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Kurzfassung 

Hochautomatisierte unbemannte Fluggeräte sollen zukünftig verstärkt in kommerziellen 
Lufträumen zum Einsatz kommen. Um für kommerzielle Anwendungen attractive zu sein, 
müssen unbemannte Fluggeräte schnelle Produktentwicklungszyklen durchlaufen, 
kosteneffizient sein und zuverlässig in sich ändernden Umgebungsbedingungen operieren. 
Adaptive Regelungsansätze versprechen diese Anforderungen zu erfüllen. Allerdings 
existiert bis heute keine Möglichkeit der Zertifizierung dieser Algorithmen. In der 
Vergangenheit wurden adaptive Regler vornehmlich mit dem Ziel entworfen, Stabilität beim 
Einsatz auf einem Modellsystem zu garantieren. Die Robustheit der Ansätze wurde unter 
Beaufschlagung ausgewählter Unsicherheiten und Störungen untersucht. Die daraus 
resultierenden Beurteilungen garantieren allerdings keine verlässliche Performanz des 
realen System, welche wiederum Grundvoraussetzung für eine Zertifizierung ist. Zudem 
basiert die heutige Zertifizierung von Flugregelungsalgorithmen darauf die Algorithmen vor 
dem Einsatz zu evaluieren. Adaptive Regler passen sich den Umgebungsbedingungen 
während der Laufzeit an. Eine vorherige Evaluierung aller möglichen Systemzustände ist 
demnach nicht durchführbar. In diesem Kontext sehen viele Wissenschaftler eine online 
Überwachung des Reglers als integralen Teil einer zukünftigen Zertifizierung an. Die 
vorliegende Arbeit stellt ein online Monitoring Konzept für Model Reference Adaptive Control 
vor, mit dessen Hilfe Verletzungen der Anforderungen in der nahen Zukunft frühzeitig 
detektiert werden sollen. Um dies zu erreichen, prediziert der Ansatz unter Ausnutzung eines 
Modells des Systems und des adaptiven Reglers den Verlauf der Systemzustände in die 
Zukunft. Oftmals sind Teile der Systemdynamik mit Modellunsicherheiten behaftet oder 
komplett unbekannt. Gauß’sche Prozesse stellen eine Möglichkeit dar Modellunsicherheiten 
abzubilden, oder ein Modell aus online generierten Messdaten abzuleiten. Da Systeme durch 
stochastische Unsicherheiten beeinflusst sind, müssen auch probabilistische 
Propagationsmethoden benutzt warden. Das vorgeschlagene Konzept approximiert die 
Verteilungen der System- und Reglerzustände mit Hilfe von Gaussian Mixture Modellen, 
welche eine große Bandbreite an Verteilungen abbilden können. Die Prediktion erfolgt indem 
jede Kompenente des Mixture Modells durch ein korrespondierendes lineares Ersatzmodell 
der Systemgleichungen sowie des Gauß’schen Prozess propagiert wird. Die Wiederholung 
dieses Prozesses resultiert im wahrscheinlichen Verlauf der System- und Reglerzustände 
innerhalb des Prädiktionshorizonts. Die Analyse der kummulativen Verteilungsfunktion an 
mehreren Punkten im Prädiktionshorizont ermöglicht Aussagen über die Wahrscheinlichkeit 
einer Anforderungsverletzung. Die Fähigkeiten des vorgeschlagenen Monitoring-Konzepts 
werden mit Hilfe numerischer Simulationen und der Applikation auf Multirotorsysteme 
demonstriert. 

 

Abstract 

Autonomous unmanned aerial vehicles are envisioned to become increasingly utilized in 
commercial airspace. In order to be attractive for commercial applications, unmanned aerial 
vehicle are required to undergo a quick development cycle, ensure cost effectiveness and 
work reliably in changing environments. Adaptive control techniques have been proposed to 
meet these demands. However, up to date no consistent certification framework exists for 
adaptive controllers. In the past, most adaptive control algorithms were solely designed to 
ensure stability of a model system and meet robustness requirements against selective 



 
 

Page vi   

uncertainties and disturbances. These assessments do not guarantee reliable performance 
of the real system required by the certification process. Also due to their evolving nature, 
classical certification processes, which rely on prior verification, are not applicable. According 
to an emerging consensus, online monitoring will play an integral role in closing this gap. In 
this context, this thesis proposes an online monitoring concept for Model Reference Adaptive 
Controllers, which aims at the detection of imminent state requirement violation. This is 
achieved by predicting the evolution of the state and parameter trajectories employing a 
model of the plant and the controller. Often parts of the system dynamics are uncertain or 
completely unknown. Gaussian Processes present a way to represent such uncertainties or 
infer them from online gathered data using Bayesian inference. Since systems are subject to 
stochastic uncertainties, probabilistic propagation techniques are leveraged. The proposed 
monitoring concept approximates the state and parameter distribution using Gaussian 
Mixture Models, which can represent a wide class of distributions. The prediction is 
performed by propagating each mixture component through a respective approximated linear 
system model as well as the inferred Gaussian Process model. Repeating this process over 
the prediction horizon yields the evolution of the state and parameter distribution. Analyzing 
the cumulative distribution function of the GMM at various points in the prediction horizon 
allows for the assessment of the probability of an imminent state requirement violation. The 
proposed monitoring concept is demonstrated in numerical simulation as well as applied to 
multirotor systems in experiment.  
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1 Introduction 

 

1.1 General Introduction 

 

Unmanned aerial systems (UAS) are increasingly utilized in commercial airspace. Their 
application spans a broad range from surveillance and inspection to delivery and hobby 
photography. Engineers envision future applications to reduce the number of operators per 
UAS and to tackle tasks in cooperative swarms ([66]). This requires a drastic increase in the 
level of UAS autonomy. Meanwhile, in order to be attractive for commercial applications, 
UAS shall undergo quick development cycles, ensure cost effectiveness and work reliably in 
changing environments. In this context, developing flight controllers for each single vehicle 
type or for each single configuration presents a current undesired necessity. The sustained 
trend to higher levels of autonomy, the demanded versatility and the cost effectiveness pose 
a challenge for future UAS control systems.  

Commercially available UAS are equipped with flight control systems based on linear control 
theory. The latter leverages a model of the UAS in order to derive fixed controller gains, 
which yield desired robustness and performance characteristics. The model is constructed by 
first fracturing the operating domain and approximating the highly nonlinear system dynamics 
by linear models. In a second step the model parameters are determined for each such 
fraction. Two main factors render linear control theory unattractive for UAS development and 
increasing levels of autonomy. First, for large UAS the parameters of the derived models are 
mostly determined by extensive experiments, such as wind tunnel tests. As a consequence, 
the development requires a lot of time, money and effort. Human life is not put under direct 
risk during UAS flight tests. Hence, instead of wind tunnel tests, flight tests present an often 
cheaper and quicker alternative to generate the required model parameter sets for certain 
flight conditions ([191], [36]). Still, this approach requires a lot of effort in order to build a 
database for a huge variety of flight conditions. Furthermore, a reliable knowledgebase 
needs to be available a-priori, in order to even perform flight tests. The second main 
drawback of linear flight controllers is that UAS are often subject to configurable and 
structural modifications. This results in changes of the model parameters such as drag and 
lift coefficients. As the modelling uncertainty leads to the deterioration or even nullification of 
derived performance and robustness guarantees, an already developed database is 
rendered unreliable.  

Nonlinear control techniques (see i.a. [118], [155]) eliminate many of the undesirable 
features of linear controllers. They operate through large sections of the operating domain, 
do not necessarily require an exact model of the system and are able to compensate 
structural changes of the UAS. These features allow them to be equipped to a huge variety 
of systems with only minor adjustment. Thus, they promise the desired versatility within a 
reduction of the development time and effort. A special kind of nonlinear control techniques 
that exhibits the aforementioned capabilities is the class of adaptive controllers.  
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Model Reference Adaptive Control (MRAC) is a well-studied technique from the family of 
adaptive controllers (see i.a. [155], [8], [204]). MRAC aims at making a system behave like 
an a-priori chosen dynamical model. This is achieved by approximating the modeling 
uncertainty using a weighted combination of known basis functions. The underlying 
assumption is that there exists an optimal set of gains that best captures the modeling 
uncertainty for a particular structure of the adaptive element. If the gains do converge to their 
ideal values and the uncertainty is entirely canceled, the closed loop system matches the a-
priori chosen model and recovers its properties. Most adaptive control algorithms try to 
achieve this goal by adjusting the parameters based on the minimization of a quadratic cost. 
A Lyapunov based stability proof ensures boundedness of all system signals. Thus, adaptive 
control techniques promise versatile application to a huge variety of systems only requiring 
minor adjustments. Still, the desired dynamical behavior needs to lie within the physical 
capabilities of the controlled UAS. 

MRAC has repeatedly shown good performance in various applications, in particular when 
the system dynamics are uncertain or during environmental and structural changes ([114], 
[41], [195]). However, several shortcomings prevent a successful application in commercial 
aviation. This is mainly due to missing certification guidelines and procedures for nonlinear 
and, in particular, adaptive flight control techniques.  

Airborne systems are extensively regulated by governments and need to be certified before 
deployment. From an abstract point of view, the certification process is intended to generate 
trust in a successful application of the flight control algorithm and the UAS. Ways to create 
this trust are summarized amongst others in guiding documents (see e.g. [176]). The 
certification process was designed with linear control systems in mind. For instance, 
analytically derived performance and robustness metrics, such as gain and phase margins, 
represent a crucial tool in the certification process. Unfortunately, these metrics are not 
applicable to nonlinear systems and universal metrics do not yet exist for adaptive 
controllers. Apart from metrics, researchers identified various other gaps, which currently 
prevent the successful certification of adaptive flight control algorithms (see i.a. [105], [169], 
[220]). This includes amongst others the need for a concise software verification plan, a 
consistent requirement formulation and appropriate verification tools. 

A central challenge within the introduction of a certification plan for adaptive flight controllers 
involves the Verification and Validation (V&V) processes. In the context of V&V, the analysis 
of fixed-gain linear control systems is performed prior to deployment. Hence, guarantees and 
the expected behavior of the closed-loop system are known before the system is even used. 
In contrast, adaptive systems adjust their parameters online. As a result they are able to 
compensate modeling uncertainties and unforeseen configurational or environmental 
changes. If well established V&V procedures for linear controllers were applied to adaptive 
controllers, requirements would have to be tested against an infinite amount of parameter 
combinations ([220, p. 14], [49, p. 13]).  

Recent updates to the certification specifications ([47b]) support novel design solutions in 
order to show the safe operation of UAS. The evolving nature of adaptive controllers sparked 
an emerging consensus between various authors to move the verification from an a-priori 
analysis to a verification during the runtime of the system (see i.a. [105], [169], [170], [177]). 
An integral part of run time verification is the establishment of an online monitoring tool. 
These algorithms are envisioned to provide information about the adaptation performance 
and impending undesired behavior of the adaptive controller and the closed loop system.  
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Several approaches to online monitoring of adaptive control algorithms exist (see i.a. ([129], 
[222], [189], [186]). A frequent feature is that current monitoring techniques only focus on the 
assessment of the learning capabilities of the adaptive element. The underlying hypothesis is 
that the successful operation of the controlled system is ensured by solely monitoring the 
learning capability of the adaptive element. Thereby, the mentioned approaches intrinsically 
decouple the controller from the plant and thus neglect three key aspects. First, requirements 
are formulated in the context of plant states. Hence, even if the adaptive controller operates 
as desired, plant states might exceed structural and operational limits. Secondly, the 
coupling between the nonlinear control algorithm and the system dynamics is neglected. As 
a result, effects resulting from learning transients can lead to harsh and undesired state 
responses. Finally, due to residual errors, signal injection may cause unacceptable transient 
states even after the adaptive parameters converged. In this context, a deteriorated learning 
performance might even be acceptable if it improves the response characteristics of the state 
dynamics.  

This thesis introduces an online monitoring concept, which aims at predicting the evolution of 
the state and parameter trajectories. The underlying goal is to detect imminent state 
requirement violation and undesired behavior of the closed loop system. The monitor 
achieves this by recursive propagation of the states and adaptive parameters through a 
model of the plant and parameter dynamics. In the absence of uncertainty, this approach 
results in the exact trajectory the UAS will take. However, systems are naturally subject to 
stochastic uncertainties originating from i.a. noisy state measurements, distributed system 
parameters or external disturbances. Hence, the prediction has to be carried out in the 
context of stochastic uncertainty propagation. Thereby, three key challenges arise. First, 
parts of the closed loop dynamics might not be known. Their negligence leads to heavily 
deteriorated prediction performance. Secondly, the closed loop dynamics are highly 
nonlinear. Even if the plant was linear, the adaptive component still adds a nonlinear 
feedback to the control signal. As a result, propagated distributions are seldom of the 
Gaussian type. Furthermore, approaches that rely on (approximately) linear systems, such 
as the prediction step in the Kalman filter ([106]), again lead to heavily deteriorated prediction 
performance. Lastly, the algorithm has to run on UAS hardware. UAS exhibit fast dynamics, 
while the online available computational resources are usually low. As a result, techniques 
that use sampling, such as the particle filter ([163]), are not suited to carry out the prediction. 
Instead, a monitoring algorithm based on analytic predictions is aspired.  

To overcome the first challenge, this thesis employs Gaussian Processes (GP, see i.a. [173], 
[21], [152]) in order to represent the modeling uncertainty. GPs are probabilistic models that 
can be completely constructed using online gathered data. A means to achieve this is GP 
regression, which leverages Bayesian inference in order to fit a GP model to a set of data. 
This way unknown parts of the system dynamics can be quantified during the runtime of the 
system. To solve the second and third challenge, the proposed monitoring algorithm employs 
Gaussian Mixture Models (GMM, [21]) in order to model the state and parameter distribution. 
While each component of a GMM represents a Gaussian, their combination is able to 
represent a huge variety of distributions, including multimodal and heavily skewed 
distributions. During the prediction, the nonlinear dynamics are approximated by linear 
models at the center of each mixture component. The underlying assumption is that the 
covariance of each mixture component is small enough to warrant the linearization. The 
prediction is performed by propagating each mixture component through its respective 
approximated linear system model as well as the inferred GP. Repeating this process over 
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the prediction horizon yields the evolution of the state and parameter distribution. Analyzing 
the cumulative distribution function of the GMM at various points in the prediction horizon 
allows for the assessment of the probability of imminent state requirement violations. 

A detailed review of the aspects discussed above can be found in the respective chapters. 
The following section details the contributions over the state of the art.  

1.2 Contributions 

This thesis aims at the design and the implementation of an online monitoring algorithm for 
adaptive control algorithms. The following five points highlight the contributions of this thesis 
over the state of the art.  

Analytic long term prediction for monitoring of adaptively controlled systems  

A central contribution of this thesis is the proposal of a stochastic monitoring system for 
adaptively controlled systems. The monitor relies on analytic long term forecasts of the 
system states in order to assess potential undesired behavior in the near future. Stochastic 
long term predictions are employed in a variety of applications such as weather forecasts, 
safety assessments or stock development. However, the employed techniques 
predominantly rely on linear systems subject to uncertainties governed by a Gaussian 
probability distribution, or sampling techniques such as Monte Carlo. Recently analytic long 
term predictions of highly nonlinear and non-normally distributed dynamical systems came 
into focus (see e.g. [85], [171], [71]).  

The contribution of this thesis is the application of analytic long term prediction to the 
monitoring of adaptively controlled and highly nonlinear systems. To the best of the authors’ 
knowledge, this approach has neither been employed for flight control applications nor 
adaptive controllers. The approach leverages as much prior information as possible. The 
known part of the system dynamics is used in order to propagate a GMM, which describes 
the system state distribution. The uncertain parts of the system dynamics are represented 
using GP models. Two cases are considered. First, in the case of parameter uncertainties 
with known parameter distribution, a GP prior model is utilized. If the uncertainty is 
completely unknown, GP regression is used in order to generate a model from online 
gathered data. In this, the proposed approach differs from existing applications, which either 
only consider the known system dynamics, or use GP regression to form a model of the 
complete dynamical system. 

Combined state and control prediction for system monitoring 

A central contribution of the proposed approach is the combined evaluation of controller and 
plant states. Existing monitoring approaches predominantly aim at assessing the learning 
capabilities of the adaptive element only (see amongst others [129], [133], [134], [132], [188], 
[222], [68], [186], [186], [82], [188]). The underlying idea is that if the adaptive element 
successfully learns the modeling uncertainty, its impact on the plant dynamics is mitigated 
and the plant dynamics reduce to a predefined system. Since the latter is known, the closed 
loop system assumes well defined properties. Hence, the authors argue that if the learning 
capability of the adaptive element is monitored, the successful operation of the controlled 
system can be assessed.  
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The mentioned approaches intrinsically decouple the controller from the plant. In particular, 
the closed loop system is seen to be functioning as intended as long as the learning 
capability of the adaptive element is deemed ‘good enough’. However, this reasoning 
neglects several aspects. First, requirements are mostly formulated with system states in 
mind. In the end, mainly the states of the plant define whether or not it exceeds structural or 
operational limits. Even if the adaptive element functions as intended, the system might 
exceed those limits due to small residual errors. Secondly, the effect of the adaptive element 
on the plant dynamics during transient phases is ignored. In particular, adaptive elements 
with gradient based update laws often suffer from harsh learning transients. As a 
consequence, also state trajectories exhibit huge overshoots, which can cause the plant to 
exceed predefined limits. Finally, signal injection may cause unacceptable transient states 
even after learning convergence. This occurs if the uncertainty approximation is not uniform 
and residual approximation errors remain. Even though the learning is assessed to be as 
desired, the plant states might again violate predefined requirements. Furthermore, a 
deteriorated learning performance might even be acceptable if it improves the properties of 
the state dynamics. 

The proposed monitoring technique significantly differs from the mentioned techniques in its 
strategy. Thereby, the approach models the dependencies between the plant and the 
controller. The combined prediction of plant and controller state trajectories enables the 
assessment of the adaptive control impact on the system dynamics in the future. As a 
consequence, the monitor is able to consider transients in the controller and plant state. 
Furthermore, the effects of signal injection can be analyzed.  

Contribution to the closure of gaps in the certification process of adaptive flight 
control algorithms 

The proposed monitoring algorithm directly contributes to the closure of gaps in the 
certification process of adaptive control algorithms. The certification process of flight control 
algorithms is specifically tailored for linear controllers. Exemplarily, requirements are often 
formulated in the frequency domain and robustness metrics, such as the gain and phase 
margin, are only calculable for linear system (see e.g. [181], [180]). Thereby, the V&V 
process plays a central role in the certification of adaptive flight control algorithms. A variety 
of authors (see amongst others [105], [169], [170], [205], [220], [187], [177], [178]) identified 
technical and formal drawbacks that prevent the direct adaptation of the V&V process for 
linear systems to adaptive controllers. Overcoming these V&V challenges is seen as one of 
the major challenges for future commercial adaptive control applications.  

Recent updates to the certification specifications ([47b]) support novel design solutions in 
order to show safe operation of UAS. An emerging consensus between the mentioned 
authors classifies runtime verification as a key component in the V&V process for adaptive 
control algorithms. The underlying reasoning is that the desired and inherent property of the 
adaptive element to react to unforeseen situations cannot be verified a-priori. Performing 
verification for a nonlinear system requires, amongst other things, the evaluation of all 
possible situations and parameter combinations. Since such systems assume an infinite 
number of testing combinations ([220, p. 14], [49, p. 13]), a-priori verification is not feasible or 
the verification domain has to be significantly restricted. In contrast, the convexity of linear 
systems allows for the assessment of whole subsets of the verification domain by e.g. 
robustness metrics such as the gain and phase margin. 
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Following the arguments of, amongst others, Jacklin ([105]), the proposed monitoring 
algorithm presents a contribution to the closure of gaps in the certification process of 
adaptive flight control algorithms. Until now, most monitoring algorithms focus on the learning 
quality of the adaptive element and neglect the effect of the controller on the plant e.g. in 
transient phases. As a consequence, requirements on the plant states are not directly 
relatable to the results of the monitoring algorithm. In contrast, the proposed monitor employs 
a stochastic model of the dynamic system in order to predict the evolution of the plant and 
controller state trajectories. This allows the monitor to assess undesired behavior or 
immanent requirement violations and perform suitable countermeasures. Therefore, the 
proposed approach is able to directly relate the performance of the adaptive control algorithm 
to a-priory formulated state requirements and thus test for their adherence online. 

Introduction of a Confidence Measure to the prediction horizon 

A further contribution of this thesis involves the introduction of a confidence measure in order 
to express the certainty of the algorithm in its own prediction. Approaches that use 
predictions rely on assumptions and approximations, inevitably introducing errors. The long 
term prediction of the system model also leads to the propagation of these errors. As a 
consequence, the predicted state trajectories are rendered unreliable with increasing 
prediction horizon. However, how trustworthy the prediction is cannot be assessed a-priori. It 
rather depends on the current approximation quality of the monitoring algorithm and the 
covariance of the GMM components. 

Here, a confidence measure is introduced based on the approximation errors made during 
the prediction. It consists of two parts. The first part considers propagation errors due to the 
approximation of nonlinear system dynamics. In [206], Terejanu discusses errors originating 
from the propagation of a GMM through a nonlinear system. The second part considers 
errors due to the propagation of a GMM through a GP prior model. Therefore, the proposed 
confidence measure extends the technique in [206] by also considering propagation errors 
through a GP prior model.  

Novel use of Gaussian Process regression in adaptive flight control 

A further contribution of the proposed technique is the use of GP regression to construct a 
model for long term prediction in adaptive flight control applications. GP regression has been 
applied to a huge variety of problems in order to model an uncertain system based on 
gathered data. Only recently, GP regression caught attention in the field of adaptive flight 
control. In [38], [37] Chowdhary and Kingravi use GP regression to construct a GP model of 
the uncertainty using online gathered data only. Instead of employing a gradient descent 
based update law, as is common in MRAC frameworks, the authors use the mean of the 
predictive posterior distribution as the adaptive control signal.  

The proposed monitoring approach uses a similar strategy to construct a GP model if the 
modelling uncertainty is entirely unknown. Instead of employing the mean of the predictive 
posterior distribution as the control signal, the entire GP model is used for prediction instead. 
A similar approach has been utilized in various applications such as predictions in the field of 
automotive dynamics (see e.g. [85]). To the best of the authors’ knowledge, an online 
generated GP model for multistep ahead prediction has neither been used in flight control 
nor adaptive control approaches yet.  
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1.3 Outline of the thesis 

The outline of this thesis is as follows. Chapter 2 presents the basics of GMMs and GPs, 
which in turn represent the core tools used in the proposed online monitoring concept. The 
former are used in order to approximate the state and parameter distribution and propagate it 
through the nonlinear dynamics of the system. The latter are used in order to construct a 
probabilistic model of the modelling uncertainty. Chapter 3 formalizes the system for which 
the runtime monitor will be designed. Afterwards, this chapter derives MRAC and presents 
the direct and predictor based approach. This chapter closes with an overview of the 
certification challenge faced by adaptive flight control algorithms. Chapter 4 represents the 
core of this thesis as it introduces the concept of the runtime monitor. Following a literature 
review on existing monitoring approaches for adaptive controllers, it discusses the steps of 
the proposed runtime monitoring concept. Afterwards it details how GMMs and GPs are used 
in order to propagate a distribution through nonlinear system dynamics. This chapter also 
contains a discussion about possible propagation errors and implementation aspects. 
Chapter 5 applies the runtime monitor to simple models in numerical simulation in order to 
foster understanding and highlight key aspects of the proposed concept. Chapter 6 applies 
the runtime monitor to the attitude loop of multirotor systems. Thereby, this chapter 
summarises the system dynamics as well as the employed adaptive control algorithm. It 
closes with the presentation of the experimental results. Finally, chapter 7 concludes this 
thesis. Additional and auxiliary information can be found in the Appendices.  
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2 Basics of Gaussian Mixture Models and Gaussian Processes 

This section deals with the basics behind Gaussian Mixture Models and Gaussian 
Processes. Both concepts will play an integral role in the monitoring approach of section 4. 
The fundamentals of probability theory are assumed to be known. However, the most 
important aspects are summarized in Appendices B and C.  

2.1 Gaussian Mixture Models 

There exist phenomena, which are not well modelled by commonly used distributions such 
as the normal or Cauchy distribution. This includes i.e. phenomena subject to a multi-modal 
probability distribution. In this case, mixture models often present a way of modelling them 
nonetheless. Mixture models are weighted linear combinations of specific probability 
distributions. If the mixture model in turn satisfies the requirements of a probability 
distribution, it can be used as a probabilistic model. Examples where authors used mixture 
models include the ‘Old Faithful data set’ ([9]) or the representation of the speech spectrum 
in speech recognition ([201]). A famous representative of such models is the Gaussian 
Mixture Model (GMM). The components of the latter are all normal distributions. Definition 
2.1 formally introduces GMMs. 

Definition 2.1 – Gaussian Mixture Model ([21, p. 111]) 
 
A Gaussian Mixture Model or Mixture of Gaussians is a superposition of 𝑚 weighted 
Gaussian densities or Mixture Components of the form 

 
𝑝(𝑥) = 𝛼 𝑁(𝜇 , Σ ), (2-1) 

where the parameters 𝛼  satisfy 

 𝛼 ≥ 0 ∀𝑖 

𝛼 = 1. 
(2-2) 

 

The conditions in (2-2) imply that a GMM never assumes negative values and integrates to 
one. Hence, it represents a valid probability distribution. Figure 2-1 shows an example of an 
univariate and a multivariate GMM, where each consists of 2 mixture components. By 
adjusting the weight, the variance and the mean of each mixture, a sufficient number of 
components approximate almost any continuous distribution to arbitrary accuracy ([21, p. 
111]). Section 2.1.1 deals with determining the GMM parameters for fitting it to a probability 
distribution. Section 2.1.2 summarizes important mathematical properties of GMMs, which 
will be needed throughout this thesis.  
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Figure 2-1: Example of a univariate and multivariate Gaussian Mixture Model with 2 mixture components 

2.1.1 Fitting a Gaussian Mixture Model  

In essence, there are 3𝑚 parameters, which need to be selected in order to construct a 
GMM. This includes the weight 𝛼 , the mean 𝜇  and the variance 𝜎  of each mixture 
component. In fact, the number of components in a GMM represent yet another free 
parameter. However, techniques to determine the optimal number of mixture components a-
priori are not known to the author. The target probability distribution is usually not known. 
Rather, only a set of data is available. Fitting a GMM therefore becomes a parameter 
estimation problem with the goal to represent the data as close as possible. 

One common approach to solve the approximation problem is to use the Maximum 
Likelihood estimation (see e.g. [139]). The latter aims at maximizing the likelihood of the 
GMM representing the data. However, the problem becomes nonlinear in the parameters 
and a direct analytic solution is not possible. Possibly the most famous technique is the 
Expectation Maximization approach ([55]). Initially, the parameters of the GMM are chosen at 
random. The Expectation Maximization algorithm is an iterative approach, essentially 
consisting of two steps. The first step associates the data points with the most probable 
mixture component given its current parameters. The second step updates the parameters to 
better fit the associated data points. The procedure is repeated until a convergence criterion 
is met. The algorithm is shown to increase the likelihood of the model representing the data 
with each step. 

Contrary to most GMM applications, the target probability distribution is known in this thesis. 
This allows for the investigation of the approximation accuracy of the GMM after the 
parameter estimation. Furthermore, it is not mandatory to solve the parameter estimation 
problem for all GMM parameters. Instead, the mean 𝜇  and the variance 𝜎  can be chosen a-
priori and kept constant. By doing so, the parameter estimation problem becomes 
significantly easier.  

Only adjusting the weights 𝛼  reduces fitting the GMM to an approximation problem with a 
neural network structure. Consider a continuous random variable (rv) 𝒙 ∈ ℝ . In fact, 
choosing the mixture components as activation functions 𝝓 (𝑥) = [𝜙 (𝒙) … 𝜙 (𝒙)] with 
𝝓 ∈ ℝ  results in a radial-basis function neural network with the output 

 y(𝑥) = 𝜶 𝝓(𝑥). (2-3) 
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Figure 2-2: Approximation of a normal pdf by a GMM with 14 and 20 mixture components 

Here, 𝜶 = [𝛼 … 𝛼 ], 𝜶 ∈ ℝ  represents the vector of mixture weights. To represent the 
GMM with a radial-basis function neural network, the 𝑖-th activation function 𝜙 (𝑥) is 
henceforth given by the equation of a normal pdf with mean 𝜇  and standard deviation 𝜎 : 

 
𝜙 (𝑥) =

1

2𝜎 𝜋

𝑒

( )

. (2-4) 

The neural network approximation property ensures that, given a sufficient number of 
neurons 𝜙 , the radial basis function neural network in (2-3) is able to approximate any 
continuous nonlinear function within a compact domain (see i.a. [130], [69], [165]). By 
increasing the number of neurons, the approximation error can be made arbitrarily small.  

Let 𝑝  be the probability distribution, which is to be approximated. In order to fit the GMM to 

𝑝 , the latter is evaluated at 𝑚 ≥ 𝑚 different points. Let 𝛟 = 𝝓(𝑥 ) … 𝝓 𝑥 ∈ ℝ ×  

denote the matrix containing the regressor functions evaluated at 𝑚  data points. The latter 

need to be chosen such that rank(𝛟 ) = 𝑚. Furthermore, let 𝒀 = 𝑝 (𝑥 ) … 𝑝 𝑥 ∈

ℝ ×  denote the evaluation of 𝑝  at the respective data points. Fitting the GMM to 𝑝  is 
achieved by solving the following optimization problem: 

 min‖𝒀 − 𝜶 𝛟 ‖  

subject to 𝛼 ≥ 0 ∀𝑖 ∈ [1, 𝑚] 

𝛼 = 1. 

(2-5) 

Equation (2-5) represents a quadratic program with linear equality and inequality constraints. 
Approaches to solve this can be found i.a. in [16], [137]. This thesis simply uses the Matlab 
function lsqlin in order to solve (2-5). 

Figure 2-2 exemplarily shows the difference between modelling a normal distribution with 
either 14 or 20 mixture components. In the first case, a significant error between the normal 
distribution and the GMM can be observed. In the second case, the approximation is nearly 
indistinguishable from 𝑝 . Hence, increasing the number of mixture components leads to a 
decreasing approximation error. However, note that a GMM will in almost any case never 
exactly resemble a normal pdf. 
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2.1.2 Relevant Properties of Gaussian Mixture Models 

This section summarizes important mathematical properties of a GMM, which will be used 
throughout the thesis.  

Normal distributions are completely defined by their mean and covariance. Since the mixture 
components of a GMM are normal pdfs, the assumption arises, that a GMM is similarly 
defined by its mean and covariance. In fact, Flam ([63], [64], [65]) and Carreira-Perpiñán 
([31]) show how to calculate the mean and covariance of a GMM. However, both values are 
not sufficient to fully describe a GMM (an exception arises if only one mixture component is 
used). This can be illustrated easily by imagining a multi-modal probability distribution, which 
can be approximated well by a GMM. Reducing the GMM to mean and covariance only is 
similar to approximating the multi-modal distribution with a normal one, inevitably introducing 
errors. However, higher moments could be used to describe the GMM. Unfortunately, it is not 
straight forward to derive the number of moments necessary to represent the GMM well. 
Instead, knowing the weight, mean and covariance of every mixture component in fact 
completely defines the GMM.  

The following part deals with GMMs under affine transformations and the sum of a GMM with 
a normal rv. In order to derive consecutive properties, the moment generating function (mgf) 
of a GMM needs to be introduced.  

Theorem 2.1 – Moment Generating Function of a GMM  
 
Let 𝑿 ∈ ℝ  be a continuous random vector with Gaussian Mixture distribution 
𝑿~ ∑ 𝛼 𝑁(𝝁 , 𝚺 ) as defined in Definition 2.1. The moment generating function 𝑀  of 𝑿 is  

 
𝑀 (𝒔) = 𝛼 𝑀 , (𝒔), (2-6) 

where 𝑀 , (𝒔) denotes the moment generating function of the 𝑖-th mixture component. 

 

Proof: 

Per definition (see Definition B.20 in Appendix B.8), the mgf of the random variable 𝑿 is 

 𝑀 (𝒔) = 𝔼 𝑒𝒔 𝑿 . (2-7) 

Inserting the definition of the expected value (see Definition B.13 in Appendix B.2) yields 

 
𝑀 (𝒔) = 𝑒𝒔 𝒙𝑝 (𝒙)𝑑𝒙 = 𝑒𝒔 𝒙 𝛼 𝑁(𝝁 , 𝚺 ) 𝑑𝒙. (2-8) 

Swapping the integral and the sum yields 

 
𝑀 (𝒔) = 𝛼 𝑒𝒔 𝒙𝑁(𝝁 , 𝚺 )𝑑𝒙. (2-9) 
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The mgf of the 𝑖-th mixture component 𝑀 , (𝒔) is equal to the mgf of a multivariate normal 

distribution (see (C-16) in Appendix C.2). Hence, the mgf of the GMM is 

 
𝑀 (𝒔) = 𝛼 𝑒𝒔 𝒙𝑁(𝝁 , 𝚺 )𝑑𝒙

, (𝒔)

= 𝛼 𝑀 , (𝒔). 
(2-10) 

□ 

Using the mgf of the GMM, the result of a GMM under an affine transformation can be 
derived. 

Theorem 2.2 – GMM under an affine transformation  
 
Consider a continuous random vector 𝑿 ∈ ℝ  with Gaussian Mixture distribution 
𝑿~ ∑ 𝛼 𝑁(𝝁 , 𝚺 ) as defined in Definition 2.1. Furthermore, consider the continuous 
random variable 𝒀 ∈ ℝ . If 𝒀 is an affine transform of 𝑿 such that 𝒀 = 𝑨𝑿 + 𝑩 with 𝑨 ∈ ℝ ×  
and 𝑩 ∈ ℝ  then 𝒀 is distributed as 𝒀~ ∑ 𝛼 𝑁(𝑨𝝁 + 𝑩, 𝑨𝚺 𝑨 ). 

 

Proof: 

Considering the mgf of 𝒀 and substituting the linear transformation 𝒀 = 𝑨𝑿 + 𝑩 yields  

 𝑀 (𝒔) = 𝔼 𝑒𝒔 𝒀 = 𝔼 𝑒𝒔 (𝑨𝑿 𝑩) = 𝑒𝒔 𝑩𝔼 𝑒𝒔 𝑨𝑿 = 𝑒𝒔 𝑩𝑀 (𝑨 𝒔). (2-11) 

With the mgf of (2-10) equation (2-11) becomes 

 
𝑀 (𝒔) = 𝑒𝒔 𝑩𝑀 (𝑨 𝒔) = 𝛼 𝑒𝒔 𝑩𝑀 , (𝑨 𝒔). (2-12) 

Inserting the mgf of a rv with a multivariate Gaussian probability distribution (see (C-16) in 
Appendix C.2) yields 

 
𝑀 (𝒔) = 𝛼 𝑒𝒔 𝑩𝑀 , (𝑨 𝒔) = 𝛼 𝑒𝒔 𝑩𝑒

𝒔 𝑨 𝝁 𝚺 𝑨 𝒔
= 𝛼 𝑒

𝒔 𝑨𝝁 𝑩 𝑨𝚺 𝑨 𝒔
. (2-13) 

By defining 𝝁 , = 𝑨𝝁 + 𝑩 and 𝚺 , = 𝑨𝚺 𝑨  equation (2-13) simplifies to 

 
𝑀 (𝒔) = 𝛼 𝑒

𝒔 𝝁 , 𝚺 , 𝒔

,

= 𝛼 𝑀 , (𝒔) (2-14) 

Note, that the exponential function retains the structure of a mgf 𝑀 ,  of a normal probability 

distribution with mean 𝝁 ,  and covariance 𝚺 , .  
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Using equation (2-10) results in 

 
𝑀 (𝒔) = 𝛼 𝑀 , (𝒔) = 𝛼 𝑒𝒔 𝒚𝑁 𝝁 , , 𝚺 , 𝑑𝒚 

= 𝑒𝒔 𝒚 𝛼 𝑁 𝝁 , , 𝚺 , 𝑑𝒚 = 𝑒𝒔 𝒚𝑝 (𝒚)𝑑𝒚 = 𝔼 𝑒𝒔 𝒀 . 

(2-15) 

As a result, the distribution of 𝒀 is 

 
𝑝 (𝒚) = 𝛼 𝑁 𝝁 , , 𝚺 , = 𝛼 𝑁(𝑨𝝁 + 𝑩, 𝑨𝚺 𝑨 ). (2-16) 

□ 

Theorem 2.2 implies that under an affine transformation each mixture component of the 
GMM can be treated separately. The following theorem deals with the sum of a GMM 
distributed rv and a normally distributed rv. 

Theorem 2.3 – Sum of a GMM distributed rv with an independent normally distributed 
rv 
 
Let 𝑿 ∈ ℝ  and 𝒀 ∈ ℝ  be two independent random vectors with probability distributions 

𝑿~ ∑ 𝛼 𝑁(𝝁 , 𝚺 ) and 𝒀~𝑁 𝝁 , 𝚺 . Then the linear combination 𝒁 = 𝑿 + 𝒀 has the 

probability distribution 𝒁~ ∑ 𝛼 𝑁 𝝁 + 𝝁 , 𝚺 + 𝚺 . 

 

Proof: 

Adding two independent rvs amount to multiplying their respective mgf: 

 𝑀 (𝒔) = 𝑀 (𝒔)𝑀 (𝒔). (2-17) 

Considering the mgf of a GMM in (2-10) as well as the mgf of a multivariate Gaussian (see 
(C-16) in Appendix C.2) yields 

 
𝑀 (𝒔) = 𝛼 𝑀 , (𝒔) 𝑀 (𝒔) = 𝛼 𝑒

𝒔 𝝁 𝚺 𝒔
𝑒

𝒔 𝝁 𝚺 𝒔  

= 𝛼 𝑒
𝒔 𝝁 𝝁 𝚺 𝒔 𝚺 𝒔

. 

(2-18) 

By defining 𝝁 , = 𝝁 + 𝝁  and 𝚺 , = 𝚺 + 𝚺 , 𝑀 (𝒔) becomes 

 
𝑀 (𝒔) = 𝛼 𝑒

𝒔 𝝁 , 𝚺 , 𝒔
. (2-19) 
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Note that (2-19) resembles the mgf of a GMM with distribution 𝒁~ ∑ 𝛼 𝑁 𝝁 , , 𝚺 , . 

Resubstituting 𝝁 ,  and 𝚺 ,  yields 𝒁~ ∑ 𝛼 𝑁 𝝁 + 𝝁 , 𝚺 + 𝚺 .  

□ 

Again, Theorem 2.2 implies that each mixture component of the GMM can be treated 
separately if the summands are independent.  
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2.2 Gaussian Processes for uncertainty quantification 

Gaussian Processes (GPs) play an ever increasing role in various scientific disciplines, 
including machine learning, robotics, and signal processing. A GP is a probabilistic model, 
which allows for a probabilistic treatment of uncertainties, including regression and 
classification tasks. Three key features made GP regression popular. First, the GP allows for 
an elegant modelling of uncertainties and statistical dependencies between points in its 
domain. Second, the GP model can completely be constructed using available data; only 
little a-priori knowledge is required. However, existing information can be incorporated in a so 
called prior model. A means to achieve a fit between the model and the data is Bayesian 
inference. The third key feature of GPs is that inference is fast and tractable for data with 
Gaussian likelihood. As a result, regression based on data with Gaussian likelihood has been 
studied extensively (see i.a. [173], [21], [152]). This chapter formally introduces the basics of 
GPs as well as GP regression. The following discussion largely follows the derivation in 
[173]. Definition 2.2 is commonly used in the literature in order to define a GP.  

Definition 2.2 – Gaussian Process ([173, p. 13], Definition 2.1) 
 
A Gaussian Process is a collection of random variables, any finite number of which have a 
joint Gaussian distribution. 

A GP provides a probabilistic view of modelling a function 𝑓(𝒙). Therefore, let 𝒙 ∈ ℝ  denote 
the input vector and consider the following auxiliary model 𝑓(𝒙): ℝ → ℝ, which is formed by 

a linear combination of parameters 𝒘 ∈ ℝ  and nonlinear basis functions 𝝓(𝒙): ℝ → ℝ :  

 𝑓(𝒙) = 𝒘 𝝓(𝒙). (2-20) 

The function 𝝓(𝒙) represents a so-called feature function, which projects the input 𝒙 into a 
higher dimensional feature space. This projection overcomes the limited expressiveness of a 
linear model ([173]). For the cause of better readability, subscripts for the feature function will 
resemble its argument, i.e. 𝝓𝒙 = 𝝓(𝒙). It is worth noting that the machine learning literature 
prevalently employs the transposed version of (2-20). The form (2-20) is chosen to resemble 
the structure of the adaptive signal in (3-15). 

The model in (2-20) becomes a GP once a probability distribution 𝑝(𝒘) is placed on the 
parameter vector 𝒘. Since 𝑝(𝒘) can be updated, the initial distribution of 𝒘 is called prior 
distribution. If not stated otherwise, this thesis assumes multivariate normal priors. As a 
consequence, also the function 𝑓(𝒙) has a probability distribution. Consider a set Ω ⊂ ℝ  and 
choose 𝑖 ∈ ℤ  input vectors 𝒙 ∈ Ω from this set. Using these input vectors in the model (2-20) 
yields 

 (𝑓(𝒙 ) … 𝑓(𝒙 )) = 𝒘 (𝝓(𝒙 ) … 𝝓(𝒙 )). (2-21) 

Due to the introduction of the prior distribution, the parameter vector 𝒘 in (2-21) is 
multivariate Gaussian. Consequently, also the vector of random variables 
(𝑓(𝒙 ) … 𝑓(𝒙 ))  in (2-21) is multivariate Gaussian. This result is independent of the 
number of inputs 𝑖. Hence per Definition 2.2, (𝑓(𝒙 ) … 𝑓(𝒙 ))  is a GP. In this context, 
𝑓(𝒙) is sayed to follow a GP defined on Ω.  
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Note that the joint distribution 𝑝(𝑓(𝒙 ), … , 𝑓(𝒙 )) is multivariate Gaussian. Hence, the GP is 
fully described by its mean and covariance function. Therefore, assume a prior distribution 
𝑝(𝒘)~𝑁(𝒘|𝒘, 𝜮 ) with mean 𝒘 and variance 𝜮  on the weights 𝒘. Then the mean 𝑚(𝒙) of 
𝑓(𝒙) is a function dependent on the input 𝒙: 

 𝑚(𝒙) = 𝔼 [𝑓(𝒙)] = 𝔼 [𝒘 𝝓(𝒙)] = 𝔼 [𝒘 ]
𝒘

𝝓(𝒙) = 𝒘 𝝓(𝒙). 
(2-22) 

Similarly, the covariance function Σ(𝒙, 𝒙 ) of 𝑓(𝒙) is 

 Σ(𝒙, 𝒙 ) = 𝔼 𝑓(𝒙) − 𝑚(𝒙) 𝑓(𝒙 ) − 𝑚(𝒙 )  

= 𝔼 𝒘 𝝓(𝒙) − 𝒘 𝝓(𝒙) 𝒘 𝝓(𝒙 ) − 𝒘 𝝓(𝒙 )  

= 𝝓 (𝒙) 𝔼 [(𝒘 − 𝒘 ) (𝒘 − 𝒘 )]
𝜮

𝝓(𝒙 ) = 𝝓 (𝒙)𝜮 𝝓(𝒙 ). 

(2-23) 

Note, that the covariance function Σ(𝒙, 𝒙 ) takes two inputs, namely 𝒙 and 𝒙 . In essence, this 
notation is attributed to the fact that GPs are defined with respect to a countable number of 
data points. Hence, the covariance function also computes the covariance between two data 
points. The notation (𝒙, 𝒙 ) is used to indicate that these data points need to be part of the 
set Ω, which the GP is defined on. Choosing 𝒙 = 𝒙  yields the variance of 𝑓(𝒙) at 𝒙. As an 
example, the application of (2-22) to (2-21) yields:  

 (𝑚(𝒙 ) … 𝑚(𝒙 )) = 𝒘 (𝝓(𝒙 ) … 𝝓(𝒙 )) (2-24) 

Similarly the application of (2-23) to (2-21) yields  

 
Σ

𝒙
⋮

𝒙
,

𝒙
⋮

𝒙
=

Σ … Σ
⋮ ⋱ ⋮

Σ … Σ
=

𝝓 (𝒙 )𝜮 𝝓(𝒙 ) … 𝝓 (𝒙 )𝜮 𝝓(𝒙 )
⋮ ⋱ ⋮

𝝓 (𝒙 )𝜮 𝝓(𝒙 ) … 𝝓 (𝒙 )𝜮 𝝓(𝒙 )
. (2-25) 

Note, that each subset of (𝒙 ⋯ 𝒙 ) is again multivariate Gaussian. Furthermore, its mean 
and covariance matrix can be easily extracted from (2-24) and (2-25). With (2-22) and (2-23), 
the common notation to indicate that 𝑓(𝒙) follows a GP is  

 𝑓(𝒙)~𝐺𝑃 𝑚(𝒙), Σ(𝒙, 𝒙 ) . (2-26) 

The literature often distinguishes two equal ways to deal with GPs, namely the weight and 
function space view. The former focusses on the distribution of the parameters 𝒘. In this, a 
draw from the parameter distribution leads to a specific realization of the function 𝑓(𝒙). The 
connection between the parameters and the function 𝑓(𝒙) gives rise to an equivalent 
interpretation of GPs. Instead of focusing on the weights, GPs are often dealt with in function 
space, where they are considered to be distributions over functions. That is, GPs can be 
seen as a family of functions, where each member is associated with a certain probability. 
Consequently, a draw from a GP directly corresponds to the draw of a function. The following 
example is intended to visualize the GP model and give a first impression of its use.  
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Figure 2-3: General idea of Gaussian Processes with comparison between weight (top) and function 

(bottom) space view. Based on plots from [91]. 

Example 2-1: Possible View of a Gaussian Process 

Consider the simplified linear version of the model in (2-20) with 𝒘 = [𝑤 𝑤 ]  and 𝝓 =

[1 𝑥] . Assume a zero-mean multivariate normal distribution 𝑝(𝒘)~𝑁(𝟎, 𝑰) as the prior for 
the parameters 𝒘. The top row of Figure 2-3 depicts the so called weight space. In any 
case, the dashed circles represent the standard deviation and twice the standard deviation 
of 𝑝(𝒘), respectively. The probability density function of the prior 𝑝(𝒘) is projected onto the 
weight space and depicted as a color map with its maximum at the origin 𝒘 = [0 0] . A 
pair of parameters resembles a realization of 𝒘 and therefore a point in the weight space.  

The bottom row of Figure 2-3 depicts the function space, which evaluates the underlying 
function 𝑓(𝑥) of the model in (2-20) for a domain 𝑥 ∈ [−10,10]. Similarly to the weight space, 
the dashed lines represent the standard deviation and twice the standard deviation of 

𝑝 𝑓(𝑥) , respectively. The probability density function of the prior 𝑝(𝒘) is projected into the 

function space and depicted as a color map. Note, that GPs are defined for a set of data 
points. Hence, depicting lines instead of points in the function space represents a slight 
abuse of notation. 

Assume that the pair of weights 𝒘 = [1 0]  is drawn from the multivariate Gaussian prior 
distribution 𝑝(𝒘). This pair resembles the point in the weight space depicted in Figure 2-3 
(top left). Note that this point lies on the one standard deviation circle of the prior. The 
function 𝑓(𝒙) corresponding to this pair of parameters is shown in Figure 2-3 (bottom left) as 
a horizontal line. Now assume a rotation of the weight space around its origin. Figure 2-3 
(middle) depicts the result. The new pair of weights is a rotated version of the initial draw, 
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but still lies on the circle representing a standard deviation of one. Hence, the probability of 
picking the initial or new set of parameters remains the same and is independent from the 
rotation. Similarly, even though the function depicted in Figure 2-3 (bottom middle) looks 
utterly different to the initial horizontal line, the probability of picking it stays the same. 
Rotating the weight space further yields a third pair of weights, which corresponds to the 
results in Figure 2-3 (right). Again, the probability of picking this set of parameters or the 
resulting function is equal to the two previous cases. 

The connection between the parameters and the generated function gives rise to an 
equivalent interpretation of GPs. Instead of focusing on the weight space view, GPs are 
often dealt with in function space, where they are considered to be distributions over 
functions. That is, GPs can be seen as a family of functions, where each member is 
associated with a certain probability. Consecutively, a draw from a GP directly corresponds 
to the draw of a function. 

GPs are wildly used in order to model uncertainties. Most applied algorithms assume little to 
no prior knowledge about the uncertainty. Instead, they infer a GP model from a set of data 
using regression. However, in practical applications prior knowledge about the uncertainty is 
often available. If the parameters of a physical model are estimated based on experiments, 
the results are often formulated with a stochastic uncertainty. This is e.g. due to 
measurement errors. If the parametric uncertainty in turn is normal, this formulation already 
represents a GP. To this length, the following example uses a GP to model the parameter 
uncertainties in the lift coefficient. 

Example 2-2: GP used to model uncertainty in aerodynamic data 

This example intends to show how GPs can be applied to practical problems with prior 
knowledge of parametric uncertainties. Consider the linear approximation of the lift coefficient 
𝐶  over the angle-of-attack 𝛼 curve:  

 𝐶 = 𝐶 + 𝐶 𝛼. (2-27) 

Here, additional influences, such as the change of the lift coefficient due to a pitch rate 𝐶 , 

are neglected. Assume, that numerical values for the coefficients 𝐶  and 𝐶  result from an 
experiment. For this sake, let the expected values of 𝐶  and 𝐶  be 𝐶̅ = 0.1 and 𝐶̅ = 0.1. 
Due to the experiment, the parameters are subject to uncertainty, which in turn is assumed to 
be normally distributed. Therefore, assume a 1𝜎 error of 4% in 𝐶  as well as 𝐶 , 
respectively. As a result, the standard deviations are 𝜎 = 0.04 and 𝜎 = 0.04. Note, that 

𝐶  and 𝐶  are assumed to be stochastically independent. Furthermore, note that the 
mentioned numerical values due not necessarily reflect an existing aircraft, but are picked to 
highlight the argument of this example. Following (2-22) and (2-23), the mean and 
covariance function of the GP are  

 𝑚(𝛼) = [0.1 0.1] 1
𝛼

, 

Σ(𝛼, 𝛼 ) = [1 𝛼] 0.04 0
0 0.04

1
𝛼

. 

(2-28) 

Figure 2-4 (left) shows the realization of (2-28) over 𝛼 ∈ [−5,12]. Here the mean function, as 
well as 1 and 2 standard deviations are depicted. Due to the linear nature of the parametric 
model, the standard deviation increases proportionally with the angle of attack. 
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Figure 2-4: Example of a GP used to model uncertain parameters in the 𝑪𝑳 − 𝜶 curve 

The evaluation of the GP model at a single point yields a normal distribution of the lift 
coefficient 𝐶  at that point. Figure 2-4 (right) shows the evaluation of the GP at 𝛼 = 0° and 
𝛼 = 3°. Using equation (2-28) yields 

 𝑚(0°) = 0.1, σ (0°, 0°) = 0.0016, 

𝑚(3°) = 0.4, 𝜎 (3°, 3°) = 0.016. 
(2-29) 

Note, that the parameters of this distribution are heavily dependent on 𝛼. Since the GP 
model allows to evaluate the distribution of 𝐶  at different 𝛼, it achieves a model of the 
uncertainty in 𝐶  at different points in the state space. Even though this result seems trivial, it 
plays a vital role for the monitoring algorithm developed in this thesis.  

The last example showed how GPs can model parametric uncertainties if prior knowledge is 
available. However, situations might occur, in which little to no information is available or the 
uncertainty is completely unknown. The following section shows how to use regression to 
infer a GP model from a set of data points. 
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2.2.1 Gaussian Process Regression 

In cases with less to none prior information about the uncertainty, it can still be inferred from 
gathered data using GP regression. At first, a prior distribution is introduced for the model 
parameters. Without initial knowledge about the parameters, 𝑝(𝒘) is often selected to be a 
zero-mean multivariate Gaussian with variance one. While a-priori information can be 
incorporated, Rasmussen argues in [173] that choosing a zero mean prior is not a drastic 
limitation, since the posterior distribution is not confined to zero. Remember that a GP can be 
seen as a family of functions, where each member is associated with a certain probability. 
The underlying goal of GP regression is to narrow down the initially assumed array of 
functions using gathered data. This is achieved by increasing the probability of functions, 
which better match the observed data. Vice versa, the probability of functions, which do not 
fit the data, is decreased.  

To perform GP regression, consider an extended version of the model in (2-20): 

 𝑓(𝒙) = 𝒘 𝝓(𝒙), 

𝑦 = 𝑓(𝒙) + 𝜺. 
(2-30) 

Here, 𝑓(𝒙): ℝ → ℝ represents the underlying function, which is to be fit to the data. In turn, 
the output 𝑦 represents the underlying function 𝑓(𝒙) corrupted by noise. Throughout this 
thesis, the measurement noise 𝜺 is assumed to be i.i.d. Gaussian with zero mean and 
variance 𝜎 , i.e. 𝜺~𝑁(𝟎, 𝜎 𝑰).  

The following sections show how to perform GP regression on a set of input-output data in 
weight and function space. While the function space view is prevalently used in the reminder 
of the thesis and equivalent to the derivation in the weight space, the latter is intuitively 
easier to understand. Hence, in section 2.2.1.1 we first focus on GP regression derived from 
the weight space view and extend the result to the function space in section 2.2.1.2. 

2.2.1.1 Gaussian Process Regression – Weight Space View 

Let 𝑿 ∈ ℝ ×  with 𝑿 = [𝒙 … 𝒙 ] denote a set of 𝑝  input data points and let 𝒀 ∈

ℝ ×  with 𝒀 = [𝑦 … 𝑦 ] denote a set of associated observations. The main goal of GP 
regression is to infer a belief of the weights 𝒘 in (2-30) based on the observed data (𝑿 , 𝒀 ). 
This inference is performed by employing Bayes’ theorem ([11]):  

 
𝑝(𝒘|𝒀 , 𝑿 ) =

𝑝(𝒀 |𝑿 , 𝒘)𝑝(𝒘)

𝑝(𝒀 |𝑿 )
. (2-31) 

In general, Bayes’ theorem connects the belief in a proposition before and after accounting 
for evidence. Here, 𝑝(𝒘) denotes the prior or initial belief in the parameters before seeing the 
data (𝒀 , 𝑿 ). The distribution 𝑝(𝒀 |𝑿 , 𝒘) denotes the likelihood of seeing the outcome 𝒀  
given 𝑿  and the (prior) belief on 𝒘. The posterior distribution 𝑝(𝒘|𝒀 , 𝑿 ) represents the 
updated belief in the weights after performing inference on the data (𝒀 , 𝑿 ). Finally, 
𝑝(𝒀 |𝑿 ) is the normalization constant or marginal likelihood. Note that the prior 𝑝(𝒘) is not 
conditioned on 𝑿  as it is preselected and doesn’t depend on the data 𝑿 . If not stated 
otherwise, a Gaussian prior with mean 𝒘 and covariance 𝜮  is used in this thesis: 

 𝑝(𝒘) = 𝑁(𝒘, 𝜮 ). (2-32) 
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The output equation in (2-30) defines the likelihood 𝑝(𝒀 |𝑿 , 𝒘) of observing 𝒀  given the 
inputs 𝑿  and the current belief in the parameters 𝒘:  

 

𝑝(𝒀 |𝑿 , 𝒘) = 𝑝(𝑦 |𝒙 , 𝒘) =
1

2𝜋𝜎
𝑒

𝒘 𝝓𝒙

 

=
1

(2𝜋𝜎 )
𝑒

𝒀 𝒘 𝝓𝑿 𝒀 𝒘 𝝓𝑿

 

(2-33) 

Lastly, the marginal likelihood can be expanded as  

 
𝑝(𝒀 |𝑿 ) = 𝑝(𝒀 |𝑿 , 𝒘)𝑝(𝒘)𝑑𝒘. (2-34) 

The marginal likelihood ensures that the posterior distribution 𝑝(𝒘|𝒀 , 𝑿 ) integrates to one. 
The marginal doesn’t change the mean and the covariance of the posterior if all distributions 
in (2-31) are of the Gaussian type. Hence, its computation is often omitted. As a result, 
inference is often performed based on the proportionality of the posterior with regard to the 
product of the likelihood and the prior: 

 𝑝(𝒘|𝒀 , 𝑿 ) ∝ 𝑝(𝒀 |𝑿 , 𝒘)𝑝(𝒘). (2-35) 

With all distributions being Gaussian, inserting (2-32) and (2-33) into (2-35) gives 

 
𝑝(𝒘|𝒀 , 𝑿 ) ∝ exp −

1

2
𝒀 − 𝒘 𝝓𝑿

1

𝜎
𝒀 − 𝒘 𝝓𝑿

+ (𝒘 − 𝒘) 𝜮 (𝒘 − 𝒘) . 

(2-36) 

Using the calculation rules in Appendix C.3, the joint probability 𝑝(𝒘, 𝒀 |𝑿 ) is 

 𝑝(𝒘, 𝒀 |𝑿 )

∝ exp

⎝

⎜
⎛

−
1

2

(𝒘 − 𝒘)

𝒀 − 𝒘 𝝓𝑿

⎣
⎢
⎢
⎢
⎡𝜮 + 𝝓𝑿

1

𝜎
𝝓𝑿 −

1

𝜎
𝝓𝑿 𝑰

−
1

𝜎
𝑰𝝓𝑿

1

𝜎
𝑰

⎦
⎥
⎥
⎥
⎤ (𝒘 − 𝒘)

𝒀 − 𝒘 𝝓𝑿

⎠

⎟
⎞

. 
(2-37) 

Note that the mean and variance of the joint 𝑝(𝒘, 𝒀 |𝑿 ) are independent of the marginal 
likelihood. Employing the rules for special matrix inverses in Appendix A.4 results in the 
representation of (2-37) as a multivariate normal distribution: 

 
𝑝(𝒘, 𝒀 |𝑿 ) = 𝑁

𝒘

𝒘 𝝓𝑿
,

𝜮 𝜮 𝝓𝑿

𝝓𝑿 𝜮 𝝓𝑿 𝜮 𝝓𝑿 + 𝜎 𝑰
. (2-38) 
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Conditioning (2-38) on the output data 𝒀  (see Appendix C.3 for calculation rules) yields the 
posterior distribution 𝑝(𝒘|𝒀 , 𝑿 ): 

 
𝑝(𝒘|𝒀 , 𝑿 ) = 𝑁

𝒘 + 𝜮 𝝓𝑿 𝝓𝑿 𝜮 𝝓𝑿 + 𝜎 𝑰 𝒀 − 𝒘 𝝓𝑿 ,

𝜮 − 𝜮 𝝓𝑿 𝝓𝑿 𝜮 𝝓𝑿 + 𝜎 𝑰 𝝓𝑿 𝜮
. (2-39) 

Equation (2-39) forms a model for the weights based on the prior believe in the parameters 
and the observed data. In particular, the posterior mean 𝒘  is 

 𝒘 = 𝒘 + 𝜮 𝝓𝑿 𝝓𝑿 𝜮 𝝓𝑿 + 𝜎 𝑰 𝒀 − 𝒘 𝝓𝑿 . (2-40) 

And the posterior covariance 𝚺  is  

 𝜮 = 𝜮 − 𝜮 𝝓𝑿 𝝓𝑿 𝜮 𝝓𝑿 + 𝜎 𝑰 𝝓𝑿 𝜮 . (2-41) 

The goal in GP regression is not only to form a model which best matches the observed 
data, but also to predict outcomes of the underlying function 𝑓(𝒙) for data points, which are 
not necessarily part of the training set (𝑿 , 𝒀 ). Therefore, let 𝒙∗ denote a test input and let 
𝑓𝒙∗

 denote the respective function value. The posterior predictive distribution allows for the 

assessment of 𝑓𝒙∗
. It is obtained by marginalizing the joint distribution 𝑝 𝑓𝒙∗

, 𝒘|𝒙∗, 𝒀 , 𝑿  

over all possible parameter values 𝒘: 

 
𝑝 𝑓𝒙∗

|𝒙∗, 𝒀 , 𝑿 = 𝑝 𝑓𝒙∗
, 𝒘|𝒙∗, 𝒀 , 𝑿 𝑑𝒘 = 𝑝 𝑓𝒙∗

|𝒙∗, 𝒘 𝑝(𝒘|𝒀 , 𝑿 )𝑑𝒘. (2-42) 

Similar to the steps in (2-35)-(2-39), first the joint distribution 𝑝 𝑓𝒙∗
, 𝒘|𝒙∗, 𝒀 , 𝑿  is calculated 

in order to solve (2-42). Employing the calculation rules in Appendix C.3, the marginal 
distribution is ([173]): 

 𝑝 𝑓𝒙∗
|𝒙∗, 𝒀 , 𝑿  

= 𝑁
𝒘 𝝓𝒙∗

+ 𝝓𝒙∗
𝜮 𝝓𝑿 𝝓𝑿 𝜮 𝝓𝑿 + 𝜎 𝑰 𝒀 − 𝒘 𝝓𝑿 ,

𝝓𝒙∗
𝜮 𝝓𝒙∗

− 𝝓𝒙∗
𝜮 𝝓𝑿 𝝓𝑿 𝜮 𝝓𝑿 + 𝜎 𝑰 𝝓𝑿 𝜮 𝝓𝒙∗

. 
(2-43) 

In particular, the posterior preditive mean is 

 𝑚(𝒙∗) = 𝒘 𝝓𝒙∗
+ 𝝓𝒙∗

𝜮 𝝓𝑿 𝝓𝑿 𝜮 𝝓𝑿 + 𝜎 𝑰 𝒀 − 𝒘 𝝓𝑿  (2-44) 

and the posterior predictive covariance is  

 𝛴(𝒙∗, 𝒙∗) = 𝝓𝒙∗
𝜮 𝝓𝒙∗

− 𝝓𝒙∗
𝜮 𝝓𝑿 𝝓𝑿 𝜮 𝝓𝑿 + 𝜎 𝑰 𝝓𝑿 𝜮 𝝓𝒙∗

. (2-45) 

The following example is intended to provide some basic insights into the regression 
process.  
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Figure 2-5: Example for GP regression with a linear model (based on [91]). 

