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Abstract

Low delay video communication facilitates a multitude of new technologies and applica-
tions. For humans, low delay video communication enables teleoperation in novel scenarios
which are impossible to realize using a video communication setup with high delay. These
scenarios can be remote control of robots in dynamic environments, such as quadrocopters
in search and rescue operations or telesurgery over long distances. For machines, low delay
video communication generally renders many new vision-based networked control systems
feasible. These systems can be used in networked autonomous driving, general dynamic
navigation in unexplored environments, or vision-based state retrieval of robots, for instance
the position of a robot arm. Modern digital video communication solutions are unable to
provide the low latencies required for such tasks. Consequently, to make the novel fields
described in this paragraph possible, this thesis researches the reduction of video communi-
cation delay.

Before any steps to reduce video communication delay can be undertaken, an analysis
of delay contributors must identify the elements of a video communication setup that con-
tribute the greatest latencies. These elements exhibit the highest delay reduction potential. A
detailed theoretical analysis of the delay contributors in video communication shows that in
particular the temporal sampling rates of camera and display should be increased to reduce
latency. This thesis confirms the theoretical analysis through a survey of the delays of mod-
ern video communication solutions, performed with a newly developed highly precise delay
measurement system. The survey additionally shows that the majority of the state of the art
in video communication exhibits a large delay that prevents usage in applications such as
dynamic teleoperation.

Low delay video requires high temporal sampling rates that may exceed human percep-
tion limits. In consequence, not all video images recorded by the camera need to be further
processed and shown. Skipping irrelevant images yields variable frame rate video systems.
These systems should operate at sampling rates at which the temporal discreteness of the
video is imperceptible to humans. Through a series of perception experiments, a model for
the human perception of temporal sampling in visual signals is created. Using this model,
sampling rate adaptation takes place outside of the human visual perceptual window.

The previously described analysis and perception model are used for the proposed video
delay reduction methods. All methods employ a camera with high temporal sampling rate.
From the resulting video stream, only a subset of images is further processed while the re-
maining frames are skipped. This approach reduces data rates and computational require-
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ments. The first method is greedy, content-based frame skipping. Greedy frame skipping
achieves a significant latency reduction of a factor five to ten compared to modern video
communication solutions. However, the frame rate adaptation of this method is perceivable.
This is why the second method integrates the perceptual model into the greedy frame skip-
ping algorithm such that the benefits of the first method are retained, but frame skipping is
imperceptible.



Kurzfassung

Videokommunikation mit geringer Verzögerung ermöglicht eine Vielzahl neuer Technolo-
gien und Anwendungen. Niedriglatente Videokommunikation befähigt Menschen zu Tele-
operation in neuartigen Szenarien, was mit bisherigen hochlatenten Videoübertragungssys-
temen unmöglich war. Solche Szenarien können die Fernsteuerung von Robotern in dynami-
schen Umgebungen, zum Beispiel von Quadrokoptern in Rettungsmissionen oder Teleme-
dizin über lange Distanzen sein. Für Maschinen macht Videokommunikation mit geringer
Latenz neuartige kamerabasierte Netzwerkkontrollsysteme möglich. Derartige Systeme kön-
nen im vernetzten autonomen Fahren, allgemeiner dynamischer Navigation in unbekannten
Umgebungen, oder in der kamerabasierten Zustandserfassung von Robotern, beispielsweise
der Position eines Roboterarmes, eingesetzt werden. Moderne digitale Videokommunikati-
onslösungen genügen nicht den Latenzanforderungen solcher Anwendungen. Um die be-
schriebenen Anwendungen zu ermöglichen, beschäftigt sich diese Arbeit mit der Reduktion
von Verzögerung in der Videokommunikation.

Bevor Schritte zur Reduktion von Verzögerung in Videokommunikationssystemen un-
ternommen werden, muss eine Analyse die Elemente identifizieren, welche die größten Ver-
zögerungen beitragen. Diese Elemente weisen gleichzeitig das höchste Potential zur Verzö-
gerungsreduktion auf. Eine detaillierte theoretische Analyse der Elemente, die zur Verzöge-
rung in der Videokommunikation beitragen, zeigt, dass zur Verzögerungsreduktion die zeit-
lichen Abtastraten von Kamera und Bildschirm erhöht werden müssen. Diese Arbeit bestä-
tigt die theoretische Analyse durch eine Studie von Verzögerungen in modernen Videokom-
munikationslösungen, welche mit einem neu entwickelten System zur präzisen Messung
von Videoverzögerung durchgeführt wird. Die Studie zeigt zusätzlich, dass der Großteil der
modernen Videokommunikationstechnik zu große Verzögerungen für eine Verwendung in
dynamischer Teleoperation oder ähnlichen Gebieten aufweist.

Die hohen zeitlichen Abtastraten können über den menschlichen Wahrnehmungsgren-
zen liegen. Folglich müssen nicht alle von der Kamera aufgenommenen Videobilder verar-
beitet und angezeigt werden. Das Auslassen von irrelevanten Bildern ergibt Videosysteme
mit variabler Abtastrate. Diese Systeme sollen bei Abtastraten, bei denen die zeitliche Dis-
kretheit des Videos für Menschen nicht wahrnehmbar ist, arbeiten. Durch eine Reihe von
Wahrnehmungsexperimenten wird ein Modell für die menschliche Wahrnehmung von zeit-
lich abgetasteten visuellen Signalen erstellt. Mit diesem Wahrnehmungsmodell findet jegli-
che Abtastfrequenzanpassung außerhalb des menschlich wahrnehmbaren Bereiches statt.

Die oben beschriebene Analyse und das Wahrnehmungsmodell werden für die Metho-
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den zur Verzögerungsreduktion genutzt. Alle Methoden verwenden eine Kamera mit hoher
zeitlicher Abtastfrequenz. Von dem sich daraus ergebenden Video wird nur eine Teilmen-
ge der Bilder weiter verarbeitet, die übrigen Bilder werden verworfen. Diese Herangehens-
weise reduziert Datenraten und Anforderungen an die Rechenleistung. Als erste Methode
schlägt diese Arbeit das Auslassen von unwichtigen Videobildern vor, worin Bilder basie-
rend auf Inhaltsunterschieden weitergegeben oder verworfen werden. Die Methode erreicht
eine deutliche Verzögerungsreduktion von einem Faktor von fünf bis zehn verglichen mit
dem Stand der Technik. Allerdings ist die adaptive Bildratenreduktion wahrnehmbar. Des-
wegen integriert die zweite Methode das Wahrnehmungsmodell in das Auslassen der Bilder,
so dass die Vorteile der ersten Methode noch vorhanden sind, aber die Unterabtastung der
Bilder nicht mehr wahrnehmbar ist.
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Chapter 1

Introduction

Video communication is the process of transporting visual information in real time from one
point to another. Nowadays, this task is performed using cameras and electronic circuits for
acquiring, processing, transporting, and reproducing the visual information, i.e. the video.
This thesis distinguishes between two application fields of video communication, shown
in Figure 1.1. The first field is video communication for machine vision, and the second
field comprises video communication for human interaction. Both fields are explained in
the following. In particular, the following paragraphs describe how unavoidable process-
ing latencies in video communication constrain possible applications and deteriorate task
performance.

Cameras have the potential to replace many sensors for process control [9], [10] through
machine vision. There are several advantages of using cameras in combination with ma-
chine vision algorithms over dedicated sensors. Video cameras are comparably low cost and
universally usable. In conjunction with visual tracking techniques, they can, for instance,
replace conventional sensors such as radar sensors [11]. Alternatively, cameras can replace

Video

Control
Commands

Processing

(a) A robot arm is observed by a camera. The video
stream is analyzed to extract state information of the
robot arm, such as joint angles. This is used to control
the robot arm [8].

Video

Control
Commands

(b) Remote control of a quadrocopter. The quadro-
copter streams the video from its camera to a user,
who views it through a head-mounted display.
Based on the video information, the user controls
the quadrocopter.

Figure 1.1: Examples from the two main application fields of low delay video communication: video
communication in machine vision/process control, and video communication for human interaction.
Note that lower delay in both control loops facilitates usage in more dynamic environments.
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2 Chapter 1. Introduction

angle sensors in the joints of robot arms by visually tracking the arm’s state [8], see Fig-
ure 1.1a. The camera observes the robot arm and sends the video to a processing unit. The
processing unit applies computer vision algorithms to identify the robot arm and its state.
This information can be used to control the robot arm while it is working on its tasks. An ad-
vantage of video camera sensing is that a single camera can replace multiple sensors, such as
the camera observing a robot arm with multiple joints, substituting multiple angle sensors
[12]. Also, compared to low-level hardware sensors, video cameras are more future-proof
through improvements in computer vision software. Already today, there are tasks that can
best be performed by cameras, for example the inspection of granule or powder that passes
by on a conveyor belt.

In general vision-based control, a traditional sensor is replaced by a unit consisting of
camera, video compression, network, and image processing. This unit should provide a
sensor-to-controller latency, sampling rate, and data precision comparable to the original
sensor. If the vision sensor unit performs substantially worse than the original sensor in
one of these dimensions, control quality can suffer severely, to the point of making control
impossible [13]. This imposes requirements on camera, video compression, network, and im-
age processing. As shown in Section 3.4, latency and sampling rate are closely related. This
section focuses on latency, because latency additionally describes further parts of a video
transmission chain. Data precision is mainly a question of the specific image processing
algorithm and therefore not discussed here.

Latency is the main challenge to overcome before cameras can be widely used as sensors
not only for relatively slow-paced inspection tasks, but as part of fast feedback loops for con-
trol applications. In networked control systems (NCSs), growing sensor-to-controller latency
[14] deteriorates the system stability [15], and when the latency exceeds an allowable limit,
leads to instability [5], [16]. Researchers have thoroughly investigated the effect of latency on
NCS stability [13], and proposed many algorithms to compensate delay [17]–[20] to a limited
extent. Still, creating a low-delay sensor-to-controller transmission is advantageous [21] for
stabilizing a system and enables control of more dynamic applications.

For machines that are controlled using visual information from a camera, the challenge
corresponding to the low sensor-to-controller latency is the Glass-to-Algorithm (G2A) delay.
The G2A delay characterizes the time difference between a visible event taking place (con-
veyed through its photons passing through the camera lens glass), and the first image of the
event being available for an image processing algorithm. If a control loop includes a video
transmission chain with low G2A delay, the dead time of the chain is low, enabling better
control compared to a transmission chain with longer delay. State-of-the-art video trans-
mission systems achieve G2A delays of 80–150 ms. In contrast, the end-to-end (E2E) delays
of applications envisioned for 5G and the “Tactile Internet” should be very low, in general
smaller than 10 ms. In extreme cases, an E2E delay of 1 ms or less can be required [22], [23].
In addition, E2E delay in a control context includes all delays from the sensor that captures
an event to processing, transmission, and finally the actuator delay. Thus, the G2A delay is
only part of the entire E2E delay in control applications which further emphasizes the very
low delay requirements for video transmission solutions in NCSs.
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If the video is presented to a human observer, the relevant delay is the Glass-to-Glass
(G2G) delay, which typically has less restrictive delay requirements. The G2G delay is the
time difference between a visible event taking place and the event being displayed on a
screen. Depending on the application, humans can visually perceive latencies as low as 6 ms
for inking on a touchscreen [24], or around 50 ms for interactive applications, such as gaming
or graphics tools [25]. In general, the detection threshold for visual delay differentiation by
trained observers lies between 8 ms and 17 ms [26]. Kawamura et al. [27] showed that the
one-foot balancing performance of test subjects wearing a head-mounted display (HMD) in-
creases monotonically when decreasing the delay of the virtual scene presented in the HMD
from 66 ms down to 23 ms. In addition, the authors found that a 1 ms delay setup (real-
ized via pose prediction) gave superior task performance compared to the 23 ms delay case.
Therefore, it is safe to conclude that humans can not only perceive latencies below 66 ms,
but latency reductions down to the delay detection threshold also benefit task performance.
For video-based teleoperation [1], [2] as displayed in Figure 1.1b, depending on the usage
scenario and the display, a G2G latency between 50 ms and 100 ms is required for a good
experience.

In contrast, modern digital video communication implementations typically achieve G2G
delays between 100 ms and 200 ms [6]. Thus, most of the applications described in the previ-
ous paragraph will not be possible using video communication, or only with a severe quality
of experience (QoE) degradation. Together with the many vision-based NCS applications
that are only possible with low G2A delay, there is a clear need to reduce latency in video
communication. Accordingly, this thesis comprehensively analyzes delay in video commu-
nication, and proposes methods to reduce this delay.

1.1 Main Contributions

The first three contributions investigate video communication latency, latency measurement,
and the perception of temporal sampling in videos. They lay the basis for the fourth contri-
bution, which proposes various methods for delay reduction. The main contributions are as
follows.

1. Delay analysis and delay model: Before applying any optimization for delay reduc-
tion, it is necessary to investigate which parts of a video communication chain con-
tribute how much delay. The results of this analysis enabled building a detailed E2E
model for video communication setups. This model divides G2G delay into atomic
steps such as processing of the raw image in the camera, color conversion, encoding,
and network transmission. The theoretical delay models for each block were unified
into a comprehensive theoretical G2G delay model. This model was confirmed through
measurements, see contribution 2. Analyzing the main contributors of the G2G de-
lay model with parameters of state-of-the-art high-end video communication solutions
motivated G2G delay reduction methods that focus on increasing the temporal sam-
pling frequencies of cameras and displays.
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2. Delay measurement and delay survey: To assess G2G delay and individual block de-
lays in video communication setups and to confirm the delay model, precise G2G delay
measurements are needed. Existing measurement systems proved to be insufficient,
which is why this contribution develops a novel system for accurate G2G delay mea-
surement. The system creates a visual event using a light-emitting diode (LED) in the
camera’s field of view. Once the visual event is visible on the screen it is detected
by a photoresistive element. The measurement circuitry computes the time difference
between the original visual event, and when it is shown on the display. The system
achieves an accuracy of 0.5 ms. Extending the system to perform G2A measurements
enables a further analysis of delays in the video communication chain and measure-
ments to any point in the chain, starting from the camera. Using the measurement
system, the G2G delay in state-of-the-art video communication systems was surveyed.
Most applications showed G2G delays of 100 ms to 200 ms, which is too large for the
low latency applications targeted in this work.

3. Model for the perception of temporal sampling: The delay analysis led to the con-
clusion that increasing temporal sampling rates reduces latency. However, increased
sampling frequencies will also inflate data rates and stress processing and transmission
units. This is why this contribution proposes adaptive frame skipping to discard irrel-
evant video frames. Wrongly parametrized, overly aggressive frame skipping will be
perceivable and deteriorate subjective video quality. Therefore, this part investigates
from a temporal perspective how humans perceive visual signals. Visual signals from
the real world are continuous in the temporal domain, whereas digital visual signals
(videos) are temporally sampled and thus discrete in time. The discrete sampling in-
stances are images, called video frames. If the temporal sampling frequency is low,
humans can, with little effort, distinguish a video from the corresponding continuous
visual signal. However, at high sampling rates, humans are not able to perceive tem-
poral sampling. To make frame skipping imperceptible, this contribution determines
the threshold at which humans can or can just not perceive temporal sampling. In the
theoretical investigations and in the psychophysical experiments conducted to find the
threshold, it became evident that the sampling rate threshold depends on the exposure
time of the camera and the velocity of the objects visible in the video. These results
allowed us to create a model which expresses the sampling frequency threshold as a
function of exposure time and object velocity.

4. Delay reduction methods: In all proposed latency reduction approaches, a camera
with a high sampling frequency is used. To avoid data rate inflation and overbur-
dening of processing or transmission units, the following methods employ frame rate
reduction by skipping irrelevant frames.

a) Greedy frame skipping: A greedy approach determines the content difference of
a new frame to the previously transmitted frame on a pixel level. If the content
difference exceeds a threshold, the new frame carries a visual event and will hence
be relevant for G2G latency. Such a frame is forwarded, other frames are skipped.
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Our implementation showed a data rate reduction of a factor 40 compared to the
high sampling rate video, with an average G2G latency of 21.2 ms, and an aver-
age G2A latency of 11.5 ms. Greedy frame skipping is, however, perceivable and
deteriorates subjective video quality.

b) Perceptual frame skipping: To counteract this deterioration, this contribution ex-
ploits the model for the perception of temporal sampling from contribution 3. The
contribution comprises an algorithm that enables the application of the model in
real video sequences, meaning that the algorithm extracts the velocity of an object
in the scene and quantizes the resulting temporal sampling frequency threshold
to available frequencies. This result is then used to maintain a sampling frequency
that is always at least as high as the threshold for perceiving temporal sampling,
irrespective of any frames that are transported because of content differences.

c) Merged perceptual-greedy frame skipping: This algorithm is created as a com-
bination of the previous two algorithms. It transmits frames because of content
differences (greedy frame skipping), and simultaneously maintains a minimum
sampling rate (perceptual frame skipping). This combination achieved a data rate
reduction of on average 63 % compared to a high sampling rate video. This is
while delay is kept small and there is no perceptual difference between the frame
skipped and the full frame rate video.

d) Preemption: Finally, the frames forwarded because of content differences are at
times stalled because frames forwarded to maintain a minimum sampling rate
still need to be processed or are queued. This increases latency because the frames
with great content difference carry visual events. This contribution thus proposes
a preemption algorithm which discards frames that are blocking visual event
frames. In experiments without rate control in video compression, the preemp-
tion algorithm reduced G2G latency by a factor five.

1.2 Thesis Organization

This thesis is structured as follows: Chapter 2 provides background information and dis-
cusses related work with respect to human visual perception, video communication, and
latency in video communication. Chapter 3 gives a detailed analysis of delay in video com-
munication and presents a theoretical delay model. Measurement of delay in video com-
munication is described in Chapter 4, along with a survey of G2G delay in modern video
communication systems. Chapter 5 analyzes how humans perceive temporal sampling in vi-
sual signals and creates a model for the perception limits of temporal sampling. The insights
from the previous chapters are used in the creation and evaluation of G2G delay reduction
methods in Chapter 6. Finally, Chapter 7 concludes this thesis and gives possible directions
for future research.

Parts of the work presented in this thesis have been published in [3], [4], [6], and [7]. The
digital object identifiers (DOIs) of those publications are given in the bibliography.





Chapter 2

Background and Related Work

To enable an understanding of the topics discussed in this thesis, this chapter gives an intro-
duction to the relevant human visual perception limits, fundamentals of video communica-
tion, and the latency exhibited by video communication implementations. Simultaneously,
this chapter provides an overview over related work.

2.1 Relevant Human Visual Perception Limits

Four aspects of visual perception are relevant for delay reduction in video communication.
First, the perception of latency itself sets the target for latency reduction approaches. Second,
as we will see in Section 3.7, frame rates and frame skipping play a significant role in the re-
duction of latency. Therefore, the human visual perception of temporal resolution (frame
rate or sampling rate) is relevant. Third, for the subjective tests in Section 5.3, the percep-
tion of spatial resolution (pixel density) plays a role. Fourth, the human perception of visual
impressions of moving objects is discussed.

2.1.1 Latency

One can distinguish various circumstances for visual latency perception. Let’s first consider
the situation where a visual reference is given, enabling the subject to compare the delay
between the reference and a reaction to the reference in the same field of view. An example
for this is touchscreen interaction: a finger or pen serves as visual reference, and the display
content under the touch surface is updated as a reaction to the touchscreen input. In appli-
cations such as inking on a touchscreen [24], humans can perceive latencies as low as 6 mil-
liseconds (ms). When dragging virtual objects using a touchscreen, Ng et al. [28] showed
that subjects could perceive latencies down to 1 ms, and that noticeable improvements are
achieved when reducing latency well below 10 ms.

Latency constraints are more relaxed for gaming or graphical user interface interaction
on a conventional display without a visual reference. For these cross-modal1 applications,
1 Cross-modal perception comprises interactions between two or more perception modalities. In the conven-

tional gaming example, the user’s visual modality is stimulated by the computer display, while the user also
receives haptic feedback from his or her input into mechanical devices such as a keyboard. The user simulta-
neously processes stimuli from these two different input modalities, which is called cross-modal perception.

7
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the latency perception boundary is approximately 50 ms [25].
For HMDs, the constraints are stricter, even when testing cross-modal latency perception.

Kawamura et al. [27] found that the balancing performance on one foot increases monotoni-
cally when decreasing the delay of the virtual scene presented in an HMD worn by the test
subjects from 66 ms down to 23 ms. Additionally, the authors [27] showed that a 1 ms delay
setup, realized using the prediction of the subjects’ head pose, yielded improved balanc-
ing performance compared to the 23 ms delay case. Similarly, Mania et al. [26] proved that
trained observers can perceive a delay of approximately 15 ms between moving their head
and the image with correct perspective being shown in the HMD.

The most fundamental approach to defining what visual latency humans can notice is to
determine the perception of the temporal order of two visual stimuli [29]–[31]. Rutschmann
[29] showed that test subjects can classify the order of light flashes mostly correctly if the
delay between flashes is 20 ms to 70 ms, largely depending on the test subject. These results
agree with the investigations of Hirsh and Sherrick [30], whose test subjects could perceive
the order of visual events correctly if the delay between these visual stimuli is approximately
20 ms or greater. The authors [30] performed their tests for monocular perception, in which
both visual events are projected onto the same retina. If each visual stimulus is presented to
a separate eye, humans can perceive stimulus offsets of less than 5 ms [31].

In summary, the ability to perceive latencies depends on the specific scenario under con-
sideration. In presence of a visual reference, latencies as small as 1 ms are required. For
HMD-applications that utilize the head pose to adjust the on-screen perspective, delays of
approximately 15 ms are the perception limit. For applications on conventional monitors
without a visual reference, the latency limit is approximately 50 ms.

2.1.2 Spatial Resolution

The angular resolution of the human eye without any defects is approximately 0.02 deg-
rees [32]. In terms of display resolution, this can be expressed as 50 pixels per degree.
Whether a subject can distinguish pixels in a display panel is thus a question of the per-
spective: the pixels in an old, low pixel-density display might be distinguishable by looking
at the panel from a few centimeters, but not if the observer is positioned a couple of meters
from the display. An overview of typical viewing conditions in modern display classes is
provided in Table 2.1.

2.1.3 Temporal Resolution

Technical video processing systems work with a temporal sequence of discrete images. The
human eye in contrast does not perform this temporal discretization, there is infinite expo-
sure time in the human eye [34]. Consequently, information processing in the retina and
visual cortex is continuous. Due to the low-pass properties of their visual system, humans
can only perceive the time-discreteness of video sequences up to a certain frame frequency,
theoretically derived by Watson et al. [35]. The authors [35] found that with their experi-
mental setup, two persons can perceive stationary flicker of a light signal up to a frequency
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Class Width [m] User Dist. [m] FoV [deg] Hor. Pix. Pix. Dens. ρ [1/deg]

TV set 0.8 - 1.3 2 - 5 9 - 36 1280 - 4096 35 - 455

Smartphone 0.06 0.3 [33] 11 720 - 1440 65 - 130

Laptop 0.24 - 0.38 0.5 27 - 42 1440 - 4096 71 - 151

Computer 0.44 - 0.66 0.6 - 0.8 31 - 58 1440 - 4096 25 - 132

HMD 0.09 0.07 110 1080 - 1600 10 - 15

Table 2.1: Typical display and viewing parameters for representative display classes (adapted
from [3]). In HMDs, a lens between display and eye widens the covered Field of View (FoV).

of approximately 30 Hz. They note that this is not statistically reliable evidence. Hecht et
al. [36] showed that the flicker perception threshold depends on the strength of the retinal
illumination and is at most approximately 46 Hz.

2.1.4 Motion in Discrete Visual Signals

Videos are spatially and temporally sampled visual sequences. So far, we have investigated
the perception in both dimensions separately. Most of the spatiotemporal visual signals we
perceive are, however, not separable, in particular moving visual content. It is consequently
necessary to investigate where the human spatiotemporal perception limits are. A spatiotem-
poral perception limit is the point where humans can just distinguish a continuous visual
signal from a spatiotemporally sampled visual signal.

As an example, imagine the visual signal of someone waving a hand in front of a static
background. The real-world continuous signal is the reference signal, and a recorded video
is the spatiotemporally discrete version of the reference signal. In the spatial dimension, an
observer could perceive the spatial sampling if the motion speed of the hand is slow enough
and if the pixels of the screen are big enough. However, the spatial resolution of modern
displays is usually higher than the perceivable spatial resolution of even temporally con-
stant visual signals, see Table 2.1 and Section 2.1.2, so we focus on temporal resolution in the
following.

In the temporal dimension, an observer might perceive temporal sampling if the motion
velocity of the hand is fast enough and the temporal sampling frequency is low enough. The
visual signal will give the impression of jitter or jerkiness. This is intuitively understandable
considering that at higher object speed, subsequent images of the time discretized visual sig-
nal will exhibit a greater visual difference. If the temporal resolution of the video is very
high, an observer will not be able to distinguish the real-world reference signal from the dis-
crete signal. The discrete signal will look perfectly fluid or smooth. Somewhere in between
these two extremes is the temporal sampling perception threshold, at which humans are able
to tell that the continuous signal is different from the discrete signal 50 % of the time.

Finding the threshold at which humans begin to be unable to categorize a visual signal
into the continuous or discrete domain is relevant when applying the frame skipping algo-
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rithms proposed in Chapter 6. Those algorithms reduce the frame rate of videos, aiming to
make the process of frame skipping imperceptible to the video consumer. The remainder of
this section discusses related work in the field of motion perception.

Researchers in the field of psychophysics have thoroughly investigated how the human
visual system creates the impression of an object in motion. However, the community has not
yet agreed on a theoretical model for the actual neural processes. This renders a perceptually
motivated theoretical model of the temporal sampling threshold impossible.

Johansson [34] discusses a major difference between the human eye and camera systems:
the human eye does not have a shutter, and accordingly has unlimited exposure time. Nev-
ertheless, humans perceive their moving environment not blurry, but perfectly clear. The
author states that neural algorithms which process the continuous exposure data from the
photoreceptors on the eye’s retina are responsible for this impression.

Derrington et al. [37] provide a review of the state of the art in motion perception research.
The authors find evidence only to support the assumption of a first-order motion detector on
the retina, and propose that there is no evidence for processing steps that are more complex.
First order motion detection means determining motion based on the spatiotemporal corre-
lation of brightness or color changes. They review three candidate models for this detection.
The paper does not contain a discussion of perception limits.

The results of Derrington et al. [37] are in contrast to the findings of Ledgeway and Smith
[38], who found hints to support the theory that there are different pathways for processing
first-order and second-order motion. Second-order motion is based on spatiotemporal vari-
ations such as depth, contrast and relative motion which do not yield a systematic motion in
the Fourier domain. It is thus also named ”texture-based” motion perception. Examples of
such signals are given by Chubb and Sperling [39].

Seiffert and Cavanagh [40] conducted experiments to separately analyze first-order as
well as second-order motion. They found that for first-order motion detection, the velocity
of an object, and not the spatial displacement determines a lower bound for the perception of
motion. Second-order motion perception is performed by tracking object features over time,
and its lower thresholds, in contrast to first-order perception, are not affected by the speed
of the object to be detected, but by a minimal position change.

Adelson and Bergen [41] suggest energy functions for modeling motion perception. The
authors conceptualize two dimensional motion as three dimensional patterns in the x-y-t
space. Therefore, motion perception is analogous to identifying an orientation in the x-y-
t space. They apply quadrature pair filters to extract spatiotemporal energy which is then
further processed to determine perceived motion.

The papers by Watson et al. [35], [42] are the most relevant references for this thesis.
They are thus discussed in greater detail in Section 5.2.1, and only a short overview is given
here. Watson et al. [35], [42] conceptualize the spatiotemporal frequency spectra of sim-
ple visual signals and show how temporal sampling changes these signals. The Window of
Visibility (WoV), see Figure 5.1a, approximates which spatiotemporal signals humans can
perceive, and which ones they cannot. The authors [35], [42] utilize both the WoV and the
spatiotemporal signal resulting from temporal sampling to theoretically determine a tem-



2.2. Latency Limits in Machine Vision 11

poral frequency threshold at which the effects of temporal sampling become imperceptible.
The frequency threshold is a function of the human perception limits, the motion speed of the
visible object, the maximum spatial frequency of the object, the exposure time of the camera,
and other parameters such as display luminance and contrast.

The model in [35], [42] does not express the frequency threshold as a function of expo-
sure time. This is what this thesis performs, in addition to evaluating the influence of object
velocity on the frequency threshold. Answering the question of the required temporal sam-
pling rate at which humans are unable to distinguish the temporally sampled signal from a
continuous signal for a given object velocity and exposure time is hence one contribution of
this thesis, presented in Chapter 5.

2.2 Latency Limits in Machine Vision

If a video from a camera is presented to machine vision algorithms instead of humans, dif-
ferent constraints apply. Temporal and spatial resolution are highly application dependent,
so for each setup, an individual trade-off optimization between these two parameters has to
be performed. Such an optimization is not subject of this thesis, which is why temporal and
spatial resolution for machine vision are not further discussed. Latency, however, is highly
relevant, which is why related work is presented in the following.

If cameras and machine vision algorithms are used in closed control loops, the video com-
munication latency contributes to the dead time of the control loop. When latency exceeds
an application-specific, acceptable limit [14]–[16], the application will lose stability. This is
why researchers propose algorithms to compensate for delay [17]–[20] and reduce latency
in video processing [5], [43] as well as in the machine vision part [44], [45]. Generally, in
machine vision applications, a lower video communication latency is almost always better,
even for small latency values.

2.3 Fundamentals of Video Communication

2.3.1 Sampling: From the Continuous to the Digital Domain

With each eye, humans perceive their environment in the following way: the photons, which
were reflected from objects, pass through the eye’s lens. The lens ensures that photons that
originate from the same location in the environment fall onto the same location on the eye’s
retina. In the retina, the photons are absorbed and further processed in the visual cortex,
which creates a moving two-dimensional depiction of the environment.

Videos and cameras mimic how humans perceive the world, see Figure 2.1: camera lenses
replace the eye’s lens, apertures represent pupils and nowadays, image sensors act as elec-
tronic retinas. In the human visual system, each video processing step takes place in contin-
uous temporal and value domains, while the spatial domain is discretized by the photore-
ceptor cells of the retina. The majority of state-of-the-art electronic information processing
systems are digital, meaning that they can only process discrete signals. It is consequently
necessary for electronic video processing systems to discretize the visual signal in all three
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Figure 2.1: Fundamental building blocks of a camera (left), an eye (right), and their correspondences.

domains: in space, in time, and in value. Value discretization is implemented through quan-
tizers in the image sensor. Spatial and temporal discretization are realized by sampling. Both
sampling processes are relevant for the remainder of this thesis, and are thus discussed in
greater detail in the following sections.

2.3.1.1 Spatial Sampling

Similar to the irregular array of discrete photoreceptors on the eye’s retina [46], an image
sensor in a camera contains a usually rectangular two-dimensional matrix of picture cells, or
short pixels. Each pixel detects the light intensity during the exposure process (detailed in
Section 2.3.1.2). The resulting matrix of light intensities yields the corresponding image from
the camera and can be processed by digital systems. Consumption by humans is enabled
through showing this matrix on a display, constructed by a rectangular array of active pixel
elements that emit light with an intensity corresponding to the value from the image matrix.

Whether humans can or cannot perceive spatial sampling in the image depends not on
the camera’s angular resolution, but on the display’s pixel density and the position of the
user relative to the display. Table 2.1 therefore gives an overview [3] of representative dis-
play classes and the corresponding typical horizontal pixel densities at typical viewing con-
ditions. The pixels in almost all displays are quadratic, hence the vertical pixel density equals
the horizontal pixel density.

We see that in the majority of viewing conditions, many display classes exceed the human
perception threshold of 50 pixels per degree (see Section 2.1.2).

