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The phenomenon of irregular frequencies or spurious modes when solving the Kirchhoff–Helmholtz
integral equation has been extensively studied over the last six or seven decades. A class of common
methods to overcome this phenomenon uses the linear combination of the Kirchhoff–Helmholtz
integral equation and its normal derivative. When solving the Neumann problem, this method
is usually referred to as the Burton and Miller method. This method uses a coupling parameter
which, theoretically, should be complex with nonvanishing imaginary part. In practice, it is usually
chosen proportional or even equal to i/k. A literature review of papers about the Burton and Miller
method and its implementations revealed that, in some cases, it is better to use −i/k as coupling
parameter. The better choice depends on the specific formulation, in particular, on the harmonic
time dependence and on the fundamental solution or Green’s function, respectively. Surprisingly,
an unexpectedly large number of studies is based on the wrong choice of the sign in the coupling
parameter. Herein, it is described which sign of the coupling parameter should be used for different
configurations. Furthermore, it will be shown that the wrong sign does not just make the solution
process inefficient but can lead to completely wrong results in some cases.

Keywords: Helmholtz equation; Kirchhoff–Helmholtz integral equation; boundary element method;
Burton and Miller method; coupling parameter; harmonic time dependence.

1. Introduction

The Burton and Miller formulation1 for exterior acoustic problems is well-known since it is
free of fictitious resonances, see also Ref. 2. The only parameter of the Burton and Miller
formulation is known as the coupling parameter. When reading the literature applications
of the method, it seems clear to choose this parameter to be i/k,3–29 or at least positively
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proportional30–32 or asymptotically proportional33,34 to this value. (While i is the imaginary
unit, the wave-number k = ω/c is the quotient of the angular frequency ω = 2πf with f

denoting frequency and the speed of sound c.) Some authors did not explicitly mention
their choice of coupling parameter.35,36 Interestingly, some authors apply i/k as a negative
value.37,38 Terai39 has even clarified that the positive value is valid for a harmonic time
dependence of e+iωt whereas in case of using e−iωt, the coupling parameter should be nega-
tive. Especially Terai’s work is essential in this context but seems to have been ignored by
most authors who have used e−iωt. However, Kress14 and Amini3 were both using this kind
of harmonic time dependence and clearly found that i/k is a very good and even close to
optimal choice to minimize the condition number for a sphere at high frequencies. Appar-
ently, it is not completely clear, what the optimal coupling parameter for the Burton and
Miller formulation is. Furthermore, it will even be shown that many authors are using a
coupling parameter which is not optimal and which can lead to wrong results.

2. BEM Formulation of the Burton and Miller Method

Derivation of the wave equation, discussion of boundary conditions, weak formulation and
discretization process are presented in a reduced way. A more detailed presentation is found
in the concept chapter.40

2.1. Helmholtz equation and boundary conditions

Herein, linear acoustic problems are defined in the infinite domain Ω with the complement
finite domain of Ωc and Γ is representing the closed boundary between Ω and Ωc. The
normal vector is pointing into the complementary domain Ωc. The wave equation

∆p̃(�x, t) =
1
c2

∂2p̃(�x, t)
∂t2

, �x ∈ Ω ⊂ R
3 (1)

is valid for the sound pressure p̃. Alternatively, a velocity potential may be used. To com-
plete a solution, the differential equation requires boundary conditions and initial condi-
tions, which will be specified when used. For time-harmonic problems, a time dependence
is introduced as

p̃(�x, t) = �{p(�x)eαiωt}, (2)

with α = ±1. Applying the time-harmonic dependence of p to Eq. (1) leads to the Helmholtz
equation for the sound pressure as

∆p(�x) + k2p(�x) = 0, �x ∈ Ω. (3)

This result is independent of α. Neumann boundary conditions are assumed. For them,
the normal particle velocities of the fluid vf equal the (prescribed) particle velocity of the
underlying radiator vs as

∂p(�x)
∂n(�x)

= s(α)kvf (�x) = s(α)kvs(�x), �x ∈ Γ. (4)
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Hence, the normal fluid particle velocity vf is related to the normal derivative of the sound
pressure p by means of the Euler equation in frequency domain. The constant s is given by

s(α) = −iαρ0c, (5)

where �0 is the ambient density of the fluid. The vector �n(�x) represents the outward normal
at the surface point �x and ∂/∂n(�x) is the normal derivative.

