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Abstract
In this thesis, we analyze mathematical structures of optimization problems and
algorithms in the context of the analysis and design of electrical power systems.

We present a new way to improve the representation of electrical power flows
in a simple, network-flow based optimization model. We furthermore analyze the
implications with respect to the set of feasible solutions for the two most commonly
used network models. We provide a combinatorial characterization of the vertices of
the polyhedron describing power flows feasible under the so-called Linearized Load
Flow model.

In the context of Benders decomposition, we present a unifying perspective on cut
generation that encompasses many of the most common criteria for cut selection. These
include cuts based on minimal infeasible subsystems, facet cuts, and pareto-optimal
cuts, and we develop a cut selection framework that unites these different criteria. We
apply our framework to an archetypical problem from the context of power system
analysis and discuss some special questions that arise from this application.

Finally, we perform a game-theoretical analysis of an interdependent scheduling
problem, as it may arise in the context of energy infrastructure investment decisions.
We discuss welfare-maximizing solutions, as well as Nash equilibria and questions of
price of anarchy and price of stability. Besides existence results, we put a special focus
on algorithmic questions about the complexity of finding solutions with the stated
properties.
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Zusammenfassung
In dieser Arbeit untersuchen wir mathematische Strukturen von Optimierungsproble-
men und -algorithmen im Kontext der Analyse und des Designs elektrischer Stromsys-
teme.

Zunächst stellen wir eine neue Möglichkeit vor, das Verhalten elektrischer Stromflüsse
in einem einfachen Netzwerk-Fluss-basierten Optimierungsmodell abzubilden. Wir
untersuchen zudem die Auswirkungen zweier verschiedener Netzmodelle in Bezug auf
das resultierende Polyeder der zulässigen Lösungen. In diesem Zusammenhang liefern
wir unter anderem eine kombinatorische Charakterisierung der Ecken des Polyeders,
das zulässige Lösungen nach dem sogenannten Linearized-Load-Flow-Modell beschreibt.

Bezüglich des Dekompositionsverfahrens Benders Decomposition präsentieren wir
eine neue Perspektive auf das Problem der Auswahl von Schnittebenen, die einige der
meistverwendeten Auswahlkriterien der Literatur vereint. Hierbei gehen wir insbeson-
dere auf Schnitte auf der Basis minimaler Unzulässigkeitssysteme, auf Facettenschnitte
und auf Pareto-optimale Schnitte ein. Wir entwickeln ein Auswahlverfahren, inner-
halb dessen jedes dieser unterschiedlichen Kriterien abgebildet werden kann, wenden
dieses auf ein typisches Problem der Energiesystemanalyse an und diskutieren einige
anwendungsspezifische Fragen.

Schließlich nehmen wir eine spieltheoretische Analyse eines Scheduling-Problems mit
Abhängigkeiten zwischen Aufträgen vor, wie es etwa im Kontext von Infrastrukturin-
vestitionen im Energiesektor auftritt. Wir diskutieren hierbei wohlfahrtsmaximierende
Lösungen, ebenso wie Nash-Gleichgewichte und Fragen nach dem Preis der Anarchie
und dem Preis der Stabilität. Neben Existenzresultaten legen wir einen besonderen
Fokus auf algorithmische Komplexitätsfragen bezüglich der Suche nach Lösungen mit
den entsprechenden Eigenschaften.
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Chapter 1

Introduction

1.1 Economic Background
In the analysis and design of power systems, particularly in Germany and Europe,
one of the predominant topics in recent years has been the integration of a higher
share of renewable energy sources. This transition, known in Germany under the term
“Energiewende”, presents all stakeholders in the power system with a series of new
challenges. These can be collected under the terms decentralization, flexibilization and
integration, and we will describe each of those terms briefly below.

As part of the effort to understand and to address these issues, we have undertaken
two research projects together with the Chair of Renewable and Sustainable Energy
Systems at TUM: Integration of Renewable Electricity Generation1 took an overall view
at methodological improvements in the context of energy system models. Subsequently,
in Modelling Decentralised Electricity Supply by Decomposition of Energy Systems2 we
focussed specifically on the application of decomposition techniques.

Decentralization generally refers to the idea that a power system dominated by
numerous small-scale generation units such as photovoltaic cells or wind turbines is
structurally different from one in which power is mostly generated by large, centralized
units, such as nuclear, coal or lignite power plants. Decentralization has two distinct
effects for the analysis and design of power systems:

Firstly, geography plays a much larger role for all planning decisions. While there
is an ongoing competition between the ideas of largely self-sufficient microgrids and
highly interconnected supergrids, both approaches have in common that the geographic
location of generation and demand needs to be taken into account. Models which
represent a large area such as Germany by a single “copper plate” region and ignore
the issue of power transmission between different parts of the area are no longer useful.
This increases the decision space of the models (asking not only from what type of
source to generate electricity, but also where) and adds an entire layer of complexity
through the representation of the transmission grid.

1funded by the TUM International Graduate School of Science and Engineering
2funded by the German Federal Ministry of Economic Affairs and Energy
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Chapter 1 Introduction

Secondly, to the extent to which power generation moves towards diverse and
independently managed units, decision making at the macro level has to adapt, as well.
It is no longer possible to prescribe a detailed schedule to each individual generation
unit – both due to their large number and due to ownership and control by a diverse
set of agents. Instead, individual agents determine the schedule of the generation
units which they control in a way that conforms with their individual priorities. Their
objectives might differ between agents from financial profit to communal well-being.
These priorities have to be taken into account in planning decisions and methods have
to be developed to manage them and align them with central planning objectives.

Flexibilization is the challenge that arises from the inherent unpredictability and
fluctuating nature of renewable energy sources. As generation and demand have to be
balanced at all times and in every region of the system, the components of the system
must be able to react swiftly to any changes in the availability of renewable energy.
This can mean adapting demand by the means of demand side management, adjusting
generation in highly flexible units, using storage devices to shift generation and demand
over time and/or using the transmission grid to shift generation and demand across
space.

All of these need engineering solutions that provide the respective devices with the
required flexibility, but in addition to this, flexibility has to be taken into account in
the analysis of the power system, as well. Well-established aggregated characteristics of
power systems such as the number of full load hours or sorted annual load curves have
in the past provided methods to analyze large scale energy systems with acceptable
computational effort. Yet these methods are unable to adequately represent many
important aspects of flexibilization. Resorting to full-scale high-resolution optimization
models, on the other hand, severely limits the maximal system size that can be analyzed
on a given computational infrastructure.

Integration finally addresses the requirement to join the analysis of different sectors
of the system that have previously been considered independently from each other. This
can refer to both geographical sectors and sectors characterized by the used resources
or equipment. For instance, a highly interconnected European supergrid mandates the
integration of power system analysis for different European countries. Analogously, the
large-scale deployment of combined heat and power devices (CHP) to increase energy
efficiency requires a joint analysis of electricity, heat and natural gas systems.

As mentioned above, one effect of the need for integration is that optimization models
which are employed to take all of these aspects into account grow in size tremendously,
stressing the limits of available computational resources. With each added sector of
the power system, the number of independent units multiplies and with it the number
of related decisions that have to be made. Furthermore, each sector might bring with
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1.2 Mathematical Background

it a very distinct structure of the underlying optimization problems. The established
approach of adding all aspects into a single, gigantic mathematical model in this context
quickly becomes impractical. Specialized algorithms might be much more capable of
solving the optimization problems associated with a given sector, raising the need for a
reliable method to connect different algorithms and to direct them to a global system
optimum.

Furthermore, integration increases the number of agents controlling distinct parts of
the infrastructure that have to be accounted for in the analysis of the energy system:
Companies managing, e. g., electricity and natural gas infrastructure face different
incentives, yet are increasingly depending upon each other as the degree of integration
between the individual systems increases.

In forcing stakeholders to include more and more aspects of the power system into
their models in order for them to remain relevant, this combination of challenges
stretches the computational limits of the field. Despite ongoing progress in computer
hardware and general solution algorithms for mathematical programming problems,
the increased complexity forces stakeholders to make unpleasant compromises in order
to keep computation times and memory demands within reasonable bounds.

In this thesis, we tackle this challenge in three ways: We suggest a new model to
represent certain features of the power system with high accuracy while reducing model
complexity. We furthermore propose improvements to established solution algorithms,
which reduce computation times but also open an avenue to connect specialized models
for different subsystems. Finally, we investigate some of the incentive structures that
arise in a decentralized market and evaluate their effect on the global outcome.

1.2 Mathematical Background
From a mathematical perspective, this thesis builds upon three main strands of theory
which mainly originated around the middle of the 20th century but remain active
areas of research until today. They cover a wide spectrum of important theoretical
developments in the area of optimization. The main theoretical building blocks are
network flow theory, decomposition techniques and algorithmic game theory.

Network Flow Theory The theory of network flows is one of the oldest areas in
mathematical optimization. A standard problem is the maximum flow problem: Given
a network with capacities on every link, compute a flow of maximal magnitude between
two distinguished nodes in the network. This basic setting has been extended in many
ways, e. g. to flows between more than two nodes, circulations, and by modifications
to the concept of a network, such as generalized networks, where losses (or gains) are
incurred by flow along a link. A large portion of the field is dedicated to cost-minimizing

3



Chapter 1 Introduction

flows, where the use of a link (or the generation/consumption of flow at a node) is
associated with some cost.

A broad overview of basic network flow theory and its applications is given by Ahuja,
Magnanti, and Orlin [AMO93]. The book also mentions some applications from the area
of electric circuits, see also [Chr+11] for an interesting connection between electrical
flows and maximal flows in a graph. Two works from this area are particularly relevant
for the results in this thesis: The first is a seminal paper by Truemper [Tru77] on the
connection between cost-minimizing flows in ordinary networks and feasible flows in
generalized networks. The second is a book by Rockafellar [Roc84] which covers a very
extensive theory of duality between different types of network flow problems.

Decomposition Techniques Since the development of the simplex algorithm by
George Dantzig, linear programming has become a standard procedure for all kinds
of optimization problems. Numerous improvements (or indeed replacements) of the
original algorithm have been developed, improving its performance in various settings
and incorporating additional requirements for the feasibility of solutions (e. g. integer
linear programming). One approach in this context are decomposition techniques,
which aim to solve a large optimization problem by repeatedly solving smaller and
simpler problems, while guaranteeing that the final solution is optimal for the original
problem.

The most prominent representatives of this approach are known as Lagrangian
Relaxation (see [Geo74]), Dantzig-Wolfe-Decomposition (see [DW61]) and Benders
Decomposition. In this thesis, we focus on the latter method, which was introduced by
Benders [Ben62]. This approach has received an enormous amount of attention recently
(see, e. g., [Rah+17]) due to its usefulness in many practical settings, such as stochastic
optimization, and has found wide applications in the engineering community.

Algorithmic Game Theory The origins of game theory can be traced back to Von
Neumann and Morgenstern [VM44] and Nash [Nas51]. The field reached popular
recognition during the Cold War as the theoretical foundation of nuclear deterrence. It
can be understood as an attempt to supplement classical optimization problems with
the concept of selfish behavior by individual agents. In the last twenty years, the field
has received a new boost of attention with a focus on the algorithmic aspects of game
theoretical problems, such as their computational complexity. A good overview over
this new era of interest is given by the collection Nisan et al. [Nis+07].

In this thesis, we analyze a problem motivated from applications which builds upon
the extensive theory of scheduling problems (see, e. g., [LRB77]) and extends these
with elements of selfish behavior in a very natural way.

4
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Ch. 2

Ch. 3

Ch. 4

Decentralization

Flexibilization Integration

Figure 1.1: A sketch of the focus of each chapter with respect to the individual challenges
laid out in Section 1.1.

1.3 Contributions

This thesis is divided into three chapters broadly along the lines of the blocks of
mathematical theory presented above. While there obviously exist connections between
all three areas, we have tried to keep each chapter as self-contained as possible. Some
theoretical foundations which are required by all chapters can be found in the Appendix.
At the same time, each chapter addresses a subset of the challenges facing power system
analysis and design as outlined in Section 1.1. A rough sketch of the degree to which
each chapter contributes to the different challenges is provided in Fig. 1.1.

Within each chapter, our main contributions are the following:

Network Flow Models for Transmission Capacity Expansion

• We prove the equivalence of TR and DC model, two widely used models for the
representation of electrical power flows, under certain loss functions in networks
without capacity constraints and empirically evaluate the validity of the above
result in practical networks with capacity constraints.

• We derive some approximation results regarding the feasible regions (the sets of
feasible injections) of TR and DC model.

5
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• We present a combinatorial interpretation of extremal solutions for the DC
model and prove sufficient conditions for when the resulting structure completely
characterizes all extremal solutions.

• We characterize the class of networks that allow a complete characterization of
extremal solutions regardless of the network parameters and prove that if we take
into account network parameters, then the problem of identifying such networks
becomes computationally difficult.

Parts of these results under the first bullet point have previously been published in
a preliminary version as [AS13]. Major parts of the results under the last two bullet
points are currently being prepared for publication as [BS19a].

Benders Decomposition for Energy System Optimization

• We prove the exact connection between two representations of the set of all
possible cut normals at a given iteration, the alternative polyhedron (commonly
used in Benders Decomposition) and the reverse polar set (a concept from convex
geometry and disjunctive programming).

• We refine a common selection procedure for Benders cuts and obtain a character-
ization in terms of the objective function used for common quality criteria from
the literature such as minimal infeasible subsystems and Pareto-optimal cuts.

• In particular, we prove that if the objective is chosen from a certain linear
subspace, then we generally obtain facet-defining Benders cuts.

• We present a number of practical enhancements to the Benders decomposition
algorithm, most notably a new method to generate valid upper bounds from
infeasible subproblems.

• We present a reference implementation of Benders decomposition for a standard
problem from Energy System Analysis and empirically evaluate the performance
impacts of our theoretical contributions.

Major parts of the results under the first three bullet points are currently being prepared
for publication as [BS19b].

Interdependent Scheduling Games

• We present a natural extension of common scheduling problems to the case
of agents controlling both tasks and machines and analyze the tractability of
best-response as well as welfare-maximizing schedules for both the weighted and
unweighted case.

6
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• We prove existence and efficient computability of pure Nash equilibria in the
unweighted case as well as NP-hardness of deciding existence in the weighted
case.

• We prove asymptotically tight upper and lower bounds for the Price of Anarchy
and Price of Stability and analyze the effect of different formulations of the
objective function in this context.

Some of the results in this chapter have previously appeared in the proceedings of the
ICJAI 2016 conference as [Abe+16].
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Chapter 2

Network Flow Models for Transmission
Capacity Expansion
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In this chapter, we analyze the properties of different mathematical models that can
be used to represent electrical power flows in a network. It can broadly be divided into
two parts:

In Sections 2.1 and 2.2, we develop some improvements to existing network-flow-based
models for the problem of designing the optimal infrastructure layout for an energy
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Chapter 2 Network Flow Models for Transmission Capacity Expansion

system in order to satisfy a given demand. In order to do this, we first have to go
through at least some of the physical details of electrical power transmission in order
to set up the necessary background to present our results. The general idea of these
sections is similar to our previous work on network models published as [AS13] and we
use adaptations of two figures from that work (which are both referenced explicitly).
All of the mathematical results in this chapter, however, are independent from [AS13].

In Sections 2.3 to 2.5, we consider a more abstract setting that allows us to isolate
the fundamental differences between two common network models. We establish a link
to the existing mathematical theory of network flows and extend it to our setting.

2.1 Network Models in Energy System Optimization

Since a special focus in this chapter lies on the representation of transmission networks,
we begin by discussing a few concepts and issues that play a role in this context. When
we talk about transmission networks (or transmission lines), we generally have in mind
networks that operate at extra high voltage, such as the European system of 380kV
lines. These typically consist of overhead alternating current (AC) lines, although
underground cables and high-voltage direct current (HVDC) may be included, as well.

We take a high-level view at the energy system, which means that we will typically
aggregate generation and demand from certain geographical regions. Accordingly, a
transmission line in this context is not necessarily a single cable or circuit, rather the
set of transmission lines that connect two regions are aggregated to a single equivalent
transmission line. Such a line is characterized by a number of different electrical
properties, most notably for our purposes the line’s complex admittance (the reciprocal
of its impedance) with its two components conductance and susceptance.

Since in designing an optimal infrastructure layout, we inherently have to deal with
“hypothetical” transmission lines, for the electrical parameters of which no data is
available, we assume that the effective conductance and susceptance of a transmission
line of given length is linear in the line’s capacity. This assumption is reasonable if we
think of a line in the power network as a connection between two regions that results
from aggregating multiple physical transmission lines. If the technical equipment (e. g.
the kind of conductor system used etc.) is identical for these lines, then the capacity of
the connection is determined by the number of such systems that are used in parallel
to connect the two regions. The electrical parameters of the aggregate transmission
line are then approximately proportional to the line’s capacity.

Note, however, that the constant of variation between admittance and capacity
depends not only on the technical equipment used, but also on the line’s length. Two
aspects play a role here: First, the admittance of a transmission system of given type
changes with the length of the transmission line. Both susceptance and conductance
are approximately inversely proportional to the length of the line. Furthermore, the

10



2.1 Network Models in Energy System Optimization

maximal load of a given transmission system (its capacity) changes depending on the
length of the connection, as well. This relation is captured by the so-called St. Clair
curves [StC53; GMD79], which specify a line’s loadability factor as a function of the
line’s length. The loadability factor represents the capacity of a transmission line of
the given length as a multiple of the transmission system’s reference capacity, the surge
impedance loading (SIL). In other words, the actual capacity of a line is the product of
its SIL and the loadability factor corresponding to the line’s length.

Overall, we can write a line’s effective conductance geff and susceptance beff as a
function of its actual capacity in the following way:

geff = gbase · 1

length
· SIL = gbase · 1

length
· capacity

pfactor(length)
(2.1)

beff = bbase · 1

length
· SIL = bbase · 1

length
· capacity

pfactor(length)
(2.2)

Here, pfactor denotes the line’s loadability factor as specified by the St. Clair curves
and gbase and bbase are the base conductance and susceptance per unit of SIL for a line
of length 1 km as determined exclusively by the type of technical equipment used.

To simplify the notation, we will aggregate all the factors that do not depend on a
line’s capacity into a single parameter and define a line’s susceptance and conductance
per unit of capacity by

g :=
gbase

length · pfactor(length)
(2.3)

b :=
bbase

length · pfactor(length)
. (2.4)

Within a certain subnetwork (e. g. the German 380kV transmission grid), it is
furthermore reasonable to assume that the technical equipment used does not differ
too much between different transmission lines and that the electrical properties of
different lines with the same capacity hence depend only on the line’s physical length.
For instance, Egerer et al. [Ege+14] assume that in the European 380kV transmission
grid, every line’s susceptance and conductance per unit length is the same.

We will sometimes make the following somewhat weaker assumption about similarity
of technical equipment across the network: We define a line’s material parameter as
the quotient of is effective conductance and susceptance. Note that by (2.1) to (2.4),

geff

beff =
g

b
=

gbase

bbase ,

the material parameter is thus independent of the line’s length and capacity. We call
a power network uniform, if the material parameter is the same for all lines in the
network. A power network is formally defined as follows:

11



Chapter 2 Network Flow Models for Transmission Capacity Expansion

Definition 2.1 (Power Network)
Let (R,L) be a directed graph with vertex set R and edge set L ⊂ R×R. Let g, b ∈ RL

be two edge weights representing the specific electrical properties (susceptance and
conductance per unit of capacity) of each individual line. We call (R,L, g, b) a power
network and refer to the vertices in R as regions and to the edges in L as lines.

We call a power network uniform if there exists a constant µ such that gl/bl = µ for
all lines l ∈ L.

Note that by g, b ∈ RL
≥0, we mean that g and b are vectors of dimension |L|,

the components of which are indexed directly by the elements of the set L (see
Appendix A.1).

Furthermore, note that the edge orientations in a power network are completely
arbitrary and will have no effect on the feasibility of a power flow in the network. They
only serve as a reference to fix the direction of flow associated with a positive/negative
flow value on the respective line.

Finally, the set L of lines might include both existing and potential lines. We will
later assign to each line a capacity variable that can be set to zero if a potential line
should not be built (see, e. g., Problem 2.7).

A typical set of parameters for the German 380kV transmission network can be
found in [KNK11, Table 3.2]: For a typical 380kV line (562-AL1/49-STIA) of length
100 km, we obtain

gl ≈ 2.54
µS

MW
(2.5)

bl ≈ −28.91
µS

MW
. (2.6)

Similar values are obtained by Hewes et al. [Hew+16] as capacity-weighted averages
for the European power grid. For a line of length 100 km, their results imply (assuming
a loadability factor of 2.5) that

gl ≈ 2.07
µS

MW
(2.7)

bl ≈ −23.22
µS

MW
. (2.8)

In general, we can always assume that g > 0 and in a network of overhead transmission
lines that b < 0. Note that our definition of a power network so far is independent of
the transmission capacities, which are actually installed. A model of any actual power
network thus requires in addition a capacity vector f+ to be specified. Now, an energy
system can be written as a power network together with a demand vector and a vector
of generation cost functions:

12



2.1 Network Models in Energy System Optimization

Definition 2.2 (Energy System)
Let (R,L, g, b) be a power network and D ∈ RR

≥0. For every i ∈ R, let ci : R≥0 →
R≥0 ∪ {+∞} be a closed convex function. We call (R,L, g, b,D, c) an energy system
and refer to D as the demand vector and to ci as the production cost function in
region i. This function maps the total power pi produced in region i to the associated
production cost ci(pi) for sourcing this power locally in the cheapest possible way.

We call an energy system non-trivial if D 6= 0 and for every region i ∈ R it holds
that ci(pi) > ci(0) for all pi > 0, i. e., there is some demand for power in the system
and no region can produce power at no cost.

Note that we allow ci(pi) = ∞ for certain values of pi, which can be interpreted as
“it is impossible to produce the amount pi of power in region i” (e. g. due to limited
production capacities).

Given a power network, the specific susceptance and conductance of its transmission
lines together with a vector of installed capacities f+ determine the set of electrical
flows that are admissible in the network. This set of feasible electrical flows in a power
network can be described in several ways and to different levels of detail, depending on
which mathematical grid model is being used.

The arguably simplest such model, the Transport model, is based on the classical
concept of network flows, where flows in a network are constrained only by edge
capacities. The Transport model is widely applied because of its simplicity and
exceptional computational performance. On the other hand, it often fails to represent
important aspects of electrical power flows and thus severely lacks in accuracy. As a
consequence, more elaborate network models are increasingly being used. Since these
are computationally more demanding, their use often greatly reduces the scope of
optimization models that can be solved within a reasonable amount of time.

In this chapter, we will discuss possible improvements to the accuracy of the Transport
model while aiming to maintain its theoretical simplicity and practical performance.
We will introduce the most commonly used grid models in Section 2.1.1 below and we
provide a more detailed discussion of their physical interpretation and the relations
between them in Section 2.1.2.

2.1.1 Transmission Capacity Expansion Problems

Before we proceed with the definition of the concepts of feasibility, as well as the
optimization problems that this chapter is concerned with, we introduce loss functions
which are used to model the transmission losses incurred by transporting a certain
amount of power across a particular transmission line. We will see some common
examples of loss functions in Definition 2.10.

13
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Definition 2.3 (loss functions)
Let S := {(bl, gl, f+

l , fl) ∈ R2×R2
≥0 |fl ≤ f+

l } denote the set of possible line parameters
and flows satisfying the line’s capacity. We call a function η : S → R defined on
that set loss function. For a vector xl = (bl, gl, f

+
l , fl) of a transmission line’s specific

susceptance and conductance, its capacity and the amount of power transmitted, the
value η(xl) represents the power lost on a line with these particular parameters when
the line receives a power injection of magnitude fl.

Given a loss function η and a power network (R,L, g, b), we define the line-specific
loss functions ηl : R2 → R of a line l ∈ L with specific susceptance bl and conductance
gl by

ηl(f
+
l , fl) := η(bl, gl, f

+
l , fl).

For a power network (R,L, g, b) and a transmission line l ∈ L with capacity f+
l and

power flow fl, the value ηl(f
+
l , |fl|) is the power lost on this line when it transmits the

amount |fl| between its two endpoints (the losses are independent of the direction of
flow). Note that, while in reality losses occur along the entire length of a line and the
amount of power transmitted across a particular segment of the line thus changes over
the course of the line, it makes sense from a modeling point of view to deduct the total
amount of losses at one or both of the two endpoints of a line.

In principle, we could use any arbitrary distribution of losses between the two
endpoints. However, the amount of losses that is deducted at the beginning of the
line no longer registers as flow across the line. On the other hand, we define losses as
a function of the flow across the line. Depending on the exact distribution of losses
between the two endpoints, a different loss function thus has to be used to obtain the
same level of losses.

For reasons of symmetry, we have decided to use the following distribution: One half
of the incurred losses is subtracted directly at the outgoing endpoint (thereby reducing
the load on the line), the other half first has to be transmitted to the other endpoint
and is deducted there.

For the sake of completeness, the most natural alternative to dividing the loss
between both ends of each line would be to assign them entirely to either the outgoing
or the incoming endpoint. Indeed, it turns out that in both cases, all the results from
this chapter can be translated (replacing ηlog by another suitable loss function where
required). Our choice for the model presented above is based on the cleaner notation
that it admits, due to the fact that we do not need to distinguish flows in different
directions.

We can now formally define the Transmission Capacity Expansion Problem, that we
will focus on in this chapter. We start by specifying the conditions for a production
vector and a flow to be a feasible solution in our setting. Recall that we denote the
set of incoming and outgoing edges in a vertex i by δin(i) and δout(i), respectively (see
Definition A.1).
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2.1 Network Models in Energy System Optimization

Definition 2.4 (Demand-satisfying Flow)
Let (R,L, g, b,D, c) be an energy system and η a loss function. A pair (p, f) of a
production vector p ∈ RR

≥0 and a flow f ∈ RL is called demand-satisfying with respect
to the loss function η and a capacity vector f+ ∈ RL

≥0 if

pi +
∑

l∈δin(i)

(
fl −

ηl(f
+
l , |fl|)
2

)
−

∑
l∈δout(i)

(
fl +

ηl(f
+
l , |fl|)
2

)
≥ Di ∀ i ∈ R. (2.9)

The cost of (p, f) is given by

c(p, f) :=
∑
i∈R

ci(pi).

If there exists a pair (p∗, f∗) with c(p∗, f∗) < ∞ that strictly satisfies all the inequalities
(2.9), then we call (R,L, g, b,D, c) strictly feasible for η.

Whenever the loss function is clear from the context, we omit it and say simply that
(p, f) is demand-satisfying for f+. While a demand-satisfying solution provides every
region with enough electricity, it does not necessarily respect the physical constraints
imposed by the transmission grid (e. g. line capacities). In addition to demand-
satisfaction, we hence require the following properties for a pair (p, f) to be feasible.
As these depend on the network model used, we differentiate two degrees of feasibility
(see Fig. 2.1 for an example of the differences):

Definition 2.5
Let an energy system (R,L, g, b,D, c) and a loss function η be given. A pair (p, f) is
TR-feasible for a capacity vector f+ ∈ RL

≥0, if it is demand-satisfying w.r.t. η and f+

and satisfies
∀ l ∈ L : |fl| ≤ f+

l . (2.10)

TR-feasibility thus requires only that capacity constraints are respected. DC-
feasibility adds to this the requirement that the flow on each line is proportional
to the difference in phase angles ϕi between its endpoints with respect to a suitably
chosen vector ϕ.

Definition 2.6
Let an energy system (R,L, g, b,D, c) and a loss function η be given. A pair (p, f) is
DC-feasible for a capacity vector f+ ∈ RL

≥0, if it is TR-feasible for f+ and there exists
a vector ϕ ∈ RR that satisfies

∀ (i, j) ∈ L : fij = bijf
+
ij · (ϕj − ϕi). (2.11)
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(a) A flow that is TR-feasible, but not DC-
feasible.
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(b) A flow that is both TR- and DC-feasible.

Figure 2.1: A small example to illustrate the difference between TR- and DC-feasibility:
Three nodes with demand values Dt = 1 and Ds = Dv = 0 are connected by
identical (lossless) lines with bl = 1 and capacities f+

l = 1 for all lines l. Both
flow realizations shown are TR-feasible (together with the production vector
ps = 1, pv = pt = 0), since they respect the capacity constraints. However, only
the flow in (b) is also DC-feasible (as certified by the vector ϕ which is also shown).
In (a), there is no assignment of values ϕi to the nodes that satisfies the equation
(2.19) for each pair of vertices with respect to the flow f .

The equations (2.11) ensure that power flows in the network behave in a way similar
to current flows in a direct current (DC) circuit. TR-feasibility, on the other hand,
ignores any interdependence between flows on different lines and only requires that
capacity limits are respected on each individual line. While Definitions 2.5 and 2.6 are
sufficient for our work in this chapter from a mathematical perspective, we provide a
brief interpretation of the respective requirements in the context of alternating current
power transmission networks in the following Section 2.1.2.

Using the above terminology, we can now formulate the following two optimization
problems, the Transmission Capacity Expansion Problem (TCEP) and the Optimal
Power Flow Problem (OPF).
Problem 2.7 (Transmission Capacity Expansion Problem (TCEP))
Let an energy system (R,L, g, b,D, c), a loss function η and a capacity cost vector
cf ∈ RL

≥0 be given. Determine a capacity vector f+ ∈ RL
≥0 and a pair (p, f) DC-

feasible/TR-feasible for f+ such that

cf · f+ + c(p, f)

is minimal. Depending on the network model used to determine feasibility, we use the
abbreviation DC-TCEP and TR-TCEP, respectively.

It is easy to see that, since DC-feasibility implies TR-feasibility, the optimal objective
value for the problem TR-TCEP is a lower bound for the objective value of DC-TCEP.
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2.1 Network Models in Energy System Optimization

We may also consider the following corresponding problem that asks for an optimal
flow (p, f) for a given, fixed capacity vector f+:

Problem 2.8 (Optimal Power Flow Problem (OPF))
Let an energy system (R,L, g, b,D, c), a loss function η and a capacity vector f+ ∈ RL

≥0

be given. Determine a pair (p, f) DC-feasible/TR-feasible for f+ such that c(p, f)
is minimal. As above, we use the abbreviation DC-OPF and TR-OPF, respectively,
depending on the network model used to determine feasibility.

Note that both problems as defined above are abstracted versions of problems as
they arise in an engineering context, which typically include many more details, e. g.
with respect to the constraints for power generation inside an individual region. These
versions are sufficient for our work in this chapter, since they include all the relevant
aspects of the problems while keeping the notational overhead minimal.

One particular aspect that we ignore in Problem 2.7 is that we would typically be
interested in a cost-minimizing capacity vector over time. With a suitable discretization
of the time horizon under consideration into time steps t ∈ T and demand vectors Dt

as well as production cost functions ct for each time step t, the problem then consists
of finding a capacity vector f+ and pairs (pt, f t) for every time step t, that are all
DC-/TR-feasible for f+ and minimize

cf · f+ +
∑
t∈T

ct(p
t, f t). (2.12)

Furthermore, it might be desirable to include some security margin in the optimal
capacities obtained from the TCEP. One could, e. g., require that only 80 % of the
installed capacity on each line should ever be used. This can easily be incorporated into
Problem 2.7 by using for f+ the capacities that should actually be respected by the
power flow, e. g. 80 % of the installed capacity for the example above (and adapting
the cost vector etc. accordingly).

2.1.2 Network Models
In this section, we give a brief overview over the archetypical network models that are
used most commonly in the context of Energy System Optimization. The remainder of
this chapter will only be based on the definitions from Section 2.1.1 above, in this sense
the contents of this section are entirely optional. However, they provide some context,
in particular to put the definitions of TR- and DC-feasibility in relation. Furthermore,
we would like to provide a very brief introduction into the description of alternating
current power networks and link the models that we use in this chapter to the physical
equations that a reader might be familiar with from other contexts.

We focus on three particular models for the description of power networks: the
Transport model and the DC model, which are most widely used in the field of
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Figure 2.2: Qualitative sketch of the properties of different lossless grid models: The Trans-
port model is rather crude, but computationally very efficient, the AC model
represents an adequately accurate representation of power flows in a grid. The
DC model strikes a middle ground on both dimensions. Different refinements
and simplifications of these models can be developed, as indicated by the grey
rectangles.

investment planning and on which our definitions of TR-/DC-feasibility (Definitions 2.5
and 2.6) are based, as well as the AC model, which can be seen as the most physically
correct and is generally considered a suitable reference to compare the accuracy of
other models against (see, e. g., [Rom+02; SJA09]).

The three models can be distinguished from one another by specific advantages and
disadvantages with respect to computational effort and accuracy that are qualitatively
depicted in Figure 2.2. Naturally, computational performance is not only a function of
the type of network model. Instead it varies depending on the application and on the
specific variant of the respective model that is being used. For instance, all models
can be enhanced by different representations of transmission losses, increasing their
accuracy and (potentially) their computational complexity. However, these effects are
not the same in all models. One result from this chapter will be that an appropriate
choice for the representation of transmission losses can in particular greatly increase
the accuracy of the Transport model, moving it much closer to the DC model without
significantly increasing the computational complexity.

We will revisit these computational complexity issues in more detail in Section 2.1.1.
For now we shall focus on their different physical interpretations. For the following
presentation of the different network models, note that the AC model shall serve as a
reference point only, hence it will be covered only to the degree necessary to distinguish
it from the other models and to understand their relation. The exposition of the AC
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model is inspired by [SJA09]. The DC model and Transport model are also covered in
[Rom+02], a study of network models used in network expansion planning.

In accordance with the literature (e. g., [SJA09]) we will throughout the remainder of
this chapter represent all parameters and values in the per-unit system with base power
value 1 MVA and base voltage magnitude equal to that of the grid under consideration
(e. g. 380 kV for the German extra high voltage transmission grid). This allows for
a cleaner notation since we can include certain constants (such as the base voltage
magnitude) into the parameters and do not have to carry them around explicitly. For
example, the values from (2.5) and (2.6) can be rewritten on this basis as follows:

gl ≈ 2.54 · 10−6 S

MW
= 2.54 · 10−6 · 380000

2

106
p.u.

MW
= 0.366776

p.u.

MW
(2.13)

bl ≈ −28.91 · 10−6 S

MW
= −28.91 · 10−6 · 380000

2

106
p.u.

MW
= −4.174604

p.u.

MW
(2.14)

AC model. Long-distance power transmission networks usually work using high-
voltage alternating current. For this, the entire network is oscillating at a defined
frequency (typically, in the EU, 50 Hz), similar to a resonant circuit (or LC circuit).
This means that both voltage and current at any point in the network oscillate in the
form of a sine wave. Ohmic resistance in devices connected to the network (as well
as the network itself) reduces the amplitude of the oscillation over time, as electrical
energy is converted into heat. Such devices are known as active loads and they are
said to consume active power.

For a given amplitude of the oscillation, active power, as the product of voltage
and current, is highest if both oscillate perfectly in sync. If, on the other hand, they
oscillate with a phase shift of 90◦, the same amount of power that is delivered by the
network at one point in time has to be fed back into the network over the course of one
cycle of the oscillation. This means that, in total, no active power can be consumed.

Such a phase shift can result from certain components in the connected devices (and,
again, the network itself) behaving to some extent as electrical capacitors or inductive
coils. This is true even for a simple overhead line: As an electrical current is sent
through the conductor, both a magnetic and an electric field form around it. In the
case of alternating current, both collapse and are then rebuilt as the direction of current
reverses. This behavior, known as reactive load, does not decrease the amplitude of
the oscillation, instead it leads to a phase shift between the oscillations of voltage and
current, respectively. This, as mentioned above, reduces the amount of active power
that is available in the network (the power is not consumed, or converted into heat, but
becomes inaccessible since it is stored in the respective electric and magnetic fields).

The AC model represents a reasonably accurate model of the behavior described
above: Every line (i, j) is characterized by its capacity f+

ij and the two parameters
gij and bij , corresponding to the inverse of its active and reactive resistance which
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quantify the extent to which the line itself behaves as an active load and/or a reactive
load when it is used to transport active power between its endpoints.

If these parameters are known, then the power flow across a transmission line can be
described by the voltage magnitude (the amplitude of the oscillation) at the beginning
(vi) and the end (vj) of the line, as well as the line angle ∆ϕij = ϕj − ϕi, where ϕi is
the voltage phase shift at network node i compared to some reference node.

The (active) power injections at the beginning (pi) and the end (pj) of the line
are then given by the following set of equations (for a detailed explanation, see, e. g.,
[Kni72; WW84]):

pi = −vivjf
+
ij bij sin∆ϕij + f+

ij vigij(vi − vj cos∆ϕij)

pj = +vivjf
+
ij bij sin∆ϕij + f+

ij vjgij(vj − vi cos∆ϕij)
(2.15)

Note that if several lines meet in one node, the same voltage and phase shift variables
appear in the equations associated with each of those lines, thus linking the power
flows on different lines.1

The first summand on the right hand side of the above equations can be understood
as representing the amount of active power that is transmitted, while the second
term represents losses that occur across the line. We can thus reformulate the above
equations to obtain for each line (i, j) a real power flow from i to j of magnitude

fij := vivjf
+
ij bij sin∆ϕij . (2.16)

If fij is negative, it corresponds to a real power flow from j to i. These equations
constitute the lossless AC model mentioned in Fig. 2.2. Similarly, the transmission
losses between vertices i and j are captured in the term

f+
ij gij · (v

2
i + v2j − 2vivj cos∆ϕij). (2.17)

A similar set of equations holds for the flow of reactive power.
The AC model is used in different contexts, one common example being security-

constrained unit commitment (see, e. g., [FSL05]), but also network contingency analysis.
However, since the equations (2.15) represent a system of non-convex nonlinear equa-
tions, a solution can in most cases only be approximated numerically. This restriction
makes the model methodologically hard for global optimization and furthermore com-
putationally unsuitable in many cases.2

1This also motivates the traditionally more common bus-injection model, where power flows along
transmission lines are given only implicitly. We use the above representation because it is more in line
with mathematical network flow problems, see, e. g., [Low14a] on the equivalence of both models.

2Lavaei and Low have recently sparked some effort to come up with and analyze convex relaxations,
at least for certain network topologies [LL12; LTZ14; MSL15].
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Transport model. Faced with the conflict between physical accuracy and computa-
tional complexity sketched in Fig. 2.2, the Transport model (on which our definition of
TR-feasibility (Definition 2.5) is based) strikes the opposite tradeoff to that represented
by the AC model: The only restriction that the Transport model imposes on network
flows are (thermal) line capacities. These are represented by an upper bound on the
absolute value of the flow on the line: For every line (i, j) the flow fij has to respect
|fij | ≤ f+

ij where f+
ij represents the thermal capacity of the line (i, j). A power flow

according to the Transport model can thus be understood as a simple network flow
that is bound merely by the capacity of edges in a graph.

Since, major parts of the underlying physical laws are ignored, power flows feasible
under this model can deviate quite substantially from physically “correct” flows. In
exchange for its lower accuracy, the Transport model has a number of advantages from
a computational point of view which we will discuss in more detail in Section 2.2. These
are the primary reason why the Transport model is still widely being used, especially
in contexts that either involve very large instances (large number of timesteps and
many regions/units) or require a basic problem to be solved a significant number of
times (e. g. in the context of a branch-and-bound scheme for integer unit commitment
problems), see,e. g., [Tuo+09; Fri12; SSH12].

DC model (Linearized Load Flow). As indicated in Figure 2.2, the DC model (on
which our definition of DC-feasibility (Definition 2.6) is based) can be seen as a com-
promise between AC model and Transport model with respect to the tradeoff between
accuracy and computational complexity. Most authors present it as a simplification of
the AC model (see, e. g., [SJA09], [WW84, Ch. 4.1.3]): It is assumed that the voltage
magnitude remains unchanged across the network and thus all vi can be normalized to
1. Furthermore, the function sin∆ϕ is approximated by ∆ϕ, as the occurring angles
are typically rather small.

If we furthermore ignore transmission losses, then this reduces (2.15) to

pi = −f+
ij bij(ϕj − ϕi)

pj = +f+
ij bij(ϕj − ϕi)

(2.18)

or, analogously to (2.16),

fij := f+
ij vivjbij · (ϕj − ϕi). (2.19)

Instead of viewing the DC model as a simplified version of the AC model, one may
also interpret it as enhancing the Transport model by adding exactly those constraints
that make sure that a flow respects an adaptation of Kirchhoff’s voltage law for direct
current (DC) circuits (see [HK86, Ch. 2-3]).

In terms of our definitions from Section 2.1.1, this is captured by the following
proposition, for which we introduce some shorthand notations: If convenient, we
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can interpret a line (i, j) ∈ L as its reverse line. This does not change the line’s
parameters, but reverses the sign of the flow. We therefore write bji := bij , f+

ji := f+
ij

and fji := −fij .

Proposition 2.9
A solution (p, f) is DC-feasible if and only if it is TR-feasible and for every cycle C in
the power network visiting the vertices r0, r1, . . . , rk = r0,

k−1∑
i=0

friri+1

f+
riri+1briri+1

= 0. (2.20)

Proof. Let ϕ ∈ RR be a vector for which f satisfies (2.11). Let C be a cycle visiting
the vertices r0, r1, . . . , rk = r0. Then,

k−1∑
i=0

friri+1

f+
riri+1briri+1

=

k−1∑
i=0

ϕri+1 − ϕri = 0.

Conversely, assume that (2.20) holds for all cycles. We construct a vector ϕ ∈ RR

that satisfies (2.11) as follows: For each connected component of the power network,
choose an arbitrary vertex r0 ∈ R and set ϕr0 to some arbitrary value. For every
vertex r ∈ R that belongs to the same connected component, choose an undirected
path that connects r0 with r and denote the vertices encountered along this path by
r0, r1, r2, . . . , rk = r. Now, set

ϕr := ϕr0 +

k−1∑
i=0

friri+1

f+
riri+1briri+1

.

Now, let (r, r′) ∈ L and consider the paths connecting r and r′ to r0 as defined above.
Together with the edge (r, r′), these paths form a (not necessarily simple) cycle. By
(2.20), we obtain that frr′

f+
rr′brr′

= ϕr′ − ϕr, which implies (2.11). 2

The above proposition can also be verified in the example from Fig. 2.1: The flow
shown on the right satisfies (2.20) with respect to the unique cycle in the network,
which is not true for the flow shown on the left.

Proposition 2.9 thus implies an alternative characterization of DC-feasibility: Instead
of (2.11), we could also enforce (2.20) for all cycles in the power network. In fact, it
would be sufficient to enforce (2.20) for a subset of cycles that form a cycle basis of the
underlying network [Kir47]. These bases are always of size linear in the number of edges
and a basis with a minimum total number of edges can be computed in polynomial
time (e. g., [BGdV04; Kav+04]).
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In view of the three models presented above, each with its particular tradeoff between
precision and computation time, a natural question is whether other tradeoffs can be
found: How much precision can be achieved without sacrificing the computational
advantages of a simpler model? The grey areas in Figure 2.2 indicate such regions of
interest.

This question has been addressed to some extent by Alguacil, Motto, and Conejo
[AMC03], who present an improved representation of transmission losses in the context
of the DC model. Also, Stott, Jardim, and Alsaç [SJA09] analyze the different results
obtained from DC model and AC model. The authors point out conditions under
which the assumptions underlying the DC model are unjustified and lead to misleading
results. Finally, a recent study by Coffrin and Van Hentenryck [CV14] has attempted
with some success to include relaxed versions of some constraints from the AC model
into the framework of the DC model. This approach leads to a much better accuracy
of the resulting flows while maintaining a large portion of the computational advantage
of the DC model over the AC model.

In the area between Transport model and DC model, on the other hand, the only
attempt that we are currently aware of to increase accuracy beyond the Transport
model, while keeping complexity below the DC model, is the Hybrid Model (see, e. g.,
[VGS85]) where existing lines are represented using the DC model while expansion
options use the Transport model.

In this chapter, we will more carefully investigate the differences between Transport
model and DC model and present an approach that substantially improves the represen-
tation of power flows under the Transport model without sacrificing its computational
advantages. In contrast to the Hybrid Model, our approach will be applicable to a
greenfield setting without any existing infrastructure, as well. Furthermore, it can
at least to some extend be combined with the Hybrid Model approach: A Hybrid
Model can be thought of as a Transport model network with some additional DC lines
(those that already exist). This means that all of our results with respect to individual
transmission lines can be used for the underlying Transport Model network of a Hybrid
model, as well. This covers in particular our work on loss functions (Section 2.1.3) and
their piecewise-linear approximation (Section 2.2.1).

2.1.3 Loss Functions

One important aspect to note is that the AC power flow equations (2.15) include a
term that corresponds to the transmission losses incurred, depending on the power
flow on a line as well as its physical parameters. Hence, the AC model comes with a
very natural model to handle transmission losses using the expression (2.17). In the
DC model and Transport model on the other hand power flows are lossless by default,
which gives us some choice in how to add transmission losses to the model.

Many ways to represent transmission losses can be found in the literature. The
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f∗

η2ηlog,
ηAC

(2)

(1)

f

ηl

Figure 2.3: Different models of transmission losses for fixed capacity f+ in a typical transmis-
sion line. The thick plots represent the reference point-free loss functions from
Definition 2.10 (η2 and ηlog are indistinguishable in this plot). Constant and
linear local approximations with respect to the reference point f∗ are shown as
(1) and (2), respectively. Based on a figure from [AS13].

simplest idea is to use empirical experience or expert judgement to determine some
fixed amount of energy lost during transmission (globally or per line) and add the
result to the demand vector (e. g., [LF92]). This approach (depicted as plot (1) in
Fig. 2.3) is very simple and does not affect the complexity of the used optimization
model. However, the choice of the level of losses is very prone to error and in particular
assumes that the system will not deviate substantially from a reference point defined a
priori.

This drawback may be alleviated by using some local approximation of transmission
losses around a predefined operating point. The most common method is to define losses
as a constant fraction of the power transmitted on a line (e. g., [Tuo+09], [SSH12]).
This approach is depicted as plot (2) in Fig. 2.3. This fraction must be fixed a priori
and is typically obtained by measuring or estimating the properties of a line in some
reference point (see Fig. 2.3).

Since any choice of such reference points invariably ties the model to a certain
predefined operating point, we will instead focus on transmission loss models which, in
contrast to the two approaches mentioned above, are reference point-free (or cold-start
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2.1 Network Models in Energy System Optimization

models in the terminology of [SJA09]). By this we mean that they do not rely on any
previously determined reference point. In the terminology of Definition 2.3, we define
the following loss functions, which are visualized in Fig. 2.3 as functions of f for a fixed
line and fixed capacity f+:
Definition 2.10 (particular loss functions)

ηAC(bl, gl, f
+
l , fl) := 2glf

+
l

(
1− cos

(
arcsin

(
fl

blf
+
l

)))

= 2glf
+
l

(
1−

√
1−

(
fl

blf
+
l

)2
) (2.21)

η2(bl, gl, f
+
l , fl) :=

gl

b2l f
+
l

f2
l (2.22)

ηlog(bl, gl, f
+
l , fl) :=

2b2l f
+
l

gl

(
log
(

exp
(
2glfl

b2l f
+
l

)
+ 1

)
− log 2

)
− 2fl (2.23)

η0(bl, gl, f
+
l , fl) := 0 (2.24)

Furthermore, we define ηAC(bl, gl, 0, 0) = η2(bl, gl, 0, 0) = ηlog(bl, gl, 0, 0) := 0 for all
bl, gl ∈ R.

The loss function ηAC corresponds to the AC loss term (2.17) for voltages fixed
to 1 p.u. and resolved to the amount of electrical power transmitted (2.16). This is
the most accurate representation of transmission losses that can be derived from the
models presented above. On the opposite end, the function η0 corresponds to the
most simplistic assumption of lossless transmissions. The function η2 represents an
often-used quadratic approximation from the area of direct current electrical flows (see,
e. g., [HK86, Ch. 2-2]) that is also used in [AMC03] to improve the DC model.

Finally, the function ηlog does not commonly appear in the literature, but we shall
see below that it represents an approximation of ηAC very similar to η2 (Remark 2.11),
maintaining important properties of η2 that make them easy to handle in the context
of optimization problems (Theorem 2.16). In addition, it will allow us to theoretically
prove the equivalence of optimal flows in the DC model and the Transport model under
certain conditions (Theorem 2.14).

In the following, the loss functions (2.21) to (2.23) will be used as approximations of
each other. This is justified by the following observation:
Remark 2.11
Let (R,L, g, b) be a power network, let l ∈ L and f+

l ∈ R be fixed and consider the
loss functions ηAC

l , ηlog
l , η2l from Definition 2.10. Then, for any α, β ∈ {AC, log, 2} and

fl ∈ R≥0 we have
ηαl (f

+
l , fl) = ηβl (f

+
l , fl) + o(|fl|2).
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2.1.4 TR-optimality and DC-feasibility

In light of the tradeoff between accuracy and computational complexity that was
outlined in Section 2.1.2 (and will be made more precise in Section 2.2), it is worthwhile
to compare the solutions to the different versions of the Optimal Power Flow Problem
(Problem 2.8) and to investigate their differences. More specifically, we will ask
how optimal solutions of DC- and TR-OPF relate to each other and under which
circumstances a TR-feasible solution also satisfies the more restrictive concepts of DC-
feasibility. We start by observing that the set of demand-satisfying flows (a superset of
DC-/TR-feasible flows) is convex under mild conditions regarding the loss function.

Lemma 2.12
Let f+ ∈ RL

≥0 be a capacity vector and η a loss function that is non-decreasing and
convex in the fourth argument. Then, the set of demand-satisfying flows is convex,
i. e., if (p, f) and (p′, f ′) are demand-satisfying for f+ w.r.t. η and λ ∈ (0, 1), then
λ(p, f) + (1− λ)(p′, f ′) is demand-satisfying.

Proof. As η is non-decreasing and convex in the fourth argument and | · | is convex,
−ηl(f

+
l , |fl|) is concave in fl for all l ∈ L and f+

l ∈ R≥0. Thus, the left hand side of
(2.9), as a sum of linear and concave expressions in (p, f) is itself concave, which proves
the statement. 2

The following lemma provides the basis for the main theorem in this section: If
we use the loss function ηlog, then any cost-minimal demand-satisfying flow satisfies
(2.11). In order for this lemma to be true, we have to assume a uniform power network,
i. e., one where the material parameter µl = gl/bl is the same for all lines. This can be
thought of as a similar material assumption for all transmission lines in the system:

Assuming that µl is the same for all lines is equivalent to assuming that lines only
differ in length and capacity, not in the properties of the technical components that
are used. While this is certainly a simplification, we have argued in Section 2.1 that it
is a reasonable assumption for models that cover only a single voltage level such as the
380kV level typically used in European transmission networks. Moreover, it will turn
out in our empirical evaluation in Section 2.2.2 that our result is relatively stable with
respect to small variations in the material parameter.

Lemma 2.13
Let (R,L, g, b,D, c) be a non-trivial energy system with g > 0 and b 6= 0 that is strictly
feasible for the loss function ηlog and let the underlying power network (R,L, g, b) be
uniform with material constant µ = gl

bl
for all lines l ∈ L. Furthermore, let f+ > 0 be a

capacity vector (we can delete lines l ∈ L with f+
l = 0 from the network) and let (p, f)

be cost-minimizing among all flows demand-satisfying under ηlog. Then, there exists a
vector ϕ ∈ RR such that (p, f) satisfies (2.11).
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2.1 Network Models in Energy System Optimization

Proof. Let (p, f) be a cost-minimizing solution among all demand-satisfying flows.
Then, (p, f) is an optimal solution of the following optimization problem:

min
∑
i∈R

ci(pi) (2.25)

s.t. pi +
∑

l∈δin(i)

(
fl −

ηlog
l

(
f+
l , |fl|

)
2

)
−

∑
l∈δout(i)

(
fl +

ηlog
l

(
f+
l , |fl|

)
2

)
≥ Di ∀ i ∈ R

(2.26)
p ≥ 0 (2.27)

Note that g > 0 implies the function ηlog is convex in the fourth argument, the above
optimization problem is thus convex by Lemma 2.12. As (R,L, g, b,D, c) is strictly
feasible and the solution value is non-negative (because (ci ≥ 0), we can obtain a KKT
vector σ ∈ RR

≥0 for the above optimization problem ([Roc70, Corollary 28.2.1]). If we
write η′l(fl) :=

∂
∂f η

log
l (f+

l , |fl|), then [Roc70, Theorem 28.3 (c)] yields (for some τ ≥ 0)

0 ∈ ∂ci(pi)− σi − τi ∀ i ∈ R

0 =

(
1 +

η′l(fl)

2

)
σi −

(
1−

η′l(fl)

2

)
σj ∀ l = (i, j) ∈ L

which simplifies to

σi ≤ max ∂ci(pi) ∀ i ∈ R (2.28)

0 =

(
1 +

η′l(fl)

2

)
σi −

(
1−

η′l(fl)

2

)
σj ∀ l = (i, j) ∈ L. (2.29)

Note that if the function ci is differentiable, the subdifferential is unnecessary, since in
that case max ∂ci(pi) = c′i(pi). From the definition of ηlog, we have for every l ∈ L that

η′l(fl) =
∂ηlog

l (f+
l , |fl|)

∂f
=

∂ηlog(bl, gl, f
+
l , |fl|)

∂f

=
b2l f

+
l

gl
·

2 exp
(
2gl|fl|
b2l f

+
l

)
· 2gl
b2l f

+
l

exp
(
2gl|fl|
b2l f

+
l

)
+ 1

− 2gl|fl|
b2l f

+
l

 · sign(fl)

= 2 ·

exp
(
2gl|fl|
b2l f

+
l

)
− 1

exp
(
2gl|fl|
b2l f

+
l

)
+ 1

 · sign(fl)

and thus in particular |η′l(fl)| < 2.
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We first observe that σi > 0 for all i ∈ R: Suppose that there exists i∗ with
σi∗ = 0. Then, (2.29) implies for all neighbors j of i∗ that 0 = (1− 1

2η
′
i∗j(fi∗j))σj or

0 = (1 + 1
2η

′
ji∗(fji∗))σj , i. e., σj = 0. By induction, it follows that σ ≡ 0. In this case,

by [Roc70, Theorem 28.4], the optimal solution is argmin(p,f)≥0

∑
i∈R ci(pi), which in a

non-trivial energy system implies that p ≡ 0. Summing up all inequalities (2.26) yields∑
i∈R pi ≥

∑
i∈RDi +

∑
l∈L ηlog

l (f+
l , fl) ≥

∑
i∈RDi and hence D ≡ 0, a contradiction

with non-triviality of the energy system.
For every i, j ∈ R with l = (i, j) ∈ L, we can now conclude that

σj
σi

=
1 + 1

2η
′
l(fl)

1− 1
2η

′
l(fl)

.

Using an idea from Truemper’s comparison of min-cost flows and flows with gains
[Tru77], we can take logarithms to obtain

log(σj)− log(σi) = log

(
1 + 1

2η
′
l(fl)

1− 1
2η

′
l(fl)

)
(2.30)

= log


1 +

 exp
(

2gl|fl|
b2
l
f+
l

)
−1

exp
(

2gl|fl|
b2
l
f+
l

)
+1

 · sign(fl)

1−

 exp
(

2gl|fl|
b2
l
f+
l

)
−1

exp
(

2gl|fl|
b2
l
f+
l

)
+1

 · sign(fl)


(2.31)

= log

exp
(
2gl|fl|
b2l f

+
l

)
+ 1 +

(
exp

(
2gl|fl|
b2l f

+
l

)
− 1
)
· sign(fl)

exp
(
2gl|fl|
b2l f

+
l

)
+ 1−

(
exp

(
2gl|fl|
b2l f

+
l

)
− 1
)
· sign(fl)

 (2.32)

= log

2 exp
(
2gl|fl|
b2l f

+
l

)
2

 · sign(fl) =
2gl|fl|
b2l f

+
l

· sign(fl) (2.33)

= 2µ
fl

blf
+
l

. (2.34)

This yields that (
log(σj)
2µ

− log(σi)
2µ

)
· blf+

l = fl.