2.3.1.2 Temporal Sampling

For the temporal discretization of visual sequences, cameras employ temporal sampling. The
following describes temporal sampling for one pixel in the image sensor. In state-of-the-art
cameras, uniform sampling is employed. Hence, the temporal sampling period (or frame pe-
riod) will always be the same. One frame period and its neighbors are depicted in Figure 2.2.
We can see that one frame period has three phases:

1. Pre-Exposure: during this time period, the sensor pixel gets ready for exposure. All
previously recorded light intensities (electronic charges) are deleted.
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Figure 2.2: The three recording phases of an image sensor during one frame period: preparation of
the sensor during pre-exposure, light integration during exposure, and data readout and conversion
during post-exposure.

2. Exposure: the photosensitive part of the pixel is switched to be sensitive to light. It con-
verts incoming photons to electric charge and stores the charge. This charge is stored
in the pixel, thereby the pixel integrates light intensity during exposure time.

3. Post-Exposure: the charge is read out of the pixel and converted to a digital represen-
tation during quantization in the analog-digital converter. Now the pixel data is ready
for further processing steps such as noise removal and white balancing, which are not
part of the readout process in the pixel.

Understanding this process allows us to gain two important insights: first, exposure is
the integration of light intensity. The light intensity value put out by the pixel will be the
average light intensity value observed during exposure. For constant light intensity signals,
this average will exactly equal the light intensity at all times during exposure. However, if
the light intensity varies during exposure, the final intensity value reported by the pixel will
not be equal to the incoming light intensity at all times, it will only be an approximation.
Imagine a perfectly sharp black-white boundary of a moving object crossing the pixel dur-
ing exposure time. After exposure, the pixel will have recorded a light intensity value equal
to the ratio of how long it saw the white and the black part of the image. Since exposure
time in cameras is usually in the range of 1 ms to 40 ms, this phenomenon is only notable for
fast light intensity changes. We encounter this effect most often if an object moves at high
velocity through the camera’s field of view and exhibits a blurry appearance in the recorded
video. Consequently, this is often called motion blur.

The second insight is that exposure time is shorter than the frame period. Consequently,
the theoretical derivations in Chapter 5 distinguish exposure time from frame period and
respect the fact that the frame period provides an upper bound for exposure time. For con-
sistency with signal processing terminology, the term camera sampling frequency is used as
synonym for the frame rate of a camera. Sampling frequency f and sampling period T are
reciprocal to each other, meaning

T =
1

f
. (2.1)
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Displays also have a frame rate for temporal sampling. At the frame rate, the display
samples the contents of the graphics card’s buffer. It then uses the retrieved data to update
(refresh) the image shown on the display panel. For consistency with the camera, and be-
cause of the sampling of the graphics buffer, the term sampling frequency will also be used
for the rate of the temporal sampling in the display.

2.3.2 Video Compression

Once the sequence of images of the camera reaches a computer, the question of storage or
transmission of the video arises. An example illustrates the problem. Assume we have a
color image with red, green and blue (RGB) color components for each pixel, and 28 = 256

discrete values per color component. To store this information, we need 3 bytes per pixel.
Assume furthermore that the video is recorded at 3840 times 2160 pixels (4K) at a sampling
rate of 60 images per second. The data rate of this video will be

3 · 3840 · 2160 · 60
Byte

s
= 1.39

GByte

s
,

which is only available in few high speed interfaces such as universal serial bus (USB) 3.1 Gen
2 and newer, Intel Thunderbolt, or recent display connector standards such as DisplayPort
1.4 or high definition multimedia interface (HDMI) 2.0. For other interfaces, in particular
wireless, this data rate exceeds the achievable rate in many cases by orders of magnitude. In
addition, storage of videos with such a data rate is not practical in most cases.

The analog problem existed when the first digital video cameras were invented. This
was the origin of the research of video compression. Video compression tries to minimize
the data rate of a video while affecting the perceived visual quality of the video as little as
possible. The video compression community has agreed on video codec standards such as
H.264/Advanced Video Coding (AVC) [47] and its successor H.265/High-Efficiency Video
Coding (HEVC) [48]. Today, all established video compression standards rely on the same
set of fundamental techniques for compressing (encoding) and decompressing (decoding) a
video. These techniques shall be briefly explained in the following.

2.3.2.1 Block Structure

Video codecs divide each image of a video into smaller blocks with a size of, for instance,
16x16, 8x8 or 4x4 pixels [47]. This simplifies procedures such as intra prediction and its
alternative, inter prediction, which can be done on a per-block basis, and constrains the com-
plexity of the applied transform to enable real-time applicability. The blocks of an image are
usually encoded and decoded in row-major order starting at the top left block of the image.
The block structure of H.265 is more flexible and thus more complex [49] than that of H.264.

2.3.2.2 Intra Prediction

Intra Prediction utilizes spatial redundancies within one image. Researchers observed that
the color value correlation between neighboring pixels and neighboring areas in an image
is rather high. This is due to the fact that natural images are often dominated by areas that
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Figure 2.3: Example of the Group-of-Pictures (GOP) structure in state-of-the-art video codecs. Ar-
rows point from a frame to its reference frame(s). Note that the GOP dimensions can change: the
number of B frames between two P frames is variable, as well as the number of P frames between two
I frames.

exhibit uniform or slowly changing color values. Video codecs use this, and approximate the
values of the current block as a function of the surrounding blocks. For intra prediction, only
blocks that have already been processed and contain possible compression artifacts may be
used, since they are what the decoder can use for reconstruction of the video. Blocks are
processed in row-major order from top left to bottom right, so from the surrounding blocks,
the three blocks in the row above the current block (two touching the block corners, one
touching the top side of the current block) and the block to the left are used for intra pre-
diction. For simple video content (uniform areas), the approximation works better than for
complex patterns. The difference (residual image) between the approximation and the true
block is further processed, as described in Section 2.3.2.5. Small values in the residual image
generally require less bits for representation after the operations from Section 2.3.2.5.

2.3.2.3 Inter Prediction

In analogy to the spatial dimension, there are temporal redundancies in typical videos. Imag-
ine, for example, a block that is part of the background of a video recorded with a static cam-
era. This block’s contents will only change if an object from the foreground passes through.
Inter prediction tries to approximate this block by creating a weighted sum of neighbor-
ing or overlapping blocks from temporally adjacent frames. Similar to intra prediction, for
small and simple movements of objects in the video, a better approximation, and therefore a
smaller residual and a representation with fewer bits, can be achieved. The search for suit-
able neighboring blocks is one of the computationally most complex tasks in an encoder [50].

2.3.2.4 The Group of Pictures Structure and Latency

Depending on which kind of prediction is taking place, the images (frames) are named dif-
ferently, see Figure 2.3:

• I frame: in this frame type, only intra prediction is taking place. It is consequently
independent of other frames.
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• P frame: as can be seen in Figure 2.3, these frame types use only past I or P frames for
their inter prediction.

• B frame: for the two-way inter prediction of this frame type, past and future I and
P frames are used, see Figure 2.3. The inter prediction of this frame type is accordingly
not causal: the encoder has to stall encoding of all B frames until the next neighboring
I or P frame arrives.

Giving an encoder the possibility to perform inter prediction based on past and future frames
in some cases enables improved compression efficiency compared with inter prediction that
is constrained to past frames for prediction (P frames) [51], which is in turn mostly superior
to intra prediction (I frames). This is why in typical video compression scenarios, B frames
are the majority of frames, and blocks of B frames can for example be five frames long. Also,
the number of I frames should be as small as possible for the highest compression efficiency.
There are two major constraints: first, if there is a scene change (entirely new picture), an
independent I frame is needed. Second, errors or compression artifacts propagate through
inter prediction [52]. Assume that there has been an error during decoding of the leftmost
P frame in Figure 2.3. This error will be visible in all frames that use this P frame as reference.
Thus, the next I frame will be the first frame without that error. Accordingly, there is a GOP
length trade-off between compression efficiency and error suppression.

When using inter prediction in low latency real-time video communication applications,
B frames are usually not an option. The latency TGOP added by B frames equals the number
of successive B frames nbf between two P or I frames times the frame period T

TGOP = nbf · T. (2.2)

In state-of-the-art video setups with frame periods of T = 16.6 ms or greater, the contribution
of B frame delay TGOP quickly exceeds even the weakest delay constraint from Section 2.1.1,
50 ms for gaming or graphics tools (for nbf > 3). Hence, in low latency video communication,
usually an IPPP... structure without B frames is employed. Only using causal references may
cause a loss in compression efficiency, but in this case the GOP structure does not contribute
any delay.

2.3.2.5 Transform, Quantization and Entropy Coding

The residual from the inter or intra prediction is then transformed, for instance according to
the computationally efficient separable integer transform [47]. The transformation enables
further processing in the frequency domain, in which quantization can be applied in much
less perceivable ways than directly at the pixel level. The coefficients of the transformed im-
age are then quantized and finally compressed using entropy encoding. The quantization
coarseness is variable: heavily quantized coefficients will on one hand cause visible artifacts
(higher distortion) in the resulting video. On the other hand, because of the fewer quan-
tization levels, the resulting compressed video has a smaller data rate. Conversely, many
quantization levels cause a high data rate and yield little distortion.
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2.3.2.6 Rate-Distortion Optimization

Section 2.3.2.5 shows that there is a trade-off between the two parameters distortion and data
rate. This is why modern encoders employ rate-distortion (RD) optimization. This process
finds, depending on a given Lagrangian weight, the optimal point at which we have accept-
able distortion at sufficiently low bit rate.

2.3.2.7 Rate control

The temporal (motion) and spatial (patterns) complexity of video content varies over time.
Since complex content can be predicted with less accuracy than simple content, the corre-
sponding residuals will be larger, and therefore the data rate will be higher. Thus, data rate
will vary with varying content complexity. For low latency video communication over lim-
ited data rate channels, this is not a desirable property.

Assume for example that the interface over which we want to transmit the encoded video,
can provide a constant data rate of 1 Mbit/s. If the data rate of the compressed video is
2 Mbit/s for one second, we have to temporarily store 1 Mbit in a buffer just before the in-
terface. If the video later has a data rate smaller than 1 Mbit/s, the buffer can be drained.
Using a buffer causes additional delay, as data has to reside inside the buffer before it can be
transmitted.

To keep buffers as small as possible, mechanisms named rate control keep the video data
rate as constant as possible [53]–[59]. This is in many instances done by predicting the com-
plexity of the video content, and adjusting parameters, for instance for the quantization.
Related work regarding rate control is presented in detail in Section 2.4.4.

2.3.2.8 Latency Reduction in Video Compression

The creators of AVC and HEVC were aware of the need for low latency video compression,
which is why in the common test conditions [60] for encoder-related research, four out of
eight test modes have parameters that enable low delay encoding. For instance, these modes
define parameters such as the maximum number of contiguous B frames, impose limitations
on block size, and constrain the search range and precision for inter prediction. Compared
with having fewer or less strict constraints in place, these settings show a degraded com-
pression efficiency, but also reduced encoding and decoding delays.

Similarly, the widely used encoder implementations x264 [61] of AVC and x265 [62] of
HEVC define presets and tunings for encoding complexity. These presets are parameter col-
lections which define, in various levels, encoding and decoding settings from low latency
and low compression efficiency to high latency and high compression efficiency.

In addition to changing parameters, AVC supports parallel processing [47] for latency re-
duction on multi-core processing units. The video is divided into non-overlapping slices,
which are compressed simultaneously and independently of each other. This approach
causes a loss in compression efficiency as correlations that traverse slice boundaries can not
be utilized for prediction. Wavefront parallel processing [48] overcomes this issue in HEVC:
encoding of a block row of a video frame can be started once at least two blocks of the above
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row have been processed. This way, the above blocks can be used for compression and each
row can be encoded in a separate thread.

2.4 Latency in Video Communication

The data processing and transmission steps in camera, coders, network, and display require,
depending on the implementation and parameters, considerable time (latency). The scientific
community has modeled this delay and proposed measurement techniques and methods for
reducing this latency. These are discussed in the following.

2.4.1 Existing Delay Analyses and Low Latency Implementations

The first class of papers models the delay contributors of a video communication chain.
Schreier et al. [63], [64] formalized the latency of video processing blocks such as encoder and
decoder relative to the frame period. In their analysis, they do not include delays contributed
by camera or display. This is the same in the paper by Vinel et al. [65], who considered five
contributors for video latency: encoder, encoder buffer, channel, decoder buffer and decoder.
Song et al. [66] provided a similar model which they use to show the benefit of their intra re-
fresh scheme. None of the previous papers models the camera or display. Baldi et al. [67]
included the camera in their model, but did not give details on how the camera’s sampling
process contributes to delay. Also, the paper did not give details about delay contributors
after the decoder; all delays were pooled into one contributor, namely processing delay.

Researchers have additionally presented low latency video transmission systems, most
notably Holub et al. [68]. Their system achieved an E2E latency of 2.5 to 5 frames. With the
utilized frame rate of 30 Hz, this corresponds to 83 to 166 ms. The authors did not detail
how they measured this latency, or from which points in the video communication chain.
The authors could for example have defined E2E latency as delay between the raw image
being available for encoding until the image is decoded, and ready for displaying. Such a
definition would exclude delays of both camera and display.

Encoding is computationally complex, which is why there has been work on low latency
encoders: Inatsuki et al. [69] as well as Khan et al. [70] proposed hardware implementations
of the H.264 standard. They implemented their algorithms on field-programmable gate ar-
rays (FPGAs) and demonstrated low latency encoding. These works disregarded the delay
of any other video communication processing blocks.

2.4.2 Latency Measurement in Video Communication

When developing low delay video communication solutions, it is necessary to evaluate them.
To do so, we need a system to measure glass-to-glass (G2G) delay. G2G delay is the delay
from a visual event taking place in the FoV of the camera, until this event is first shown on
the corresponding display. G2G delay is defined in a more detailed manner in Section 3.3.1.

In previous work, there have been approaches to measure G2G delay or a partial delay
of video transmission. An overview of these approaches in comparison to the newly devel-
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Author Automatic Non-Intrusive Decorrelated Cost Precision
Hill [71] no yes no medium low
MacCormick [72] no yes no medium low
Jacobs [73] no yes no medium high
Sielhorst [74] yes yes no medium medium
Boyaci [75] yes no no none low
Jansen [76] yes yes no high low
New method [7] yes yes yes low high

Table 2.2: Comparison of previous delay measurement methods with the proposed system (adapted
from [7]). The newly developed method [7] is presented in Chapter 4.

oped system is given in Table 2.2. The characteristics depicted in Table 2.2 are detailed in the
following.

• Automatic: G2G delay is not constant (see Section 3.6.2), it is therefore necessary to
gather multiple measurements and analyze the delay distribution. The column titled
‘Automatic‘ describes whether a system acquires multiple delay samples automatically,
or if manual assistance is required.

• Non-Intrusive: column ‘Non-Intrusive‘ shows whether the video communication sys-
tem under test needs to be modified and whether other parts than the camera’s FoV
and the surface of the display need to be accessed.

• Decorrelated: taking measurement samples at constant time intervals causes correla-
tion of delay samples, see Section 4.1.3.3 and Figure 4.3. This increases the pairwise
mutual information between samples, thereby decreasing the entropy (amount of in-
formation) of the samples. It is consequently beneficial for a measurement system to
pairwise decorrelate delay measurement samples. For an implementation of decorre-
lation, see Section 4.1.3.3.

• Cost: the cumulative price of the measurement system or its hardware parts.

• Precision: most importantly, the measurement error has to be small compared to the
absolute delay. The last column of Table 2.2 classifies the precision of the measurement
systems.

The entries of Table 2.2 are justified by describing the previous measurement systems in
more detail in the following. The systems of Hill et al. [71] and MacCormick [72] put a run-
ning clock in the FoV of the camera of the video communication system under test. Using
another camera which is part of the measurement system, they record both the real clock and
the clock shown on the display of the system under test. By computing the difference of the
times apparent on the clocks, one can derive the G2G delay of the system under test. This
system is not automated; it requires a human operator to read the clock states. In addition,
the achievable precision depends on the update frequency of the clock and of the sampling
rate of the camera which is part of the measurement system. If we assume for example 60 Hz
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in both camera and clock, each would contribute an imprecision of 16.7 ms. Hence, the sys-
tem would have a low precision of approximately 33.3 ms.

The system proposed by Jacobs et al. [73] achieves a significantly higher precision. The
system requires an LED to be placed in the camera’s FoV, and a photosensitive element, for
example a photoresistor, to be put on the display at the position where the LED is shown.
Both the LED and the photoresistor are connected to an oscilloscope. The LED is enabled at
an arbitrary point in time, which triggers the oscilloscope. From the oscilloscope, one can
read the time difference between when the LED was enabled, and when the photoresistor’s
resistance changed as consequence of the bright LED shown on the screen. This time differ-
ence equals the G2G delay, its precision mainly depends on the oscilloscope and is usually
smaller than 0.1 ms. This system also requires a human operator to manually evaluate the
readings on the oscilloscope.

Sielhorst et al. [74] take an approach similar to Hill et al. [71] and MacCormick [72], but
they replace the clock in the camera’s FoV by moving LEDs while the measurement camera
filming the entire setup stays still. From the positional differences of the LEDs, an automated
algorithm computes the G2G delay. The camera filming the setup runs with at most 200 Hz,
contributing an imprecision of 5 ms.

An entirely hardware-less approach is done by Boyaci et al. [75]: in software, they embed
timestamps as bar codes, which are decoded on the receiver side and used to compute the
delay between encoder and decoder. This system does not include delays from camera or
display and is intrusive. The necessary modifications in the system under test render the
system’s application to general latency measurement impossible.

Finally, Jansen et al. [76] propose an automated version of the clock-systems by Hill et
al. [71] and MacCormick [72]. Instead of a clock, they show a changing Quick Response
(QR) code with an embedded timestamp to the camera under test. The measurement cam-
era records both the most recent real QR code, and the old one shown on the display. From
these, the system automatically computes the G2G delay. However, this system suffers un-
der the same imprecision as the works [71] and [72] because it uses a conventional display
for showing the QR codes, and a conventional measurement camera.

All the above systems have at least one drawback that makes usage for extensive evalu-
ation of low latency video transmission systems impossible. Consequently, Chapter 4 pro-
poses a new G2G delay measurement system which combines the advantages of previous
work while eradicating disadvantages.

2.4.3 Trading off Compression Complexity Against Compression Efficiency

The number of operations required to (de-)compress one image is termed coder complexity.
The complexity of encoders and decoders is proportional to the delay exhibited by them.
Therefore, the papers investigating complexity are relevant to the latency of a video commu-
nication system.

The video encoder is typically more complex than the decoder because it has to perform
the searches for optimal prediction modes, RD optimization, and other computations which
the decoder does not have to handle. Consequently, most of the scientific work focuses on
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encoder complexity and its minimization. Still, van der Schaar et al. [77] created a model for
the decoder complexity. This model can be used to formalize decoder complexity in opti-
mization problems.

Many researchers have investigated the complexity and complexity reduction of HEVC.
Bossen et al. [50] provide a general overview of HEVC complexity, and detail which encod-
ing steps require which percentage of the total encoding time. As a result, they split the total
encoding time into intra prediction, inter prediction, entropy coding and others.

Choi et al. [78], [79] proposed early transform unit (TU) and fast coding unit (CU) deci-
sion. In general, the blocks in HEVC can be split into smaller blocks. Small blocks are suitable
for complex patterns or lots of motion, while bigger blocks provide improved compression
efficiency for simple patterns or little motion. The encoder has to determine which splitting is
optimal for the respective part of a video. Generally, this decision process can be shortened
by either exploiting experience gained from many videos, or by analyzing statistics of the
present video. In both papers by Choi et al. [78], [79], the authors use prior experience to con-
strain the set of split possibilities by removing rare splits. This process significantly reduces
complexity while deteriorating compression efficiency very little. This is a general pattern:
by constraining encoder options, researchers accept a small loss in compression efficiency,
while trying to achieve a considerable complexity reduction.

Chen et al. [80] and Jiang et al. [81] use pixel gradient statistics of the current frame to
constrain and thereby speed up intra prediction. Khan et al. [82] propose an encoder with
adaptive complexity and fast PU decision for intra prediction.

The papers presented in this section so far tried to minimize encoder complexity with the
least possible impact on compression efficiency. Compression efficiency is equal to RD per-
formance. Hence, the above works perform a simple, non-formal rate-distortion-complexity
(RDC) optimization. The following summarizes the literature on formal RDC optimization.

Støttrup-Andersen et al. [83] avoid the three-parameter RDC optimization. They con-
vert the RDC optimization problem into a two-parameter optimization by eliminating small
differences of either rate or distortion. They use the resulting parameters to constrain the
options for inter prediction. For the H.264 codec, they report a speed up factor of 4, while
the required bit rate is increased by 1 % at constant quality. Hu et al. [84] perform a joint
three-parameter RDC optimization. They also use the result to speed up inter prediction.

Finally, Vanne et al. [85], [86] created RDC models for both AVC and HEVC. These can be
used for RDC optimization.

2.4.4 The Influence of Rate Control on Video Transmission Latency

In addition to encoding and decoding delay, buffer latency can significantly contribute to
G2G delay. When only a low data rate video transmission channel is available, the video’s
variable data rate has to be adapted as close as possible to the available rate, such that on one
hand, the channel is fully used and best video quality is achieved, but on the other hand, the
queue length in the buffers is as short as possible.

When trying to achieve a predefined video bit rate, encoders face a chicken egg prob-
lem: they know the exact amount of data for a compressed frame only after encoding it with
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given parameters. However, in low delay video communication, performing multiple en-
coding probes to find the optimal parameters introduces prohibitively high delay. This is
why rate control predicts the bits that are required for the compressed frame depending on
parameters such as the quantization coarseness and video characteristics. For the predic-
tion, researchers feed the image analysis data and a target data rate into custom models to
retrieve the encoding parameters. Precise and simple models and expressive analysis data
are of foremost importance for accurate, low latency rate control.

Ribas-Corbera et al. [57] laid the basis for many of the following rate control papers by
formalizing and implementing many of the above concepts for the first time in the H.263
[87] video coding standard. Navakitkanok et al. [56] later extended these concepts to the
H.264 [47] standard. Chang et al. [53] use frame data after the transformation (see Sec-
tion 2.3.2.5) for a rate-quantization model. With their implementation, they can meet a pre-
defined buffer delay time. Gao et al. [54] apply their rate-quantization model not at the
frame- but at the block-level. This allows extremely precise rate control for lowest latency
applications, but introduces noticeable degradation of image quality. Lin et al. [55] propose a
low complexity rate control scheme for I frame only video compression in very low latency
video communication applications. Sanz-Rodriguez et al. [58] improved existing schemes for
applicability in multi-threaded processors and for high resolution videos.

Zhang et al. [59] took another perspective on rate control: the compressed video data
consists of two kinds of data, compressed image information and header information. The
compressed image information is the entropy coded data from the image itself, while header
data contains encoding parameters such as the quantization parameter, prediction mode,
reference frames, and more. In particular in modern video codecs, the size of the header is
significant in the overall bit stream. Consequently, the authors [59] propose a model for the
estimation of header size and combine it with traditional rate control schemes to achieve an
accurate rate control.

2.5 Chapter Summary

Latency and latency reduction in video communication have been researched with a focus
on encoding and decoding complexity, utilization of parallel computation architectures, and
rate control. However, when performing low latency video communication with sufficient
computational and network resources, these processing steps are not significant latency con-
tributors, as we will see in Chapter 3. Additionally, no previous project created a compre-
hensive model of G2G delay and analyzed all delay contributors in detail. In consequence,
Chapter 3 proposes a G2G delay model that includes all delay contributors of a video com-
munication setup and identifies elements that can be modified to achieve a substantial G2G
latency reduction.



Chapter 3

Delay Contributors in Video
Communication

3.1 Block Model of Delay Contributors

The block model of a generic video communication system is depicted in Figure 3.1. On
the most abstract level, such a video communication setup consists of three parts: first, the
sender, which records the video with a camera and compresses it using an encoder. Second,
the compressed video data is sent over a communication network, for example a local eth-
ernet or wireless connection, or a global connection using the internet. Third, once the data
arrives at the receiver, it is decoded, and finally shown on a display.

The time required for all these block operations is the G2G delay, defined in Section 3.3.1.
If the video is not displayed to a human observer, but to a machine vision algorithm, the dis-
play part is omitted, and the corresponding delay is called Glass-to-Algorithm (G2A) delay,
see Figure 3.1.

Operation modes between the blocks, delay definitions, block analyses with respect to
latency, a theoretical G2G delay model, and an analysis of the delay reduction potential are
presented in the remainder of this chapter.

Some of the ideas and contributions of this chapter have been published in [4].

3.2 Cut-Through and Store-and-Forward Operation

Data transmission time between two blocks in Figure 3.1 is the time from the first data bit of
a frame being sent out by a block until the last bit of the same frame is being sent out. It is
hence the time it takes to transmit one frame over the attached communication interface. For
slower communication interfaces (for example USB 3.0), this data transmission can require a
considerable amount of time. If transmission time is significant, the mode of operation of the
involved blocks becomes relevant. Depending on the mode of operation, a block can, for ex-
ample, start sending data before it has finished processing a frame, or buffer data until it has
entirely processed a frame and then send it out to the next block. The following paragraphs
introduce the two operation mode alternatives by example, using blocks from Figure 3.1.
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The leftmost block of Figure 3.1, ‘Camera Temporal Sampling‘, represents temporal sam-
pling of the image sensor. Once exposure is finished, data is read out of the sensor. During
readout, the data is directly transferred to the next block, ‘Camera Processing‘, which stands
for the processing unit on the camera which applies operations such as white balance and
debayering [88]. The second block typically works in cut-through (CT) operation mode [89]:
while the image sensor is still streaming data, the processing unit already starts to apply its
algorithms to the already received data. If all algorithms have been applied to the begin-
ning of the data before the entire frame data was received, the processing unit might already
stream it to the next block.

Alternatively, a block can operate in store-and-forward (SF) mode [90]: None of the three
phases data reception, data processing, and data sending run simultaneously. Instead, the
three phases are handled one after the other. An example for a unit in SF operation is a soft-
ware encoder: it first needs to receive all data of one frame, then compresses the data using
a video codec, and finally sends the compressed data to the next block.

The advantage of CT operations is lower delay. In comparison to SF, it can avoid a wait-
ing time equal to the frame data transmission time over the connection between two blocks.
However, it is usually non-trivial to pause processing of CT blocks. In consequence, CT
blocks need to be fed with constant data rate. This makes CT operations suitable for intra-
device communication of data, but often not suitable for inter-device communication, for
example in packet-switched best effort networks.

3.3 Delay Definitions

Delays are among the core variables of interest of this thesis. For humans, the time between
a visual event taking place in the camera’s FoV and this event being visible on a screen
(G2G delay) is relevant. For computer vision algorithms, the time between the visual event
and the corresponding image being decoded and ready for further processing (G2A delay)
is relevant. Both G2G and G2A delay [4], as shown in Figure 3.1, shall be precisely defined
in the following.

3.3.1 Glass-to-Glass Delay

This thesis coins the term G2G delay, as in the context of video communication, E2E de-
lay has been used inconsistently, for instance to describe the time from when an image is
available to the encoder until the encoded, transmitted and decoded image is available for
display [75]. Such a definition would exclude camera and display latencies. As delay is the
temporal difference between two points in time, these points are defined for G2G delay in
the following, and naturally, the definition of G2G delay follows.

The first point in time is when a visual event is taking place in front of the camera. This
can, for example, be the lighting of an LED or initiation of a linear or rotational movement.
This thesis assumes that the time point when the event occurs is equal to the time point
when the photons indicating the event pass through the lens of the camera, which this thesis
further assumes to be equal to the time point when these photons hit the image sensor (see
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Section 2.3.1.2). This approximation is valid because in almost all use cases, the high speed of
light, c ≈ 3 · 108 meters per second in earth’s atmosphere [91], renders the light propagation
delays negligible compared to other delays from video communication (see the measure-
ment results in Section 4.2). For example, assume that the visual event is taking place at a
spatial distance of d = 300 meters (m) from the camera lens: The photon’s propagation time
tprop from the event to the lens equals

tprop =
d

c
= 0.001ms. (3.1)

The resulting tprop is approximately 4 orders of magnitude smaller than the fastest video
processing setup examined in this thesis, see Section 6.1.4, which exhibits an average G2G
delay of 19.67 ms. The propagation delay will be smaller for less distant events, as well as
for the photon propagation from the lens to the image sensor. The photon propagation delay
is therefore negligible in standard video applications, and we assume with negligible error
that the time points of the visual event and the corresponding photons reaching the image
sensor are equal. In specialized applications such as astronomy, we assume that the user is
aware of the significant light propagation delay over great distances. To summarize: the first
relevant point in time is when the visual event takes place, which is also when the photons
of this event pass through the camera lens and are absorbed in the image sensor. The camera
lens constitutes the first ”glass” in the term glass-to-glass delay.

The second relevant time point is after the visual event has been recorded by the camera,
the corresponding image compressed by the encoder, transmitted over a network, decom-
pressed by the decoder, and transmitted to the display. At this point in time, the event is
first shown on the display. Analog to the first time point, we utilize the speed of light to
approximate three points in time by the same time point: emitted by the display’s pixels,
the photons indicating the visual event pass through the glass or plastic covering the display
panel, and reach the observer’s retina. In all known viewing conditions, this approximation
produces an error smaller than one microsecond (µs), compare Equation (3.1). The display
glass constitutes the second ”glass” in glass-to-glass delay.

In conclusion, G2G delay is the time difference, or latency, between when the photons
of a visual event are passing through the camera’s lens and when the photons of the event
first shown on the display are passing through the display glass. This delay includes all
processing steps of a video communication system.

3.3.2 Glass-to-Algorithm Delay

G2A delay, as indicated in Figure 3.1, shares the same starting point with G2G delay. The
first point in time in G2A delay is also when the visual event occurs in the camera’s FoV.
However, the second time point differs from G2G delay. For G2A delay, the second time
point is when the first image that contains the visual event, has been decoded and is ready
to be further processed, see Figure 3.1. This processing is usually performed by a machine
vision algorithm such as face detection [92] or object tracking [93]. The delay hence spans
the time from the photons passing through the camera’s lens glass until the correspond-
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Figure 3.2: Delays ti inflicted by the temporal sampling of the camera. The delays ti depend on when
during the frame period the event onset Ei occurs.

ing image is ready for the machine vision algorithm. This thesis therefore names this delay
Glass-to-Algorithm (G2A) delay.

The processing delays of machine vision algorithms and the actuator delays are out of the
scope of this work. Processing speed analysis of machine vision algorithms such as object
tracking is a field on its own [93], [94].

3.4 Delay Contributors

The blocks of Figure 3.1 and their theoretical delay models are detailed in this section, and
summarized in Section 3.6.

3.4.1 Camera

Any video transmission system starts with image acquisition, performed by the camera.

3.4.1.1 Camera Temporal Sampling

As explained in Section 2.3.1.2, cameras perform temporal sampling. The phase t0 of this
sampling process is generally not synchronized to any of the visual events the camera is
recording. Therefore, an event can begin to take place with equal probability at any time
during one frame period [4].

The three phases during one frame period, pre-exposure, exposure, and post-exposure
(see Figure 3.2), influence the delay contributed by the temporal sampling process of the
camera. If an extremely short event would by chance take place entirely outside the expo-
sure phase, it would not be seen at all by the camera. However, such short events are difficult
to perceive and process by human or machine observers and therefore do not play a signifi-
cant role in videos. Additionally, the great majority of real-world events such as motions or
general state changes last multiple frame periods. Finally, this thesis can not take any algo-
rithmic or systematic measures to ensure that such short events are recorded. This is why
short events outside the exposure period are disregarded in the following.

