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ABSTRACT 

 

Background: Heart rate variability (HRV) defines the beat to beat variation of heart 

rate and has been linked to alterations in health and performance. In research on 

human factors and ergonomics, HRV was studied during shift-work, surgery and 

medical skills training. However, the role of HRV under high workload circumstances 

(e.g. emergency medicine or anaesthesia) and its abilities as a correlate of workload 

remain unknown. 

Methods: Electrocardiograms of physicians were obtained during their work as 

anaesthetists during real cases in the operation theatre, during a simulated critical 

incident or when providing primary healthcare as emergency physicians. The software 

tools ARTiiFACT, Kubios HRV and LabView were used to extract heart rate variability 

metrics from the electrocardiograms. 

Results: Non-linear HRV metrics, especially Permutation entropy, are the most 

valuable parameters for the separation of various workload levels during pre-hospital 

emergency care. HRV was not linked to performance, sex, and work experience in 

neither simulated critical incidents nor during the induction of general anaesthesia. 

Conclusion: The evaluation of anaesthesiologists’ HRV metrics is a promising tool to 

assess workload in medical environments such as simulated critical incidents and 

emergency care. Especially non-linear HRV metrics and Permutation Entropy might 

have a high potential to classify workload levels. In order to avoid patient harm and 

adverse events, future research needs to focus on the real-time analysis of health care 

providers’ heart rate variability and the identification of individual thresholds of 

excessive workload.  
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„Es gibt tausend Krankheiten, aber nur eine Gesundheit.“ 

 
Carl-Ludwig Börne, deutscher Journalist (1786-1837) 

 

 

Meinen Eltern gewidmet. 
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LIST OF ABBREVIATIONS 

 

Abbreviation Description 

a1, a2 Short-term (a1) and long-term (a2) fluctuations of 

detrended fluctuation analysis 

ApEn Approximate entropy 

AR Autoregressive 

ASD Acute stress disorder 

AUC Area under the receiver operating characteristics 

curve 

CIS Critical incident stress syndrome 

D2 Correlation dimension 

DET Determinism (percentage of recurrence points which 

form diagonal lines in the recurrence plot) 

DFA Detrended fluctuation analysis 

ECG Electrocardiogram 

HF High frequency (0.15-0.4 Hz) 

HRV Heart rate variability 

HRV triangular index The integral of the RR interval histogram divided by 

the height of the histogram 

Hz Hertz 

IBI Interbeat interval 

LF Low frequency (0.04-0.15 Hz) 

LF and HF powers [n.u.] Powers of LF and HF bands in normalized units 

LF/HF Ratio between LF and HF band powers 

Lmax Maximum line length of the diagonal lines in the 

recurrence plot 

Lmean Mean line length of the diagonal lines in the 

recurrence plot 

Mean HR The mean heart rate 

Mean RR The mean of all RR intervals 

Ms Milliseconds 
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Abbreviation Description 

NASA National Aeronautics and Space Administration 

NASA-tlx National Aeronautics and Space Administration task 

load index 

NN50 Number of successive RR interval pairs that differ 

more than 50 Ms 

PeEn Permutation entropy 

pNN50 NN50 divided by the total number of RR intervals 

REC Recurrence rate (percentage of recurrence points in 

the recurrence plot) 

RMSSD Square root of the mean squared differences between 

RR intervals 

RR-interval Time span ranging from an R peak to the subsequent 

R peak in an electrocardiographic signal 

SampEn Sample entropy 

SD1, SD2 Standard deviations of the Poincaré plot 

SDNN Standard deviation of normal-to-normal RR intervals 

ShanEn Shannon entropy of diagonal line lengths’ probability 

distributions 

STDHR Standard deviation of instantaneous heart rate values 

TINN Baseline width of the RR interval histogram, 

evaluated by triangular interpolation 

Tlx Task load index 

VLF Very low frequency (0-0.04 Hz) 

VLF, LF and HF peaks Peak frequencies for VLF, LF and HF bands 

VLF, LF and HF powers Absolute powers of VLF, LF and HF bands 

VLF, LF and HF powers [%] Relative powers of VLF, LF and HF bands 

 
Descriptions for heart rate variability metrics adapted from Tarvainen, Niskanen et al., 2014. 
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INTRODUCTION 
 

“Exercise to begin with – and as long as it is practiced in moderation – renders 

the pulse vigorous large, quick, and frequent”, states Galen of Pergamon in his 

work “The pulse for beginners” (Galen, around 129-205 AD) 1 . With this 

characterization, the ancient physician was among the first who linked alterations 

of the pulse to the prognosis and diagnosis of maladies (Billman 2011). Two 

millennia later, with the invention of the electrocardiogram (ECG), the systematic 

evaluation of beat-to-beat changes in the cardiac rhythm became a viable 

scientific technique (Billman 2011). 

These beat-to-beat changes and their statistical assessment are commonly 

referred to as heart rate variability (HRV). Along with improved processing 

capacities and statistical computing, the number of publications regarding HRV 

has been steadily increasing over the last years. Today, HRV is known to be a 

result of complex interactions between parasympathetic and sympathetic nerve 

fibres, respiration, and other influences on the pacemaker in the sinoatrial node 

(Billman 2011, Shahrestani, Stewart et al. 2015). HRV has been linked to 

workload in various psychophysiological concepts (Porges 2007, Thayer, Hansen 

et al. 2009). One of them, the polyvagal theory, proposes that in situations 

experienced as safe and without threat, the parasympathetic influence on the 

cardiac pacemaker increases. This results in slower mean heart rate (mean HR) 

and increased HRV (Porges 2007). During stressful events and in challenging 

situations the parasympathetic influence on the sinoatrial node diminishes while 

an increased sympathetic activation prepares the organism for a ‘fight-or-flight’ 

reaction (Porges 2007, Shahrestani, Stewart et al. 2015). 
  

 
1 Cited according to the transcript of his ‘Selected Works’, Oxford University Press, 1997; see 
Galen (1997). The pulse for beginners. Galen: Selected Works. New York, Oxford University 
Press: 332.. 
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WORKLOAD IN THE ENVIRONMENT OF ANAESTHESIOLOGY AND EMERGENCY 

MEDICINE 

The health care professionals’ stress reaction that accompanies a critical incident 

is known to impair an individual’s capacity to adequately react to the challenges 

of the critical situation as well as to negatively affect problem-solving (Flannery 

and Everly 2000). Maximum levels of stress can overpower the individual's 

coping mechanisms, and hence lead to inappropriate and adverse reactions like 

the critical incident stress syndrome (CIS) or acute stress disorder (ASD) (Caine 

and Ter-Bagdasarian 2003). As a negative result, lowered productivity, disability 

and inability to work ultimately increase costs (Kalia 2002, Caine and Ter-

Bagdasarian 2003). 