 
Example: Gaussian Process Regression 
 
Consider data points (𝑿 , 𝒀 ) which are consecutively drawn from  

 𝑓(𝑥) = 1 − 0.4𝑥, 

𝑦(𝑥) = 𝑓(𝑥) + 𝜀. 
(2-46) 

The output 𝑦 is corrupted by i.i.d. Gaussian noise with variance 𝜎 = 0.56. Consider a zero-
mean multivariate Gaussian prior 𝑝(𝒘) = 𝑁(𝒘|𝟎, 𝑰) and the linear regression model with 𝒘 =

[𝑤 𝑤 ]  and 𝝓 = [1 𝑥] .  

Figure 2-5 shows an exemplary result of GP regression. The top and bottom row depict the 
regression outcome in weight and function space, respectively. The blue lines denote the 
initial mean and standard deviation constituted by the prior distribution on the weights. The 
orange lines denote the mean and standard deviation imposed by the posterior distribution.  

Figure 2-5 (left) shows the results after the observation of 3 data points, which lie in close 
proximity of each other. The initial guess of the mean changed only slightly. However, the 
variance decreased significantly in the vicinity of the data points. This constitutes one key 
property of GPs, namely that the regression quality is dependent on the richness of the 
observed data. The variance is drastically reduced in data rich areas, whereas the variance 
remains high in data scarce areas.  

In the next step, a 4th data point is added, which significantly differs from the previous ones. 
Figure 2-5 (middle) shows the result after the observation of the 4th data point. It can be seen 
that the inference on 4 points decreases the uncertainty in 𝑤  drastically as the probable 
area for the parameters shrinks.  
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Finally, Figure 2-5 (right) shows the result for 25 data points. From the observation of a 
sufficient number of data points, a belief on the parameters is inferred, exhibiting a small 
variance. Adding further data points has only minor influence on the regression result.  

 

2.2.1.2 Gaussian Process Regression – Function Space View and Kernel formulation 

As already shown implicitly in Figure 2-5, an alternative and equal way to discuss GPs is to 
perform inference directly in function space. Compared to the previous approach, the new 
goal is to infer a belief directly on the function 𝑓(𝒙) based on the observed data (𝑿 , 𝒀 ). Let 

𝒇 ∈ ℝ ×  with 𝒇 = 𝑓(𝒙 ) … 𝑓 𝒙  be a vector of function values. Applying Bayes’ 

Theorem yields 

 
𝑝(𝒇|𝒀 , 𝑿 ) =

𝑝(𝒀 |𝒇)𝑝 𝑓(𝒙)

𝑝(𝒀 |𝑿 )
. (2-47) 

The prior 𝑝 𝑓(𝒙)  is found by multiplying 𝑝(𝒘) with the vector of feature functions 𝝓 and is 

given by 𝑝 𝑓(𝒙) = 𝑁 𝝓 (𝒙)𝒘, 𝝓 (𝒙)𝚺 𝝓(𝒙) . The likelihood function 𝑝(𝒀 |𝒇) is equal to 

(2-33). Following steps (2-35)-(2-39) yields the posterior mean 

 𝑚 (𝑿 ) = 𝒘 𝝓𝑿 + 𝝓𝑿 𝚺 𝝓𝑿 𝝓𝑿 𝚺 𝝓𝑿 + 𝜎 𝑰 𝒀 − 𝒘 𝝓𝑿  (2-48) 

and the posterior variance  

 Σ (𝑿 , 𝑿 ) = 𝝓𝑿 𝚺 𝝓𝑿 − 𝝓𝑿 𝚺 𝝓𝑿 𝝓𝑿 𝚺 𝝓𝑿 + 𝜎 𝑰 𝝓𝑿 𝚺 𝝓𝑿 . (2-49) 

The posterior predictive distribution takes on the same form as in (2-43). Despite being equal 
to the weight space view, performing inference in function space gives rise to the so-called 
kernel description. The kernel formulation is particularly useful in situations where it is easier 
to compute the kernel instead of the feature function (see e.g. [22]). Definition 2.3 is 
commonly used to define a kernel function. 

Definition 2.3 – (Mercer) Kernel (based on [59, p. 8]) 
 

A (Mercer) kernel (also called a covariance function, kernel function, or covariance kernel) 
𝑘(𝑥, 𝑥 ) is a continuous, symmetric, positive definite function of the two inputs 𝑥, 𝑥 . 

Define the kernel function 𝑘(𝒙, 𝒙 ) to be 

 𝑘(𝒙, 𝒙 ) = 𝝓𝒙𝚺 𝝓𝒙 . (2-50) 

Note that (2-50) resembles the covariance in (2-23). Hence, 𝑘(𝒙, 𝒙 ) is often called 
covariance kernel. The feature functions 𝝓(⋅) form an inner product with respect to 𝚺 . Since 
𝚺  is positive definite,  𝑘(𝒙, 𝒙 ) satisfies Definition 2.3. For the cause of better readability, 
subscripts for the kernel function will resemble the argument, i.e. 𝑘𝒙𝒙 = 𝑘(𝒙, 𝒙 ). Using the 
kernel formulation, for the posterior distribution of (2-48)-(2-49) yields 

 𝑚 (𝑿 ) = 𝒘 𝝓𝑿 + 𝒌𝑿 𝑿 𝒌𝑿 𝑿 + 𝜎 𝑰 𝒀 − 𝒘 𝝓𝑿 , (2-51) 
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and 

 Σ (𝑿 , 𝑿 ) = 𝒌𝑿 𝑿 − 𝒌𝑿 𝑿 𝒌𝑿 𝑿 + 𝜎 𝑰 𝒌𝑿 𝑿 . (2-52) 

Similarly, the posterior predictive distribution of (2-43)-(2-45) can be restated with the kernel 
notation. In particular, the posterior predictive mean is 

 𝑚(𝒙∗) = 𝒘 𝝓𝒙∗
+ 𝒌𝒙∗𝑿 𝒌𝑿 𝑿 + 𝜎 𝑰 𝒀 − 𝒘 𝝓𝑿  (2-53) 

and the posterior predictive covariance is  

 Σ(𝒙∗, 𝒙∗) = 𝒌𝒙∗𝒙∗
− 𝒌𝒙∗𝑿 𝒌𝑿 𝑿 + 𝜎 𝑰 𝒌𝑿 𝒙∗

. (2-54) 

A multitude of different functions can be used as kernels. The following example introduces a 
small selection. Figure 2-6 exemplarily shows three kernel functions, i.e. the polynomial 
kernel with degree 4, the squared exponential (SE) kernel and the periodic kernel. The first 
row showes the respective kernel functions for scalar inputs.  

The second row depicts a draw from the GP 𝑓(𝑥)~𝐺𝑃 0, 𝒌(𝑥, 𝑥 )  with its mean and standard 

deviation evaluated at 100 evenly distributed points in the set 𝑥 ∈ [−10,10]. Note that the 

probability density function of the prior 𝑝 𝑓(𝒙)  is depicted as a color map.  

The last row shows the covariance matrix 𝒌(𝑥, 𝑥 ) evaluated for the same set. The 
covariance matrix indicates the dependency between points and provides insight into the 
nature of the GP. For example, for the SE kernel, points which are spatially close are highly 
dependent. In contrast, spatially distant points only exhibit small dependence. Hence, the 
function values at two spatially distant points may vary strongly from each other. The effect is 
even more distinct for the periodic kernel. Its covariance matrix forms a repetitive pattern of 
dependence and independence, thus leading to a periodic function. 

This thesis predominantly uses the SE kernel, since it possesses properties important for the 
forecasting algorithm discussed in Chapter 4.3. The SE kernel is given by  

 
𝑘(𝒙, 𝒙 ) = exp −

‖𝒙 − 𝒙 ‖

2𝑙
, (2-55) 

where the free parameter 𝑙 defines the bandwidth of the kernel. Techniques to optimize the 
parameters based on gathered data are for example available in [173] and [21]. The 
interested reader is also referred to [59] for more information on kernel functions and their 
combinations.  
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Type       Quartic Polynomial       Squared Exponential        Periodic 

Equation 
𝜙(𝑥) = [𝑥 … 𝑥 ]  
𝑘(𝑥, 𝑥 ) = 𝜙 (𝑥)Σ𝜙(𝑥 ) 

𝑘(𝑥, 𝑥 ) = exp −
(𝑥 − 𝑥 )

2𝑙
 

𝑘(𝑥, 𝑥 )

= exp −
2

𝑙
sin 𝜋

𝑥 − 𝑥

𝑝
 

Draw from 
the GP 

 
 

 

Covariance 
function 

  
Figure 2-6: Three examples for kernel functions - 4th order polynomial kernel (left), squared exponential 

kernel (middle) and periodic kernel (right) 
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Figure 2-7: Evaluation of a GP at a single point and at an input distribution 

2.3 Gaussian Process Evaluation at an uncertain input 

By using (2-53) and (2-54), the evaluation of a GP at a single point 𝒙∗ yields the parameters 
for the normal distribution of 𝑓(𝒙∗) at said point. Until now, the test point 𝒙∗ was assumed to 
be deterministic. However, in real world applications the test point often represents states of 
a system. Knowledge about system states originates from sensor measurements, which are 
often corrupted by noise. Hence, these applications require the evaluation of the GP model 
not at a single point but at an input distribution instead. Note, that sensor noise is often well 
represented by additive Gaussian white noise. Hence, this thesis only considers normally 
distributed 𝒙∗. 

Figure 2-7 shows the difference between the GP evaluation at a single point and at an input 
distribution. In the former case, the evaluation of the GP model yields a normal distribution 
for the variable modelled by the GP. Figure 2-7 (left) exemplarily shows the projected 
distribution of 𝑓(𝒙∗) evaluated at 𝒙∗ = 0. In contrast, Figure 2-7 (right) depicts the case with 
input distribution 𝒙∗~𝑁(0, 0.4 ). In order to facilitate understanding, the projected distributions 
of 𝑓(𝒙∗) are exemplarily depicted at the mean μ = 0 as well as at ±2𝜎. It can be seen, that 
while every projection in itself is a normal distributions, their parameters vary dependent on 
the considered point. Thus, the evaluation of the GP at an input distribution would require the 
combination of the projections of each possible test point weighted by its probability of 
occurrence. This leads to two general conclusions. First, evaluating the GP only at the mean 
of the input distribution leads to significant deviations from the real output, since the 
statistical nature of the input is neglected. Secondly, the resulting distribution of 𝑓(𝒙∗) is most 
likely non-normal.  

Consider the GP-model in (2-26). Evaluating the latter implies finding the marginal 
distribution 𝑝(𝑓∗), where 𝑓∗ = 𝑓(𝒙∗) for simplicity. In the case of a single deterministic input 𝒙∗, 
the solution is given by (2-53) and (2-54). The challenge here is to find the marginal 𝑝(𝑓∗) if 
the input 𝒙∗ is a random variable with the distribution 𝒙∗~𝑁(𝝁 , 𝜮 ). In order to solve this 
problem, the joint distribution 𝑝(𝑓∗, 𝒙∗) needs to be marginalized over the input 𝒙∗:  

 
𝑝(𝑓∗) = 𝑝(𝑓∗, 𝒙∗) 𝑑𝒙∗ = 𝑝(𝑓∗|𝒙∗)𝑝(𝒙∗)𝑑𝒙∗. (2-56) 
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Often, solving (2-56) is analytically intractable. One way to marginalize 𝑝(𝑓∗, 𝒙∗) is to use 
Monte-Carlo techniques for numerical approximation. However, the latter relies on sampling, 
which often demands the availability of large computational resources. Furthermore, the 
number of samples required to achieve a good fit may not be known a-priori.  

Another approach is to approximate 𝑝(𝑓∗) as a normal distribution. In fact, the authors in 
[171], [71], [53] showed that if the employed kernel function in (2-50) is of the squared 
exponential type, the first and second moment of 𝑝(𝑓∗) can be computed analytically and 
exactly. In [28], Quiñonero-Candela mentions that the approach can also be applied for 
polynomial kernel functions. Ghassemi extended the technique to include periodic kernel 
functions ([71]). Amongst others, this technique has been applied for prediction ([85]) and 
filtering problems ([53]). 

Define the mean and covariance of 𝑝(𝑓∗) to be represented by 𝜇  and 𝛴 , respectively. The 

following sections depict how to compute 𝜇  and 𝛴  analytically by leveraging the results of 

[171]. The sections are divided based on the employed kernel and whether a GP prior or 
regression model is considered. Note that only cases, which are important for this thesis, are 
considered. In particular, section 2.3.1 shows how to compute 𝜇  and 𝛴  based on a prior GP 

model and a polynomial kernel function. In contrast, section 2.3.2 shows how to compute 𝜇  

and 𝛴  based on a GP regression model with squared exponential kernel functions. 

2.3.1 Evaluation of a GP prior model with linear kernel functions at an uncertain input 

Consider a prior GP model (2-26) with mean function (2-22) and covariance function (2-23). 
Furthermore, consider linear regressor functions 𝝓(𝒙) = 𝒙 and a linear kernel of the form 
𝑘(𝒙, 𝒙 ) = 𝒙 𝜮 𝒙 . The derivation of the mean 𝜇  and covariance 𝛴  are based on the law of 

iterated expectations and the law of total variance (see Appendix B.6). 

Derivation of the mean 𝜇  

Applying the law of iterated expectations (see Appendix B.6) to (2-56) yields  

 𝜇 = 𝔼𝒙∗
𝔼

∗
[𝑓∗|𝒙∗] . (2-57) 

Remember, that the expectation of a GP is it’s mean function 𝑚(𝒙). Hence, (2-57) becomes 

 𝜇 = 𝔼𝒙∗
[𝑚(𝒙∗)]. (2-58) 

Employing the definition of the expected value operator leads to 

 
𝔼𝒙∗

[𝑚(𝒙∗)] = 𝑚(𝒙∗)𝑁(𝝁 , 𝜮 )𝑑𝒙∗. (2-59) 

Inserting the mean of the prior model in (2-22) results in 

 
𝔼𝒙∗

[𝑚(𝒙∗)] = 𝒘 𝒙∗𝑁(𝝁 , 𝜮 )𝑑𝒙∗ = 𝒘 𝒙∗𝑁(𝝁 , 𝜮 )𝑑𝒙∗

𝔼𝒙∗
[𝒙∗]

= 𝒘 𝝁 . 
(2-60) 
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Derivation of the covariance Σ  

Similarly to the derivation of the mean, applying the law of the total variance (see Appendix 
B.6) to (2-56) yields 

 
Σ = 𝕍𝒙∗

𝔼
𝒙∗

𝑓𝒙∗
|𝒙∗ + 𝔼𝒙∗

𝕍
𝒙∗

𝑓𝒙∗
|𝒙∗ . (2-61) 

Again, remember that the expectation of a GP is its mean function. Hence, 

𝕍𝒙∗
𝔼

𝒙∗
𝑓𝒙∗

|𝒙∗ = 𝕍𝒙∗
[𝑚(𝒙∗)].  

 𝕍𝒙∗
[𝑚(𝒙∗)] = 𝔼𝒙∗

𝑚(𝒙∗) − 𝔼𝒙∗
[𝑚(𝒙∗)] 𝑚(𝒙∗) − 𝔼𝒙∗

[𝑚(𝒙∗)] . (2-62) 

Inserting (2-22) and (2-60) and rearranging terms yields 

 𝕍𝒙∗
[𝑚(𝒙∗)] = 𝔼𝒙∗

[(𝒘 𝒙∗ − 𝒘 𝝁 )(𝒘 𝒙∗ − 𝒘 𝝁 ) ] 

= 𝒘 𝔼𝒙∗
[(𝒙∗ − 𝝁 )(𝒙∗ − 𝝁 ) ]

𝕍𝒙∗
[𝒙∗] 𝜮

𝒘 = 𝒘 𝜮 𝒘. (2-63) 

By using the variance of the GP prior model in (2-23), the second term in (2-61) becomes 

 
𝔼𝒙∗

𝕍
𝒙∗

𝑓𝒙∗
|𝒙∗ = 𝔼𝒙∗

[Σ(𝒙∗, 𝒙∗)] = 𝔼𝒙∗
[𝒙∗ 𝜮 𝒙∗]. (2-64) 

Remember that 𝜮  is symmetric and positive definite. The solution for the expectation of the 
quadratic form 𝔼𝒙∗

[𝒙∗ 𝜮 𝒙∗] is ([193, p. 9], Appendix B.10)  

 
𝔼𝒙∗

𝕍
𝒙∗

𝑓𝒙∗
|𝒙∗ = 𝔼𝒙∗

[𝒙∗ 𝜮 𝒙∗] = Tr(𝚺 𝚺 ) + 𝝁 𝚺 𝝁 . (2-65) 

Hence, equation (2-61) becomes 

 Σ = 𝒘 𝜮 𝒘 + Tr(𝚺 𝚺 ) + 𝝁 𝚺 𝝁 . (2-66) 

The following example is intended to give more insight into the approximation of 𝑝(𝑓∗) as a 
normal distribution.  
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Figure 2-8: 𝑪𝑳 over 𝜶 modeled by a GP and evaluated at an input distribution 

Example 2-3: Evaluation of a GP prior model with linear kernels at an uncertain input 

Consider the 𝐶  over 𝛼 example in Example 2-2, which is modeled by a GP in (2-28). Instead 
of calculating 𝐶  at a fixed input 𝛼, the angle of attack is assumed to be a rv itself. This 
example considers two scenarios. First, the GP shall be evaluated at the input distribution 
𝛼 ~𝑁(−3, 0.5 ). Secondly, the input is changed to 𝛼 ~𝑁(−2.5, 1.5 ). Equations (2-60) and 
(2-66) are used for the exact analytical calculation of the mean 𝜇  and the covariance Σ . In 

order to build a reference, 50000 samples are drawn from 𝛼 and the weights 𝑤 and 
propagated through the model (2-28). 

Figure 2-8 shows the results. The distribution of the input 𝛼 is plotted on the 𝑥-axis on the 
bottom. The GP model (2-28) is depicted by the mean as well as the area representing 1,2 
and 3 standard deviations, respectively. The bar graph on the 𝑦-axis represents the 
propagation results of the 50000 samples. Furthermore, the first and second moment of the 
propagated samples is computed. The solid line on the 𝑦-axis represents a normal 
distribution with the computed mean and covariance. Finally, the dashed line on the 𝑦-axis 
represents the approximating normal distribution by employing equations (2-60) and (2-66).  

Figure 2-8 (left) shows the first case with 𝛼 ~𝑁(−3, 0.5 ). It can be seen that the distribution 
formed by the parameters of the propagated samples is nearly indistinguishable from the 
analytical calculation with equations (2-60) and (2-66). While the first two moments of the 
propagated distribution are calculated exactly, the approach does not give any hint whether 
the latter is well approximated by a normal distribution. Figure 2-8 (right) depicts this case 
with 𝛼 ~𝑁(−2.5, 1.5 ). It can be seen that the histogram of the propagated samples clearly 
forms a non-normal distribution. Still, the first two moments of this distribution can be 
calculated and used as the parameters of a normal distribution. The calculation rules of 
(2-60) and (2-66) then indeed result in the same parameters. However, the histogram is still 
not represented well. Considering the error between the approximation and the real 
distribution is subject to section 4.5.2. 
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2.3.2 Evaluation of a GP with squared exponential kernels at an uncertain input  

Consider a prior GP model (2-26) with mean function (2-22) and covariance function (2-23). 
Furthermore, consider the SE kernel of (2-55). This thesis considers SE kernels for online 
regression problems only. It therefore assumes the prior distribution to have zero-mean. This 
is valid, since all physical information is already incorporated in the physical model. The 
derivation of the mean 𝜇  and covariance 𝛴  are again based on the law of iterated 

expectations and the law of total variance (see Appendix B.6). The following approach is 
depicted in [171], [71] and [53]. 

Derivation of the mean 𝜇  

Similar to the linear kernel the approach facilitates the law of iterated expectations: 

 𝜇 = 𝔼𝒙∗
𝔼

∗
[𝑓∗|𝒙∗] . (2-67) 

Again, the expectation of a GP is its mean function, such that 𝜇 = 𝔼𝒙∗
[𝑚(𝒙∗)]. The posterior 

predictive mean 𝑚(𝒙∗) is given in (2-53). Considering a zero-mean prior and inserting (2-53) 
into (2-67) leads to 

 
𝔼𝒙∗

[𝑚(𝒙∗)] = 𝒌𝒙∗𝑿 𝒌𝑿 𝑿 + 𝜎 𝑰 𝒀 𝑁(𝝁 , 𝜮 )𝑑𝒙∗. (2-68) 

For simplicity, define 𝜝𝑿 𝒀 = 𝒌𝑿 𝑿 + 𝜎 𝑰 𝒀 . Note that 𝜝𝑿 𝒀  does not depend on the 

predictive state 𝒙∗, but only on the stored data. Therefore, it can be moved in front of the 
integral by first transposing 𝑚(𝒙∗) = 𝒌𝒙∗𝑿 𝜝𝑿 𝒀 :  

 
𝔼𝐱∗

[𝑚(𝒙∗)] = 𝑩𝑿 𝒀 𝒌𝑿 𝒙∗
𝑁(𝝁 , 𝚺 )𝑑𝒙∗. (2-69) 

Note, that 𝒌𝒙∗𝑿 = 𝒌𝑿 𝒙∗
. The trick used in [171] in order to solve (2-69) is to note that the 

equation of a squared exponential kernel 𝒌𝑿 𝒙∗
 is similar to that of a normal probability 

distribution. To see this, define 𝚲 ∈ ℝ ×  to contain the bandwidth of each kernel function on 
its main diagonal and expand the kernel matrix 𝒌𝑿 𝒙∗

 for each 𝑖 −th stored data point 𝑿 : 

 
𝒌𝑿 𝒙∗

=
(2𝜋) |𝚲|

(2𝜋) |𝚲|
𝒌𝑿 𝒙∗

= (2𝜋) |𝚲|
1

(2𝜋) |𝚲|
𝑒

𝒙∗ 𝑿 𝚲 𝒙∗ 𝑿

𝑿 ,𝚲

 

= (2𝜋) |𝚲| 𝑁 𝑿 , 𝚲 . 

(2-70) 

Hence, (2𝜋) |𝚲| 𝒌𝑿 𝒙∗
 as a function of 𝒙∗ forms a normal distribution with mean 𝑿  and 

covariance 𝚲. The trick uses this reformulation in order to employ the same calculation rules 
as for a sum of i.i.d. normally distributed random variables.  
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Following the calculation rules in Appendix C.4, the multiplication of two normal distributions 

𝑁(𝝁 , 𝜮 ) and 𝑁 𝑿 , 𝚲  yields 

 𝑁 𝑿 , 𝜦 ∙ 𝑁(𝝁 , 𝚺 ) 

=
1

(2𝜋) |𝚲 + 𝚺 |
𝑒

𝝁 𝑿 (𝚲 𝚺 ) 𝝁 𝑿
𝑁(𝝁 , 𝚺 ). 

(2-71) 

It is not necessary to calculate the pdf 𝑁(𝝁 , 𝚺 ) explicitly, since it will be integrated out in the 
next step. The 𝑖-th solution 𝑙  for the integral in (2-69) is obtained by inserting (2-71) into 
(2-69): 

 
𝑙 = 𝒌𝑿 𝒙∗

𝑁(𝝁 , 𝜮 )𝑑𝒙∗ 

=
(2𝜋) |𝚲|

(2𝜋) |𝚲 + 𝚺 |
𝑒

𝝁 𝑿 (𝚲 𝚺 ) 𝝁 𝑿
𝑁(𝝁 , 𝚺 )𝑑𝒙∗ 

= |𝑰 + 𝚲 𝚺 | 𝑒
𝝁 𝑿 (𝚲 𝚺 ) 𝝁 𝑿

. 

(2-72) 

Combining all 𝑖 solutions in the vector 𝒍 results in a solution for (2-69): 

 𝜇 = 𝔼𝐱∗
[𝑚(𝒙∗)] = 𝑩𝑿 𝒀 𝒍. (2-73) 

The following part deals with the derivation of the covariance Σ . 

Derivation of the covariance Σ  

Similarly to the derivation of the mean, applying the law of the total variance (see Appendix 
B.6) to (2-56) yields 

 
Σ = 𝕍𝒙∗

𝔼
𝒙∗

𝑓𝒙∗
|𝒙∗ + 𝔼𝒙∗

𝕍
𝒙∗

𝑓𝒙∗
|𝒙∗ . (2-74) 

Again, remember that the expectation of a GP is its mean function. With the definition of the 
covariance operator, the first term in (2-74) resolves to 

 
𝕍𝒙∗

𝔼
𝒙∗

𝑓𝒙∗
|𝒙∗ = 𝕍𝒙∗

[𝑚(𝒙∗)] = 𝔼𝒙∗
[𝑚(𝒙∗)𝑚 (𝒙∗)] − 𝔼𝒙∗

[𝑚(𝒙∗)]. (2-75) 

With the application of the expected value operator, the first term in (2-75) becomes 

 
𝔼𝒙∗

[𝑚(𝒙∗)𝑚 (𝒙∗)] = 𝑚(𝒙∗)𝑚 (𝒙∗)𝑁(𝝁 , 𝜮 )𝑑𝒙∗. (2-76) 

Inserting the posterior predictive mean 𝑚(𝒙∗) of (2-53) and moving 𝑩𝑿 𝒀  outside of the 

integral yields 

 
𝔼𝒙∗

[𝑚(𝒙∗)𝑚 (𝒙∗)] = 𝑩𝑿 𝒀 𝒌𝑿 𝒙∗
𝒌𝒙∗𝑿 𝑁(𝝁 , 𝚺 )𝑑𝒙∗ 𝑩𝑿 𝒀 . (2-77) 
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In (2-77) the product of two kernel functions needs to be integrated. Again, the trick used in 
[171] forms the basis for solving (2-77). Remember the kernel function expansion in (2-70). 
Hence, the problem comes down to solving the multiplication of the three normal densities 

𝑁 𝑿 , 𝜦 , 𝑁 𝑿 , 𝜦  and 𝑁(𝝁 , 𝜮 ) for each pair of stored data points 𝑿 , 𝑿 . The 

derivation is considerably easier if the two densities 𝑁 𝑿 , 𝚲  and 𝑁 𝑿 , 𝚲  are multiplied 

first, since they share a common covariance matrix. Following the calculation rules in 

Appendix C.4, the multiplication of 𝑁 𝑿 , 𝜦  and 𝑁 𝑿 , 𝜦  yields 

 𝑁 𝑿 , 𝚲 ∙ 𝑁 𝑿 , 𝚲  

=
1

(2𝜋) |2𝚲|
𝑒

𝑿 𝑿 ( 𝚲) 𝑿 𝑿
𝑁(𝝁 , 𝚺 ), 

(2-78) 

where 

 
𝝁 =

1

2
𝑿 − 𝑿  

𝚺 =
1

2
𝚲. 

(2-79) 

Again, applying the calculation rules in Appendix C.4, the multiplication of all three densities 
yields 

 𝑁 𝑿 , 𝚲 ∙ 𝑁 𝑿 , 𝚲 ∙ 𝑁 𝑿 , 𝚲  

=
1

(2𝜋) |2𝚲|
𝑒

𝑿 𝑿 ( 𝚲) 𝑿 𝑿
 

∙
1

(2𝜋)
1
2

𝚲 + 𝚺

𝑒
(𝝁 𝝁 ) 𝚲 𝚺 (𝝁 𝝁 )

∙ 𝑁(𝝁 , 𝚺 ). 

(2-80) 

Again the parameters of the density 𝑁(𝝁 , 𝚺 ) do not need to be calculated explicitly, since it 
integrates out in the next step. The 𝑖𝑗-th solution 𝑳  for the integral in (2-77) is obtained by 

simplifying the expression above and inserting it into (2-77): 

 
𝑳 = 𝒌𝑿 𝒙∗

𝒌𝒙∗𝑿 𝑁(𝝁 , 𝚺 )𝑑𝒙∗  

=
1

|2𝚺 + 𝐈|
𝑒

𝑿 𝑿 ( 𝚲) 𝑿 𝑿 (𝝁 𝝁 ) 𝚲 𝚺 (𝝁 𝝁 )

𝑁(𝝁 , 𝚺 )𝑑𝒙∗. 

(2-81) 

Hence, equation (2-76) becomes 

 𝔼𝒙∗
[𝑚(𝒙∗)𝑚 (𝒙∗)] = 𝑩𝑿 𝒀 𝑳𝑩𝑿 𝒀 . (2-82) 



2 Basics of Gaussian Mixture Models and Gaussian Processes 
 

Page 34 / 200   

The second term in (2-75) follows from leveraging the results of the derivation of the mean 
𝝁 . Using (2-73), 𝔼𝒙∗

[𝑚(𝒙∗)] becomes 

 𝔼𝒙∗
[𝑚(𝒙∗)] = 𝑩𝑿 𝒀 𝒍 = 𝑩𝑿 𝒀 𝒍𝒍 𝑩𝑿 𝒀 . (2-83) 

The second term in (2-74) 

 
𝔼𝒙∗

𝕍
𝒙∗

𝑓𝒙∗
|𝒙∗ = 𝔼𝒙∗

[𝚺(𝒙∗)]. (2-84) 

Employing the expected value operator and using the predictive posterior covariance of 
(2-54), (2-84) becomes 

 
𝔼𝒙∗

[𝚺(𝒙∗)] = 𝒌𝒙∗𝒙∗
𝑁(𝝁 , 𝚺 )𝑑𝒙∗ − 𝒌𝒙∗𝑿 𝒌𝑿 𝑿 + 𝜎 𝑰 𝒌𝑿 𝒙∗

𝑁(𝝁 , 𝚺 )𝑑𝒙∗. (2-85) 

Independent of the numerical value of the input 𝒙∗, the SE kernel 𝒌𝒙∗𝒙∗
 evaluates to 1. 

Hence, the solution of the first integral in (2-85) is  

 
𝒌𝒙∗𝒙∗

𝑁(𝝁 , 𝚺 )𝑑𝒙∗ = 1. (2-86) 

The second integral in (2-85) is solved by leveraging the properties of the trace operator (see 
Appendix A.1): 

 
𝒌𝒙∗𝑿 𝒌𝑿 𝑿 + 𝜎 𝑰 𝒌𝑿 𝒙∗

𝑁(𝝁 , 𝚺 )𝑑𝒙∗

= 𝑇𝑟 𝒌𝑿 𝑿 + 𝜎 𝑰 𝒌𝑿 𝒙∗
𝒌𝒙∗𝑿 𝑁(𝝁 , 𝚺 )𝑑𝒙∗. 

(2-87) 

The structure of the integral is similar to the one in (2-81) and can be solved in an equal way 
by expanding the kernel functions and multiplying the three normal densities. Using the result 
in (2-81), (2-87) becomes 

 
𝑇𝑟 𝒌𝑿 𝑿 + 𝜎 𝑰 𝒌𝑿 𝒙∗

𝒌𝒙∗𝑿 𝑁(𝝁 , 𝚺 )𝑑𝒙∗ = 𝑇𝑟 𝒌𝑿 𝑿 + 𝜎 𝑰 𝑳 . (2-88) 

Inserting (2-86) and (2-88) in (2-85) yields 

 𝔼𝒙∗
[𝚺(𝒙∗)] = 1 − 𝑇𝑟 𝒌𝑿 𝑿 + 𝜎 𝑰 𝑳 . (2-89) 

Finally, by inserting the results of (2-82), (2-83) and (2-89) in (2-74) the covariance Σ  is 

 Σ = 1 + 𝑩𝑿 𝒀 𝑳𝑩𝑿 𝒀 − 𝑩𝑿 𝒀 𝒍𝒍 𝑩𝑿 𝒀 − 𝑇𝑟 𝒌𝑿 𝑿 + 𝜎 𝑰 𝑳 . (2-90) 

The following example uses the introductory example of section 2.3 to demonstrate the 
evaluation of a GP with SE kernels at an uncertain input.  
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Figure 2-9: Evaluation of a GP with SE kernels at the uncertain input 

Example 2-4: Evaluation of a GP formed by SE kernels at an uncertain input 
 
Consider the generic introductory example of section 2.3. The GP model is selected to have 
a zero-mean prior distribution. The kernel functions are selected to be of the SE type as in 
(2-55) with bandwidth 𝑙 = 0.5. The standard deviation of the zero-mean additive 
measurement noise is chosen to be 𝜎 = 0.65. Two data points are part of the history 
stacks, namely 𝑿 = [0 0.5]  and 𝒀 = [0 1.5] . The input distribution is 𝑥∗~𝑁(0, 0.4 ). 
Again, in order to build a reference, 100000 samples are drawn from 𝑥∗ and propagated 
through the GP. 

Figure 2-9 shows the result of the evaluation of the GP model. The distribution of the input 𝑥 
is plotted on the 𝑥-axis on the bottom. The GP model is depicted by the mean as well as the 
area representing 1,2 and 3 standard deviations, respectively. The bar graph on the 𝑦-axis 
represents the propagation results of the 100000 samples. Furthermore, the first and 
second moment of the propagated samples are computed. The solid line on the 𝑦-axis 
represents a normal distribution with the computed mean and covariance. Finally, the 
dashed line on the 𝑦-axis represents the approximating normal distribution by employing 
equations (2-73) and (2-90).  

As for the linear kernels, the distribution formed by the parameters of the propagated 
samples is nearly indistinguishable from the analytical calculation with equations (2-73) and 

(2-90). This demonstrates that the first two moments of 𝑝 𝑓
∗

 can be exactly calculated by 

(2-73) and (2-90). Again, note that this approach does not relay information, whether 𝑝 𝑓
∗

 

is well approximated by a normal distribution in the first place. 
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3 System Description and Control Design  

This section presents the system description and control architecture used throughout the 
thesis. The outline of this section is as follows: Section 3.1 defines the system, which is to be 
controlled. Section 3.2 introduces the baseline control architecture used throughout this 
thesis. Section 3.3 augments the control architecture by a MRAC. Finally, section 3.4 
summarizes gaps, which prevent a successful certification of adaptive controllers. 

3.1 System Definition 

Let 𝒙 ∈ 𝐷 ⊂ ℝ  be the state vector, let 𝒖 ∈ ℝ  be the control input and consider the 
following class of control-affine nonlinear dynamical systems: 

 �̇� = 𝒇(𝒙 ) + 𝑮(𝒙 )𝒖 (3-1) 

The functions 𝒇(𝒙 ), with 𝒇(𝟎) = 𝟎, and 𝑮(𝒙 ) are fully or partially unknown, but assumed to 
be Lipschitz over 𝐷  and 𝑮(𝐱 ) is assumed to be nonsingular for all 𝒙 ∈ 𝐷 . The control 
input 𝒖 is assumed to be piecewise continuous. The system states 𝒙  are assumed to be 
available for full state feedback. Note that the class of systems in (3-1) can be extended to 
include non-affine systems if the input is replaceable by an invertible function (see i.a. [197]).  

Directly designing a control algorithm for the system in (3-1) is seldom possible or advisable. 
Rather, transformations are sought which bring the dynamics into a form, which is easier to 
handle, without introducing additional simplifications. For the purpose of this thesis the 
existence of a transformation is assumed, which brings the system dynamics into the form 

  �̇� = 𝑨 𝒙 + 𝑩 𝒖 − 𝚫(𝒙 , 𝒖) . (3-2) 

Here, the system matrix 𝑨 ∈ ℝ ×  and input matrix 𝑩 ∈ ℝ ×  are known and the pair 
(𝑨 , 𝑩 ) is controllable. The term 𝚫(𝒙 , 𝒖) represents the modelling uncertainty, which is a 
result of the system reformulation. For the sake of simplicity assume (𝑨 , 𝑩 ) to be in 
controllable canonical form, i.e.: 

 

𝑨 =

⎣
⎢
⎢
⎢
⎡
𝑨 , 0 … … 0

0 𝑨 , ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
0 0 ⋯ ⋯ 𝑨 , ⎦

⎥
⎥
⎥
⎤

, 𝑩 =

⎣
⎢
⎢
⎢
⎡
𝒃 , 0 … … 0

0 𝒃 , ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
0 0 ⋯ ⋯ 𝒃 , ⎦

⎥
⎥
⎥
⎤

. (3-3) 

Here, the 𝑖-th submatrix of 𝑨  and 𝑩  is given by 

 

𝑨 , =

⎣
⎢
⎢
⎢
⎡
0 1 0 … 0
⋮ 0 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋱ ⋱ 0 1
0 0 ⋯ ⋯ 0⎦

⎥
⎥
⎥
⎤

, 𝒃 , =

⎣
⎢
⎢
⎢
⎡
0
⋮
⋮
0
1⎦

⎥
⎥
⎥
⎤

  (3-4) 
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A candidate approach for transforming (3-1) into (3-2) is approximate dynamic inversion or 
feedback linearization (see i.a. [118], [95], [41], [114], [149]). The underlying idea is to invert 
the system dynamics in (3-1) in order to bring the nonlinear system into an equivalent linear 
form. However, since the nonlinear dynamics are at most partially known, an approximate 
model of (3-1) has to be used. The difference between the dynamics in (3-1) and the 
approximate model inevitably introduces uncertainties to the system in (3-2).  

Chowdhary et al. divide the uncertainty 𝚫(𝒙 , 𝒖) into two classes. A structured uncertainty is 
linearly parametrized and its basis vector is known. In the more general case the basis of the 
uncertainty is unknown and it needs to be approximated. In this case, the uncertainty is 
labeled unstructured. Definitions 3.1 and 3.2 formally define the two concepts. 

Definition 3.1 – Structured Uncertainty ([41]) 
 
There exist ideal unknown weights 𝚯∗ ∈ ℝ ×  and a vector of known basis 
functions 𝝋(𝒙 , 𝒖) ∈ ℝ  such that the uncertainty 𝜟(𝒙 , 𝒖) can be uniquely represented by 

 𝚫(𝒙 , 𝒖) = 𝚯∗ 𝝋(𝒙 , 𝒖). (3-5) 

 

 

Definition 3.2 – Unstructured Uncertainty ([41]) 
 
There exist ideal unknown weights 𝚯∗ ∈ ℝ ×  and a vector of basis functions 𝝋(𝒙 , 𝒖) ∈ ℝ  
such that the uncertainty 𝚫(𝒙 , 𝒖) can be represented by 

 𝚫(𝒙 , 𝒖) = 𝚯∗ 𝝋(𝒙 , 𝒖) + 𝜼(𝒙 , 𝒖), (3-6) 

Where the representation error �̅� = sup
𝒙 ∈ ,𝒖∈

‖𝜼(𝒙 , 𝒖)‖ is bounded over 𝐷  and 𝐷 . 

The optimal parameters 𝚯∗ are assumed to be time invariant throughout this work. For 
further information about adaptive control in the presence of time variant uncertainties refer 
i.a. to [131], [140], [209]. A large class of uncertainties satisfies Definition 3.1 (see e.g. the 
nonlinear wingrock dynamics model [196], [142]). Table 3-1 lists some general examples for 
structured uncertainties 𝜟(𝒙𝑷, 𝒖).  

Type of uncertainty Mathematical Expression for 𝚫(𝐱𝐏, 𝐮) 

Stabilizing Feedback 𝚫(𝒙 , 𝒖) = 𝚯∗ 𝒙  

Parametrized Uncertainty 𝚫(𝒙 , 𝒖) = 𝚯∗ 𝝋(𝒙 , 𝒖) 

Constant Disturbance 𝚫(𝒙 , 𝒖) = 𝚯∗  

Input Uncertainty 𝚫(𝒙 , 𝒖) = 𝚯∗ 𝒖  

Table 3-1: Examples for uncertainties 𝚫(𝒙𝑷, 𝒖) satisfying Definition 3.1 

The remainder of this chapter focusses on unstructured uncertainties as it constitutes the 
more general case. In this, the basis 𝝋(𝒙 , 𝒖) is formed out of universally approximating 
functions, such as Gaussian radial basis functions ([130], [124]). Note, that picking the basis 
𝝋(𝒙 , 𝒖) such that �̅� = 0, implies that the uncertainty approximation is exact in 𝐷  and 𝐷 . 
However, this requires infinitely many approximating functions ([69]), which is infeasible for 
practical applications.  
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3.2 Control Architecture 

Figure 3-1 shows the control architecture employed in this thesis. The control task is divided 
into two parts, the baseline and the adaptive controller. The objective of the baseline 
controller is to ensure the desired performance of the closed loop system in the absence of 
the uncertainty 𝚫(𝒙 , 𝒖). In turn the adaptive controller aims at approximating the uncertainty 
and reducing its effect on the plant dynamics. 

 

Figure 3-1: General control architecture with baseline and adaptive controller 

A basic and frequently implemented approach for the baseline controller design is to use 
pole placement. However, for many missions it is desirable to let the output of the system 
follow a given reference trajectory instead of regulating it to the origin. The reference 
trajectory is generated by a reference model, which encompasses the designers’ objectives 
such as performance criteria and state constraints. An imperative requirement for the 
reference model design is for the plant to be able to physically track the reference states 
exactly. Due to this prerequisite and a frequently experienced lack of knowledge of the 
system performance, reference models tend to be linear and conservative.  

Let 𝒙 ∈ 𝐷 ⊂ ℝ  denote the state of the reference model dynamics  

 �̇� = 𝑨 𝒙 + 𝑩 𝒓. (3-7) 

The pair (𝑨 , 𝑩 ), with 𝑨 ∈ ℝ ×  and  𝑩 ∈ ℝ × , defines the desired response 
characteristics of the reference model. The system matrix 𝑨  is chosen to be Hurwitz. Here, 
𝒓 ∈ 𝐷 ⊂ ℝ  denotes the bounded and piecewise continuous reference command. For the 
purpose of this thesis assume that the reference model can be brought into the controllable 
canonical form of (3-3) such that 

 �̇� = 𝑨 𝒙 + 𝑩 𝒖 . (3-8) 

The internal reference model control law 

 𝒖 = 𝑲 , 𝒙 + 𝑲 , 𝒓 (3-9) 

ensures that 𝑨 = 𝑨 + 𝑩 𝑲 ,  and 𝑩 = 𝑩 𝑲 , . The matrices 𝑲 , ∈ ℝ ×  and 

𝑲 , ∈ ℝ ×  contain the feedback and feedforward gains, respectively.  

 

 



 3 System Description and Control Design
 

  Page 39 / 200 

The tracking error between the system and reference model states is defined as 

 𝒆 = 𝒙 − 𝒙 . (3-10) 

As part of the control concept, the control input 𝐮 consists of a term 𝒖  for the baseline 
controller and a term 𝒖  for the adaptive controller, respectively: 

 𝒖 = 𝒖 + 𝒖 . (3-11) 

The control law for the baseline controller is defined as 

 𝒖 = 𝒖 + 𝑲 𝒆, (3-12) 

where the matrix 𝑲 ∈ ℝ ×  contains the feedback gains for the tracking error and 𝒖  is the 
reference model control law in (3-9). Define 𝑨 = 𝑨 + 𝑩 𝑲 . The feedback gains 𝑲  are 
chosen such that 𝑨  is Hurwitz. Inserting (3-9), (3-11) and (3-12) into the plant dynamics of 
(3-2) gives 

 �̇� = 𝑨 𝒙 + 𝑩 𝑲 𝒆 + 𝑩 𝑲 , 𝒙 + 𝑩 𝑲 , 𝒓 + 𝑩 𝒖 − 𝚫(𝒙 , 𝒖) . (3-13) 

Note, that by choosing 𝑲 = 𝑲 ,  the baseline tracking controller would be equal to a pole 

placement controller. Differentiating (3-10) with respect to time and inserting (3-7) and (3-13) 
yields the error dynamics 

 �̇� = 𝑨 𝒙 + 𝑩 𝑲 𝒆 + 𝑩 𝑲 , 𝒙 + 𝑩 𝑲 ,

𝑩

𝒓 + 𝑩 𝒖 − 𝚫(𝒙 , 𝒖)  

− 𝑨 𝒙

𝑨 𝑩 𝑲 , 𝒙

− 𝑩 𝒓 

= 𝑨 𝒙 − 𝑨 𝒙 + 𝑩 𝑲 𝒆
𝑨 𝒆

+ 𝑩 𝒖 − 𝚫(𝒙 , 𝒖)  

= 𝑨 𝒆 + 𝑩 𝒖 − 𝚫(𝒙 , 𝒖) . 

(3-14) 

Note that if the adaptive controller is able to cancel the uncertainty 𝚫(𝒙 , 𝒖) uniformly in 𝐷  
and 𝐷 , the tracking error dynamics reduce to �̇� = 𝑨 𝒆. Since 𝑨  is Hurwitz, the closed loop 
system is exponentially stable and the plant tracks the reference model exponentially fast. 
The following section focusses on the design of an adaptive control algorithm, which 
approximates the uncertainty 𝚫(𝒙 , 𝒖) and reduces its effect on the tracking error dynamics 
in (3-14).  
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3.3 Model Reference Adaptive Control 

MRAC aims at cancelling the effect of the uncertainty on the tracking error dynamics of 
(3-14) and letting the plant track the reference model. This is achieved by emulating the 
structure of the uncertainty and approximating it using a weighted combination of regressor 
functions. The numerical values of the adaptive parameters are adjusted online based on the 
minimization of a quadratic cost. The underlying assumption is that if the adaptive gains do 
converge to their ideal values, the uncertainty is cancelled and the plant tracks the reference 
model.  

Fundamentally, most MRAC approaches can be classified based on the chosen structure of 
the adaptive element and the parameter update scheme. In the former case, if the 
uncertainty is structured (as per Definition 3.1), the adaptive element directly emulates its 
composition. I.e. the regressor functions of the adaptive element equal the basis functions of 
the uncertainty. If the adaptive weights do converge, the uncertainty is cancelled uniformly 
over time. In the unstructured case (as per Definition 3.2) the basis functions of the 
uncertainty are unknown. Universal approximators represent one way of reducing the effect 
of the uncertainty on the plant nonetheless. One class of universal approximators, which has 
been used successfully, are neural networks (see i.a. [110], [92], [113]). The underlying idea 
is to approximate the modelling uncertainty by a large number of regressor functions, such 
as radial basis functions. Since the problem is over-determined, a uniform cancellation 
becomes nearly impossible, which in turn results in an approximation error acting on the 
error dynamics. However, if this error is small enough, the system can still be shown to be 
stable and track the reference model adequately.  

Based on the type of adaptation laws, MRAC techniques can be divided into direct and 
indirect approaches ([17], [58], [156]). Direct MRAC adjusts the adaptive parameters online, 
in order to minimize a cost function on the tracking and parameter error. In contrast, indirect 
MRAC aims at identifying the parameters of the plant by utilizing an identification model. 
Instead of the tracking error, the identification error between the identification model and the 
plant drives the update of the adaptive gains. A detailed overview of indirect MRAC can be 
found i.a. in [18], [17], [58], [156]. Indirect MRAC forms the basis for some advanced 
strategies, such as ℒ  adaptive control or Predictor based MRAC. Both lead to smoother 
transients, while conserving a fast adaptation speed.  

Numerous modifications and extensions exist within the mentioned families of MRAC 
architectures. Considering all available modifications exceeds the scope of this work. Hence, 
this thesis picks one representative of the direct and one of the indirect family in order to 
present and apply the online monitoring approach. The former family will be represented by 
direct MRAC with a gradient based parameter update law. The latter family, will be 
represented by Predictor based MRAC (PMRAC), which recently attracted increased 
attention. 

The outline of this chapter is as follows. Section 3.3.1 introduces direct MRAC with gradient 
based update laws. Section 3.3.2 introduces PMRAC. Section 3.3.2 gives a concise 
overview of modifications, extensions and alternatives to the presented MRAC cases.  
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3.3.1 Direct MRAC with gradient based update laws 

 

Figure 3-2: Control Architecture with Direct Model Reference Adaptive Controller 

Figure 3-2 shows the control architecture with direct MRAC augmentation. The premise of 
the latter is to cancel the uncertainty directly in the input channel. Therefore, the control 
signal adopts the structure of the uncertainty: Similar to Definition 3.1 and Definition 3.2, the 
adaptive signal is a linear combination of the adaptive parameters 𝚯 ∈ ℝ ×  and basis 
functions 𝝋(𝒙 , 𝒖) such that 

 𝒖 = 𝚯 𝝋(𝒙 , 𝒖). (3-15) 

Since 𝚫(𝒙 , 𝒖) is a function of 𝒖  as per (3-11) and (3-13), and 𝒖  needs to be designed to 
cancel 𝚫(𝒙 , 𝒖), the existence and uniqueness of a fixed-point solution to 𝒖 = 𝚫(𝒙 , 𝒖) is 
assumed. Sufficient conditions for satisfying this assumption are available in [123]. Define 

the parameter error 𝚯 ∈ ℝ ×  between the current weights 𝚯 and the ideal weights 𝚯∗ to be  

 𝚯 = 𝚯 − 𝚯∗. (3-16) 

Considering the more general uncertainty representation of Definition 3.2 and inserting (3-15) 
into the error dynamics in (3-14) yields 

 �̇� = 𝑨 𝒆 + 𝑩 𝚯 𝝋(𝒙 , 𝒖) − 𝚫(𝒙 , 𝒖) = 𝑨 𝒆 + 𝑩 𝚯 𝝋(𝒙 , 𝒖) + 𝑩 𝜼(𝒙 , 𝒖). (3-17) 

Since 𝑨  is Hurwitz, for any positive definite matrix 𝑸 ∈ ℝ ×  there exists a positive definite 
symmetric solution 𝑷 ∈ ℝ ×  for the Lyapunov equation [84, p. 173] 

 𝟎 = 𝑨 𝑷 + 𝑷𝑨 + 𝑸. (3-18) 

The task of the adaptive controller is to reduce the impact of the uncertainty 𝚫(𝒙 , 𝒖) on the 
error dynamics (3-14). MRAC achieves this by updating the numerical values of the adaptive 
parameters online in order to minimize a cost function on the tracking and parameter error. In 
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most direct MRAC architectures, the update on the adaptive weights is driven by the 
instantaneous tracking error 𝒆 and given by 

 �̇� = −𝚪𝝋(𝒙 , 𝒖)𝒆 𝑷𝑩 − 𝚪𝑘(𝚯). (3-19) 

The matrix 𝚪 ∈ ℝ ×  contains the learning rate. Often, 𝚪 is chosen to be diagonal. 
Furthermore, 𝑘(𝚯) denotes an update law modification, which ensures stability of the closed 
loop system in the presence of disturbances. Let 𝑐 , i ∈ (0,1,2), be constants with 𝑐 > 0. The 
update law modification 𝑘(𝚯) takes on the form 

 𝑘(𝚯) = 𝑐 𝚯 ± 𝑐 𝚯 ± 𝑐 𝑰. (3-20) 

Update law modifications, which satisfy (3-20) include amongst others Ioannou’s 𝜎-
Modification ([102]) or concurrent learning by Chowdhary ([41], [35], [42]). Here 𝚯 ∈ ℝ ×  
denotes an additional, constant term, which comprises parameter errors resulting from wrong 
assumptions or false initialization. For example, 𝜎-Modification requires a preselected 
reference damping value, which is often chosen to be 0, since no further information is 
available. Section 3.3.2 elaborates on update law modifications. Remember that the optimal 
adaptive parameters 𝚯∗ are assumed to be time invariant. Hence, using (3-19) the parameter 
error dynamics are 

 �̇� = �̇� − �̇�∗ = −𝚪𝝋(𝒙 , 𝒖)𝒆 𝑷𝑩 − 𝚪𝑘(𝚯). (3-21) 

The following theorem establishes the well known stability proof for MRAC with the gradient 
decent based update laws of (3-19) (see e.g. [155], [8], [204]).  

 

Theorem 3.1 – Uniform Ultimate Boundedness of MRAC 
 
Consider the system dynamics in (3-2), the reference model dynamics in (3-7), the control 
law in (3-11), the tracking error dynamics (3-17), the parameter error dynamics (3-21) and 
Definition 3.2. Then the instantaneous parameter update law in (3-19) guarantees that the 
zero solution 𝒆, 𝚯 = 0 of the closed loop system (3-17) and (3-21) is globally uniformly 
ultimately bounded. 

 

Proof: 

Consider the following Lyapunov function candidate 

 
𝑉 𝒆, 𝚯 =

1

2
𝒆 𝑷𝒆 +

1

2
Tr 𝚯 𝚪 𝚯 . (3-22) 

Note that (3-22) is positive definite and radially unbounded as 𝑉 𝒆, 𝚯 = 0 iff 𝒆 = 𝟎 and 𝚯 =

0, and 𝑉 𝒆, 𝚯 → ∞ for 𝒆 → ∞ and 𝚯 → ∞.  

 

 



 3 System Description and Control Design
 

  Page 43 / 200 

Taking the time derivative of (3-22) along the tracking and parameter error dynamics of 
(3-17) and (3-21) yields 

 
�̇� 𝒆, 𝚯 =

1

2
𝒆 𝑷�̇� +

1

2
�̇� 𝑷𝒆 + Tr 𝚯 𝚪 �̇�  

=
1

2
𝒆 (𝑨 𝑷 + 𝑷𝑨 )

𝑸

𝒆 + 𝒆 𝑷𝑩 𝜼(𝒙 , 𝒖) + Tr 𝚯 𝚪 �̇� + 𝚯 𝛗(𝒙 , 𝒖)𝒆 𝑷𝑩  

=
1

2
𝒆 𝑸𝒆 + 𝒆 𝑷𝑩 𝜼(𝒙 , 𝒖) − Tr 𝑐 𝚯 𝚯 ± 𝑐 𝚯 𝚯 ± 𝑐 𝚯 . 

(3-23) 

Constructing an upper bound on �̇� 𝒆, 𝚯  gives 

 
�̇� 𝒆, 𝚯 ≤ −

1

2
λ (𝑸)‖𝒆‖ − 𝑐 𝚯 + �̅�‖𝑷𝑩 ‖‖𝒆‖ + (𝑐 ‖𝚯‖ + 𝑐 ) 𝚯 . (3-24) 

For the ease of readability define 𝑐 = 𝑐 ‖𝚯‖ + 𝑐 . In order to proof Theorem 3.1 we need to 

construct a positively invariant set with respect to 𝑉 𝒆, 𝚯  using (3-24). Consider the following 

compact set, which originates from completing the squares in (3-24)  

 
Ω = 𝒆, 𝚯

1

2
λ (𝑸) ‖𝒆‖ −

�̅�‖𝑷𝑩 ‖

𝜆 (𝑸)
+ 𝑐 𝚯 −

𝑐

2𝑐
≤

(�̅�‖𝑷𝑩 ‖)

2λ (𝑸)
+

𝑐

4𝑐
. (3-25) 

Then �̇� 𝒆, 𝚯 < 0 outside of Ω. The set Ω is not necessarily invariant with respect to 𝑉 𝒆, 𝜣 . 

Hence, consider the contour of Ω resulting from setting (3-24) equal to zero: 

 1

2
λ (𝑸) ‖𝒆‖ −

�̅�‖𝑷𝑩 ‖

λ (𝑸)
+ 𝑐 𝚯 −

𝑐

2𝑐
−

(�̅�‖𝑷𝑩 ‖)

2λ (𝑸)
−

𝑐

4𝑐
= 0. (3-26) 

The largest tracking error 𝑒  on the contour of Ω is found by setting 𝚯 =  and solving 

(3-26) to ‖𝐞‖ 

 

𝑒 =

�̅�‖𝑷𝑩 ‖ + (�̅�‖𝑷𝑩 ‖) +
λ (𝑸)𝑐

2𝑐

λ (𝑸)
. 

(3-27) 

The largest parameter error Θ  on the contour of Ω is found by setting ‖𝒆‖ =
‖𝑷𝑩 ‖

(𝑸)
 and 

solving (3-26) to 𝚯  

 

Θ =

𝑐 + 𝑐 +
2𝑐 (�̅�‖𝑷𝑩 ‖)

λ (𝑸)

2𝑐
. 

(3-28) 

Let  

 
𝛽 =

1

2
𝜆 (𝑷)𝑒 +

1

2
𝜆 (𝚪 )Θ  (3-29) 
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and define the compact set  

 Ω = 𝒆, 𝚯 𝑉 𝒆, 𝚯 ≤ 𝛽 . (3-30) 

Note that Ω ⊆ Ω  with �̇� 𝒆, 𝚯 < 0 outside of Ω . It follows that Ω  is positively invariant with 

respect to 𝑉 𝒆, 𝚯 . Following LaSalle’s invariance principle in Theorem A.1 the zero solution 

𝒆, 𝚯 = 0 of the closed loop system (3-17) and (3-19) is uniformly ultimately bounded. Since 

𝑉 𝒆, 𝚯  is radially unbounded, this result is global.  

□ 

Figure 3-3 shows a geometrical interpretation of the stability proof in Theorem 3.1. The set Ω 

is not necessarily invariant with respect to V 𝒆, 𝚯  as the trajectory of 𝒆(t), 𝚯(t)  can leave Ω 

even though V̇ 𝒆, 𝚯 < 0. Hence, a set Ω  needs to be found, whose level set corresponds to 

a Lyapunov level V 𝒆, 𝚯 = β and which is a superset of Ω in order to ensure V̇ 𝒆, 𝚯 < 0 

outside of Ω . Therefore, the maximum tracking and parameter error 𝑒 , Θ  on the contour 

of Ω are sought. Since Ω is convex, the Lyapunov function value V 𝑒 , Θ = β defines the 

level set for Ω  such that Ω ⊆ Ω  holds. As a result Ω   is positive invariant, which ensures 

that every solution that starts in Ω  stays in this set ∀𝑡 ≥ 𝑡 . As a result it is possible to 

calculate the maximum encountered tracking and parameter errors.  

 

 

Figure 3-3: Geometricl Interpretation of the stability proof in Theorem 3.1 
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Corollary 3.1 
 

If Theorem 3.1 holds and furthermore 𝒆(𝑡 ), 𝚯(𝑡 ) ∈ Ω , then the tracking and parameter 

error are bounded by ‖𝒆(t)‖ ≤ 𝑒  and 𝚯(t) ≤ Θ ∀t > t , where 𝑒 =
(𝑷)

 and 

Θ =
(𝚪 )

. 

Proof: 

Consider the level set Ω = 𝒆, 𝚯 V 𝒆, 𝚯 = 𝛽  and the definition of 𝛽 in (3-29). For 

𝒆(𝑡 ), 𝚯(𝑡 ) ∈ Ω , Theorem 3.1 ensures that  𝒆(𝑡), 𝚯(𝑡) ∈ Ω ∀𝑡 ≥ 𝑡 . Hence, 𝑒 =

max
𝒆∈

‖𝒆‖, which yields 

 
𝑒 =

2𝛽

𝜆 (𝑷)
. (3-31) 

Similarly, Θ = max
𝚯∈

𝚯 , which yields  

 
Θ =

2𝛽

𝜆 (𝚪 )
. (3-32) 

□ 

An a-priori analysis based on the presented Lyapunov approach is often difficult or even 
impossible. While the Lyapunov analysis guarantees boundedness of all system signals, 
these bounds might be physically unreasonable or cannot be computed at all. E.g. in order to 
derive the maximum tracking and parameter error, knowledge about the optimal parameters 
𝚯∗ is necessary. Even if an estimate of 𝚯∗ was available, the Lyapunov analysis projects 

multidimensional signals, i.e. 𝒆 and 𝚯, onto a scalar V 𝒆, 𝚯  by using worst case mappings. 

Hence, even if a bound on 𝒆 is computable, it might already exceed structural or operational 
limits. This is one reason for the lack of certifiability of adaptive controllers as discussed in 
section 3.4.  

The presented direct MRAC approach still has been applied to a huge variety of systems. 
Thereby, direct MRAC has shown promising results in practice. If the limits of the Lyapunov 
analysis can be overcome, it would help adaptive controllers on the road to certification and 
thus increase its applicability. 

A multitude of variations of the presented approach exist, which aim at improving certain 
aspects of the closed loop behavior. Section 3.3.3 summarizes the (in the view of the author) 
most important modifications. The following section introduces Predictor based MRAC as a 
representative of the family of indirect MRAC approaches.  
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3.3.2 Predictor based MRAC 

Predictor based MRAC (PMRAC) ([128]) aims at improving the transient performance 
characteristics of the classical direct MRAC approach of section 3.3.2. PMRAC introduces a 
state predictor to the closed loop. Instead of updating the adaptive parameters dependent on 
the tracking error between the system and the reference model only, the new update laws 
also depend on the prediction error between system and predictor states. This concept 
reduces transient oscillations and ensures a smoother response ([128]). Figure 3-4 shows 
the PMRAC control architecture with the state predictor. 

 

Figure 3-4: Control Architecture augmented by Predictor-Based Model Reference Adaptive Control 

 

Let 𝒙 ∈ ℝ  denote the states of the state predictor. The predictor dynamics are ([128]): 

 �̇� = 𝑨 (𝒙 − 𝒙 ) + 𝑨 𝒙 + 𝑩 𝒓. (3-33) 

The system matrix of the state predictor 𝑨 ∈ ℝ ×  is chosen to be Hurwitz. Define the 

prediction error 𝒆 ∈ ℝ  to be  

 𝒆 = 𝒙 − 𝒙 . (3-34) 

Consequently, the predictor error dynamics are 

 �̇� = �̇� − �̇� = 𝑨 (𝒙 − 𝒙 ) + 𝑨 𝒙 + 𝑩 𝒓 − 𝑨 𝒙 − 𝑩 𝑲 𝒆 − 𝑩 𝑲 , 𝒙

− 𝑩 𝑲 , 𝒓 − 𝑩 𝒖 − 𝚫(𝒙 , 𝒖) . 
(3-35) 
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For the ease of depiction, assume 𝑲 , = 𝑲 . As a result 𝑨 = 𝑨  and the predictor error 

dynamics of (3-35) become 

 �̇� = 𝑨 𝒆 + 𝑨 𝒙 −𝑨 𝒙 −𝑩 𝑲 𝒆 − 𝑩 𝑲 𝒙

𝑩 𝑲 𝒙

𝑨 𝒙

− 𝑩 𝒖 − 𝚫(𝒙 , 𝒖)  

= 𝑨 𝒆 − 𝑩 𝒖 − 𝚫(𝒙 , 𝒖) . 