If an event is initiated during pre-exposure or during exposure, it will be transmitted to
the next block, Camera Processing, after the post-exposure, at the end of the frame period.
The delay contributed by temporal sampling will therefore be the time difference between
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the initiation of the event and the end of the frame period. For example, assume a camera
is sampling with 50 Hz, which causes a frame period of T = 20 ms, see Equation (2.1). Let
us assume post-exposure time tpost = 1 ms. One extreme would be that event onset E1 in
Figure 3.2 happens just after the pre-exposure phase of the camera starts. In that case, almost
the entire frame period T = 20 ms ≈ t1 would pass until the image data containing the event
onset is forwarded to the next block. The other extreme is if event onset E2 happens towards
the end of the exposure, in which case there is a much smaller delay t2 ≈ tpost.

Event onset E3 of Figure 3.2 ensues during post-exposure, it will therefore not be for-
warded to the next block at the end of the corresponding frame period. Instead, event onset
E3 will be captured during the exposure of the following frame period and further processed
at the end of that frame period. The corresponding delay t3 will therefore be the time dif-
ference between the beginning of the event and the end of that frame period, plus the entire
T = 20 ms of the subsequent frame period.

The above insights allow us to mathematically formalize the delay contributed by the
temporal sampling in the camera. The minimum delay occurs if the event comes to pass
just before the end of exposure, in which case the delay will equal the post-exposure time
tpost. The other extreme is if the event onset happens just after the end of exposure, at the
beginning of the post-exposure period. In this case, the delay would be the post-exposure
processing time plus one frame period tpost +T . Temporal sampling in the camera can there-
fore contribute a delay tCTS in the range [tpost, tpost +T ]. Within that range, each delay value
has equal probability, which is why tCTS follows the uniform distribution

tCTS ∼ U (tpost, tpost + T ) . (3.2)

In state-of-the-art cameras, tpost is small (tpost < 1 ms). Therefore, the camera frame rate,
determining the frame period T (see Equation (2.1)), has major influence on the distribution
and the maximum value of tCTS. In a 30 Hz camera, tCTS is at most 33, 3 ms + tpost, in a
200 Hz camera the maximum is significantly smaller at 5 ms + tpost.

As a sampling process defines the initiation of data readout, it is not relevant to CT or SF
operation mode. Distinguishing these operation modes is relevant if the amount of data pro-
cessed in a block leads to significant processing time, see Camera Processing, Section 3.4.1.2.

In the preceding discussion, we ignored the spatial position of the visible event in the
camera’s field of view. For the delay contributed by spatial position of an event, the shutter
methodology (see Figure 3.3) is relevant: on one hand, global shutter cameras expose each
pixel row for the same time interval, subsequently reading each line out and sending it to
the next block. Rolling shutter cameras, on the other hand, start exposing the top row of an
image, then the second row, and so on. The exposure intervals overlap, but the exposure
of each row is started with a small offset after the previous row, so the exposure intervals
are not identical. The recorded video is then processed and finally shown on the display, as
depicted in Figure 3.3. All conventional displays create the image, similar to a rolling shutter
camera, line by line from the top pixel row to the bottom1. In Figure 3.3, the temporal extent
1 https://www.blurbusters.com/understanding-display-scanout-lag-with-high-speed-video/, last visited

31.01.2019

https://www.blurbusters.com/understanding-display-scanout-lag-with-high-speed-video/
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Figure 3.3: Exposure interval arrangement for global and rolling shutter cameras. This image shows
only four pixel rows to exemplify the shutter process. Global shutter cameras expose all lines for
the same interval to light, rolling shutter cameras and displays record and show lines starting with
the top row, respectively. The processing steps between camera and display are irrelevant and thus
omitted for clarity. Note that this figure depicts only one exposure and display period for camera and
display, respectively.

of each display pixel row represents the time that the pixels emit constant light intensity and
color.

Let us first investigate how the shutter procedures influence G2A delay: in the case of
global shutter, events in the bottom part of the image are read out later than top parts, so
their readout is delayed, equal to the time difference t2 − t1 in Figure 3.3. The video image
containing all this data is, however, processed and finally decoded and presented to the im-
age processing algorithm as a whole data block in memory. In this case, the vertical position
of the event in the video does not influence G2A delay, as all pixel rows have to wait for the
readout process and all subsequent processing steps to finish: for instance, in Figure 3.3 in
the top half, row 1 has to wait for the same time as row 4 until the entire image is available in
the image processing algorithm’s memory. For a rolling shutter, this is different: there is no
delay between the end of the exposure period and the data readout. But since in the end, all
lines are presented to the image processing algorithm at the same time, the first row of the
video image has to wait until the last image row has been entirely processed. Consequently,
from the perspective of the image processing algorithm, the bottom row is the most recent
one with lowest delay. The top row, recorded first, carries a delay equal to the exposure
interval offset between the top and bottom row (t2 − t1 in Figure 3.3).

A global shutter would have a negative influence on G2A delay if the video sensor did
not support overlapped readout2. In overlapped readout, each pixel has an additional local
storage for the electric charge recorded during exposure. Using that, the recording proce-
2 http://hamamatsu.magnet.fsu.edu/articles/readoutandframerates.html, last visited 31.01.2019

http://hamamatsu.magnet.fsu.edu/articles/readoutandframerates.html
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dure is the following: every pixel is exposed to light to create an electric charge. At the end
of the exposure, each charge is transferred to the additional local storage of the respective
pixel, which is a simple and hence fast operation. Afterwards, the next exposure is started.
While the next exposure is being performed, the charge is read out of the additional local
storage of all pixels. Using overlapped readout, a video sensor can, with an extremely small
post-exposure period tpost, perform exposures almost back to back and read out data from
the previous exposure while the new video image is being recorded. In older video sensors,
overlapped readout was not possible, and a global shutter camera would have to wait for
all pixel lines to be read out before starting the next exposure. This is why in older sensors,
rolling shutter cameras enabled higher frame rates at the same exposure time, and conse-
quently a lower delay.

The delay influence of global and rolling shutter changes if the image is not presented
as a whole at one time instance to the image processing algorithm (G2A delay), but shown
on a display (G2G delay). As shown in Figure 3.3, a display creates a video image line by
line from top to bottom, similar to a rolling shutter. The top row is recorded first and dis-
played first. This is why for a rolling shutter camera, event location does not influence G2G
delay if the temporal offsets between pixel lines in camera and display are equal. If the pixel
lines in the camera are exposed in quicker succession than the display’s lines are drawn
(t2 − t1 < t4 − t3), bottom rows will undergo a greater latency than top rows before being
shown on the display. In global shutter cameras, the event position influences G2G delay in
a straightforward way: all pixel lines are recorded at the same time, but lower rows have to
wait longer before being shown on the display. The bottom row has to wait an additional
time period equal to t4−t3 compared with the top row. The additional delays of pixel rows in
between can be interpolated linearly. In conventional displays, drawing the pixel rows takes
the entire frame period, so the bottom row exhibits a G2G delay that is almost one display
frame period longer than the G2G delay of the top row.

In the remainder of this thesis, global shutter cameras are considered. We do not further
investigate the influence of event location on delays, as it has been discussed in detail here.
To retrieve consistent delay measurements in Chapters 4 and 6, visual events are created at
the top of the video images. By combining the measurements with the insights of this section,
it is possible to compute the G2G and G2A delays for arbitrary spatial event positions.

3.4.1.2 Camera Processing

After exposure, the retrieved per-pixel charges need to undergo multiple processing steps
before they yield a color picture. In the first step, the analog charges need to be converted
to a digital representation, see Section 2.3.1.2. Second, the pixels in an image sensor suffer
from multiple sources of noise, for example thermal or electronic circuit noise, defective pix-
els, or quantization noise [95]. Modern cameras employ increasingly complex algorithms to
suppress these kinds of noise. To create a color image, two dominant approaches are known:
in one implementation, a camera can contain three image sensors, each one receiving either
red, green or blue light from a prism that splits light from the original scene. The pixel values
from the three sensors are combined to RGB pixel values. Alternatively, in a single-sensor
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camera, each color pixel in the image is composed of four monochrome pixels with different
color filters in the image sensor, arranged in the perceptually optimized Bayer pattern [88].
The process of retrieving one color pixel from the four monochrome pixels is called debay-
ering. To the color image, an arbitrary number of additional post-processing steps such as
white balance, ensuring that white in the filmed scene corresponds to white in the image,
can be applied.

Within cameras, these algorithms are usually implemented in FPGAs or application-
specific integrated circuits (ASICs) for reduced power consumption and higher processing
speed compared with a general purpose processor. In an Allied Vision Guppy Pro3 camera,
for instance, all the previously described processing steps require tproc = 710±62.5µs. Infor-
mation about this processing time can typically be retrieved from the camera manufacturer4.

As the interface between the image sensor and the FPGA or ASIC usually provides a
reliable bit rate, camera manufacturers employ the CT concept for the image processing to
achieve lowest latency. Also, CT operations avoid costly image buffers.

The definition of tCP also includes the data transmission delay between the camera and
the next block. Usually, the camera is attached to a PC or custom board using a USB, FireWire,
or Ethernet interface. The raw image size S and the available interface bit rate r determine
the corresponding transmission delay

tinterface =
S

r
. (3.3)

Keeping the example of the Allied Vision Guppy Pro (on USB 3.0: C = 5 Gbit/s data
rate) at a resolution of 640x480 pixels with 24 bits per pixel (S = 640 · 480 · 24 bit), the camera
processing delay

tCP = tproc + tinterface = 710± 62.5 +
640 · 480 · 24

5000
µs ≈ 2.2 ms (3.4)

is smaller than the delay introduced by the temporal sampling of the camera (Sec-
tion 3.4.1.1). Also, variations in tCP are typically negligibly small because of the hardware
implementations, which is why it can be assumed to be constant.

3.4.2 Encoder

In the proposed video communication system, the encoder consists of four parts: first is
frame skipping. This block implements the proposed algorithms from Chapter 6, and is
optional. Second is color space conversion. This is also optional, and required only if the
output color space of the camera does not coincide with the color space required by the en-
coder. Third is video encoding. The encoder compresses the video frames to reduce the
amount of bits required for transmission. Fourth is buffering. The compressed image may
have to be buffered prior to transmission onto the network.
3 www.alliedvision.com, last visited 25.09.2018
4 In this case the camera processing delay was retrieved from the Allied Vision Guppy Pro Technical Manual

V4.1.3, Figure 69 on page 141.

www.alliedvision.com
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3.4.2.1 Frame Skipping

The G2G latency reduction methods proposed in Chapter 6 rely on using a high frame rate
in the camera (small tCTS) while processing only a subset of all frames. For each new frame,
this block decides whether the frame should be further processed or skipped. This prevents
the data rate from increasing significantly, while reducing latency. The process of selecting a
subset of frames is implemented in this block, further details are provided in Chapter 6.

The prototypes proposed in Chapter 6 of this thesis implement this block in SF operation
mode. Despite the constant data rate with which images are transferred from the camera, it
is not possible to implement the frame skipping in CT mode. The application programming
interfaces (APIs) provided by camera manufacturers such as Allied Vision (Vimba5), Basler
(Pylon6), and Ximea (Ximea Software Package7) do not signal the initiation of image trans-
fer. Instead, these APIs provide image retrieval functions that return the raw image once it
is entirely transferred to the computer’s memory, allowing only for SF operation.

If, by using other interfaces or APIs, CT operation would be technically feasible, it would
be suboptimal from a logical perspective. Raw images nowadays are stored and transmitted
in row-major scan order, starting with the top left pixel. This means that the top left pixel
is transmitted first, then the pixel in the same row next to it, until all pixels of the first row
are transmitted. This procedure is then repeated for all rows of the image. Assume that 10 %
of the image data have been transmitted to the frame skipping block. This means that the
top 10 % of the pixels have been transmitted, but the bottom 90 % of the image content are
unknown. Based on this information, it is difficult, or might even be impossible to make an
informed frame skipping decision.

In the proposed prototype, the delay for frame skipping is small and almost constant
at an average of tFS = 0.25 ms for a 640x480 pixel image, so the latency impact of the SF
operation in the frame skipping block is not severe.

3.4.2.2 Color Space Conversion

A color perceived by humans is the result of a mixture of photons with various wavelengths
hitting the eye’s retina. In the retina, cones are responsible for color perception. The three dif-
ferent types of cones have different responsivities as functions of photon wavelength (light
color). Each cone type has peak responsivity for photons with a certain wavelength. These
three distinct wavelengths represent red, green or blue colored light. Thus, a combination of
the three color components red, green and blue of the RGB color space are enough to cover
almost all colors that humans can perceive, see Grassmann’s laws on color perception [96].

Still, there are more efficient ways of storing color. The human eye has low spatial sensi-
tivity (resolution) to color, in contrast to a high spatial sensitivity to brightness. This is why
the YUV color space dissects color into one brightness (luminance, Y) component, and two
color (chrominance, UV) components. Further, the two color components are often spatially
5 https://www.alliedvision.com/en/products/software.html, last visited 25.09.2018
6 https://www.baslerweb.com/en/products/software/basler-pylon-camera-software-suite/, last visited

25.09.2018
7 https://www.ximea.com/support/documents/4, last visited 25.09.2018

https://www.alliedvision.com/en/products/software.html
https://www.baslerweb.com/en/products/software/basler-pylon-camera-software-suite/
https://www.ximea.com/support/documents/4
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subsampled to reduce the amount of data required to store an image. Because of this effi-
ciency gain over RGB, and because of its widespread use in older video devices, the YUV
color space is used in almost all video compression units. For cameras, on the other hand,
the bayer conversion is typically easiest to RGB. The color space conversion block transforms
an image from one color space to the other.

The conversion between RGB and YUV is, for each component, a weighted sum of the
components of the respective other color space. The color space conversion is applied to sin-
gle pixels, independent of their surrounding pixels. Hence, these conversions can be done
massively parallel. This fact explains the high speed of the conversion: in a prototype that
was implemented for this thesis, an average of tCSC = 0.32 ms was observed. For color space
conversion, CT operation would be feasible, but since tCSC is small, the corresponding delay
reduction would also be small.

3.4.2.3 Encoding

After the raw frame has been converted to the correct color space, it can be compressed
in the encoder, according to the description provided in Section 2.3.2. Depending on the
used video coding standard and its specific implementation, the encoding delays can dif-
fer considerably. The fastest FPGA-based hardware encoders exhibit an encoding delay of
as little as tEnc = 250µs8, while the HEVC reference encoder, called the HEVC test model
(HM) requires 70 to 80 seconds to encode one frame [50], [60]. Due to the manifold of RD
optimization outcomes for encoding one frame in modern video codecs, even within one
encoder, per-frame encoding times can show large differences.

However, for low latency, we have to refrain from the most complex compression op-
tions, such as two-way inter prediction with sub-pixel accuracy. Within a low latency video
communication application, a (manual) RDC optimization (see Section 2.4.3) with high im-
portance of low delay and low complexity can result in almost constant delay with lit-
tle variation. The prototype discussed in Chapter 6 uses the x264 implementation [61] of
the H.264/AVC standard [47]. For a description of the hardware and coding parameters,
see Section 6.1.3. In the prototype, x264 encoding of one frame has an average delay of
tEnc = 0.88 ms with a standard deviation of 0.05 ms, see Table 6.1. Hence, we assume tEnc to
be constant.

Encoders implemented in an FPGA or ASIC usually support CT operation. This is why in
many instances, the advertised encoding times are not the time it takes for an entire frame to
be compressed, but the propagation delay of one pixel through the encoder. For example, the
pixel propagation time through such an encoder might be 1 ms, but the highest frame rate at
which the encoder can process incoming videos, could be 60 Hz. Software encoders such as
x264 [61], an AVC implementation in the C and assembly programming languages, and x265
[62], an HEVC implementation in the C++ programming language, do not provide any CT
functionality. Rewriting a codec to enable CT functionality is out of scope of this thesis, as
this would require fundamental changes to the encoding process. Typical codec implemen-
8 System-on-Chip (SOC) Technologies H.264 AVC Encoder IP Core Datasheet V.4.3, page 5
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tations, however, are large software projects: x264 for example consists of approximately
140,000 lines of heavily optimized C and assembly source code.

3.4.2.4 Encoder Buffer

As introduced in Section 2.3.2.7, the data rate of the compressed video produced by the
encoder does not necessarily match the available data rate in the network. To deal with
this mismatch, a buffer is employed between encoder and network. A highly filled encoder
buffer causes a large delay tEB.

Buffers and their fill status distribution have been studied in previous work [56], [57],
[59]. Furthermore, with proper rate control (see Section 2.3.2.7), the average buffer queue
length can be negligibly short. This is why this section does not provide any further buffer
delay analysis here. For the prototype described in Chapter 6, we assume tEB = 0 ms, as the
available data rate in the ethernet network (C = 1 Gbit/s) is much greater than the average
video data rate of approximately 16 Mbit/s.

Depending on the implementation, CT operation is possible. In software implementa-
tions, the usual procedure is SF: wait until one packet containing compressed image data
is entirely available before transmitting it to the network. The maximum transmission unit
(MTU) , which is an upper limit for packet size, is 1500 bytes for ethernet. With the given
small packet size, waiting times for entire packets are small, and thus a lack of CT operation
has negligible impact.

3.4.3 Network

Once the compressed image is available in the encoder buffer, it is transmitted to the net-
work, where the data propagates towards the decoder. The two steps of transmission and
propagation are detailed in the following.

3.4.3.1 Transmission

Data transmission describes the process of converting the bits stored in the circuit of the
encoder buffer to bits represented as, for instance, electrical pulses in a network cable, pho-
tons in an optical cable, or electromagnetic waves for wireless transmission. The rate of this
conversion is constrained by the physical limits of the wired or wireless channel. In case of
Gigabit Ethernet, the bit conversion (transmission) rate equals C = 1 Gbit/s. In particular
for shared packet-switched best-effort networks and wireless networks, the transmission or
data rate can vary markedly.

A packet with the size of the MTU (1500 bytes) will require 12µs for transmission over
Gigabit Ethernet. Since the process of transmission is not related to any packet, or does not
wait for entire packets to arrive, it is by design a CT operation.

3.4.3.2 Propagation

For the propagation of data through space, this thesis distinguishes three cases: wired, wire-
less, and multi-hop propagation. In case of wired communication, information propagates



3.4. Delay Contributors 35

through a copper or fiber optic cable. Propagation speed is usually quantified relative to
speed of light, and, depending on the propagation medium, speed ranges from 0.66 · c for
copper to almost light speed in vacuum (1 − ε) · c, ε > 0 for fiber optics [97]. Wireless
information transmission in air achieves a propagation speed close to c, too.

So far, we have only considered a single-line connection. In the more general use case,
sender and receiver are connected over a multi-hop network such as the internet. In such
packet-switched networks, data packets incur additional queueing, processing, and trans-
mission latencies because they pass through intermediate switches. The delays caused by
these mechanisms are highly application specific and can range from less than 1 ms to hun-
dreds of milliseconds.

All three propagation cases are upper bounded by the speed of light c. If, for example,
sender and receiver are located at a spatial distance d of 300 km, information propagation de-
lay will be at least 1 ms. For international or intercontinental video communication use cases,
information propagation delay plays a significant role. In contrast, in localized applications
in which information has to propagate over d < 1 km, propagation delay is negligible. Low
propagation delay is actually the main motivation for edge computing in 5G networks [98].

Bit propagation is a purely physical process, which is not packet based. It is consequently
a CT operation. For multi-hop transmission, the intermediate switches can operate in CT or
SF mode.

3.4.4 Decoder

Once the compressed image data is available at the receiver, it is first buffered, then decoded,
and finally the raw image’s color space is converted to a color space suitable for transfer to
the attached display or for processing by a machine vision algorithm.

3.4.4.1 Decoder Buffer

Analog to the encoder buffer (Section 3.4.2.4), the decoder buffer handles disparities between
the video data rate and the channel’s transmission rate. In the receiver, the buffer must be big
enough to avoid a buffer underflow. A buffer underflow can, for example, happen if the data
rate in the channel is reduced by severe cross-traffic in a wired network, by interferences in
a wireless channel, or by a temporarily large video data rate. In the case of buffer underflow,
the decoder is ready to decode a new image, but does not receive any data. If this takes too
long, the decoder will miss one or more display sampling periods, causing an interruption
of the video playback.

In particular in presence of fluctuating data rates in the network, a large enough decoder
buffer is compulsory to avoid buffer underflows. This is why in low latency video commu-
nication, a permanently available constant data rate in the network is a prerequisite. With
constant data rates, the decoder buffer can be kept small, as well as the decoder buffer la-
tency tDB. In the proposed implementation, we have a constant transmission data rate, and
therefore we assume tDB = 0. The fill status of the receiving decoder buffer is closely related
to variations in network data rate, which has been thoroughly studied [99]–[103].



36 Chapter 3. Delay Contributors in Video Communication

CT operation is only useful with non-fluctuating data rates, so it should only be consid-
ered when the network can provide a constant data rate. If this is the case, the same CT
principles as in the encoder buffer (Section 3.4.2.4) apply: single packets can be forwarded
before they are entirely received, but as the maximum packet size (MTU) is small, the gain
from CT over SF operation is small.

3.4.4.2 Decoding

The decoding step inverts the encoding process and computes an approximation (if lossy
coding, for instance via quantization, was used) of the original, raw image from the com-
pressed image. Decoding is typically significantly faster than encoding as no RD optimiza-
tion needs to be performed, because the compression options and parameters have already
been determined by the encoder. There are heavily optimized implementations such as FFm-
peg’s9 H.264 decoder, which requires on average tDec = 272µs to decompress one video
frame when used in the prototype described in Section 6.1.3. The CT discussion is analogous
as for the encoder, see Section 3.4.2.3.

3.4.4.3 Color Space Conversion

The raw image produced by the decoder customarily uses the YUV color space. As opposed
to this, modern graphics processing units (GPUs) usually store images in the red-green-blue-
alpha (RGBA) color space. The additional alpha component defines transparency of a pixel,
which is often needed in applications such as graphical user interfaces or three dimensional
virtual environments. As a consequence a color space conversion has to be performed after
decoding.

The remaining characteristics, such as color space conversion delay and CT applicability,
are the same as for the color space conversion before encoding, see Section 3.4.2.2.

3.4.5 Display

The display with which the video frame is presented to the user is the final part of the video
communication system. If the video is instead utilized in a machine vision application, there
is no display, and the video communication system ends with the color space conversion
after the decoder.

3.4.5.1 Display Temporal Sampling

Just as the camera samples the incoming light with a uniform sampling frequency, displays
sample the contents of the graphics buffer in the GPU with the display refresh rate, or up-
date frequency. For consistency, this thesis names the display refresh process display temporal
sampling in the following. The temporal sampling frequency is limited by display processing
such as the raw image data transfer and the panel update process, see Section 3.4.5.2.
9 https://ffmpeg.org/, last visited 27.09.2018

https://ffmpeg.org/
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In traditional displays, the temporal sampling of the display is not synchronized to when
the decoder decodes an image. Consequently, the temporal sampling delay tDTS of an un-
synchronized display with frame period T is, analogous to the camera temporal sampling,
uniformly distributed

tDTS,nosync ∼ U (0, T ) . (3.5)

An unsynchronized display encounters the effect of image tearing. Image tearing occurs
when the display samples the graphics buffer while the decoder is writing a newly decoded
image into it. In that case, the display will show two image parts: the top part contains
the old image which was in the graphics buffer until the decoder started writing the newly
decoded image into the buffer. The bottom part of the display contains the newly decoded
image, so the visible image appears to be torn apart.

A countermeasure to tearing is vertical synchronization (VSync). VSync avoids updating
of the contents of the graphics buffer while data is being read out by the display. This is
implemented with multiple buffers: the decoder writes image data into one buffer while the
display reads out the previous image from another buffer. After the data writing and readout
processes are finished, buffers are switched. However, VSync introduces additional delay as
image data has to wait in a buffer before it is being read out. In the best case, if the decoder
is just ahead of the display, and marks a buffer ready just before the display is ready to read
the raw image data, the additional delay is one decoder delay tDec (see Section 3.4.4.2). In the
worst case, the display starts reading the old buffer just before the decoder finishes writing
data into the new buffer. Thus, the image data in the new buffer would have to wait almost
an entire display sampling period T , equal to the setup without VSync. In summary, with
enabled VSync, the temporal sampling delay has an increased minimum delay compared to
an unsynchronized display, and equals

tDTS,VSync ∼ U (tDec, T ) . (3.6)

Furthermore, there are displays with adaptive sampling, such as NVidia Gsync and AMD
FreeSync. Displays using these technologies sample the contents of the graphics buffer only
when the GPU signals to the display that the raw image data is ready for readout. Therefore,
these displays are not constrained to uniform sampling with a fixed sampling period. Still,
such monitors have a minimum sampling period because they also need a minimum amount
of time to retrieve data from the graphics buffer and show it on the display panel. In state-of-
the-art consumer displays, the maximum temporal sampling frequency is fmax = 240 Hz10.
If these displays are operated at a sampling frequency lower than their maximum fmax, they
cause no temporal sampling delay tDTS,Sync = 0. If fully synchronized displays are used
to show images at a rate f equal to or higher than their maximum temporal sampling fre-
quency fmax, synchronization will have no effect, as the display always runs at its maximum
sampling frequency. In that case, the delay caused by temporal sampling equals the delay
tDTS,nosync from an unsynchronized display. In summary, this thesis distinguishes two cases
for the delay tDTS,sync:
10 for example Acer Predator XB272, Asus ROG PG258Q
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tDTS,sync ∼

δ(0) ∀f < fmax

U (0, T ) ∀f ≥ fmax.
(3.7)

From these three alternative display temporal sampling synchronization modes, any one
can be inserted into the model from Section 3.6.2, depending on the display system that is
to be modeled. Analog to the camera temporal sampling, CT or SF is not applicable to a
sampling process, as sampling only defines the beginning of a process, not the process itself.

3.4.5.2 Display Processing

Display processing comprises all steps from the start of reading out the graphics buffer until
the first pixel in the display panel starts to change its color to the value requested by the
data in the graphics buffer. The display processing delay hence comprises the delays of the
involved processing steps. There are two main processing steps: data transfer and display
signal processing.

Data transfer is analogous to the raw image transfer from the camera, see Section 3.4.1.2.
Uncompressed images comprise large amounts of data, and transmission of these images
from the graphics buffer to the display requires significant time, even over high speed inter-
faces such as DisplayPort 1.3, which provides 32.4 Gb/s11. The corresponding data transfer
delay can be computed using Equation (3.3).

Once image data arrives at the display, the signal processing unit in the display uses
the data in its panel driver to control the pixels of the display panel. Some monitors apply
extended data processing, for example color correction, or they artificially increase the tem-
poral sampling frequency by interpolating video images. The optional presence of such steps
explains the large display processing delay value range observed for monitors. For televi-
sion displays with heavy processing, values of tDP > 100 ms12 have been observed, while for
gaming monitors such as the ACER XB270H, tDP = 5.69 ms were measured, see Table 6.1.

Both steps in display processing are CT operations, the raw image data is not entirely
buffered between any of these steps.

3.4.5.3 Display Pixel Response

The display processing unit applies a voltage to the pixels, corresponding to the light inten-
sity that a pixel should emit. The pixels of a monitor panel, however, do not immediately
respond to a changing voltage, they require the pixel response time of tDPR to reach the
new light intensity state. The model-specific value of tDPR depends on the underlying pixel
technique. Panels that utilize active, light-emitting pixels such as organic LEDs (OLEDs) or
plasma cells exhibit a pixel response time tDPR < 0.1 ms. Competing display technologies
such as liquid-crystal displays (LCDs) employ a white backlight for the entire panel. Each
pixel partially blocks light such that the image is generated. Using such light filters as pix-
11 https://vesa.org/featured-articles/vesa-publishes-displayport-standard-version-1-4/, last visited 01.10.2018
12 https://displaylag.com/display-database/, last visited 01.10.2018

https://vesa.org/featured-articles/vesa-publishes-displayport-standard-version-1-4/
https://displaylag.com/display-database/
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els is slower than light-emitting pixels, and gives delays between tDPR = 1 ms for the Acer
XB270H [4] and up to tDPR = 25 ms in older panels [104].

3.5 The Influence of Spatial Image Resolution on G2G and G2A
Delay

Many of the delays presented in Section 3.4 are proportional to the amount of data that the
corresponding block needs to process. The amount of data that an uncompressed image
contains, in turn is proportional to its spatial resolution. While each uncompressed image
of the 4K video from Section 2.3.2 contains 3840 · 2160 · 3 ≈ 24 MB, a Full High-Definition
(FHD) video is spatially sub-sampled to half the number of pixels in both vertical and hori-
zontal direction. Therefore, each raw image contains 1920 · 1080 · 3 ≈ 6 MB, one fourth of the
data. The delays of all blocks which process the raw images are directly proportional to the
amount of data. These are camera processing, frame skipping, color space conversions, and
display processing.

Higher resolution images and videos commonly exhibit greater correlation between spa-
tially neighboring pixels. This is due to the fact that natural signals such as images are dom-
inated by low spatial frequency components [105], which is why a higher spatial sampling
frequency will only yield a small increase in the entropy of an image. Consequently, the
denser, neighboring pixels of a high resolution image are more correlated than the less dense
pixels of its low resolution equivalent. This higher correlation is utilized by encoders, and
therefore higher resolution images and videos provide a higher compression ratio; dividing
the data size of the raw image by the data size of the compressed image yields a greater
factor for high resolution images than for low resolution images. Therefore, delays of blocks
that process compressed images are not directly proportional to the spatial image resolution,
but their delay grows slower than linear with linearly growing data size of the raw images.
The blocks that process compressed images are the encoder and decoder buffers, and net-
work transmission. Encoding and decoding relate approximately linear to image resolution,
as they have to process the raw video images. Due to the discussed nonlinear growth of
entropy, delay growth of the encoder might be a little less than linear in relation to image
size because low entropy images are simple to compress and may not require the encoder
to evaluate all compression options to find an optimal RD solution. Similarly, less complex
techniques used for encoding may lead to faster decoding of an image, resulting in a slightly
less than linear growth of decoder delay relative to image resolution.

3.6 Modelling Glass-to-Glass Delay

Until now, separate models for the G2G and G2A delay contributions have been discussed.
This section gives an overview of the block models and unifies them into theoretical models
for G2G and G2A delay.
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3.6.1 Summary of the Delay Models for Individual Blocks

Table 3.1 provides an overview of the blocks discussed in Section 3.4. In particular, Table 3.1
shows the delay distribution, typical delay values, relevant parameters, and the use and ap-
plicability of CT operation for each block. Note that some delay distributions are assumed to
be deterministic as their real-world delay variations are negligibly small. Frame skipping is
one of the core contributions of this thesis (see Chapter 6), and not yet used in state-of-the-art
video communication implementations.

Table 3.1 also shows typical block delays for low-end as well as for high-end video com-
munication systems. For low-end systems, we assume a 25 Hz camera and display, slow
coders, large buffers, and a great geographical distance between sender and receiver, yield-
ing a high propagation delay. For high-end systems, we assume 60 Hz camera and display
sampling frequencies, and high-end components in the remaining system.

Sampling rates in camera fcam and display fdis are two of the few parameters that we can
influence with reasonable effort. In addition, we can adjust the network data rate C, and in
some settings the distance d between sender and receiver. We can also adjust the weights of
the RD optimization in the encoder, which also influences the decoding delay. Finally, the
video’s spatial resolution can be adapted.

Changing other parameters or algorithms such as camera or display electronics can bring
a significant delay reduction. However, developing alternative implementations for such
complex products entails a great implementation effort and is accordingly out of scope of
this thesis. This thesis will focus on how G2G and G2A delay can be reduced with feasible
implementation effort. The G2G and G2A delay reduction potential of video communication
is further discussed in Section 3.7.

3.6.2 Theoretical Glass-to-Glass Delay Model

All block delays can be unified into theoretical models for G2A and G2G delay. As we are
now interested in delay distributions, this section first defines the probability density func-
tion (PDF) of the delay of a block. The PDF pblock denotes the distribution of the random
variable tblock which represents the block’s delay.

