 1, ..., N (6.43)

λ ≥ 0 controls regularization and is typically calibrated by n-fold cross-validation (see

Mohri et al., 2012, p. 28). For λ = 0, DDA-OSP-FF with regularization reduces to

the basic formulation without penalizing complexity. For λ → ∞, DDA-OSP-FF with

regularization converges to a solution that estimates Pt as a time-invariant constant.

The intercept β0 ∈ B is not regularized, which avoids that Pt(X) = 0 for a large λ,

which yields (yi
∗

t , y
o∗
t ) = (0, It), i.e., immediate clearance sale of all available inventory

in period t and no replenishment in subsequent periods.
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DDA-OSP-LF for SCWP-LF

For SCWP-LF, the estimation of a single price threshold is not sufficient since at the same

market price pt, different purchase-and-inject respectively withdraw-and-sell decisions yit

and yot can be optimal depending on the current inventory level It.

Definition 13 (Linear Policy Rule Approximation for SCWP-LF). The base-stock levels

Si
t(X) and So

t (X) of the optimal policy from Proposition 5 are approximated by

Si
t(X) := max

{
0,

N∑
i=0

βi
iXit

}
, S∆

t (X) := max

{
0,

N∑
i=0

β∆
i Xit

}
,

with So
t (X) := Si

t(X) + S∆
t (X).

Note that this incremental formulation is required to ensure that Si
t ≤ So

t . Further-

more, note that βi
i , β

∆
i ∈ R are decision variables in the following MILP. For compu-

tational performance reasons, we use a fractional formulation with all quantities yit, y
o
t ,

Si
t(X), So

t (X), S∆
t (X), It, G

i and Go defined as fractions of the warehouse capacity C

in order to avoid Big M notation.

DDA-OSP-LF:

max
Si
t(X)

So
t (X)

V̂ =
C

T s + T f

[ T s∑
t=1

(pot y
o
t − pityit − chIt)

+
T f∑
t=1

(fo
T s,T s+t y

o
T s+t − f i

T s,T s+t y
i
T s+t − chIT s+t)

] (6.44)

s.t. I1 +
t∑

t′=1

(yit′ − yot′) = It − yot + yit ∀t ∈ T = {1, ..., T s + T f} (6.45)

Si
t(X)− uit ≤ I1 +

t∑
t′=1

(yit′ − yot′) ≤ So
t (X) + uot ∀t ∈ T (6.46)

It + qit ≥ Si
t(X), It − qot ≤ So

t (X) ∀t ∈ T (6.47)

I1 +
t∑

t′=1

(yit′ − yot′) ≤ Si
t(X) + (1− qit) ∀t ∈ T (6.48)

I1 +
t∑

t′=1

(yit′ − yot′) ≥ Si
t(X)− (1− qit)− uit ∀t ∈ T (6.49)
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I1 +
t∑

t′=1

(yit′ − yot′) ≥ So
t (X)− (1− qot ) ∀t ∈ T (6.50)

I1 +
t∑

t′=1

(yit′ − yot′) ≤ So
t (X) + (1− qot ) + uot ∀t ∈ T (6.51)

yit ≥ Gi − (1− uit), yot ≥ Go − (1− uot ) ∀t ∈ T (6.52)

yit ≤ Gi, yot ≤ Go ∀t ∈ T (6.53)

yit ≤ qit, yot ≤ qot ∀t ∈ T (6.54)

uit ≤ qit, uot ≤ qot ∀t ∈ T (6.55)

0 ≤ yit ≤ 1− It + yot , 0 ≤ yot ≤ It ∀t ∈ T (6.56)

uit, u
o
t , q

i
t, q

o
t ∈ {0, 1} ∀t ∈ T (6.57)

Constraint (6.45) ensures inventory balance. Constraint (6.46) ensures that Si
t ≤ So

t .

Constraint (6.47) ensures that qit = 1 if It < Si
t(X) and qot = 1 if It > So

t (X). Constraints

(6.48)-(6.49) ensure to purchase-up-to Si
t(X) if qit = 1 and uit = 0. Constraints (6.50)-

(6.51) ensure to sell-down-to So
t (X) if qot = 1 and uot = 0. Constraints (6.52)-(6.53)

ensure to purchase Gi if uit = 1 respectively sell Go if uot = 1. Constraints (6.54)-(6.55)

ensure not to buy or sell if qit = uit = 0 respectively qot = uot = 0. The auxiliary variables

uit, u
o
t , q

i
t and qot can be interpreted as follows: if qit = uit = 0 (qot = uot = 0), then yit = 0

(yot = 0) since Si
t ≤ It (So

t ≥ It). If qit = 1 ∧ uit = 0 respectively qot = 1 ∧ uot = 0, then

buy-up to Si
t respectively sell-down to So

t . If qit = 1∧uit = 1 respectively qot = 1∧uot = 1,

then buy Gi respectively sell Go.

6.3.3. Value Function Approximation Approach (DDA-VFA)

The basic idea of DDA-VFA is similar to Wu et al. (2012), who manipulate the forward

curve ~Ft a-priori such that it includes estimates of the extrinsic value generated by its

stochastic evolution. Their goal is to close the gap between RIA and the optimal solution

of the full information problem. However, while Wu et al. (2012) focus on compensating

the RIA drawback of ignoring the extrinsic value of storage, we focus on compensating

the RIA drawback of ignoring generalization error, i.e., we aim at closing the gap to the

theoretical perfect foresight solution.

We know that the value function Vt is piecewise linear concave in the inventory level

It. The idea of DDA-VFA is to approximate the value-to-go function Vt+1 using feature

information by mapping feature data to spot price predictions f̂t,τ with τ > t (i.e.,
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prediction in period t for period τ), rather than to decisions (DDA-LDR) or to policy

parameters (DDA-OSP). The predictions f̂t,τ can be obtained by, e.g., a regression model

of the following form:

f̂t,τ (X) :=
N∑
i=0

βτi Xit ∀τ = t+ 1, ..., t+ n

The estimates f̂t,τ are thereafter used as input for an LP. Equivalently to RIA, the

LP is solved in a rolling horizon fashion to determine yit and yot . The first part of the

objective function (6.58) is the immediate profit, the second part is the deterministic

value-to-go function approximation with approximated spot price estimates f̂t,τ adjusted

to frictions.

DDA-VFA:

max
yit,y

o
t

V̂ = pot y
o
t − pit yit − ch It +

∑
τ∈F|τ>t

[
f̂o
t,τ (X) yoτ − f̂ i

t,τ (X) yiτ − ch Iτ
]

(6.58)

s.t. It +
τ∑

τ ′=t

(yiτ ′ − yoτ ′) = Iτ − yoτ + yiτ ∀τ ∈ F = {t, ..., t+ n} (6.59)

0 ≤ yiτ ≤ C − Iτ + yoτ ∀τ ∈ F (6.60)

0 ≤ yoτ ≤ Iτ ∀τ ∈ F (6.61)

yiτ ≤ Gi, yoτ ≤ Go ∀τ ∈ F (6.62)

A benefit of DDA-VFA is that it results in simple LPs as the uncertain parameters pτ

with τ > t exclusively appear linearly in the objective function. This ensures that we

search for policies that belong to the same family as the optimal policy. Furthermore,

unlike DDA-LDR and DDA-OSP, DDA-VFA is not necessarily based on ERM and all

kinds of linear and non-linear ML methods, including local learning (e.g., kernel regres-

sion or random forest), can be employed to obtain the price estimates. In contrast to

ERM, local learning makes predictions based on past data that is similar to the data

within the recent state. Therefore, equation (6.15) changes to max
∑T

t=1wT,t(X)V̂t(It, pt)

with wT,t re-weighting the observed data (Bertsimas and Kallus, 2016).

However, just like RIA, DDA-VFA requires the decision maker to define a planning

horizon n, which might affect the performance of DDA-VFA significantly. Furthermore,

since βτi ∈ B is determined a-priori, DDA-VFA separates prediction and optimization,

which might not yield decision-optimal predictions.
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6.4. Results on Empirical Data

Based on six major commodities, we quantify the backtest performance of the presented

solution approaches for the SCWP conditional on warehouse characteristics. Section

6.4.1 describes the setup and data used and quantifies the empirical forecast error of

futures prices to predict spot prices. In Section 6.4.2, we analyze the sensitivity in a

deterministic setting, which enhances our understanding about the myopic performance,

the required planning horizon and the value of capacity underutilization. In Section 6.4.3,

we demonstrate the weaknesses of RIA in stochastic settings that inevitably involve

generalization error. In Section 6.4.4, we compare the performance of the different DDA

policies relative to RIA. All LP and MILP solutions were obtained by using the Xpress-

MP solver (version 7.6) on an Intel(R) Core(TM) i7-3770, 3.4 GHz processor with 16

GB RAM.

6.4.1. Setup and Descriptive Analysis

We use monthly price data and assume monthly inventory review periods, i.e., each

review period coincides with a futures contract maturity (Lai et al., 2010; Secomandi,

2010, 2015). This allows us to evaluate RIA based on futures prices without further

assumptions (e.g., price models). Recall that futures prices are used by RIA as a proxy

for the market’s spot price expectation (futures-based forecasts).

Table 6.2.: Commodity spot and futures price data (2000-2017)

Commodity Price quotation Spot market (Data source) Futures market (Data source)
Metals
Copper USD/lb Nevada Copper (Datastream: NCUCASH) COMEX (Eikon: HGc1-12)
Gold USD/ounce Gold (Eikon: XAU=) COMEX (Eikon: GCc1-12)
Energy
Crude oil USD/bbl West Texas Intermediate (Datastream: CRUDOIL) NYMEX (Eikon: CLc1-12)
Natural gas USD/mmbtu Henry Hub Natural Gas (Datastream: NATLGAS) NYMEX (Eikon: NGc1-12)
Agricultural
Corn USc/bushel No.2 Yellow Corn (Datastream: CORNUS2) CBOT (Eikon: Cc1-12)
Soybean USc/bushel No.1 Yellow Soybean (Datastream: SOYBEAN) CBOT (Eikon: Sc1-12)

Our data refers to monthly closing prices at the first trading day of the correspond-

ing month. Futures contracts for metals and energy are traded at the NYMEX, for

agricultural commodities at the CBOT. COMEX is the metal division of NYMEX. We

use futures data for the first 12 maturities, i.e., 1- to 12-months-ahead contracts. Even

though contracts beyond one year are available for various commodities, these markets

are typically highly illiquid with only very few contracts traded, which implies that
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the predictive content for future spot prices might be low (Alquist and Kilian, 2010).

CBOT corn futures mature in March, May, July, September and December. CBOT

soybean futures mature in January, March, May, July, August, September and Novem-

ber (www.cmegroup.com). Therefore, corn and soybean prices in-between are linearly

interpolated, which is a frequently used and reasonable approximation (Guthrie, 2009).

Note also that futures markets might be more liquid than spot markets that are often

thinly traded (Geman and Smith, 2013). We additionally tested the models based on

trading in the futures market with closest expiry (the so-called front-month contract) as

a proxy for the spot price. As the results are similar, we do not explicitly report them.

Figure 6.6 shows the commodity price evolutions and annualized volatilities σ for the

considered time frame.

0
1
-2

0
0
0

0
1
-2

0
0
2

0
1
-2

0
0
4

0
1
-2

0
0
6

0
1
-2

0
0
8

0
1
-2

0
1
0

0
1
-2

0
1
2

0
1
-2

0
1
4

0
1
-2

0
1
6

0
1
-2

0
1
8

0

1

2

3

4

5

σ = 25%

U
S
D

/
lb

Copper

0
1
-2

0
0
0

0
1
-2

0
0
2

0
1
-2

0
0
4

0
1
-2

0
0
6

0
1
-2

0
0
8

0
1
-2

0
1
0

0
1
-2

0
1
2

0
1
-2

0
1
4

0
1
-2

0
1
6

0
1
-2

0
1
8

0

500

1,000

1,500

2,000

σ = 17%

U
S
D

/
o
u
n
c
e

Gold

0
1
-2

0
0
0

0
1
-2

0
0
2

0
1
-2

0
0
4

0
1
-2

0
0
6

0
1
-2

0
0
8

0
1
-2

0
1
0

0
1
-2

0
1
2

0
1
-2

0
1
4

0
1
-2

0
1
6

0
1
-2

0
1
8

0

30

60

90

120

150

180

σ = 37%

U
S
D

/
b
b
l

Crude Oil

0
1
-2

0
0
0

0
1
-2

0
0
2

0
1
-2

0
0
4

0
1
-2

0
0
6

0
1
-2

0
0
8

0
1
-2

0
1
0

0
1
-2

0
1
2

0
1
-2

0
1
4

0
1
-2

0
1
6

0
1
-2

0
1
8

0

4

8

12

16

σ = 65%

U
S
D

/
m

m
b
tu

Natural Gas

0
1
-2

0
0
0

0
1
-2

0
0
2

0
1
-2

0
0
4

0
1
-2

0
0
6

0
1
-2

0
0
8

0
1
-2

0
1
0

0
1
-2

0
1
2

0
1
-2

0
1
4

0
1
-2

0
1
6

0
1
-2

0
1
8

0

250

500

750

1,000

σ = 29%

U
S
c
/
b
u
sh

e
l

Corn

0
1
-2

0
0
0

0
1
-2

0
0
2

0
1
-2

0
0
4

0
1
-2

0
0
6

0
1
-2

0
0
8

0
1
-2

0
1
0

0
1
-2

0
1
2

0
1
-2

0
1
4

0
1
-2

0
1
6

0
1
-2

0
1
8

0

500

1,000

1,500

2,000

σ = 25%

U
S
c
/
b
u
sh

e
l

Soybean

Figure 6.6.: Commodity spot prices and mean annualized volatilities σ (2000-2017)

Empirical Forecast Error of Futures Prices

Under the risk-neutral probability measure Q, deterministic futures prices ft,τ represent

expected future spot prices pτ with τ > t. Hence, RIA uses the futures curve ~Ft = (ft,τ :

τ ∈ F , τ ≥ t) for inventory trading decisions in t. However, futures prices are not free

from prediction error et. Based on the commodity data from 2000-2017, we calculate

the mean absolute percentage forecasting error (MAPE) of futures prices of different

maturities τ to predict spot prices:
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MAPEτ :=
100%

N

N∑
t=1

∣∣∣∣etpt
∣∣∣∣ =

100%

N

N∑
t=1

∣∣∣∣pt − ft−τ,tpt

∣∣∣∣
As a scale-variant measure, MAPE is not appropriate to compare forecast accuracy

across different time series (commodities). Therefore, we additionally calculate the mean

absolute scaled error (MASE) that compares the forecast accuracy of ft−τ,t with the

forecast accuracy of näıve forecasts under the random walk model without drift, i.e.,

Et[pt+∆t] = pt for all ∆t > 0 (Hyndman and Koehler, 2006):

MASEτ :=
1

N

N∑
t=1

|et|
1

N−τ

N∑
t=τ+1

|pt − pt−τ |

Consequently, MASE < 1 indicates that futures-based forecasts outperform näıve

forecasts, while MASE > 1 indicates that a näıve forecast is better on average (for

which there is evidence in the literature; see Alquist and Kilian 2010).