(3-36) 

Since 𝑨  is Hurwitz, for any positive definite matrix 𝑸 ∈ ℝ ×  there exists a positive 

definite symmetric solution 𝑷 ∈ ℝ ×  for the Lyapunov equation ([84, p. 173]) 

 𝟎 = 𝑨 𝑷 + 𝑷 𝑨 + 𝑸  (3-37) 

In PMRAC the update of the adaptive weights is not only driven by the instantaneous 
tracking error 𝒆 but also by the prediction error 𝒆 : 

 �̇� = −𝚪𝝋(𝒙 , 𝒖)(𝒆 𝑷 − 𝒆 𝑷 )𝑩 − 𝚪𝑘(𝚯). (3-38) 

Consequently, equation (3-38) also represents the parameter error dynamics. The following 
theorem establishes the stability proof for PMRAC with the gradient decent based update 
laws of (3-19) (see [128]). 

Theorem 3.2 – Uniform Ultimate Boundedness of PMRAC (based on [128]) 
 
Consider the system dynamics in (3-2), the reference model dynamics in (3-7), the predictor 
dynamics in (3-33), the control law in (3-11), the tracking error dynamics (3-17), the 
predictor error dynamics (3-36), the parameter error dynamics (3-38) and Definition 3.2. 
Then the instantaneous parameter update law in (3-38) guarantees that the zero solution 

𝒆, 𝒆 , 𝚯 = 0 of the closed loop system (3-17), (3-36) and (3-38) is globally uniformly 
ultimately bounded. 

Proof: 

The proof largely follows the same arguments as Theorem 3.1. Consider the following 
Lyapunov function candidate 

 
𝑉 𝒆, 𝒆 , 𝚯 =

1

2
𝒆 𝑷𝒆 +

1

2
𝒆 𝑷 𝒆 +

1

2
Tr 𝚯 𝚪 𝚯 . (3-39) 

Note that (3-39) is positive definite and radially unbounded as 𝑉 𝒆, 𝒆 , 𝚯 = 0 iff 𝒆 = 𝟎, 𝒆 = 𝟎 

and 𝚯 = 0, and 𝑉 𝒆, 𝒆 , 𝚯 → ∞ for 𝒆 → ∞, 𝒆 → ∞ and 𝚯 → ∞. Taking the time derivative of 

(3-39) along the tracking and prediction error dynamics of (3-17) and (3-36) yields 

 
�̇� 𝒆, 𝒆 , 𝚯 =

1

2
𝒆 𝑷�̇� +

1

2
�̇� 𝑷𝒆 +

1

2
�̇� 𝑷 𝒆 +

1

2
𝒆 𝑷 �̇� Tr 𝚯 𝚪 �̇�  

=
1

2
𝒆 (𝑨 𝑷 + 𝑷𝑨 )

𝑸

𝒆 + 𝒆 𝑷𝑩 𝜼(𝒙 , 𝒖) +
1

2
𝒆 𝑨 𝑷 + 𝑷 𝑨

𝑸

𝒆  

+Tr 𝚯 𝚪 �̇� + 𝚯 𝛗(𝒙 , 𝒖)𝒆 𝑷𝑩 − 𝚯 𝛗(𝒙 , 𝒖)𝒆 𝑷𝑩 . 

(3-40) 
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Inserting the parameter update laws of (3-38) results in  

 
�̇� 𝒆, 𝒆 , 𝚯 = −

1

2
𝒆 𝑸𝒆 −

1

2
𝒆 𝑸 𝒆 + 𝒆 𝑷𝑩 𝜼(𝒙 , 𝒖) 

−Tr 𝑐 𝚯 𝚯 ± 𝑐 𝚯 𝚯 ± 𝑐 𝚯 . 

(3-41) 

Constructing an upper bound on �̇� 𝒆, 𝒆 , 𝚯  gives 

 
�̇� 𝒆, 𝒆 , 𝚯 ≤ −

1

2
λ (𝑸)‖𝒆‖ −

1

2
λ 𝑸 ‖𝒆 ‖ − 𝑐 𝚯 + �̅�‖𝑷𝑩 ‖‖𝒆‖ 

+(𝑐 ‖𝚯‖ + 𝑐 ) 𝚯 . 

(3-42) 

For the ease of readability define 𝑐 = 𝑐 ‖𝚯‖ + 𝑐 . The proof follows by constructing a 

positively invariant set with respect to 𝑉 𝒆, 𝒆 , 𝚯  using (3-42). Consider the following 

compact set, which originates from completing the squares in (3-42)  

 Ω =

=

⎩
⎪
⎨

⎪
⎧ 𝒆, 𝒆 , 𝚯

1

2
λ (𝑸) ‖𝒆‖ −

�̅�‖𝑷𝑩 ‖

𝜆 (𝑸)
+ 𝑐 𝚯 −

𝑐

2𝑐
+

1

2
λ 𝑸 ‖𝒆 ‖

≤
(�̅�‖𝑷𝑩 ‖)

2λ (𝑸)
+

𝑐

4𝑐 ⎭
⎪
⎬

⎪
⎫

. 
(3-43) 

Then �̇� 𝒆, 𝒆 , 𝚯 < 0 outside of Ω. The set Ω is not necessarily invariant with respect to 

𝑉 𝒆, 𝒆 , 𝚯 . Hence, consider the contour of Ω resulting from setting (3-42) equal to zero: 

 1

2
λ (𝑸) ‖𝒆‖ −

�̅�‖𝑷𝑩 ‖

λ (𝑸)
+

1

2
λ 𝑸 ‖𝒆 ‖ + 𝑐 𝚯 −

𝑐

2𝑐
 

−
(�̅�‖𝑷𝑩 ‖)

2λ (𝑸)
−

𝑐

4𝑐
= 0. 

(3-44) 

The largest tracking error 𝑒  on the contour of Ω is found by setting 𝚯 = , ‖𝒆 ‖ = 0 and 

solving (3-44) to ‖𝐞‖ 

 

𝑒 =

�̅�‖𝑷𝑩 ‖ + (�̅�‖𝑷𝑩 ‖) +
λ (𝑸)𝑐

2𝑐

λ (𝑸)
. 

(3-45) 

The largest parameter error Θ  on the contour of Ω is found by setting ‖𝒆‖ =
‖𝑷𝑩 ‖

(𝑸)
, ‖𝒆 ‖ =

0 and solving (3-44) to 𝚯  

 

Θ =

𝑐 + 𝑐 +
2𝑐 (�̅�‖𝑷𝑩 ‖)

λ (𝑸)

2𝑐
. 

(3-46) 
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Finally the largest prediction error 𝑒 ,  on the contour of Ω is found by setting ‖𝒆‖ =
‖𝑷𝑩 ‖

(𝑸)
, 𝚯 =  and solving (3-44) to ‖𝒆 ‖ 

 
𝑒 , =

(�̅�‖𝑷𝑩 ‖)

λ (𝑸)λ 𝑸
+

𝑐

2𝑐 λ 𝑸
 (3-47) 

Let  

 
𝛽 =

1

2
𝜆 (𝑷)𝑒 +

1

2
𝜆 (𝑷 )𝑒 , +

1

2
𝜆 (𝚪 )Θ  (3-48) 

and define the compact set  

 Ω = 𝒆, 𝒆 , 𝚯 𝑉 𝒆, 𝒆 , 𝚯 ≤ 𝛽 . (3-49) 

Note that Ω ⊆ Ω  with �̇� 𝒆, 𝒆 , 𝚯 < 0 outside of Ω . It follows that Ω  is positively invariant 

with respect to 𝑉 𝒆, 𝒆 , 𝚯 . Following LaSalle’s invariance principle in Theorem A.1, the zero 

solution 𝒆, 𝒆 , 𝚯 = 0 of the closed loop system (3-17), (3-36) and (3-38) is uniformly 

ultimately bounded. Since 𝑉 𝒆, 𝒆 , 𝚯  is radially unbounded, this result is global. 

□ 

Similar to direct MRAC, the maximum tracking, prediction and parameter error can be 
calculated using the following corollary. 

 

Corollary 3.2 
 

If Theorem 3.2 holds and furthermore 𝒆(𝑡 ), 𝒆 (𝑡 ), 𝚯(𝑡 ) ∈ Ω , then the tracking, 

prediction and parameter errors are bounded by ‖𝒆(t)‖ ≤ 𝑒 , 𝒆 (𝑡) ≤ 𝑒 ,  and 

𝚯(t) ≤ Θ ∀t > t , where 𝑒 =
(𝑷)

, 𝑒 , =
𝑷

 and Θ =
(𝚪 )

. 

 

Proof: 

Consider the level set Ω = 𝒆, 𝒆 , 𝚯 V 𝒆, 𝒆 , 𝚯 = 𝛽  and the definition of 𝛽 in (3-48). For 

𝒆(𝑡 ), 𝒆 (𝑡 ), 𝚯(𝑡 ) ∈ Ω , Theorem 3.2 ensures that  𝒆(𝑡), 𝒆 (𝑡), 𝚯(𝑡) ∈ Ω  ∀𝑡 ≥ 𝑡 . 

Hence, 𝑒 = max
𝒆∈

‖𝒆‖, which yields 

 
𝑒 =

2𝛽

𝜆 (𝑷)
. (3-50) 
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Similarly, 𝑒 , = max
𝒆 ∈

‖𝒆 ‖, which yields 

 
𝑒 , =

2𝛽

𝜆 𝑷
 (3-51) 

And, Θ = max
𝚯∈

𝚯 , which yields  

 
Θ =

2𝛽

𝜆 (𝚪 )
. (3-52) 

□ 

Similar to the direct MRAC case of section 3.3.1, the derived bounds on the tracking, 
prediction and parameter error might not be computable or might lack physical significance. 
Still PMRAC has shown to yield promising results in application. Hence, overcoming the 
limited expressiveness of the Lyapunov analysis would benefit its applicability. 

The following section deals with selected update law modifications, extensions as well as 
alternative approaches to the presented MRAC cases.  
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3.3.3 Modifications, Extensions and Alternatives 

Numerous variations to the MRAC approaches of section 3.3.1 and 3.3.2 exist. They can 
loosely be classified into update law modifications, reference model modifications and 
alternative approaches. The following sections provide a concise overview of the most 
important modifications and approaches as seen by the author. 

3.3.3.1 Update Law Modifications 

Update law modifications change the gradient descent based learning law of (3-19) in order 
to alter properties of the closed loop behavior. Table 3-2 lists the (in the view of the author) 
most important update law modifications. 

In the absence of a modification term 𝑘(𝚯) in (3-19), a disturbance would cause the closed 
loop system to be unstable. In particular, the adaptive parameters start to diverge causing 
the tracking error to grow unbounded, which eventually leads to a system crash. This 
phenomenon is called parameter drift. In order to ensure boundedness of the adaptive 
parameters and therefore stability of the closed loop dynamics multiple robustness 
modifications were proposed.  

The dead zone modification ([102], [100]) stops the adaptation once the tracking error ‖𝒆‖ 
falls below a certain threshold ‖𝒆‖ ≤ ϵ. The magnitude of ϵ is therefore directly proportional 
to the remaining tracking error. Since ϵ is chosen based on a Lyapunov argument, the 
bounds are inherently conservative leading to an often undesirably large tracking error.  

In contrast, 𝜎-Modification [101], [102]) and 𝑒-Modification ([154]) add a damping term to the 
update law, which is dependent on the current parameter estimate 𝚯. These modifications 
ensure boundedness of the parameter and tracking error. However, the damping terms try to 
force the weights back to a reference 𝚯 , often chosen to be zero. Hence, even in the 
absence of disturbances, the adaptive parameters do not converge to their optimal values. 
Furthermore, these terms act as forgetting factors in local approximators such as Radial 
Basis Function Neural Networks ([183]), i.e. previously learned local estimates are forgotten. 

The optimal modification ([159]) follows a slightly different strategy compared to the former 
approaches. It adds a damping term to the update law, which is proportional to the amount of 
persistency of excitation (see Definition A.1 in Appendix A.3) in the basis vector. As a result, 
the optimal modification allows for fast adaptation, while keeping undesired oscillations at a 
minimum. However, only boundedness of the product of weights and basis vector can be 
established. The parameters themselves are only bounded if the vector of basis functions is 
persistently excited. 

Q-Modification ([214], [212], [213], [224]) employs a moving window of the integrated system 
uncertainty in order to identify the optimal parameters, while simultaneously suppressing the 
uncertainty. The approach is shown to ensure closed loop stability. 

The projection algorithm ([74]) exerts yet a different concept. Instead of adding damping to 
the update law, it redirects the parameter update vector such that the adaptive weights do 
not leave an a-priori chosen convex set. This is achieved by scaling the component of the 
weight update law which is orthogonal to the set boundary if the expected weight trajectory 
threatens to leave it. If in addition the optimal weights are within the preselected convex set, 
the parameters are bounded and closed loop stability can be established. Even though the 
former condition requires some knowledge about the optimal parameters, the author in [17] 
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argues that for real world applications a valid convex set can be derived from expected 
uncertainties.  

Robustness modifications primarily aim at bounding the adaptive parameters and thus 
establishing stability of the closed loop system. Yet other alterations pursue the goal of 
improving the closed loop properties of an already stabilized system.  

The goal of Adaptive Loop Recovery [27] is to recover the loop transfer properties of a 
reference model. In particular, the reference model stability margins, i.e. gain and time delay 
margin, should be preserved to the extent possible. This is achieved by adding a damping 
term to the update law, which is proportional to the derivative of the basis functions with 
respect to their dependent variables. Adaptive loop recovery ensures closed-loop stability if 
the uncertainty is linearly parametrized. In the presence of disturbances or approximation 
errors the authors in [27] suggest the additional use of robustness modifications such as 𝜎-
Modification, or 𝑒-Modification. 

The K-Modification ([122], [121]) aims at obtaining smooth transient performance of the 
weight error dynamics. The underlying idea is to add a stiffness term to the parameter update 
law. Therefore, the adaptive parameters are integrated over a moving time window. In fact, 
combining K-Modification with an additional damping term, such as 𝜎-Modification, or 𝑒-
Modification, the gradient based update laws form a second order system. The damping and 
stiffness coefficients are dependent on the modification terms and adjustable by the 
designer. A desired behavior of the transient parameter error dynamics can therefore be 
prescribed.  

The primary goal of most MRAC applications is to achieve asymptotic tracking of the 
reference model. In this, the behavior of the adaptive weights is of minor interest as long as 
they are bounded. However, parameter convergence exhibits some benefits over the pure 
tracking problem formulation. While partial asymptotic stability ensures convergence of the 
tracking error to the origin, it remains short on guarantees for the transient performance. 
Hence, the tracking error might rise to critical values and lead to a system failure. In contrast, 
exponential parameter convergence leads to exponential error convergence with guaranteed 
exponentially bounded transient performance ([185], [35]). Furthermore, if the adaptive 
parameters do converge to their true values the uncertainty is uniformly approximated. The 
resulting error dynamics are linear. If in addition the error controller is chosen such that 𝑲 =

𝑲 , , the plant recovers the phase and gain margins of the reference model. This facilitates 

the evaluation of the performance of the controller using well understood linear stability 
metrics ([3]).  

To accomplish parameter convergence, the vector of basis functions needs to be persistently 
exciting ([204], [23], [155]). For a linear basis Boyd and Sastry have shown that the condition 
on persistency of excitation can be related to a condition on the spectral properties of the 
exogenous reference command ([23]). In particular for aircraft applications, this leads to a 
waste of fuel, puts additional stress on the system and might be operationally undesirable. 
Furthermore, the basis functions are often highly nonlinear, thus the approach lacks a 
verifiable condition for compliance.  

To counter the disadvantage of persistency of excitation, Chowdhary et al. developed 
concurrent learning ([42], [41], [35]). The underlying idea is to update the adaptive 
parameters using instantaneous data as well as specifically stored data concurrently. If the 
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data points were stored at a time when the vector of basis functions was excited, this 
information can be used in future updates to achieve parameter convergence. Chowdhary et 
al. introduced a verifiable condition on the linear independence of the stored data and 
showed exponential tracking and parameter convergence in the absence of the 
approximation error 𝜼(𝒙 , 𝒖). If 𝜼(𝒙 , 𝒖) ≠ 0, concurrent learning still ensures exponential 
convergence of the parameters to a compact domain around their optimal values.  

3.3.3.2 Reference Model Modifications and Extensions 
 

Apart from alterations to the parameter update laws, also modifications for the reference 
model exist. They leverage online available information in order to alter the dynamics of the 
reference model.  

Special kinds of uncertainties are neglected actuator dynamics. In this case, the reference 
model often demands a trajectory which is unachievable by the plant. In particular, if the 
actuator states saturate, the tracking error is not reduced by further parameter updates. 
Since the weight update laws are driven by the tracking error, the adaptive parameters grow 
unbounded. In order to counter this effect and allow adaptation in the presence of actuator 
saturation, Johnson developed Pseudo Control Hedging (see e.g. [111], [112], [113], [92]). 
The underlying idea is to slow down the reference model by a measure of the expected plant 
reaction deficit. Therefore, it requires knowledge about the actuator states, which are either 
measurable or can be estimated by employing models of the actuators ([92]). While Pseudo 
Control Hedging has demonstrated good performance in application ([110], [114]), it still 
abides a universal stability proof. The reason for this is that the reference model is not 
necessarily stable given the state feedback. However, Bierling showed stability for the 
special case of known control effectiveness by connecting Pseudo Control Hedging to ℒ  
adaptive control ([19]). Furthermore, this modification changes the response characteristics 
of the reference model drastically. Hence, even if the plant tracks the reference model 
perfectly, the trajectory does not necessarily abide a-priori formulated requirements. 

Closed Loop Reference Models ([73], [72], [225]) try to shape the transient performance of 
the tracking error dynamics. Therefore, feed the tracking error back into the reference model. 
The underlying idea is to pull the reference trajectory closer to the plant. This reduces the 
tracking error and in turn yields a smoother adaptation. In fact, Gibson derived bounds on the 
transient performance ([73]). However, similar to Pseudo Control Hedging, the response 
characteristics of the reference model change drastically. Thus a-priori formulated 
requirements may be violated. 

The Reference Governor [76], [75], [12], [56] aims at shaping the reference trajectory in order 
to achieve desired performance characteristics, while simultaneously abiding input and state 
constraints. The basic idea is to use a model based approach, such as Model Predictive 
Control, in order to solve an optimal control problem. The mentioned approaches often 
assume linear plant dynamics or the existence of a stabilizing controller. The authors in 
([145], [149]) extended the approach and applied it to reference models in MRAC 
architectures. The hypothesis is that if the closed loop system tracks the reference model 
exactly, and the reference model is controlled optimally, the plant recovers the same 
properties. The main drawback of MPC is its requirement on high computational power. 
However, note that the reference model dynamics are known a-priori and do not change 
during application. As a result, solving a multiparametric quadratic programming problem 
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([151], [14], [208], [80]) for the optimal control of the reference model yields an explicit 
solution. The online effort reduces to a function evaluation, which enables the use of the 
reference governor on systems with fast dynamics and low computational resources. 

 

Name Update Law Modification 

Dead Zone 
Modification [102], 

[100] 

Stop Adaptation if the tracking error ‖𝒆‖ is below a certain 
threshold ‖𝒆‖ ≤ ϵ. 

𝑘(𝒆, 𝚯) = −𝝋(𝒙 , 𝒖)𝒆 𝑷𝑩 if ‖𝒆‖ ≤ ϵ
𝟎 otherwise

 

σ-Modification 
[101], [102] 

Add damping to the update law: 𝑘(𝚯) = 𝜎(𝚯 − 𝚯 ), 𝜎 > 0 

𝑒-Modification 
[154] 

Add damping to the update law, which is proportional to the 
tracking error: 𝑘(𝒆, 𝚯) = 𝜎‖𝒆‖(𝚯 − 𝚯 ), 𝜎 > 0 

Optimal 
Modification [159] 

Add damping proportional to 𝝋(𝒙 , 𝒖)𝝋 (𝒙 , 𝒖) to the update law: 

𝑘(𝒙 , 𝚯) = 𝜎𝝋(𝒙 , 𝒖)𝝋 (𝒙 , 𝒖)(𝚯 − 𝚯 )𝑩 𝑷𝑨 𝑩 , 𝜎 > 0 

𝑄-Modification 
[214], [212], [213], 

[224] 

Add a time history of the state and the control input to the update 
law: 

𝑘(𝚯) = 𝚯 𝒒(𝑡, 𝑡 − 𝑡 ) − 𝒄(𝑡, 𝑡 − 𝑡 ) 𝒒(𝑡, 𝑡 − 𝑡 ) 

𝒒(𝑡, 𝑡 − 𝑡 ) = 𝝋 𝒙 (𝑠), 𝒖(𝑠) 𝑑s , 𝑡 > 0 

 𝒄 = 𝑩 𝒆(𝑡) − 𝒆(𝑡 − 𝑡 ) − 𝑨 𝒆(𝑠) + 𝒖 (𝑠)𝑑𝑠  

Parameter 
Projection [74]  

Define a convex set in the parameter space. Use a projection 
algorithm on the parameter update law if it threatens to cause the 
adaptive weights to leave the convex set. 

Adaptive Loop 
Transfer Recovery 

[27]  

Let 𝒛 = (𝒙 , 𝒖). Add a damping term, which is proportional to 
𝝋 (𝒛)𝝋 (𝒛), to the update law 

𝑘(𝚯) = 𝜎𝝋 (𝒛)𝝋 (𝒛)𝚯, 

𝝋 (𝒛) =
𝑑𝝋(𝒛)

𝑑𝒛
, 𝜎 > 0 

𝐾-Modification 
[122], [121] 

Add stiffness to the update law: 

𝑘(𝚯) = 𝜎 𝚯(𝑠)𝑑𝑠 , 𝜎 > 0, 𝑡 > 0 

Concurrent 
Learning [42], [41], 

[35] 

Add an update based on stored data to the update law: 

𝑘(𝐱 , 𝚯) = 𝝋 (𝒙 , 𝒖) 𝝋 (𝒙 , 𝒖)𝚯 − 𝚫 (𝒙 , 𝒖)  

𝛗 (𝒙 , 𝒖) and 𝚫  denote recorded data points from past time 
instants 𝑡 . 

Table 3-2: Update Law Modifications; based on [223, p. 68] and [17] 
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3.3.3.3 Alternative Approaches 

The previously mentioned approaches share the MRAC structure as well as the fact that the 
adaptive weights are adjusted based on a gradient descent based update law. Alternative 
approaches which deviate from these two properties exist and found increasing interest in 
recent time. The following selection gives a brief overview of two further MRAC options. 

Classic static Radial Basis Function Neural Network approaches priorly distribute the 
regressor functions throughout a region of the state space. Once the state leaves the 
prescribed domain, network approximation is impossible and system failures can occur. 
Overcoming this problem not only requires knowledge about the expected range of each 
state, but also leads to a high number of regressor functions, consequently requiring high 
computational power. Chowdhary et al. introduced GP based MRAC ([38], [124], [37]) in 
order to abrogate the inflexibility of static neural networks. The underlying idea is to employ 
results from computer science in order to learn the uncertainty from online gathered data 
only and cancel its effects on the plant dynamics. Each such data point is associated with a 
kernel function, which in total aim at approximating the uncertainty. The difference to static 
networks is that kernel functions are placed on the fly, their number and location in the state 
space are not fixed a-priori. However, just storing each point quickly leads to congestion of 
the storage capabilities. Consequently, Chowdhary et al. introduce a budget on the number 
of data points and elaborate on suitable methods of how to choose those points ([38]). GP 
MRAC repeals the need for update laws. Rather, the adaptive signal is directly computed 
from the predictive posterior distribution, which in turn is a result of Bayesian inference using 
the online gathered data. Furthermore, GP MRAC supplies a belief on the quality of the 
uncertainty approximation in the form of a variance.  

In general, MRAC applications require high learning rates in order to achieve fast adaptation 
performance. However, this induces oscillations in the input channel, which can lead to 
undesirable system behavior or instability ([29]). ℒ  adaptive control ([97], [221]) was 
developed as a derivative of indirect MRAC in order to abrogate the undesirable result of 
high adaptation gains. It aims at decoupling robustness from the adaptation, i.e. control from 
estimation ([17, p. 163]). The underlying idea is to add a low pass filter to the input channel 
and therefore limit its bandwidth. As a result, high frequencies from high adaptation gains in 
the estimation loop are prevented from entering the plant. ℒ  adaptive control has been 
successfully applied to a huge variety of systems and problems including tailless fixed-wing 
aircraft ([166]), space launch vehicles ([119]) or degraded multirotor systems ([148]). 
However, note that ℒ  adaptive control focusses on the cancellation of the uncertainty 
pointwise in time, i.e. information is not conserved. If a certain region in the state space is 
revisited, the uncertainty needs to be relearned. 

 



3 System Description and Control Design 
 

Page 56 / 200   

3.4 The Certification Challenge of Model Reference Adaptive Controllers 

Despite the promising advantages of adaptive controllers to compensate uncertainties and 
react to unforeseen situations, they are not used in commercial aviation. This is mainly due 
to a missing decision on the correct means to routinely verify, validate and thus certify 
adaptive flight control algorithms (see i.a. [104], [105], [169], [170], [205], [220], [49], [187]).  

Airborne systems are extensively regulated by governments. For the commercial use of 
aerospace systems, certification is required. The legal framework is provided by aviation 
authorities. Within the European Union, the European Aviation Safety Agency (EASA) is in 
charge of certification. Its counterpart in the United States is the Federal Aviation 
Adminsitration (FAA).  

EASA provides the legal framework in order to certify aircraft. These are summarized in the 
so called certification specifications (CS). For normal, utility, aerobatic and commuter 
airplanes of a specific size CS23 ([47]) applies. The latter consists of two parts. The first 
book covers the airworthiness code, which specifies requirements the aircraft has to fulfill. 
The second book contains Acceptable Means of Compliance (AMC), which act as ways to 
show compliance with the stated requirements. 

Paragraph CS23.1309 ([47]) states requirements for the certification of flight control 
algorithms. However, the second book in [47] does not state any AMC to comply with §1309. 
During the course of this thesis, the 5th Amendment of the CS23 was published ([47b]). The 
latter lifts numerous requirements and allows for new design solutions, which were previously 
not applicable. With this, safety is formulated in a more risk-based manner ([135b]). 
However, the freedom of design decisions also raises the question of how the development 
process shall be designed in the end. 

For the former version [47], the EASA CM SWCEH-002 ([60]) states that the standard DO-
178B/C ([176]) has been approved as an acceptable means of compliance. In general, the 
DO-178B/C provides “[…] guidance for the production of software for airborne systems and 
equipment that performs its intended function with a level of confidence in safety that 
complies with airworthiness requirements” [176, p. 1]. In order to achieve this, the DO-
178B/C requires the precise, a-priori specification of the software by using a set of 
requirements ([87]). Suitable requirements can be found in e.g. the AS94900 ([181]), the 
ARP94910 ([180]) or in MIL-HDBK-1797 ([141]).  

Verification and Validation (V&V) are key processes in the development of control algorithms 
and are intended to check for the correctness of the software. With regard to the DO-178B/C 
Jacklin states that “[…] verification is the process of testing the software at each stage of its 
development to make sure it has been programmed as specified in the software 
requirements document” [104, p. 2]. Furthermore, “[v]alidation comprises the testing effort to 
assure that the verified software is able to accomplish the purpose as stated in the software 
requirements document” [104, p. 2]. In the context of control algorithms, this includes 
guarantees about the performance and behavior of a controlled system. Thus, from an 
abstract point of view, the V&V process is intended to generate trust in a successful 
operation of the flight control software. 

 



 3 System Description and Control Design
 

  Page 57 / 200 

Linear control systems are designed with a fixed system configuration and a static 
environment in mind. Note, that this does not indicate the absence of disturbances. Rather, a 
model of the environment is selected, which is kept for the whole development process. The 
controller gains are selected to be constant and the complete system can be tested against 
suitable requirements. The latter are provided by i.a. the AS94900 and the ARP94910. 
Furthermore, robustness metrics, such as the gain and phase margin, help to determine the 
robustness of the closed loop system against changes within the specified environment. This 
analysis is performed a-priori to the controller deployment. Hence, guarantees and the 
expected behavior of the closed-loop system are known before the system is even used. 

In contrast, adaptive systems adjust their parameters online. As a result they are able to 
compensate modeling uncertainties and unforeseen configurational or environmental 
changes. However, several technical and formal drawbacks exist that prevent the direct 
adaptation of the V&V process for linear systems to adaptive controllers (see i.a. [105]).  

Guarantees for the convergence of the adaptive weights only exist for a small class of 
systems. They generally do not hold for systems subject to disturbance. Similarly, in the case 
that the uncertainty is to be approximated by an over-determined control structure, such as 
neural networks, the adaptive parameters do not converge either. As a result, the uncertainty 
is not cancelled uniformly and it can still affect the plant adversely. To account for this, a 
Lyapunov analysis is usually intended to demonstrate stability of the closed loop system (see 
e.g. [8], [155], [204]).  

Even though the Lyapunov based stability proofs usually ensure boundedness of all system 
signals, these bounds are often utterly conservative, physically unreasonable and might 
cause a system to crash due to the violation of structural or operational constraints. Heise 
considerably tightens the analytically computed bounds in [87], but states that the results are 
still too conservative to be used universally. Furthermore, most stability proofs for adaptive 
control developments only take a part of the system into account. In particular, subsystems, 
such as actuator dynamics, and effects from the environment are often neglected. Hence, 
the stability proof might not even hold in the presence to small changes in the system or 
when transported to an experimental system. 

A crucial point in the V&V process of linear flight controllers are analytically derived 
performance and robustness guarantees in the form of metrics, such as phase and gain 
margins. Unfortunately, such universal metrics do not exist for nonlinear controllers. 
Recently, the time-delay margin has been used for adaptive systems ([57], [158], [160]). It 
quantifies the time-delay the closed-loop system is able to sustain before becoming unstable. 
In this, it is similar to the phase margin in linear control theory. The analytic computation of 
the time-delay margin is only possible for simple systems. Apart from that, it can be 
estimated by performing numerical simulation. Hence, a concise a-priori analytical evaluation 
of the adaptive controller is not possible with the current state-of-the-art. The same argument 
is extendable to other metric types such as performance metrics. 

Apart from the technical difficulties, also formal barriers prevent a successful certification of 
adaptive flight control algorithms. The existing support documents, such as the AS94900 and 
the ARP94910, are designed with linear control theory in mind. For instance, several 
requirements are formulated in the frequency domain. Since a learning based controller as 
presented in section 3.3.1, is inherently nonlinear, a frequency domain analysis is not 
applicable. Furthermore, the spirit of the DO-178B/C demands testing all requirements 
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against all possible parameter combinations. Wilkinson ([220, p. 14]) and Dahm ([49, p. 13]) 
argue that an adaptive system can assume an infinite number of possible parameters. Even 
an active restriction of the adaptive weights to a preselected region (with e.g. parameter 
projection) does not solve this problem. In fact, it is not guaranteed that the worst case 
performance is obtained by using adaptive parameters on the boundary of the specified 
region. Consequently, the requirements would have to be tested against an infinite amount of 
parameter combinations. 

Overcoming these drawbacks and providing a concise V&V process for complex adaptive 
systems is seen as one of the top challenges for autonomous systems ([157]). A variety of 
authors proposed extensions and alterations to the current certification process in order to 
include adaptive control algorithms. Due to the changing nature of adaptive controllers, there 
seems to be an emerging consensus to move the verification from an a-priori analysis to a 
verification during the runtime of the system (see i.a. [105], [169], [170], [205], [220], [187], 
[177], [178]). An integral part of run time verification is seen to be the establishment of an 
online monitoring tool that surveils the adaptive control algorithm. In fact, the new framework 
set by the 5th Amendment of the CS23 ([47b]) enables such an approach. 

Even though the monitoring algorithm is envisioned to play an integral role for runtime 
verification, it is not intended to solve the certification problem of adaptive flight control 
algorithms alone. Rather, Schumann sees the monitor as an extension that still requires 
“intelligent validation” and a “static mathematical analysis” [187]. In that, the technique is not 
intended to find software failure and supersede a rigorous design and verification, but to 
evaluate the system. Amongst others, in [105] Jacklin lists additional gaps that need to be 
overcome in order to successfully certify adaptive flight control algorithms. 

Against this background, the remainder of this thesis deals with the development of an online 
monitoring tool, which is intended to assess the performance of the adaptive controller during 
flight and indicate imminent off-nominal and undesired behavior. 
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4 Run-Time Monitoring of Adaptive Control Algorithms 

An online monitor is seen as an integral part for future runtime verification of adaptive flight 
control algorithms by a variety of authors (see i.a. [105], [187]). Thereby, Taylor et al. state 
that a run-time monitor “[…] would need to be developed as part of the system, perhaps 
beginning as early as the requirement stage of the project” [205]. The question arises what a 
runtime monitor should be able to do and what information it should relay. Depending on the 
application, different points of view exist in the literature.  

For Jacklin the online monitoring tool shall “monitor adaptive controller performance after 
deployment” [105]. Similarly, Phillips and Blackburn state that run time verification methods 
“[…] defin[e] a model or meta-model of acceptable system states and behaviors” [169]. 
Taylor et al. state that runtime monitors “[…] can provide fault detection and can identify 
divergent behaviors that could lead to failures” [205]. Other authors are more specific about 
their goals. Within the IRAC project, Krishnakumar expects the monitoring algorithm to find 
the “[t]ime (in seconds) to predict loss of stability as flight parameters change […]” [125, p. 
27]. In [222] Yeramella lists the following questions the monitoring system has to answer: 
“Does online learning tend to diverge?”, “Is it possible to detect this behavior?”, “Does the 
learning converge to a stable state?”, “How long does it take for the learning to do so?”. 
Summarizing the mentioned statements leads to two common goals for the online monitor: 
First, detect diverging learning behavior of the adaptive controller. Secondly, predict 
imminent system failure before it occurs. 

Some statements above primarily focus on the learning behavior of the adaptive control 
algorithm. Naturally, the evolution of the plant states is tightly coupled with the evolution of 
the adaptive parameters. As a consequence, neglecting one aspect in the monitor can lead 
to significantly wrong conclusions. On the one side, focusing only on correct learning 
neglects the impact of the control signal on the plant. E.g. even correct learning can lead to 
states exceeding operational or structural limits in transients. On the other hand, if the 
evolution of the adaptive parameters is neglected or oversimplified, its impact on the plant 
dynamics is captured wrongly. One such example is parameter drift. While the modeling 
uncertainty might be represented well, the adaptive parameters drift apart. Once the flight 
conditions change, the adaptive parameters lead to an enlarged control input, which can 
cause the system to crash.  

The monitoring approach proposed in this thesis is guided by the structure of certification 
procedures. In that, undesired events are formulated with an acceptable probability of 
occurrence. These events are translated into requirements for the aircraft. The task of the 
control system is to control the state of the aircraft and ensure stability, robustness against 
disturbances as well as good tracking performance. Hence, from the control perspective, 
requirements on undesired events directly induce requirements on the system states. The 
goal of the proposed monitoring approach is therefore the certainty evaluation of near-future 
state requirement violations.  

The monitor is envisioned to achieve this by using a model of the plant and parameter 
dynamics in order to predict the evolution of the system and controller states. The controlled 
system exhibits three properties, which place essential restrictions on the design of the 
monitor. First, real world systems are subject to stochastic uncertainties originating from i.a. 
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noisy state measurements, distributed system parameters or external disturbances. 
Secondly, the closed loop dynamics are highly nonlinear. Even if the plant was linear, the 
adaptive component still adds a nonlinear feedback to the control signal. Lastly, the monitor 
shall be implemented on unmanned aircraft. The latter exhibit fast dynamics, while the online 
available computational resources are usually low. As a direct consequence, these three 
conditions impose requirements on the monitoring approach. In particular, the monitor shall 
take the stochastic nature of the system into account, be able to predict the state and 
parameter distribution even if the underlying system is nonlinear, and be deployable on 
standard UAS hardware.  

This chapter introduces a monitoring algorithm based on analytic parameter and state 
distribution forecast, which is envisioned to meet these requirements. The underlying idea is 
to model the initial state distribution with a GMM. The modelling uncertainties are 
represented by GPs. Propagating the uncertainty through the system reduces to a 
linearization of the nonlinear dynamics at each mixture component and evaluating the GPs at 
each mixture element, respectively. Since GMMs can assume the shape of arbitrary 
continuous distributions, they are envisioned to be suited for long-term propagation in 
nonlinear systems. The following sections detail the structure and design choices of the 
proposed monitoring technique. 

The outline of this chapter is as follows. Section 4.1 surveys existing monitoring algorithms 
for adaptive controllers as well as techniques for uncertainty propagation and prediction 
applied to dynamical systems. Section 4.2 details the structure of the proposed monitoring 
strategy. Section 4.3 shows how to use GMMs in order to propagate uncertain states through 
a nonlinear system in the absence of modelling uncertainties. Section 4.4 shows how to 
include GPs in the GMM prediction in order to represent modeling uncertainties. Section 4.5 
details the monitoring output as well as identifies errors occurring in the prediction and 
introduces a confidence measure for the forecast. Section 4.6 lists important implementation 
aspects. This chapter is concluded in section 4.7 with a discussion of the proposed 
monitoring algorithm including a distinction from existing approaches.  

The fundamentals of probability theory are assumed to be known. However, the most 
important aspects are summarized in Appendices B and C. Preliminary results of this chapter 
appeared in [146].  
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4.1 Existing Monitoring and Prediction Strategies  

This section first provides an overview of existing monitoring strategies for adaptive control 
algorithms. The second part surveys prediction algorithms as well as techniques for 
uncertainty propagation.  

4.1.1 Existing Monitoring Strategies for Adaptive Controllers 

There exists a vast literature of performance monitoring and assessment techniques for 
control applications. This is particularly true for the field of industrial applications and process 
dynamics. Since these approaches primarily focus on linear control design, they are omitted 
here. For the interested reader, three survey papers shall find attention here. Harris et al. 
gives an early overview [86] of performance monitoring for univariate and multivariate control 
systems. Qin assesses various control performance monitors in [109], including time-delayed 
systems. Jelali gives an overview of control performance assessment technologies in 
industrial applications, including statistical approaches ([107]). The following part focusses on 
existing monitoring strategies for adaptive controllers. 

4.1.1.1 Evaluation of the Lyapunov Function 
 

Taylor et al. sees potential in using the Lyapunov stability analysis during runtime ([205]). A 
straight forward approach is to employ the error bounds derived from the Lyapunov analysis 
in (3-31) and (3-32) or (3-50)-(3-52), respectively. However, as mentioned before, the 
Lyapunov analysis is utterly conservative. Furthermore, various properties aggravate the 
inference of conclusions on the state and parameter limits from the Lyapunov analysis alone. 
One such example is that the optimal adaptive parameters are usually unknown and can only 
be guessed.  

4.1.1.2 Oscillation detection 
 

In [44] Chowdhary et al. developed a technique, which approximates the frequency content 
of measured data by a finite Fourier basis. The underlying goal is to detect undesired 
oscillations and bursting caused by an adaptive control algorithm. In particular, Chowdhary et 
al. use a moving window of data and analyse it using the discrete counterpart of the Fourier 
transform. If the Fourier coefficients exceed a predefined threshold, a warning is issued. 
While this method was shown to successfully detect oscillations once they occur, predictive 
behavior of the system is not possible. 

4.1.1.3 Monitors developed for neural networks 
 

Various approaches to the monitoring of controllers with a neural network as an adaptive 
element exist. Leonard et al. ([129]) developed Validity Index Networks in order to determine, 
whether there is adequate training data in RBF neural networks. In essence, Validity Index 
Networks, observe the data density for each node in RBF neural networks. The local density 
allows for the derivation of confidence limits on the neural network output given the current 
input. 
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The Validity Index Networks approach is extended by Liu et al. in [133], [134], [132], [188] to 
Dynamic Cell Structures. Thereby, the input space to the network is fractured into Voronoi 
regions. Each region is associated with a neuron. Every data input is associated with the 
neuron closest and second-closest to it. The approach of Liu et al. then computes the local 
variance of the network residual for each region using only the locally classified data and 
neighbouring regions. From the local variance, Liu et al derive an estimate of the standard 
error of the network output.  

In [222], [68], Yerramalla et al. use Lyapunov-like functions in order to detect deterioration 
from a previously classified stable learning behaviour. In particular, Yerramalla introduces 
four tests that evaluate the deviation between the specified behaviour and the current neural 
network performance for networks based on dynamic cell structures. 

In [189], Schumann and Liu highlight the similarity between neural network and the Kalman 
Filter and use an Extended Kalman Filter (EKF) in order to update the adaptive weights. The 
covariance of the EKF is used as a measure of confidence in the learning.  

In [189], [188] Schumann and Liu also suggest the use of a parameter sensitivity analysis on 
the adaptive weights. The approach can be extended by treating the network inputs as rvs. A 
decreasing sensitivity indicates convergence of the neural network parameters.  

In [186], [186], [82], [188] the authors learn the input-output map of a RBF neural network 
using Bayesian regression for a moving window of data. If the true output of the adaptive 
controller significantly differs from the learned model, a warning is issued. The authors in 
[202] extend this method to include parametrized adaptive elements in general. In [150], this 
technique has been shown to detect diverging state trajectories of an adaptively controlled 
quadcopter. However, conclusions about when the state trajectories exceed a critical limit 
are not possible.  

Rule extraction techniques follow the idea of pre-evaluating a neural network that has been 
trained a-priori ([50], [6], [5]). Based on the input data a set of mathematical rules describing 
the pre-trained neural network is extracted. The underlying idea is to use the derived rules 
online, in order to check their adherence by the evolving neural network given new data.  

The mentioned approaches have shown to yield good performance if the adaptive element is 
a neural network. However, most of the approaches are restricted to neural networks only. 
Furthermore, while they detect undesired behaviour in the learning capabilities of the 
adaptive element, they don’t relay information about an imminent requirement violation. That 
is, a neural network might work as intended, but lead to a system state exceeding a 
predefined limit. Hence, an integral monitoring approach is necessary, which considers both, 
the adaptive elements as well as the state evolution it drives. 

 

4.1.2 Approaches for Prediction and Uncertainty Propagation 

The goal of the proposed monitoring technique is to predict the future state and parameter 
evolution based on a model of the system. This section surveys approaches, which could be 
used in model based prediction tasks and analysis their abidance of the formulated 
requirements for the monitor design. As a reminder, the latter comprise the need of the 
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monitor to be applicable to systems, which are highly nonlinear, subject to stochastic 
uncertainty and exhibit limited computational power.  

Prediction plays a vital role in a wide span of applications. The class of Bayesian Filters 
([106], [83], [34]) usually is comprised of a prediction step followed by an update based on 
gathered measurement. This type of filter finds ample utilization in navigation modules, which 
estimate the states of dynamical systems (see i.a. [67]). Remaining useful life predictions are 
essential in manufacturing and the service industry, as they estimate the time till a product or 
tool degrades beyond usability ([162]). The underlying idea is to organize replacements 
proactively in order to not risk e.g. production standstill. An application of prediction 
encountered on a daily basis is weather forecasts ([136]). Lately, the strong interest in 
autonomous driving led to increased research in the estimation of future vehicle trajectories 
([120], [85]).  

Techniques for model based prediction can be loosely classified into deterministic and 
stochastic approaches. The former assume either an upper bound on the uncertainty, a 
deterministic uncertainty or no uncertainty at all. One such example is Model Predictive 
Control (MPC; see e.g. [13], [216], [117]). Based on the forecasted system dynamics, a 
control law is extracted, which abides desired tracking and constraint properties. MPC has 
been used for a variety of approaches, such as process dynamics, and UAV control ([149], 
[145]). On the other hand, stochastic approaches consider the stochastic nature of the 
uncertainty in the forecast. As a result, the prediction outcome itself is a rv. This approach 
allows the inclusion of the certainty of events into the forecast without the need of prior 
bounding of the uncertainty. Within the prediction scenario, uncertainty propagation is 
concerned with the question of how the distribution of the system states changes due to the 
dynamics and other effects. Note that this thesis uses the term stochastic prediction 
synonymously with the term uncertainty propagation.  

The adaptively controlled system is subject to stochastic uncertainties. By imposing an upper 
bound on the uncertainty, deterministic approaches can still be applied. However, this would 
introduce a high level of conservatism into the forecast, which can lead to continuous 
predicted requirement violation, even though the system works as intended. Hence, this 
thesis focusses on techniques for stochastic prediction.  

This thesis loosely classifies the family of uncertainty propagation techniques into two 
categories: Approaches that require sampling and analytic techniques. The following 
sections give a brief overview of both classes. This chapter uses the term ‘prior’ to indicate 
the pdf, which is propagated through the system. Consequently, the term ‘posterior’ indicates 
the result of the propagation. Note, that this is not contrary to the formulation of prior and 
posterior pdfs in other chapters, but mentioned for clarity. 

 

4.1.2.1 Sampling based uncertainty propagation 
 

Sampling based approaches, or Monte Carlo methods (see e.g. [77], [174], [89]), comprise a 
family of algorithms, which rely on sampling in order to generate a belief on the input-output 
relation of a system. In particular, samples are drawn from an initial probability distribution. In 
a second step, a deterministic operation, such as function propagation, is performed on the 
samples. The results are statistically analysed. The underlying idea is that if a sufficient 
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number of samples are generated from the prior pdf, the propagation result forms a new pdf, 
which expresses the effect of the system on the input distribution. This way, inherently 
nonlinear systems and non-Gaussian probability distributions can be evaluated.  

Monte Carlo methods span a wide variety of applications including the capability analysis of 
aircraft ([135]), medical research [175] and financial engineering ([24]). Several modifications 
of the classical Monte Carlo idea exist. Most famously, sequential Monte Carlo shall be 
mentioned here as it forms the basis for the famous particle filter. Amongst others, the latter 
has been applied for online fault diagnosis and failure prognosis ([163]). 

Even though Monte Carlo methods are applicable to nonlinear and non-Gaussian systems, 
they exhibit two major disadvantages. First, it is usually not known a-priori how many 
samples are required in order to approximate the target distribution. Secondly, they are 
computationally expensive as a huge number of samples usually need to be drawn in the first 
place in order to represent the probability distribution well. Thus they do not abide the third 
requirement on the online monitor, which assumes low computational power on the 
monitored system. As a consequence, they are not further considered in this thesis.  

 

4.1.2.2 Analytic uncertainty propagation 
 

Analytic uncertainty propagation summarizes the family of techniques that calculate the 
posterior pdf or its moments in an input-output system directly without relying on sample 
based inference. In this, the term ‘analytic’ refers to the intent of obtaining a closed-form 
solution for the posterior distribution (see e.g. [53]). The foundation of the uncertainty 
propagation follows a Bayesian formulation ([218]). This means, the relation between the 
predicted posterior and the prior pdf is modelled using Bayes’ Theorem. The applicability of 
these techniques strongly depends on the properties of the system as well as the prior 
distribution.  

One of the most famous approaches, which rely on this concept is the Kalman Filter ([115], 
[144], [106]; Appendix E.1). The Kalman Filter consists of two parts, a prediction step and a 
correction step. The prediction step uses a model of the system in order to predict the state 
distribution after one time step. The correction step updates the prediction by a new 
measurement. The Kalman Filter has been applied to a huge variety of systems, including 
object tracking ([45]), navigation ([143]) or finance ([217]).     

The Kalman Filter relies on a normally distributed prior pdf and linear system dynamics. In 
the prediction step, the prior pdf is propagated through the linear system, resulting in a 
normally distributed posterior. A logical thought arising from the two-step approach is to omit 
the correction step and recursively apply the prediction step, in order to arrive at a model 
based state prediction. While this applies in principle, real-world systems are seldom linear or 
affected by normally distributed uncertainties. In particular, the negligence of the system 
nonlinearity quickly leads to huge prediction errors as the latter are propagated through the 
system. Several extensions exist, which try to overcome these disadvantages. 

The prediction step of the EKF (see e.g. [106]) represents one of the most famous 
advancements of the Kalman Filter. The underlying idea is to linearize the nonlinear system 
around the mean of the prior pdf. The resulting system is linear and used in order to 
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propagate the state pdf. As a result, the posterior pdf is also normally distributed. The 
approach has shown good performance in various applications. However, some 
disadvantages arise. First, the linearized surrogate model has to be valid over most of the 
pdf of the prior. If this is not guaranteed, the linearized model needs to be averaged over all 
surrogate models governed by the prior distribution. Secondly, the EKF still assumes the 
prior to be normally distributed. This assumption usually does not hold for long-term 
predictions (see Example 4-2 in section 4.2).  

To overcome the disadvantages of the EKF, the GMM filter ([199]) approximates the prior pdf 
with a GMM. A GMM is able to represent non-normal distributions allowing to deal with 
nonlinear state evolutions. The underlying idea is to linearize the nonlinear system dynamics 
at the mean of each mixture component. Each mixture is then propagated through its 
respective surrogate model ([206]). The posterior is again a GMM. The hypothesis is that the 
support of the mixture components is small enough in order to ensure validity of the single 
linearized models. Since GMMs are applicable to nonlinear systems and are able to deal with 
non-normal state distributions, they will play a key role in the proposed monitoring algorithm. 

Various other alternatives to the basic Kalman Filter algorithm and its prediction step exist. 
Most notably, this includes the Sigma Point Kalman Filter [211] or the Ensemble Kalman 
Filter ([116]). However, these techniques require sampling at different points of the algorithm 
and are hence neglected in this thesis.  

The propagation approaches mentioned above implicitly require the system dynamics to be 
known. However, this might not be the case. Recently, GP models for uncertainty modelling 
attracted increased attention ([215], [54], [53], [59]). Thereby, the system dynamics are 
represented by a GP, which is either available in form of a prior model or inferred from online 
gathered data. Propagating a normally distributed state distribution through a GP becomes 
analytically intractable ([53], [71]).  

Candela showed in [171] how to analytically and exactly calculate the first two moments of 
the posterior if the prior pdf is Gaussian and the GP model is represented by squared 
exponential kernels. This technique has been applied for prediction ([85]) and filtering 
problems ([53]). 

A combination of GPs and GMMs emerges as a promising candidate for the basis of the 
proposed monitoring approach as it fulfils the three main requirements. First, GPs are able to 
take the stochastic nature of the system dynamics into account. Secondly, GMMs can be 
applied to propagate the system state distribution through nonlinear dynamics. Lastly, the 
reliance on analytic uncertainty propagation promises to meet the requirement on low 
computational effort.  

 

4.1.2.3 Additional uncertainty propagation techniques 
 

The previous sections gave an overview of techniques for sampling based and analytic 
uncertainty propagation. Additionally, techniques exist, which, dependent on their 
manifestation, rely on either analytic or sampling based techniques, but cannot be classified 
into one field. Two methods shall find attention here, the sensitivity analysis and polynomial 
chaos. 
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The sensitivity analysis “[…] investigates the connection between inputs and outputs of a 
(computational) model” [98, p. 50]. In particular, it analysis the impact a change in the input 
has on the output. Here, an input can also refer to a change of the system parameters. 
Within the context of sensitivity analysis, multiple methodologies exist. A famous approach is 
to calculate local sensitivity by analysing the partial derivatives of the system dynamics. A 
special kind is the stochastic sensitivity analysis ([62, 103]). Here, the input is assumed to 
follow a probability distribution. Sampling based approaches rely on sampling the input 
distributions (“one at a time”) and propagating them through the system. The results for e.g. 
the scatter plot approach ([33]) are sensitivities, which are encoded in scatterplots and can 
be further analysed. In contrast, variance-based methods ([182]) aim at decomposing the 
output variance into parts, which can be attributed to the individual inputs. The sensitivity 
analysis allows the generation of good understanding for a dynamical system. However, it 
suffers from two main disadvantages. First, the sensitivity analysis relies on static system 
dynamics. However, adaptive systems inherently change over time. Furthermore, inverse 
approaches, such as GP regression, allow updating the system model during its runtime. 
Secondly, to get a good understanding of nonlinear systems, the complete input space 
needs to be taken into account. However, adaptive controllers assume an infinite amount of 
possible parameter combinations. This renders testing against a large amount of such 
combinations during the system runtime infeasible.  

Polynomial chaos originates from the field of fluid dynamics and was intended to model 
turbulence ([219]). In particular, polynomial chaos aims at analysing the evolution of the state 
distribution in a dynamical system, which exhibits uncertain parameters ([153]). One 
technique to achieve this is Polynomial Chaos Expansion (PCE). PCE “[…] is a way of 
representing an arbitrary random variable of interest as a function of another random variable 
with a given distribution, and of representing that function as a polynomial expansion” ([161, 
p. 3]). The underlying basis of the function is chosen to consist of orthogonal weighted 
polynomials with respect to the distribution of the rv. As a consequence each polynomial is a 
rv. Since they are constructed to be orthogonal, the polynomials are uncorrelated.  

To propagate a PCE, the output of the system dynamics is constructed as a PCE with the 
same polynomials as the input rv. The prediction step amounts to finding the weights of the 
output PCE. In general, approaches to solve this problem are classified into intrusive and 
non-intrusive methods. The former apply e.g. the Galerkin projection to find the weights of 
the output PCE (see e.g. [164]). However, this requires knowledge about the system 
dynamics. In contrast, non-intrusive approaches rely on sampling and use i.a. Monte Carlo or 
Bayesian Regression to calculate the weights. 

While PCE has found increased attention in recent years, it exhibits some disadvantageous 
properties.. First, non-intrusive approaches to retrieve the output PCE weights rely on 
sampling, which is computationally expensive. As a result, intrusive approaches are 
favoured. However, O’Hagan argues that intrusive methods require a high complexity to 
model the system and are not easily adapted to changes ([161]). Furthermore, Lu et. al 
argue in [138] that PCE approaches for inverse problems can be extremely inaccurate. 
Hence, they tend to be inadequate for inferring a model from online gathered data. As a 
result, the mentioned properties render the current form of PCE inapplicable for the 
presented monitoring problem. 
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4.2 Proposed Monitoring Strategy 

This section introduces the proposed system monitor and elaborates on its key components. 
The underlying idea of the monitor is to predict the state and parameter evolution in order to 
assess future behaviour of the closed loop system. Figure 4-1 depicts the proposed 
monitoring strategy. Starting with a new measurement at each time step, the monitor predicts 
the state and weight trajectories for a certain future time frame, the prediction horizon. 
Measurements suffer from noise and thus the initial state for the prediction is often corrupted. 
However, the pdf of the installed sensors is often well known by the manufacturers. Hence, 
instead of a deterministic forecast, the proposed monitoring algorithm leverages stochastic 
propagation techniques in order to predict probabilistic state and weight trajectories. Within 
the prediction horizon, the monitor then assesses with which probability a-priori formulated 
state requirements are violated. If the probable requirement violation exceeds a certain limit, 
the monitor issues a warning such that the pilot or the control system can initiate counter 
measures.  

 

Figure 4-1: Proposed Monitoring Strategy 

In order to perform predictions, the monitor employs the closed loop plant dynamics (3-13), 
the reference model dynamics in (3-7) and the parameter update law in (3-19) (or (3-33) and 

(3-38) respectively). If the initial values 𝒙 (𝑡 ), 𝚯(𝑡 )  are exactly known and the system is 

not subject to disturbances or uncertainties, the state and parameter trajectory prediction is 
obtained by recursive evaluation of the mentioned models. However, the initial state 𝒙 (𝑡 ) is 
often not exactly known in a real system, due to measurement noise and only the output 
𝒚(𝑡 ) ∈ ℝ  with 

 𝒚(𝑡 ) = 𝒙 (𝑡 ) + 𝜺 (4-1) 

is available. Here, 𝒗 denotes the measurement noise, which is assumed to be iid. normal 
with zero mean such that 𝜺~𝑁(0, 𝜎 𝑰). Here, 𝜎  denotes the standard deviation of the 
measurement noise, which can for example be obtained from data sheets of the respective 
sensor. As a result, the initial value of the prediction is normally distributed with 
𝒚(𝑡 )~𝑁(𝒙 (𝑡 ), 𝜎 𝑰). Note that this formulation equals the definition of the output equation in 
the regression model (2-20). Note that stochastic uncertainties acting on the plant are not 
exclusive to the measurement noise. Further stochastic uncertainties originate i.a. from 
process noise or probabilistically modelled disturbances such as turbulence.  
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Let 𝒙  denote the vector combining all system and controller states. For the direct MRAC 
case this includes the plant states 𝒙  as well as the adaptive parameters 𝚯. In the PMRAC 
case, 𝒙  also contains the predictor states 𝒙 . Let 𝒙 ,  denote 𝒙 (𝑡 ) at the time instant 𝑡 . 

Predicting 𝒙 ,  comes down to evaluating the Chapman-Kolmogorov equation (see e.g. 

[4]): 

 
𝑝 𝒙 , = 𝑝 𝒙 , 𝒙 , 𝑝 𝒙 , 𝑑𝒙 , . (4-2) 

Note, that placing a probability distribution on 𝒙 ,  represents an abuse of notation, as e.g. 

the adaptive parameters as well as the predictor states are exactly known at the initial time. 
For 𝑘 > 0, the adaptive parameters as well as the predictor states are uncertain. The 

conditional pdf 𝑝 𝒙 , 𝒙 ,  corresponds to the evaluation of the system dynamics in (3-13). 

If the system (3-13) was linear with fixed adaptive gains, a recursive prediction could be 
achieved straight forward by propagating the state distribution through the linear dynamics. 
The basic idea is that the linear transformation of a normally distributed rv is still normal. This 

implies that both 𝑝 𝒙 , 𝒙 ,  and 𝑝 𝒙 ,  are normal pdfs. As a result also 𝑝 𝒙 ,  is 

normal. A normal distribution is exactly described by its first two moments. Hence, predicting 
state and parameter trajectories reduces to a recursive application of the summation and 
multiplication rules for normal distributions (see Appendix C.4). This paradigm is also the 
basis for the classical Kalman Filter algorithm.  

However, by using the nonlinear closed loop system (3-13) and the parameter update laws of 
(3-19) or (3-38) for predictions two major problems arise. First, the modelling uncertainty 𝚫 =

𝚯∗ 𝝋 is usually unknown. It can have a significant impact on the plant dynamics and even 
cause the system to crash. Usually, its impact depends on the quality of the plant model. 
E.g., for civil transport aircraft, significant effort is put into establishing a model, which 
represents the real plant well. Exemplary uncertainties for this kind of model are e.g. 
parameter uncertainties in the aerodynamic coefficients. In contrast, for small UAV 
significantly less effort is put into establishing a good model. Hence, the encountered 
uncertainties are expected to have a serious impact on the plant dynamics. Without 
knowledge about the uncertainty 𝚫, predictions of the state and parameter trajectories will be 
significantly flawed. 

Secondly, the system in (3-13) is highly nonlinear. Note, that even if the regressor function 𝝋 
was linear, the multiplication with the time varying adaptive weights renders the whole term 
nonlinear. A linear system is only achieved if the regressor represents a state independent 
constant, i.a. a bias. The propagation of a normally distributed rv through a nonlinear function 
does not necessarily result in a normally distributed posterior. Rather, the resulting rv can be 

extremely different to a rv with a normal distribution. This implies that 𝑝 𝒙 , 𝒙 ,  in (4-2), 

and therefore 𝑝 𝒙 , , are not necessarily normal pdfs. The resulting pdf 𝑝 𝒙 ,  could 

still be exactly described by its moments. However, usually it is unknown how many 
moments are necessary. Furthermore, their exact calculation may be difficult or even 
impossible. Example 4-1 illustrates the former arguments, by simulating a nonlinear plant 
with normally distributed initial system state. Furthermore, it approximates the propagated rv 

by a normally distributed one in order to highlight that treating 𝑝 𝒙 ,  as a normal despite 

better knowledge can result in extreme errors.  

 



 4 Run-Time Monitoring of Adaptive Control Algorithms
 

  Page 69 / 200 

Example 4-1: Trajectory distribution for a nonlinear simulation 

 
Consider the simplified roll dynamics of a fixed-wing aircraft:  

 �̇� = 𝐵 𝑢 − Δ(𝑝 ) . (4-3) 

Here, 𝑝  denotes the roll rate and 𝑢 represents the system input, which is given by the 
aileron deflection in reality. The input matrix 𝐵  represents the roll moment generated by an 
aileron deflection. Assume a generic uncertainty of the form 

 Δ(𝑝 ) = Θ∗𝑐𝑜𝑠(4𝑝 ). (4-4) 

The input 𝑝  to the uncertainty is assumed to be given in degrees per second. Consider a 
reference model of the form (3-7) as well as the control law in (3-11) and the direct MRAC 
update laws with 𝜎-modification of (3-19). Table H-1 in Appendix H.1 lists all relevant 
parameters in order to recreate the simulation. 

The simulation runs for a total of 12𝑠 with a time step of 0.001𝑠. The reference command is 

held constant at 𝑟 = 30
∘
, the initial condition of the reference model is 𝑝 (𝑡 ) = 0

∘
. The 

initial condition of the plant states follows a normal distribution with 

𝑝 (𝑡 )~𝑁 −20
°

, 5.73
°

. To generate a distribution over the state trajectories, the 

simulation is repeated 2000 times. 

Figure 4-2 shows the reference command, the state of the reference model as well as the 
evolution of the state trajectories over the simulation horizon. Thereby, the plot depicts the 
area in which 67%, 90% and 99% of all state trajectories reside in at each time instant. It can 
be seen that these area shrink and expand but generally approach the reference model state 
over the course of the simulation. This indicates that the single state trajectories track the 
reference model. Most importantly, the areas are seen to be asymmetrical. This indicates 
that the distribution over the trajectories significantly differs from a Gaussian distribution. 