A methodological approach to describe an individual’s reaction to stress and 

challenging circumstances is the concept of workload which has been reviewed 

for anaesthesia by Leedal and Smith (Leedal and Smith 2005). The authors 

defined workload as a construct that includes the challenges of a situation and 

an individual’s response to them (Leedal and Smith 2005). 

Conclusions drawn from several studies suggest a correlation among high 

workload and an increased rate of adverse events (Cohen, O'Brien-Pallas et al. 

1999, Weinger and Slagle 2002). High mental workload, for instance, has been 

associated with poor performance that can result in cognitive overload and 

human errors (Gaba and Lee 1990, Byrne, Oliver et al. 2010). In an interview-

study by Gaba and Howard, more than 60 percent of the anaesthetists reported 

personal mistakes due to high workload before; nearly 50 percent observed 

unsafe actions undertaken by anaesthetists due to demanding pressure for 

effective and efficient performance (Gaba, Howard et al. 1994). 

After all, it seems necessary and crucial to identify critical levels of individual 

workload before cognitive overload may impair patient safety (Gaba and Lee 

1990). This can only be achieved with non-intrusive methods for the assessment 

of workload which neither disturb the individual nor interfere with the individual’s 

activity. Finally, the applied method should not require interruptions of the 

individual’s current actions that are needed to handle any critical situation. 
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TECHNIQUES OF WORKLOAD EVALUATION 

The assessment of workload can be divided into subjective and objective 

methods. Subjective methods typically include retrospective, recall-related 

questionnaires that are administered post-hoc, whereas objective methods aim 

to evaluate workload from an external point of view primarily using physiological 

parameters or additional secondary tasks, such as response times to optical 

stimuli (Weinger, Herndon et al. 1994) or arithmetic questions (Gaba and Lee 

1990). 

A method to assess subjective workload is the National Aeronautics and Space 

Administration task load index (NASA-tlx) that has been developed for 

aeronautics by Hart and Staveland. The NASA-tlx is a six-dimensional 

questionnaire that consists of ratings for mental, physical, and temporal demands 

as well as performance, effort, and frustration perceived during a stressful task 

(Hart and Staveland 1988). Besides aeronautics, the NASA-tlx has been 

evaluated to be useful and appropriate under high workload circumstances, in 

the field of anaesthesia (Leedal and Smith 2005, Levin, France et al. 2006, Byrne, 

Oliver et al. 2010), and in trauma patient care (Parsons, Carter et al. 2012) 

Additionally, the questionnaire is regularly used to quantify subjective workload 

in the standardized environment of anaesthesia in the operation theatre (Leedal 

and Smith 2005, Martin, Schneider et al. 2016). 

Objective methods typically evaluate workload via secondary tasks the 

anaesthetists has to complete on top of his routine work (Leedal and Smith 2005). 

These secondary tasks may vary from keeping an accurate anaesthetic record 

(Byrne, Sellen et al. 1998) to response-time to optical stimuli (Weinger, Herndon 

et al. 1994) or problems in mathematical addition (Gaba and Lee 1990). Usually 

performance on the secondary task was impaired when workload in the primary 

task increased (Gaba and Lee 1990, Weinger, Herndon et al. 1994, Byrne, Sellen 

et al. 1998, Leedal and Smith 2005). Since many objective methods report 

performance on a secondary task, objective methods may also be a surrogate for 

spare mental capacity (Leedal and Smith 2005). However, their benefit is 

impaired and less sensitive if the individual compensates changes in workload by 

increased effort (Leedal and Smith 2005). 
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Besides objective workload assessment, physiological parameters like the mean 

HR have been used to objectify workload. It has first been linked to workload in 

the context of aeronautics, where mean HR could index dynamic responses to 

variations in workload (Jorna 1993). In the environment of anaesthesiology, mean 

HR was used to quantify workload under various circumstances: Weinger and 

colleagues as well as Martin and co-workers found mean HR a good correlate for 

the workload of anaesthetists providing general anaesthesia in the operation 

theatre (Weinger, Reddy et al. 2004, Martin, Schneider et al. 2016). Schulz and 

colleagues were able to demonstrate differences in heart rate between uneventful 

anaesthesia and critical incidents in a human patient simulation (Schulz, 

Schneider et al. 2011). 

Beyond mean HR, the beat-to-beat variations in either heart rate or the duration 

of the peak-to-peak interval (also entitled N-N- or RR-interval) have been 

investigated beginning in the 1960s (Billman 2011). Alterations in N-N- or RR-

intervals are commonly referred to as HRV (Billman 2011).  

HRV can be used for cardiovascular risk stratification after myocardial infarction, 

and a reduced HRV is recognized as a major risk factor for cardiovascular 

disorders (Kamath, Ghista et al. 1987, Löllgen 1999). It has also been used in 

psychophysiological research, where Kimhy and colleagues could demonstrate 

an association between measures of HRV and superior performance on 

executive function tasks (Kimhy, Crowley et al. 2013). Furthermore, shift work 

and job strain in physicians have been related to reduced HRV during shift-work 

(Wong, Ostry et al. 2012, Hernandez-Gaytan, Rothenberg et al. 2013). 

In the framework of workload, likewise mean HR, HRV has been investigated in 

combat flying and aeronautics (Lindqvist, Keskinen et al. 1983, Jorna 1993, 

Lahtinen, Koskelo et al. 2007). Mansikka, Simola and co-workers’ research 

investigated the HRV of fighter pilots during an instrument approach. They 

revealed that mean HR and HRV were able to identify the level of pilots’ mental 

workload at which the subjects were no longer able to cope with task demands 

(Mansikka, Simola et al. 2016). Field research in the environment of anaesthesia 

done by Martin and colleagues revealed HR and measures of HRV to be 

promising tools for workload differentiation (Martin, Schneider et al. 2016). More 
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precisely, they found anaesthetists’ HRV parameters significantly correlated to 

different workload stages during general anaesthesia (Martin, Schneider et al. 