G2A delay is the sum of all delay contributors, it is therefore defined as

tG2A = tCTS + tCP + tFS + 2tCSC + tEnc + tEB + tNetw + tDB + tDec. (3.8)

For G2G delay, we add the three display delay blocks (see Section 3.4.5) to the G2A delay

tG2G = tG2A + tDTS + tDP + tDPR. (3.9)

Both equations (3.8) and (3.9) describe a random variable which is the sum of other ran-
dom variables. If all random variables involved in the sum are mutually independent, the
PDF of the sum of random variables can be computed by convolving the PDFs of the sum-
mands [106]. Mutual independence is not given for the block delays of a video commu-
nication setup. Consider, for example, an image with spatially complex patterns. In the
compressed version, the image will exhibit a greater size than images with simple spatial
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patterns. Compressed image size affects, for example, tEB and tNetw. Therefore, these delays
are not pairwise independent, which excludes mutual independence [106].

Still, the measurements in Table 6.1 and Section 6.5 show that the error introduced by the
false assumption of mutual independence is insignificant. Hence, we assume mutual inde-
pendence to simplify the following derivations. With this assumption, the PDF of G2A delay
tG2A equals the convolution

tG2A ∼ pG2A(t) = (pCTS ∗ pCP ∗ pFS ∗ pCSC ∗ pEnc ∗ pEB ∗ pNetw ∗ pDB ∗ pDec ∗ pCSC)(t) (3.10)

of all blocks from Figure 3.1 and Table 3.1 except the three display blocks. As a consequence
of Equation (3.9), the display blocks are included in the PDF for G2G delay

tG2G ∼ pG2G(t) = (pG2A ∗ pDTS ∗ pDP ∗ pDPR)(t). (3.11)

The models for the delay distribution of tG2A and tG2G are verified in Section 6.5.

3.7 Analysis of Delay Reduction Potential

In Table 3.1, the column showing delay values for high-end video communication systems
gives us a good starting point to identify the blocks with the largest delay reduction poten-
tial. We can see that all delays except tCTS, tDTS, and tDP are smaller than 2 ms. The display
processing delay tDP requires fundamental changes to the display electronics, which is an
extensive topic by itself [107] and out of the scope of this thesis.

Increasing the frame rate of the camera and display, however, is much more viable. Sim-
ilar approaches were taken by Ishii et al. [108], who employ a 2000 Hz camera in a real-time
vision system, and by Watanabe et al. [109] for a 955 Hz real-time shape measurement sys-
tem. However, the significantly increased temporal sampling frequency of these systems
largely increases the data rate of the compressed video. Another approach tries to overcome
temporal sampling using event-based dynamic vision sensors developed by Lichtsteiner et
al. [43]. In these sensors, each pixel is permanently exposed to light and triggers when
the light intensity change exceeds a predefined threshold. They achieve delays as low as
tCTS + tCP = 15µs. However, such sensors do not provide conventional images, and require
fundamental changes to the entire video processing system, including compression and dis-
play.

In summary, adapting display electronics or dynamic vision sensors is out of scope of this
thesis. For video resolution, the parameter recommendation is trivial: use the lowest possi-
ble resolution acceptable in the application, as this yields lowest latency, see Section 3.5. The
two remaining parameters are camera and display sampling frequency, for which this thesis
recommends the highest possible values, given constraints in energy consumption, compu-
tational resources, and circuit properties of camera and displays. To overcome the increase
in data rate of the compressed video, Section 6 proposes frame skipping techniques.



Chapter 4

Delay Measurement

When developing novel low-latency video communication solutions, we need a system to
precisely measure G2A and G2G delay. As Section 2.4.2 shows, existing systems are insuffi-
cient, which is why this thesis proposes novel G2A and G2G measurement systems. These
systems are detailed in this chapter. Besides the main target of retrieving accurate delay mea-
surements, additional goals were to develop a simple and inexpensive measurement system.
The system is therefore easy to recreate using the building instructions and source code1.

Parts of this chapter have been published in [4], [6], and [7].

4.1 Glass-to-Glass Delay Measurement

4.1.1 Measurement Principle

G2G delay comprises all delays from the glass of the camera lens to the photons of the visible
event passing through the glass covering the display panel. A video communication setup
can be interpreted as delaying the propagation of light, as shown in Figure 4.1a. This is uti-
lized by the proposed measurement system. We trigger a light source in the camera’s FoV,
and measure the time until the trigger event is shown on the display. This time difference
equals the G2G delay.

An LED is used as light source. It is triggered at time point t = t0, meaning that the
applied voltage instantaneously rises from U = 0 Volts to U = V1, see Figure 4.1b. The
LED starts emitting light at time point t0. The photons from the LED are captured by the
camera, and the corresponding video is processed as detailed in Figure 3.1. After a certain
time, equaling the G2G delay, the trigger event of the LED is shown on the display. This
means that the display’s pixels depicting the LED transition from a state in which they emit
little light (showing the dark LED) to a state in which they emit much more light (displaying
the bright LED). This state transition is captured by a photo transistor (PT) that is placed on
the display where the LED is shown. The resistance of a PT decreases with increasing light
intensity sensed by it. Thus, when the lighting up of the LED is visible on the display at
time point t = t1, the PT’s resistance will decrease, for example from R = R0 to R = R1, see
Figure 4.1b.
1 https://github.com/cbachhuber/G2GDelay, last visited 30.11.2018
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Camera DisplayProcessing,
Transmission

Light Source
(LED)

Light Sink
(PT)

Light Light

G2G Delay

G2A DelayVoltage Resistance

(a) In the camera’s FoV, we trigger a visual event (LED) at t = t0. The propagation of light is delayed by the
video communication chain. When the light reaches the light sink at t = t1, the G2G delay tG2G = t1 − t0
has passed. For G2A delay measurement, the time point t2 is determined in software. Details regarding the
’Processing, Transmission’ part are given in Section 3.4.

0

(b) Voltage in the light source (LED) and resistance in the light sink (PT). The time difference in the value changes
of the two parameters corresponds to the G2G delay.

Figure 4.1: G2G and G2A delay measurement principle (adapted from [4]).

The corresponding G2G delay tG2G can be computed as the time difference between trig-
gering the LED at t = t0 and the resistance change at the PT at t = t1. The time difference

tG2G = t1 − t0 (4.1)

assumes a perfect measurement system without any inherent delays and without any noise
in voltages, light emissions, or resistance. However, in real implementations, all these imper-
fections are present. The following sections 4.1.2 and 4.1.3 detail how the proposed solution
counteracts such real-world influences.

4.1.2 Hardware System Description

An Arduino Mega 2560 controls the LED. When the Arduino turns the LED on, it simultane-
ously records time point t0, see Figure 4.1. In addition, the Arduino monitors the resistance
of the PT, allowing it to compute time point t1 from Figure 4.1. The Arduino can only read
voltages, which is why a voltage divider converts the resistance of the PT into a voltage mea-
surable by the Arduino. The voltage divider is designed such that when the resistance of the
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PT decreases, the voltage output of the voltage divider increases. This way, the voltage from
the voltage divider is proportional to the brightness that the PT observes.

The LED, PT, and Arduino all exhibit their own delays. For the LED, the relevant delays
are the turn on delay and the optical rise time. Turn on delay defines the delay between the
start of an electrical current through the LED, and emission of the first photons. Optical rise
time is, at full current, the time difference between the LED reaching 10 % of its maximum
light intensity and reaching 90 % light intensity. In modern LEDs, the sum of turn on delay
and optical rise time yields a delay < 10 nanoseconds [110].

PTs exhibit a rise time which is defined as, given an instantaneously enabled light source,
the time it takes to change the resistance from 90 % to 10 % of the maximum resistance range.
Modern PTs show rise times in the range [5, 50]µs [111].

Complex or clocked electronic circuits such as the Arduino require a non-zero time from
a command in software to change or read a voltage until this command is physically exe-
cuted. There is no relevant literature on this topic, the experiments in Section 4.1.4 found
that such delays equal approximately 0.1 ms.

The three presented delays add to the G2G delay reported by the measurement system,
wrongfully increasing it. This is due to the fact that the initial software signal in the Arduino
makes one round trip through the LED (triggering the LED), through the video communi-
cation chain (as first image of the bright led), through the PT (changing its resistance), and
back to software. The measured G2G delays lay in the interval [9, 400] ms, see Section 4.2.
Consequently, the three delays inherent to the measurement system are negligible for sys-
tems with high G2G delay, but become relevant for very low latency systems. The delays
inherent to the measurement system are computed by calibrating it and later subtracted, see
Section 4.1.4.

4.1.3 Signal Processing

The process of retrieving one G2G delay sample is called one delay measurement. The mea-
surement system repeatedly conducts G2G delay measurements until it has obtained a vector
tG2G of G2G delay samples. This vector can be used to retrieve statistics such as minimum,
mean and maximum G2G delay for a video communication system. The procedure of re-
peated measurements is shown in Algorithm 1 and explained in the following.

One delay measurement starts by enabling the LED, and implicitly recording time stamp
t0 by starting to log the resistance of the PT simultaneously. The system measures the PT’s
resistance by sampling the voltage of the voltage divider which the PT is part of. The voltage
sampling frequency is fmsmt = 2 kHz in the proposed implementation, but can be increased
if greater temporal accuracy is required. The voltage is quantized to 10 bit, yielding 1024
voltage levels. After turning on the LED, the Arduino records a predefined number of volt-
age samples, for exampleN = 1000 samples, over a time period of 0.5 s and saves them to the
voltage sample vector a. Next, the Arduino turns off the LED and applies post-processing to
the voltage samples a as described in Section 4.1.3.1 to suppress noise and backlight flicker.
This gives the filtered voltage sample vector b. The system utilizes Algorithm 2 from Sec-
tion 4.1.3.2 to determine t1. As part of Algorithm 2, the Arduino system computes the G2G



46 Chapter 4. Delay Measurement

Algorithm 1: Procedure for Repeated G2G Delay Measurements
Data: Length K of desired G2G delay sample vector, PT resistance sample count N
Result: G2G delay sample vector tG2G

1 begin
2 for i← 1 to K do
3 Enable LED, start sampling PT resistance
4 Record N PT resistance samples, store in vector a
5 Disable LED, apply post-processing filter (4.3) from Section 4.1.3.1 to a,

yielding filtered vector b
6 Compute G2G delay sample tG2G,i by applying Algorithm 2 from

Section 4.1.3.2 to vector b
7 Store tG2G,i in the corresponding position in vector tG2G

8 Wait for a random time, as detailed in Section 4.1.3.3

delay sample
tG2G,i = t1 − t0 − tinh, (4.2)

where tinh are the delays inherent to the measurement system presented in Section 4.1.2. The
value tG2G,i is finally reported as G2G delay sample and stored in the vector tG2G of G2G
delay samples. Before starting the next measurement, the Arduino waits for a random, short
time period, as detailed in Section 4.1.3.3 to avoid correlation of subsequent measurements.
After enough, for instance K, G2G delay samples have been recorded, they can be further
analyzed in order to extract delay statistics of the system under test.

4.1.3.1 Backlight Flicker Suppression

Modern LCDs utilize LEDs to provide backlight for the panel. To adjust the backlight lu-
minance, these displays employ pulse-width modulation (PWM). The voltage applied to the
LEDs is not constant, but sampled at a high frequency of, for example, 400 Hz to ensure that
flicker is imperceptible. At 100 % brightness, the LEDs of the backlight are always turned on
during one backlight sampling period, but for 50 % brightness, the LEDs can be turned on
for 50 % of one backlight sampling period, and turned off for the other 50 % of the time. Man-
ufacturers use PWM instead of adapting the voltage of LEDs because LEDs slightly change
their emitted light color with changing current [112], PWM is easy to implement in digital
systems, and PWM allows for a great luminance range.

For G2G delay measurement with a PT which samples the display’s luminance with a
frequency of fmsmt = 2 kHz, backlight PWM leads to a suboptimal signal, see the unfiltered
signal a in Figure 4.2. Similar patterns are observed when measuring on display panels such
as plasma, in which an electric discharge creates an extremely short burst of light at an im-
perceptibly high frequency. To be able to detect a consistent brightness increase in such a
display, we need to detect a consistent rise of voltage at the voltage divider. To do so, we
first filter the voltage samples a. The filtered signal b should have two properties: first, it
should be smooth, such that the voltage variations caused by PWM are not visible anymore.
Second, the voltage values of the filtered signal b should increase as soon as there is a voltage
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Figure 4.2: Voltage samples measured with a frequency of fmsmt = 2 kHz at the voltage divider.
Backlight PWM with 400 Hz can be observed in the unfiltered signal a, as each PWM period lasts
five voltage samples. A significant rise in the voltages starts at sample 44, this is when the luminance
observed by the PT consistently increases. The filtered signals bk50 and bk5 for the two different filter
lengths k = 50 and k = 5 coincide for the majority of samples.

increase in the unfiltered signal a, such that there is no delay introduced by the filter. A filter
that satisfies these requirements is a maximum filter. Each filtered sample bi of sample vector
b is computed

bi = max
max(0,i−k)≤j≤i

(aj) (4.3)

as the maximum value of the current and the past k unfiltered voltage values aj . Figure 4.2
shows an original signal a with two possible filtered versions for k = 5 and k = 50. The filter
length k has to be parametrized such that the filter covers at least one backlight PWM period.
A filter length k longer than the backlight PWM period does not alter the position of a true
rising sample in this application, see Figure 4.2. This is why k can be set to large values. A
simple rising edge detection, detailed in the following, can be applied to the filtered voltage
vector b.

4.1.3.2 Rising Edge Detection and G2G Delay Computation

Given vector b, the measurement system needs to find the sample index i where the voltage
is starting to increase consistently (rising edge). The corresponding algorithm is summarized
in Algorithm 2 and detailed in the following.

As can be seen in Figure 4.2, there can be a rising edge in the beginning of the filtered
voltage samples b, which is caused by PWM and not by a consistently increasing brightness
of the display panel. To avoid a wrongful rising edge detection, we start the detection after
a predefined number of j samples, such that j samples cover at least one backlight sampling
period. The start sample j has to be chosen to be smaller than the expected smallest position
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Algorithm 2: Rising Edge Detection and G2G Delay Computation
Data: Vector b of filtered voltage samples, measurement sampling frequency fmsmt,

inherent delay tinh, thresholds nthr and mthr, start sample j
Result: G2G delay tG2G

1 begin
2 sprev ← 0, scurr ← 0, n← 0, m← 0
3 N = length(b)
4 for i← j to N do
5 sprev ← scurr // Previous slope
6 scurr ← bi − bi−1 // Current slope
7 if scurr ≥ 0 and sprev ≥ 0 then
8 n← n+ 1 // Increment number of subsequent ascents
9 m← m+ scurr // Update cumulative slope

10 if scurr < 0 then
11 n← 0 // Reset
12 m← 0 // Reset

13 if n > nthr and m > mthr then
14 break // Found rising edge at current sample i

15 tG2G ← i
fmsmt

− tinh

index i of the rising edge. In modern video communication systems, this is not an issue as
the periods of backlight sampling are much smaller than G2G delays.

Next, the algorithm loops over the voltage sample vector b by incrementing index i. For
each i, the system computes previous (sprev) and current slopes (scurr) as the differences of
neighboring samples. If both slopes are greater than or equal to zero, Algorithm 2 increases
the number of subsequent non-negative slopes n, and adds the current slope scurr to the cu-
mulative subsequent slopes m. Only if the current slope is negative, the system resets the
two variables m and n. This way, Algorithm 2 does not discard positive slopes in the case
in which samples bi are plateauing. This happens for monitors with sampling frequencies
lower than the measurement system’s sampling frequency fmsmt, see voltage samples 45 to
48 in Figure 4.2.

In the final step during each loop, in line 13 of Algorithm 2, the algorithm checks whether
the tracking variables m and n have exceeded their thresholds mthr and nthr. This would
indicate the presence of a consistently rising edge at the current voltage sample with index
i. In this case, we break from the loop (line 14) and retain the value of i, which is where the
rising edge starts.

Finally, in line 15 of Algorithm 2, the system computes the G2G delay tG2G according to
Equation (4.2). Line 15 corresponds to equation (4.2) as the system starts sampling voltage
values when the LED is triggered, therefore at t0, i = 0. When a rising edge is detected, we
break from the loop, which happens when the brightness at the monitor is increasing, at t1.
Thus, the time difference t1 − t0 is, except errors from sampling in the measurement system,
equal to the rising edge index i multiplied with the measurement sampling period 1/fmsmt.
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Figure 4.3: Without measures to decorrelate G2G delay measurements, considerable correlations can
be observed.

The most relevant parameters of Algorithm 2 are mthr and nthr, defining after how many
voltage increases (nthr) and after which cumulative voltage increase (mthr) the system de-
tects a rising edge. In the empirical experiments, it was shown that values nthr = 2 and
mthr = 34 mV enable a robust and reliable rising edge detection. These parameter values
largely depend on the specific implementation; the proposed implementation, for example,
uses an OSRAM LPT80A as PT, and an 11 kΩ resistor in the voltage divider.

4.1.3.3 G2G Delay Sample Decorrelation

As motivated in Section 2.4.2, if no countermeasures are taken, groups of subsequent G2G
delay measurements will be correlated. This is caused by the fact that both the video com-
munication system under test and the measurement system are sampling systems which
record data (a video image or a set of voltage values b) at constant sampling periods. Note
that in this context, the measurement system’s delay measurement frequency (one loop in
Algorithm 1) is debated, not its voltage sampling frequency fmsmt. The delay measurement
frequency can, for instance, be one G2G delay measurement per second. Consequently, the
delay measurement system will observe the other system only at a few different phase shifts.
This concept becomes understandable by the use of an example: assume that both sampling
processes in the video communication systems run at a frequency of exactly 60 Hz, all other
delays are constant, and we take G2G delay measurements at a frequency of precisely 1 Hz.
In this case, the measurement system will always report the same tG2G. Measurements of
a USB camera to PC setup with an approximately constant measurement period are shown
in Figure 4.3. We can observe that the system reports only a few delay values, according to
the phase shifts between the sampling processes. Also, given past delay measurements, it is
possible to predict the following measurement to some extent.

This scenario should be avoided because of two reasons: first, it does not capture or only
partially captures the effect of the uniformly distributed sampling delays tCTS and tDTS.
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Usually, events in the camera’s FoV are not synchronized to the sampling process, which
should be represented by the measurement system. Second, the information gained by a
new measurement is very little because of the large correlation.

Decorrelation of the measurements is achieved by waiting for a random time after each
G2G delay measurement has been completed. Using this technique, each new G2G delay
measurement has no correlation to previous measurements and is distributed according to
Equation (3.11), which incorporates both uniform sampling delays tCTS and tDTS.

4.1.4 System Evaluation

The G2G delay measurement system is first evaluated in terms of correctness of the rising
edge detection in Algorithm 2. An oscilloscope is connected to both the LED and the volt-
age divider including the PT to observe the LED’s voltage and the PT’s resistance. The LED
voltage is used to trigger a measurement in the oscilloscope. The oscilloscope records PT
resistance data comparable to Figure 4.2, from which the rising edge and the corresponding
G2G delay tG2G can be manually extracted. The manually computed G2G delay value is then
compared to the value reported by the measurement system. This confirms that Algorithm 2
is working correctly.

In addition, the analysis from Section 4.1.2 did not result in a precise value for the delay
tinh inherent to the measurement system. As a consequence, we need to calibrate the system
to find tinh. Calibration is performed by removing the video communication system from
Figure 4.1a. In this case, LED and PT are spatially co-located, and t1 = t0. This way, Equa-
tion (4.2) simplifies to tG2G = tinh, so the measurement system will report the inherent system
delay tinh as G2G delay tG2G. This approach found an inherent delay of tinh ≈ 0.255 ms for
the measurement system.

Given the fully calibrated system, the only inaccuracy in reported G2G delay values oc-
curs because of the temporal sampling of the PT resistance at fmsmt = 2 kHz. The corre-
sponding sampling period Tmsmt = 0.5 ms defines the accuracy of the measurement system.
For the following experiments, an accuracy of 0.5 ms proved to be sufficient. Still, if required,
the system’s accuracy can be increased by increasing the voltage sampling frequency.

4.2 Glass-to-Glass Delay in State-of-the-Art Video Communica-
tion Systems

The G2G delay measurement system enables a survey of the state-of-the-art G2G delay in
video communication [6]. This survey should analyze how much delay reduction necessity
and potential are given in modern video communication applications.

4.2.1 Video Communication Systems under Test

Four categories of video communication systems were examined: video conferencing appli-
cations, video transmission for teleoperation, the camera applications of smartphones and
low delay video communication prototypes. These are detailed in the following.
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4.2.1.1 Video Conferencing Applications

As representatives for video conferencing applications, three of the most popular video chat
services were chosen: Microsoft Skype, Apple FaceTime and Google Hangouts. In addition, the
open source platform Jitsi Meet was tested. All services were tested with two Apple MacBook
Air as sender and receiver. The laptops were sharing the same wired network in the same
room. Jitsi Meet was hosted by the Leibniz-Rechenzentrum in Munich2.

4.2.1.2 Video Transmission for Teleoperation

With increasing network capabilities and decreasing latencies, video-supported teleopera-
tion is becoming more and more commonplace. Therefore, we look into different teleopera-
tion systems: first, a DJI Phantom 2 Vision + quadrocopter drone connected via wireless LAN
to a Samsung Galaxy S4 for displaying the live video.

Second, a first person view (FPV) system offered by FatShark. An analog (FatShark Ana-
log) camera, the 600TVL Sony Super Had II CCD, is mounted on a quadrocopter drone and
records a video with 50Hz. The video is transmitted using analog wireless communication
and finally displayed with again 50Hz in the FatShark Dominator 2 FPV goggles worn by the
drone pilot.

Third, the analog camera and transmission system is replaced by a digital system (Fat-
Shark Digital), the Connex Prosight HD, which transmits the 30Hz video digitally, but still
uncompressed. The FatShark goggles are again used as displaying device, but now with
60Hz.

Fourth, an Oculus Rift 2 Development kit HMD is being tested. The Oculus display is at-
tached to the low delay video communication prototype described in Section 4.2.1.4. It is
employed in Extended Display Mode3, such that the HMD is handled as an additional dis-
play and the video can be directly shown on it without the need to perform any rendering
for virtual reality.

4.2.1.3 Smartphones

To demonstrate the G2G delay of just the hardware in mobile devices, the G2G latency of
the built-in camera applications is measured. This is the time from an event taking place in
the smartphone camera’s FoV until this image has been processed in the smartphone (for
example color correction) and is shown in the live preview of the camera application on the
smartphone’s display. Five smartphones are investigated: the LG Nexus 4, the Huawei Nexus
6P, Huawei Mate 20 Pro, the Apple iPhone 6, and the Apple iPhone XR.

4.2.1.4 Low Delay Video Communication Prototypes

Finally, it should be shown that video transmission applications can be tuned for very low
G2G delay. To this end, this thesis proposes two low delay prototypes. Both employ a Ximea
2 https://meet.lrz.de/, last visited 14.02.2019
3 https://developer.oculus.com/documentation/pcsdk/0.4/concepts/dg-monitor-setup/, last visited

13.02.2019

https://meet.lrz.de/
https://developer.oculus.com/documentation/pcsdk/0.4/concepts/dg-monitor-setup/
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MQ022CG-CM USB 3.0 industrial camera and an Acer XB270H monitor. The first prototype
(Raw Prototype) directly feeds the raw images of the camera running at 200 Hz to the display,
which is employing a sampling frequency of 144 Hz.

The second prototype (Coding Prototype) takes the uncompressed video from the cam-
era at 240 Hz, encodes it using the x264 [61] software encoder with very low delay settings
and transmits the encoded video stream over a network with a channel rate of C = 1 Gbit/s
to a second PC. The second PC decodes the video using the libav decoder4 and displays it on
the Acer XB270H display which is running at 144 Hz. The Coding Prototype represents the
general point to point video communication chain from Figure 3.1.

4.2.2 Discussion of Results

For every system, the survey took K = 500 G2G delay measurements. Table 4.1 shows the
measurement results for all systems and the corresponding box plot is shown in Figure 4.4.
The results provide several interesting insights: first, one can clearly see how conversational
applications such as Skype, FaceTime, Hangouts and Jitsi Meet have high G2G delays of over
100 ms up to almost 400 ms in the case of Google Hangouts. It is obvious that all video confer-
encing applications satisfy the recommendation of the ITU to have a communication delay
of at most 400ms [113]. They do not try to achieve lower latencies, as an average latency
of 250 ms is acceptable in conversational video communication. Instead, video conferenc-
ing applications minimize the number of playback interruptions given possibly unreliable
channel rates by using large encoder and decoder buffers. In addition, these applications
allow a high encoder and decoder complexity and enable B-Frames (see Section 2.3.2.4) for
an optimal compression efficiency.

Jitsi Meet experienced a short time with high G2G delays, as can be seen in Figure 4.4. Af-
ter that, it returned to the G2G delays seen previously. This might have been caused by high
server occupancy or cross-traffic. Ping tests between north American and European servers
yielded a mean round-trip time of 141 ms. Between Europe and Australia, the round-trip
time was 410 ms. By adding half of these delays to the measured videoconferencing delays
in Table 4.1, the local video conferencing measurements can be extended to intercontinental
measurements. In case of the largest additional delays (410/2 = 205 ms), the average G2G
delays of video conferencing applications just exceed the ITU recommendation of 400 ms. Re-
specting the point-to-point connections with the longest data propagation time might have
been a design constraint for these applications.

Second, we see that the DJI Phantom system has a mean G2G delay of 255 ms similar
to the video conferencing software. In case of the DJI Phantom, this is acceptable because
DJI quadrocopter drones are designed for recording cinematic videos and not for more dy-
namic scenarios such as the FatShark systems. Fatshark’s analog video transmission exhibits
a significantly lower G2G delay with an observed mean of 28.33 ms, the digital variant has a
mean delay of 57.35 ms. Note that for both FatShark systems, no video compression is taking
place.
4 www.libav.org, last visited 09.10.2018

www.libav.org
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Minimum [ms] Mean [ms] Maximum [ms] Std. deviation [ms]

Skype 121.15 233.73 374.14 47.52

FaceTime 180.41 222.47 274.75 18.31

Hangouts 131.58 267.69 385.98 65.71

Jitsi Meet 182.53 236.17 372.80 29.89

DJI Phantom 210.81 254.66 330.43 20.68

FatShark Analog 19.97 28.33 38.98 5.26

FatShark Digital 42.69 57.35 79.81 7.59

Oculus Rift 30.08 46.23 57.22 5.59

Nexus 4 66.56 102.42 176.25 18.07

Nexus 6P 63.11 92.98 127.49 13.41

Nexus 6P Video 53.82 84.10 109.95 11.93

Mate 20 Pro 56.96 80.71 107.01 11.04

iPhone 6 54.20 76.06 101.05 10.31

iPhone XR 85.95 106.78 129.91 10.31

Raw Prototype 9.28 14.67 20.29 2.44

Coding Prototype 13.83 19.18 33.47 2.56

Table 4.1: G2G latency statistics of the delay survey of state-of-the-art video communication systems.
For each system, the statistics are based on 500 G2G delay samples (adapted from [6]).

Third, we see a comparably large G2G delay in the Oculus Rift. The same system as in the
Raw Prototype described in Section 4.2.1.4 is used, the only difference is the output device.
This is either the Oculus Rift or the Acer XB270H. The G2G difference is on average 31.56 ms.
Oculus Chief Scientist Michael Abrash recommends a G2G delay of 15 ms or even 7 ms5

for augmented reality applications. The company hence has to drastically improve the delay
characteristics of the device. We could not perform comparable measurements with the more
recent Oculus Rift Consumer Version 1 HMD, as this product does not support the Extended
Display Mode. The Consumer Version 1 HMD can only be utilized by applications which are
based on Oculus’ virtual reality libraries and drivers. Hence, it would be necessary to render
the video within a three-dimensional virtual reality scene supported by Oculus, and then let
Oculus’ drivers transfer the image to the HMD. This adds two unknown delays: the render-
ing delay and the delay contributed by Oculus’ HMD driver. In conclusion, measuring the
G2G delay of a video transmission setup that uses the Consumer Version 1 HMD would in
addition to delays inherent to the display (see Section 3.4.5) include the rendering delay and
the unknown delay of Oculus’ HMD driver. This would be neither a fair nor an insightful
comparison to the other displays in this paragraph, thus the Oculus Rift Consumer Version 1
5 http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/, last visited 10.10.2018

http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
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Figure 4.4: Box plots of the G2G delay of the evaluated systems. The box contains 50% of the mea-
surement samples surrounding the median, which is represented by the red line. The whiskers end
at the sample most distant from the median, at the same time the whisker’s length is at most 1.5 times
the box width. Samples more distant from the median are denoted with red pluses (adapted from [6]).

is not included.
Fourth, for the Nexus 6P, we compare the G2G delay when the camera application was

in the photo mode (Nexus 6P) versus the video mode (Nexus 6P Video). There is roughly
a 10 ms difference between the modes, indicating that additional processing or buffering is
performed before the video stream is displayed in the photo mode. For other smartphones,
we only report the photo modes, but we saw similar latency differences when switching to
video modes and even larger differences when switching to slow-motion modes with high
frame rates and short camera sampling periods. The rather high G2G delays in smartphones
show that additional processing is taking place, leading to a considerable G2G delay even
though no video transmission is involved. Smartphone manufacturers seem to be satisfied
with the G2G latencies of the camera applications of their devices, as there is no clear trend
towards lower latencies when comparing the delays of older (for example Nexus 4, released
in 2012) and more recent devices (for example iPhone XR, released in 2018) in Figure 4.4. For
camera applications, customers probably prefer additional functionality such as face detec-
tion and complex image enhancements over ultra low latencies.

Fifth, to demonstrate that video systems can meet the low latency requirements of 5G [22]
and the Tactile Internet [23], let us next discuss measurements for the delay-optimized pro-
totypes. The Raw Prototype performs as expected, the Coding Prototype has two outliers
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at 30.66 ms and 33.47 ms, as shown in Figure 4.4. This is due to the fact that the involved
computers are not running a real-time operating system and interrupts and scheduling of
the operating system cause delays. Without those outliers, the system achieves a maximum
delay of 24.54 ms and a mean delay of 19.13 ms. With real-time kernels, a video transmission
prototype that can guarantee such a low worst-case delay could be developed. When com-
paring the average G2G delays of the raw prototype (14.67 ms) and the Coding Prototype
(19.18 ms), we see the difference is less than 5 ms. Hence, the Coding Prototype performs all
steps related to encoding, network transmission and decoding in less than 5 ms.

Overall, many of the studied video applications have large G2G delays. As investigated
in [7], the camera and display delay contribute approximately 30 ms delay in a state-of-the-
art video communication setup. The remaining significant G2G delay contributors are data
processing such as color conversion and image compression, which is usually in the one-
digit millisecond domain, buffering, and propagation. The last two can vary widely for
different applications. The proposed prototypes show, that with off-the-shelf technology,
one can achieve very low G2G delays. With adapted hardware and algorithms novel ap-
plications in collaborative gaming, education, teleoperation and automated visual process
control become possible.

4.2.3 Comparison to Related Work

Other authors previously measured the delay of video communication applications. The re-
maining paragraph performs a comparison and evaluates the technological progress in the
field. For Skype, this thesis found an average delay of 234 ms, which is close to Boyaci’s mea-
surement of 233 ms [75] and Jansen’s [76] 274.5 ms one-way delay, but quite different from
Xu’s results with 156 ms [114]. Influences from network and server occupation can explain
the difference. For the FaceTime predecessor iChat, Xu et al. [114] measured 220 ms average
delay, which compares very well to the recorded measurement of 222 ms. The difference is
larger for Google Talk, with a measured delay of 99ms by Boyaci et al. [75], comparing to the
successor Hangouts with a mean G2G delay of 267.69 ms, as measured in the experiments
of this thesis. Xu et al. [114] measured a mean delay of 180 ms in the Hangouts predecessor
Google+. Again, server and network occupation are most probably responsible for the dif-
ference. Considering that the delays measured in related work in the years 2009 to 2013 show
almost no difference to the new results from 2017, there was no progress related to latency in
the field of video conferencing.