2.2. Weak formulation

A weak formulation is based on introducing the weight function χ(�x) and “testing” it with
the Helmholtz operator such that∫

Ω
χ(�x)[∆p(�x) + k2p(�x)]dΩ(�x) = 0. (6)

Integrating by parts twice gives∫
Ω

χ(�x)[∆p(�x) + k2p(�x)]dΩ(�x) = sk

∫
Γ

χ(�x)vf (�x)dΓ(�x)

−
∫

Γ

∂χ(�x)
∂n(�x)

p(�x)dΓ(�x) +
∫

Ω
p(�x)[∆χ(�x) + k2χ(�x)]dΩ(�x) = 0. (7)

The second part of Eq. (7) consists of two boundary integrals and one domain integral. This
domain integral can be transformed into an integral-free term by the using fundamental
solution G(�x, �y) in the sense of distributions. G is known as free-space Green’s function. In
terms of physics, G(�x, �y) can be understood as the sound pressure distribution according
to a point source (monopole) in �y. Together with the harmonic time-dependence of e−iωt,
it represents an outgoing wave. In the literature, the author has found this fundamental
solution for the Helmholtz equation as

G(α, �x, �y) =
1
4π

e−iαkr(�x,�y)

r(�x, �y)
�x, �y ∈ R

3 (8)

with r as the Euclidean distance between field point �x and source point �y as r(�x, �y) = |�x−�y|.
Function G should represent the solution of the equation

∆G(�x, �y) + k2G(�x, �y) = δ(�x, �y), (9)

but it does not. (The function δ(�x, �y) is the Dirac or delta function with the origin at �y.)
Actually, function G in Eq. (8) is the solution of

∆G(α, �x, �y) + k2G(α, �x, �y) = βδ(�x, �y), (10)

where, similar to α in Eq. (2), β = α. However, there are many examples in literature
where β = −α is chosen, e.g. see Refs. 5, 10, 11, 15, 16, 18–21, 23–29. Usually, this choice
is not obvious at this point but becomes clear with the formulation of the integral equation
and the integral-free term. Therefore, this derivation is continued with the assumption that
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α = ±1 and β = ±1 are independent of each other. Then, the correct Green’s function G

should be written as

G(α, β, �x, �y) = αβ
1
4π

e−iαkr(�x,�y)

r(�x, �y)
, �x, �y ∈ R

3. (11)

However, as mentioned above, the author has found only the choice of G as given in Eq. (8)
in the literature in the context of the Burton and Miller method.

For solution of Eq. (10), the sign of the exponent of e−iαkr(�x,�y) is arbitrary and, thus,
independent of α. It becomes determined when requiring the Green’s function to fulfill the
Sommerfeld radiation condition which depends on α as well.

Applying the property of the fundamental solution and the delta function of Eq. (8)
results in ∫

Ω
p(�x)[∆G(α, �x, �y) + k2G(α, �x, �y)]dΩ(�x)

=
∫

Ω
p(�x)βδ(�x, �y)dΩ(�x) = βζ(�y)p(�y). (12)

With this result and application of the boundary condition (4), Eq. (7) is rewritten as

I1(α, β, �y) = βζ(�y)p(�y) +
∫

Γ

∂G(α, �x, �y)
∂n(�x)

p(�x)dΓ(�x)

− s(α)k
∫

Γ
G(α, �x, �y)vs(�x)dΓ(�x) = 0. (13)

Equation (13) is known as representation formula. For �y ∈ Γ, it is known as the Kirchhoff–
Helmholtz (boundary) integral equation. It is also referred to as the first integral equation.
The term βζ(�y)p(�y) will be called the integral-free term for this first integral equation. The
value of ζ (with 0 < ζ < 1) is determined by the surface smoothness. At a smooth surface
point, ζ = 0.5. Note that plus and minus signs of either the first term or the second and
the third term may be different if the direction of the normal vector is chosen in opposite
direction.