Figure 4-3 shows the state trajectory distribution as a histogram at selected time instants, 
namely after 0.4𝑠, 2.0𝑠, 8.0𝑠 and at 12.0𝑠. Furthermore, the approximating normal distribution 
is depicted. The later originates from taking the mean and variance of the state trajectory 
distribution at each time instant. It indicates the result if the data is interpreted to be normally 
distributed. It can be seen that even after 0.4𝑠 the state distribution significantly differs from a 
normal distribution. Furthermore, the distribution is multimodal. During the simulation the 
distribution becomes unimodal again, but skewed as the largest mode changes from the right 
side to the left side. At the end of the simulation it becomes multimodal again. In each case, 
the true distribution is badly approximated by a single normal distribution. This indicates that 
significant errors could be made by neglecting the nonlinear nature of the system during the 
prediction. 
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Figure 4-2: Areas where 67%, 90% and 99% of all state trajectories reside in 

 

 
Figure 4-3: State trajectory distribution after 0.4s, 2.0s, 8.0s and 12.0s 
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In the absence of the residual error 𝚯 𝝋 the plant in (3-13) becomes linear and independent 
of the adaptive parameters. Then, the theory about the propagation of normally distributed rv 
through linear functions can be applied. Hence, a first attempt would suggest at focusing on 

the impact of the residual error 𝚯 𝝋 on the otherwise linear plant dynamics. However, the 

optimal parameters 𝚯∗ are unknown and both, the parameter error 𝚯 and the regressor 
vector 𝝋 are time varying. Instead, assessing the adaptive signal 𝒖 = 𝚯 𝝋 and the 

uncertainty 𝚫 = 𝚯∗ 𝝋 separately exhibits some advantages, which are discussed in the 
following. 

The initial value of the adaptive signal 𝒖  is exactly known, since it is generated in the flight 
control computer. Furthermore, the regressor function 𝝋, as well as the update law in (3-19) 
or (3-38), are known. The problem of predicting 𝒖  reduces to the evaluation of known 
nonlinear functions for a rv 𝒙  with known initial distribution. Several techniques to propagate 
a rv through a nonlinear function exist. One of the most famous representatives is the EKF 
([106]). The prediction step linearizes the nonlinear dynamics around the current mean of the 

state distribution. The result is used to propagate the state. As a consequence, 𝑝 𝒙 ,  will 

represent a normal pdf. Again, predicting state and parameter trajectories reduces to a 
recursive application of the summation and multiplication rules for normal distributions. While 
the EKF has shown good performance in various applications, some disadvantages arise 
from the linearization. First, the linearized model needs to be valid over most of the pdf of 𝒙 . 
Second, the EKF assumes a normally distributed state 𝒙 . While, this may be approximately 
true for one prediction step, it usually does not hold for a long-term forecast. Example 4-2 
gives insight into the former arguments by propagating a normally distributed rv through a 
sine function using the linearization approach.  

To overcome these disadvantages the proposed algorithm employs GMMs as introduced in 
section 2.1. The basic idea is to approximate the initial state distribution 𝑝(𝒙 ) (𝑝(𝒚) 
respectively) with a weighted sum of multiple normal distributions such that 

 
�̂�(𝒙 ) = 𝛼 𝑁(𝝁 , 𝚺 ). (4-5) 

Here, 𝝁 , 𝚺  denote the mean and covariance of the 𝑖-th mixture component. The a-priori 
known nonlinear functions 𝝋 are approximated by a first order Taylor series expansion at the 
means of each GMM component, instead of linearizing the nonlinear function at one point 
only. The underlying idea is that if the largest part of the support of the mixture components 
is in turn small enough, the validity of the single Taylor series approximations can be 
preserved. An important property is that the former is designer chosen by selecting the 
standard deviation of each component during the approximation of the initial state 
distribution. During the prediction, each component of the GMM is then propagated linearly. 

As a result, 𝑝 𝒙 ,  will be represented by a GMM again. Still, a GMM is able to also 

represent non-normal distributions allowing to deal with nonlinear state evolutions. This 
strategy has been successfully used i.a. in GMM filtering ([199]). 
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Figure 4-4: Difference between linear and sample based propagation 

Example 4-2: Propagation of a normally distributed random variable through a sine 
function by sampling and linear approximation 

Let 𝑋 be a random variable with a normal pdf such that 𝑋~𝑁(𝜇, 𝜎 ). The standard deviation 
is chosen to be 𝜎 = 0.4. Furthermore, let 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) be a nonlinear function, which the 
random variable is propagated through. In order to generate the results for the nonlinear 
propagation, 100000 samples are taken from 𝑁(𝜇, 𝜎 ) and individually propagated through 
𝑓(𝑥). In turn, for the linear approximation, the function  𝑓(𝑥) is approximated by a first order 
Taylor series at the mean 𝜇. Two cases with different means are considered. In the first case 

a mean of 𝜇 = 0 is chosen. In the second case the mean is shifted by . In order to compare 

the results, the Kullback-Leibler-divergence is used ([127], [126]; see Appendix B.9). 

Figure 4-4 shows the difference between a nonlinear and a linearly approximated 
propagation for the two cases. Thereby, the distributions on the 𝑥 −axis show the prior pdf of 
𝑥, whereas the distribution on the 𝑦 −axis depicts the predictive. Figure 4-4 (left) depicts the 
first case. A first order Taylor series approximates the sine function well within an interval of 
(−0.75 … 0.75). About 95% of the prior pdf lies within this area. Hence, it is not surprising that 
the resulting predictive distribution is well approximated by a normal. Note, that the 
approximation is not perfect. As a result, a residual error remains. The Kullback-Leibler 
divergence between the linearly and nonlinearly propagated posterior is 𝐷 = 1.42. 

Figure 4-4 (right) depicts the second case. A first order Taylor series approximates the sine 
function well within an interval of (0.60 … 1.00). However, this amounts to less than 50% of 
the prior pdf lying within this area. Hence, the resulting predictive distribution shows 
significant difference to a normal pdf. The Kullback-Leibler divergence for the second case is 
𝐷 =  26.58 and therefore around 18 times higher when compared to the first case. 

The presented example showed that the approximation of the predictive as a normal pdf is 
well warranted in the first case. However, a simple shift of the prior mean can render this 
strategy unreliable. A similar result is obtained if the standard deviation is varied instead of 
the mean. In the presented example, decreasing the former leads to a better estimation of 
the predictive as a normal pdf. This is due to an increasing area of the pdf lying within the 
part of the nonlinear function, which is well approximated by a first order Taylor series.  
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In order to incorporate the uncertainty 𝚫 in the prediction, the proposed monitoring approach 
models 𝚫 by a GP as introduced in section 2.2. In that, it considers two cases. First, 
remember that for a variety of applications a-priori information about 𝚫 is available in the form 
of a prior GP model. One such case is the 𝐶  over 𝛼 model of Example 2-2, which is inferred 
by extensive experimental analysis. The underlying idea is to evaluate such a prior model at 
each mixture component of the GMM. This is achieved by employing the calculation rules in 
section 2.3.1. One key aspect is that the technique in section 2.3.1 calculates the first two 
moments of the propagated distribution exactly. By neglecting higher order moments, the 
GMM retains its structure. Similar to before, the underlying idea is that if the mixture 
components are narrow enough, the approximation of the propagated component by a 
normal is justified. This strategy has been successfully used i.a. in k-step ahead prediction 
problems for GPs representing car dynamics ([85]). 

The second case assumes no prior knowledge about 𝚫. Remember that the optimal 
parameters 𝚯∗ are unknown but assumed to be time invariant and that the regressor vector 
𝝋 is known. Hence, if a sufficient number of measurements of 𝚫 were available, the 
application of regression techniques could lead to an estimate of 𝚫(𝒙 ). However, calculating 
only the most probable answer for 𝚫(𝒙 ) under the given data is not sufficient. Rather, also a 
confidence in the estimate is required. Otherwise, an inaccurate estimate of 𝚫(𝒙 ) can lead 
to predicted trajectories, which are not conservative enough and disregard an impeding 
requirement violation. One such technique is GP Regression (see i.a. [173], [21], [152]) as 
introduced in section 2.2.1. It constructs a stochastic model of 𝚫(𝒙 ) and uses measured 
data points in order to update it. The model can then be evaluated at points of interest using 
the calculation rules in section 2.3.2. The benefit of GP regression is that it does not only 
supply a most likely estimate, but also provides a level of confidence in the form of a 
predictive posterior variance.  

The proposed approach relies on a serious of approximations. The most important ones 
include the linearization of the plant dynamics and the approximation of the evaluated GP as 
a normal distribution. In contrast to filter algorithms, pure predictions cannot be corrected 
based on incoming measurements. As a result, errors occurring due to the mentioned 
approach, such as approximation inaccuracies, are propagated through the system. While 
the result of the algorithm might still indicate that no requirement violation is imminent, built-
up propagation errors can significantly falsify this assessment. In order to deal with this 
arising problem, a measure of confidence is necessary. This measure is intended to relay 
information about how certain the result of the algorithm is based on the encountered errors. 

Figure 4-5 depicts the detailed strategy of the proposed monitoring algorithm incorporating 
the preceding arguments. Based on a new measurement, if no prior model is available, the 
GP model 𝚫 is updated using Bayesian inference. Three steps are performed in each 
prediction step. First, the uncertainty model is evaluated for each mean of the current GMM 
components. Second, the plant dynamics including the adaptive controller are linearized at 
the same means. At last, the mixture components are propagated through the linearized as 
well as the GP model. The updated state distribution recursively serves as a new input. 
These steps are repeated within the prediction horizon. Afterwards, the algorithm assesses 
the probability of a requirement violation within the prediction horizon. At last, a confidence 
measure, which incorporates propagation and approximation errors, is calculated. 
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Figure 4-5: Proposed strategy for state and parameter monitoring of Model Reference Adaptive 
Controllers 

The following sections elaborate on the single parts of the approach in detail. In particular, 
section 4.3 depicts how to use GMMs in order to propagate the state distribution through the 
nonlinear plant model including the adaptive controller. Section 4.4 shows how to employ GP 
regression for uncertainty quantification and GMM propagation. Section 4.5 focusses on the 
indicator functions, including potential imminent requirement violation and a confidence 
measure in the predictive performance of the monitoring algorithm. 
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4.3 Nonlinear Uncertainty Propagation using Gaussian Mixture Models 

As shown in Example 4-2, even if the prior is normal, the posterior distribution of nonlinear 
function propagation is often ill modelled by a Gaussian density. This is due to the fact, that 
an approximation of the posterior as a Gaussian distribution inherently assumes a linear 
function propagation. Even though this might be approximately true if the nonlinear function 
is well approximated by a first order Taylor series over a large domain of the prior pdf, it 
doesn’t hold in general. Hence, a long term prediction of a nonlinear system, which is 
linearized at a single point, can lead to significant errors. 

To account for this problem, this thesis uses GMMs in order to model the state distribution. 
GMMs promise to yield a better estimate of the predictive distribution. This is due to the fact 
that a GMM is able to approximately represent a large class of distributions with a continuous 
pdf. Hence, it is also expected to be able to approximately model the predictive distribution 
arising from a nonlinear propagation. To achieve this, the known normally distributed prior at 
𝑡  is approximated by a GMM. The single mixture components have a smaller standard 
deviation than the original prior. Hence, the validity region of a linearly approximating function 
can be smaller. Then, the system dynamics are linearized at the expected value of each 
mixture using a Taylor series expansion. Each mixture element is propagated through its 
respective linear surrogate models. Combining all propagated mixture components yields an 
approximation of the predictive distribution. 

The outline of this section is as follows. Section 4.3.1 shows how to linearize the nonlinear 
closed loop dynamics of the adaptively controlled system. Section 4.3.2 shows how to 
propagate the mixture elements of a GMM through the linearized system.  
 

4.3.1 Linearization of the adaptively controlled closed-loop system 

This section constructs a linear surrogate model of the plant dynamics of the adaptively 
controlled closed-loop system using a Taylor series expansion. The employed calculation 
rules for matrix derivatives are summarized in Appendix A.7. Due to the proposed strategy, 
the uncertainty propagation of the nonlinear system dynamics and the adaptive controller is 
decoupled from the modelling uncertainty 𝚫. Furthermore, the plant dynamics as well as the 
parameter update dynamics can be analysed separately. Hence, first only the reduced right 
hand side of the closed-loop dynamics (3-13) is considered: 

 𝒇 = 𝑨 𝒙 + 𝑩 𝑲 𝒆 + 𝑩 𝑲 , 𝒙 + 𝑩 𝑲 , 𝒓 + 𝑩 𝚯 𝝋(𝒙 ). (4-6) 

Remember that the reference model is designer chosen. Since 𝒓 is assumed to be constant 
(or following a known evolution) over the prediction horizon, the evolution of 𝒙  can be 
calculated exactly. Hence, both quantities are considered as constant inputs with regard to 
the Taylor series. A Taylor series expansion at 𝒙 = 𝒙 ,  and 𝚯 = 𝚯  results in 

 
𝒇 = 𝒇 𝒙 , , 𝚯 +

𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝚯 𝚯

𝒙 − 𝒙 , +
𝜕𝒇

𝜕𝚯 𝒙 𝒙 ,

(𝚯 − 𝚯 ) + 𝑂 (𝒙 , 𝚯). (4-7) 
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Here, 𝑂 (𝒙 , 𝚯) denotes higher order terms. Furthermore, 𝒇 𝒙 , , 𝚯  is  

 𝒇 𝒙 , , 𝚯 = 𝑨 𝒙 , + 𝑩 𝑲 𝒙 , − 𝒙 + 𝑩 𝑲 , 𝒙  

+𝑩 𝑲 , 𝒓 + 𝑩 𝚯 𝝋 𝒙 ,  
(4-8) 

The partial derivative of (4-6) with respect to the system states 𝒙  is 

 𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝚯 𝚯

= 𝑨 + 𝑩 𝑲 + 𝑩 𝚯
𝜕𝝋(𝒙 )

𝜕𝒙
𝒙 𝒙 ,

 (4-9) 

Similarly, the partial derivative of (4-6) with respect to the adaptive parameters 𝚯 is 

 𝜕𝒇

𝜕𝚯 𝒙 𝒙 ,

= 𝑩 𝝋 𝒙 ,  (4-10) 

Note, that the plant dynamics (3-13) are independent of the employed adaptive control 
technique. Hence the results above hold for both considered cases. Section 4.3.1.1 
linearizes the update laws in the direct MRAC case, while section 4.3.1.2 construct a linear 
surrogate model for PMRAC.  

 

4.3.1.1 Linearization in the Direct MRAC case 
The right hand side of the parameter update law in the direct MRAC case (3-19) is 

 𝒇 = −𝚪𝝋(𝒙 )𝒆 𝑷𝑩 − 𝚪𝑘(𝚯) (4-11) 

A Taylor series expansion at 𝒙 = 𝒙 ,  and 𝚯 = 𝚯  results in 

 
𝒇 = 𝒇 𝒙 , , 𝚯 +

𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝒙 − 𝒙 , +
𝜕𝒇

𝜕𝚯 𝚯 𝚯
(𝚯 − 𝚯 ) + 𝑂 (𝒙 , 𝚯). (4-12) 

Here, 𝒇 𝒙 , , 𝚯  is 

 𝒇 𝒙 , , 𝚯 = −𝚪𝝋 𝒙 , 𝒙 , − 𝒙 𝑷𝑩 − 𝚪𝑘(𝚯 ) (4-13) 

The partial derivative of (4-12) with respect to the system states 𝒙  is 

 𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

= −𝚪
𝜕𝝋(𝒙 )

𝜕𝒙
𝒙 𝒙 ,

𝒙 , 𝑷𝑩 − 𝚪𝝋 𝒙 , 𝑩 𝑷 

+𝚪
𝜕𝝋(𝒙 )

𝜕𝒙
𝒙 𝒙 ,

𝒙 𝑷𝑩  

(4-14) 

Similarly, the partial derivative of (4-12) with respect to the adaptive parameters 𝚯 is 

 𝜕𝒇

𝜕𝚯 𝚯 𝚯
= −𝚪

𝜕𝑘(𝚯)

𝜕𝚯
𝚯 𝚯

 (4-15) 

Note, that some update law modifications 𝑘(𝚯) additionally depend on the system state 𝒙 . 
One such example is Narendras 𝑒 −Modification ([154]). In this case, (4-14) needs to be 
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expanded to include the partial derivative of 𝑘(𝚯) with respect to 𝒙 . By using (4-8)-(4-10) as 
well as (4-13)-(4-15), the surrogate closed-loop system model for the direct MRAC case 
becomes 

 

�̇�

vec(𝚯)
=

𝒇 𝒙 , , 𝚯

𝒇 𝒙 , , 𝚯
+

⎣
⎢
⎢
⎢
⎡

𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝚯 𝚯

𝜕𝒇

𝜕𝚯 𝒙 𝒙 ,

M
𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

M
𝜕𝒇

𝜕𝚯 𝚯 𝚯 ⎦
⎥
⎥
⎥
⎤

𝒙 − 𝒙 ,

vec(𝚯 − 𝚯 )
 

+𝑂 (𝒙 , 𝚯). 

(4-16) 

Here, vec(𝑴) denotes the operator that stacks the columns of the matrix 𝑴 into a vector. 
Furthermore, M(𝑴) denotes the operator that reshapes the matrix 𝑴 such that the 
calculation result of (4-16) is preserved. By neglecting the higher order terms, the surrogate 
model becomes linear: 

 

�̇� =
�̇�

vec(𝚯)
=

𝒇 𝒙 , , 𝚯

𝒇 𝒙 , , 𝚯

𝒇 𝒙 ,

+

⎣
⎢
⎢
⎢
⎡

𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝚯 𝚯

𝜕𝒇

𝜕𝚯 𝒙 𝒙 ,

M
𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

M
𝜕𝒇

𝜕𝚯 𝚯 𝚯 ⎦
⎥
⎥
⎥
⎤

𝑨 𝒙 ,

𝒙 − 𝒙 ,

vec(𝚯 − 𝚯 )
𝒙 𝒙 ,

 

= 𝑨 𝒙 , 𝒙 − 𝒙 , + 𝒇 𝒙 ,  

(4-17) 

 

4.3.1.2 Linearization of the PMRAC case 
In the PMRAC case, not only the parameter update dynamics (3-38) but also the predictor 
dynamics (3-33) need to be considered. The right hand side of the parameter update law 
(3-38) is 

 𝒇 = −𝚪𝝋(𝒙 )(𝒆 𝑷 − 𝒆 𝑷 )𝑩 − 𝚪𝑘(𝚯) 

= −𝚪𝝋(𝒙 )𝒆 𝑷𝑩 + 𝚪𝝋(𝒙 )𝒆 𝑷 𝑩 − 𝚪𝑘(𝚯) 
(4-18) 

Expanding the tracking and prediction error further yields 

 𝒇 = −𝚪𝝋(𝒙 )𝒙 𝑷𝑩 + 𝚪𝝋(𝒙 )𝒙 𝑷𝑩 + 𝚪𝝋(𝒙 )𝒙 𝑷 𝑩  

−𝚪𝝋(𝒙 )𝒙 𝑷 𝑩 − 𝚪𝑘(𝚯). 
(4-19) 

Note, that (4-19) depends on the plant states 𝒙 , the adaptive parameters 𝚯 as well as on 
the predictor states 𝒙 . Hence, a Taylor series expansion at 𝒙 = 𝒙 , , 𝚯 = 𝚯  and 𝒙 = 𝒙 ,  

results in 

 
𝒇 = 𝒇 𝒙 , , 𝚯 , 𝒙 , +

𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝒙 𝒙 ,

𝒙 − 𝒙 , +
𝜕𝒇

𝜕𝚯 𝚯 𝚯
(𝚯 − 𝚯 ) 

𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝒙 − 𝒙 , + 𝑂 (𝒙 , 𝚯). 

(4-20) 
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Here, 𝒇 𝒙 , , 𝚯 , 𝒙 ,  is 

 𝒇 𝒙 , , 𝚯 , 𝒙 , = −𝚪𝝋 𝒙 , 𝒙 , 𝑷𝑩 + 𝚪𝝋 𝒙 , 𝒙 𝑷𝑩 + 𝚪𝝋 𝒙 , 𝒙 , 𝑷 𝑩  

−𝚪𝝋 𝒙 , 𝒙 , 𝑷 𝑩 − 𝚪𝑘(𝚯 ) 
(4-21) 

The partial derivative of (4-20) with respect to the system states 𝒙  is 

 𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝒙 𝒙 ,

= −𝚪
𝜕𝝋(𝒙 )

𝜕𝒙
𝒙 𝒙 ,

𝒙 , 𝑷𝑩 − 𝚪𝝋 𝒙 , 𝑩 𝑷 + 𝚪
𝜕𝝋(𝒙 )

𝜕𝒙
𝒙 𝒙 ,

𝒙 𝑷𝑩  

+𝚪
𝜕𝝋(𝒙 )

𝜕𝒙
𝒙 𝒙 ,

𝒙 , 𝑷 𝑩 − 𝚪
𝜕𝝋(𝒙 )

𝜕𝒙
𝒙 𝒙 ,

𝒙 , 𝑷 𝑩 − 𝚪𝝋 𝒙 , 𝑩 𝑷 . 

(4-22) 

The partial derivative of (4-20) with respect to the adaptive parameters 𝚯 is 

 𝜕𝒇

𝜕𝚯 𝚯 𝚯
= −𝚪

𝜕𝑘(𝚯)

𝜕𝚯
𝚯 𝚯

. (4-23) 

Finally, the partial derivative of (4-20) with respect to the predictor states 𝒙  is  

 𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

= 𝚪𝝋 𝒙 , 𝑩 𝑷  (4-24) 

The right hand side of the predictor dynamics (3-33) is 

 𝒇 = 𝑨 (𝒙 − 𝒙 ) + 𝑨 𝒙 + 𝑩 𝒓 (4-25) 

Note that the predictor dynamics are already in a linear form. For consistency, the Taylor 
series expansion is applied nevertheless: 

 
𝒇 = 𝒇 𝒙 , , 𝒙 , +

𝜕𝒇

𝜕𝒙
𝒙 − 𝒙 , +

𝜕𝒇

𝜕𝒙
𝒙 − 𝒙 ,  (4-26) 

Note that 𝒇  only depends on the plant and predictor states. Furthermore, note that no higher 
order terms are present, since the predictor dynamics are already linear. Consequently, 

𝒇 𝒙 , , 𝒙 ,  is 

 𝒇 𝒙 , , 𝒙 , = 𝑨 𝒙 , − 𝒙 , + 𝑨 𝒙 , + 𝑩 𝒓 (4-27) 

The partial derivative of (4-25) with respect to the system states 𝒙  is 

 𝜕𝒇

𝜕𝒙
= 𝑨 − 𝑨 . (4-28) 

Similarly, the partial derivative of (4-25) with respect to the predictor states 𝒙  is 

 𝜕𝒇

𝜕𝒙
= 𝑨 . (4-29) 
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By using (4-8)-(4-10) as well as (4-21)-(4-24) and (4-27)-(4-29), the surrogate closed-loop 
system model for the P MRAC case becomes 

 �̇�

vec(𝚯)

�̇�

=

𝒇 𝒙 , , 𝚯 , 𝒙 ,

𝒇 𝒙 , , 𝚯 , 𝒙 ,

𝒇 𝒙 , , 𝚯 , 𝒙 ,

𝒇 𝒙 ,

+ 

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

M

𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝚯 𝚯

𝜕𝒇

𝜕𝚯 𝒙 𝒙 ,

𝟎

𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝒙 𝒙 ,

M
𝜕𝒇

𝜕𝚯 𝚯 𝚯
M

𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝜕𝒇

𝜕𝒙
𝟎

𝜕𝒇

𝜕𝒙 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑨 𝒙 ,

𝒙 − 𝒙 ,

vec(𝚯 − 𝚯 )

𝒙 − 𝒙 ,

𝒙 𝒙 ,

+ 𝑂 (𝒙 ) 

(4-30) 

By neglecting the higher order terms, the surrogate model becomes linear such that it is 
representable similar to (4-17): 

 �̇� = 𝑨 𝒙 , 𝒙 − 𝒙 , + 𝒇 𝒙 , . (4-31) 

 

4.3.2 Propagating a GMM through the linearized system dynamics 

This section details the propagation of a rv with GMM distribution through the nonlinear 
system (3-13). The general derivation can be found i.a. in [206]. Consider the approximation 
of 𝑝(𝒙 ) by a GMM in (4-5). While a continuous derivation is possible, deriving the GMM 
propagation for a discrete system directly gives rise to the equations used for 
implementation. Therefore, consider the discretized version of the linearized system 
dynamics (4-17) or (4-31), respectively: 

 𝒙 , = 𝑨 𝒙 , , 𝒙 , − 𝒙 , , + 𝒇 𝒙 , , . (4-32) 

Discretized quantities are depicted by a bar. Predicting 𝑝 𝒙 ,  comes down to evaluating 

the Chapman-Kolmogorov equation in (4-2). However, instead of employing the real 

𝑝 𝒙 , , its approximation (4-5) is used. Furthermore, instead of using the nonlinear system 

dynamics, their linear approximation �̂� 𝒙 , 𝒙 ,  in (4-32) is used. Therefore, also the 

result �̂� 𝒙 ,  represents an approximation of 𝑝 𝒙 , : 

 
�̂� 𝒙 , = �̂� 𝒙 , 𝒙 , �̂� 𝒙 , 𝑑𝒙 , . (4-33) 

Instead of solving (4-33) directly, note that propagating a rv with a GMM distribution through 
the linear system (4-32) amounts to an affine transformation of 𝒙 , . Hence, Theorem 2.2 can 

be applied to directly calculate the resulting distribution �̂� 𝒙 , . Rewriting (4-32) yields 

 𝒙 , = 𝒇 𝒙 , , − 𝑨 𝒙 , , 𝒙 , , + 𝑨 𝒙 , , 𝒙 , . (4-34) 
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Applying Theorem 2.2 results in 

 
�̂� 𝒙 , = 𝛼 𝑁

𝑨 𝒙 , , 𝝁 , + 𝒇 𝒙 , , − 𝑨 𝒙 , , 𝒙 , , ,

𝑨 𝒙 , , 𝚺 , 𝑨 𝒙 , ,

 (4-35) 

Here 𝒙 , ,  denotes the point respective to which the linearization is performed and 

corresponding to the 𝑖 −th mixture component. Furthermore, 𝝁 ,  and 𝚺 ,  represent the mean 

and covariance of the 𝑖 −th mixture component at the 𝑘 −th timestep. Similarly to the EKF, 
the reference point is chosen to be the mean of each mixture component, such that 𝒙 , , =

𝝁 , . Hence, equation (4-35) becomes  

 
�̂� 𝒙 , = 𝛼 𝑁 𝒇 𝝁 , , 𝑨 𝝁 , 𝚺 , 𝑨 𝝁 ,  (4-36) 

Equation (4-36) contains the update equations for the mean and covariance. In particular, the 
update for the mean of the 𝑖 −th mixture component is 

 𝝁 , = 𝒇 𝝁 , . (4-37) 

Similarly, the update law for the covariance of the 𝑖 −th mixture component is 

 𝚺 , = 𝑨 𝝁 , 𝚺 , 𝑨 𝝁 , . (4-38) 

Note, that (4-37) and (4-38) resemble the EKF update equations. In [206], Terejanu et al. 
also derive the continuous version of (4-37) and (4-38). Recursively applying (4-37) and 
(4-38) results in the predicted trajectory for the system states 𝒙 .  

Note that only the mean and covariance are updated, the mixture weights 𝛼  stay constant. 
This assumes that, throughout the prediction horizon, the covariance 𝚺  of the 𝑖 −th mixture 
component stays small enough in order for the linearization to be valid with respect to 𝝁 . In 
particular, for highly nonlinear functions this assumption is easily violated (see Example 4-4 
for a comparison of functions). Terejanu et al. provide a way to also update the mixture 
weights themselves. Therefore, a multiparametric quadratic program with linear equality and 
inequality constraints has to be solved, which aims at minimizing the error between the true 

forecast distribution 𝑝 𝒙 ,  and its approximation �̂� 𝒙 , . However, solving an 

optimization problem online demands high computational resources, which may not be 
available. Also changing the number of mixture components requires the solution of an 
optimization problem online. Again, the required computational resources might not be 
available. The presented monitoring algorithm instead follows a different path. Section 4.5.2 
deals with errors occurring due to approximations during the prediction. Using the latter, a 
measure of confidence is derived, which is intended to relay information about the certainty 
the algorithm has in its own prediction capabilities. In the following, two examples show the 
capabilities of using GMMs for state propagation.  
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Example 4-3: Propagation of a normally distributed random variable through a sine 
function by sampling and linear as well as GMM approximation 

Figure 4-6: Comparison between linear, sampling based and GMM propagation 

Consider the problem statement of Example 4-2. Instead of approximating the nonlinear 
function 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) by a single linear function only, the GMM propagation approach is 
employed. Therefore, the initial distribution 𝑝(𝑥) = 𝑁(0.25𝜋, 0.4 ) is approximated by a GMM. 
The latter is chosen to consist of 40 mixture components with a standard deviation of 𝜎 =

0.175, which approximate 𝑝(𝑥) for 𝑥 ∈ [−4,4]. The fitting is performed by solving (2-5). The 
update laws (4-37) and (4-38) are used in order to propagate the GMM through 𝑓(𝑥). 

Figure 4-6 compares the propagation by linear and GMM propagation. In that, Figure 4-6 
(left) shows the results of Example 4-2 for a single linear approximation. Figure 4-6 (right) 
shows the propagation by GMM approximation. It can be seen that the state distribution 

�̂� 𝑓(𝑥)  is nearly indistinguishable from the sample based propagation. In fact, the 𝐷  drops 

from 26.58 for Figure 4-6 (left) to 5.58 for Figure 4-6 (right). Primarily 8 mixture components 

contribute to the approximation of �̂�(𝑥) and �̂� 𝑓(𝑥) . This indicates, that already 8 mixtures 

are sufficient to represent �̂� 𝑓(𝑥)  well. This also indicates that the number of mixtures, as 

well as the region in which �̂�(𝑥) is approximated, could have been chosen smaller.  

The occurring errors can be attributed to two reasons. First, even though the standard 
deviation of each mixture component is small, the linearization is not necessarily valid in a 
huge domain. This is in particular true for the maximum of the sign function, which is 
approximated by a horizontal line. Decreasing 𝜎  further and increasing the number of 
mixtures generally leads to a decrease of the error. However, this also increases the 
computational burden on the system. Secondly, each Gaussian mixture is inherently 
continuous. Hence, even if the mapping through the sine function is bounded by 1 and −1, 
respectively, the resulting GMM is not able to represent discontinuous functions.  
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Example 4-4: Propagation of a normally distributed random variable through a variety 
of nonlinear functions with varying parameters of the prior distribution 

This example repeats the experiments in Example 4-2 and Example 4-3 for the nonlinear 
functions as well as varying parameters of the prior distribution. In particular, the nonlinear 
functions are 𝑓 (𝑥) = 0.5𝑥 , 𝑓 (𝑥) = 0.02𝑥 , 𝑓 (𝑥) = sin(2𝑥) and 𝑓 (𝑥) = tan (𝑥). The mean 
of the prior distribution varies from 𝜇 ∈ [−1.5,1.5] and the standard deviation varies from σ ∈

[0.05,1.8]. Again the Kullback-Leibler divergence is used to relatively compare test cases. 
The left column of Figure 4-7 shows the linear propagation and the right column shows the 
GMM propagation, respectively. In order to be able to compare results, for one function the 
same Kullback-Leibler divergence scale is used. For more detail, an adjusted scale is 
depicted in Figure H- in Appendix H.2. 

The first two rows of Figure 4-7 show the Kullback-Leibler divergence for the second and 
third order polynomial, respectively. It can be seen that a shift of the mean away from zero 
and an increase of the standard deviation lead to a decrease in 𝐷 . However, for the linear 
propagation the numerical value of 𝐷  still is considerably higher than in Example 4-2 with 
𝐷 =  26.58. This indicates that despite the decrease in 𝐷 , the predictive distribution is not 
approximated well by a normal distribution. In particular, around 𝜇 = 0, the 𝐷  assumes 
relatively large values. This indicates that the nonlinear function is badly approximated by a 
linear function. In fact, for 𝜇 = 0, the linear approximation of 𝑓 (𝑥) and 𝑓 (𝑥) is a horizontal 
line. The prior distribution is therefore mapped upon a single deterministic value. By using 
the GMM propagation, 𝐷  is drastically reduced. Still, around 𝜇 = 0, the 𝐷  remains large. 
Similar to Example 4-3, this is due to the facts that the linearization is not valid over each 
mixture component and that a GMM is not able to represent discontinuous functions. 

The third row of Figure 4-7 shows the Kullback-Leibler divergence for the sine function as an 
extension to Example 4-2. The 𝐷  assumes its biggest values in areas close to its extrema. 
Again, the reason for this is that the linear approximation at the extrema of the nonlinear 
function assumes the shape of a horizontal line and is therefore only valid in a small area. 
Similar to the polynomial functions, the GMM propagation drastically reduces the 𝐷 . 

Finally, row four of Figure 4-7 shows the Kullback-Leibler divergence for the arctangent 
function. It can be seen that a prior mean close to zero achieves low 𝐷  values, when 
compared to the other nonlinear functions. This is due to the fact that tan (𝑥) can be well 
approximated by a first order Taylor series around a zero mean. Still, the GMM propagation 
is able to reduce the 𝐷  further. Note that while tan (𝑥) does have suprema, it does not 
have extrema. Hence, within the analyzed region, the predictive will be continuous and 
representable by a GMM. Due to the small numerical values, the scale has been adjusted for 
the GMM propagation case. 
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Figure 4-7: Comparison of linear (left) and GMM (right) propagation based on the Kullback-Leibler 
Divergence for varying parameters of the prior and different nonlinear functions 
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4.4 Online Uncertainty Propagation using Gaussian Processes 

Chapter 4.3 assumed the plant dynamics to be known entirely. This section extends the 
approach to include modelling uncertainties 𝚫(𝒙 ). Therefore, consider the linearized system 

dynamics of (4-17) or (4-31) subject to a modelling uncertainty 𝚫 𝒙 , : 

 𝒙 , = 𝑨 𝒙 , , 𝒙 , − 𝒙 , , + 𝒇 𝒙 , , + 𝑩 𝚫 𝒙 , . (4-39) 

GPs are used to model 𝚫(𝒙 ). Thereby, this thesis considers two cases. In the first case, the 

structure of 𝚫 𝒙 ,  is known and only parameter uncertainties are present. Hence, 𝚫 𝒙 ,  

can be modelled using a GP prior model. In the case that 𝚫 𝒙 ,  is entirely unknown, GP 

regression infers a model for 𝚫 𝒙 ,  based on online gathered data. 

In contrast to section 2.2, this chapter admits the uncertainty 𝚫 𝒙 , ∈ ℝ ×  to be a vector. In 

general, 𝚫 𝒙 ,  is represented by 𝚫 𝒙 , = 𝒘 𝝓 𝒙 , . By placing a probability distribution 

on the parameters 𝒘 ∈ ℝ × , the uncertainty 𝚫 𝒙 ,  forms a GP as of (2-26). The optimal 

parameters of the uncertainty 𝚯∗ as of Definitions 3.1 are deliberately substituted by 𝒘. This 
leads to a clear distinction between the control objective, for which 𝚯∗ is a draw from 𝒘, and 
the monitoring objective, for which the whole distribution of 𝒘 is considered. In any case, let 
the parameters 𝒘 be distributed according to 

 vec(𝒘)~𝑁(vec(𝝁 ), 𝚺 ). (4-40) 

First, since 𝒘 is a matrix, it is convenient to reformulate 𝒘 as a vector. Furthermore, the 
mean of 𝒘 is represented by 𝝁  instead of 𝒘, which in turn is the prevalent notation in the 
machine learning literature. Since a bar indicates a discretized value in this chapter, the 
mean of 𝒘 could be easily confused otherwise. Finally, 𝚺 ∈ ℝ ×  represents the 
covariance matrix. As before, assume the weights to be independent of each other. Hence, 
𝚺  is a diagonal matrix. Dividing 𝚺  into 𝑙  submatrices 𝚺 , , ∈ ℝ ×  yields 

 
𝚺 =

𝚺 , , ⋯ 𝚺 , ,

⋮ ⋱ ⋮
𝚺 , , ⋯ 𝚺 , ,

. (4-41) 

Since 𝚺  is a diagonal matrix, 𝚺 , , = 𝟎, 𝑖 ≠ 𝑗. The uncertainty is modelled by 

 𝚫 𝒙 , ~𝐺𝑃 𝒎 𝒙 , , 𝚺 𝒙 , , 𝒙 , . (4-42) 

To calculate the mean 𝒎 𝒙 ,  and covariance function 𝚺 𝒙 , , 𝒙 ,  consider the columns 

of the parameter matrix 𝒘 = [𝒘 … 𝒘 ]. Following (2-22), the mean of the 𝑖-th element in 

the uncertainty vector 𝚫 𝒙 ,  is 

 𝑚 , 𝒙 , = 𝔼 Δ 𝒙 , = 𝔼 𝒘 𝝓 𝒙 , = 𝝁 , 𝝓 𝒙 , . (4-43) 
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Combining all elements, the mean function 𝒎 𝒙 ,  is 

 
𝒎 𝒙 , =

𝑚 , 𝒙 ,

⋮
𝑚 , 𝒙 ,

=

𝝁 , 𝝓 𝒙 ,

⋮
𝝁 , 𝝓 𝒙 ,

=

𝝁 ,

⋮
𝝁 ,

𝝓 𝒙 , = 𝝁 𝝓 𝒙 , . (4-44) 

In order to derive the covariance function 𝚺 𝒙 , , 𝒙 , , consider its 𝑙  entries Σ , , : 

 
𝚺 𝒙 , , 𝒙 , =

Σ , , ⋯ Σ , ,

⋮ ⋱ ⋮
Σ , , ⋯ Σ , ,

. (4-45) 

Following (2-23), the 𝑖 −th and 𝑗 −th entry is 

 Σ , , = 𝔼 Δ 𝒙 , − 𝔼 Δ 𝒙 , Δ 𝒙 , − 𝔼 Δ 𝒙 ,  

= 𝔼 𝒘 𝝓 𝒙 , − 𝝁 , 𝝓 𝒙 , 𝒘 𝝓 𝒙 , − 𝝁 , 𝝓 𝒙 ,  

= 𝝓 𝒙 , 𝔼 𝒘 − 𝝁 , 𝒘 − 𝝁 ,

𝚺 , ,

𝝓 𝒙 , = 𝝓 𝒙 , 𝚺 , , 𝝓 𝒙 ,  

(4-46) 

Here 𝚺 , ,  corresponds to the 𝑖th and 𝑗th submatrix of 𝚺 . Since 𝚺 , , = 𝟎, 𝑖 ≠ 𝑗, also 𝚺 , , =

𝟎, 𝑖 ≠ 𝑗. Hence, the covariance function becomes 

 

𝚺 𝒙 , , 𝒙 , =

⎣
⎢
⎢
⎡
𝝓 𝒙 , 𝚺 , , 𝝓 𝒙 , 0 ⋯ 0

0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝝓 𝒙 , 𝚺 , , 𝝓 𝒙 , ⎦

⎥
⎥
⎤

. (4-47) 

The following sections show how to employ the GPs, which model the uncertainty 𝚫 𝒙 , , in 

the prediction approach. The outline of this section is as follows. Chapter 4.4.1 shows how to 
propagate a GP if the regressor function is linear, i.e. the GP is modelled by linear kernel 
functions. Chapter 4.4.2 extends the result for nonlinear regressor functions. Finally, section 
4.4.3 shows how to use GP regression to infer a model of 𝚫(𝒙 ) from online gathered data 
and propagate the result.  

 

4.4.1 Linear Gaussian Process models 

This section represents the modelling uncertainty 𝚫 𝒙 ,  by a linear combination of 

parameters 𝒘 with the system state vector 𝒙 ,  such that 𝝓 𝒙 , = 𝒙 ,  and 𝚫 𝒙 , = 𝒘 𝒙 , . 

In particular, following (4-44) the mean of 𝚫 𝒙 , ~𝐺𝑃 𝒎 𝒙 , , 𝚺 𝒙 , , 𝒙 ,  is  

 𝒎 𝒙 , = 𝝁 𝒙 , . (4-48) 

 

 

Similarly, as of (4-47) the covariance is 
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𝚺 𝒙 , , 𝒙 , =

⎣
⎢
⎢
⎡
𝒙 , 𝚺 , , 𝒙 , 0 ⋯ 0

0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝒙 , 𝚺 , , 𝒙 , ⎦

⎥
⎥
⎤

 (4-49) 

For a linear GP prior model, the dynamics of (4-39) become 

 𝒙 , = 𝑨 𝒙 , , 𝒙 , − 𝒙 , , + 𝒇 𝒙 , , + 𝑩 𝚫 𝒙 ,

𝒇 𝒙 ,

. 
(4-50) 

Instead of only treating 𝚫 𝒙 ,  as a GP, the whole right hand side of (4-50) can be included 

in a new variable 𝑓 𝒙 , , which in turn is expressed by the GP 

 𝒇 𝒙 , ~𝐺𝑃 𝒎 𝒙 , , 𝚺 𝒙 , , 𝒙 , . (4-51) 

Consequently, the mean of 𝒇 𝒙 , ,  is 

 𝒎 𝒙 , = 𝔼𝒇 𝒇 𝒙 , = 𝔼𝒇 𝑨 𝒙 , , 𝒙 , − 𝒙 , , + 𝒇 𝒙 , , + 𝑩 𝚫 𝒙 ,  

= 𝑨 𝒙 , , 𝒙 , − 𝒙 , , + 𝒇 𝒙 , , + 𝑩 𝝁 𝒙 , . 
(4-52) 

Similarly, the covariance is 

 𝚺 𝒙 , , 𝒙 , = 𝔼𝒇 𝒇 𝒙 , − 𝔼𝒇 𝒇 𝒙 , 𝒇 𝒙 , − 𝔼𝒇 𝒇 𝒙 , . (4-53) 

The evaluation of one bracket of (4-53) yields 

 𝒇 𝒙 , − 𝔼𝒇 𝒇 𝒙 , = 𝑨 𝒙 , , 𝒙 , − 𝒙 , , + 𝒇 𝒙 , , + 𝑩 𝚫 𝒙 ,  

−𝑨 𝒙 , , 𝒙 , − 𝒙 , , − 𝒇 𝒙 , , − 𝑩 𝒎 𝒙 ,  

= 𝑩 𝚫 𝒙 , − 𝑩 𝒎 𝒙 , = 𝑩 𝚫 𝒙 , − 𝒎 𝒙 , . 

(4-54) 

Consequently, the covariance is 

 
𝚺 𝒙 , , 𝒙 , = 𝔼𝒇 𝑩 𝚫 𝒙 , − 𝒎 𝒙 , 𝚫 𝒙 , − 𝒎 𝒙 , 𝑩  

= 𝑩 𝚺 𝒙 , , 𝒙 , 𝑩 . 

(4-55) 

Propagating states through the system dynamics amounts to the evaluation of the Chapman-
Kolmogorov equation in (4-2):  

 
𝑝 𝒙 , = 𝑝 𝒙 , 𝒙 , 𝑝 𝒙 , 𝑑𝒙 ,  (4-56) 

As in the previous case, 𝑝 𝒙 ,  is represented by a GMM �̂� 𝒙 ,  as in (4-5):  

 
�̂� 𝒙 , = 𝑝 𝒙 , 𝒙 , �̂� 𝒙 , 𝑑𝒙 ,  (4-57) 
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Here, the conditional distribution 𝑝 𝒙 , 𝒙 ,  is represented by the GP 𝒇 𝒙 ,  in (4-51), 

which models the system dynamics (4-50). For the conditional distribution 𝑝 𝒙 , 𝒙 , , 𝒙 ,  

is treated as though it was known. Hence, 𝑝 𝒙 , 𝒙 ,  is the evaluation of 𝒇 𝒙 ,  at the 

input 𝒙 , , which in turn is a normal distribution:  

 𝑝 𝒙 , 𝒙 , = 𝑁 𝒎 𝒙 , , 𝚺 𝒙 , , 𝒙 ,  (4-58) 

By inserting (4-5) and (4-58), (4-57) becomes 

 
�̂� 𝒙 , = 𝑁 𝒎 𝒙 , , 𝚺 𝒙 , , 𝒙 , 𝛼 𝑁 𝝁 , , 𝚺 , 𝑑𝒙 ,  (4-59) 

Including the conditional in the sum results in 

 
�̂� 𝒙 , = 𝛼 𝑁 𝒎 𝒙 , , , 𝚺 𝒙 , , , 𝒙 , , 𝑁 𝝁 , , 𝚺 , 𝑑𝒙 , . (4-60) 

Finally, swapping the integral and the sum as well as factorizing the mixture weights 𝛼  yields 

 
�̂� 𝒙 , = 𝛼 𝑁 𝒎 𝒙 , , 𝚺 𝒙 , , 𝒙 , 𝑁 𝝁 , , 𝚺 , 𝑑𝒙 , . (4-61) 

Solving the integral is analytically intractable in most cases. Note that the approximate 

�̂� 𝒙 ,  still assumes the structure of a mixture of distributions, but not necessarily a GMM. 

To solve (4-61), note that (4-61) inherits the structure of (2-56), which represents solving a 
GP at an uncertain input. The authors in [171], [71], [53] showed how to analytically calculate 
the first and second central moment of the resulting distribution. Hence, here the product 

𝑁 𝒎 𝒙 , , 𝚺 𝒙 , , 𝒙 , 𝑁 𝝁 , , 𝚺 ,  is approximated by a Gaussian distribution 

𝑁 𝝁 , , 𝚺 , . This way �̂� 𝒙 ,  also inherits the basic structure of a GMM: 

 
�̂� 𝒙 , = 𝛼 𝑁 𝝁 , , 𝚺 ,  (4-62) 

Equation (4-62) is achieved by noting that 𝑁 𝝁 , , 𝚺 ,  does not depend on 𝒙 ,  and is 

moved in front of the integral in (4-61). In turn, the integral evaluates to one. 

Solving (4-61) now amounts to the evaluation of the mean and covariance of each mixture 

component of �̂� 𝒙 , . Since the conditional 𝑝 𝒙 , 𝒙 ,  is well known, the approach of 

section 2.3.1, which employs the law of iterated expectation and total variance, is used (also 

see Appendix B.6). Remember that 𝒙 ,  is given by 𝒇  as of (4-50). Hence, 𝑝 𝒇 |𝒙 , =

𝑝 𝒙 , 𝒙 , , implicitly.  

Using the law of iterated expectations, the 𝑖 −th mixture mean 𝝁 ,  is  

 𝔼𝒙 , |
𝒙 , = 𝝁 , = 𝔼𝒙 , |

𝔼 𝒇 |𝒙 , . (4-63) 



4 Run-Time Monitoring of Adaptive Control Algorithms 
 

Page 88 / 200   

Here, the subscript 𝔼𝒙 , |
 indicates that the expectation is taken with respect to the 𝑖 −th 

mixture. Following section 2.3.1, the propagated expected value is 

 𝝁 , = 𝔼𝒙 , |
𝒎 𝒙 , = 𝒇 𝝁 , + 𝑩 𝝁 𝝁 , . (4-64) 

The propagated covariance 𝚺 ,  is obtained by application of the law of total variance 

 𝚺 , = 𝕍𝒙 , |
𝔼𝒇 𝒇 |𝒙 , + 𝔼𝒙 , |

𝕍 𝒇 |𝒙 ,  (4-65) 

The first term in (4-65) is  

 𝕍𝒙 , |
𝔼 𝑓 |𝒙 , = 𝕍𝒙 , |

𝒎 𝒙 ,  

= 𝔼𝒙 , |
𝒎 𝒙 , − 𝔼𝒙 , |

𝒎 𝒙 , 𝒎 𝒙 , − 𝔼𝒙 , |
𝒎 𝒙 , . 

(4-66) 

Inserting (4-52) into the first term of (4-66) as well as rearranging terms yields 

 𝒎 𝒙 , − 𝔼𝒙 , |
𝒎 𝒙 , = 𝑨 𝝁 , 𝒙 , − 𝝁 , + 𝒇 𝝁 , + 𝑩 𝝁 𝒙 ,  

−𝑨 𝝁 , 𝝁 , − 𝝁 , − 𝒇 𝝁 , − 𝑩 𝝁 𝝁 ,  

= 𝑨 𝝁 , 𝒙 , − 𝝁 , + 𝑩 𝝁 𝒙 , − 𝑩 𝝁 𝝁 ,  

= 𝑨 𝝁 , 𝒙 , − 𝝁 , + 𝑩 𝝁 𝒙 , − 𝝁 ,  

= 𝑨 𝝁 , + 𝑩 𝝁 𝒙 , − 𝝁 , , 

(4-67) 

Note that (4-65) implicitly assumes that the linear model of (4-50) is evaluated at the mean of 
each mixture component such that 𝒙 , , = 𝝁 , . Inserting (4-65) into (4-66) yields 

 𝕍𝒙 , |
𝔼 𝑓 |𝒙 ,  

= 𝔼𝒙 , |
𝑨 𝝁 , + 𝑩 𝝁 𝒙 , − 𝝁 , 𝑨 𝝁 , + 𝑩 𝝁 𝒙 , − 𝝁 ,  

= 𝑨 𝝁 , + 𝑩 𝝁 𝔼𝒙 , |
𝒙 , − 𝝁 , 𝒙 , − 𝝁 ,

𝚺 ,

𝑨 𝝁 , + 𝑩 𝝁  

(4-68) 

Hence, the first term of (4-65) evaluates to 

 𝕍𝒙 , |
𝔼 𝑓 |𝒙 , = 𝑨 𝝁 , + 𝑩 𝝁 𝚺 , 𝑨 𝝁 , + 𝑩 𝝁 . (4-69) 

The second term of (4-65) is  

 𝔼𝒙 , |
𝕍 𝑓 |𝒙 , = 𝔼𝒙 , |

𝚺 𝒙 , , 𝒙 , = 𝔼𝒙 , |
𝑩 𝚺 𝒙 , , 𝒙 , 𝑩  

= 𝑩 𝔼𝒙 , |
𝚺 𝒙 , , 𝒙 , 𝑩 . 

(4-70) 
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Using the expectation of quadratic forms (see section 2.3.1 or Appendix B.10) on (4-49) 
yields 

 

𝚺𝒙 , | |
= 𝔼𝒙 , |

𝚺 𝒙 , , 𝒙 , =

⎣
⎢
⎢
⎢
⎡
𝔼𝒙 , |

𝒙 , 𝚺 , , 𝒙 , 0 ⋯ 0

0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝔼𝒙 , |

𝒙 , 𝚺 , , 𝒙 , ⎦
⎥
⎥
⎥
⎤

 

=

⎣
⎢
⎢
⎡
Tr 𝚺 , , 𝚺 , + 𝝁 , 𝚺 , , 𝝁 , 0 ⋯ 0

0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 Tr 𝚺 , , 𝚺 , + 𝝁 , 𝚺 , , 𝝁 , ⎦

⎥
⎥
⎤

. 

(4-71) 

By inserting (4-69) and (4-71) in (4-65),the propagated covariance of the 𝑖 −th mixture 
element is 

 𝚺 , = 𝑨 𝝁 , + 𝑩 𝝁 𝚺 , 𝑨 𝝁 , + 𝑩 𝝁 + 𝑩 𝚺𝒙 , | |
𝑩  (4-72) 

Hence, the total predictive GMM is 

 �̂� 𝒙 ,  

= 𝛼 𝑁
𝒇 𝝁 , + 𝑩 𝝁 𝝁 , ,

𝑨 𝝁 , + 𝑩 𝝁 𝚺 , 𝑨 𝝁 , + 𝑩 𝝁 + 𝑩 𝚺𝒙 , | |
𝑩

 
(4-73) 

The following example shows how GMMs can be used for the evaluation of a GP. 

 

Example 4-5: Evaluation of a GP prior model with linear kernels at a GMM distributed 
input 

  
Figure 4-8: 𝑪𝑳 over 𝜶 modeled by a GP and evaluated at an a GMM distributed input 

Consider Example 2-3, where 𝐶  over 𝛼 is modeled as a GP. Therefore, the input distribution 
𝑝(𝛼) = 𝑁(−2.5, 1.5 ) is approximated by a GMM. The latter is chosen to consist of 40 mixture 
components with a standard deviation of 𝜎 = 0.175, which approximate 𝑝(𝑥) for 𝑥 ∈ [−7,4]. 
The fitting is performed by solving (2-5). The update laws (4-64) and (4-72) are used in order 
to propagate the GMM through the GP. 
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Figure 4-8 compares the approximation of the predictive distribution �̂�(𝐶 ) by a Gaussian and 
a GMM. In that, Figure 4-8 (left) shows the results of Figure 2-8 if the predictive distribution is 
approximated by a single Gaussian. Figure 4-8 (right) shows the propagation result if a GMM 
is used. It can be seen that the state distribution �̂�(𝐶 ) in the latter case is nearly 
indistinguishable from the sample based propagation, while it shows a significant error if the 
predictive is approximated by a single Gaussian. This can be attributed to the fact, that 
solving (4-57) implicitly requires marginalizing over the GP. In the first case, the predictive 
distribution is the result of averaging over all possible GP results given the input distribution. 
In the second case, the input space is significantly reduced as each mixture component is 
treated separately. As a result, the GP is averaged over a smaller domain, which increases 
the accuracy. Putting together all mixture components thus results in a better estimate.  

 

4.4.2 Gaussian Process Models with nonlinear regressor functions 

Often, the uncertainty is represented by a linear combination of weights and nonlinear 
regressor functions instead of linear ones. This section expands the results of section 4.4.1 
in order to include nonlinear regressor functions. Therefore, consider the linearized plant 

dynamics in (4-39). The modelling uncertainty 𝚫 𝒙 ,  now is 𝚫 𝒙 , = 𝒘 𝝓 𝒙 , . As a 

result, the dynamics of (4-39) become 

 𝒙 , = 𝑨 𝒙 , , 𝒙 , − 𝒙 , , + 𝒇 𝒙 , , + 𝑩 𝒘 𝝓 𝒙 , . (4-74) 

By placing a probability distribution on the parameters 𝒘 with (4-40), 𝚫 𝒙 ,  becomes a GP 

model as of (2-20) with mean (4-44) and covariance (4-47). Consider a Taylor series 

expansion of 𝚫 𝒙 ,  with respect to 𝒙 : 

 
𝚫 𝒙 , = 𝚫 𝒙 , , +

𝑑𝚫 𝒙 ,

𝑑𝒙 , 𝒙 , 𝒙 , ,

𝒙 , − 𝒙 , , + 𝑂 𝒙 , . (4-75) 

Omitting the higher order terms yields a first order approximation 𝚫 𝒙 ,  of the modelling 

uncertainty: 

 
𝚫 𝒙 , = 𝒘 𝝓 𝒙 , , + 𝒘

𝑑𝝓 𝒙 ,

𝑑𝒙 , 𝒙 , 𝒙 , ,

𝒙 , − 𝒙 , , . (4-76) 

For the ease of readability, let 𝝓 𝒙 , , =
𝝓 𝒙 ,

𝒙 , 𝒙 , 𝒙 , ,

. The structure of the covariance 

matrix 𝚺 𝒙 , , 𝒙 ,  is given by (4-47). In particular, the 𝑖 −th entry on the main diagonal is 

 Σ , , 𝒙 , , 𝒙 ,  

= 𝝓 𝒙 , , + 𝝓 𝒙 , , 𝒙 , − 𝒙 , , 𝚺 , , 𝝓 𝒙 , , + 𝝓 𝒙 , , 𝒙 , − 𝒙 , , . 
(4-77) 
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By using the first order Taylor series approximation in (4-76) the dynamics of (4-74) become 

 
𝒙 , =

𝑨 𝒙 , , 𝒙 , − 𝒙 , , + 𝒇 𝒙 , ,

+𝑩 𝒘 𝝓 𝒙 , , + 𝑩 𝒘 𝝓 𝒙 , , 𝒙 , − 𝒙 , ,

𝒇

. 
(4-78) 

Similar to section 4.4.1, the right hand side of (4-78) forms a new variable 𝑓 𝒙 , , which is 

expressed by the GP 

 𝒇 𝒙 , ~𝐺𝑃 𝒎 𝒙 , , 𝚺 𝒙 , , 𝒙 , . (4-79) 

The mean of 𝒇 𝒙 ,  is 

 𝒎 𝒙 , = 𝑨 𝒙 , , 𝒙 , − 𝒙 , , + 𝒇 𝒙 , ,  

+𝑩 𝝁 𝝓 𝒙 , , + 𝝁 𝝓 𝒙 , , 𝒙 , − 𝒙 , , . 
(4-80) 

Similarly, following (4-55), the covariance is 

 𝚺 𝒙 , , 𝒙 , = 𝑩 𝚺 𝒙 , , 𝒙 , 𝑩  . (4-81) 

In order to calculate �̂� 𝒙 , , the next steps follow the approach in section 4.4.1. Thereby, 

similar to the GMM forecast in section 4.3, the first order Taylor series approximation in 
(4-76) is performed with respect to the mean of the 𝑖 −th mixture component 𝒙 = 𝝁 , . By 

(4-64), the propagated mean is 

 𝔼𝒙 , |
𝒙 , = 𝝁 , = 𝔼𝒙 , |

𝔼 𝒇 |𝒙 , = 𝒇 𝝁 , + 𝑩 𝝁 𝝓 𝝁 , . (4-82) 

Applying the law of total variance as in (4-65), again results in the propagated covariance 
matrix. Thereby, the first term of (4-66), which in turn evaluates the first term of (4-65), is  

 𝒎 𝒙 , − 𝔼𝒙 , |
𝒎 𝒙 , = 𝑨 𝝁 , 𝒙 , − 𝝁 , + 𝒇 𝝁 , + 𝑩 𝝁 𝝓 𝝁 ,  

+𝑩 𝝁 𝝓 𝝁 , 𝒙 , − 𝝁 , − 𝑨 𝝁 , 𝝁 , − 𝝁 , − 𝒇 𝝁 , − 𝑩 𝝁 𝝓 𝝁 ,  

−𝑩 𝝁 𝝓 𝝁 , 𝝁 , − 𝝁 ,  

= 𝑨 𝝁 , 𝒙 , − 𝝁 , + 𝑩 𝝁 𝝓 𝝁 , 𝒙 , − 𝝁 ,  

= 𝑨 𝝁 , + 𝑩 𝝁 𝝓 𝝁 , 𝒙 , − 𝝁 , . 

(4-83) 

Following (4-68), the first term of (4-66) becomes 

 𝕍𝒙 , |
𝔼 𝑓 |𝒙 ,  

= 𝑨 𝝁 , + 𝑩 𝝁 𝝓 𝝁 , 𝚺 , 𝑨 𝝁 , + 𝑩 𝝁 𝝓 𝝁 , . 

(4-84) 
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The second term of (4-66) is 

 𝔼𝒙 , |
𝕍 𝑓 |𝒙 , = 𝔼𝒙 , |

𝚺 𝒙 , , 𝒙 , = 𝔼𝒙 , |
𝑩 𝚺 𝒙 , , 𝒙 , 𝑩  

= 𝑩 𝔼𝒙 , |
𝚺 𝒙 , , 𝒙 , 𝑩  

(4-85) 

Calculating 𝔼𝒙 , |
𝚺 𝒙 , , 𝒙 ,  is shown in (4-71) and amounts to taking the expectation of 

each entry in 𝚺 𝒙 , , 𝒙 , . Consider the 𝑖 −th entry on the main diagonal of 𝚺 𝒙 , , 𝒙 ,  as 

given by (4-77). Taking its expectation yields  

 𝔼𝒙 , |
Σ , , 𝒙 , , 𝒙 ,  

= 𝔼𝒙 , |
𝝓 𝝁 , + 𝝓 𝝁 , 𝒙 , − 𝝁 , 𝚺 , , 𝝓 𝝁 , + 𝝓 𝝁 , 𝒙 , − 𝝁 , . 

(4-86) 

For the ease of readability, let 𝝓 𝝁 , = 𝝓 𝝁 , − 𝝓 𝝁 , 𝝁 ,  and note that 𝝓  is 

independent of 𝒙 , . Hence, (4-86) becomes 

 𝔼𝒙 , |
Σ , , 𝒙 , , 𝒙 ,  

= 𝔼𝒙 , |
𝝓 𝝁 , + 𝝓 𝝁 , 𝒙 , 𝚺 , , 𝝓 𝝁 , + 𝝓 𝝁 , 𝒙 ,  

= 𝔼𝒙 , |
𝝓 𝝁 , 𝚺 , , 𝝓 𝝁 , + 𝔼𝒙 , |

𝒙 , 𝝓 𝝁 , 𝚺 , , 𝝓 𝝁 ,  

+𝔼𝒙 , |
𝝓 𝝁 , 𝚺 , , 𝝓 𝝁 , 𝒙 , + 𝔼𝒙 , |

𝒙 , 𝝓 𝝁 , 𝚺 , , 𝝓 𝝁 , 𝒙 , . 

(4-87) 

The first, second and third term in (4-87) linearly depend on 𝒙 , . Hence, evaluating those 

terms is straightforward by noting that 𝔼𝒙 , |
𝒙 , = 𝝁 , . The fourth term is solved by using 

the expectation of quadratic forms (see section 2.3.1 or Appendix B.10): 

 𝔼𝒙 , |
𝒙 , 𝝓 𝝁 , 𝚺 , , 𝝓 𝝁 , 𝒙 ,  

= Tr 𝝓 𝝁 , 𝚺 , , 𝝓 𝝁 , 𝚺 , + 𝝁 , 𝝓 𝝁 , 𝚺 , , 𝝓 𝝁 , 𝝁 , . 
(4-88) 

Hence, (4-87) becomes 

 𝔼𝒙 , |
Σ , , 𝒙 , , 𝒙 , = 𝝓 𝝁 , 𝚺 , , 𝝓 𝝁 , + 𝝁 , 𝝓 𝝁 , 𝚺 , , 𝝓 𝝁 ,  

+𝝓 𝝁 , 𝚺 , , 𝝓 𝝁 , 𝝁 , + Tr 𝝓 𝝁 , 𝚺 , , 𝝓 𝝁 , 𝚺 ,  

+𝝁 , 𝝓 𝝁 , 𝚺 , , 𝝓 𝝁 , 𝝁 , . 