We can conclude that for the choice of ϕi := logσi

2µ for all i ∈ R, the flow (p, f)
satisfies (2.11), which proves the lemma. 2
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Note that while we drew inspiration from [Tru77], we actually apply the crucial idea
in a more general setting than it was originally formulated for. In this sense, the above
lemma can be seen as generalizing Truemper’s observations about generalized flows
and min-cost flows to the setting of variable gain factors and non-linear minimum cost
flow problems, somewhat similar in spirit to [Tru78] but applied specifically to the
setting of optimal power flows.

Using the above lemma, we now prove that under the loss function ηlog, TR-optimality
implies DC-feasibility, as long as the capacity constraints are not active. It is a well-
known fact about DC electric circuits that the resulting current in a circuit minimizes
thermal losses. The following theorem can be seen as an adaptation of that fact to the
objective function of cost-minimization typically used in OPF and TCEP problems.
Theorem 2.14
Let (R,L, g, b,D, c) be a non-trivial energy system with g > 0 that is strictly feasible
for the loss function ηlog and let the underlying power network (R,L, g, b) be uniform
with material constant µ = gl

bl
for all lines l ∈ L. Let f+ > 0 be a capacity vector. Let

(p, f) ∈ RR
≥0 × RL

≥0 such that |fl| < f+
l for all l ∈ L. Then, (p, f) is cost-minimizing

among all TR-feasible flows if and only if it is cost-minimizing among all DC-feasible
flows.

Proof. We prove both directions separately.
“⇒” Let (p, f) be cost-minimizing among all TR-feasible flows. As |fl| < f+

l for all
l ∈ L, it holds that (p, f) is also cost-minimizing among all demand-satisfying
flows. From Lemma 2.13, we therefore obtain that (p, f) is DC-feasible. As
(p, f) is cost-minimizing among all demand-satisfying flows, it is in particular
cost-minimizing among those flows that are furthermore DC-feasible.

“⇐” Now, let (p, f) be cost-minimizing among all DC-feasible flows. Then, (p, f) is
obviously TR-feasible. Suppose, therefore, that (p, f) is not cost-minimizing
among TR-feasible flows. Let (p′, f ′) be TR-feasible with c(p′, f ′) < c(p, f).
Furthermore, denote the cost-minimizing demand-satisfying solution by (p∗, f∗).
As every TR-feasible solution is also demand-satisfying, we obtain c(p∗, f∗) ≤
c(p′, f ′) < c(p, f).
Since (p, f) is DC-feasible, there exists a vector of vertex angles ϕ that satisfies
(2.11) together with (p, f). Similarly, we can obtain from Lemma 2.13 a vector
of vertex angles ϕ∗ that satisfies (2.11) together with (p∗, f∗). As (2.11) is
linear, the same holds for any convex combination λ(p∗, f∗) + (1− λ)(p, f) with
λ ∈ [0, 1] (using the vector of vertex angles λϕ∗ + (1 − λ)ϕ). Furthermore,
λ(p∗, f∗) + (1 − λ)(p, f) is also demand-satisfying. We may now choose λ > 0
small enough to obtain a point where |λf∗

l + (1 − λ)fl| ≤ f+
l for all l ∈ L and

λ(p∗, f∗) + (1− λ)(p, f) is hence DC-feasible. Due to the convexity of the cost
function c, we have c(λ(p∗, f∗) + (1− λ)(p, f)) < c(p, f), a contradiction. 2
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The above theorem suggests that using the loss function ηlog (which is an approxi-
mation of ηAC that is asymptotically as good as the more common η2) allows us to
drop the equations (2.11), leading to a much simpler model with the same accuracy.
However, the restriction of |fl| < f+

l is substantial, restricting ourselves in effect to
the case where our problem does not contain any capacity constraints. While other
constraints (such as demand satisfaction) remain part of the problem, this represents a
drastic simplification and indeed, especially in the case of the TCEP, removes a core
part of the problem.

Using the loss function ηlog can thus change significantly the optimal solution within
the set of TR-feasible flows, leading to a better representation of actual (DC model)
load flows than in the original (lossless) Transport model. On the other hand, the set
of TR-feasible flows remains almost the same (and substantially different from the set
of DC-feasible flows), no matter which loss function is being used.

We approach the above-mentioned issue in two ways: In Section 2.2.2, we evaluate
the accuracy of Transport model power flows under the loss function ηlog empirically in
a number of practical instances. We vary the values of a set of important parameters
to obtain a better understanding of the sensitivity of our results and their usefulness in
the context of TCEP problems. Then, in Sections 2.3 to 2.5, we obtain some theoretical
insights into the differences between the sets of DC- and TR-feasible flows.

In preparation for our empirical evaluation, the next section focusses on issues that
arise in implementing an approach according to the suggestions from Theorem 2.14. We
explore ways to apply the above results (which use non-linear loss functions) to Linear
Programming based approaches for the Transmission Capacity Expansion Problem.

2.2 LP Models for Transmission Capacity Expansion

The constraints (2.9) and (2.10) already provide a foundation for a Mathematical
Programming model to solve the Transmission Capacity Expansion Problem. We can
compute an optimal solution for the TR-TCEP (and also for the TR-OPF, by setting
f+ constant) using the following optimization problem:

min cf
>
f+ +

∑
i∈R

ci(pi) (2.35)

s.t. pi +
∑

l∈δin(i)

(
fl −

ηl
2

)
−

∑
l∈δout(i)

(
fl +

ηl
2

)
≥ Di ∀ i ∈ R (2.36)

ηl ≥ ηl(f
+
l , |fl|) ∀ l ∈ L (2.37)

fl ≤ f+
l ∀ l ∈ L (2.38)

p ≥ 0 (2.39)
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We have seen in Lemma 2.12 that for a given capacity vector f+, the set of demand-
satisfying flows is convex provided that the loss function η is convex in the fourth
argument. If it is jointly convex in the third and fourth argument, then the above
optimization problem is convex and hence in practically all cases theoretically solvable
in polynomial time (see, e. g., [GLS12, Ch. 4], [NN94, Theorem 3.2.1]).

This is in stark contrast to the DC-TCEP, for which no such statement holds in
general, even under the above convexity assumptions on η: It can be formulated as a
mathematical programming problem by adding variables ϕi for each node i and the
constraints (2.11) for every line to the optimization problem (2.35) to (2.39):

fij = bijf
+
ij · (ϕj − ϕi) ∀ (i, j) ∈ L (2.40)

In the case of the DC-OPF (with f+ fixed), the ϕi are the only variables in the above
equation, which is thus linear and we obtain again a convex optimization problem. For
variable f+ (as in the case of the DC-TCEP), however, (2.40) is a non-convex quadratic
equality constraint. Hence, the DC-TCEP is typically approached by discretizing f+

and using a Mixed-Integer LP formulation (see, e. g., [Bah+01; AMC03; Zha+12]),
which dramatically increases the computation time.

The TR-TCEP, on the other hand, consisting only of (2.35) to (2.39), can generally
be solved in polynomial time (if the above convexity assumptions are made). This
theoretical assessment however comes with serious drawbacks from a practical per-
spective: All of the above problems are typically considered over a large numbers of
interconnected timesteps covering long time horizons (see our discussion at the end of
Section 2.1.1), which results in very large-scale mathematical programming problems.
For these cases, the practical performance of (theoretically efficient) general convex
optimization algorithms is often insufficient, even for the TR-TCEP. Almost all case
studies in the above problems therefore rely on Linear Programming models, for which
highly developed and thus extremely powerful solution algorithms are available.

If we assume that ci is piecewise-linear and ηl(f
+
l , |fl|) := ηl · |fl| is a constant fraction

of |fl| that does not depend on f+
l , then (2.35) to (2.39) can easily be written as a

Linear Program. The first condition can be justified by assuming that in each region,
a set of production units are available, each with linear production cost function, a
very common simplification in large-scale TCEP studies. The second condition is a
very common assumption that corresponds to approach (2) in Fig. 2.3.

Under the above assumptions, a solution to the TR-TCEP can be computed via linear
programming using the above optimization problem. For optimal power flows under
the Transport model, even more efficient combinatorial algorithms are available (both
practically and theoretically, an optimal solution can even be computed in strongly
polynomial time, see [GT89]). We will now discuss under which conditions other (not
necessarily linear) loss function η can be approximated in a suitable way for use in a
Linear Program. In particular, this will enable us to include an approximated version
of ηlog into a Linear Programming model.
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2.2.1 Piecewise-linear Loss Approximations
In order to incorporate higher-order approximations of actual transmission losses
into a linear-programming based model, piecewise-linear functions are a common
tool. For instance, Alguacil, Motto, and Conejo [AMC03] include a piecewise-linear
approximation of the quadratic loss function η2 for fixed capacities f+ into a DC model.
Compared to a simple linear approximation, this approach achieves a much closer fit
to the actual loss function that is furthermore reference point-free, i. e., independent
of any previously estimated operating point (see Fig. 2.3). In terms of the above LP
model, this corresponds to replacing (2.37) by

ηl ≥ η̄l(f
+
l , |fl|) ∀ l ∈ L

for some suitable piecewise-linear approximation η̄l of the loss function corresponding to
line l. While a good piecewise-linear approximation is easy to find for one-dimensional
loss functions as they result from fixing f+ (see,e. g., [HC94]), this is in general not
necessarily the case for the two-dimensional functions that appear in the case of variable
capacities [DLM10].

We will see, however, that if a potential loss functions η satisfies a property called
homogeneity, then the case of variable capacities reduces to the much simpler case of
fixed capacities. It will turn out that the required property is satisfied in particular by
the loss functions η2 and ηlog mentioned above.

Definition 2.15
Let n ∈ N and let C ⊂ Rn

≥0 be a cone. We call a function h : C → R≥0 homogenous, if
for all x ∈ Rn

≥0 and λ ≥ 0 it satisfies h(λx) = λh(x).

Theorem 2.16
For any values of bl and gl, both ηlog

l and η2l are homogenous.

Proof. Let f+
l , f ∈ R≥0. If λ = 0, then ηlog

l (λf+
l , λfl) = ηlog

l (0, 0) = 0 = 0 ·ηlog
l (f+

l , fl)
(and analogously for η2).

If λ > 0, then

ηlog
l (λf+

l , λfl) =
2b2l λf

+
l

gl

(
log
(

exp
(
2glλfl

b2l λf
+
l

)
+ 1

)
− log 2

)
− 2λfl

=
2b2l λf

+
l

gl

(
log
(

exp
(
2glfl

b2l f
+
l

)
+ 1

)
− log 2

)
− 2λfl = ληlog

l (f+
l , fl)

and

η2l (λf
+
l , λfl) =

gl

λf+
l b2l

(λfl)
2 =

glλ

f+
l b2l

f2
l = λη2l (f

+
l , fl). 2
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x∗

(x, y)
(x∗, y · x

x∗ )

x

y

Figure 2.4: The situation in Theorem 2.17. The set C is shown in green.

Theorem 2.17
Let C := {(x, y) ∈ R2

≥0 | y ≤ x} and let h : C ⊂ R2
≥0 → R≥0 be a two-dimensional

convex homogenous function. For some fixed value x∗ > 0, let h̄(y) := maxi∈I ai · y− bi
be a piecewise linear approximation of h(x∗, ·) that satisfies h̄(y) = 0 for all y with
h(x∗, y) = 0 and |h̄(y)−h(x∗,y)|

h(x∗,y) ≤ α for all y ≤ x∗ with h(x∗, y) > 0. Then

h∗(x, y) := max
i∈I

ai · y −
bi
x∗

· x (2.41)

is a piecewise-linear approximation of h that satisfies h∗(x, y) = 0 for all y < x with
h(x, y) = 0 and |h∗(x,y)−h(x,y)|

h(x,y) ≤ α for all (x, y) ∈ C with h(x, y) > 0.

Proof. Let (x, y) ∈ C. If x = 0 then y = 0 and, since h is homogenous, h(x, y) = 0.
On the other hand, (2.41) implies that h∗(x, y) = 0.

Now, let x > 0. Then

|h∗(x, y)− h(x, y)| =
∣∣∣∣h(x, y)− max

i∈I
ai · y −

bi
x∗

· x
∣∣∣∣

=

∣∣∣∣ xx∗ · h
(
x∗, y · x

∗

x

)
− x

x∗
·
(

max
i∈I

ai · y ·
x∗

x
− bi

)∣∣∣∣
=

x

x∗
·
∣∣∣∣h(x∗, y · x∗x

)
− h̄

(
y · x

∗

x

)∣∣∣∣ .
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b1

λ · b1

x = λ · x∗

x = x∗

y

h(x, y)

Figure 2.5: The situation in Theorem 2.17 projected along the x-axis. Given a piecewise-
linear approximation of h for any fixed value of x = x∗ (shown in thin), this
approximation can be extended to all other values of x: The segments’ slopes
remain the same and the segments’ intercepts change linearly in x (see (2.41)).
Based on a figure from [AS13].

If h(x, y) = 0 then by homogeneity, h(x∗, y · x∗

x ) = 0. But then h̄
(
y · x∗

x

)
= 0, which

by the above equality implies that h∗(x, y) = 0.
If, on the other hand, h(x, y) 6= 0, then we reduce everything to the one-dimensional

case where x = x∗ (see Fig. 2.4):

|h∗(x, y)− h(x, y)|
h(x, y)

=
x

x∗ · h(x, y)
·
∣∣∣∣h(x∗, y · x∗x

)
− h̄

(
y · x

∗

x

)∣∣∣∣
≤ 1

h(x, y)
· x

x∗
· h
(
x∗, y · x

∗

x

)
· α

=
1

h(x, y)
· h(x, y) · α = α 2

An interpretation of Theorem 2.17 is given in Fig. 2.5: For each value of x, we can
compute a corresponding piecewise-linear approximation of h(x, ·) such that the slopes
of each linear segment are the same for all of these piecewise-linear approximations.
The only difference between the different piecewise-linear approximations are the values
of the intercepts, these change linearly in x.
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In particular, the piecewise-linear approximations that result from Theorem 2.17
are optimal in the sense that there can be no piecewise-linear approximation of the
function f with |I| linear segments that globally achieves a better approximation ratio:
It would in particular have to guarantee that ratio for every fixed x∗ and can use no
more than |I| (one-dimensional) segments there. This, however, allows us to construct
a piecewise-linear approximation from Theorem 2.17 with the same approximation
ratio.

The above results provide us with a method to easily incorporate optimal approx-
imations of certain loss functions into a Linear Programming based model for the
TR-TCEP. In particular, we can use loss functions that depend on both the flow and
the capacity of a line, an aspect that to our knowledge is neglected by all available
applications of the Transport model in this context.

It should also be noted again that the approximated loss functions are reference-point
free (if this is true for the underlying loss function): The accuracy of the approximation
of transmission losses is the same, regardless of what initial capacity was used to define
the model constraints. The model is thus independent of any assumptions about a
likely future infrastructure or operating point.

By using a piecewise-linear approximation of the loss function ηlog, we can also
attempt to leverage Theorem 2.14 in the context of our LP model (2.35) to (2.39). While
Theorem 2.14 only holds for the non-linear loss function ηlog, the next section provides
some empirical evidence that the result carries over to piecewise-linear approximations
of ηlog, provided that the approximation is sufficiently fine. In fact, an approximate
statement along the lines of Theorem 2.14 could be proved using piecewise-linear
approximations of the transmission input/output functions 1± ηlog. These are a more
direct analogue of (non-linear) gain factors as used in [Tru78], but move us conceptually
further away from their interpretation as approximations of ohmic losses in electrical
networks.

2.2.2 Empirical Evaluation

While Theorem 2.14 guarantees a perfect match between power flows under the
Transport model and the DC model, this guarantee applies only if all the prerequisites
of that theorem are met. While non-triviality and strict feasibility represent minor
technical requirements that impose no real restriction in a practical scenario, three
important caveats remain:

Piecewise-linear approximation The statement of Theorem 2.14 applies to the (convex
non-linear) loss function ηlog. However, as argued in Section 2.2, practical
considerations require us to use Linear Programming based models in many
cases. Thanks to our observations from Section 2.2.1, we can translate the loss
function ηlog into the realm of Linear Programming using a piecewise-linear
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approximation with very advantageous properties. Nonetheless, this approach
entails an approximation error with the potential to compromise the applicability
of Theorem 2.14.

Uniformity In Theorem 2.14, we require the underlying network to be uniform. As we
have mentioned in Section 2.1, this assumption is generally reasonable while we
concentrate on a subnetwork which covers only a single voltage level. Nonetheless,
small deviations even between transmission lines of the same type must be
expected. Furthermore, lines operating at different voltage levels do interact in
reality and analyzing this interaction would require our model to include different
types of equipment.

Capacity constraints Most significantly, Theorem 2.14 holds only if none of the capac-
ity constraints associated with transmission lines in the network are binding. This
assumption is almost certain to be violated in any practically relevant instance of
the TCEP. It is therefore important to understand the behavior of Theorem 2.14
with respect to this limitation, i. e., the sensitivity of the result under partial
violation of our assumption.

In order to address these potential limitations of Theorem 2.14, Widmann has
undertaken an empirical study in the context of his Bachelor’s thesis [Wid18], the
results of which we summarize below. In the study, the accuracy of flows under the
Transport model is compared to the result obtained using the DC model.

The study uses three different base networks for the analysis: the Garver 6-Bus-
System on eight lines, a small but commonly used test system from [Gar70], a network
on 24 lines derived from the IEEE Reliability Test System [IEEE79] released as a
benchmark instance by the Institute of Electrical and Electronics Engineers (IEEE)
and a version of the model ELMOD-DE [Ege16] on 333 lines, an open-source model of
the German electricity system. These networks cover a broad range of system sizes, a
detailed description of the test systems (and the broader test setup) can be found in
[Wid18].

In each of the above networks different parameters were varied independently in order
to gain a better understanding of each of the above-mentioned potential sources of
error individually. In each case, the error, which is defined as the (absolute) difference
between DC- and Transport flow, is summed over all lines and scaled by the total
magnitude of the DC flow:

Error(fTR, fDC) =

∥∥fTR − fDC∥∥
1

‖fDC‖1

Widmann [Wid18] begins by computing an optimal solution to the TR-OPF using
the loss function ηlog and comparing the result to an optimal solution using a linear
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Table 2.1: Relative error against the DC model for the Transport model using the loss function
ηlog and a Transport model using a linear loss function ηlin (from [Wid18]).

Garver IEEE ELMOD-DE

Error (%) ηlog 0.7 0.6 0.6
ηlin 27.1 49.3 59.8

loss function ηlin that has been scaled to produce the same magnitude of losses across
the entire network. In both cases, the resulting error is measured against the optimal
solution to the corresponding DC-OPF using the loss function ηlog. While all networks
are almost uniform by default, transmission capacities were relaxed in order to obtain an
unrestricted power flow in all networks. Similarly, a fine piecewise-linear approximation
using 100 linear pieces was used with the effect that all of the potential sources of error
mentioned above are minimized.

The results are shown in Table 2.1: In the case of all three test networks, the modified
Transport model using the loss function ηlog represents a tremendous improvement
over the base Transport model using a linear loss function. While the accuracy of the
latter model varies substantially across the three networks, the result from the modified
Transport model is always within 1 % of the DC model, representing an improvement
by a factor of 30 to 100. This demonstrates the effect of Theorem 2.14 in the case of all
three networks and, since all of the prerequisites of the theorem are (almost) satisfied,
this is exactly what we expected.

Piecewise-linear approximation On the other hand, the size of the Linear Program
used to solve the Optimal Power Flow problem grows approximately linearly in the
number of linear pieces used. In order to keep computation times low, it is therefore
advisable to only use as many linear pieces as are required to achieve the desired accuracy.
Figure 2.6 shows the effect of the granularity of piecewise-linear approximations on the
accuracy of the result.

While the results vary a lot for smaller networks (especially for the 8-line Garver
system), the error generally drops very quickly: In all three networks, an error level
of around 5-10 % can already be reached for a small number of linear pieces. From
the error level of the linear loss function ηlin (which corresponds to a piecewise-linear
approximation with a single piece), the error drops to 5-10 % for around eight linear
pieces. From there on, the accuracy can be increased further to below 0.5 % for 200
linear pieces, but the increase in computational effort that has to be spent in return
becomes increasingly outsized.

In the right-hand part of Fig. 2.6, it can be seen that using a rather coarse piecewise-
linear approximation of the loss function ηlog already, we can obtain a reasonable
approximation of the result of the DC-OPF from solving the corresponding TR-OPF.
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Figure 2.6: Error for the Transport model using different piecewise-linear approximations
of the loss function ηlog. On the left, the error is shown on a logarithmic scale.
The behavior is quite similar in all three networks, with variation reducing as
the size of the model grows. On the right, the error for a smaller number of
linear pieces in the ELMOD-DE network (the largest of the analyzed networks)
is shown in detail, this time on a linear scale together with a linear regression
plot (dashed) of the computation time (data from [Wid18]). It can be seen that a
decent approximation can be achieved by a small number of linear pieces already,
but any increase in accuracy beyond ∼ 5 % comes at a high computational cost.

Uniformity Regarding uniformity, starting from the original material parameter µ
(which is almost uniform in the IEEE network and perfectly uniform in the Garver
and ELMOD-DE network), Widmann draws a new material parameter uniformly at
random from the range [µ, λ · µ], independently for each individual line. Ten different
values for λ between 1 and 2 were used and the experiment was repeated 1000 times
for each value of λ (see Fig. 2.7).

In all cases it can be observed that, as long as a network is sufficiently close to
uniform, the error compared to the DC model also remains limited. Broadly speaking,
it seems that a material parameter that deviates slightly from uniformity does not
create any substantial issues unless the deviation is distributed in a particularly
problematic fashion. This is what occasionally happens in the smaller networks Garver
and IEEE, where the smaller number of lines means that any worst-case (and best-case)
constellation is very likely to be covered by a given draw of parameters, as reflected
by the range of error values which consequently reduces as the size of the network
increases.

Capacity Constraints Finally, to measure the effect of binding capacity constraints,
line capacities were reduced in each of the networks to values between 35 % and

38



2.2 LP Models for Transmission Capacity Expansion

1.0 1.2 1.4 1.6 1.8 2.0

0

5

10

15

20

25

30

λ

er
ro

r
(%

)
Garver
IEEE

ELMOD-DE

Figure 2.7: Distribution of errors for the three networks with the material parameter µ drawn
uniformly at random for each individual line from the range [µ, λ · µ]. The boxes
cover half of all data points around the median while the whiskers cover the whole
range of data points (data from [Wid18]).

100 % of the original capacity (Fig. 2.8). The results in this respect are less promising:
While the accuracy of the modified Transport model always remains higher than the
original Transport model (as was to be expected), the difference changes substantially
as capacities become more and more limiting: On the one hand, the error of the original
Transport model is reduced slightly, since the reduced capacities limit the possibilities
for different flows in the network. On the other hand, the violation of the respective
prerequisite of Theorem 2.14 becomes more and more apparent, reducing the difference
between flows from both versions of the Transport model.

This effect begins as soon as the first capacity constraint becomes binding but, again,
is more dramatic in the smaller networks: In the networks Garver and IEEE, the error
grows to around 70 % of the error in the original Transport model almost immediately
after the first capacity constraint becomes binding. In the network ELMOD-DE, on
the other hand, capacities can be reduced by an additional 20 % without dramatically
increasing the error value, even after the first capacity constraint becomes binding. At
line capacities of around 40 % of the original value, the error in the modified Transport
model reaches almost the level of the error in the original Transport model in all three
networks.
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Figure 2.8: Relative error in the Transport model using the loss function ηlog as a percentage
of the error in the Transport model using the linear loss function ηlin for reduced
line capacities. The error remains negligible while no capacity constraints are
binding, it then grows to almost the size of the error in the original Transport
model just before the DC model becomes infeasible (data from [Wid18]).

If capacities are reduced even further, the DC model becomes infeasible, which
means that we no longer have a benchmark to compute error values for either the
original or the modified Transport model (which remain feasible). This reflects our
observation from the end of Section 2.1.4: The loss function has only a minor effect on
the feasibility region of the underlying OPF problem, which means that regardless of
the loss function used, the fundamental difference between feasibility regions of the
DC model and the Transport model remains. Obtaining a better understanding of this
difference is the aim of the following section.

Nonetheless, as Widmann [Wid18] points out, the optimal solution of a Transmission
Capacity Expansion Problem using the modified Transport model can provide valuable
information about the region of the solution space in which to look for an optimal
solution for the DC-TCEP: Restricting the possible capacities in a discretized Mixed-
Integer LP model for the DC-TCEP (see Section 2.2) to a maximum of ∼ 120 % of the
optimal capacity under the modified Transport model yields a solution within 5 % of
the optimal solution to the full DC-TCEP. At the same time, computation time in the
ELMOD-DE network (the largest of the three networks) is reduced by ∼ 99 %.
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2.3 The Sets of TR- and DC-feasible Solutions
Theorem 2.14 leaves three possible reasons why the stated equivalence of optimal TR-
and DC-feasible flows might not hold in practice if a piecewise-linear approximation
of the loss function ηlog according to Section 2.2.1 is used: The error incurred by the
piecewise-linear approximation, differences in the material parameter µ or binding
capacity constraints. Of these, as the examples in Section 2.2.2 suggest, the last source
of error is the most severe. This is true particularly since it is also the most likely to
occur in practice: Capacity constraints can certainly not be assumed to always be non-
binding in general. This becomes particularly relevant in the context of Transmission
Capacity Expansion problems, where in any optimal solution, all capacity constraints
will be binding (at least in some timestep, otherwise a lower-cost feasible solution could
be obtained by reducing the capacity on lines where the constraint is not binding).

In this section, we will therefore focus on the sets of TR- and DC-feasible solutions
themselves, for a fixed capacity vector and irrespective of the objective or the loss
function used. We will try and understand the structure of both sets and compare
them with each other. More specifically, we will first obtain some general statements
about the relative size of both sets. We will then develop a combinatorial description
of extremal solutions for the DC model and finally in Section 2.5.6 we will characterize
a family of graphs on which the DC model is structurally very similar to the Transport
model. This family in particular covers certain benign network topologies that are
currently very much in the focus of research into feasible regions with respect to the
AC model sparked by [LL12].

Let (R,L, g, b,D, c) be an energy system. Recall from Definition 2.5 that a pair
(p, f) is TR-feasible for a capacity vector f+ ∈ RL

≥0 if it satisfies

pi +
∑

l∈δin(i)

(
fl −

ηl(f
+
l , |fl|)
2

)
−

∑
l∈δout(i)

(
fl +

ηl(f
+
l , |fl|)
2

)
≥ Di ∀ i ∈ R (2.42)

|fl| ≤ f+
l ∀ l ∈ L. (2.43)

It is DC-feasible if in addition there exists a vector ϕ of vertex angles satisfying

fij = bijf
+
ij · (ϕj − ϕi) ∀ (i, j) ∈ L. (2.44)

As we want to focus on the core differences between TR- and DC-feasibility in this
chapter, we will make the following simplifying assumptions: First, we use the loss
function η0, thereby eliminating the term ηl(f

+, |fl|) above. In the previous section,
we have argued that the optimal solution can be heavily influenced by the choice of the
loss function and that this can be used e. g. to reduce to some extent the differences
between Transport model and DC model. In this section, we now want to analyze
in more detail the exact nature of these differences, which are most apparent in the
lossless version.
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Furthermore, we assume that bl has the same sign for all l ∈ L (typically, b < 0 for
all overhead transmission lines). we also allow some upper bound p+i to be given on
the net production (or injection) in vertex i, i. e., pi −Di ≤ p+i . This constraint can be
used e. g. to capture the domain where ci(p) is finite (shifted by the demand Di).

We will also assume that the demand satisfaction inequality (2.42) always holds
with equality. This assumption is without loss of generality with respect to feasibility,
since for any (p, f) strictly satisfying (2.42) there exists a vector p′ with p′i < pi such
that equality holds and p′i −Di ≤ p+i , i. e., (p′, f) is still feasible (if necessary, we allow
pi < 0).

To further simplify the notation, we assume that f+
l > 0 for all l ∈ L (otherwise,

remove the line l from the power network), that the network is anti-symmetric (since
edge directions were arbitrary to begin with, we can choose them so that edges between
two vertices point in the same direction and aggregate parallel lines to one equivalent
line) and that the power network is weakly connected (otherwise we can consider all
connected components independently).

On the other hand, we will allow two slight generalizations from the setting that we
have considered until now: We may require a lower bound p−i for the injection in vertex
i ∈ R (in addition to the upper bound p+i ) and we may specify a lower bound f−

l for
the flow on line l ∈ L independently of the upper bound f+. These generalizations
have no effect on most of the results in the remainder of this chapter (unless specified
otherwise). In the context of power networks, however, these lower bounds can always
be understood as p−i = −∞ and f−

i = −f+
i .

A (fixed-capacity) network graph is now defined as follows:

Definition 2.18 (Network Graph)
A network graph (V,E, b, p̄, f̄) consists of a weakly connected, anti-symmetric directed
graph (V,E) together with an elasticity vector b ∈ RE with b > 0 and pairs of upper
and lower bounds p̄ = (p−, p+) ∈ (R ∪ {−∞})V × (R ∪ {∞})V and f̄ = (f−, f+) ∈
(R∪{−∞})E × (R∪{∞})E for vertices and edges, respectively, such that p− ≤ p+ and
f− ≤ f+.

Note that in a network graph, we have chosen to require b > 0 instead of b < 0,
which would typically hold in a power transmission network. This is merely a technical
assumption which makes the notation in this chapter easier to read and gives us a
clearer view on some connections to known problems in the context of network flows.
We will see in Remark 2.19 that inverting the sign of b has no effect on the resulting
feasible region, which means that requiring b > 0 is effectively equivalent to merely
requiring that all bl have the same sign.

Note furthermore that we write, e. g., p+ = ∞ to denote that p+e = ∞ for all e ∈ E.
To denote that no bounds apply at all, we abbreviate p̄ = (−∞,∞) by p̄ = ∞ (and
analogously for f̄). Given a network graph N = (V,E, b, p̄, f̄), let A be the incidence
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matrix of the graph (V,E) as defined in (A.1). We define the elasticity matrix B of N
by B = A · diag(b), i. e.,

Bie :=


be e ∈ δin(i)

−be e ∈ δout(i)

0 else.
(2.45)

We can now summarize the constraints for TR- and DC-feasibility in vector-matrix-
notation: With p as the vector of net productions (or injections), the system of linear
equations (2.42) (assuming, as above, that the inequalities always hold with equality)
can be written as p+Af = 0. This system of linear equations is well-known from the
literature on network flows, see, e. g., [PS98, Chs. 3.4 and 7.3] or [Sch03, Ch. 13.2].
Similarly, with f as the vector of flows and the entries of B as the effective susceptance
(since f̄ is constant, the resulting effective susceptance is constant, as well), we can
write (2.44) as B>ϕ = f : With e = (v1, v2),

fe = (B>ϕ)e =
∑
v∈V

Bveϕv =
∑
v∈V

e∈δin(v)

beϕv −
∑
v∈V

e∈δout(v)

beϕv = be · (ϕv2 − ϕv1).

For a given network graph G = (V,E, b, f̄ , p̄), we define the polyhedra

QTR(G) :=

(p, f) ∈ RV × RE

∣∣∣∣∣∣∣
p+Af = 0

f− ≤ f ≤ f+

p− ≤ p ≤ p+


and

QDC(G) :=

(p, f, ϕ) ∈ RV × RE × RV

∣∣∣∣∣∣∣∣∣
B>ϕ = f

p+Af = 0

f− ≤ f ≤ f+

p− ≤ p ≤ p+

.

Under the assumptions above, these polyhedra capture exactly the TR- and DC-
feasible points that we are interested in (translated by the demand vector D), as the
following remark shows:
Remark 2.19
Let (R,L, g, b,D, c) be an energy system with b < 0 and let f+ ∈ RL, f+ > 0 be
a capacity vector. Now, define b′l := −bl · f+

l for all l ∈ L, p+i := max{p ∈ R |
ci(p) < ∞} for all i ∈ R and f−

l = −f+
l for all l ∈ L. Now, consider the network graph

G = (R,L, b′, (−∞, p+), (f−
l , f+

l )).
Then, (p, f) ∈ QTR(G) if and only if (p+D, f) is TR-feasible for f+ and the loss

function η0. Analogously, there exists ϕ′ ∈ RR such that (p, f, ϕ′) ∈ QDC if and only if

43



Chapter 2 Network Flow Models for Transmission Capacity Expansion

(p +D, f) is DC-feasible for f+ and the loss function η0 (using the vector of vertex
angles ϕ = −ϕ′): Let B denote the elasticity matrix for the network graph G and let
l := (i, j) ∈ L. Then,

fl = (B>ϕ′)l =
∑
i′∈R

Bilϕ
′
i′ = b′l · (ϕ′

j − ϕ′
i) = blf

+
l · (ϕj − ϕi). (2.46)

Note that, as indicated above, although we have b < 0 and use b′ > 0 to define
QDC(G), the resulting feasible solutions are DC-feasible with respect to the original
values of b (the only difference is the inverted sign of the vector of vertex angles ϕ).

As mentioned above, our definition of a network graph is slightly more general than
required by Remark 2.19. In particular, we do generally not assume that −f− = f+ or
p− = −∞. Where necessary, we will occasionally explicitly invoke these requirements.

In addition, note that in a network graph, elasticity vector and edge capacities are
independent, which is not true in a power network: By (2.2), increasing the capacity
of a line also increases its susceptance. Throughout most of the remainder of this
chapter, it makes sense to ignore this dependence, since we only deal with fixed-capacity
networks (and it simplifies the notation significantly). However, we sometimes use
a network graph with modified capacities in our arguments. In these cases we will
explicitly discuss the implications of changing the elasticity along with the capacities.

We conclude this introduction by some observations about the polyhedra QTR(G)
and QDC(G). First, note that while QDC(G) lives in a higher-dimensional space than
QTR(G), the additional constraint B>ϕ = f also restricts the set of values feasible for
(p, f): In a similar way as DC-feasibility requires the existence of a vector of vertex
angles ϕ that satisfies (2.44), there must exist a (|V |-dimensional) vector ϕ which
satisfies the set of |E| additional equations B>ϕ = f for a point (p, f) ∈ QTR(G) in
order for (p, f, ϕ) to lie in QDC(G).

In other words, we require that f ∈ im(B>), which means that the |E|-dimensional
vector f is restricted to a lower-dimensional subspace. Regarding the dimension of that
subspace, the following proposition yields in particular that dim(im(B>)) = |V | − 1,
which means that whenever a network graph contains more edges than the minimum
of |V | − 1 required for weak connectivity, then the constraint B>ϕ = f represents a
real restriction of the values that the vector f (and as a consequence also p) can take.

We conclude this introduction by observing some useful properties of the incidence
and elasticity matrices A and B as defined above, and of the matrix AB> that appears
if we substitute B>ϕ = f into p+Af = 0 (as, e. g., in (2.47) below).

Proposition 2.20
Let (V,E) be a weakly connected directed graph with incidence matrix A. Let b ∈ RE,
b > 0 and let B be the elasticity matrix as defined in (2.45). Then,

ker(A>) = ker(B>) = ker(AB>) = R · 1.
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Proof. It is a well-known fact that rank(A) = |V | − 1 (this can be found, e. g., in
[Bap14, Lemma 2.2]) and since b > 0 and B = A · diag(b), it is clear that rank(B) =
rank(A) = |V | − 1. On the other hand, observe that A>(ϕ + α · 1) = A>ϕ (and
analogously for B). Hence ker(A>) = ker(B>) = R · 1.

Since obviously ker(B>) ⊂ ker(AB>), it only remains to show that ker(AB>) ⊂
ker(B>): Let ϕ /∈ ker(B>), i. e., f := B>ϕ 6= 0. For contradiction, suppose that
AB>ϕ = 0. Choose an edge e with fe > 0 (or analogously fe < 0 if f ≤ 0). Let
e = (v1, v2), then ϕv2 > ϕv1 . As Af = 0, there must be an edge e′ = (v2, v3) with
fe′ > 0 carrying flow away from v2 (or e′ = (v3, v2) and fe′ < 0) and hence ϕv3 > ϕv2 .
Iterate this argument to obtain a cycle along which f contains a positive flow. This
implies that ϕ increases strictly along the cycle, a contradiction. 2

The matrix AB> is known in electrical engineering as the nodal admittance matrix.
If be = 1 for all e ∈ E, then the matrix AB> = AA> is known as the Laplacian matrix
of (V,E), which captures many interesting properties of the graph (see, e. g., [Chu97]).

The following sections will consider the sets QTR and QDC from two different
perspectives (see Fig. 2.9): First with respect to the projection onto the space of
p-variables (the set of feasible power injections), then with respect to the projection
onto the space of f -variables (the set of feasible differential flows, the origin of this
term will become clear in Section 2.5).

This approach is motivated by the fact that the projections of QDC(G) have the
same combinatorial structure as the original polyhedra, i. e., no information is lost by
the projection:

First, note that dim(QDC(G)) ≤ |V | since the polyhedron is contained in the |V |-
dimensional linear subspace defined by B>ϕ = f, p+Af = 0. If we identify this linear
subspace with RV , we obtain the following alternative representation of QDC(G):

QDC
ϕ (G) :=

{
ϕ ∈ RV

∣∣∣∣∣ f− ≤ B>ϕ ≤ f+

p− ≤ −AB>ϕ ≤ p+

}
(2.47)

Rather than as orthogonal projections of QDC(G), the set of feasible power injections
and the set of feasible differential flows can now be seen as linear transformations of
QDC

ϕ (G), more specifically AB>QDC
ϕ (G) and B>QDC

ϕ (G), respectively. Finally, note
that QDC

ϕ (G) contains the 1-dimensional linear subspace R·1. To eliminate this lineality
space, we can select a vertex v0 ∈ V and define

QDC
ϕ0

(G) := QDC
ϕ (G) ∩

{
ϕ ∈ RV

∣∣ ϕv0 = 0
}
.

From Proposition 2.20, we have that ker(B>) = ker(AB>) = R · 1 and hence
ker(B>) ∩QDC

ϕ0
(G) = ker(AB>) ∩QDC

ϕ0
(G) = {0}. The transformations, restricted to

QDC
ϕ0

(G), are thus invertible and by composition with the (equally invertible) function
mapping QDC(G) to QDC

ϕ (G), we obtain the desired statement.
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QTR(G)

QDC(G)

f

p

ϕ

Figure 2.9: A sketch of the sets QTR(G) (shown in green) and QDC(G) (shown in orange),
together with their respective projections onto the space of f -variables and the
space of p-variables. Note that, while QDC(G) lives in a higher-dimensional space,
its projection into the space of (p, f)-variables is actually of lower dimension than
the set QTR(G). Furthermore, once we remove the lineality space contained in
QDC(G), it is isomorphous to its projections into the space of p- and f -variables,
respectively (see Lemma 2.22). Note, however, that in the case where |E| ≥ |V | the
projection of QTR(G) into the space of f -variables is actually of higher dimension
than the projection of QDC(G) (which cannot be shown in this sketch).

Hence, if we remove the lineality space contained in QDC(G) by fixing the value of ϕ
to 0 in some arbitrary vertex v0, then there exists a 1-to-1-correspondence of vertices
(and also higher-dimensional faces) between QDC(G) ∩ {(p, f, ϕ) | ϕv0 = 0} and its
projections into the space of p- and f -variables, respectively (as well as QDC

ϕ0
(G)), which

we prove (for the space of p-variables) after formally introducing the corresponding
projection below (Lemma 2.22).

The case of the polytope QTR(G) is somewhat simpler: By the equality p+Af = 0,
the values of p are uniquely determined by f , already. The projection of QTR(G) onto
the space of f -variables thus maintains the entire structure of QTR(G), whereas the
projection onto the space of p-variables (which is generally of lower dimension) loses
all information that is associated with flows along cycles in G.
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2.4 Feasible Power Injections

2.4 Feasible Power Injections

In this section, we are interested in the sets of feasible power injections, in other words
the projection of the sets QTR and QDC onto the space of p-variables. Remember that
we always assume in this chapter that the network graph is weakly connected and
anti-symmetric.

Definition 2.21
Let G = (V,E, b, p̄, f̄) be a network graph. Denote by

QTR
p (G) := projp(QTR(V,E, b,∞, f̄))

=

{
p ∈ RV

∣∣∣∣∣ ∃f ∈ RV :
p+Af = 0

f− ≤ f ≤ f+

}
QDC

p (G) := projp(QDC(V,E, b,∞, f̄))

=

p ∈ RV

∣∣∣∣∣∣∣ ∃f ∈ RE , ϕ ∈ RV :

B>ϕ = f

p+Af = 0

f− ≤ f ≤ f+


the set of TR-feasible power injections and the set of DC-feasible power injections,
respectively. If G is fixed and clear from the context, we might omit the argument and
write QTR

p and QDC
p , respectively.

The set of feasible power injections can be interpreted as the set of possible ways
to offset production below demand in some regions (negative values) with production
above demand in other regions (positive values) over the network. This set is restricted
by the capacities of the individual vertices, given by p̄, as well as by constraints imposed
by the network.

Since we want to study specifically the constraints imposed by the network, we only
consider network graphs with p̄ = ∞ in this section (and in the above definition). This
corresponds to ignoring the box constraints p− ≤ p ≤ p+, which appear in both QTR(G)
and QDC(G), in order to isolate those restrictions imposed by the network itself. Note
that the set of power injections that are actually feasible under the capacity restrictions
can be easily recovered as QTR

p (G) ∩ [p−, p+] and QDC
p (G) ∩ [p−, p+], respectively.

As mentioned above, there is a 1-to-1-correspondence of vertices between QDC
p (G)

and QDC(V,E, b,∞, f̄) ∩ {(p, f, ϕ) | ϕv0 = 0}:

Lemma 2.22
Let (V,E, b, p̄, f̄) be a network graph and v0 ∈ V . Then there exist f, ϕ such that
(p, f, ϕ) is an extremal point in QDC(V,E, b,∞, f̄) ∩ {(p, f, ϕ) | ϕv0 = 0} if and only if
p is an extremal point in QDC

p (G).
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QTR
p (G)

QDC
p (G)

pv = 0

ps pv

pt

Figure 2.10: The sets QDC
p (G) and QTR

p (G) for the triangular network from Fig. 2.1. While
both sets are actually (2-dimensional) subsets of R3, the viewing angle was
chosen such that their common affine hull (defined by ps+ pt+ pv = 0) coincides
with the drawing plane. The point shown in orange corresponds to the maximal
power injection possible in the vertex s (restricted by the sum of capacities on
edges incident with s). Within QDC

p (G), the only feasible such injection vector
is the one where both v and t receive half of the injection, saturating the edges
connecting them with s and leaving the edge (v, t) without any flow. In QTR

p (G),
on the other hand, all distributions between v and t are feasible, e. g. the point
shown in green, where the entire injection is transferred to t (shown in Fig. 2.1a).
The configuration shown in Fig. 2.1b is represented by the blue point.

Proof. Let (p, f, ϕ) ∈ QDC(V,E, b,∞, f̄) ∩ {(p, f, ϕ) | ϕv0 = 0} be extremal. Suppose
for contradiction that p is not extremal in QDC

p . Then, there exist p1, p2 ∈ QDC
p with

p1 6= p2 such that p = λp1 + (1 − λ)p2 with λ ∈ (0, 1). By definition of QDC
p , this

means that there exist potentials ϕ1, ϕ2 ∈ RV such that pi = −AB>ϕi for i ∈ {1, 2}.
By Proposition 2.20, since 1 ∈ ker(B>), these potentials can be chosen such that
ϕ1
v0 = ϕ2

v0 = 0.

Furthermore, since AB>(λϕ1 + (1 − λ)ϕ2 = −λp1 + (1 − λ)p2 = −p = AB>ϕ,
we have that λϕ1 + (1 − λ)ϕ2 − ϕ ∈ ker(AB>). By Proposition 2.20 and since
ϕ1
v0 = ϕ2

v0 = 0 = ϕv0 , this means that λϕ1 + (1 − λ)ϕ2 = ϕ. Hence, (p, f, ϕ) =
λ(−AB>ϕ1, B>ϕ1, ϕ1) + (1 − λ)(−AB>ϕ2, B>ϕ2, ϕ2) and −AB>ϕ1 = p1 6= p2 =
−AB>ϕ2, a contradiction to extremality of (p, f, ϕ).
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Conversely, let p ∈ QDC
p be extremal. By definition of QDC

p , this means that
there exists a potential ϕ ∈ RV such that p = −AB>ϕ. By Proposition 2.20, since
1 ∈ ker(B>), this potentials can be chosen such that ϕv0 = 0. Then, (p,B>ϕ,ϕ) ∈
QDC(V,E, b,∞, f̄) ∩ {(p, f, ϕ) | ϕv0 = 0}.

Now suppose that there exist (p1, f1, ϕ1), (p2, f2, ϕ2) ∈ QDC(V,E, b,∞, f̄)∩{(p, f, ϕ)|
ϕv0 = 0} with (p1, f1, ϕ1) 6= (p2, f2, ϕ2) and λ(p1, f1, ϕ1) + (1 − λ)(p2, f2, ϕ2) =
(p,B>ϕ,ϕ). But then, p1 6= p2: Otherwise, if p1 = p2 then ϕ1 − ϕ2 ∈ ker(AB>)
and since ϕ1

v0 = ϕ2
v0 = 0 we obtain by Proposition 2.20 that ϕ1 = ϕ2 and thus

f1 = f2, a contradiction with (p1, f1, ϕ1) 6= (p2, f2, ϕ2). This, however, implies that
p = λp1 + (1− λ)p2 with p1, p2 ∈ QDC

p and p1 6= p2, a contradiction with extremality
of p. 2

A corresponding statement with respect to the projection on the space of f -variables
can be obtained along the same lines.

The set of feasible power injections plays an important role in the context of Optimal
Power Flow (OPF) problems: Given an initial operating point, a network operator
might want to know, by how much she can alter the injection in some node (e. g. by
increasing production in some power plant) without threatening the stability of the
network. A planner might ask if the network can cope with the additional injection of
power generated by a new power plant in a particular node. Correspondingly, there
exists a significant thread of work on the feasible injection region of Optimal Power
Flow (OPF) problems:

Most literature is concerned with the more complex feasibility region of the AC
model because of its higher practical relevance, given that most transmission lines in
fact operate using alternating current. While the DC model is used in the context
of AC power flow problems, for instance as a local linearization in the context of the
common Decoupled Load Flow method (see Ilić [Ili92]), it is inaccurate as a global
solution method in many important cases (see, e. g., the comparison of AC and DC
model by Stott, Jardim, and Alsaç [SJA09]).

One particular area of interest is the question of convexity of the AC injection region.
A comprehensive overview of the related literature is given in a two-part review article
by Low [Low14a; Low14b]. Lesieutre and Hiskens [LH05] investigate the convexity
of the feasible injection region and review some examples to show that the feasible
injection region is in general not convex, but “close to convex”.

This result motivates a major line of work that considers convex relaxations of
Optimal Power Flow problems using the AC model. While such relaxations have been
known since at least 2006 (see, e. g., [Jab06; Bai+08]), Lavaei and Low [LL12] provide
some answers in a seminal paper to the question of when these relaxations are tight.
They start from the observation that the Optimal Power Flow problem using the
AC model, while non-convex in general, is weakly dual (in the sense that it can be
bounded from below) to a semidefinite program. Whenever the duality gap between
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both problems is zero, then the Optimal Power Flow problem can hence be solved
optimally in polynomial time, even using the AC model. The authors provide necessary
and sufficient criteria for this (which can be checked a priori) and perform case studies
to demonstrate that the duality gap is zero in many established benchmark networks.3

Sojoudi and Lavaei [SL12] and Bose et al. [Bos+11] further investigate network
topologies for which the a priori conditions mentioned above always hold. These include
acyclic networks (called radial by Sojoudi and Lavaei) and those where controllable
phase-shifters are installed in all edges outside of a spanning tree. Consequently, most
positive results in this field are limited to acyclic networks (e. g., [LTZ14; TCL15]) and
networks consisting of cycles and trees [ZT13].

In the context of the network models from Section 2.1.2, the literature listed above
can be understood in the following way: On network topologies with certain nice
properties (e. g., acyclicity), the AC model is theoretically no more complex than the
DC model. However, two important caveats remain: First, in the context of large-scale
energy system optimization there is good reason to consider even semidefinite (or
second-order cone) optimization problems as too difficult to solve in practice. This is
true regardless of the underlying network topology and becomes even more significant
if the model is extended by additional constraints. Secondly, Transmission Capacity
Expansion Planning (TCEP) introduces a new kind of nonlinearity (analogously to the
case of the DC model mentioned in Section 2.2) that cannot (currently) be handled by
a convex relaxation according to [SL14].

In light of the above, the aim of this section is twofold: Since the DC-OPF is
obviously solvable in polynomial time (see Section 2.2), we go a step further. We
want to obtain a deeper understanding of the structure of solutions to the DC-OPF
and how they compare with solutions to the TR-OPF. Secondly, since no efficient
approach is currently known to solve the DC-TCEP in general, we try to characterize
DC-feasible points in a way that can provide us with some information about the
required production and transmission capacities. This approach could provide a basis
for a similar technique aiming at the Transmission Capacity Expansion Problems using
the AC model, characterizing the solutions of convex relaxations as mentioned above
in a similar fashion.

3The authors have subsequently generalized these results to a special type of quadratically con-
strained optimization problems for which the coefficients can be interpreted with respect to an
underlying generalized weighted graph in which the signs of edge weights obey a particular constraint
for each cycle in the graph [SL14].
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2.4.1 Injection Regions of Transport Model and DC Model
We begin by making some simple observations about the polyhedra QDC

p and QTR
p :

Proposition 2.23
Let G = (V,E, b, p̄, f̄) be a network graph with f− ≤ 0 ≤ f+. Then,

a) 0 ∈ QDC
p (G) ⊂ QTR

p (G),

b) if (V,E) is a tree then QDC
p (G) = QTR

p (G).

Furthermore, let k ≥ 0, G′ = (V,E, k · b, p̄, f̄) and G′′ = (V,E, b, p̄, k · f̄). For any
X ∈ {DC,TR} it holds that

c) QX
p (G′) = QX

p (G)

d) QX
p (G′′) = k ·QX

p (G).

Parts c) and d) can be rephrased as follows: The polyhedra QDC
p and QTR

p are
invariant under scaling of the elasticity vector b. On the other hand, they scale linearly
with the capacity vector f̄ . Note in particular that this partially answers the question
about the implications of ignoring the interdependence of elasticity and edge capacities:
As long as we scale all capacities uniformly, it does not matter whether we keep the
elasticity vector constant or scale it along with the capacity vector.

In the following, we will consider different subclasses of network graphs for which a
statement can be made with respect to the quality of QTR

p (G) as an approximation of
QDC

p (G). We start by showing that for the most general case, QTR
p (G) is not a good

approximation.
Theorem 2.24
There is no constant k such that QTR

p (G) ⊂ k ·QDC
p (G) for all network graphs G.

Proof. Consider the network graph G = (V,E, b, p̄, f̄) with (V,E) as shown in Fig. 2.11,
b = 1, f̄ = (−1,1), and p̄ ∈ (R∪{−∞})V ×(R∪{∞})V chosen arbitrarily. Let p∗ ∈ RV

with p∗s = n+1, p∗t = −(n+1) and p∗v = 0 for all v ∈ V \ {s, t}. Note that there exists
f∗ ∈ RE such that (p∗, f∗) is TR-feasible and hence p∗ ∈ QTR

p (G).
On the other hand, let f̄ ′ := k · f̄ = (−k · 1, k · 1) and G′ = (V,E, b, p̄, f̄ ′). Let

p ∈ QDC
p (G′) and let f, ϕ be corresponding vector of flows and vertex angles such that

(p, f, ϕ) ∈ QDC(G′). Note that, due to p−Af = 0 and since pv = 0 for all v ∈ V \{s, t},
it must hold for every i ∈ [n] that fsv1i = fv1iv2i = · · · = fv(n−1)ivni = fvnit and
hence ϕv1i − ϕs = ϕv2i − ϕv1i = · · · = ϕvni − ϕv(n−1)i

= ϕt − ϕvni . This implies that
ϕt − ϕs = (n+ 1) · ϕt − ϕvni and since ϕt − ϕs = fst ≤ f ′+

st = k, it follows that
n∑

i=1

fvint + fst =

(
n∑

i=1

(ϕt − ϕvni) + (ϕt − ϕs)

)
=

(
n

n+ 1
+ 1

)
· (ϕt − ϕs) < 2k.
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Figure 2.11: There is no k such that QTR
p (G) ⊂ k ·QDC

p (G) for all network graphs with the
structure depicted, with n → ∞.

For every p ∈ QDC
p (G′), it thus holds that p∗t = − (

∑n
i=1 fvint + fst) > −2k. In

particular, p∗ /∈ QDC
p (G′) = k ·QDC

p (G) if n ≥ 2k. 2

This result seems to suggest that QDC
p (G) is “much smaller” than QTR

p (G). We will
see however, that this is not really true. The following lemma provides us with a
method to investigate this question.

Lemma 2.25
Let (V,E, b, p̄, f̄) be a network graph with f− = −f+. For a subset I ⊂ E, let flow
values f∗

e be given for all edges e ∈ I. Let S :=
⋃

(v,w)∈E{(v, w), (w, v)} be a new set
of edges which includes reverse edges for all edges in E and for (w, v) ∈ S \E define
bwv = bvw as well as f+

wv := f+
vw and let Irev := {(w, v) | (v, w) ∈ I} ⊂ S be the set of

reverse edges for edges in I.
Consider the directed graph (V, S) with edge weights d given by

de =


f∗
e
be

e ∈ I

−f∗
e
be

e ∈ Irev

f+
e
be

e ∈ S \ (I ∪ Irev).

If (V, S, d) contains no directed cycle of negative weight, then QDC(V,E, b,∞, f̄) contains
a point (p, f, ϕ) with fe = f∗

e for all e ∈ I.

Proof. We prove the contrapositive of the above statement. Assume that the set
QDC(V,E, b,∞, f̄) does not contain a point (p, f, ϕ) with fe = f∗

e for all e ∈ I.
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Then, the polyhedron(p, f, ϕ) ∈ RV × RE × RV

∣∣∣∣∣∣∣
bvw(ϕw − ϕv) = f∗

vw ∀ (v, w) ∈ I

bvw(ϕw − ϕv) ≤ f+
vw ∀ (v, w) ∈ E \ I

−bvw(ϕw − ϕv) ≤ −f−
vw = f+

vw ∀ (v, w) ∈ E \ I


is empty. From Farkas’ Lemma (e. g., the variant from [Roc70, Theorem 22.1] where
the coefficients corresponding to bvw(ϕw − ϕv) ≤ f∗

vw and bvw(ϕw − ϕv) ≥ f∗
vw for all

(v, w) ∈ I are combined into a single coefficient without sign restriction), we obtain the
existence of a coefficient vector ν ∈ RI (corresponding to the equality constraint) as
well as two vectors ν+e , ν

−
e ∈ RE\I

≥0 such that the corresponding linear combination of
left-hand sides is 0, whereas the right-hand sides evaluate to a value strictly less than 0.

In other words,

0 =
∑

e∈δin(r)∩I

beνe +
∑

e∈δin(r)∩(E\I)

be(ν
+
e − ν−e )−

∑
e∈δout(r)∩I

beνe −
∑

e∈δout(r)∩(E\I)

be(ν
+
e − ν−e )

0 >
∑
e∈I

νef
∗
e +

∑
e∈E\I

(ν+e f
+
e + ν−e f

+
e ) >

∑
e∈I

νef
∗
e +

∑
e∈E\I

(|ν+e − ν−e | · f+
e ).