2.3. Approximation and discretization by collocation

Independent of the discretization method, approximations of the physical quantities are
formulated. First of all, the sound pressure p(�x) is approximated as

p(�x) =
N∑

l=1

φl(�x)pl = φT (�x)p, (14)

where pl represents the discrete sound pressure at point �xl and φl is the lth basis function
for approximation. Further, it is assumed that a similar approximation is formulated for
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the particle velocity of the underlying structure vs

vs(�x) =
N̄∑

j=1

φ̄j(�x)vsj = φ̄
T (�x)vs. (15)

If vs is explicitly known, these approximations are not necessary for evaluation of the bound-
ary integrals in Eq. (13). However, there are many practical cases where the structural
particle velocity is the result of a finite element simulation and available only as piecewise
defined function.

The number of basis functions φl and φ̄j is given by N and N̄ , respectively. If the particle
velocity of the structure is a known function, N accounts for the degree of freedom. It is
common that N̄ = N .

The collocation method requires testing Eq. (13) with the Dirac function δ(�y, �z). This
integration is known analytically, cf. Eq. (12). It yields

I1(α, β, �z) = βζ(�z)p(�z) +
∫

Γ

∂G(α, �x, �z)
∂n(�x)

p(�x)dΓ(�x) − s(α)k
∫

Γ
G(α, �x, �z)vs(�x)dΓ(�x) = 0

(16)

which is basically the same expression as shown in Eq. (13). The major difference between
Eqs. (13) and (16) is that the former is actually a continuous integral equation whereas the
latter is valid just for the discrete point �z. This means that the integral equation is fulfilled
at a number of discrete points, i.e. the collocation points �zl. It is common practice that
the collocation points coincide with the nodes of the piecewise formulated approximation
of the sound pressure as shown in Eq. (14). For further considerations it is assumed that
φl(�zk) = δlk where δlk is the Kronecker symbol with δlk = 0 for l �= k and δlk = 1 for l = k.
Then, applying the approximation of Eqs. (14) and (15) yields the matrix equation as

Hp − Gvs = 0. (17)

Matrix G is the system matrix of the single layer potential as

glj(α) = s(α)k
∫

Γ
G(α, �x, �zl)φ̄j(�x)dΓ(�x) (18)

and matrix H contains the integral-free term and the contribution of the double layer
potential as

hlj(α, β) = βζ(�zl)δlj +
∫

Γ

∂G(α, �x, �zl)
∂n(�x)

φj(�x)dΓ(�x). (19)

For the Neumann problem, Eq. (17) is solved for the sound pressure at the nodes p.
It is a well-studied fact that the system matrix H becomes ill-conditioned for frequencies

close to the eigenvalues of the Dirichlet problem of the complementary domain, i.e. the
eigenvalues of G. To overcome this problem on behalf of the Burton and Miller formulation,
the normal derivative of Eq. (13) is used.
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2.4. Normal derivative integral equation

The normal derivative of Eq. (13) is given as

I2(α, β, �y) = βζ(�y)
dp(�y)
∂n(�y)

+
∫

Γ

∂2G(α, �x, �y)
∂n(�x)∂n(�y)

p(�x)dΓ(�x)

− s(α)k
∫

Γ

∂G(α, �x, �y)
∂n(�y)

vs(�x)dΓ(�x) = 0. (20)

A similar discretization process as in the previous subsection yields the matrix equation as

Ep − Fvs = 0 (21)

with Matrix F as the system matrix of the integral-free term and the adjoint double layer
potential as

flj = s(α)k
[
−βζ(�zl) +

∫
Γ

∂G(α, �x, �zl)
∂n(�zl)