2016). Beyond, job strain and the perception of work stressors – both not directly 

related to workload, however – have been documented to reduce HRV (Lee, 

Yoon et al. 2010, Clays, De Bacquer et al. 2011). According to Thayer and 

Hansens’ neurovisceral integration model, HRV mediated by vagal tone is a 

major influence on cognitive and executive performance under stressful 

conditions (Thayer, Hansen et al. 2009). However, in the neurovisceral 

integration model, these conclusions are limited to mathematical parameters 

assumed to be correlates of cardiac vagal tone (Thayer, Hansen et al. 2009, 

Laborde, Mosley et al. 2017). Little is known about new methods of HRV 

computation and their capability to monitor sympathetic and vagal influences on 

the heart (Porta, Gnecchi-Ruscone et al. 2007, Sassi, Cerutti et al. 2015). Among 

these new methods, entropy-based computations have been considered an 

alternative measurement of vagal influences on the heart (Porta, Gnecchi-

Ruscone et al. 2007, Sassi, Cerutti et al. 2015). 

 

HYPOTHESIS AND AIMS OF THE RESEARCH PROJECT 

As mentioned earlier, high levels of workload might lead to stress reactions and 

cognitive overload and may hence impair patient safety. Thus, measuring 

workload and avoiding work-overload is of specific interest. So far, HRV was only 

used to assess workload in standardized settings. However, it is unclear whether 

the parameters of HRV are valid outside protected environments like the 

operation theatre. This is of particular interest as the hazard for high workload 

and critical incidents is even higher in settings such as emergency medicine, 

where a standardised environment is absent. 

Except for the NASA-tlx (Parsons, Carter et al. 2012), little is known about the 

construct validity of workload correlates in much less standardized settings like 

emergency medicine. Veltman and Gaillard as well as others suggest that HRV, 

for example, was less valid in field than in laboratory studies (Jorna 1992, Wilson 

1992, Veltman and Gaillard 1996). Furthermore, a review by Laborde and co-

workers proposed that environmental influences like movement, activity and 
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respiration can affect the HRV under real-life circumstances (Laborde, Mosley et 

al. 2017). 

Martin and colleagues identified mean HR and certain parameters of HRV as 

valuable correlates of workload during general anaesthesia in the operation 

theatre (Martin, Schneider et al. 2016). However, their study focussed on 

uneventful general anaesthesia in ASA I2 patients. This can be considered as a 

low level of workload for anaesthesiologists in the standardised setting of the 

operation theatre. Hence, little is known about the validity of these parameters 

under the circumstances of emergency medicine and during high workload 

situations such as critical incidents.  

Thus, the aim of our research was to identify linear and non-linear HRV metrics 

that highly correlate with workload in field settings like emergency medicine as 

well as during simulated critical incidents. Accordingly, we hypothesized that 

workload during pre-hospital emergency care is associated with HRV and 

measures of HRV can discriminate between various workload levels. To date, the 

neurovisceral integration model limits correlations between HRV, performance 

and executive function to these measures of HRV that are correlates of vagal 

modulation (Thayer, Hansen et al. 2009). Thus, we aimed to extend this model 

towards non-linear HRV metrics that might – according to a review – also reflect 

vagally mediated influences on the cardiac pacemaker (Sassi, Cerutti et al. 

2015). 
  

 
2  Referring to the ASA-Classification of the American Society of Anaesthesiologists, ASA I 
represents a healthy patient. 
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MATERIAL AND METHODS 
 
HEART RATE VARIABILITY 

The HRV parameters (hereafter referred to as HRV metrics) can be divided into 

three main sections: time domain, frequency domain (both also known as linear 

methods), and non-linear methods. The time domain HRV metrics include simple 

statistical variabilities of the intervals between two adjacent QRS complexes. 

Frequency domain methods analyse the power spectral density in order to 

describe how variance distributes as a function of frequency (1996). In 1981, 

Akselrod, Gordon and colleagues showed that especially parasympathetic and 

sympathetic modulation of the cardiac rhythm can be evaluated by their 

frequency-specific contribution to the frequency domain measures of HRV 

(Akselrod, Gordon et al. 1981). Finally, non-linear methods have been used to 

capture the structure and complexity of heart rate time series. (Stein, Domitrovich 

et al. 2005)  

 

ELECTROCARDIOGRAM GATHERING AND PROCESSING 

ECGs have been used as a basis for HRV computations; those ECGs were 

recorded using the corresponding function of the Zephyr Bio Harness 3™ chest 

belt (Zephyr Technology Corp., Annapolis, MD, USA; hereafter referred to as 

chest belt). The reliability and validity of the generated ECG under laboratory and 

field conditions has been demonstrated by Johnstone, Ford and co-workers 

(Johnstone, Ford et al. 2012). The ECG data was extracted from the chest belt 

using the Zephyr Log Downloader Software that is part of the enclosed software 

package. 

The raw ECGs were processed and corrected for artefacts using the software 

tool ARTiiFACT 2.2 (Biosignal Analysis and Medical Imaging Group, Department 

of Applied Physics, University of Eastern Finland, Kuopio, Finland; Kaufmann, 

Sutterlin et al. 2011). First, a high pass filter of 10 Hz was applied on ECG data 

sets and a global threshold of approximately 50 µV (selected depending on 

optimized R-peak detection) was used to enhance the automated detection of R 
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peaks in the ECG data. Following the guidelines of the Task Force3, the ECG raw 

data were checked for inaccurately detected R-peaks, afterwards. R-peaks were 

controlled visually, using the integrated peak detection function of the ARTiiFACT 

software (Kaufmann, Sutterlin et al. 2011). In a final step, ARTiiFACT extracted 

the interbeat intervals (IBIs) from the visually checked ECG data. To identify 

invalid IBIs within the diversity of correct IBIs, ARTiiFACT used the artifact 

identification algorithm for heart period data that has been established by 

Berntson, Quigley and colleagues (Berntson, Quigley et al. 1990). This algorithm 

deduced an artifact criterium (individual threshold) from the normal distribution of 

successive heart period differences within the data. Since they are less sensitive 

for corrumption than least square estimates, percentile based distributions were 

used for the computations of the algorithm (Berntson, Quigley et al. 1990). IBIs 

that conformed to the artifact criterion were marked as incorrect and the cubic 

spline interpolation was applied on the IBIs to correct them (Figure 1). The 

algorithm of the cubic spline interpolation used piecewise polynomials (“splines“) 

to interpolate the link of predefined points (McKinley and Levine 1998). The IBI 

data prepared in such a manner were imported into the software ‘Kubios HRV’ 

for further procession (Tarvainen, Niskanen et al. 2014). 