Writing ν ′e := beνe for e ∈ I and ν ′e := be(ν
+
e − ν−e ) for e /∈ I, we obtain∑

e∈δin(r)

ν ′e −
∑

e∈δout(r)

ν ′e = 0 (2.48)

∑
e∈I

ν ′e
f∗
e

b∗e
+
∑

e∈E\I

|ν ′e|
f+
e

b∗e
< 0. (2.49)

Assigning negative values of ν ′ to the corresponding reverse edges, we obtain a proper
(non-negative) flow in the network (V, S, d) of weight as given in (2.49). By (2.48), the
flow is a circulation. However, a circulation can only have negative weight if it contains
at least one cycle with negative weight, which proves the lemma. 2

Note that in the graph that is constructed in the above lemma, the arcs from Irev

are the only ones that have negative weight. The set of cycles, that might potentially
have negative weight is quite restricted, especially if the set I is small.

As an example, we can use Lemma 2.25 to prove, under reasonable assumptions for a
network graph G derived from an energy network, that despite Theorem 2.24, QDC

p (G)

is not even strictly contained in QTR
p (G), i. e., QTR

p (G) and QDC
p (G) share some points

on their respective boundary. This means that it is not possible to obtain a tighter
approximation of QDC

p (G) on the basis of QTR
p (G) simply by scaling the polyhedron

with an appropriate factor or, in terms of our example from Fig. 2.10, that points like
the one shown in orange always exist:
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Theorem 2.26
Let G = (V,E, p̄, f̄) be a network graph with f− = −f+. For any (s, t) ∈ E and
undirected s-t-path P, let

f+
st

bst
≤
∑
e∈P

f+
e

be
. (2.50)

Let v ∈ V and define pvmax =
∑

e∈δ(v) f
+
e . Then, there exists an injection vector pv

satisfying
pvv = pvmax

such that ±pv lies on the boundary of both QTR
p (G) and QDC

p (G).

The inequality (2.50) can be thought of as a triangle inequality for the completed
graph with respect to the edge weight f+/b (in the case where (V,E) is a complete
graph, it is equivalent to the triangle inequality). Looking at this from the perspective
of power networks, recall from Remark 2.19 that the inverse of the edge weight is the
absolute value of each line’s susceptance per unit of capacity. If we assume that all
material-related parameters are the same for all lines, then by (2.2) the inequality
(2.50) is equivalent to

lengthst · pfactor(lengthst) ≤
∑
e∈P

lengthe · pfactor(lengthe). (2.51)

As pfactor(x) is non-decreasing in x, inequality (2.51) is implied in particular by the
ordinary triangle inequality with respect to the length of lines:

lengthst · pfactor(lengthst) ≤
∑
e∈P

lengthe · pfactor

(∑
e∈P

lengthe

)
≤
∑
e∈P

lengthe · pfactor(lengthe)

The inequality (2.50) hence also follows from the ordinary triangle inequality with
respect to the length of lines, which makes it a very reasonable assumption.

Proof (Proof of Theorem 2.26). We first show that a point pv with the desired
properties exists in QDC

p (G). To see this, we use Lemma 2.25 to obtain a point
(p, f, ϕ) ∈ QDC(V,E, b,∞, f̄) where p has the desired properties, which by the definition
of QDC

p (G) means that pv := p ∈ QDC
p (G).

Let f∗
e = f+

e for all e ∈ δout(v) and f∗
e = f−

e = −f+
e for all e ∈ δin(v). Now, let

I := δout(v) ∪ δin(v) and consider the graph G∗ := (V, S, d) as defined in Lemma 2.25.
Note that the only arcs with negative weight are those ending at v. Furthermore, any
(simple) directed cycle in G∗ can only contain one such arc.
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Suppose therefore that G∗ contains a negative cycle that includes the arc (v, u).
Then, all other edges on that cycle form a directed u-v-path P ∗ and they all have
positive weight. But negativity of the cycle implies that

−dvu >
∑
e∈P ∗

de.

Let P := (P ∗ ∩ E) ∪ {(w,w′) | (w′, w) ∈ P ∗ \ E} denote the subset of edges of G from
which the edges in P ∗ are generated (by the definition in Lemma 2.25). Then,

f+
vu

bvu
=

f∗
vu

bvu
= −dvu >

∑
e∈P ∗

de =
∑
e∈P

f+
e

be
,

which contradicts our assumption from (2.50).
The set QDC

p (V,E, b,∞, f̄) thus contains a point (p, f, ϕ) with fe = f+
e for all

e ∈ δout(v) and fe = f−
e = −f+

e for all e ∈ δin(v), which in particular implies that
pv =

∑
e∈δ(v) f

+
e .

Let pv := p ∈ QDC
p (G) and note that, by an identical argument, −pv ∈ QDC

p (G).
By Proposition 2.23, it thus holds that ±pv ∈ QTR

p (G). To see that pv lies on the
boundary of QTR

p (G), observe that for all (p, f) ∈ QTR
p (G) it holds that p = −Af and

f− ≤ f ≤ f+. In particular, this implies that

pv = −(Af)v = −
∑

e∈δin(v)

fe +
∑

e∈δout(v)

fe ≤
∑

e∈δ(v)

f+
e .

As this inequality is satisfied with equality by the point pv, it actually supports QTR
p (G)

and pv lies on the boundary of QTR
p (G). Again, the argument for the point −pv is

identical, which concludes the proof. 2

We conclude this section with a rather simple observation that allow us to bound the
factor by which a TR-feasible solution may differ from a DC-feasible solution. While
Theorem 2.24 showed that there exists no constant such factor for all networks, we
will obtain an upper bound on the factor, depending on the network structure. In the
following, let ρ := mine∈E min{|f−

e |, |f+
e |} denote the minimum edge capacity in the

network.
Theorem 2.27
Let G = (V,E, b, p̄, f̄) be a network graph with f− ≤ 0 ≤ f+ and let p ∈ RV . If there
exists a partition S ∪̇T = V of the set of vertices such that pv ≥ 0 for all v ∈ S, pv ≤ 0
for all v ∈ T , and

∑
v∈S pv = −

∑
v∈T pv ≤ ρ then p ∈ QDC

p (G).

Proof. Note that, by Proposition 2.20, p induces a unique (but not necessarily feasible)
flow f via p = AB>ϕ and f = B>ϕ. We can see that f is indeed feasible by the
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following argument: If |fe| > ρ for any edge e, then a decomposition of f into flows
along paths from S to T and flows along cycles yields that f must contain a flow along
a cycle. However, f is induced by the potential ϕ and hence cannot contain a positive
flow along any cycle. Therefore, |fe| ≤ ρ ≤ min{f−

e , f+
e } for all e ∈ E and f is indeed

feasible. 2

This immediately implies a more general bound on the necessary scaling factor k such
that k ·QDC

p (G) contains QTR
p (G): We define the operator cut(S) for a network graph

(V,E, b, p̄, f̄) and a subset S ⊂ V of vertices by cut(S) :=
∑

v∈V \S
∑

w∈N in(v)∩S |f+
wv|+∑

w∈δout(v)∩S |f−
vw|.

Corollary 2.28
Let G = (V,E, b, p̄, f̄) be a network graph and for any p ∈ QTR

p (G), let V in := {v ∈ V |
pv > 0} and V out := {v ∈ V | pv < 0}. Let k := 1/ρ · minV in⊂S⊂V \V out cut(S). Then,
p ∈ k ·QDC

p (G).

Proof. From summing up the balance equations in all vertices, it has to hold for
any S ⊂ V that

∑
v∈S pv = −

∑
v∈V \S pv. Furthermore, if V in ⊂ S ⊂ V \ V out,

then |
∑

v∈S pv| = |
∑

v∈V \S pv| ≤ cut(S). This implies in particular that |
∑

v∈S pv| =
|
∑

v∈V \S pv| ≤ ρ · k. With λ∗ := 1/k, it follows that
∑

v∈S λ∗pv = −
∑

v∈V \S λ∗pv ≤ ρ.
By Theorem 2.27, we can conclude that λ∗ · p ∈ QDC

p (G) and hence p ∈ k ·QDC
p (G).2

Note that for single-source-single-sink s-t-flows, we can furthermore bound the term
minV in⊂S⊂V \V out cut(S) by maxe∈δ(s)∪δ(t) max{|f−

e |, |f+
e |}, which yields a very simple

(but weaker) bound for this case.
Looking back at the example from Theorem 2.24 where all edge capacities were 1,

we see that every s-t-cut has size at least n + 1. By Corollary 2.28, p ∈ k · QDC
p (G)

whenever k ≥ n+ 1 (the single-source-single-sink bound above is identical in this case).
However, we also see that the bound is not tight: Since it only takes into account the
capacities of edges and not the elasticity values, it must assume the worst case which
would be that all s-t-paths except {(s, t)} carry practically no flow for any point in
QDC(G).

2.5 The Differential Flow Polytope

In this section, we take the opposite approach to that from Section 2.4 and consider
the following projections of the sets QTR and QDC onto the space of f -variables:
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QTR
f (G) :=

f ∈ RE

∣∣∣∣∣∣∣ ∃p ∈ RV :

p+Af = 0

f− ≤ f ≤ f+

p− ≤ p ≤ p+


=

{
f ∈ RE

∣∣∣∣∣ p− ≤ −Af ≤ p+

f− ≤ f ≤ f+

}

QDC
f (G) :=

f ∈ RE

∣∣∣∣∣∣∣∣∣ ∃p ∈ RV , ϕ ∈ RV :

B>ϕ = f

p+Af = 0

f− ≤ f ≤ f+

p− ≤ p ≤ p+


=

f ∈ RE

∣∣∣∣∣∣∣ ∃ϕ ∈ RV :

B>ϕ = f

p− ≤ −Af ≤ p+

f− ≤ f ≤ f+


The above polyhedra bear a close resemblance to the feasible flow and feasible

differential polyhedra that are well-known from the theory of network flows. In this
section, major parts of which are currently being prepared for publication as [BS19a],
we investigate this similarity in more detail. Rockafellar [Roc84] gives an extensive
account of the underlying theory of flows and differentials, based on which we present
the following overview.

2.5.1 Optimal Flows and Differentials

Given a directed graph G = (V,E) with incidence matrix A, the (un-capacitated)
feasible flow polyhedron (for some right-hand-side vector d satisfying 1

>d = 0) can be
written as

QF (G) :=
{
x ∈ RE

∣∣Ax = d
}
.

Note that, while QF (G) does not restrict the flow by any edge capacities, we could
add capacity constraints without changing the properties that we will discuss below,
albeit at the cost of a somewhat more cumbersome notation. Furthermore x is often
restricted to lie in the positive orthant, but in line with our assumption that edges in
a network graph can also carry negative flow, we do not impose that restriction here.
We can, however, split up the vector x into a positive part x+ and a negative part x−

(corresponding to positive flow in the direction of an edge and in the direction of the
reverse edge, respectively).

For instance, we might want to treat positive and negative flows on an edge separately,
say by assigning a (possibly different) positive cost f+

e ≥ 0 and −f−
e ≥ 0 to positive
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and negative flows, respectively. Splitting up the vector x as described above, we obtain
the optimal flow problem

min
{
f+>

x+ − f−>
x−
∣∣∣ x+, x− ≥ 0, A(x+ − x−) = d

}
. (2.52)

Observe that since f+
e ,−f−

e ≥ 0, we can assume without loss of generality that for
every edge e, at most one of x+e and x−e is strictly positive.

The feasible flow polyhedron (written in the form of (2.52)) is famous for a very neat
characterization of its combinatorial structure: A basis of a vertex of this polyhedron
is characterized by the set of components of x+ and x− for which the sign constraints
are binding, e. g. that have value 0. It is convenient now to differentiate between the
set of edges e for which both x+e and x−e are 0 (call this set N ) and its complement,
the set of edges e for which at least one of x+e and x−e may assume a value strictly
greater than 0 (call this set B := E \ N ).

By Proposition 2.20, it holds that rank(A) = |V | − 1. For the pair (B,N ) to specify
a basis (i. e., for every d to uniquely identify the vector x := x+ − x− satisfying
Ax = d, xN = 0), it is therefore necessary that B contains |V | − 1 edges corresponding
to linearly independent columns of A (in particular, there might be additional edges e
for which both x+e and x−e are 0, that are not contained in B).

The following characterization now holds with respect to these bases: (B,N ) specifies
a basis if and only if the edges of G corresponding to those columns of A indexed by B
form a spanning tree of G. This can be seen as follows: The columns for any undirected
cycle in G are always linearly dependent (as the column of any edge can be obtained
as the sum of positive/negative columns of the other edges), hence the sets of |V | − 1
linearly independent columns are exactly those corresponding to spanning trees.

A similar characterization holds for the optimization problem dual to (2.52), the
optimal differential problem. It asks for a potential ϕ maximizing the linear function
d>ϕ over the polyhedron QD(G) of feasible differentials (see [Roc84]) defined as follows:

QD(G) :=
{
ϕ ∈ RV

∣∣∣ f− ≤ A>ϕ ≤ f+
}

The variables in this new polyhedron do not have to satisfy any (individual) bounds
or sign restrictions. A basis of this polyhedron is hence characterized by the set of
components of the vector A>ϕ for which one of their respective capacity bounds is
binding. Dual to the notation above, we can call the set of edges that index these rows
B and analogously N := E \ B. Again, by Proposition 2.20, rank(A) = |V | − 1 and
hence in order to uniquely identify (up to translation along 1) the vector ϕ conforming
to the specifications of (B,N ), we need that B indexes |V | − 1 linearly independent
rows of A> (or equivalently columns of A). As argued above, a set B satisfies this
requirement if and only if the corresponding edges form a tree. Furthermore, the
potential ϕ uniquely determined by (B,N ) (up to translation along 1) is feasible if
f−
N ≤ A>

Nϕ ≤ f+
N .
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2.5 The Differential Flow Polytope

feasible flows feasible differentials
feasible set QF (G) QD(G)

solution conforms to (B,N ) if… xN := x+
N − x−

N = 0 all entries of A>
Bϕ at upper/lower bound

(B,N ) is a basis if… B indexes a spanning tree B indexes a spanning tree
or (equivalently) if… N is a maximal co-forest N is a maximal co-forest

for a non-extremal solution… {e | xe > 0} contains cycle {e | (A>ϕ)e ∈ (f−
e , f+

e )} contains a cut
for every extremal solution… {e | xe > 0} forms a forest {e | (A>ϕ)e ∈ (f−

e , f+
e )} forms co-forest

Table 2.2: Characterizing properties of bases and extremal solutions for the polyhedra of
feasible flows and feasible differentials. A co-forest is a set of edges that does
not contain a cut, i. e., its removal does not increase the number of connected
components.

Note that the roles of B and N in both cases are reversed: While for the feasible flow
polyhedron, the entries of x indexed by B are the ones that are free to take non-zero
values bounds, the inequalities indexed by B in the feasible differential polyhedron are
the ones that are forced to be binding. A summary of the characterizations outlined
above is provided in Table 2.2.

2.5.2 Feasible Differential Flows
The connections of the above theory of flows and differentials to the polyhedra QTR

f and
QDC

f defined above are easy to make: The feasible flow polyhedron QF (G) (possibly with
added edge capacities) is a special case of the polyhedron QTR

f (G) for the case where
p− = p+ = −d. On the other hand, QD(G) is (up to a full-rank linear transformation)
a special case of the polyhedron QDC

f (G) where p+ = −p− = ∞.
This raises the following question, which we will try to answer in this section: Can

a similar characterization of extremal points of QDC
f be recovered, given that QDC

f

imposes both constraints B>ϕ = f and p− ≤ −Af ≤ p+? Since the points in QDC
f

combine the defining properties of flows and differentials, we refer to them as differential
flows.

Definition 2.29 (Differential Flow)
Let G = (V,E, b, p̄, f̄) be a network graph. We call f ∈ RE a differential flow in G if
there exists a potential ϕ ∈ RV such that for (v, w) ∈ E : fvw = bvw · (ϕw −ϕv). In this
case, we say that ϕ induces f . Furthermore, we say that f is feasible (in the network
graph G) if

a) f−
e ≤ fe ≤ f+

e for all e ∈ E, and

b) p−v ≤
∑

e∈δout(v) fe −
∑

e∈δin(v) fe ≤ p+v for all v ∈ V .

As intended, the set of feasible differential flows is exactly the polyhedron QDC
f (G).

We refer to the first set of constraints B>ϕ = f as differential constraints and to the
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other two sets of constraints f− ≤ f ≤ f+ and p− ≤ −Af ≤ p+ as edge constraints
(or edge capacity constraints) and vertex constraints (or relaxed flow conservation
constraints), respectively. Note that the vertex constraints represent upper and lower
bounds on the flow that is created in the respective vertex, the upper bound p+v thus
represents a lower bound on the excess in the vertex v as defined, e. g., in [AMO93,
Ch. 7.6].

A differential flow is thus an ordinary flow on the edges of the graph (V,E) with
relaxed flow conservation constraints, edge capacity constraints and the additional
differential constraints fvw = bvw · (ϕw − ϕv) for a suitable choice of the potential
ϕ. Conversely, the notion of a feasible differential flow generalizes that of a feasible
differential (see, e. g., [Roc84]), which is recovered if −p− = p+ = ∞ and be = 1.

Note further that if p− = p+ = 0, then f ≡ 0 is the only feasible differential flow (if
0 ∈ [f−, f+]): In this case, b) is an ordinary flow conservation constraint. In particular,
it is well-known that all flows satisfying condition b) with p− = p+ = 0 must be sums
of flows along cycles. On the other hand, the differential constraints require that no
cycle can carry a nonzero flow (otherwise, ϕ would increase strictly along the cycle).

In this section, we want to understand the combinatorial structure of the polyhedron
QDC

f (G). Given the close similarity, as already mentioned, to the feasible flow and
feasible differential polyhedra QF and QD, one might be tempted to try and express
the set of feasible differential flows as feasible flows or differentials on a modified graph.

However, we will see that this does not work: In order to replace the relaxed flow
conservation constraints by strict flow conservation constraints, which are more common
in network-flow-related settings, we can enforce strict flow conservation for every vertex
in the original graph and replace the relaxed flow conservation constraints by edge
capacity constraints on a new artificial edge, connecting each vertex to some artificial
source, which would supply the excess flow which is required to satisfy flow conservation.
We can think of two ways to do this:

a) All artificial edges are connected to the same artificial source s. In this case, since
the artificial edge (s, v) carries flow pv and p − Af = 0, we know that (strict)
flow conservation also holds in s. However, we have already observed above that
in the case of p− = p+ = 0, the only feasible differential flow is f ≡ 0. We would
thus have to relax some other constraint, e. g. the differential constraint at least
in the artificial source vertex s.

b) Each artificial edge is connected to its own artificial source. In this case, we
can use arbitrary values of b for the artificial edges, but we cannot enforce flow
conservation in the artificial sources. We thus end up with an only seemingly
more restrictive version, where strict flow conservation holds for all i ∈ V and no
flow conservation at all holds for the artificial vertices.

These observations emphasize the idea that the differential flow polyhedron jointly
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generalizes different notions from the theory of network flows and somehow lies in
between the concepts of flows and differentials. This further motivates the question
for a suitable characterization of extremal points of QDC

f , which was raised at the
beginning of this section.

2.5.3 α-forests and α-trees

In the following, we prove that under certain conditions, such a characterization is
indeed possible: Using a suitable notion of acyclicity, extremal points of QDC

f (G) can
be identified with maximally acyclic collections of edges and vertices wich, again,
correspond to the set of active inequalities. To motivate the following definition,
consider the following observations, which will be proven in a more general context in
Theorems 2.36 and 2.41 in this section:

• If −p− = p+ = ∞, then the problem reduces to the original feasible differential
problem (as mentioned above). Extremal solutions of this problem can be
characterized by spanning trees for which edge capacity constraints are binding
for every edge in the tree (see Table 2.2).

• If in a solution f the edge capacity constraints are active in all edges from a
spanning tree except one, and additionally the relaxed flow conservation constraint
is binding in one of the endpoints of that missing edge, then f is extremal.

• If −f− = f+ = ∞, then Proposition 2.20 implies that in order to uniquely
determine a solution, the relaxed flow conservation constraint has to be binding
in exactly |V | − 1 vertices.

• If in a solution f an edge capacity constraint is active on an edge (v, w), then f is
uniquely determined by any |V | − 2 binding relaxed flow conservation constraints
that do not contain both v and w.

These observations motivate the following definition of a structure that can be used
to characterize extremal solutions.
Definition 2.30 (α-Forest)
Let G = (V,E, b, p̄, f̄) be a network graph. A pair F = (EF , VF ) consisting of a set of
edges EF ⊂ E and a set of vertices VF ⊂ V in G is called an α-forest in G if there
exists an injective function αF : VF → E \ EF , mapping each vertex from VF to a
neighboring edge which is not already in EF , such that the set EF ∪ αF (VF ) does not
contain a undirected cycle. We call such an α a vertex map for F . The size of F is
defined by |F | := |EF |+ |VF |.

If there is no α-forest F ′ with |F ′| > |F |, then we call F maximal. Since we assume
(for reasons of simplicity) that G is weakly connected, a maximal α-forest is called
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Figure 2.12: We visualize α-forests by marking the sets of active vertices and edges in bold.
The structure on the left is an α-forest, as we can choose, e. g., αF (y) = (w, y),
αF (x) = (w, x) and αF (z) = (z, t) (in fact, since |EF | + |VF | = |V | − 1, the
α-forest is maximal and hence an α-tree). The structure on the right, in contrast,
is not an α-forest: Since αF must map to E \ EF , we must have αF (y) = (w, y)
and αF (u) = (u, v), closing an undirected cycle.

an α-tree. Furthermore, we say for an edge e ∈ E that e is active in F if e ∈ EF .
Analogously, for a vertex v, we say that v is active in F if v ∈ VF .

Given a feasible differential flow f ∈ QDC
f (G), we say that an α-forest F conforms

with f if

a) for all v ∈ VF it holds that (−Af)v ∈ {p−v , p+v }

b) for all e ∈ EF , it holds that fe ∈ {f−
e , f+

e }.

By the definition above, α-forests generalize ordinary forests: Choosing VF = ∅,
F = (EF , VF ) is an α-forest if and only if the edges in EF form a forest. While an
α-forest consists of a set of edges and a set of vertices, these generally do not form a
graph: EF can contain edges between vertices which are not in VF (see Fig. 2.12). The
vertices in VF thus may or may not be incident with edges in EF , the only requirement
being that they can be mapped in an injective way by αF to a neighboring edge, which
is not in EF and does not close an undirected cycle. In particular, this implies for any
α-tree in a network graph (V,E, b, p̄, f̄) that |EF |+ |VF | ≤ |V | − 1. Finally, note that
for a given α-forest F , the function αF need not be unique.

Note that for the special case of −p− = p+ = ∞, we have already observed that
QDC

f (G) = QD(G) (with a suitable scaling of f− and f+), i. e., a feasible differential
flow is just a feasible differential. As one would expect, an α-forest conforming with a
flow f in this case is simply a forest consisting of edges that are at their capacity limits.
We already know from Section 2.5.1 that a point f := A>ϕ is extremal in QD(G) if
and only if there exists a maximal forest of this characteristic (of course, there might
be different forests characterizing the same solution).

We will prove in this section that α-trees can be used to characterize extremal
solutions in QDC

f (G) for all but some very special instances. We start by discussing
which subsets of constraints generally characterize extremal solutions in QDC

f (G).
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For a selection B of rows from a matrix A, we write AB for the sub-matrix consisting
of these rows. A point f ∈ QDC

f is now uniquely determined by a selection B of rows
from the matrix (I, A)> (corresponding to constraints of type a) or b) in Definition 2.29
satisfied with equality) if and only if the matrixB> −I

0

(
I

−A

)
B


has maximal rank, i. e., if any vector x satisfyingB> −I

0

(
I

−A

)
B

x = 0

is of the form x = (ϕ, 0) with ϕ := λ · 1 ∈ RV .
Another way to look at this is the following: Recall from Proposition 2.20 that

rank(B) = |V | − 1 and hence we can alternatively consider the polyhedron QDC
ϕ from

(2.47). Then, an extremal point in QDC
f (G) is uniquely determined by a subset of active

constraints from

f− ≤ B>ϕ ≤ f+

p− ≤ −AB>ϕ ≤ p+

such that the matrix of normal vectors has rank |V | − 1, or equivalently (since the
signs are irrelevant) by a selection of rows from the matrix (B>, AB>)> such that the
corresponding sub-matrix has rank |V | − 1.

Definition 2.31
We say that a network graph G = (V,E, b, p̄, f̄) is (α-tree) non-degenerate if a point
f ∈ QDC

f (G) is extremal (i. e., the matrix of active edge and vertex constraints has rank
|V | − 1) if and only if there exists an α-tree in G that conforms with f . Otherwise, G
is (α-tree) degenerate.

In order to avoid unnecessarily complicated language, we will simply call a network
graph degenerate (or non-degenerate) if this is unambiguous. In a non-degenerate
network graph, we can thus identify every extremal solution with a (not necessarily
unique) selection of edges and vertices that form an α-tree. Conversely, every solution
for which such a selection of edges and vertices exists must be extremal.

Our examples above of network graphs for which the differential flow polyhedron
coincides with the ordinary differential polyhedron show that some network graphs
are indeed non-degenerate. On the other hand, the following example shows that
degenerate network graphs do exist as well:
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w

v

s t

Figure 2.13: If bwt

bws
= bvt

bvs
then the shown graph is α-tree degenerate: The α-tree indicated by

the active vertices and edges marked in bold conforms with a solution which is
not extremal.

Example 2.32
Consider the network graph G in Fig. 2.13 with suitable edge and vertex bounds such
that there exists f ∈ QDC

f (G) for which the thick edges and vertices are those where a
corresponding constraint is binding. Note that there exists an α-tree F which conforms
with f (for example, F = ({(w, v)}, {v, w}) with αF (v) = (v, s), αF (w) = (w, t)).
However, f need not be extremal in QDC

f (G). More precisely, f is extremal if and only
if bwt

bws
6= bvt

bvs
, as can be seen by studying the corresponding matrix of active constraints

(rows are indexed by the edge or vertex corresponding to the respective constraint,
columns are indexed by the corresponding vertex):


s v w t

(w,v) 0 bwv −bwv 0
v −bvs bvs + bvt − bwv bwv −bvt
w −bws −bwv bws + bwt − bwv −bwt

 (2.53)

If bwt
bws

= bvt
bvs

, then the columns corresponding to vertices s and t are linearly dependent.

If on the other hand a network graph is non-degenerate for all values of p̄ and f̄ ,
then this implies a more general relation between α-forests and faces of QDC

f (G):

Lemma 2.33
Let (V,E) be a weakly connected directed graph with elasticity vector b such that for
every f̄ , p̄ the network graph G = (V,E, b, f̄ , p̄) is non-degenerate. Then, the following
are equivalent:

a) the matrix of active constraints in any point f ∈ QDC
f (G) has rank k

b) there exists an α-forest F of size k in G that conforms with f
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Proof. Let f ∈ QDC
f (G) such that the matrix M of active constraints has rank k.

Choose a vertex set V ∗ of size |V ∗| = |V | − 1− k such that the matrix

M ′ :=

(
M
AV ∗

)
has rank |V | − 1. Now, consider the network graph G′ derived from G by modifying
p̄ in such a way that for each v ∈ V ∗, we have that −Avf ∈ {p−v , p+v }. As G′ is
non-degenerate, there exists an α-tree F ′ in G′ which conforms with f . Let F be
defined as follows:

F := (EF ′ , VF ′ \ V ∗)

Then, F is an α-forest in G which conforms with f . Furthermore, |V ∗| = |V | − 1− k
and hence |F | ≥ |F ′| − (|V | − 1− k) = k which proves the statement.

On the other hand, let f ∈ QDC
f (G) and let F be an α-forest of size k that conforms

with f . F can be extended to an α-tree by adding a set E∗ of at most (|V | − 1− k)
edges. Consider the graph G′′ derived from G by modifying f̄ in such a way that for
each e ∈ E∗ we have that f ∈ {f−

e , f+
e }. This adds at most (|V | − 1− k) additional

constraints to the set of constraints which are active in f . As G′′ is non-degenerate,
f is an extremal point in QDC

f (G′′). Hence the set of active constraints has full rank
|V | − 1, which means that the original set of active inequalities must have rank at least
k. 2

Note that if, in line with our interpretation of electricity networks as network graphs
(Remark 2.19), the elasticity vector changes in response to changes in edge capacities,
then the flow vector f in the above proof might no longer be feasible. This can be
remedied by replacing the auxiliary graph G′′ in the proof of Lemma 2.33 with a network
graph with modified elasticity vector, such that f remains feasible in combination with
the modified edge capacities. If this network graph is also non-degenerate, the same
argument can be used to prove Lemma 2.33. This is true in particular in the case
where every network graph on (V,E) is non-degenerate, independently of f̄ , p̄ and
b. Network graphs with this property will be characterized in detail in Section 2.5.6
below.

2.5.4 Existence of α-trees

Before we delve into the question of when exactly an α-tree conforming with a solution
certifies that this solution is extremal, we first settle the inverse question: In this
section, we prove that for every extremal solution f ∈ QDC

f (G), there exists an α-tree
in G that conforms with f .
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Lemma 2.34
Let G = (V,E, b, p̄, f̄) be a network graph. Let V ∗ := {v1, v2, . . . , vk} ⊂ V denote a set
of k vertices and let E∗ ⊂ E denote a set of |V | − 1− k edges such that

rank
(

(B>)E∗

(AB>)V ∗

)
= |V | − 1. (2.54)

Then, the graph G∗ := (V,E∗) has k+1 weakly connected components S1, . . . , Sk+1 ⊂ V .
Furthermore, there exists a k × (k + 1)-dimensional matrix C = (γij) i∈[k]

j∈[k+1]

with

γij


> 0 if vi ∈ Sj

< 0 if vi /∈ Sj and NG(vi) ∩ Sj 6= ∅
0 else.

such that rank(C) = k and 1 ∈ ker(C).

Proof. The rank condition (2.54) implies in particular that those rows of B> that
correspond to the edges in E∗ are linearly independent. Since B is (up to linear scaling
of columns) the incidence matrix of the graph (V,E), this implies that E∗ cannot
contain an undirected cycle and hence the graph G∗ = (V,E∗) consists of k + 1 weakly
connected components. Let

M :=

(
(B>)E∗

(AB>)V ∗

)
. (2.55)

We assume w. l. o. g. that the columns of M are ordered in such a way that the columns
corresponding to vertices in S1 come first, followed by the columns corresponding to
vertices in S2 etc. We now scale every row of (B>)E∗ in such a way that its two entries
are 1 and −1 (i. e. we divide the row corresponding to the edge e by be). We obtain a
matrix of the following structure:

M ′ =


(A>)S1 0 · · · 0

0 (A>)S2 · · · 0
...

... . . . ...
0 0 · · · (A>)Sk+1

M∗

 . (2.56)

Obviously, we have that rank(M) = rank(M ′) and each of the blocks (A>)Sj is the
transpose of the incidence matrix of the weakly connected component Sj of G∗, which
is an undirected tree spanning the vertices in Sj .
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2.5 The Differential Flow Polytope

The matrix M∗, on the other hand, is a selection of rows from the nodal admittance
matrix AB>, with each row corresponding to a vertex vi ∈ V ∗. For every vi ∈ V ∗, w ∈
V , it therefore holds that

M∗
viw =



∑
e∈δ(vi) be w = vi

−bviw (vi, w) ∈ E

−bwvi (w, vi) ∈ E

0 else.

(2.57)

In particular, M∗
vivi > 0, M∗

viw ≤ 0 for all w 6= vi and
∑

w∈V M∗
viw = 0.

We now select for each component of G∗ a representative vertex wj ∈ Sj . Observe
that adding a multiple λ of the row of (A>) which corresponds to the edge (v, w) ∈ E
to a row m of M∗ subtracts λ from the entry M∗

mv and adds λ to the entry M∗
mw.

Since every Sj is weakly connected, we can move along the edges in Sj , adding a
suitable linear combination of rows of (A>)Sj to each row m of M∗, thereby eliminating
all entries of M∗ from columns corresponding to vertices in Sj \ wj and adding the
corresponding values to the entry M∗

mwj
. We obtain a matrix M∗∗ such that

rank(M) = rank(M ′) = rank


(A>)S1 0 · · · 0

0 (A>)S2 · · · 0
...

... . . . ...
0 0 · · · (A>)Sk+1

M∗∗

 (2.58)

where M∗∗ has the form



w1 w2 ··· wk+1

v1 γ11 0 · · · 0 γ12 0 · · · 0 · · · 0 · · · 0 γ1(k+1)

v2 γ21 0 · · · 0 γ22 0 · · · 0 · · · 0 · · · 0 γ2(k+1)
...

...
... . . . ...

...
... . . . ...

... . . . ...
...

vk γk1 0 · · · 0 γk2 0 · · · 0 · · · 0 · · · 0 γk(k+1)

. (2.59)

Since the row-sums of all rows of M ′ were 0, the same holds true for M∗∗, i. e.∑
j∈[p] γij = 0 for all i ∈ [k]. Furthermore, γij =

∑
w∈Sj

M∗
vi,w ≤ 0 for all Sj that do

not contain vi and γij = 0 for all Sj that contain neither vi itself nor a neighbor of
vi. This implies that, if vi ∈ Sj∗ , then γij∗ > 0: Otherwise, all entries of the row M∗∗

vi
would be 0, a contradiction with M∗∗ having full row rank. We can now drop all zero
columns from M∗∗ to obtain the matrix C with the desired properties. 2

The following lemma will serve to capture the relation between the different weakly
connected components of G∗ and active vertices within these components. It makes
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v1

v2

v3

v4v5

S1

S3

S4

S5S6

S2

v1 v2 v3 v4 v5

s1 s2 s3 s4 s5 s6

Figure 2.14: On the left, a network graph with the sets V ∗ and E∗ shown in bold, as well as the
partition of vertices induces by the weakly connected components of the graph
G∗ = (V,E∗). On the right, the corresponding bipartite graph H := (V ∪̇ S,E)
satisfying the conditions from Lemma 2.35. Solid edges are those from the set
R, dashed edges are those from the set U . In orange, a selection of edges U∗

with the properties guaranteed by Lemma 2.35 is shown. On the left, a possible
translation into a function α (see Theorem 2.36) is indicated by the orange edges
(α maps every active vertex to a neighboring orange edge).

a general statement about a bipartite graph H := (V ∪̇ S,E) with certain properties.
Subsequently in Theorem 2.36, we will use the partition classes V and S to represent
the set of active vertices V ∗ in a network graph and the set of components connected
by active edges in E∗ (the weakly connected components of the graph G∗, see Theo-
rem 2.36), respectively. A selection of edges with the properties specified in the lemma
will allow us to derive a function α to prove that (E∗, V ∗) is indeed an α-tree (see
Fig. 2.14).

Lemma 2.35
Let H := (V ∪̇ S,E) be a bipartite graph with |S| = |V |+ 1 and E = R ∪̇ U a partition
of E satisfying the following conditions:

a) δ(v) ∩R = 1 for all v ∈ V

b) for every V ′ ⊂ V , it holds that |N(V ′)| ≥ |V ′|+ 1.

Then, there exists a selection of edges U∗ ⊂ U such that

i) δ(v) ∩ U∗ = 1 for all v ∈ V and

ii) the graph (V ∪̇ S,R ∪̇ U∗) is connected (and therefore a tree).

Proof. We first observe that b), together with a), implies in particular that δ(v)∩U ≥ 1
for all v ∈ V . Thus, since H is bipartite, a selection U∗ ⊂ U of edges with δ(v)∩U∗ = 1
always exists. Furthermore, |U | ≥ |V |.
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2.5 The Differential Flow Polytope

We prove the statement by induction over |U |. If |U | = |V |, then every vertex v ∈ V
is incident with exactly one edge from U . The selection U∗ := U thus satisfies i). If
we suppose that ii) does not hold, i. e. (V ∪̇ S,R ∪̇ U) is not connected, then we can
choose a connected component C and denote by VC the subset of vertices from V that
is covered by C. Since C is a connected component, N(VC)∩N(V \ VC) = ∅ and from
b) we obtain |N(VC)| ≥ |VC |+ 1. Hence,

|N(V \ VC)| ≤ |S \N(VC)| = |S| − |N(VC)| ≤ |V |+ 1− |VC | − 1 = |V \ VC |,

a contradiction to b).
Now, let us assume that |U | > |V |, which means that there exists v ∈ V with

δ(v)∩U ≥ 2. Choose two distinct edges e1, e2 ∈ δ(v)∩U and denote the corresponding
neighbors of v by s1 and s2, respectively.

We claim that at least one of the two graphs H1 := (V ∪̇ S,E \ {e1}) and H2 :=
(V ∪̇S,E \{e2}) must satisfy the condition b). By induction, we then obtain a selection
U∗ of edges which satisfies i) and ii) with respect to the graph H1 (or H2) and thus
also for H, proving the statement.

In the following, for any subset V ′ ⊂ V , we denote by N(V ′) (without index)
the neighborhood of the set V ′ in the graph H and by NH1(V

′) and NH2(V
′) the

neighborhoods of the set V ′ in the graphs H1 and H2, respectively.
For contradiction, suppose that our claim is false. Then, there exists a set V1 ⊂ V

which violates b) in the graph H1 and a set V2 ⊂ V which violates b) within H2. Since
neither V1 nor V2 violate b) within H, it must hold that v ∈ V1 ∩ V2.

Now, let V ′
1 := V1 \ V2, V ′

2 := V2 \ V1, and V12 := V1 ∩ V2 \ {v}. We use the following
statements, which we successively derive from each other below:

I) |NH1(V1)| = |V1| = |N(V1)| − 1 and
|NH2(V2)| = |V2| = |N(V2)| − 1

II) |N(V ′
1) ∩N(V12)| ≥ |N(V ′

1)|+ |N(V12)| − |V ′
1 | − |V12| − 1 and

|N(V ′
2) ∩N(V12)| ≥ |N(V ′

2)|+ |N(V12)| − |V ′
2 | − |V12| − 1

III) |N(V ′
1 ∪̇ V12 ∪̇ V ′

2)| ≤ |V ′
1 |+ |V12|+ |V ′

2 |+ 1

IV) N(v) \ {s1} ⊂ N(V1 \ {v}) and
N(v) \ {s2} ⊂ N(V2 \ {v})

Statements III) and IV) together will then prove that the original graph H would
already violate b), a contradiction.

To prove I) and II), let i ∈ {1, 2}. From the assumption that Vi violates b) in the
graph Hi, but satisfies b) in the graph H, we can immediately follow that |NHi(Vi)| ≤
|Vi| ≤ |N(Vi)| − 1. On the other hand, Hi lacks only a single edge compared with H
and thus |NHi(Vi)| ≥ |N(Vi)| − 1. This proves I).
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We can now conclude that

|V ′
i |+ |V12|+ 1 = |Vi|

I)

≥ |NHi(Vi)| ≥ |NHi(V
′
i ∪̇ V12)| = |N(V ′

i ∪̇ V12)|
= |N(V ′

i )|+ |N(V12)| − |N(V ′
i ) ∩N(V12)|,

which proves II). Using the inclusion/exclusion principle, it now follows that

|N(V ′
1 ∪̇ V12 ∪̇ V ′

2)| = |N(V ′
1)|+ |N(V12)|+ |N(V ′

2)|
− |N(V ′

1) ∩N(V12)| − |N(V ′
2) ∩N(V12)|

−|N(V ′
1) ∩N(V ′

2)|+ |N(V ′
1) ∩N(V ′

2) ∩N(V12)|︸ ︷︷ ︸
≤0

II)

≤ |N(V ′
1)|+ |N(V12)|+ |N(V ′

2)|
− (|N(V ′

1)|+ |N(V12)| − |V ′
1 | − |V12| − 1)

− (|N(V ′
2)|+ |N(V12)| − |V ′

2 | − |V12| − 1)

= −|N(V12)|+ |V ′
1 |+ |V12|+ |V ′

2 |+ |V12|+ 2

b)

≤ |V ′
1 |+ |V12|+ |V ′

2 |+ 1,

which proves III). On the other hand, to prove IV) let again i ∈ {1, 2} and observe
that si /∈ N(Vi \ {v}), since otherwise |NHi(Vi)| = |N(Vi)|, a contradiction with I).
Furthermore,

|N(Vi) \N(Vi \ {v})| = |N(Vi)| − |N(Vi \ {v})|
I),b)

≤ (|NHi(Vi)|+ 1)− (|Vi \ {v}|+ 1)

I)

≤ |Vi|+ 1− (|Vi| − 1 + 1) = 1,

and hence N(v) \ {si} ⊂ N(Vi \ {v}), which proves IV).
In particular, since s1, s2 ∈ N(v), this means that s2 ∈ N(V1 \ {v}) and s1 ∈

N(V2 \ {v}). But this implies that

N(v)
IV )
⊂ N(V1 \ {v}) ∪N(V2 \ {v}) = N((V1 ∪ V2) \ {v}) = N(V ′

1 ∪̇ V12 ∪̇ V ′
2),

which leads to

|N(V ′
1 ∪̇ V12 ∪̇ V ′

2 ∪̇ {v})| = |N(V ′
1 ∪̇ V12 ∪̇ V ′

2)|
III)
= |V ′

1 |+ |V12|+ |V ′
2 |+ 1 = |V ′

1 ∪̇ V12 ∪̇ V ′
2 ∪̇ {v}|,

a contradiction with b).
It follows that our assumption was false and that indeed, at least one of the graphs H1

or H2 satisfies b). As that graph obviously satisfies a) (the set R remains unchanged),
as well, the statement follows by induction. 2
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2.5 The Differential Flow Polytope

Observe that the core of the above proof is that we can remove edges from H in
a way that the condition b) remains satisfied. This argument could thus be used to
prove other statements similar to Lemma 2.35 about the existence of edge selections
with certain properties in cases where

• a selection remains valid if we add additional edges, and

• if the number of edges is sufficiently small, then the existence of a corresponding
edge selection is obvious from b).

Using the two previous lemmas, we can now prove the following theorem:

Theorem 2.36
Let G = (V,E, b, p̄, f̄) be a network graph and f ∈ QDC

f (G). If f is extremal, then there
exists an α-tree in G that conforms with f .

Proof. Let f ∈ QDC
f (G) be extremal. From Proposition 2.20, we obtain that there

exists a vector ϕ ∈ RV with f = B>ϕ and |V | − 1 linearly independent inequalities
of (2.47) that are active in ϕ (uniquely determining ϕ up to the linearlity space R · 1
contained in QDC

ϕ ). Let E∗ and V ∗ := {v1, v2, . . . , vk} be the set of edges and vertices,
respectively, corresponding to these constraints and let

M :=

(
(B>)E∗

(AB>)V ∗

)
. (2.60)

Then M is (|V | − 1) × |V |-dimensional and has rank(M) = |V | − 1, thus satisfying
the conditions of Lemma 2.34. Hence, the graph (V,E∗) consists of k + 1 (weakly)
connected components S1, S2, . . . , Sk+1 ⊂ V and there exists a k× (k+ 1)-dimensional
matrix C = (γij)i∈[k]

j∈[p]
with rank(C) = k such that C · 1 = 0 and

γij


> 0 if vi ∈ Sj

< 0 if vi /∈ Sj and N(vi) ∩ Sj 6= ∅
0 else.

(2.61)

Now, let S := {S1, S2, . . . , Sk+1}, R := {{vi, sj} | γij > 0}, and U := {{vi, sj} |
γij < 0}. For the graph H := (V ∗ ∪̇ S, R ∪̇ U), the following holds:

• H is bipartite with |S| = |V ∗|+ 1 and

• δ(v) ∩R = 1 for all v ∈ V ∗, since there exists exactly one connected component
that contains v.
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Furthermore, we claim that for every V ′ ⊂ V ∗, it holds that |N(V ′)| ≥ |V ′| + 1. To
see this, suppose otherwise. Let V̄ ⊂ V ∗ denote a set such that |N(V̄ )| ≤ |V̄ |. Reorder
the rows and columns of C in such a way that the first rows are those corresponding
to vertices in V̄ and the first columns are those corresponding to vertices in N(V̄ ).
Let V ∗∗ be a subset of V̄ of size |N(V̄ )| and let C ′ be the |V ∗∗| × |V ∗∗|-dimensional
submatrix composed of the rows corresponding to vertices in V ∗∗ and the columns
corresponding to vertices in N(V̄ ). Then, C can be written as

C =

(
C ′ 0
∗ ∗

)
. (2.62)

Since C · 1 = 0, it follows that C ′ · 1 = 0 and hence rank(C ′) < |V ∗∗| which implies
that rank(C) < k, a contradiction. This proves that, indeed, for every V ′ ⊂ V , it holds
that |N(V ′)| ≥ |V ′|+ 1.

The graph H hence satisfies all the requirements of Lemma 2.35 and we obtain a
selection of edges U∗ ⊂ U with δ(v) ∩ U∗ = 1 for every v ∈ V ∗ such that the graph
H∗ := (V ∗ ∪̇ S, R ∪̇ U∗) is connected. Since |S| = |V | + 1 and |R| = |U∗| = |V |, this
implies that H∗ is acyclic. For each vi ∈ V ∗, choose ji such that {vi, sji} ∈ U∗ and
choose ei ∈ E incident with vi such that Sji ∩ ei 6= ∅. Since vi /∈ Sji , it holds that
ei /∈ E∗. Such an edge exists, since {vi, sji} ∈ U implies that γiji < 0 which in turn
implies that N(vi) ∩ Sji 6= ∅.

Now, for all vi ∈ V ∗, let α(vi) := ei. Then α is injective (otherwise H∗ would contain
a cycle) and E∗ ∪ α(V ∗) does not contain an undirected cycle (otherwise, again, H∗

would contain a cycle). Hence, F := (E∗, V ∗) is an α-forest, which can be seen using
the (injective) vertex map αF := α. Furthermore, F is of size |E∗|+ |V ∗| = |V | − 1,
which means that it is in fact an α-tree. 2

Note that we see again that the function αF corresponding to an α-tree F is not
necessarily unique: First, the selection U∗ of edges, whose existence is guaranteed by
Lemma 2.35, need not be unique. Furthermore, for an edge {vi, sji} ∈ U∗ it might be
the case that there are more than one edge ei ∈ E incident with vi such that Sji ∩ei 6= ∅
(see the case of v1 in Fig. 2.14). Each particular choice in both cases leads to a different
function αF for the same selection (E∗, V ∗) of active edges and vertices.

2.5.5 Sufficient Conditions
In Example 2.32, we saw that a solution might not be extremal, even though there
exists an α-tree that conforms with it. This motivates our interest in criteria under
which we can guarantee a correspondence between extremal points in QDC

f (G) and
α-trees. In this section, we will present some conditions for a given α-tree under which
a solution f ∈ QDC

f that conforms with it is guaranteed to be extremal. We start by
observing the following:
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2.5 The Differential Flow Polytope

Remark 2.37
Let G = (V,E, b, p̄, f̄) be a network graph and f ∈ QDC

f (G). Then f is not extremal
if and only if there exists a differential flow g 6= 0 such that f ± g ∈ QDC

f (G). In
particular, for every vertex v with Avf ∈ {p−, p+}, we must have Avg = 0 and for
every edge (v, w) ∈ E with fvw ∈ {f−

vw, f
+
vw}, we must have gvw = 0.

In light ob the remark above, it makes sense to investigate the restrictions which
an α-forest F = (EF , VF ) that conforms with f imposes on a differential flow g with
f ± g ∈ QDC

f (G). For a potential ϕ that induces g, the above observation implies that
ϕv = ϕw for every weakly connected component S of the graph (V,EF ) and v, w ∈ S,
i. e. ϕ is constant within any such component.

In order to represent restrictions imposed by F on ϕ between different connected
components of (V,EF ), we need the following definition of a generalized differential
flow which is induced by a potential ϕ via a generalized elasticity vector b. In contrast
to the elasticity vector in a network graph, a generalized elasticity vector is defined for
all pairs (v, w) ∈ V × V (even if (v, w) /∈ E). In particular, there may be pairs (v, w)
with bvw 6= bwv and one of the two values (or both) might be zero.
Definition 2.38 (Generalized Differential Flow)
Let V be a finite set and b ∈ RV×V

≥0 . A potential ϕ ∈ RV induces a generalized
differential flow f ∈ RV×V on V with respect to b by fvw = bvw(ϕw −ϕv). We say that
f is feasible if ∑

w∈V \{v}

fvw = 0 (2.63)

for all vertices v ∈ V .

Note that, in contrast to a differential flow, a generalized differential flow is defined
on all pairs of vertices from V . In particular, depending on b, it might be the case that
both fvw and fwv are non-zero (or only one or none of them). If both are non-zero,
however, then they must have opposite sign (since b ≥ 0), but need not be each others
negative (since we do not require bvw = bwv). Furthermore, equation (2.63) is similar
to a common flow conservation constraint, but not identical: For every v ∈ V , we only
sum over the entries fvw for w ∈ V \ {v} (which may be positive or negative), but
not over the entries fwv. These only appear in the corresponding constraint (2.63) for
vertex w.

Note further that for any ϕ0 ∈ R, the trivial potential ϕ ≡ ϕ0 induces the generalized
differential flow f ≡ 0 (independently of b), which is always feasible. Analogously to
Definition 2.30, the following tree structure can be used to characterize the cases where
a generalized differential flow is uniquely determined (as we will see in Lemma 2.40):
Definition 2.39
Let T = (V,E) be a weakly connected directed graph that does not contain a directed
cycle. If furthermore |δout(v)| ≤ 1 for all v ∈ V , then T is called an anti-arborescence.
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In particular, if T is an anti-arborescence, then there is a unique vertex v0 ∈ T such
that |δout(v)| = 0 (the root of the anti-arborescence). Furthermore, (V, F ) may not
contain any undirected cycle, either (since any cycle is either directed or |δout(v)| > 1
for some v on the cycle). We now show that, as noted above, the existence of an
anti-arborescence on the vertices in V such that b is non-zero on its edges means that
f ≡ 0 is the unique feasible generalized differential flow.
Lemma 2.40
Let V be a finite set, b ∈ RV×V

≥0 and E := {(v, w) ∈ V ×V | v 6= w and bvw > 0}. Let T
be a subgraph of (V,E) that is an anti-arborescence. If ϕ induces a feasible generalized
differential flow f on V with respect to b, then ϕ ≡ ϕ0 for some ϕ0 ∈ R (and as a
consequence f ≡ 0).

Proof. Let ϕ ∈ RV be a potential that induces a feasible generalized differential flow.
Let v0 ∈ V be the root of the anti-arborescence F . We prove that maxv∈V ϕv = ϕv0 ,
the argument to see that minv∈V ϕv = ϕv0 is identical. Let v1 ∈ argmaxv∈V ϕv, i. e.
ϕv1 ≥ ϕw for all w ∈ V . If ϕv1 = ϕv0 , then we are done. Otherwise, in particular
v1 6= v0 and there exists an edge (v1, v2) ∈ T . Then, by the definition of a feasible
generalized differential flow and by maximality of ϕv1 ,

0 =
∑

w∈V \{v1}

bv1w︸︷︷︸
≥0

(ϕw − ϕv1)︸ ︷︷ ︸
≤0︸ ︷︷ ︸

≤0

≤ bv1v2(ϕv2 − ϕv1).

Since furthermore (v1, v2) ∈ E, we have that bv1v2 > 0 which implies that ϕv2 −ϕv1 ≥ 0.
By maximality of ϕv1 this implies that ϕv2 = ϕv1 > ϕv0 and thus in particular v2 6= v0.
Hence, v2 ∈ argmaxv∈V ϕv and we can apply the same argument to find a vertex v3
with ϕv2 = ϕv3 . Since T is an anti-arborescence and we only traverse edges of T in the
direction towards the root, it holds that v3 6= v1. Iterating this argument, we eventually
obtain that ϕv1 = ϕv2 = ϕv3 = · · · = ϕv0 , a contradiction. 2

We can now derive a sufficient condition for extremality of a differential flow f ∈
QDC

f (G) based on the existence of an α-tree F with one additional property.

Theorem 2.41
Let G = (V,E, b, p̄, f̄) be a network graph, f ∈ QDC

f (G) and F = (EF , VF ) an α-tree in
G that conforms with f . Let F be such that every weakly connected component of the
graph (V,EF ) contains at most one vertex which is active in F . Then, f is extremal.

Proof. In order to show that f is extremal, we need to prove that no non-zero
differential flow g exists such that f ± g ∈ QDC

f (G) (see Remark 2.37). Suppose
otherwise and let ϕ ∈ RV be a potential that induces g. Denote by S the set of weakly
connected components of the graph (V,EF ).
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By our assumption, every component S contains at most one vertex which is active
in F . Denote this vertex (if it exists) by vS . For two components S, T ∈ S, we define
the value b′ST as follows (we write δ(S) :=

⋃
v∈S δ(v) for any S ⊂ V ):

b′ST :=

{∑
e∈δ(vS)∩δ(T ) be if S contains a vertex vS active in F

0 else.
(2.64)

Note that it may be the case that b′ST 6= b′TS , in particular one of the two may be 0 (or
both), but in any case b′ ≥ 0 since b > 0 by the definition of a network graph.

Let αF be a vertex map for F and denote by F ′ the set of pairs of components for
which there exists an active vertex in the first component which is mapped by αF to
an edge connecting it with the second component:

F ′ :={(S, T ) ∈ S × S | ∃(v, w) ∈ ((S × T ) ∪ (T × S)) ∩ αF (VF ∩ S)} (2.65)

Then, by the definition of α-trees, the set EF ∪αF (VF ) does not contain an undirected
cycle and since F is maximal, it spans V . This implies that the graph (S, F ′) is weakly
connected and does not contain a cycle, either. Furthermore, since every component
S ∈ S contains at most one active vertex, there is at most one T ∈ S such that
(S, T ) ∈ F ′. The graph (S, F ′) is thus an anti-arborescence.

Returning to the differential flow g, Remark 2.37 implies for any v, w ∈ V with
(v, w) ∈ EF that gvw = 0 and hence ϕv = ϕw. Let ϕ′ ∈ RS be defined by ϕ′

S := ϕv for
any S ∈ S and v ∈ S (note that this is well-defined, since ϕv = ϕw for any S ∈ S and
v, w ∈ S). Now, observe that ϕ′ induces a generalized differential flow on the set S
with respect to b′. Now, for all S ∈ S, one of the following two statements holds:

• Either S contains no active vertex and then b′ST = 0 for all T ∈ S and hence∑
T∈S\{S} b

′
ST (ϕ

′
T − ϕ′

S) = 0, or

• S contains exactly one active vertex vS and∑
T∈S\{S}

b′ST (ϕ
′
T − ϕ′

S) =
∑

T∈S\{S}

∑
e∈δ(vS)∩δ(T )

be(ϕ
′
T − ϕ′

S)

=
∑

T∈S\{S}

∑
w∈Nout(vS)∩T

bvSw(ϕw − ϕvS )

−
∑

T∈S\{S}

∑
w∈N in(vS)∩T

bwvS (ϕvS − ϕw)

=
∑

w∈Nout(vS)

bvSw(ϕw − ϕvS )−
∑

w∈N in(vS)

bwvS (ϕvS − ϕw)

=
∑

w∈Nout(vS)

gvSw −
∑

w∈N in(vS)

gwvS = 0

where the last equality follows from Remark 2.37.
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Hence, the generalized differential flow induced by ϕ′ is feasible. Let E′ := {(S, T ) ∈
S × S | S 6= T and b′ST > 0} and observe that F ′ ⊂ E′, since the definition of F ′

captures exactly those pairs (S, T ) for which the first case in the definition of b′ applies.
Hence, the anti-arborescence (S, F ′) is a subgraph of (S, E′) and we now obtain from
Lemma 2.40 that there exists ϕ0 ∈ R such that ϕ′ ≡ ϕ0 and thus ϕ ≡ ϕ0 which implies
that g ≡ 0. 2

Note that Theorem 2.41 in particular excludes the structure encountered in Ex-
ample 2.32. Using Theorem 2.41, we can prove another sufficient condition, which
excludes a different aspect of Example 2.32.

Theorem 2.42
Let G = (V,E, b, p̄, f̄) be a network graph, f ∈ QDC

f (G) and F = (EF , VF ) an α-tree in
G that conforms with f . Furthermore, let F be such that there is at most one v ∈ VF

with deg(v) ≥ 3. Then, f is extremal.