To measure the ability to detect the correct direction of price changes (classification

accuracy), we furthermore calculate the mean directional accuracy (MDA):

MDAτ :=
100%

N

N∑
t=1

1sign(pt−pt−τ )==sign(ft−τ,t−pt−τ )

with sign being the sign function and 1 being the indicator function.

Table 6.3 shows that the forecast error in terms of MAPE typically increases with

increasing time to maturity. This is in line with Cortazar et al. (2018) and raises the

question whether to use all available futures price information for inventory trading

decisions, or to use a myopic approach as a series of simple-to-solve two-period problems,

which might be less affected by errors.

Note that there is no systematic overestimation (et < 0) or underestimation (et > 0)

of pt by ft−τ,t (see Appendix C.2). However, while MAPE might lead to the conclusion

that futures prices are a bad choice for forecasting gas spot prices, MASE indicates

their usefulness (compared to näıve forecasts). The MDA results show that ~Ft is able to

correctly classify the direction (upward or downward) of front-month spot prices in less

than 50% of the periods for copper (46.0%), gold (46.5%) and crude oil (49.3%).
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Table 6.3.: MAPE, MASE and MDA of futures to predict spot prices (2000-2017)

Months to Maturity
1 2 3 4 5 6 7 8 9 10 11 12

MAPE in %
COMEX Copper 6.2 8.6 11.5 13.9 15.8 17.4 18.6 19.7 20.9 21.8 22.9 24.2
COMEX Gold 3.9 5.1 6.0 6.7 7.5 8.2 9.0 9.8 10.4 11.0 11.5 12.3
NYMEX Crude Oil 8.2 11.6 14.2 16.6 18.9 21.0 22.2 23.4 24.1 25.0 25.7 26.9
NYMEX Natural Gas 13.5 18.2 21.7 25.4 28.4 31.4 33.7 35.7 37.2 38.4 39.6 40.9
CBOT Corn 8.1 10.8 13.7 16.1 18.1 19.2 20.2 21.0 22.0 22.3 22.9 24.2
CBOT Soybean 6.6 8.7 10.2 11.6 13.8 14.2 15.1 15.6 16.4 15.9 16.2 16.4

MASE
COMEX Copper 1.09 1.02 1.03 1.01 1.02 1.00 1.01 1.01 1.02 1.03 1.04 1.05
COMEX Gold 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.95 0.94 0.94 0.94 0.93
NYMEX Crude Oil 1.03 0.99 0.98 0.97 0.96 0.97 0.97 0.97 0.96 0.96 0.96 0.94
NYMEX Natural Gas 0.95 0.95 0.96 0.98 0.94 0.97 0.95 0.94 0.93 0.95 0.96 0.98
CBOT Corn 1.08 1.01 1.02 1.02 1.01 1.01 0.99 1.00 1.01 0.99 0.98 0.98
CBOT Soybean 0.98 0.94 0.89 0.87 0.87 0.85 0.86 0.84 0.85 0.83 0.84 0.82

MDA in %
COMEX Copper 46.0 54.7 54.5 54.7 51.2 53.8 55.5 57.7 55.1 54.4 54.1 53.9
COMEX Gold 46.5 56.1 56.8 61.8 63.5 66.7 69.4 69.7 71.5 70.4 72.2 73.5
NYMEX Crude Oil 49.3 50.5 53.5 52.4 55.0 56.7 56.9 56.7 56.0 58.7 61.5 59.8
NYMEX Natural Gas 60.9 53.3 56.3 52.4 53.6 54.3 58.4 57.7 61.8 61.2 64.9 64.7
CBOT Corn 60.9 57.9 54.9 59.0 55.0 57.1 54.1 54.8 56.0 59.7 58.5 58.8
CBOT Soybean 57.7 60.7 67.1 65.1 59.7 61.0 63.6 62.5 60.4 68.4 67.8 69.1

6.4.2. Deterministic Analysis

We start with a deterministic analysis of the SCWP with prices known in advance.

Loss Through Myopic Inventory Decisions

In the first experiment, we test the performance of myopic inventory decisions (MY-

OPIC) relative to the optimal inventory decisions (OPT) based on the six commodity

time series in a rolling horizon fashion from 2000 to 2017. We aim at identifying op-

erational drivers of the performance of MYOPIC (i.e., the simplest limited-look-ahead

approach). As in Lai et al. (2010) and Secomandi (2015), we normalize the warehouse

capacity to C = 1, initial inventory is I0 = 0 (in January 2000) and frictions occur due

to injection and withdrawal loss ηi, ηo ∈ {0.95, 0.955, 0.96, ..., 1}. Following the standard

literature (Lai et al., 2010; Secomandi, 2010), marginal storage costs are ch = 0 (how-

ever, we observed that plausible numbers for ch lead to similar results). There are no

injection and withdrawal costs (ci = co = 0). Furthermore, we distinguish between fully

flexible storage (SCWP-FF) with Gi = Go = C and limited flexible storage (SCWP-LF)

with Gi = Go = 1
2
C. The following results show what a merchant with perfect foresight

price information might lose through (i) limited operational flexibility, (ii) frictions and

(iii) myopic decision-making. The corresponding optimal profits under perfect foresight
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for the six commodities and for different time series phases are presented in Appendix

C.3.1. They describe upper performance bounds.
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Figure 6.7.: Gas storage: Performance of optimal vs. myopic policies (2000-2017)

Figure 6.7 shows that frictions decrease the profit of gas storage facilities significantly.

For the fully flexible storage case (e.g., salt caverns), a 1% injection and withdrawal loss

translates into 6.22% profit decline. However, we observe for the fully flexible storage

case that, if frictions are realistically small (1%; see Secomandi 2010), the profit decline

by myopic decision-making is approximately 0.2%. This is an interesting observation

as MYOPIC is less affected by prediction errors (Note that we would not reach OPT

anyway due to generalization error). Limited storage flexibility (e.g., at gas aquifers) de-

creases the merchant’s profit significantly and MYOPIC deviates from the optimum by

14.7% even for the frictionless case. We make similar observations for all other analyzed

commodities (see Appendix C.3.2). Our analysis on real data shows that the myopic

policy, which does not require any optimization and is less affected by prediction errors

since it is based on one-step-ahead price forecasts (that even do not have to be very

adequate) is optimal for full operational flexibility without frictions and near-optimal

for plausible frictions. However, for limited storage flexibility (that is mainly relevant

for natural gas), myopic policies are far from optimal (> 10%).

Impact of the Planning Horizon

In order to quantify the impact of the planning horizon, we solve the RIA-LP under per-

fect spot price foresight for different planning horizons n ∈ {1, 2, 3, ..., 12} and identical

warehouse characteristics as before (C = 1, ch = 0, SCWP-FF versus SCWP-LF with

Gi = Go = 0.5, frictions with ηi = ηo ∈ {1, 0.995, 0.99, 0.985, ..., 0.95}). We evaluate

RIA-LP in a rolling horizon fashion based on the spot price data from 2000 to 2017.
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Consequently, for each instance, we sequentially solve 216 LPs based on the updated in-

ventory state It+1 and the updated futures curve ~Ft+1 (that equals the vector of perfect

spot price forecasts in this deterministic setting). Figure 6.8 shows the profit exem-

plarily for gas storage measured as percentage of the theoretical optimal profit under

perfect foresight with the planning horizon limited by the last data point (December

2017). The results for the other commodities are qualitatively similar and reported in

Appendix C.3.3.
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Figure 6.8.: Gas storage: Performance impact of planning horizon n (2000-2017)

Figure 6.8 shows that the required planning horizon increases with increasing frictions

and with decreasing operational flexibility. For plausible frictions ηi = ηo = 0.99, a plan-

ning horizon of n = 1 generates 99.84% (SCWP-FF) respectively 69.49% (SCWP-LF) of

the potential value. n = 2 generates 100% (SCWP-FF) respectively 90.83% (SCWP-LF)

and n = 3 generates 100% (SCWP-FF) respectively 98.36% (SCWP-LF) of the poten-

tial value. A planning horizon of n = 2 (SCWP-FF) respectively n = 6 (SCWP-LF) is

sufficient to generate 100% of the value. Beyond 6 future periods, it is not necessary

to look at for optimal first-stage decisions. That is related to the definition of forecast

horizons, i.e., data beyond that period do not affect optimal first-stage actions (Chand

et al., 2002). We observe that the forecast horizon at gas storage facilities compared

to, e.g., gold (Appendix C.3.3) is smaller due to a higher market volatility. If the price

varies more often, then shorter planning horizons are sufficient for optimal decisions.

Value of Injection and Withdrawal Capacity Underutilization

In this paragraph, we quantify the loss by ignoring injection and withdrawal rate con-

straints Gi < C and Go < C. This is insofar interesting to study as a single price thresh-
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old Pt for the SCWP-FF (i.e., under the absence of capacity limits) might be faster to

train than base-stock levels Si
t and So

t for the SCWP-LF (i.e., under the presence of ca-

pacity limits). The difference is that Si
t and So

t allow for capacity underutilization, while

Pt does not. If the value of capacity underutilization is already low in the deterministic

analysis under perfect foresight, then training Pt might be a good approximation for

training Si
t and So

t in the stochastic setting.

We calculate the value of considering capacity underutilization by calculating the loss

if we restrict OPT-LF to purchase and selling decisions whenever OPT-FF purchases

and sells (timing), but limit the buying and selling quantity yit and yot ex-post by the

capacity functions Gi and Go. In other words: we solve OPT-FF (i.e., without capacity

limits) to obtain when to buy/to sell under full operational flexibility and restrict the

purchase and selling decisions in a second step a-posteriori by Gi and Go. The resulting

profit is compared to the profit of OPT-LF (i.e., with a-priori consideration of Gi and

Go) within the optimization. The profit gap quantifies the loss caused by ignoring

capacity underutilization and is plotted in Figure 6.9 for the different commodities over

the entire evaluation horizon (2000-2017) with ch = 0, C = 1, ηi = ηo = 0.99 and an

empty warehouse at the beginning of the year 2000.
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Figure 6.9.: Profit loss by ignoring injection and withdrawal capacity underutilization

Figure 6.9 implies that ignoring the double base-stock structure (Si
t, S

o
t ), i.e., ignoring

the option of capacity underutilization and estimating a price threshold Pt instead,

reduces the merchant’s profit significantly as soon as capacity restrictions are tight (i.e.,

small Gi and Go). For Gi = Go = C, the storage facility is fully flexible and capacity

underutilization is never optimal. If Gi and Go are close to C, then SCWP-LF might

be approximated by SCWP-FF, i.e., the double base-stock structure (Si
t,S

o
t ) can be

approximated by a simple price threshold policy (Pt) without huge losses.
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6.4.3. Stochastic Analysis: Performance of RIA

The deterministic analysis under perfect foresight from Section 6.4.2 provides an upper

bound for the profit but disregards uncertainty about future prices and hence ignores the

implications of generalization error. It is an open question how close the real warehouse

operator can come to the theoretical optimal profit under perfect foresight.

Futures-Based RIA

In the following, we evaluate the performance of RIA that uses ~Ft = (ft,τ : τ ∈ F =

{t, t + 1, ..., t + n}) to predict spot prices pτ . Note that RIA with n = 1 is equivalent

to the myopic policy. Table 6.4 summarizes the parameters that we vary to obtain

4× 2× 3× 9 = 216 instances per commodity (i.e., 1,296 instances in total) to perform

our RIA backtests. We use the same commodity spot price data (2000-2017) and the

identical storage setting (C = 1, ch = 0, I0 = 0) as for the deterministic analysis.

Table 6.4.: Summary of the numerical design

Planning horizon n ∈ {1, 3, 6, 12}
Storage flexibility Gi = Go ∈ {0.5, 1}
Frictions ηi = ηo ∈ {1, 0.995, 0.99}
Sub-periods 2000− 2001, 2002− 2003, ..., 2016− 2017

For each instance, we solve the RIA-LPs sequentially over the evaluation horizon from

2000 to 2017 based on the updated inventory state information It+1 = It−yot +yit and the

updated futures curve ~Ft+1 = (ft+1,τ : τ ∈ F , τ ≥ t + 1). The performance is measured

by V RIA

V PF · 100%, with V RIA being the achieved profit according to RIA and V PF being

the theoretical profit under perfect foresight. We make the following observations.

Observation 1. Under generalization error, RIA can yield unprofitable operations.