(4-89) 

Similar to (4-71), let 𝚺𝒙 , | |
= 𝔼𝒙 , |

𝚺 𝒙 , , 𝒙 , . By using (4-84) as well as (4-85) and 

(4-89) the propagated covariance is 

 
𝚺 , = 𝑨 𝝁 , + 𝑩 𝝁 𝝓 𝝁 , 𝚺 , 𝑨 𝝁 , + 𝑩 𝝁 𝝓 𝝁 ,  

+𝑩 𝚺𝒙 , | |
𝑩 . 

(4-90) 
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With the mean (4-82) and the covariance (4-90), the total predictive GMM for nonlinear 
regressor functions is 

 �̂� 𝒙 ,  

= 𝛼 𝑁
𝒇 𝝁 , + 𝑩 𝝁 𝝓 𝝁 , ,

𝑨 𝝁 , + 𝑩 𝝁 𝝓 𝝁 , 𝚺 , 𝑨 𝝁 , + 𝑩 𝝁 𝝓 𝝁 , + 𝑩 𝚺𝒙 , | |
𝑩

. 
(4-91) 
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4.4.3 Online GP regression for uncertainty quantification 

Until know the uncertainty 𝚫 was assumed to be structurally known. This is the case in the 
presence of parameter uncertainties. However, often unmodelled or completely unknown 
dynamics affect the system. Neglecting the latter can lead to serious misjudgement in 
practice. One possibility to deal with this problem is to estimate bounds for the uncertainty 
and include them as an uncertainty in the forecast. Naturally, this approach leads to 
conservative estimates, which again might lead to physically irrelevant conclusions. Instead, 
the GP framework allows for the quantification of a model by using online gathered data. The 
key process behind this is GP regression as introduced in section 2.2.1. 

Figure 4-9 shows the structure of the proposed online uncertainty quantification approach. As 
shown in section 2.2.1, GP regression uses pairs of input-output data points to generate a 
belief of an underlying function. Hence, for the data collection only pointwise realizations of 
the system signals are required. The index 𝑘 indicates that a required quantity is evaluated at 
the specific time instant 𝑘,.  

The uncertainty quantification approach consists of four major parts. The block “uncertainty 
calculation” requires information about the current system state 𝒙 , , the control input 𝒖  as 

well as the state derivative �̇� , . Note that using the  If �̇� ,  is not measurable, it has to be 

estimated from 𝒙 ,  (or the measurement output 𝒚  respectively) using appropriate filtering 

techniques in the “Filter” block. Since computational resources are limited not every data 
point can be stored. The “Data Management” block decides whether a new data point is 
incorporated into the history stacks 𝑿 , 𝒀  or dropped. Finally, “Gaussian Process 
Regression” generates a belief on the uncertainty 𝚫(𝒙 , 𝒖) based on the stored data. The 
following sections detail the four parts of the uncertainty quantification approach. 

 

Figure 4-9: Uncertainty Quantification for the application to MRAC 

 

4.4.3.1 Derivative Estimation through fixed-point smoothing 
 

The uncertainty calculation requires information about the first time derivative of the system 
state �̇�  of the closed loop dynamics in (3-13). Dependent on the control problem as well as 
the installed hardware, sometimes the state derivatives can be measured directly. In velocity 
control problems, accelerometers measure the accelerations of the system. On the other 
hand, new developments in the field of laser gyroscopes enable the measurement of 
rotational rates.  
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In most cases the state derivative cannot be measured directly and it has to be estimated. 
Several techniques exist that allow the estimation of state derivatives. These filters can be 
classified into techniques, which instantly yield a solution and methods that require time in 

order to arrive at an estimate �̇� .  

A member of the former class is the Nonlinear Adaptive Variable Structure Derivative 
Estimator by Xu et al. ([108]). The authors employ multiple basic functions such as a 
switching gain, a saturation block and a deadzone modification in order to arrive at a suitable 
structure of a model, which estimates the state derivative. The parameters of the underlying 
functions are adapted online. While the state derivative is available directly, the approach 
has shown to be susceptible to noise. 

A representative of the later class is Optimal Fixed Point Smoothing (OFPS), which is based 
on Bayesian filtering and described by i.a. Gelb ([70]). The OFPS consists of two parts. Up to 

the current time 𝑡 , a forward Kalman Filter estimates �̇� (𝑡 ). A backward Kalman Filter 

operates on the time window 𝑡 … 𝑡 + ΔT in order to arrive at a point estimate of �̇� (𝑡 ). As a 
result, the estimates of the state derivative are delayed by ΔT. In the past, authors 
successfully employed the OFPS in various applications including flight tests ([43], [38], [79]). 
Further techniques with potential to arrive at a high quality estimate of the state derivative are 
GP filtering by Deisenroth et al. ([54]) and the results of Solak et al. ([198]). 

The uncertainty quantification algorithm does not require the data points to be available 
instantly. This allows for the application of time consuming techniques, which tend to achieve 
improved estimation performance when compared to methods that yield a solution instantly. 
Therefore, this thesis employs the OFPS. The necessary equations required to build and 
implement a discrete time OFPS are summarized in Appendix E.  

 

4.4.3.2 Uncertainty Calculation 
 

The modelling uncertainty at time 𝑘 is calculated by solving (3-13) to 𝚫(𝒙 ):  

 𝚫 𝒙 , = 𝑩 𝑨 𝒙 , + 𝑩 𝑲 𝒆 + 𝑩 𝑲 , 𝒙 , + 𝑩 𝑲 , 𝒓 + 𝑩 𝒖 , − �̇� , . (4-92) 

Here, 𝑩 = (𝑩 𝑩 ) 𝑩  denotes the Moore-Penrose pseudo-inverse of 𝑩  (see e.g. [15]). 

Note, that the utilization of the OFPS for the state derivative estimation �̇� ,  induces a time 

delay, due to the backward iterated KF. In the actual application, other signals need to be 
delayed by the same amount of time. Furthermore, note that for the uncertainty calculation 
also the smoothed estimates 𝒙 ,  of 𝒙 ,  can be used, as the latter are not necessarily 

available due to the output model. 

 

4.4.3.3 Data Management for GP Regression 
 

GP regression relies on a set of input-output data in order to form a belief on the uncertainty 
𝚫(𝒙 ). As introduced in section 2.2.1, the data is stored in the history stacks 𝑿  and 𝒀 . 

Here, the smoothed states 𝒙 ,  form the input data 𝑿  and the estimated uncertainty 𝚫 𝒙 ,  
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of (4-92) forms the output data 𝒀 . Since computational resources are limited, only a finite 
number of 𝑝  data points can be stored. As a consequence, the question arises, which data 
points to pick. In the following let 𝑝 ≤  𝑝  denote the number of data points, which are 
currently stored in the history stacks (𝑿 , 𝒀 ). 

In the beginning, the history stacks are empty with 𝑝 <  𝑝 . Let 𝒙∗ denote the candidate 
(input) data point, which is tested for storage in 𝑿 . A natural way is to store each incoming 
data point 𝒙∗ until the history stack 𝑿  is full. This approach is often undesirable, as 
redundant information is accumulated. In contrast, a more suitable method is to only pick 
points, which contain yet unknown information when compared to the already existing history 
stacks. To achieve this, it is checked how well the candidate data point 𝒙∗ is already 
represented by the existing elements in 𝑿 . Following this argument, Csato introduced the 
kernel linear independence test ([48]). The derivation in [48] is based on the representability 
of the GP within the Kernel-Hilbert space given the current history stack. The underlying 
concept is to evaluate the basis spanned by the kernel functions within the feature space. A 
candidate data point is only added to the history stack if it sufficiently increases the basis and 
thus the representability of the GP. The derivation in [48] results in the indicator 

 𝛾 = 𝒌𝒙∗𝒙∗ − 𝒌𝒙∗𝑿 𝒌𝑿 𝑿 𝒌𝑿 𝒙∗ . (4-93) 

The candidate data point 𝒙∗ is only added to the history stack 𝑿  if the linear independence 
test exceeds a predefined limit, i.e. 𝛾 > 𝜖  for some 𝜖 . Consequently, if a candidate (input) 

data point 𝒙∗ is added to 𝑿 , its respective uncertainty estimate 𝚫(𝒙∗) is added to 𝒀 . 

Once the history stack 𝑿  is full, i.e. 𝑝 = 𝑝 , the question arises how to deal with newly 
arriving data points. Several approaches exist. The simplest approach is to employ a static 
history stack. Thereby, once the history stack 𝑿  is full, all consecutive data points are 
discarded. This approach is easy to implement and only requires low computational 
ressources. However, this technique only leads to local uncertainty approximation, as data 
points outside of the region of 𝑿  are not considered. Furthermore, a change of the 
uncertainty over time cannot be captured.  

The second method is to employ a cyclic history stack [38]. Thereby, once a new data point 
arrives, which fulfils the kernel linear independence test in (4-93), the oldest stored data point 
is deleted and the new one is added. This approach is easy to implement while still exhibiting 
low computational costs. However, it might delete information, which is still critical to the GP.  

A third option is to employ the Sparse Online Gaussian Process Algorithm ([48], [38], [37], 
[194]). The approach only considers candidate data points, which already pass the kernel 
linear independence test in (4-93). First the candidate point is appended to the existing 𝑿 . 
The next step constructs 𝑝  new GPs by deleting a different single data point. The Kullback-
Leibler-divergence between the original (based on 𝑿 ) and each newly formed GP is 
calculated. The algorithm then selects the GP, which exhibits the largest calculated Kullback-
Leibler-divergence. The underlying idea behind this approach is to find the representation to 
which the candidate data point contributes the most. The Sparse Online Gaussian Process 
Algorithm automatically chooses the GP with the largest change to the former one. This way 
it keeps data, which is still important, which might have already been deleted by the cyclic 
approach. However, it exhibits higher computational costs than the static or cyclic history 
stack.  
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The mentioned list of techniques, which is by no means exhaustive, probably represents the 
most common approaches for data management in GP regression. Further methods can be 
found in i.e. [172]. 

 

4.4.3.4 GP Regression applied to MRAC 
 

The underlying assumption in GP regression is that the uncertainty is modelled by a GP such 
that: 

 𝚫(𝒙 )~𝐺𝑃(𝒎(𝒙 ), 𝚺(𝒙 , 𝒙 )). (4-94) 

The final step in GP regression utilizes the history stack pair (𝑿 , 𝒀 ) in order to infer a belief 

𝚫(𝒙 ) on the uncertainty 𝚫(𝒙 ):  

 𝚫(𝒙 )~𝐺𝑃(𝒎(𝒙 ), 𝚺(𝒙 , 𝒙 )). (4-95) 

The solution for the regression problem is given in (2-53) and (2-54). The following example 
is intended to create an understanding of how the presented online GP regression of section 
4.4.3 generates a belief on the uncertainty 𝚫 during controller runtime.  

 
 

Example 4-6: GP Regression example applied to MRAC 

Consider the simplified roll dynamics of a fixed-wing aircraft:  

 Φ̇
�̇�

= 𝑨
Φ
𝑝

+ 𝑩 𝑢 − Δ(Φ) . (4-96) 

Here, 𝑝  denotes the roll rate, Φ denotes the roll angle and 𝑢 represents the system input, 
which is given by the aileron deflection in reality. The input matrix 𝑩  represents the roll 
moment generated by an aileron deflection. Assume a generic uncertainty of the form 

 
Δ(Φ) = Θ∗ + Θ∗Φ + Θ∗ Φ + Θ∗

1

1 + 𝑒
+ 0.1 cos

1

6
Φ . (4-97) 

The input Φ to the uncertainty is assumed to be given in degrees. The system is subject to 

measurement noise 𝒗, where 𝒗~𝑁
0°

0
° ,

1 0
0 1

. Consider a reference model of the form 

(3-7) as well as the control law in (3-11) and the direct MRAC update laws with 𝜎-
modification of (3-19).  

The simulation runs for a total of 40𝑠 with a time step of 0.001𝑠. The reference command is 
comprised of consecutive step commands with an amplitude of 0°, 30° and −30°, each lasting 

5𝑠. The initial condition of the reference model is [Φ (𝑡 ) 𝑝 , (𝑡 )] = 0° 0
°

. The initial 

condition of the plant states is [Φ(𝑡 ) 𝑝 (𝑡 )] = 28.65° 0
°

.  
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The uncertainty quantification approach of section 4.4.3 is applied in order to form a belief on 
Δ(Φ) using online gathered data. Therefore, an OFPS is chosen to estimate the state 
derivative 𝒙 , . The history stack is limited to 𝑝 = 100 data points. A static history stack 

management is chosen. The squared exponential kernel function is chosen as a basis for the 
regression. Table H-2 in Appendix H.3 lists all relevant parameters in order to recreate the 
simulation. 

Figure 4-10 shows the evolution of the states (left column) as well as the uncertainty 
approximation (right column) at the four time instants 0𝑠, 7.5𝑠, 12.5𝑠 and 40𝑠. In the 
beginning, the history stacks are empty. Hence, all information about the uncertainty is 
compressed in the prior 𝑝(𝑓). Since no prior information is incorporated, the GP has a zero 
mean. Hence, it is seen to badly approximate the uncertainty Δ(Φ). 

After 5𝑠 the first step occurs and the data management algorithm starts to store data points 
based on the kernel linear independence test in (4-93). The second row in Figure 4-10 
depicts the state evolution as well as the current approximation of the uncertainty after 7.5𝑠. 
It can be seen that the algorithm stored data points evenly distributed within the already 
visited domain of the state space. This behavior can be attributed to the kernel linear 
independence test in (4-93), which only stores a candidate point if it sufficiently increases the 
basis of the GP. It can also be seen that the mean of the posterior GP approximates the 
uncertainty Δ(Φ) with only minor deviation in areas, which contain a sufficient density of data 
points. Similarly, its standard deviation decreases in the same areas. This can be attributed 
to the regression and the approximation capability of the GP. Note that areas of the state 
space, which do not contain data, still resemble the prior GP. 

After 10𝑠, the references signal commands a negative step with an amplitude of −30°. The 
third row in Figure 4-10 depicts the simulation state after 12.5𝑠. It can be seen that the 
system tracks the reference model with only minor deviations. In this phase, the algorithm 
also gathers data points for negative roll angles. Consequently, the mean of the posterior GP 
approximates the uncertainty with only minor deviations and its standard deviation decreases 
significantly. 

Finally, the last row in Figure 4-10 depicts the situation after 40𝑠. It can be seen that the 
system tracked 7 consecutive step commands. When compared to the situation after 12.5𝑠, 
only a small number of data points was added to the history stack. This again can be 
attributed to the kernel linear independence test, which only stores points if they significantly 
increase the basis of the GP. Since the reference command sequence repeats itself after 
20𝑠, no fundamentally new information is encountered afterwards. In contrast, if the 
amplitude of the reference command was increased, the algorithm would store data points in 
the new state space regions.  
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Time State Evolution GP Model 

0𝑠 

  

7.5𝑠 

  

12.5𝑠 

  

40𝑠 

  
Figure 4-10: State evolution and uncertainty quantification at different points in time 
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4.5 Indicator Function, Confidence Measure and Monitoring Output  

Sections 4.3 and 4.4 showed how to propagate a GMM through a nonlinear system and a 
GP. Recursive application of this process yields a stochastic forecast of the system states 
over the prediction horizon. The following chapter relies on the result of the forecast in order 
to assess the occurrence of a requirement violation and the confidence the monitoring 
algorithm has in its prediction. Therefore, section 4.5.1 develops an indicator function for 
requirement violation within the prediction horizon. Secondly, section 4.5.2 introduces a 
confidence measure, which assesses the propagated approximation error. Finally, section 
4.5.3 shows how to integrate both results to calculate a single monitoring output, which 
reflects both, the result of the prediction as well as the monitor’s confidence in it. 

4.5.1 Indicator Function for Requirement Violation 

Let �̂� 𝒙 , = ∑ 𝛼 𝑁 𝝁 , , 𝚺 ,  denote the approximated state distribution of 

𝒙 ,  after Δ𝑘 forecast steps. Assume that 𝒙  denotes a state requirement on 𝒙 . The 

question arises under which conditions the monitoring algorithm reports an imminent 
requirement violation. These conditions in turn are highly dependent on the application. For 
example, it might be desirable to only flag requirement violations for a certain system state if 
they occur over more than one prediction time step. In contrast, for a different state it might 
be desirable to report an imminent requirement violation the second it occurs in the 
prediction. Consequently, consider the evaluation of the monitoring output to be given by an 
indicator function 𝑓 : 

 
𝑓 ≔

1 if ℎ > 𝛿
0 if ℎ ≤ 𝛿

 (4-98) 

The monitoring function is comprised of a test function ℎ  and a threshold 𝛿 . The 
underlying idea is to evaluate the number of requirement violations occurring during the 
prediction horizon using the test function ℎ . If the latter exceeds a predefined threshold 
𝛿 , the monitor raises a warning. Consider the following test function candidate:  

 
ℎ = 𝑔 �̂� 𝒙 , , 𝒙  (4-99) 

Here, 𝑔 (⋅) represents an indicator function, which determines whether a requirement 
violation occurred at the single time step 𝑘 + Δ𝑘, where Δ𝑘 ∈ [𝛼 , 𝛽 ]. In some situations it 
might be desirable to consider only a subset of the prediction horizon. Here, 𝛼  and 𝛽  
represent the first and last time step defining this subset within the prediction horizon. As an 

indicator function 𝑔 (⋅), this thesis checks whether the probability 𝑃 𝒙 , > 𝒙  of 

exceeding the state requirement 𝒙  exceeds a predefined limit 𝛿 :  

 
𝑔 �̂� 𝒙 , , 𝒙 : =

1 if 𝑃 𝒙 , > 𝒙 ≥ 𝛿

0 if 𝑃 𝒙 , > 𝒙 < 𝛿
 (4-100) 

In the presented case, the probability of a requirement violation is formulated with respect to 
an absolute and constant state requirement 𝒙 . This case can easily be extended to more 

complex structures such as algebraic functions 𝑓 𝒙 , Δ𝑘 . E.g. Bierling in [17] uses relative 
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state requirements, which tighten over time. In any case, the probability 𝑃 𝒙 , > 𝒙  is 

calculated by evaluating the cdf of 𝒙 , :  

 

𝑃 𝒙 , > 𝒙 = 1 − 𝑃 𝒙 , ≤ 𝒙 = 1 − �̂� 𝒙 , 𝑑𝒙 ,

𝒙

 

 (4-101) 

Inserting the equation for the GMM in (4-5) as well as swapping the sum and the integral 
yields 

 

𝑃 𝒙 , > 𝒙 = 1 − 𝛼 𝑁 𝝁 , , 𝚺 , 𝑑𝒙 ,

𝒙

 

 

= 1 − 𝛼 𝑁 𝝁 , , 𝚺 , 𝑑𝒙 ,

𝒙

 

. 

(4-102) 

Evaluating the probability 𝑃 𝒙 , > 𝒙  of a requirement violation reduces to the problem 

of evaluating the weighted sum of the cdfs of the Gaussian mixtures. Using equations (4-98)-
(4-102), different monitoring strategies are imaginable. Therefore, let 𝑘  denote the length 
of the prediction horizon. Table 4-1 lists four parameter combinations and the four resulting 
monitoring strategies. The threshold 𝛿  is problem specific and therefore not included in the 

scenarios of Table 4-1. The mentioned scenarios represent the most important parameter 
sets in the view of the author. The depicted list is not meant to be exhaustive and is easily 
extendable. Note, that it also might be desirable to solely supply the probability in (4-102) 
instead of a binary indicator.  

Parameter Set Strategy Description 

𝛼 = 0, 𝛽 = 𝑘  

𝛿 = 0 

The monitor indicates a requirement violation if the requirement 
limit is exceeded at least once during the complete prediction 
horizon. 

𝛼 = 0, 𝛽 = 𝑘  

𝛿 > 0 

The monitor indicates a requirement violation if the requirement 
limit is exceeded at last 𝛿 + 1 times during the complete 
prediction horizon.  

𝛼 = 0, 𝛽 < 𝑘  

𝛿 = 0 

The monitor indicates a requirement violation if the requirement 
is exceeded at least once during the time frame Δ𝑘 ∈ [0, 𝛽 ]. 
As a consequence, the predicted state distribution is allowed to 
violate the requirements in the horizon 𝛽 < Δ𝑘 ≤ 𝑘  

𝛼 > 0, 𝛽 = 𝑘  

𝛿 = 0 

The monitor indicates a requirement violation if the requirement 
is exceeded at least once during the time frame Δ𝑘 ∈

[𝛼 , 𝑘 ]. As a consequence, the predicted state distribution is 
allowed to violate the requirements in the horizon 0 ≤ Δ𝑘 < 𝛼  

Table 4-1: Strategies for the parameter selection of the indicator function 
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4.5.2 Confidence in the Monitor Prediction Quality 

The prediction and therefore the result of the monitoring algorithm depend on a series of 
models and approximations of the real system. Consequently, the forecast is subject to 
errors, which in turn are propagated through the dynamical model. The sole reliance on the 
indication of the monitor neglects the approximation errors. Colloquially speaking, the 
monitor is given full trust. The indicator function in (4-98) intrinsically forms a binary classifier. 
As a result of the propagated errors, the false positive and false negative values might 
increase, thus provoking a reaction of the operator or control system, which is not desirable. 

For the proposed monitoring technique, three main sources of propagation errors exist. First, 
the initial state distribution is approximated by a GMM in (4-5). While the approximation 
improves with the number of mixture components, an approximation error remains. 
Secondly, as shown in section 4.3, the GMM is propagated through a surrogate model, 
consisting of piecewise linear functions. The latter originate from a first order Taylor series 
expansion at the mean of each mixture element. Still, the linearization may not be valid over 
most of the support of the respective mixture, hence introducing errors in the propagation. 
Lastly, in section 4.4.3, the unknown uncertainty is assumed to be modelled by a GP. In 
reality this assumption might not hold.  

While the first two error sources can be assessed at each prediction step, the assumption on 
the representability of the uncertainty by a GP requires extensive prior analysis and exceeds 
the scope of this thesis. Therefore, it only concentrates on the propagation error resulting 
from the approximation of the state distribution by a GMM as well as its propagation through 
the nonlinear dynamics.  

The basis of the prediction step is the Chapman-Kolmogorov equation for the real state pdf 

𝑝 𝒙 ,  in (4-2). Expanding it by adding and subtracting the estimated predicted state 

distribution �̂� 𝒙 ,  and using (4-33) yields 

 
𝑝 𝒙 , = 𝑝 𝒙 , 𝒙 , 𝑝 𝒙 , 𝑑𝒙 ,  

+ �̂� 𝒙 , 𝒙 , �̂� 𝒙 , 𝑑𝒙 , − �̂� 𝒙 , 𝒙 , �̂� 𝒙 , 𝑑𝒙 , . 
(4-103) 

Rearranging terms yields 

 
𝑝 𝒙 , = �̂� 𝒙 , 𝒙 , �̂� 𝒙 , 𝑑𝒙 ,

+ 𝑝 𝒙 , 𝒙 , 𝑝 𝒙 , − �̂� 𝒙 , 𝒙 , �̂� 𝒙 , 𝑑𝒙 , . 
(4-104) 

The approximation �̂� 𝒙 ,  of the initial state distribution 𝑝 𝒙 ,  results in an approximation 

error 𝜂 𝒙 ,  such that 

 𝑝 𝒙 , = �̂� 𝒙 , + 𝜂 𝒙 , . (4-105) 
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By using (4-105), (4-104) becomes 

 
𝑝 𝒙 , = �̂� 𝒙 , 𝒙 , �̂� 𝒙 , 𝑑𝒙 ,  

+ 𝑝 𝒙 , 𝒙 , �̂� 𝒙 , + 𝜂 𝒙 ,  − �̂� 𝒙 , 𝒙 , �̂� 𝒙 , 𝑑𝒙 ,  

= �̂� 𝒙 , 𝒙 , �̂� 𝒙 , 𝑑𝒙 ,  

+ 𝑝 𝒙 , 𝒙 , − �̂� 𝒙 , 𝒙 , �̂� 𝒙 , 𝑑𝒙 ,

𝒙 ,

+ 𝑝 𝒙 , 𝒙 , 𝜂 𝒙 , 𝑑𝒙 ,

𝒙 ,

 

(4-106) 

The terms Δ𝑝 𝒙 ,  and Δ𝑝 𝒙 ,  represent the propagated error resulting from 

approximation inaccuracy. In particular, Δ𝑝 𝒙 ,  represents the error resulting from the first-

order Taylor series expansion of the nonlinear dynamics. In turn, Δ𝑝 𝒙 ,  represents the 

error resulting from the GMM approximation of the initial state distribution 𝑝 𝒙 , . If both, 

Δ𝑝 𝒙 ,  and Δ𝑝 𝒙 , , vanish, then the real distribution forecast is obtained.   

One way to decrease the propagation error and increase the quality of the monitoring 
algorithm is to enhance the precision of its modules. In fact, Terejanu et al. argues in [206] 
that as the limit of the mixtures’ covariance approaches zero, the error terms 

Δ𝑝 𝒙 , , Δ𝑝 𝒙 ,  tend to zero. Following the neural network universal approximation 

theorem, this requires an increase in the number of mixture elements. Therefore, possible 
solutions to increase the approximation property include the increase of the number of 
mixture weights or allowing for an update of the mixture weights 𝛼  at each prediction step. 
However, an increase in precision usually increases the complexity and the demand in 
computational resources. Instead, this thesis takes a different route by introducing a 
confidence measure for the prediction. The underlying idea is to assess the quality of the 
prediction steps and include the results in the indication given by the monitor. Colloquially, 
the goal is an assessment of how far the monitoring output can be trusted. 

To achieve this, this thesis proposes the use of the Overlapping Coefficient (OVL; [99], see 
Appendix B.9). In essence, the OVL is a mathematical operation, which compares two 
distributions and returns the amount of shared area. Figure 4-11 shows an exemplary 
application of the OVL. Figure 4-11 (left) shows the shared area of two normal distributions 
with equal standard deviation but shifted mean. The OVL and therefore the shared area 
amounts to 62% in this example. The OVL can be applied to arbitrary distribution pairs. 
Figure 4-11 (right) shows the shared area and the OVL of a normal distribution with respect 
to 𝑝(tan (𝑥)), given that 𝑥 follows the standard normal distribution.  

The underlying idea of the application of the OVL is to assess the shared area between the 

real forecast 𝑝 𝒙 ,  and the approximated one �̂� 𝒙 , . Colloquially speaking, the OVL 

can then be interpreted as an estimate about how much of the distribution is propagated 
correctly. The higher the score of the OVL, the more confidence can be put into the result of 
the forecast. Often, the Kullback-Leibler Divergence is used in order to compare the similarity 
between two distributions. However, the latter is unbounded and hard to interpret. Due to 
these properties, this thesis uses the OVL instead. 
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Figure 4-11: Overlapping Coefficient between two normal distributions (left) and two arbitrary 

distributions (right) 

In the case of the presented GMM, the OVL is calculated for each mixture element: 

 
OVL 𝑝 𝒙 , , �̂� 𝒙 , = 𝛼 OVL 𝑝 𝒙 , , 𝑁 𝝁 , , 𝚺 , . (4-107) 

Here, 𝑝 𝒙 ,  denotes the probability distribution for propagating a normally distributed 

random variable, which inherits the statistics of the 𝑖-th mixture element, through the 
nonlinear dynamics. It therefore, resembles the true posterior, which is formed by 
propagating the 𝑖-th mixture element through the nonlinear dynamics.  

Solving (4-107) requires knowledge about the true posterior distributions 𝑝 𝒙 , . Since 

𝑝 𝒙 ,  is almost surely non-normal, calculating the respective distribution exactly is often 

not possible. Instead, sampling based approaches offer a way to estimate 𝑝 𝒙 , . The 

underlying idea is to generate a large number of samples from the prior distribution, 
propagate them through the nonlinear dynamics and analyze the result. While this approach 
yields good results in practice, it is computationally expensive. However, note that the 
nonlinear system dynamics are assumed to be time invariant. This indicates that the 
propagation of a normal distribution through the nonlinear dynamics solely relies on the first 
and second moment of the prior. Hence, this thesis pre-calculates the OVL for the expected 
range of the first and second moment and stores the result in a lookup-table. The online 
algorithm reduces to a query in the lookup table for each mixture element. Figure H-2 in 
Appendix H.4 applies the OVL to the functions of Example 4-4 and therefore exemplarily 
demonstrates how such a lookup table can be constructed. 

During the forecast, the OVL not only depends on the current prediction step, but also on all 
past prediction steps. Hence, the OVL for the Δk −th prediction step becomes: 

 
OVL 𝑝 𝒙 , , �̂� 𝒙 , = OVL 𝑝 𝒙 , , �̂� 𝒙 , . (4-108) 

Note, that (4-108) also depends on the difference between the initial distribution 𝑝 𝒙 ,  and 

its initial approximation �̂� 𝒙 ,  by a GMM. Hence, (4-108) inherently deals with both, errors 

due to the approximation of the nonlinear dynamics and the approximation error of the initial 
state distribution by a GMM. 
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4.5.3 Monitoring Output 

Section 4.5.1 introduced an indicator function for potential imminent requirement violation 
based on the prediction of the state trajectories. Section 4.5.2 introduced a measure, which 
assesses the monitor’s confidence into its indication. Alone, each quantity only presents a 
part of the big picture. If for example, the confidence measure is neglected, the output can 
raise a warning even though the quality of the forecast is degraded and doesn’t represent the 
reality sufficiently well. In turn, the confidence measure only relays information about the 
prediction quality, not about the probability of a state requirement violation.  

A logical conclusion is to supply the probability of a state requirement violation in (4-102) 
instead of a binary value (4-98), as well as the confidence of (4-108). Together they yield a 
bigger picture and allow the operator to assess the current situation. While this might be true 
for extreme cases, such as a high probability in the indicator and a high confidence (or vice 
versa), the assessment becomes more complicated if both quantities reside in medium 
ranges. One such example is that the indicator function indicates a 40% chance of 
requirement violation, while the confidence is at 60%. Deriving suitable actions from this 
circumstance is not straight forward.  

Instead of assessing the indicator probability of (4-102) and the confidence separately, a 
different approach includes the combination of both quantities into a single modified 
probability. Therefore, let the monitoring output be given by the modified probability 

𝑃 𝒙 , ≤ 𝒙  of abiding all state requirements:  

 𝑃 𝒙 , ≤ 𝒙 = 1 − 𝑃 𝒙 , > 𝒙 OVL 𝑝 𝒙 , , �̂� 𝒙 ,  (4-109) 

Note that the indicator function supplies the probability of a requirement violation, i.e. 

𝑃 𝒙 , > 𝒙 . Since it simplifies the calculation, here the probability of state requirement 

abidance is used. They are connected by 𝑃 𝒙 , ≤ 𝒙 = 1 − 𝑃 𝒙 , > 𝒙 . In the 

above mentioned example, 𝑃 𝒙 , ≤ 𝒙  would assess the requirement abidance with 

36%, which is easier to interpret than the single quantities. 𝑃 𝒙 , ≤ 𝒙  can then be 

integrated into the indication strategy of (4-98) to again yield a binary output. 

The proposed modified probability for requirement violation is more conservative than the 
individual quantities. In fact, if the prediction is completely certain that no requirement 
violation will occur, but the confidence is low, then also the modified probability will be low 
and vice versa. While this might deteriorate the achieved prediction performance, in the 
author’s opinion, it is desirable to act cautious if either quantity is low. 
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4.6 Implementation Aspects 

The following section is intended to highlight the, in the view of the author, most important 
implementation aspects. Thereby, a special focus is on approaches that decrease the 
computational complexity of the algorithm. Note that the list is not intended to be exhaustive. 
As a basis, Table 4-2 depicts a sample application of the monitoring algorithm. The latter 
assumes direct MRAC with online GP regression.  

 
while new measurements are available do: 

Given a new measurement 𝒙 , , calculate 𝒙 , , �̇� ,  by section 4.4.3.1 

Calculate 𝛾 by (4-93) 
if 𝛾 > 𝜖  then 

Calculate 𝚫 𝒙 ,  by (4-92) 

if 𝑝 < 𝑝  then 

store 𝒙 , , 𝚫 𝒙 ,  in (𝑿 , 𝒀 ) 

elseif 𝑝 == 𝑝  

use data management in section 4.4.3.3 to store or discard 𝒙 , , 𝚫 𝒙 ,  

Calculate �̂� 𝒙 ,  as of (4-5) by (2-5) 

for Δ𝑘 = 1 to 𝑘  do: 
Calculate the linearized system dynamics by (4-17) 

Calculate �̂� 𝒙 ,  by (4-91) 

Calculate algorithm confidence by (4-108) 

Calculate 𝑃 𝒙 , ≤ 𝒙  by  

Calculate 𝑃 �̅� , ≤ �̅�  by (4-109) 

Use 𝑃 �̅� , > �̅� = 1 − 𝑃 �̅� , ≤ �̅�  to calculate 𝑓  by (4-98) 

If 𝑓 == 1 then 
Issue warning to the operator 
Issue integrity value and requirement violation probability to the operator 
 

Table 4-2: The proposed monitoring algorithm exemplarily depicted for direct MRAC 

 

Approximating the initial state distribution �̂� 𝒙 ,  by a GMM requires the solution of the 

optimization problem in (2-5). Optimization is computationally expensive and hence should 
be avoided during the runtime of the algorithm. In general, the characteristics of the 
employed sensor do not change. Hence, the solution to (2-5) is calculated prior to algorithm 
deployment and only the mean is shifted based on the current measurement. However, if the 
need of changing the characteristics occur, the optimization problem does not necessarily be 
computed again. Rather, the GMM can be scaled by a measure the new pdf scales 
compared to the original one. However, the user has to ensure that the quality of the 
representation is still sufficient. In particular, upscaling leads to poor representability and 
requires a new soluation to the optimization problem.  

Intuitively, a user would select the frequency of the monitor equal to the one of controller. 
This originates from the reasoning that choosing smaller time steps for the monitoring 
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algorithm tends to yield better results. However, this increases the number of iterations the 
algorithm stays in the prediction loop. Hence, choosing a larger time step reduces 
computational expense, while only marginally increasing the prediction error. This in turn can 
be attributed to the effect that the time step has a linearizing effect on the system dynamics.  

The GP regression step of (2-53) and (2-54) requires the inversion of the matrix 𝒌𝑿 𝑿 +

𝜎 𝑰 . While an inversion operation tends to be computationally expensive, a variety of 

techniques exist, which reduce this cost by leveraging special matrix properties. Note, that 
the matrix 𝒌𝑿 𝑿 + 𝜎 𝑰 is positive definite. Hence, this thesis uses the Cholesky factorization 

(see Appendix 0), which decomposes the respective matrix into a lower and an upper 
triangular matrix. The original inverse is computed by multiplying the inverse of the lower (or 
upper) decomposition with its inversed and transposed version. Alternatively, instead of 
inverting a matrix, in [48] Csató introduces a gradient based approach for GP regression. 

The integral of the indicator function in (4-102) is not easily calculated. Instead, similarly to 
the OVL in section 4.5.2, the solution for each mixture can be pre-calculated for the expected 
mean and covariance domain and stored in a look-up table. Evaluating the latter online is 
computationally more efficient than calculating the integral directly.  

In order to save computational time, the forecast can be halted once the OVL becomes lower 
than a predefined threshold. The underlying argument is that the OVL is monotonically 
decreasing and hence the prediction will be highly uncertain once it falls below a certain 
threshold. 

To reduce the required computational power, the prediction does not have to be executed in 
each controller step. Instead, the prediction horizon can be calculated within a number of 
controller steps. The computational burden is then divided upon each controller step. 

Most flight control computers rely on a CPU as the core processing unit. Recently, GPUs 
gained extensive interest in industry, as they are capable of processing large amounts of 
parallel information. Amongst others, they are utilized for the training of deep neural networks 
or Bitcoin mining. The presented monitoring approach relies on the forecast of multiple 
Gaussian mixtures. The mixtures could be treated independently and therefore processed on 
parallelizing hardware, thus effectively reducing computational time.  
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4.7 Conclusion 

Chapter 4 proposed a monitoring approach, which predicts the trajectories of the system and 
controller states. The underlying goal is to move the assessment of the nonlinear control 
approach from an a-priori analysis to an online evaluation. This is required, as existing tools 
and techniques for the analysis of nonlinear controllers are highly conservative as well as not 
applicable to the current certification framework. To evaluate the controller online, the 
monitor aims at achieving an online assessment of potential imminent requirement violation. 
This is achieved by employing a GMM and propagating its mixtures through a surrogate 
model of the nonlinear dynamics, which in turn is represented by a first order Taylor-series 
approximation at each mixture mean (see section 4.3). Unknown or neglected dynamics are 
represented by a GP model, which is either available from prior testing or generated online 
using GP regression (see section 4.4). At each prediction step, the probability of a 
requirement violation is assessed. If it exceeds a certain limit, the monitor issues a warning. 
Since the approach relies on a series of approximation, a confidence measure is introduced, 
which is intended to track the propagated approximation error during the prediction. Both, the 
probability of a requirement violation as well as the monitor’s confidence can be combined in 
a single indicator, which encompasses the complete information about the forecast (see 
section 4.5.3). 

Several authors already use GMMs and GPs to propagate uncertainties through nonlinear 
systems. E.g. in [206], Terejanu showed how to propagate GMMs through nonlinear systems 
and applied it to filtering problems. Similarly, using GP models for long term prediction has 
been applied amongst others in Hardy ([85]). In particular, Hardy used GMMs and 
propagated them through GPs to deal with non-Gaussian distributions. The proposed 
monitoring approach differs as it extends either approach by leveraging known prior models 
apart from GP models to incorporate as much knowledge as possible. The novelty of the 
proposed approach therefore primarily lies within the combination of known techniques and 
their application to nonlinear control problems. 

The presented monitoring approach exhibits two main advantages. First, it overcomes the 
limiting nature of an offline Lyapunov analysis, which intrinsically aims at finding the worst 
case scenario and uses the latter as its solution. In contrast, the presented monitoring 
approach predicts system trajectories dependent on the current system state. Hence, the 
monitor tries to find a local solution to the prediction and is not interested in the worst case 
scenario. Furthermore, the latter is acceptable as long as its probability of appearance is low. 
As a result the monitoring approach is less conservative and admits physically reasonable 
solutions. Secondly, the monitor is able to handle uncertainties as long as they can be 
modelled by GPs and inferred from online gathered data. As a result, the system dynamics 
are allowed to change between operations as their change can be assessed online. 
Furthermore, the monitor is theoretically able to handle system faults and damage occurring 
during operation.  

However, the proposed monitor also exhibits some disadvantages. First, the algorithm is 
computationally expensive as it requires the recursive application of the prediction step. 
Furthermore, even though the confidence measure is intended to track the propagated 
approximation error, no mathematical guarantees are known to the author. Lastly, the 
monitoring algorithm does not indicate actions. That is, the monitor will flag an imminent 
requirement violation, but it will not offer advise on how to counter the violation. 
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The proposed monitoring algorithm presents an alternative way for the future certification of 
nonlinear flight control algorithms by moving from the controller assessment from an offline 
analysis to online verification. In the same time the mentioned disadvantages offer room for 
further development. 
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5 Application in Numerical Simulation 

This section applies the presented monitoring technique to two simulation examples. The first 
example features a direct MRAC approach in order to control the roll dynamics of an aircraft 
subject to wingrock motion. The second example features a PMRAC approach for the short 
period of a F-16 fighter aircraft. In this section, all plots showing the evolution of states are 
down-sampled from the simulation frequency in a ratio of 15: 1. 

5.1 Direct Model Reference Adaptive Control for wing-rock dynamics 

This section adopts the simulation example of [41]. Modern highly swept-back, or delta wing, 
fighter aircraft are susceptible to lightly damped oscillations in the roll angle, known as “wing-
rock”. The latter primarily occurs at conditions commonly encountered during landing ([179]). 
The ability of controlling the aircraft precisely in the presence of wing rock is critical for 
landing. Let 𝜙 denote the roll attitude of an aircraft, 𝑝  denote the roll rate and ζ  the aileron 
command. Then a model for the roll dynamics of an aircraft subject to wingrock dynamics is 
([142]): 

 �̇� = 𝑝  

�̇� = 𝐿 𝜁 − Δ(𝜙, 𝑝 ). 
(5-1) 

Here, the uncertainty Δ(𝜙, 𝑝 ) describes the wing rock motion: 

 Δ(𝜙, 𝑝 ) = Θ∗ + Θ∗𝜙 + Θ∗ 𝑝 + Θ∗ |𝜙|𝑝 + Θ∗ |𝑝 |𝑝 + Θ∗ 𝜙 . (5-2) 

Note, that the dynamics in (5-1) lack a roll damping term. The latter is included in the 
uncertainty formulation of (5-2) for the purpose of this simulation example. Note that 
𝑩 =  [0 𝐿 ] . The parameters of (5-2) are adopted from Singh et al. ([196]). The control 
architecture of section 3.2 with the control law (3-11) such that 𝜁 = 𝜁 + 𝜁 + 𝜁  is 
employed. Therefore consider the following reference model: 

 �̇�
�̇�

= 𝑨
𝜙
𝑝

+ 𝑩 𝑟. (5-3) 

The adaptive controller uses the structure of (3-15), where the basis function 𝛗 is given by 
the basis of the uncertainty in (5-2): 

 𝝋 = [1 𝜙 𝑝 |𝜙|𝑝 |𝑝 |𝑝 𝜙 ] . (5-4) 

The update law of (3-19) uses a 𝜎-modification with 𝑘(𝚯) = −𝜎𝚯,  such that 

 �̇� = −𝚪𝝋𝒆 𝑷𝑩 − 𝚪𝜎𝚯. (5-5) 

The simulation runs for a total of 40𝑠 with a time step of 0.01𝑠. The exogenous reference 

input commands an attitude of 57° between seconds 15 and 17 and −57° between seconds 
25 to 27, respectively. The plant states are initialized at 𝜙(𝑡 ) = 68° and 𝑝 (𝑡 ) = −57∘/𝑠. 
The reference model states as well as the adaptive weights are initialized at zero. Table 5-1 
summarizes the relevant simulation parameters for the plant and the controller as well as the 
respective initial conditions for a concise overview.  
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Simulation Parameter Numerical Value  

General Simulation 

𝑡  0𝑠  

𝑑𝑡 0.01𝑠  

𝑡  40𝑠  

Plant  

𝑨  0 1
0 0

 

𝑩 =
0
𝐿  0

3
 

[Θ∗ Θ∗ Θ∗ Θ∗ Θ∗ Θ∗ ] [0.8 0.2314 0.6918 −0.6245 0.0095 0.0214] 

[𝜙(𝑡 ) 𝑝 (𝑡 )] 68° −57
°

𝑠
 

Baseline Controller 

𝑨  0 1
−1 −1

 

𝑩  0
1

 

[𝜙 (𝑡 ) 𝑝 (𝑡 )] 0° 0
°

𝑠
 

𝑲  [0.5 0.4]  

Adaptive Controller 

𝚪 2 𝑰  

𝑸  |  𝑷 𝑰    |   
1.4417 0.333
0.333 0.6944

 

𝜎 0.1  

𝚯(𝑡 ) [0 0 0 0 0 0]   

Table 5-1: List of parameters used in the MRAC simulation example 

 

This chapter is divided into four parts. Section 5.1.1 presents the results of numerical 
simulation of the plant and the controller. Section 5.1.2 introduces the GMM based 
forecasting. Section 5.1.3 completes the proposed monitoring approach by applying the GP 
regression based uncertainty quantification.  

5.1.1 Numerical Simulation of Direct MRAC for wing-rock dynamics 

This section presents the results of the numerical simulation of the plant and the adaptive 
controller. Figure 5-1 shows the tracking performance of the closed loop system with 
adaptive controller. In the absence of the latter, the plant is unstable. In contrast, augmenting 
the baseline controller with MRAC leads to a tracking performance with only minor tracking 
error. This can be attributed to the fact that the adaptive element approximates the 
uncertainty Δ(𝜙, 𝑝 ) during the runtime of the simulation and therefore decreases its effect on 
the plant and error dynamics. 
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Figure 5-1: Tracking capability of the adaptive controller in the presence of wing-rock motion 

Figure 5-2 shows the evolution of the adaptive parameter. It can be seen that the weights do 
not converge to their optimal values. Parameter convergence is not necessarily guaranteed 
by direct MRAC. In fact, in order to achieve parameter convergence, different augmentations 
(such as concurrent learning by Chowdhary [42], [41]) need to be used or Persistency of 
Excitation of the regressor function 𝝋 has to be ensured ([23], [155]). While parameter 
convergence would allow a uniform cancellation of the uncertainty in time, it is not necessary 
to achieve good tracking performance. In fact, disturbances or unmodelled dynamics would 
prevent parameter convergence even if such augmentations were used. E.g. the 
experimental application of concurrent learning in [41] suggests that the parameters 
converge to a region around their optimal values. As a consequence, in real systems the 
adaptive parameters will never completely converge to their optimal parameters and 
therefore elicit the application of a state monitor. 

In the next step, the initial conditions of the plant states are independently, normally 

distributed with 𝜙(𝑡 )~𝑁(68°, (2.85°) ) and 𝑝 (𝑡 )~𝑁 −57
°

, 2.85
°

. The states of the 

reference model as well as the adaptive weights are still initialized at zero. The simulation is 
repeated 2500 times. 
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Figure 5-2: Evolution of the adaptive parameters in the presence of wing-rock motion 

Figure 5-3 shows the reference command, the state of the reference model as well as the 
evolution of the state trajectories over the simulation horizon. It can be seen that despite 
distributed initial conditions, the plant state trajectories stay bounded. This suggests that the 
adaptive controller is able to stabilize the system and track the reference model under 
various conditions. Moreover, the distributed state trajectories are seen to converge to their 
mean trajectory. After 15 seconds the distributed trajectories are nearly indistinguishable 
from the mean. This can be attributed to the fact that the adaptive controller is able to cancel 
the uncertainty pointwise in time. This in turn allows the baseline controller to reduce the 
error between the state trajectories and the reference model. Furthermore, the 
𝜎 −modification term in the update law decreases the distribution of the adaptive parameter 
trajectories as it regulates them towards the origin. See Figure H-3 in Appendix H.5 for the 
evolution of the adaptive parameters. Finally, within the first 15 seconds, the mean state 
trajectory is seen to oscillate between the upper and lower boundary of the trajectory 
distribution. This effect is particularly apparent in the evolution of the roll rate. An 
asymmetrical distribution around the mean suggests that the states are non-normally 
distributed over the considered simulation horizon.  

Figure 5-4 and Figure 5-5 respectively show the roll angle and roll rate trajectory distribution 
as a histogram at selected time instants, namely after 1𝑠, 2.8𝑠, 5.0𝑠 and at 10.0𝑠. 
Furthermore, the respective approximating normal distribution is depicted. The later 
originates from taking the mean and variance of the state trajectory distribution at the 
mentioned time instants. It indicates the result if the data is assumed to be normally 
distributed.    

0 5 10 15 20 25 30 35 40
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Figure 5-3: Tracking performance of the adaptive controller under wing-rock motion for normally 
distributed initial conditions  

 

It can be seen that even after 1𝑠 into the simulation, the roll angle distribution differs from a 
normal distribution as it starts to become skewed. However, assuming it to be normally 
distributed results in only minor errors. In contrast, the roll rate is seen to be heavily skewed 

towards the right as well as truncated at approximately −37 
°
. This can be attributed to the 

nonlinear dynamics of the system. In fact, the nonlinear uncertainty directly affects the roll 
rate dynamics, while the roll angle dynamics are linear. Due to the linear dynamics, the 
deterioration from a Gaussian requires time and the approximation of the roll angle 
distribution by a Gaussian only leads to minor errors. 

From 1𝑠 to 2.8𝑠 the roll angle distribution becomes skewed to the right, while the roll rate 
keeps its skewness to the right. In both cases, the state distribution is no longer well 
approximated by a Gaussian. This indicates that significant errors could be made by 
neglecting the nonlinear nature of the system during the prediction. After 5𝑠 into the 
simulation the roll angle and roll rate distribution become multimodal. Furthermore, the roll 
rate distribution changes its skewness from the right to the left side. In both cases the 
support decreases by approximately 50%. This indicates that the single trajectories are 
converging to the mean trajectory. Finally, after 10𝑠 both state distributions are multimodal. 
Furthermore, the support decreases by additional 50%.  
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Figure 5-4: Distribution of the roll angle 𝝓 in the wing-rock example after 1s, 2.8s, 5.0s and 10.0s 

 

Figure 5-5: Distribution of the roll rate 𝒑𝑩in the wing-rock example after 1s, 2.8s, 5.0s and 10.0s  
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5.1.2 Numerical Simulation with known nonlinearity  

This section applies the runtime monitoring approach of section 4 to the simulated system. In 
particular this section focusses on the propagation of the GMM through the nonlinear 
dynamics as proposed in section 4.3. Therefore, the nonlinerity is assumed to be exactly 
known. This assumption will be lifted in section 5.1.3. 

In order to propagate the GMM, first the linearized system dynamics need to be derived. For 
consistency, consider the right hand side of the dynamics in (5-1) and (5-2) to be given in the 
form of (4-6) and (4-11): 

 𝑓 = 𝑝  

𝑓 = 𝐿 𝑲𝒆 𝒆 + 𝐿 𝑲 ,𝒙[𝜙 𝑝 ] + 𝐿 𝑲 , 𝑟 + 𝐿 𝜁 − Δ(𝜙, 𝑝 ). 

𝒇𝚯 = −𝚪𝝋𝒆 𝑷𝑩 − 𝚪𝜎𝚯 

(5-6) 

Following the definitions and derivation in section 4.3, evaluating 𝒇 𝜙 , 𝑝 , , 𝜙 , 𝑝 , 𝚯  at 

the linearization point 𝜙 = 𝜙 , 𝑝 = 𝑝 ,  and 𝚯=𝚯  gives 

 
𝒇 𝜙 , 𝑝 , , 𝜙 , 𝑝 , 𝚯 =

𝒇 ,

𝒇 ,

𝒇𝚯,

=

𝑝 ,

𝐿 𝜁 − Δ 𝜙 , 𝑝 ,

−𝚪𝝋 𝒆 𝑷𝑩 − 𝚪𝜎𝚯

. (5-7) 

In order to construct the matrix 𝑨 , the partial derivatives of 𝑓 , 𝑓  and 𝒇𝚯 with respect to 

the system states 𝑓  and 𝑓   and the controller states 𝚯 need to be derived. The partial 

derivatives of 𝑓  and 𝑓  with respect to the system states 𝜙 and 𝑝  are 

 
𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝚯 𝚯

=

⎣
⎢
⎢
⎢
⎡

𝜕𝑓

𝜕𝜙

𝜕𝑓

𝜕𝑝
𝜕𝑓

𝜕𝜙

𝜕𝑓

𝜕𝑝 ⎦
⎥
⎥
⎥
⎤

,

𝚯 𝚯

=
0 1
0 0

+

𝟎

𝐿 𝑲𝒆 + 𝐿 𝚯
𝜕𝝋(𝜙, 𝑝 )

𝜕(𝜙, 𝑝 )
,

. 
(5-8) 

Here, 𝟎  denotes a row vector with 𝟎 ∈ ℝ × . The partial derivative 
𝝋( , )

( , )
 of (5-4) is 

 
𝜕𝝋

𝜕𝜙

𝜕𝝋

𝜕𝑝
,

=
0 1 0

𝜙

|𝜙 |
𝑝 , 0 3𝜙

0 0 1 |𝜙 | 2 𝑝 , 0

 (5-9) 

The partial derivatives of 𝑓  and 𝑓  with respect to 𝚯 are 

 
𝜕𝒇

𝜕𝚯 𝒙 𝒙 ,

=

𝜕𝑓

𝜕𝚯
𝜕𝑓

𝜕𝚯
,

=
𝟎

𝐿 𝝋 𝜙 , 𝑝 ,
. (5-10) 
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Similarly, the partial derivative of 𝒇  with respect to the system states 𝜙 and 𝑝  is 

 𝜕𝒇

𝜕(𝜙, 𝑝 )
,

= −𝚪
𝜕𝝋(𝜙, 𝑝 )

𝜕(𝜙, 𝑝 )
,

 ([𝜙 𝑝 , ]𝑷𝑩 ) − 𝚪𝝋 𝜙 , 𝑝 , 𝑩 𝑷 

+𝚪
𝜕𝝋(𝜙, 𝑝 )

𝜕(𝜙, 𝑝 )
,

([𝜙 𝑝 ]𝑷𝑩 ) 

(5-11) 

Finally, the partial derivative of 𝒇  with respect to the adaptive weights 𝚯 is 

 𝜕𝒇

𝜕𝚯 𝚯 𝚯
= −𝚪𝜎. (5-12) 

By constructing 𝑨  as shown in (4-17), the full linearized system dynamics are  

 �̇�
�̇�

�̇�

= 𝒇 𝜙 , 𝑝 , , 𝜙 , 𝑝 , 𝚯 + 𝑨 𝜙 , 𝑝 , , 𝜙 , 𝑝 , 𝚯

𝜙 − 𝜙
𝑝 − 𝑝 ,

𝚯 − 𝚯
. (5-13) 

The GMM used in this simulation example consists of 99 mixture elements. The initial 
standard deviation of each mixture element is selected to be σ , = 0.03. The mixture 

elements are equidistantly distributed in the range of 4𝜎 of the initial state distribution 

𝜙(𝑡 )~𝑁 68°, 2.85
°

 and 𝑝 (𝑡 )~𝑁 −57
°

, 2.85
°

. By solving the quadratic program 

in (2-5), the GMM is fitted to the initial state distribution of the simulation.  

The prediction horizon is set to 𝑡 = 39.99𝑠 with a time step of Δ𝑡 = 0.01𝑠. This results 

in 𝑘 = 3999 prediction steps. Note, that the initial time is not included in the prediction 
horizon. Hence, predicting for 39.99𝑠 results in a prediction to the end of the simulation. The 
GMM is propagated through the linearized dynamics in (5-13) according to the update laws 
in (4-37) and (4-38). Since the uncertainty is assumed to be known, it is evaluated at each 
mixture element at each prediction step. Table 5-2 summarizes the parameters used for the 
GMM based forecast. 

Simulation Parameter Numerical Value  

Prediction 

𝑡  39.99𝑠  

𝑑𝑡  0.01𝑠  

GMM 

𝑚  
(Number of mixture elements) 

99  

σ ,  0.03  

Initial distribution of the 
mixture elements 𝜇  

Equidistant within 4𝜎 of the initial state distribution 

Table 5-2: List of parameters used for the GMM forecast in the wing-rock example 
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Figure 5-6: Evolution of the predicted system states 𝝓 and 𝒑𝑩 over 𝟒𝟎𝒔 in the wing-rock example 

Figure 5-6 shows the predicted mean trajectory as well as the area in which 67%, 90% and 
99% of all state trajectories are predicted to reside in at each time instant. Furthermore, the 
plot depicts the mean trajectory as well as the evolution of the state trajectories for 
distributed initial conditions. The predicted area significantly shrinks after approximately 15𝑠. 
This indicates that the state trajectories converge to their mean, which in turn aligns with the 
simulation results in section 5.1.1. The underlying reason for this is that the adaptive weights 
converge to their mean trajectory (see Figure H-4 in Appendix H.5). The adaptive controller 
is able to cancel the uncertainty pointwise in time, resulting in linear error dynamics. In the 
absence of further disturbances, the propagation of a Gaussian rv (or mixture element) 
through stable linear dynamics results in a decrease of the variance. In turn, the area in 
which the states are predicted to reside in shrinks significantly. Furthermore, after 15𝑠 both 
mean trajectories predicted by the GMM are nearly indistinguishable from the simulated 
ones. This indicates that the proposed GMM forecast algorithm is in fact able to predict the 
evolution of the states over the simulation horizon.  

Figure 5-7 and Figure 5-8 show a highlighted version of the roll angle and roll rate evolution 
and prediction for the first 15𝑠 of the simulation. The predicted mean roll angle matches the 
simulated one with only minor errors. Similarly, the monitoring algorithm is able to predict the 
mean roll rate with only little error. Between seconds 5 and 10 the prediction is seen to match 
the frequency of the occurring oscillation, but assuming reduced amplitude. A discrepancy of 
about 2.5°/𝑠 occurs. The latter can be explained with the predicted adaptive parameters. 

Figure 5-9 shows the evolution as well as the prediction of the adaptive parameters within 
the first 15𝑠. It can be seen that after approximately 3𝑠 significant errors between the 
prediction as well as the simulation for Θ , Θ  and Θ  occur. The mentioned adaptive 
parameters correspond to the terms in the regressor vector (5-4), which are dependent on 
the roll rate 𝑝 . These errors occur in a time frame, where the states are close to zero. In this 
region, the two uncertainty terms |𝜙|𝑝  and |𝑝 |𝑝  assume a plateau. Any mixture element 
propagated through the uncertainty in this region becomes very sharp, i.e. the posterior 
variance approaches zero. Since a GMM only approximates continuous functions, it is 
unable to exactly represent truncated probability distributions. As a result, approximation 
errors occur, which are then propagated in consecutive state prediction steps, also 
influencing the seemingly unaffected linear uncertainty term 𝑝 . The wrongly predicted 
adaptive weights in turn lead to higher damping in the roll rate dynamics, effectively reducing 
the amplitude in the response. For the sake of completeness, the prediction of the adaptive 
parameters over the complete simulation horizon is depicted by Figure H-4 in Appendix H.5. 
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Figure 5-7: Predicted evolution of the roll angle 𝝓 over 15 seconds leveraging a GMM 

 

Figure 5-8: Predicted evolution of the roll rate 𝒑𝑩over 15 seconds leveraging a GMM 
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Figure 5-9: Predicted evolution of the adaptive weights over 15 seconds of the wing-rock simulation 
leveraging a GMM 

The predicted area in Figure 5-7 and Figure 5-8 is seen to encompass nearly every 
simulated state trajectory at each time instant. Furthermore, the 67%, 90% and 99% 
channels are seen to be asymmetrical around the mean. This indicates that the GMM 
represents a non-Gaussian probability distribution. These observations lead to the 
hypothesis that the GMM is able to predict the state pdf at each time instant despite the 
nonlinear dynamics. In the following, the GMM based state prediction is compared to a 
forecast, which propagates a normal distribution only. In particular, first the prediction of the 
mean is analysed, then followed by the full state distribution. Thereby, the aforementioned 
hypothesis of the GMM approximation capability is tested and analyzed.  
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Comparison of the predicted mean trajectory between GMM and normal distribution 

Figure 5-10 and Figure 5-11 show the state pdf prediction using a normal distribution (which 
is equivalent to using a single mixture element) instead of a GMM. It can be seen that the 
predicted mean roll angle and roll rate match the simulated ones with only minor errors. This 
leads to the hypothesis that the assumption on a normally distributed state trajectory is 
sufficient to predict its mean with satisfactory performance. In order to compare the results 
numerically, the following three metrics are employed. The average mean error 𝐸  
describes the average deviation of the predicted mean from the real one and is defined as 

 
𝐸 =

1

𝑘
𝑒 , . (5-14) 

Here, 𝑒 ,  defines the error between the predicted mean and the real one at the time 

instant 𝑘. The truncated ℒ  norm is defined as 

 

𝐸ℒ =
1

𝑘
𝑒 , . (5-15) 

Finally, the third metric 𝐸ℒ  measures the maximum absolute mean error occurring during 

the simulation: 

 𝐸ℒ = max
∈( … )

𝑒 , . (5-16) 

The metrics are evaluated for both, the prediction with the GMM as well as for the forecast 
with a normal distribution only. Furthermore, the two plant states are evaluated 
independently. Table 5-3 summarizes the results for the application of the metrics to the 15𝑠 
and 40𝑠 simulation. It can be seen that the application of the GMM compared to a single 
normal distribution reduces each error metric by approximately 30% for each plant state. 
Note that the effect decreases for longer simulation time. This again can be attributed to the 
convergence of the adaptive parameters and that the nonlinear effect on the error dynamics 
decreases. Even though the GMM shows supreme performance, the absolute error values 
are still acceptable in most applications. This leads to the conclusion that using a normal 
distribution as the basis for the pdf forecast would be sufficient if only the mean trajectory is 
of interest. However, in order to assess the risk or probability of a requirement violation, the 
full distribution needs to be taken into account. 

 Roll Angle 𝜙 Roll Rate 𝑝  

 𝐸 [°] 𝐸ℒ [°] 𝐸ℒ [°] 𝐸 [°/𝑠] 𝐸ℒ [°/𝑠] 𝐸ℒ [°/𝑠] 

GMM (15𝑠) 0.21 0.0086 1.19 0.72 0.0289 3.16 

Normal (15𝑠) 0.32 0.0123 1.66 1.05 0.0405 4.62 

GMM (40𝑠) 0.23 0.0052 1.20 0.63 0.0140 3.16 

Normal (40𝑠) 0.27 0.0061 1.66 0.76 0.0177 4.62 

Table 5-3: Average mean error, 𝓛𝟐 −like norm and maximum mean error for the prediction of the mean 
trajectory in the wing-rock simulation example comparing a GMM and a normal distribution forecast 
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Figure 5-10: Predicted evolution of the roll angle 𝝓 over 15 seconds leveraging a normal distribution 

 

Figure 5-11: Predicted evolution of the roll rate 𝒑𝑩over 15 seconds leveraging a normal distribution  
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Comparison of the full pdf approximation 

The predicted channels in Figure 5-7 and Figure 5-8 are seen to encompass nearly every 
simulated state trajectory at each time instant. In comparison, the predicted channels in 
Figure 5-10 and Figure 5-11 are seen to encompass the simulated state trajectories only in 
rare time instants. During the remaining time, large errors between the predicted and actual 
state trajectory occur. To better analyse both arguments the predicted pdf is analysed at 
various time instants.   