Proof. We prove the statement by induction over the number |VF | of active vertices
in F . If |VF | = 0, i. e. there is no vertex active in F , then (V,EF ) is in fact a spanning
tree and hence f is extremal (as we noted after Remark 2.37, any potential ϕ that
induces a differential flow g with f ± g ∈ QDC

f (G) has to be constant within connected
components of (V,EF ), which in this case already implies that g ≡ 0).

Now, let |VF | = k. We distinguish two cases: First, assume that VF contains no
vertex of degree at most 2 that is incident with an active edge. Then, for every weakly
connected component S of (V,EF ), one of the following holds:

a) S is a singleton

b) every active vertex v in S is incident with an active edge, which by our assumption
implies that deg(v) ≥ 3. Hence, there can only be one such active vertex and v
is thus the only active vertex in S.

In both cases, S contains at most one active vertex, which implies that F satisfies
the conditions of Theorem 2.41 and f is extremal.

Now, assume that VF does contain a vertex of degree at most 2 that is incident with
an active edge and let αF : VF → E \ EF be a vertex map for F .

Let v ∈ VF be an active vertex of degree at most 2 that is incident with an active
edge e∗ ∈ EF . By assumption, deg(v) ≤ 2, but since v is incident with both e∗ ∈ EF

and αF (v) ∈ E \ EF , these two edges are the only edges incident with v. Assume
w. l. o. g. that both edges e∗ and αF (v) are oriented away from v and let s, t ∈ V such
that αF (v) = (v, t) and e∗ = (v, s). Let p∗v :=

∑
e∈δout(v) fe −

∑
e∈δin(v) fe = fvt + fvs.

Since v and (v, s) are active, it holds that p∗v ∈ {p+v , p−v } and fvs ∈ {f+
vs, f

−
vs}. Thus,

for every differential flow g with f ± g ∈ QDC
f (G), it must hold by Remark 2.37 that
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gvs = 0 and hence gvt = 0. Let f̄ ′ be given by

f̄ ′
e =

{
(p∗v − fvs, p

∗
v − fvs) if e = (v, t)

f̄e else
(2.66)

and define H := (V,E, b, p̄, f̄ ′). Then, we can conclude that f is extremal in QDC
f (G)

if and only if f is extremal in QDC
f (H).

But now, in the network graph H, we obtain a new α-tree F ′ := (EF ∪ {(v, t)}, VF \
{v}) that conforms with f . Since |VF ′ | < |VF |, we can conclude by induction that f is
extremal in QDC

f (H) and hence it is also extremal in QDC
f (G). 2

It can easily be seen that neither of the two sufficient conditions above is necessary:
In Example 2.32 for the case of bwt

bws
6= bvt

bvs
, the α-forest violates both conditions, but f

is extremal nonetheless.

2.5.6 The Family of α-tree Non-degenerate Graphs
The criteria developed in the previous section depend on the particular solution and
corresponding α-forest in question. To complement these somewhat a-posteriori criteria,
we will present in this section a characterization of all graphs that are non-degenerate
irrespective of the given capacity and elasticity vectors, i. e. graphs for which in
particular the antecedent of Lemma 2.33 holds. These naturally include, but are not
limited to, all graphs for which the sufficient condition from Theorem 2.42 automatically
holds (i. e. graphs that have at most one vertex of degree ≥ 3). As an example, we will
see that any network graph on the variant of the graph from Example 2.32 which is
shown in Fig. 2.15 is non-degenerate. This is true although the α-tree shown in Fig. 2.15
violates both of our sufficient conditions from Theorems 2.41 and 2.42. Note that all
results in this section rely solely on the graph (V,E) that underlies a network graph.
In particular, this means that they hold independently of whether or not we assume
that the elasticity vector changes in response to a modification of edge capacities.

The idea for the assumptions used in the main Theorem 2.49 are inspired by [ZT13].
However the results in this subsection, as well as the proof techniques used, are entirely
different. On the other hand, a similar proof technique was independently used by
Leibfried et al. [Lei+15] to answer a question about the effect of a partial relaxation of
the DC equations in power flow models (which corresponds to relaxing the differential
constraints in QDC

f ).
Lemma 2.43
Let H1 := (V1 ∪ {v∗}, E1) and H2 := (V2 ∪ {v∗} , E2) be two directed, weakly connected
graphs with V1 ∩ V2 = ∅ such that every network graph on these graphs is non-
degenerate. Let (V,E) be a graph that results from connecting the two graphs in v∗,
i. e., V = V1 ∪ V2 ∪ {v∗} and E = E1 ∪ E2. Then, every network graph on (V,E) is
non-degenerate.
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w
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s1

s2

t

Figure 2.15: The graph shown is α-tree non-degenerate, irrespective of the elasticity vector
used (Theorem 2.49). In particular, a solution conforming with the α-tree
indicated by the active vertices and edges marked in bold is extremal, although
the α-tree violates both of our sufficient conditions from Theorems 2.41 and 2.42
in the previous section.

Proof. Let G = (V,E, b, p̄, f̄) be a network graph on (V,E). Due to Theorem 2.36, it
suffices to show that if there exists an α-tree that conforms with f ∈ QDC

f (G), then f
is extremal.

Let therefore f ∈ QDC
f (G) and let F be an α-tree with vertex map αF : VF → E \EF

that conforms with f . If v∗ is active in F , then we assume w. l. o. g. that αF (v
∗) ∈ E2.

Suppose that f is not extremal, i. e. there are flows f̄ , f̃ ∈ QDC
f (G) and λ ∈ (0, 1)

such that f̃ 6= f̄ and f = λf̄ + (1 − λ)f̃ . We will prove that, in fact, f̃ = f̄ = f , a
contradiction.

We write f = (f1, f2) for the restrictions of f to E1 and E2 and analogously for f̄
and f̃ . Consider the network graph G1 obtained from restricting G to the graph H1

and changing the bounds for the vertex v∗ in such a way that f̄1 and f̃1 (and thus also
f1) are feasible for G1. Specifically, let

p−v∗ = −max


∣∣∣∣∣∣
∑
e∈E1

Av∗ef̄e

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
∑
e∈E1

Av∗ef̃e

∣∣∣∣∣∣


p+v∗ = max


∣∣∣∣∣∣
∑
e∈E1

Av∗ef̄e

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
∑
e∈E1

Av∗ef̃e

∣∣∣∣∣∣
.

Note that, indeed, by this definition, f1, f̄1 and f̃1 are all feasible for G1. Furthermore,
let EF1 := EF ∩ E1 and VF1 := VF ∩ V1. Then F1 := (EF1 , VF1) is an α-forest (with
vertex map αF1 := αF |V1

) which conforms with f1. Since F was an α-tree in G and
either v∗ /∈ VF or, by our assumption, αF (v

∗) ∈ E2, it holds that EF1 ∪ αF1(VF1) =
(EF ∪ αF (VF )) ∩ E1, which means that F1 is actually an α-tree in G1.
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Furthermore, since G1 is a network graph on H1 it is non-degenerate and hence
f1 is an extremal flow in G1. Finally, since f̄1 and f̃1 are also feasible for G1 and
f = λf̄ + (1− λ)f̃ , we have in particular that f̄1 = f̃1 = f1.

If v∗ is not active in F , then we can apply the same argument to conclude that
f̄2 = f̃2 = f2 and thus f̄ = f̃ = f , a contradiction. Therefore, let us now assume that
v∗ is indeed active in F , which by our assumption implies that αF (v

∗) ∈ E2.
Since F conforms with f , the flow f satisfies either the vertex constraint in v∗ with

equality in the network graph G, w. l. o. g. let the upper bound p+v∗ be binding (the
argument is the same if the lower bound p−v∗ is binding instead). We now have

∑
e∈δout(v∗)∩E2

f̄e −
∑

e∈δin(v∗)∩E2

f̄e ≤ p+v∗ −

 ∑
e∈δout(v∗)∩E1

f̄e −
∑

e∈δin(v∗)∩E1

f̄e

 (2.67)

= p+v∗ −

 ∑
e∈δout(v∗)∩E1

fe −
∑

e∈δin(v∗)∩E1

fe

 (2.68)

=
∑

e∈δout(v∗)∩E2

fe −
∑

e∈δin(v∗)∩E2

fe, (2.69)

where the inequality (2.67) follows from the fact that f̄ is feasible for the network
graph G, the equality (2.68) follows from f1 = f̄1 (which we have proved above)
and the equality (2.69) follows from the fact that f satisfies the vertex constraint
in v∗ with equality. By the same argument,

∑
e∈δout(v∗)∩E2

f̃e −
∑

e∈δin(v∗)∩E2
f̃e ≤∑

e∈δout(v∗)∩E2
fe −

∑
e∈δin(v∗)∩E2

fe which, since f = λf̄ + (1− λ)f̃ , implies that∑
e∈δout(v∗)∩E2

fe −
∑

e∈δin(v∗)∩E2

fe =
∑

e∈δout(v∗)∩E2

f̄e −
∑

e∈δin(v∗)∩E2

f̄e

=
∑

e∈δout(v∗)∩E2

f̃e −
∑

e∈δin(v∗)∩E2

f̃e.

We now consider the network graph G2 defined as follows: We restrict G to the graph
H2 and fix both upper and lower bound of v∗ by

p−v∗ = p+v∗ =
∑

e∈δout(v∗)∩E2

fe −
∑

e∈δin(v∗)∩E2

fe. (2.70)

By our observations above, all of f, f̄ , f̃ are indeed feasible for G2. Furthermore,
the α-forest (EF ∩ E2, {v ∈ VF | αF (v) ∈ E2} is an α-tree in G2 and by (2.70) it
conforms with f . Since G2 as a network graph on H2 is non-degenerate, we have that
f̄2 = f̃2 = f2. In summary, we obtain f̄ = f̃ = f , a contradiction. 2
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s t

Figure 2.16: The diamond graph.

In order to make use of the above lemma, we now prove that network graphs on
certain basic families of graphs are always non-degenerate. We start by considering
network graphs of the extremely basic graph consisting of a single edge.
Lemma 2.44
If G = (V,E, b, p̄, f̄) is a network graph with (V,E) = ({v, w}, {(v, w)}), then G is
non-degenerate.

Proof. Let f ∈ QDC
f (G) be extremal. Then, by Theorem 2.36, there exists an α-tree

in G that conforms with f .
Conversely, let f ∈ QDC

f (G) and let F be an α-tree in G that conforms with f . If f
is not extremal then there exist f ′, f ′′ ∈ QDC

f (G) with f ′
vw < fvw < f ′′

vw. This means
that no vertex or edge constraint can be tight for f and hence F must be empty and
cannot be an α-tree. 2

The next corollary follows immediately from repeated application of Lemma 2.43
and Lemma 2.44, keeping in mind that every tree has a leaf.
Corollary 2.45
If G = (V,E, b, p̄, f̄) is a network graph such that the graph (V,E) is a tree, then G is
non-degenerate.

Next, we consider network graphs for which the underlying graph is an undirected
cycle.
Definition 2.46
Let K4 be the complete undirected graph on 4 vertices. The graph that results from
deleting one edge from K4 is called the diamond graph (see Fig. 2.16). Remember that
a graph G is a subdivision of a graph H, if G can be obtained by adding an arbitrary
number of additional vertices along the edges of H. Furthermore, H is a topological
minor of G if G contains a subdivision of H as a subgraph (see, e. g., [Die17]).
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2.5 The Differential Flow Polytope

An undirected graph G is called cactus if it does not contain the diamond graph as
a topological minor. We say that a directed graph (V,E) is a cactus if the graph that
results from replacing all edges in E by undirected edges (and removing multi-edges if
necessary) is a cactus.

Lemma 2.47
If G = (V,E, b, p̄, f̄) is a network graph such that E is an undirected cycle, then G is
non-degenerate.

Proof. Let f ∈ QDC
f (G) be extremal. Then, by Theorem 2.36, there exists an α-tree

in G that conforms with f .
Conversely, let f ∈ QDC

f (G) and F an α-tree which conforms with f . As all vertices
in G have degree 2, F cannot contain an active vertex with degree ≥ 3. Therefore, by
Theorem 2.42, f is extremal. 2

The above results can be combined to characterize a set of graphs on which network
graphs are guaranteed to be non-degenerate.

The diamond graph (Fig. 2.16) is known in the context of electrical circuits as the
Wheatstone bridge, a device to measure the electrical parameters of a circuit [Whe43].
The structure is characterized by the fact that if a voltage is applied between the
vertices s and t, then the direction of the current between v and w changes in response
to the resistance of the individual branches.

We say that a directed graph is weakly 2-connected if the graph contains at least 3
vertices and remains weakly connected whenever any one if its vertices is removed (see,
e. g., [Die17]). The following equivalent characterization of cacti can be found, e. g., in
[EC88]:
Proposition 2.48
A directed graph G = (V,E) is a cactus if and only if the edges of every induced
subgraph which is weakly 2-connected form a simple undirected cycle. Equivalently, G is
a cactus if and only if no edge e ∈ E appears in more than one simple undirected cycle.

As suggested above, we will now prove that every network graph defined on the
graph (V,E) is guaranteed to be non-degenerate if and only if the graph (V,E) is a
cactus.
Theorem 2.49
A network graph G = (V,E, b, p̄, f̄) is non-degenerate for all choices of b, p̄, f̄ if and
only if (V,E) is a cactus.

Proof. We first prove the “if”-part of the statement by induction over the number
|V | of vertices in V . If |V | = 2, then the statement is true by Lemma 2.44. Suppose
that the statement is true for all graphs with |V | < n and let G = (V,E, b, p̄, f̄) be a
network graph such that the graph (V,E) is a cactus graph with |V | = n.
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Figure 2.17: Given a graph that contains the diamond graph as a topological minor, we select
three sets of edges S, T and W that cover all vertices as shown in the figure.
We can now choose capacities and edge weights in such a way that we obtain
a degenerate network graph: In particular, a solution f conforming with the
α-tree ({v, w}, S ∪ T ∪W ) (shown in bold) need not be extremal.

If (V,E) contains a cut-vertex v∗ such that the subgraph induced by V \{v∗} consists
of two sets of vertices V1 and V2 which are disconnected, then we know by definition
that the subgraphs induced by V1 ∪ {v∗} and V2 ∪ {v∗} are cacti, as well (they cannot
contain a topological minor that the original graph does not contain). Thus, the
statement is true by induction using Lemma 2.43. If on the other hand (V,E) does
not contain such a cut-vertex, then (V,E) is weakly 2-connected. As (V,E) is a cactus,
this means by Proposition 2.48 that E is a simple undirected cycle and the statement
follows immediately from Lemma 2.47.

For the “only-if”-part, assume that (V,E) is not a cactus graph and thus contains
the diamond graph as a topological minor. Let H = (V,E′) denote a minimal subgraph
of (V,E) that still contains the diamond graph as a topological minor. Then, H is a
subdivision of the diamond graph.

Let v, w ∈ V denote the two vertices of degree 3 in H. As H is a subdivision of the
diamond graph, it consists of three vertex-disjoint undirected paths connecting v and
w, at least two of which have length at least 2 (see Fig. 2.16). Choose two such paths
and on each of these, denote the intermediate vertex directly adjacent to v by vs and
vt, respectively. Analogously, denote the intermediate vertex directly adjacent to w by
ws and wt (see Fig. 2.17). Note that it may be the case that vs = ws and/or vt = wt.

Denote by Pvw the undirected path between v and w in H which does not pass
through any of vs, ws, vt, wt. Furthermore, denote by Ps the undirected path between
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vs and ws which does not contain v or w, and by Pt the undirected path between
vt and wt which does not contain v or w. As H is a subgraph of (V,E), the graphs
(V, Pvw), (V, Ps) and (V, Pt) are also subgraphs of (V,E).

We now build three sets of edges W ⊃ Pvw, S ⊃ Ps and T ⊃ Pt such that every
vertex in V is covered by exactly one of the three sets as follows: Let W ⊂ E be the
set of edges of a maximal tree which contains Pvw and does not cover any vertex that
is already covered by Ps or Pt. Analogously, let S be the set of edges of a maximal tree
which contains Ps and does not cover any vertex already covered by W or Pt. Finally,
let T be the set of edges of a maximal tree which contains Pt and does not cover any
vertex already covered by W or S.

To see that every vertex is covered by either W , S or T , assume that a vertex v∗

is not covered. Since (V,E) is weakly connected, there exists an undirected path P
connecting v∗ to v. Let w1 be the first vertex from W , S or T that is encountered on
this path (such a vertex exists since v is covered by W ) and denote its predecessor
on the path by w2 (it might be the case that w2 = v∗). Assume, w. l. o. g., that w1 is
covered by W . Then, as w2 is not covered by W ∪ S ∪ T , the edge connecting w1 and
w2 can be added to W , a contradiction to maximality of W .

We obtain three sets of edges S, T and W that do not contain an undirected cycle.
Furthermore, vs, ws are covered by S, vt, wt are covered by T and v, w are covered by
W . Finally, W ∪S ∪T covers all vertices in G. Now, let Evs, Ews, Evt, Ewt denote the
sets of edges that connect v and w with nodes covered by S and T , respectively. We
set f−

e = f+
e = 0 for all edges e in W ∪ S ∪ T and −f−

e = f+
e = ∞ for all other edges.

Similarly, we set p−v = p+v = p−w = p+w = 0 and −p−v′ = p+v′ = ∞ for all v′ ∈ V \ {v, w}.
Let f ≡ 0 ∈ RE . Then, f is feasible for the resulting network graph and the α-tree
{T ∪W ∪ S, {v, w}} conforms with f .

At the same time, we can choose b such that

∑
e∈Ewt

be∑
e∈Ews

be
=

∑
e∈Evt

be∑
e∈Evs

be
= 1.

Then, with

ϕv′ =


0 if v′ is covered by W

1 if v′ is covered by S

−1 if v′ is covered by T

we claim that ±B>ϕ ∈ QDC
f (G): For every edge e ∈ S∪T∪W , it holds that (B>ϕ)e = 0.

The only other bounds that are not ±∞ (and hence can possibly be active) are the
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vertex constraints in v and w. But there,

(AB>ϕ)v =
∑

v′∈N in(v)∩W

bv′v(ϕv − ϕv′) +
∑

v′∈N in(v)∩T

bv′v(ϕv − ϕv′) +
∑

v′∈N in(v)∩S

bv′v(ϕv − ϕv′)

−
∑

v′∈Nout(v)∩W

bvv′(ϕv′ − ϕv)−
∑

v′∈Nout(v)∩T

bvv′(ϕv′ − ϕv)−
∑

v′∈Nout(v)∩S

bvv′(ϕv′ − ϕv)

=
∑

v′∈N in(v)∩T

bv′v · 1 +
∑

v′∈N in(v)∩S

bv′v · (−1)

−
∑

v′∈Nout(v)∩T

bvv′ · (−1)−
∑

v′∈Nout(v)∩S

bvv′ · 1

=
∑
e∈Evt

be −
∑

e∈Evs

be = 0

and analogously for (AB>ϕ)w. Thus, by Remark 2.37, f = 1/2(B>ϕ+ (−B>ϕ)) is not
extremal, which proves that the network graph (V,E, b, p̄, f̄) is degenerate. 2

The following fact is generally well-known (see, e. g., [BLS99]) and can be seen by
adapting the depth-first search algorithm in a suitable way. It provides us with a
simple algorithm to determine whether non-degenerateness can be guaranteed for a
given graph.

Theorem 2.50
Let G = (V,E) be a graph. It can be decided in linear time whether G is a cactus.

We have already encountered the diamond graph, the forbidden minor which char-
acterizes cacti, in Example 2.32: It was our first example of a network graph that is
degenerate. Interestingly, Theorem 2.49 now shows that this is in fact the characterizing
structure for non-degenerateness, at least from a topological point of view.

Cactus graphs are closely related to several results from the context of electrical
circuits and related areas: They represent exactly those graphs that, if we add a single
edge, remain confluent (or of series parallel type) in the sense of [Duf65] (remember
that a graph is of series parallel type if it can be constructed by iteratively replacing
an edge by two sequential or two parallel edges, starting from a loop). Such networks
are those, for which the equivalent resistance can be computed by iteratively applying
Ohm’s laws for resistors in series and parallel. In this context, it is maybe not surprising
that these networks also encompass most network topologies on which tight convex
relaxations for AC Optimal Power Flow have been found (see Section 2.4), including
so-called radial networks. This provides an alternative perspective also on previous
results about these convex relaxations: The networks in which the AC model makes
the Optimal Power Flow problem (asymptotically) computationally no more complex
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than the DC-OPF are also those in which the structure of the DC-OPF is closest to
the structure of the TR-OPF.

The family of cactus graphs is thus a limited, but well-known family of networks
on which electrical power flows are “well-behaved”. However, network topology is
only one aspect of non-degenerateness, in fact the exact values of the vector b of edge
weights highly matter, as well: The network graph from Example 2.32 is almost always
non-degenerate unless it holds that b14

b13
= b24

b23
. In the theory of electrical circuits, this

case is known as the one where the Wheatstone bridge is balanced.
This implies that we can in fact expect non-degenerateness to hold not only for

the (quite limited) family of network graphs covered by Theorem 2.49. Indeed, all
network graphs are non-degenerate unless the weight vector b is chosen from the union
of finitely many lower-dimensional subspaces of the parameter space (one subspace for
every diamond structure in the network graph). In other words, every network graph
can be made non-degenerate by slightly perturbing the edge weights.

We conclude this section noting that it is NP-complete (see [GJ79]) to determine
whether a given network graph is non-degenerate.

Theorem 2.51
Given a network graph G = (V,E, b, p̄, f̄), it is NP-complete to decide whether G is
α-tree non-degenerate.

Proof. We first settle membership in NP: Suppose that there exists a non-extremal
solution f ∈ QDC

f that conforms with the α-tree F = (EF , VF ). Let P denote the set
of vertices of QDC

f that are contained in the minimal face of QDC
f which contains f

(since f is not extremal, |P | ≥ 2) and let f ′ := 1/|P |
∑

p∈P p. Then, f ′ conforms with
F , as well and is not extremal (since |P | ≥ 2). Given a certificate in the form of P , F
and a corresponding vertex map α : VF → E \EF (which are all polynomial in size),
we can easily check that F is indeed an α-tree, f ′ conforms with F and, as a convex
combination of the points in |P |, is not extremal (if |P | ≥ 2).

To prove the hardness, we provide a reduction from the NP-complete problem
SubsetSum [GJ79]:4 Given a number n ∈ N, sizes αi ∈ N for each i ∈ [n] and β ∈ N,
decide whether there is a subset I ⊂ [n] with

∑
i∈I αi = β.

Let (n, α1, α2, . . . , αn, β) be an instance of SubsetSum. Consider the network graph
depicted in Fig. 2.18 where the shown edge weights denote the edge elasticity b, thickly
dashed edges have a upper capacity bound of 1, p̄v = (−β, β) and p̄w = p̄v1 = · · · =
p̄vn = (0,∞). All other edges and vertices have infinite upper and lower bounds. We
prove that the SubsetSum instance is a yes instance if and only if the network graph
is degenerate.

4Garey and Johnson [GJ79] attribute this to Karp [Kar72], where the problem is not explicitly
mentioned. However, it can easily be reduced from Partition, the hardness of which is indeed proven
in [Kar72].
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Figure 2.18: Solving the well-known NP-complete problem SubsetSum is equivalent to
determining whether the shown network graph (the edge weights represent the
edge elasticity b) is non-degenerate.

Let f be a flow and F = (EF , VF ) an α-tree which conforms with f . Let αF : VF →
E \EF be a vertex map for F . We start by observing that by Theorem 2.42 and since
p̄t = (−∞,∞), f is extremal unless both vertices v, w are active in F . Now, let ϕ be a
potential such that f ±B>ϕ is feasible. By Remark 2.37, this means in particular that
B>ϕ disappears on all inequalities active in F . Without loss of generality, let ϕv := 0.
Since f = 1/2(f +B>ϕ+ f −B>ϕ), it holds that f is extremal if and only if ϕ ≡ 0 is
the only possible solution.

We now show that if for one of the vertices vi, both the vertex and the edge connecting
it to v are active, then f is extremal. As the edge (v, vi) is active, we have that ϕvi = 0.
Similarly, as vi is active, ϕt = 0. We now distinguish two cases:

a) The edge (v, w) is active. In this case, it follows that ϕw = ϕv = 0 and hence
ϕs = 0 by activity of w. As F is an α-tree, for every vertex vj at least one of the
two edges incident with vj must be contained in EF ∪αF (VF ). Since F conforms
with f , we have that for all but one of these, either vj is active or the edge (v, vj)
(the remaining vertex can be connected by v). In both cases, ϕv = ϕt = 0 implies
that ϕvj = 0. For the final vertex vj∗ , the same now follows by activity of v.

b) The edge (v, w) is not active. Note that, as F is an α-tree, |(EF ∪ αF (VF )) ∩
{(s, v), (s, w), (v, w), (w, t)}| = 2 and hence, since s, t /∈ VF , we must have αF (v) ∈
{(s, v), (v, w)}. As above, for every vertex vj at least one of the two edges incident
with vj must be contained in EF ∪αF (VF ). Since F conforms with f and this time
αF (v) ∈ {(s, v), (v, w)}, we have that for all of these, either vj or the edge (v, vj)
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is active. In both cases, ϕv = ϕt = 0 implies that ϕvj = 0. Now, suppose that
ϕw > ϕv. Then, activity of v implies that ϕs < ϕv. At the same time, activity of
w implies (since ϕt = ϕv < ϕw) that ϕs > ϕw, a contradiction. Therefore, ϕ = 0.

We have concluded that ϕ ≡ 0 if for one of the vertices vi, both the vertex and the
edge connecting it to v are active.

If f is not extremal, it must therefore hold that for all vertices vi, only the vertex
itself or the edge connecting it to v can be active. At the same time, as F is an α-tree
it has to hold that |F | = |A|+ 3. This implies that the edge (v, w) is active and for
all vertices vi, exactly one of the two (the vertex itself or the edge connecting it to
v) needs to be active. In this case, ϕv = 0 implies ϕw = 0 (by activity of (v, w)) and
furthermore ϕvj = 0 for all vj for which the edge (v, vj) is active.

Now, suppose that ϕt 6= 0 and assume w. l. o. g. that ϕt > 0. By activity of w, it
follows that ϕs = −ϕt and in particular ϕs 6= 0. At the same time, for all vertices
vj that are active, it follows that ϕvj = 1/2 · ϕt (since bvvj = bvjt). The vector ϕ now
satisfies all constraints that are active in F if and only if the flow balance at v is 0, i. e.,

−ϕs · β = (ϕv − ϕs) · β =
∑

va active in F

(ϕt

2
− ϕv

)
· 2αa = −ϕs ·

∑
va active in F

αa.

Such a selection of active vertices vj hence exists if and only if (n, α1, α2, . . . , αn, β) is
a yes instance of SubsetSum. 2

2.6 Conclusion
We conclude this chapter by a brief summary of the results and an outlook on interesting
research questions that arise in the context of our results.

In Section 2.1, we gave a brief overview of network models used in energy system
optimization. In particular, we presented three loss functions ηAC, ηlog and η2 that
can be seen as good approximations of Ohmic losses incurred on a transmission line
under a given load. We then used one of these loss functions, ηlog, to derive a global
equivalence result for optimal flows under the Transport model and the DC model
(Theorem 2.14). To support the usage of (non-linear) loss functions in the context of LP
based optimization models, we derived a special type of piecewise-linear approximation
that keeps the approximation error constant if we change the capacity of a transmission
line, e. g. in the context of a TCEP (Theorem 2.17).

We then turned our attention to the caveats implied by the rather strong assumptions
on the underlying network structure imposed by Theorem 2.14: We evaluated their
practical effect in three reference networks (Section 2.2.2) and finally focussed on the
structural differences between the sets of TR- and DC-feasible flows. These sets are
almost independent of the loss function used, which implies that the difference between
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them remains, even in a higher-accuracy Transport model which uses the loss function
ηlog.

We derived a number of statements on the relation between the set of TR-feasible
and DC-feasible power injections (projections of the feasible regions of TR-OPF and
DC-OPF where the latter set is contained in the former). Under reasonable assumptions,
both sets share several points on their boundary (Theorem 2.26), despite the fact that
the set of DC-feasible power injections is generally “much smaller” (for a more precise
statement, see Theorem 2.24). On the reverse, we provide some bounds on how much
smaller it can be, depending on the parameters of the network (Theorem 2.27).

Finally, we investigated the differential flow polytope, another projection of the
feasible regions of TR-OPF and DC-OPF (Section 2.5). This polytope bears some
resemblance to well-known network flow polyhedra and we derived a characterization
of their extremal points in terms of so-called α-trees, similar to the characterization of
extremal points in the network flow polyhedron by spanning trees consisting of edges
with non-zero flow.

We prove that our condition is necessary for extremality in all networks (The-
orem 2.36). While it is generally sufficient for almost all choices of the network
parameters, it is sufficient regardless of the choice of network parameters for networks
on a family of graphs known as cacti (Theorem 2.49). Finally, for a given network, it is
generally NP-hard to decide whether our condition is indeed sufficient (Theorem 2.51).

From the perspective of power networks, this theoretical work contributes in two
ways to a better understanding of DC power flows: First, it allows us to translate
the set of active inequalities in a DC-feasible point into a structure on the underlying
network graph that can be interpreted, e. g. in terms of identifying bottlenecks in the
network. Second, it provides us with an alternative perspective on points (obtained,
e. g., as solutions to the Transport model) that are infeasible for the DC model:

The flow values of such a solution typically violate the DC equations (2.44). Starting
from there, it is very difficult to obtain any information about how a similar DC-
feasible flow might look or how production and transmission capacities would have to
be adapted in order to admit a DC-feasible flow at all. On the other hand, starting from
an α-tree, it is easy to obtain a corresponding potential flow that automatically satisfies
the DC equations (2.44), but instead might violate some edge or vertex capacities.
This gives a much better indication as to how capacities can be adapted to achieve
feasibility.

Our results raise a number of questions that we would deem worthy of further
attention in the future:

• Can the relative size of the sets of TR- and DC-feasible power injections be
specified beyond Theorem 2.24 and Theorem 2.27? In particular, can we derive
bounds that take into account the size of the network and/or the values of the
network parameter b?
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• In light of the experimental results from Section 2.2.2, can properties of an
optimal solution to the modified Transport model be used to obtain a bound on
the error value of that solution (without having to compute a solution to the DC
model to compare it against)?

• Combining the two questions above, can we evaluate a solution from the Transport
model in a network that is infeasible for the DC model to provide us with an
useful indication of how much capacities would have to be increased to make the
DC model feasible?

• In light of the hardness result in Theorem 2.51 and our positive results for
networks on cacti, is there a larger family of networks for which we can guarantee
the sufficiency of our characterization of extremal points if we take into account
the edge parameters b?

• As argued above, every α-tree provides us with a potential flow that violates
certain edge and vertex constraints. Starting from a solution to the TR-TCAP,
how can a useful α-tree be extracted such that this violation is in some sense
“small”? Can this be used to obtain a useful upper bound on the cost of an
optimal solution to the DC-TCAP from a solution to the TR-TCAP?

• Can we interpret/reformulate the simplex algorithm for DC-OPF in terms of
α-trees (analogously to the network simplex algorithm)? This might provide us
with a (faster) combinatorial algorithm for DC-OPF as well as more valuable
information if no feasible solution is found (again, with respect to edge and vertex
constraints).
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Benders Decomposition for Energy System
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Large-scale optimization models that try to capture energy systems at a high temporal
and geographical resolution easily reach the limits of what can be handled on a given
computing platform, both with respect to the available memory and computation
time. In this situation, decomposition approaches are a common tool, not just in the
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context of energy system optimization, to improve computational performance. One
such approach, Benders decomposition, has received particularly wide adoption in the
context of energy system optimization (see, e. g., [Lat+03; SF05]) due to the particular
problem structure often encountered in those settings.

In this chapter, we describe the results from our analysis of the Benders decomposition
algorithm. Since these are mostly not restricted to the context of energy system
optimization, we will keep the first part (Sections 3.1 to 3.3) entirely general. In the
second part (Sections 3.4 and 3.5) we apply our results to the context of energy system
optimization and present some computational experiments.

Major parts of Sections 3.1 and 3.2 in this chapter are currently being prepared for
publication as [BS19b].

3.1 Benders Decomposition

Consider a generic optimization problem with two subsets of variables x and y where
x is restricted to lie in some set S ⊂ Rn and x and y are jointly constrained by a set of
m linear constraints. Such a problem can be written in the following form:

min c>x+ d>y

s.t. Hx+Ay ≤ b

x ∈ S ⊂ Rn

y ∈ Rk

(3.1)

The matrix H ∈ Rm×n, sometimes called interaction matrix, captures the influence
of the x-variables on the y-subproblem: For fixed x∗, (3.1) reduces to an ordinary linear
program with constraints Ay ≤ b−Hx∗.

We are interested in cases where the size of the complete problem (3.1) leads to
infeasibly high computation times (or memory demands), but both the problem over S
and the problem resulting from fixing x can separately be solved much more efficiently
due to their special structures. We will later give some examples where this is the case.

To deal with such problems, Benders [Ben62] introduced a method that works
by iterating between these two “easier” problems. In this section, we will present
three alternative perspectives on this approach: We begin by viewing it as a sampling
algorithm before we proceed to the standard view employed, for instance, in the original
paper by Benders [Ben62]. The standard perspective can be viewed as a more algebraic
one, but we subsequently derive the same results in a purely geometric way, which
provides us with new insights which we then use in the remainder of the chapter to
improve state-of-the-art implementations of Benders decomposition.

For a problem of the form (3.1), let the function z : Rn → R ∪ {±∞} represent the
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value of the optimal y-part of the objective function for a given vector x:

z(x) := min
y∈Rk

{
d>y

∣∣∣Ay ≤ b−Hx
}

(3.2)

Note that we follow the common convention that the minimum over an empty set is
∞. Note further that z is convex (see Lemma 3.1) and let us assume for now that the
set {y ∈ Rk | Ay ≤ b −Hx} is non-empty and bounded for all x ∈ Rn, i. e., z(x) ∈ R
for all x ∈ Rn.

As an explicit description of z may be computationally prohibitive to obtain, we
can use a sampling approach to approximate z by a function z̄ that is composed of
subgradients of z (see Definition A.13) in different support points x1, . . . , xN :

z̄(x) := max
i∈[N ]

{z(xi) + (ai)>(x− xi)}

where ai ∈ ∂z(xi) is a subgradient of z in xi. Note that z̄, as a maximum over
linear functions, is a convex piecewise-linear function. Furthermore, since all ai are
subgradients of z, it follows immediately from the definition that z̄(x) ≤ z(x) for all
x ∈ S.

We now assume that an algorithm is available to solve convex piecewise-linear
optimization problems over the set S without any further constraints. The Benders
decomposition algorithm then iteratively refines the above approximation by adding
new support points to z̄. It proceeds by repeatedly solving the master problem

min c>x+ z̄(x)

x ∈ S
(3.3)

to obtain a tentative solution x∗ for the x-variables. Based on this tentative solution,
it then solves the dual of the subproblem

min d>y

s.t. Ay ≤ b−Hx∗

y ∈ Rk

(3.4)

to obtain from an optimal dual solution a new subgradient aN+1 ∈ ∂z(x∗). Then the
function z̄(x) is refined by adding the new support point xN+1 := x∗.

There are several situations where particularly the Linear Program (3.4), which
contains only y as a variable, and its dual are far easier to solve than the original problem
(3.1) and a separation of the problem into a small “complicated” part (the master
problem) and a large “easy” part (the subproblem) may thus present computational
advantages. Two common examples are the following: If the set S is non-convex
then the y-subproblem is “easy” due to its linearity. For instance, Benders had in
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mind the application to mixed-integer problems where the set S is non-convex due to
integrality constraints [Ben62]. Alternatively (or in addition), the matrix A may have
a special structure (e. g. block-diagonal) that makes the y-subproblem “easy” because
it reduces further to a set of smaller problems which can be solved independently once
the x-variables are fixed.

The sampling approach outlined above has two major drawbacks: First, it is not yet
clear that the algorithm terminates after a finite number of iterations. Second, it leaves
open the question of what to do when the subproblem is infeasible in x∗ and we thus
cannot obtain a new subgradient from ∂z(x∗). We will see that linear programming
duality theory can be used to resolve both of these issues.

To this end, we will take a geometric approach using the epigraph of z (see Defini-
tion A.12):

epi(z) =

{
(x, η) ∈ Rn × R

∣∣∣∣∣ ∃y ∈ Rk :
Ay ≤ b−Hx

d>y ≤ η

}
(3.5)

Before we move on, we state some simple observations about epi(z):
Lemma 3.1
Given an optimization problem of the form (3.1), the epigraph epi(z) is closed and
convex.

Proof. First, observe that the set S0 = {x ∈ Rn | z(x) < ∞}, being a projection
of the polyhedron that defines the feasible region of (3.1) without the constraint
x ∈ S, is closed and convex. Furthermore, if z(x∗) = −∞ for some x∗ ∈ Rn, then
z(x) ∈ {±∞} for all x ∈ Rn (since x only affects the right-hand side in (3.2)). In this
case, epi(z) = S0 × R, which is closed and convex.

Otherwise, z(x) > −∞ for all x ∈ Rn. Then, for convexity, let x, x′ ∈ Rn and
x′′ := λx+(1−λx′). If z(x) = ∞ (or z(x′) = ∞), then λz(x)+(1−λ)z(x′) = ∞ = z(x′′).
Otherwise, let y, y′ be corresponding minimizers in (3.2). Then λy+(1−λ)y′ is feasible
for (3.2) with x := x′′ and hence

z(x′′) ≤ d>(λy + (1− λ)y′) = λz(x) + (1− λ)z(x′).

For closedness, let x1, x2, . . . ∈ Rn be a series converging to a point x∗. Then either
limi→∞ z(xi) = z(x∗) < ∞ (since S0 is closed) or limi→∞ z(xi) = ∞. The function z
is thus lower semi-continuous and hence epi(z) is closed (see [Roc70, Theorem 7.1]).2

Note that, in addition, we will generally assume that epi(z) 6= ∅. This is a very weak
technical assumption that always holds if (3.1) is feasible but is actually even weaker
than that, since we do not require that x ∈ S.

The epigraph in (3.5) provides us with an alternative representation of the problem
(3.1), which is captured by the following lemma, originally proved by Benders [Ben62],
which we present in an alternative form using the notation that we have introduced
above and writing epiS(z) := epi(z) ∩ (S × R) (see Definition A.12).
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η

x
S

bd(epi(z))

Figure 3.1: Different epigraphs for the function z. The set S consists of the three distinct
points on the horizontal axis. The entire shaded region makes up epi(z) (which
is always unbounded in the direction of η). On the other hand, epiS(z) consists
of the three rays shown in dark green. Finally, epiconv(S)(z) corresponds to the
darkly shaded region.

Proposition 3.2
Given a problem of the form (3.1), the point (x∗, η∗) minimizes c>x+ η over the set
epiS(z) if and only if there is an optimal solution (x̄, ȳ) to (3.1) with objective value
c>x+ d>y = c>x∗ + η∗.

Proof. If (x̄, ȳ) is a feasible solution to (3.1) and η̄ := d>ȳ then obviously (x̄, η̄) ∈
epiS(z) and c>x̄ + η̄ = c>x̄ + d>ȳ. On the other hand, let (x∗, η∗) be a solution
minimizing c>x+ η over epiS(z), then in particular x∗ ∈ S. Now, by the definition of
epi(z), there exists y∗ ∈ Rk with Ay∗ ≤ b−Hx∗ and d>y∗ = η∗ (as d>y∗ < η∗ would
contradict the optimality of (x∗, η∗)). Hence, (x∗, y∗) is feasible for (3.1) and again
c>x∗ + η∗ = c>x∗ + d>y∗. 2

This suggests the following iterative algorithm to solve the optimization problem (3.1)
to optimality: Start by finding a solution (x, η) ∈ S×R that minimizes c>x+η without
any additional constraints (add a generous lower bound for η to make the problem
bounded). If (x, η) ∈ epi(z), then (x, η) ∈ epiS(z) (since x ∈ S) and the solution is
optimal (we can find y ∈ Rk such that (x, y) is feasible and d>y = η using problem (3.4),

95



Chapter 3 Benders Decomposition for Energy System Optimization

Input: An instance of the generic optimization problem (3.1), a lower bound η̄ for
z(x)

Output: optimal solution (x∗, y∗) to (3.1)
1: set i := 1 and initialize the set epiS(z)(1) := {(x, η) ∈ S × R | η ≥ η̄}
2: solve the problem min{c>x+ η | (x, η) ∈ epiS(z)(1)} to obtain (x(1), η(1))
3: while (x(i), η(i)) /∈ epi(z) do
4: find inequality π>x+π0η ≤ α satisfied by all (x, η) ∈ epi(z) but not by (x(i), η(i))
5: epiS(z)(i+1) := epiS(z)(i) ∩ {(x, η) | π>x+ π0η ≤ α}
6: i := i+ 1
7: solve the problem min{c>x+ η | (x, η) ∈ epiS(z)(i)} to obtain (x(i), η(i))
8: end while
9: set x∗ := x(i)

10: solve problem (3.4) to compute y∗

11: return (x∗, y∗)

Algorithm 1: The Benders decomposition algorithm.

see Proposition 3.2). Otherwise, we add constraints violated by (x, η) but satisfied by
all (x′, η′) ∈ epi(z) and iterate. This approach is captured in Algorithm 1, the classical
Benders decomposition algorithm.

From this perspective, Algorithm 1 is of course just an ordinary cutting plane
algorithm, where the crucial step, the selection of a separating cut, happens in line
4. In the following, we will address this separation subproblem from two different
perspectives: In Section 3.1.1, we present the classical, more algebraic approach to
solving the problem, before employing a more geometric perspective in Section 3.1.2.
Prior to that, we note that Algorithm 1 actually applies to a slightly more general
setting than the one described above, as can easily be seen:

Remark 3.3
Consider the following version of problem (3.1) with a more general objective function:

min f(x) + d>y

s.t. Hx+Ay ≤ b

x ∈ S ⊂ Rn

y ∈ Rk

(3.6)

Given an algorithm that can solve optimization problems over the set S for objective
functions of the form f + z̄ where z̄ is a convex piecewise-linear function, Algorithm 1
can be used to solve problems of the above form. In particular, given an algorithm to
solve convex piecewise-linear optimization problems over S, we can solve problems of
the form (3.6) where f is convex piecewise-linear.
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With the objective function no longer constrained to being linear, the question arises
whether something similar can be accomplished regarding the constraints Hx+Ay ≤ b.
Indeed, Geoffrion [Geo72] has generalized the method to problems where the constraints
linking x- and y-variables are convex, but not necessarily linear. He shows that under
certain conditions, the generalized method converges after finitely many iterations. At
least theoretically, the approach can further be generalized to arbitrary mathematical
programming problems [Wol81], albeit with substantial computational challenges.
More recently, Hooker and Ottosson [HO03] have extended the concept of Benders
decomposition to a framework that may be applied to other problem domains such as
satisfiability problems (see also [Rah+17] for an overview of related literature).

In a separate article, Geoffrion [Geo70] established a classification of different methods
for solving large-scale mathematical programming problems by the methods they use
to represent the problem and then solve it. Benders decomposition is described as an
example for the class of methods that use projection to represent the problem and
outer linearization/relaxation to solve it.

Since the linear setting (3.1) is sufficient for our work, we will focus on this simpler
case. Nevertheless, the perspective that we employ as well as many of the results will
be equally applicable to the more general non-linear setting outlined in Remark 3.3.

3.1.1 Benders Cuts
Algorithm 1 leaves open the procedure to solve the separation subproblem in line 4,
i. e., how to select an inequality which satisfies the specified conditions. Indeed, several
different methods have been proposed in the literature. We begin by reviewing the
approach used in most of the existing work on Benders decomposition.

This approach, which is also used in the original paper by Benders [Ben62], relies on
the following observations about the linear program

max γ>(Hx∗ − b)

s.t. − γ>A = d>

γ ≥ 0,

(3.7)

which is the dual of (3.4). Some version of the following lemma lies at the core of any
textbook description of Benders decomposition:
Lemma 3.4
Let (x∗, η∗) ∈ Rn × R.

a) If the LP (3.4) is unbounded, then the original optimization problem (3.1) is
unbounded.

b) If the LP (3.4) is infeasible and (3.7) is also infeasible, then the original problem
(3.1) is infeasible or unbounded.
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c) If the LP (3.4) is infeasible and (3.7) has an unbounded ray γ (i. e., γ>(Hx∗−b) >
0, γ ≥ 0 and γ>A = 0), then the inequality γ>(Hx − b) ≤ 0 is satisfied by all
(x, η) ∈ epi(z), but violated by (x∗, η∗).

d) If the LP (3.4) is feasible and (3.7) has an optimal solution γ with objective
value η′, then the inequality γ>(Hx− b) ≤ η is satisfied by all (x, η) ∈ epi(z). In
particular, in this case (x∗, η∗) ∈ epi(z) if and only if η∗ ≥ η′.

Proof. Part a) follows immediately from the fact that the LP (3.4) is just (3.1) with
x fixed to x∗. For part b), observe that if (3.7) is infeasible, then it is infeasible for all
values of x∗. The statement then follows from linear duality theory.

In part c), for γ to be a dual unbounded ray, we need to have γ>(Hx∗ − b) > 0
which proves that the inequality γ>(Hx− b) ≤ 0 is indeed violated by (x∗, η∗). This is
true, independently of the value of η∗. On the other hand, for every (x, η) ∈ epi(z), the
problem (3.4) is feasible for x∗ := x and hence the dual is bounded. But this means
that γ cannot be an unbounded ray, which implies that γ>(Hx′ − b) ≤ 0, hence the
inequality is satisfied by any (x, η) ∈ epi(z).

Regarding part d), note that varying x∗ in (3.7) does not modify the feasible region.
Hence, γ is a feasible solution to (3.7) for every x∗ and γ>(Hx∗ − b) is a valid lower
bound for (3.4). In other words, the cut γ>(Hx− b) ≤ η is valid for all (x, η) ∈ epi(z).

For the second part of the statement, (3.7) and thus (3.4) has an optimal solution
with objective value η′, which proves that (x∗, η′) ∈ epi(z). By definition of epi(z), if
η∗ ≥ η′, then (x∗, η∗) ∈ epi(z). On the other hand, since γ>(Hx∗ − b) = η′ is a valid
lower bound for (3.4), η∗ < η′ implies that (x∗, η∗) /∈ epi(z). 2

The inequality obtained from case c) is commonly referred to as a feasibility cut,
that obtained from case d) is called an optimality cut (see, e. g., [VW10]).

Regarding the two major limitations of the sampling approach mentioned above, note
that Lemma 3.4 covers both the case where (3.4) is feasible and where it is infeasible.
Note further that, as the dual feasible region of (3.4) does not depend on x∗, only a
finite number of extremal dual unbounded rays and dual optimal solutions can ever
appear over the course of the algorithm which implies that the algorithm terminates
after a finite number of iterations.

While Lemma 3.4 guarantees that we can always solve the problem from line 4 of
Algorithm 1 by solving the Linear Program (3.4), this is obviously not the only way
and the resulting cut is by no means guaranteed to be the best choice with respect
e. g. to the running time of the algorithm. In particular in the case where the LP
(3.4) is infeasible, an arbitrary dual unbounded ray is chosen, the selection of which
typically depends only on the specific implementation of the LP solver used. In addition,
the normal vector of the cut in this case will always lie in the x-space, providing no
information about the feasible values of η.
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3.1 Benders Decomposition

Against this background, it makes sense to take a unified perspective on feasibility
cuts and optimality cuts. One way to do this (see, e. g., [FSZ10]) is by viewing the
subproblem (3.4) as a pure feasibility problem, represented by the set{

y ∈ Rk

∣∣∣∣∣Ay ≤ b−Hx∗

d>y ≤ η∗

}
. (3.8)

This polyhedron will be empty if and only if (x∗, η∗) /∈ epi(z) (see (3.5)). Similar
to Lemma 3.4 c), we can use a Farkas certificate for emptiness of (3.8) to derive a
valid inequality: The polyhedron (3.8) is empty if and only if there exists a vector
(γ, γ0) ∈ Rm

≥0 × R≥0 such that

γ>(b−Hx∗) + γ0η
∗ < 0 (3.9)

γ>A+ γ0d
> = 0 (3.10)

If such a (γ, γ0) exists, then the inequality γ>(b−Hx)+γ0η ≥ 0 is obviously violated
by the point (x∗, η∗). At the same time, since (3.10) holds independently from (x, η),
the inequality γ>(b−Hx) + γ0η ≥ 0 must be satisfied by any (x, η) ∈ epi(z) since the
corresponding set (3.8) is non-empty by the definition of epi(z) (see (3.5)).

Furthermore, since both (3.9) and (3.10) are homogenous, every valid (γ, γ0) can be
scaled to obtain a valid certificate with γ>(b−Hx∗) + γ0η

∗ = −1. We can thus use
the so-called alternative polyhedron (see, e. g., [FSZ10]) to find a suitable inequality:

Definition 3.5 (Alternative Polyhedron)
Let z be defined as in (3.2) and (x∗, η∗) ∈ Rn×R. The alternative polyhedron P (x∗, η∗)
is given by

P (x∗, η∗) :=
{
γ, γ0 ≥ 0

∣∣∣ γ>A+ γ0d
> = 0, γ>(b−Hx∗) + γ0η

∗ = −1
}
. (3.11)

The set P (x∗, η∗) contains (up to scaling) all valid Farkas certificates satisfying (3.9)
and (3.10). Therefore, P (x∗, η∗) = ∅ if and only if (x∗, η∗) ∈ epi(z). Furthermore,
every point (γ, γ0) ∈ P (x∗, η∗) induces an inequality γ>(Hx − b) − γ0η ≤ 0 that is
valid for epi(z) but violated by (x∗, η∗). This will be proved in detail in Corollary 3.8.

3.1.2 Benders Decomposition as a Cutting Plane Algorithm

In this section, we want to present an alternative perspective on the problem of finding
a violated inequality, starting from the question of characterizing the normal vectors of
such inequalities. Naturally, we will arrive sooner or later at the same set of violated
inequalities that is also induced by (3.11). However, we believe that this perspective
provides a better understanding for possible criteria to select a cut from that set. The
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Chapter 3 Benders Decomposition for Energy System Optimization

approach that we employ is similar in spirit to that used by Cornuéjols and Lemaréchal
[CL06] in their work on the selection of disjunctive cuts.

It should be noted at this point that we are not the the first ones to notice the
similarity between the approaches of Fischetti, Salvagnin, and Zanette [FSZ10] and
Cornuéjols and Lemaréchal [CL06]. Indeed, the authors of [FSZ10] cite explicitly the
work of Cornuéjols and Lemaréchal [CL06], albeit only in a remark about the possibility
to exchange normalization and objective function in optimization problems over the
alternative polyhedron (see Corollary 3.21).

Fischetti, Salvagnin, and Zanette [FSZ10] focus on properties of the alternative
polyhedron, as well as practical considerations about the implementation of Benders
decomposition. They list a number of interesting conclusions from practical experience,
which to our knowledge have not been written down clearly anywhere else and make
the paper a very interesting read. This is even more true for the more extensive
unpublished draft [FSZ09].

However, neither [FSZ09] nor [FSZ10] goes into much detail regarding the exact
relation between the the alternative polyhedron and the reverse polar, which underlies
the approach of Cornuéjols and Lemaréchal [CL06]. This is a main motivation for our
work in this chapter: We will formulate the relation very precisely, which will allow us
to gain some new insights about the selection of Benders cuts which help us to improve
the performance of practical implementations of the algorithm.

Using the notions from convex geometry defined in Appendix A.3, we are interested
in the following: Given an optimization problem of the form (3.1), let the function
z be defined as in (3.2). Now, for a tentative solution (x∗, η∗) ∈ S × R, determine
whether there exists a hyperplane that strongly separates (x∗, η∗) from epi(z). If not,
then (x∗, η∗) ∈ epiS(z) (since epi(z) is a polyhedron) and we have found an optimal
solution. If, on the other hand, a strongly separating hyperplane exists, we want to
find a halfspace that contains epi(z) but does not contain (x∗, η∗). This halfspace is
defined by an inequality valid for epi(z) which is violated by (x∗, η∗).

Indeed, our strongly separating hyperplane yields one such halfspace which does,
however, not support epi(z). Ideally, though, we would prefer a halfspace that supports
epi(z) to avoid the situation where we obtain a halfspace with the same normal vector
again at a later iteration of the algorithm.

Since we are always concerned in this chapter with separating a point x from a convex
set C, we use a special definition of an x-separating halfspace for C (see Definition A.9)
to capture those halfspaces that contain the set C, but do not contain x. On the one
hand, this notion is (intentionally!) weaker than strong separation, since the halfspace
may support C. On the other hand, since x is a singleton, any x-separating halfspace
for C yields a strongly separating hyperplane by shifting its boundary slightly in the
direction of x.

We start by applying the above idea to problems of the form (3.1), characterizing
the set of normal vectors of (x∗, η∗)-separating halfspaces for epi(z):
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3.1 Benders Decomposition

Theorem 3.6
Let z be defined as in (3.2) with epi(z) 6= ∅ and let (x∗, η∗), (π, π0) ∈ Rn × R. The
vector (π, π0) is the normal vector of an (x∗, η∗)-separating halfspace for epi(z) if and
only if π0 ≤ 0 and there exists a vector γ ∈ Rm

≥0 satisfying

(π>, π0)

(
x∗

η∗

)
− γ>b > 0 (3.12)

γ>A− π0d
> = 0 (3.13)

γ>H = π>. (3.14)

Proof. Let hepi(z) be the support function of epi(z) (see Definition A.9). The vector
(π, π0) is the normal vector of an (x∗, η∗)-separating halfspace for epi(z) if and only if

0 < inf
(x,η)∈epi(z)

{
(π>, π0)

((
x∗

η∗

)
−
(
x
η

))}
= (π>, π0)

(
x∗

η∗

)
− hepi(z)(π, π0). (3.15)

By the definition of epi(z) (which is closed and polyhedral) and then by strong LP
duality, we obtain

hepi(z)(π, π0) = max
x∈Rn,y∈Rk

η∈R

{
(π>, π0)

(
x
η

) ∣∣∣∣∣ Ay ≤ b−Hx

d>y ≤ η

}
(3.16)

= min
γ0∈R≥0

γ∈Rm
≥0

γ>b

∣∣∣∣∣∣∣
γ>A+ γ0d

> = 0

γ>H = π>

−γ0 = π0

. (3.17)

Note that in order for the equality −γ0 = π0 to hold and (3.17) to be feasible (and
hence (3.16) to be bounded), we need that π0 ≤ 0. For any γ ≥ 0 satisfying the
conditions (3.12) to (3.14), we thus have γ>b ≥ hepi(z)(π, π0). Inequality (3.12) then
implies that (3.15) is satisfied, which proves the claim. 2

Now that Theorem 3.6 provides us with a complete characterization of possible cut
normals, we can try to choose among them cuts that are good in a certain sense. We
saw in the proof that for any γ satisfying (3.13) and (3.14), γ>b is an upper bound
for the support function hepi(z) of epi(z). This means that once we obtain a certificate
γ to prove that a vector (π, π0) belongs to an (x∗, η∗)-separating halfspace H≤

((π,π0),α)
,

we immediately obtain a corresponding right hand side α := γ>b.
Furthermore, the definition of the support function hepi(z) immediately tells us when

this right-hand side is actually optimal and the resulting halfspace supports epi(z):
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Remark 3.7
Let (x∗, η∗) ∈ Rn × R and let (π, π0) be the normal vector of an (x∗, η∗)-separating
halfspace for epi(z). If γ minimizes γ>b among all possible certificates in Theorem 3.6,
then the halfspace H≤

((π,π0),γ>b)
supports the set epi(z).