The results in Table 6.5 show that RIA achieves on average 11.0% of the perfect

foresight profit. This finding is in strong contrast to the literature that establishes the

near-optimality of RIA in the full information setting, mainly for natural gas storage

(Lai et al., 2010; Secomandi, 2010). RIA capturing only a small percentage of the perfect

foresight bound is intriguing but even more concerning is the significant occurrence of

negative RIA profits in our backtests (in 30.1% of the instances). Negative profits for

instance occur whenever the warehouse operator expects decreasing prices and therefore

would sell the available inventory to the market disregarding sunk cost.
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Table 6.5.: Performance of futures-based RIA in V RIA/V PF · 100% across all instances from
Table 6.4

Mean Min 25%-Q 50%-Q 75%-Q Max Mean* Mean**

Copper 1.3 -58.5 -12.2 0.0 10.6 70.0 4.1 1.5
Gold 10.0 -107.5 0.0 0.0 23.2 78.7 9.4 11.1
Crude Oil -5.1 -171.9 -30.1 7.1 26.3 70.5 -3.3 7.6
Natural Gas 18.6 -125.9 6.0 25.6 44.8 79.5 21.2 28.5
Corn 16.7 -44.3 -5.8 14.5 42.2 64.9 20.0 19.4
Soybean 24.5 -31.6 -1.0 20.8 45.6 79.8 28.1 27.3

Overall 11.0 -171.9 -4.6 9.5 34.9 79.8 13.3 15.9

Note. * Mean w/o 2008-2009 (financial crisis), ** Mean w/o 2014-2015 (oil price drop).

We also observe a strong impact of the oil price drop during 2015 on the perfor-

mance of energy storage systems. If we exclude 2014-2015 from the dataset, the average

performance of RIA for crude oil increases from −5.1% (unprofitable storage) to 7.6%

(profitable storage) with a worst case performance of −64.2%, rather than −171.9%.

Furthermore, the performance also varies with the operational setting (Gi, Go, ηi, ηo)

(see Table C.1 in Appendix C.4): identical price forecasts can yield both profitable and

unprofitable storage. While for a certain operational setting (e.g., copper, SCWP-FF,

n = 12, ηi = ηo = 0.995), a forecast is beneficial, it can be disadvantageous for another

setting (e.g., copper, SCWP-FF, n = 12, ηi = ηo = 0.99). Moreover, if frictions are

large (i.e., small ηi and ηo) relative to the (expected) price changes, the warehouse slows

down its activity (see for some instances of gold in Appendix C.4).

Observation 2. Under generalization error, ignoring information can be beneficial.

We investigate the performance effect of the planning horizon n and refer to a version

of RIA restricted to a certain planning horizon n ∈ {1, 3, 6, 12} as RIAn.
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Figure 6.10.: Average performance of RIAn in V RIAn/V PF · 100% across all instances
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Figure 6.10 shows that the performance of RIA is highly sensitive to the planning

horizon n (except for SCWP-FF instances without frictions where myopic policies are

optimal; see Table C.1 of Appendix C.4). For a variety of settings, it is beneficial to

exclude futures prices from its objective that correspond to maturities further out in

the planning horizon, which often have lower liquidity and hence may provide a poorer

indication of the spot price at its maturity. Furthermore, we observe that futures prices

up to 12 months do not provide much additional valuable information for RIA compared

to futures price information up to 6 months.

Table 6.6.: Dominance matrix of RIAn in % of instances (# = 1, 296) in which row performs
strictly better than column

RIA1 RIA3 RIA6 RIA12

RIA1 - 28.7 28.4 29.9
RIA3 31.2 - 9.6 14.8
RIA6 38.9 21.9 - 8.0
RIA12 41.4 27.5 12.0 -

In total, RIA1 (myopic) strictly outperforms RIA12 in 29.9% of the instances and,

in 100 − 41.4 = 58.6% of the instances, myopic does at least as well as RIA12 (see

Table 6.6). Further, RIA6 is equal to or better than RIA12 in 100 − 12.0 = 88.0% of

the instances, which corroborates our intuition that futures prices with later maturities

adversely affect the RIA12 operating policy. This finding is different in nature from

forecast horizon results in operations (Chand et al., 2002) including the RIA literature

(Cruise et al., 2019), where it is shown that using a shorter planning horizon results in

same optimal decisions in the full information setting. Instead, the suggestion to reduce

the planning horizon stems from futures prices being poor forecasts for longer horizons.

Observation 3. Under generalization error, the value of reoptimization is not neces-

sarily positive.

The preceding results also bring to question whether the reoptimization embedded

in the definition of the RIA policy adds value over the static intrinsic policy computed

using the futures curve available at the initial stage. For the full information setting, we

know that reoptimization adds significant value (Lai et al., 2010; Secomandi, 2015).

We define the value of reoptimization as VReO :=
(
V RIA−V IA

V PF

)
· 100%, with V IA as the

corresponding profit of the intrinsic approach (IA). While RIA revises the inventory plan

in each period based on new futures price information available, IA determines the plan in

t for all remaining periods t, t+1, ..., t+n based on ~Ft = (ft,τ : τ ∈ F = {t, t+1, ..., t+n}).
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Copper Gold Crude Oil Natural Gas Corn Soybean
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Figure 6.11.: Value of reoptimization for n ∈ {1, 3, 6, 12} (light gray to dark gray)

Figure 6.11 summarizes the backtesting results across all instances with respect to the

planning horizon n. We observe that particularly for copper and crude oil, IA performs

surprisingly well if compared to RIA. In total over all commodities, the value of reop-

timization is negative in 37.0% of the 1,296 instances, which fundamentally contradicts

the results of the literature (Lai et al., 2010; Secomandi, 2015) that compares IA and

RIA for the full information problem.

Figure 6.12 presents when reoptimization would have generated value and when not.

We observe that IA outperforms RIA most notably (but not exclusively) in phases of

sharp price jumps or sharp price drops.
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Figure 6.12.: Average performance of RIA (black) versus IA (gray) in V RIA/V PF · 100% for
different time series phases of copper, gold, crude oil, natural gas, corn and
soybean
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Observation 4. Correctly specifying the direction of one-step-ahead spot prices (up-

ward or downward) generates significant additional value compared to RIA. The value

generated by estimating the correct forecast direction can hardly be improved by perfect

one-step-ahead point forecasts.

Finally, we investigate the nature of “high fidelity” information that RIA would need

to perform well. Therefore, everything else being equal, we manipulate the front-month

price predictions p̂t+1. We distinguish between (i) perfect one-step ahead point forecasts

(PPF) with p̂t+1 = pt+1 and (ii) perfect one-step ahead directional forecasts (PDF) with

p̂t+1 = pt · (1 + δ̄) if pt+1 > pt and p̂t+1 = pt · (1− δ̄) if pt+1 ≤ pt. We set δ̄ > 0 equal to

the average monthly percentage spot price change of the corresponding commodity over

the previous two years.
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Figure 6.13.: Value of perfect one-step-ahead directional forecasts (PDF) and perfect one-
step-ahead point forecasts (PPF) for RIA across all commodities and instances
from 2000 until 2017

Figure 6.13 shows that appropriate one-step-ahead price estimates generate significant

additional profit compared to RIA that misspecifies both future prices (see the MAPE

in Table 6.3) and price trends (see the MDA in Table 6.3). The perfect foresight value

for SCWP-FF can almost fully (on average 98.5%) be captured by correctly classifying

the direction of one-step-ahead price movements. Appropriate point forecasts aiming

at a small MAPE do not generate significant additional value (on average 99.1%) over

directional forecasts that aim at large MDA. Detailed results on the performance of PDF

and PPF relative to RIA are presented in Table C.1 of Appendix C.4.
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RIA Based on Analyst Forecasts

Cortazar et al. (2018) argue that there is no consensus on the amount of new information

already captured in market prices and that futures-based forecasts do not incorporate

explicit information about the current risk premium. They find that analyst forecasts

can outperform futures-based forecasts in predicting future spot prices.

Hence, we exploit the value of the Bloomberg’s Analysts’ Median Composite Forecasts

(CPFC) that report the medians composed of the quarterly price forecasts offered by

several major financial institutions. While individual expert forecasts may exhibit high

prediction errors, by using the median forecast over a variety of well-established financial

institutions (up to 31) we expect some error diversification (Cortazar et al., 2018).

Based on the quarterly median forecasts, we generate monthly analyst forecast curves
~At = (at,τ : τ ∈ A = {t, t+1, ..., t+n}) for the six commodities for planning horizons up

to 12 months. Due to restricted data availability (2008 until 2017), we can only evaluate

5, rather than 9, sub-periods, which yields 120 instances per commodity.

Besides analyst-based RIA, we also evaluate RIA based on deterministic price forecasts

obtained from AR(1) models, each estimated on the previous two years of spot price data.

Table 6.7.: Performance of futures-based RIA, analyst-based RIA and AR(1)-based RIA in
V RIA/V PF ·100% from 2008 until 2017 across all instances (In-sample performance
of AR(1)-based RIA in parenthesis)

Mean Min 25%-Q 50%-Q 75%-Q Max

Futures-based RIA

Copper -6.6 -45.6 -16.4 0.0 0.0 25.8
Gold 3.6 -107.5 0.0 0.0 18.6 61.3
Crude Oil -6.7 -171.9 -30.1 9.7 35.2 70.5
Natural Gas 7.3 -125.9 -15.6 21.7 39.4 64.7
Corn 4.9 -44.3 -18.9 -2.1 25.6 62.1
Soybean 15.7 -18.6 -2.8 10.4 32.4 76.3

Analyst-based RIA

Copper -22.2 -242.1 -29.3 -4.8 9.8 47.9
Gold 5.9 -110.1 -12.8 17.5 33.9 64.5
Crude Oil -37.6 -338.1 -75.4 16.0 45.3 77.7
Natural Gas -21.0 -103.5 -58.5 -49.8 33.9 60.2
Corn 18.0 -45.9 -3.3 15.4 40.9 64.2
Soybean 27.3 -3.0 14.8 26.3 34.1 78.2

AR(1)-based RIA

Copper -36.7 (29.3) -412.9 (-3.0) 0.0 (3.5) 0.0 (29.1) 39.0 (49.4) 57.4 (77.2)
Gold 5.5 (31.7) -62.8 (-20.3) 0.0 (0.0) 0.0 (34.2) 28.8 (57.2) 69.1 (92.1)
Crude Oil -36.4 (36.1) -262.0 (0.0) -20.2 (14.6) 0.0 (31.2) 7.7 (60.0) 48.0 (85.4)
Natural Gas -4.2 (22.7) -79.0 (-40.7) -32.3 (-3.2) -21.4 (34.5) 37.2 (59.4) 60.7 (66.6)
Corn 6.9 (24.5) -59.1 (0.0) 0.0 (7.1) 9.6 (19.2) 27.1 (33.1) 38.5 (78.8)
Soybean -0.5 (42.7) -91.4 (0.0) -18.8 (25.8) 0.0 (36.8) 26.7 (60.7) 61.9 (77.8)
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Table 6.7 summarizes the results. We observe that analyst forecast-based RIA out-

performs both futures-based and AR(1)-based RIA for the commodities gold, corn and

soybean in both average and median values (Table 6.7). The performance loss of AR(1)-

based RIA from in-sample to out-of-sample evaluation indicates a weak generalization

of AR(1) price models.

We furthermore observe that analyst-based RIA strictly outperforms both futures-

based RIA and AR(1)-based RIA for the majority of the 720 instances (see Table 6.8).

However, there is no significant dominance of one approach over all others.

Table 6.8.: Dominance Matrix of different RIA policies in % of instances (# = 720) in which
row performs strictly better than column

Futures-based
RIA

Analyst-based
RIA

AR(1)-based
RIA

Futures-based RIA - 44.6 50.0
Analyst-based RIA 54.4 - 51.1
AR(1)-based RIA 41.5 46.8 -

Our analysis also shows the importance of the directional forecast accuracy for optimal

inventory decisions: even though the MAPE of futures-based forecasts is smaller than

the MAPE of analyst forecasts for almost all commodities and forecast horizons (see

Figure 6.14 on the left), analyst-based RIA outperforms futures-based RIA for gold,

corn and soybean due to a higher directional accuracy (MDA), particularly in the more

important close maturities (see Figure 6.14 on the right).
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Figure 6.14.: Forecast accuracy 2008-2017 (MAPE, MDA) of futures-based predictions (F)
and analyst-based predictions (A) for horizons of 1 up to 12 months
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6.4.4. Stochastic Analysis: Performance of DDA

From observations (1)-(4), we conclude that futures-based RIA yields several severe

drawbacks when applied to real data. In this section, we want to exploit whether feature-

based DDA that is capable of combining all available information can outperform RIA

that is solely based on futures price data. Furthermore, we want to find out which of the

DDA approaches (DDA-LDR, DDA-OSP or DDA-VFA) can exploit the same available

dataset most effectively with regard to reducing inventory-related costs.

Table 6.9.: Benchmark approaches and feature data

Approach Computation Policy consistency Futures prices Spot history Analyst forecasts
IA LP yes 3 7 7

RIA LP yes 3 7 7

DDA-LDR LP no 3 3 3∗

DDA-OSP MILP yes 3 3 3∗

DDA-VFA Regression + LP yes 3 3 3∗

* Due to data availability, analyst forecasts are used starting from January 2008.

Table 6.9 summarizes the approaches that we compare and the data that the ap-

proaches exploit. Besides futures prices (ft,t+1, ft,t+2, ..., ft,t+12), we additionally consider

recent and past spot prices (pt, pt−1, pt−2, pt−3) (see Sioshansi et al. (2009) with applica-

tion to electricity storage) and quarterly analyst forecasts (at,q, at,q+1, at,q+2, at,q+3) (see

Cortazar et al. (2018) with application to oil price prediction).

Table 6.10.: Backtesting setup

Sample In-Sample Out-of-Sample Sample In-Sample Out-of-Sample
1 2000-2001 2002-2003 5 2008-2009 2010-2011
2 2002-2003 2004-2005 6 2010-2011 2012-2013
3 2004-2005 2006-2007 7 2012-2013 2014-2015
4 2006-2007 2008-2009 8 2014-2015 2016-2017

Similar to Secomandi et al. (2015), we split the data into sub-periods (Table 6.10). We

use the identical storage setup as described in Table 6.4. This yields 2× 3× 8× 4 = 192

instances per commodity (Note that the performance of DDA-LDR and DDA-OSP is

not sensitive to the planning horizon n). We test DDA-LDR and DDA-OSP with and

without forward optimization. For forward optimization, we use futures curves ~Ft with

the 12 closest monthly maturities (T f = 12). To avoid overfitting and to enable feature

selection, we apply Lasso regression (see equations (6.39)-(6.43)) to regularize DDA-LDR
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and DDA-OSP. We optimize the regularization parameter λ ∈ {0, 10−4, 10−3, ..., 103}
within a cross-validation procedure splitting the in-sample data equally into training

and validation sets. For the a-priori predictions of DDA-VFA, we use OLS regression

with the stepAIC-function in R (MASS package) for stepwise forward-backward regression

under the AIC model selection criterion for feature selection.