The comparisons become more interesting for augmented reality systems. In 1993, Mine
[115] measured 70 ms from the computer until the corresponding image is displayed, Siel-
horst et al. [74] measured 50 ms to 230 ms G2G delay in 2007, and this thesis found on average
50 ms for the Oculus Rift. In HMDs for augmented reality, a clear progress is identifiable.
The reason for this development is that in contrast to conversational video, augmented re-
ality applications are required to strive for an extremely low delay video transmission for a
good user experience [27].
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4.2.4 Accordance of Measurement Results with the Theoretical Delay Model

The theoretical G2G delay model (3.11) is a convolution of many delay contributors. From
these, most are deterministic, or their standard deviations are small. As analyzed in Sec-
tion 3.7, the temporal sampling processes in both camera and display contribute significant
delay and significant delay variation. The corresponding delays are both uniformly dis-
tributed, see Table 3.1. Thus, Equation (3.11) can be simplified to a convolution of a shifted
dirac function representing the delays of all processing blocks except the two temporal sam-
pling processes, and two uniform distributions, representing the two sampling processes.
Note that the two uniform distributions are not necessarily identical, they depend on the
temporal sampling frequencies chosen for camera and display.

It is straightforward to show that the convolution of two identical uniform distributions
gives a triangle distribution, with a width equal to two times the width of the uniform dis-
tributions. When the uniform distributions provide different supports (widths), the result
of their convolution will be an isosceles trapezoid. Imagine uniform distribution A with a
support [0, 16] ms and uniform distribution B with a support of [0, 50] ms. When shifting
the flipped version of A over B, the convolution result C will contain an ascending ramp
for t ∈ [0, 16] ms, and be constant for t ∈ [16, 50] ms, just to end with a descending ramp in
t ∈ [50, 66] ms. Distribution C has the shape of an isosceles trapezoid with a support width
equal to the sum of the support widths of A and B. The ramp widths equal the width of the
distribution with smaller support, in this example distribution A.

Convolving distribution C with a dirac distribution representing a constant delay would
shift the distribution by the constant delay to the right. From the resulting distribution D,
the minimum or leftmost point of the support thus indicates the constant delay in a video
communication solution.

The previous insights can be used to analyze the delay contributors, given a G2G delay
distribution as in Figure 4.5 for a Huawei Nexus 6P. In Figure 4.5, the shifted isosceles trape-
zoid can be seen. The minimum G2G delay is equal to 63.11 ms, see also Table 4.1. This
is the constant delay contributed by elements such as camera and display processing. The
width of the distribution in Figure 4.5 is equal to 127.49−63.11 = 64.38 ms. Additionally, the
display of the Nexus 6P has a sampling rate of 60 Hz. These two facts can be used to deter-
mine the sampling rate of the video: the support of the display sampling delay distribution
is 16.6 ms wide, see Equation (3.5). In addition, the widths of the ascending and descending
ramps equals approximately 16 ms. Consequently, the support of the distribution of camera
temporal sampling has to equal 64.38− 16.6 ≈ 48 ms. Hence, the camera temporal sampling
rate is approximately 20 Hz. This low temporal sampling rate of the live video preview of
the camera application can be perceived when using the camera application.

In summary, the measurements are in accordance with the theoretical delay model (3.11).
A more detailed comparison of measurements to the theoretical model, including parameters
for all delay contributors, is given in Section 6.5.
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Figure 4.5: G2G delay distribution of 500 delay measurement samples of the camera application of a
Nexus 6P smartphone (adapted from [6], © 2017 IEEE).

4.3 Glass-to-Algorithm and other Delay Measurements

Until now, the measurement system can only perform G2G delay measurements. However,
we have analyzed the video communication pipeline (Figure 3.1) in great detail and want to
confirm the theoretical analysis through practical measurements. Consequently, we need to
measure delays between other points of the video communication pipeline. To do so, this
thesis proposes a G2A delay measurement system in this section. The system can be used to
measure G2A and other delays along the video communication chain.

4.3.1 Measurement Principle

For a G2A delay measurement, we still need a visual event taking place at time point t0, as
in Figure 4.1a. Consequently, we trigger an LED at t0 in the camera’s FoV. Next, the system
shall determine when the visual event is first visible in an image after the color conversion
after the decoder. Once the computer containing the decoder and color converter detects this
event (at time point t2 in Figure 4.1a), it sends a signal to the measurement system. Finally,
the measurement system computes G2A delay

tG2A = t2 − t0 − tinh,2, (4.4)

as the time difference between the two points and subtracts the delay inherent to the G2A
measurement system tinh,2.
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4.3.2 Hardware System Description

An Arduino Mega 2560 still controls the LED and determines tG2A. For the required time
point t2, an electronic signal is sent from the computer processing the decoded image to the
Arduino system. To realize this with lowest latency, the measurement system is connected to
the receiver (computer) using an RS-232 serial port, if available. A USB connection can also
be utilized, but introduces higher inherent latency because of the polling interval of at least
0.125 ms6.

4.3.3 Signal Processing

In terms of signal processing, the G2A delay measurement system is identical to the G2G
delay measurement system with the exception of the determination of the second time point
t2. The G2A delay measurement system only needs to record the time stamp when the com-
puter signals that it detected the visual event in a frame. Therefore, the more complex part
is detection of the visual event in the video.

Detecting the turning on of the LED in software is simplified by two measures in the pro-
posed implementation: the lighting of the scene around the LED is constant and the position
of the LED is in the top left corner of the video image. With these constraints simple pixel
thresholding can be used, meaning that if the brightness of the top left pixel increases more
than a predefined threshold, the LED is just turning on, the visual event is taking place (t2).
This information is then forwarded to the Arduino measurement system for the computation
of tG2A.

4.3.4 System Evaluation

The inherent delay tinh,2 of the G2A measurement system equals the sum of the LED turn-
on time, the pixel detection time, and the processing delay of the RS-232 serial port. These
delays are small (� 1 ms) as they are, except the LED, low-level processes. Compared to the
G2A values measured in Section 6.1.4, they are negligible.

Compared to the G2G delay measurement system, the advantage of non-intrusiveness
from Table 2.2 is not given anymore since we need to adapt the video communication sys-
tem. Now, the advantage is that the system can perform Glass-to-Anything (G2X) delay
measurements. In G2X, G is the camera glass and X is any point in the video transmission
pipeline at which the uncompressed image is available. Point X can, for example, be where
the image from the camera is available in the connected computer for the first color conver-
sion. This would define the delay between the visual event taking place in the real world
and the corresponding recorded image being ready for color conversion and encoding, see
Figure 3.1.

6 USB Specification Revision 2.0, Table 9-13 on page 271
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Perception of Temporal Sampling

5.1 Relevance to Glass-to-Glass Delay Reduction

Section 3.7 showed that increasing the temporal sampling frequencies of both the camera
and the display offers great potential for G2G delay reduction. The algorithms proposed in
Chapter 6 therefore utilize high sampling rates. To avoid an inflation of data that needs to
be processed and transmitted, this thesis also proposes frame skipping algorithms. These
algorithms reduce the video’s frame rate while ensuring that visual events are immediately
transmitted. In this context, uniform and irregular sampling become relevant: uniform sam-
pling is a sampling process in which new data is sampled at constant time periods, meaning
that the time period between two subsequent data samples is equal to the time period be-
tween any other pair of subsequent samples. Conventional cameras record videos using
uniform sampling and yield images (data samples) with a time period of, for example, 40 ms
sampling period between each pair of subsequent video images. Irregular sampling breaks
with this constraint and allows arbitrary time periods between subsequent images. Skipping
frames from a uniformly sampled video yields an irregularly sampled video with a variable
update rate.

Humans can perceive the temporal sampling process and distinguish the video from a vi-
sual sequence that is continuous in time if the update rate of the video images is low enough.
In consequence, uniformly as well as irregularly sampled videos have to maintain a min-
imum update rate to avoid perception of temporal sampling. This minimum update rate
should be when humans are just not able to perceive that the video they are watching is
temporally discrete, and not continuous. Employing higher update rates would require ad-
ditional resources while not improving the perceived video quality. Thus, at the minimum
update rate, the video requires the least processing power and transmission bandwidth with
temporal sampling being imperceptible (the video is perceived smooth or fluid). The mini-
mum update rate for frame skipping is investigated in this chapter, and used in Chapter 6 to
render the process of frame skipping imperceptible to humans.

Some of the ideas and contributions presented in this chapter have been published in [3].
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imperceptible

perceptible

(a) Window of Visibility in one spa-
tial and the temporal frequency do-
main, as in Watson [42].

(b) Window of Visibility in two spa-
tial frequency dimensions, repre-
sented by ω1 and ω2, respectively.
For all spatial directions, the same
threshold ωthr holds.

(c) Volume of Visibility in two spa-
tial and the temporal frequency do-
main.

Figure 5.1: Depiction of the Volume of Visibility, consisting of two cones. Every signal inside gray
areas or volumes is perceptible, any signal outside is not.

5.2 Theoretical Background

The theoretical background of this chapter is grounded on the work by Watson et al. [35] and
Watson [42], briefly introduced in Section 2.1.4. This section provides an in-depth introduc-
tion of the relevant work by Watson et al. [35], [42] and introduces a further analysis created
upon that work.

5.2.1 Window of Visibility

Watson et al. [35] defined the Window of Visibility (WoV), which was revised by Watson [42]
based on perception data obtained by Robson [116]. The revised WoV is depicted as gray
parallelogram in Figure 5.1a. The window shows the perception thresholds in one spatial
frequency domain (ω [cycles/degree]) and the temporal frequency domain (f [Hz]). Visual
information within the window is more or less visible to the user, everything outside is not.
Thus, the WoV can be seen as a low-pass filter. The shape of the window indicates that the
perception thresholds of temporal and spatial frequency are dependent [42], and hence, the
WoV is not a separable filter.

For simplicity, the WoV covers only one spatial dimension, but can be extended in a
straightforward manner to two spatial dimensions. A second spatial dimension is given in
Figure 5.1b. The spatial frequency dimensions are named ω1 and ω2, respectively. In the
plane spanned by the two spatial dimensions, the shape of the WoV is a disk because, as
Section 5.4.4 shows, only motion magnitude, not motion direction is relevant for the percep-
tion limit. Together with the diamond-shaped WoVs in both spatiotemporal planes, the disk
in the spatial plane yields the Volume of Visibility (VoV) in the three dimensional space. The
volume consisting of two cones in two spatial and the temporal dimension is depicted in
Figure 5.1c.

In paper [35], the human temporal flicker frequency threshold fthr was found to be
fthr,1 = 30 Hz and fthr,2 = 33 Hz for two observers. Stationary temporal contrast fluctuations
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slope

(a) Motion of a point through a one dimensional-
space, at constant velocity v. The gray pluses denote
sampling instances.

slope

(b) Spectrum of the moving point, assuming that the
point exhibits infinitely high spatial frequency. Grey
lines are replications at integer multiples of fs = 1/Ts,
caused by sampling.

Figure 5.2: Derivation of the frequency spectrum of a temporally sampled point moving with constant
velocity through a one-dimensional space.

with a frequency higher than fthr can not be seen. For example, the 50 Hz flicker of ceiling
lights is imperceptible to most humans. Analogously, ωthr represents the human spatial sen-
sitivity threshold, where the cycles per degree refer to the point of view of the human. In
their experiments, Watson et al. [35] find that the thresholds are at ωthr,1 = 6 [cycles/degree]
and ωthr,2 = 13 [cycles/degree] for two observers. These values are considerably lower than
the 50 cycles per degree suggested by Yanoff et al. [32]. Also, with such a low spatial resolu-
tion of the human eye, display technology would have long exceeded our spatial resolution
limit, see Table 2.1. The authors in [35] presume that the low contrast of the display they
utilized causes the rather low threshold values seen in their experiments. Experiments with
more test subjects would lead to more generally valid numbers, the preceding values are
only examples.

5.2.2 Critical Sampling Frequency Based on the Window of Visibility

Let us in the following briefly revisit the derivation of the perception and sampling limits
imposed by the WoV, originally derived by Watson et al. [35], [42]. As a representative for
spatial signals, we assume a point which is moving through a one-dimensional space at con-
stant, non-zero velocity v. The point, which is in the beginning of the following derivations
assumed to exhibit infinitely high spatial frequency, is shown in the t-x plane in Figure 5.2a.
In that plane, the motion equation is

p(x, t) = δ(x− vt), (5.1)

where δ(·) is the Dirac function, which equals one if its argument equals zero, and equals
zero otherwise. The Fourier transform of p(x, t) both in time and in space can be derived as
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P (ω, f) = Ft{Fx{l(x, t)}} (5.2)

= Ft{Fx{δ(x− vt)}} (5.3)

= Ft{exp(−jvtω)} (5.4)

= 2πδ(f + ωv) (5.5)

= 2πδ(ω +
f

v
), (5.6)

which uses the Fourier Shift theorem [117] to transform line (5.3) to line (5.4), and the Fourier
pair F{exp(jω0t)} = 2πδ(f − ω0) [117] for the transformation of line (5.4) to line (5.5). Ac-
cordingly, Equation (5.6) describes a line with slope −1/v in the f-ω plane, as shown by the
black line in Figure 5.2b. Next, the point moving through space is temporally sampled with
sampling frequency fs = 1/Ts, as shown by the gray pluses in Figure 5.2a. Sampling in
the temporal domain causes periodic replications of the original spectrum P (ω, f) at integer
multiples of fs, see the gray lines in Figure 5.2b.

Figures 5.1a and 5.2b are merged into Figure 5.3a for the following explanations. For
purposes of this demonstration, the slope −1/v is in Figure 5.3a smaller compared with the
slope in Figure 5.2b. In Figure 5.3a, the slope −1/v is chosen such that the replications of
P (ω, f) intersect with the WoV. These intersections mean that the replications of the original
spectrum pass through the pass-band of the low-pass filter, which is called aliasing. These
aliasing artifacts are what humans perceive as jitter or jerkiness in a temporally sampled
video. Therefore, if the frequency spectra of the replications lie outside the WoV, humans
will not be able to distinguish the time-sampled representation of the moving point from the
continuous representation.

For the overlap of the replications with the WoV, two cases should be distinguished, see
Fig. 5.3a: first, if the slope 1/v < ωthr/fthr, the replications overlap with the top and bot-
tom of the WoV, at high spatial and low temporal frequencies. For such signals with high
velocity (small 1/v), the perceived effect is typically called ”flicker” [42]. Second, for slopes
1/v1 > ωthr/fthr, see the gray line in Fig. 5.3a, the replications overlap at the sides of the
WoV, where low spatial frequency and high temporal frequency is present. This aliasing
case is perceived as ”multiple images” [42]. For the latter case, it is straightforward to deter-
mine the sampling frequency at which aliasing is avoided: if the replications are at positions
greater than fthr, no replications will overlap with the WoV. Thus, in the case of steep slopes,
a sampling frequency greater than fthr suffices to avoid aliasing. This is why in the follow-
ing, we focus on the more interesting case in which the slope of the point spectrum 1/v is
smaller than the slope ωthr/fthr of the WoV boundaries.

The authors in [42] used the WoV to derive an approximation of the minimum tempo-
ral sampling frequency, named critical sampling frequency fc, which alleviates aliasing to a
level below human perception thresholds. The relevant parts of the derivation [35], [42] are
detailed in the following.

There will be imperceptible aliasing if the replicated spectra just touch the top and bot-
tom corners of the WoV, as illustrated in Figure 5.3b. To satisfy this, the temporal sampling
frequency fs,1 has to be equal to or greater than the critical sampling frequency
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slope

slope

(a) The moving point exhibits infinite spatial frequency, the spectrum replications overlap with the WoV for two
different slopes.

slope

(b) No periodic replications overlap with the WoV. Either because fs,i is chosen large enough (thin lines), or due
to the limited spatial frequency ω0 of the moving point (thick lines).

Figure 5.3: The Window of Visibility is depicted as gray diamond shape as in Figure 5.1a. The di-
agonal line (slope −1/v) passing through the origin represents the spectrum of the point moving at
constant velocity v. Due to temporal sampling, the original spectrum is replicated at integer multiples
of the sampling frequency fs, as in Figure 5.2b.

fs,1 ≥ fc = v · ωthr, (5.7)

as can be derived from Figure 5.3b using the definition of a line slope. As a result of the point
symmetry of the WoV and the spectrum of the moving point, this condition also satisfies the
first periodic replication at −fs. If the maximum spatial frequency ω0 of the point (or a gen-
eral object) is lower than the spatial perception threshold ωthr (see Figure 5.3b), the condition
for the sampling frequency fs,2 accordingly changes to

fs,2 ≥ fc = fthr −
fthr
ωthr

· ω0 + v · ω0. (5.8)

Merging conditions (5.7) and (5.8) yields the general condition

fs ≥ fc = fthr −
fthr
ωthr

·min(ωthr, ω0) + v · ω0, ∀v ≥
fthr
ωthr

(5.9)
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as the lower bound for the temporal sampling frequency. The consequential next step is to
limit the temporal frequency to, for example, f0. This is done in [35], but does not give fur-
ther insight in our context. The analysis continues to show how the theoretically derived
Equation (5.9) can be interpreted and applied to real video sequences.

Equation (5.9) leaves us with two key takeaways: first, objects with high speed v, yield-
ing a flatter line in Figure 5.3, require higher temporal sampling frequencies fs to attenuate
aliasing artifacts, making jitter imperceptible. Second, at a given speed v and all spatial fre-
quencies below the perception threshold ωthr, objects with high maximum spatial frequencies
(sharp edges) require higher temporal sampling frequencies than objects with lower maxi-
mum spatial frequencies (blurry/smooth edges).

Watson et al. [35] did not investigate the influence of the exposure time of a camera, and
while Watson [42] provides an analysis of exposure, the analysis does not directly yield the
critical sampling frequency as a function of camera exposure time. Camera exposure time
influences the maximum spatial frequency, as described in the following. As shown in Sec-
tion 2.3.1.2, during the exposure time of a (video) camera, photons keep falling onto the
image sensor. If during the exposure time, the rate at which photons fall onto a pixel is con-
stant, the output from this pixel will perfectly represent what can actually be seen from the
pixel’s perspective. If the rate of photons changes during exposure, for instance if the camera
or object is moving, the pixel’s output will represent the average light intensity recorded dur-
ing the exposure period. This is why quickly moving objects can appear blurred in photos
and videos, exhibiting a limited maximum spatial frequency. The following section formal-
izes how the integration during exposure affects the spatial frequency components of visual
signals.

5.2.3 Analysis of Spatial Frequency Distribution in Real Video Sequences

An object moving through the field of view of a camera with finite exposure time will become
blurred, its spatial patterns low-pass filtered. The following paragraphs show that blurring
caused by exposure time integration will not yield an upper bound in terms of spatial fre-
quency, if the original signal’s spatial frequency was not limited. In addition, this section
provides a function for the distribution of the spatial frequency components in dependence
of object velocity and exposure time.

To illustrate exposure integration, imagine the one-dimensional spatial signal g(x) =

u(x − x0) depicted in the top left graph in Figure 5.4. The following explanations extend
naturally to more spatial dimensions. Function u(·) denotes the Heaviside step function or
unit step function, which is equal to zero for negative arguments, and equal to one for non-
negative arguments. For simplicity, the image signal is normalized to range [0, 1] (where 0
and 1 correspond to black and white, respectively). Thus, the signal represents a perfectly
sharp black-to-white edge. Its Fourier transform [117]

U(ω) = F{u(x)} = πδ(ω) +
1

jω
(5.10)

contains the Dirac function δ(·), which equals one if its argument equals zero, and equals
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Convolution

Figure 5.4: The input signal g(x) moves right with velocity v. Convolution with camera filter h(x)
creates the blurred output signal g′(x). Camera filter h(x) actually is a temporal filter, but in this
example represented by its spatial equivalent for simplicity. Filter width equals exposure time texp
multiplied by speed v, see Equation (5.12). Adapted from [3], © 2018 IEEE.

zero otherwise. The Fourier transform of u(·) has a magnitude |U(ω)| ∼ 1
ω when ignoring the

δ(·) function. Ignoring the Dirac function is reasonable because δ(·) represents the frequency
coefficient for ω = 0, which is not relevant to the maximum frequency we are looking for.

The spatial signal g(x) is a shifted version of u(x), which corresponds to a multiplica-
tion of U(ω) with the complex exponential e−jωx0 [117]. This process does not change the
magnitude of the original frequency spectrum of u(x):

|G(ω)| = |F{g(x)}| = |F{u(x)}| · |e−jωx0 |

= |F{u(x)}| = |U(ω)| ∼ 1

ω
,

(5.11)

so it is still proportional to the reciprocal of ω. Signal g(x) moves to the right at velocity
v, as indicated in the top left graph in Figure 5.4. This process is recorded by a camera with
exposure time texp. Consequently, during the exposure time, g(x) moves

d = v · texp (5.12)

to the right. The resulting, blurred signal g′(x) is depicted in the bottom graph of Figure 5.4.
Note that at each location x, the signal is integrated over time. At locations x < x0, input
g(x) will equal to zero at all times during exposure, and at locations x > x0+d, the input will
equal one at all times during exposure. In these locations, g(x) = g′(x) holds. At x = x0, the
signal on the (one-dimensional) camera sensor is for all times during exposure equal to zero,
except for an infinitesimally small time at the very beginning. Thus, the resulting value in
the blurred image in this location equals zero. At x = x0+0.1 ·d, the signal is equal to one for
ten percent of the exposure time, zero for the remaining 90 percent. Therefore, the resulting
image value equals 0.1. The linear ascend spans the entire exposure time area, yielding the
ramp that can be seen in the bottom graph of Figure 5.4. This linear dependency holds for
every camera exposure process of an object moving at constant velocity.
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The previous insight allows us to formalize how temporal integration during camera ex-
posure affects the spatial frequency of an input signal g(x) moving at constant velocity v. To
simplify the following proof, temporal integration of g(x) during exposure time is replaced
by the convolution g(x) ∗ h(x). The convolution needs to yield the same g′(x) as temporal
integration. To this end, we design the dimensions of h(x) relative to movement speed v and
exposure time texp using Equation (5.12):

h(x) =
1

d
(u(x)− u(x− d)) (5.13)

The convolution g(x) ∗ h(x) will always lead to the same g′(x) as temporal integration
with exposure time texp of a signal g(x) moving at constant velocity v. Filter h(x) is shown
in the top right graph in Figure 5.4. The magnitude of its Fourier transform

|H(ω)| = |F{h(x)}| = 1

d
|F{u(x)}| · |1− e−jωd| (5.14)

equals the magnitude of U(ω) multiplied with the inverse of d and the magnitude of 1−
e−jωd. Let us derive

c(ω, d) = |1− e−jωd| (5.15)

= |1− cos(ωd) + j · sin(ωd)| (5.16)

=
√

(1− cos(ωd))2 + (sin(ωd))2 (5.17)

=
√

1− 2 cos(ωd) + (cos(ωd))2 + (sin(ωd))2 (5.18)

=
√

2− 2 cos(ωd) ∈ [0, 2]. (5.19)

It is important to notice that c(ω, d) is a periodic function in the domain c(ω, d) ∈ [0, 2].
c(ω, d) will therefore not play a significant role for the following proportionality considera-
tions. Consequently, the magnitude from Equation (5.14)

|H(ω)| = c(ω, d)

d
|U(ω)| ∼ c(ω, d)

ωd
(5.20)

approximates 1
d |U(ω)| and, more importantly, is approximately proportional to the recip-

rocal of the product ωd because c(ω, d) ∈ [0, 2]. Thus, the filter width d, which is a function
of texp and v, see Equation (5.12), defines how quickly the frequency coefficients of |H(ω)|
will converge to zero. Finally, we retrieve the magnitude spectrum G′(ω) of the output sig-
nal g′(x):
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|G′(ω)| = |F{g′(x)}| = |F{g(x) ∗ h(x)}| (5.21)

= |F{g(x)}| · |F{h(x)}| (5.22)

= |G(ω)| · |H(ω)| (5.23)

= |U(ω)|2 c(ω, d)

d

(
∼ c(ω, d)

ω2d

)
(5.24)

=

∣∣∣∣πδ(ω) +
1

jω

∣∣∣∣2
√

2− 2 cos(ωd)

d
(5.25)

=
1

ω2

√
2− 2 cos(ωtexpv)

texpv
∀ω ∈ R \ {0} (5.26)

The above calculation uses the convolution theorem [117] to transform line (5.21) to line
(5.22), and Equation (5.11) and (5.20) to convert line (5.23) to line (5.24). In line (5.24), we
observe that the magnitude spectrum |G′(ω)| of output signal g′(x) decreases faster than the
input signal at higher frequencies ω because of its approximate proportionality to the recip-
rocal of ω2d = ω2texpv, which gives it the blurred appearance. Still, the magnitude spectrum
does not generally vanish at an upper limit ω0, see Figure 5.5. Figure 5.5 shows the magni-
tude spectrum for two products d of texp and v and the upper limit for d = 10. The upper
limit assumes cos(ωtexpv) = 1 ∀ω. The fact that all graphs approximate zero, but do not
consistently equal zero after any frequency ω is why result (5.9) cannot be used directly on
real signals and further investigations need to be done.

Equation (5.26) expresses the spectrum magnitude of output g′(x) as a function of expo-
sure time texp and speed v to give a better intuition of how these two variables influence the
spatial frequency components. As we know from Equation (5.19), the numerator in Equa-
tion (5.26) can take values in [0, 2]. Therefore, the spectrum magnitude of g′(x) is approx-
imately proportional to, among others, 1/texp. Thus, a longer exposure time texp will, for
example, lead to faster decay of frequency components of the magnitude spectrum of g′(x),
allowing a smaller critical sampling frequency fc.

The discussion in the previous paragraphs assumed infinitely high spatial resolution. In
real systems, intensity signals are spatially sampled by the pixel matrix in the camera sensor.
This leads to a staircase function instead of a ramp function for g′(x) in Fig. 5.4. The stair-
case signal would be composed of unit step functions, yielding a spectrum magnitude that is
vanishing slower than in Equation (5.24), hence causing a larger critical sampling frequency
fc. However, at normal viewing conditions, state-of-the-art displays have pixel densities of
usually 35 to 150 pixels per degree (an overview is provided in Table 2.1). This is close to
and often greater than the angular resolution of the human eye, approximately 0.02 degrees
with optimal eyesight [32], corresponding to 50 pixels per degree. Hence, as done in [35], we
disregard the negligible spatial discretization effect.
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Figure 5.5: Magnitude spectrum |G′(ω)| of the original input signal g′(x) for two parameter selections
d = texpv. The upper limit assumes that the cosine term of Equation (5.26) constantly equals one. All
spectra only approximate zero, but do not equal zero beyond a spatial frequency ω. Note that the
results are plotted only for ω ≥ 0.5 to be able to highlight the spectrum characteristics.

5.2.4 Conclusions for the Perception of Temporal Sampling in Real Video Se-
quences

The derivations in Section 5.2.3 served three purposes: first, they show that there is no up-
per bound on the spatial spectrum of an output image created with a conventional camera.
Consequently, the WoV is not directly applicable to real video sequences, it only provides an
intuition. Second, the derivations introduce the reader to how the camera exposure process
filters an input scene containing motion. Third, they provide the two central variables of
interest for the experiments in this chapter: camera exposure time texp and object velocity v.
They define the width d (Equation (5.12)) of the camera filter h(x), the steepness of the ramp
of the output image and how quickly the spatial frequency components of the output image
will converge to zero. Furthermore, the steepness of the spatiotemporal spectrum is a func-
tion of v, see Figure 5.3. Higher velocity v decreases the steepness of the spectrum, leading
to a higher fc, see Equation (5.9). On the other hand, a higher speed v increases the filter
width d (Equation (5.12)), which causes high-frequency components to decay more quickly
(Equation (5.24)), accordingly reducing fc. Section 5.4.1 will investigate which of these two
opposing effects of v prevails.

Overall, these insights lead us to four hypotheses which Section 5.4 is going to verify
through experiments:
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1. Higher speed v changes fc

2. Longer exposure time texp decreases fc

3. Higher speed v increases the influence of texp on fc

4. Longer exposure time changes the influence of v on fc

5.3 Experimental Setup

The following sections will conduct a series of experiments to find the previously mentioned
threshold for perceiving jitter in time-sampled motion sequences. This section describes the
presented sequences, sequence creation, sequence playback, the participants and how par-
ticipants performed the experiment.

Sequence creation and sequence playback were separated because real-time creation was
not possible (see Section 5.3.3).

5.3.1 Video Sequences

As it is common practice in psychometrics, an object moving in one dimension is presented
to the users [35], [37], [41]. The sequences are shown on a special computer monitor, which is
described in more detail in Section 5.3.4. The shown sequences, for an example see Figure 5.6,
contain a vertical white bar that spans the entire display height, and one fifth of the display
width. The white bar moves from left to right over black background at constant speed. This
setting gives us maximum contrast and clearly perceivable intensity edges. When general
video content is presented to users, lower contrasts might be present, which would require
lower frame rates. Therefore, the obtained results will serve as an upper bound for the critical
sampling frequency fc.

The bar starts at the left side of the monitor, and when it moves out of the display on
the right side, it moves into the display again on the left side. The moving bar is computed
with a simulation rate of 20 kHz. This allows us to simulate the relevant exposure times for
the camera and the resulting motion blur. The simulation of exposure time is described in
Section 5.3.3. The blurring caused by exposure time can be seen at the edges of the white bar
in Figure 5.6.

5.3.2 Sequence Parameters

For each set of sequences, we set a constant speed v for the bar, and a constant exposure time
texp for the camera. Each set contains sequences with frame rates fseq ranging from 10 Hz to
90 Hz in steps of 2 Hz. For referencing, Table 5.1 labels the sets. In this table, the speed and
exposure time increase from bottom to top, and from left to right, respectively. Hence, the
camera filter width d (as defined in Equation (5.12)) decreases from top right to bottom left
and consequently, the intensity of motion blur decreases from the top right to the bottom left.
Only two subjects (first and second author of paper [3]) have conducted tests on all sets. The
nine sets A to I have been used in experiments for all ten test subjects. This sub-sampling
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Figure 5.6: Sequence C (see Table 5.1) at three time instances during playback (from top to bottom):
first, the bar is starting at the left side of the monitor, second after moving half way to the right, and
third when the bar is crossing the right display border to reappear at the left border. In this figure,
each image is shown at 1/3 vertical height (adapted from [3], © 2018 IEEE).

has been performed to reduce the duration of the experiment for the test subjects. For a
detailed discussion of test length and difficulty, see Section 5.4.3. For all test subjects, the
highest speed was chosen to be 48.3 deg/s (i.e., sequence sets A, B and C). 72.5 deg/s were
not chosen, as at such a high speed, the bar is passing the display width so quickly that it is
extremely exhausting for test subjects to register the presence or absence of jitter.

The parameter limits were chosen based on the following considerations: in conventional
modern video applications, videos are recorded at frame (image) rates between 30 Hz and
60 Hz. This yields sampling periods between 33.3 ms and 16.6 ms, which serve as an up-
per bound for the exposure time because exposure of one image in a video may not take
more time than the corresponding sampling period. We are in addition particularly inter-
ested in short exposure times of high frame rate videos with around 200 Hz of frame rate, as
used in low delay video communication such as [4]. Therefore, the exposure range is set to
[5.0, 25.0] ms to cover current and future applications.

The upper speed limit is decided by what participants were able to judge with reasonable
effort. It was observed that higher speeds are difficult to follow given that the display cov-
ers only 46.4 degrees of the subject’s field of view (FoV). The lower speed bound is dictated
by the spatial resolution of the utilized computer display (details in Section 5.3.4), which
provides 1920 pixels in horizontal direction. Early experiments found that at speeds be-
low 6.0 deg/s, spatial discretization effects turned out to be perceivable, which distorted the
results of the experiments. In summary, the subjects and discrete spatial resolution of the
display set the upper and lower speed bounds, respectively, and this yields a speed range of
[6.0, 72.5] deg/s.