  

 
3 Guidelines proposed by the Task Force of the European Society of Cardiology and the North 
American Society of Pacing and Electrophysiology (1996). "Heart rate variability. Standards of 
measurement, physiological interpretation, and clinical use. Task Force of the European Society 
of Cardiology and the North American Society of Pacing and Electrophysiology." European Heart 
Journal 17(3): 354-381. 
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FIGURE 1 – INCORRECT INTERBEAT INTERVALS AND THEIR 

CORRECTION IN ARTiiFACT 

 
Figure 1 – The top graph shows the interbeat interval (IBI) lengths over time; the red line marks an IBI 
that is detected as incorrect. The bottom graph represents the data corrected by ARTiiFACT using a cubic 
spline interpolation. The graphs are generated during the IBI correction step of ARTiiFACT (Kaufmann, 
Sutterlin et al. 2011). 

 

HRV METRICS AND HRV COMPUTING 

All HRV computations were done using the software “Kubios HRV” (Tarvainen, 

Niskanen et al. 2014). The software performs computations for time domain, 

frequency domain and non-linear HRV metrics. To compute Permutation Entropy 

(PeEn) the software tool LabView 8.5 (National Instruments LabVIEW, National 

Instruments, Austin, TX, USA) was used. 

Time domain methods were applied to the successive RR intervals directly; they 

include the mean heart rate (mean HR) and the mean value of RR intervals (mean 

RR). Furthermore, a variety of time domain HRV metrics describes the variability 

within the RR series (Tarvainen, Niskanen et al. 2014). These include the 

standard deviation of normal-to-normal RR intervals (SDNN), the root mean 

square of successive differences (RMSSD), the number of successive intervals 

differing more than 50 ms (NN50), and the corresponding relative amount 

(pNN50) (Tarvainen, Niskanen et al. 2014). Furthermore, based on the RR 
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interval histogram the HRV triangular index as the integral of the histogram 

divided by its height (dependent on the bin width, in this case 1/128s) as well as 

the TINN – the baseline width of the histogram evaluated by triangular 

interpolation – are computed (Tarvainen, Niskanen et al. 2014).4 For further 

details and the respective units of the frequency based HRV metrics, see the 

table.  

For the computation of frequency domain HRV metrics, the time-based RR 

interval series were converted into equidistantly sampled series using polynomial 

functions (cubic spline interpolation) (Litvack, Oberlander et al. 1995, Tarvainen, 

Niskanen et al. 2014). To obtain frequency spectra from the continuous ECG 

signals, the software ‘Kubios HRV’ takes advantage of two different methods: 1) 

Welch’s periodogram that divides RR series into overlapping segments, and 2) 

autoregressive (AR) modelling of RR series with an AR model of specific order 

(Tarvainen, Niskanen et al. 2014). Frequencies were divided in the three 

frequency bands 1) very low frequencies (VLF) ranging from 0 to 0.04 Hz, 2) low 

frequencies (LF) from 0.04 to 0.15 Hz, and 3) high frequencies from 0.15 to 0.4 

Hz.4 

Since two distinct computations were used, all HRV metrics of the frequency 

spectrum are delivered based on Welch’s periodogram as well as the AR model. 

From the frequency domain HRV metrics, the peak frequencies (frequency 

values related to maximum power; for VLF, LF, and HF), absolute and relative 

powers (of VLF, LF, and HF), normalized powers of LF and HF, LF/HF power 

ratio, and the total spectral power were included. The software calculates the 

corresponding powers as the integral of the spectrum estimates over the 

frequency bands, or the integral of the whole spectrum for total power, 

respectively (Tarvainen, Niskanen et al. 2014).4 See the table for more detailed 

information about computation, units and calculations of frequency based HRV 

metrics. 

Since the cardiac autonomous regulation is complex and variously influenced, 

non-linear methods are an attempt to measure the structure and complexity of 

 
4 According to the guidelines proposed by the Task Force of the European Society of Cardiology 
and the North American Society of Pacing and Electrophysiology (1996). 
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heart rate time series. ‘Kubios HRV’ uses different non-linear methods. First, a 

Poincaré plot is deployed as a graphic presentation of correlations among 

consecutive RR intervals. Within the Poincaré plot, SD1 results from the width 

and, respectively, SD2 from the length of the plot’s shape (Tarvainen, Niskanen 

et al. 2014).  

 

FIGURE 2 – EXAMPLE OF A POINCARÉ PLOT COMPUTED BY KUBIOS 

HRV 

 
Figure 2 – Example of a Poincaré plot as computed using the software tool Kubios HRV (Tarvainen, 
Niskanen et al. 2014). SD1 (red) results from the width, and SD2 (green) from the length of the plot’s 
shape, respectively. 

 

Second, approximate entropy (ApEn) and sample entropy (SampEn) are 

calculated based on an embedding dimension m and the tolerance r (Richman 

and Moorman 2000). To ensure inter-individual comparability, the software 

determines the tolerance r to be 0,2 SDNN (Tarvainen, Niskanen et al. 2014). 

Another method, the detrended fluctuation analysis (DFA), measures correlations 

within the data for different time scales; in HRV analysis, these are divided into 

short-term and long-term fluctuations (displayed by the variables a1 and a2, 

respectively) (Tarvainen, Niskanen et al. 2014). To characterize the complexity 

and strangeness of the data, the correlation dimension (D2) provides the 
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minimum number of dynamic variables that are needed to model the underlying 

system (Tarvainen, Niskanen et al. 2014). The correlation dimension model uses 

the embedding dimension m (default value m=10) and the threshold r (default 

value r=√𝑚SDNN) (Tarvainen, Niskanen et al. 2014). 

 

FIGURE 3 - EXAMPLE OF THE DETRENDED FLUCTUATION ANALYSIS 

DONE BY KUBIOS HRV 

 
Figure 3– Example of a detrended fluctuation analysis as computed by Kubios HRV (Tarvainen, Niskanen 

et al. 2014). a1 correlates with the short-term and a2 with the long-term changes in HRV, respectively. 