φ̄j(�x)dΓ(�x)
]

(22)

and matrix E with the contribution of the hypersingular operator as

elj =
∫

Γ

∂2G(α, �x, �zl)
∂n(�x)∂n(�zl)

φj(�x)dΓ(�x). (23)

For the Neumann problem, Eq. (21) is solved for the sound pressure at the nodes p. However,
this is quite uncommon since the eigenvalues of matrix E are the same as for the interior
Neumann problem. This means that the lowest eigenvalue and, with it, the lowest fictitious
resonance occurs at the frequency of 0 Hz which makes the single use of this equation rather
impractical.

2.5. The Burton and Miller method

The Burton and Miller method is based on a linear combination of Eqs. (13) and (20) for
which the coupling parameter η is introduced. The coupled equation reads as follows

I1(α, β, �y) + ηI2(α, β, �y) = 0. (24)

The matrix form is easily derived from this equation and equations (17) and (21) as

[H + ηE]p − [G + ηF ]vs = 0 (25)

which is, again for the Neumann problem, solved for p. Many authors have discussed the
choice of the coupling parameter η.1–3,14,39 It is clear that the requirement for η is such that it
should be complex with nonzero imaginary part to yield a unique solution for Eq. (24). This
regards the continuous integral equation. The requirements are stronger for the discretized
integral Eq. (25). Usually, the coupling parameter is chosen purely imaginary. Amini3 found
that the parameter i/k almost minimizes the condition number for a sphere at high frequen-
cies. Terai39 had provided a physically motivated explanation for this choice 10 years before.
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2.6. Rigorous mathematical studies of the Dirichlet problem

Mathematical investigations in recent years focused at a similar problem, i.e. the Dirichlet
problem of the Kirchhoff–Helmholtz integral equation for which a similar linear combination
of the integral equation and its normal derivative is used. This method has been well-known
since the first papers were published approximately 50 years ago41,42 and these papers
were known and mentioned by Burton and Miller.1 Recent investigations confirmed for a
large group of domains, so-called nontrapping domains, that choosing |η| proportional to
1/k minimizes the condition number of the system of equations for which the sign of η

is not relevant.43–47 According to Spence,43 the only property of the system matrix which
strongly depends on the sign of η is coercivity. The system matrix for the Dirichlet problem
(discretized by a Galerkin method) is coercive for η = i/k but not for η = −i/k,48 of course
assuming αβ = 1. It is worth mentioning that the mathematical studies referenced here are
all consistent insofar, that they use αβ = 1.

3. Test Problems

It has been explained in the previous sections that the choice of a positive or negative
coupling parameter η depends on the formulation of the integral equations, in particular
on the choice of the parameters α and β. In what follows, the correct choice of η will be
referred as η = i/k, i.e. the correct choice for αβ = 1.

3.1. Spherical scatterer

The first example comprises a spherical scatterer in a field of plane waves. For the Neumann
problem, the sphere is assumed to be rigid. Material data of air are used such that the speed
of sound c = 340m/s and the density ρ0 = 1.3 kg/m3. The analytical solution for the total
sound pressure p is well-known as sum of incident and scattered sound pressures, pi and ps,
respectively, see for example Ref. 49

p(r, ϑ) = pi + ps = p0

{
eikr cos ϑ +

∞∑
n=0

in(2n + 1)
j′n(kR)
h′

n(kR)
Pn(cos ϑ)hn(kr)

}
. (26)

In Eq. (26), p0 represents the sound pressure amplitude of the incident wave, jn and hn

are the spherical Bessel and Hankel functions of the first kind, respectively. Pn denotes
the Legendre polynomials and R = 1m is the radius of the spherical scatterer. Since the
problem is axisymmetric, the two parameters r and ϑ allow a complete evaluation in space,
r is the distance from the center of the sphere and ϑ is the angle such that the shadow zone
is located at ϑ = 0 and the illuminated zone at ϑ = π. A sound pressure amplitude for the
incident wave of p0 = 1Pa is chosen.