IA RIA LDR* LDR** OSP* OSP** VFA
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

0

V
V

P
F
·1

0
0
%

(a) Copper

IA RIA LDR* LDR** OSP* OSP** VFA
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

0

V
V

P
F
·1

0
0
%

(b) Gold

IA RIA LDR* LDR** OSP* OSP** VFA
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

0

V
V

P
F
·1

0
0
%

(c) Crude Oil

IA RIA LDR* LDR** OSP* OSP** VFA
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

0

V
V

P
F
·1

0
0
%

(d) Natural Gas
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(e) Corn
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Figure 6.15.: Out-of-sample performance of the different policies in V/V PF · 100% from 2002
until 2017 across the 192 instances

Note. * w/o forward optimization, ** w/ forward optimization. Boxplots characteristics: 1st-, 2nd-,

3rd-quartile, mean (×). For a better graphical comparability of the quartiles, we do not explicitly

show the whiskers in these plots. The corresponding minimum and maximum values are reported in

Table C.2 of Appendix C.4.
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Figure 6.15 summarizes the out-of-sample performance of the different storage policies.

More detailed numbers are reported in Table C.2 and Table C.3 of Appendix C.4.

DDA versus RIA

We observe for the majority of the commodities that structured data-driven policies

(DDA-OSP) can outperform RIA both significantly (see Table C.2) and consistently

(see Table C.3) on our analyzed dataset: over all commodities, DDA-OSP with forward

optimization strictly dominates RIA in 63.7% of the out-of-sample instances (Table C.3)

with a median performance of 26.7% of the perfect foresight profit, while RIA achieves

a median performance of 12.0% (Table C.2). For copper, crude oil and corn, the profit

improvements relative to RIA are statistically significant at the 1% significance level.

For natural gas, RIA seems to be a comparatively strong policy that can hardly be

improved by feature-based DDA policies. This is reasonable in markets that are partic-

ularly efficient, which is the case for the natural gas market compared to less efficient

metal and agricultural markets (see, e.g., Kristoufek and Vosvrda, 2013). In highly effi-

cient markets, all available information is already included in the futures prices. Another

reasonable explanation is the extraordinary high volatility of gas prices (σ = 65%) if

compared to the other commodities (σ = 17 − 37%) under consideration (see Figure

6.6). This might favor periodic reoptimization (RIA) that exclusively uses forward-

looking information, while feature-based DDA is sensitive to structural breaks in the

training history. However, we see that DDA policies can compete with RIA also for

natural gas.

DDA with Forward Optimization versus DDA w/o Forward Optimization

We observe a positive value of considering forward optimization for the DDA policies.

E.g., for DDA-OSP, forward optimization is valuable in 63.9% of the instances (Table

C.3). Except for natural gas, the profit improvement of DDA-OSP through forward

optimization is statistically significant at the 1% level.

DDA-OSP versus DDA-LDR

We further observe that the state-of-the-art LDR approach from the data-driven oper-

ations literature, which does not ensure policy consistency, performs poor for our con-

strained multi-stage stochastic optimization problem. DDA-OSP, which respects policy

structure, strictly outperforms DDA-LDR in 77.8% (with forward optimization) and
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73.6% (without forward optimization) of the instances respectively (Table C.3). The

profit gain from DDA-LDR** to DDA-OSP** is statistically significant at the 1% level

for all commodities under consideration, which indicates that there is a positive value

of policy structure for data-driven optimization for our analyzed dataset.

DDA-OSP versus DDA-VFA

OLS-based DDA-VFA policies perform comparatively poor on the dataset considered.

Besides the valid question whether an OLS model is the most appropriate one, another

reasonable explanation seems to be that DDA-VFA, other than DDA-OSP, separates

price prediction and optimization. Therefore, operational parameters, such as injection

and withdrawal rates or frictions do not affect predictions. However, this may be im-

portant as the RIA results from Table C.1 of Appendix C.4 imply: identical forecasts

can yield both unprofitable and profitable storage depending on the warehouse setting,

which suggests to integrate prediction and optimization.

DDA-OSP-FF versus DDA-OSP-LF

Table 6.11 shows the disaggregated performance of DDA-OSP** from Figure 6.15 with

respect to storage flexibility. Similar to the RIA results (Table C.1 of Appendix C.4),

the results of DDA-OSP relative to the perfect foresight bound are not fundamentally

different between fully flexible storage assets (SCWP-FF) and limited flexible storage

assets (SCWP-LF), i.e., DDA-OSP performs well for both of the storage settings.

Table 6.11.: Performance of DDA-OSP in V/V PF · 100% with respect to storage flexibility

Mean Min 25%-Q 50%-Q 75%-Q Max

SCWP-FF

Copper 24.1 -115.0 12.1 35.9 58.4 78.6
Gold 17.4 -65.1 8.6 21.4 32.3 65.3
Crude Oil 13.3 -129.5 7.4 21.3 39.9 66.6
Natural Gas 9.0 -69.3 -21.4 17.7 40.0 59.5
Corn 35.0 -6.6 27.8 39.3 49.6 64.8
Soybean 28.8 0.9 18.1 30.2 38.2 52.9
Overall 21.3 -129.5 8.9 26.6 42.9 78.6

SCWP-LF

Copper 23.7 -188.2 5.9 33.7 70.2 83.6
Gold 6.3 -136.6 2.3 17.0 32.8 80.5
Crude Oil 18.0 -159.1 4.7 22.7 45.3 75.5
Natural Gas 5.0 -68.0 -34.5 1.9 39.7 71.5
Corn 43.6 -3.7 24.8 55.2 60.3 71.9
Soybean 37.5 0.0 19.2 45.5 53.6 71.1
Overall 22.4 -188.2 7.1 12.0 36.9 83.6
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However, we observe for SCWP-FF that it is more effective to train a price threshold

Pt (DDA-OSP-FF), rather than the more general double base-stock structure (Si
t, S

i
t)

(DDA-OSP-LF). While DDA-OSP-FF yields an average (median) performance of 21.3%

(26.6%), DDA-OSP-LF for solving SCWP-FF yields 11.9% (22.8%). Furthermore, DDA-

OSP-FF is more efficient and reduces computation times of DDA-OSP-LF (above 3, 600

seconds) by on average almost 90% over all backtest instances.

Regarding feature selection of DDA-OSP, for each commodity, features from all of

the three feature categories (past spot prices, futures prices and analyst forecasts) were

relevant for data-driven storage decisions for at least one sub-period - mostly in combi-

nation. This is in line with, e.g., Cortazar et al. (2018), who show that the combination

of market prices and analyst forecasts is valuable in terms of forecast accuracy.

6.5. Conclusion

This chapter studies the well-known Stochastic Commodity Warehouse Problem (SCWP).

For solving the problem, the reoptimization-based rolling intrinsic approach (RIA) is

widely used in academia and practice due to its computational attractiveness and its

near-optimality with respect to the full information problem.

However, we show that this is misleading if applied for real storage decisions in prac-

tice due to the inherent generalization error driven by the quality of futures prices in

predicting spot prices. We make four observations that were not addressed by the liter-

ature, even though being crucial for storage managers: Under generalization error, (i)

RIA can yield unprofitable storage operations, (ii) ignoring futures price information

can be beneficial, (iii) the value of reoptimization is not necessarily positive, and (iv)

the correct prediction of the direction (upward or downward) of the one-step-ahead price

is essential for the performance of RIA.

To mitigate the adverse effects of generalization error, we propose data-driven and

ML-based policies that systematically explore feature data. We find that these policies

can outperform RIA without requiring to solve an LP at every decision stage and without

determining the planning horizon. We furthermore show that the linear decision rule

approach from the data-driven optimization literature is not effective for our multi-stage

decision problem where structural results with regard to the optimal policy structure

should be respected. Moreover, the standard ERM principle should be extended to

include forward-looking information, which can improve the performance of DDA policies

significantly.
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Our results are valuable for both commodity storage managers in terms of challenging

their current RIA-based decisions and data scientists in terms of sensitizing them that

structural results are still valuable in data-rich contexts.

There are several limitations of our research: similar to, e.g., Secomandi (2010) and

Wu et al. (2012), we do not analyze combined inventory trading at spot and forward

markets. However, it might be interesting to analyze performance effects of different

policies if the warehouse can trade simultaneously on both spot and futures markets.

Furthermore, following the standard literature (e.g., Lai et al., 2010; Secomandi, 2010),

we assume monthly inventory review periods. It might be interesting to analyze the

performance effects on empirical data if injection and withdrawal decisions can be taken

on a higher granularity (e.g., weekly or daily). Also the effects of periodic reoptimization

of the training-based DDA policies might be worth investigating especially for natural

gas where RIA performs comparatively well.
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Conclusion

7.1. Summary of Insights

In many industries, volatile commodity prices constitute a significant exogenous risk

factor. This thesis aimed at optimizing procurement and inventory policies in the pres-

ence of stochastic price fluctuations. As opposed to the existing literature, we relax

the unrealistic assumption of full information about the underlying commodity price

process.

First, we proved the optimal inventory control policy when prices and demand are un-

certain and the prices follow a Markov regime switching process (MRS). The regime belief

is learned based on recent price observations via a Bayesian updating scheme. The re-

sulting state-dependent and learning-enabled base-stock policies are complex. Therefore,

we tested various simpler but suboptimal control policies that ignore regime switches,

learning or price uncertainty in general. Our numerical results suggest that inventory

managers should care about sophisticated price models, such as MRS, especially when

demand uncertainty is low and expected price changes are large relative to the inventory

holding costs. In this case, ignoring Bayesian updating of regime beliefs can yield 13%

higher costs.

Next, we studied a multi-stage forward contracting problem with the optimal pur-

chase signals derived in a data-driven way as functions of price features. Employing the

principle of ERM from statistical learning theory, we trained the threshold parameters

of the procurement policy based on historical price and feature data with a MILP model.

To support performance-based feature selection and to avoid overfitting, we extended

our math programs to include regularization. Our results with regard to reduced pro-

curement costs show that there is a significant value in combining interpretable machine

learning with problem-specific mathematical optimization, in order to extract decision-
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relevant data (i.e., Smart Data) from noise. We offer decision rules that are simple

to operationalize and simple to interpret, as well as effective and easily accessible to

managers in practice.

Last, we considered optimal commodity storage from a merchant’s perspective with

buying and selling opportunities. In practice, reoptimization via RIA is the state-of-the-

art for solving this optimization problem. However, in extensive backtests based on six

major commodities, we find that generalization error can lead to significantly suboptimal

RIA policies, contrary to their known near-optimality in the full information setting.

To reduce generalization error, we developed different classes of non-parametric data-

driven approaches that leverage machine learning and optimization and yield improved

commodity storage policies based on structured decision rules.

7.2. Directions for Future Research

In all of our problem settings, the firm (a commodity-purchasing firm in Chapters 4 and

5 and a commodity-trading firm in Chapter 6) is assumed to be (i) risk-neutral and

(ii) a price taker, i.e., prices are taken as exogenous. It might be worth investigating

both the impact of risk aversion and the impact of market power on policy results and

performance. We also assume that our firm is a stand-alone firm. It might be interesting

to study the effects of price risk in supply chain or competition settings.

Furthermore, we either study operational hedging of commodity price risk via opti-

mized inventory control (Chapters 4 and 6) or via financial hedging through optimized

forward contracting decisions (Chapter 5). It might be interesting to study settings

where both options exist simultaneously.

Moreover, following the standard literature, we do not explicitly consider the effects

of correlation structures between price and demand in any of the chapters. However,

this is only reasonable if (i) commodity prices make up only a small amount of the final

product of the firm and the firm needs the input commodity regardless of the price or

(ii) the firm cannot pass higher or lower input prices on to the customer. If a firm can

pass its commodity prices on to the customer, there is a customer’s demand reaction on

prices. Therefore, it might be valuable to study the effects of price-demand correlation

on both policy structure and performance.

Furthermore, the results on empirical data in Chapters 4 and 5 are based on single

case studies rather than extensive empirical investigations. They need justification on a

broader range of commodities.
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Appendix of Chapter 4

A.1. Proof of Theorem 1

In this section, we present the proof for the more general Markovian case. The proof

under i.i.d. price processes is straightforward to the Markovian case, however without

pt−1 as a state variable in the dynamic programming equation (4.2) as πst+1 is a function

of (pt, ~πt), rather than (pt, pt−1, ~πt) according to equation (4.1). Consequently, for the

i.i.d. case, St is fully characterized by pt and the prior regime belief ~πt.

Lemma 1. Ct(zt) is a convex function of It for all pt, pt−1 and ~πt respectively pt and

~πt+1.

Proof. Equivalently to equation (4.2),

Ct(zt) = min
I∗t ≥It

{
gt
(
(I∗t − It)|pt

)
+ E

dt+1,pt+1|(pt,pt−1, ~πt︸ ︷︷ ︸
~πt+1

)

[
Ct+1(zt+1)

]}
, t = 1, ..., n (A.1)

where

gt
(
(I∗t − It)|pt

)
= pt(I

∗
t − It)+ + Edt

[
ch(I

∗
t − dt)+ + cp(dt − I∗t )+

]
. (A.2)

The optimality equation (A.1) can be rewritten as

Ct(zt) = min
I∗t ≥It

{
Gt

(
I∗t |(pt, pt−1, ~πt︸ ︷︷ ︸

~πt+1

)
)
−ptIt

}
= −ptIt+ min

I∗t ≥It

{
Gt

(
I∗t |(pt, pt−1, ~πt︸ ︷︷ ︸

~πt+1

)
)}

(A.3)

141



Appendix A. Appendix of Chapter 4

where

Gt

(
I∗t |(pt, pt−1, ~πt)

)
:=ptI

∗
t + Edt

[
ch(I

∗
t − dt)+ + cp(dt − I∗t )+

]
+ Edt+1,pt+1|(pt,pt−1,~πt)

[
Ct+1(zt+1)

]
.