This means that, given a suitable normal vector (π, π0) for which an (x∗, η∗)-
separating halfspace exists, we can compute the corresponding supporting inequality
by solving the problem (3.17) or (3.16). We further note that the set defined by
(3.12) to (3.14) is homogenous: If γ is a valid certificate for (π, π0), then λγ is a valid
certificate for λ · (π, π0).

3.1.3 Alternative Polyhedron and Reverse Polar Set
Using Theorem 3.6 and the above observations, we can immediately confirm the validity
of the approach from [FSZ10], which uses the alternative polyhedron from Definition 3.5.
In fact, we can prove even more: While it would be sufficient to be able to obtain an
arbitrary (x∗, η∗)-separating halfspace from the alternative polyhedron whenever (3.8)
is empty, it turns out that the alternative polyhedron P (x∗, η∗) actually completely
characterizes the set of all possible normal vectors of such halfspaces:
Corollary 3.8
The alternative polyhedron (3.11) completely characterizes all normal vectors of (x∗, η∗)-
separating halfspaces for epi(z). In particular:

a) Let (γ, γ0) ∈ P (x∗, η∗). Then γ>Hx − γ0η ≤ γ>b is violated by (x∗, η∗), but
satisfied by all (x, η) ∈ epi(z).

b) Let (π, π0) be the normal vector of an (x∗, η∗)-separating halfspace for epi(z).
Then there exist (γ, γ0) ∈ P (x∗, η∗) and λ ≥ 0 such that (γ>H,−γ0) = λ · (π, π0).

Observe, however, that in contrast to Remark 3.7, Corollary 3.8 does not guarantee
that the cut generated from a point in the alternative polyhedron is supporting: A
given vector (γ, γ0) ∈ P (x∗, η∗) does not necessarily minimize γ>b among all points in
P (x∗, η∗) which lead to the same cut normal. Indeed, as the following example shows,
there are cases where this actually occurs in practice and even a cut generated from an
optimal vertex of the alternative polyhedron may not be supporting.
Example 3.9
Consider the following optimization problem:

min x+ y

y + 2x ≥ 5

y +
x

2
≥ 3

4y + 4x ≥ 14

(3.18)
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Figure 3.2: Constraints and feasible region for the optimization problem from Example 3.9.

The constraints as well as the feasible region are shown in Fig. 3.2. Note that the
third constraint 4y + 4x ≥ 14 is redundant and does not support the feasible region.
Suppose that we want to decompose the problem into its x-part and its y-part. To
obtain the alternative polyhedron for a tentative master solution (x∗, η∗), we rewrite
the subproblem in the way of (3.8) as

y ∈ R

∣∣∣∣∣∣∣∣∣∣∣

−y ≤ −5− (−2x∗)

−y ≤ −3− (−1

2
x∗)

−4y ≤ −14− (−4x∗)

y ≤ η∗


. (3.19)

The alternative polyhedron P (x∗, η∗) is then given by

P (x∗, η∗) :=

γ1
γ2
γ3
γ0

 ≥ 0

∣∣∣∣∣∣∣∣
γ0 − γ1 − γ2 − 4γ3 = 0

γ0η
∗ + γ1(−5 + 2x∗) + γ2

(
−3 +

1

2
x∗
)
+ γ3(−14 + 4x∗) = −1

.
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Assuming that x∗ + 2η∗ 6= 6, we can reformulate the equality constraints to

γ0 = γ1 + γ2 + 4γ3 =
1 + γ1(−2 + 3

2x
∗) + γ3(−2 + 2x∗)

3− 1
2x

∗ − η∗

γ2 =
1 + γ1(−5 + 2x∗ + η∗) + γ3(−14 + 4x∗ + 4η∗)

3− 1
2x

∗ − η∗

As an example, let (x∗, η∗) := (0, 0). We obtain

γ0 =
1− 2γ1 − 2γ3

3

γ2 =
1− 5γ1 − 14γ3

3

We can visualize the two-dimensional alternative polyhedron via its projection into
the γ1-γ3-plane:

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

P2

P3

P1 γ1

γ3

Note that, in order to be consistent with the notation in Definition 3.5, we will write
the components for points in P (x∗, η∗) in the order (γ1, γ2, γ3, γ0). In this notation,
the three extremal points of P (0, 0) are

P1 =

(
1

5
, 0, 0,

1

5

)>

P2 =

(
0,

1

3
, 0,

1

3

)>

P3 =

(
0, 0,

1

14
,
2

7

)>
.

We can see that for each of these points, as shown by Gleeson and Ryan [GR90], the
set of inequalities for which the corresponding dual variable is positive represents a
minimal infeasible subsystem of (3.19). Consequently, each extremal point yields one
of the original inequalities as a cut. This notably includes the redundant inequality
4y + 4x ≥ 14, which does not support the feasible region but is derived from the
extremal point P3 in the alternative polyhedron.
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3.1 Benders Decomposition

One major advantage of the alternative polyhedron as opposed to working directly
with the set (3.12) to (3.14) is that the alternative polyhedron is closed. On the other
hand, it is a set of dual vectors which makes it more difficult to interpret and relate to
properties of the set epiS(z) that we are interested in.

Alternatively, as argued by Cornuéjols and Lemaréchal [CL06], we can obtain a
different closed set from (3.12) to (3.14) by replacing the strict inequality (3.12)
by (π>, π0)(x

∗, η∗)> − γ>b ≥ 1. The resulting set is called the reverse polar set of
epi(z)− (x∗, η∗) as introduced by Balas [Bal79], which is defined as follows:

Definition 3.10
Let C ⊂ Rn be a convex set. The reverse polar set C− ⊂ Rn is defined as

C− :=
{
c ∈ Rn

∣∣∣ c>x ≤ −1 ∀ x ∈ C
}
.

Remark 3.11
The terminology explains itself if we remember that the polar set C◦ ⊂ Rn of a convex
set C ⊂ Rn is defined as

C◦ :=
{
c ∈ Rn

∣∣∣ c>x ≤ 1 ∀ x ∈ C
}
.

Observe furthermore that it holds that C− ⊂ cl(pos(C−)) = cl(pos(C))◦ ⊂ C◦ for all
C ⊂ Rn.

Note that by Definition 3.10, the reverse polar set is given by an intersection of
halfspaces (albeit infinitely many), an H-representation. If C is a polyhedron, it is
actually sufficient to consider those halfspaces that correspond to vertices of C, but
nonetheless an H-representation of C− cannot be efficiently computed in general for
a polyhedron C given in H-representation (since computing all the vertices of C is
NP-hard in general [Kha+08]).

Even without an explicit H-representation of the set epi(z) (which is itself known
to us only by its extended formulation (3.5)), we can use Theorem 3.6 and the fact
that the set defined by (3.12) to (3.14) is homogenous, to easily obtain the following
description of the reverse polar set (epi(z)− (x∗, η∗))−:

Let a problem of the form (3.1) and a point (x∗, η∗) ∈ Rn × R be given. The reverse
polar set of epi(z)− (x∗, η∗) is given by

(epi(z)− (x∗, η∗))− :=(π, π0) ∈ Rn × R≤0

∣∣∣∣∣∣∣∣∣ ∃γ ∈ Rm
≥0 :

(π>, π0)

(
x∗

η∗

)
− γ>b ≥ 1

γ>A− π0d
> = 0

γ>H = π>

. (3.20)
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η

x

(x∗, η∗)

epi(z)

(epi(z)− (x∗, η∗))−

η

x

(x∗, η∗)

epi(z)

(epi(z)− (x∗, η∗))−
Figure 3.3: The reverse polar set (epi(z) − (x∗, η∗))− and the corresponding polar cone

(drawn in a coordinate system with (x∗, η∗) as the origin). It can be seen that
(epi(z)−(x∗, η∗))− is contained in the polar cone pos(epi(z)−(x∗, η∗))◦ (indicated
by the black solid lines) but offers a “richer” boundary from which we can choose
cut normals. Specifically, facets and vertices of (epi(z)− (x∗, η∗))− correspond
to vertices and facets, respectively, of epi(z) that a cut with the corresponding
normal vector can support (see Theorem 3.30).

The reverse polar set thus contains exactly those directions that we obtained as possi-
ble cut normals from Theorem 3.6 (see Fig. 3.3): For every point in (epi(z)− (x∗, η∗))−,
there obviously exists γ ∈ Rm

≥0 such that (3.12) to (3.14) is satisfied. Conversely, any
pair (π, π0) satisfying (3.12) to (3.14) can be scaled by an appropriate positive factor
to obtain a point in (epi(z)− (x∗, η∗))−, scaling the corresponding certificate γ by the
same factor.

We thus have at our disposal two alternative characterizations of the set of possible
normal vectors of (x∗, η∗)-separating halfspaces: The alternative polyhedron and
the reverse polar set. Despite their similarity, subtle differences exist between both
representations that affect their usefulness for the generation of Benders cuts.

Before we proceed, we introduce a variant of the alternative polyhedron, the relaxed
alternative polyhedron, which also appears in [GR90]. We will see that it is equivalent
to the original alternative polyhedron for almost all purposes, but can more easily be
connected to the reverse polar set:

106



3.1 Benders Decomposition

Definition 3.12
Let a problem of the form (3.1) and a point (x∗, η∗) ∈ Rn × R be given. The relaxed
alternative polyhedron P≤(x∗, η∗) is defined as

P≤(x∗, η∗) :=

{
γ, γ0 ≥ 0

∣∣∣∣∣ γ>A+ γ0d
> = 0

γ>(b−Hx∗) + γ0η
∗ ≤ −1

}
. (3.21)

With this definition, the following theorem characterizes the relation between alter-
native polyhedron and reverse polar set.
Theorem 3.13
Let z be defined as in (3.2) and (x∗, η∗) ∈ Rn × R. Then

(epi(z)− (x∗, η∗))− =

(
H> 0
0 −1

)
· P≤(x∗, η∗).

Proof.

(
H> 0
0 −1

)
P≤(x∗, η∗) =

(H>γ,−γ0)

∣∣∣∣∣∣∣
γ, γ0 ≥ 0

γ>A+ γ0d
> = 0

γ>(b−Hx∗) + γ0η
∗ ≤ −1


=

(π, π0) ∈ Rn × R≥0

∣∣∣∣∣∣∣ ∃γ ≥ 0 :

H>γ = π

γ>A− π0d
> = 0

γ>b− π>x∗ − π0η
∗ ≤ −1


= (epi(z)− (x∗, η∗))− 2

We revisit Example 3.9 to illustrate this observation.
Example 3.9 (continued)
In the situation of the optimization problem (3.18), observe that the relaxed alternative
polyhedron P≤(x∗, η∗) is

P≤(x∗, η∗) :=

γ1
γ2
γ3
γ0

 ≥ 0

∣∣∣∣∣∣∣∣
γ0 − γ1 − γ2 − 4γ3 = 0

γ0η
∗ + γ1(−5 + 2x∗) + γ2

(
−3 +

1

2
x∗
)
+ γ3(−14 + 4x∗) ≤ −1


Assuming that x∗ + 2η∗ < 6, we can again reformulate the constraints to

γ0 = γ1 + γ2 + 4γ3 (3.22)

γ2 ≥
1 + γ1(−5 + 2x∗ + η∗) + γ3(−14 + 4x∗ + 4η∗)

3− 1
2x

∗ − η∗
(3.23)
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which, again, for (x∗, η∗) := (0, 0) simplifies to

γ2 ≥
1− 5γ1 − 14γ3

3
(3.24)

The relaxed alternative polyhedron P≤(0, 0) is hence a three-dimensional unbounded
polyhedron with extremal rays pos(0, 1, 0, 1),pos(1, 0, 0, 1),pos(0, 0, 1/4, 1) and with the
original alternative polyhedron P (0, 0) as the only bounded facet. The latter can be
seen as follows: If in any extremal point the inequality (3.24) does not hold with
equality, then at least three of the non-negativity constraints must be tight. By (3.22),
this means that the fourth must be tight, as well, but the resulting point violates
(3.24). Hence, in all vertices of P≤(0, 0), the inequality (3.24) must be tight, which
implies that the relaxed alternative polyhedron P≤(0, 0) has the same extremal points
as P (0, 0). Writing

T :=

(
H> 0
0 −1

)
,

we can use Theorem 3.13 to derive the reverse polar set:

epi(z)− = (epi(z)− (0, 0))− = TP≤(0, 0)

= conv(TP1, TP2, TP3) + pos(T (0, 1, 0, 1), T (1, 0, 0, 1), T (0, 0, 1/4, 1))

= conv
((

−2

5
,−1

5

)
,

(
−1

6
,−1

3

)
,

(
−2

7
,−2

7

))
+ pos

((
−1

2
,−1

)
,
(
− 2,−1

)
,
(
− 1,−1

))
The set epi(z)− is visualized below:
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We can see that the point P3, which lead to the non-supporting cut above, is mapped
to the interior of the reverse polar set and will hence not appear as an extremal solution.

The fact that in our example every vertex of the reverse polar set generates a
supporting cut is no coincidence: Indeed, for every point in the reverse polar set that
is visible from the origin, the right hand side obtained from a valid γ in the definition
(3.20) always yields a supporting cut. For points that are not visible from the origin,
this is not necessarily true, but even there a vector γ that leads to a supporting cut
always exists.

The following theorem provides us with a sufficient criterion for this property. This
criterion will be particularly useful in the context of cut-generating linear programs,
which we will consider in Section 3.1.4 below.

Theorem 3.14
Let (ω, ω0) ∈ Rn × R and let (π, π0) ∈ (epi(z) − (x∗, η∗))− be maximal with respect
to the objective (ω, ω0) with ω>π + ω0π0 < 0. Furthermore, let γ ∈ Rm

≥0 be a valid
certificate for (π, π0) in (3.20). Then the halfspace H≤

((π,π0),γ>b)
supports epi(z).

Proof. By Remark 3.7, the statement is true if γ minimizes γ>b among all possible
certificates for the vector (π, π0) in Theorem 3.6. It is easy to verify that γ is indeed
a valid certificate for (π, π0) in Theorem 3.6. For contradiction, we hence assume
that it does not minimize γ>b. Let γ′ ≥ 0 be an alternative certificate for (π, π0)
with γ′>b < γ>b. Then from (3.12) to (3.14) we obtain that γ′>A − π0d

> = 0 and
γ′>H = π>.

Furthermore,

π>x∗ + π0η
∗ − γ′>b > π>x∗ + π0η

∗ − γ>b ≥ 1.

We can thus scale both (π, π0) and γ′ by an appropriate factor λ ∈ (0, 1) to obtain
that λ · (π, π0) ∈ (epi(z)− (x∗, η∗))− (as certified by the vector λ · γ′ in (3.20)) and

(ω>, ω0)(λ · (π, π0)) = λ ·
(
ω>π + ω0π0

)
︸ ︷︷ ︸

<0

> ω>π + ω0π0,

a contradiction to optimality of (π, π0). 2

In the next section we provide some answers as to when the conditions of the above
theorem can be assumed to hold. Furthermore, we derive a method of using the original
alternative polyhedron while guaranteeing that every cut that is generated corresponds
to an optimal point in the reverse polar set in the sense of Theorem 3.14. In particular,
this means that every cut that is generated will support the set epi(z).
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3.1.4 Cut-Generating Optimization Problems
One way to select a particular cut normal from the reverse polar set or the alternative
polyhedron is by maximizing a linear objective function over these sets. As both the
reverse polar set and the relaxed alternative polyhedron are unbounded, however, there
are objective directions for which no (finite) optimal solution exists. Cornuéjols and
Lemaréchal [CL06, Theorem 2.3] establish the criteria on the objective function for
which optimization problems over the reverse polar set are bounded. We have rephrased
the relevant parts of the theorem according to our terminology below.
Theorem 3.15 (Cornuéjols and Lemaréchal [CL06, Theorem 2.3])
Let (x∗, η∗) /∈ epi(z), (ω, ω0) ∈ Rn × R, and

z∗ := max
{
ω>π + ω0π0

∣∣∣ (π, π0) ∈ (epi(z)− (x∗, η∗))−
}
.

Then

z∗

{
≤ 0 if (ω, ω0) ∈ cl(pos(epi(z)− (x∗, η∗)))

= +∞ otherwise.

Furthermore, if (ω, ω0) ∈ (epi(z)− (x∗, η∗)), then z∗ ≤ −1.

Note in particular that the last part of the above statement implies that z∗ < 0
whenever (ω, ω0) ∈ pos(epi(z)− (x∗, η∗))\{0}, which provides us with a large variety of
objective functions for which ω>γ+ω0γ0 < 0 in the optimal solution. By Theorem 3.14,
this means that the cut which results from maximizing these objectives over the reverse
polar set is guaranteed to be supporting. A similar statement holds with respect to
the relaxed alternative polyhedron:
Lemma 3.16
Let z be defined as in (3.2) and (x∗, η∗) ∈ Rn × R. Then

a) P≤(x∗, η∗) = ∅ if and only if (x∗, η∗) ∈ epi(z)

b) For any c̄ ∈ Rm × R, max{c̄>(γ, γ0) | (γ, γ0) ∈ P≤(x∗, η∗)} ∈ R≤0 ∪ {∞}.

Proof. The first statement follows immediately from the respective property of the
original alternative polyhedron. For the second statement, observe that P≤(x∗, η∗) is
contained in its recession cone, which is given by

P≤(x∗, η∗) ⊂

{
γ, γ0 ≥ 0

∣∣∣∣∣ γ>A+ γ0d
> = 0

γ>(b−Hx∗) + γ0η
∗ ≤ 0

}
=: rec(P≤(x∗, η∗)).

But then

max
{
c̄>(γ, γ0)

∣∣∣ (γ, γ0) ∈ P≤(x∗, η∗)
}
≤ max

{
c̄>(γ, γ0)

∣∣∣ (γ, γ0) ∈ rec(P≤(x∗, η∗))
}
.
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Now, let zc̄ := max{c̄>(γ, γ0) | (γ, γ0) ∈ rec(P≤(x∗, η∗))}. Since rec(P≤(x∗, η∗)) is a
cone, it holds that zc̄ ∈ {0,∞}. In the case of zc̄ = 0, this proves the statement. In
the case of zc̄ = ∞, it follows by definition of the recession cone that max{c̄>(γ, γ0) |
(γ, γ0) ∈ P≤(x∗, η∗)} = ∞, as well, which concludes the proof. 2

Theorem 3.15 and Lemma 3.16 already suggest that optimization problems over the
relaxed alternative polyhedron and the reverse polar set behave very similarly with
respect to existence of finite optima. Indeed, Theorem 3.13 implies a much more precise
relation between optimization problems over both sets.
Theorem 3.17
Let z be defined as in (3.2), (x∗, η∗), (ω, ω0) ∈ Rn × R and

(ω̃, ω̃0)
> := (Hω,−ω0)

>. (3.25)

Then (π, π0) is an optimal solution to the problem

max
{
ω>π + ω0π0

∣∣∣ (π, π0) ∈ (epi(z)− (x∗, η∗))−
}

(3.26)

if and only if there exists γ∗ such that H>γ∗ = π and (γ∗,−π0) is an optimal solution
to the problem

max
{
ω̃>γ + ω̃0γ0

∣∣∣ (γ, γ0) ∈ P≤(x∗, η∗)
}

(3.27)

Furthermore, the objective values of both optimization problems are identical.

Proof. Let (π, π0) be an optimal solution to (3.26). By Theorem 3.13, there exists
a vector γ with H>γ = π such that (γ,−π0) ∈ P≤(x∗, η∗). Suppose that (γ, γ0) is
not optimal for (3.27). Then there exists (γ′, γ′0) ∈ P≤(x∗, η∗) with ω̃>γ′ + ω̃0γ

′
0 >

ω̃>γ + ω̃0(−π0). But again, by Theorem 3.13, (H>γ′,−γ′0) ∈ (epi(z)− (x∗, η∗))− and

ω>(H>γ′) + ω0(−γ′0) = (Hω)>γ′ − ω0γ
′
0 = ω̃>γ′ + ω̃0γ

′
0

> ω̃>γ + ω̃0(−π0) = ω>H>γ − ω0(−π0) = ω>π + ω0π0, (3.28)

a contradiction to optimality of (π, π0).
Similarly, let (γ, γ0) be an optimal solution to (3.27). Let π := H>γ and π0 := −γ0,

then by Theorem 3.13, (π, π0) ∈ (epi(z) − (x∗, η∗))−. Now, suppose that (π, π0) is
not optimal for (3.26). Then there exists (π′, π′

0) ∈ (epi(z) − (x∗, η∗))− with ω>π′ +
ω0π

′
0 > ω>π + ω0π0. By Theorem 3.13, there exists γ′ with H>γ′ = π′ such that

(γ′,−π′
0) ∈ P≤(x∗, η∗). Furthermore,

ω̃>γ′ + ω̃0(−π′
0) = (Hω)>γ′ − ω0(−π′

0) = ω>π′ + ω0π
′
0

> ω>π + ω0π0 = ω>H>γ − ω0γ0 = ω̃>γ + ω̃0γ0, (3.29)

a contradiction to optimality of (γ, γ0). 2
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Depending on the particular application, the structure of the matrix H can vary
in many ways, but in line with our assumption that the master problem should be
significantly smaller than the subproblem, it is reasonable to assume that H has more
rows than columns (as will be the case in our application to energy systems).

In this sense, the relaxed alternative polyhedron can be understood as an extended
formulation for the reverse polar set, which in particular is always polynomial in
size. It allows us to generate Benders cuts from points in the reverse polar set while
algorithmically relying on the relaxed alternative polyhedron, an explicit description of
which is generally trivial to obtain.

This observation establishes an interesting link with [CW18], which deals with
separation problems for which either the set from which we want to separate or the
set of normal vectors and right-hand-sides of separating inequalities is described in an
extended space. Benders decomposition is mentioned as an example of the former and
we will revisit the connection with [CW18] later in the context of our discussion of
facet-defining Benders cuts.

Note that the problem (3.27) is technically more general than (3.26), since there is
no reason a priori to limit ourselves to objective functions of the form (3.25). If we
choose a different objective function, we still obtain a valid cut. However, since there
may be no objective function (ω, ω0) such that the resulting cut normal is optimal
for (3.26), we lose some of the properties associated with optimal solutions from the
reverse polar set.

Indeed, this is the approach that Fischetti, Salvagnin, and Zanette [FSZ10] take:
They use the problem (3.27) with ω̃m = 0 for all m that correspond to rows of zeros in
the interaction matrix H, ω̃m = 1 for all other m and ω̃0 = 1 (or some other manual
scaling factor). In general, there exists no vector (ω, ω0) such that this choice can be
obtained by (3.25).

Before we return to Example 3.9 to illuminate this issue further, we note that
optimization problems over the original and the relaxed alternative polyhedron are
equivalent, provided that the optimization problem over the relaxed alternative polyhe-
dron has a finite non-zero optimum:

Remark 3.18
Let z be defined as in (3.2) and let (x∗, η∗) ∈ Rn × R. Let (ω̃, ω̃0) ∈ Rm × R be such
that max{ω̃>γ + ω̃0γ0 | γ, γ0 ∈ P≤(x∗, η∗)} < 0. Then the sets of optimal solutions for
ω̃>γ + ω̃0γ0 over P≤(x∗, η∗) and P (x∗, η∗) are identical. Furthermore, every vertex of
P≤(x∗, η∗) is also a vertex of P (x∗, η∗).

We now take a closer look at the role of objective functions in the context of
Example 3.9:

Example 3.9 (continued)
In the situation of the optimization problem (3.18), remember that the alternative
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polyhedron P (0, 0) is given by

P (0, 0) :=



γ1
γ2
γ3
γ0

 ≥ 0

∣∣∣∣∣∣∣∣
γ0 − γ1 − γ2 − 4γ3 = 0

γ1 · (−5) + γ2 · (−3) + γ3 · (−14) = −1


with the three extremal points

P1 =

(
1

5
, 0, 0,

1

5

)
P2 =

(
0,

1

3
, 0,

1

3

)
P3 =

(
0, 0,

1

14
,
2

7

)
.

Note that P3 actually minimizes the 1-norm over P (0, 0) and is hence the unique result
of the selection procedure by Fischetti, Salvagnin, and Zanette [FSZ10]. On the other
hand, remember that the point P3, which lead to the non-supporting cut above, is
mapped to the interior of the reverse polar set and will hence never appear as an
extremal solution.

Instead of dealing directly with the reverse polar set, we can, as observed in The-
orem 3.17, almost always achieve the same result by optimizing over the alternative
polyhedron. We only have to make sure that the objective function that we use can
be written in the form (Hω,−ω0)

>. In our example, we obtain the following set of
possible objective functions:

{
(Hω,−ω0)

>
∣∣∣ (ω, ω0) ∈ Rn × R

}
=


 −2

−1/2
−4

 · ω,−ω0

>
∣∣∣∣∣∣∣ ω, ω0 ∈ R


It can be verified using the description of the alternative polyhedron above that

if (ω, ω0) is chosen such that epi(z)− is bounded in its direction, then the point
P3 ∈ P (0, 0) is never optimal with respect to an objective of the form (Hω,−ω0), just
as P̃3 = T · P3, being an internal point of epi(z)−, is never optimal for any linear
objective over the reverse polar set.

One interesting difference between the alternative polyhedron and the reverse polar
set, which can be verified using the above example, is their different behavior with
respect to algebraic operations on the set of inequalities: If, for instance, we scale one
of the inequalities by a positive factor, the reverse polar set remains the same (just as
the feasible region defined by the set of inequalities does not change). The alternative
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polyhedron, on the other hand, is distorted in response to the scaling of the system
of inequalities. If an objective function is used which does not take into account that
scaling, such as the vector of zeros and ones that Fischetti, Salvagnin, and Zanette
[FSZ10] use, then the selected cut might change depending on the scaling factor. This
difference emphasizes the intuition that the reverse polar set captures the geometric
properties of the feasible set as a polytope, whereas the alternative polyhedron, as a
set of Farkas certificates, is based on the algebraic properties of the feasible region as
the solution set of a system of inequalities.

From a practical perspective, the above example shows that if we do not select the
objective function for a problem of the type (3.27) carefully, then the cut generated ac-
cording to Corollary 3.8 from a resulting optimal solution might not even be supporting.
This is avoided by selecting the objective function according to (3.25).

On the other hand, Theorem 3.17 shows that with an appropriate choice of the ob-
jective function, we can solve any cut-generating optimization problem over the reverse
polar set by solving a corresponding problem over the relaxed alternative polyhedron.
In particular this means that we never need to obtain an explicit representation of the
reverse polar set, which might not be readily available. These results are summarized
in the following theorem:
Theorem 3.19
Let z be defined as in (3.2) and let (x∗, η∗), (ω, ω0) ∈ Rn × R. Let (ω̃, ω̃0)

> :=

(Hω,−ω0)
> and let (γ, γ0) ∈ P (x∗, η∗) be maximal with respect to the objective (ω̃, ω̃0)

with ω̃>γ + ω̃0γ0 < 0. Then the inequality γ>Hx− γ0η ≤ γ>b supports epi(z).

Proof. By Remark 3.18, (γ, γ0) maximizes the objective (ω̃, ω̃0) over the set P≤(x∗, η∗),
as well. Using Theorem 3.17, this implies that (π, π0) := (H>γ,−γ0) is an optimal solu-
tion with respect to the objective (ω, ω0) over the set (epi(z)− (x∗, η∗))−. Furthermore,
since both problems have the same objective value, we have that ω>π + ω0π0 < 0.

Since (γ, γ0) ∈ P (x∗, η∗), we have that γ is a valid certificate for the vector (π, π0)
in (3.20). By Theorem 3.14, this implies that the inequality γ>Hx− γ0η ≤ γ>b does
indeed support epi(z). 2

As a consequence of Theorem 3.19, it is sufficient in this context to focus on the
selection of cut normals, since we automatically obtain the corresponding optimal
right-hand side at no additional computational cost.

Finally, to conclude our dictionary of cut-generating optimization problems, we
derive an alternative representation of the optimization problem (3.27) which will turn
out to be much more useful in practice. For instance, the structure of the resulting
problem will be very similar to the original subproblem, which makes it easy to use
existing solution algorithms for the subproblem in a cut-generating program.

Cornuéjols and Lemaréchal [CL06, Theorem 4.2] prove that linear optimization
problems over the reverse polar set can be evaluated in terms of the support function
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of the original set (in our case epi(z) − (x∗, η∗)). This can also be applied to the
alternative polyhedron, as mentioned (without proof) by Fischetti, Salvagnin, and
Zanette [FSZ10]. The following theorem generalizes Cornuéjols and Lemaréchal [CL06,
Theorem 4.2] and makes a similar statement, which is applicable to a wider range of
settings.
Theorem 3.20
Let K ⊂ Rn be a cone and c1, c2 ∈ Rn. Consider the optimization problems

max
{
c>1 x

∣∣∣ x ∈ K, c>2 x = −1
}

(3.30)

and
max

{
c>2 x

∣∣∣ x ∈ K, c>1 x ≥ 1
}
. (3.31)

Then the following hold:

a) If x∗ is an optimal solution for (3.30) with objective value ξ > 0, then 1
ξ · x

∗ is
an optimal solution for (3.31) with objective value −1

ξ < 0.

b) Conversely, if x∗ is an optimal solution for (3.31) with objective value ξ < 0,
then −1

ξ · x
∗ is an optimal solution for (3.30) with objective value −1

ξ > 0.

Proof. For a), let x∗ be an optimal solution of (3.30) with objective value ξ > 0.
Then 1

ξ · x∗ ∈ K and c>1

(
1
ξ · x

∗
)
= 1. Hence the point 1

ξ · x∗ is feasible for (3.31).
Furthermore, its objective value is

c>2

(
1

ξ
· x∗
)

=
1

ξ
· c>2 x∗ = −1

ξ
.

To see that 1
ξ · x∗ is indeed optimal, let x′ be feasible for (3.31). We first claim

that c>2 x
′ < 0: Suppose for contradiction that c>2 x

′ ≥ 0. Choose ε > 0 such that
ε · c>2 x′ < 1. Then, c>2 (x∗ + εx′) = c>2 x

∗ + ε · c>2 x′ =: λ ∈ [−1, 0). But this means that
c>2

−1
λ (x∗ + εx′) = −1 and since x′ ∈ K we furthermore have that −1

λ (x∗ + εx′) ∈ K.
Together, this implies that −1

λ (x∗ + εx′) is feasible for (3.30). But

c>1
−1

λ
(x∗ + εx′) ≥ −1

λ
(c>1 x

∗ + ε) ≥ (c>1 x
∗ + ε) > c>1 x

∗,

a contradiction with the optimality of x∗. This proves that, indeed, c>2 x′ < 0.
Now, suppose that µ := c>2 x

′ > −1
ξ . As we have seen above, µ < 0 and hence

− 1
µ > ξ > 0. Since − 1

µ · x′ ∈ K and c>2

(
− 1

µ · x′
)
= − 1

c>2 x′ · c>2 x′ = −1, the point
− 1

µ · x′ is feasible for (3.30) with objective value

c>1

(
− 1

µ
· x′
)

= − 1

µ
c>1 x

′ ≥ − 1

µ
> ξ = c>1 x

∗,
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again contradicting the optimality of x∗, which proves a).
For b), let x∗ be an optimal solution for (3.31) with objective value ξ < 0. First, note

that c>1 x
∗ = 1: Otherwise, let ε ∈ (0, 1) such that (1− ε) · c>1 x∗ ≥ 1. Then, (1− ε)x∗

is feasible for (3.31) and c>2 (1− ε)x∗ = (1− ε)ξ > ξ, a contradiction with optimality of
x∗.

Now, −1
ξ · x

∗ ∈ K and c>2 (−1
ξ · x

∗) = −1
ξ · c

>
2 x

∗ = −1. Hence, −1
ξ · x

∗ is feasible for
(3.30) and its objective value is

c>1 (−
1

ξ
· x∗) = −1

ξ
· c>1 x∗ = −1

ξ
.

To see that −1
ξ · x

∗ is indeed optimal, suppose that there exists x′ feasible for (3.30)
with µ := c>1 x

′ > c>1 (−1
ξ · x

∗) = −1
ξ > 0. Since 1

µ · x′ ∈ K and c>1 (
1
µ · x′) = 1

µc
>
1 x

′ = 1,
the point 1

µ · x′ is feasible for (3.31) with objective value c>2 (
1
µ · x′) = 1

µc
>
2 x

′ = − 1
µ > ξ,

a contradiction with the optimality of x∗. 2

Choosing c1 := (Hx∗−b,−η∗)>, c2 := (ω̃, ω̃0)
> and K := {(γ, γ0) ≥ 0|γ>A+γ0d

> =
0}, the following corollary immediately follows from part a) of the above theorem:
Corollary 3.21
Let (ω̃, ω̃0) ∈ Rm × R and let (γ∗, γ∗0) denote an optimal solution with value ξ > 0 for
the problem

max
γ,γ0≥0

γ>(Hx∗ − b)− γ0η
∗ (3.32)

γ>A+ γ0d
> = 0 (3.33)

ω̃>γ + ω̃0γ0 = −1. (3.34)

Then 1
ξ · (γ

∗, γ∗0) is an optimal solution with value −1
ξ for the problem

max
{
ω̃>γ + ω̃0γ0

∣∣∣ (γ, γ0) ∈ P≤(x∗, η∗)
}
. (3.35)

The structural similarity of (3.32) to (3.34) to the original problem becomes more
apparent when we consider the dual problem:
Corollary 3.22
Let (ω̃, ω̃0) ∈ Rm × R, let (λ, x, y) be an optimal solution for the problem

min λ (3.36)
Ay ≤ b−Hx∗ − λ · ω̃ (3.37)
d>y ≤ η∗ − ω̃0λ (3.38)

with λ > 0 and denote a corresponding dual solution by (γ, γ0). Then 1
λ(γ, γ0) is an

optimal solution with objective value − 1
λ for

max
{
ω̃>γ + ω̃0γ0

∣∣∣ (γ, γ0) ∈ P≤(x∗, η∗)
}
.
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Note that, together with our observations in the context of Definition 3.5, this means
in particular that

a) whenever (3.36) to (3.38) has objective value 0, then the alternative polyhedron
is empty and (x∗, η∗) ∈ epi(z), and

b) whenever (3.36) to (3.38) is feasible with (finite) objective value greater than 0,
then (3.26) and (3.27) have objective values strictly less than 0, which means
that the requirements e. g. for Theorem 3.14 or Remark 3.18 are satisfied.

Finally, Corollary 3.22 exposes another interesting perspective on the restriction
(ω̃, ω̃0)

> := (Hω,−ω0)
> on the objective function (and hence the relation between

optimization problems over the alternative polyhedron and the reverse polar set):

Remark 3.23
If (ω̃, ω̃0)

> := (Hω,−ω0)
>, then the optimization problem (3.36) to (3.38) becomes

min λ (3.39)
Ay ≤ b−H(x∗ + λ · ω) (3.40)
d>y ≤ η∗ + ω0λ (3.41)

Comparing the two optimization problems, both can be seen as a relaxation of the
feasibility version of the original subproblem (3.8): They allow a solution to violate
certain constraints, possibly (depending on the signs of entries in H and ω) at the cost
of strengthening others. In any case, a feasible solution for (3.8) is feasible for both
problems with objective value 0.

The only difference between the two is how exactly this relaxation is handled: In
(3.36) to (3.38), it works on the level of individual inequalities by relaxing their right-
hand sides, whereas in (3.39) to (3.41) it works on the level of the master solution
(x∗, η∗), allowing us to choose a possibly more advantageous value for the variable x
itself.

Another convenient consequence of the bijection between optimal solutions for (3.32)
to (3.34) and (3.35) as implied by Theorem 3.20 (Corollary 3.21 only states the more
useful direction) is that extremality of optimal solutions is also maintained in both
directions, which will later turn out to be very useful:

Corollary 3.24
Let (ω̃, ω̃0) ∈ Rm × R.

a) If (γ∗, γ0) is an extremal optimal solution with value ξ > 0 for the problem (3.32)
to (3.34), then 1

ξ · (γ
∗, γ0) is an extremal optimal solution with value −1

ξ for the
problem (3.35).
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Input: An instance of the generic optimization problem (3.1), a lower bound η̄ for
z(x)

Output: optimal solution (x, y) to (3.1)
1: set i := 1 and initialize the set epiS(z)(1) := {(x, η) ∈ S × R | η ≥ η̄}
2: solve the problem min{c>x+ η | (x, η) ∈ epiS(z)(1)} to obtain (x(1), η(1))
3: while (x(i), η(i)) /∈ epi(z) do
4: choose a weight vector (ω̃, ω̃0)
5: solve (3.36) to (3.38) with (x∗, η∗) := (x(i), η(i)) to obtain a dual solution (γ, γ0)
6: set epiS(z)(i+1) := epiS(z)(i) ∩ {(x, η) | γ>Hx− γ0η ≤ γ>b}
7: set i := i+ 1
8: solve the problem min{c>x+ η | (x, η) ∈ epiS(z)(i)} to obtain (x(i), η(i))
9: end while

10: set x∗ := x(i)

11: solve problem (3.4) to compute y∗

12: return (x∗, y∗)

Algorithm 2: The improved Benders decomposition algorithm.

b) Conversely, if (γ∗, γ0) is an extremal optimal solution with value ξ < 0 for the
problem (3.35), then −1

ξ · (γ
∗, γ0) is an extremal optimal solution with value −1

ξ
for the problem (3.32) to (3.34).

Based on these observations, we can define the modified Benders decomposition
algorithm using weight vectors (ω̃, ω̃0) as in Algorithm 2. If we choose (ω̃, ω̃0)

> :=
(Hω,−ω0)

> for some (ω, ω0) ∈ Rn × R, then by Theorem 3.17 we can interpret step 5
as an optimization problem over the reverse polar set with objective function (ω, ω0).

3.2 Cut Selection

In the following we will discuss different criteria for the selection of Benders cuts to see
what conclusions can be drawn from our above analysis. Cut selection is one of four
major areas of algorithmic improvements for Benders decomposition that recent work
has focussed on (see the recent and extensive literature review in [Rah+17]).

As we have seen in the previous section, Benders’ decomposition can be viewed
as an instance of a classical cutting plane algorithm (Theorem 3.6). The Benders
subproblem takes the role of the separation problem and the alternative polyhedron
that is commonly used to select a Benders cut is a higher-dimensional representation
(an extended formulation) of the reverse polar set, which characterizes all possible cut
normals (Theorem 3.13). Focussing on cut normals is sufficient, since the corresponding
optimal right-hand side is easy to obtain as shown in Theorem 3.19.
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Finally, Corollary 3.22 and Remark 3.23 show that selecting a cut normal by a linear
objective over the alternative polyhedron or the reverse polar set can be interpreted as
two different relaxations (3.36) to (3.38) and (3.39) to (3.41) of the original Benders
feasibility subproblem (3.8). The former relaxation is more general and coincides with
the latter for a particular selection of the objective function.

A number of selection criteria for Benders cuts have previously been explicitly
proposed in the literature, some of which also arise naturally from our discussion and
analysis of the Benders decomposition algorithm above. We will first present these
criteria in the way they typically appear in the literature and then link them to the
reverse polar set and/or the alternative polyhedron.

3.2.1 Minimal Infeasible Subsystems

The approach to cut selection proposed by Fischetti, Salvagnin, and Zanette [FSZ10]
is based on the premise that “one is interested in detecting a ‘minimal source of
infeasibility’” whenever the feasibility subproblem (3.8) is empty. They hence suggest
to generate Benders cuts based on Farkas certificates that correspond to minimal
infeasible subsystems (MIS) of (3.8). We define this criterion as follows:

Definition 3.25
Let z be defined as in (3.2) and let (π, π0) ∈ Rn × R. We say that (π, π0) satisfies
the MIS criterion if there exists (γ, γ0) ≥ 0 such that π = H>γ, π0 = −γ0 and the
inequalities which correspond the non-zero components of (γ, γ0) form a minimal
infeasible subsystem of (3.8).

Note that we have defined the MIS criterion as a property of a normal vector, rather
than a property of a cut. The reason for this is that, as we have argued above, the cut
normal is the only relevant choice to make, given that the optimal right-hand side for
each cut normal is obvious and can be computed using Theorem 3.19. Accordingly, we
will call any cut with a normal vector that satisfies the MIS criterion a MIS-cut.

Gleeson and Ryan [GR90] show that the set of (γ, γ0) that appear in the above
definition is exactly (up to homogeneity) the set of vertices of the alternative polyhedron:

Theorem 3.26 (Gleeson and Ryan [GR90])
Let (x∗, η∗) ∈ Rn×R. A vector v is a vertex of the relaxed alternative polyhedron (3.21)
if and only if the set of constraints such that the corresponding entries of v are non-zero
forms a minimal infeasible subsystem of (3.8).

This immediately provides a characterization of cut normals which satisfy MIS in
terms of the alternative polyhedron, which is also used in [FSZ10]:
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Corollary 3.27
Let z be defined as in (3.2) and let (x∗, η∗) ∈ Rn × R. The vector (π, π0) satisfies
the MIS criterion if and only if there is an extremal point (γ, γ0) of P (x∗, η∗) with
(π, π0) = (H>γ,−γ0).

Theorem 3.13 allows us to transfer the if -part of this characterization to the reverse
polar set. The only-if -part is generally not true for the reverse polar set, i. e., there
might be minimal infeasible subsystems that do not correspond to vertices of the
reverse polar set (see, e. g., Example 3.9).

Corollary 3.28
Let z be defined as in (3.2) and (x∗, η∗) ∈ Rn × R. If (π, π0) is a vertex of (epi(z)−
(x∗, η∗))−, then it satisfies the criterion MIS.

Fischetti, Salvagnin, and Zanette [FSZ10] empirically study the performance of
MIS-cuts on a set of multi-commodity network design instances. Their results suggest
that MIS-based cut selection outperforms the standard implementation of Benders
decomposition by a factor of at least 2-3. Furthermore, this advantage increases
substantially when focussing on harder instances (e. g. those which could not be solved
by the standard implementation within 10 hours).

3.2.2 Facet-defining Cuts

In cutting plane algorithms for polyhedra, facet-defining cuts are generally considered a
very useful family of cuts. They form the smallest set of inequalities which completely
describe a (full-dimensional) target polyhedron. A cutting-plane algorithm that can
separate distinct facet inequalities in this context is hence guaranteed to terminate
after a finite number of iterations. Also in practical applications, facet cuts have turned
out to be extremely useful, e. g. in the context of branch-and-cut algorithms for integer
programs such as the Traveling Salesman Problem. This is why the description of
facet-defining inequalities has been a large and very active area of research for decades
(see, e. g., [Bal75; NW88; Coo+98; KV08] and, as mentioned before, [CW18]).

Remember that a halfspace H≤
((π,π0),α)

is facet-defining for a set C if C ⊂ H≤
((π,π0),α)

and H=
((π,π0),α)

∩ C contains dim(C) many affinely independent points. Analogously
to the MIS criterion above, we define the Facet criterion for a normal vector in the
context of Benders decomposition as follows:

Definition 3.29
Let z be defined as in (3.2) and (π, π0) ∈ Rn × R \ {0}. We say that (π, π0) satisfies
the Facet criterion if there exists α ∈ R such that H≤

((π,π0),α)
is either facet-defining

for epi(z) or if the corresponding hyperplane H=
((π,π0),α)

contains epi(z).
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Note that, in deviation from the definition of a facet-defining cut, we require that the
halfspace supports at least dim(C) affinely independent points. In other words, in the
case where epi(z) is not full-dimensional, we also allow that the halfspace H≤

((π,π0),α)

supports all of epi(z). In this situation, the comparison of different cut normals is
inherently difficult: If one cuts both support all of epi(z) and another one supports
a facet, which one should be preferred? In this sense, the criterion Facet captures
arguably the strongest statement about a cut in relation to epi(z) that we can make in
a given situation: In no case would we want to select a cut that supports neither a
facet nor the entire set epi(z).

The following result was originally obtained by Balas [Bal98, Theorem 4.5] in his
analysis of disjunctive cuts. It reappears in Cornuéjols and Lemaréchal [CL06, Theorem
6.2] using more familiar notation, but that version contains a minor error in the case
where the set P is sub-dimensional. We therefore re-prove a corrected version of the
important parts of [CL06, Theorem 6.2] below along the lines of their original proof.

Theorem 3.30
Let P ⊂ Rn be a polyhedron, x∗ /∈ P and let

r :=

{
dim(P )− 1, x∗ ∈ aff(P )

dim(P ), x∗ /∈ aff(P ).

Then, there exists an x∗-separating halfspace with normal vector d 6= 0 supporting a
r-dimensional face of P if and only if there exists a vertex d∗ of (P −x∗)−∩ lin(P −x∗)
and λ > 0 such that λd ∈ d∗ + lin(P − x∗)⊥.

Proof. We begin by observing that r + 1 = dim(lin(P − x∗)), regardless of whether
x ∈ aff(P ) or not.

If d supports an r-dimensional face of P , then there exist r + 1 affinely independent
points in P with d>x = hP (d) < d>x∗ (since the halfspace with normal vector d is
x∗-separating). Denote these points by x1, . . . , x(r+1) and let d′ := d

d>x−hP (d)
. Then,

d′ ∈ (P − x∗)− and the inequalities (d′)>(xi − x∗) ≤ −1 constitute a system of r + 1
linearly independent inequalities valid for (P−x∗)−, which are all satisfied with equality
by d′.

Let d∗ denote the orthogonal projection of d′ onto lin(P −x∗). Since (d∗)>x = (d′)>x
for all x ∈ lin(P − x∗), it holds in particular that d∗ ∈ (P − x∗)− and d∗ satisfies with
equality the same set of linearly independent inequalities as d′ above. Furthermore,
since (xi − x∗) ∈ lin(P − x∗) for all i ∈ [r + 1], the point d∗ is indeed a vertex of
(P − x∗)− ∩ lin(P − x∗). With λ := 1

d>x−hP (d)
, this proves the only-if part of the

statement.
For the if part, let d∗ be a vertex of the polyhedron (P − x∗)− ∩ lin(P − x∗) and

λd ∈ d∗ + lin(P − x∗)⊥. Then, by the definition of the reverse polar set there exist
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r + 1 linearly independent points in (P − x∗) such that d∗ satisfies the corresponding
inequalities with equality. Denote these points by x1 − x∗, x2 − x∗, . . . , x(r+1) − x∗.

Then, (λd)>x = (d∗)>x for all x ∈ lin(P − x∗) and therefore λd ∈ (P − x)− and λd
exposes a face of P containing the affinely independent points x1, . . . , x(r+1). The face
is thus r-dimensional and, since λ > 0, it is supported by an x∗-separating halfspace
with normal vector d. 2

Most notably, for the case where P is full-dimensional the above theorem implies
the following:

Corollary 3.31
Let P ⊂ Rn be a polyhedron with dim(P ) = n and x∗ /∈ P . Then there exists an
x∗-separating halfspace with normal vector d supporting a facet of P if and only if there
exists a vertex d∗ of (P − x∗)− and λ ≥ 0 such that λd = d∗.

In this case, every cut generated from a vertex of the reverse polar set defines a facet
of epi(z). If an explicit H-representation of the reverse polar set is available, we can
thus easily obtain a facet-defining cut, e. g. by linear programming.

Note that since P≤(x∗, η∗) is line-free, Theorem 3.13 implies that for every vertex of
the reverse polar set there exists a vertex of the relaxed alternative polyhedron (and
hence of the original alternative polyhedron) that leads to the same cut normal. In
other words, if the normal of an x∗-separating halfspace satisfies the Facet criterion,
then it also satisfies the MIS criterion.

On the other hand, Theorem 3.13 is not sufficient to guarantee that selecting a
vertex of the alternative polyhedron yields a facet-defining cut: As Example 3.9 shows,
even if (γ, γ0) is a vertex of P≤(x∗, η∗), its image under the mapping of Theorem 3.13
need not be a vertex of the reverse polar set. This yields a useful hierarchy of subsets
of the alternative polyhedron according to the properties of the cut normals which
they induce: Any point in the alternative polyhedron can be used to obtain a valid
cut. Any vertex of the alternative polyhedron guarantees that the resulting cut normal
satisfies the criterion MIS. Furthermore, a subset of these vertices consists of exactly
those points that lead to cut normals satisfying the criterion Facet. The latter are
generally a good choice in the context of any cutting plane algorithm and the approach
of selecting MIS-cuts can in this context be viewed as a heuristic method to find
Facet-cuts.

Although cuts satisfying MIS do not in general satisfy Facet, we can obtain
some information on when this is the case in the situation of Theorem 3.17, i. e.,
if the objective function (ω̃, ω̃0) used to select the cut via problem (3.27) satisfies
(ω̃, ω̃0) = (Hω,−ω0) for some valid objective (ω, ω0) for problem (3.26).

In this case it turns out that we actually almost always obtain a Facet-cut. More
precisely, we can prove the following characterization of the relationship between
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extremal points of the alternative polyhedron and cut normals satisfying the criterion
Facet:
Theorem 3.32
Let z be defined as in (3.2) and (x∗, η∗) ∈ Rn × R with (x∗, η∗) /∈ epi(z). Let (ω, ω0) be
such that (3.26) is bounded and (ω̃, ω̃0) := (Hω,−ω0). Then, there exists an optimal
extremal point (γ∗, γ∗0) ∈ P≤(x∗, η∗) with respect to the objective function (ω̃, ω̃0) such
that the resulting cut normal (H>γ∗,−γ∗0) satisfies the criterion Facet.

Proof. First, observe that for any C ⊂ Rn, it holds that lin(C)⊥ is the lineality space
of C− (since c>x∗ = 0 for all c ∈ C if and only if x + λx∗ ∈ C− for all x ∈ C− and
λ ∈ R). In particular, let L := lin(epi(z)− (x∗, η∗)). Then L⊥ is the lineality space of
(epi(z)− (x∗, η∗))−.

Now, since the reverse polar set (epi(z) − (x∗, η∗))− is bounded in the direction
of (ω, ω0), it holds that (ω, ω0)

>(π, π0) = 0 for all (π, π0) ∈ L⊥. The intersection
(epi(z)− (x∗, η∗))− ∩ L thus contains an optimal solution with respect to the objective
(ω, ω0) (take the orthogonal projection of any optimal solution onto L, it has the same
objective value and lies in (epi(z)− (x∗, η∗))− since L⊥ is the lineality space). While
the reverse polar need not be line-free, note that (epi(z) − (x∗, η∗))− ∩ L is indeed
line-free and we can therefore choose (π, π0) to be extremal in (epi(z)− (x∗, η∗))− ∩ L.
By Theorem 3.17, there exists γ′ with H>γ′ = π such that (γ′,−π0) is an optimal
solution to the problem

max
{
ω̃>γ + ω̃0γ0

∣∣∣ (γ, γ0) ∈ P≤(x∗, η∗)
}
. (3.42)

Denote by P ∗ the face of optimal solutions of (3.42) and observe that

(γ′,−π0) ∈ P ∗ ∩ {(γ, γ0) | (H>γ,−γ0)− (π, π0) = 0}
⊂ P ∗ ∩ {(γ, γ0) | (H>γ,−γ0)− (π, π0) ∈ L⊥}.

Let (γ∗, γ∗0) be an extremal point of P ∗ ∩ {(γ, γ0) | (H>γ,−γ0)− (π, π0) ∈ L⊥} (which
exists, since P≤(x∗, η∗) is line-free). Then (γ∗, γ∗0) is obviously optimal for (3.42) and
furthermore (H>γ∗,−γ∗0) = (π, π0) + v with v ∈ L⊥, which means by Theorem 3.30
that it satisfies the criterion Facet. It remains to show that (γ∗, γ∗0) is a vertex of P ∗,
which would imply that it is also a vertex of P≤(x∗, η∗).

To see this, let (γ1, γ10), (γ
2, γ20) ∈ P ∗ such that (γ∗, γ∗0) ∈ relint([(γ1, γ10), (γ2, γ20)]).

However, (π, π0)+v = (H>γ∗,−γ∗0) ∈ relint([(H>γ1,−γ10), (H
>γ2,−γ20)]) and by The-

orem 3.13, [(H>γ1,−γ10), (H
>γ2,−γ20)] ⊂ (epi(z)− (x∗, η∗))−. As (π, π0) is extremal

in (epi(z)− (x∗, η∗))− ∩L, this implies that (H>γ1,−γ10), (H
>γ2,−γ20) ∈ (π, π0) +L⊥

which means that (γ1, γ10), (γ
2, γ20) ∈ P ∗ ∩ {(γ, γ0) | (H>γ,−γ0) − (π, π0) ∈ L⊥}. As

(γ∗, γ∗0) is extremal in P ∗ ∩ {(γ, γ0) | (H>γ,−γ0) − (π, π0) ∈ L⊥}, this implies that
(γ1, γ10) = (γ2, γ20) = (γ∗, γ∗0), which proves extremality of (γ∗, γ∗0) in P ∗. 2
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In particular, the above theorem implies the following: If (γ′, γ′0) ∈ P≤(x∗, η∗) is an
optimal extremal point with respect to the objective function (Hω,−ω0) such that the
resulting cut normal (H>γ′,−γ′0) does not satisfy the criterion Facet, then the optimal
solution for maximizing (Hω,−ω0) over P≤(x∗, η∗) is not unique. Furthermore, by
Theorem 3.17, this implies that the same is true for maximizing the objective (ω, ω0)
over (epi(z)− (x∗, η∗))−.

The implications of the above theorem can be summarized as follows: While any
Facet-cut is also an MIS-cut, the reverse is not always true. However, if we choose
a vector (ω, ω0) and optimize the objective (ω̃, ω̃0) := (Hω,−ω0) over the alternative
polyhedron, then there exists only a sub-dimensional set of choices for the vector (ω, ω0)
for which the resulting cut might not satisfy Facet (those, for which the optimum
over the reverse polar set is non-unique).

This suggests that these cases should be “rare” in practice, especially if we choose (or
perturb) (ω, ω0) randomly from some full-dimensional set. This argument why a cut
obtained for a generic vector (ω, ω0) can be expected to be facet-defining is identical
to the concept of “almost surely” finding facet-defining cuts proposed by Conforti and
Wolsey [CW18] in a more general context.

Looking back at Remark 3.23, this similarity should not come as a surprise: With
(ω, ω0) = (x̄− x∗, η̄ − η∗) for a point (x̄, η̄) ∈ relint epi(z), the resulting cut-generating
LP is almost identical. In fact, the point (x̄, η̄) in this case takes the role of the point
that the origin is relocated into in the approach from [CW18]. Observe, however, that
while Conforti and Wolsey [CW18] require that point to lie in the relative interior of
epi(z), we can actually obtain a cut satisfying the Facet criterion from any (ω, ω0) for
which the optimal objective over the reverse polar is strictly negative. By Theorem 3.15,
one sufficient (but not necessary) criterion for this is to choose (ω, ω0) as above, even
for an arbitrary point (x̄, η̄) ∈ epi(z).

By this observation, our work in particular represent a (slightly more general)
alternative proof for the main result from [CW18]: In fact, Cornuéjols and Lemaréchal
[CL06] already provided a (theoretical) method to generate facet-defining cuts. Using
the alternative polyhedron as a computationally efficient representation of the relevant
geometric object (the reverse polar set), we show that this method can actually be
used in practice. We thus provide an (arguably) simpler proof, avoiding some of the
technicalities of [CW18]. Our approach furthermore connects the result more directly
to previous work on cut selection in Benders decomposition, such as [FSZ10].

Finally, if we want to be sure that a cut computed from the alternative polyhedron
satisfies Facet, then the following observation allows us to iteratively restrict the
optimal set to a singleton, until we obtain a facet-defining cut for sure. Again, this is
only true if (ω̃, ω̃0) := (Hω,−ω0).

To see this, observe that if we choose the objective as described above, then the
optimal face of the alternative polyhedron corresponds to a face of the reverse polar,
as the following lemma shows.
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Lemma 3.33
Let P ⊂ Rm and T ∈ Rn×m. Let c ∈ Rn and c̃ := T>c such that maxx∈P c̃>x =: α < ∞.
Let P ′ := argmax{c̃>x | x ∈ P}. Then T · P ′ is a face of T · P .