 

Last, the recurrence plot analysis – using the same embedding dimension m and 

threshold r, as the correlation dimension – is a binary square matrix resulting in 

a graphic of short lines parallel to a main diagonal (Tarvainen, Niskanen et al. 

2014). From this, the software obtains the variables mean line length (Lmean), 

maximum line length (Lmax), recurrence rate (REC), determinism (DET), and 

Shannon entropy of line length distribution (ShanEn) (Tarvainen, Niskanen et al. 

2014). 

Finally, the non-linear HRV metric Permutation Entropy is computed using the 

software tool “LabView 8.5” (National Instruments LabVIEW, National 

Instruments, Austin, TX, USA). Permutation entropy is a mathematical construct 

that can be used as a non-linear HRV metric; it is believed to be unimpaired by 
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high signal dimensions and seems to be robust for the detection of unusual 

patterns in complex time lines (Bandt and Pompe 2002, Cao, Tung et al. 2004, 

Jordan, Stockmanns et al. 2008). 

Supplementary details for all computed HRV metrics, their verbal description, and 

their units are provided in the table. 

 

TABLE – DETAILED DESCRIPTION OF ALL HEART RATE VARIABILITY 

METRICS COMPUTED BY KUBIOS HRV SOFTWARE. 

Parameter Units  Description 

Time Domain   

Mean RR [ms] The mean of all RR-intervals 
SDNN [ms] Standard deviation of normal-to-normal RR-

intervals 

Mean HR [1/min] The mean heart rate 
STDHR [1/min] Standard deviation of instantaneous heart rate 

values 
RMSSD [ms] Square root of the mean squared differences 

between successive RR-intervals 
NN50 [count] Number of successive RR-interval pairs that differ 

more than 50 ms 
pNN50 [%] NN50 divided by the total number of RR-intervals 
HRV triangular index - The integral of the RR-interval histogram divided 

by the height of the histogram 
TINN [ms] Baseline width of the RR-interval histogram, 

evaluated by triangular interpolation 

 

Frequency Domain All frequency domain heart rate variability metrics are 
delivered based on two distinct spectrum estimates (Welch’s 
periodogram and autoregressive modelling, respectively – for 
details see full text). 

VLF, LF, and HF peaks [Hz] Peak frequencies for VLF, LF, and HF bands 
VLF, LF, and HF powers [ms2] Absolute powers of VLF, LF, and HF bands 
VLF, LF, and HF powers [%] Relative powers of VLF, LF, and HF bands 

VLF [%] = VLF [ms2]/total power [ms2] x 100 % 
LF [%] = LF [ms2]/total power [ms2] x 100 % 
HF [%] = HF [ms2]/total power [ms2] x 100 % 
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Parameter Units  Description 

LF and HF powers [n.u.] Powers of LF and HF bands in normalized units 
LF [n.u.] = LF [ms2]/(total power [ms2] - VLF [ms2]) 
HF [n.u.] = HF [ms2]/(total power [ms2] - VLF [ms2]) 

LF/HF - Ratio between LF and HF band powers 
Total Power [ms2] Total spectral power 

   

Non-linear   

SD1, SD2 [ms] Standard deviations of the Poincaré plot 

ApEn - Approximate entropy 
SampEn - Sample entropy 
D2 - Correlation dimension 

a1, a2 - Short-term and long-term fluctuations of detrended 
fluctuation analysis 

Lmean [beats] Mean line length of the diagonal lines in recurrence 
plot (RP) 

Lmax [beats] Maximum line length of diagonal lines in RP 
REC [%] Recurrence rate (percentage of recurrence points 

in RP) 
DET [%] Determinism (percentage of recurrence points 

which form diagonal lines in RP) 
ShanEn - Shannon entropy of diagonal line lengths’ 

probability distribution 
PeEn - Permutation Entropy 

Overview on the heart rate variability metrics computed by the software used for analysis. Abbreviations: 
ms, miliseconds; min, minutes; VLF, very low frequencies; LF, low frequencies; HF, high frequencies. 
Modified version of the table delivered in Tarvainen, Niskanen et al. 2014.  
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STUDY DESIGN AND DATA ACQUISITION 

SETTING 1: THE VALIDITY OF LINEAR AND NON-LINEAR HEART RATE METRICS AS 

WORKLOAD INDICATORS OF EMERGENCY PHYSICIANS, PLOS ONE (2017) 

During a period of five months in 2015, emergency physicians were asked to 

wear the chest belt during their 24-hour shifts as emergency physician on the 

emergency physician response vehicle operated by the Department of 

Anaesthesiology and Intensive Care at the Klinikum rechts der Isar, Technical 

University of Munich. The local Ethics Committee approved the study (N° 

5771/13; May 11th, 2015). Based on the timestamps from the physicians’ 

protocols, four different time segments during the emergency sorties were 

distinguished: The first segment included the five minutes before the alarm, the 

second segment was the drive to the emergency site. The third segment was the 

time between the arrival on the scene and the handover of the patient to an 

emergency physician at the admitting emergency ward and the fourth segment 

were the five minutes just after the sortie was finished. These four time segments 

were defined as different levels of workload. The time before the alarm 

represented a baseline level, the drive to the emergency site was the mental 

preparation of the physician, the primary patient care was the time of highest 

workload, and the time after the alarm was defined as the physicians’ recovery. 

See figure 4 for details about the time segments and their median durations. ECG 

raw data were extracted from the chest belt’s 24-hour recordings and based 

thereupon, HRV metrics were calculated for each of those segments (Schneider, 

Martin et al. 2017). 

To adjust for repeated measurements within subjects on a single shift as well as 

for subjects working on different days, linear mixed-effects models were fitted to 

explore differences of the HRV metrics between the time segments (Schneider, 

Martin et al. 2017). To explore the HRV metrics’ ability to discriminate between 

the various workload stages, receiver operating characteristics (ROC) analysis 

for clustered data were used (Schneider, Martin et al. 2017). 
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FIGURE 4 – ANALYSED TIMESPANS DURING AN EMERGENCY SORTIE 

 
Figure 4 – Schematic presentation of the work sequence during a primary care emergency physician’s 
sortie and description of the timespans exported for HRV metric computation. The times are presented 
as median times (interquartile-range). In the absence of definitive time markers, a time interval of 5 
minutes was chosen for the segments before and after the alarm. Modified figure originally published in 
Schneider, Martin et al., 2017. 