(A.4)

Thus, the optimal decision starting with inventory It in period t is found by minimizing

Gt(I
∗
t |(pt, pt−1, ~πt)) over {I∗t |I∗t ≥ It}. Because Ct(zt) = −ptIt+min

I∗t ≥It
{Gt(I

∗
t |(pt, pt−1, ~πt))},

we need to proof that Gt(I
∗
t |(pt, pt−1, ~πt)) is convex in I∗t . Because Gt(I

∗
t |(pt, pt−1, ~πt)) is

the sum of three functions, Gt(I
∗
t |(pt, pt−1, ~πt)) is convex in I∗t if the three functions are

convex in I∗t . The first function pt · I∗t is linear and therefore convex in I∗t . As proven

by Porteus (2002, pp. 67), the second and third terms are convex, too. Therefore,

Gt(I
∗
t |(pt, pt−1, ~πt)) is convex in I∗t and hence Ct(zt) is convex in I∗t . Note: From equa-

tion (4.1) follows that Gt(I
∗
t |(pt, pt−1, ~πt)) = Gt(I

∗
t |(pt, ~πt+1)) as pt−1 is solely required

for determining ~πt+1.

Lemma 2. Any minimizer of Gt is an optimal base-stock level.

Proof. Let St(pt, pt−1, ~πt) denote the value over all real I∗t that minimizeGt(I
∗
t |(pt, pt−1, ~πt)).

If It < St(pt, pt−1, ~πt), then the optimal I∗t ≥ It is at I∗t = St(pt, pt−1, ~πt), i.e., an amount

yt = St(pt, pt−1, ~πt)−It is ordered in period t and the expected total cost Ct(zt) is written

as

Ct(zt) =ptSt(pt, pt−1, ~πt)

+ Edt
[
ch(St(pt, pt−1, ~πt)− dt)+ + cp

(
dt − St(pt, pt−1, ~πt)

)+]
+ Edt+1,pt+1|(pt,pt−1,~πt)

[
Ct+1(zt+1)

]
.

(A.5)

If It ≥ St(pt, pt−1, ~πt), then Gt(I
∗
t |(pt, pt−1, ~πt)) is non-decreasing to the right of It (by

convexity) and thus the optimal I∗t ≥ It is I∗t = It, i.e., we will not order in period t and

consequently the expected total cost Ct(zt) is written as

Ct(zt) = Edt
[
ch(It − dt)+ + cp(dt − It)+

]
+ Edt+1,pt+1|(pt,pt−1,~πt)

[
Ct+1(zt+1)

]
. (A.6)

Ct(zt) is convex for all It since it is convex in It for It ≥ St(pt, pt−1, ~πt) (see equation

(A.6)) and it is convex in It for It < St(pt, pt−1, ~πt) (see equation (A.5)). Note: From

equation (4.1) follows that St(pt, pt−1, ~πt) = St(pt, ~πt+1), i.e., St is fully characterized by

pt and the posterior regime belief ~πt+1.

By means of Lemma 1 and Lemma 2, we can prove Theorem 1.
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Proof. The base-stock policy from equation (4.4) is optimal since Ct(zt), as defined in

equation (A.1), is a convex function of It (see also Porteus 2002, pp. 67).

A.2. Proof of Proposition 1

Part(i)

Proof. The proof follows Kalymon (1971). If pt+1 follows an i.i.d. price process φs(pt+1|pt) =

φs(pt+1) ∀s ∈M and the regime belief ~πt is not updated based on pt, then φ(pt+1|pt) =

φ(pt+1). Therefore, equation (4.2) reduces to

Ct(zt) = min
I∗t ≥It

{
ptyt +L(I∗t ) +

∞∫
0

∞∫
0

Ct+1

(
(I∗t+1− dt+1)+, pt+1

)
dφ(pt+1)dF (dt+1)

}
. (A.7)

We define

Q(I∗t ) := L(I∗t ) +

∞∫
0

∞∫
0

Ct+1

(
(I∗t+1 − dt+1)+, pt+1

)
dφ(pt+1)dF (dt+1). (A.8)

Therefore,

G(I∗t |pt) = ptI
∗
t +Q(I∗t ). (A.9)

If p′t > pt, then

G(I∗t |p′t) = p′tI
∗
t +Q(I∗t ) = ptI

∗
t +Q(I∗t ) + (p′t − pt)I∗t = G(I∗t |pt) + (p′t − pt)I∗t . (A.10)

Suppose that St(p
′
t) > St(pt). Then from G(St|pt) = min

I∗t
{G(I∗t |pt)}, it follows that:

G
(
St(p

′
t)|pt

)
+ (p′t − pt)St(p′t) = G

(
St(p

′
t)|p′t

)
≤ G

(
St(pt)|p′t

)
= G

(
St(pt)|pt

)
+ (p′t − pt)St(pt).

(A.11)

Since (p′t − pt)St(p′t) > (p′t − pt)St(pt), we get G(St(p
′
t)|pt) < G(St(pt)|pt), which contra-

dicts the optimality of St(pt). Thus, if p′t > pt, then St(p
′
t) ≤ St(pt).

Part(ii)

Proof. For the unobservable case with dynamic information updates (learning), due

to equation (4.1), φ(pt+1|pt) 6= φ(pt+1) and hence (a1) is violated. If the Bayesian
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relationship between pt and pt+1 does not violate either (a2.1) or (a2.2) or both, St

is non-increasing in pt. The proof is analogous to the observable case discussed, e.g.,

by Gavirneni (2004). However, Bayes’ theorem (4.1) can violate (a2.1) if the predicted

price increase at higher prices is greater than at lower prices. A high price leads to an

increase in the belief about being in the high price regime in subsequent periods. In

volatility regimes (i, j) ∈ {1, ...,m} with Ei[pt+1] = Ej[pt+1] ∀(i, j) ∈ {1, ...,m} and

V ari(pt+1) 6= V arj(pt+1), (a2.1) is not violated as the expected price is equal in each

regime and hence not expected to increase at higher prices.

Let the price in each regime s follow a distribution with mean µs and variance σ2
s .

Mean and variance of the mixture φ(pt+1) are defined as E[pt+1] =
∑m

s=1 π
s
t+1µs and

V ar(pt+1) = E[p2
t+1]−(E[pt+1])2. For m = 2, V ar(pt+1) = π

(1)
t+1σ

2
1 +π

(2)
t+1σ

2
2 +π

(1)
t+1π

(2)
t+1(µ1−

µ2)2. If µ1 = µ2 (unimodal mixture), the variance is a linear combination of the regime

variances. Consequently, if all φs fulfill the monotonicity conditions, this is also true for

the unobservable case and St is non-increasing in pt. In an m-regime setting, as kii →
1/m, according to equation (4.1), πit+1 → 1/m and π′it+1 → 1/m. With convergence,

equation (4.5) reduces to −p′t ≤ −pt, which is true by definition. Therefore, (a2.1)

holds. The reasoning is that since kii → 1/m, information pt is worth less than if

kii → 1 or kii → 0 because the conditional regime forecast based on pt is less reliable.

Hence, one would not order more at higher prices speculating to be in the high price

regime in the future.

Part(iii)

Proof. As the price processes in the regimes φs are Markovian, condition (a1) is vio-

lated by definition since φs(pt+1|pt) 6= φs(pt+1) ∀s ∈ M . St is non-increasing in pt if

φ(pt+1) =
∑m

s=1 π
s
tφ

s(pt+1) satisfies both (a2.1) and (a2.2). For the detailed proof, see,

e.g., Gavirneni (2004).

Part(iv)

Proof. Condition (a1) is violated by definition since φs(pt+1|pt) 6= φs(pt+1) ∀s ∈ M .

St is non-increasing in pt if φ(pt+1) =
∑m

s=1 π
s
t+1φ

s(pt+1) satisfies (a2.1) and (a2.2).

The proof is analogous to Proposition 1(iii). It is sufficient to consider exclusively πst+1,

disregarding πst+l with l > 1, since one would only buy more at higher prices if pt+1

is expected to be greater than pt + ch, independent of any expected price increase in

periods after the next one (i.e., l > 1).
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A.3. Cost of Price Regime Misspecification

Table A.1.: ∆COST(φ(1)(φ(2))) in % (In gray: No speculation motives)
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Note. MO(MR) denotes that MO is the true underlying price process, whereas MR is the supposed

price process. Example: Inventory decisions based on MR in an MO regime in a speculation-friendly

environment (ch = 1) with deterministic demand yields a cost increase by up to 26.29%.
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A.4. Performance of Suboptimal Control Policies

Table A.2.: Performance of suboptimal control policies in % above optimal cost
ch = 1 ch = 6

Heuristic Regime setting Demand volatility r=0.25 r=0.40 r=0.49 r=0.25 r=0.40 r=0.49

NAIVE

HL-LL

high

Mean 2.78 1.81 1.29 0.43 0.26 0.20
StDev 4.44 3.26 2.38 0.49 0.34 0.26
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 14.21 10.51 7.76 1.59 1.08 0.81

zero

Mean 5.93 3.93 2.55 0.27 0.02 0.00
StDev 11.37 8.32 5.60 0.78 0.05 0.00
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 34.83 26.10 17.86 2.44 0.17 0.00

LV-HV

high

Mean 4.30 4.18 4.11 0.85 0.84 0.83
StDev 5.59 5.39 5.24 0.85 0.83 0.81
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 18.12 17.52 17.11 2.90 2.80 2.73

zero

Mean 8.28 7.94 7.71 0.92 0.92 0.92
StDev 14.06 13.47 13.06 1.98 1.99 2.00
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 42.61 40.99 39.87 6.14 6.16 6.17

MR-MO

high

Mean 0.56 0.54 0.54 0.08 0.08 0.08
StDev 1.15 1.19 1.21 0.10 0.10 0.10
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 5.42 5.78 5.99 0.47 0.47 0.47

zero

Mean 1.52 1.48 1.42 0.00 0.00 0.00
StDev 3.60 3.73 3.70 0.00 0.00 0.00
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 16.32 17.54 17.61 0.00 0.00 0.00

SRC-R1/-R2

HL-LL

high

Mean 1.43/0.86 1.88/0.77 2.54/0.85 1.12/0.25 1.58/0.29 2.00/0.34
StDev 1.36/0.34 2.12/0.68 2.93/0.95 1.11/0.16 1.75/0.30 2.30/0.37
Min 0.13/0.30 0.01/0.07 0.00/0.00 0.04/0.06 0.00/0.00 0.00/0.00
Max 5.53/1.64 7.34/2.80 9.01/3.78 2.90/0.65 4.31/0.95 5.51/1.17

zero

Mean 2.49/1.26 3.18/0.51 4.69/0.22 4.69/0.27 4.56/0.02 6.09/0.00
StDev 4.30/2.57 5.59/1.12 7.55/0.74 3.69/0.78 5.66/0.05 7.59/0.00
Min 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Max 17.67/7.99 22.69/3.45 28.09/4.65 9.93/2.44 15.92/0.17 21.31/0.00

LV-HV

high

Mean 0.04/0.02 0.06/0.02 0.07/0.02 0.01/0.00 0.02/0.00 0.02/0.00
StDev 0.05/0.03 0.07/0.04 0.09/0.05 0.02/0.01 0.03/0.01 0.04/0.01
Min 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Max 0.15/0.13 0.21/0.19 0.27/0.24 0.05/0.02 0.08/0.03 0.09/0.03

zero

Mean 0.17/0.00 0.20/0.00 0.23/0.02 0.00/0.00 0.00/0.00 0.00/0.00
StDev 0.38/0.00 0.47/0.00 0.56/0.10 0.00/0.00 0.00/0.00 0.00/0.00
Min 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Max 1.64/0.00 1.90/0.00 2.06/0.68 0.00/0.00 0.00/0.00 0.00/0.00

MR-MO

high

Mean 0.68/0.69 0.76/0.68 0.87/0.68 0.10/0.07 0.11/0.08 0.12/0.08
StDev 1.07/1.07 1.24/1.14 1.42/1.18 0.14/0.09 0.16/0.10 0.18/0.12
Min 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Max 5.17/5.02 5.30/5.37 6.07/5.58 0.70/0.40 0.70/0.41 0.81/0.46

zero

Mean 1.61/1.70 1.70/1.62 2.02/1.64 0.00/0.00 0.00/0.00 0.00/0.00
StDev 3.94/2.66 4.37/2.79 4.88/3.01 0.00/0.00 0.00/0.00 0.00/0.00
Min 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Max 18.51/10.45 19.19/11.67 22.73/11.74 0.00/0.00 0.00/0.00 0.00/0.00

CEC

HL-LL

high

Mean 0.33 (0.59) 0.55 (1.44) 0.92 (2.10) 0.28 (1.05) 0.47 (1.62) 0.65 (2.02)
StDev 0.40 0.73 1.18 0.52 0.86 1.15
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 1.55 2.80 4.85 2.51 3.79 4.89

zero

Mean 0.40 (1.32) 0.56 (3.05) 1.26 (4.35) 0.54 (3.17) 0.90 (5.32) 1.34 (5.49)
StDev 1.00 1.48 2.68 1.46 2.24 3.04
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 4.79 6.03 10.97 5.50 8.49 13.33

LV-HV

high

Mean 0.01 (-) 0.01 (-) 0.02 (-) 0.00 (-) 0.00 (-) 0.01 (-)
StDev 0.01 0.02 0.03 0.01 0.02 0.02
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 0.08 0.12 0.15 0.05 0.08 0.09

zero

Mean 0.01 (-) 0.01 (-) 0.02 (-) 0.00 (-) 0.00 (-) 0.00 (-)
StDev 0.05 0.08 0.11 0.00 0.00 0.00
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 0.32 0.54 0.71 0.00 0.00 0.00

MR-MO

high

Mean 0.05 (0.36) 0.03 (0.27) 0.04 (0.34) 0.00 (-) 0.01 (-) 0.01 (-)
StDev 0.14 0.10 0.11 0.01 0.02 0.02
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 1.19 0.88 0.71 0.06 0.10 0.10

zero

Mean 0.11 (0.72) 0.05 (0.77) 0.07 (1.02) 0.00 0.00 0.00
StDev 0.39 0.22 0.28 0.00 0.00 0.00
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 2.87 1.99 2.13 0.00 0.00 0.00

Note. The given numbers demonstrate the value of a MRS price model relative to simple models in
the controlled numerical study from Section 4.4. In parentheses: Instances with speculation under
MRS and non-speculation under CEC or vice versa (Non-speculation as defined in equation (4.7)).
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B.1. Proof of Theorem 2

In the following, we show that a price threshold P τ
t (xt) fully characterizes the optimal

procurement policy, which is of a bang-bang type using a particular option in a period,

i.e., we either procure all uncovered demand or nothing with a contract τ ∈ F+.