Proof. We first observe that for all y ∈ TP and y′ ∈ TP ′, it holds that c>y ≤ c>y′:
By the definition of TP and TP ′, there exist x ∈ P and x′ ∈ P ′ such that y = Tx and
y′ = Tx′. But then c>y = c>Tx = (T>c)>x = c̃>x ≤ c̃>x′ = (T>c)>x′ = c>y′.

Clearly, P ′ ⊂ P and hence TP ′ ⊂ TP . Let therefore F ∗ be the lowest-dimensional
face of TP that contains TP ′ (in the worst case, F ∗ = TP ). We show that F ∗ = TP ′.

First, suppose that c is not orthogonal on F ∗, then c>y = α for all y ∈ T>P ′ but
not for all y ∈ F ∗. As, in addition, c>y ≤ α for all y ∈ T>P , the set F ∗ ∩ {c>y = α}
constitutes a lower-dimensional face of T>P that contains T>P ′, a contradiction.

Hence, c is orthogonal on F ∗. This implies that for every y ∈ F ∗ and x ∈ P ′, there
is x∗ ∈ P with y = Tx∗ and hence c̃>x∗ = c>Tx∗ = c>y = c>Tx = c̃>x where the
second-to-last equality follows from the fact that c̃ is orthogonal on F ∗ and TP ′ ⊂ F ∗.
But this means that x∗ ∈ P ′ and we have that T>P ′ = F ∗. 2

In particular, the above lemma implies that every vertex of T ·P ′ is a vertex of T ·P .
This allows us in principle to determine whether a cut obtained from the alternative
polyhedron is facet-defining and, if not, to lift it to a facet-defining cut: We can
iteratively reduce the dimension of the optimal set while maintaining that its image
under H contains a vertex of the reverse polar set. Once we reach dimension 0, the
remaining point must be a vertex of the reverse polar set, as well.

More formally, let (ω1, ω1
0), (ω

2, ω2
0), . . . , (ω

(n+1), ω
(n+1)
0 ) ∈ Rn+1 be linearly indepen-

dent and hence form a basis of Rn+1. With

T :=

(
H> 0
0 −1

)
,

let P1 := argmax{(T (ω1, ω1
0))

>(γ, γ0) | (γ, γ0) ∈ P≤(x∗, η∗)}. Furthermore, let Pi :=

argmax{(T (ω1, ω1
0))

>(γ, γ0) | (γ, γ0) ∈ Pi−1}. As (ω1, ω1
0), . . . , (ω

(n+1), ω
(n+1)
0 ) are lin-

early independent, we have that dim(Pn) = 0. By iteratively applying Lemma 3.33,
the polyhedron TPn contains a vertex of TP≤(x∗, η∗) = (epi(z)− (x∗, η∗))−, which we
obtain as the unique (optimal) solution.

While theoretically feasible, the above approach will in most cases be very impractical,
because of the large number of iterations necessary to compute a single cut. Furthermore,
the problem that has to be solved becomes more and more cumbersome, the more
objective values have to be fixed.

On the other hand, even a single iteration of the approach outlined above might
be useful, as it dramatically decreases the likelihood of obtaining a cut that does not
satisfy Facet (in the sense of reducing by one the dimension of the linear subspace in
which the objective function has to lie). For this case where only one objective value
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needs to be fixed, the resulting problem is not too different from problem (3.27) and
we can derive a representation similar to (3.36) to (3.38) via theorem Theorem 3.20.

Analogously to Corollary 3.22, we obtain the following version of (3.36) to (3.38)
where the objective value for the original version of (3.36) to (3.38) has been fixed to
the optimal value D.

Theorem 3.34
Let z be defined as in (3.2) and (x∗, η∗) ∈ Rn × R with (x∗, η∗) /∈ epi(z) as well as
(ω̃, ω̃0) ∈ Rm × R. Let (λ∗, σ∗, y∗) be an optimal solution for the problem

min λ

Ay ≤ (b−Hx∗) · (1−Dσ)− σω̃′ − λ · ω̃
d>y ≤ η∗ · (1−Dσ)− σω̃′

0 − ω̃0λ

(3.43)

with λ∗ > 0 and denote the corresponding dual solution by (γ∗, γ∗0). Then 1
λ∗ (γ∗, γ∗0) is

an optimal solution for the problem

max{ω̃>γ + ω̃0γ0 | (γ, γ0) ∈ P≤(x∗, η∗), ω̃′>γ + ω̃′
0γ0 = D}. (3.44)

Proof. The dual LP for (3.43) is

max γ>(Hx∗ − b)− γ0η
∗

γ>A+ γ0d
> = 0

ω̃′>γ + ω̃′
0γ0 = D · (γ>(Hx∗ − b)− γ0η

∗)

ω̃>γ + ω̃0γ0 = −1

γ, γ0 ≤ 0

which, by introducing an additional variable ζ, can be rewritten as

max γ>(Hx∗ − b)− γ0η
∗

γ>A+ γ0d
> = 0

ω̃′>γ + ω̃′
0γ0 −Dζ = 0

γ>(Hx∗ − b)− γ0η
∗ − ζ = 0

ω̃>γ + ω̃0γ0 = −1

γ, γ0 ≤ 0, ζ ∈ R.

By strong duality, the optimal objective of the above problem is λ∗ > 0 and we can
hence use part a) of Theorem 3.20: If (γ∗, γ∗0 , ζ∗) is an optimal solution with objective
value λ∗ > 0 for the above LP, then 1

λ∗ (γ∗, γ∗0 , ζ
∗) is an optimal solution for
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max ω̃>γ + ω̃0γ0

γ>A+ γ0d
> = 0

ω̃′>γ + ω̃′
0γ0 −Dζ = 0

γ>(Hx∗ − b)− γ0η
∗ − ζ = 0

γ>(Hx∗ − b)− γ0η
∗ ≥ 1.

(3.45)

For any feasible solution of (3.45), we have that ζ ≥ 1. But if ζ > 1, then scaling
(γ, γ0, ζ) with a positive factor < 1 yields a better solution, thus for any optimal solution
of (3.45) we have that ζ = 1 and hence 1

λ∗ ζ∗ = 1, which proves the statement. 2

Analogously to our discussion in the context of Remark 3.23, we can interpret (3.43)
as a relaxation of the original feasibility subproblem (3.8): In addition to the relaxation
by the variable λ (which we know from Corollary 3.22), we have added an additional
relaxation that works in a slightly different way: By choosing σ 6= 0, we are allowed
to scale all right hand sides uniformly by a common factor. In contrast to λ, this
relaxation does not directly affect the objective, instead we incur an (additive) penalty
tightening all inequalities in proportion to the values of (ω̃′, ω̃′

0).

3.2.3 Pareto Optimality
The first systematic work on the general selection of Benders cuts to our knowledge
was undertaken by Magnanti and Wong [MW81]. The paper, which has proven very
influential and is still referred to regularly, focusses on the property of Pareto optimality.
It can intuitively be described as follows: A cut is Pareto-optimal if there is no other
cut which is clearly superior, which dominates the first cut.

Magnanti and Wong focus on cuts which are valid for epi(z), i. e., they call a cut
Pareto-optimal if it is not dominated by any other cut valid for epi(z). In this setting,
a cut which does not support epi(z) is obviously dominated. Between supporting cuts,
however there is no general mathematical criterion for domination. If the cut normal
(π, π0) satisfies π0 6= 0, however (this is also the case covered by [MW81]), things
become somewhat easier:
Definition 3.35
For a problem of the form (3.1) with z as defined as in (3.2), let S ⊂ Rn and
epiS(z) := (S×R)∩epi(z). An inequality (π>, π0)(x, η)

> ≤ α with π0 < 0 is dominated
by another inequality (π′>, π′

0)(x, η)
> ≤ α′ if π′

0 < 0 and

π′>x− α′

−π′
0

≥ π>x− α

−π0
for all x ∈ S

with strict inequality for at least one x ∈ S. If π0 < 0 and (π>, π0)(x, η)
> ≤ α is not

dominated by any inequality valid for epi(z), then we call it Pareto-optimal.
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η

S x

epi(z)epiS(z)

Figure 3.4: The dotted cut supports a facet of epi(z) and it supports epiS(z), but it is still
not Pareto-optimal. The solid cut supports a facet of epiS(z) and is hence Pareto-
optimal. The dashed cut is Pareto-optimal even though it does not support a
facet of epi(z) (or epiS(z)). Since the set S is convex, both the solid and the
dashed cut are also strongly Pareto-optimal (Theorem 3.38).

By the above definition, a cut dominates another cut if the minimum value of η that
it enforces is at least as good for all x ∈ S and strictly better for at least one x ∈ S
(see Fig. 3.4).

In the context of Pareto-optimality, the reliance on the set epi(z) outside of its
intersection with S × R seems a little unnatural: Remember that the set S contains
all points x ∈ Rn that are feasible for an optimization problem of the form (3.1) if we
ignore the linear constraints Hx+Ay ≤ b. Since different functions z might therefore
coincide when restricted to the relevant region S (but differ outside of S), we might
intuitively prefer the following, slightly stronger definition of Pareto-optimality:
Definition 3.36
For a problem of the form (3.1) with z as defined as in (3.2), let S ⊂ Rn and
epiS(z) := (S×R)∩ epi(z). If π0 < 0 and (π>, π0)(x, η)

> ≤ α is not dominated by any
inequality valid for epiS(z), then we call it strongly Pareto-optimal.

It is important to note at this point that the concept of (strong) Pareto-optimality
refers to the set S explicitly. This is in contrast to the two previous criteria MIS and
Facet, which were defined with respect to the set epi(z). Depending on the structure
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of the set S, this difference can be quite significant: For instance, a facet-defining cut
for epi(z) does not even need to support epiS(z) (see, e. g., the dotted cut in Fig. 3.5).
On the other hand, it is easy to see that a cut cannot be strongly Pareto-optimal
unless it supports epiS(z). The somewhat weaker condition of Pareto-optimality is less
dependent on the set S, but nonetheless, even if a cut exposes a facet of epi(z) and
supports epiS(z) it might still be Pareto-dominated (cf. Fig. 3.4).

Clearly, since any inequality that is valid for epi(z) is also valid for epiS(z), strong
Pareto-optimality implies Pareto-optimality. The reverse is not true in general and
it will furthermore turn out that while Pareto-optimal cuts are relatively easy to
obtain, strongly Pareto-optimal cuts are not. This motivates the following theorem,
which characterizes an important situation in which any Pareto-optimal cut is strongly
Pareto-optimal.

We use the following separation lemma, which can be found in [Roc70, Theorem
20.2]:

Lemma 3.37 ([Roc70])
Let C ⊂ Rn be a non-empty convex set and K ⊂ Rn a non-empty polyhedron such that
relint(C) ∩K = ∅. Then, there exists a hyperplane separating C and K which does
not contain C.

Theorem 3.38
For a problem of the form (3.1) with z as defined as in (3.2), let S ⊂ Rn be convex and
epiS(z) := (S × R) ∩ epi(z). If the inequality (π>, π0)(x, η)

> ≤ α is Pareto-optimal,
then it is also strongly Pareto-optimal.

Proof. We prove the contrapositive of the above statement: Let (π>, π0)(x, η)
> ≤ α

be an inequality that is not strongly Pareto-optimal. We show that the inequality is not
Pareto-optimal, either. By Definition 3.36, there exists an inequality (π′>, π′

0)(x, η)
> ≤

α′ with π′
0 < 0 which is valid for epiS(z) and dominates (π>, π0)(x, η)

> ≤ α. Let

S∗ := conv
({

(x, η)
∣∣∣ x ∈ S, (π′>, π′

0)(x, η)
> ≥ α′

})
.

Then, since π′
0 < 0, there is ηx ∈ R for any x ∈ S such that (x, η) ∈ S∗ for all η ≤ ηx

and hence

relint(S∗) ⊂ conv
({

(x, η)
∣∣∣ x ∈ S, (π′>, π′

0)(x, η)
> > α′

})
⊂ conv(S × R).

Furthermore, since S is convex,

relint(S∗) ∩ epi(z) = relint(S∗) ∩ conv(S × R) ∩ epi(z)
= relint(S∗) ∩ (S × R) ∩ epi(z) = relint(S∗) ∩ epiS(z).
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As (π′>, π′
0)(x, η)

> ≤ α′ is valid for epiS(z), this implies that relint(S∗) ∩ epi(z) =
∅. Since epi(z) is a polyhedron, we obtain from Lemma 3.37 that there exists a
hyperplane H=

(π∗,π∗
0),α

∗ such that epi(z) ⊂ H≤
(π∗,π∗

0),α
∗ and S∗ ⊂ H≥

(π∗,π∗
0),α

∗ , but not
S∗ ⊂ H=

(π∗,π∗
0),α

∗ .
This implies that the inequality (π∗>, π∗

0)(x, η)
> ≤ α∗ is valid for epi(z). Furthermore,

it holds that π∗
0 ≤ 0: Otherwise, if π∗

0 > 0, then for any (x, η) ∈ epi(z) there would
exist η̄ large enough such that (x, η + η̄) ∈ epi(z) and (π∗>, π∗

0)(x, η + η̄)> > α∗, a
contradiction.

We distinguish two cases. First let us assume that π∗
0 < 0. In this case, we show

that (π∗>, π∗
0)(x, η)

> ≤ α∗ dominates (π>, π0)(x, η)
> ≤ α. To see this, let x ∈ S and

ηx :=
π′>x− α′

−π′
0

.

Then, (x, ηx) ∈ S∗, which implies that (x, ηx) ∈ H≥
(π∗,π∗

0),α
∗ . But this means that

π∗>x+ π∗
0ηx ≥ α∗, which, since π∗

0 < 0, implies that for every x ∈ S,

π∗>x− α∗

−π∗
0

≥ ηx =
π′>x− α′

−π′
0

.

Now, since (π′>, π′
0)(x, η)

> ≤ α′ dominates (π>, π0)(x, η)
> ≤ α, the same is true for

(π∗>, π∗
0)(x, η)

> ≤ α∗.
On the other hand, let π∗

0 = 0. Let ε > 0, π′ := π + επ∗ and α′ := α + εα∗. Since
both the inequalities (π>, π0)(x, η)

> ≤ α and (π∗)>x ≤ α∗ are valid for epi(z) (the
first by assumption, the second by our separation), the same is true for the inequality
(π′>, π0)(x, η)

> ≤ α′.
At the same time, we claim that the inequality (π′>, π0)(x, η)

> ≤ α′ dominates
(π>, π0)(x, η)

> ≤ α: For all x ∈ S, it holds that

π′>x+ α′

−π0
=

π>x+ α

−π0
+ ε · π

∗>x+ α∗

−π0
≥ π>x+ α

−π0
,

where the last inequality follows from our separation. Since S∗ is not contained in
H=

(π∗,π∗
0),α

∗ , there exists x∗ ∈ S with (π∗)>x∗ > α∗, the last inequality is hence strict
for x∗ ∈ S which proves the statement. 2

Note that the requirement for S to be convex is indeed necessary: If, for instance,
S is a discrete set (one of the typical applications of Benders decomposition), then a
Pareto-optimal cut does not need to be strongly Pareto-optimal (see Fig. 3.5).

Analogously to the previous criteria, we define the criterion Pareto for a cut normal
as follows:
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η

S
x

epi(z)

epiS(z)

Figure 3.5: In this example, the set S consists of three discrete points, the set epiS(z) therefore
consists of the three rays shown in dark green. In this case, Theorem 3.38 does
not hold: The solid cut is Pareto-optimal, but it is dominated by the dashed cut,
which is valid for epiS(z), but not epi(z). Hence, the solid cut is not strongly
Pareto-optimal. Furthermore, the dotted cut supports a facet of epi(z), but does
not support it anywhere in S (and actually not even in conv(S)).

Definition 3.39
For a problem of the form (3.1) with z as defined as in (3.2), let (π, π0) ∈ Rn × R. We
say that (π, π0) satisfies the criterion Pareto if there exists a scalar α ∈ R such that
the inequality (π>, π0)(x, η)

> ≤ α is Pareto-optimal.

This criterion seems very reasonable: If a cut is not Pareto-optimal, then it can be
replaced by a different cut which is also valid for epi(z) but leads to a strictly tighter
relaxation. We would hence prefer to generate a stronger, Pareto-optimal cut right
away.

The following theorem provides us with a characterization of Pareto-optimal cuts. It
is based on the idea of [MW81, Theorem 1], which is formulated under the assumption
that the subproblem is always feasible (which implies that π0 < 0 for any cut normal
(π, π0)). While the original theorem is only concerned with sufficiency, we extend the
result in a natural way to obtain a criterion that gives a complete characterization of
Pareto-optimal cuts:
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Theorem 3.40
For a problem of the form (3.1), let (π, π0) ∈ Rn × R with π0 < 0. The inequality
(π>, π0)(x, η)

> ≤ α is Pareto-optimal if and only if H≤
((π,π0),α)

is a halfspace supporting
epi(z) in a point (x∗, η∗) ∈ epi(z) ∩ relint(conv(S))× R.

Proof. For the if part, suppose for contradiction that the inequality (π>, π0)(x, η)
> ≤

α is not Pareto-optimal, i. e. there exists some π′, π′
0, α

′ such that the inequality
(π′>, π′

0)(x, η)
> ≤ α′ dominates the former inequality. This means that for all x ∈ S

(and hence all x ∈ conv(S)), it holds that

π′>x− α′

−π′
0

≥ π>x− α

−π0
(3.46)

and furthermore
π′>x̄− α′

−π′
0

>
π>x̄− α

−π0
for some x̄ ∈ S.

Finally, since H≤
((π,π0),α)

supports epi(z) in (x∗, η∗),

π′>x∗ − α′

−π′
0

≤ η∗ =
π>x− α

−π0
≤ π′>x∗ − α′

−π′
0

and hence equality must hold everywhere in the above inequality chain. Now, as
x∗ ∈ relint(conv(S)), we can choose λ > 1 such that x̃ := x̄ + λ(x∗ − x̄) ∈ conv(S).
But then

π′>x̃− α′

−π′
0

= (1− λ)︸ ︷︷ ︸
<0

π′>x̄− α′

−π′
0︸ ︷︷ ︸

>π>x̄−α
−π0

+λ
π′>x∗ − α′

−π′
0︸ ︷︷ ︸

=π>x̄−α
−π0

<
π>x̃− α

−π0
,

contradicting (3.46).
For the only-if part, we first note that if H≤

((π,π0),α)
does not support epi(z), then

it is obviously dominated by H≤
((π,π0),α′) with α′ := α′ + ε for some ε > 0. Therefore,

let H≤
((π,π0),α)

be such that it supports epi(z), but not in points from the set epi(z) ∩
relint(conv(S)) × R. Denote by S∗ := {x ∈ Rn | ∃η : (x, η) ∈ epi(z) ∩H=

((π,π0),α)
} the

set of points where H≤
((π,π0),α)

supports epi(z).
Since relint(conv(S)) ∩ S∗ = ∅, we can use Lemma 3.37 to obtain a hyperplane

separating conv(S) and S∗ which does not contain S. Hence, there exist π∗, α∗ such
that π∗>x ≥ α∗ for all x ∈ S∗ and π∗>x ≤ α∗ for all x ∈ conv(S), where the second
inequality is strict for some x ∈ conv(S) and thus also for some x∗ ∈ S.
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Let ε > 0, π′ := π − επ∗ and α′ := α − εα∗. If ε is sufficiently small, then the
inequality (π′>, π0)(x, η)

> ≤ α′ is valid for epi(z): All (x, η) ∈ epi(z) with x /∈ S∗

satisfied the original inequality strictly and for all x ∈ S∗,

(π′>, π0)(x, η)
> − α′ = (π>, π0)(x, η)

> − α− ε (π∗>x− α∗︸ ︷︷ ︸
≥0

)

≤ (π>, π0)(x, η)
> − α ≤ 0,

since the original inequality was valid for epi(z).
Finally, we claim that the inequality (π>, π0)(x, η)

> ≤ α is dominated by the
inequality (π′>, π0)(x, η)

> ≤ α′: For all x ∈ S, it holds that

π′>x− α′

−π0
=

π>x− α

−π0
+ ε · π

∗>x− α∗

−π0
≥ π>x− α

−π0
.

Since the last inequality is strict for x∗ ∈ S, this proves the statement. 2

For the case where S is convex, the previous theorem immediately implies the
following statement (remember that epiS(z) := (S × R) ∩ epi(z)):

Corollary 3.41
In particular, by the above theorem, if S is convex and H≤

((π,π0),α)
supports a facet

of epiS(z), then (π>, π0)(x, η)
> ≤ α is Pareto-optimal (and hence strongly Pareto-

optimal).

Magnanti and Wong [MW81] also provide an algorithm that computes a Pareto-
optimal cut by solving the cut-generating problem twice. While their algorithm is
defined for the original Benders optimality cut (Lemma 3.4 d)), it can be adapted to
work with other cut selection criteria, as well. Sherali and Lunday [SL13] present a
method based on multi-objective optimization to obtain a cut that satisfies a weaker
version of Pareto-optimality by solving only a single instance of the cut-generating LP.

Papadakos [Pap08] notes that, given a point in the relative interior of conv(S), a
Pareto-optimal cut can be generated using a single run of the cut-generating problem.
Also, under certain conditions on the problem, other points not in the relative interior
allow this, as well. However, the approach suggested by the authors adds Pareto-
optimal cuts independently from master- or subproblem solutions, together with
subproblem-generated cuts, which are generally not Pareto-optimal. This means that
the Pareto-optimal cuts which are added may not even cut off the current tentative
solution. The upcoming Theorem 3.43 will lead to an approach that reconciles both
objectives, generating cuts that are always Pareto-optimal, but also cut off the current
tentative solution.
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We use a result by Cornuéjols and Lemaréchal [CL06] on the set of points exposed by
a cut normal (π, π0) to derive a method that always obtains a Pareto-optimal cut. The
following lemma has been slightly generalized and rewritten to match our setting and
notation, but it follows the general idea of Cornuéjols and Lemaréchal [CL06, Theorem
3.4].

Lemma 3.42
Let (x∗, η∗) ∈ Rn × R \ epi(z), (ω, ω0) ∈ pos(epi(z)− (x∗, η∗)) \ {0} and let (π, π0) be
optimal in (epi(z)− (x∗, η∗))− with respect to the objective (ω, ω0). Then there exists
α ∈ R such that H≤

((π,π0),α)
supports epi(z) in

(x̄, η̄) :=
(ω, ω0)

−hQ(ω, ω0)
+ (x∗, η∗),

where Q := (epi(z)− (x∗, η∗))−.

The case of (ω, ω0) ∈ (epi(z)− (x∗, η∗)) was proven by Cornuéjols and Lemaréchal
[CL06, Theorem 3.4]. If (ω, ω0) ∈ pos(epi(z) − (x∗, η∗)) \ {0}, then there is µ > 0
such that µ · (ω, ω0) ∈ (epi(z)− (x∗, η∗)). Note that if (π, π0) is optimal with respect
to (ω, ω0), then also with respect to µ · (ω, ω0). We thus have by Cornuéjols and
Lemaréchal [CL06, Theorem 3.4] that there exists α ∈ R such that H≤

(π,π0),α
supports

epiS(z) in

(x̄, η̄) :=
µ · (ω, ω0)

−hQ(µω, µω0)
+ (x∗, η∗) =

(ω, ω0)

−hQ(ω, ω0)
+ (x∗, η∗).

We can now prove the theorem already mentioned above.
Theorem 3.43
Let (x∗, η∗) ∈ S × R and (ω, ω0) ∈ relint(conv(epiS(z) − (x∗, η∗))). Let (π, π0) be
optimal in (epi(z)− (x∗, η∗))− with respect to the objective (ω, ω0) and let π0 < 0. Then
(π, π0) satisfies the criterion Pareto.

Proof. Again, let Q := (epi(z) − (x∗, η∗))− and let λ := −(hQ(ω, ω0))
−1. Observe

that (ω, ω0) ∈ epiS(z)− (x∗, η∗) and therefore, by the definition of the reverse polar
set, hQ(ω, ω0) ≤ −1 and thus λ ∈ (0, 1].

Note that, in particular, (ω, ω0) ∈ pos(epi(z) − (x∗, η∗)) \ {0}. For (x̄, η̄) from
Lemma 3.42, we thus obtain that (x̄, η̄) = λ ((ω, ω0) + (x∗, η∗))+(1−λ)(x∗, η∗) is a con-
vex combination of a point (ω, ω0)+(x∗, η∗) ∈ relint(conv(epiS(z))) ⊂ relint(conv(S))×
R and (x∗, η∗) ∈ S × R. Since λ > 0, it holds that x̄ ∈ relint(conv(S)) and thus by
Theorem 3.40 the cut defined by (π, π0) is Pareto-optimal. 2

Note that the above theorem holds for all optimal solutions (and not only for extremal
optimal solutions). As we know from Theorem 3.17, optimality with respect to (ω, ω0)
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over the reverse polar set is equivalent to optimality with respect to (Hω,−ω0) over
the alternative polyhedron and hence Theorem 3.43 can be used with the (relaxed)
alternative polyhedron, as well.

To conclude this section on Pareto-optimality, we would like to point out two
observations concerning our results in relation to [Pap08]:

First, Theorem 3.43 requires, again, a relative interior point of conv(epiS(z)−(x∗, η∗)),
just as the original approach by Magnanti and Wong [MW81] required a relative interior
point of S. Naturally, since conv(epiS(z)− (x∗, η∗)) is a convex set, it holds that any
convex combination of a relative interior point and any other point contained in the set
again yields a relative interior point. This statement is analogous to [Pap08, Theorem
8] and allows us to use an iterative update procedure for the point (ω, ω0) similar to
the procedure used in the computational experiments in [Pap08]. Furthermore, as we
have mentioned above, any Pareto-optimal cut generated using Theorem 3.43 takes
into account the current tentative solution (x∗, η∗), which makes sure that this solution
is indeed cut off (which is not guaranteed for an arbitrary Pareto-optimal cut) and also
refines the approximation of epi(z) in the proximity of the (infeasible) solution that
yields the current lower bound.

Secondly, as Papadakos [Pap08] observed, supporting epi(z) in a relative interior point
of conv(S) is sufficient, but not necessary to obtain a Pareto-optimal cut. Papadakos
calls a point x a Magnanti-Wong point, if every cut that supports epi(z) in x is Pareto-
optimal and they provide some additional criteria for when a point is a Magnanti-Wong
point. In the context of the above theorem, this observation means that we obtain a
Pareto-optimal cut whenever the point x̄ in the proof of Theorem 3.43 is a Magnanti-
Wong point. For instance, since the convex hull of a Magnanti-Wong point and the
relative interior of conv(S) consists of Magnanti-Wong points itself ([Pap08, Theorem
8]), it is quite common that parts of the relative boundary of conv(S) consist of
Magnanti-Wong points. If this is true for the entire relative boundary, then any
(ω, ω0) ∈ conv(epiS(z)− (x∗, η∗)) yields a Pareto-optimal cut.

3.2.4 Summary

In this section, we have presented three different cut selection criteria from the literature.
We have compared them to each other and discussed the problem of selecting a cut that
satisfies each of the different criteria. The relationship between the different criteria
can be summarized as follows:

As observed by Fischetti, Salvagnin, and Zanette [FSZ10], every cut derived from an
extremal point of the alternative polyhedron corresponds to some minimal infeasible
subsystem of the system (3.8) of linear inequalities (Corollary 3.27). Some of these
extremal points correspond to extremal points of the reverse polar set, these are
of particular interest because they lead to cuts that define facets of the set epi(z)
(Corollary 3.31). While there is no easy way to guarantee that an extremal point of

135



Chapter 3 Benders Decomposition for Energy System Optimization

Table 3.1: Guaranteed properties of the cut resulting from an extremal point in the alternative
polyhedron which maximizes (ω̃, ω̃0) (under the assumption that a finite optimum
exists). The checkmark in parentheses (3) indicates that the property is almost
always satisfied.

(ω̃, ω̃0) MIS Facet Pareto
(ω̃, ω̃0) ∈ Rm+1 3 7 7

(ω̃, ω̃0) ∈ (H,−1) · Rn+1 3 (3) 7

(ω̃, ω̃0) ∈ (H,−1) · relint(conv(epiS(z)− (x∗, η∗))) 3 (3) 3

the reverse polar set is selected as the optimum according to some linear objective
over the alternative polyhedron, we can choose the objective in such a way that there
always exists such a point and it is selected by almost all objective functions in the
sense that the set of objective vectors (ω̃, ω̃0) that select no such point is of lower
dimension (Theorem 3.32). In principle, we can also guarantee that we obtain an
facet-defining cut by successively solving n different linear programs (Lemma 3.33).
While this is interesting theoretically, we can think of no application where the result
would justify the enormous amount of computational effort that this requires, instead
we will generally be content with the high likelihood to obtain a facet-defining cut or
solve the subproblem one more time to further increase the probability (Theorem 3.34).
Finally, if the cut supports epi(z) in a relative interior point of conv(S) (which we
can guarantee via the objective function, see Theorem 3.43), then it is furthermore
Pareto-optimal (Theorem 3.40).

A summary of the results above is given in Table 3.1. We say that a criterion is
almost always satisfied, if the set of objective vectors (ω̃, ω̃0) for which it is violated is
of lower dimension than the specified domain.

Beyond the three criteria Facet, MIS and Pareto mentioned above, other criteria
for the selection of Benders cuts have been proposed in the literature. Most notably,
Saharidis, Minoux, and Ierapetritou suggest to generate cuts which include those master
variables that are not covered by previously generated cuts (e. g., [SMI10; Aza+13;
TJS13]). As a criterion about the relation between different cuts rather than selection
criteria for individual cuts, this approach cannot easily be compared to the criteria
above and may in fact even be used alongside those criteria (e. g. requiring every
cut from a covering cut approach to be facet-defining). The performance of such an
approach might be an interesting topic for further research.

Another very natural selection criterion is the depth of a cut (its violation by the
current solution (x∗, η∗)). Cornuéjols and Lemaréchal [CL06] prove that the deepest
cut (according to the Euclidean norm) is always that obtained from optimizing over
the reverse polar set in the direction given by the orthogonal projection of the current
solution onto the target polyhedron. They also mention personal communication with
Pierre Bonami about the (euclidean) depth of cuts in the context of lift-and-project.
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Bonami compared two selection criteria for cuts, where the one that led to deeper cuts
than the other also slightly improved the effectiveness of the cutting process. This may
be seen as giving at least some indication towards the effectiveness of deep cuts.

Finally, we want to note that Benders Decomposition shares a number of properties
with the setting of disjunctive programming (see [Bal79]), both with respect to the
problem classes to which it can be applied and to the solution technique itself: In both
cases, we want to optimize over a set that is known to be convex, even polyhedral, but
no explicit representation of the set is available or can be computed with reasonable
effort. However, given a point (that represents a tentative optimal solution), the
separation problem for this point and the target set can be solved easily and the
obtained cutting planes have a number of useful properties (e. g. they can be chosen to
always support the target set).

Consequently, many elements of the theory developed by Balas and others (e. g.,
[Bal79; Bal98; CL06]) in the context of disjunctive programming can be applied
to Benders decomposition. One important example is the characterization from
[Bal98] (subsequently rephrased by Cornuéjols and Lemaréchal [CL06]) of facet-defining
inequalities in terms of the reverse polar set, which corresponds to our Theorem 3.30.
Analogously to the situation in the case of Benders decomposition, the reverse polar
set is most conveniently available as the projection of a higher-dimensional set which
includes the dual variables of the subproblem.

We have mentioned previously that the convenient representation of the reverse polar
set using dual variables comes with the caveat that additional vertices may appear as
basic optimal solutions. These do not necessarily correspond to vertices of the reverse
polar set and hence do not lead to facet-defining inequalities. The same is true in
the case of disjunctive programming. The “good” optimal solutions (those which lead
to facet-defining inequalities) are termed regular optimal solutions in Balas [Bal98].
However, the algorithmic problem of selecting these solutions is not treated in the cited
paper.

3.3 Special Problem Structures

Before we turn to the application of our results to problems from the context of energy
network optimization, we briefly discuss the implications of structural properties of a
problem description like the one given in (3.1). We will first consider the case where the
set S is polyhedral and we may hence choose to integrate the description of S directly
into the subproblem. Secondly, if the matrix A is block-diagonal then the subproblem
can be divided into several problems that can be solved independently. We discuss
the implications and the tradeoffs that result from different possible choices regarding
the aggregation of subproblems. Finally, we mention a modeling technique that is
occasionally used to simplify the implementation of subproblem and cut generation. It
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turns out that this technique has the useful side effect that the condition (3.25) is very
easy to satisfy, albeit at the cost of a slightly larger description of the subproblem.

3.3.1 Polyhedral S
In this section, we consider the special case of problems of the form (3.1) where the set
S, which restricts the x-variables independently from the y-variables, is a polyhedron
for which an explicit H-representation is available. At first sight, one might think that
this would allow us to select stronger cuts. Looking at Fig. 3.6, we see that there
are indeed certain cuts that separate (x∗, η∗) from epiS(z) which would violate epi(z).
However, it will turn out that these additional cuts are of no use practically (and
against this background, we avoid overloading this section with too much formalism
and focus on conveying only the general ideas).

Indeed, the best cuts according to our criteria when separating from epiS(z) are also
among the best when separating from epi(z). The increased set of possible cut normals
instead leads to the cut selection problem for epiS(z) being unbounded in some cases
where the problem for epi(z) would be finite. Furthermore, once we apply our selection
criteria, we actually have more potential cuts to choose from when separating from
epi(z) than when separating from epiS(z): The corresponding reverse polar set has
more vertices. These additional cuts however are not Pareto-optimal and we can avoid
selecting them by using a suitable objective.

In the setting mentioned above where S is a polyhedron, we can define a variant of
the function z from (3.2) as follows:

zS(x) := min
y∈Rk

{
d>y

∣∣∣Ay ≤ b−Hx, x ∈ S
}

This corresponds to setting z(x) to +∞ whenever x /∈ S. As S is a polyhedron for
which an explicit H-representation is available, the set

epi(zS) = epi(z) ∩ (S × R)

is no more difficult to deal with than the original set epi(z) and all statements made
above about epi(z) also hold for epi(zS).

In addition, we have epi(zS) = epiS(z). This obviously means that every cut that
supports epi(zS) also supports epiS(z) and furthermore it supports a facet of epi(zS)
if and only if it supports a facet of epiS(z). In particular, this implies by Theorem 3.40
that Facet ⇒Pareto. We can use the following definition to describe the admissible
cut normals to separate a tentative solution from epiS(z) directly.

Definition 3.44
Let a problem of the form (3.1) be given where S := {x ∈ Rn |Bx ≤ e} is a polyhedron,
and (x∗, η∗) ∈ Rn × R. The relaxed extended alternative polyhedron PS(x

∗, η∗) is given
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Figure 3.6: The reverse polar sets (epiS(z) − (x∗, η∗))− (shaded) and (epi(z) − (x∗, η∗))−

(darkly shaded). Both are contained in the corresponding polar cone, which is
shown in black and grey, respectively. It can be observed that while (epi(z) −
(x∗, η∗))− ⊂ (epiS(z) − (x∗, η∗))−, the former contains two additional vertices,
shown in orange. These correspond to the facets of epi(z) which are not Pareto-
optimal cuts with respect to epiS(z).

by

PS(x
∗, η∗) :=

{
γ, γS , γ0 ≥ 0

∣∣∣∣∣ γ>A+ γ>S B + γ0d
> = 0

γ>(b−Hx∗) + γ>S e+ γ0η
∗ ≤ −1

}
.

Analogously to Theorem 3.13, it can easily be seen that

(epiS(z)− (x∗, η∗))− =

(
H> 0
0 −1

)
· PS(x

∗, η∗).

The polar cones and reverse polar sets with respect to the sets epiS(z) and epi(z) are
shown in Fig. 3.6. On closer inspection, we can observe that while it is true that every
vertex of the extended reverse polar set corresponds to a Pareto-optimal cut, which
is not true for the original reverse polar set, this carries little practical significance:
For every linear objective that would select a vertex of the reverse polar set which
does not correspond to a Pareto-optimal cut, the extended reverse polar set is simply
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unbounded. In the context of Table 3.1, where we restrict ourselves to objectives that
yield a finite optimal solution, this means that the second and third rows coincide
(every facet-defining cut normal is also Pareto-optimal).

In this sense, Pareto-optimality is much more a function of the linear objective used
to generate a cut than of the feasible region over which that function is optimized: If a
linear objective leads to a Pareto-optimal cut, it does so in both the original and the
extended reverse polar set. If, on the other hand, a linear objective does not lead to a
Pareto-optimal cut, it produces a suboptimal cut in the original reverse polar set and
no cut at all in the extended reverse polar set (due to unboundedness).

In the latter case, we would have to re-solve the subproblem with a modified objective
function in order to obtain a cut. While in most applications, we would probably
prefer obtaining a non-Pareto-optimal cut to having to re-solve the subproblem to
obtain a Pareto-optimal cut, there might be cases where we would actually prefer the
latter(i. e., if we need to keep the number of cuts small), which we can achieve using
Definition 3.44.

3.3.2 Multiple Subproblems and Multi-Cuts
As stated in Section 3.1, one typical application of Benders decomposition is the case
where the matrix of subproblem constraints A has a block-diagonal structure. Let us
denote the set of blocks by T . Once the values of x-variables have been fixed, this means
that the remaining problem decomposes into a set of |T | independent optimization
problems over sub-vectors yt of y for all t ∈ T .

This opens the possibility for a slightly different approach towards representing the
original problem than the one used in Section 3.1: With

zt(x) := min
yt∈Rkt

{
dt

>
yt
∣∣∣Atyt ≤ bt −Htx

}
,

the original problem can be represented as follows:

min c>x+
∑
t∈T

zt(x)

x ∈ S.

Analogously to Section 3.1, we can define

epiTS (z) :=
{
(x, η1, . . . , η|T |) ∈ S × R|T |

∣∣∣ ∀ t ∈ T : (x, ηt) ∈ epi(zt)
}

to write
min c>x+

∑
t∈T

ηt

(x, η1, . . . , η|T |) ∈ epiTS (z).
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As above, the original problem can now be solved by optimizing over the set epiTS (z):
We can use a version of the Benders decomposition algorithm that in every iteration
generates a cut for each t ∈ T , separating the current solution from the set epi(zt) until
we obtain a solution that is contained in epiTS (z). The procedure to generate such a
cut for an individual epi(zt) is identical to that for generating a cut for epi(z) in the
standard setting and all our results translate immediately.

It turns out (unsurprisingly) that the multi-cut approach outlined above yields a
closer approximation of the subproblem cost function

∑
t∈T zt(x) (see, e. g., [BL88]).

On the other hand, in each iteration, we add |T | cuts instead of one to the master
problem, which increases the rate at which the master problem grows between iterations.
For small T , this does not pose too much of a problem, but if T is very large, it may
quickly cause the master problem itself to become unpractically large and difficult to
solve.

For the latter case, Birge and Louveaux [BL88] suggest to aggregate blocks of A
into larger blocks. This enables us to explicitly choose the size of the set T and hence
to strike different tradeoffs with respect to the conflict described above. Note that
for |T | = 1, we consider the matrix A as a single “block”, which takes us back to the
original approach. With the right choice regarding the size of the set T , we might
thus expect an improvement in the performance of the algorithm. However, the ideal
size of T depends on the particular problem instance and we are not aware of any
theoretical results regarding the optimal choice in this context. Some researchers have
empirically investigated schemes where over the course of the solution process, a switch
is made from single cuts to multiple cuts or vice versa [SDT14]. Their work seems to
suggest that it is advantageous to start with aggregated cuts and move to more refined,
separate cuts later on.

With respect to our results in this chapter, another difference between these two
approaches has to be considered: In the original approach, we have to use a single
objective ω for the entire subproblem in order to be able to select a cut that defines a
facet of the set epi(z). In the multi-cut approach, we may choose a different objective ωt

for each t ∈ T to generate a cut that defines a facet of the set epi(z)t. This may prove
to be useful, particularly in cases where the blocks indexed by T are very different.

3.3.3 Simplified Coupling Constraints

The fact that extremal points of the alternative polyhedron do not necessarily correspond
to extremal points of the reverse polar set (as pointed out in Section 3.2.2) hinges on the
fact that the linear transformation from Theorem 3.13, which links the two polyhedra, is
generally not a full-rank transformation. While we have developed techniques that allow
us to overcome these distinctions and in most cases generate facet-defining cuts directly
from the alternative polyhedron, they require some mathematical understanding of
master- and subproblem as well as their connection via the interaction matrix H.
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We would therefore like to point out a special situation, which is related to a modeling
technique which is occasionally used in the context of Benders decomposition to simplify
the notation and implementation of the subproblem, as well as the computations
required for cut generation (see, e. g., [GLM99; AC00; Pap08]):

The Benders subproblem that results from fixing the x-variables is equivalent to the
optimization problem

min
x,y

d>y

s.t. Ay +Hx ≤ b

x− x∗ = 0

y ∈ Rk, x ∈ Rn,

(3.47)

in which this fixing is taken care of by the extra constraint x−x∗ = 0. This formulation
theoretically increases the problem size, however most LP solvers are easily capable of
reverting this blow-up by substituting the values of x∗ during pre-processing. On the
other hand, it nicely separates the complexity of the subproblem from the computation
of Benders cuts: In the cut definition, only the dual variables of the constraints
x− x∗ = 0 appear as coefficients, if the objective value of the subproblem is known,
then all other dual variables can be ignored. Similarly, it is easy e. g. to add constraints
to the subproblem (as long as they do not introduce dependencies of additional master
variables) without making any changes to the cut generation procedure.

While this technique can in certain cases make the practical implementation easier,
we are not aware of any literature that discusses the implications of this technique
in the context of cut selection or evaluates the performance impact of the technique.
In the context of the cut selection procedure proposed by Fischetti, Salvagnin, and
Zanette [FSZ10], one might be tempted to think of it as a limitation, since we can no
longer choose an individual component of ω̃ for each coupling constraint in the original
problem. Instead, we must choose a value for each coupling variable, which can be
translated into values for each constraint by a transformation which depends on the
entries of the interaction matrix H. In particular, depending on the entries of H, it
might no longer be possible to realize the 0-1-objective vector proposed in [FSZ10].

On closer inspection however, it turns out that a side effect of the above transforma-
tion is that the interaction matrix for the new subproblem takes the form(

0
−In

)
where In denote the n-dimensional identity matrix. This means that condition (3.25)
on the objective function over the alternative polyhedron is satisfied by all objectives
that have zero entries corresponding to the null rows of the above interaction matrix.
This means that the apparent restriction of the choice of objective vectors (ω̃, ω̃0)
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coincides exactly with the restriction that is required to obtain cuts satisfying the
criterion Facet in most cases.

In terms of the problem formulation from Corollary 3.22, this becomes

min λ

Ay +Hx ≤ b

x = x∗ − λ · ω̄
d>y ≤ η∗ − λω̄0

where ω̄ can be chosen arbitrarily and always satisfies the condition (3.25). As a
consequence, the entire theory presented in this chapter could also be derived by
restricting the problem formulation to the (blown-up) form (3.47) instead of restricting
the subproblem objective in the way formulated in (3.25). As we have seen, however,
this blow-up is unnecessary and our approach provided us with a clearer understanding
of the underlying structure. The result with respect to the formulation (3.47) results
as a special case.

3.4 Benders Decomposition for the Capacity Expansion
Problem

From a practical perspective, the main results in this chapter can be summed up as
follows: Within the Benders cut selection framework from [FSZ10], we have investigated
the effect of different choices of the objective vector (ω̃, ω̃0). We proved that choosing
the vector from certain subsets of Rm×R produces cuts that satisfy desirable properties.
In particular, the objective vectors that lead to these desirable cuts can be parametrized
by a vector (ω, ω0) ∈ Rn × R that lives in the same space as the original x-variables
which constitute our master problem. This opens the path to using problem-specific
knowledge or partial information about the optimal solution, where available, to
improve the solution algorithm.

In this section, we apply the theory presented above to a version of the capacity
expansion problem from Section 2.1.1, which we extend by adding variable production
capacities in addition to variable transmission capacities. This section thus fulfills
two distinct purposes: It serves as an example how an implementation of Benders
decomposition and in particular of the improvements developed in this chapter can
work in practice. In this context, we also point out some practical challenges that arise
in the implementation and discuss how these can be overcome. Secondly, we aim to
provide a workable template that enables researchers to use our improved version of
Benders decomposition in the context of an existing capacity expansion model.

Benders decomposition has been used to solve Capacity Expansion Problems in the
context of electrical power systems at least since the 1980s (see, e. g., [Blo83]). The
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type of problem nicely fits the common informal characterization of problems suitable
to using Benders decomposition as those with a set of complicating variables: If the
expansion variables are fixed, the resulting dispatch problem is typically much easier
to solve than the original Capacity Expansion Problem. Over the last twenty years,
references to Benders decomposition in the optimization literature have multiplied
[Rah+17] and power system analysis has become one of the most prominent areas of its
application, some well-known examples include [RM94; AC00; BPG01; Wan+16]. Most
recently, certain studies have focussed on evaluating acceleration techniques, including
cut selection criteria, specifically on applications from the energy sector [Jen+15; LR16].
They do not, however, cover in detail the criteria discussed in this chapter.

For the sake of a clearer presentation, we begin by considering a simpler version of
the optimization problems typically used in practice in the context of Energy System
Optimization. In particular, we omit storage facilities and consider only a single
investment decision in order to keep the notation easier to read. We also assume that
the production cost vector c does not vary between different time steps (in deviation
from our discussion in (2.12)). In practice, all of these restrictions can be removed
and the presented techniques can be applied to more complicated optimization models
which include the aspects mentioned above with only small modifications. We will
discuss the details of re-including the aforementioned complexities (as well as various
other constraints) and their implications in Section 3.4.3. The problem that we focus
on in this section is defined as follows:

Definition 3.45
Let p̄max ∈ R|I| and f̄max ∈ R|L| denote vectors of upper bounds for the capacity
of production units and transmission lines, respectively. Let furthermore cp ∈ R|I|,
cf ∈ R|L| and c ∈ R|I| denote three cost vectors, for production capacity, transmission
capacity and dispatch, respectively. Finally, let T ∈ Z and let Pt ⊂ R(|I|+|L|) be a
polyhedron for all t ∈ [T ]. Denote by P :=

∏
t∈[T ] Pt.

A vector (p̄, f̄) ∈ R|I| × R|L| of capacities that satisfies p̄ ≤ p̄max and f̄ ≤ f̄max

is called feasible at cost η if there exist vectors (pt, f t) ∈ Pt satisfying pt ≤ p̄ and
−f̄ ≤ f t ≤ f̄ for all t ∈ [T ] and furthermore

∑
t∈[T ] c

>pt ≤ η. It is called optimal if
there is no (p̄′, f̄ ′) feasible at cost η′ such that

(cp)>p̄′ + (cf )>f̄ ′ + η′ < (cp)>p̄+ (cf )>f̄ + η.

The polyhedra Pt can be thought of as representing a set of operating constraints
that restrict the production and transmission vectors pt and f t for each timestep
t ∈ [T ], but that do not depend on the values of p̄ and f̄ . The most common example
of such constraints are demand satisfaction constraints, but each Pt may be defined
by an arbitrary selection of such constraints. Note that these constraints need not be
the same for all timesteps, for instance due to changes in demand or differences in the
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availability of renewable power sources. An optimal solution to the capacity expansion
problem can be computed using the following linear program:

min
p̄,f̄
p,f

(cp)>p̄+ (cf )>f̄ +
∑
t∈[T ]

c>pt (3.48)

s.t. p̄ ≤ p̄max (3.49)
f̄ ≤ f̄max (3.50)
pt ≤ p̄ ∀ t ∈ [T ] (3.51)
− f̄ ≤ f t ≤ f̄ ∀ t ∈ [T ] (3.52)
(pt, f t) ∈ Pt ∀ t ∈ [T ] (3.53)

Note that we could replace p̄ and f̄ by the expressions maxt∈[T ] p
t and maxt∈[T ] |f t|,

respectively. A standard linearization of the resulting non-linear objective function
again yields the linear program (3.48) to (3.53).

While this linear program is of course theoretically solvable in polynomial time, we
will assume in this chapter that the number of timesteps in T is extremely large which
makes the optimization problem nonetheless difficult to solve in practice. On the other
hand, for any fixed timestep t (or small subset of timesteps) and fixed values of p̄ and
f̄ , the problem consisting only of the corresponding variables pt and f t and constraints
(3.51) to (3.53) is relatively small and can be solved quickly.

This motivates the following approach: Let

S :=

{
(p̄, f̄)

∣∣∣∣∣ p̄ ≤ p̄max

f̄ ≤ f̄max

}
(3.54)

and

z(p̄, f̄) := max
p,f


∑
t∈[T ]

c>pt

∣∣∣∣∣∣∣
pt ≤ p̄ ∀ t ∈ [T ]

− f̄ ≤ f t ≤ f̄ ∀ t ∈ [T ]

(pt, f t) ∈ Pt ∀ t ∈ [T ].

 (3.55)

Instead of solving the huge (|I| + |L|) · (T + 1)-dimensional Linear Program (3.48)
to (3.53), we solve the much smaller (|I|+ |L|+ 1)-dimensional problem of minimizing
(cp)>p̄ + (cf )>f̄ + η over the polytope epiS(z) (see Proposition 3.2). Alternatively,
since the matrix of constraints that define the set P is block-diagonal with each t ∈ [T ]
inducing one block that consists of the constraints from Pt and the variables pt and
f t, we can use the multi-cut technique from Section 3.3.2. By aggregating multiple
timesteps into a single block, we can strike a balance between the size of the master
problem and that of the subproblems that is suitable for a given instance of the problem.
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Before we proceed, we should note that the constraint matrix can in fact also be
understood as a block-diagonal matrix with respect to the different network regions.
This enables an alternative decomposition approach where all transmission-related
variables (capacities and power flows) are dealt with in the master problem, whereas
all decisions within one network region (e. g. production and production capacities)
are delegated to the subproblem. This decomposition exploits a different dimension
of the underlying problem structure. Depending on the specific application, either
approach may be computationally more useful and both can be combined to obtain a
finer decomposition still.

As argued in Section 3.3.2, however, a finer decomposition is not necessarily compu-
tationally more advantageous and the relative sizes of master- and subproblem have to
be carefully balanced. On the other hand, if network regions can be identified that
are very weakly connected between each other, the limited interaction of different
subproblems in this setting can greatly improve the performance of a decomposition
algorithm. Finally, other decompositions are conceivable, e. g. by energy sector where
a separate demand has to be satisfied within each sector.

In this section, we focus on the timestep-based approach outlined above, mainly
because it is the one that allows the cleanest notation and because it seems computa-
tionally the most promising in our particular application. The network-based approach
and other decomposition paradigms can be developed along the same lines.

The epigraph epi(z) of the function z as defined in (3.55) is not given explicitly
but, as previously, we can easily derive a separation algorithm for epi(z) by applying
Theorem 3.6 to the capacity expansion problem. Using Corollary 3.22, the subproblem
can be written in the form of (3.39) to (3.41) as follows:

min λ

s.t. pt ≤ p̄∗ + λωp ∀ t ∈ [T ] (γp,t)

− (f̄∗ + λωf ) ≤ f t ≤ f̄∗ + λωf ∀ t ∈ [T ] (γf,t)∑
t∈[T ]

c>pt ≤ η∗ + ω0λ (γ0)

λ ≥ 0

(pt, f t) ∈ Pt ∀ t ∈ [T ]

(3.56)

The γ-variables denote the vectors of dual variables corresponding to the respective
constraints. Note that in the case of γf,t, the sign of the respective dual variable
depends on which side of the inequality is tight. It will turn out, however, that the
sign is irrelevant for the computation of the corresponding cut, which is why we refrain
from specifying the exact rule.

Now, in order to compute the optimal right-hand side for a cut according to Theo-
rem 3.19, we need the dual variables of all the constraints, including those defining the
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set P . It is useful at this point to reformulate our results in the spirit of a well-known
alternative formulation of optimality cuts in the context of the original Benders decom-
position algorithm (see, e. g., [GLM99; AC00] or [Con+06, Ch. 3.3]). The following
result can be derived immediately from our Theorem 3.19:

Corollary 3.46
Let (ω̃, ω̃0)

> := (Hω,−ω0)
> and let (γ, γ0) be an optimal solution for an optimization

problem of the form (3.27) with objective value D. Then

D = γ>(Hx∗ − b)− γ0η
∗ = γ>Hx∗ − γ0η

∗ − γ>b.

If ω̃>γ + ω̃0γ0 < 0, then by Theorem 3.19 the inequality

γ>Hx− γ0η ≤ γ>Hx∗ − γ0η
∗ −D

supports epi(z).

The advantage of the above formulation is that all components of γ that correspond
to null rows of H are immediately eliminated. This includes, in particular, all the
inequalities that are part of the description of the set P . We can thus formulate our
algorithm completely independently of this description: Given an optimal solution
to (3.56) with objective value λ∗ and where (γp,t, γf,t, γ0) denotes the corresponding
vector of dual variables as noted above, we obtain that the cut∑

t∈[T ]

γp,t

>

p̄+

∑
t∈[T ]

|γf,t|

>

f̄ + γ0η

≥

∑
t∈[T ]

γp,t

>

p̄∗ +

∑
t∈[T ]

|γf,t|

>

f̄∗ + γ0η
∗ + λ∗

supports the set epi(z). Note again that the sign of γf,t turns out to be irrelevant.
The resulting Benders decomposition algorithm for the Capacity Expansion Planning
Problem is shown in Algorithm 3.

3.4.1 Upper Bounds
While the algorithm is in principle guaranteed to terminate after a finite number of
iterations, convergence tends to be very slow towards the end. It therefore makes
sense to abort the iteration loop as soon as a feasible solution has been found with an
objective value that is sufficiently close to the optimum.

In the original Benders decomposition algorithm which uses the cut generation
procedure from Lemma 3.4, this is very easy: Whenever (x, η) is a master solution
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Input: Instance (p̄max, cp, f̄max, cf , c, T, P ) of the capacity expansion problem
Output: optimal solution (p̄∗, f̄∗)

1: initialize the set epiS(z)(0) :=
{
(p̄, f̄ , η) ∈ R|I| × R|L| × R≥0

∣∣ p̄ ≤ p̄max, f̄ ≤ f̄max}
2: for i = 1..maxit do
3: choose a subproblem objective (ω

(i)
p , ω

(i)
f , ω

(i)
0 )

4: solve the problem
min

{
(cp)>p̄+ (cf )>f̄ + η

∣∣∣ (p̄, f̄ , η) ∈ epiS(z)(i)
}

to obtain
(
p̄(i), f̄ (i), η(i)

)
5: solve the problem (3.56) with input

(
p̄(i), f̄ (i), η(i)

)
and

(
ω
(i)
p , ω

(i)
f , ω

(i)
0

)
6: if λ = 0 then return

(
p̄(i), f̄ (i)

)
7: else

8: set epiS(z)(i+1) :=

{
(p̄, f̄ , η) ∈ epiS(z)(i)

∣∣∣∣∣∑
t∈[T ]

γp,t

>

(p̄− p̄∗) +

∑
t∈[T ]

|γf,t|

>

(f̄ − f̄∗) + γ0(η − η∗) ≥ λ∗

}
9: end if

10: end for
11: return maxit reached, no optimal solution found
Algorithm 3: The Benders decomposition algorithm for the simplified Capacity Expansion

Planning Problem.

for which we reach case d) (i. e., the LP (3.4) is feasible), denote by y an optimal
solution to (3.4). Then (x, y) is a feasible solution to the original problem (3.1) and the
corresponding objective value c>x+ d>y is an upper bound for the optimal objective
value. On the other hand, c>x+ η is a lower bound on the optimal objective value for
any master solution (x, η) (even if (3.4) is infeasible). This means that we can update
the lower bound at every iteration and we occasionally obtain feasible solutions for
the original problem (every time that we reach case d)) such that we can abort the
algorithm if their value is close enough to the best available lower bound.