The first two subjects performed the experiment for 7x5 pairs of speed and exposure
times, and the remaining subjects for 3x3 pairs. It was observed that the sub-sampled pairs
(speed, exposure) for all subjects are sufficient to capture all effects on the (speed, exposure)
plane. It should be noted that the angular speed values in Table 5.1 are determined by the
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v

texp
5 ms 10 ms 15 ms 20 ms 25 ms

72.5 deg/s J K L M N

48.3 deg/s A O B P C

36.3 deg/s Q R S T U

24.2 deg/s D V E W F

18.1 deg/s X Y Z a b

12.1 deg/s c d e f g

6.0 deg/s G h H i I

Table 5.1: Labels for the used sequence sets with various speeds v [degree/second] and exposure
times texp [milliseconds]. The first and second author of paper [3] performed psychophysical tests on
all sets, the remaining subjects only on sequence sets with bold letters and gray background(adapted
from [3]).

chosen bar speed and the angle covered by the display in the FoV of the subjects (i.e., 46.4
degrees). During creation of the sequences, the bar speed was defined relative to the pix-
els on the display and values (for instance 0.025, 0.1 or 0.2 pixels per simulation step) were
chosen to minimize spatial discretization effects at the expense of obtaining aesthetically less
appealing angle speed values.

5.3.3 Sequence Creation: Simulation of Video Recording

A Python script creates the sequences using OpenCV [118], encodes the resulting video in
H.264 [47] and writes it to a file for later presentation to the users. The script simulates the
movement of the vertical bar at speed v in discrete-time steps at fsim = 20 kHz. This means
that the script creates an image showing the bar at its current position 20,000 times per sec-
ond in simulation time, and then applies the camera exposure time filter to create the output
video sequence with a given frame rate, object speed, and exposure time. The simulation
frequency was chosen considering that it provides a sufficiently small simulation complex-
ity (all sequence sets could be created in approximately three days) and imperceptibly small
time discretization effects. At fsim = 20 kHz, the temporal offset of capturing an event at
an exact simulation time is at most 25µs, which proved to be small enough for not being
perceived by the test subjects. At lower simulation frequencies, time discretization effects
become visible in some sequences.

The discretization effect can influence the resulting sequence in two perceivable ways:
first, if temporal or spatial sampling frequencies are lower than human perceptual thresh-
olds, test subjects will directly perceive temporal or spatial sampling. Second, imagine a
bar that moves to the right 1.01 pixels per simulation step. After spatial discretization, its
position will be incremented by one pixel, except for every 100th step, at which the posi-
tion is incremented by two pixels. In this case, test subjects will be exposed to flicker with a
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frequency which is 100 times smaller than the simulation frequency. The analogous insight
holds for the discretization of time.

In the temporal domain, this discretization effect is attenuated below the human per-
ceptual threshold by choosing a large enough simulation frequency of 20 kHz. However, in
spatial domain, we are limited by the resolution of the used display panel. This proved to be
insufficient, which is the reason why linear interpolation at the edges of the bar was added:
imagine that the left edge of the bar should be drawn at pixel position 2.4 (between pixels 2
and 3). Without interpolation, pixel 1 would be black (value 0), and pixels 2 and 3 would be
white (value 255). With linear interpolation, pixels 1 and 3 retain their value, but the value
of pixel 2 equals to (1− 0.4) · 255 = 153, where the term (1− 0.4) generalizes to “One minus
distance to the closest integer pixel position”. The use of linear interpolation reduced spatial
discretization below human perception thresholds.

Linear interpolation is not generally applicable. Fundamentally, the degree of interpola-
tion of the pixel value at a pixel location has to equal the degree of the equation for object
location. The location x(t) of a moving object with respect to time t can in many cases be de-
scribed by polynomials. For example, the one-dimensional location x(t) of an object moving
with constant velocity v can be expressed by the equation x(t) = v · t. Assume that we know
an object’s locations x(t1) and x(t2) at times t2 > t1, and would like to compute the object’s
location at time t3 ∈ [t1, t2] without knowing the speed of the object. We only know that the
object is moving at constant velocity. The resulting equation x(t3) = t3·(x(t2)−x(t1))/(t2−t1)
implicitly computes object speed v = (x(t1) − x(t2))/(t1 − t2) by interpolating the object lo-
cations in a linear manner. This result can be applied to pixel value interpolation: in the case
of constant linear velocity, the object is moving through the pixel matrix at constant speed,
therefore we may interpolate the pixels’ values linearly. The corresponding insight holds for
higher-order object location equations: linear acceleration for example requires quadratic in-
terpolation of the pixel value. For object location functions that cannot be expressed through
polynomials, (approximation through) splines would be a candidate for interpolation. The
experiment could be done without interpolation in the highly improbable case in which at
each simulation step (simulation frequency fsim = 20 kHz), both edges of the white bar are
at integer pixel locations. In our case, the object (white bar) is moving at constant velocity,
and thus linear interpolation is the suitable candidate.

Finally, the script needs to simulate motion blur caused by the exposure time of the cam-
era and the movement of the bar. This is done in a rather simple way: the script always keeps
the bar images from the past k = fsim · texp simulation step images in a queue, see Figure 5.7.
In order to create an output image of the camera, the script computes the average image of
the past k images, as shown in Figure 5.7. Computing the average of the past k simulation
step images equals convolving the input image with the camera filter h(x) as in Figure 5.4.
In each simulation step, the oldest simulation step image is popped from the queue, and a
newly computed image is pushed onto the queue.
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 images

Figure 5.7: Simulation of the blurring caused by the exposure time. The simulation script keeps the
past k images in which the white bar is at progressing positions. The output image is computed as
the average of the k images. The color gradient representing the motion blur can clearly be seen in the
output image. For simplicity, the plot does not show the pixel value interpolation of the simulation
step images, they contain perfectly sharp black-white transitions. This example uses a small k = 10 to
highlight the process of averaging. The actual implementation uses large k > 100, such that the color
gradient appears smooth, see Figure 5.6.

5.3.4 Video Playback with Highly Precise Timing

This section discusses the sequence player, the display, and the physical experimental setup.
The player should be able to play the high-resolution sequences from the Python script (Sec-
tion 5.3.3) with precise frame timing. No available video player could meet this requirement,
so a custom player was created. It uses libav1 for decoding and SDL2 for displaying. The
decoder can decode any frame from any sequence within 1.5 ms, which is much smaller than
the minimum frame period (i.e., 11.1 ms) we have in the used video sequences.

In the following, we assume that we want to display a video at a frame rate fs with frame
period Ts = 1/fs. For frame timing, the wait_until() function of the chrono C++ library was
used. Just before showing a frame/image on the screen, we record the current time in time
stamp t0 = t. Next, we update the screen content and perform all computationally intensive
and time varying tasks such as file reading, decoding, color space conversion and copying
to the GPU. Then we wait until t0 + Ts, set the new time stamp to the current time t0 = t

and update the screen content with the newly decoded image. This process is repeated until
there is no frame left in the video file.

Because of processing overhead from setting the time stamp, the actual frame rate f̃s of
the player was lower than the target frame rate fs. The difference ∆fs = f̃s − fs depends
on the target frame rate fs and is shown for fs ∈ [20, 120] Hz in Figure 5.8. The difference
1 https://www.libav.org/, last visited 15.10.2018
2 https://www.libsdl.org/, last visited 15.10.2018

https://www.libav.org/
https://www.libsdl.org/
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Figure 5.8: Frame rate difference ∆fs between the actual frame rate and target frame rate. The regres-
sion (5.27) of the differences closely approximates the frame rate difference, except for the outliers at
low frame rates.

increases with increasing frame rates because at higher frame rates, frame periods become
shorter, and consequently the constant contribution of the processing overhead becomes rel-
atively larger. In Figure 5.8, we see that the difference ∆fs can be approximated using a
quadratic regression. With the regression

∆f̃s(fs) = −1.10 · 10−4 · f2s − 0.0168, (5.27)

we achieve a close approximation of the actual frame rate f̃s. Excluding the outliers at fs =

20 Hz and fs = 30 Hz, the approximation exhibits a root mean squared error of 0.026 Hz. We
use Equation (5.27) to set a new target frame rate fs+ |∆f̃s(fs)|, such that the actual playback
frame rate will more closely approximate the originally desired frame rate fs. With that, the
average playback frame rate did not deviate more than 0.05 Hz from the target frame rate.
In addition, the playback frame periods of the resulting system was evaluated by measuring
them in software. It was found that the actual playback frame periods T̃s closely match the
originally targeted Ts, with a maximum absolute deviation of |Ts − T̃s| = 30µs per frame
period among all measurements.

An Acer XB270H was used as display. It has a 27-inch TN-panel, with a resolution of
1920 horizontal times 1080 vertical pixels. The panel, which as a contrast ratio of 1000:1, was
set to its maximum luminance, 300 candela per square meter. This way, the shown video se-
quences exhibit high contrast on a conventional monitor, again allowing the obtained results
to serve as upper bounds for the critical frame frequency fc. The display supports Nvidia
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G-Sync, which refreshes the image whenever a new frame is available in the frame buffer
(i.e., in contrast to conventional monitors) up to a maximum refresh rate of 144 Hz. With
the used sequences, we do not exceed 144 Hz, so this display allows us to show videos with
the exact frame rate defined by the custom video player. Conventional monitors have fixed
refresh rates, leading to delayed presentation of some video frames.

Both the player’s and the display’s time precision were evaluated by encoding a video
sequence that showed black and white frames interchangeably. While playing back this se-
quence, a PT was put on the display surface and its resistance sampled with 8 kHz to observe
the brightness change of the monitor with a high time resolution. This experiment proved
that the setup is working as expected, frame period variations were smaller than 1/8 kHz =
125µs.

The width of the display panel is w = 60 cm, test subjects are seated with an eye-to-panel
distance of approximately d = 70 cm in front of the monitor. Therefore, the display spans
46.4 degrees of the horizontal field of view of the test subjects. Lighting in the room was
dominated by artificial light to eliminate the influence of daylight or weather conditions.

5.3.5 Participants

In addition to two authors of paper [3], seven male and one female subject were recruited to
participate in the experiment. The age of all participants at experiment time ranged from 23
to 30 years, with a mean of 27.6 years. All participants have either normal or corrected-to-
normal eyesight.

5.3.6 Experimental Procedure

Preliminary experiments used the method of constant stimuli [119] to retrieve a prior esti-
mate of the absolute frame rate threshold, equal to the critical sampling frequency fc from
Section 5.2.2, at which humans can distinguish time-discrete presentation of a video se-
quence from the continuous presentation of the same scene 50 % of the time. In the method
of constant stimuli, test subjects are randomly presented a stimulus (video sequence) from
a range of stimulus parameter values, in our case from a frame rate range. Stimuli from the
range have to be sampled with equal spacing, and each stimulus must have equal proba-
bility for presentation to avoid errors of habituation and expectation. Hence, this method
frequently presents stimuli which are rather distant from threshold fc and accordingly easy
to classify. Consequently, these answers carry little novel information and are for this reason
often redundant.

To circumvent this issue, a modified variant of the simple up-down or staircase method
[120], [121] was used. In the up-down method, the next sequence is chosen based on the
answer for the previous sequence: if jerkiness was perceived (answer x in Figure 5.9), the
frame rate of the next sequence will be increased by for example 2 Hz, if no jerkiness was
perceived (answer o in Figure 5.9), frame rate will be lowered by the same step size of 2 Hz,
see the black line at test round number 13 and greater in Figure 5.9. This procedure ensures
that frame rates close to threshold fc will be frequently sampled, avoiding redundant stim-
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Figure 5.9: Example of an adaptive interleaved staircase test with two sequence sets. In each round,
set I (black line, absolute frame rate threshold fc,I) or set g (orange line, absolute frame rate threshold
fc,g) is chosen randomly. Within each set, the answer to a sequence (x: could perceive stutter, o: could
not perceive stutter) increases (x) or decreases (o) frame rate fseq of the next sequence from that set by
the current step size. Step size is in the beginning 10 Hz, and reduced to 2 Hz after four reversals in
that set (adapted from [3], © 2018 IEEE).

uli. However, test participants will be able to predict frame rate, which leads to errors of
expectation.

This is why the interleaved staircase method [121] was used. In this method, the test
subject is presented, for instance, sequence sets I and g (see Table 5.1 for parameters, and
Figure 5.9 for an example). For each sequence set individually, the simple staircase method
is used. In addition, the sequence sets are randomly interleaved, meaning that the next se-
quence to be presented is randomly chosen from the sequence sets I and g. After choosing the
set of the next sequence, the sequence frame rate fseq is determined according to the simple
staircase based on the previous answer for the chosen set. This strongly impedes predicting
frame rate, in particular if the number of sets is large enough and if the set parameters speed
and exposure are sufficiently similar. In the experiments, at least three sequence sets were
used for interleaving, making it impossible for test subjects to predict frame rates.

Further potential in increasing the efficiency of the experiment lies in its beginning: it
starts at a low [121] frame rate fseq = 20 Hz, which all test subjects classified as jerky for all
sequence sets. The following considerations apply to one set: during the test, participants
first have to converge to the absolute frame rate threshold fc before being able to give the
most relevant answers.

To speed up convergence, a step size larger than, for example, 2 Hz could be used, which
would decrease the precision of the result. Therefore, an adaptive step size in two exper-
iment phases [122], [123], as shown in Figure 5.9 is used: in the first phase, we prefer to
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quickly converge to fc, and thus choose a large step size of 10 Hz. This phase terminates
when the test subject’s answers have caused four reversals. A reversal takes place when the
chosen frame rates fseq pass through an extremum, meaning that frame rate was first de-
creased and then increased, or vice versa. After four reversals, the second phase, in which
we use a smaller step size of 2 Hz, starts. The experiment finishes when twelve reversals
have taken place during the second phase in each of the sequence sets.

An oral introduction was given to all test subjects. In addition, they received an introduc-
tory sheet, which described the experiment, the user interface and encouraged behavior for
result consistency, such as keeping a constant distance to the monitor (not leaning towards
or away from it) and taking breaks if needed. The sheet states that “sequences are randomly
chosen without any correlation”, concealing the underlying adaptive interleaved staircase
method. Distinguishing monocular from binocular vision is not necessary for motion per-
ception [34], so no precautions in this respect were taken.

The 35 sequence sets of the two author subjects from Table 5.1 were divided into eight
interleaved experiment blocks with four sequence sets each, and one experiment block with
three sequence sets. The nine sequences of the remaining eight test subjects, highlighted in
Table 5.1, were divided into one experiment block with the four sequence sets A to D, and
one experiment block with the five sequence sets E to I.

5.3.7 Data Analysis

After a participant has finished the experiment the frame rate threshold fc for each sequence
set is computed. For the adaptive step size staircase method, the threshold fc equals the
average of the last twelve reversals [123].

5.4 Experimental Results

Using the subjective tests of Section 5.3, perception thresholds for all ten participants are
retrieved. These results, and their accordance to the four hypotheses from Section 5.2.4 are
discussed in this section.

5.4.1 Preliminary Conclusions from Two Test Subjects

First, the experiment was conducted on all 35 sequence sets from Table 5.1 by two author
test subjects. The resulting average fc for all sets are depicted in Figure 5.10. In the hori-
zontal layout of the graph in Figure 5.10, the array of sequence sets from Table 5.1 can be
recognized.

No more precise plot or more values of fc are given because this experiment is moti-
vational and its exact values do not generalize, since it was conducted on only two users.
Still, the experiment shows that test sequence set sub-sampling is feasible. Revisiting the
four hypotheses from Section 5.2.4, we observe the following: first, we can see that higher
speed v increases the absolute frame rate threshold fc (hypothesis 1). Compare, for exam-
ple, fc,J = 59.83 Hz, which shows the moving bar at an angular speed of 72.5 deg/s and
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Figure 5.10: Surface plots of the average absolute frame rate thresholds (critical sampling frequen-
cies) fc for two test subjects on all 35 sequence sets. Corner points of the tetragons that constitute the
bent planes correspond to the tested sequence sets and their absolute frame rate threshold fc. The
horizontal layout of the sample points in the velocity/exposure plane is based on Table 5.1 (adapted
from [3], © 2018 IEEE).

fc,G = 40.92 Hz, which has an angle speed of 6.0 deg/s (see Table 5.1). Hence, from the two
opposing effects of speed v on critical sampling rate fc presented in Section 5.2.4, the effect
changing the steepness of the spatiotemporal spectrum (Figure 5.3 and Equation (5.9)) has
more influence than the filter width d (Equation (5.12) and Equation (5.24)).

The second hypothesis, stating that higher exposure will decrease fc, holds only for large
enough speeds. There is a 6 Hz difference between fc,J and fc,N, but only a 0.84 Hz differ-
ence between fc,G and fc,I. The decrease in influence is understandable because the width of
the camera filter h(x) is equal to the product of speed and exposure time (Equation (5.12)).
Also, this insight confirms the third hypothesis, stating that at reduced speed the influence
of exposure time will diminish.

Finally, the difference between fc,J and fc,G is larger than the difference between fc,N and
fc,I, confirming the fourth hypothesis: longer exposure time (causing increased motion blur)
decreases the influence of speed.

In addition to the four hypotheses, we note that Figure 5.10 shows points that cannot
exist in real systems: for instance, fc,N = 53.83 Hz, but in a real system, at an exposure time
of 25 ms, video can be recorded at most at 40 Hz. It was possible to create these points for the
experiment, as in the simulation, the frame rate is not constrained to the inverse of the expo-
sure time. For real systems, one can conclude that in particular for long exposure times, there
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Figure 5.11: Surface plots of the average absolute frame rate thresholds (critical sampling frequencies)
fc for all test subjects on nine sequence sets (adapted from [3], © 2018 IEEE). Box plots corresponding
to this figure are depicted in Figure 5.12.

exist object velocities at which humans are always going to perceive temporal sampling. This
is most probably because at typical display brightness, the human visual system should in-
tegrate light for periods much shorter than 25 ms. This disparity between the camera’s and
the eyes’ integration time is perceived by humans. Already for exposure times shorter than
15 ms all resulting critical sampling frequencies can be processed in real systems. In sum-
mary, for systems in which temporal sampling shall be made imperceptible, exposure time
has to be chosen low enough to enable display at temporal sampling frequencies requested
by Figure 5.10.

All previous insights also hold for all test subjects, as the following section shows.

5.4.2 Average Test Subject Behavior of All Test Subjects

The graph in Figure 5.11 illustrates the results for the average absolute frame rate thresh-
old fc. It can be seen that the conclusions from Section 5.4.1 generalize to all test subjects.
The tendencies of frame rate thresholds of individual participants match the tendencies in
Figure 5.11 well; corresponding box plots are given in Figure 5.12. We also see a grouping
effect: sequence set D was presented in an interleaved experiment together with sets A, B,
and C. This results in a comparably high fc,D = 51.68 Hz, in contrast to fc,E = 46.58 Hz from
sequence set E, which was interleaved with sets F to I.

Section 5.5 gives a further, detailed statistical analysis of the results, including statistical
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confidence tests.

5.4.3 Test Length and Difficulty

The ten test subjects spent overall 6 hours and 40 minutes performing the experiments for
sets A to I, giving 2734 answers. Experiment time per participant was between 25 and 61
minutes, with an average of 44 minutes. For each sequence, participants spent on average
8.8 seconds from starting to watch the sequence until submitting an answer (fastest partici-
pant: on average 5.8 seconds, slowest participant: on average 15.6 seconds).

Users took on average two seconds more per sequence on the first experiment block with
sets A to D than on the second block with sequence sets E to I. This is understandable since
they started with the first block and had to get used to the experiment. Otherwise, no sta-
tistically significant difference in the average time users spent on classifying one set, or the
average number of answers given for a set, was found. A significant difference in these
values between sets would indicate that subjects had more difficulties classifying sequences
from one set than from the other. Given no statistically significant difference, we can say
that for none of the chosen sequence set parameters, test subjects had difficulties to complete
the experiment. In addition, the statistically insignificant time differences confirm that the
experiment is short enough to avoid that tired users give careless answers.

5.4.4 Directional Independence

Existing literature does not discuss the relation of direction of motion and the corresponding
absolute frame rate threshold fc, at which humans perceive jitter 50% of the time. We expect
that there will not be a significant difference of thresholds fc for changing motion directions
considering the experiments by Cox et al. [124] and Seiffert et al. [40]: the authors in [124]
presented eight motion directions (up, right, down, left, up/right, down/right, up/left, and
down/left) to participants and measured the corresponding temporal frequency threshold
for a motion signal to be perceivable in contrast to no motion. They found only minor and
inconsistent differences of perception thresholds for the different directions. This insight
should yield a direction independence of fc, because in Cox’s and Derrington’s experiment
[124], the same spatiotemporal filters in the human visual cortex as in the experiment of this
thesis are defining the thresholds. Furthermore, the authors in [40] use a rotating disk for
presenting motion in their experiments and do not report any direction influence, which fur-
ther indicates that motion direction does not influence frame rate threshold fc. Finally, the
arrangement of photoreceptor cells in the eye’s retina does not exhibit a dominant direction
[46], and the filter structure behind these cells does not apply particular weights to specific
directions [124], [125].

To confirm this assumption, the screen was rotated 90 degrees, such that the bar was
moving from top to bottom, and performed the interleaved experiment with sequence sets A
to D on one participant. As expected, the differences to the thresholds fc from the horizontal
experiment were insignificant and inconsistent. Using this result together with the insights
from the previous paragraph [40], [124], [125], we have no reason to believe that we will find
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divergent thresholds for other directions. Thus, motion direction does not change the abso-
lute frame rate perception threshold fc. This result is used for simplifying the computation
of required video frame rates in Section 6.2.2.

5.5 Statistical Analysis

In this thesis, a constant sampling frequency (CSF) system denotes a system which samples
signals with a constant period of time between two successive samples. Therefore, sam-
pling with constant frequency is, in this manuscript, also temporally uniform sampling. In
contrast to that, adaptive sampling frequency (ASF) systems do not have a fixed sampling
period. The period between two successive samples is adapted to the sampled data.

The terms refresh rate or update frequency for displays are not used in the following. In-
stead, as discussed in Section 3.4.5.1, we consider sampling rates or frequencies for cameras
as well as for displays to make notation more consistent. In summary, this thesis refers to
CSF and ASF cameras as well as CSF and ASF displays.

5.5.1 Statistical Significance of Tendencies

The statistical significance of the results from Section 5.4 are analyzed in the following. For a
better understanding, box plots of the absolute frame rate thresholds fc are depicted in Fig-
ure 5.12. In Figure 5.11 we see that increasing speed seems to increase the absolute frame rate
threshold fc for each of the exposure times 5 ms, 15 ms, and 25 ms. Applying Fisher’s one-
way analysis of variance (ANOVA) test [126] to the results from sets A, D, and G (texp = 5 ms)
reveals significant differences (F (2, 27) = 37.24, p < 0.001) of the thresholds. We find similar
results (F (2, 27) = 32.83, p < 0.001) for sets B, E, and H (texp = 15 ms) and for sets C, F and
I (texp = 25 ms), in which the ANOVA values (F (2, 27) = 26.65, p < 0.001) are once more
statistically significant. The post-hoc Tukey test further revealed that the mean threshold of
one set is statistically significantly different (p < 0.01) from the other two set means for each
exposure time.

As can be seen in Figure 5.12, the influence of exposure time on threshold fc is smaller
than the effect of speed. Observing the box plots from sets A, B, and C, we also see that the
variance of thresholds between sequence sets is small compared to the variance of thresholds
within sets. Nevertheless, for the majority of test subjects, a strong and consistent correlation
between the individual test subject thresholds and exposure time texp was seen. Therefore,
the subjective differences between test subjects would conceal the existing dependency of
threshold fc on exposure time texp in a classical ANOVA test. This is why a repeated mea-
sures ANOVA (RANOVA) test [126] is applied to check statistical significance of the effect of
exposure time texp on fc. The RANOVA test computes the statistical significance of difference
among data sets while ignoring variations between test subjects.

Applying RANOVA to sets A, B, and C yields significant differences (F (2, 18) = 29.69,
p < 0.001) for thresholds fc for varying exposure times at speed v = 48 deg/s. In addition,
the post-hoc Tukey test reports significant pairwise differences for all set mean thresholds.
The difference is significant at the 0.01 level in set pairs (A,B) and (A,C) and significant at
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Figure 5.12: Box plots of all participant thresholds for each of the nine sequence sets A to I. The boxes
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Pluses denote outliers (adapted from [3], © 2018 IEEE).

the 0.05 level in set pair (B,C). For sets D, E, and F, RANOVA (F (2, 18) = 17.05, p < 0.01)
again yields significant differences, but the post-hoc Tukey test finds a significant difference
only on the pairs (D,E) and (D,F) at the 0.01 level. This result has to be read with caution,
since the threshold result fc,D is higher than what was expected because of the grouping
effect discussed in Section 5.4.2. Finally, for v = 6 deg/s on sets G, H, and I, RANOVA
(F (2, 18) = 3.19, p = 0.065) reveals that statistical significance at the 0.05 level is just missed.
To back up this result, the post-hoc Tukey test finds no statistically significant differences in
all three set pairs.

In summary, the tests especially confirm hypothesis 3: exposure time significantly affects
fc at high speeds v, while the influence vanishes at lower speeds. The remaining hypothe-
ses are also confirmed, as the trends observable in Figure 5.11 are proven to be statistically
significant.

5.5.2 Model of the Absolute Frame Rate Threshold

The previous sections found that both speed and exposure time have a significant influence
on the absolute frame rate threshold, rendering Figure 5.11 a valid model for predicting fc.
To be able to apply these insights to general scenarios, a linear function is fitted to the data
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from Figure 5.11:

fc(texp, v) = 40.44− 153.2 · texp + 0.3230 · v, (5.28)

where texp is given in milliseconds and v in degree per second. A linear model was cho-
sen as with higher degrees for the polynomial the model can achieve a closer fit of the model
to the values present in Figure 5.11, but the higher degree polynomial does not extrapolate
well to values of v and texp outside the region investigated in the previous experiment (over-
fitting). The linear model is based on the mean fc, and hence critical sampling frequencies
computed by it will make temporal sampling imperceptible to users 50% percent of the time.
To satisfy a greater fraction of users, a frequency offset fo can be added to Equation (5.28), as
done in Algorithm 4.





Chapter 6

Methods for Delay Reduction

Based on the insights from Chapters 3 and 5, this chapter proposes various techniques to re-
duce G2G and G2A latency in video communication. All techniques employ high sampling
rates, as required by the analysis in Section 3.7. The first method, detailed in Section 6.1,
proposes a greedy frame skipping algorithm that minimizes both G2G latency, as well as the
data rate of the transmitted video. The frame rate of the video resulting from the proposed
greedy algorithm may, however, be extremely low, such that temporal sampling can become
perceivable. This deteriorates the QoE of the video consumer, as analyzed in Section 6.1.4.5.
In consequence, Section 6.2 proposes a content-adaptive minimum frame rate, at which hu-
mans do not perceive that temporal sampling is taking place. At the minimum frame rate,
video consumers will not be able to distinguish the temporally sampled video from the orig-
inal, continuous scene. Consequently, humans will also not be able to notice that the video is
frame skipped, if the frame rate shown to them is always above the critical minimum frame
rate required by Algorithm 4, proposed in Section 6.2. Both algorithms from Section 6.1 and
Section 6.2 are merged in Section 6.3.

Frame skipping, as proposed in this thesis, generally distinguishes between key frames,
which contain important novel visual information, and regular frames, which are transmit-
ted to sustain a base frame rate required for good QoE. Since key frames carry visual infor-
mation related to events, they determine the G2G delay of a video communication setup.
To avoid that processing or transmission of a key frame has to be stalled because of regular
frames, Section 6.4 proposes a preemption algorithm.

Finally, Section 6.5 compares the theoretical G2G delay model from Section 3.6.2 to delay
measurements performed on the prototype from Section 6.1. This confirms the theoretical
model, shows how to apply it, and gives a delay analysis of a low delay prototype that in-
cludes the methods proposed in this chapter.

Most of the contributions of this chapter have been published in [3] and [4].

6.1 Greedy Adaptive Frame Skipping

The approach presented in this section discards video frames that do not contain significant
information. This is performed to reduce the frame rate, and hence data rate of a video, while
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keeping the G2G delay at a constant level. In this implementation, the algorithm accepts a
QoE loss (see Section 6.1.4.5) in favor of reduced data rate.

6.1.1 Observations

Increasing the sampling rates of cameras and displays is necessary to reduce the signifi-
cant G2G delay contributors tCTS and tDTS representing the delays from the sampling pro-
cesses. The maximum and mean delays of the uniform distributions of tCTS and tDTS (see
Sections 3.4.1.1 and 3.4.5.1) are inversely proportional to the sampling rate. For example,
when the small post-exposure delay tpost (see Section 3.4.1.1) is neglected, the delay con-
tributed by a temporal sampling process with a frequency of 30 Hz is distributed following
a U(0, 33.3) ms probability distribution. The sampling process in readily available 240 Hz
cameras contributes a significantly lower delay of U(0, 4.16) ms.

However, the higher frame frequency video will increase data and packet rates consid-
erably and stress processing components such as the encoder and decoder. In addition, as
Section 5.4.2 shows, humans do not require a high frame rate of for example 240 Hz such
that temporal sampling is imperceptible. Similarly, most real-time machine vision proce-
dures such as object tracking or mapping algorithms operate at frame rates smaller than
30 Hz [93], [94]. In summary, we need a high sampling frequency to ensure low latency in
the video communication, but this increases stress on processing and transmission elements,
and video consumers such as humans or computer vision algorithms are not able to process
frames at such high rates. Consequently, insignificant frames of the high frame rate video
should be discarded to reduce the frame rate, while keeping latency unchanged. The corre-
sponding frame skipping algorithm is presented in the following.

6.1.2 Greedy Frame Skipping Algorithm

As shown in Figure 3.1, the frame skipping block is placed immediately after the camera.
With this placement, a skip or forward decision for every frame is made before any fur-
ther processing of that video frame is performed. The proposed frame skipping method
avoids an increased output information rate from the encoder, which potentially overloads
the transmission channel, and avoids overburdening any block in the video communication
chain (Figure 3.1). The decision whether to further process or skip a frame is based on the
following three criteria:

1. Content: The larger the amount of new information in a frame compared to the last
non-skipped frame, the more likely a frame is to be chosen for further processing. New
information can, for instance, be measured as the Mean Absolute Difference (MAD) or
the Structural Similarity index (SSIM) [127]. Other frame skipping metrics for change
detection can be used instead. Alternatively, if the frame skipping unit is placed af-
ter an intra-only encoder, the encoded frame could be analyzed. The following only
considers frame skipping that selects raw frames. By transmitting the frames with
new information, it is ensured that a new event which significantly changes the frame
content achieves minimal delay. The process is illustrated in Figure 6.1. Frames with
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Figure 6.1: Frame skipping process: a subset of the frames from the camera is selected for encoding,
the remaining frames are skipped (adapted from [4], © 2018 IEEE).

similar content have the same letter A, B, C, or D. From the three similar frames with
the letter A, only the first frame needs to be transmitted, the subsequent two frames are
not forwarded to the encoder. The next frame passed to the encoder is the first frame
marked with B, which has a significant difference to the previous frames, for instance
in terms of MAD. The choice of skipping or transmitting a frame can, for example, be
based on a MAD threshold value.

Clearly, the rate of frames coming out of the frame selector is lower than the rate of in-
coming frames from the camera. The number of selected frames depends on the frame
content and the skipping threshold. Note that in Figure 6.1, there are multiple frames
in the frame selector for illustration purposes. A real implementation does not store
the frames, but decides for every frame as fast as possible whether the frame should be
skipped or transmitted. For MAD computation, the most recently transmitted frame
is stored and compared with a new frame arriving at the frame skipping module. If
the new frame is selected for transmission, the new frame replaces the old comparison
frame as the most recent frame.