However, the state zt ∈ Zt is not fully known. We only know that zt contains the firm’s

position in the forward market ~I = (Iτt ) and the current forward curve ~Ft = (pτt : τ ≥ 0).

However, without price model specifications, we do not know the drivers of the evolution

of ~F . Therefore, we introduce xt ∈ X as the unknown parts (features) of the state space

zt = (~It, ~Ft, xt) that drives the evolution of ~F and must be learned from the data X for

which we formulate DDA models. In order to provide the policy structure, we formulate

the problem as a standard SDP with the endogenous state transition Iτ−1
t+1 = Iτt + yτt

and the exogenous price evolution ~Ft+1 = φ(~Ft, xt). This (unknown) exogenous price

transition replaces typical stochastic price processes in models where they are assumed.

Ct(~It, ~Ft, xt) = min
yτt ≥0

I0
t +y0

t≥dt

{∑
τ∈F

pτt y
τ
t + Et

[
Ct+1(~It+1, ~Ft+1, xt+1)

]}
∀t = 0, ..., n. (B.1)

For every period t, we prove that for all τ ∈ F+,

yτt (xt) =

dt+τ if pτt ≤ P τ
t (xt) and Iτt = 0,

0 if pτt > P τ
t (xt).

(B.2)

The proof exploits two properties: The value function of a given period is separable in

the procurement instruments and linear with regard to the quantities yτt .
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Period t=n.

We start with the last period t = n, which contains a non-stochastic purchase decision

y0
n with

Cn(~In, ~Fn, xn) = Cn(~In, p
0
n) = p0

ny
0
n, (B.3)

that yields

y0
n = [dn − I0

n]+. (B.4)

Period t=n-1.

At the second to last stage t = n−1, the problem becomes stochastic, since procurement

decisions yτn−1 affect the cost-to-go Cn of period t = n:

Cn−1(~In−1, ~Fn−1, xn−1) = min
y1
n−1≥0

I0
n−1+y0

n−1≥dn−1

{
p0
n−1y

0
n−1+p1

n−1y
1
n−1+(dn−y1

n−1−I1
n−1)En−1[p0

n|xn−1]

}
.

(B.5)

This function is linear and separable in y0
n−1 and y1

n−1. The two decisions to be taken in

t = n− 1 are (i) the spot purchase decision

y0
n−1 = [dn−1 − I0

n−1]+ (B.6)

and (ii) the forward purchase decision

y1
n−1(xn−1) =

[dn − I1
n−1]+ if p1

n−1 ≤ En−1[p0
n|xn−1],

0 if p1
n−1 > En−1[p0

n|xn−1],
(B.7)

which is driven by whether the derivative with regard to y1
n−1 is positive or negative.

Consequently, the implied threshold is

P 1
n−1(xn−1) = En−1[p0

n|xn−1], (B.8)

and the functional value is again separable and linear in the remaining demands:

Cn−1(~In−1, ~Fn−1, xn−1) = (dn−1 − I0
n−1)p0

n−1

+(dn − I1
n−1)p1

n−1 · 1p1
n−1≤P 1

n−1

+(dn − I1
n−1)En−1[p0

n|xn−1] · 1p1
n−1>P

1
n−1

(B.9)
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with 1 as the indicator function.

Periods t=0,...,n-2.

For all stages t = 0, ..., n − 2, the linearity of the period cost and the cost-to-go in

the decision variables reinforces the all-or-nothing decisions for using a procurement

instrument depending on the state-dependent thresholds P τ
t (xt) and again results in the

linearity of the resulting value function.

P 1
n−1(xn−1) = En−1[p0

n|xn−1] (B.10)

The functional value is again separable and linear in the remaining uncovered demands:

Cn−2(~In−2, ~Fn−2, xn−2) = (dn−2 − I0
n−2)p0

n−2

+(dn−1 − I1
n−2)p1

n−2 · 1p1
n−2≤P 1

n−2

+(dn−1 − I1
n−2)En−2[p0

n−1|xn−2] · 1p1
n−2>P

1
n−2

+(dn − I2
n−2)p2

n−2 · 1p2
n−2≤P 2

n−2

+(dn − I2
n−2)En−2[p1

n−1|xn−2] · 1p2
n−2>P

2
n−2,p

1
n−1≤P 1

n−1

+(dn − I2
n−2)En−2[p0

n|xn−2] · 1p2
n−2>P

2
n−2,p

1
n−1>P

1
n−1
.

(B.11)

The two decisions to be taken in t = 0, ..., n−2 are again (i) the spot purchase decision

y0
t = [dt − I0

t ]+ (B.12)

and (ii) the forward purchase decision

yτt (xt) =

[dt+τ − Iτt ]+ if pτt ≤ P τ
t (xt),

0 if pτt > P τ
t (xt).

(B.13)

The resulting policy is a bang-bang-type policy. The optimal hedging policy uses the

expected cheapest source, which is in accordance with Smith and Stulz (1985), who show

that partial hedging that leaves the hedger exposed to some residual price risk is not

cost-optimal.
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B.2. Model Formulation for the Best Subset Selection

Problem

DDA-BSSP:

min
βτi ∈B

ĈBSSP =
1

T

T∑
t=1

∑
τ∈F|τ≤T−t

[
pτt dt+τ q

τ
t

]
(B.14)

s.t. (5.6)− (5.9) (B.15)

Mwτi ≥ βτi ∀i = 1, ..., N ; τ ∈ F+ (B.16)

−Mwτi ≤ βτi ∀i = 1, ..., N ; τ ∈ F+ (B.17)

N∑
i=1

wτi ≤ N̄ ∀τ ∈ F+ (B.18)

wτi ∈ {0, 1} ∀i = 1, ..., N ; τ ∈ F+ (B.19)

B.3. Model Formulation with Indicator Constraints

DDA-BD (Indicator Constraints):

min
βτi ∈B

ĈBD =
1

T

T∑
t=1

∑
τ∈F|τ≤T−t

[pτt dt+τ q
τ
t ] (B.20)

s.t.
∑

τ∈F|τ≤t−1

qτt−τ = 1 ∀t = 1, ..., T (B.21)

Indicator ct: auxτt = 0 if
N∑
i=0

βτi Xit < pτt ∀τ ∈ F+; t = 1, ..., T − τ (B.22)

Indicator ct: auxτt = 1 if
N∑
i=0

βτi Xit ≥ pτt ∀τ ∈ F+; t = 1, ..., T − τ (B.23)

qτt ≤ auxτt ∀τ ∈ F+; t = 1, ..., T − τ (B.24)

qτt ≥ auxτt −
∑

a∈F|a≤t+τ−1∩a>τ

qat+τ−a ∀τ ∈ F+; t = 1, ..., T − τ (B.25)

qτt , aux
τ
t ∈ {0, 1}, βτi ∈ R ∀t = 1, ..., T ; i = 0, ..., N ; τ ∈ F (B.26)
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Figure B.1.: Computation times for training of DDA-BD (Average across 100 runs)

Note. Spot and forward (τ ∈ {1, 2, 3, 4}) prices randomly sampled from N(100, 20) ∀t = 1, ..., T .

Features i = 1, ..., N randomly sampled from N(20, 10). Main observation: Runtime-overfitting

trade-off, i.e., by strongly increasing the number of features N (overfitting), computation times

decrease (alternate optimal solutions). The computation times refer to the implementation from B.3

with indicator constraints.

B.5. Results of the Controlled Numerical Study
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Figure B.2.: Exemplary sample paths of spot and forward prices under random walk (RW)
and mean reversion (MR) assumptions and price process noise σεt = 10
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Figure B.3.: Out-of-sample prescription error (PE) of different procurement policies for σεt ∈
{10, 20} across 100 simulations conditional on training set size T and price
process types (RW, MR)
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Figure B.4.: Out-of-sample value of feature information (VFI) of DDA-BD, DDA-ML1 and
DDA-ML2 across 100 simulations for different training sets T , price process
types (RW, MR) and noise levels σεt
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B.6. Results on Empirical Data: Procurement of

Natural Gas

Table B.1.: Historical monthly price and feature data (07-2007 to 06-2017)

Time Series Unit Data Source
Prices
TTF Spot Price (Day-Ahead) Euro/MWh Eikon: TRNLTTFDA
TTF Futures Prices Euro/MWh Eikon: TRNLTTFMc1-4
Features
Spot Price Returns % Eikon: TRNLTTFDA
TTF Spot Price Lags (t-1,t-2,t-3) Euro/MWh Eikon: TRNLTTFDA
Gaspool Spot Price (Day-ahead) Euro/MWh Eikon: TRDEGSPD1
Henry Hub Spot Price USD/mmbtu Datastream: NATLGAS
Henry Hub NYMEX Front-Month USD/mmbtu Eikon: NGc1
Coal Price Front-Month USD/tonne Eikon: TRAPI2Mc1
Brent Oil Spot Price USD/barrel Datastream: EIACRBR
Gas Production Germany TWh Datastream: BDELPRNGP
Domestic Gas Demand Germany Mio Tons of Oil Equivalent Datastream: BDXDGAS.P
EUR/USD - Eikon: EUR=
EUR/GBP - Eikon: UKEURSP
USD Index - Datastream: BOEUSA$
Federal Fund Rate - Datastream: USFDFUND
S&P 500 Index - Datastream: S&PCOMP
Bloomberg Commodity Index USD Datastream: DJUBSTR
PPI Energy Germany - Datastream: BDENERGYF
PPI Energy UK - Datastream: UKOPIEN2F
Temperature (Paris) Celsius Eikon: PARIS-OBS

Table B.2.: Procurement of natural gas: Average purchase cost in Euro/MWh

In-Sample (07-2007 to 06-2016) Out-of-Sample (07-2008 to 06-2017)
Mean StDev Min Max Mean StDev Min Max

DDA-BD 19.58 4.41 10.47 25.17 20.32 4.13 12.31 25.65
DDA-SD 19.82 4.39 10.76 25.22 20.79 4.78 11.45 26.05
DDA-AR1 19.74 4.42 10.60 25.17 20.77 4.58 12.34 25.95
DDA-ML1 19.69 4.44 10.47 25.17 20.06 4.41 11.45 25.65
DDA-ML2 19.70 4.45 10.47 25.17 20.10 4.42 11.45 25.65
REO 20.80 4.48 11.59 25.68 20.28 4.69 11.59 25.68
1/N 21.62 4.57 12.41 26.02 20.97 4.92 12.41 26.02
P-SPOT 20.93 4.18 12.74 26.05 20.14 4.33 12.74 26.05
P-M1 21.09 4.32 12.40 26.09 20.43 4.60 12.40 26.09
P-M2 21.61 4.68 12.27 26.28 21.01 5.03 12.27 26.28
P-M3 22.08 5.03 12.24 28.47 21.46 5.43 12.24 28.47
P-M4 22.44 5.54 11.75 30.75 21.74 5.94 11.75 30.75
PF (=LB) 19.58 4.41 10.47 25.17 18.98 4.71 10.47 25.17
UB 23.83 5.12 14.46 32.02 23.07 5.47 14.46 32.02
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Table B.3.: Dominance matrix: % of out-of-sample sub-periods in which a policy (row) per-
forms strictly better than another (column)
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Appendix C.

Appendix of Chapter 6

C.1. SCWP with Fixed Costs, Storage Efficiency,

Demand and Market Power

max
yit,y

o
t

V0 =
n∑
t=0

E
[(
pot y

o
t − pit yit −K i zit −Ko zot − ch It

)
|Xit

]
(C.1)

s.t. It+1 = ρ(It − yot + yit) ∀t = 0, 1, ..., n (C.2)

0 ≤ yot ≤ min{It, dt} ∀t = 0, 1, ..., n (C.3)

0 ≤ yit ≤ C − It + yot ∀t = 0, 1, ..., n (C.4)

yit ≤ Czit ∀t = 0, 1, ..., n (C.5)

yot ≤ Czot ∀t = 0, 1, ..., n (C.6)

zit, z
o
t ∈ {0, 1} ∀t = 0, 1, ..., n (C.7)

with zit and zot being indicator variables for purchase and sale. K i and Ko are fixed

costs for purchase and sale, respectively. 0 ≤ ρ ≤ 1 is the storage efficiency. We can also

consider a demand component dt that limits yot .