Also when we generate cuts from the alternative polyhedron, we obtain a lower
bound of the optimal objective value at each iteration. Furthermore, given a solution
x ∈ S for which the un-relaxed subproblem (3.4) is feasible, we can generate a feasible
solution (x, y) for the original problem in the same way described above, providing us
with an upper bound for the objective value. However, while the cuts generated from
the alternative polyhedron are typically stronger and hence increase the lower bound
more quickly than the original Benders feasibility/optimality cuts, they do not enforce
feasibility of the subproblem (3.4) in the same way as Benders feasibility cuts do.
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This means that, unless the subproblem (3.4) is feasible for all x ∈ S, Algorithm 2
typically does not produce a solution x for which (3.4) is feasible until very late in the
process. When we thus first obtain an upper bound from such a solution against which
to measure the value of the current lower bound, it may turn out that the the lower
bound had already been close enough to the optimal solution to abort the algorithm
for a number of iterations.

This makes it necessary to spend some thought on the generation of upper bounds
from master solutions for which (3.4) is not feasible. Fortunately, this is very easy for
the simplified Capacity Expansion Problem due to the simple structure of our master
problem. If we add the constraints

pt ≤ p̄max ∀ t ∈ [T ] (3.57)
− f̄max ≤ f t ≤ f̄max ∀ t ∈ [T ] (3.58)

to the optimization problem (3.56), then the following proposition holds:

Proposition 3.47
Let ((pt)t∈[T ], (f

t)t∈[T ], λ) be feasible for (3.56) with constraints (3.57) and (3.58) added
as above. Then (p̄, f̄ , η) with p̄ := maxt∈[T ] p

t, f̄ := maxt∈[T ] |f t| and η :=
∑

t∈[T ] c
>pt

is a feasible master solution. The value z̄ of this solution represents an upper bound
for the value of any optimal solution. More specifically, it holds for the value z∗ of the
optimal solution that

0 ≤ z̄ − z∗ ≤ λ ·
(
ω0 + ω>

p c
p + ω>

f c
f
)

Proof. Because of constraints (3.57) and (3.58), it holds that (p̄, f̄) ∈ S. Since the
point ((pt)t∈[T ], (f

t)t∈[T ], λ) is feasible for (3.56), it holds that (pt, f t) ∈ Pt for all
t ∈ [T ]. Furthermore, pt ≤ p̄ and f t ≤ f̄ for all t ∈ [T ] and hence (p̄, f̄ , p, f) is feasible
for (3.48) to (3.53). Let (p̄∗, f̄∗, η∗) denote the master solution used in the problem
(3.56). As any master solution over the course of the algorithm represents a lower
bound on the optimal objective value, it holds that

z∗ ≥
∑
i∈I

cpi p̄
∗
i +

∑
l∈L

cfl f̄
∗
l + η∗ = (p̄− λωp)

> cp +
(
f̄ − λωf

)>
cf + (η − λω0)

= z̄ − λ ·
(
ω0 + ω>

p c
p + ω>

f c
f
)
. 2

In particular, the difference between upper bound and optimal solution value goes
to 0 as λ → 0 for fixed (ωp, ωf , ω0). This means that any threshold for the difference
between upper and lower bound will eventually be reached: As soon as the tentative
master solution (x∗, η∗) is feasible, we can no longer find an (x∗, η∗)-separating cut and
the problem (3.56) will have an optimal objective value of 0.
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As a matter of fact, the constraints (3.57) and (3.58) are redundant for the complete
optimization problem (3.48) to (3.53), which means that adding them to (3.56) does
not change the validity of the resulting cuts (in fact, adding (3.57) and (3.58) amounts
to including the description of S into the subproblem definition, as in Section 3.3.1).
As the updated interaction matrix has null rows for the constraints (3.57) and (3.58),
the cut derived based on Corollary 3.46 remains valid (although the optimal solution
of the subproblem might change).

In certain cases we can use Lemma 3.42 to obtain a tighter bound than the one defined
above using the following proposition, even without explicitly enforcing constraints
(3.57) and (3.58):

Proposition 3.48
Let (p̄∗, f̄∗, η∗) /∈ epi(z) be a tentative master solution, (ωp, ωf , ω0) ∈ R|I| × R|L| × R
and let ((pt)t∈[T ], (f

t)t∈[T ], λ) be an optimal solution for (3.56) with λ > 0. If (p̄∗, f̄∗) +
λ · (ωp, ωf ) ∈ S, then

(p̄∗, f̄∗, η∗) + λ · (ωp, ωf , ω0)

is a feasible master solution and its value hence constitutes an upper bound on the
optimal objective value.

Proof. For any problem of the form (3.1) and tentative master solution (x∗, η∗), write
Q := (epiS(z)− (x∗, η∗))−. Let (ω, ω0) ∈ Rn×R and let (λ, x, y) be an optimal solution
for (3.36) to (3.38) with λ > 0. It holds that

hQ(ω, ω0) = max
{
ω>π + ω0π0

∣∣∣ (π, π0) ∈ (epi(z)− (x∗, η∗))−
}

= max
{
(Hω)>γ − ω0γ0

∣∣∣ (γ, γ0) ∈ P≤(x∗, η∗)
}

= − 1

λ

where the first equality is by definition, the second follows from Theorem 3.17 and
the third is a consequence of Corollary 3.22. As λ > 0, Theorem 3.15 implies that
(ω, ω0) ∈ pos(epi(z) − (x∗, η∗)). By Lemma 3.42, we now obtain in particular that
λ · (ω, ω0) + (x∗, η∗) ∈ epi(z).

This proves that (p̄∗, f̄∗, η∗)+λ·(ωp, ωf , ω0) ∈ epi(z) and since (p̄∗, f̄∗)+λ·(ωp, ωf ) ∈
S it holds indeed that (p̄∗, f̄∗, η∗) + λ · (ωp, ωf , ω0) ∈ epiS(z). 2

The antecedent is easy to check and furthermore, it is automatically satisfied if,
for instance, we choose (ω, ω0) according to Theorem 3.43 in order to obtain an
Pareto-optimal cut.

150



3.4 Benders Decomposition for the Capacity Expansion Problem

3.4.2 Selection of Subproblem Objective

In each iteration of Algorithm 3, we may choose a new subproblem objective (ωp, ωf , ω0).
As noted by Fischetti, Salvagnin, and Zanette [FSZ10], the approach originally used
by Benders [Ben62] to generate optimality cuts corresponds to choosing ωp = ωf = 0,
ω0 = 1 (the original selection criterion used for feasibility cuts is unspecified and depends
on the implementation of the solution algorithm). Fischetti, Salvagnin, and Zanette
[FSZ10] also suggest a better selection criterion for general applications of Benders
decomposition, which in the case of (3.56) corresponds to setting ωp = 1, ωf = 1, ω0 = 1.
The rationale given by the authors is that this objective function gives preference to
solutions where only a small number of constraints are active. Finally, the authors
also note that ω̃0 can be used as a “scaling factor taking into account a wider range of
variable η”, but they do not go into details as to how it would be determined (beyond
manually adapting it e. g. to differences in order of magnitude between objective
function values and the values of decision variables which are known in advance).

A first criterion for the selection of an objective function vector is boundedness
of the resulting subproblems. While we could enforce boundedness (e. g. by using a
sufficiently large bounding box), the depth of the cut approaches 0 as the objective
value goes to infinity, hence a cut from a solution on the boundary of such a box will
be very low-depth. Furthermore, it would not support a facet of the set epi(z), since it
does not correspond to a vertex of the original reverse polar set.

Fortunately, we have some very simple tools at hand to choose a suitable objective
function. First of all, choosing ωp = 1, ωf = 1, ω0 = 1 as suggested by Fischetti,
Salvagnin, and Zanette always leads to a bounded subproblem.

Alternatively, Theorem 3.43 allows us to choose any relative interior point of epiS(z)
to generate an objective function that not only guarantees boundedness, but that
additionally always produces a Pareto-optimal cut that is very likely to also define a
facet of epiS(z). Especially if epiS(z) is full-dimensional, then the procedure that we
use in Section 3.4.1 to compute an upper bound also yields such a point (or a point
that can easily be perturbed to such a point). In practice, we have even observed that
the unperturbed point can often be used to the same effect (since it lying in the relative
interior of epiS(z) is sufficient, but not necessary for the above-mentioned properties).

Finally, we can use any other objective function vector according to our selection
criteria from Section 3.2. In most practical cases, we can use prior information about
the problem (e. g. monotonicity of the function z(x)) to choose an objective vector for
which the subproblem is bounded (see also Theorem 3.15). In the rare case where a
subproblem is indeed unbounded for a particular objective, we can easily recover by
perturbing (or in the worst case replacing) the objective vector using one for which the
subproblem is known (or guaranteed) to be bounded. In this case, we obviously have
to re-solve the subproblem, which requires additional computational effort and hence
should be take care of to not happen too often.
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3.4.3 Additional Constraints

We now touch on some possible extensions to the version of the Capacity Expansion
Problem that we have considered so far. Specifically, we will investigate the effects of
adding further constraints (and variables) to (3.48) to (3.53) in order to incorporate
additional aspects of the problem which are desirable in a real-world case study.

Capacity-independent operating constraints The easiest case in this context is that
of additional operating constraints, which do not depend on the installed capacities.
If these constraints do not span multiple timesteps, (which is the case, e. g., for time-
dependent capacity factors for power generation from renewable energy sources such as
wind or solar), then they could have been added to the polyhedra Pt right from the
beginning. If, however, they include variables from different timesteps, then we can
also add these constraints to the description of the polyhedron P without any effect
on the correctness of the algorithm described above. The only part where we made
explicit use of the fact that P can be written as the cartesian product of polyhedra
Pt was when we applied the multi-cut technique from Section 3.3.2. This might no
longer be possible and to recover a block-diagonal structure, it might be necessary to
introduce additional master variables (see below).

Capacity-dependent constraints If additional constraints include the capacity vari-
ables p̄ and f̄ , then the corresponding dual variables have to be taken into account in
the cut generation procedure. To simplify the development (and maintenance) of the
algorithm, it may make sense to use the simplified formulation from Section 3.3.3 and
add a copy of all master problem variables to the subproblem where they can be linked
to the value of the respective master variable. However, this would again destroy the
block-diagonal structure of the constraints defining the subproblem since the copies of
master problem variables would appear in each block.

To circumvent this issue, we can use a separate copy p̄t of the master variable p̄ for
each t ∈ T : Let P ′

t := {(pt, f t, p̄t, f̄ t) | (pt, f t) ∈ Pt, p
t ≤ p̄t,−f̄ t ≤ f t ≤ f̄ t}. Then we

can rewrite (3.56) as follows:

min λ

s.t. p̄t = p̄∗ + λωp ∀ t ∈ [T ] (γp,t)

f̄ t = f̄∗ + λωf ∀ t ∈ [T ] (γf,t)∑
t∈[T ]

c>pt ≤ η∗ + ω0λ (γ0)

λ ≥ 0

(pt, f t, p̄t, f̄ t) ∈ P ′
t ∀ t ∈ [T ]

(3.59)
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3.4 Benders Decomposition for the Capacity Expansion Problem

We are now back in the previous situation, where all new constraints can be expressed
using the subproblem variables (pt, f t, p̄t, f̄ t) alone, i. e., they only include the specific
variables for each individual t ∈ [T ] and do not need to explicitly reference the
master capacity variables p̄ and f̄ . This means that they may simply be added to
the description of the respective polyhedron P ′

t . The resulting cut takes the same
form as described above (with the only difference that negative values of γf,t now
lead to negative entries, i. e., the absolute value is no longer required). If we assume
furthermore that Proposition 3.47 continues to hold, then the generation of upper
bounds and feasible solutions works exactly as described in Section 3.4.1.

Additional master variables If new master variables are required to express a con-
straint, they can be added in the same fashion: Suppose that a new vector of master
variables s ∈ Rk is required. Analogously to the addition of capacity-dependent con-
straints, we create copies st of s for each individual timestep t ∈ [T ] and link them by
the constraints

st = s∗ + λωs ∀ t ∈ [T ], (3.60)

which we add to (3.59). The new constraints which include the master variable s can
now be incorporated in a similar fashion as above, defining P ′′

t ⊂ {(pt, f t, p̄t, f̄ t, st) |
(pt, f t, p̄t, f̄ t) ∈ P ′

t} in a suitable way. Denote the dual variable corresponding to the
constraint (3.60) by γs,t for every t ∈ [T ]. We can now use Algorithm 3 with the only
change that the term corresponding to the constraints (3.60) has to be added to the
cut definition:∑

t∈[T ]

γp,t

>

(p̄− p̄∗)+

∑
t∈[T ]

|γf,t|

>

(f̄−f̄∗)+

∑
t∈[T ]

γs,t

>

(s−s∗)+γ0(η−η∗) ≥ λ∗

The above situation occurs, for instance, if we include storage units into our model.
One way to enforce the consistency of storage levels across time steps is to add an
additional vector of variables representing the storage level after each timestep. As
argued above, we can set these values in the master problem and link them to separate
copies of the respective variable in the subproblems for the preceding and the following
timestep using a constraint like (3.60). This restores independence between different
timesteps, allowing us to use any aggregation of timesteps as discussed in the context
of the multi-cut procedure in Section 3.3.2.

However, in this situation we can no longer rely on the approach from Section 3.4.1
to derive feasible solutions for the master problem and corresponding upper bounds for
the optimal objective value. In the best case, we may be able to prove an equivalent
theorem which allows us to use any solution to the subproblem of the form (3.59) to
derive a feasible solution for the master problem with a sufficiently good objective
value to allow us to reach a desired optimality threshold.
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If this is not possible, we may selectively in some iterations fix certain values of ω to
0 in order to force the subproblem to satisfy the unrelaxed version of the corresponding
constraints. In this way, we might, for instance, be able to enforce st = s∗ for all
t ∈ [T ]. If there is sufficient flexibility in the problem description, we obtain a solution
that only violates constraints which contain variables that can be handled more easily
in a fashion similar to Section 3.4.1, e. g. only the original capacity variables. In the
worst case, however, this will lead to the problem (3.59) becoming infeasible, which
does not allow us to generate a separating cut.

As a last resort in this case, we can (at least periodically) revert to the original
Benders cut selection procedure by setting (ω, ω0) := (0, 1). This will generate feasibility
cuts according to case c) from Lemma 3.4 until at some point we reach case d) again,
which provides us with an upper bound for the optimal objective value as described in
the beginning of Section 3.4.1.

3.5 Empirical Results

While a comprehensive study of the computational performance of different versions
of the Benders Decomposition algorithm in different sets of circumstances is beyond
the scope of this thesis, we have conducted a small number of tests of the approach
described in this chapter in the practical setting from Section 3.4. Rather than making
a claim about the performance of a particular version of the Benders decomposition
algorithm, we want to demonstrate some possible approaches to optimize the algorithm
that arise from our analysis.

Our empirical examples provide a way to demonstrate the effects and tradeoffs
associated with these approaches, which could be used to improve the performance
of the algorithm. Any such improvements are likely to be problem-specific, although
selecting a smart default choice for general purpose optimization algorithms might be
a worthy topic for future research. In this sense, the tests in this section should serve
to validate our theoretical results in the context of a practical implementation of the
decomposition algorithm as well as to provide starting points for a deeper study of the
optimal choice for the parameters that affect the performance of the algorithm.

Our tests are based on the realistic instances of the Capacity Expansion Problem
for the European power system from [SSH12]. Beyond the basic constraints from
Section 3.4, these instances include storage facilities and all of the additional variables
and constraints required to keep track of storage levels. Our main test instance is a
model of the European electricity grid that consists of 102 demand regions with 587
generation units and 195 (existing and potential) transmission lines. It includes demand
data and data for the availability of renewable energy sources in hourly resolution for
a period of one year.

We used the approach described in Algorithm 3, which we have implemented in C++
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using Gurobi 7.5. For our computations, we used eight CPU cores running at 2.5 GHz
with 64 GB of main memory. To solve master problem and subproblems, we use the
dual simplex algorithm (i. e., the version of the simplex algorithm that maintains dual
feasibility while pivoting between bases). In each iteration, we warm-start all problems
using the optimal basis from the previous iteration and solve all subproblems in parallel
on the available cores. Beyond this, we run the solution algorithm with default settings,
i. e., we did not undertake any computational optimizations with respect to either the
algorithm itself or the solution method of master and subproblems.

Regarding the weight vector (ω, ω0), we focussed on weight vectors that satisfy the
condition (3.25) and hence are likely to produce facet-defining cuts. We have compared
the following approaches:

“mixed cuts” with (ω, ω0) = (1, 1). This corresponds most closely to the approach
proposed by Fischetti, Salvagnin, and Zanette [FSZ10] (It is equivalent to their
approach if we use a simplified formulation according to Section 3.3.3.)

“adaptive cuts” with (ω, ω0) = (x̄− x∗, η̄− η∗) where (x̄, η̄) is a (suboptimal) feasible
solution computed according to Proposition 3.47. By Cornuéjols and Lemaréchal
[CL06, Theorem 3.4], this results in a cut which supports epiS(z) in a face which
is intersected by a line through (x∗, η∗) and (x̄, η̄). The idea behind this criterion
is that a cut like this is best suited to close the gap which currently exists between
lower bound, represented by the infeasible solution (x∗, η∗), and upper bound,
represented by the feasible, but suboptimal solution (x̄, η̄).

Before we move on to present the results of our empirical study, we must briefly
discuss some issues that limit the expressiveness of the results. As soon as the problem
in consideration is of non-trivial size, there are a number of factors that affect the
performance of subproblems and hence the performance of the entire algorithm: The
choice of algorithm (simplex vs. interior point), the use of warm-start techniques,
optimality tolerance etc. all can have a substantial effect on the time required to solve
an individual subproblem. Furthermore, the interplay of these factors in the context
of the different cut selection criteria specified above is complex and very difficult to
predict. This effect is exacerbated further by the fact that the problems in consideration
often expose numerical difficulties due to the wide range of coefficients in the problem
description: It may happen that one particular subproblem consumes an enormous
amount of effort to solve, while in a run with slightly different parameters where this
exact subproblem does not appear, no such problem is encountered.

Against this background, we have decided in this section to use both the number
of iterations and the total computation time as a measure of performance. Given the
variety of different factors that affect the performance of the algorithm, both are very
incomplete proxies for actual computational performance by themselves. However
since the number of iterations is independent at least of any choices regarding the
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solution method of subproblems and the computation time gives an indication of actual
performance for at least one set of such choices, their combination seemed to us the
most useful choice.

Advanced cut selection criteria We begin by comparing the two approaches men-
tioned above on an instance covering a time horizon of one month. Specifically, we
set a static refinement of the cut selection criterion from [FSZ10], enhanced by our
transformation of the objective function according to Theorem 3.17 against the adaptive
cuts approach for the selection of the weight vector (ω, ω0) as described above. In the
latter case, we update the vector (ω, ω0) in each iteration using a (suboptimal) feasible
solution computed according to Proposition 3.47. Note that this precise update mecha-
nism should be seen as an illustrative example rather than a performance-optimized
prescription.

Like all plots in this chapter, the figure shows on the (logarithmic) vertical axis the
relative optimality gap, i. e., the gap between upper and lower bound relative to the
optimal objective value. On the horizontal axis, the first plot shows the number of
iterations and the second plot shows the total computation time. This representation
takes into account the fact that in practical applications, we are often satisfied with a
solution that is guaranteed to be within a certain tolerance of the optimal solution (e. g.,
0.1 %), rather than a strictly optimal solution. The plot thus allows us to compare the
performance of different approaches with respect to different optimality tolerances.

The results can be inspected (for two different subproblem aggregations) in Figs. 3.7
and 3.8 from the perspective of both number of iterations and computation time: As
the first plot in Fig. 3.7 shows, the adaptive selection criterion substantially reduces
the number of iterations required to reach a given optimality threshold. For instance,
a solution that is guaranteed to be no more than 1 % from optimal can be obtained
using the adaptive cuts approach in around 1/2 the iterations required under the mixed
cuts selection criterion. The advantage is less pronounced for smaller optimality gaps
but a small advantage remains in all cases.

In terms of computation time, the difference is even clearer: Here, the adaptive cuts
approach enjoys an advantage of approximately a factor 2.5-3 over the mixed cuts.
Furthermore, this advantage does not diminish over the course of the algorithm and is
present at all accuracy levels.

As further tests show, moving to a different subproblem size (e. g. Fig. 3.8), we
obtain qualitatively similar results: While in this case the advantage of the adaptive
cuts approach is a little less pronounced in terms of the number of iterations, the
improvement by a factor 2.5-3 in terms of the computation time remains.

Subproblem aggregation In our results above, it can already be observed that the
performance of the algorithm depends not only on the selection method for the weight
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Figure 3.7: This figure shows the optimality gap vs. number of iterations and computation
time for the mixed cuts and the adaptive cuts selection criteria for (ω, ω0) from
Section 3.4.2. Both versions run in a setting with 10 subproblems covering 72
timesteps each, without the bound tightening procedure from Proposition 3.48.

vector, but also on our choices regarding the aggregation of subproblems. Generally, as
we have mentioned in the context of the multi-cut procedure from Section 3.3.2, smaller
subproblems shift the computational burden from the subproblems to the master
problem (which becomes larger due to the higher number of cuts in each iteration).

This affects the total computation time required to reach a given level of accuracy
primarily in two ways: Smaller subproblems achieve a better approximation of epi(z)
early in the algorithm thanks to the finer granularity of the generated cuts. At the
same time, the computation time for early iterations decreases, because the (smaller)
subproblems are much easier to solve.

On the other hand, as the algorithm progresses, this effect diminishes since the
increasingly smaller changes to the subproblems between iterations together with the
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Figure 3.8: This figure shows the optimality gap vs. number of iterations and computation
time for the mixed cuts and the adaptive cuts selection criteria for (ω, ω0) from
Section 3.4.2 using the basic generation of upper bounds according to Propo-
sition 3.47. Both versions run in a setting with 30 subproblems covering 24
timesteps each, without the bound tightening procedure from Proposition 3.48.

use of simplex warm-starts means that larger subproblems can be solved relatively
quickly, as well. At the same time, as cuts accumulate in the master problem, it
becomes harder and harder to solve. This effect is more prominent the smaller the
subproblems and hence the larger the number of cuts added in reach iteration.

The results can be observed in Fig. 3.9. If a small optimality tolerance is required,
a subproblem size of 24h seems to strike the best tradeoff in the context described
above. Using smaller subproblems (12h), we can reach a reasonably good solution much
faster, but the algorithm then markedly slows down due to the increased size of the
master problem. Using a subproblem size of 72h, on the other hand, early iterations
require much more time to solve the larger subproblems, a disadvantage from which
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Figure 3.9: This figure shows the optimality gap vs. computation time for different subproblem
sizes using the adaptive cuts selection criteria for (ω, ω0) from Section 3.4.2 and
the basic generation of upper bounds according to Proposition 3.47.

the algorithm can never recover (although for very small optimality tolerances, even
this version outperforms the version using subproblems of 12h).

Larger instances and non-decomposed approaches Many of the above tests were also
performed on larger instances covering an entire year. While the number of iterations
as well as the computation time required to reach a given accuracy is obviously much
larger than in the examples presented above, the general line of results (particular
with respect to the relative performance of mixed cuts and adaptive cuts) is identical.
Compared to conventional optimization methods, the advantage of decomposition
approaches generally grows with the size of the problem under consideration. This
advantage can broadly be observed in two areas: computation time and memory
consumption.

Regarding computation time, the advantage of decomposition approaches is less
clear. The limited exchange of information between master- and subproblems and
the number of iterations thus required to solve the problem to a satisfying accuracy
does introduce a notable computational overhead. On simpler problems, this overhead
more than outweighs the advantage that results from the smaller size of the problems
that have to be solved in any single iteration. Most practical applications of Benders
decomposition thus focus e. g. on Mixed-Integer problems, that quickly become too
large to be solved by conventional methods in any reasonable amount of time. Reducing
the size of problems that have to be solved in a given iteration in this case dramatically
reduces the computation time required, easily outweighing the overhead introduced by
the decomposition framework.

The (continuous) problems that we used to evaluate our approaches can generally be
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solved relatively quickly, even by conventional optimization methods. As a consequence,
the advantages of the decomposition approach are less prominent and on instances
covering a single month, conventional methods substantially outperform all variants of
Benders decomposition that we investigated. However, on the larger instances covering
an entire year, the decomposition approach quickly catches up and we expect this trend
to continue on even larger problems.

On the other hand, memory consumption quickly becomes the most prominent issue
in the case of larger problem sizes. Once the available memory is no longer sufficient
to hold the complete representation of the problem during the run of the solution
algorithm, it becomes infeasible to solve the problem within any reasonable amount of
time. Interior point methods, which often provide far better performance, especially on
large-scale LP problems, generally require much more memory than, e. g., the Simplex
method, which can be used for the iterative updates of subproblem solutions in the
context of a decomposition approach. This difference is negligible for smaller problems,
but becomes more and more relevant the larger the instance under consideration. As
an indication, for an instance covering an entire year, a decomposition approach with
10 days per subproblem required around 24 GB of memory, whereas an interior point
algorithm on the complete problem requires at least 42 GB.

3.6 Conclusion

We conclude this chapter by a brief summery of results as well as an outlook on
interesting research questions in the context of cut selection for Benders decomposition.

We have presented an improved approach for cut generation in the context of
Benders decomposition. The approach is based on the relation between the alternative
polyhedron, commonly used as a characterization of possible cuts in the context of
Benders decomposition, and the reverse polar set, originally introduced by Balas and
Ivanescu [BI64] in the context of transportation problems.

While the close similarity of the two sets is well-known, we have formally derived
the exact relation between the two and have discussed its implications: In particular,
the alternative polyhedron can be viewed as an extended formulation of the reverse
polar set. A description of the former is much more readily available in the context
of Benders decomposition, which makes it more useful as a basis for a cut generation
routine. However, while all vertices of the alternative polyhedron possess some useful
properties (their support corresponds to minimal infeasible subsystems of the Benders
subproblem [GR90; FSZ10]), those that correspond to vertices of the reverse polar set
have additional advantages: They generate facet cuts, which in particular are always
supporting.

Based on this insight, we have developed a modified version of the cut generation
procedure by Fischetti, Salvagnin, and Zanette [FSZ10] that produces facet cuts
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for all but a sub-dimensional set of subproblem objectives without any additional
computational effort. In addition, the new criterion is more robust with respect to the
formulation of the problem. In particular it always generates supporting Benders cuts,
which is not true for the original procedure proposed in [FSZ10].

Furthermore, our method can be parametrized by the selection of an objective vector
in primal space. This can be used to leverage prior knowledge about the problem,
as well as primal information obtained e. g. by a heuristic algorithm, in the context
of a Benders decomposition approach. Put into context of other well-know selection
criteria, most notably Pareto-optimal or facet-defining cuts, each of these criteria can
be matched to a particular subset of objective functions used in the context of our cut
generation framework.

Finally, we have applied our results in the context of a small case study on the
Transmission Capacity Expansion Problem (TCEP). We have discussed some of the
practical problems encountered in this context, as well as problem-specific topics such
as the generation of upper bounds and the selection of parameters. Furthermore, we
have touched on the compatibility of the algorithm with the addition of new variables
and constraints to the basic TCEP.

While the original motivation for our work was very much the practical application
of Benders Decomposition in the context of Energy System Optimization problems,
most of our results in this chapter turned out to be very general. As such, they are
applicable to all usages of the Benders Decomposition algorithm, regardless of the
particular optimization problem under consideration. In future work, it would therefore
be very interesting to explore the practical impact of our results on a broader set of
problem instances, starting, e. g., with the mixed-integer benchmark problems used in
[FSZ10].

The results of our case study may be seen as a first indication in this direction. We
verified in particular the effects of different choices for the objective function used to
parametrize the cut selection criterion. As an illustrative example, we show that a cut
selection criterion which takes into account the current upper bound can substantially
improve the performance of the algorithm.

Finally, in the context of a deeper empirical evaluation, some further choices with
respect to parametrization of the algorithm as well as the implementation of certain
subroutines would be interesting to analyze more deeply:

• To what extent can a-priori knowledge about the problem (or information obtained
through a fast preprocessing algorithm) be leveraged to inform the selection of a
(static) choice for the subproblem objective (ω, ω0)?

• In a generic implementation of Benders Decomposition, upper bounds are com-
puted solely to decide when the algorithm has converged and, if required, provide
feasible solutions. The dynamic subproblem objective (the second approach in
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our case study) provides a way to leverage upper bound information to improve
the choice of parameters over the course the algorithm. In this context,

– how can our very simple update mechanism be improved, e. g. by stabiliza-
tion or convex combination with some other choices for (ω, ω0)?

– what other methods can be used to generate upper bounds and which
selection of the subproblem objective in the approach from Section 3.4.1 is
ideal for the computation of upper bounds in this context?
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In the previous chapters, we have analyzed the problem of optimally extending a
network infrastructure in order to satisfy a given demand by a set of available suppliers.
The underlying assumption in all cases was that all stakeholders would cooperate
maximally to implement the expansion schedule that is optimal from the point of view
of the economy as a whole. This approach, with agents ignoring individual gain or
cost, is of course extremely optimistic and in most cases unrealistic.

Indeed, if we assume that individual economic agents have control over the expansion
of certain parts of the network, a potential for rent-seeking emerges in many places,
which can lead to individually optimal outcomes that are not globally optimal (or, in
economic terms, welfare-maximizing). This potential is all the more prominent if the
economic interests of the agents are not clearly aligned with minimizing congestion
in the part of the network that they control. Instead, agents may have a stake in the
generation and distribution of electric power, as well. If, for instance, the owner of
the transmission infrastructure is also (economically intertwined with) a generator or
distributor of electrical power, then he might have an incentive to keep congestion in
the network high in order to collect the resulting rents.

163



Chapter 4 Interdependent Scheduling Games

The most harmful realization of the sub-optimalities mentioned above is the case
where a TSO decides to keep congestion in his part of the network high in order
to be able to sell electricity at a higher price within his network region due to the
resulting scarcity (see, e. g., [SO09]). But even if this most radical case, where beneficial
infrastructure is simply not built, can be avoided through regulation (for instance by
unbundling vertically integrated companies in the energy sector, see, e. g., [EU09]),
TSOs may have different priorities which leads to them allocating their resources to
construction projects in a way that differs from the globally optimal allocation. For
instance, a TSO may decide to first build a transmission line that benefits him directly
and delay the construction of a line that is of less immediate benefit to him, even
though the latter line might eliminate a crucial bottleneck in the network that also
affects neighboring regions and hence is more important to global welfare.

This is the scenario that we will study in the following chapter. The results in this
chapter are joint work with Andres Abeliuk, Haris Aziz, Gerardo Berbeglia, Serge
Gaspers, Petr Kalina, Nicholas Mattei, Dominik Peters, Kevin Schewior, Pascal Van
Hentenryck and Toby Walsh. Some results have previously appeared in the proceedings
of the ICJAI 2016 conference as [Abe+16], a corresponding reference is provided where
this is the case. Also, the proofs for these results are generally adopted from [Abe+16]
with slight modifications, unless indicated otherwise.

4.1 Introduction

The setting that we consider in this chapter was first described in [ABV15] in terms
of infrastructure recovery after natural disasters and extreme weather events. The
underlying idea is that different agents each control a set of services that they sell to
the community for a fixed reward per unit of time. These services are connected by
dependencies, meaning that some services need other services to be available in order
to function. Note that these other services may be controlled by the same agent or
by some other agent. Also, the dependency structure between services is transitive:
If service a is required for service b to be available, then naturally any service c that
depends on b also needs a to be available in order to function.

After a disaster, all of these services break down and have to be restored. Each agent
can decide in which order he wishes to restore (or deploy) the services controlled by
him, but a service will only be active (and hence generate a reward) once not only the
service itself but also all other services that it depends on are deployed. This leads to a
situation where the reward that any agent receives depends on both his own decisions
and the decisions of other agents, who control services that his services depend on.

The problem that we consider in this chapter can be understood as a generalization
of the problem described by Abeliuk, Berbeglia, and Van Hentenryck [ABV15], which
is restricted two two agents of which only one may affect the other agent’s payoff.
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In contrast, we allow any number of agents with arbitrary interdependencies between
each other. Our setting can readily be applied to other situations in the context of
power systems, such as the one outlined above: Consider a city where the distribution
of electricity in different areas is licensed to different companies. Each community
connected to the grid generates a certain reward for the company holding the license
for the respective area. However some areas may not be immediately connected to the
transmission grid, instead they might need power to transfer through a neighboring
region in order to reach their households. The activity of the service of supplying a
community with electricity may thus depend on the availability of a different service,
i. e., the availability of electricity in a neighboring region. Furthermore, this region
could possibly be controlled by a different agent, making the reward reaped by the first
agent contingent on decisions of the second agent.

4.1.1 Game-theoretic Concepts
Definition 4.1
Let k ∈ N be the number of players. For every player i ∈ [k], let Ai be a finite set of
actions and denote the action space by A :=×i∈[k]Ai. We call an element a ∈ A an
action profile. For every player i ∈ [k], let ui : A → R≥0 be a utility function. The
tuple (k, (A1, . . . , Ak), u) denotes a normal form game.

For a player i ∈ [k], we write a−i ∈×j∈[k]\{i}Aj for an action profile’s sub-vector
consisting of the actions of all other players. Analogously, we allow the (formally
incorrect, but very common) notation ui(ai, a−i) for the utility function of player i
evaluated in an action profile a′ with a′i = ai and a′−i = a−i.
Definition 4.2 (Nash Equilibrium)
Let (k, (A1, . . . , Ak), u) be a normal form game. An action profile a ∈ A is called pure
Nash equilibrium (PNE) if for all players i ∈ [k],

ui(a) ≥ ui(a
′) for all a′ ∈ A with a−i = a′−i.

Definition 4.3 (Price of Anarchy / Stability)
Let G = (k, (A1, . . . , Ak), u) be a normal form game and denote by N ⊂ A the set of
action profiles that are pure Nash equilibria.

a) The price of anarchy of G is given by

PoA(G) =
maxa∈A

∑
i∈[k] ui(a)

minā∈N
∑

i∈[k] ui(ā)
.

b) The price of stability of G is given by

PoS(G) =
maxa∈A

∑
i∈[k] ui(a)

maxā∈N
∑

i∈[k] ui(ā)
.
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It obviously holds for every normal form game G that PoS(G) ≤ PoA(G). Further-
more, the above definitions immediately imply the following bounds for the sum of
utilities in any Nash equilibrium.

Remark 4.4
Let G = (k, (A1, . . . , Ak), u) be a normal form game and u∗ := maxa∈A

∑
i∈[k] ui(a)

the maximal total utility achievable by any action profile. Let ā be a Nash equilibrium.
Then,

u∗

PoA(G)
≤
∑
i∈[k]

ui(ā) ≤
u∗

PoS(G)
.

4.1.2 Interdependent Scheduling Games

We will now define the mathematical model used to express the problems considered
in this section. An interdependent scheduling game is defined as follows:

Definition 4.5
Let k ∈ N and G := (T,E) be a directed, transitive and acyclic graph (see Appendix A.2)
with a vertex weight function r : T → N0 and a vertex labelling function ρ : T → [k].
We call the tuple (k,G, r, ρ) an interdependent scheduling game (ISG). If r(v) = 1 for
all v ∈ T , we say that the game has unit rewards.

The set of vertices T of the graph G denotes the set of services present in the game.
The set of edges E captures the dependency structure between these services. As
mentioned above, we assume that these dependencies are transitive but acyclic. The
weight function r assigns to each service the reward per unit of time that the service
generates when it is active. The labelling function ρ assigns each service to the player
i ∈ [k] that controls it: She may decide, in which order she wants to deploy the services
under her control, this order is given by the following definition of a schedule.

Definition 4.6
Let (k, (T,E), r, ρ) be an interdependent scheduling game. For every i ∈ [k], we define
the set of services that player i controls by Ti := {v ∈ T | ρ(v) = i}. A schedule is a
tuple π := (π1, . . . , πk) where each πi : Ti → {1, . . . , |Ti|} is a permutation of the set
Ti. For every v ∈ T , we write π(v) := πρ(v)(v).

We assume for reasons of simplicity that every service requires the same amount
of time to deploy, this allows us to use a suitable discretization of time to say that if
π(v) = t for some v ∈ T , then v is deployed at time t. Similarly, we will assume that
|T1| = · · · = |Tk| =: q in order to be able to consider a universal time horizon q. If
|Ti| < q then we can extend (T,E) by a suitable number of isolated vertices assigned
to player i that have no effect on the utility of any player.
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Note that the assumptions of acyclicity and unit time are not entirely without loss
of generality. We will discuss their effect and possible generalizations in Section 4.6.

The graph G captures the dependency structure among the set T of services: For
every v, w ∈ T , we say that w depends on v if and only if (v, w) ∈ E and we denote
the subgraph of G induced by the vertices in Ti by Gi = (Ti, Ei). As mentioned above,
a service becomes active (and thus begins to generate a reward) as soon as the service
itself as well as all services that it depends on are deployed. The utility for every player
thus depends on the subset of services that are active at each timestep in the following
way:

Definition 4.7
Let (k, (T,E), r, ρ) be an interdependent scheduling game and let π be a schedule. The
activation time of a service v ∈ T is given by aπ(v) := max{π(w) | w ∈ {v} ∪N in(v)}.

The reward Ri(π) of player i under schedule π is given by

Ri(π) :=

q∑
t=1

∑
v∈Ti

aπ(v)≤t

r(v) =
∑
v∈Ti

(q + 1− aπ(v))r(v).

The total reward is given by R(π) :=
∑k

i=1Ri(π).

Note that transitivity of the graph (T,E) allows us to restrict the definition of the
activation time for a service v to the immediate neighborhood of v, since every service
that is required for activation of a service on which v depends is already contained in
N in(v) by transitivity.

Finally, observe that an ISG (k, (T,E), r, ρ) is indeed a normal form game according
to Definition 4.1: With [k] as the set of players and the set of permutations of Ti as
the set of actions of player i, every schedule π is an action profile and the function Ri

is the utility function for player i.
We can use the following graphical representation for both instances and solutions of

Interdependent Scheduling Games (see Fig. 4.1): Given an Interdependent Scheduling
Game (k, (T,E), r, ρ), every service v ∈ T is represented by a node in a grid where the
nodes in the i-th row correspond to the services in Ti (those which are controlled by
player i). Every service v ∈ T is labeled with its reward r(v) and its dependencies are
indicated by the arcs shown between different services. For ease of presentation, we
might omit arcs that are implied by transitivity of the dependency relation, hence the
transitive closure of the shown graph will yield the original graph (T,E).

Note that in this representation, a service v is identified only by the player that
controls it, the value r(v) and the edges in NG(v). While there may be services that
are indistinguishable by these three characteristics, these will also be interchangeable
in any solution to the Interdependent Scheduling Game without affecting the utility
of any player and hence whenever two different solutions yield the same graphical
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πA
1 : 10 1 1

πA
2 : 1 100 100

πB
1 : 1 1 10

πB
2 : 100 100 1

Figure 4.1: The instance from Example 4.8 and two possible solutions. While player 1 receives
a higher reward under the schedule πA (33 vs. 15), the total reward is higher
under πB (336 vs. 516).

representation, we may say that these solutions are equivalent. Alternatively, if the
rewards are irrelevant (e. g. if we consider a uniform ISG), we might label some services
with an identifier such that we can refer to them in the text.

An example of an Interdependent Scheduling Game, two possible solutions and their
graphical representations are presented in the following example.

Example 4.8
Consider the following example: Let k = 2 and define a graph (T,E) by T =
{v1, v2, v3, w1, w2, w3} and E = {(v1, w1), (v2, v3), (v2, w2), (v2, w3)}. Furthermore, let
ρ(v1) = ρ(v2) = ρ(v3) = 1 and ρ(w1) = ρ(w2) = ρ(w3) = 2, as well as r(v1) = 10,
r(v2) = r(v3) = r(w1) = 1, and r(w2) = r(w3) = 100. A graphical representation of
the instance and of two solutions πA and πB is shown in Fig. 4.1.

For πA, we have R1(π
A) = 3·10+2·1+1 = 33 and R2(π

A) = 3·1+2·100+100 = 303.
For πB on the other hand, player 1 receives R1(π

B) = 3 · 1 + 2 · 1 + 10 = 15 whereas
player 2 receives R2(π

B) = 3 · 100 + 2 · 100 + 1 = 501. We see that while player 1
receives a higher reward under the schedule πA, he can sacrifice some of it to enable
an alternative solution πB with higher total reward.

4.2 Related Work
The most immediate precursor to the work presented in this chapter (as mentioned
above) is [ABV15], where a limited variant of the setting presented above was considered.
The (significant) restriction imposed by the authors is that only two players are
considered and the reward of one of these players is independent of decisions made
by the other player, i. e., there is only one player whose services depend on services
controlled by the other player.

The general setting of interdependent scheduling games bears a strong resemblance
with the area of machine scheduling. Indeed, a problem instance as defined above can
be seen as a scheduling problem on k identical parallel machines with unit processing
times according to the classification of [LRB77] with two additional types of constraints:
machine eligibility restrictions and soft precedence constraints. This connection is
worth exploring a little further, since we will be able to apply some results from the
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scheduling literature to prove complexity results about our particular setting. In fact,
it will turn out that our setting fits right between two classes of well-known scheduling
problems, one of which is efficiently solvable whereas the other one is known to be
NP-hard.

Interpreting an ISG in the context of machine scheduling problems, every player is
represented by a machine. The deployment of each service corresponds to a job with
processing time 1, independently of the machine used. However, the unique machine
that is eligible for any job is determined by the labelling function ρ. The graph (T,E)
specifies a precedence relation between the jobs, these constraints however are not
binding, rather a penalty (in the form of forgone reward) has to be paid that depends
on the violation of the constraint.

From the objective functions typically considered in the scheduling literature, the
weighted sum of completion times

∑
v∈T r(v)aπ(v) is most closely related to the total

reward as defined in Definition 4.7. More specifically, it holds that

CΣ(π) :=
∑
v∈T

r(v)aπ(v) =
k∑

i=1

∑
v∈Ti

(q + 1)r(v)−Ri(π) =
∑
v∈T

(q + 1)r(v)−R(π). (4.1)

Similarly, the unweighted sum of completion times naturally corresponds to the total
reward in the same way for the case of unit rewards (r(v) = 1 for all v ∈ T ). It can be
observed that maximization of the total reward and minimization of the weighted sum
of completion times differ only by the constant

∑
v∈T (q + 1)r(v), which is independent

of the schedule and hence for most of the problems considered in this chapter, both
objective functions are equivalent.

The constant does, however, depend on the size of the instance, which means that
both objective functions behave differently once we consider their asymptotic values
for a series of instances with growing size. We will point out these differences whenever
they are relevant.

The base version of the problem of minimizing the weighted sum of completion
times on identical parallel machines with unit processing times has long been known
to be efficiently solvable (see, e. g., [Law64]). Machine eligibility restrictions have
been considered in [Pin16], where it is proved that makespan minimization with unit
processing times is efficiently solvable if eligibility constraints obey a special structure.
The minimization of weighted sum of completion times (again, for unit processing
times) is also possible in polynomial time [BJK97]. Alternatively, eligibility constraints
can be modeled by imposing sufficiently high processing times if a job is processed on
the wrong machine (which however leaves both the domain of identical machines and
that of unit processing times).

Precedence constraints also appear regularly in the scheduling literature. However,
they are usually assumed to be binding in the sense that a job cannot be processed
before its dependencies are completed. In contrast, the setting that we consider does
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allow for a service to be deployed before its dependencies are satisfied, albeit at the
cost of slightly reducing the reward obtained from that service.

Whenever (hard) precedence constraints are introduced, the resulting problem almost
always becomes NP-hard, even for very restricted cases (see, e. g., [LR78] for the case
of a single machine and unit processing time or unit rewards, [LRB77] for the case of
m machines with both unit processing time and unit reward). One of the questions
that are answered in this chapter is therefore whether the transition to soft precedence
constraints (with a fixed penalty per unit of violation equal to the job’s weight) makes
previously NP-hard problems efficiently solvable.

A different dimension considered in this chapter is that of game-theoretic solution
concepts for interdependent scheduling games. There exists a significant body of
literature on “Scheduling Games”, however the settings that are typically considered
differ markedly from the scenario treated in this chapter:

Most works can be classified into the domains of complete and incomplete infor-
mation (see [HMU07]). In the latter case, agents represent machines (e. g., [Kou14])
or (collections of) jobs (e. g., [ABP06]) and may decide to reveal information about
their parameters. In the case of complete information, the typical setting is that of
agents choosing a machine on which to process the jobs that they control. Here, the
order in which jobs are performed on one machine is determined by some previously
known scheduling policy. This raises the mechanism design question of determining a
scheduling policy for each machine in such a way as to incentivize agents to chose an
assignment of their jobs to machines that is as close to globally optimal as possible
(e. g., [CKN09]).

All of the literature cited above does not assume the existence of any precedence
constraints. Indeed, game-theoretical properties of scheduling contexts with precedence
constraints seem to have not received much attention hitherto. The only strain of
literature in this direction that we are aware of considers multi-agent project scheduling
where agents may decide to speed up (at additional cost) the completion of individual
services that they control in order to achieve an earlier termination of the entire project,
for which they in turn receive a previously determined reward [BB11; Agn+15].

4.3 Reward Maximization and Best Responses

We first consider two natural decisions problems in the context of Interdependent
Scheduling Games.

Name: ISG Reward Maximization
Input: An ISG (k, (T,E), r, ρ) and an integer W .
Question: Is there a schedule π such that R(π) ≥ W?
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Name: ISG Best Response
Input: An ISG (k, (T,E), r, ρ), player i ∈ [k], schedule π−i for all

players {1, . . . , k} \ {i} and an integer W .
Question: Is there a schedule πi for player i such that Ri(π−i, πi) ≥ W?

Note that ISG Best Response is a generalization of ISG Reward Maximization
for a single player where additional soft dependencies may prevent a service from
generating a reward before a fixed timeslot.

Ignoring machine eligibility constraints for a moment, one might be tempted to think
that ISG Reward Maximization is in fact equivalent to the (NP-hard) scheduling
problem (n|m|I, prec, pi = 1|

∑
Ci) in the notation from [LRB77]: the problem of

minimizing the (unweighted) sum of completion times in a setting with m identical
machines and n jobs with unit processing times under precedence constraints. As we
have seen in (4.1), minimizing the sum of completion times is the same as maximizing
the total reward. If we could thus assume that every reward-maximizing schedule was
such that all services activate immediately, then we would in fact be looking for a
schedule satisfying all dependencies as strict precedence constraints.

And indeed, for Interdependent Scheduling Games with uniform rewards, the follow-
ing simple lemma holds:

Lemma 4.9
Let (k, (T,E), r, ρ) be an Interdependent Scheduling Game with uniform rewards and
|T1| = |T2| = · · · = |Tk| =: q. Let π be an arbitrary solution. Then,

kq ≤ R(π) ≤ kq(q + 1)

2
.

Proof. The instance contains kq services, each contributing a reward of 1 for every
timestep in which the respective service is active. Every service activates at the latest
in the last timestep. In this case, each service contributes a reward of exactly 1, totaling
kq. On the other hand, if every service activates immediately, the total reward per
player is

∑q
t=1(q + 1− t) =

∑q
t=1 t =

q(q+1)
2 . 2

For uniform ISGs, a conflict-free schedule (if it exists) thus also maximizes total
reward, as it achieves the maximal possible reward of k·q(q+1)

2 . However, in general
such a schedule need not exist. Furthermore, if we drop the assumption of uniformity,
then there might be no welfare-maximizing schedule that is also conflict-free, even if a
conflict-free schedule exists, as the following example will show:

Definition 4.10
Let (k, (T,E), r, ρ) be an ISG and π a corresponding schedule. If aπ(v) = π(v) for all
v ∈ T , then π is called conflict-free.
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πA
1 : 1 1 1

πA
2 : 1 100 100

R(πA) = 309

πB
1 : 1 1 1

πB
2 : 1100 100

R(πB) = 407

Figure 4.2: Two schedules for an ISG that demonstrate that a conflict-free schedule might
not be welfare-maximizing (see Example 4.11): The unique (up to permutation
of equivalent services) welfare-maximizing schedule πB has a conflict, while the
unique (up to permutation of equivalent services) conflict-free schedule has lower
welfare.

Example 4.11 ([Abe+16])
Consider the ISG and two schedules πA and πB shown in Fig. 4.2. The schedule πA

on the left is conflict-free while the schedule πB on the right has a conflict (the first
service of player 2 only activates at time 2). Despite the conflict, πB has higher welfare;
the two services with reward 100 become active simultaneously in step two, providing
a higher reward to player 2 and more total welfare. The schedule πA, on the other
hand, is the only conflict-free schedule (up to permutation of equivalent services): The
order of services for player 1 is uniquely determined by the internal dependencies and
player 2 has only one service that can immediately activate if it is scheduled first.

The following lemma will prove useful in several of our proofs in this chapter. It
captures the fact that for an individual player, it is always advantageous to deploy
a service only after at least those of its prerequisites have been deployed that are
controlled by the same player. In other words, we can always find a best response that
is “conflict-free” with respect to the services controlled by a single player.

Lemma 4.12 ([Abe+16])
Let (k, (T,E), r, ρ) be an ISG and π−i a schedule for all players except player i. Then,
there exists a best response πi for player i such that

πi(u) < πi(v) for all (u, v) ∈ Ei. (4.2)

Proof. For any player i ∈ [k] and schedule πi of that player, let σ(πi) := |{v ∈ Ti :
∃(u, v) ∈ Ei with πi(u) > πi(v)}| denote the number of services in Ti that depend on
another service in Ti which is scheduled later. Let π′

i denote a best response of player
i such that σ(π′

i) is minimal among all best responses. We suppose for contradiction
that the statement is false, therefore σ(π′

i) ≥ 1. Choose (u, v) ∈ Ei with π′
i(u) > π′

i(v)
in such a way that there is no u′ with (u′, v) ∈ Ei and π′

i(u
′) > π′

i(u).
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v1 v v2 … u1 u u2

v1 vv2 … u1 u u2

πi … …

π′
i

… …

Figure 4.3: Construction of the schedule π′
i in the proof for Lemma 4.12.

Consider the following modified schedule π∗
i for player i (see Fig. 4.3):

π∗
i (w) :=


π′
i(w)− 1 π′

i(v) + 1 ≤ π′
i(w) ≤ π′

i(u)

π′
i(u) w = v

π′
i(w) else.

The following two properties hold:

a) The schedule π∗
i is also a best response. The only service that is scheduled to

a later time in π∗
i (and hence could cause itself or services depending on it to

generate a smaller reward) is v. However, v did not activate before time step
π′
i(u) under π′ and as π∗

i (v) = π′
i(u) the reward generated by v does not change.

The same holds for all services that depend on v.

b) σ(π∗
i ) < σ(π′

i). First, note that v does not contribute towards σ anymore as
π∗
i (v) > π∗

i (u) (the same holds for all other services that v depends upon by the
maximality of u). Now, consider any service w that did not contribute to σ(π′

i).
As the ordering among all services except v remains the same, such a w can only
contribute to σ(π∗

i ) if it depends on v and π′
i(v) < π′

i(w) < π∗
i (v) = π′

i(u). But
then, it must also depend on u by transitivity and hence it contributed to σ(π′

i)
already.

From a) and b), we obtain a contradiction to minimality of σ(π′
i), which concludes the

proof. 2

Looking at the proof of this lemma, it is easy to see that, in contrast to Example 4.11,
conflict-freeness is a necessary condition for reward-maximization in the case of a single
player.

Theorem 4.13 ([Abe+16])
For one player and general rewards, every welfare-maximizing schedule is a conflict-free
schedule.
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Proof. This follows by an observation about the proof of Lemma 4.12: In the one-
player case, service u activates immediately under schedule π′

i by its maximality among
dependencies for which v has to wait. Hence, it also activates immediately under
schedule π∗

i , which is one time step earlier than under schedule π′
i. Schedule π∗

i hence
generates strictly more reward than schedule π′

i. Thus, any schedule π with σ(π) > 0
cannot be welfare-maximizing. 2

The following two theorems prove that the problem ISG Reward Maximization
is NP-complete for quite restricted instances as soon as either rewards are non-uniform
or the number of players can be arbitrarily large. This is in line with the complexity
results for strict precedence constraints mentioned above, which shows that softness of
the precedence constraints does not make the corresponding problems computationally
easier. We will use reductions from the following two problems, which are known to be
NP-hard:

Name: Min 2SAT [KKM94]
Input: An integer k and a Boolean formula F in Conjunctive Normal

Form where each clause contains exactly two literals.
Question: Is there an assignment to the variables of F such that at most

k clauses are satisfied?

Name: Single Machine Weighted Completion Time [LR78]
Input: A set of jobs Ji ∈ J . Each job has a weight wi and a processing

time pi = 1. A precedence relation ≺ such that if i ≺ j then Jj
cannot be scheduled before Ji. An integer k.

Question: If Ci is the completion time of job Ji, is there an ordering of
the jobs such that

∑
i∈J wiCi ≤ k?

Theorem 4.14 ([Abe+16])
ISG Reward Maximization is NP-complete, even when the rewards are uniform and
each player has two services.

Proof. The problem is in NP since we can efficiently calculate the welfare of a given
schedule. We reduce from the NP-hard problem Min 2SAT.

For each variable x in F , create a player Px with services Tx = {x,¬x}. For each
clause c in F , create a player Pc with services Tc = {c1, c2}. For each clause c = (`1∨`2),
the precedence graph contains (c1, c2), (`1, c1), and (`2, c1). Rewards are uniform, and
we set W = 3n+ 3m− k, where n and m are the number of variables and clauses of F .

It remains to prove that F has an assignment satisfying at most k clauses if and
only if the ISG has a schedule generating a reward of at least W . For the forward
direction, suppose F has an assignment α : var(F ) → {true, false} satisfying at most k

174



4.3 Reward Maximization and Best Responses

Px:

Py:

Pc:

x ¬x

y ¬y

c1 c2

Figure 4.4: An example for the substructure used in Theorem 4.14 to represent the clause
c = (x ∨ ¬y). The schedule generates maximal reward if and only if all literals
that appear in the clause are scheduled to the first slot.

clauses. Consider the schedule where, for each variable x, the player Px schedules first
the literal of x that is set to false by α, i. e., x is scheduled before ¬x iff α(x) = false.
Additionally, for each clause c, the service c1 is scheduled before c2. This schedule
generates a reward of 3 for each variable player: a reward of 1 at the first time step and
a reward of 2 at the second time step. For a satisfied clause c, the schedule generates a
reward of 2: at the first time step no reward is generated since the literal satisfying
the clause is scheduled at the second time step and there is an arc from that literal to
c1, and a reward of 2 is generated at the second time step. For an unsatisfied clause c,
the schedule generates a reward of 3: since both literals are set to false, they are both
scheduled at the first time step. Thus, the total reward generated for this schedule is
at least 3n+ 3m− k.

For the reverse direction, let π be a schedule generating a reward of at least W .
Consider the assignment α : var(F ) → {true, false} with α(x) = false iff player Px

schedules x at the first time step. Note that at the second time step, each player
generates a reward of 2. Also, each player corresponding to a variable generates an
additional reward of 1 at the first time step since his services have in-degree 0. So, at
least 3n+ 3m− k − (3n+ 2m) = m− k additional clause players generate a reward of
1 at the first time step. But, for each such clause c, the service c1 is scheduled before
c2 and both literals occurring in c have to be scheduled at the first time step, which
means that the assignment α sets these literals to false. Therefore, α does not satisfy
the clause c. We conclude that α satisfies at most k clauses. 2

Theorem 4.15 ([Abe+16])
For general rewards, ISG Reward Maximization is NP-complete even for a single
player.

Proof. We give a reduction from the NP-hard problem Single machine weighted
completion time.

For each job Ji ∈ J , create service ti with reward ri = wi and consider the same
precedence graph as the one given for jobs. We set W = (|J | + 1)

∑
i∈J wi − k. We
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prove that an ordering π of jobs has a weighted completion time of at most k if and
only if the schedule π in the ISG satisfies R(π) ≥ W .