2. Subjective Criteria: A low frame rate and many frame drops decrease subjective video
quality [128]–[130]. Therefore, we target to select regular frames with a minimum
frame rate predefined by 1/tmax. tmax is chosen to keep the subjective quality as high
as possible while satisfying other constraints, such as the delay and the channel data
rate. Having a lower boundary for the frame rate is beneficial to both human observers
and machine vision algorithms. The latter typically require regular updates to perform
well.

3. Bottleneck Component: Every block of the chain has a constant or varying throughput
rate in frames per second. The rate of selected frames may not exceed the rate of the
slowest block. Otherwise, frames will have to be dropped or queued by these blocks
which would lead to additional delay. Consequently, the frame skipping block selects
frames for transmission at most at a frame rate equal to 1/tmin.
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Algorithm 3: Greedy Frame Skipping
Data: Content difference ∆I , difference threshold Ithr, time ∆tprev since last frame,

minimum time tmin between two frames, maximum time tmax between two
frames

Result: Classification of frame as key frame (return 2), regular frame (return 1), or skip
(return 0)

1 begin
2 if ∆I > Ithr // Significant content difference
3 then
4 if ∆tprev > tmin // Avoid bottleneck overburdening
5 then
6 return 2
7 else
8 return 0

9 else
10 if ∆tprev > tmax // Subjective criteria
11 then
12 return 1
13 else
14 return 0

Joining all three criteria into frame selector instructions yields the decision rules pre-
sented in Algorithm 3. ∆I is the content difference between the last transmitted frame and
the current frame, which the frame selector shall classify as key or regular frame. The content
difference can be quantified using MAD, SSIM, or other metrics. ∆tprev is the time since the
last frame was transmitted. If ∆I exceeds a content difference threshold Ithr and ∆tprev is
smaller than tmin, then the frame is skipped in order to keep the frame rate below the rate
supported by the bottleneck block.

If ∆I exceeds the threshold and ∆tprev > tmin, then the frame is transmitted as key frame.
If ∆I is smaller than Ithr, the frame is skipped, except when ∆tprev is greater than tmax; in that
case, the frame is transmitted as regular frame to maintain the minimal frame rate 1/tmax,
which satisfies subjective criteria.

6.1.3 Prototype System Description

The two prototype components of relevance, the specific implementation of the frame skip-
ping algorithm, and the prototype system are detailed in the following.

6.1.3.1 Algorithm implementation

Algorithm 3 was implemented based on a thresholded form of the MAD in the experimen-
tal prototype. For high performance, the following algorithm is implemented in C++, using
OpenCV [118]. The thresholded form of the MAD first conducts a pixel-wise subtraction of
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the current frame from the previously transmitted frame. For each pixel of frame i at position
(m,n) in the difference frame the value equals

di,m,n = |li,m,n − li−k,m,n|. (6.1)

This is the absolute difference of the pixel luminances l in the same spatial position in frames
i and i − k, with the last frame being transmitted k frames ago. The absolute pixel values d
of the difference frame are then thresholded to yield

d̂i,m,n = 255 ·min (1,max (0, di,m,n − 10)) . (6.2)

All pixel differences d greater than ten are set to the maximum value of d̂ = 255, while the
remaining pixels in the difference image are set to the minimum value of d̂ = 0. This thresh-
olding significantly reduces the influence of the camera’s image sensor noise [95], which
distorts each pixel value. Subsequently, the mean of the thresholded difference image ∆I

is computed. The resulting thresholded MAD ∆I is compared with the fixed MAD content
difference threshold Ithr = 1.4. The Ithr = 1.4 threshold value was determined empirically in
order to be sensitive to events that are spatially small in a video with a resolution of 640x480
pixels. At the same time, the Ithr = 1.4 value is above the difference value of two images that
differ only in noise.

In the prototype setup, the parameter tmin = 0 ms is chosen, as all units are able to pro-
cess images at more than 240 Hz, the utilized temporal sampling frequency in the prototype.
Finally, tmax is set to 420 ms, yielding a lower target of 2.4 Hz for the frame rate, that is, 1 %
of the camera frame rate.

The minimum frame rate 1/tmax is adjusted depending on the video content in Section 6.2
using the critical sampling frequency fc. Future research may explore further parameter
adaptations. For instance, the content threshold Ithr could be adjusted based on video con-
tent, lighting conditions, and camera model. In addition, the bottleneck parameter tmin could
be adapted according to the state of the communication network.

6.1.3.2 System Description

A prototype of the video communication system depicted in Figure 3.1 was implemented.
A Ximea MQ022CG-CM USB3.0 camera is recording a video with a spatial resolution of
640x480 pixels in the RGB color space and a temporal resolution of 240 Hz. The camera is
connected to a Ubuntu 16.04 Desktop PC running the frame skipping algorithm and an x264
encoder [61] on an Intel Core i7 quad core processor with 3.6 GHz per core. The encoder is
tuned towards the lowest latency settings, with intra-only encoding using the tunings zero-
latency and fastdecode as well as the preset ultrafast. The encoded video is then streamed to
the decoder PC using the user datagram protocol (UDP) over a Gigabit Ethernet link with a
data rate of C = 1 Gbit/s. At the decoder PC, the encoded video is decoded using the libav
decoder1 and displayed on an Acer XB270H monitor with a sampling frequency of 144 Hz.
1 www.libav.org, last visited 15.10.2018

www.libav.org
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6.1.4 Experimental Results

G2G and G2A delay were measured using the system described in Chapter 4. In addition,
the individual delays for frame skipping tFS, encoding tEnc, network tNetw, decoding tDec,
and color conversion tCC were measured with the high resolution clock of the C++ chrono
library. Also, the frame and data rate of the produced video are computed over windows
of one second. We consider four scenarios with a static video background: first, transmis-
sion of all frames with high camera frame rate. Second, the same camera frame rate with
frame skipping enabled. Third, transmission of all frames with a constant camera frame rate
which equals the average frame rate after the frame skipper in the second scenario. Fourth,
spatially more complex video content to demonstrate the influence of the content on delay.
The video content in the first three scenes is the top of a table in front of a white wall with a
few cables and part of a disabled monitor on it. In the fourth scenario, the front panel of an
oscilloscope and a LEGO® construction are added for spatial complexity.

For every scenario and partial delay component, at least 500 samples were recorded. The
results of these measurements are summarized in Table 6.1 and the empirical cumulative
distribution functions for the measured G2G and G2A delays in the first scenario are plot-
ted in Figure 6.2 with 95 % confidence envelope based on the Dvoretzky-Kiefer-Wolfowitz
inequality [131], [132].

6.1.4.1 Full Frame Rate Transmission

When transmitting all frames at 240 Hz, the system achieves a mean G2G delay of 19.67 ms,
as noted in Table 6.1. The maximum G2G delay is considerably higher at 35.65 ms. We ob-
serve from Figure 6.2 that the high maximum delay values are caused by a few outliers.
These outliers are caused by interrupts and scheduling of the operating system of the com-
puters involved in the video transmission. Without these interrupts, the maximum G2G
delay would be approximately 25 ms.

For the G2A delay, the same phenomenon can be seen in Figure 6.2. Without the outliers,
the maximum G2A delay would be approximately 13 ms. From Table 6.1, we observe that
the difference between the average G2G delay and the average G2A delay is 8.62 ms. This
difference represents the average delay contributed by the display processing chain, includ-
ing the display refresh. The difference between the minimum G2G delay and the minimum
G2A delay is tDP = 5.69 ms, which represents the minimum delay of the display processing,
with a zero display refresh delay. The variance of the display processing delay tDP is in this
context negligible because display processing is implemented in hardware. Therefore, tDP is
approximated with a constant delay.

The minimum delays of frame skipping tFS, encoder tEnc and decoder tDec, network
tNetw, and two times color conversion tCC sum up to 1.71 ms. The camera frame process-
ing and transmission delay from the camera to the encoder computer was measured to be
tCP = 6.02 ms with the G2X delay measurement system. Summing these up to 7.73 ms leaves
0.53 ms compared to the minimum measured G2A delay of 8.26 ms for the remaining delay
components, such as network interfacing, memory access latencies and CPU thread start de-
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Figure 6.2: Empirical cumulative distribution functions for G2A (orange) and G2G (blue) delays for
scenario 1 (high fps, no skipping), including 95 %-confidence envelopes around the graphs (adapted
from [4], © 2018 IEEE).

lay, which are not individually measured. Furthermore, the G2A delay measurement has a
precision of 0.5 ms per sample, so the measured mean G2A delay of 8.26 ms could in reality
be smaller. The average data rate of the compressed video at full frame rate is 658 kByte/s.

6.1.4.2 Enabling Frame Skipping

With frame skipping enabled, we observe that the mean G2G delay is increased by 1.56 ms,
while the mean G2A delay inflation is smaller, with an increase of 0.43 ms, compared to
scenario 1 (see Table 6.1) without frame skipping. The difference in mean delay increase is
caused by a more sensitive G2G delay detection in scenario 1. As described in Section 4.1.3.3,
the LED lights up at a random time during one exposure period. The earlier that happens,
the more light from the LED falls on the photo sensor, yielding an image of a seemingly
brighter LED. On the other hand, if the LED is turned on close to the end of an exposure pe-
riod, the LED will appear to be dimmer. In the full frame rate transmission scenario (scenario
1 in Table 6.1), frames with the dim LED are transmitted and trigger the rising edge detection
Algorithm 2 after the PT. The PT’s brightness increase detection algorithm is based on dif-
ferences of the brightness in front of the PT and is tuned to be very sensitive. In comparison,
the G2A detection (see Section 4.3.1) is based on pixel thresholding to keep computational
complexity at a minimum. Pixel thresholding is less sensitive and may classify images in
which the LED is dim, but lit up, as images in which the LED is still completely turned off.
In consequence, in scenario 1, the G2G delay measurement detects some images as already
containing the lit LED, while the G2A algorithm misses them, leading to a comparably higher



6.1. Greedy Adaptive Frame Skipping 93

G2A delay for scenario 1.
With frame skipping enabled in scenario 2, the frame skipper decides which frames con-

tain novel information and are passed on as key frames. The frame skipper uses threshold-
ing and classifies images with an LED with low brightness as regular frames, skipping them.
Therefore, these frames with low LED brightness cannot be detected early by the PT, yielding
a higher mean G2G delay in scenario 2 with frame skipping than in scenario 1 without frame
skipping. The delay increase with frame skipping is less pronounced for the G2A delay since
the less sensitive pixel thresholding was not able to detect the LED with low brightness in
scenario 1.

The benefit of frame skipping can clearly be seen in the reduced average frame rate and
data rate; both drop approximately by a factor of 40. In particular, frame skipping reduces
the mean data rate from an average of 658 kByte/s down to 17.34 kByte/s.

Frame skipping has the interesting side benefit of reducing the maximum G2G delay by
6.72 ms and the maximum G2A delay by 10.11 ms. These reductions of the maximum delays
are due to the reduced processing loads of the sender and receiver PCs. Instead of processing
240 fps, they now process only 7.4 fps, reducing the processing load from 32.5 % to 22.5 % of
the sender PC, such that now less than one of four cores is fully used. In the receiver PC, the
processing load reduces from 10 % to an insignificant load compared to background tasks.
This leaves more idle time to execute elementary tasks of the operating system, which makes
these tasks less likely to interfere with video (de-)compression.

6.1.4.3 Low Frame Rate

In order to gain further insight into frame skipping (scenario 2), we compare with video
transmission scenario 3. Video transmission scenario 3 has a constant low frame rate that
is set to the average frame rate of the frame skipping scenario 2. That is, scenario 3 uses a
camera running at a constant frame rate of 7.4 frames per second. We observe from Table 6.1
that this low frame rate has a significant impact on the mean G2G and G2A delays com-
pared to the high frame rate with frame skipping scenario 2 in Table 6.1. The mean G2G
delays rise from 21.23 ms to 100.18 ms, and the mean G2A delays increase from 11.48 ms
to 89.93 ms. Moreover, the mean data rate of the low frame rate scenario is 13.78 kByte/s,
which is slightly lower than the 17.34 kByte/s average data rate of the frame skipping sce-
nario. Thus, we conclude that frame skipping employed with a high frame rate camera in
the prototype setup requires only about the same (or slightly more) transmission data rate
as a conventional low frame rate camera while drastically reducing the mean G2G and G2A
delays in this prototype setup.

6.1.4.4 Varying Image Contents

The final scenario (scenario 4 in Table 6.1) demonstrates how a more complex video sequence
affects the delays. Pointing the camera to a more complex scene increases the mean G2G and
G2A delays by 1.63 ms and 1.64 ms, respectively. Encoding and decoding times are on aver-
age increased by 0.2 ms, while the data rate is doubled to tripled compared to the full trans-
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mission scenario 1. The remainder of the increase in G2G and G2A delay can be explained
by the higher amount of data that has to be processed by the networking hardware.

The increases from the G2G delays to the G2A delays are nearly the same for scenarios 1
and 4, which validates the measurements; since the display delay should not be affected by
varying frame contents. It should be noted, however, that in a vision-based control system,
more complex image contents can substantially increase the image processing delays.

6.1.4.5 Influence of Frame Skipping on Video Quality

With the parameter settings detailed in Section 6.1.3.1, frame skipping has a minor influ-
ence on the subjectively perceived video quality. In perfectly still scenes, the frame skip-
ping block forwards images only when the tmax condition from Algorithm 3 forces an image
transmission, even if the image content difference ∆I is small. The only difference between
such images is the thermal noise caused by the camera sensor [95]. The low frame rate
1/tmax = 2.4 Hz is perceivable through image differences caused by the thermal noise.

The influence of frame skipping on the objective video quality was evaluated as follows.
Objects were moved at various speeds in front of the camera. For each video sequence and
prescribed content difference threshold value Ithr, the PSNR and SSIM values between the
displayed frames and the corresponding skipped frames are computed. This yields approx-
imately 5000 value pairs for each roughly 20-second sequence. The lowest PSNR and SSIM
values across a video sequence indicate the largest deviation of the displayed frames from
the skipped frames. The lowest values are also representative of the perceivable disconti-
nuity when a displayed frame is replaced by a new frame. The lowest values provide con-
servative lower bounds compared to alternative approaches, such as considering the mean
of the PSNR and SSIM values across the video stream [129], that have been developed for
sub-sampling with a constant rate of displayed frames. The measurements indicate a lowest
PSNR value of 38 dB and a lowest SSIM of 0.95 between the displayed and skipped frames
for frame skipping with the default Ithr = 1.4 threshold.

The performance characteristics of frame skipping depend mainly on the content dif-
ference threshold Ithr. For a still scene, the thresholded MAD values between subsequent
images in the prototype are approximately 1.1 due to camera sensor noise. As noted in Sec-
tion 6.1.3.1, the Ithr = 1.4 default threshold is used to be sensitive to new events, but also
robust to noise. For Ithr < 1.1, the frame skipping mechanism chooses all frames, while
for increasing Ithr > 1.1, the algorithm starts skipping frames. For threshold values up to
Ithr = 3, frame skipping gives nearly the same performance values as reported thus far;
specifically, the lowest PSNR and SSIM values drop slightly to 36 dB and 0.94, respectively,
for Ithr = 3. Increasing Ithr > 3 slowly deteriorates the video quality to lowest PSNR and
SSIM values of 32 dB and 0.93 and an increased mean G2G delay of 23.73 ms for Ithr = 10. For
even larger Ithr, the algorithm starts skipping frames that actually contain an event, severely
decreasing the quality of experience and increasing delay. Overall, this thesis recommends
a threshold Ithr just above the camera sensor noise for low delay, good video quality, and a
low data rate.
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6.1.5 Summary

The proposed greedy frame skipping algorithm successfully maintains the low latency of
a video with high temporal sampling frequency, while the frame and data rates are signifi-
cantly lower. Conversely, if the skipped variant is compared to a video with the same average
frame rate, latency is significantly reduced. The algorithm, however, has a minor, negative
impact on the QoE, as low frame rates are noticeable.

6.2 Perception-Optimized Adaptive Frame Skipping

To avoid that frame skipping deteriorates QoE, the results from Chapter 5 shall be utilized.
They allow us to adjust the minimum frame rate such that the process of frame skipping
becomes imperceptible to a human observer. Before the actual algorithm is introduced, three
necessary observations are presented.

6.2.1 Observations

6.2.1.1 Effective Frame Rate of a Video Processing Chain

Nowadays, in the vast majority of used displays, the constant sampling frequency (CSF) is
not synchronized to the image source, in contrast to the specific display used in the exper-
iment from Section 5.3. In addition, practically all cameras in use (except dynamic vision
sensors [43]) have constant sampling frequencies. Hence, this section shows how to map the
frame rate threshold fc ∈ R+ to its quantized version f̂c, dictated by the sampling frequen-
cies of the involved CSF devices in Section 6.2.1.2. The effective sampling frequency fs of
images visible on the display is equal to the minimum of the involved sampling frequencies.
Assume for example a 50 Hz camera and a 60 Hz display, or the other way around: the effec-
tive displaying rate will in both cases be 50 Hz, as the device with higher sampling frequency
will sample at least once during the sampling period of the lower sampling frequency device.
The example shows that it does not matter whether the camera or the display is sampling at
a lower frequency. For the following thought experiments, we assume the display to have
the lower, constant sampling frequency.

6.2.1.2 Frame Rate Quantization

A constant sampling frequency display can show videos with the original sampling rate fs
and integer fractions (fs/2, fs/3 etc.) of fs by skipping one or more new images. Figure 6.3
shows the possible reduced display sampling frequencies for fs ∈ [30, 350] Hz. As target dis-
playing frequencies for this thought experiment, we take the range of fc ∈ [40, 60] Hz from
Figure 5.11 plus/minus a plausible safety margin of 20 Hz. Therefore, we target displaying
frequencies in the range from 20 Hz to 80 Hz. We are in this example not interested in display-
ing higher frequencies than 80 Hz, as users will probably not perceive the increase in frame
rate over 80 Hz, and we are also not interested displaying a video below 20 Hz, as humans
will certainly perceive temporal sampling at that frequency. It can be seen in Figure 6.3 that
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Figure 6.3: Possible display sampling frequencies fs,frac for given original sampling frequency fs.
Available display sampling frequencies are highlighted for fs = 50 Hz and for fs = 80 Hz. For clarity,
the legend shows only the first seven integer fractions of each fs. Greater fractions are depicted by
gray lines (adapted from [3], © 2018 IEEE).

for low fs = 50 Hz we can only choose between two target frequencies (50 Hz and 25 Hz) in
the relevant range between 20 Hz and 80 Hz, while for increased sampling frequencies there
are more displaying frame rates available (for example for fs = 80 Hz, these are 80 Hz, 40 Hz,
26.7 Hz, and 20 Hz). Section 6.2.1.3 analyzes how this frame rate quantization deteriorates
the frame rate reduction that can be achieved by using the adaptive sampling rate proposed
in this thesis.

Since the goal is that the user is unable to perceive the sampling process, we want to
display the video with the absolute frame rate threshold fc or a higher frequency. As an
example, let us assume that we have a display with 120 Hz, and the video content character-
istics demand that it is shown at fc = 50 Hz. With the given display, we can display 120 Hz,
60 Hz, 40 Hz and so on. Thus, we choose to display it with the frame rate just above fc, which
is in this case f̂c = 60 Hz. The analog thought experiment can be done for a CSF camera. To
formalize this quantization process, we first need to define the set

L =

{
fs
i

}
, i ∈ N \ {0} and

fs
i
≥ fc (6.3)

of available quantization levels for the given effective sampling rate fs. Using set L of quan-
tization levels, we apply quantization rule

f̂c = dfceL , (6.4)
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from [3], © 2018 IEEE).

where d·eL quantizes the input to the smallest element from set L that is greater than or equal
to the input. In Section 6.2.2, this temporal quantization is implemented. Figure 6.6 shows
the trace of the desired fc for a video sequence and the actually displayed quantized frame
rate f̂c.

6.2.1.3 Loss of Frame Skipping Advantage as a Function of Effective Frame Rate

As can be seen in Figure 6.6, CSF systems require the video sequence to be displayed at a
higher frequency f̂c than requested by Equation (5.28). In this section, the number and ra-
tio of additional frames needed to show the video when a constant sampling rate device is
involved is analyzed.

The analysis is performed by simulating traces of fc. The traces are created using an au-
toregressive model that reflects the trace characteristics seen in Figure 6.6 and Section 6.2.3.
The mean absolute frame rate thresholds f c range from 30 Hz to 80 Hz in steps of 10 Hz. The
traces cover the 30 Hz interval [f c − 15, f c + 15] Hz. For each of these traces, the number of
displayed frames na required to show the corresponding video when only ASF devices are
involved is computed.

In addition, the number of displayed frames nc required to show the video if CSF pro-
cesses (camera or display) with sampling frequencies fs ∈ [30, 500] Hz are involved is com-
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puted. The ratio nc/na depicted in Figure 6.4 expresses the amount of additionally shown
frames of a CSF device compared to an ASF device. Most importantly, the overhead nc/na

decreases with increasing sampling rate fs. This is expected, as with higher fs, we have
more levels for the quantization of fc. The worst case investigated here is for the trace with
f c = 80 Hz at fs = 144 Hz. In this case, the amount of additionally played frames is 75% (fac-
tor nc/na = 1.75 in Figure 6.4). For commonplace 240 Hz devices, the ratio of additionally
played frames never exceeds 20 %. Section 6.2.3 uses a CSF camera with fs = 339 Hz and an
ASF display. The mean display frame rates range from f c = 46 Hz to f c = 76 Hz. Thus, the
data rate saving results presented in Table 6.3 are approximately between 5% and 12% worse
than what would be possible with fs →∞.

6.2.2 Perception-Optimized Frame Skipping Algorithm

The previous insights lay the basis for the application of perception limits to video compres-
sion. Consequently, the procedure of extracting the adaptive playback frame rate from a
coded video sequence is presented. Finally, experimental results of a non-real time imple-
mentation of the proposed technique are provided. For this application, the pixel densities
of various display classes, given in Table 2.1, are utilized.

6.2.2.1 Display Pixel Density

Various display classes have different pixel densities ρ. The overview in Table 2.1 covers only
horizontal size and angle, since the vertical size as well as angle directly follow for quadratic
pixels. Hence, knowing the size in one dimension allows us to map motion given as pixel
offset to motion in centimeters per second on the screen. Typical display dimensions, dis-
tance of the user to the display, user’s FoV covered by the display, the number of pixels in
a display row, and the pixel density ρ from user perspective are given in Table 2.1. In that
table, we see that even within one display class pixel density can vary widely. The values in
the last column of Table 2.1 can be used in Equation (6.6) to map the on-screen speed to an
angular velocity v from a spectator’s perspective.

6.2.2.2 Extracting fc from Coded Video Sequences

From motion vectors of a coded video sequence (in this example the H.264 [47] video codec),
we can obtain the absolute frame rate threshold fc for each video frame. The procedure is
summarized in Algorithm 4 and detailed in the following.

The H.264 codec utilizes inter prediction, described in Section 2.3.2.3. Inter prediction
uses a reference frame to predict the contents of the current frame. To do so, the codec iden-
tifies a matching block in the reference frame for each block in the current frame. Ideally,
the matching block corresponds to the same image content, which has been offset as a result
of motion apparent in the video. This is why the vectors indicating the spatial relation be-
tween the two blocks are called motion vectors. Occasionally, block similarity is not caused
by motion, but just by similarity of image content in different locations. In that case, motion
vectors do not represent true motion. Hence, we need to filter the set of motion vectors.
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Algorithm 4: Frame rate determination
Data: Frame i, effective sampling frequency fs, frequency offset fo
Result: Quantized critical frame rate f̂c

1 begin
2 Extract motion vectors mvk,l,i
3 Scale motion vectors based on distance to reference frame
4 Apply 3D median filter (6.5) to the motion vectors
5 Compute maximum motion vector magnitude mi

6 Calculate speed vi using Equation (6.6)
7 Compute frame rate threshold fc,i using Equation (5.28)
8 Add desired frequency offset fo to fc,i
9 Quantize fc,i to retrieve f̂c,i using Equation (6.4)

Given the motion vectors mvk,l,i at block locations k, l (vertical, horizontal) of frame i, we
first scale the motion vector according to the temporal distance to its reference frame. If the
reference frame is temporally adjacent, no scaling is done, if the reference is two frames away,
the motion vector is divided by two, and so on. Afterwards, we apply the three-dimensional,
spatiotemporal median filter (6.5) to suppress motion vectors that do not represent an actual
motion. The filter

mvpk,l,i = median
m,n∈[−2,2],
j∈[−6,0]

(mvk+m,l+n,i+j) (6.5)

takes the current motion vector and its spatially as well as temporally neighboring sam-
ples as input. The rationale for this filter is that the majority of motion vectors represent an
actual motion, while there are few outlier vectors which are either too small or too large. An
average of motion vectors would be distorted by these outliers. The median instead should
give a good representative for the actual motion in the frame. This was the case in the con-
ducted experiments, the filter dimensions from Equation (6.5) have yielded good results in
empirical tests. The filter only uses past and current motion vector samples to ensure causal-
ity.

The spatiotemporal 3D median filter is applied to each spatial dimension of the two-
dimensional motion vector separately. In the next step, we compute the motion vector mag-
nitude using the Euclidean norm. We are not interested in the direction, as discussed in
Section 5.4.4. Finally, for each frame i, we compute the maximum motion vector magnitude
mi from all motion vector magnitudes in the frame. This is done for the reason that the
maximum motion apparent in the video defines the absolute frequency threshold for jitter
perceptibility for the person viewing the video. The correctness of the steps of Algorithm 4
until step 5 were verified by watching the video and extracting the maximum object offset
for a number of frames per hand. Comparing the manually extracted results (ground truth)
to the values obtained with the algorithm presented in this section showed that steps 2-5 of
Algorithm 4 are working precisely.

An alternative to using the results from video encoder motion analysis is applying a real-
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time optical flow algorithm [133], [134] to extract motion vectors for each frame. This might
be necessary if, for instance, video coding parameters restrict the motion vector length.

Next, we compute the angular speed v from the user’s perspective. The maximum mo-
tion vector magnitude mi within a frame divided by the temporal sampling frequency fs of
the video gives us the maximum occurring speed on the display. Together with display pixel
density ρ (Table 2.1) we can map speed mi relative to the display panel to an angular speed
vi from the user’s perspective:

vi(mi, ρ, fs) =
mi · fs
ρ

[deg/s] (6.6)

The resulting speed from Equation (6.6) can be inserted into Equation (5.28) to compute
the current critical sampling frequency fc,i for video frame i. Next, the frequency offset fo
is added to fc,i to modify the QoE. This is done because Equation (5.28) finds the critical
sampling frequency at which humans can perceive temporal sampling 50 % of the time. For
fo > 0 Hz, a higher video quality in terms of temporal sampling frequency can be achieved.
The experiments in Section 6.2.3 showed that the most sensitive test participants are not able
to perceive temporal sampling for fo = 20 Hz. Conversely, fo < 0 Hz, can be used to reduce
the data rate of the video. The advantage compared to CSF video playback at the same data
rate is a more constant QoE. In the final step of Algorithm 4, the resulting fc,i including the
offset is quantized to an integer fraction of fs, as described in Section 6.2.1.2, according to
Equation (6.4).

In a real implementation, f̂c,i must be determined before encoding of the frame. This
can be done by first computing only the motion vectors, then applying Algorithm 4, and
afterwards making a frame skipping decision using f̂c,i. Finally, if the frame is to be further
processed, it is encoded using the already available motion vectors.

6.2.3 Experimental Results

The methods proposed in Section 6.2.2.2 cannot be applied to widely used test sequences
such as the “Foreman” sequence because most of them have been recorded at 30 Hz, which
is below fc for almost all content. Consequently, new test sequences were created: At an
exposure time of 2.5 ms, a sampling frequency of fs = 339 Hz, and a spatial resolution of
960×270 pixels videos were recorded using a XIMEA MQ022CG-CM camera. The raw im-
age sequences were encoded using the x264 encoder [61], an implementation of the H.264
coding standard [47]. To ensure applicability in low delay video communication scenarios
[4], the tunings zerolatency and fastdecode as well as preset ultrafast were used in the encoder.

Sequences in which single or multiple objects are moving in front of a static background
and sequences in which the camera is panning at varying speed and in different directions
over three dimensional scenes, yielding various on-screen speeds were recorded. Represen-
tative frames of these three videos are shown in Figure 6.5, a further description is given
here:

• Catwalk: The camera is in a fixed position, and a person walks multiple times through
the camera’s field of view. The person swings his arms actively, so various objects are
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Figure 6.5: Video test sequences used the experiments in this section. Results for each of these se-
quences are summarized in Table 6.2. Sequence names from top to bottom: Catwalk, MessyRoom,
Whiteboard.

moving at different speeds and directions at once. The average data rate of the com-
pressed video at full frame rate equals r = 10.49 Mbit/s.

• MessyRoom: The camera pans over an untidy room with many details. Camera mo-
tion is random, and the camera almost never rests. The average data rate of the com-
pressed video at full frame rate equals r = 23.25 Mbit/s.

• Whiteboard: The camera pans over a whiteboard with written text on it, and towards
the end of the video, an arm is moving through the camera’s field of view. The average
data rate of the compressed video at full frame rate equals r = 21.01 Mbit/s.

In Figure 6.6, we can see the resulting fc (orange) for a part of the Catwalk sequence.
Despite using the ASF display from Section 5.3.4, we need to quantize fc as a CSF camera is
involved in the video processing chain. The quantization to integer fractions of fs = 339 Hz
is shown by the black line in Figure 6.6.

A note on how adding fo nonlinearly affects the maximum playback frequency fmax: in
Figure 6.6 (fo = 0 Hz), the highest non-quantized fc is approximately 90 Hz. The frequency
quantization rule (Equation (6.4)) forces the playback frame rate to the next higher avail-
able frequency, therefore fmax = 339/3 = 113 Hz. In the example in Figure 6.6, if we add
a frequency offset fo of for example 20 Hz, the maximum playback frequency fmax will not
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Figure 6.6: fc (orange), and its quantization f̂c (black) for part of the Catwalk video sequence with a
constant sampling rate of fs = 339 Hz. We can see the three levels 339/3 = 113 Hz, 339/4 = 84.75 Hz,
and 339/5 = 67.8 Hz for f̂c (adapted from [3], © 2018 IEEE).

change because fc + fo = 90 + 20 Hz < 113 Hz. If, for instance, we add a frequency offset of
fo = 30 Hz (now, fc + fo = 90 + 30 = 120 Hz > 113 Hz), the algorithm would quantize to the
next higher available frequency, therefore fmax = 339/2 = 169.5 Hz. In conclusion: depend-
ing on its value, fo might have no effect on fmax, or it might push fmax to another available
frequency quantization level from the set of quantization levels L, see Equation (6.3).

The model in Equation (5.28) and Algorithm 4 were verified by letting users view the
sequences played back at f̂c. As predicted in Section 5.5.2, it was noted that different users
require different frequency offsets fo to be added to the result of model (5.28) in order not
to notice any jitter. The most sensitive participant required fo = 20 Hz to be added to Equa-
tionn (5.28). After this addition and video playback with the corresponding frequency, users
did not notice any temporal sampling.

The data rate of a video played back with ASF can be compared to the required data rate
of a video played back with CSF. The constant sampling and display frequency fs has to
correspond to the highest frequency fmax in the ASF sequence for humans never to be able
to perceive temporal sampling.