The numerical model is a model which uses super-parametric boundary elements for
which the geometry is approximated by quadratic quadrilateral elements (nine nodes per
element) and the sound pressure is approximated by linear discontinuous boundary ele-
ments.17,50 It consists of 1536 boundary elements, i.e. 192 per octant. The element length
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Kirchhoff–Helmholtz IE
analytical solution

Fig. 1. Spherical scatterer, sound pressure at r = 2R, ϑ = 0.

f/Hz

kR

p/Pa

1.4

1.0

1.2

0.8

250 500 750 1000 1250 1500

π 3π 5π 7π 9π

analytical solution
Burton & Miller, η = +i/k
Burton & Miller, η = −i/k

Fig. 2. Spherical scatterer, formulation for αβ = 1, sound pressure at r = 2R, ϑ = 0.

is approximately 0.1 m, i.e. 64 elements along the diameter of the sphere. Selecting a max-
imum frequency of 1700 Hz for the analysis, i.e. kR = 10π, results in a mesh for which 3.4
elements per wavelength are counted. According to a former study of the author,50 this
should be sufficient.

Figures 1 and 2 show the sound pressure magnitude at r = 2R and ϑ = 0 for different
configurations. The comparison in Fig. 1 confirms that a method to suppress the irregular
modes is really necessary. In Fig. 2, the analytical solution at the same position is com-
pared with the numeric solution of the Burton and Miller formulation using the coupling
parameters i/k and −i/k, respectively. It can be recognized very clearly that the choice
of η = −i/k is significantly changing the result. Above 1 kHz, the error of the scattered
pressure ps reaches more than 25%, whereas it remains much smaller if i/k is chosen. Inter-
estingly, a clear difference between the analytical and the i/k-solution can be recognized
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π 3π 5π 7π 9π

analytical solution
Burton & Miller, η = +i/k
Burton & Miller, η = −i/k

Fig. 3. Spherical scatterer, formulation for αβ = 1, sound pressure at r = 2R, ϑ = π.

in the lower frequency range around 500 Hz. This is somewhat unexpected and remains a
(marginal) open question of this study.

Figure 3 presents the sound pressure magnitude at r = 2R and ϑ = π for the analytical
solution and for the Burton and Miller formulation using the coupling parameters i/k and
−i/k, respectively. For this position, the numeric solutions follow the analytical solution
rather well. It becomes obvious that selection of the wrong coupling parameter is again
spoiling the result. A difference between the numeric solution for η = i/k and the analytical
solution is hardly recognizable except for the highest frequencies.

A practical aspect of numeric solutions consists in the computation time. The setup
of the system of equations and the solution of the system of equations account for the
main contributors for boundary element solutions. While the setup time is independent of
the coupling parameter and in the current implementation even quite similar for solution of
the Kirchhoff–Helmholtz integral equation alone and the Burton and Miller formulation, the
convergence of the iterative solution of the system of equations is investigated. A GMRes
algorithm51,52 without preconditioning is used for this. The solution is assumed to have
converged after the residual has reached a certain prescribed value. Herein the residual is
evaluated as

Rn =
‖b − Axn‖2

‖b‖2
, (27)

where A and b are the system matrix and the right hand side, respectively. The current
iteration is denoted by xn. For all computations in this article, the iteration is terminated
after Rn ≤ 10−10.

The results are depicted in Fig. 4. Obviously, the simple Kirchhoff–Helmholtz integral
equation which requires inversion of H only is very efficiently solved in the low frequency
range. However, matrix H becomes the worse conditioned the higher the frequency is.
Among other reasons, the increasing density of irregular frequencies leads to a rising con-
dition number which leads to more iterations and, thus, more matrix vector products for
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π 3π 5π 7π 9π

Burton & Miller, η = +i/k

Burton & Miller, η = −i/k

Kirchhoff–Helmholtz IE

Fig. 4. Spherical scatterer, formulation for αβ = 1.