 

SETTING 2: ANAESTHETISTS’	HEART RATE VARIABILITY AS AN INDICATOR OF 

PERFORMANCE DURING INDUCTION OF GENERAL ANAESTHESIA AND SIMULATED 

CRITICAL INCIDENTS, JOURNAL OF PSYCHOPHYSIOLOGY (2018) 

Anaesthetists working at the Department of Anaesthesiology at the Klinikum 

rechts der Isar, Technical University of Munich were exposed to a simulated 

hypotension scenario. The study was approved by the local Ethics Committee 

(N° 5761/13; April 22nd, 2013). During this scenario anaesthetists’ ECGs were 

recorded using the chest belt. To generate a realistic simulation environment, a 

high-fidelity human patient simulator (HPS® Human Patient Simulator, CAE 

Healthcare Corp., Montreal, Quebec, Canada) presented a severe intra-operative 

hypotension during general anaesthesia. The HRV metrics were computed from 

the five-minute segment after the onset of hypotension. The overall duration and 

depth of hypotension was used as a correlate of the anaesthetist’s performance 

(mmHg*s).  

These data were compared to the HRV metrics of anaesthetists during the 

induction of general anaesthesia in ASA I patients gathered for a prior study 

(Martin, Schneider et al. 2016). The Ethics Committee at Klinikum rechts der Isar, 

Technical University of Munich approved the study (N° 5771/13; April 29th, 2013). 
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Here, the time needed for induction of general anaesthesia was used as a marker 

of the anaesthetist’s performance. 

Based on the medians of the time needed for anaesthesia induction and the 

length and depth of hypotension, participants with high and low performance 

were identified and grouped to a low- and high-performance group. The Mann-

Whitney-U test was applied to assess differences of the HRV metrics’ medians 

between groups.  
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RESULTS AND DISCUSSION 

The research project aimed to investigate linear and non-linear HRV metrics and 

their potential to discriminate different levels of workload. First, based on Martin 

and colleagues’ findings from the operation theatre (Martin, Schneider et al. 

2016), the suitability of HRV metrics in a pre-hospital emergency care setting was 

investigated (Schneider, Martin et al. 2017). Second, the analysis of HRV during 

the induction of general anaesthesia and simulated critical incidents (Schneider, 

Martin et al. 2018) intended to explore the connection of non-linear HRV metrics 

and performance based on the neurovisceral integration model (Thayer, Hansen 

et al. 2009).  
 

LINEAR AND NON-LINEAR HRV METRICS AND THEIR VALIDITY IN PRE-HOSPITAL 

EMERGENCY MEDICINE 

In pre-hospital emergency care, non-linear HRV metrics (AUC for grouped 

analysis = 0.998) and among the analysis of single HRV metrics especially PeEn 

separated workload best (Schneider, Martin et al. 2017). In contrast to the 

findings by Martin and co-workers (Martin, Schneider et al. 2016), mean HR was 

not a valuable parameter for the separation of different workload levels (AUC = 

0.558). The high-performing non-linear HRV metric PeEn has first been 

introduced as a measurand for a signal’s complexity by Bandt and Pompe in 2002 

(Bandt and Pompe 2002). Ever since, it has been used in different settings, 

including the separation of consciousness from unconsciousness through the 

analysis of electroencephalographic data (Jordan, Stockmanns et al. 2008). Due 

to its computation, PeEn is unimpaired by high signal dimensions and limitations 

in signal length as well as enabled to detect patterns in complex time lines (Bandt 

and Pompe 2002, Cao, Tung et al. 2004, Jordan, Stockmanns et al. 2008). 

Though they performed good in the highly standardized environment of general 

anaesthesia (Martin, Schneider et al. 2016), time domain HRV metrics did not 

perform satisfactorily in pre-hospital care (Schneider, Martin et al. 2017). In a 

comparable setting, Rieger, Stoll and co-workers divided surgeons in a stressed 

and non-stressed group (based on the short form of the State Trait Anxiety 
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Inventory5) before assessing their HRV during surgeries. The heart rate (mean 

HR, referred to as a part of the time domain HRV metrics) of surgeons from the 

stressed group was higher during surgeries, their HRV was decreased during 

sleep (Rieger, Stoll et al. 2014). This was the first approach to HR and HRV 

metrics as a possible categorisation tool for perceived stress during work (i.e. in 

the operation theatre). 

In contrast to the time domain HRV metrics, more of the frequency domain HRV 

metrics correlated with changes of workload in pre-hospital emergency care 

(Schneider, Martin et al. 2017). This was in line with findings by Crewther, Shetty 

and colleagues: They demonstrated that decreasing HRV (indicated by reduced 

LF and HF components) might predict improved performance and reduced stress 

during laparoscopic surgery simulations (Crewther, Shetty et al. 2015). However, 

their findings were not significant (p<0.10) (Crewther, Shetty et al. 2015). Pagani 

and colleagues as well as Hjortskov and co-workers proposed that mental stress 

induces changes in parasympathetic regulation of the cardiac pacemaker; they 

found these changes to be represented by frequency domain HRV metrics 

(Pagani, Mazzuero et al. 1991, Hjortskov, Rissén et al. 2004). However, 

compared to the performance of non-linear HRV metrics, the performance of 

frequency domain HRV metrics remained low (Schneider, Martin et al. 2017). 

 

INTER-INDIVIDUAL DIFFERENCES IN HRV AND THEIR RELATION TO 

PERFORMANCE DURING INDUCTION OF ANAESTHESIA AND SIMULATED 

CRITICAL INCIDENTS 

The comparison of HRV metrics between a group of low and high performing 

individuals during the induction of general anaesthesia in the operation theatre 

as well as during a simulated critical incident did not show significant differences 

between the two groups (Schneider, Martin et al. 2018). However, HRV was not 

recorded under resting conditions which limits the comparability with other 

 
5 The short State Trait Anxiety Inventory (STAI) is a psychological inventory that measures 
anxiety; It is well validated and consists of 6 instead of 40 questions compared to the State Trait 
Anxiety Index (Marteau, T. M. and H. Bekker (1992). "The development of a six-item short-form 
of the state scale of the Spielberger State-Trait Anxiety Inventory (STAI)." Br J Clin Psychol 31 ( 
Pt 3): 301-306.). 
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studies. Hansen and co-workers, for example, separated individuals based on 

their resting HRV and found a higher HRV under resting conditions related to 

improved performance (Hansen, Johnsen et al. 2003, Hansen, Johnsen et al. 