For an ordering π, let Ci(π) denote the completion time of job Ji in the machine
scheduling problem and note that in the ISG, the service ti is also completed at time
Ci(π). Then, the weighted sum of completion times for π in the scheduling instance is
given by

∑
i∈T wiCi =

∑
i∈J riCi.

If π is a solution for the scheduling problem, then in particular it satisfies all
precedence constraints. Thus, in the ISG, all services activate immediately and
R(π) =

∑
i∈T (|T |+ 1− Ci(π)) ri = (|T |+1)

∑
i∈T ri−

∑
i∈T riCi(π). But this implies

that if
∑

i∈J wiCi(π) ≤ k, then R(π) ≥ W .
Conversely, if π is a schedule for the ISG with R(π) ≥ W , then by Theorem 4.13,

there exists a schedule π′ which is conflict free with R(π′) ≥ R(π) ≥ W . But now,
using the same argument as above, we obtain that

∑
i∈J wiCi(π

′) ≤ k, which concludes
the proof. 2

Turning to the problem ISG Best Response, which has to take into account
precedence constraints imposed by other players, we recall that the problem is a
generalization of ISG Reward Maximization for a single player. Theorem 4.15 thus
immediately implies the following corollary.

Corollary 4.16
For general rewards, ISG Best Response is NP-complete.

For uniform rewards, on the other hand, a player can efficiently compute his best
response to the schedule of all other players’ services. In the following lemma, given an
ISG (k, (T,E), r, ρ), a player i ∈ [k] and a service v ∈ T \ Ti, we write π−i(v) for the
time that service v is deployed under any schedule (πi, π−i), since this time does not
depend on πi (although its activation time might).

Lemma 4.17
Let (k, (T,E), r, ρ) be an ISG and let i ∈ [k] and let π−i be a vector of schedules for all
players except i. Let η(v) := max{π−i(w) : w ∈ T \ Ti, (w, v) ∈ E}. Then, πi is a best
response to π−i if the following conditions hold for all v ∈ Ti:

a) πi satisfies (4.2), and

b) if w ∈ Ti with πi(w) ≥ πi(v) and πi(w
′) ≤ πi(v) for all w′ ∈ Ti with (w′, w) ∈ Ei,

then η(v) ≤ η(w).

In the statement of the above lemma, η(v) represents the lower bound on v’s activation
time imposed by π−i. Note that, in particular, (u,w) ∈ Ei implies that η(w) ≥ η(u)
by transitivity of E.
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Proof. Let πi be a schedule for player i satisfying the conditions above. Suppose
for contradiction that πi is not a best response. Let π∗

i be a best response satisfying
condition (4.2) (which exists by Lemma 4.12) which maximizes the first index for
which any such best response differs from πi. Formally, there exists n ∈ N such that
(π∗

i )
−1(i) = (πi)

−1(i) for all i < n and there is no best response π′
i satisfying condition

(4.2) with (π′
i)
−1(i) = (πi)

−1(i) for all i < n+ 1.
We will prove that there exists a best response coinciding with πi in the first n+ 1

entries, which yields a contradiction. Let a := (π∗
i )

−1(n) and b := (πi)
−1(n) denote

the services scheduled at timestep n by the schedules π∗
i and πi, respectively. Since πi

and π∗
i coincide in the first n entries, it holds that π∗

i (a) < π∗
i (b). We distinguish three

cases:

i) η(b) ≤ π∗
i (a). In this case, we adapt π∗

i by moving b to the position of a and
moving all services between π∗

i (a) and π∗
i (b) by one position. Formally,

π∗∗
i (w) :=


π∗
i (w) + 1 π∗

i (a) ≤ π∗
i (w) < π∗

i (b)

π∗
i (a) = k w = b

π∗
i (w) else.

Because of condition a), π∗∗
i satisfies condition (4.2) and b activates immediately

under the schedule π∗∗
i . The reward generated by service b thus increases by

π∗
i (b)−π∗

i (a) and at the same time the reward generated by at most π∗
i (b)−π∗

i (a)
other services decreases by 1. Hence, π∗∗

i is still a best response and satisfies
condition (4.2). Furthermore, (πi)−1(n) = (π∗∗

i )−1(n), contradicting maximality
of π∗

i .

ii) π∗
i (a) < η(b) < π∗

i (b). We use the procedure from above to move b to the position
η(b), thereby constructing a new best response π̃∗

i with π̃∗
i (b) = η(b), which still

maximizes the first index for which any best response satisfying (4.2) differs from
πi. Then, proceed as in iii) below.

iii) π∗
i (b) ≤ η(b). Then, by condition b) above and since π∗

i satisfies (4.2), it holds
that η(b) ≤ η(a). Therefore, η(a) ≥ η(b) ≥ π∗

i (b), which means that a will never
activate before time π∗

i (b). We move b to the position of a (without any effect on
the generated reward, since both a and b will not activate before π∗

i (b)), making
sure that all successors of a can be re-scheduled to a position no later than π∗

i (b),
as well.
Formally, we construct a schedule π∗∗

i as follows: Set π∗∗
i (b) := π∗

i (a). Let
a′ = argmin{π∗

i (v) | v ∈ Nout(a)} be the earliest successor of a. If π∗
i (a

′) > π∗
i (b),

set π∗∗
i (a) := π∗

i (b) and π∗∗
i (w) := π∗

i (w) for all other services. Otherwise, set
π∗∗
i (a) := π∗

i (a
′) and let a′′ be the earliest successor of a′. Proceed with a′′ (and

possibly its earliest successor) as above until either no more successors are left
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or an earliest successor a∗ satisfies π∗
i (a

∗) > π∗
i (b). Since η(a) ≥ π∗

i (b), none of
the services that were moved activated before π∗

i (b) anyway and thus all rewards
stay the same and the resulting schedule π∗∗ is still a best response. Furthermore,
it still satisfies condition (4.2). However, (πi)−1(n) = (π∗∗

i )−1(n), contradicting
maximality of π∗

i .

In all three cases, we reach a contradiction which proves that our assumption was
wrong and πi is indeed a best response. 2

Using this lemma, we can prove the following theorem:

Theorem 4.18 ([Abe+16])
For ISG with uniform rewards, the problem ISG Best Response is solvable in
polynomial time.

Proof. We give a greedy algorithm that solves the problem optimally. Consider the
subgraph Gi of G induced by the set Ti of services belonging to player i and let π−i

be a vector of schedules for all other players. For any v ∈ Ti, let η(v) be defined as in
Lemma 4.17.

Starting from the first time step, successively schedule a service which minimizes η
among all services with no incoming edges in Gi. Such a service always exists, as G
(and hence all subgraphs) is acyclic. The service with all its (outgoing) edges is then
removed from Gi.

The resulting schedule obviously satisfies both conditions from Lemma 4.17 and is
hence a best response. 2

Again, as ISG Best Response covers all instances of ISG Reward Maximization
with only a single player,Theorem 4.18 immediately yields the following.

Corollary 4.19 ([Abe+16])
For uniform rewards and a single player, ISG Reward Maximization can be solved
in polynomial time.

4.4 Nash Dynamics and Equilibria
The problem of ISG Reward Maximization presented in the previous section dealt
with determining the globally optimal schedule for an Interdependent Scheduling Game.
However, in order to implement such a schedule, a centralized entity needs to be able
not only to compute it but also to compel the agents to act according to this schedule.

In many real-life applications, such an entity does not exist or does not dispose of
sufficient coercive power. Instead, agents are free to chose a schedule that suits their
own interest as well as possible.
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πA
1 : c a d b

πA
2 : d a c b

πA
2 response to πD

1

πB
1 : d b c a

πB
2 : d a c b

πB
1 response to πA

2

πC
1 : d b c a

πC
2 : c d b a

πC
2 response to πB

1

πD
1 : c a d b

πD
2 : c d b a

πD
1 response to πC

2

Figure 4.5: The instance from Example 4.20. The figure shows four schedules πA, πB , πC , πD

where each schedule arises from one player choosing a best response to the previous
schedule while the other player keeps his current schedule.

We discussed the computational complexity of determining such an individually
optimal schedule (a best response) in the previous section. In this section, we will
investigate the consequences of different agents each acting in order to maximize their
own reward while observing (or making assumptions about) the actions of other agents.

A natural question is whether a steady state always emerges from a situation where
the schedule chosen by each agent is public knowledge and all agents may update their
decision in reaction to the information about other agents’ choices. This need not be
the case, as the following example shows.

Example 4.20 ([Abe+16])
Consider the instance of an ISG and the sequence of best responses shown in Fig. 4.5:
From πA to πB, player 1 updates his schedule to choose a best response, from πB

to πC , player 2 updates his schedule, from πC to πD, player 1 updates his schedule
and from πC to πD, player 2 updates his schedule. Now, player 1 can choose a best
response that takes us back to the schedule πA, completing the cycle. Note that each of
the best responses is non-unique and indeed, choosing a different best response might
break the cycle.

In light of Example 4.20, where a steady state does not arise automatically from
players iteratively selecting best responses to each others’ actions, the question arises
whether such a state exists in the first place. Such a schedule where no player has
an incentive to unilaterally deviate to a different schedule is known as a pure Nash
equilibrium (see Definition 4.2).
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π1: 1 4 3 2

π2: 2 4 1 3

Figure 4.6: An ISG for two players with general rewards which does not admit a pure Nash
equilibrium (see Theorem 4.21).

4.4.1 ISGs with General Rewards

In the case of general rewards, this is not necessarily the case, even for two players.

Theorem 4.21 ([Abe+16])
There exists an ISG with two players and general rewards which does not admit a pure
Nash equilibrium (PNE).

Proof. Consider the the instance shown in Fig. 4.6. Note that the node labels indicate
the reward associated with each service, but we will also use them as identifiers for the
respective service, i. e., service 1 for player 1 is the service which is controlled by player
1 and has reward 1.

Assume that this game admits a PNE. Any best response of player 1 must satisfy
that service 4, being the highest reward service, is scheduled immediately after service
1. Therefore, any possible best response of player 1 has to adopt one of the following
schedule configurations (we denote, e. g., by (1, 4, ∗, ∗) the set of schedules that have
service 1 at the first position and service 4 at the second):

a) π1 ∈ (1, 4, ∗, ∗),

b) π1 ∈ (∗, 1, 4, ∗) or

c) π1 ∈ (∗, ∗, 1, 4).

For the same reason, in any best response of player 2, service 4 must be scheduled
as soon as possible. These observations narrow the set of possible pure Nash equilibria
to three cases, each corresponding to player 1 playing a schedule conforming to one of
the patterns listed above:

a) If in a pure Nash equilibrium, player 1 selects a schedule of the form π1 ∈
(1, 4, ∗, ∗), then player 2’s unique best response is π2 = (2, 4, 1, 3). But then,
player 1’s unique best response is π1 = (3, 1, 4, 2), a contradiction.

b) If in a pure Nash equilibrium, player 1 selects a schedule of the form π1 ∈
(∗, 1, 4, ∗), then player 2’s unique best response is π2 = (1, 3, 4, 2). But then,
player 1’s unique best response of π1 = (1, 4, 2, 3), a contradiction.
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c) If in a pure Nash equilibrium, player 1 selects a schedule of the form π1 ∈
(∗, ∗, 1, 4), then player 2’s best response must satisfy π2 ∈ {(2, 1, 3, 4), (1, 3, 2, 4)}.
But if π2 = (2, 1, 3, 4), then π1 = (3, 1, 4, 2) is player 1’s unique best response
and if π2 = (1, 3, 2, 4), then π1 = (1, 4, 3, 2) is player 1’s unique best response. In
both cases, we arrive at a contradiction.

Hence, none of the three cases can be a Nash equilibrium, which concludes the proof.2

We can use the above example to construct a reduction from the well-known NP-hard
problem 3SAT to show that deciding whether a pure Nash equilibrium exists for a
particular instance of an ISG is NP-hard.

Name: 3SAT [Kar72]
Input: A Boolean formula F in Conjunctive Normal Form where each

clause contains exactly 3 literals.
Question: Is there an assignment to the variables of F such that all clauses

are satisfied?

Theorem 4.22 ([Abe+16])
Deciding whether an ISG with general rewards admits a pure Nash equilibrium is
NP-hard, even when each player has at most 4 services.

Proof. We give a reduction from the NP-hard problem 3SAT.
For each variable x in the formula F , create a player Px with services Tx = {x,¬x}.

Both services have the same reward r(x) = r(¬x) = 1 (we may add two dummy
services with reward 0). For each clause c in F , create a player Pc with services Tc =
{c1, c2, c3, dc} and set rewards to be r(dc) = 3 and r(c1) = r(c2) = r(c3) = 4. For each
clause c, we create a gadget Gc corresponding to a copy of the ISG from Theorem 4.21
which admits no PNE and consists of 2 players with 4 services each. For each clause
c = (`1 ∨ `2 ∨ `3) in F , the precedence graph contains arcs (`1, c1),(`2, c2),(`3, c3) and
arcs from service dc to the 8 services of gadget Gc (see Fig. 4.7).

It remains to prove that F has an assignment satisfying all clauses if and only if
the ISG admits a pure Nash equilibrium. For the forward direction, suppose F has
an assignment α : var(F ) → {true, false} satisfying all clauses. Consider the schedule
where, for each variable x, the player Px schedules first the literal of x that is set to
true by α, i. e., x is scheduled before ¬x iff α(x) = true. For each clause c, the player
Pc schedules first its services that depend on literals set to true, then the services
that depend on literals set to false and finally service dc. Services in gadget Gc can
be scheduled arbitrarily. This schedule is a pure Nash equilibrium: All services of
each variable and clause player activate immediately when they are scheduled and
the higher-valued services are scheduled first. Finally, the players in gadget Gc are
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Px:

Py:

Pz:

Pc:

x ¬x

¬y y

z ¬z

c1 c2 c3 dc

PG1 :

PG2 :
Gc

Figure 4.7: An example for the substructure used in Theorem 4.22 to represent the clause
c = (x ∨ y ∨ ¬z). If none of the literals that appear in c is scheduled in the first
slot, any best response of Pc will schedule dc in the first position, thereby exposing
the structure from Theorem 4.21.

indifferent between all schedules because their services all become active in the last
time step, given that service dc was scheduled at the end.

For the reverse direction, suppose conversely that the game has a pure Nash equilib-
rium. Consider the assignment α : var(F ) → {true, false} with α(x) = true iff player
Px schedules x at the first time step. We show that the assignment α satisfies F .
Suppose some clause c is not satisfied. Then, none of its literal services will be activated
before the second time step, which implies that service dc is the only service of player
Pc that can activate in the first time step. Hence, all best responses for the clause
player Pc put service dc into the first time slot, giving the player a reward of 36. This
means that services in gadget Gc have no restrictions imposed from the outside (i. e.,
from the service dc). But Gc for itself does not admit a Nash equilibrium, and hence
the entire game does not either, a contradiction. Thus, all clauses are satisfied by the
assignment α. 2

4.4.2 ISGs with Uniform Rewards

In the previous section, we saw that in general we can not expect a pure Nash equilibrium
to exist in every ISG. Indeed, even determining whether this is the case for a particular
instance turned out to be an NP-hard problem.
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However, these questions get significantly easier to solve if we restrict rewards to be
uniform: In this case a pure Nash equilibrium always exists and it can be efficiently
computed.
Theorem 4.23 ([Abe+16])
Any ISG with uniform rewards admits a pure Nash Equilibrium which can be computed
in polynomial time.

Proof. We iteratively construct a schedule in a way which guarantees that every
player’s schedule is a best response. For each service v, let

N in
i (v) := (N in(v) ∪ {v}) ∩ Ti

denote those services that v depends on and that are controlled by player i (including
v itself in the case where ρ(v) = i). Denote by T

(t)
i the set of services of player i that

are already scheduled before iteration t (we set T 1
i = ∅ for all i ∈ [k]). Let α(t)

i := |T (t)
i |

denote the number of such services.
In every iteration, we will choose a service and schedule it together with all other

(remaining) services that it depends on. By transitivity, this means that for a service
v ∈ T

(t)
i , aπ(v) is well-defined during iteration t, since all of its prerequisites have

already been scheduled. We can therefore define

µ
(t)
i (v) :=

{
max

{
aπ(w)

∣∣ w ∈ N in
i (v)

}
, if N in

i (v) ⊂ T
(t)
i

α
(t)
i + |N in

i (v) \ T (t)
i |, else,

which represents a lower bound on the earliest possible activation time of the service v
based on its dependency on services from Ti. Specifically, if all of the prerequisites of v
which are controlled by player i have already been scheduled (the first case), then the
maximum of their activation times is the earliest time that v itself can become active
and begin to generate reward (although it might itself be scheduled before that) Also
note that services controlled by players other than i might still keep v inactive after
that. Otherwise, in the second case (which in particular always applies if v ∈ Ti \ T (t)

i ),
the service v cannot activate until itself and all of its prerequisites have been scheduled
themselves. Since the first α

(t)
i slots in player i’s schedule are already filled by services

in T
(t)
i , the remaining prerequisites from N in

i (v) \ T (t)
i must be scheduled after that.

Furthermore, we define µ(t)(v) := maxi∈[k] µ
(t)
i (v) which represents a lower bound for

the activation time of v in any schedule which is a “completion” of the partial schedule
from iteration t. Note in particular that this bound is tight: It is achieved if v and
all remaining prerequisites are scheduled immediately as the next services. Note that
µ(t)(v) can hence only increase from one iteration to the next and that it reaches the
value aπ(v) as soon as service v and all its predecessors are scheduled and is constant
after that.
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We will prove that the following conditions hold for every iteration t and player i:

i) If v, w ∈ T
(t)
i , thencondition (4.2) holds. If v ∈ T

(t)
i and w ∈ Ti \ T

(t)
i , then

(w, v) /∈ Ei.

ii) If v ∈ T
(t+1)
i \T (t)

i , then µ(t)(v) is minimal among all services from the set Ti \T (t)
i

and µ(t)(v) ≥ µ(t+1)(w) for all w ∈ T
(t)
i .

To see that these conditions are also sufficient for the resulting schedule πi to be a
best response, observe the following: Since all services from Ti are eventually added to
the set T

(t)
i , this means that at the end, i) implies that (4.2) holds for all v, w ∈ Ti.

By Lemma 4.17, if the resulting schedule for each player satisfies condition b) from
that lemma, as well, then each player’s schedule is a best response and we have
thus found a pure Nash equilibrium. Suppose otherwise and let i denote a player
such that condition b) is violated for a service v∗ ∈ Ti, i. e. there exists w∗ ∈ Ti with
πi(w

∗) ≥ πi(v
∗) and πi(w) ≤ πi(v

∗) for all w ∈ Ti with (w,w∗) ∈ Ei, but η(w∗) < η(v∗).
Assume w. l. o. g. that v∗ is such that π(v∗) is minimal among all such services.

Let t denote the iteration where the service v∗ is scheduled. Then the above implies
that w∗ ∈ Ti \ T (t)

i (otherwise πi(w
∗) < πi(v

∗)). Furthermore, all predecessors w of w∗

within Ti are either already scheduled or will be scheduled in iteration t (otherwise,
πi(w) > πi(v

∗)).
Observe that for all players j ∈ [k] \ {i} and v ∈ Ti, it holds that µ

(t)
j (v) ≤ η(v):

• If N in
j (v) ⊂ T

(t)
j , then the last predecessor of v cannot be scheduled any earlier

than α
(t)
j + |N in

j (v) \ T (t)
j | and hence µ

(t)
j (v) ≤ η(v).

• If, on the other hand, N in
j (v) \ T

(t)
j = ∅ (i. e. all predecessors of v that are

controlled by player j have already been scheduled), then this implies that all of
their predecessors have already been scheduled, as well. Thus, for every w ∈ Tj

with (w, v) ∈ E, it holds that aπ(w) ≤ max{η(v)}

Overall, we obtain that µ(t)(v) ≤ max{η(v), µ(t)
i (v)}.

On the other hand, since v∗ and all its predecessors are scheduled in iteration t,
this implies, as argued above, that the bound given by µ(t) on its activation time
is tight, which implies that µ(t)(v∗) = aπ(v

∗) ≥ η(v∗) > η(w∗). But since by ii),
µ(t)(w∗) ≥ µ(t)(v∗), we must have that µ

(t)
i (w∗) > η(w∗) and thus µ(t)(w∗) = µ

(t)
i (w∗).

Furthermore, since we have assumed that πi(w) ≤ πi(v
∗) for all w ∈ Ti with

(w,w∗) ∈ Ei, we have that N in
i (w∗)\T (t)

i = {w∗} and thus µ(t)(w∗) = µ
(t)
i (w∗) = α

(t)
i +1.

On the other hand, µ(t)(w∗) ≥ µ(t)(v∗) ≥ α
(t)
i + 1 (the last inequality holds for any

v ∈ Ti \ T (t)
i ), from which we obtain µ(t)(w∗) = µ(t)(v∗) = α

(t)
i + 1. Both v∗ and w∗

would thus activate immediately when they are scheduled, and moving w∗ to v∗’s
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position, shifting all services in between by one slot analogously to our construction in
Lemma 4.17, we obtain a schedule π∗

i with Ri(π
∗
i , π−i) = Ri(πi, π−i). The schedule πi

is hence a best response if and only if π∗
i is a best response. Iterating this argument

(and observing that, if v′ is the service for which condition b) from Lemma 4.17 is
violated, then π∗

i (v
′) > πi(v

∗)), we obtain a schedule satisfying the prerequisites from
Lemma 4.17, which proves that πi was indeed a best response.

We now prove that both of the above conditions hold by induction over t, for t = 1

the set T
(t)
i is empty for every player i ∈ [k] and the conditions trivially hold.

Assume now that the conditions are satisfied for iteration t and proceed in the
following way: Choose a service v∗ that minimizes µ(t) over all services not yet scheduled
and that has no incoming edges from services belonging to the same player. Such a
service must exist, since if (w, v∗) ∈ E for some service w, then µ(t)(w) ≤ µ(t)(v∗). Let
i be the player such that v∗ ∈ Ti.

Denote by S := {v∗} ∪N in(v∗) the set consisting of v∗ and all the services that v∗

depends on (it may be the case that S = {v∗}). By induction, scheduling all services in
S (respecting the ordering required by edges in Ei if necessary) satisfies condition (4.2)
for all players i and v, w ∈ T

(t+1)
i . Furthermore, for every v /∈ S and w ∈ S, (v, w) /∈ Ei

as otherwise w ∈ S. This means that condition i) is satisfied for iteration t+ 1.
Regarding condition ii) note that for every v ∈ S, µ(t)(v) = µ(t)(v∗) by minimality

of v∗ and the dependency of v∗ on v. Hence for every player i, if v ∈ T
(t+1)
i \ T (t)

i ⊂ S,
then µ(t)(v) is minimal among all services from the set Ti \ T (t)

i .
Finally, for every v /∈ S and w ∈ S, it holds that µ(t+1)(w) = µ(t)(w) = µ(t)(v∗) ≤

µ(t)(v) ≤ µ(t+1)(v) where the first equality holds because w and all its dependencies
are scheduled in iteration t, the second equality was shown above and the inequalities
follows by minimality of v∗ and monotonicity of µ(t)(v) in t. This proves that ii) is also
satisfied for iteration (t+ 1).

By induction, this proves that the described procedure indeed constructs a pure
Nash equilibrium for the given game. The number of iterations is bounded by T and
hence the procedure runs in time polynomial in |T |. 2

4.5 Price of Anarchy and Price of Stability
In the last section of this chapter, we investigate the relation between the different
solution concepts considered in the previous sections: If a pure Nash equilibrium
exists, can we provide any estimate on how close the total reward in the equilibrium is,
compared to the maximal value that can be achieved by any schedule? As different
Nash equilibria may exist that yield different total rewards, we consider both the price
of anarchy and the price of stability (see Definition 4.3). The results in this section
are original joint work with Kevin Schewior and have not previously been published
(unless noted otherwise).
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From our review of related literature in the area of machine scheduling (see Sec-
tion 4.2), we recall that the reward of every player differs from the negative weighted
sum of completion times by only a constant (see (4.1)). This means that all results
presented so far equally hold if we assume that every player aims to minimize his
weighted sum of completion times instead of maximizing his reward. However, the
constant difference between the two objective functions does begin to play a role if we
consider the asymptotic values of price of anarchy and price of stability, as we will do
in this section. We will hence formulate all results with respect to one of the following
two objective functions:

Let (k, (T,E), r, ρ) be an instance of an Interdependent Scheduling Game with
|T1| = |T2| = · · · = |Tk| =: q and π a feasible schedule. We consider the following
objective functions, the relation of which we have already discussed briefly in Section 4.2:

R(π) =

k∑
i=1

Ri(π) =

k∑
i=1

q∑
t=1

∑
v∈Ti,t≥aπ(v)

r(v) =

k∑
i=1

∑
v∈Ti

(q + 1− a (v)) r(v)

CΣ(π) =
k∑

i=1

∑
v∈Ti

aπ(v)r(v) =
k∑

i=1

∑
v∈Ti

(q + 1)r(v)−Ri(π) =
∑
v∈T

(q + 1)r(v)−R(π)

We refer to R(π) as the total reward for schedule π and to CΣ(π) as the weighted
sum of completion times for schedule π. Note that for the case of uniform rewards, the
latter simplifies to kq(q + 1)− R(π). Note further that the problem with respect to
the weighted sum of completion times is a minimization problem, hence in this case we
have to use the following slightly modified version of Definition 4.3 (A denotes the set
of all schedules and N is the set of schedules that are pure Nash equilibria):

PoA′(k, (T,E), r, ρ) :=
maxπ∈N CΣ(π)

minπ∈ACΣ(π)

PoS′(k, (T,E), r, ρ) :=
minπ∈N CΣ(π)

minπ∈ACΣ(π)

Remark 4.24
Given an Interdependent Scheduling Game with uniform rewards, Lemma 4.9 implies
for any two solutions π, π′ with R(π) ≥ R(π′) that

R(π)

R(π′)
≤ q + 1

2
.

Furthermore, regarding the weighted sum of completion times, we obtain

CΣ(π)

CΣ(π′)
=

kq(q + 1)−R(π)

kq(q + 1)−R(π′)
≤ kq(q + 1)− kq

kq(q + 1)− kq(q+1)
2

=
2q

q + 1
.
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Remark 4.25
For general rewards, we can obtain the following bound with respect to the total reward
for any two solutions π, π′ with R(π) ≥ R(π′) (the inequality in both cases follows
from aπ′(v) ≥ 1 and aπ′(v) ≤ q):

R(π)

R(π′)
=

∑k
i=1

∑
v∈Ti

(q + 1− aπ(v)) r(v)∑k
i=1

∑
v∈Ti

(q + 1− aπ′(v)) r(v)
≤
∑k

i=1

∑
v∈Ti

qr(v)∑k
i=1

∑
v∈Ti

r(v)
= q

Analogously, for the weighted sum of completion times, we obtain

CΣ(π)

CΣ(π′)
=

∑k
i=1

∑
v∈Ti

aπ(v)r(v)∑k
i=1

∑
v∈Ti

aπ′(v)r(v)
≤
∑k

i=1

∑
v∈Ti

qr(v)∑k
i=1

∑
v∈Ti

r(v)
= q.

Applying the previous remarks to the price of anarchy immediately yields upper
bounds for all combinations of uniform/general rewards on one hand and total re-
ward/weighted sum of completion times on the other hand. Note that the case b)(i)
previously appeared in [Abe+16, Theorem 10].

Theorem 4.26
Let (k, (T,E), r, ρ) be an Interdependent Scheduling Game and |T1| = |T2| = · · · =
|Tk| =: q. The following holds:

a) The price of anarchy is bounded by q for both total reward and weighted sum of
completion times.

b) If rewards are uniform (i. e., r(v) = 1 for all v ∈ T ), then the price of anarchy is
bounded

(i) with respect to total reward by q+1
2 , and

(ii) with respect to weighted sum of completion times by 2q
q−1 .

The following example from [Abe+16, Theorem 9] easily shows that the bounds for
cases b)(i) and b)(ii) are asymptotically tight.

Example 4.27
Consider the ISG and schedule π shown in Fig. 4.8. The worst pure Nash equilibrium
is obtained (as shown) by scheduling the service, on which all other services of other
players depend, at the end; as opposed to the welfare-maximizing schedule π∗ achieved
by moving this service to the beginning (which happens to be a pure Nash equilibrium,
as well). The ratio between the total rewards for an instance with k players and q
services each is

R(π∗)

R(π)
=

k · q(q + 1)/2

q(q + 1)/2 + (k − 1)q
=

k(q + 1)

q + 2k − 1

k→∞−−−→ q + 1

2
.
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π1: 1 1 … 1

π2: 1 1 … 1

...
πk: 1 1 … 1

Figure 4.8: For this ISG, the upper bound on the price of anarchy from Theorem 4.26 is tight
(see Example 4.27).

Similarly, for the weighted sum of completion times, we obtain

CΣ(π)

CΣ(π∗)
=

∑k
i=1

∑
v∈Ti

aπ(v)r(v)∑k
i=1

∑
v∈Ti

aπ∗(v)r(v)
=

q(q + 1)/2 + kq2

k · q(q + 1)/2

k→∞−−−→ 2.

Setting the rewards to 1 for one service of all but the first player and 0 for all
other services, we obtain that the bound for the case a) is also asymptotically tight.
However, the Nash equilibrium in the example from [Abe+16, Theorem 9] is weak and
obviously not welfare-optimal. The welfare-maximizing Nash equilibrium on the other
hand is also globally welfare-optimal. This raises the question of which total reward
may be achieved by any pure Nash equilibrium. We first note that this question is
computationally hard to answer, by the following simple corollary from Theorem 4.14.

Corollary 4.28
Given an ISG with uniform rewards and an integer k, determining whether a pure Nash
equilibrium exists that achieves total reward at least k (or weighted sum of completion
times at most k) is NP-hard.

Nonetheless, can we determine a bound on the factor, by which an optimal pure Nash
equilibrium (as opposed to any pure Nash equilibrium) may underperform the globally
optimal solution? It turns out, as the following theorem shows, that the optimal pure
Nash equilibrium may in general be no better than what is already guaranteed for
all Nash equilibria (and indeed any solution) by Theorem 4.26. In other words, the
bounds in the above theorem are asymptotically tight already with respect to the price
of stability (it holds that price of stability ≤ price of anarchy).

Theorem 4.29
a) For every q ≥ 3, there exists an instance I1q = (k, (T,E), r, ρ) of an Interdependent

Scheduling game with general rewards and |T1| = |T2| = · · · = |Tk| = q such that
(i) PoS(I1q ) = q +O(1) with respect to total reward, and

(ii) PoS(I1q ) =
1
2q +O(1) with respect to weighted sum of completion times.
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β

π∗
1 s1 t1 …

π∗
2 s2 t2 …

...
...

...
...

...
...

π∗
β

sβ tβ …

π∗
β+1 tβ+1 …

π∗
β+2 tβ+2 …

...
...

...
...

...
...

π∗
β+γ tβ+γ …

Figure 4.9: The ISG instance used in the proof for Theorem 4.29. The shown schedule π∗ is
welfare-maximizing and yields an total reward (for the case of uniform rewards)
of (β+1)(β+2)

2 + (β − 1) ·
(
β + β(β+1)

2

)
+ γ ·

(
β + β(β+1)

2

)
.

b) For every q ≥ 3, there exists an instance I2q = (k, (T,E), r, ρ) of an Interdependent
Scheduling game with uniform rewards and |T1| = |T2| = · · · = |Tk| = q such that

(i) PoS(I2q ) =
1
2q +O(1) with respect to total reward, and

(ii) PoS(I2q ) = 2 +O(q−1) with respect to weighted sum of completion times.

Proof. Consider an instance of an Interdependent Scheduling Game as shown in
Fig. 4.9. We have q = β + 1.

We first consider the case of uniform rewards. Let π be a Nash equilibrium schedule
(one possible such schedule is shown in Fig. 4.10). First, note that π1(s1) < π1(t1), since
this is the only way for player 1 to achieve R1(π) ≥ (β+1)(β+2)

2 . Now, let i ∈ {2, . . . , β}.
If maxj<i{πj(tj), πj(sj)} ≤ β, then player i can achieve Ri(π) ≥ (β+1)(β+2)

2 only by
choosing πi such that maxj<i{πj(tj), πj(sj)} ≤ πi(si) < πi(ti).

If all players play a best response, we therefore have that

π1(s1) < π1(t1) ≤ π2(s2) < π2(t2) ≤ · · · ≤ πβ(sβ) < πβ(tβ)

and hence by the strict inequalities πβ(tβ) ≥ π1(s1) + β = β + 1.
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β

s1 t1

s2 t2

sβ tβ

…

…

tβ+1

tβ+2

tβ+γ

…

…

…

...
...

...
...

...

...
...

...
...

...

π1

π2

...

πβ

πβ+1

πβ+2

...

πβ+γ

Figure 4.10: Equilibrium schedule for the ISG instance used in the proof of Theorem 4.29.
The shown schedule achieves a total reward (in the case of uniform rewards) of
β · (β+1)(β+2)

2 + γ · (β + 1).

This implies that tβ+1 (and by transitivity tβ+2, . . . , tβ+γ as well as all services of
players β + 1 to β + γ that depend on these) will only activate in the last timestep.

Therefore, for all i ∈ {β + 1, . . . , β + γ}, we get

Ri(π) ≤ β + 1

by which we obtain R(π) ≤ β · (β+1)(β+2)
2 + γ · (β + 1) = γ · (β + 1) +O(β3).

On the other hand, for the schedule π∗ shown in Fig. 4.9, we have

R(π∗) =
(β + 1)(β + 2)

2
+ (β − 1) ·

(
β +

β(β + 1)

2

)
+ γ ·

(
β +

β(β + 1)

2

)
= γ ·

(
β +

β(β + 1)

2

)
+O(β3).

For any optimal schedule π∗ and equilibrium schedule π in the given instances, we
hence obtain (by choosing γ large enough, e. g. γ := β3)

R(π∗)

R(π)
≥

γ ·
(
β + β(β+1)

2

)
+O(β3)

γ · (β + 1) +O(β3)
=

1
2β

5 +O(β4)

β4 +O(β3)
=

1

2
β +O(1).
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and

CΣ(π)

CΣ(π∗)
=

∑k
i=1

∑
v∈Ti

aπ(v)∑k
i=1

∑
v∈Ti

aπ∗(v)
=

(β + γ)(β + 1)(β + 2)−R(π)

(β + γ)(β + 1)(β + 2)−R(π∗)

≥ O(β3) + γ · (β2 + 2β + 1)

O(β3) + γ ·
(
(β + 1)(β + 2)− β − β(β+1)

2

)
=

β5 +O(β4)
1
2β

5 +O(β4)
= 2 +O(β−1).

In the case of general rewards, we can set r(tj) = 1 for all j ∈ {β+1, β+2, . . . , β+γ}
and r(v) = 0 for all other services v. Note that the considerations above remain valid
and hence, as above, tβ+1 (and by transitivity tβ+2, . . . , tβ+γ as well as all services of
players β + 1 to β + γ that depend on these) will only activate in the last timestep.
We obtain

Ri(π) ≤

{
0 i ∈ {1, . . . , β}
1 i ∈ {β + 1, . . . , β + γ}

and hence R(π) ≤ γ. On the other hand, for the schedule π∗ shown in Fig. 4.9, we
have

R(π∗) = γ · β.

We can choose e. g. γ := β to obtain

R(π∗)

R(π)
≥ β

and

CΣ(π)

CΣ(π∗)
=

∑k
i=1

∑
v∈Ti

aπ(v)r(v)∑k
i=1

∑
v∈Ti

aπ∗(v)r(v)
=

γ · (β + 2)−R(π)

γ · (β + 2)−R(π∗)

≥ γ · (β + 1)

2γ
=

β2 +O(β)

2β
= β +O(1). 2

4.6 Conclusion
To conclude this chapter, we will revisit some of the principal restrictions of the
setting that we have considered in this chapter. Specifically, we have made several
assumptions in defining what we call an ISG instance (Section 4.1.2), some of which
can legitimately be questioned. In this section, we will briefly discuss the two most
important assumptions (unit-time and acyclicity) and discuss the applicability of our
results to the setting where these assumptions are relaxed.
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unit time One serious limitation for the practical applicability of our setting is the
assumption that every service requires the same amount of time to be deployed. This
assumption can be relaxed quite easily, we can model any service v that requires
multiple units of time to deploy as a corresponding series of services that require
unit time. Each of these auxiliary services does not generate any reward, but is a
prerequisite for the original service. Incoming and outgoing dependencies of the original
service can be kept the same.

As the auxiliary services do not generate any reward and are no prerequisites for any
other services (except for v), we can assume without loss of generality that the auxiliary
services are scheduled right before v (in an arbitrary order). The only downside of
this transition is that, even if the original instance had uniform rewards, we enter
the setting of general rewards with all of the corresponding consequences regarding
computational complexity and existence of Nash equilibria mentioned above.

acyclicity The consequences of dropping the assumption of acyclicity are less clear.
Cycles within the services controlled by an individual player can be reduced to the
above case of non-unit time: A set S of services that belong to the same player and
that are cyclically dependent on each other will only activate (all at the same time)
once the last service from that set has been deployed. It is thus equivalent to a single
service that generates a reward of

∑
v∈S r(v) and that requires |S| units of time to

deploy (services that depend on any of the services in S by transitivity depend on all
services in S). By extension of the above argument, we can reduce the setting that
allows dependency cycles within an individual player’s services (and optionally that
also allows non-unit time services) to the setting of general rewards (but unit time)
that we have already covered.

When several players are involved in a single cycle C, the argument becomes slightly
more involved, but again the two main problems discussed in this chapter (ISG Reward
Maximization and ISG Best Response) can be expressed equivalently without that
cycle:

For ISG Reward Maximization, we can choose one service v∗ ∈ C and assign to
it the sum of all rewards, i. e., r(v∗) =

∑
v∈C r(v). Furthermore, this service depends

on all other services in the cycle. As the problem ISG Reward Maximization does
not differentiate between rewards won by different players, the resulting problem is
equivalent to the original problem, but removes the cycle.

For ISG Best Response and a fixed player i, we select one service v∗ ∈ C ∩ Ti

from the subset of services in C that are controlled by i. We assign to it the reward
r(v∗) =

∑
v∈C∩Ti

r(v) and let it depend on all other services in C. As a result, player
i will start to accumulate the reward

∑
v∈C∩Ti

r(v) as soon as all the services in the
cycle have been deployed, as was the case in the original setting.
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4.6 Conclusion

We have seen that both major assumptions from Section 4.1.2 can be dropped without
seriously altering the definition of the related problems. However, both transformations
require that we leave the domain of uniform rewards, to which most of the positive
results in this chapter are constrained. The resulting computational problems are thus
likely to be NP-hard, as well. On the other hand, both cases do not cover the full
generality of general rewards, particularly in interaction with processing times: For
instance, the service with a higher reward that results from removing a precedence
cycle only occurs together with a set of corresponding size of services with reward zero.

It might hence be worthwhile to investigate the special instances that result from
the transformations described above to see if any of the positive results presented in
this chapter can be translated.
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Chapter 5

Summary and Outlook

In this thesis, we have approached the topic of power system analysis from three
perspectives:

• representation of electrical power flows (Chapter 2)

• handling of large, structured optimization problems (Chapter 3)

• incentives in coupled scheduling environments (Chapter 4)

In all three areas, the questions that we started from were mostly algorithmic, asking
how to address those topics computationally in the most efficient way. In this context,
however, we have obtained a number of theoretical results, which are of interest in
their own right. These include

• a generalization of a well-known characterization of extremal network flow solu-
tions to differential flows,

• a precise connection between different cut selection criteria for Benders decomposi-
tion from the literature together with an overarching framework that encompasses
them,

• a study of the boundary of computational hardness in scheduling problems with
precedence constraints.

Our results in each chapter raise a number of interesting questions for future research
within each theory area, which we have already discussed at the end of the respective
chapter. Adding to those, we briefly highlight two directions of future research, which
arise at the boundary between our results.

Benders Decomposition and Stochastic Programming In the context of stochastic
programming, Benders decomposition (sometimes known as the L-shaped method) is
a standard approach to deal with optimization problems covering a large number of
stochastic scenarios. In the context of Energy System Analysis, however, a typical
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example of a stochastic programming problem is computationally extremely difficult to
solve, even using that method:

When analyzing the behavior of power systems in the context of intermittent genera-
tion from renewable sources, a key aspect of uncertainty is the availability of renewable
energy sources, as well as the magnitude of demand. Since these vary on a relatively
short timescale (typical models resolve to no more than 60 minutes) and consecutive
steps are linked, e. g. by storage contents, the scenario tree resulting from a corre-
sponding multi-stage stochastic programming model for a single year, even with only
two scenarios per time step (e. g., high-wind and low-wind), consists of 28760 ≈ 102637

vertices. Since on the other hand, this tree contains a lot of structure (e. g. transition
probabilities are typically independent of any events beyond the immediately preceding
time step), a popular technique in this context is Stochastic Dual Dynamic Programming
(see, e. g., [PP91; PG08; Sha11]).

This technique, also known as Nested Benders Decomposition (see [Reb16]) bears
close similarity with Benders decomposition, in particular each subproblem contains
an approximation of the future cost function, representing the expected value of the
cost incurred in all future timesteps. In each iteration, this approximation is refined by
adding constraints to the epigraph, which essentially correspond to Benders cuts. As a
consequence, many of our results on Benders decomposition are immediately applicable
in this setting, as well. This application, among others, is also investigated in our
ongoing research project DecEnSys.

Incentives in Decomposition and DC Power Flow Finally, incentives in the context
of power system analysis, expansion and operation are a very broad topic, which we
have only touched in this thesis. It is of interest to both economists and engineers
and spans various lines of conflict between different agents: Between consumers and
suppliers, between producers and transmission system operators and finally between
different competitors in all of these sectors. At the same time, it can be formalized in
a way that lends itself to provable mathematical statements.

In Chapter 4, we have focussed on one particular setting, that of selfish operators
of interdependent infrastructure, who compete for rewards from the customers that
they serve. While this setting is particularly interesting due to its connection with
well-known problems from the scheduling domain, it leaves aside many of the other
areas of competition outlined above. In connection with the other two main topics of
this thesis, DC power flow and decomposition, the following questions seem particularly
interesting for future research:

In terms of power flow models, most literature concerned with incentive structures
in electricity markets today considers the simplified Transport model (if transmission
capacities play a role at all). Indeed, the peculiarities of electrical power flows, even
approximated at the level of the DC model present some additional challenges in
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analyzing the underlying incentive structures: For instance, it may happen that an
increase in transmission capacity along one corridor (due to the associated increase
in susceptance) leads to a reduced transmission capacity between other nodes in the
network. These challenges certainly warrant further research in this area.

With respect to decomposition, some researchers have attempted to introduce
artificial “information barriers” between different parts of a problem to model selfish
behavior: In the context of a decomposition approach, each subproblem can be thought
to represents an individual agent, optimizing her private objective function. Established
methods such as Benders decomposition ensure in this context, that the exchange
of information between subproblems is sufficient to ensure convergence to a global
optimum. Using a different information exchange scheme, one may attempt to replicate
the limited coordination between different agents as it takes place in reality.

In this context, however, the significance of the results of such an algorithm is often
unclear: For which input data can the algorithm be expected to converge at all? Can
the result be described theoretically and does it represent an equilibrium as it could be
observed in the real world? Which properties can a resulting solution be expected to
have and how robust is it to choices in the precise implementation of the information
exchange scheme?

On the other hand, if a suitable information exchange scheme can be developed
and analyzed, such approaches may offer a natural way to deal with game-theoretic
problems at a large scale. In such a setting, we might not be able to replicate the
strong convergence properties of Benders decomposition, but it might be possible to at
least obtain feasible solutions together with a corresponding lower bound, certifying
some a posteriori quality guarantee for the solution.

Conclusion

A major challenge in the analysis and design of power systems consists in solving
large-scale (transmission and generation) capacity expansion problems. Most imme-
diately, these are used to devise economically optimal expansion paths from a given
infrastructure while satisfying certain objectives. These objectives can range from
satisfying a certain demand to limiting the consumption of certain resources or using a
prescribed percentage of renewable energy sources.

But also beyond this immediate application, capacity expansion problems are useful
to answer many questions that touch on the structure of a future energy system:
Even if a research question does not immediately have anything to do with capacity
expansion (e. g., investigating the economics of providing storage capacity as a business
model, or the viability of a community-level microgrid), the question of the available
infrastructure arises. In order to provide a meaningful answer, we must make some
assumptions about the broader energy system in the context of which our study should
take place.
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While infrastructure decisions in reality are by no means (and arguably should
not be) taken exclusively according to economic criteria, the economically optimal
infrastructure often provides a useful baseline, especially in the absence of any other,
more reliable source of information. This is especially true for questions about the
state of an energy system in the far future, where assumptions drawn from current
political priorities may no longer yield useful advice.

As we have argued in Chapter 1, the requirements imposed on capacity expansion
problems used in this context become more and more challenging, partly as a conse-
quence of changes that are currently underway in energy systems globally, but maybe
particularly in Europe: Renewable energy sources force us to consider intermittent
supply at a high temporal resolution, growing storage capacities make it essential to
respect the exact order in which different load cases occur. As the locations of supply
can no longer be chosen to be close to centers of demand (think of off-shore wind
turbines and solar power plants in the desert), the constraints of the transmission grid
are exacerbated. The coupling of different sectors in the energy system introduces a
new level of interdependency.

In this context, our thesis provides several avenues to dealing with these challenges:
Using simplified network models from Chapter 2, we can get an idea of the constraints
imposed by the transmission grid, without resorting to the full complexity of optimiza-
tion models required to accurately represent their behavior. The improvements to the
decomposition framework Benders decomposition from Chapter 3 allow us to deal with
larger optimization problems overall, particularly if they consist of weakly coupled
segments, such as different sectors of the energy system or limited international (or
inter-continental) transmission capacities. Finally, our results with respect to incentives
(Chapter 4) give us an estimate of the additional complexity and the potential welfare
losses introduced by selfish behavior of different agents in the energy system.

While we have already undertaken first steps towards the implementation of the
techniques mentioned above together with our partners from Chair of Renewable
and Sustainable Energy Systems at TUM, important challenges remain. Simplified
transmission networks and decomposition may make it easier to imagine a model that
encompasses all interesting aspects of Power System Optimization at the same time,
enabling us to evaluate game-theoretical strategy equilibria in large-scale coupled power
systems. However, much research still needs to be done in order to be able to compute
meaningful solutions within any reasonable timeframe.

A different question that arises from methodological improvements in this context
is that of their economical (or technological) interpretation: Do the mathematical
structures exposed by optimization methods for problems in the area of power system
analysis hold interesting insights into desirable structures of a future power system
itself? This argument is being made, for instance, in the context of the transmission
grid (see, e. g., [HU18]), but whether the resulting structures can be beneficial for the
power system as a whole remains open for debate.
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Appendix

A.1 Notation
We will find in many places that it is inconvenient to number the elements of a finite
set S in order to allow us to map them to their corresponding entry of a vector a ∈ R|S|.
In these cases, we use the notation a ∈ RS to denote a vector a of dimension |S|, the
components of which are indexed directly by the elements of the set S (rather than
by natural numbers), i. e., if a ∈ RS and s ∈ S, then as ∈ R. This is in line with the
notation TS that is commonly used for the set of mappings from the set S into T . As
S is finite, the vector space RS is obviously isomorphic to the vector space R|S| and
our notation is hence equivalent to numbering the elements of S = {s1, . . . , s|S|} and
denoting the entry of a which corresponds to si by ai.

A.2 Graph Theory
Definition A.1 (graph)
Let V be a vertex set and E′ ⊂

(
V
2

)
a set of undirected edges. We call G′ = (V,E′)

an undirected graph. With a set E ⊂ V 2 \ {(v, v) : v ∈ V } of directed edges, we call
G = (V,E) a directed graph.

If G is a directed graph, we denote for every vertex v ∈ V the in-neighborhood of v
by N in(v) := {w ∈ V | (w, v) ∈ E} and the out-neighborhood by Nout(v) := {w ∈ V |
(v, w) ∈ E}. The neighborhood of v is the union N(v) := N in(v)∪Nout(v). Analogously,
we define the set of incoming edges by δin(v) := {(w, v) ∈ E | w ∈ V }, the set of
outgoing edges by δout(v) := {(v, w) ∈ E | w ∈ V } and the set of all neighboring edges
by δ(v) := δin(v) ∪ δout

v .
We call a directed graph anti-symmetric if for all v, w ∈ V , it holds that (v, w) ∈

E ⇒ (w, v) /∈ E, i. e., there are no two edges that connect the same pair of vertices in
opposite directions.

To simplify the notation, we define the incidence matrix A by

A = (ave)v∈V
e∈E

:=


1 e ∈ δin(v)

−1 e ∈ δout(v)

0 otherwise.
(A.1)
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Definition A.2 (paths)
Let G = (V,E) be a directed graph. We say that a set of edges P ⊂ E is an undirected
v-w-path if there exists k ∈ N, (v = v1, v2, . . . , vk = w) ∈ V k and I ⊂ [k− 1] such that
vi 6= vj for all i, j ∈ [k] and P = {(vi, vi+1) | i ∈ I} ∪ {(vi+1, vi) | i ∈ [k − 1] \ I}. If
I = [k − 1], then P is a directed v1-vk-path (or simply a v1-vk-path) in G.

If G = (V,E) is an undirected graph, then P ⊂ E is a v-w-path if there exists
k ∈ N and (v = v1, v2, . . . , vk = w) ∈ V k such that vi 6= vj for all i, j ∈ [k] and
P = {{vi, vi+1} | i ∈ [k − 1]}.

Definition A.3 (cycles)
Let G = (V,E) be a directed graph. We say that a set of edges C ⊂ E is a simple
undirected cycle if there exists k ∈ N, (v1, v2, . . . , vk) ∈ V k and I ⊂ [k] such that
vi 6= vj for all i, j ∈ [k] and C = {(vi, vi+1) | i ∈ I} ∪ {(vi+1, vi) | i ∈ [k] \ I} (writing
vk+1 := v1). If I = [k], then P is a directed cycle (or simply a cycle) in G.

If G = (V,E) is an undirected graph, then C ⊂ E is a simple cycle if there exists
k ∈ N, (v1, v2, . . . , vk) ∈ V k such that vi 6= vj for all i, j ∈ [k] and C = {{vi, vi+1} |
i ∈ [k]} (writing vk+1 := v1).

If there is no cycle in G, then we say that G is acyclic.

Definition A.4 (connectivity)
A (directed or undirected) graph G = (V,E) is connected, if for every v, w ∈ V there
exists a v-w-path in G. A directed graph is weakly connected, if for every v, w ∈ V
there exists an undirected v-w-path in G.

Definition A.5 (subgraphs and components)
Let G := (V,E) and G′ := (V ′, E′) be two (directed) graphs. If V ′ ⊂ V and E′ ⊂ E,
then we call (V ′, E′) a subgraph of (V,E) and we write v ∈ G′ if and only if v ∈ V ′. If
E′ = {(v, w) ∈ E | v, w ∈ V ′}, then (V ′, E′) is the subgraph induced by V ′.

If G′ is a connected subgraph of G and there exists no connected subgraph G′′ of G
such that G′′ 6= G′ and G′ is a subgraph of G′′, then G′ is a connected component of G.

If G′ is a weakly connected subgraph of G and there exists no weakly connected
subgraph G′′ofG such that G′′ 6= G′ and G′ is a subgraph of G′′, then G′ is a weakly
connected component of G.

Definition A.6 (transitivity)
The directed graph G = (V,E) is transitive if for all (u, v), (v, w) ∈ E, we have
(u,w) ∈ E. The transitive closure of G is a graph G′ = (V,E′) where (u, v) ∈ E′ if and
only if there is a directed u-v-path in G.
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A.3 Convex Geometry
Definition A.7 (convex set and lineality space)
A set C ⊂ Rn is convex if for all x, y ∈ C and λ ∈ [0, 1], it holds that λx+(1−λ)y ∈ C.

The set {y ∈ Rn | x+ λy ∈ C for all x ∈ C, λ ∈ R} is called the lineality space of C.
If the lineality space of C is {0}, then we call C line-free.

Definition A.8 (halfspace and hyperplane)
Let π ∈ Rn \ {0}, α ∈ R. We denote by

H≤
(π,α) :=

{
x ∈ Rn

∣∣∣ π>x ≤ α
}

the halfspace induced by (π, α). Similarly, we write

H=
(π,α) :=

{
x ∈ Rn

∣∣∣ π>x = α
}

for the corresponding hyperplane that is the boundary of H≤
(π,α).

Definition A.9 (supporting and separating hyperplanes and halfspaces)
Let C ⊂ Rn be a closed convex set.

a) The function hC(c) := sup{c>x | x ∈ C} is called the support function of C.

b) A halfspace H≤
(π,α) supports C if C ⊂ H≤

(π,α) and C ∩H=
(π,α) 6= ∅.

c) A hyperplane H=
(π,α) strongly separates C from another convex set C ′ ⊂ Rn if

there exists ε > 0 such that

π>x ≤ α− ε ∀ x ∈ C

and

π>x ≥ α+ ε ∀ x ∈ C ′

or vice versa.

d) Let x ∈ Rn \ C. A halfspace H≤
(π,α) is x-separating for C if C ⊂ H≤

(π,α) and
x /∈ H≤

(π,α).

Definition A.10 (cone)
Let C be a convex set such that for all x ∈ C and λ > 0, it holds that λx ∈ C. Then,
C is called a cone. If furthermore for all x ∈ C \ {0} it is true that −x /∈ C, then C is
called a pointed cone.
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Definition A.11 (recession cone)
Let C ⊂ Rn be a convex set. The set

rec(C) := {y ∈ Rn | C + y ⊂ C}

is called the recession cone of C.

Definition A.12 (epigraph)
Let h : Rn → R ∪ {±∞}. The set

epi(h) := {(x, η) | η ≥ h(x)}

is called the epigraph of h. For a subset C ⊂ Rn, we define

epiC(h) := epi(h) ∩ (C × R).

Definition A.13 (convex functions and subdifferentials)
Let h : Rn → R ∪ {±∞}. The function h is called convex if its epigraph epi(h) is a
convex set.

Let C ⊂ Rn be a convex set and h : C → R ∪ {±∞} a convex function. Let x∗ ∈ C.
The set

∂h(x∗) :=
{
a ∈ Rn

∣∣∣ h(x∗) + a>(x− x∗) ≤ h(x)∀ x ∈ C
}

is called the subdifferential of h in x∗. A vector a ∈ ∂h(x∗) is called subgradient of h
in x∗.
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active vertex/edge, 61
α-forest, 61
alternative polyhedron, 99

relaxed, 107

Benders decomposition, 92
multi-cuts, 140
simplified coupling constraints, 141
upper bounds, 147

best response, 171

C−, see reverse polar set
cactus graph, 81

DC model, 21
DC-OPF, see OPF
DC-TCEP, see TCEP
diamond graph, 80
differential flow, 59

energy system, 13
epigraph, 94

Facet-cut, 120
feasibility cuts, 98

Linearized Load Flow, see DC model
loadability factor, 11
loss functions, 14, 25

machine scheduling, 168
material parameter, 11
minimal infeasible subsystem, 119
minimum cost flow, 57

MIS-cut, 119

nash equilibrium, 165
network graph, 42

non-degenerate, 63
network models, 17

OPF (Optimal Power Flow), 17
optimal differential, 57
optimality cuts, 98

P≤, see alternative polyhedron
(relaxed)

Pareto-cut, 127
power network, 12
precedence constraints, 168
price of anarchy, 165, 185
price of stability, 165, 185

QTR/QDC, 43
QTR

f /QDC
f , 56

QTR
p /QDC

p , 47
QDC

ϕ , 45

reverse polar set, 105

sum of completion times, 169

TCEP (Transmission Capacity
Expansion Problem), 16

TR-OPF, see OPF
TR-TCEP, see TCEP
Transport Model, 21

Wheatstone bridge, 81
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