Figure 5-12 and Figure 5-13 respectively show the approximation of the plant state pdf for 
the roll angle and roll rate at different prediction steps, namely after 0𝑠, 1𝑠,2.8𝑠 and 5𝑠. The 
pdf of the simulated state trajectories is represented by a histogram. Additionaly, the 
predicted pdf using a GMM and a Gaussian is depicted. Note that the latter differs from the 
approximating normal in Figure 5-4 and Figure 5-5. In the former case, the histogram was 
approximated by a normal distribution at each time instant. Here, the initial state distribution 
is assumed to be normal and then propagated through the nonlinear dynamics. 

It can be seen that the normal distribution as well as the GMM approximate the initial state 
pdfs with no visible error. After 1𝑠 into the simulation the roll angle distribution is seen to 
become slightly skewed to the left. The GMM is seen to accurately approximate the pdf. In 
contrast, the normal distribution is unable to recreate the skewness. However, only minor 
errors occur in the latter case. In contrast, the roll rate pdf is seen to be highly skewed to the 

right and truncated at approximately −37 
°
. The GMM approximation is seen to recreate the 

skewness with a shift of approximately 2 
°
. Note that the GMM is unable to completely 

recreate the truncation, since it can only represent continuous pdfs. On the other hand, the 
normal distribution is seen to be unable to recreate both the skewness and the truncation. 

From 1𝑠 to 2.8𝑠 the roll angle distribution becomes skewed to the right. The GMM is able to 
recreate the general shape of the distribution, including a sharp peak at around −10°. 
However, the predicted peak is shifted by approximately 1°. This can be attributed to the 
propagation of errors, in particular from previous errors in the roll rate estimation. At this time 
step, the roll angle pdf is badly approximated by a Gaussian. In particular, the difference 
between the mean and the developed peak is approximately 5°, which can lead to serious 
misjudgement. The roll rate pdf is seen to keep its skewness to the right. While the GMM can 

represent the general shape of the pdf well, it keeps its shift of approximately 2 
°
. This can 

be attributed to propagated errors. Note that the overlap between the Gaussian and the state 
pdf is minimal.  

Finally, after 5𝑠 into the simulation the roll angle and roll rate distribution become multimodal. 
Furthermore, the roll rate distribution changes its skewness from the right to the left side. The 
GMM is able to represent the two modes in both cases. The GMM approximation of the roll 
angle peaks is shifted by approximately 0.5° respectively. On the other hand, the Gaussian 
approximation neglects the left mode and centers around the right one, thus again 
introducing significant errors into a potential requirement violation assessment. The GMM 

approximation of the roll rate inherits its shift of approximately 2 
°
, but retains the general 

shape of the roll rate pdf. Note that the Gaussian approximation is sharply centered around 

1.5
°
. Assessing the requirement violation using the latter leads to serious faults and 

constitutes the use of GMMs instead of Gaussian approximations.  
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Figure 5-12: Predicted pdf of the roll angle 𝝓 in the wing-rock example after 0s, 1s, 2.8s and 5.0s 

 

Figure 5-13: Predicted pdf of the roll rate 𝒑𝑩in the wing-rock example after 0s, 1s, 2.8s and 5.0s 
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Figure 5-14: Interpretation of over- and underestimating distributions 

The proposed monitoring approach calculates the probability of an imminent requirement 
violation. In this context, calculating the cdf instead of the pdf allows for better interpretability. 
In this, the concepts over- and underestimation play a vital role. Figure 5-14 shows an 
interpretation of both concepts. The underlying goal of this example is to determine with 
which probability a state requirement violation occurs. The latter is arbitrarily selected to 
𝑥 = 1.5. Figure 5-14 (left) shows the cdf of a random variable 𝑥 as well as a cdf, which is 

overestimating the distribution of 𝑥. The cdf of 𝑥 is seen to cross the state requirement at a 

value of 𝐹 = 0.93. Hence, the probability of a requirement violation is 𝑃 𝑥 > 𝑥 = 0.07. 

In contrast, the overestimating cdf is seen to cross the state requirement at a value of 𝐹 =

0.84. In consequence, the probability of a requirement violation is 𝑃 𝑥 > 𝑥 = 0.16 in 

this case. Assuming that the overestimating cdf corresponds to the state distribution 
predicted by the forecast, the monitor would issue a warning earlier than necessary, as the 
probability of a requirement violation is perceived to be higher than in reality. In fact, the gap 

between the original and the overestimating cdf for the same probability 𝑃 𝑥 > 𝑥 =

0.16 corresponds to Δ𝑥 = 0.5.  

In contrast, Figure 5-14 (right) shows the underestimation of the cdf of 𝑥. Again the 

probability of a requirement violation is 𝑃 𝑥 > 𝑥 = 0.07. In contrast, the 

underestimating cdf is seen to cross the state requirement at a value of 𝐹 = 0.9987. Hence, 

the probability of a requirement violation is 𝑃 𝑥 > 𝑥 = 0.0013 in this case. Again, 

assuming that the underestimating cdf corresponds to the state distribution predicted by the 
forecast, the monitor would issue warnings later, as the probability of a requirement violation 
is perceived to be lower than in reality. In summary, an overestimating forecast tends to 
issue more warnings and thus increase the false positive rate, while an underestimating 
forecast misses warnings and increases the false negative rate. In the opinion of the author, 
overestimation of the monitoring forecast is preferred to underestimation, as the system 
should not miss a single probable requirement violation.   

Figure 5-15 and Figure 5-16 respectively show the approximation of the plant state cdf for 
the roll angle and roll rate at different prediction steps, namely after 0𝑠, 1𝑠,2.8𝑠 and 5𝑠. The 
plots depict the cdf of the simulated trajectories, the predicted cdf using a GMM and the 
predicted cdf using a Gaussian. Furthermore, the circles indicate the borders of the channels 
encompassing the central 67%, 90% and 99% of the state trajectories. In this, the circles 
form pairs. In particular, the third and fourth circle define the 67% channel, the second and 
fifth circle describe the 90% channel and the first and sixth circle describe the 99% channel.  
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Several conditions can be derived from the discrepancy between the approximating GMM (or 
normal) and the distribution of the simulated trajectories. If all circles of the approximating 
GMM (or normal) match with the real ones, the predicted and real channels match. If the 
three left circles corresponding to the GMM (or normal) are farther to the left than the real 
ones and if the three right circles corresponding to the GMM (or normal) are farther to the 
right than the real ones, then the GMM (or normal) is overestimating the trajectory 
distribution. As a result, the monitoring algorithm will indicate an imminent requirement 
violation even though there is still some buffer. On the other hand, if the three left circles 
corresponding to the GMM (or normal) are farther to the right than the real ones and if the 
three right circles corresponding to the GMM (or normal) are farther to the left than the real 
ones, then the GMM (or normal) is underestimating the trajectory distribution. As a result, the 
monitoring algorithm will not indicate a requirement violation even though it is imminent. 

In Figure 5-15 and Figure 5-16 it can be seen that the initial cdfs of the GMM, the normal and 
the simulated trajectories are nearly indistinguishable. This indicates that the GMM 
approximates the initial normal state distribution well. Note that the outer right circle of the 
initial trajectory distribution is farther to the right than its corresponding approximations. This 
can be attributed to the fact that the cdf is numerically derived from simulating the closed-
loop system 2500 times. A single draw at the limits of the initial distributions can already 
cause a significant shift. 

After 1𝑠 the cdf of the roll angle 𝜙 is still seen to retain the shape of a Gaussian cdf. This 
corresponds to the respective pdf in Figure 5-13. The circles of the GMM approximation 
nearly completely overlap with the simulated trajectories, while the circles corresponding to 
the normal distribution deviate from the latter. This indicates that the approximation of the 
channels starts to deviate from the simulated trajectories. This becomes even more apparent 
when taking the cdf of the roll rate 𝑝  into account. It can be seen the cdf of the simulated 
trajectories strongly deviates from a Gaussian cdf. Still, the GMM is able to recreate its 
general shape. Note that all circles of the approximating GMM lie farther from the mean than 
the real ones. This indicates that the predicted channels are larger than necessary. In 
contrast, the Gaussian approximation fails to approximate the cdf and the predicted circles 
are significantly different to the real ones.  

From 1𝑠 to 5𝑠 the cdf of the simulated trajectories keeps changing its underlying shape for 
both plant states. In any case, the GMM is able to recreate its general shape with minor 
errors.  
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Figure 5-15: Predicted cdf of the roll angle 𝝓 in the wing-rock example after 0s, 1s, 2.8s and 5.0s 

 

Figure 5-16: Predicted pdf of the roll rate 𝒑𝑩 in the wing-rock example after 0s, 1s, 2.8s and 5.0s  



5 Application in Numerical Simulation 
 

Page 128 / 200   

Assessing the presented figures already provides good inside into the prediction capability of 
the GMM. For a numerical assessment, this thesis introduces the Grade of Circumvallation 
(GoC). The metric is intended to penalize underestimation. The underlying idea is that an 
overestimation leads to more responses from the monitor, but underestimation might lead to 
a missed requirement violation and put the system in danger. Hence, for the purpose of this 
thesis, overestimation is preferred to underestimation. Consider the following test function: 

 
𝑓 , (𝑗): =

𝐹 , 𝑝 + Δ𝑥 if 𝑝 ≥ 0.5

𝐹 , 𝑝 − Δ𝑥 if 𝑝 < 0.5
. (5-17) 

Here, 𝐹 , 𝑝  represents the evaluation of the inverse distribution function of the 

approximating distribution for the state 𝑥, 𝑝  represents the percentile and Δ𝑥 represents a 

relaxation term, which artificially allows to increase the area of 𝐹 , 𝑝 . The relaxation term 

makes the monitor more responsive, but decreases the amount of missed alarms. Consider 

the following mapping of the test function to a binary decision variable 𝛿 , 𝑝 : 

 

𝛿 , 𝑝 : =

⎩
⎪
⎨

⎪
⎧

1 if 𝐹 , 𝑝 + Δ𝑥 ≥ 𝐹 𝑝  ∧ 𝑝 ≥ 0.5

0 if 𝐹 , 𝑝 + Δ𝑥 < 𝐹 𝑝  ∧ 𝑝 ≥ 0.5

1 if 𝐹 , 𝑝 − Δ𝑥 ≥ 𝐹 𝑝  ∧ 𝑝 < 0.5

0 if 𝐹 , 𝑝 − Δ𝑥 < 𝐹 𝑝  ∧ 𝑝 < 0.5

. (5-18) 

In order to evaluate one channel, the respective percentile pair needs to be evaluated. E.g. 
to evaluate the 67% channel, the GoC needs to be calculated for 𝐷 ≔ {16.5, 83.5}. The 

GoC for the 𝑗 −th channel is defined as 

 
𝐺𝑜𝐶 =

1

2𝑘
𝛿 , 𝑝

∈

. (5-19) 

Note that the GoC is normalized, non-negative and assumes a value between zero and one. 
For interpretational purposes, 𝐺𝑜𝐶 = 1 means that the 67% channel of the simulated state 

trajectories is completely engulfed by the 67% channel of the predictive distribution. In 
contrast, 𝐺𝑜𝐶 = 0 means that the distribution of the simulated state trajectories is 

completely underestimated during the simulation. Note that this does not imply that the 
predicted and the real channel do not overlap. Rather the predicted channel is too narrow. 
On the other hand, 𝐺𝑜𝐶 = 0.5 can represent the case that the predicted and simulated 

channel do not overlap at all. While this seems adverse to the purpose of a metric at first, in 
this case one of the predicted channel borders still overestimates one of the channel borders 
of the trajectory distribution.   

The relaxation term in (5-17) not only enables the artificial increase of overestimation, but 
also allows for insights into the errors made during the prediction. In fact, approximation and 
numerical errors might lead to an adverse evaluation of (5-18) even though they are small in 
comparison. The following argument attempts to highlight this concept. 
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Figure 5-17: GoC of the plant states with varying relaxation term for the wing-rock example 

 

Figure 5-17 shows the GoC for both plant states, the three channels, the GMM as well as the 
Gaussian approximation and varying numerical values for the relaxation term Δ𝑥. The GoC is 
calculated for the first 15 seconds into the simulation. In conjunction with Figure 5-17, Table 
5-4 lists the numerical values of the GoC at various Δ𝑥. It can be seen that for all channels 
and without relaxation term the GoC for the GMM approximation is roughly twice as large as 
for the Gaussian approximation. Still, the GMM as well as the normal results lie within a 
similar region. This raises the hypothesis that using a normal distribution for the forecast is 
sufficient for prediction and the additional cost of using a GMM can be saved. As already 
demonstrated, this is not the case. In fact, the introduction of the relaxation term with even 
only small values Δ𝜙 = 0.5°, Δ𝑝 = 0.5°/𝑠 already doubles or triples the GoC values for the 
GMM. The GoC for the Gaussian approximation increases only slightly. This indicates that 
the channels predicted by the GMM deviate only slightly from the simulated ones. Increasing 
the relaxation term further quickly leads to the GoC approaching one. This indicates that 
small approximation errors occur during the forecast, which prevent the predicted GMM to 
completely represent the true state trajectory distribution. The small approximation errors are 
a direct consequence of the neural network approximation property (see i.a. [130], [69], 
[165]). In contrast, even for large relaxation values, the normal distribution mostly sustains 
large errors and is thus inferior to GMMs in performance. In essence, the preceding 
argument highlights that the designer should consider the impact of approximation errors on 
the GMM based forecast results by e.g. introducing a relaxation term in the form of a slack 
variable.  
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State / Forecast Basis 𝑮𝒐𝑪𝒙𝟔𝟕
 𝑮𝒐𝑪𝒙𝟗𝟎

 𝑮𝒐𝑪𝒙𝟗𝟗
 

𝚫𝝓 = 𝟎°, 𝚫𝒑𝑩 = 𝟎°/𝒔 

𝜙 – GMM 0.346 0.396 0.435 
𝜙 – Normal 0.222 0.235 0.281 
𝑝  – GMM 0.329 0.388 0.436 

𝑝  – Normal 0.195 0.213 0.266 

𝚫𝝓 = 𝟎. 𝟓°, 𝚫𝒑𝑩 = 𝟎. 𝟓°/𝒔 

𝜙 – GMM 0.973 0.964 0.934 
𝜙 – Normal 0.526 0.524 0.534 
𝑝  – GMM 0.790 0.873 0.900 

𝑝  – Normal 0.310 0.325 0.369 

𝚫𝝓 = 𝟏°, 𝚫𝒑𝑩 = 𝟏°/𝒔 

𝜙 – GMM 0.996 1.0 0.960 
𝜙 – Normal 0.745 0.711 0.711 
𝑝  – GMM 0.924 0.985 0.969 

𝑝  – Normal 0.377 0.388 0.433 

𝚫𝝓 = 𝟐°, 𝚫𝒑𝑩 = 𝟐°/𝑠 

𝜙 – GMM 1.0 1.0 1.0 
𝜙 – Normal 0.897 0.804 0.789 
𝑝  – GMM 0.992 1.0 0.993 

𝑝  – Normal 0.528 0.514 0.555 
Table 5-4: GoC in the wing-rock simulation example 

Evaluation of the indicator function 

Finally, in order to evaluate if a potentially undesired situation occurs within the prediction 
horizon, the indicator functions and the monitoring output from section 4.5.3 are computed. 
For the sake of highlighting the concept, the state requirements are arbitrarily set. The roll 
angle shall not exceed 𝜙 , = 30° and shall not fall below 𝜙 , = −15°. Similarly, the 

roll rate shall not exceed 𝑝 , = 60
°
 and shall not fall below 𝑝 , = −30

°
. Table 5-5 

summarizes the parameters used for the indicator function and the monitoring output.  

Figure 5-18 depicts the predicted probability of a roll angle requirement violation according to 
equation (4-102) within 15𝑠 of the simulation. It can be seen that the initial conditions already 
violate the upper state requirement. Consequently, the probability of a requirement violation 
is returned as 1. Note that the presented example is constructed and intended to 
demonstrate the capabilities of the prediction. In reality, the initial state would lie within the 
boundaries of the requirements. After about 1𝑠, the predicted roll angle distribution enters the 
corridor between the upper and lower requirement. As a consequence, the probability of a 
requirement violation drops to zero. At around 2.5𝑠 the predicted mean trajectory is seen to 
violate the lower state requirement. While, the estimated probability of a requirement 
violation increases, it still remains lower than 1 as a huge portion of the distribution remains 
within the formulated requirements. This highlights the fact, that the mean of a distribution 
seldom inherits enough information in order to grasp a certain situation. Finally, the predicted 
state distribution converges to the zero roll angle command. Consequently, the probability of 
a requirement violation returns to zero. Similarly, Figure 5-19 depicts the predicted probability 
of a roll rate requirement violation according to equation (4-102) within 15𝑠 of the simulation. 
The results and conclusions mirror the roll angle case. 
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Figure 5-18: Probability of a roll angle requirement violation in the wing-rock example 

 

Figure 5-19: Probability of a roll rate requirement violation in the wing-rock example 



5 Application in Numerical Simulation 
 

Page 132 / 200   

 

Figure 5-20: Predicted Confidence based on OVL in the wing rock example 

 

Simulation Parameter Numerical Value  

Indicator Function 

𝛿  0.7  

𝛼  1 

𝛽  4000  

𝛿  20 

𝜙 ,  −15°  

𝜙 ,  30°  

𝑝 ,  −30°/𝑠  

𝑝 ,  60°/𝑠  
Table 5-5: List of parameters used for the indicator function and monitoring output in the wing rock 

simulation example 

 

Using the parameters in Table 5-5 for the indicator functions of equations (4-98)-(4-102), 
leads to a warning by the monitor. This can be attributed to the fact that the indicator function 
takes the full prediction horizon into account (i.e. 𝛼 = 1 and 𝛽 = 4000). Within this 
horizon, the probability limit 𝛿 = 0.7 is exceeded in at least 𝛿 = 20 time steps.  

In order to derive a confidence in the prediction, the Overlapping Coefficient (OVL) from 
section 4.5.2 is computed. The OVL result at each prediction step is rounded at the fourth 
decimal. Figure 5-20 shows the resulting OVL curve. The OVL is seen to decrease to a value 
of approximately 0.6 within 5𝑠 into the simulation. In this phase, the variance of the single 
mixture elements is still large enough that the linearization of the nonlinear system dynamics 
is not completely warranted over the complete support of each mixture element. After 5𝑠, the 
OVL remains approximately constant. This can be approximated to the decreasing variance 
in the mixture elements. Furthermore, numerical errors are mitigated by rounding the single 
OVL results at the fourth decimal.  
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Figure 5-21: Modified predicted probability of a requirement violation in the wing rock example 

In a final step, the predicted probability of a requirement violation of Figure 5-18 and Figure 
5-19 is modified by the OVL according to (4-109) in section 4.5.3. Figure 5-21 shows the 
result of the modified probability 𝑃  as well as the non-modified curves of 𝑃 . Note that 

contrary to equation (4-109), here the probability of a requirement violation (and not 
abidance) of 𝑃  is depicted, in order to be comparable with the formulation of 𝑃  in (4-102). 

It can be seen that 𝑃  is always larger than its counterpart 𝑃 . This is due to the OVL, 

which increases the conservatism in the prediction. After approximately 5𝑠 into the 
simulation, 𝑃  converges to the numerical value of the OVL. This can be attributed to the 
fact that 𝑃  in turn converged to 0. A non-zero 𝑃  can now be interpreted to represent an 

uncertainty in the prediction of the monitor and that a requirement violation is admissible.  

The presented case highlights the fact that a small OVL value in the beginning of the 
prediction horizon can lead to a high uncertainty at the end. On the other hand, the OVL is 
unmindful and independent of the state requirements. That is, in the case that the predicted 
state distribution was far away from any formulated limit, the OVL still increases 𝑃  
drastically. Still, applying the indicator functions of section 4.5.1 the monitor issues a 
warning. However, the characteristics of the warnings between 𝑃  and 𝑃  will be similar as 

long as 𝛿  is kept at 𝛿 = 0.7. Hence, choosing 𝑃  over 𝑃  in this case has only minor 

influence on the outcome. The information about the uncertainty in the prediction can still be 
helpful to the operator. While using the OVL raises the information content, in the authors’ 
opinion, a multitude of different techniques and rules can and should be conceived for each 
specific use case.   
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Simulation Parameter Numerical Value  

GP Regression 

𝑝  100 

𝜎  0.05  

γ 0.0005  

Λ  0.25 
Table 5-6: List of parameters used GP regression in the wing rock simulation example 

 

5.1.3 Simulation with uncertainty 

This section expands the model in 5.1.2 by lifting the assumption that the nonlinerity is 
known. Instead, the monitor uses GP regression as described in section 4.4.3 in order to 
approximate the latter online. Apart from that, the same scenario of section 5.1.2 is used.  

The data storage algorithm checks if new data points are sufficiently different to already 
stored data by employing equation (4-93). Other than that, the history stack is fixed and does 
not discard already stored data points. The bandwidth of the kernels is selected equally to be  
Λ = 0.25. Table 5-6 summarizes the parameters necessary for recreating the GP regression 
results. 

Figure 5-22 (left) shows the wing rock uncertainty of equation (5-2). In turn, Figure 5-22 
(right) shows the approximated mean of the wing rock uncertainty after 40 seconds into the 
simulation using GP regression and the approach depicted in section 4.4.3. The red dots 
represent recorded data points. After 40 seconds, the data management algorithm recorded 
a total of 43 data points. It can be seen that the GP representation starts to resemble the true 
uncertainty in areas where data points were recorded. However, the approximation quality is 
hard to gauge from a 3D-plot.  

Figure 5-23 shows a contour diagram of the relative approximation error in percent between 
the true wing rock uncertainty and the GP mean representation. Snapshots of the uncertainty 
approximation are taken after 2.5, 10, 20 and 40 seconds. Furthermore, the recorded data 
points at the specific time instants are depicted. It can be seen that the relative 
approximation error reduces to 0 − 10% in the vicinity of recorded data points. As time 
progresses, the system visits different areas of the state space, where the GP regression 
approach of section 4.4.3 continues to decrease the approximation error. However, in areas 
without data, the approximation error remains large. At first this appears to be a negative 
property. However, the goal of the GP regression is not to form a global representation of the 
wing rock uncertainty. Instead, the data management of section 4.4.3.3 ensures that once a 
yet unvisited region in the state space is visited, the uncertainty approximation is updated 
with the new information. In the same way, the data management algorithm prevents the 
storage of every single data point and therefore ensures that each data point increases the 
information content in the history stack. Note that if the basis of the uncertainty in equation 
(5-2) was known, a global representation of the uncertainty could be created. This special 
case has been demonstrated in section 2.2.1.1 and Figure 2-5.  
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Figure 5-22: Wing rock uncertainty (left) and its approximation after 40 seconds into the simulation (right) 

  

  
Figure 5-23: Contour plot of the uncertainty approximation error in the wing rock simulation example after 

𝟐. 𝟓, 𝟏𝟎, 𝟐𝟎 and 𝟒𝟎 seconds 

Figure 5-24 shows the posterior standard deviation originating from GP regression. Again, 
snapshots of the standard deviation are taken after 2.5, 10, 20 and 40 seconds into the 
simulation. Furthermore, the recorded data points at the specific time instants are depicted. It 
can be seen that the standard deviation decreases to values below 0.2 within the vicinity of 
data points. Furthermore, in areas with a high density of stored data points the posterior 
standard deviation is seen to decrease below 0.1. Section 5.1.2 treated the uncertainty to be 
known. The modelling uncertainty was modelled as a deterministic quantity. In contrast, GP 
regression treats the uncertainty as a stochastic variable. As a consequence, the posterior 
standard deviation will add conservatism to the predictions. 
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Figure 5-24: Contour plot of the GP standard deviation in the wing rock simulation example after 𝟐. 𝟓, 𝟏𝟎, 

𝟐𝟎 and 𝟒𝟎 seconds 

Figure 5-25 and Figure 5-26 show a highlighted version of the roll angle and roll rate 
evolution and prediction for the first 15𝑠 of the simulation using the GP regression based 
uncertainty model. The predicted mean roll angle matches the simulated one with only minor 
errors. Similarly, the monitoring algorithm is able to predict the mean roll rate with only little 
error. Still, the error in the mean increases when compared to the case of the known 
uncertainty in section 5.1.2. This is due to the fact, that the GP regression itself is not 
flawless and comprises an error in the estimation of the mean. In contrast, the posterior 
variance of the GP regression adds more conservativism to the forecast. This can be seen 
as the 67%, 90% and 99% channels are generally larger than in section 5.1.2. Furthermore, 
the predicted trajectory channels are seen to not shrink, but converge to a constant width, 
when compared to section 5.1.2. This can be attributed to the fact, that the prediction inherits 
an additional variance from the GP posterior model, which is relatively independent on time 
and only changes by the selected data points. In fact, increasing the density of the data 
points in the data selection algorithm and thus decreasing the posterior variance of the GP 
regression can lead to tighter channels in the prediction. As a direct consequence, the 
predicted channels will be overly conservative once the simulated state trajectories converge 
to the mean. For completeness, the prediction of the adaptive parameters as well as the full 
prediction of the states is depicted in Figure H-7-Figure H-9 in Appendix H.5. 
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Figure 5-25: Predicted roll angle 𝝓 over 15 seconds with GP regression based uncertainty estimation 

 

Figure 5-26: Predicted roll rate 𝒑𝑩 over 15 seconds with GP regression based uncertainty estimation 
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 Roll Angle 𝜙 Roll Rate 𝑝  

 𝐸 [°] 𝐸ℒ [°] 𝐸ℒ [°] 𝐸 [°/𝑠] 𝐸ℒ [°/𝑠] 𝐸ℒ [°/𝑠] 

GMM (15𝑠) 0.45 0.0155 1.69 1.57 0.0521 4.94 

Normal (15𝑠) 0.76 0.0250 2.72 2.61 0.0840 7.54 

GMM (40𝑠) 0.30 0.0068 1.69 0.92 0.0215 4.94 

Normal (40𝑠) 0.42 0.0100 2.72 1.34 0.0330 7.54 

Table 5-7: Average mean error, 𝓛𝟐 −like norm and maximum mean error for the prediction of the mean 
trajectory in the wing-rock simulation example with GP regression based uncertainty estimation 

Table 5-7 shows the evaluation of the metrics 𝐸 , 𝐸ℒ  and 𝐸ℒ  for both scenarios, the GMM 

forecast as well as for the prediction with a normal distribution only. The metrics are 
evaluated after 15𝑠 and 40𝑠. Again, it can be seen that the application of the GMM compared 
to a single normal distribution reduces each error metric by approximately 30% − 40% for 
each plant state. When compared to the results of section 5.1.2, the error values in general 
increased. This can be attributed to the fact that the uncertainty is no longer known, but 
needs to be approximated from gathered data. Furthermore, in contrast to the results of 
section 5.1.2, the average mean error decreases as the simulation progresses in time. This 
leads to the suggestion that the GP regression based uncertainty approximation adversely 
influences the error in the beginning of the simulation in particular. Still, the error levels for 
the average mean error as well as the maximum error appear to be acceptable in most 
applications. Again, in order to assess the risk or probability of a requirement violation, the 
full distribution needs to be taken into account. 

To assess the prediction performance and potential underestimation of the monitor, again the 
GoC of section 5.1.2 is used. Again, both cases of using a GMM or a simple normal 
distribution for the forecast are compared. Figure 5-27 shows the results for both plant states 
and varying numerical values for the relaxation term Δ𝑥. In conjunction with Figure 5-27, 
Table 5-8 lists the numerical values of the GoC at various Δ𝑥. It can be seen that without 
relaxation term both, the GMM and the normal distribution scenario, achieve higher GoC 
values when compared to the simulation in section 5.1.2. This can be attributed to the 
property of the GP regression, which increases the conservatism of the prediction due to the 
posterior predictive variance. Still, the general results of the GoC evaluation are similar to the 
simulation case in section 5.1.2. The introduction of the relaxation term with only small 
values Δ𝜙 = 0.5°, Δ𝑝 = 0.5°/𝑠 quickly leads the GoC values for the GMM to approach one. 
In contrast, the GoC of the Gaussian approximation increases only slightly and in most cases 
does not achieve a GoC of one within the selected parameter space. This indicates that the 
GMM encompasses the simulated state trajectory channels well.  

In order to evaluate if a potentially undesired situation occurs within the prediction horizon, 
the indicator functions and the monitoring output from section 4.5.3 are computed. For the 
sake of highlighting the concept, the state requirements are set to be equal to the ones in 
section 5.1.2. The roll angle shall not exceed a limit of 𝜙 , = 30° and shall not fall below 

𝜙 , = −15°. Similarly, the roll rate shall not exceed 𝑝 , = 60
°
 and shall not fall below 

𝑝 , = −30
°
.   
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Figure 5-27: GoC of the plant states with relaxation term for the wing-rock example with GP regression  

Forecast Basis 𝑮𝒐𝑪𝒙𝟔𝟕
 𝑮𝒐𝑪𝒙𝟗𝟎

 𝑮𝒐𝑪𝒙𝟗𝟗
 

𝚫𝝓 = 𝟎°, 𝚫𝒑𝑩 = 𝟎°/𝒔 

𝜙 – GMM 0.693 0.929 0.951 
𝜙 – Normal 0.536 0.618 0.674 
𝑝  – GMM 0.723 0.983 0.994 

𝑝  – Normal 0.523 0.608 0.698 

𝚫𝝓 = 𝟎. 𝟓°, 𝚫𝒑𝑩 = 𝟎. 𝟓°/𝒔 

𝜙 – GMM 0.884 0.985 0.973 
𝜙 – Normal 0.679 0.727 0.756 
𝑝  – GMM 0.792 0.997 0.996 

𝑝  – Normal 0.565 0.648 0.721 

𝚫𝝓 = 𝟏°, 𝚫𝒑𝑩 = 𝟏°/𝒔 

𝜙 – GMM 0.969 1.0 0.978 
𝜙 – Normal 0.787 0.800 0.814 
𝑝  – GMM 0.832 1.0 0.999 

𝑝  – Normal 0.612 0.682 0.742 

𝚫𝝓 = 𝟐°, 𝚫𝒑𝑩 = 𝟐°/𝑠 

𝜙 – GMM 1.0 1.0 1.0 
𝜙 – Normal 0.892 0.886 0.897 
𝑝  – GMM 0.895 1.0 1.0 

𝑝  – Normal 0.693 0.735 0.775 
Table 5-8: GoC in the wing-rock simulation example with GP regression based uncertainty approximation 
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Figure 5-28 depicts the predicted probability of a roll angle requirement violation according to 
equation (4-102) within 15𝑠 of the simulation. The results only deviate slightly from the 
simulation with known nonlinearity in section 5.1.2. I.e. from an initial requirement violation, 
the monitor correctly predicts an imminent exit of the predicted distribution from the channel 
formed by the upper and lower state requirement before eventually returning into it. Also the 
predicted probability of an imminent requirement violation only deviates slightly from the 
results of section 5.1.2. The same assessment can be made when comparing the predicted 
probability of a roll rate requirement violation shown in Figure 5-29 with its counterpart in 
section 5.1.2. This leads to the hypothesis that even though the approximation of the 
uncertainty by GP regression introduces errors into the system, the final result is only 
influenced in a minor way. While this seems to be true in this case, it is not universal. In 
particular, if the state requirements are selected to be tighter, the additional variance from the 
uncertainty approximation may lead to higher probabilities of imminent requirement violation 
and therefore more frequent warnings by the monitor. 

Figure 5-30 shows the resulting OVL curve. The general progress of the curve is seen to be 
similar to the results in section 5.1.2. However, the OVL is seen to decrease to a slightly 
higher value of approximately 0.65 within 5𝑠 into the simulation. This can be attributed to the 
fact, that the wingrock uncertainty is not continuous. In the first simulation case, the full GMM 
was propagated through this non-continuous function, leading to propagation errors. In 
contrast, the GP model is continuous. Since the OVL is only calculated from the models 
themselves and not the true system, lesser propagation errors are made when the GMM is 
propagated through the GP. This in turn leads to larger values for the OVL.  

Finally, Figure 5-31 shows the predicted probability of a requirement violation 𝑃 , which is 
modified by the OVL according to (4-109). The resulting curves again resemble the results of 
section 5.1.2. The biggest difference is the fact that the modified probability 𝑃  converges 
to a slightly lower value of approximately 0.35 instead of 0.40. This again can be attributed to 
the fact that the GP model is continuous and the arguments made above. Note, that tighter 
state requirements also effect the modified probability 𝑃  and can lead to a drastic 
increase in issued warnings by the monitor. 
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Figure 5-28: Probability of a roll angle requirement violation in the wing-rock example with GP regression  

 

Figure 5-29: Probability of a roll rate requirement violation in the wing-rock example with GP regression  

0 5 10 15

-40

-20

0

20

40

60

80

0 5 10 15

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15

-50

0

50

100

0 5 10 15

0

0.2

0.4

0.6

0.8

1

1.2



5 Application in Numerical Simulation 
 

Page 142 / 200   

 

Figure 5-30: Predicted Confidence based on OVL in the wing rock example with GP regression based 
uncertainty approximation 

 

Figure 5-31: Modified predicted probability of a requirement violation in the wing rock example with GP 
regression based uncertainty approximation 
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5.2 Short Period with predictor based MRAC 

This section adopts the simulation example of [128] in order to corroborate the monitoring 
algorithm in the case of predictor based MRAC. The simulation model represents the short 
period of a F-16 fighter aircraft:  

 
�̇�
�̇�

=

𝑍

𝑉
1 +

𝑍

𝑉
𝑀 𝑀

𝛼
𝑞 +

𝑍

𝑉
𝑀

𝜂  (5-20) 

Here, 𝛼  represents the angle of attack, 𝑞  represents the roll rate and 𝜂 is the control input 
representing the elevator deflection. Furthermore, 𝑉 represents the trimmed airspeed, 𝑍 , 𝑍  

and 𝑍  represent the partial derivatives of the aerodynamic vertical force 𝑍 and 𝑀 , 𝑀  and 

𝑀  represent the partial derivatives of the pitching moment 𝑀 with respect to the states and 

the control input. The numerical values for the simulation model are adopted from [200]. The 
goal of the controller is to track a pitch rate command 𝑞 , which acts as the exogenous 
input to the system. In [128], Lavretsky constructs an extended open-loop dynamical model 
by adding integrated pitch rate tracking error dynamics �̇� = 𝑞 − 𝑞  to the system in (5-20): 

 �̇�
�̇�
�̇�

=

0 0 1

0
𝑍

𝑉
1 +

𝑍

𝑉
0 𝑀 𝑀

𝑨

𝑒
𝛼
𝑞

+

0
𝑍

𝑉
𝑀

𝑩

𝜂 − Δ(𝛼, 𝑞) +
−1
0
0

𝑩

𝑞 . 
(5-21) 

The numerical values for the parameters in (5-21) are taken from [200] and [128]. The 
uncertainty Δ(𝛼 , 𝑞 ) is partly adopted from [128]: 

 

Δ(𝛼 , 𝑞 ) = Θ∗𝛼 + Θ∗ 𝑞 + Θ∗ 𝑒

°

( . ) . 
(5-22) 

Note, that the input to (5-22) is assumed to be in 𝑟𝑎𝑑 or . The control architecture of 

section 3.2 with the control law (3-11) such that 𝜂 = 𝜂 + 𝜂  is employed. Note, that the 
control design deviates from [128] as this thesis focusses on tracking control for a baseline 
design. Therefore consider the following reference model: 

 �̇� ,

�̇�
�̇�

= 𝑨

𝑒 ,

𝛼
𝑞

+ 𝑩 𝑞 . (5-23) 

Consequently, the baseline control 𝜂  signal matches the one in (3-12). The adaptive 
controller 𝜂  uses the structure of (3-15), where the basis function 𝝋 is given by the basis of 
the uncertainty in (5-22): 

 
𝝋 =

𝛼 𝑞 𝑒

°

( . )
. (5-24) 
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Based on (3-33), the predictor dynamics are given by 

 �̇̂�

�̇�
�̇�

= 𝑨

�̇̂�

�̇�
�̇�

−
�̇�
�̇�
�̇�

+ 𝑨
�̇�
�̇�
�̇�

+ 𝑩 𝑞 . (5-25) 

The update law of (3-38) uses a 𝜎-modification with 𝑘(𝚯) = −𝜎𝚯,  such that 

 �̇� = −𝚪𝝋(𝒙 )(𝒆 𝑷 − 𝒆 𝑷 )𝑩 − 𝚪𝜎𝚯. (5-26) 

The residual predictor error is given by 

 
𝒆 =

�̂�
𝛼
𝑞

−

𝑒
𝛼
𝑞

. (5-27) 

The simulation runs for a total of 30𝑠 with a time step of 0.01𝑠. The exogenous reference 

input commands a pitch rate doublet, with 5
°
 between seconds 1 and 11 and −5

°
 between 

seconds 11 to 21, respectively. Lavretsky commands a second doublet in [128], which is 
omitted here, since the results match the first doublet. The plant states are initialized at 

𝛼 (𝑡 ) = 0° and 𝑞 (𝑡 ) = 0
°
. The reference model states, the predictor states as well as the 

adaptive weights are initialized at zero. Table 5-2 summarizes the relevant simulation 
parameters for the plant and the controller as well as the respective initial conditions for a 
concise overview.  

In order to form a distribution of simulation trajectories and thus a comparable baseline for 
the monitoring algorithm, the initial conditions of the plant states are independently, normally 

distributed with 𝛼 (𝑡 )~𝑁(0°, (1°) ) and 𝑞 (𝑡 )~𝑁 0
°

, 2
°

. The simulation is repeated 

2500 times. The states of the reference model as well as the adaptive weights are still 
initialized at zero.  

The online GP regression algorithm of section 4.4.3 with SE kernel functions is applied in 
order to form a belief on the uncertainty during the run time of the monitor. The data storage 
algorithm checks if new data points are sufficiently different to already stored data by 
employing equation (4-93). Other than that, the history stack is fixed and does not discard 
already stored data points. The bandwidth of the kernels is selected equally to be Λ = 0.25.  

The GMM used in this simulation example consists of 99 mixture elements. The initial 
standard deviation of each mixture element is selected to be σ , = 0.03. The mixture 

elements are equidistantly distributed in the range of 4𝜎 of the initial state distribution 

𝛼 (𝑡 )~𝑁 0°, 1
°

 and 𝑞 (𝑡 )~𝑁 0
°

, 2
°

. By solving the quadratic program in (2-5), 

the GMM is fitted to the initial state distribution of the simulation.  

The prediction horizon is set to 𝑡 = 29.99𝑠 with a time step of Δ𝑡 = 0.01𝑠. This results 

in 𝑘 = 2999 prediction steps. Note, that the initial time is not included in the prediction 
horizon. Hence, predicting for 29.99𝑠 results in a prediction to the end of the simulation. The 
system dynamics (5-21), (5-25) and (5-26) are according to (4-30). The GMM is propagated 
through the linearized surrogate dynamics and the estimated uncertainty according to the 
update laws in (4-82) and (4-90).  
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Simulation Parameter Numerical Value  

General Simulation 

𝑡  0𝑠  

𝑑𝑡 0.01𝑠  

𝑡  30𝑠  

𝑨  
0 0 1
0 −1.0189 0.9051
0 0.8223 −1.0774

 

𝑩  
0

−0.0022
−0.1756

  

[𝛼 (𝑡 ) 𝑞 (𝑡 )] 0° 0
°

  

𝚯∗ [4.6839 6.1373 0.5] 

Baseline Controller 

𝑨 = 𝑨  
0 0 1

−0.0311 −1.0262 0.8850
−2.4834 0.2370 −2.6800

 

𝑩  
−1
0
0

 

[𝑒 , (𝑡 ) 𝛼 , (𝑡 ) 𝑞 , (𝑡 )] 0 0° 0
°

  

𝑲  [−14.1421 −3.3331 −9.1263] 

Adaptive Controller 

𝑨  
0 0 3

−0.0933 −3.0786 2.6550
−7.4502 0.7110 −8.0400

 

𝚪 

1 0 0 0
0 400 0 0
0 0 400 0
0 0 0 20

 

𝑸  |  𝑷 
0.1 0 0
0 1 0
0 0 800

| 
389.75 −14.84 0.21
−14.84 1.90 6.13

0.21 6.13 151.36
 

 𝑷  
1169.3 −44.5235 0.6180

−44.5235 5.7079 18.3857
0.6180 18.3857 454.0632

 

𝜎 0.1  

𝚯∗(𝑡 ) [0 0 0]  
Table 5-9: List of parameters used in the PMRAC simulation example 
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Simulation Parameter Numerical Value  

Prediction 

𝑡  29.99𝑠  

𝑑𝑡  0.01𝑠  

GMM 

𝑚  
(Number of mixture elements) 

99  

σ ,  0.03  

Initial distribution of the 
mixture elements 𝜇  

Equidistant within 4𝜎 of the initial state distribution 

GP Regression 

𝑝  100 

𝜎  0.05  

γ 0.0005  

Λ  0.25 

Indicator Function 

𝛿  0.7  

𝛼  1 

𝛽  3000  

𝛿  20 

𝛼 ,  −5°  

𝛼 ,  5°  

𝑞 ,  −7°/𝑠  

𝑞 ,  7°/𝑠  
Table 5-10: List of monitoring parameters used in the PMRAC simulation example 

For the purpose of the simulation example, the state limits are arbitrarily selected. The angle 
of attack shall not exceed a limit of 𝛼 , = 5° and shall not fall below 𝛼 , = −5°. 

Similarly, the pitch rate shall not exceed 𝑞 , = 7
°
 and shall not fall below 𝑞 , = −7

°
. 

As a baseline, the parameters of the wing-rock example of section 5.1 are used for the 
indicator function. Since the simulation time is smaller, 𝛽  is chosen to be 𝛽 = 3000. 
Table 5-10 summarizes all parameters of the monitoring algorithm. 

Figure 5-32 shows the reference command, the state of the reference model as well as the 
evolution of the state trajectories over the simulation horizon. It can be seen that despite 
distributed initial conditions, the plant state trajectories stay bounded. This suggests that the 
PMRAC based adaptive controller is able to stabilize the system and track the reference 
model under various conditions. After 15 seconds the distributed state trajectories are seen 
to be nearly indistinguishable from the mean. This can be attributed to the fact that the 
adaptive controller is able to cancel the uncertainty pointwise in time. This in turn allows the 
baseline controller to reduce the tracking error. 
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Figure 5-32: Tracking performance of PMRAC for the short period example with normally distributed 
initial conditions 

Figure 5-33, Figure 5-34 and Figure 5-35 respectively show the integral error, the angle of 
attach and the pitch rate trajectory distribution as a histogram at selected time instants, 
namely after 0.2𝑠, 1𝑠, 5𝑠 and at 7.5𝑠. Furthermore, the respective approximating normal 
distribution is depicted. The later originates from taking the mean and variance of the state 
trajectory distribution at the mentioned time instants. It indicates the result if the data is 
assumed to be normally distributed.  

It can be seen after 0.2𝑠 into the simulation, the distribution of the integral error 𝑒  as well as 
the angle of attack 𝛼  only slightly differs from a normal distribution. In contrast, the pitch rate 

is seen to be heavily skewed towards the right as well as truncated at approximately 0.3 
°
. 

This can be attributed to the nonlinear dynamics of the system. In fact, the nonlinear 
uncertainty primarily affects the pitch rate dynamics. The reason for this is twofold. First, 

since 𝑀 ≫ 𝑍 , the effect of the uncertainty on the dynamics of 𝛼  is sufficiently smaller 

than its effect on 𝑞 . Even though the dynamics of 𝛼  depend on the pitch rate 𝑞 , a 
deterioration from the normal distribution takes time. Secondly, the dynamics of the integral 
error are only dependent on the pitch rate 𝑞 . Comparable to the angle of attack, a 
deterioration from the initial normal distribution requires time. 

From 0.2𝑠 to 1𝑠 the angle of attack as well as the pitch rate distribution become heavily 
skewed to the left, while the distribution of the integral error trajectories remains comparable 
to a Gaussian. This indicates that significant errors could be made by neglecting the 
nonlinear nature of the system during the prediction.  
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Figure 5-33: Distribution of the integral error 𝒆𝑰in the short period example after 0.2s, 1s, 5.0s and 7.5s 

 

Figure 5-34: Distribution of the angle of attach 𝜶𝑲in the short period example after 0.2s, 1s, 5.0s and 7.5s 
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Figure 5-35: Distribution of the pitch rate 𝒒𝑲in the short period example after 0.2s, 1s, 5.0s and 7.5s 

After 5𝑠 into the simulation the angle of attack and pitch rate distributions approach a normal 
distribution again. In contrast, the distribution of the integral error is skewed to the left. In any 
case, the range of the support decreases by up to 50%. This indicates that the single 
trajectories are converging to the mean trajectory. Finally, after 7.5𝑠 all state distributions are 
heavily skewed. Nevertheless, the range of the support decreased further. In any case, 
approximating the single state distributions by Gaussians now neglects outliers as well as 
introduces conservatism. The latter results from the truncation of the state distributions. 

Figure 5-36(left) shows the employed uncertainty of equation (5-22). In turn, Figure 5-36 
(right) shows the uncertainty approximation after 30 seconds into the simulation using GP 
regression and the approach depicted in section 4.4.3. The red dots represent recorded data 
points. After 30 seconds, the data management algorithm recorded a total of 25 data points. 
The GP is seen to start assuming the general form of the uncertainty, i.e. its general twist. 
However, from the 3D plot alone it is hard to gauge the quality of the approximation.  

Figure 5-37(left) shows a contour diagram of the relative approximation error in percent 
between the true uncertainty and the GP mean representation. Furthermore, the recorded 
data points are depicted. It can be seen that the relative approximation error reduces to 
approximately 0 − 10% in the vicinity of recorded data points. However, in areas without 
data, the approximation error remains large. This indicates, that the GP approximates the 
uncertainty well where data points are available. Continuing this line of thought, by increasing 
the density of the recorded data points and also their distribution through the state space, the 
subjective approximation quality of the uncertainty in the 3D plot of Figure 5-36 (right) would 
also increase. 
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Figure 5-36: Uncertainty (left) and its approximation (right) in the short period simulation example 

  
Figure 5-37: Relative UQ error (left) and the approximated posterior standard deviation (right) for the GPR 

in the short period simulation example 

 

Finally, Figure 5-37(right) shows a contour plot of the posterior standard deviation resulting 
from the GP regression. Again, the recorded data points are depicted. It can be seen that the 
standard deviation significantly decreases in areas of the state space where data is 
available. In fact, increasing the density of the data points further would lead to a further 
decrease in the posterior standard deviation. In contrast, areas without data exhibit a large 
posterior standard deviation. The posterior standard deviation is often interpreted to 
resemble a confidence of the posterior GP model.   

Figure 5-38 shows the predicted evolution of the integral error, the angle of attack and the 
pitch rate. In particular, for each state, it depicts the predicted mean trajectory as well as the 
area in which 67%, 90% and 99% of all state trajectories are predicted to reside in at each 
time instant. Furthermore, the plot depicts the mean trajectory as well as the evolution of the 
state trajectories for distributed initial conditions. It can be seen that the predicted areas 
contain almost all simulated state trajectories. This indicates, that the GMM based forecast is 
able to predict the state distribution well, even in times in which the latter is represented by a 
Gaussian. The predicted area is seen to shrink over time until it is nearly indistinguishable 
from the mean after approximately 10 seconds. This can be attributed to the fact, that the 
adaptive controller is able to stabilize the system and achieve at least point-wise in time 
cancellation of the uncertainty under various initial conditions.  
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Figure 5-38: Integral error 𝒆𝑰, angle of attach 𝜶𝑲 and pitch rate 𝒒𝑲 predicted over 30 seconds in the short 
period simulation example 

 

For the majority of the simulation, the predicted mean is nearly indistinguishable from the 
simulated one. However, after approximately 12 seconds, minor deviations between the 
predicted and simulated mean occur. This can be attributed to the uncertainty approximation 
error resulting from the GP regression algorithm as well as accumulating prediction errors. In 
any case, the deviations remain small. For the sake of completeness, Figure H-10 and 
Figure H-11 in Appendix H.6 show the predicted evolution of the adaptive parameters and 
the predicted predictor states, respectively. 

0 5 10 15 20 25 30
-10

-5

0

5

10

15

20

25

0 5 10 15 20 25 30
-8

-6

-4

-2

0

2

4

6

8

0 5 10 15 20 25 30
-10

-5

0

5

10



5 Application in Numerical Simulation 
 

Page 152 / 200   

 Integral Error 𝑒  Angle of Attack 𝛼  Pitch Rate 𝑞  

 𝐸 [°] 𝐸ℒ [°] 𝐸ℒ [°] 𝐸  
[°/𝑠] 

𝐸ℒ  

[°/𝑠] 
𝐸ℒ  

[°/𝑠] 
𝐸  
[°/𝑠] 

𝐸ℒ  

[°/𝑠] 
𝐸ℒ  

[°/𝑠] 

GMM (10𝑠) 0.17 0.0072 0.53 0.058 0.0025 0.16 0.078 0.0033 0.23 

Normal (10𝑠) 0.17 0.0074 0.55 0.060 0.0026 0.16 0.082 0.0034 0.23 

GMM (30𝑠) 0.35 0.0097 1.52 0.10 0.0026 0.40 0.15 0.0041 0.70 

Normal (30𝑠) 0.36 0.0097 1.52 0.10 0.0026 0.40 0.15 0.0041 0.70 

Table 5-11: Average mean error, 𝓛𝟐 −like norm and maximum mean error for the prediction of the mean 
trajectory in the pitch rate simulation example  

 

Table 5-11 shows the evaluation of the metrics 𝐸 , 𝐸ℒ  and 𝐸ℒ  for both scenarios, the 

GMM forecast as well as for the prediction with a normal distribution only. The metrics are 
evaluated after 10𝑠 and 30𝑠. It can be seen that the application of the GMM compared to a 
single normal distribution reduces only some error metrics. Furthermore, the reduction is only 
small. However, employing a GMM also never increased an error metric, thus indicating that 
a GMM forecast most likely leads to an increased prediction performance. The reason for the 
small effect of employing a GMM can be found in the approximation error of the GP posterior 
mean. As the online generated uncertainty model exhibits errors, both, the GMM model as 
well as the forecast with a normal distribution, are affected similarly. This becomes 
particularly apparent after approximately 12𝑠 into the simulation, when the predicted mean 
deviates from the simulated one (see Figure 5-6). The error metrics only take a deviation 
from the mean into account. As a result, if the error from the uncertainty approximation 
dominates the error arising from the different forecast models, and both forecast models are 
affected by the uncertainty approximation error similarly, then the error metrics tend to be 
similar as well. Hence, the metrics 𝐸 , 𝐸ℒ  and 𝐸ℒ  alone do not yield a full analysis of the 

simulation. 

In order to interpret the prediction further, again the cdf of the plant states are analysed at 
different time instants. Figure 5-39, Figure 5-40 and Figure 5-41 respectively show the 
approximation of the plant state cdf for the integral error, the angle of attack and the pitch 
rate at different prediction steps, namely after 0.2𝑠, 1𝑠,5𝑠 and 7.5𝑠. The plots depict the cdf of 
the simulated trajectories, the predicted cdf using a GMM and the predicted cdf using a 
Gaussian instead of the GMM. Again, the circles indicate the borders of the channels 
encompassing the central 67%, 90% and 99% of the state trajectories.  

In Figure 5-39 and Figure 5-40 it can be seen that the cdfs of the GMM, the normal and the 
simulated trajectories are nearly indistinguishable after 0.2 seconds into the simulation. Only 
minor errors occur for the outermost circles. Furthermore, the cdfs resemble the shape of a 
normal cdf. This is backed up by the analysis of the state pdf (see Figure 5-33 and Figure 
5-34). In contrast, the cdf of the pitch rate in Figure 5-41 already deviates from a normal cdf. 
This can be attributed to the fact, that the pitch rate is directly affected by the nonlinearity in 
form of the uncertainty and the adaptive control signal. The GMM is seen to be able to 
approximate the shape of the shape of the state trajectory cdf.  
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Figure 5-39: Predicted cdf of the integral error 𝒆𝑰in the short period example after 0.2s, 1s, 5s and 7.5s 

 

Figure 5-40: Predicted cdf of the angle of attack 𝜶𝑲in the short period example after 0.2s, 1s, 5s and 7.5s 
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Figure 5-41: Predicted cdf of the pitch rate 𝒒𝑲 in the short period example after 0.2s, 1s, 5s and 7.5s 

During the simulation, the cdfs of the state trajectories deteriorate from the shape of a normal 
cdf. In this, the GMM approach is seen to approximate the resulting cdf closer than using a 
normal distribution based forecast. Still errors in the approximation capability of the 
presented approach occur. This can e.g. be seen in the pitch rate cdf after 7.5 seconds in 
Figure 5-41. In this, the simulated state trajectories are truncated above at approximately 

5.2
°
. Neither the GMM nor the normal distribution based approach is able to accurately 

represent the truncation. Furthermore, both forecast approaches underestimate the state 
distribution. Both errors can mainly be attributed to the uncertainty approximation error 
introduced by the GP regression. Furthermore, in order to form a concise reference, the 
simulation needs to be performed infinitely often. Since this is physically not possible, errors 
might occur when building the reference.  

To assess the prediction performance and potential underestimation of the monitor further, 
again the GoC of section 5.1.2 is used. Figure 5-42 shows the results for the three plant 
states and varying numerical values for the relaxation term Δ𝑥. In conjunction with Figure 
5-42, Table 5-12 lists the numerical values of the GoC at various Δ𝑥. It can be seen that for a 
vanishing relaxation term, forecasting the normal distribution sometimes leads to a higher 
GoC than using a GMM forecast. This can be attributed to initial approximation errors of the 
GMM. In that, the initial GMM is selected to approximate the initial normally distributed 
states, while the normal distribution forecast is initialized with the initial state distribution 
itself.   
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Figure 5-42: GoC of the plant states with relaxation term for the short period example 

Nevertheless, the introduction of the relaxation term with only small values Δ𝑒 = 0.5, Δ𝛼 =

0.25°, Δ𝑞 = 0.25°/𝑠 quickly sees the GoC values for the GMM to approach one. In contrast, 
the GoC of the Gaussian approximation increases slower and in most cases does not 
achieve a GoC of one within the selected parameter space. This indicates that the GMM 
encompasses the simulated state trajectory channels well. Note that the slow GoC increase 
in the 99% channel of the integral error results from the error in the posterior mean of the GP 
regression algorithm. As the latter leads to an error in the mean prediction (see Figure 5-6), 
the GoC is also affected. While it should be a goal to reduce this error, in the opinion of the 
author, the achievement of satisfactory prediction performance for the physical plant states 
𝛼  and 𝑞  should be rated higher than the integral error 𝑒 . 

Figure 5-43 depicts the predicted probability of an angle of attack requirement violation 
according to equation (4-102) within 30𝑠 of the simulation. It can be seen that the predicted 
channels start crossing the upper limit after approximately 4 seconds and the lower limit at 
approximately 13 seconds. Consequently, the probability of a requirement violation is highest 
around those time instants. After the predicted distribution returns within the state limits set 
by the requirements, the probability of a requirement violation reduces to zero.  

Figure 5-44 depicts the probability of a pitch rate requirement violation. Similar to the angle of 
attack, the predicted pitch rate distribution first crosses the upper state requirement limit after 
approximately 4 seconds and the lower limit at approximately 13 seconds. Note that when 
compared to the angle of attack, a significantly smaller part of the predicted pdf crosses the 
upper state requirement. As a consequence, the predicted probability of an upper state 
requirement violation is significantly lower for the pitch rate.  
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State / Forecast 
Basis 

𝑮𝒐𝑪𝒙𝟔𝟕
 𝑮𝒐𝑪𝒙𝟗𝟎

 𝑮𝒐𝑪𝒙𝟗𝟗
 

𝚫𝒆𝑰 = 𝟎, 𝚫𝜶𝑲 = 𝟎°, 𝚫𝒒𝑲 = 𝟎°/𝒔 

𝑒 – GMM 0.6955 0.5270 0.1550 
𝑒  – Normal 0.4930 0.3910 0.3210 
𝛼 – GMM 0.5080 0.4830 0.3825 

𝛼  – Normal 0.5300 0.5265 0.5470 
𝑞  – GMM 0.5520 0.5475 0.4990 

𝑞  – Normal 0.5165 0.5105 0.5410 

𝚫𝒆𝑰 = 𝟎. 𝟐𝟓, 𝚫𝜶𝑲 = 𝟎. 𝟐𝟓°, 𝚫𝒒𝑲 = 𝟎. 𝟐𝟓°/𝒔 

𝑒 – GMM 0.8845 0.8960 0.1550 
𝑒  – Normal 0.5980 0.4740 0.3605 
𝛼 – GMM 1.0 1.0 0.9240 

𝛼  – Normal 0.8655 0.7150 0.6810 
𝑞  – GMM 1.0 1.0 0.9705 

𝑞  – Normal 0.8425 0.7775 0.6570 

𝚫𝒆𝑰 = 𝟏, 𝚫𝜶𝑲 = 𝟏°, 𝚫𝒒𝑲 = 𝟏°/𝒔 

𝑒 – GMM 1.0 1.0 0.8040 
𝑒  – Normal 1.0 0.7035 0.4900 
𝛼 – GMM 1.0 1.0 1.0 

𝛼  – Normal 1.0 1.0 0.9405 
𝑞  – GMM 1.0 1.0 0.9935 

𝑞  – Normal 0.9870 0.9565 0.9470 

𝚫𝒆𝑰 = 𝟐, 𝚫𝜶𝑲 = 𝟐°, 𝚫𝒒𝑲 = 𝟐°/𝒔 

𝑒 – GMM 1.0 1.0 1.0 
𝑒  – Normal 1.0 0.9275 0.6160 
𝛼 – GMM 1.0 1.0 1.0 

𝛼  – Normal 1.0 1.0 1.0 
𝑞  – GMM 1.0 1.0 0.9980 

𝑞  – Normal 1.0 0.9800 0.9615 
Table 5-12: Numerical values for the GoC with relaxation term for the short period simulation example 

Figure 5-45 shows the resulting OVL curve. The OVL curve is seen to be monotonically and 
nearly linearly decreasing for the most part of the simulation. Within the time frame of 5 and 7 
seconds a steeper decrease can be seen. This can be attributed to the fact, that the variance 
of the mixture elements is significantly larger than during the rest of the simulation. As a 
consequence, the linear surrogate model of the nonlinear dynamics has to be valid over a 
larger support when compared to mixture elements with lower variance. As a result, the 
propagation of the mixture elements through the linearized models results leads to an 
increase in the OVL.  

Finally, Figure 5-46 shows the predicted probability of a requirement violation 𝑃 , which is 
modified by the OVL according to (4-109). The resulting curves are seen to be more 
conservative. That is, with a higher probability 𝑃 , the chance of the monitor issuing a 
warning increases. In fact, with the parameter set of Table 5-10, the monitor issues a 
warning for the upper and lower requirement violation of the angle of attack. Furthermore, it 
issues a warning for the lower requirement violation of the pitch rate. In contrast, since 𝛿 =

0.7, no warning for the violation of the upper pitch rate requirement is issued.   
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Figure 5-43: Probability of an angle of attack requirement violation in the short period example  

 

Figure 5-44: Probability of a pitch rate requirement violation in the short period example 
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Figure 5-45: Predicted Confidence based on OVL in the short period example 

 

 

Figure 5-46: Modified predicted probability of a requirement violation in the short period example  
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5.3 Conclusion 

Chapter 5 applies the proposed monitoring approach of section 4 to two simulation 
examples. In particular, section 5.1 applies the monitoring approach to the roll dynamics of a 
fighter aircraft subject to wingrock motion, which in turn is augmented by direct MRAC. 
Section 5.2 applies the monitor to a linearly controlled short period model of a F-16 fighter 
aircraft, which is augmented by PMRAC. In order to analyse the monitor, two references are 
generated. First, in order to establish a ground truth, the dynamical systems are simulated 
2500 times with distributed initial conditions. Note, that the number of simulation runs is 
arbitrarily selected. To form an exact representation of the state distributions the simulation 
needs to be performed infinitely often, which in turn is physically impossible. Secondly, a 
forecast model based on a normal distribution is used in order to compare against the GMM 
centred approach.  

In order to compare the results, different mean focussed error metrics are used. Since the 
latter neglect higher statistical moments, the GoC is introduced as a measure of under-
approximation. The underlying idea is that the monitor is preferred to issue a false positive 
warning rather than missing a real threat. With the same goal in mind, the OVL from section 
4.5.2 is used in order to self-assess a confidence over the prediction horizon. By using the 
OVL and adjusting the probability of an imminent requirement violation generated by the 
GMM forecast, a more conservative result is achieved. 

In order to propagate the forecast model, the known system dynamics are linearized at the 
mean of the mixture elements in order to form a surrogate model. The GMM is iteratively 
propagated through the latter in order to achieve a prediction of the system states. The 
results of this propagation were seen to approximate the distribution of the predicted system 
states with only minor errors. Furthermore, the GMM is able to represent complex 
distributions. In contrast, using a forecast model based on a single normal distribution results 
in significant under estimation of the state distributions. Even adding a relaxation term does 
not necessarily solve this problem.  

GP regression is applied, in order to form a belief on the uncertainty online. In both 
simulation examples, GP regression is seen to be able to model the uncertainty in the vicinity 
of recorded data points. Furthermore, the posterior variance allows accounting for 
uncertainty in the approximation. Hence, only a small amount of data points is required in 
order to form the representation. The simulation results demonstrate that incorporating the 
posterior distribution of the GP into the forecast indeed allows predicting the state distribution 
for the complete system. The results corroborate the hypothesis that splitting the forecast 
models into the known system dynamics and inferring the modelling uncertainty from online 
gathered data in fact represents a valid approach for predicting the system states.  