2009). Most of these studies refer to time domain HRV metrics like SDNN and 

RMSSD (Thayer, Hansen et al. 2009, Beaumont, Burton et al. 2012, Luque-

Casado, Zabala et al. 2013); others, however, found a correlation of the 

frequency domain’s high frequency (HF) component and performance (Elliot, 

Payen et al. 2011). Yet, these results are not necessarily objecting the lack of 

significant findings, as Schneider et al. compared inter-individual differences, 

while the aforementioned studies focussed on intra-individual changes of HRV in 

comparison to resting HRV (Schneider, Martin et al. 2018). 

Besides HRV metrics, work-experience was not related to performance markers 

(Schneider, Martin et al. 2018). Alike, DeAnda and Gaba, as well as Schulz and 

co-workers found great variance in the performance of unexperienced 

anaesthesia providers but not in group-wise comparison with more experienced 

anaesthetists (DeAnda and Gaba 1991, Schulz, Schneider et al. 2014). The 

majority of studies, however, found work-experience positively correlated with 

performance (Quińones, Ford et al. 1995). 

 

HEART RATE VARIABILITY ANALYSIS IN OTHER ENVIRONMENTS 

Apart from our own research in settings related to anaesthesiology, various 

researchers studied heart rate variability (HRV) in a hospital-like environment 

using staff-physicians as their object of investigation (Karhula, Henelius et al. 

2014, Crewther, Shetty et al. 2015). Most of these studies focussed on a human 

factors approach and investigated the human body’s response to shift-work, job 

strain, and increasing complexity of the work environment. This is important to 

identify factors that contribute to physicians’ low job satisfaction and increased 

burnout rates, and hence, improve their overall wellbeing (Tyssen 2007, Markwell 

and Wainer 2009, Feeney, O'Brien et al. 2016). Accordingly, for example, 

reduced HRV in young residents related to high job strain and work stressors 

(Hernandez-Gaytan, Rothenberg et al. 2013). Furthermore, Tobaldini, Cogliati 

and co-workers observed a sympathetic modulation and a parasympathetic 
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withdrawal in their analysis of residents’ HRV metrics after one night of duty. 

Beyond, they also observed increased levels of plasmatic inflammatory cytokines 

related to sympathetic activation (Tobaldini, Cogliati et al. 2013). Further research 

pointed out similar results regarding sympathetic modulation following night shifts 

and duty days (Amirian, Toftegard Andersen et al. 2014); Lee, Lo and colleagues 

found decreasing HRV correlated with increasing duty loads (Lee, Lo et al. 2016). 

These results reinforce the adverse effects of shift-work and sleep deprivation 

observed earlier: Irwin and colleagues found evidence for elevated 

catecholamine levels during acute sleep deprivation (Irwin, Thompson et al. 

1999), The authors considered these effects of sympathetic modulation to 

contribute to the onset of cardiovascular diseases (Irwin, Thompson et al. 1999). 

Besides cardiovascular diseases, working night shifts has been linked to an 

increased risk for diabetes mellitus (Strohmaier, Devore et al. 2018). Under these 

circumstances, mostly HRV metrics of the frequency domain are used for the 

interpretation of parasympathetic and sympathetic activity (Hernandez-Gaytan, 

Rothenberg et al. 2013, Amirian, Toftegard Andersen et al. 2014, Lee, Lo et al. 

2016). Our own research suggests that these changes in cardiac autonomous 

regulation may not only be observed as an adverse effect of shift-work in general, 

but also among rest and activity within a single duty (Schneider, Martin et al. 

2017), as well as within different workload levels of a single activity (Martin, 

Schneider et al. 2016, Schneider, Martin et al. 2017). Thus, besides shift-work 

permanent occupation with high workload tasks could also contribute to a 

sympathetic modulation and the subsequent predisposition for cardiovascular 

disease and diabetes. 

Besides ergonomics and human factors, HRV has been studied in the context of 

workload generated by differing task demands under experimental and simulator 

conditions (Henelius, Hirvonen et al. 2009, Luque-Casado, Perales et al. 2016) 

In simulator environments HRV analysis has a long tradition; particularly, in the 

field of aviation and flight simulation (Lindqvist, Keskinen et al. 1983, Jorna 1993). 

A study on simulated flight maintenance unveiled that HRV metrics were sensitive 

to different workload phases (Tattersall and Hockey 1995). Also, in experimental 

settings, researchers already classified workload using HRV parameters 
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(Henelius, Hirvonen et al. 2009). Based on their research with various tasks in 

the laboratory, Luque-Casado, Perales and co-workers suggested that HRV was 

sensitive to sustained attention demands and varies as a function of task 

demands (Luque-Casado, Perales et al. 2016).  

Mean heart rate and heart rate variability have rarely been investigated in 

anaesthetists in the operation theatre (Weinger, Reddy et al. 2004, Martin, 

Schneider et al. 2016) and during simulated critical incidents before (Schulz, 

Schneider et al. 2011). Apart from our research, heart rate variability in pre-

hospital emergency care has not been investigated, so far. Likewise, research on 

objective workload in anaesthesia as a per se highly challenging domain, was 

limited to workload evaluation using additional tasks (i.e. mathematical addition) 

or response time to vibrotactile stimuli to create high workload situations, so far 

(Gaba and Lee 1990, Byrne, Oliver et al. 2010, Byrne, Murphy et al. 2013). 

Notwithstanding, the benefit of additional tasks for workload assessment was 

impaired since they were rather considered a surrogate of mental spare capacity 

and performance might be influenced by an individual’s effort to compensate 

changes in workload (Leedal and Smith 2005). 

After all, HRV analysis is a valuable non-intrusive method for workload 

assessment in challenging environments like anaesthesia. Particularly, modern 

entropy-based HRV metrics could improve the value of HRV for workload 

analysis, since they are considered to be unimpaired by high signal dimensions 

and limitations in signal length (Bandt and Pompe 2002, Cao, Tung et al. 2004, 

Jordan, Stockmanns et al. 2008). Additionally, their ability to detect dynamical 

changes in complex time lines makes a real-time analysis of workload and thus 

prevention of work-overload possible (Bandt and Pompe 2002, Cao, Tung et al. 