solution of the system of equations. For the Burton and Miller method, many more itera-
tions are necessary in the low frequency range. Then, at about 100 Hz, the curves for the
two coupling parameters diverge from each other. While the number of iteration is sub-
stantially increasing if η = −i/k, it is even decreasing if the correct coupling parameter is
chosen. Moreover, the Burton and Miller solution requires even less iterations than solution
of the simple Kirchhoff–Helmholtz integral equation if the frequency becomes larger than
approximately 800 Hz and kR > 5π. This behavior is indicating that in the previous study
of the author52 where the same example was investigated, the wrong coupling parameter
was chosen.

3.2. Cat ’s eye radiator

The second example is already known from a detailed previous study.17 There, the cat’s eye
radiator was chosen to investigate the occurrence of irregular frequencies for a more complex
structure than the sphere. The cat’s eye model is a sphere with the positive octant cut out. In
the radiation problem, it is assumed that the vibrating surface coincides with the spherical
part of the surface. The plane surface areas of the missing octant remain calm. This implies
that the noise transfer function, i.e. sound pressure divided by surface velocity in terms of
frequency, returns a very smooth function similar to the solution of the radiating sphere
where it is easy to identify frequencies where the solution fails. Consequently, in Ref. 17
it could be shown that some methods which should suppress the irregular frequencies are
still failing if higher frequencies are investigated. The Burton and Miller method, even in
a reduced form where the hypersingular integral equation was only applied to collocation
at the center point of a continuous quadratic element, supplied smooth results and was
believed to be a reliable method to provide a solution free of fictitious modes.

Similar to the spherical scatterer, material data of air as density ρ0 = 1.3 kg/m3 and
speed of sound c = 340m/s are assumed. The spherical radius is again taken to be R = 1.0m
and the particle velocity for the vibrating surface is v = 1m/s. Again, linear discontinuous
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elements are used. Applying a very similar mesh as for the sphere in the previous example
results in a mesh of 1920 quadrilateral super-parametric elements. Again, the sound pressure
is approximated by linear discontinuous boundary elements. Hence, the same frequency
range as for the spherical scatterer is analyzed. An analytical solution is not known for this
particular problem of the cat’s eye. However, Mechel53 discussed analytical series solutions
of the cat’s eye model in particular for scattering.

For the current investigation, it is assumed that the positive octant has been cut out
of a sphere, i.e. the octant which encompasses positive coordinates in all three directions.
Hence, the point P1 = R/

√
3[−2,−2,−2] is located above the back side of the cat’s eye.

Furthermore, the points P2 = 0.01R[10, 10, 1] and P3 = 0.05R[10, 10, 1] are defined within
the cat’s eye, i.e. within the missing octant.

Figure 5 depicts the sound pressure at P1. The result is very similar to the figure provided
in the former paper17 and the curves for both coupling parameters are very similar to each
other. Both curves are smooth and do not give any indication of an irregular frequency. The
sound pressure curves for P2 and P3 are presented in Fig. 6. While the general behavior
of two curves for the same position is the same, there are at least some obvious deviations
between the curves. This time, it is not possible to decide which of the curves is more
accurate. However, the author assumes that the curves for η = i/k provide the more accurate
solution here.

Analogously to Fig. 4, Fig. 7 shows the number of iterations required for the GMRes
to converge. The picture looks similar to what was experienced for the sphere. Just worse
for the wrong coupling parameter and the pure Kirchhoff–Helmholtz integral equation. The
number of iterations is, again, decreasing for the coupling parameter i/k and, for high
frequencies, it is surprisingly (< 50) low whereas for the wrong coupling parameter, the
number of iterations reaches 900 for some frequencies.

p/Pa

f/Hz

kR

100

200

50

150

250 500 750 1000 1250 1500

π 3π 5π 7π 9π

Burton & Miller, η = +i/k

Burton & Miller, η = −i/k

Fig. 5. Cat’s eye radiator, sound pressure at r = 2R above the radiating backside, αβ = 1.