Table 6.2 shows the frequency and average data rate results for the three sequences from
Figure 6.5. All videos are encoded at the same default image quality settings to achieve
the same (except negligible numerical variations) picture quality for all encoded videos. We
investigate ASF Algorithm 4 for frequency offsets fo = 0 Hz and fo = 20 Hz. In the corre-
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Sampling ASF, fo = 0 Hz ASF, fo = 20 Hz CSF: r(fs)

Metric r f c fmax r f c fmax r(67.8) r(84.75) r(113)

Catwalk 2.64 46.36 67.8 3.73 69.08 84.75 3.12 4.47 -

MessyRoom 4.75 50.45 84.75 6.98 75.88 113 - 7.80 10.44

Whiteboard 4.54 49.95 84.75 6.58 71.46 113 - 7.86 10.24

Table 6.2: Data rates of adaptive sampling frequency (ASF) and constant sampling frequency (CSF).
Average data rate r is given in megabits per second, frequencies in Hz (adapted from [3]).

Sequence ∆r(fo = 0) ∆r(fo = 20)

Catwalk 15.4 % 16.6 %

MessyRoom 39.1 % 33.1 %

Whiteboard 42.2 % 35.7 %

Table 6.3: Data rate reduction of adaptive sampling frequency (ASF) and constant sampling fre-
quency (CSF). The data rate reduction is the relative difference between the CSF data rate and the
ASF data rate with the corresponding highest frequency fmax from Table 6.2 computed using Equa-
tion (6.7). Adapted from [3].

sponding columns, the entries show the average video data rate r in megabits per second
(Mbps), mean playback frequency f c, and maximum playback frequency fmax.

For CSF playback, Table 6.2 shows the average data rates r at sampling frequencies fs
corresponding to the maximum playback frequencies in the previous columns. The table
compares the maximum frequency because in both the ASF and the CSF playback, humans
may not be able to perceive temporal sampling. Hence, in the CSF case, the sequence has to
be played back at fs = fmax. Thus, CSF data rates are presented at the maximum frequencies
occurring in the ASF cases. Finally, Table 6.3 summarizes the average data rate reduction

∆r =
rCSF − rASF

rCSF
(6.7)

of ASF over CSF video processing.
We can see that the reduction of average data rate ranges from 15.4% to 42.2%. The exact

amount of rate reduction depends mainly on the variance of motion speed v. If variance of
speed v is large, we can expect a greater reduction: ASF would exhibit the greatest data rate
reduction if there is high speed apparent for a short period of time (leading to a high fmax,
defining fs for CSF), and most of the time there is little to no motion (leading to a low f c). On
the other hand, with constant speed v, there would be no difference between ASF and CSF.
From these examples it becomes clear that ASF does never increase data rate r compared to
CSF if the video is played back at a frequency such that temporal sampling is imperceptible
to humans.
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6.2.4 Summary

The central contribution of this section, the ASF from Algorithm 4 achieves on average a
30.3 % data rate reduction compared to CSF video, while temporal sampling can not be per-
ceived for both sampling strategies. The data rate comparison even gives an advantage to
the conventional CSF strategy, because the sampling frequency of CSF is usually content-
agnostic. Consequently, a fairer comparison would just assume a high CSF to avoid the per-
ception of temporal sampling in a brute-force manner, in which case the data rate reduction
would be even more significant.

The proposed Algorithm 4 can be used in general applications to reduce the video data
rate. Even for video played back from a storage device, reducing the data rate in an im-
perceptible way is beneficial. The ASF algorithm is therefore not constrained to low delay
video communication. Algorithm 4 is by itself not effective for reducing the delay of video
communication, because it does not guarantee the transmission of visual events. This is why
Section 6.3 merges the greedy Algorithm 3 with the perceptual Algorithm 4.

6.3 Merging the Proposed Algorithms

6.3.1 Observations

Algorithm 3 effectively reduces the sampling frequency, and hence the data rate of a video.
It does so while keeping G2G latency almost as low as in the original video sequence with
constant, high temporal sampling frequency. However, the video after frame skipping may
exhibit a low temporal sampling rate that allows perception of the temporal sampling pro-
cess, which leads to a loss of QoE.

On the other hand, Algorithm 4 reduces video sampling frequency such that the reduc-
tion of frame frequency is imperceptible, yielding an unchanged QoE. It does, however, pro-
vide no guarantee for low latency.

The two algorithms are thus complementary. The goal of this section is to merge the two
algorithms to get the benefits of both: an imperceptible sampling frequency reduction, with
no deteriorating effect on G2G latency.

6.3.2 Merged Frame Skipping Algorithm

The interfacing between algorithms 3 and 4 is done by using tmax from Algorithm 3. Vari-
able tmax controls the minimum temporal sampling rate of the frame skipped image sequence
produced by Algorithm 3. With unchanged video content, a lower tmax causes a higher rate
of regular frames freg. As described in Section 6.1.2, tmax reflects subjective criteria such as
the human perception of temporal sampling. Perception of temporal sampling is handled
by Algorithm 4: for a given frame i, it finds a temporal sampling rate f̂c,i at which temporal
sampling is imperceptible to humans. Consequently, as shown in Algorithm 5,

tmax,i =
1

f̂c,i
(6.8)
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Algorithm 5: Merged Frame Skipping
Data: Frame frequency offset fo, set of video frames S
Result: Frame skipping decision (key/regular/skip frame) as in Algorithm 3

1 begin
2 for Frame si in S do
3 Algorithm 4: Compute quantized critical frame rate f̂c,i
4 Equation (6.8): Compute tmax,i = 1/f̂c,i
5 Algorithm 3: Compute frame skipping decision using tmax,i

is used to merge the algorithms. For each frame, we first apply Algorithm 4 to compute the
critical sampling frequency f̂c,i. tmax,i equals the inverse of f̂c,i, as in Equation (6.8). Finally,
tmax,i is utilized to give a lower bound for the frame rate computed by Algorithm 3. The
entire procedure is depicted in Algorithm 5.

6.3.3 Experimental Results

The evaluation of merged Algorithm 5 focuses on how the two sub-algorithms 3 and 4 in-
teract, and which data rate reduction the combined algorithm achieves. The effect of the
merged algorithm on G2G latency is not evaluated because still, the greedy frame skipping
(Algorithm 3) is used inside Algorithm 5. Additionally, the basis, in particular the key frame
detection of the greedy algorithm, is unchanged, which is why for G2G latency we would
see the same results as in Table 6.1.

The analogous point holds for the evaluation of perception-related effects. Section 6.2.3
proves that using Algorithm 4 reduces the frame rate of a video without any perceivable
alteration of the video. In the merged algorithm, the perceptual sub-algorithm defines the
lower frame rate limit. Consequently, the frame skipping in the video produced by Algo-
rithm 5 will not be perceivable either.

The results of Algorithm 5 applied to the three video sequences from Section 6.2.3 are
summarized in Table 6.4. Specifically, the average frequencies of key frames (fkey) and reg-
ular frames (f reg), and how frame skipping according to the merged Algorithm 5 affects the
data rate of the compressed video are analyzed. We compare the data rates to those of the
videos recorded and encoded at full CSF f = 339 Hz, as presented in Section 6.2.3. This is
useful because it was already proven that Algorithm 4 achieves a data rate reduction, even
when compared to sub-sampled CSF videos that are played back at the lowest imperceptible
sampling frequency. However, this frequency is usually not known and videos are processed
at the frame frequency at which they were recorded. This is why we compute the relative
data rate reduction ∆r of the videos with full sampling frequency compared to the tempo-
rally sub-sampled videos (according to Algorithm 5) in Table 6.4.

First, we see that applying only the greedy Algorithm 3 yields few regular frames in all
sequences, which is understandable given the setting tmax = 420 ms from Section 6.1.3.1.
Applying only perceptual frame skipping Algorithm 4 yields no key frames, only regular
frames. This is caused by the design of Algorithm 5, in which sub-algorithm 4 determines
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Sequence Algorithm fkey [Hz] f reg [Hz] f [Hz] r [Mbit/s] ∆r [%]

Greedy 47.75 0.76 48.51 3.43 67.3

Perception, fo = 0 0.00 46.36 46.36 2.64 74.8

Catwalk Perception, fo = 20 0.00 69.08 69.08 3.73 64.4

Merged, fo = 0 41.11 21.87 62.98 3.96 62.2

Merged, fo = 20 36.94 36.77 73.71 4.32 58.8

Greedy 111.92 0.09 112.01 8.84 62.0

Perception, fo = 0 0.00 50.45 50.45 4.75 79.6

MessyRoom Perception, fo = 20 0.00 75.88 75.88 6.98 70.0

Merged, fo = 0 110.90 3.23 114.13 8.91 61.7

Merged, fo = 20 108.94 7.06 116.00 8.99 61.3

Greedy 58.56 0.00 58.56 5.92 71.8

Perception, fo = 0 0.00 49.95 49.95 4.54 78.4

Whiteboard Perception, fo = 20 0.00 71.46 71.46 6.58 68.7

Merged, fo = 0 50.73 17.02 67.75 6.66 68.3

Merged, fo = 20 47.58 26.73 74.31 7.26 65.4

Table 6.4: Average frame rates f , fkey, and f reg, data rates r, and data rate reductions ∆r for greedy
Algorithm 3, perceptual Algorithm 4, and merged Algorithm 5. We reuse the video sequences from
Figure 6.5 and Section 6.2.3. fkey is the average frequency of key frames and f reg represents average
frequency of regular frames. Note that the average cumulative video frame rate equals the sum f =
fkey + f reg.

only the frequency of regular frames.
Merging both algorithms in all cases lowers the frequency of key frames fkey as well as

the frequency of regular frames f reg in Table 6.4. This is due to the fact that sub-algorithms 3
and 4 compete for frames to classify: if the perceptual algorithm causes more regular frames,
the stored frame for computing the content difference according to Equation (6.2) is updated
more often. This reduces frame differences ∆I , and renders a key frame less likely to occur.
Conversely, if a frame was just sent as key frame, we can wait for a longer time, precisely
1/f̂c, before we need to send the next regular frame. Thus, a video with more key frames
requires fewer regular frames. The sum f of the average key and regular frame frequencies
equals the cumulative average temporal sampling rate of the video. Therefore, despite a re-
duction in one type of frames, the cumulative sampling rate f of a video from the merged
algorithm is still increased compared to the result of an isolated algorithm.

The increase in temporal sampling rate f when transitioning from an isolated algorithm
to the merged algorithm explains the loss in data rate reduction ∆r. Data rate reduction ∆r

is computed as the relative difference between the data rate of the video with full sampling
rate (see Section 6.2.3 and Algorithm 6.7) and the data rate of the frame skipped video. For
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all sequences and frame skipping strategies, we see considerable data rate reductions ∆r

in Table 6.4. Depending on the video sequence, moving from an isolated frame skipping
algorithm to the merged algorithm degrades data rate reduction by 3.3 % to 18.4 %. Still,
compared to an original full frame rate video, the proposed Algorithm 5 achieves between
58.8 % and 68.3 % data rate reduction, while G2G latency and perceptual quality of the video
remain unchanged. On average, the merged algorithm yields 64.1 % data rate reduction for
fo = 0 Hz, and 61.8 % reduction for fo = 20 Hz.

6.4 Preemption

In general computing, preemption means interrupting a process to first execute another pro-
cess with higher priority. Applying preemption to the greedy or merged frame skipping al-
gorithm first means to assign a higher priority to key frames than to regular frames. Second,
the processing of regular frames in a block shall be aborted if a key frame requires processing
because key frame carry visual event information, and therefore define the delay of a video
communication chain. A further analysis of this issue, a way to implement preemption in
the proposed setup, and an evaluation are given in the following.

6.4.1 Observations

This section focuses on the encoder buffer from Figure 3.1, as this is the most likely block at
which queuing occurs because the subsequent network data rate is usually the most unreli-
able parameter in a video communication setup. Let us assume that a key frame is ready to
be transmitted after being encoded, but an old regular frame is still being transmitted and
therefore occupying the channel or the old regular frame is in the encoder buffer, waiting for
transmission. In that case, the new key frame would have to wait in the encoder buffer until
the old regular frame is completely transmitted. To avoid that this key frame has to wait, we
flush the regular frames from the buffer and directly start transmitting the key frame. The
flushing is beneficial because the regular frame does not contain significant information, in
contrast to the arriving key frame. Such a scenario is depicted in the message sequence chart
in Figure 6.7a, where frames are sent from the camera to the unit consisting of the frame
selector and the encoder, from where they are forwarded to the encoder buffer. Frames are
represented as blue lines. The light blue area between two frames is the frame data that is
transmitted. In this example, only the frame transfer time on the transmission channel is
relevant. The channel is fully used by regular frames, therefore the transmission time of a
frame on the channel is exactly as long as one maximum frame period tmax.

Suppose that tmax in Algorithm 3 is set such that every fifth frame from the camera is
selected as a regular frame, as illustrated in Figure 6.7. The frame selector classifies frame
N + 7 from the camera as a key frame. Frame N + 7 comes only two frames after regular
frame N + 5. The key frame N + 7 will be transmitted after regular frame N + 5 is transmit-
ted entirely (dashed line). It cannot be transmitted earlier because the channel is fully used.
Accordingly, using a camera and frame selector on a fully loaded channel would not achieve
any improvements over a conventional five times slower camera without frame selector.



108 Chapter 6. Methods for Delay Reduction

Cam FS+Enc EncBuf Ch

No gain

x

E
ve

nt

t

N

N+5

N+7

N

N+5

N+7

(a) Preemption disabled

Cam FS+Enc EncBuf Ch

Preemption
x

E
ve
nt

t

N

N+5

N+7

N

N+5

N+7

(b) Preemption enabled

Figure 6.7: Key frame forwarding behavior in different preemption modes. In both scenarios, a visual
event is recorded in key frame N+7. Without preemption, the key frame is buffered; with preemption,
it is immediately transmitted to the channel (adapted from [4], © 2018 IEEE).

6.4.2 Preemption Algorithm

To achieve such an improvement, we need to take further measures when receiving a frame
with an event: the previous, old regular frame that is still occupying the encoder, the encoder
buffer, the channel, the decoder buffer, the decoder, or the graphics buffer feeding the dis-
play, has to be deleted (flushed) as shown in Figure 6.7b. The flushing is equally necessary
for the general case, in which the channel is not fully used, but a new key frame arrives in
the encoder buffer, while an older regular frame is still occupying the encoder buffer or is
being transmitted.

The frame selector should still not choose events too often. If the frame selector chooses
frames in quick succession, an event quickly following another will preempt the earlier
event. Therefore, in a burst of events, only the last event would not be preempted, lead-
ing to a delayed transmission of the burst of events. The delayed burst transmission can be
avoided by properly setting the time tmin in Algorithm 3 such that after an event occurred,
a short timeout is enforced. During the timeout, no new key frame is transmitted and the
frame containing the event can be safely transmitted. The preemption units should not pre-
empt key frames in case of a too small tmin, but drop the newly arriving ones. Not deleting
leading key frames is reasonable because it is more important to transmit the initial event of
a burst of events rather than a later one.

Encoders using inter-frame coding techniques may refer to frames that are later pre-
empted. This causes artifacts in the decoded image because a frame that is being decoded
references a previous frame that never arrived at the decoder. Thus, the decoder will abort
decoding of the affected frame, leading to a temporal pause in video playback. This does not
occur when using intra-only coding, since there are no dependencies between the frames,
which is why intra-only coding in combination with preemption is used. However, intra-
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only coding leads to worse compression efficiency because the temporal redundancy is not
exploited to improve coding efficiency.

6.4.3 Experimental Results

The preemption mechanism was implemented with the Click Modular Router [135]. Specif-
ically, the preemption functionality was added to the encoder buffer queueing block, see
Figures 3.1 and 6.7, and fed the data stream from the encoder into the encoder buffer with
preemption functionality. The first byte of each encoded frame identifies the frame either
as a key frame or a regular frame, as determined by the thresholded MAD frame content
assessment according to Line 2 of Algorithm 3 (the remainder of Algorithm 3 was not ex-
ecuted, that is, there was no frame skipping in order to evaluate the effects of preemption
in isolation). To require buffering, the output rate of the encoder buffer was constrained to
C = 14 kByte/s using the BandwidthShaper function of the Click Modular Router, while the
actual channel data rate between the sender and the receiver was still C = 1 Gbit/s.

The preemption evaluation focused on the flushing of full frames (that had not yet begun
transmission) from the encoder buffer. The situation depicted in Figure 6.7, canceling the
ongoing transmission of a regular frame to make way for a key frame, was not considered.
This has not been done as interrupting the sending process of a packet is not possible to
implement on the desktop prototype without kernel and driver changes. Including the can-
cellation of a sending process would cause a G2G delay reduction of up to one transmission
period of a frame. For the current setup, this would be negligible since the actual trans-
mission data rate of the connection between sender and receiver is 1 Gbit/s, giving frame
transmission periods in the sub-millisecond range.

In Figure 6.8, we observe that preemption prevents large delays caused by filled buffers.
While the maximum delay of the queued setup without preemption is 519.93 ms because of
a filled buffer, the maximum delay is 43.97 ms with enabled preemption. Preemption also
affects the average G2G delays, which are 111.13 ms and 17.10 ms for the setup without pre-
emption and the setup with preemption, respectively. Thus, preemption is highly effective
in the prototype, reducing the average G2G delays by roughly half an order of magnitude
and the maximum G2G delays by a full order of magnitude.

Note that the average G2G delay for enabled preemption is smaller than the average de-
lays in Table 6.1 because for this setup, the raw frame size was reduced to 320 × 240 pixels
(with 240 frames per second). This frame size reduction was necessary so as to avoid IP
packet fragmentation (for simplicity) in the prototype. With the 320× 240 pixels frame size,
the encoded frames are smaller than the maximum transmission unit (MTU). For the inves-
tigations in this section, encoder rate control was disabled to emphasize the advantage of
preemption. Even enabled rate control can overshoot the target bits for one or more frames,
in which case the preemption unit can flush them from the queue to make space for an in-
coming key frame.

We note that an alternative approach to preemption for avoiding overloading the encoder
buffer and network channel could be to employ frame skipping with an increased tmin in Al-
gorithm 3. However, increasing tmin may block a key frame (line 4 of Algorithm 3) that could
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Figure 6.8: Cumulative G2G delay distribution function with preemption (orange) and without pre-
emption (blue), including 95 %-confidence envelopes around the graphs (adapted from [4], © 2018
IEEE).

have passed through the encoder buffer using preemption. Consequently, increasing tmin

would increase G2G delay. Therefore, preemption is the preferred method of dealing with
frame rates that may temporarily exceed the processing capabilities of a block. On the other
hand, employing frame skipping with a sufficiently large tmin is beneficial when a block is
never able to process frames faster than 1/tmin. Frame skipping with a sufficiently large
tmin is in this case superior to preemption because it is less complex than preemption and
avoids unnecessary processing steps for frames that will later be preempted, hence saving
computational resources and energy in the video transmission chain.

Overall, the detailed examination of the trade-offs between frame skipping and preemp-
tion as well as the performance characteristics of the combination of frame skipping and pre-
emption is an interesting direction for future research. For instance, we expect that enabling
frame skipping in addition to preemption will strongly reduce the data rate and slightly
increase the latency, comparable to switching from scenario 1 to scenario 2 in Table 6.1.

6.5 Comparison of the Experimental Results to the Theoretical
Delay Model

The setup from scenario 1 from Table 6.1 is used to confirm the theoretical G2G delay
model (3.11). In Equation (3.11), the encoding and decoding delays tEnc and tDec are mod-
eled by triangular distributions, which approximate the underlying limited Gaussian distri-
butions that were observed in the measurements in Table 6.1. The triangular distributions
span from minimum to maximum delay, with the triangle tip at the mean. For the encoder
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these three points are 0.78 ms, 0.88 ms, and 1.08 ms. The maximum tEnc = 1.67 ms from
Table 6.1 were not used because this value was influenced by operating system interrupts,
which are not included in the proposed model. Analogously, the triangle corner positions
for the decoder are at 0.17 ms, 0.27 ms, and 0.54 ms, taken from Table 6.1 with the exception
of the maximum value, which was again an outlier. The triangles are normalized to cover an
area of one.

The remaining components comprising the camera processing, frame skipping, two color
conversions, network, and display processing contribute an average delay of

trem = tCP + tFS + 2 · tCSC + tNetw + tDP (6.9)

= (6.02 + 0.25 + 2 · 0.32 + 0.02 + 5.69) ms

= 12.62 ms.

For these blocks the mean measurement results from Table 6.1 are used, where tDP is the
sum of display processing and display pixel response. Buffering delays are not included be-
cause they are negligible for the C = 1 Gbit/s channel. The remaining delay trem is assumed
to be constant because there is little variance in its summands, see the rightmost column of
Table 6.1. Hence the distribution prem(t) = δ(t − trem) is a unit impulse at trem and zero
otherwise.

Replacing the blocks that are already represented in Equation (6.9) for trem allows us to
simplify model (3.11) to

tG2G ∼ p(t) = (pCTS ∗ pEnc ∗ pDec ∗ pDTS ∗ pRem)(t). (6.10)

In Equation (6.10), the models (3.2) and (3.5) are utilized for the distributions of the tem-
poral sampling processes pCTS and pDTS, respectively. The cumulative probability distri-
bution of the G2G delay resulting from Equation (6.10) is depicted by the blue graph in
Figure 6.9 for the given parameters. The orange graph in Figure 6.9 shows the cumulative
G2G delay distribution of the first scenario in Table 6.1 without the outliers caused by oper-
ating system interrupts. Both the limits and the shape of the distributions match very well,
which confirms the validity of the theoretical model. The theoretical model is consistently on
the left side of the orange graph, but still, the graphs are close to each other. The consistent
underestimation of G2G delay is caused by the deliberately neglected buffer delays, which
introduce only a small error in the model, but simplify the model significantly. The operating
system interrupts were not included because for many video coding systems, this is not an
issue, since they either do not fully use the processor or have another implementation, such
as a real-time operating system or a hardware implementation, which do not suffer from
delay outliers due to interrupts and scheduling.

Note that the preceding model neglects buffering delays and approximates the network
delay with a fixed value (that corresponds essentially to the transmission delay). This is rea-
sonable for video communication systems with negligible buffer (queueing) delays as well as
systems with buffers and enabled preemption. To model buffered video communication sys-
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Figure 6.9: Cumulative distribution function obtained from the probabilistic analysis in Section 6.5
(blue) and empirical cumulative distribution function of the measurement samples from the proto-
type for full transmission (high fps, no skipping, Section 6.1.4.1) (orange). For the empirical distribu-
tion, the 95 %-confidence envelope is also given (adapted from [4], © 2018 IEEE).

tems without preemption, queueing models for the typically highly variable waiting times
in buffers would have to be included.

6.6 Chapter Summary

In this chapter, we have seen that the greedy frame skipping algorithm shows a strong data
rate reduction compared with high frame rate uniform sampling while keeping G2G latency
low. To overcome the QoE degradation of the greedy algorithm, a perception-based frame
skipping algorithm which performs frame skipping (creating an ASF video) such that it is
imperceivable is proposed. Compared to a CSF video with lowest imperceivable sampling
frequency, it achieves on average a 26 % data rate reduction. Combining both algorithms
yields a video streaming system which exhibits low latency, imperceivable frame skipping
with a short enough exposure time, and a considerable data rate reduction compared to the
originally recorded video, on average approximately 63 %. Data rate reduction depends on
video content and recording parameters: for a lower temporal sampling frequency of the
camera, smaller data rate reductions can be expected. However, even compared to an ide-
ally low sampling rate as in Section 6.2.3, the proposed algorithm achieves on average more
than 20 % data rate reduction.

Additionally, the proposed preemption mechanism effectively avoids stalling or buffer-
ing of key frames, and the theoretical model from Section 3.6.2 has been confirmed.



Chapter 7

Conclusion and Future Work

Ultra low delay video communication enables many novel applications. For a human con-
sumer, there is a great number of potential applications in the field of teleoperation, where
low delay video communication is particularly advantageous when the human operator is
wearing an HMD. Low delay video communication is equally important for machine vi-
sion. Applications such as interconnected autonomous driving, observing conveyor belts,
or extracting state information from robot arms require a reliable low latency. In particular
autonomous driving shows great potential for improving comfort and safety in street traffic,
but low latency sensor signals are required for safe and fast control in real-world scenarios.

Despite all the possible applications and benefits, and despite recent advances towards
the tactile internet, latency in video communication is a little researched topic. The reason
for this is that in the past few years, we have seen significant advances in video recording
and displaying technologies, and increasing computational resources in processing units.
Only with the latest advances, widespread consumer application of remote control and visu-
ally controlled machines is possible. The great potential of these applications motivates low
delay video communication, and consequently this thesis.

7.1 Conclusion

In this thesis, delay in video communication was defined and analyzed. A detailed block
model divided the G2G delay of video communication into separate blocks such as camera,
encoder, and network. The blocks and their delay contribution were further analyzed, which
allowed us to formalize the delay of each block. The delay models of all blocks of a video
communication chain in turn enabled the creation of a comprehensive theoretical model for
G2G delay. The G2G delay model was further used with parameters from real world im-
plementations to identify the blocks with the greatest G2G delay reduction potential. It was
found that in a modern high-end video communication setup, the temporal sampling rates
of camera and display should be increased to curtail G2G delay.

For the development and evaluation of low G2G delay video communication solutions, it
is necessary to measure G2G delay. A survey found that existing solutions were insufficient.
They lacked at least one of the following characteristics: performing automated measure-
ments, non-intrusiveness, decorrelated measurements, affordable price, or precision. Hence,
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a novel measurement system which utilizes an LED to create a visual event in the camera’s
FoV, and a PT to detect when the visual event is shown on the display was developed. Based
on an Arduino platform, the system incorporates all beneficial characteristics mentioned pre-
viously. In addition, the flexibility of the system facilitates modifications to measure not only
G2G delay, but also G2A delay, and any delay along the video communication chain. The
measurement system was used to create a survey of G2G delays in state-of-the-art video com-
munication applications and devices such as video conferencing, teleoperation, and smart-
phones. For many implementations, a G2G delay between 100 ms and 200 ms was measured.
Such high G2G delays are prohibited by the latency constraints of future low delay video ap-
plications. Thus, the survey showed that the majority of modern video communication so-
lutions is not ready for usage in applications such as autonomous driving. This fact further
motivates the G2G delay reduction methods proposed in this thesis.

To reduce G2G delay, increasing sampling rates is a straightforward approach. However,
this increases data rates and computational requirements of all involved blocks. The strat-
egy proposed in this thesis is to skip irrelevant video frames, and only process video images
containing significant information. Ideally, this frame skipping process is imperceptible to
humans. To keep any frame skipping processes outside the domain of human perception,
one part of this thesis investigated how humans perceive temporally sampled visual signals.
In particular, there are two scenarios to be considered: if a video is recorded with a low
temporal sampling frequency (frame rate), humans can easily distinguish the video from
the original scene. If the video is recorded and displayed at an extremely high temporal
sampling rate, humans are unable to distinguish video and original, in terms of temporal
sampling. For frame skipping, it was necessary to define at which sampling frequency hu-
mans transition from perceiving temporal sampling to not perceiving it. This is called the
critical sampling rate. The theory behind human perception leads us to expect that the criti-
cal sampling rate depends mainly on the exposure time of the recording camera as well as on
the motion speed apparent in the video. Through a carefully designed psychophysical study,
these presumptions were confirmed and a model for the critical sampling rate depending on
exposure time and object speed was created.

The results obtained from delay analysis and perception analysis were utilized to propose
various techniques to reduce delay in video communication. All following implementations
rest on employing a high sampling frequency camera and performing subsequent temporal
sub-sampling of the frames. In a first approach, perception-related results were disregarded
and a greedy frame skipping algorithm was designed. The procedure decides to forward a
frame as key frame if it contains significant novel content, or forward it as regular frame to
keep frame rate above a predefined lower limit. Compared to video communication at the
original frame rate, this algorithm achieves a reduction of a factor 40 in terms of compressed
video data rate, while keeping latency extremely low. The prototype which employs greedy
frame skipping achieved G2G and G2A delays of 21.2 ms and 11.5 ms, respectively. Still, the
data rate reduction comes at a price: greedy frame skipping is perceivable in most scenarios,
and degrades QoE.

To resolve this, the insights related to the perception of temporally sampled visual signals
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were used. An algorithm around the model for critical sampling frequency was proposed,
rendering the model applicable for real video sequences. The method computes the appar-
ent motion speed, and maps the on-screen speed to a speed relative to the video consumer’s
perspective. The resulting critical sampling rate is finally quantized to one of the available
sampling rates, which are integer fractions of the original sampling frequency. This proce-
dure achieves an average data rate reduction of 26 % compared to a video which is sampled
with constant frequency, chosen as low as possible with humans being unable to perceive
temporal sampling. This method, however, does not relate to low latency video communi-
cation and thus does not guarantee to meet any latency constraints.

This is why the greedy and the perceptual methods were merged. The fundamental
frame skipping decision still comes from the greedy algorithm, but the perceptual algorithm
sets the lower frame rate limit. Using this setup, the low delay from the greedy algorithm
is guaranteed, and frame skipping is imperceptible, thanks to the perceptual algorithm. The
merged algorithms achieve an average data rate reduction of 63 % compared to the video
with full frame rate.

It was observed that key frames are at times stalled, when processing of a preceding reg-
ular frame is not yet finished in a block. Stalling increases latency, therefore a mechanism
called preemption was proposed to avoid stalling of key frames in the encoder buffer. If
a key frame arrives in the buffer, the queue of waiting regular frames is flushed, enabling
direct forwarding of the key frame. Experimental results showed a G2G delay reduction of
half an order of magnitude if the transmission channel is causing considerable buffering and
video rate control is disabled.

Finally, the prototypes and the delay measurement system were utilized to confirm the
validity of the theoretical G2G delay model. It was shown that the model closely matches
measurements with various parameters, which is why the model can be assumed to be cor-
rect.

In short, this thesis has analyzed delay in video communication, proposed a system to
measure G2G delay in video communication, and found a model for choosing the frame
rate at which humans can just perceive or not perceive temporal sampling. These insights
have been used to propose a frame skipping algorithm that combines a greedy decision with
perceptual considerations. The proposed techniques achieved a significant G2G latency re-
duction, while keeping the increase in data rate closely constrained.

7.2 Future Work

This manuscript has not answered all questions related to low latency video communication.
Many open research questions remain, and a few of them shall be pointed out in this section.

1. The greedy frame skipping algorithm can be refined, for example to include adaptive
thresholds. The thresholds for image difference and minimum and maximum time
between two frames could adapt to the video content, available channel rate, or the
computational load of involved blocks such as coders or buffers.
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2. Cut-through operation could be implemented in many blocks of a video processing
chain, and the corresponding reduction in G2G latency could be evaluated.

3. The perception of temporal sampling can be researched in more detail. In this thesis,
a model for a representative luminance, contrast and for the worst case video content
was found. Worst case in this context means the video content with the highest spatial
frequency, thus the quickest color intensity transition. The model can be extended to
take other contrast situations, and the influence of the spatial frequencies visible in the
video into account. A model extended in this way would allow a closer fit of the mod-
eled to the true critical frame rate, and therefore greater frame and data rate reductions.

4. The insights gained from the perception of temporal sampling can be applied to other
fields than low latency video communication. For example in computer graphics such
as gaming or augmented reality, QoE can be improved by blurring content or adapting
the temporal sampling frequency to the current content.

5. The model for the perception of temporal sampling gives the critical sampling rate at
which temporal sampling is perceivable 50 % of the time. In the experiments of this
thesis, a positive frequency offset was added to make temporal sampling impercepti-
ble. Conversely, a study could investigate the effects of a negative frequency offset on
QoE, or in general of a range of offset values.

6. Further research can examine how different visual event classes such as rapidly chang-
ing illumination and continuous motion affect frame skipping. This can lead to frame
skipping methods that adapt to visual event classes.

7. The effect of frame skipping on machine vision algorithms can be investigated. If nec-
essary, application-specific frame skipping algorithms can be proposed.

8. Finally, a study that summarizes scientific work about human visual latency percep-
tion limits would be highly useful. Depending on the application, such as inking on a
touchscreen, wearing an HMD, or remotely controlling a slow robot, humans show dif-
ferent latency perception thresholds. A survey of latency perception thresholds could
help to define G2G latency targets for future low delay video research.
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