2004). Nevertheless, these methods have not yet been validated in terms of 

predictive value, reproducibility and robustness (Sassi, Cerutti et al. 2015). To 

date, this compromises their widespread use in HRV analysis. 
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SUMMARY AND CONCLUSIONS 

High levels of workload and stress can impair patient safety. Hence, it is of 

particular interest to measure workload and prevent work overload. Physiological 

workload correlates such as HRV have so far only been validated in standardized 

settings like the operation theatre (Martin, Schneider et al. 2016). Hence, the aim 

of this research project was to apply their analyses to high workload environments 

like emergency medicine. Moreover, we intended to find non-linear HRV metrics 

that correlate with performance during simulated critical incidents. 

It has been shown that in the operation theatre anaesthetists’ mean HR and 

several linear and non-linear HRV metrics significantly differ between various 

anaesthesia stages. Accordingly, non-linear HRV metrics discriminated workload 

levels during different time segments of a sortie in the more liberal environment 

of pre-hospital emergency medicine best. Among them, especially PeEn 

performed extraordinarily. Furthermore, the combination of the AUCs from the 

logistic regression models showed that the non-linear HRV metrics perform better 

than time- or frequency-domain HRV metrics. Not surprisingly, PeEn as a 

correlate of workload was highest during primary patient care (time between the 

physician’s arrival at the emergency site and the handover of a patient to the 

hospital’s emergency ward). 

During simulated critical incidents and the induction of general anaesthesia in the 

operation theatre, inter-individual differences in HRV metrics were not related to 

the anaesthetists’ performance. 

Hence, HRV metrics are a promising tool for the assessment of workload in a 

medical environment, particularly, in challenging fields like anaesthesiology and 

emergency medicine, where high workload is predominant. Future research 

should concentrate on the real-time analysis of heart rate variability and the 

definition of individual thresholds; so that adverse events caused by work-

overload may be prevented. 
  



 31 

APPENDIX 
 

SUMMARY OF EACH PUBLICATION AND INDIVIDUAL CONTRIBUTION OF THE 

CANDIDATE 

THE VALIDITY OF LINEAR AND NON-LINEAR HEART RATE METRICS AS WORKLOAD 

INDICATORS OF EMERGENCY PHYSICIANS (PLOS ONE) 

Based on our work that examined heart rate variability (HRV) of different levels 

of workload in the operation theatre (Martin, Schneider et al. 2016), this study 

was the first approach to transfer these publications’ findings to a more liberal 

work environment where high workload is predominant without simulation. We 

hypothesised that non-linear HRV metrics are more capable to differentiate 

workload levels than linear HRV metrics of the time- and frequency-domain. 

Hence, we gathered electrocardiograms (ECG) from 13 physicians during a 24h 

duty as primary out-of-hospital emergency care providers. Furthermore, we 

obtained their subjective workload from NASA task load index queries and 

obtained additional information on times and patient characteristics from the 

physicians’ protocols. 

We found Permutation entropy to discriminate best between the time before the 

alarm and primary patient care. In the multivariable approach, the non-linear HRV 

metrics provided a higher area under the receiver operating curve compared to 

the frequency domain and to the time domain HRV metrics. 

Non-linear heart rate metrics and, specifically, PeEn provided good validity for 

the assessment of different levels of a physician’s workload in the inherently low 

structured setting of pre-hospital emergency care.  

Under my responsibility essential parts of this study (e.g. study design, statistical 

analysis) were planned and discussed. In cooperation with the co-workers of my 

research group I have been responsible for the conception and realisation of the 

study, the data acquisition and data presentation, as well as for the design of 

tables and figures. Furthermore, the first draft of the manuscript was written by 

me. In cooperation with my colleagues from the research group I constantly 

worked on the elaboration of the final manuscript.   



 32 

ANESTHETISTS’ HEART RATE VARIABILITY AS AN INDICATOR OF PERFORMANCE 

DURING INDUCTION OF GENERAL ANESTHESIA AND SIMULATED CRITICAL INCIDENTS: 

AN OBSERVATIONAL STUDY (JOURNAL OF PSYCHOPHYSIOLOGY) 

To extend the conclusions drawn from earlier work on HRV metrics published by 

our research group, we tried to meter the inter-individual relation among heart 

rate variability and performance. Furthermore, we tried to assess the impact of 

sex and work experience on performance in anaesthesia. Hence, we investigated 

anaesthetist heart rate variability in an environment simulating high workload as 

well as during the induction of general anaesthesia in the operation theatre. For 

the statistical analysis we focussed on the inter-individual changes in heart rate 

variability rather than intra-individual differences compared to baseline HRV. We 

investigated, whether anaesthetists’ vagally-mediated HRV is correlated with 

performance during the induction of general anaesthesia and the management 

of simulated critical incidents. 

We found performance to be independent from anaesthetists’ heart rate 

variability, sex and work experience. 

Because we solely compared the HRV metrics of different activity levels, the 

comparability of our results to others is impaired. Our results regarding sex and 

work experience were consistent to most studies under various circumstances. 

During data analysis, it was my responsibility to process the data gathered in the 

simulator environment. This included sequencing of ECG raw data, computation 

of heart rate variability analysis and data preparation for the statistical 

breakdown. Likewise, I composed and wrote the first draft of the manuscript. In 

collaboration with the colleagues from my research group, I revised the 

manuscript and prepared it for submission. Furthermore, I adapted the 

manuscript according to the reviewers’ comments and created the graphic that is 

part of the publication. 
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ADDITIONAL CO-AUTHORSHIP: LINEAR AND NON-LINEAR HEART RATE METRICS FOR 

THE ASSESSMENT OF ANAESTHETISTS’ WORKLOAD DURING GENERAL ANAESTHESIA 

(BRITISH JOURNAL OF ANAESTHESIA) 

In order to research new abilities for workload assessment, this exploratory study 

analysed the anaesthesiologists’ heart rate variability during the induction, 

maintenance and emergence of general anaesthesia in healthy patients. We 

found mean HR as well as several linear and non-linear HRV parameters to 

significantly discriminate between various anaesthesia stages. In a 

multiparametric approach non-linear HRV metrics unveiled a better AUC than the 

linear HRV metrics.  

This exploratory approach was the basis for later studies that are part of this 

dissertation. I analysed the raw data gathered from the ECGs recorded in the 

operation theatre and prepared them for statistical analysis; this included the 

computation of HRV metrics. Beyond, the first draft of the manuscript and the 

revision of the same were written with my support. 
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