1550016-11

J.
 C

om
p.

 A
co

us
. 2

01
6.

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

.2
00

.1
62

.1
59

 o
n 

02
/2

1/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



March 17, 2016 13:56 WSPC/S0218-396X 130-JCA 1550016

S. Marburg

p/Pa

f/Hz

kR

100

200

300

400

500

600

700

250 500 750 1000 1250 1500

π 3π 5π 7π 9π

P 2, Burton & Miller, η = +i/k

P 2, Burton & Miller, η = −i/k

P 3, Burton & Miller, η = +i/k

P 3, Burton & Miller, η = −i/k

Fig. 6. Cat’s eye radiator, sound pressure at two points within the missing octant, αβ = 1.

No of iterations
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kR
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π 3π 5π 7π 9π

Burton & Miller, η = +i/k

Burton & Miller, η = −i/k

Kirchhoff–Helmholtz IE

Fig. 7. Cat’s eye radiator, number of iterations for solution of the system of equations, αβ = 1.

3.3. The Radiatterer

The Radiatterer is a recently created benchmark problem of the European Acoustics Asso-
ciation.54 This model is the result of searching for a new shape with many edges and corners
while still being able to easily create hierarchical meshes. It contains a number of resonators

1550016-12

J.
 C

om
p.

 A
co

us
. 2

01
6.

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

.2
00

.1
62

.1
59

 o
n 

02
/2

1/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



March 17, 2016 13:56 WSPC/S0218-396X 130-JCA 1550016

The Burton and Miller Method: Unlocking Another Mystery of Its Coupling Parameter

X

Y

Z

X

Y

Z

X
Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X
Y

Z

X

Y

Z

Fig. 8. The Radiatterer: basis boundary element mesh.

including a Helmholtz resonator with two openings. The Radiatterer is based on a block
of 2.5 × 2.0 × 1.7m3. The exact geometry of the model is the result of geometric boolean
operations by which 21 blocks are cut out of the original one. It is described in detail in
Ref. 54 and shown in Fig. 8. The basis mesh, as given in Fig. 8 consists of 4554 plane square
elements of 0.1 × 0.1m2. Since all edges and corners are right-angular, the exact shape of
the Radiatterer is easily derived from the pictures. A surface area of 45.54m2 results from
these 4554 elements. The enclosed volume is 5.331m3. When limiting the analysis to the
frequency range up to 1000 Hz, the basis mesh of edge length 0.1m provides 3.4 elements
per wavelength for the highest frequency and which is the same size as in the previous
examples. Furthermore, linear discontinuous elements are used for this evaluation.

Again, material data of air as density ρ0 = 1.3 kg/m3 and speed of sound c = 340m/s are
assumed. For the current simple test case, a unit particle velocity is applied to all surfaces.
This unit particle velocity is set to be 1 mm/s. While the sound pressure has been evaluated
at the surface and at numerous other positions in the near field and in the far field of the
Radiatterer, in this study, only the radiated sound power P 55,56

P =
1
2
�

{∫
Γ

pv∗dΓ
}

(28)

is checked as a result. (Superscript ∗ denotes complex conjugate.) Owing to the resonators,
a number of resonances are observed in the sound pressure solution. These resonances are
also identified in the radiated sound power.
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Fig. 9. The Radiatterer: radiated sound power for η = −i/k (upper subfigure) and for η = i/k (lower
subfigure).

Figure 9 displays the radiated sound power level evaluated as

PL = 10 log10

( |P |
P0

)
, (29)