While the presented approach shows promising results, some disadvantages arise. The GP 
regression is shown to increase the conservatism of the approach. The posterior variance of 
the GP directly influences the variance of the mixture elements. If the former is large, also 
the latter increases. Hence, the predicted pdf exhibits a larger support than intrinsically 
necessary. As a result, the false positive warnings of the monitor increase. On the other 
hand, the GP posterior variance depends on the hyperparameters as well as the number of 
stored points. Careful tuning can lead to a GP regression algorithm, which experiences a 
small posterior variance while still approximating the uncertainty correctly.  
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The number of required mixture elements is not known a-priori. It is shown that during parts 
of the simulation a single mixture element could suffice, thus reducing the computational 
complexity. Hypothetically, the latter is true if the system dynamics are very well 
approximated by linear dynamics. The monitor fixes the number of employed mixture 
elements. Future derivatives of the approach could try adjusting the number of mixture 
elements dynamically.  

The OVL is intended as an approach to self-assess the quality of the prediction. As 
formulated in section 4.5.2 it needs to be precomputed. The underlying computation 
increases exponentially with the number of system parameters. While this does not 
constraint the presented simulation examples, systems with larger dimensions require more 
computational power. On the other hand, the OVL is presented as one possible way to 
gauge the confidence into the prediction. The proposed monitor allows for an easy 
integration of different approaches.  

In the presented approaches, the requirements are formulated as constant values. Future 
approaches can incorporate more advanced requirement formulations as can be found in 
e.g. [17, p. 163]. 

All in all the proposed approach is shown to be able to predict the system states and act as a 
monitor for imminent requirement violation in adaptively controlled systems. Hence, it 
presents an alternative way of moving from an offline analysis to verification during runtime. 
Simultaneously, the mentioned disadvantages and short comings offer room for further 
development.  
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6 Application to Multirotor Systems 

This section is intended to corroborate the results of the numerical simulation of section 5 by 
applying the monitoring algorithm to multirotor systems. Figure 6-1 shows Ascending 
Technologies’ ([7]) quadcopter Hummingbird as well as the hexacopter Firefly as used by the 
Institute of Flight System Dynamics (FSD) at TU München. To corroborate the results of the 
numerical simulation, the monitoring algorithm is applied to the rotational dynamics of both 
systems. 

  
Figure 6-1: Quadcopter Hummingbird (left) and Hexacopter Firefly (right) as used at FSD  

 

The outline of this section is as follows. Section 6.1 formulates the rotational dynamics of the 
multirotor systems. Section 6.2 presents the application of the monitoring algorithm to the 
adaptively controlled quadcopter. Similarly, section 6.3 presents the application of the online 
monitor to an adaptive controller applied to the hexacopter system. Section 6.4 concludes 
this chapter. 

Parts of this section appeared in [148], [146] and [150].  

6.1 Rotational Dynamics of the Multirotor Systems 

This section derives the rotational dynamics dynamics of a multirotor system. The naming 
convention of Appendix F applies. The following derivation is based on ([94]). 

In order to derive the dynamical model of a multirotor system, various assumptions need to 
be made. This thesis assumes a flat and non-rotating earth. As a result, the transport rate 
and the angular velocity of the earth can be neglected. These assumptions are justified, 
since the presented multirotor system only flies short distances and only operates for a short 
amount of time. Each multirotor system is treated as a rigid body, that is, the relative motion 
of mass elements is considered to be zero and the relative position between mass elements 
stays constant.  
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Figure 6-2: Forces and rotational rate of a multirotor propulsion system exemplified on a quadcopter 

Figure 6-2 shows the forces and the rotational rate of a multirotor propulsion system 
exemplified on the Hummingbird. The following four assumptions, which are common for this 
kind of multirotor architecture (see i.a. [148], [88], [1]), are made throughout this section: 

1. The motor dynamics are considerably faster than the rigid-body dynamics and can be 
neglected.  

2. The rotation axis of each propeller is parallel to the body-fixed 𝑧-axis. 
3. The propulsive forces within the rotor plane are small. 
4. The thrust produced by the 𝑖-the rotor and the moment about its rotation axis can be 

modeled to be proportional to the square of its angular rate 𝜔 . 

These assumptions form the basis for a model of the propulsive forces and moments. The 
forces 𝐹 ,  and moments 𝑀 ,  produced by the 𝑖 −th propeller are: 

 𝐹 , = −𝑘 𝜆 𝜔  

𝑀 , = −𝑠𝑔𝑛(𝜔 )𝜆 𝑘 𝜔 . 
(6-1) 

Here 𝜔  denotes the rotational rate of the 𝑖-th propeller and 𝑘  and 𝑘  represent the thrust 
and torque parameters of each rotor, respectively. The parameter 𝜆 ∈ (0 … 1) describes the 
level of motor degradation. This thesis does not focus on fault tolerant flight control. Hence, 
𝜆  is set equal to 1. Let �⃗� ∈ ℝ  denote the position vector of the 𝑖-th propeller with respect 
to the center of gravity of the multirotor system. Furthemore, let 𝑙 denote the length of the 
arms and let 𝛼  be the angle between the 𝑥 −axis and the respective arm. The propulsion 
moments are 

 
�⃗� =

𝑙 cos(𝛼 )

𝑙 sin(𝛼 )
0

×

0
0

𝐹 ,

+

0
0

𝑀 ,

. (6-2) 
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Solving equation (6-2) for the quadcopter Hummingbird results in 

 
�⃗� =

0 −𝑙𝑘 0 𝑙𝑘
𝑙𝑘 0 −𝑙𝑘 0

−𝑘 𝑘 −𝑘 𝑘
𝑪

𝜔
⋮

𝜔

𝒖

. 
(6-3) 

Similarly, solving (6-2) for the hexacopter Firefly yields 

 

�⃗� =

⎣
⎢
⎢
⎡
−0.5𝑙𝑘 −𝑙𝑘 −0.5𝑙𝑘 0.5𝑙𝑘 𝑙𝑘 0.5𝑙𝑘

√3

2
𝑙𝑘 0 −

√3

2
𝑙𝑘 −

√3

2
𝑘 0

√3

2
𝑘

𝑘 −𝑘 𝑘 −𝑘 𝑘 −𝑘 ⎦
⎥
⎥
⎤

𝑩

𝜔
⋮

𝜔

𝒖

. 
(6-4) 

In any case, the expressions for the propulsion moments are simplified to 

 �⃗� = 𝑪 𝒖. (6-5) 

Additional moments  �⃗�  acting on the multirotor system can be collected in the linear model 
(([94]) 

 �⃗� = 𝑪 (�⃗� ) . (6-6) 

Here (�⃗� )  denotes the rotational rates of the quadcopter and 𝑪  denotes a matrix with 
unknown parameters. The total external moments acting on the multirotor system are 

 �⃗� = �⃗� + �⃗� . (6-7) 

Applying the principle of conservation of angular momentum with respect to the center of 
gravity yields the rotational dynamics of the multirotor (see e.g. [25]): 

 �̇⃗� = 𝐈 �⃗� − (�⃗� ) × 𝐈 ∙ (�⃗� ) . (6-8) 

Inserting (6-7) into (6-8) yields 

 �̇⃗� = 𝐈 �⃗� + �⃗� − (�⃗� ) × 𝐈 ∙ (�⃗� )  

= 𝐈 𝑪 𝒖 + 𝑪 (�⃗� ) − (�⃗� ) × 𝐈 ∙ (�⃗� ) . 

(6-9) 

Rearranging terms yields the rotational dynamics 

 �̇⃗� = 𝐈 𝑪 (�⃗� ) + 𝐈 𝑪 𝒖 − 𝐈 (�⃗� ) × 𝐈 ∙ (�⃗� ) . (6-10) 

Due to the assumption of a non-rotating and flat earth we have (�⃗� ) = �⃗� . As a 

consequence, equation (6-10) becomes 

 �̇⃗� = 𝐈 𝑪 �⃗� + 𝐈 𝑪 𝒖 − 𝐈 �⃗� × 𝐈 ∙ �⃗�  (6-11) 
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For simplicity, the elements of �⃗�  will be denoted as �⃗� = [𝑝 𝑞 𝑟 ]  in the 

following. Also, the plant states �⃗�  will be represented by 𝒙  sometimes to simplify 

notations.  

6.2 Quadcopter Application 

This section details the application of the monitoring algorithm to the adaptively controlled 
quadcopter Hummingbird. The control architecture consists of a fully adaptive rate controller, 
which in turn is used within lectures at FSD ([94]). The presented flight test has been 
reported in [150] using a different monitoring approach. Hence, the data presented in this 
chapter has been priorly recorded during the flight tests in [150]. Here, it is used along with 
the monitoring algorithm proposed within this thesis. In the authors opinion, this still presents 
a viable use case, as the monitoring algorithm can also run on a ground station. This way, 
warnings can still be issued to the controlling pilot.  

The outline of this section is as follows: Section 6.2.1 details the control architecture used for 
the quadcopter. Section 6.2.2 presents the application of the monitoring algorithm. Finally, 
section 6.2.3 depicts the experimental setup and results. 

6.2.1 Quadcopter: Control Architecture  

The control architecture used in [94] deviates from section 3.2 as no baseline (tracking) 
controller is applied. Rather, a full adaptive controller with direct MRAC is used in order to 
make the system dynamics behave like the a-priori selected reference model dynamics: 

 �̇�
�̇�
�̇�
�̇�

= 𝑨

𝑝
𝑞
𝑟
𝒙

+ 𝑩

𝑝
𝑞
𝑟

𝒓

. 
(6-12) 

Here, 𝒙 = [𝑝 𝑞 𝑟 ] represents the reference model states and 𝒓 =

[𝑝 𝑞 𝑟 ]  represents the vector of exogenous reference inputs for the three 
rotational axes. In order to proceed with the design of the control architecture, equation 

(6-11) is further analyzed and simplified. For the controller design, 𝐈  is assumed to be a 

diagonal matrix such that 

 
𝐈 =

𝐼 0 0
0 𝐼 0

0 0 𝐼
. (6-13) 

First, solving the cross product 𝐈 �⃗� × 𝐈 ∙ �⃗�  in equation (6-11) yields 

 𝐈 �⃗� × 𝐈 ∙ �⃗� = (6-14) 
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=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝐼 − 𝐼

𝐼
0 0

0
(𝐼 − 𝐼 )

𝐼
0

0 0
𝐼 − 𝐼

𝐼 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝚯𝝋,𝑰
∗

𝑟 𝑞
𝑟 𝑝
𝑝 𝑞
𝝋(𝒙 )

= 𝚯𝝋,𝑰
∗ 𝝋(𝒙 ). 

Secondly, the input term of equation (6-11) is analyzed. Multiplying 𝐈  with 𝑪  yields 

 

𝐈 𝑪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 0 −

𝑙𝑘

𝐼
0

𝑙𝑘

𝐼
𝑙𝑘

𝐼
0 −

𝑙𝑘

𝐼
0

−
𝑘

𝐼

𝑘

𝐼
−

𝑘

𝐼

𝑘

𝐼 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

. (6-15) 

In [94], equation (6-15) is decomposed into  

 
𝐈 𝑪 =

0 −1 0 1
1 0 −1 0

−1 1 −1 1
𝑩

𝚲 = 𝑩 𝚲. 
(6-16) 

The underlying idea is that the parameters 𝚲 > 𝟎 of the input matrix 𝐈 𝑪  are 

unknown, but the structure and sign are defined a-priori. The uncertainty arising from the 
unknown input parameters 𝚲 shall be handled by the adaptive controller. Exchanging terms 

in equation (6-11) and simplifying with 𝒙 : = �⃗�  yields 

 �̇� = 𝐈 𝑪 𝒙 + 𝑩 𝚲𝒖 − 𝚯𝝋,𝑰
∗ 𝝋(𝒙 ) (6-17) 

Note, that the right More-Penrose pseudoinverse of 𝑩 𝚲 exists, as 𝐈 𝑪  has linearly 

independent rows. As a consequence, 𝑩 𝚲(𝑩 𝚲) = 𝑰. Thus, define 

 𝚯∗ = −(𝑩 𝚲) 𝐈 𝑪 − 𝑨  

𝚯𝝋
∗ = (𝑩 𝚲) 𝚯𝝋,𝑰

∗ . 

(6-18) 

Furthermore, assume the following matching condition exists 

 𝑩 = 𝑩 𝚲𝚯∗ . (6-19) 

Adding and subtracting 𝑨 𝒙  and 𝑩 𝒓 in (6-17) and rearranging terms yields 

 �̇� = 𝑨 𝒙 + 𝑩 𝒓 + 𝑩 𝚲 𝒖 − 𝚯∗ 𝒙 − 𝚯𝝋
∗ 𝝋(𝒙 ) − 𝚯∗ 𝒓 . (6-20) 
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The control signal 𝒖 is designed to cancel the uncertain terms in the brackets 

 

𝒖 = 𝚯 𝒙 + 𝚯 𝝋(𝒙 ) + 𝚯 𝒓 + 𝚯 = 𝚯 𝚯 𝚯 𝚯

𝚯

𝒙

𝝋(𝒙 )
𝒓

𝑰
𝚽

= 𝚯 𝚽(𝒙 , 𝒓). 
(6-21) 

Here, 𝑰  denotes a vector with ones as the entries. Note that the authors in [94] add a term 
𝚯  to the update law, in order to counter disturbances. The parameter update laws follow 
(3-19) and use a 𝜎-modification with 𝑘(𝚯) = −𝜎𝚯,  such that 

 �̇� = −𝚪𝚽(𝒙 , 𝒓)𝒆 𝑷𝑩 − 𝚪𝜎𝚯. (6-22) 

 

6.2.2 Quadcopter: Application of the Monitoring Algorithm 

This section applies the monitoring approach of section 4 to the quadcopter system. The 
monitoring algorithm is not directly applicable to the plant dynamics (6-20). The reason for 
this is that the input parameters 𝚲 are unknown. As a consequence, the input 𝒖 cannot 
completely be decoupled from all uncertainties. This in turn is necessary to separate the 
system dynamics. The known part will be represented by a linear surrogate model, while the 
unknown part will be inferred from online gathered data using GP regression. Adding and 
subtracting 𝑩 𝒖 in equation (6-20) allows for achieving the required separation: 

 �̇� = 𝑨 𝒙 + 𝑩 𝒓 + 𝑩 𝒖 − 𝑩 𝒖 + 𝑩 𝚲𝒖 − 𝑩 𝚲𝚯∗ 𝚽(𝒙 , 𝒓) 

= 𝑨 𝒙 + 𝑩 𝒓 + 𝑩 𝚯 𝚽(𝒙 , 𝒓) − 𝑩 (𝑰 − 𝚲)𝒖 + 𝚲𝚯∗ 𝚽(𝒙 , 𝒓)

𝚫(𝒖,𝒙 ,𝒓)

. 
(6-23) 

In the following, first the linear surrogate model is constructed, which is required in order to 
propagate a GMM. In a second step, the setup of the GP regression algorithm is detailed.  

Construction of the linear surrogate model 

In order to propagate the GMM, first the linearized system dynamics need to be derived. 
Bringing the known dynamics of (6-23) and (6-22) in the form of (4-6) and (4-11) yields 

 
𝒇(𝒙 , 𝒓, 𝚯) =

𝒇 (𝒙 , 𝒓, 𝚯)

𝒇 (𝒙 , 𝒓, 𝚯)
=

𝑨 𝒙 + 𝑩 𝒓 + 𝑩 𝚯 𝚽 (𝒙 ) + 𝑩 𝚯 𝚽 (𝒓)

−𝚪𝚽(𝒙 , 𝒓)𝒆 𝑷𝑩 − 𝚪𝜎𝚯
. (6-24) 

Here, the adaptive control signal 𝚯 𝚽(𝒙 , 𝒓) is split into two parts such that 

 𝚯 𝚽 (𝒙 ) = 𝚯 𝚯

𝚯

𝒙

𝝋(𝒙 )
𝚽 (𝒙 )

, 

𝚯 𝚽 (𝒓) = [𝚯 𝚯 ]

𝚯

𝒓
𝑰

𝚽 (𝒓)

. 

(6-25) 
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The exogenous reference input 𝒓 is supplied by a human pilot. Since this thesis does not 
consider pilot models, the reference input 𝒓 is considered to be constant over the prediction 
horizon. The underlying idea is that the term 𝚯 𝚽 (𝒓) does not contribute to the covariance 
update of the system states. Hence, in order to reduce the computational complexity, it is 
separated from 𝚯 𝚽 (𝒙 ). Adjusting accordingly yields 

 

𝒇(𝒙 , 𝒓, 𝚯) =

𝒇 (𝒙 , 𝒓, 𝚯)

𝒇 𝒙 , 𝒓, 𝚯

𝒇 (𝒙 , 𝒓, 𝚯 )

 

=

𝑨 𝒙 + 𝑩 𝒓 + 𝑩 𝚯 𝚽 (𝒙 ) + 𝑩 𝚯 𝚽 (𝒓)

−𝚪 𝚽 (𝒙 )𝒆 𝑷𝑩 − 𝚪𝜎𝚯

−𝚪 𝚽 (𝒓)𝒆 𝑷𝑩 − 𝚪𝜎𝚯

 

(6-26) 

Here, 𝚪  and 𝚪  denote the submatrices of 𝚪 with appropriate dimension.  

Following, the steps in section 4.3, evaluating 𝒇 𝒙 , , 𝒓, 𝚯  at the linearization point 𝒙 = 𝒙 ,  

and 𝚯 = 𝚯  gives 

 

𝒇 𝒙 , , 𝒓, 𝚯 =

𝒇 , 𝒙 , , 𝒓, 𝚯

𝒇 , 𝒙 , , 𝒓, 𝚯 ,

𝒇 , 𝒙 , , 𝒓, 𝚯 ,

 

=

𝑨 𝒙 , + 𝑩 𝒓 + 𝑩 𝚯 , 𝚽 𝒙 , + 𝑩 𝚯 , 𝚽 (𝒓)

−𝚪 𝚽 𝒙 , 𝒆 𝑷𝑩 − 𝚪 𝜎𝚯 ,

−𝚪 𝚽 (𝒓)𝒆 𝑷𝑩 − 𝚪 𝜎𝚯 ,

. 

(6-27) 

In order to construct the matrix 𝑨 , the partial derivatives of 𝒇 , 𝒇  and 𝒇  with respect to 

the system states 𝒙   and the controller states 𝚯 need to be derived. Remember that 𝒓 is 
treated as a constant throughout the prediction horizon. The partial derivatives of 𝒇  with 
respect to the system states 𝒙   and the controller states 𝚯 are 

 𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝚯 𝚯

= 𝑨 + 𝑩 𝚯
𝜕𝚽 (𝒙 )

𝜕𝒙 𝒙 𝒙 ,

𝚯 𝚯

, 

𝜕𝒇

𝜕𝚯 𝒙 𝒙 ,

𝚯 𝚯

= 𝑩 𝚽 𝒙 , , 

𝜕𝒇

𝜕𝚯
= 𝑩 𝚽 (𝒓). 

(6-28) 

The partial derivate 
𝚽 (𝒙 )

𝒙 𝒙 𝒙 ,

 is 

 
𝜕𝚽 (𝒙 )

𝜕𝑝

𝜕𝚽 (𝒙 )

𝜕𝑞

𝜕𝚽 (𝒙 )

𝜕𝑟 𝒙 𝒙 ,

=

1 0 0 0 𝑟 , 𝑞 ,

0 1 0 𝑝 , 0 𝑞 ,

0 0 1 𝑝 , 𝑟 , 0
. (6-29) 
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Similarly, the partial derivatives of 𝒇  with respect to the system states 𝒙   and the 

controller states 𝚯 are 

 𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝚯 𝚯

= −𝚪
𝜕𝚽 (𝒙 )

𝜕𝒙
𝒙 𝒙 ,

𝒙 , 𝑷𝑩 − 𝚪 𝚽 𝒙 , 𝑩 𝑷 

+𝚪
𝜕𝚽 (𝒙 )

𝜕𝒙
𝒙 𝒙 ,

𝒙 𝑷𝑩 , 

𝜕𝒇

𝜕𝚯 𝒙 𝒙 ,

𝚯 𝚯

= −𝚪 𝜎 

𝜕𝒇

𝜕𝚯 𝒙 𝒙 ,

𝚯 𝚯

= 𝟎. 

(6-30) 

Finally, the partial derivatives of 𝒇  with respect to the system states 𝒙   and the controller 

states 𝚯 are 

 𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝚯 𝚯

= −𝚪𝚽 (𝒓)𝑩 𝑷, 

𝜕𝒇

𝜕𝚯 𝒙 𝒙 ,

𝚯 𝚯

= 𝟎, 

𝜕𝒇

𝜕𝚯 𝒙 𝒙 ,

𝚯 𝚯

= −𝚪 𝜎. 

(6-31) 

  

Application of GP regression to the quadcopter 

The monitoring algorithm uses GP regression as described in section 4.4.3 in order to 
approximate the modelling uncertainty online. Therefore, the latter needs to be estimated at 
specific points in time. In order to reduce complexity, the uncertainty 𝚫 is assumed to solely 
depend on the states 𝒙 . This simplification is warranted, as the control input 𝒖 directly 
depends on the plant states itself. Rearranging equation (6-23) according to (4-92) yields  

 𝚫 𝒙 , = 𝑩 𝑨 𝒙 , + 𝑩 𝒓 + 𝑩 𝚯 𝚽 𝒙 , , 𝒓 − �̇� , . (6-32) 

Hereby, the state derivative �̇� ,  as well as the state 𝒙 ,  is estimated by employing an OFPS 

(see Appendix E.2). The data storage algorithm checks if new data points are sufficiently 
different to already stored data by employing equation (4-93). Other than that, the history 
stack is fixed and does not discard already stored data points.  
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Parameter Numerical Value  

General Parameters 

𝑑𝑡 0.001𝑠  

𝑨  𝟎  

𝑩  
0 −1 0 1
1 0 −1 0

−1 1 −1 1
  

Adaptive Controller and Reference Model 

𝑨  
−25 0 0

0 −25 0
0 0 −9

 

𝑩  
25 0 0
0 25 0
0 0 9

 

[𝑝 , (𝑡 ) 𝑞 , (𝑡 ) 𝑟 , (𝑡 )] 0
°

0
°

0
°

  

𝚪  
5𝑰 𝟎
𝟎 2𝑰

 

𝚪  5𝑰  

𝑸  |  𝑷 𝑰 | 
0.02 0 0

0 0.02 0
0 0 0.0556

 

𝜎 0.01  

𝚯(𝑡 ) 𝟎   
Table 6-1: List of controller parameters used in the quadcopter experiment 

6.2.3 Quadcopter: Experimental Setup and Results 

This section details the setup as well as the results of applying the proposed monitoring 
algorithm to the Quadcopter. The experiment runs for a total of 60𝑠. A human pilots the 
quadcopter with a remote control and issues rate commands as well as a thrust command. 
After approximately 15𝑠 after turning the system on, the pilot takes off. After take-off the pilot 
issues various rate commands to excite the system states and stimulate learning of the 
adaptive parameters. After approximately 45𝑠 the pilot shall keep the quadcopter steady and 
hovering over a single point.  

The experiment uses the controller presented in section 6.2.2 onboard the quadcopter. The 
controller runs at a timestep of 0.001𝑠. The reference model states as well as the adaptive 
weights are initialized at zero. Table 6-1 summarizes the relevant controller parameters as 
well as the respective initial conditions for a concise overview. The controller parameters are 
largely adopted from [94]. 

For the purpose of this experiment the flight test as recorded in [150] is replayed. The 
proposed monitoring approach detailed in section 4 is applied. The replay runs on a standard 
desktop pc (i7-6700K @4.00GHz, 16GB RAM) within ‘real-time’. Note, that the author does 
not claim real-time performance as defined in computer science. Rather, the computation 
process of the monitor finishes within one time step on the specified hardware.  
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Parameter Numerical Value  

Prediction 

𝑡  1𝑠  

𝑑𝑡  0.001𝑠  

GMM 

𝑚  
(Number of mixture elements) 

11  

σ ,  0.03  

Initial distribution of the 
mixture elements 𝜇  

Equidistant within 4𝜎 of the initial state distribution 

GP Regression 

𝑝  100 

𝜎  0.05  

γ 0.0005  

Λ  0.25 

Indicator Function 

𝛿  0.7  

𝛼  1 

𝛽  1000  

𝛿  20 

𝑝 , /𝑝 ,  −45
°

/45
°
  

𝑞 , /𝑞 ,  −45
°

/45
°
  

𝑟 , /𝑟 ,  −45
°

/45
°
  

Table 6-2: List of monitoring parameters used in the quadcopter experiment 

 

The proposed monitoring algorithm is applied as described in section 6.2.2. The GMM used 
in this experiment consists of 11 mixture elements. The initial standard deviation of each 
mixture element is selected to be σ , = 0.03. The mixture elements are equidistantly 

distributed in the range of 4𝜎 of the initial state distribution. The latter in turn result from the 
state estimate of a KF, which is used on the state measurements. Note, that the forward KF 
is part of the OFPS and does not have to be implemented separately.  

The online GP regression algorithm of section 4.4.3 with SE kernel functions is applied in 
order to form a belief on the uncertainty during the run time of the monitor. The data storage 
algorithm checks if new data points are sufficiently different to already stored data by 
employing equation (4-93). Other than that, the history stack is fixed and does not discard 
already stored data points. The bandwidth of the kernels is selected equally to be Λ = 0.25. 
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The prediction horizon is set to 𝑡 = 1𝑠 with a time step of Δ𝑡 = 0.001𝑠. This results in 

𝑘 = 1000 prediction steps. Note, that contrary to the simulation examples of section 5, not 
the complete experiment is predicted, but only a horizon of 𝑡 = 1𝑠. Hence, the monitoring 

algorithm is called frequently. The prediction is triggered every second. Note, that the monitor 
could also be called in a higher frequency. The GMM is propagated through the linearized 
surrogate dynamics and the estimated uncertainty according to the update laws in (4-82) and 
(4-90). 

The proposed monitoring algorithm assumes that the reference input is known over the 
prediction horizon. This is often the case if the reference is generated by an algorithm itself. 
However, here the reference command originates from a human pilot. As no pilot models are 
considered within this thesis, the exogenous reference command is assumed to be known 
through the replay of the experiment. In case that the monitor is applied directly and the 
command is unknown, the currently available exogenous reference command could also be 
extrapolated over the prediction horizon. 

For the purpose of this experiment, the state limits are arbitrarily selected. Angular rates shall 

not exceed a limit of (𝑝 , 𝑞 , 𝑟 ) = 45
°

° and shall not fall below (𝑝 , 𝑞 , 𝑟 ) = −45
°
. 

As a baseline, the parameters of the wing-rock example of section 5.1 are used for the 
indicator function. Since the prediction horizon is smaller, 𝛽  is chosen to be 𝛽 = 1000. 
Table 6-2 summarizes all parameters of the monitoring algorithm. 

Figure 6-3 shows the reference command, the state of the reference model as well as the 
evolution of the state trajectories over the course of the experiment. The pilot excites the 
rotational rates within the first 45𝑠 of the experiment. It can be seen that significant tracking 
errors of up to 20°/𝑠 occur in the roll and pitch rate between the seconds 20 and 25. After 
that, the plant is seen to track the reference model with only minor deviation. The increase in 
tracking performance can be attributed to the evolution of the adaptive. 

Figure 6-4 depicts the evolution of the adaptive parameters. After the switch to the adaptive 
controller, the weights start to evolve quickly in order to cancel the modelling uncertainty. 
This in turn is the reason for the improved tracking performance. It can be seen, that 𝚯  and 
𝚯  converge to certain numerical values within 40𝑠 and approximately remain at these 

values for the rest of the experiment. In contrast, 𝚯  is seen to still change at the end of the 
experiment. Still, the rate of change is seen to decrease. In contrast, 𝚯  is seen to oscillate 
during the whole experiment. In any case, the adaptive parameters stay bounded, which can 
be attributed to the 𝜎 −Modification in the update laws. Switching off the robustness 
modification quickly leads to instability ([94], [150]). 

Figure 6-5 shows the estimate of the uncertainty for each input channel after 60 seconds into 
the experiment using the GP regression algorithm of section 4.4.3. The actual GP is 
dependent on the three rotational rates. In order to depict the estimate, here the yaw rate is 
kept constant at 𝑟 = 0°/𝑠. The resulting estimate is only dependent on the pitch and roll 
rate. It can be seen that the estimate of channel 2 and 3 as well as 1 and 4 assume a similar 
shape. The occurrence of similarities in neighbouring motor-propeller parts leads to the 
suggestion that one side of the quadcopter is effected by a source that increases the 
modelling uncertainty.   
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Figure 6-3: Tracking performance of the adaptive controller in the quadcopter experiment 

Exemplary for the complete experiment, Figure 6-6 shows the predicted evolution of the pitch 
rate at 28, 29 and 30 seconds into the experiment. In particular, it depicts the predicted mean 
trajectory as well as the area in which 67%, 90% and 99% of all state trajectories are 
predicted to reside in at each time instant. The time instances were specifically selected to 
resemble the points in time at which the pilot issues roll rate commands. It can be seen that 
the predicted areas almost always contain the actually measured roll rate. This indicates, that 
the GMM based forecast is able to predict the roll rate well.    
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Figure 6-4: Evolution of the adaptive weights in the quadcopter experiment 

  

  
Figure 6-5: Uncertainty estimation result in the quadcopter experiment for a vanishing yaw rate 
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Figure 6-6: Selected predictions for the roll rate in the quadcopter experiment 

Note, that the area the roll rate is predicted to reside in corresponds to the system state (i.e. 
𝒙 ). In Figure 6-6, it is compared to the state measurement (i.e. 𝒚), as a ground truth is not 
available. In the presented experiment, the measurement is seen to reside within the 
predicted areas. This results from accounting for measurement noise in the forecast, but is 
not necessarily the case for each application. The theoretical derivation in section 4 does not 
lead to the result that the forecast distribution and the measurement distribution have to 
match. Hence, the distribution of the measurement could also exceed the predicted areas 
and the result would still be valid.   
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Figure 6-7: Predicted roll, pitch and yaw rate in the quadcopter experiment 

For the sake of completeness, Figure 6-7 shows every prediction phase within the time 
horizon of the experiment. It can be seen that the forecast does not entirely encompass the 
roll and pitch rate between the seconds 20 and 25. This can be attributed to the GP 
regression algorithm, which is still recording data points in order to formulate a belief on the 
uncertainty. To counteract this, a history stack could be prerecorded. After approximately 23 
seconds, the forecast is seen to encompass the measured state well. Note, that the area the 
yaw rate is predicted to reside in is larger and therefore more conservative than for the pitch 
and roll rate. This is attributed to the consideration of measurement noise in the forecast and 
a higher variance in the yaw axis of the posterior GP.   
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Figure 6-8: Probability of a angular rate requirement violation in the quadcopter experiment 

Figure 6-8 depicts the predicted probability of angular rate requirement violation according to 
equation (4-102). It can be seen that the forecast accurately predicts the probable 
requirement violations during the pilot inputs. In particular, during seconds 25 and 30 for the 
pitch rate, during seconds 28 and 32 for the roll rate and during 30 and 36 for the yaw rate. 
As the prediction horizon as well as the prediction frequency is set to 1 second, the imminent 
requirement violation is predicted 1 second in advance. After the predicted distributions 
return within the state limits set by the requirements, the probability of a requirement violation 
reduces to zero.  
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Figure 6-9: OVL modified predicted probability of an angular rate requirement violation in the quadcopter 
example 

Finally, Figure 6-9 shows the predicted probability of a requirement violation 𝑃 , which is 
modified by the OVL according to (4-109). In particular, the time windows with the highest 
probabilities of requirement violations are highlighted. The resulting curves are seen to be 
more conservative. As the monitoring algorithm is called frequently, the OVL is reset to zero 
each time. This results in the spike pattern visible in Figure 6-9. In fact, with the parameter 
set of Table 6-2, the monitor issues a warning for all three angular rates. E.g. at second 29 
the monitor issues an upper requirement violation of the roll rate within the next second, thus 
corroborating the results of the simulation examples in section 5. 
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At this example the importance of the monitoring frequency becomes visible. In the 
presented case the frequency of monitor calls is equal to the prediction horizon. As a result, if 
the actual requirement violation occurs only 0.1 seconds after the monitor is called, only 
approximately 0.1 seconds remain to react. In contrast, if the monitor runs on the same 
frequency as the controller or if the prediction horizon is doubled, approximately a full second 
remains for a reaction. However, these case also require more computational resources. In 
the end, the selection of frequency and horizon parameters heavily depends on the minimal 
reaction time required by the system in order to counter an imminent requirement violation. 
This again is task dependent, as errors in position probably allow for a larger reaction time 
compared to requirement violations in the angular rates.  

In summary, the monitoring algorithm is seen to predict the evolution of the angular rates 
well. Therefore, it is able to detect imminent requirement violations before they appear, thus 
corroborating the results of the numerical simulation in section 5.  

6.3 Hexacopter Application 

This section details the application of the monitoring algorithm to the adaptively controlled 
hexacopter Firefly. The control architecture consists of a direct MRAC augmented feedback 
linearized rate controller as described in section 3. The plots shown in this section are down-
sampled from their original frequency in a ratio of 5: 1.  

The outline of this section is as follows: Section 6.3.1 details the control architecture used for 
the hexacopter. Section 6.3.2 presents the application of the monitoring algorithm. Finally, 
section 6.3.3 depicts the experimental setup and results. 

 

6.3.1 Hexacopter: Control Architecture 

The rotational dynamics of the hexacopter are given by (6-11) and (6-4). Consider the 

simplification 𝒙 : = �⃗�  as well as the assumptions which were already used in section 

6.2. Approximate feedback linearization (see i.a. [118], [95], [41], [114], [149]) transforms the 
rotational dynamics into the form (3-2). Therefore consider the linearizing feedback 

 𝒖 = 𝑪 𝐈 𝝂 + 𝒙 × 𝐈 ∙ 𝒙  (6-33) 

Here,  𝑪 ,  𝐈  and 𝑪  represent prior estimates of the parameters 𝑪 ,  𝐈  and 𝑪 . 
Furthermore, 𝝂 represents the pseudo control input. Inserting (6-33) into (6-11) yields 

 �̇� = 𝐈 𝑪 𝒙 + 𝐈 𝑪 𝑪 𝐈 𝝂 + 𝐈 𝑪 𝑪 𝒙 × 𝐈 ∙ 𝒙  

− 𝐈 𝒙 × 𝐈 ∙ 𝒙  

(6-34) 
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Expanding the input term of equation (6-11) as shown in section 6.2.1 yields 

 

𝐈 𝑪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−0.5𝑙𝑘

𝐼

−𝑙𝑘
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𝐼
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𝐼

0.5𝑙𝑘
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√3

2𝐼
𝑙𝑘 0 −
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2𝐼
𝑘 0

√3
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𝐼
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𝐼
−

𝑘
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𝑘

𝐼
−

𝑘

𝐼 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

. (6-35) 

Similar to section 6.2.1 and [94], the product 𝐈 𝑪  can be decomposed into 

 

𝐈 𝑪 =

−0.5 −1 −0.5 0.5 1 0.5

√3

2
0 −

√3

2
−

√3

2
0

√3

2
1 −1 1 −1 1 −1

𝑩

𝚲 = 𝑩 𝚲 
(6-36) 

Note, that the right More-Penrose pseudoinverse of 𝑩 𝚲 exists, as 𝐈 𝑪  has linearly 

independent rows. As a consequence, 𝑩 𝚲 𝑩 𝚲 = 𝑰. Furthermore, consider the cross 

product 𝐈 𝒙 × 𝐈 ∙ 𝒙  as solved in (6-14). Adding and subtracting 𝝂 in (6-34), as 

well as collecting terms results in  

 �̇� = 𝝂 + 𝐈 𝑪 𝒙 − 𝚯𝝋,𝑰
∗ 𝝋(𝒙 ) 

− 𝑰 − 𝑩 𝚲 𝑩 𝚲 𝝂 + 𝑩 𝚲 𝑩 𝚲 𝚯𝝋,𝑰
∗ 𝝋(𝒙 ) 

(6-37) 

Here, 𝚯𝝋,𝑰
∗  denotes the parameter matrix if (6-14) is solved with 𝐈  instead of 𝐈 . 

Furthermore, let 𝑩 𝚲 represent the result of decomposing 𝐈 𝑪  instead of 𝐈 𝑪 . 

Consider the following definitions 

 
𝚯∗ = − 𝐈 𝑪  

𝚯𝝋
∗ = 𝚯𝝋,𝑰

∗ − 𝑩 𝚲 𝑩 𝚲 𝚯𝝋,𝑰
∗  

𝚯∗ = 𝑰 − 𝑩 𝚲 𝑩 𝚲 . 

(6-38) 

Furthermore, define 𝑨 ≔ 𝟎  and 𝑩 ≔ 𝑰 . Then (6-37) becomes 

 
�̇� = 𝑨 𝒙 + 𝑩 𝝂 −𝚯∗ 𝒙 − 𝚯𝝋

∗ 𝝋(𝒙 ) − 𝚯∗ 𝝂

𝚫(𝒙 ,𝝂)

 

= 𝑨 𝒙 + 𝑩 𝝂 − 𝚫(𝒙 , 𝝂) , 

(6-39) 

which in turn resembles the form (3-2). The subsequent error and adaptive controller is 
designed according to (3-11) and (3-12). Therefore, consider the reference model (6-12) 
used in the quadcopter example in section 6.2.1.  
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Applying (3-11) and (3-12) to (6-39) yields 

 �̇� = 𝑨 𝒙 + 𝑩 𝑲 𝒆 + 𝑩 𝑲 , 𝒙 + 𝑩 𝑲 , 𝒓 + 𝑩 𝝂 − 𝚫(𝒙 , 𝝂) . (6-40) 

The adaptive control signal 𝝂  is designed to cancel the uncertain terms in the brackets 
(6-40). Note, that 𝚫(𝒙 , 𝝂) depends on the pseudo-control 𝝂. In turn, the pseudo-control 
primarily depends on the system states 𝒙 . Hence, in order to reduce the complexity of the 
controller, the uncertainty is assumed to only depend on the system states 𝒙 . The adaptive 
control signal is constructed to be 

 𝝂 = 𝚯 𝒙 + 𝚯 𝝋(𝒙 ) = 𝚯 𝚯

𝚯

𝒙

𝝋(𝒙 )
𝚽

= 𝚯 𝚽(𝒙 ). 
(6-41) 

The parameter update laws follow (3-19) and use a 𝜎-modification with 𝑘(𝚯) = −𝜎𝚯,  such 
that 

 �̇� = −𝚪𝚽(𝒙 )𝒆 𝑷𝑩 − 𝚪𝜎𝚯. (6-42) 

In the presented experiment, the adaptive controller is only added to the roll and pitch rate 
channel. In contrast, the yaw rate only depends on the baseline controller. In addition to the 
rotational dynamics, also the attitude dynamics with respect to Euler angles and the body-

fixed rotational rates �⃗�  are inverted. This allows the pilot to control the attitude instead 

of the rotational rates, which in turn requires more flight training. The attitude dynamics 
describe a purely kinematic relation and are therefore not subject to modelling uncertainties. 
The derivation is omitted here, but can be found i.e. in [92]. Furthermore, instead of 

commanding a yaw angle Ψ, the pilot commands the derivative Ψ̇. This allows the pilot to 
keep the control stick in an idle position instead of having to command a fixed yaw angle 
throughout the experiment. The rotational dynamics and the associated controller as 
presented in this section are thereby unaffected. 

6.3.2 Hexacopter: Application of the Monitoring Algorithm 

This section applies the monitoring approach of section 4 to the hexacopter system dynamics 
in (6-40). In the following, first the linear surrogate model is constructed. In a second step, 
the setup of the GP regression algorithm is detailed.  

Construction of the linear surrogate model 

In order to propagate the GMM, first the linearized system dynamics need to be derived. 
Bringing the known dynamics of (6-40) and (6-42) in the form of (4-6) and (4-11) yields 

 
𝒇(𝒙 , 𝒓, 𝚯) =

𝒇 (𝒙 , 𝒓, 𝚯)

𝒇 (𝒙 , 𝒓, 𝚯)
=

𝑨 𝒙 + 𝑩 𝑲 , − 𝑲 𝒙 + 𝑩 𝑲 , 𝒓 + 𝑩 𝚯 𝚽

−𝚪𝚽(𝒙 )𝒆 𝑷𝑩 − 𝚪𝜎𝚯
. (6-43) 

The exogenous reference input 𝒓 is supplied by a human pilot. Since this thesis does not 
consider pilot models, the reference input 𝒓 is considered to be constant over the prediction 
horizon.  
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Following, the steps in section 4.3, evaluating 𝒇 𝒙 , , 𝒓, 𝚯  at the linearization point 𝒙 = 𝒙 ,  

and 𝚯 = 𝚯  gives 

 
𝒇 𝒙 , , 𝒓, 𝚯 =

𝒇 , 𝒙 , , 𝒓, 𝚯

𝒇 𝒙 , , 𝒓, 𝚯 ,

 

=
𝑨 𝒙 , + 𝑩 𝑲 , − 𝑲 𝒙 , + 𝑩 𝑲 , 𝒓 + 𝑩 𝚯 𝚽 𝒙 ,

−𝚪𝚽 𝒙 , 𝒆 𝑷𝑩 − 𝚪𝜎𝚯
. 

(6-44) 

In order to construct the matrix 𝑨 , the partial derivatives of 𝒇 ,and 𝒇  with respect to the 
system states 𝒙   and the controller states 𝚯 need to be derived. The partial derivatives of 𝒇  
with respect to the system states 𝒙   and the controller states 𝚯 are 

 𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝚯 𝚯

= 𝑨 + 𝑩 𝚯
𝜕𝚽(𝒙 )

𝜕𝒙 𝒙 𝒙 ,

𝚯 𝚯

, 

𝜕𝒇

𝜕𝚯 𝒙 𝒙 ,

𝚯 𝚯

= 𝑩 𝚽 𝒙 , . 

(6-45) 

The partial derivate 
𝚽(𝒙 )

𝒙 𝒙 𝒙 ,

 is 

 
𝜕𝚽(𝒙 )

𝜕𝑝

𝜕𝚽(𝒙 )

𝜕𝑞

𝜕𝚽(𝒙 )

𝜕𝑟 𝒙 𝒙 ,

=

1 0 0 0 𝑟 , 𝑞 ,

0 1 0 𝑝 , 0 𝑞 ,

0 0 1 𝑝 , 𝑟 , 0
. (6-46) 

Similarly, the partial derivatives of 𝒇  with respect to the system states 𝒙   and the controller 
states 𝚯 are 

 𝜕𝒇

𝜕𝒙 𝒙 𝒙 ,

𝚯 𝚯

= −𝚪
𝜕𝚽(𝒙 )

𝜕𝒙
𝒙 𝒙 ,

𝒙 , 𝑷𝑩 − 𝚪𝚽 𝒙 , 𝑩 𝑷 + 𝚪
𝜕𝚽(𝒙 )

𝜕𝒙
𝒙 𝒙 ,

𝒙 𝑷𝑩 , 

𝜕𝒇

𝜕𝚯 𝒙 𝒙 ,

𝚯 𝚯

= −𝚪𝜎. 

(6-47) 

Application of GP regression to the hexacopter 

The monitoring algorithm uses GP regression as described in section 4.4.3 in order to 
approximate the modelling uncertainty online. Therefore, the latter needs to be estimated at 
specific points in time. In order to reduce complexity, the uncertainty 𝚫 is assumed to solely 
depend on the states 𝒙 . This simplification is warranted, as the control input 𝝂 directly 
depends on the plant states itself. Rearranging equation (6-40) according to (4-92) yields  

 𝚫 𝒙 , = 𝑩 𝑨 𝒙 , + 𝑩 𝑲 , − 𝑲 𝒙 , + 𝑩 𝑲 , 𝒓 + 𝑩 𝚯 𝚽 𝒙 , − �̇� , . (6-48) 

Hereby, the state derivative �̇� ,  as well as the state 𝒙 ,  are estimated by employing an 

OFPS (see Appendix E.2). The data storage algorithm checks if new data points are 
sufficiently different to already stored data by employing equation (4-93). Other than that, the 
history stack is fixed and does not discard already stored data points. 
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Parameter Numerical Value  

General Parameters 

𝑑𝑡 0.003𝑠  

𝑨  𝟎  

𝑩  𝑰   

Controller and Reference Model 

𝑨  −50𝑰  

𝑩  50𝑰  

[𝑝 , (𝑡 ) 𝑞 , (𝑡 ) 𝑟 , (𝑡 )] 0
°

0
°

0
°

  

𝑲  
−30 0 0

0 −30 0
0 0 −10

 

𝚪 , 𝚪  
−2 0 0
0 −2 0
0 0 0

,
−2 0 0
0 −2 0
0 0 0

 

𝑸  |  𝑷 𝑰 | 
0.017 0 0

0 0.017 0
0 0 0.050

 

𝜎 0.01  

𝚯(𝑡 ) 𝟎   
Table 6-3: List of controller parameters used in the hexacopter experiment 

6.3.3 Hexacopter: Experimental Setup and Results 

This section details the setup as well as the results of applying the proposed monitoring 
algorithm to the Hexacopter. The experiment runs for a total of 60𝑠. A human pilots the 
hexacopter with a remote control and issues roll angle, pitch angle and yaw rate commands 
as well as a thrust command. After approximately 120𝑠 after turning the system on, the pilot 
takes off. After take-off the pilot issues various commands to excite the system states and 
stimulate learning of the adaptive parameters.  

The experiment uses the controller presented in section 6.3.2 onboard the hexacopter. 
Therefore, the hexacopter is equipped with an Overo Gumstix (1GHz, 512MB RAM). The 
controller runs with a timestep of 𝑑𝑡 = 0.003𝑠. The reference model states as well as the 
adaptive weights are initialized at zero. Table 6-3 summarizes the relevant controller 
parameters as well as the respective initial conditions for a concise overview.  

The proposed monitoring approach detailed in section 4 is applied. The monitoring algorithm 
runs on the Overo Gumstix board with the same frequency as the control algorithm. In 
particular, this means that the monitor is called at each time step. The proposed monitoring 
algorithm as described in section 4 is applied. The GMM used in this experiment consists of 
11 mixture elements. The initial standard deviation of each mixture element is selected to be 
σ , = 0.03. The mixture elements are equidistantly distributed in the range of 4𝜎 of the initial 

state distribution. The latter in turn result from the state estimate of a KF, which is used on 
the state measurements. Note, that the forward KF is part of the OFPS and does not have to 
be implemented separately. 



 6 Application to Multirotor Systems
 

  Page 183 / 200 

Parameter Numerical Value  

Prediction 

𝑡  1  

𝑑𝑡  0.01𝑠  

GMM 

𝑚  
(Number of mixture elements) 

11  

σ ,  0.03  

Initial distribution of the 
mixture elements 𝜇  

Equidistant within 4𝜎 of the initial state distribution 

GP Regression 

𝑝  100 

𝜎  0.05  

γ 0.0005  

Λ  0.25 

Indicator Function 

𝛿  0.7  

𝛼  1 

𝛽  100  

𝛿  20 

𝑝 , /𝑝 ,  −15
°

/15
°
  

𝑞 , /𝑞 ,  −15
°

/15
°
  

𝑟 , /𝑟 ,  −15
°

/15
°
  

Table 6-4: List of monitoring parameters used in the hexacopter experiment 

 

The online GP regression algorithm of section 4.4.3 with SE kernel functions is applied in 
order to form a belief on the uncertainty. For the purpose of this experiment, data points were 
already recorded during a previous flight. For the experiment, the history stack is fixed. The 
bandwidth of the kernels is selected equally to be Λ = 0.25. 

The prediction horizon is set to 𝑡 = 1𝑠 with a time step of 𝑑𝑡 = 0.01𝑠. This results in 

𝑘 = 100 prediction steps. A preliminary analysis on the run-time requirements of the 
monitor resulted in a maximum of 𝑘 , = 10 prediction steps per call, which would still 

ensure that both the monitor and controller terminate within Δ𝑡 = 0.003𝑠 on the Overo 
Gumstix board.  

Multiple options exist, which can extend the prediction horizon without requiring a change of 
hardware. First, the time step for the prediction 𝑑𝑡  can be increased. As a result, the 

prediction horizon increases with the same ratio. As an example, setting 𝑑𝑡 = 0.1𝑠 results 
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in a prediction horizon of 𝑡 = 1𝑠, while still only requiring 10 prediction steps. Note, that 

the predictions are performed using Euler’s method. Thus, increasing the step size also 
quickly increases the error of the prediction. This approach is applicable to a certain degree, 
but has to be checked a-priori. In the present example, the prediction step 𝑑𝑡 = 0.01𝑠 is 

already greater than the timestep of the controller with 𝑑𝑡 = 0.003𝑠. The monitor was found to 
still perform with only minor error. Still, an increase to 𝑑𝑡 = 0.1𝑠 was found to introduce 

too much error. As a consequence, this approach is not pursued. 

Secondly, parts of the monitor can be approximated. In this, instead of iterating 10 time 
steps, a look-up table for the results of the iterations can be formed. This is possible since 
the ‘known’ dynamics do not change over the scope of the experiment. Hence, the table 
look-up retains validity over the scope of the experiment. This second approach promises to 
solve the problems of limited computational resource and is used instead of increasing the 
step size beyond 𝑑𝑡 = 0.01𝑠. 

For the construction of the look-up tables the expected state space is partitioned. Each look-
up table receives the system states as an input and produces the predicted mean and 
variance of a mixture element. Each look-up table represents 10 prediction steps. 
Constructing a table lookup for the full prediction of 100 steps is also possible. However, the 
GMM is only analysable at the output of a table lookup. As a result, mapping 100 prediction 
steps only allows for a GMM evaluation at the end of the prediction horizon and not in 
between. As a logical consequence, from selecting a table lookup horizon of 10, the GMM is 
evaluated after every 10𝑡ℎ  prediction step within this experiment. Note that this method is 
applicable to the hexacopter case, as the number of states is limited. For an increasing 
system state dimension, also the effort in creating and running table-lookups increases.  

For the sake of completion, two other options exist. First, the hardware of the hexacopter 
could be upgraded. Secondly, the monitoring algorithm could also be applied to a ground 
station with sufficient computational ressources.  

A fundamental hypothesis of the proposed monitoring algorithm is that the reference input is 
known over the prediction horizon. This is often the case if the reference is generated by an 
algorithm, such as a trajectory generator. However, here the reference command originates 
from a human pilot. As no pilot models are considered within this thesis, the exogenous 
attitude reference command is assumed to be constant over the prediction horizon. The 
attitude reference model is then used to form an expected rate command over the prediction 
horizon. As a consequence, the monitor predictions exhibit an error to the real exogenous 
command and resulting system states. To show this effect, the experiment is also replayed 
while assuming the exogenouse reference command to be known throughout the replay.  

For the purpose of this experiment, the state limits are arbitrarily selected. Angular rates shall 

not exceed a limit of (𝑝 , 𝑞 , 𝑟 ) = 15
°

° and shall not fall below (𝑝 , 𝑞 , 𝑟 ) = −15
°
. 

As a baseline, the parameters of the wing-rock example of section 5.1 as well as the 
quadcopter example of section 6.2 are used for the indicator function. The parameter 𝛽  is 
chosen to be 𝛽 = 100. Table 6-4 summarizes all parameters of the monitoring algorithm. 
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Figure 6-10: Tracking performance of the adaptive controller in the hexacopter experiment 

Figure 6-10 shows the reference command, the state of the reference model as well as the 
evolution of the state trajectories over the course of the experiment. The pilot excites the 
rotational rates throughout the experiment by issuing attitude commands. The output of the 
attitude control loop then generates rate commands. It can be seen that the noise level of the 
roll and pitch rate is significantly higher than the one of the yaw rate. This can mainly be 
attributed to the proportional feedback gains of the baseline tracking controller in the 
rotational loop. In particular, the gains for roll and pitch rate are three times larger than the 
feedback gain of the yaw rate channel. Despite the measurement noise, the system is seen 
to track the reference model.     
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Figure 6-11: Evolution of the adaptive weights in the hexacopter experiment 

  

 

 

Figure 6-12: Uncertainty estimation result in the hexacopter experiment for a vanishing yaw rate 

 

Figure 6-11 depicts the evolution of the adaptive parameters. After take-off , the weights start 
to evolve quickly in order to cancel the modelling uncertainty. It can be seen that some 
weights converge to certain numerical values within 20 seconds of the experiment. This 
particularly applies to the proportional gains 𝚯 . This indicates that the adaptive controller is 
approximating the modelling uncertainty. In contrast, the nonlinear gains 𝚯  fail to converge, 

but are continuously excited by the system rates. However, the adaptive parameters stay 
bounded, which can be attributed to the 𝜎 −Modification in the update laws.  
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Figure 6-13: Selected predictions for the roll rate in the hexacopter experiment with unknown reference 
command evolution 

Figure 6-12 shows the estimate of the uncertainty for each rate channel using the GP 
regression algorithm of section 4.4.3. The actual GP is dependent on the three rotational 
rates. In order to depict the estimate, here the yaw rate is kept constant at 𝑟 = 0°/𝑠. The 
resulting estimate is only dependent on the pitch and roll rate. It can be seen that both, the 
estimated roll and pitch rate uncertainties assume an axissymmetrical shape. Since a 
modelling uncertainty in the rate dynamics corresponds to a moment, the observed 
symmetry could point to a counteracting aerodynamical moment.  
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Exemplary for the complete experiment, Figure 6-13 shows the predicted evolution of the 
pitch rate at three points in time. In particular, it depicts the predicted mean trajectory as well 
as the area in which 67%, 90% and 99% of all state trajectories are predicted to reside in at 
each time instant. This example is intended to highlight the necessity of the assumption that 
the evolution of the exogenous reference model is known. 

It can be seen that the three predicted channels are asymmetrical to the predicted mean 
trajectory. This indicates that the predicted pdf, which is formed by the GMM, assumes a 
non-Gaussian shape. For example, the predicted roll rate distribution during the second 
prediction is long tailed towards positive roll rates. Secondly, it can be seen that the mean 
trajectory converges to specific numerical values within the prediction horizon. This 
originates from assuming a constant attitude command. The latter drives a linear reference 
model for the attitude dynamics, which in turn generates a rate command. As the attitude 
reference model has a relative degree of one, it is comparable to the step response of a first 
order low-pass filter. The monitoring algorithm predicts the rate dynamics to follow this 
behavior.  

As a direct consequence of this approach, the monitoring algorithm is seen to produce 
prediction errors within the prediction horizon. In particular, the mean of the predicted state 
trajectories does not match the mean of the state evolution. Still, the states are seen to 
recide within channels for most of the prediction horizon. This can be attributed to the GP as 
well as the considered measurement noise, which both increase the standard deviation of 
the mixture elements.  

Figure 6-14 shows selected predictions over the complete experiment. In particular, the 
monitor is called in every time step. For the sake of depiction, the predictions are only shown 
every second. As a result, they do not overlap. In the case of the roll and pitch rate, it can be 
seen that even though the predicted mean does not match the mean of the state evolution, 
the states still often reside within the predicted channels. However, sometimes the single 
prediction do not match the state evolution at all. This again can be attributed to the unknown 
evolution of the exogenous reference command. In particular, if the monitor is called one 
time step before a significant change in the attitude command, the prediction produces large 
deviations from the state evolution. Calling the monitor again, after the change occurred 
adjusts the predictions as the monitor is able to incorporate the added information.  

In contrast, it can be seen, that even though the predicted mean for the yaw rate does not 
match the state evolution, the yaw rate still resides within the three channels nearly all of the 
time. This can be attributed to the fact, that the belief on the uncertainty affecting the yaw 
dynamics, which is formed by GP regression, is highly uncertain itself. This indicates, that not 
enough data points were recorded. As a result, it increases the standard deviation of the 
mixture elements and also spreads their respective means, thus also increasing the channel 
size.  

In summary, the experiment showed the necessity behind the assumption of a known 
reference command evolution over the prediction horizon. The latter can originate from e.g. a 
pilot model or a trajectoriy generator. Still, assuming a constant reference command is 
possible. In this case, the prediction horizon as well as the frequency in which the monitor is 
called need to be carefully selected in order to achieve usable results.  



 6 Application to Multirotor Systems
 

  Page 189 / 200 

 

Figure 6-14: Predicted roll, pitch and yaw rate in the hexacopter experiment with unknown reference 
command evolution 

The experiment is repeated in an offline replay. For the replay, the evolution of the 
exogenous reference command is assumed to be known. Figure 6-15 shows the selected 
predictions of Figure 6-13 for the known reference command. It can be seen that the 
predicted mean now qualitatively corresponds to the mean evolution of the roll rate. 
Furthermore, the predicted channels engulf the measured roll rate. This indicates that the 
monitor is able to predict the system states of the hexacopter well if the reference command 
is known. 
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Figure 6-15: Selected predictions for the roll rate in the hexacopter experiment with known reference 
command evolution 

Figure 6-16 shows the replay of the complete experiment. In contrast to Figure 6-14, the 
predicted mean is seen to qualitatively correspond to the mean evolution of the states. 
Furthermore, the channels engulf the system states for nearly the complete experiment. This 
suggests that the monitor is able to predict the system states and act as an indicator for off-
nominal behavior. Note that the uncertainty in the GP of the yaw rate is independent on the 
knowledge of the reference command. Hence, the resulting GMM form similarly large 
channels as observed in Figure 6-14. 
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Figure 6-16: Predicted roll, pitch and yaw rate in the hexacopter experiment with known reference 
command evolution 

Figure 6-17 depicts the predicted probability of angular rate requirement violation according 
to equation (4-102). It can be seen that the forecast predicts some probable requirement 
violations. In particular, the monitor depicts an upper requirement violation for the roll rate 
after approximately 124 seconds. Furthermore, the monitor detects a lower requirement 
violation  for the yaw rate after approximately 143 seconds. As the prediction horizon is set to 
1 second, the imminent requirement violation is predicted 1 second in advance. After the 
predicted distributions return within the state limits set by the requirements, the probability of 
a requirement violation reduces to zero. 
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Figure 6-17: Probability of a angular rate requirement violation in the hexacopter experiment 

Finally, Figure 6-18 shows the predicted probability of a requirement violation 𝑃 , which is 
modified by the OVL according to (4-109). In particular, the time windows, which are 
influenced by the OVL the most are highlighted. The resulting curves are seen to be more 
conservative. As the monitoring algorithm is called frequently, the OVL is reset to zero each 
time. This results in the spike pattern visible in Figure 6-18. Note, that in reality the monitor is 
called every time step, thus issuing significantly more results. With the parameter set of 
Table 6-4, the monitor now issues warnings for all three angular rates.  
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Figure 6-18: OVL modified predicted probability of an angular rate requirement violation in the hexacopter 
example 

This example highlighted the challenges occuring if the exogenous reference command is 
unknown. In summary, the monitoring algorithm is seen to predict the evolution of the 
angular rates well if the reference command is known. In the opposite case, the monitor can 
still be applied, but should be called at a high frequency with only a low prediction horizon. 
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6.4 Conclusion 

Chapter 6 applies the proposed monitoring approach of section 4 to two adaptively controlled 
multirotor systems. In particular, section 6.1 derives the rate dynamics of multirotor systems. 
Section 6.2 applies the monitoring algorithm to a quadcopter with a direct MRAC based rate 
controller. Section 6.3 applies the proposed monitoring approach to the rotational dynamics 
of a hexacopter with direct MRAC augmenting a NDI based baseline controller.  

In both experiments the monitor was shown to be able to predict the evolution of the system 
states and thus corroborate the simulation results of section 5. Some aspects and 
recommendations can be discerned from the experiments. First, the frequency of the monitor 
calls plays a vital role. Increasing the latter directly raises the hardware requirements. On the 
other hand, a high frequency is important, in particular if the evolution of the exogenous 
reference command is unknown. If the monitor is called frequently it can quickly incorporate 
new information such as rapid reference command changes. The quadcopter example 
showed that selecting a higher frequency is reasonable even if the reference command was 
known. In particular, calling the monitor only once within the time frame covered by the 
prediction horizon, may lead to situations were only a short time remains to react to the 
imminent requirement violation. Hence, the frequency of monitor calls is recommend to be 
high enough that the prediction horizons of multiple predictions overlap sufficiently. This even 
more applies if the evolution of the reference command is unknown.    

The prediction horizon behaves similar to the prediction frequency. Increasing the prediction 
horizon also raises the requirements on the computational hardware. Still, increasing the 
former also results in longer reaction times, which in general is desirable. However, 
prediction errors propagate over the horizon thus making the forecast less reliable the longer 
it lasts. To capture this, the OVL was introduces. The latter modifies the probability of a 
requirement violation relative to the expected propagation errors. For long prediction horizon, 
the modified probability increases drastically. If the reference command is unknown, the 
hexacopter example showed that the monitor frequency should be favoured above the length 
of the prediction horizon. This allows for a quick incorporation of new information such as a 
change in the reference command. All in all, setting the parameters comes down to 
optimizing the monitor with regards to the three goals hardware requirements, prediction 
horizon and prediction frequency. As a recommendation, once a minimum prediction horizon 
is defined, the monitoring frequency should be favoured above the horizon.  

The experiments suggest three practical applications of the proposed monitoring algorithm. 
First, the monitor can be applied to the onboard hardware to achieve an assessment on 
probable requirement violations on the system itself and to be able to quickly react. 
Secondly, the monitor can be applied to a ground station, which usually favours stronger 
hardware, but doesn’t allow for immediate reaction to potential violations. Lastely, the 
monitor can be used to replay experiments and simulations in order to analyse them or 
discern the impact of changes on the closed-loop system. 

All in all the proposed approach is shown to be able to predict the system states and act as a 
monitor for imminent requirement violation in adaptively controlled systems. Hence, it 
presents an alternative way of moving from an offline analysis to verification during runtime. 
Simultaneously, the mentioned disadvantages and short comings offer room for further 
development.  
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7 Conclusion and Outlook 

7.1 Conclusion 

The aim of this thesis was to introduce a concept towards runtime verification of adaptive 
controllers. Therefore, this thesis introduced an online monitoring concept, which aims at 
detecting imminent state requirement violation and undesired behavior of an adaptively 
controlled closed loop system. The proposed monitor predicts the distribution of the state and 
adaptive parameter trajectories. In turn, the predictions are analyzed at each time step by 
evaluating the predicted distributions with respect to a-priori formulated state requirements. If 
the predicted state distributions violate a requirement, the monitoring concept issues a 
warning. 