If the warehouse has market impact (price setter), then pt+1 is a non-decreasing linear

function B − yot + yit with B being a constant. Large yot decrease the price pt+1, while

large yit increase the price pt+1. While under price taker assumptions, the problem can

be formulated as an LP, under price setter assumptions, due to nonlinearities when

inventory decisions affect prices, the optimization becomes a quadratic program. The

models can be solved using quadratic solvers.
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C.2. Empirical Forecast Error of Futures Prices
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Figure C.1.: Distribution of prediction error et in % for copper (dark gray), gold, crude oil,
natural gas, corn and soybean (light gray) (2000-2017)

Note. Boxplots: minimum, 1st-, 2nd-, 3rd-quartile, maximum. Some abrupt price declines (e.g., for
copper, crude oil and natural gas during the financial crisis) lead to a significant overestimation of
spot prices by futures prices and therefore to a strongly negative prediction error et.
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C.3. Deterministic Analysis under Perfect Foresight

C.3. Deterministic Analysis under Perfect Foresight

C.3.1. Profit over Time
2
0
0
0
-2

0
0
1

2
0
0
2
-2

0
0
3

2
0
0
4
-2

0
0
5

2
0
0
6
-2

0
0
7

2
0
0
8
-2

0
0
9

2
0
1
0
-2

0
1
1

2
0
1
2
-2

0
1
3

2
0
1
4
-2

0
1
5

2
0
1
6
-2

0
1
7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
ro

fi
t

in
U

S
D

/
lb

(a) Copper

2
0
0
0
-2

0
0
1

2
0
0
2
-2

0
0
3

2
0
0
4
-2

0
0
5

2
0
0
6
-2

0
0
7

2
0
0
8
-2

0
0
9

2
0
1
0
-2

0
1
1

2
0
1
2
-2

0
1
3

2
0
1
4
-2

0
1
5

2
0
1
6
-2

0
1
7

0

10

20

30

40

50

P
ro

fi
t

in
U

S
D

/
o
u
n
c
e

FF,η = 1.0

FF,η = 0.995

FF,η = 0.99

LF,η = 1.0

LF,η = 0.995

LF,η = 0.99

(b) Gold

2
0
0
0
-2

0
0
1

2
0
0
2
-2

0
0
3

2
0
0
4
-2

0
0
5

2
0
0
6
-2

0
0
7

2
0
0
8
-2

0
0
9

2
0
1
0
-2

0
1
1

2
0
1
2
-2

0
1
3

2
0
1
4
-2

0
1
5

2
0
1
6
-2

0
1
7

0

1

2

3

4

5

P
ro

fi
t

in
U

S
D

/
b
b
l

(c) Cruide Oil

2
0
0
0
-2

0
0
1

2
0
0
2
-2

0
0
3

2
0
0
4
-2

0
0
5

2
0
0
6
-2

0
0
7

2
0
0
8
-2

0
0
9

2
0
1
0
-2

0
1
1

2
0
1
2
-2

0
1
3

2
0
1
4
-2

0
1
5

2
0
1
6
-2

0
1
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P

ro
fi

t
in

U
S
D

/
m

m
b
tu

(d) Natural Gas

2
0
0
0
-2

0
0
1

2
0
0
2
-2

0
0
3

2
0
0
4
-2

0
0
5

2
0
0
6
-2

0
0
7

2
0
0
8
-2

0
0
9

2
0
1
0
-2

0
1
1

2
0
1
2
-2

0
1
3

2
0
1
4
-2

0
1
5

2
0
1
6
-2

0
1
7

0

5

10

15

20

25

30

P
ro

fi
t

in
U

S
c
/
b
u

(e) Corn

2
0
0
0
-2

0
0
1

2
0
0
2
-2

0
0
3

2
0
0
4
-2

0
0
5

2
0
0
6
-2

0
0
7

2
0
0
8
-2

0
0
9

2
0
1
0
-2

0
1
1

2
0
1
2
-2

0
1
3

2
0
1
4
-2

0
1
5

2
0
1
6
-2

0
1
7

0

10

20

30

40

50

60

70

P
ro

fi
t

in
U

S
c
/
b
u

(f) Soybean

Figure C.2.: Average profit under perfect foresight for different degrees of warehouse flexi-
bility (SCWP-FF, SCWP-LF) and frictions (η = ηi = ηo)
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C.3.2. Optimal versus Myopic Performance
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Figure C.3.: Copper storage: Performance of optimal vs. myopic policies (2000-2017)

Note. For fully flexible copper storage, a 1% injection and withdrawal loss yields a profit decline of

14.48%. If frictions are realistically small (1%), the profit decline by myopic decision-making is

approximately 2.0%.
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Figure C.4.: Gold storage: Performance of optimal vs. myopic policies (2000-2017)

Note. For fully flexible gold storage, a 1% injection and withdrawal loss yields a profit decline of

18.26%. If frictions are realistically small (1%), the profit decline by myopic decision-making is

approximately 4.2%.
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C.3. Deterministic Analysis under Perfect Foresight
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Figure C.5.: Oil storage: Performance of optimal vs. myopic policies (2000-2017)

Note. For fully flexible oil storage, a 1% injection and withdrawal loss yields a profit decline of

11.94%. If frictions are realistically small (1%), the profit decline by myopic decision-making is

approximately 1.6%.
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Figure C.6.: Corn storage: Performance of optimal vs. myopic policies (2000-2017)

Note. For corn silos, a 1% injection and withdrawal loss leads to a profit decline of 11.66%. If frictions

are small (1%), profit decline by myopic decision-making is approximately 1.5%.
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Figure C.7.: Soybean storage: Performance of optimal vs. myopic policies (2000-2017)

Note. For soybean storage, a 1% injection and withdrawal loss leads to a profit decline of 14.62%. If

frictions are small (1%), losses by myopic decision-making are approximately 1.3%.
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C.3.3. Impact of the Planning Horizon
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Figure C.8.: Copper storage: Performance impact of planning horizon n (2000-2017)

Note. For plausible frictions ηi = ηo = 0.99, a planning horizon of 1/2/3 periods generates

97.98%/99.97%/99.97% (SCWP-FF) and 58.27%/90.13%/97.99% (SCWP-LF) of the potential value.

n = 4 (SCWP-FF, SCWP-LF) is sufficient to generate 100% of the potential value.
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Figure C.9.: Gold storage: Performance impact of planning horizon n (2000-2017)

Note. For plausible frictions ηi = ηo = 0.99, a planning horizon of 1/2/3 periods generates

95.77%/99.78%/100% (SCWP-FF) and 61.53%/88.01%/96.26% (SCWP-LF) of the potential value.

n = 3 (SCWP-FF) respectively n = 8 (SCWP-LF) is sufficient to generate 100% of the potential value.
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C.3. Deterministic Analysis under Perfect Foresight
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Figure C.10.: Oil storage: Performance impact of planning horizon n (2000-2017)

Note. For plausible frictions ηi = ηo = 0.99, a planning horizon of 1/2/3 periods generates

98.42%/99.80%/100% (SCWP-FF) and 59.92%/88.64%/97.37% (SCWP-LF) of the potential value.

n = 3 (SCWP-FF) respectively n = 4 (SCWP-LF) is sufficient to generate 100% of the potential value.
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Figure C.11.: Corn storage: Performance impact of planning horizon n (2000-2017)

Note. For plausible frictions ηi = ηo = 0.99, a planning horizon of 1/2/3 periods generates

98.51%/99.94%/100% (SCWP-FF) and 63.26%/94.98%/99.20% (SCWP-LF) of the potential value.

n = 3 (SCWP-FF) respectively n = 6 (SCWP-LF) is sufficient to generate 100% of the potential value.
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Figure C.12.: Soybean storage: Performance impact of planning horizon n (2000-2017)

Note. For plausible frictions ηi = ηo = 0.99, a planning horizon of 1/2/3 periods generates

99.58%/100%/100% (SCWP-FF) and 63.69%/93.17%/97.79% (SCWP-LF) of the potential value.

n = 2 (SCWP-FF) respectively n = 5 (SCWP-LF) is sufficient to generate 100% of the potential value.
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C.4. Stochastic Analysis: Performance of RIA and DDA

Table C.1.: Average performance (2000-2017) of futures-based RIA compared to RIA with
perfect one-step directional forecasts (PDF) and RIA with perfect one-step point
forecasts (PPF) in V/V PF · 100%

ηi = ηo = 1 ηi = ηo = 0.995 ηi = ηo = 0.99
Planning horizon n RIA PDF PPF RIA PDF PPF RIA PDF PPF

SCWP-FF (Gi = Go = C)
Copper

1 (myopic) 13.2 100.0 100.0 -7.9 98.1 99.3 -7.3 93.0 96.7
3 13.2 100.0 100.0 -0.7 98.1 99.0 -1.6 93.0 97.6
6 13.2 100.0 100.0 5.6 98.1 99.3 -3.8 93.0 98.3
12 13.2 100.0 100.0 5.6 98.1 99.3 -3.8 93.0 98.3

Gold
1 (myopic) 13.3 100.0 100.0 0.0 97.8 99.3 0.0 90.7 94.2
3 13.3 100.0 100.0 -0.8 97.8 99.2 0.0 90.7 96.2
6 13.3 100.0 100.0 13.3 97.8 99.0 8.2 90.7 94.2
12 13.3 100.0 100.0 13.5 97.8 99.2 10.0 90.7 94.9

Crude Oil
1 (myopic) -3.6 100.0 100.0 -4.9 99.8 99.6 -10.2 98.8 98.0
3 -3.6 100.0 100.0 -4.3 99.8 99.6 -10.8 98.8 98.6
6 -3.6 100.0 100.0 -4.3 99.8 99.6 -6.6 98.8 98.4
12 -3.6 100.0 100.0 -4.3 99.8 99.6 -6.6 98.8 98.4

Natural Gas
1 (myopic) 27.2 100.0 100.0 34.7 99.9 99.9 28.4 99.4 99.7
3 27.2 100.0 100.0 16.3 99.9 99.9 20.5 99.4 99.3
6 27.2 100.0 100.0 16.3 99.9 99.9 19.9 99.4 99.2
12 27.2 100.0 100.0 16.3 99.9 99.9 19.9 99.4 99.2

Corn
1 (myopic) 24.7 100.0 100.0 21.7 99.5 99.7 25.3 98.2 99.0
3 24.7 100.0 100.0 20.3 99.5 99.6 19.2 98.2 98.8
6 24.7 100.0 100.0 17.7 99.5 99.6 16.7 98.2 98.8
12 25.6 100.0 100.0 18.7 99.5 98.8 16.7 98.2 98.8

Soybean
1 (myopic) 29.4 100.0 100.0 27.8 99.7 99.4 25.0 98.1 98.1
3 29.4 100.0 100.0 28.4 99.7 99.4 21.1 98.1 97.6
6 29.4 100.0 100.0 29.2 99.7 99.4 28.5 98.1 98.4
12 29.4 100.0 100.0 30.7 99.7 98.6 28.5 98.1 98.4

SCWP-LF (Gi = Go = 0.5C)
Copper

1 (myopic) 9.4 68.1 68.1 -4.8 66.3 67.3 -4.4 62.3 65.4
3 7.7 61.0 61.0 -8.8 59.0 59.2 -1.3 53.9 56.2
6 7.7 62.8 62.8 -3.5 56.8 57.9 -4.8 46.1 53.0
12 7.7 62.8 62.8 -6.4 54.6 55.3 -5.9 50.1 53.5

Gold
1 (myopic) 8.4 71.9 71.9 0.0 69.6 70.7 0.0 64.3 67.3
3 24.7 72.8 72.8 -0.7 48.3 50.3 0.0 40.6 43.9
6 24.8 73.6 73.6 17.3 48.8 56.0 6.6 33.8 45.9
12 24.8 73.6 73.6 18.3 61.9 62.6 17.1 41.5 48.8

Crude Oil
1 (myopic) -3.6 65.8 65.8 -3.8 65.1 65.0 -7.6 64.2 63.6
3 -7.3 58.9 58.9 -3.9 57.6 57.4 -5.5 61.1 57.4
6 -7.3 64.2 64.2 -5.0 59.3 59.1 -0.2 60.0 59.9
12 -7.3 64.2 64.2 -5.0 59.3 59.1 -0.2 60.7 60.4

Natural Gas
1 (myopic) 18.2 73.1 73.1 23.4 73.0 73.1 18.7 72.6 72.8
3 13.9 66.6 66.6 8.8 69.9 69.8 13.4 67.5 68.8
6 13.9 67.8 67.8 11.4 66.7 66.6 7.2 65.9 65.7
12 13.9 67.8 67.8 11.4 67.1 66.9 11.9 65.9 65.7

Corn
1 (myopic) 16.7 69.1 69.1 14.6 68.7 68.8 16.7 67.6 68.1
3 17.4 67.5 67.5 14.3 65.2 65.5 12.1 62.3 63.3
6 17.4 67.5 67.5 7.5 64.2 65.7 4.9 58.2 60.5
12 10.6 62.1 62.9 8.1 60.5 60.9 4.9 58.2 58.0

Soybean
1 (myopic) 18.5 66.5 66.5 16.5 65.3 65.1 14.0 63.4 63.4
3 26.3 70.4 70.4 24.6 66.9 64.9 10.4 60.7 55.9
6 26.3 70.8 70.7 25.8 68.5 66.6 19.7 61.8 57.5
12 25.9 66.6 63.6 23.2 64.6 61.3 19.7 61.8 58.1
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C.4. Stochastic Analysis: Performance of RIA and DDA

Table C.2.: Out-of-sample performance of futures-based IA and futures-based RIA compared
to different data-driven policies measured in V/V PF · 100% from 2002 until 2017
across 192 instances

Mean Min 25%-Q 50%-Q 75%-Q Max

IA

Copper 11.1 -91.3 0.0 0.0 30.4 79.4
Gold 9.9 -100.5 0.0 0.0 21.6 79.1
Crude Oil 7.4 -121.6 -3.0 10.9 25.2 65.3
Natural Gas 9.1 -96.4 -9.7 15.3 30.8 66.3
Corn 1.8 -123.5 -17.5 2.7 27.6 67.6
Soybean 12.5 -64.3 -7.2 9.0 35.5 68.0
Overall 8.6 -123.5 -4.0 5.9 29.4 79.4

RIA

Copper 1.7 -45.6 -12.2 0.0 9.2 70.0
Gold 12.6 -107.5 0.0 1.6 26.9 78.7
Crude Oil 0.0 -171.9 -9.3 10.1 27.7 70.5
Natural Gas 15.9 -125.9 4.0 22.0 43.5 79.5
Corn 18.4 -44.3 -7.0 25.6 43.6 64.9
Soybean 29.0 -18.6 2.0 29.9 48.5 79.8
Overall 12.9 -171.9 -2.7 12.0 36.9 79.8

DDA-LDR w/o Forward Optimization

Copper -10.2 -460.6 0.6 14.2 36.9 67.2
Gold -14.9 -236.6 -35.6 3.9 16.2 67.2
Crude Oil -22.7 -344.8 -15.0 4.4 21.7 57.0
Natural Gas -21.1 -208.7 -20.8 -1.1 9.1 22.0
Corn -10.0 -72.1 -25.3 -4.3 4.5 31.3
Soybean 5.2 -41.3 -5.6 5.8 12.1 60.4
Overall -12.3 -460.6 -16.3 2.1 16.5 67.2