where it is unusual to use the magnitude |P |. However, this is required here since in some
places when using the wrong coupling parameter η = −i/k, a negative radiated sound power
is evaluated. Obviously, this is physically insufficient and must be wrong. These values of
negative sound power occur mainly at some resonances and they do not appear in case of
η = i/k.
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While the results in the previous examples were always similar for both coupling param-
eters, a substantial error is generated by the wrong coupling parameter when a resonator is
analyzed. Interestingly, this effect is not observed for all resonances but only a few. More-
over, the negative sound power at resonances is mainly associated to standing waves within
the Helmholtz resonator shown in the lower right corner of the lower right subfigure of
Fig. 8. At these resonances, the main contribution to the radiated sound power stems from
inside the resonator. Therefore, it is worth to check the sound pressure distribution inside
the resonator. Only the real part of the sound pressure is relevant since a real valued parti-
cle velocity is used. Figure 10 displays the real part of the sound pressure at the surface of
the Radiatterer for the two different values of αβ for the frequency of 262 Hz. While, from
the outside, the Radiatterer’s surface appears green, i.e. the real component of the sound
pressure is small compared to the same quantity at other locations, the solution becomes
colorful inside the resonator. Although looking quite similar at first glance, the maxima and
minima are inverted when changing the value of αβ from −1 to 1. Thus, the wrong choice
of the coupling parameter causes 100% error inside the cavity.

Similar to the previous examples, it is investigated how the GMRes algorithm con-
verges for the different formulations. At first, it is compared how the number of iterations

MN

MX MN

MX

MN

MX

 262.06 Hz

-818.148 848.175

MN

MX

 262.06 Hz

-319.641 308.35

αβ = −1 αβ = 1

Fig. 10. The Radiatterer: Sound pressure distribution for the two cases of αβ = ±1 and η = i/k.
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Fig. 11. The Radiatterer: number of iterations for solution of the system of equations, αβ = 1.

develops over frequency for the Burton and Miller formulation and the Kirchhoff–Helmholtz
integral equation. These curves are depicted in Fig. 11. Clearly, the solution of the sys-
tem of equations is much faster in the low frequency range when solving the Kirchhoff–
Helmholtz integral equation. The Burton and Miller formulations with the two different
coupling parameters start from approximately the same number of iterations in the very
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√
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Fig. 12. The Radiatterer: number of iterations for solution of the system of equations, αβ = 1.
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low frequency range but diverge from each other rather quickly. Different from the results
in the previous examples, the number of required iterations is generally increasing with
frequency even for the correct coupling parameter. Above approximately 650 Hz, solution
of the Kirchhoff–Helmholtz integral equation takes more iterations than the Burton and
Miller formulation with the coupling parameter i/k.

Finally, the Radiatterer is investigated for a finer tuning of the coupling parameter.
The motivation behind this test consists in the fact that some authors are using a coupling
parameter of η = Ci/k with a real value C fulfilling the condition 0 < C < 1.30–32 Figure 12
reveals that, at least for the Radiatterer example, values of C < 1 can be advantageous in the
low frequency range. In the higher frequency range, the curve for C = 1/

√
10 approaches

the C = 1-curve whereas the C = 1/10-curve is clearly above the other two. Hence, an
optimal choice of the coupling parameter depends on the frequency and, most likely, on
the problem. Therefore, the search for an optimal coupling parameter appears to be very
complex and would be beyond the scope of this paper.

4. Conclusion

The main motivation for this investigation has been the apparent unawareness of many
researchers, mainly engineers, that they are using the wrong coupling parameter for the
Burton and Miller formulation. Scanning the literature showed that a coupling parameter
with the correct sign was chosen in Refs. 3, 4, 6, 7, 9, 12–14, 17, 22, 30–34, 37, 39 while
a coupling parameter with the wrong sign was chosen in Refs. 5, 10, 11, 15, 16, 18–21,
23–29. For some papers, it was impossible to decide whether the authors chose the better
solution or not.8,35,36,38,57 In these cases, some information for the decision has been missing
in the paper. Although being the linear combination of two zeros, cf. Eq. (24), the sign
of the coupling parameter is not just influencing the efficiency of the iterative solution
of the system of equations. It also manipulates the numeric results and can end up in
solutions which are completely wrong and unphysical as shown. To avoid this and to decide
whether the parameter is correctly chosen, it is recommended that α in the harmonic time
dependence and β as the factor in the integral-free term are always supplied.
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