DDA-LDR w/ Forward Optimization

Copper -7.6 -237.6 -1.7 7.1 34.3 68.8
Gold -11.3 -129.4 -10.7 1.4 16.5 47.8
Crude Oil -0.5 -50.0 -9.9 -0.1 10.2 48.7
Natural Gas -3.1 -68.9 -22.4 4.9 15.1 44.8
Corn 1.8 -49.3 -9.3 5.9% 13.2 34.3
Soybean 5.6 -20.7 -5.1 -1.5 6.1 58.3
Overall -2.5 -237.6 -8.4 2.4 15.5 68.8

DDA-OSP w/o Forward Optimization

Copper -2.6 -325.5 1.3 24.3 45.8 72.3
Gold 1.5 -121.1 0.0 5.3 12.7 85.1
Crude Oil -2.8 -209.1 4.9 15.3 30.7 60.9
Natural Gas 23.0 -42.9 1.2 18.0 55.1 69.0
Corn 20.9 -33.6 9.8 20.1 31.9 60.8
Soybean 17.5 -5.6 1.4 17.5 25.5 54.8
Overall 9.6 -325.5 0.7 15.7 31.8 85.1

DDA-OSP w/ Forward Optimization

Copper 23.9 -188.2 5.9 35.9 68.6 83.6
Gold 11.9 -136.6 4.6 21.4 32.7 80.5
Crude Oil 15.6 -159.1 6.3 21.3 41.7 75.5
Natural Gas 7.0 -69.3 -31.8 11.4 40.0 71.5
Corn 39.3 -6.6 25.4 43.1 56.4 71.9
Soybean 33.1 0.0 18.1 34.9 48.1 71.1
Overall 21.8 -188.2 7.6 26.7 49.4 83.6

DDA-VFA

Copper -8.2 -303.5 0.6 12.4 24.4 82.4
Gold 10.8 -78.1 -2.9 7.5 43.4 75.0
Crude Oil -22.1 -239.1 -16.1 -3.6 7.5 34.5
Natural Gas -4.2 -77.6 -25.0 -13.6 25.8 59.0
Corn 0.2 -76.9 -16.5 -1.9 23.2 41.0
Soybean -4.8 -96.7 -9.9 -0.3 12.1 36.4
Overall -4.7 -303.5 -15.2 1.4 21.1 82.4
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Table C.3.: Out-of-sample dominance matrix of different policies in % of instances (# = 192)
in which row performs strictly better than column

IA RIA DDA-LDR* DDA-LDR** DDA-OSP* DDA-OSP** DDA-VFA

Copper

IA - 42.7 41.7 47.4 37.5 27.6 51.0
RIA 30.2 - 31.8 34.9 22.9 18.8 39.6
DDA-LDR* 57.3 68.2 - 54.2 45.8 18.8 52.1
DDA-LDR** 52.6 65.1 45.8 - 35.4 18.8 47.9
DDA-OSP* 58.3 77.1 52.1 64.6 - 16.7 50.0
DDA-OSP** 68.2 81.3 79.2 81.3 70.8 - 68.8
DDA-VFA 49.0 60.4 47.9 52.1 50.0 31.3 -

Gold

IA - 27.1 53.6 60.9 42.2 37.5 43.8
RIA 34.4 - 61.5 62.5 52.6 42.7 46.4
DDA-LDR* 44.3 36.5 - 56.3 45.8 27.1 16.7
DDA-LDR** 39.1 37.5 43.8 - 45.8 31.3 22.9
DDA-OSP* 48.4 38.0 50.0 54.2 - 25.0 41.7
DDA-OSP** 62.5 57.3 72.9 68.8 60.4 - 56.3
DDA-VFA 51.0 47.4 83.3 77.1 58.3 41.7 -

Crude Oil

IA - 50.0 62.0 65.6 52.1 33.9 79.2
RIA 50.0 - 69.3 59.9 47.9 33.9 71.9
DDA-LDR* 38.0 30.7 - 50.0 18.8 14.6 56.3
DDA-LDR** 34.4 40.1 50.0 - 31.3 31.3 58.3
DDA-OSP* 46.9 52.1 81.3 68.8 - 27.1 77.1
DDA-OSP** 65.6 66.1 85.4 68.8 66.7 - 87.5
DDA-VFA 20.8 28.1 43.8 41.7 22.9 12.5 -

Natural Gas

IA - 38.5 83.9 64.6 35.4 45.3 59.4
RIA 61.5 - 93.8 81.3 33.9 53.6 69.3
DDA-LDR* 16.1 6.3 - 33.3 2.1 27.1 37.5
DDA-LDR** 35.4 18.8 66.7 - 20.8 37.5 52.1
DDA-OSP* 64.6 66.1 97.9 79.2 - 64.6 68.8
DDA-OSP** 54.7 46.4 72.9 62.5 35.4 - 54.2
DDA-VFA 40.6 30.7 62.5 47.9 31.3 45.8 -

Corn

IA - 27.6 67.7 57.8 29.2 6.8 50.5
RIA 72.4 - 87.5 70.3 51.0 22.9 79.7
DDA-LDR* 32.3 12.5 - 25.0 12.5 0.00 35.4
DDA-LDR** 42.2 29.7 75.0 - 18.8 2.1 45.8
DDA-OSP* 70.8 44.8 87.5 81.3 - 29.2 77.1
DDA-OSP** 93.2 75.5 100.0 97.9 70.8 - 91.7
DDA-VFA 49.5 19.8 64.6 54.2 18.8 8.3 -

Soybean

IA - 20.3 57.8 58.9 47.4 30.2 60.9
RIA 79.7 - 79.7 74.0 62.5 44.3 83.3
DDA-LDR* 42.2 20.3 - 52.1 22.9 10.4 60.4
DDA-LDR** 41.1 26.0 47.9 - 20.8 12.5 64.6
DDA-OSP* 50.5 37.5 72.9 79.2 - 14.6 79.2
DDA-OSP** 69.8 55.7 87.5 87.5 79.2 - 91.7
DDA-VFA 39.1 16.7 35.4 35.4 4.2 4.2 -

Overall

IA - 34.4 61.1 59.2 40.6 30.2 57.5
RIA 54.7 - 70.6 63.8 45.1 36.0 65.0
DDA-LDR* 38.4 29.1 - 45.1 24.7 16.3 43.1
DDA-LDR** 40.8 36.2 54.9 - 28.8 22.2 48.6
DDA-OSP* 56.6 52.6 73.6 71.2 - 29.5 65.6
DDA-OSP** 69.0 63.7 83.0 77.8 63.9 - 75.0
DDA-VFA 41.7 33.9 56.3 51.4 30.9 24.0 -

* w/o forward optimization, ** w/ forward optimization
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Mart́ınez-de-Albeńız, V. and D. Simchi-Levi (2005). A portfolio approach to procurement

contracts. Production and Operations Management 14 (1), pp. 90–114.

— (2006). Mean-variance trade-offs in supply contracts. Naval Research Logistics 53

(1), pp. 603–616.

MathWorks (2018). Natural gas storage valuation.

McKinsey & Company (2013). Resource revolution: Tracking global commodity markets

- Trends survey 2013.

Merton, R.C. (1976). Option pricing when underlying stock returns are discontinuous.

Journal of Financial Economics 3 (1-2), pp. 125–144.

Modigliani, F. and M.H. Miller (1958). The cost of capital, corporation finance and the

theory of investment. The American Economic Review 48 (3), pp. 261–297.

Mohri, M., A. Rostamizadeh, and A. Talwalkar (2012). Foundations of machine learning.

1st ed. MIT Press.

Monahan, G.E. (1982). A survey of partially observable Markov decision processes: The-

ory, models, and algorithms. Management Science 28 (1), pp. 1–16.

Nadarajah, S. and N. Secomandi (2018). Merchant energy trading in a network. Opera-

tions Research 66 (12), pp. 1304–1320.

Nadarajah, S., F. Margot, and N. Secomandi (2015). Relaxations of approximate lin-

ear programs for the real option management of commodity storage. Management

Science 61 (12), pp. 3054–3076.

174



Bibliography

Nascimento, J.M. and W.B. Powell (2008). Optimal approximate dynamic programming

algorithms for a general class of storage problems. Princeton University, Department

of Operations Research and Financial Engineering.

Oliver Wyman (2017). The endgame for commodity traders - Why only the biggest and

digitally advanced traders will thrive. Retrieved from http://www.oliverwyman.c

om/our-expertise/insights/2017/nov/the-endgame-for-commodity-traders

.html.

Perlin, M. (2015). MS Regress - The Matlab package for Markov regime switching

models. Retrieved from http://ssrn.com/abstract=1714016.

Pindyck, R.S. (2004). Volatility and commodity price dynamics. The Journal of Futures

Markets 24 (11), pp. 1029–1047.

Pindyck, R.S. and J.J. Rotemberg (1990). The excess co-movement of commodity prices.

The Economic Journal 100 (403), pp. 1173–1189.

Pirrong, G. (2011). Commodity price dynamics - A structural approach. 1st ed. Cam-

bridge University Press.

Porteus, E.L. (2002). Foundations of stochastic inventory theory. 1st ed. Stanford Busi-

ness Books.

Reuters (2009). Recession delivers boom in commodity storage. Retrieved from https:

//www.reuters.com/article/columns-us-column-storage/recession-deliver

s-boom-in-commodity-storage-john-kemp-idUSTRE54E4S020090515.

— (2016a). CME bids to boost its metal storage network, challenge LME. Retrieved

from https://www.reuters.com/article/us-cme-lme-warehouses/exclusive-

cme-bids-to-boost-its-metal-storage-network-challenge-lme-idUSKCN0YE

0GS.

— (2016b). Israeli shipping data firm plans push into commodities markets. Retrieved

from https://www.reuters.com/article/us-tech-shipping-windward-idUSKC

N0WI2RZ.

— (2018). U.S. copper stocks sprint to record high, reflecting transport costs, weak

demand. Retrieved from https://www.reuters.com/article/us-comex-copper-

stocks/u-s-copper-stocks-sprint-to-record-high-reflecting-transport-

costs-weak-demand-idUSKCN1G61JU.

Sachs, A-L. and S. Minner (2014). The data-driven newsvendor with censored demand

observations. International Journal of Production Economics 149 (3), pp. 28–36.

Samuelson, P.A. (1965). Proof that properly anticipated prices fluctuate randomly. In-

dustrial Management Review 6 (2), pp. 41–49.

175

http://www.oliverwyman.com/our-expertise/insights/2017/nov/the-endgame-for-commodity-traders.html
http://www.oliverwyman.com/our-expertise/insights/2017/nov/the-endgame-for-commodity-traders.html
http://www.oliverwyman.com/our-expertise/insights/2017/nov/the-endgame-for-commodity-traders.html
http://ssrn.com/abstract=1714016
https://www.reuters.com/article/columns-us-column-storage/recession-delivers-boom-in-commodity-storage-john-kemp-idUSTRE54E4S020090515
https://www.reuters.com/article/columns-us-column-storage/recession-delivers-boom-in-commodity-storage-john-kemp-idUSTRE54E4S020090515
https://www.reuters.com/article/columns-us-column-storage/recession-delivers-boom-in-commodity-storage-john-kemp-idUSTRE54E4S020090515
https://www.reuters.com/article/us-cme-lme-warehouses/exclusive-cme-bids-to-boost-its-metal-storage-network-challenge-lme-idUSKCN0YE0GS
https://www.reuters.com/article/us-cme-lme-warehouses/exclusive-cme-bids-to-boost-its-metal-storage-network-challenge-lme-idUSKCN0YE0GS
https://www.reuters.com/article/us-cme-lme-warehouses/exclusive-cme-bids-to-boost-its-metal-storage-network-challenge-lme-idUSKCN0YE0GS
https://www.reuters.com/article/us-tech-shipping-windward-idUSKCN0WI2RZ
https://www.reuters.com/article/us-tech-shipping-windward-idUSKCN0WI2RZ
https://www.reuters.com/article/us-comex-copper-stocks/u-s-copper-stocks-sprint-to-record-high-reflecting-transport-costs-weak-demand-idUSKCN1G61JU
https://www.reuters.com/article/us-comex-copper-stocks/u-s-copper-stocks-sprint-to-record-high-reflecting-transport-costs-weak-demand-idUSKCN1G61JU
https://www.reuters.com/article/us-comex-copper-stocks/u-s-copper-stocks-sprint-to-record-high-reflecting-transport-costs-weak-demand-idUSKCN1G61JU


Bibliography

Scarf, H. (1959). Bayes solutions of the statistical inventory problem. The Annals of

Mathematical Statistics 30 (2), pp. 490–508.

Schwartz, E. (1997). The stochastic behavior of commodity prices: Implications for val-

uation and hedging. The Journal of Finance 52 (3), pp. 923–973.

Schwartz, E. and J. Smith (2000). Short-term variations and long-term dynamics in

commodity prices. Management Science 46 (7), pp. 893–911.

Secomandi, N. (2010). Optimal commodity trading with a capacitated storage asset.

Management Science 56 (3), pp. 449–467.

— (2015). Merchant commodity storage practice revisited. Operations Research 63 (5),

pp. 1131–1143.

Secomandi, N. and S. Kekre (2014). Optimal energy procurement in spot and forward

markets. Manufacturing and Service Operations Management 16 (2), pp. 270–282.

Secomandi, N. and D.J. Seppi (2012). Real options and merchant operations of energy

and other commodities. Foundations and Trends in Technology, Information and

Operations Management 6 (3-4), pp. 161–331.

Secomandi, N., G. Lai, F. Margot, A. Scheller-Wolf, and D.J. Seppi (2015). Merchant

commodity storage and term structure model error. Manufacturing and Service Op-

erations Management 17 (3), pp. 302–320.

Seifert, R.W., U.W. Thonemann, and W.H. Hausman (2004). Optimal procurement

strategies for online spot markets. European Journal of Operational Research 152

(3), pp. 781–799.

Sethi, S.P. and F. Cheng (1997). Optimality of (s,S) policies in inventory models with

Markovian demand. Operations Research 45 (6), pp. 931–939.
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