In order to predict the distributions of the state trajectories this thesis uses GMMs. Thereby, 
the initial state distribution is approximated by the GMM. The resulting mixtures are then 
propagated through the plant model. The latter consists of two parts. First, often a significant 
portion of the possibly nonlinear system dynamics are known. During a prediction step, the 
nonlinear system equations are linearized at each mixture element. The mixture elements 
are then propagated through the surrogate system. Secondly, most systems are subject to 
modelling uncertainties. This includes amongst others, parameter uncertainties or neglected 
dynamics. In order to incorporate the modelling uncertainties into the predictions, the former 
are quantified by using GP regression. The latter uses specifically recorded data points in 
order to form a belief on the modelling uncertainty. The mixture elements are then 
propagated through the resulting GP.  

At each prediction step, the system states are represented by a GMM. In order to assess, 
whether an imminent requirement violation occurs, the cdf of the GMM is compared against 
the defined state requirements. If the probability of a requirement violation is higher than a 
selected threshold, warning is issued.  

The forecast of the system states inevitably introduces faults, which could originate from 
numerical errors or linearization inaccuracies. This thesis uses the OVL in order to assess 
the estimated prediction errors made throughout the recursive application of the forecast. 
Thereby, the probability of an imminent requirement violation is modified by the OVL. The 
result is more conservative, i.e. the monitor issues more warnings than before. However, in 
the view of the author, an increased false positive rate is acceptable as long as false 
negatives are highly unlikely. This ensures a safe operation of the system. 

The monitoring concept was applied to two examples in numerical simulation. First, the 
monitor was applied to the roll dynamics of a fighter aircraft subject to wingrock dynamics. 
The controller was augmented by direct MRAC. Secondly, the monitor was applied to short-
period dynamics subject to nonlinear model uncertainties. In the second example, a PMRAC 
augmented baseline controller was used. In both examples, the GP regression was able to 
accurately estimate the modelling uncertainty within the region governed by the recorded 
data. As a result, the monitor showed good prediction capabilities. The GoC was introduced 
as an indicator to assess the quality of the forecast. The GoC indicates whether or not the 
predicted estimate of the state distribution under- or overestimates the real state evolution. 
By introducing slack variables into the GoC, prediction errors and numerical errors could be 
incorporated into the indicator. Using the GoC, the GMM based forecast was compared to a 
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forecast governed by a normal distribution only. The results showed, that using a simple 
normal distribution instead of a GMM introduces significant errors into the predicted state 
distributions, thus leading to wrong monitor warnings.   

The results of the numerical simulation were corroborated in experiments by applying the 
monitoring concept to the rate dynamics of both, a quadcopter and a hexacopter system. The 
quadcopter is controlled by a full direct MRAC. In contrast, the baseline controller for the 
hexacopter is based on feedback linearization with a relative degree of one. A key 
assumption of the monitor is that the evolution of the exogenous reference command is 
known. This information can e.g. be the output of a pilot model or a trajectory generation. In 
the unknown case, the reference command was assumed to be constant over the prediction 
horizon. Naturally, the predictions are significantly wrong if the reference command indeed 
changes. One option to counter this effect is to increase the frequency of monitor calls. This 
allows for a quick introduction of new information in order to counter this effect. In the cases 
it was known, the proposed monitoring approach was able to predict the state evolution 
accurately. Furthermore, the monitor was able to accurately warn from imminent state 
requirement violations. Consequently, in the authors opinion the proposed monitoring 
approach is particularly useful for applications with a high grade of automation.  

The experiments suggest three practical applications of the proposed monitoring algorithm. 
First, the monitor can be applied to the onboard hardware to achieve an assessment on 
probable requirement violations on the system itself and to be able to quickly react. 
Secondly, the monitor can be applied to a ground station, which usually favours stronger 
hardware, but doesn’t allow for an immediate reaction to potential violations. Lastely, the 
monitor can be used to replay experiments and simulations in order to analyse them or 
discern the impact of changes on the closed-loop system.  

An emerging consensus between various authors classifies runtime verification as a key 
component in the V&V process for adaptive control algorithms. The presented monitoring 
algorithm constitutes a possible concept of how to perform run-time monitoring for adaptive 
controllers. Still, the proposed approach assumes a prototype state and needs to be further 
refined for future application. 

7.2 Summary of Contributions 

This section summarizes the contributions made within this thesis. 

Analytic long term prediction for monitoring of adaptively controlled systems  

A central contribution of this thesis was the proposal of a stochastic monitoring system for 
adaptively controlled systems. The monitor relies on analytic long term forecasts of the 
system states in order to assess potential undesired behavior in the near future. Therefore, 
the monitor approximates the initial state distribution using a GMM. The GMM is propagated 
through the known linearized surrogate dynamics at each mixture element as well as the GP 
model. Recursive application of the prediction forms the predicted state evolution over the 
prediction horizon. To the best of the authors’ knowledge, this approach has neither been 
employed for nonlinear flight control applications nor adaptive controllers. 
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To assess the quality of the forecast if the ground truth is known, the Grade of 
Circumvallation (GoC) is introduced by the author in section 5. The GoC indicates whether or 
not the predicted estimate of the state distribution under- or overestimates the real state 
evolution. The idea is that an overestimated distribution circumvallates the real distribution 
and thus yields more conservative results if absolute state requirements are used. By 
introducing slack variables into the GoC prediction errors and numerical errors can be 
incorporated into the indicator.  

Combined state and control prediction for system monitoring 

A central contribution of the proposed approach is the combined evaluation of controller and 
plant states. Existing monitoring approaches predominantly aim at assessing the learning 
capabilities of the adaptive element only (see amongst others [129], [133], [134], [132], [188], 
[222], [68], [186], [186], [82], [188]). The presented monitoring technique significantly differs 
from the mentioned techniques in its strategy. Thereby, the approach models the 
dependencies between the plant and the controller. The combined prediction of plant and 
controller state trajectories enables the assessment of the adaptive control impact on the 
system states in the future. As a consequence, the monitor is seen to also consider 
transients in the controller and plant state.  

Contribution to a possible future certification process of adaptive flight control 
algorithms 

The proposed monitoring algorithm demonstrates a possibility of closing the gaps in the 
certification process of adaptive control algorithms. An emerging consensus between various 
authors classifies runtime verification as a key component in the V&V process for adaptive 
control algorithms. The presented monitoring algorithm constitutes a possible approach of 
how to perform run-time monitoring for adaptive controllers. In particular, the proposed 
approach is able to directly relate the performance of the adaptive control algorithm to a-
priory formulated state requirements and thus test for their adherence online. Still, the 
proposed approach assumes a prototype state and needs to be further refined for future use. 

Introduction of a Confidence Measure to the prediction horizon 

A further contribution of this thesis involves the introduction of a confidence measure in order 
to express the certainty of the algorithm in its own prediction. In section 4.5.2 the 
Overlapping Coefficient (OVL; [99], see Appendix B.9) was introduced as a way to estimate 
prediction errors made throughout the recursive application of the forecast step.  

Novel use of Gaussian Process regression in adaptive flight control 

A further contribution of the proposed technique is the use of GP regression to construct a 
model for long term prediction in adaptive flight control applications. GP regression has been 
applied to a huge variety of problems in order to model an uncertain system based on 
gathered data or even to use it as an augmenting controller ([38], [37]). Instead, the 
proposed monitoring approach uses GP regression in order to form a belief on the modelling 
uncertainty for long-term prediction. A similar approach has been utilized in various 
applications such as predictions in the field of automotive dynamics (see e.g. [85]). To the 
best of the authors’ knowledge, an online generated GP model for multistep ahead prediction 
has neither been used in flight control nor adaptive control approaches yet.  
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7.3 Future Work 

Several options for future work can be derived from this thesis. They can be loosely 
classified into application specific work and advancements of the monitor. 

7.3.1 Application specific future work 

Communicating Results 

 

Figure 7-1: Conflicting goals regarding intuitive understanding and information contant 

The proposed monitoring output is defined by a probability of an imminent requirement 
violation and a binary indicator whether or not one appears within the prediction horizon. 
Future research has to solve the question how and to which extent information is 
communicated to human operators. In particular, the two intrinsic conflicting goaIs 
information contant and intuitive understanding arise within this communication. Figure 7-1 
shows three communication examples as well as their classification along the two conflicting 
goals. One possible way is to just communicate a binary variable if a requirement violation 
occurs. While this is intuitively understandable and doesn’t require expert knowledge, a lot of 
information is lost and more detailed information would be needed to gauge the seriousness 
of the situation. A second option is using a radar chart. The information content increases. 
However, more time is required to grasp the situation. This is even truer when looking at the 
third extreme in the form of box plots. Here, the operator requires expert knowledge how to 
quickly assess the situation, but on the other hand this option carries the highest information 
content. 

Requirement Formulation 

In the presented approaches, the requirements are formulated as constant values. Future 
approaches can incorporate more advanced requirement formulations as can be found in 
e.g. [17, p. 163]. Furthermore, the requirements could be formulated in a relative fashion 
rather than as absolute values. 
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Confidence based reference command shaping 

 

Figure 7-2: Value-at-risk based reference command shaping 

Reference command shapers use knowledge about the reference model and plant to adjust 
the exogenous reference commands in order for the system to exhibit maximum 
performance under defined constraints. Existing reference command shapers for adaptively 
controlled systems (see i.a. [145], [147], [149], [40], [39]) assume that the uncertainty is 
cancelled pointwise in time and use the mean of measured states and other signals to adjust 
the exogenous reference command. With the monitoring approach detailed in this thesis, the 
reference shaper could use the predicted state distribution instead of only the mean. As a 
result the constraints are no longer deterministic but formulated in a stochastic way. In this 
context, optimization can be performed based on a “value-at-risk” perspective. Also, using 
the monitor would remove the assumption of previous approaches that the adaptive 
controller already estimates the modelling uncertainty pointwise in time, since predicting the 
evolution of the weights is an intrinsic property of the proposed monitor. Figure 7-2 shows an 
exemplary approach of how to integrate the monitor into the architectures of i.e. [145], [147], 
[149]. This approach could also be a candidate answer to the question how the system 
should react to an imminent requirement violation, as the shaper would change the reference 
command in such a way that the plant abides the stochastic state constraints. 

 

7.3.2 Possible future advancement of the monitoring approach 

Introducing pilot models for the reference command forecast 

The application of the monitoring algorithm to the hexacopter system in section 6.3 showed 
that the prediction is heavily dependent on the evolution of the exogenous reference 
command. If the latter does not originate from a trajectory generator, it can be calculated 
from pilot models. Hence, a natural extension to the proposed monitoring approach is the 
introduction of pilot models. 

Update of the mixture weights 

The presented monitoring approach leverages a GMM forecast. The GMM is initialized at the 
beginning of the predictions, the number of mixtures as well as their weight within the GMM 
is kept constant over the prediction horizon. One future step could be to also adjust the 
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weights of the GMM at each prediction step (see e.g. [61]). This could lead to an increase of 
the approximation capability of the forecast. 

Evolutionary GMM 

The number of mixture models as well as their initial standard deviation is fixed. Evolutionary 
GMM ask the question of how mixture models can be split and merged in order to make the 
pdf approximation better (see e.g. [46]). Even though the computational requirements 
increase, the approximation quality might increase, thus allowing for longer prediction 
horizons with higher confidence. 

Parallelization of the computation 

The mixture elements in the proposed monitoring algorithms are independent of each other 
after they are initialized. As a direct result, their evolution across the prediction horizon can 
be computed parllely. A natural future step could be to apply the monitoring algorithm to 
hardware with massive parallelization capabilities, such as GPUs. As a result, either the 
number of mixture elements could be increased in order to increase the approximation 
accuracy. On the other hand the termination time of an existing monitor could be decreased. 
This results in higher monitoring frequencies or longer prediction horizons.  

Different machine learning concepts for uncertainty quantification 

The proposed monitoring approach leverages Gaussian Process regression in order to form 
a belief on the uncertainty. The fields of machine learning and computational hardware are 
quickly evolving. A natural future step is to investigate further machine learning techniques, 
such as deep neural networks [78], in order to improve the belief of the uncertainty 
quantification.  
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Appendix 

A Mathematical Preliminaries 

This section provides a general overview of the most important mathematical concepts used 
within this thesis.  

A.1 Properties of the Trace Operator 

Let 𝑴 denote a square matrix and let 𝑐 ≠ 0 denote a scalar value. The application of the 
trace operator 𝑇𝑟(⋅) yields 

 
𝑇𝑟(𝑴) = 𝑇𝑟(𝑴 ) =

1

𝑐
𝑇𝑟(𝑐𝑴). (A-1) 

Applying the trace operator to the multiplication of two vector signals 𝒂, 𝒃 ∈ ℝ  yields 

 𝒂 𝒃 = 𝑇𝑟(𝒃𝒂 ). (A-2) 

 

A.2 LaSalle’s Invariance Principle 

Consider the autonomous system 

 �̇� = 𝑓(𝒙) (A-3) 

where 𝑓: 𝐷 → ℝ  is a locally Lipschitz map from a domain 𝐷 ⊂ ℝ  into ℝ .  

Theorem A.1 LaSalle’s Invariance Principle (see [118, p. 128], Theorem 4.4) 
 
Let Ω ⊂ 𝐷 be a compact set that is positively invariant with respect to (A-3). Let 𝑉: 𝐷 → ℝ be 
a continuously differentiable function such that �̇�(𝒙) ≤ 0 in Ω. Let 𝐸 be the set of all points in 
Ω where �̇�(𝒙) = 0. Let 𝑀 be the largest invariant set in 𝐸. Then every solution starting in Ω 
approaches 𝑀 as 𝑡 → ∞. 

Proof: 

From [118, p. 128], Theorem 4.4: Let 𝒙(𝑡) be a solution of (A-3) starting in Ω. Since �̇�(𝒙) ≤ 0 

in Ω, 𝑉 𝒙(𝑡)  is a decreasing function of 𝑡. Since 𝑉(𝒙) is continuous on the compact set Ω, it 

is bounded from below on Ω. Therefore, 𝑉 𝒙(𝑡)  has a limit 𝑎 as 𝑡 → ∞. Note also that the 

positive limit set 𝐿  (see [118, p. 127], Lemma 4.1) is in Ω because Ω is a closed set. For any 
𝑝 ∈ 𝐿 , there is a sequence 𝑡  with 𝑡 → ∞ and 𝒙(𝑡 ) → 𝑝 as 𝑛 → ∞. By continuity of 𝑉(𝒙), 

𝑉(𝑝) = lim
→

𝑉 𝒙(𝑡 ) = 𝑎. Hence, 𝑉(𝒙) = 𝑎 on 𝐿 . Since 𝐿  is an invariant set, �̇�(𝒙) = 0 on 

𝐿 . Thus 
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 𝐿 ⊂ 𝑀 ⊂ 𝐸 ⊂ Ω. (A-4) 

Since 𝒙(𝑡) is bounded, 𝒙(𝑡) approaches 𝐿  as 𝑡 → ∞ (see [118, p. 127], Lemma 4.1). Hence, 
𝒙(𝑡) approaches 𝑀 as 𝑡 → ∞. 

□ 

A.3 Persistency of Excitation 

In the following the concept of excited and persistently excited vector signals is introduced. 
Equivalent definitions for discrete signals can be found in [204, p. 120]. 

Definition A.1 Excited and Persistently Excited Signals ([204, p. 108]) 
 
A bounded vector signal 𝚽(t) ∈ ℝ , 𝑙 ≥ 1, is exciting over the finite time interval [𝜎 , 𝜎 + Δt], 
Δt > 0, 𝜎 ≥ t , if for some 𝛼 > 0 

 

𝚽(τ)𝚽 (τ) 𝑑𝜏 ≥ 𝛼 𝑰. (A-5) 

A bounded vector signal 𝚽(t) ∈ ℝ , 𝑙 ≥ 1, is persistently exciting if there exist 𝛿 > 0 and 𝛼 >
0 such that 

 
𝚽(τ)𝚽 (τ) 𝑑𝜏 ≥ 𝛼 𝑰, ∀𝜎 ≥ t  (A-6) 

 

 

A.4 Special Matrix Inverses 

Throughout the thesis various special matrix inverses are used. Refer to [192] for a concise 
overview of common matrix inverses. Fundamentally, for any invertible matrices 𝑨 ∈ ℝ ×  
and 𝑩 ∈ ℝ ×   

 (𝑨𝑩) = 𝑩 𝑨  (A-7) 

If a matrix can be partitioned into blocks, it can be inverted such that  

 𝑨 𝑩
𝑪 𝑫

=
(𝑨 − 𝑩𝑫 𝑪) (𝑨 − 𝑩𝑫 𝑪) 𝑩𝑫

−𝑫 𝑪(𝑨 − 𝑩𝑫 𝑪) 𝑫 + 𝑫 𝑪(𝑨 − 𝑩𝑫 𝑪) 𝑩𝑫
 (A-8) 

Here, 𝑨 as well as 𝑨 − 𝑩𝑫 𝑪 are assumed to be nonsingular. The inverse (𝑨 − 𝑩𝑫 𝑪)  is 
known as the Woodbury matrix inverse or matrix inversion lemma and is given by 

 (𝑨 − 𝑩𝑫 𝑪) = 𝑨 + 𝑨 𝑩(𝑫 − 𝑪𝑨 𝑩) 𝑪𝑨 . (A-9) 

A derivation and proof can be found amongst others in [90], [210]. The afore mentioned 
derivations are particularly important with calculations including covariance matrices.  
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A typical inversion problem is 

 𝑷 + 𝑯 𝑹 𝑯 −𝑯 𝑹
−𝑹 𝑯 𝑹

= 𝑷 𝑷𝑯
𝑯𝑷 𝑯𝑷𝑯 + 𝑹

. (A-10) 

A.5 Cholesky factorization 

The Cholesky factorization, also called Cholesky decomposition, decomposes matrices with 
special properties into the product of two triangular matrices. In particular, assume 𝑨 to be a 
symmetric positive definite square matrix. Following e.g. [190], the Cholesky factorization of 
𝑨 yields   

 𝑨 = 𝑳𝑳 = 𝑼 𝑼. (A-11) 

Here, 𝑳 represents a lower triangular matrix, while 𝑼 represents an upper triangular matrix. 
The Cholesky factorization can be used to compute the inverse of 𝑨 efficiently. The reason 
for this is that the inverse of a triangular matrix is easy to compute. The inverse of 𝑨 using 
Cholesky factorization is 

 𝑨 = (𝑳 ) 𝑳 = 𝑼 (𝑼 ) . (A-12) 

 

A.6 Taylor Series Expansion 

The Taylor series expansion (see e.g. [96]) is a series expansion of a function 𝑓(𝑥) about a 
point 𝑥 . In general the Taylor series expansion of 𝑓(𝑥) at 𝑥 = 𝑥  is 

 
𝑓(𝑥) =

𝑓( )(𝑥 )

𝑛!
(𝑥 − 𝑥 ), (A-13) 

where 𝑓( )(𝑥 ) represents the 𝑛 −th derivative of 𝑓(𝑥) evaluated at 𝑥 = 𝑥 . As an example, 
the Taylor series expansion of 𝑓(𝑥 , … , 𝑥 ) about 𝑥 = 𝑥 , , 𝑗 ∈ (1, 𝑑) is 

 
𝑓(𝑥 , … , 𝑥 ) = 𝑓 𝑥 , , … , 𝑥 , +

1

1!

𝜕𝑓(𝑥 , … , 𝑥 )

𝜕𝑥
𝑥 − 𝑥 ,  

+
1

2!

𝜕 𝑓(𝑥 , … , 𝑥 )

𝜕𝑥 𝜕𝑥
𝑥 − 𝑥 , 𝑥 − 𝑥 , + ⋯ 

(A-14) 
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A.7 Matrix and vector derivatives 

This section details the three most important matrix derivatives, which are used throughout 
the thesis. They are particularly important for the linearization of the nonlinear system 
dynamics. For this purpose let 𝒙 denote a state vector, let 𝒂 denote a vector of fixed 
parameters and let 𝑩 denote a matrix of fixed parameters with appropriate dimensions. 
Following e.g. [167], the most important derivatives used within this thesis are 

 𝜕𝒙 𝒂

𝜕𝒙
=

𝜕𝒂 𝒙

𝜕𝒙
= 𝒂 

𝜕𝒙 𝑩

𝜕𝒙
=

𝜕(𝑩 𝒙)

𝜕𝒙
= 𝑩  

𝜕𝒇(𝒙)𝒙 𝑩

𝜕𝒙
𝒙 𝒙

=
𝜕𝒇(𝒙)

𝜕𝒙
𝒙 𝒙

𝒙 𝑩 + 𝒇(𝒙 )𝑩 . 

(A-15) 
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B Basics of Probability Theory 

This section introduces the basics of probability theory required throughout this thesis. Most 
of the theory can be found in books about probability theory, such as [168], [20, p. 445], [81, 
p. 5], [52], [51]. The notions are derived for continuous random variables, but are similary 
applicable to the discrete case. 

B.1 Probability Space 

Let Ω denote the sample space of a particular experiment. The sample space describes all 
possible outcomes of an experiment 𝜉. Each member of Ω is an elementary event and 
denoted by 𝜔. Let 𝐴 denote an event, which may be a set of elementary events 𝜔. Define 
ℱ = {𝐴 |𝑖 ∈ ℕ∗} to be a collection of subsets of Ω. Then ℱ is called event space and defined 
as follows.  

Definition B.1 – Event Space ([81, p. 5], Definition 1.1) 
 
The collection ℱ of subsets of the sample space Ω is called an event space if 

a) ℱ is non-empty, 
b) 𝐴 ∈ ℱ ⇒ Ω\𝐴 ∈ ℱ, 
c) 𝐴 , 𝐴 , … ∈ ℱ ⇒  ⋃ 𝐴 ∈ ℱ. 

With the sample space and event space defined, the notion of probability can be introduced.  

Definition B.2 – Probability ([81, p. 6], Definition 1.13) 
 
A mapping ℙ: ℱ → ℝ is called a probability (measure) on (Ω, ℱ) if 

a) ℙ(𝐴) ≥ 0 ∀ 𝐴 ∈ ℱ, 
b) ℙ(Ω) = 1 and ℙ(∅), 
c) 𝐴 , 𝐴 , … are disjoint events in ℱ (in that 𝐴 ∩ 𝐴 = ∅ whenever 𝑖 ≠ 𝑗) then 

 
ℙ 𝐴 = ℙ(𝐴 ). (B-1) 

 

In essence, the function ℙ(𝐴) describes with which probability the event 𝐴 occurs. Definition 
B.2 lists conditions that the probability function ℙ(𝐴) has to satisfy. The sample space, the 
event space and the notion of probability are combined to form the probability space.  

Definition B.3 – Probability Space ([81, p. 7], Definition 1.18) 
 
A probability space is a triple (Ω, ℱ, ℙ) of objects such that  

a) Ω is a non-empty set, 
b) ℱ is an event space of subsets of Ω, 
c) ℙ is a probability measure on (Ω, ℱ). 
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B.2 Random Variable, Cumulative Distribution Function and Probability 
Density Function 

This section introduces the notion of a random variables, the cumulative distribution and the 
probability density function. First, in order to apply stochastic uncertainty to physical states, 
the notion of a random variable is introduced.  

Definition B.4 – Random Variable ([52, p. 8], Definition 1.6) 
 
Let Ω be a sample space corresponding to some experiment 𝜉 and let 𝑋: Ω → ℝ be a 
function from the sample space to the real line. Then 𝑋 is called a random variable (rv). 

Instead of a single event, it is often more interesting to find the probability of the random 
variable lying in a certain area. Therefore the cumulative distribution function is introduced. 

Definition B.5 – Cummulative Distribution Function ([81, p. 62], Definition 5.2) 
 
If 𝑋 is a random variable on (Ω, ℱ, ℙ), the cumulative distribution function (cdf) of 𝑋 is the 
function 𝐹 (𝑥): ℝ → [0,1] defined by 

 𝐹 (𝑥) = ℙ(𝑋 ≤ 𝑥). (B-2) 

 

Note, that the cdf is often simply referred to as distribution function. Also note, that the 
notation 𝑥 corresponds to an event of 𝑋 on (Ω, ℱ, ℙ). The following definition introduces the 
probability density function, which completely describes a distribution. 

Definition B.6 – Probability Density Function ([52, p. 36], Definition 1.22) 
 
Let 𝑋 be a real-valued random variable taking values in ℝ. A function 𝑝(𝑥) is called the 
probability density function (pdf) of 𝑋 if 

 
ℙ(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑝(𝑥)𝑑𝑥 , −∞ < 𝑎 ≤ 𝑏 < ∞. (B-3) 

 

Note, that the pdf is often simply referred to as density function. The equivalent to the pdf for 
discrete rvs is the probability mass function (see e.g. [52, p. 9], Definition 1.7). Note, that if 
𝑝(𝑥) is the density function of the rv 𝑋, then the following properties hold: 

 
𝑝(𝑥) ≥ 0∀𝑥; 𝑝(𝑥)𝑑𝑥 = 1. (B-4) 

Depending on the application a huge variety of pdfs is available. This includes amongst 
others the normal distribution (see Appendix C), the binomial distribution, the Poisson 
distribution, the Gamma distribution etc. This thesis predominantly employs the normal 
distribution, as it possesses mathematical properties, which allow for an easy and fast 
manipulation.  
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B.3 Multivariate Distributions 

Many problems require the introduction of more than one rv. This section introduces the 
concepts required to deal with more than one rv. Therefore, let 𝑋 ∈ ℝ and 𝑌 ∈ ℝ be rvs on 
the probability space (Ω, ℱ, ℙ). The following deal with the vector (𝑋, 𝑌) ∈ ℝ . Note, that the 
concept can be extended to arbitrary dimension.  

Definition B.7 – Joint Distribution ([81, p. 83], Definition 6.1) 
 
The joint distribution of the pair 𝑋, 𝑌 of random variables is the mapping 𝐹 , : ℝ → [0,1] given 
by 

 𝐹 , (𝑥, 𝑦) = ℙ(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦). (B-5) 

 

Consequently, the joint density function of the pair (𝑋, 𝑌) can be defined as follows.  

Definition B.8 – Joint Density Function (based on [81, p. 86], Definition 6.16) 
 
Let (𝑋, 𝑌) be random variables on the probability space (Ω, ℱ, ℙ). If their joint distribution 
function is expressible in the form  

 
𝐹 , (𝑥, 𝑦) = ℙ(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = 𝑝(𝑢, 𝑣)𝑑𝑢𝑑𝑣 (B-6) 

for 𝑥, 𝑦 ∈ ℝ and some function 𝑝: ℝ → [0, ∞), then 𝑝(𝑥, 𝑦) is the joint density function of 
(𝑋, 𝑌). 

While the joint density function contains all relevant information, often information about a 
single random variable is sought. Therefore, the following definitions introduce the marginal 
and conditional density functions. The former seeks the density function of one variable only, 
e.g. 𝑝(𝑥). This is achieved by incorporating all possible outcomes for 𝑌. 

Definition B.9 – Marginal Density Function (based on [203]) 
 
Let (𝑋, 𝑌) be continuous rvs with joint probability density 𝑝(𝑥, 𝑦). Then the probability density 
function of the random variable 𝑋 is called marginal density function. 

The marginal density function can be obtained from the joint by integrating 𝑝(𝑥, 𝑦) with 
respect to all variables except 𝑥: 

 
𝑝(𝑥) = 𝑝(𝑥, 𝑦)𝑑𝑦

 

. (B-7) 

This also applies for 𝑛, 𝑛 > 2, rvs. Consider 𝑛 rvs 𝑋 , … , 𝑋  with joint density function 
𝑝(𝑥 , … , 𝑥 ). Hence, the marginal density function for 𝑋  is 

 
𝑝(𝑥 ) = … 𝑝(𝑥 , … , 𝑥 )𝑑𝑥 … 𝑑𝑥 . (B-8) 



 Appendix
 

  Page XXIII 

Contrary to the marginal density, which obtains 𝑝(𝑥) from 𝑝(𝑥, 𝑦) by considering all possible 
events for 𝑌, the conditional density function seeks the density for 𝑋 given that a certain 
event for 𝑌 occurred. 

Definition B.10 – Conditional Density Function (based on [203])  
 
Let (𝑋, 𝑌) be rvs. The function 𝑝(𝑥|𝑦): ℝ → [0, ∞) is the conditional density function of 𝑋 given 
𝑌 = 𝑦 if, for any interval [𝑎, 𝑏] ⊆ ℝ, 

 
ℙ(𝑋 ∈ [𝑎, 𝑏]|𝑌 = 𝑦) = 𝑝(𝑥|𝑦)𝑑𝑥 (B-9) 

and 𝑝(𝑥|𝑦) is such that the above integral is well defined. 

The conditional density function is obtained by 

 
𝑝(𝑥|𝑦) = 𝑝(𝑥|𝑌 = 𝑦) =

𝑝(𝑥, 𝑦)

𝑝(𝑦)
, 𝑝(𝑦) > 0. (B-10) 

The conditional density function insinuates the idea that knowing a certain event 𝑌 = 𝑦 
occurred, leads to a change in the probability of 𝑋 = 𝑥 occurring. While this is often true, for 
many problems conveying information about 𝑌 doesn’t change the probability of 𝑋. This 
leads to the notion of independence of two random variables. 

Definition B.11 – Independence (based on [203]) 
 

Two random variables 𝑋 and 𝑌 are said to be independent, iff  

 ℙ([𝑋 ∈ 𝐴] ∩ [𝑌 ∈ 𝐵]) = ℙ([𝑋 ∈ 𝐴])ℙ([𝑌 ∈ 𝐵]) (B-11) 

For any couple of events [𝑋 ∈ 𝐴] and [𝑌 ∈ 𝐵], where 𝐴 ⊆ ℝ and 𝐵 ⊆ ℝ. 

A criterion for independence of the two rvs 𝑋 and 𝑌 is (see e.g. [203]): 

 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦), ∀𝑥, 𝑦 ∈ ℝ. (B-12) 
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B.4 Moments, Expected Value and (Co-)Variance 

It is often difficult or even impossible to use the complete distribution in calculations. Rather, 
supplementary features of the distribution are sought, which are easily interpreted and can 
be used to simplify calculations. One such family of quantitative measures is the statistical 
moments. 

Definition B.12 – Moment ([81, p. 7], Definition 4.20) 
 
Let 𝑘 ≥ 1. The 𝑘th moment of the random variable 𝑋 is 𝔼 [𝑋 ]. 

Probably the single most important moment of a probability distribution is its expected value, 
or mean, which corresponds to its first moment. 

Definition B.13 – Expected Value (or mean) ([51, p. 147], Definition 7.9) 
 
Let 𝑋 be a continuous random variable with a pdf 𝑝(𝑥). The expected value (or mean) 𝜇 of 𝑋 
is defined as 

 
𝔼 [𝑋] = 𝑥𝑝(𝑥)𝑑𝑥, (B-13) 

If 

 
|𝑥|𝑝(𝑥)𝑑𝑥 < ∞. (B-14) 

 

The mean essentially describes the position of the center of gravity of the distribution. It is 
not to be confused with the median, which divides the distribution into two equally large 
parts, and the mode, which describes the extrema of a distribution. The expected value alone 
is not enough to describe a distribution. In fact, an infinite number of moments are required in 
order to fully capture an arbitrary distribution. A special case is the normal distribution 
(introduced in Appendix C), since it is fully described by its first moment and second central 
moment. In contrast to the moments of Definition B.12, the central moments characterize 
distributions relative to their mean 𝜇.  

Definition B.14 – Central Moments ([51, p. 88], Definition 5.4) 
 
Let 𝑋 be a random variable with finite 𝑘th moment for some 𝑘 ≥ 1. Then the 𝑘th central 
moment of 𝑋 is defined as 𝜇 = 𝔼 [(𝑋 − 𝜇) ], where 𝔼 [𝑋] = 𝜇. 

Note that the first central moment is zero, since 𝔼 [(𝑋 − 𝜇)] = 0. The second central moment 
is called variance and is key to the description of a normal distribution. 

Definition B.15 – Variance ([51, p. 63], Definition 4.9) 
 
Let 𝑋 be a random variable with finite mean 𝜇. The variance of 𝑋 is defined as 

 𝕍 [𝑋] = 𝔼 [(𝑋 − 𝜇) ]. (B-15) 
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The previous case only considers scalar rvs 𝑋. However, in the presence of a random vector, 
Definition B.15 does not account for dependencies between different rvs within the random 
vector. Hence, the concept of variance needs to be extended. The following definition 
introduces the concept of covariance based on a random vector consisting of two random 
variables 𝑋, 𝑌. 

Definition B.16 – Covariance (based on [52, p. 107], Definition 2.7) 
 
Let 𝑋, 𝑌 be two random variables defined on a common sample space Ω. The covariance of 
𝑋 and 𝑌 is defined as 

 ℂ , [𝑋, 𝑌] = 𝔼 , 𝑋 − 𝔼 (𝑋) 𝑌 − 𝔼 (𝑌) . (B-16) 

 

The “[c]ovariance is a measure of whether two random variables 𝑋, 𝑌 tend to increase or 
decrease together” [52, p. 107]. The second central moment of a random vector is described 
by the covariance matrix. The latter combines the variance and covariance and is defined as 
follows. 

Definition B.17 – Covariance Matrix  
 
Let 𝒁 = [𝑋 𝑌] be a random vector consisting of two random variables 𝑋, 𝑌, which are 
defined on a common sample space Ω. The covariance matrix 𝚺 of 𝑋 and 𝑌 is defined as 

 
𝚺 = 𝕍 [𝒁] =

𝕍 [𝑋] ℂ , [𝑋, 𝑌]

ℂ , [𝑌, 𝑋] 𝕍 [𝑌]
. (B-17) 

 

Note that the covariance matrix contains the variance of each rv on its main diagonal. This 
thesis often calls the covariance matrix variance matrix or simply covariance. It should be 
clear from the context that using the operator 𝕍⋅[⋅] on a random vector leads to a covariance 
matrix.  
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B.5 Conditional Expectation and Variance 

Section B.3 introduced multivariate distributions and the notion of conditional distributions. 
Furthermore, section B.4 introduced the concept of moments. This section combines both 
concepts to introduce the conditional expectation and the conditional variance, which will 
play an integral role in derivations throughout the thesis.  

Let 𝒁 = [𝑋 𝑌] be a random vector with a multivariate probability distribution. The governing 
distribution can be fully described by its moments. However, the occurrence of an event 𝑋 =

𝑥 inevitably affects the probability distribution of 𝑌. The conditional expectation describes this 
effect and is defined as follows. 

Definition B.18 – Conditional Expectation ([81, p. 99], Definition 6.68) 
 
The conditional expectation of 𝑌 given 𝑋 = 𝑥, written 𝔼 [𝑌|𝑋 = 𝑥], is the mean of the 
conditional density function  

 
𝔼 [𝑌|𝑋 = 𝑥] = 𝑦𝑝(𝑦|𝑥)𝑑𝑦 = 𝑦

𝑝(𝑥, 𝑦)

𝑝(𝑥)
𝑑𝑦, (B-18) 

Valid for any value of 𝑥 for which 𝑝(𝑥) > 0. 

This thesis predominantly relies on the normal distribution, which is introduced in Appendix 
C. Hence, Similarly, s 

Definition B.19 – Conditional Variance ([52, p. 295], Definition 12.7) 
 
Let 𝑋, 𝑌 have a joint density 𝑝(𝑥, 𝑦). The conditional variance of 𝑌 given 𝑋 = 𝑥 is defined as 

 
𝕍 [𝑌|𝑋 = 𝑥] = 𝑦 − 𝜇 𝑝(𝑦|𝑥)𝑑𝑦 = 𝑦 − 𝜇

𝑝(𝑥, 𝑦)

𝑝(𝑥)
𝑑𝑦, (B-19) 

∀𝑥 such that 𝑝(𝑥) > 0, where 𝜇  denotes 𝔼 [𝑌|𝑋 = 𝑥]. 

B.6 Law of Iterated Expectation and Total Variance 

The law of total probability is a fundamental law in probability theory, which relates marginal 
and conditional probabilities. For this thesis, two paradigms falling under this concept are 
important, namely the law of iterated expectations and the law of total variance. Consider two 
jointly distributed random variables 𝑋, 𝑌. In the case that the conditional expectation 𝔼[𝑌|𝑋] is 
known, one way of finding 𝔼[𝑌] is to employ the law of iterated expectations. 

Theorem B.1 – Law of iterated expectations (based on [81, p. 99], Theorem 6.69) 
 
If 𝑋 and 𝑌 are jointly continuous random variables, then 

 𝔼[𝑌] = 𝔼 𝔼[𝑌|𝑋] . (B-20) 

 

 

Proof: 
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The following identities hold: 

 
𝔼 𝔼[𝑌|𝑋] = 𝑦𝑝(𝑦|𝑥)𝑑𝑦 𝑝(𝑥)𝑑𝑥 

= 𝑦𝑝(𝑦|𝑥)𝑝(𝑥)𝑑𝑦𝑑𝑥 

= 𝑦𝑝(𝑥, 𝑦)𝑑𝑦𝑑𝑥 

= 𝑦𝑝(𝑥|𝑦)𝑝(𝑦)𝑑𝑦𝑑𝑥 

= 𝑦 𝑝(𝑥|𝑦)𝑑𝑥 𝑝(𝑦)𝑑𝑦 

= 𝔼[𝑌] 

(B-21) 

□ 

Similarly, in the case that the conditional expectation 𝔼[𝑌|𝑋] and variance 𝕍[𝑌|𝑋] are known, 
one way of finding 𝕍[𝑌] is to employ the law of total variance. 

Theorem B.2 – Law of total variance (based on [30, p. 344]) 
 
If 𝑋 and 𝑌 are jointly continuous random variables, then 

 𝕍[𝑌] = 𝔼 𝕍[𝑌|𝑋] + 𝕍 𝔼[𝑌|𝑋] . (B-22) 

 

Proof: 

Recall the definition of variance: 

 𝕍[𝑌] = 𝔼[𝑌 ] − (𝔼[𝑌]) . (B-23) 

Similarly, the conditional variance 𝕍[𝑌|𝑋] is  

 𝕍[𝑌|𝑋] = 𝔼[𝑌 |𝑋] − (𝔼[𝑦|𝑥]) . (B-24) 

Taking the expectation and applying the law of total expectation yields 

 𝔼 𝕍[𝑌|𝑋] = 𝔼[𝑌 ] − 𝔼 [(𝔼[𝑌|𝑋]) ]. (B-25) 

Similarly, taking the variance of the conditional expectation yields 

 𝕍 𝔼[𝑌|𝑋] = 𝔼 [(𝔼[𝑌|𝑋]) ] − (𝔼[𝑌]) . (B-26) 

Summing up (B-25) and (B-26) yields 

 𝔼 𝕍[𝑌|𝑋] + 𝕍 𝔼[𝑌|𝑋] = 𝔼[𝑌 ] − 𝔼 [(𝔼[𝑌|𝑋]) ] + 𝔼 [(𝔼[𝑌|𝑋]) ] − (𝔼[𝑌])  

= 𝕍[𝑌]. 
(B-16) 

□ 
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B.7 Sum of two random variables 

Often the probability density function of the sum of two random variables needs to be 
calculated.  

Theorem B.3 – Sum of two dependent random variables (based on [81, p. 91]) 
 
Suppose, that 𝑋, 𝑌 are two jointly continuous random variables with the joint probability 
density function 𝑝(𝑥, 𝑦). The density function 𝑝(𝑧) of the sum 𝑍 = 𝑋 + 𝑌 is 

 
𝑝(𝑧) = 𝑝(𝑥, 𝑧 − 𝑥)𝑑𝑥. (B-27) 

 

Proof: 

The proof is omitted here and can be found in e.g. [81, p. 91]. 

□ 

In the special case that the two random variables 𝑋, 𝑌 are independent, equation (B-27) 
reduces to 

 
𝑝(𝑧) = 𝑝(𝑥)𝑝(𝑧 − 𝑥)𝑑𝑥, (B-28) 

which resembles a convolution 𝑝(𝑥) ∗ 𝑝(𝑦) and is also known as the Convolution formula. 
The corresponding proof can be found in e.g. [81, p. 91]. 

B.8 Moment Generating Function 

If a rv has a moment generating function (mgf), the latter can be used to directly calculate 
any required moment of the underlying distribution. However, the existence of the moments 
of a rv not necessarily implies the existence of a mgf. A mgf is defined as follows.  

Definition B.20 – Moment Generating Function ([51, p. 85], Definition 5.3) 
 
Let 𝑋 be a real-valued random variable. The Moment Generating Function of 𝑋 is defined as 

 𝑀 (𝑠) = 𝔼 [𝑒 ] (B-29) 

whenever the expectation is finite. 

Mgfs are not only useful to calculate the moments of a rv, they also often simplify the 
calculation of the sum of several random variables. This thesis predominantly uses them to 
simplify an affine transformation of a GMM distributed rv. 
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B.9 Kullback-Leibler Divergence and Overlapping Coefficient 

In order to compare results analytically, a metric needs to be used. Several measures exist, 
which help to to assess the difference between two distributions. This work uses the 
Kullback-Leibler divergence ([127], [126]) and the Overlapping Coefficient ([99]). Alternative 
measures include i.a. the negative log likelihood ([21]), the integrated quadratic distance 
([207]) or the Akaike information criterion ([2], [32], [26]). 

Definition B.21 – Kullback-Leibler Divergence ([127], [126]) 
 
Let 𝑋 be a random variable and let 𝑝(𝑥) and 𝑞(𝑥) denote two pdfs of 𝑋. Then the Kullback-
Leibler Divergence is defined as 

 
𝐷 (𝑝||𝑞) = 𝑝(𝑥)𝑙𝑜𝑔

𝑝(𝑥)

𝑞(𝑥)

 

𝑑𝑥 (B-30) 

 

The Kullback-Leibler Divergence evaluates to zero if and only if 𝑝(𝑥) = 𝑞(𝑥). Otherwise, it 
satisfies 𝐷 (𝑝||𝑞) > 0. Note that the Kullback-Leibler divergence is not symmetric. This 
means 𝐷 (𝑝||𝑞) ≠ 𝐷 (𝑞||𝑝). 

 

Definition B.22 – Overlapping Coefficient (based on [99]) 
 
Let 𝑋 be a random variable and let 𝑝(𝑥) and 𝑞(𝑥) denote two pdfs of 𝑋 defined on ℝ. In the 
continuous case, the Overlapping Coefficient is defined as 

 
OVL(𝑝, 𝑞) = min[𝑝(𝑥), 𝑞(𝑥)]

 

ℝ

𝑑𝑥. (B-31) 

Similarly, in the discrete case, the Overlapping Coefficient is defined as 

 OVL(𝑝, 𝑞) = min[𝑝(𝑥), 𝑞(𝑥)]. (B-32) 

 

 

B.10 Further important properties 

Mean of quadratic forms 

In order to propagate a normally distributed rv through a GP, the mean of a special quadratic 
form needs to be calculated. The calculation rule is presented in the following. 

Theorem B.4 – Mean of Quadratic Forms ([193, p. 9], Theorem 1.5) 
 
Let 𝑿 ∈ ℝ  be a vector of random variables and let 𝑨 ∈ ℝ ×  be a symmetric matrix. If 
𝔼 [𝑿] = 𝝁 and 𝕍 [𝑿] = 𝚺 then 

 𝔼 [𝑿 𝑨𝑿] = Tr(𝑨𝚺) + 𝝁 𝑨𝝁. (B-33) 
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Proof: 

Making use of the properties of the trace operator from Appendix A.1, the following 
expressions are equal: 

 𝔼 [𝑿 𝑨𝑿] = Tr(𝔼 [𝑿 𝑨𝑿]) = 𝔼 [Tr(𝑿 𝑨𝑿)] = 𝔼 [Tr(𝑨𝑿𝑿 )] = Tr(𝔼 [𝑨𝑿𝑿 ]) 

= Tr(𝑨𝔼 [𝑿𝑿 ]) = Tr 𝑨(𝕍 [𝑿] + 𝝁𝝁 ) = Tr(𝑨𝚺) + Tr(𝑨𝝁𝝁 ) = Tr(𝑨𝚺) + 𝝁 𝑨𝝁. 
(B-34) 

□ 
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C The Gaussian probability distribution 

 
 

Figure C-1: Pdf of the Univariate and Multivariate normal distribution 

The probably most famous and most widely used distribution is the so called normal 
distribution, also often called Gaussian distribution or simply Gaussian. The latter plays a 
vital role in this thesis. It’s key properties are introduced in the following. 

Definition C.1 – Normal Distribution ([52, p. 62], Definition 1.35) 
 
A random variable 𝑋 is said to have a normal distribution with parameters 𝜇 and 𝜎  if it has 
the density 

 
𝑝(𝑥) =

1

√2𝜋𝜎
𝑒

( )

, −∞ ≤ 𝑥 ≤ ∞, (C-1) 

where 𝜇 can be any real number and 𝜎 > 0. We write 𝑋~𝑁(𝑥|𝜇, 𝜎 ). If 𝑋~𝑁(𝑥|0,1), we call it 
a standard normal variable. 

The normal distribution is. Often, the rv 𝑋 is not a scalar but a vector. The direct extension  

Definition C.2 – Multivariate Normal Distribution (based on [52, p. 62], Definition 1.35) 
 
A random vector 𝑿 = [𝑋 … 𝑋 ], 𝑿 ∈ ℝ , is said to have a multivariate normal distribution 
with parameters 𝝁 and 𝚺 if it has the density  

 
𝑝(𝒙) = (2𝜋) |𝚺| 𝑒

(𝒙 𝝁) 𝚺 (𝒙 𝝁)
, (C-2) 

where 𝝁 can be any real number and 𝚺 is positive definite. We 𝑿~𝑁(𝒙|𝝁, 𝚺). 

Figure C-1 shows the univariate (left) and the multivariate (right) normal distribution.  
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C.1 Expectation and Variances 

 

Expected Value of a random variable with Gaussian pdf 

The expected value of a random variable 𝑥 with a Gaussian pdf such that 𝑥~𝑁(𝜇, 𝜎 ) is 
defined as 

 
𝔼 [𝑋] = 𝑥𝑝(𝑥)𝑑𝑥 = 𝑥

1

√2𝜋𝜎
𝑒

( )

𝑑𝑥. (C-3) 

Substituting 𝑧 = 𝑥 − 𝜇 and noting that 𝑑𝑧 = 𝑑𝑥 yields 

 
𝔼 [𝑋] = (𝑧 + 𝜇)

1

√2𝜋𝜎
𝑒 𝑑𝑧 = 𝑧

1

√2𝜋𝜎
𝑒 𝑑𝑧 + 𝜇

1

√2𝜋𝜎
𝑒 𝑑𝑧. 

(C-4) 

Expanding the first integral yields  

 
𝐼 = 𝑧

1

√2𝜋𝜎
𝑒 𝑑𝑧 = 𝑧

1

√2𝜋𝜎
𝑒 𝑑𝑧 + 𝑧

1

√2𝜋𝜎
𝑒 𝑑𝑧. (C-5) 

Swapping integration limits and using integral rules yields 

 
𝐼 = − 𝑧

1

√2𝜋𝜎
𝑒 𝑑𝑧 + 𝑧

1

√2𝜋𝜎
𝑒 𝑑𝑧 

= (−𝑧)
1

√2𝜋𝜎
𝑒

( )

𝑑𝑧 + 𝑧
1

√2𝜋𝜎
𝑒 𝑑𝑧

= − 𝑧
1

√2𝜋𝜎
𝑒 𝑑𝑧 + 𝑧

1

√2𝜋𝜎
𝑒 𝑑𝑧 = 0. 

(C-6) 

Solving the second integral yields 

 
𝐼 = 𝜇

1

√2𝜋𝜎
𝑒 𝑑𝑧 = 𝜇

1

√2𝜋𝜎
𝑒 𝑑𝑧 = 𝜇. 

(C-7) 

Hence, the expected value is given by 

 𝔼 [𝑋] = 𝜇. (C-8) 
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Variance of a random variable with Gaussian pdf 

The variance of the random variable 𝑥 is defined as 

 𝕍 [𝑋] = 𝔼 𝑋 − 𝔼 (𝑋) . (C-9) 

Inserting the definition of the expected value yields 

 
𝕍 [𝑋] = (𝑥 − 𝜇)

1

√2𝜋𝜎
𝑒

( )

𝑑𝑥. (C-10) 

Similar to the derviation of the expected value, define 𝑧 =
√

. Note that 𝜎√2𝜋𝑑𝑧 = 𝑑𝑥. 

Hence, 

 
𝕍 [𝑋] = 𝜎 2𝑧

1

√2𝜋𝜎
𝑒 𝜎√2𝜋𝑑𝑧 =

2𝜎

√𝜋
𝑧 𝑒 𝑑𝑧. (C-11) 

Integration by parts with 𝑢 = 𝑧 and 𝑣 = − 𝑒  and noting that 𝑣 = 𝑧𝑒  yields 

 
𝕍 [𝑋] =

2𝜎

√𝜋
−

1

2
𝑧𝑒 − −

1

2
𝑒 𝑑𝑧 . (C-12) 

Using L’Hopital’s rule, the first term becomes zero and the equation reduces to 

 
𝕍 [𝑋] =

2𝜎

√𝜋

1

2
𝑒 𝑑𝑧. (C-13) 

By using the Euler-Poisson integral ∫ 𝑒 𝑑𝑥 = √𝜋, the variance is 

 
𝕍 [𝑋] =

2𝜎

√𝜋

1

2
√𝜋 = 𝜎 . (C-14) 

 

C.2 Moment Generating Function of a Gaussian random variable 

Let 𝑋 denote a rv with a Gaussian probability distribution such that 𝑋~𝑁(𝑥|𝜇, 𝜎 ). The mgf of 
𝑋 is 

 
𝑀 (𝑠) = 𝑒 . (C-15) 

Similarly, for a random vector 𝑿 ∈ ℝ  with multivariate normal probability distribution 
𝑿~𝑁(𝒙|𝝁, 𝝈 ) the corresponding mgf is 

 
𝑀 (𝑠) = 𝑒

𝒔 𝝁 𝚺𝒔  (C-16) 
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In order to extract the 𝑛-th moment, 𝑀  needs to be differentiated 𝑛 times with respect to 𝑠 
and evaluated at 𝑠 = 0. Using its mgf, the mean of the rv 𝑿 is   

 
𝔼 [𝑿] =

𝑑𝑀

𝑑𝒔 𝒔
= 𝝁 +

1

2
𝚺𝒔 +

1

2
𝒔 𝚺 𝑒

𝒔 𝝁 𝚺𝒔

𝒔
= 𝝁 (C-17) 

Similarly, its covariance is  

 
𝕍 [𝑿] = 𝔼 [(𝑿𝑿 )] − 𝔼 [𝑿]𝔼 [𝑿 ] =

𝑑 𝑀

𝑑𝒔
𝒔

−
𝑑𝑀

𝑑𝒔 𝒔

𝑑𝑀

𝑑𝒔 𝒔
 

= 𝝁 𝝁 +
1

2
𝚺𝒔 + 𝒔 𝚺 +

1

2
𝚺 +

1

2
𝚺 +

1

2
𝚺𝒔 𝝁 +

1

2
𝚺𝒔 +

1

2
𝒔 𝚺

+
1

2
𝒔 𝚺 𝝁 +

1

2
𝚺𝒔 +

1

2
𝒔 𝚺 𝑒

𝒔 𝝁 𝚺𝒔

𝒔

− 𝝁𝝁 = 𝚺. 

(C-18) 

C.3 Calculation rules for joint, conditional and marginal normal pdfs 

This section summarizes required calculation rules for multivariate normal distributions. 

Lemma C.1 – Joint Distribution of Gaussian variables (based on [184, 209, Lemma A.1] 
 
If two random variables 𝑿 ∈ ℝ , 𝒀 ∈ ℝ  have the Gaussian probability distributions 𝑝(𝒙) =
𝑁(𝒎, 𝑷) and 𝑝(𝒚|𝒙) = 𝑁(𝑯𝒙, 𝑹), then the joint distribution 𝑝(𝒙, 𝒚) is 

 𝒙
𝒚 ~𝑁

𝒎
𝑯𝒎

, 𝑷 𝑷𝑯
𝑯𝑷 𝑯𝑷𝑯 + 𝑹

. (C-19) 

 

Proof: 

The joint probability density function is defined as 

 𝑝(𝒙, 𝒚) = 𝑝(𝒚|𝒙)𝑝(𝒙) = 𝑁(𝑯𝒙, 𝑹)𝑁(𝒎, 𝑷). (C-20) 

Note that the Gaussian pdf only depends on the two parameters mean and variance. As a 
consequence, the equality sign can be switched for a proportionality operator, which leads to   

 𝑝(𝒙, 𝒚) ∝ 𝑒 (𝒚 𝑯𝒙) 𝑹 (𝒚 𝑯𝒙) 𝑒 (𝒙 𝒎) 𝑷 (𝒙 𝒎) = 

∝ 𝑒 (𝒚 𝑯𝒙) 𝑹 (𝒚 𝑯𝒙) (𝒙 𝒎) 𝑷 (𝒙 𝒎) . 
(C-21) 

Transferring the result into the notation for matrix-vector multiplication yields 

 𝑝(𝒙, 𝒚) ∝ 𝑒 (𝒚 𝑯𝒙) 𝑹 (𝒚 𝑯𝒙) (𝒙 𝒎) 𝑷 (𝒙 𝒎) = 

= exp −
(𝒙 − 𝒎)

(𝒚 − 𝑯𝒎)
𝑷 + 𝑯 𝑹 𝑯 −𝑯 𝑹

−𝑹 𝑯 𝑹
𝚺

(𝒙 − 𝒎)

(𝒚 − 𝑯𝒎)
. 

 

(C-22) 
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Taking the inverse of the matrix 𝚺  yields 

 
𝚺 = 𝑷 + 𝑯 𝑹 𝑯 −𝑯 𝑹

−𝑹 𝑯 𝑹
= 𝑷 𝑷𝑯

𝑯𝑷 𝑯𝑷𝑯 + 𝑹
. (C-23) 

□ 

Lemma C.2 – Calculation of conditional and marginal pdfs from a joint pdf (based on 
[184, 209, Lemma A.2] 
 
Consider two random variables 𝑿 ∈ ℝ , 𝒀 ∈ ℝ  with the joint Gaussian probability distribution  

 𝒙
𝒚 ~𝑁

𝝁
𝝁 ,

𝚺 𝚺
𝚺 𝚺

. (C-24) 

Then the conditional and marginal pdfs are 

 𝑝(𝒙) = 𝑁(𝝁 , 𝚺 ) 

𝑝(𝒚)~𝑁(𝝁 , 𝚺 ) 

𝑝(𝒙|𝒚)~𝑁(𝝁 + 𝚺 𝚺 (𝒚 − 𝝁 ),  𝚺 − 𝚺 𝚺 𝚺 ) 

𝑝(𝒚|𝒙)~𝑁(𝝁 + 𝚺 𝚺 (𝒙 − 𝝁 ),  𝚺 − 𝚺 𝚺 𝚺 ). 

(C-25) 

 

Proof: 

The results follow directly from applying the calculation rules in Appendix B.3 and solving the 
matrix-vector multiplications. The lengthy derivation is omitted here. 

□ 

C.4 Affine transform of a normally distributed random variable 

The affine transformation of a normally distributed rv. is a common procedure found in a 
multitude of application such as the Kalman Filter. It forms the basis for the GMM 
propagation used within this thesis.  

Lemma C.3 – Affine transformation of a normally distributed random variable 
 
Consider a continuous random vector 𝑿 ∈ ℝ  with a multivariate normal pdf 𝑝 (𝒙) =
𝑁(𝒙|𝝁, 𝜮). Under the affine transformation 𝒁 = 𝑨𝑿 + 𝑩 the continuous rv. 𝒁 has a 
multivariate Gaussian pdf with 𝑝 (𝒛) = 𝑁(𝒛|𝑨𝝁 + 𝑩, 𝑨𝜮𝑨 ). 

Proof: 

Note, that the definition of a pdf requires it to integrate to one:  

 
𝑝(𝒙)𝑑𝒙 = 1 𝑝 𝑨 (𝒛 − 𝑩) 𝑑𝒙 (C-26) 
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The affine transformation of the rv. is shown by substitution. Therefore, note that 𝑿 =

𝑨 (𝒁 − 𝑩) and 𝑑𝑿 = 𝑨 𝑑𝒁: 

 
𝑝(𝒙)𝑑𝒙 = 𝑝 𝑨 (𝒛 − 𝑩) 𝑨 𝑑𝒛 

=
1

(2𝜋) |𝜮|
exp −

1

2
(𝑨 (𝒛 − 𝑩) − 𝝁) 𝜮 (𝑨 (𝒛 − 𝑩) − 𝝁) 𝑨 𝑑𝒛 

=
1

(2𝜋) |𝑨𝜮𝑨 |
exp −

1

2
(𝑨 (𝒛 − 𝑩) − 𝝁) 𝜮 (𝑨 (𝒛 − 𝑩) − 𝝁) 𝑑𝒛 

=
1

(2𝜋) |𝑨𝜮𝑨 |
exp −

1

2
(𝒛 − 𝑩 − 𝑨𝝁) 𝑨 𝜮 𝑨 (𝒛 − 𝑩 − 𝑨𝝁) 𝑑𝒛 

=
1

(2𝜋) |𝑨𝜮𝑨 |
exp −

1

2
(𝒛 − 𝑩 − 𝑨𝝁) (𝑨𝜮𝑨 ) (𝒛 − 𝑩 − 𝑨𝝁)

(𝒛) (𝒛|𝑨𝝁 𝑩,𝑨𝜮𝑨 )

𝑑𝒛. 

(C-27) 

□ 

The proof shown above only holds if 𝑨 is invertible. A more general proof can be obtained by 
using moment generating functions. 

C.5 Summation and Difference of two independent and normally 
distributed random variables 

Finding the sum or difference of two multivariate, independent normally distributed random 
variables is a common task and explained in many standard references (see e.g. [10]). 

Lemma C.4 - Sum and difference of two independent normal random variables 
 
Consider two independent and continuous random variables 𝑿, 𝒀 ∈ ℝ  with probability 
distributions 𝑿~𝑁(𝝁 , 𝚺 ) and 𝒀~𝑁(𝝁 , 𝚺 ). Then the pdf of the sum 𝒁 = 𝑿 + 𝒀 is 
𝒁 ~𝑁(𝝁 + 𝝁 , 𝚺 + 𝚺 ). Similarly, the pdf of the difference 𝒁 = 𝑿 − 𝒀 is  
𝒁 ~𝑁(𝝁 − 𝝁 , 𝚺 + 𝚺 ).  

Proof: 

The proof is omitted here. It follows by solving the convolution in (B-28) in Appendix B.7.   

□ 
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C.6 Sum of two squared forms 

Within this thesis, often the multiplication of two normal pdfs 𝑁(𝝁 , 𝚺 ) and 𝑁(𝝁 , 𝚺 ) is 
performed. In particular, the goal is to find the mean 𝝁  and variance 𝚺  in  

 𝑁(𝝁 , 𝚺 )𝑁(𝝁 , 𝚺 ) = 𝑐𝑁(𝝁 , 𝚺 ). (C-28) 

Inserting the equations for multivariate normal pdfs yields 

 
𝑐𝑁(𝝁 , 𝚺 ) = (2𝜋) |𝚺 | 𝑒

(𝒙 𝝁 ) 𝚺 (𝒙 𝝁 )(2𝜋) |𝚺 | 𝑒
(𝒙 𝝁 ) 𝚺 (𝒙 𝝁 ) (C-29) 

Solving this multiplication requires the solution of a sum of the two squared forms  

 
−

1

2
(𝒙 − 𝝁 ) 𝚺 (𝒙 − 𝝁 ) −

1

2
(𝒙 − 𝝁 ) 𝚺 (𝒙 − 𝝁 ) 

= −
1

2
(𝒙 − 𝝁 ) 𝚺 (𝒙 − 𝝁 ) + 𝐶. 

(C-30) 

The solution of the sum of two squared forms is omitted here. It involves the expansion of the 
squared forms, the rearrangement of terms and rearranging the required squared forms at 
the end. The solution is ([167]) 

 𝝁 = (𝚺 + 𝚺 ) (𝚺 𝝁 + 𝚺 𝝁 ) 

𝚺 = (𝚺 + 𝚺 )  

𝑐 =
1

|(2𝜋)(𝚺 + 𝚺 )|
𝑒

(𝝁 𝝁 ) (𝚺 𝚺 ) (𝝁 𝝁 )
. 

(C-31) 
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D Fundamentals of Lyapunov Stability Theory 

D.1 Stability of Nonlinear Systems 

Consider the following class of nonlinear, autonomous dynamical systems 

 �̇� = 𝒇 𝒙(𝑡) . (D-1) 

In the following various stability properties for the nonlinear system in (D-1) are defined. 

Definition D.1 – Stability of Nonlinear Systems ([84, p. 136], Definition 3.1) 
 

a) The zero solution 𝒙(𝑡) ≡ 𝟎 to equation (D-1) is Lyapunov stable if, for all 𝜀 > 0, there 
exists 𝛿 = 𝛿(𝜀) > 0 such that if ‖𝒙(0)‖ < 𝛿, then ‖𝒙(𝑡)‖ < 𝜀, 𝑡 ≥ 0. 

b) The zero solution 𝒙(𝑡) ≡ 𝟎 to equation (D-1) is (locally) asymptotically stable if it is 
Lyapunov stable and there exists 𝛿 > 0 such that if ‖𝒙(0)‖ < 𝛿, then  
lim
→

𝒙(𝑡) = 𝟎. 

c) The zero solution 𝒙(𝑡) ≡ 𝟎 to equation (D-1) is (locally) exponentially stable if there 
exist positive constants 𝛼, 𝛽 and 𝛿 such that if ‖𝒙(0)‖ < 𝛿, then 
‖𝒙(𝑡)‖ ≤ 𝛼‖𝒙(0)‖𝑒 , 𝑡 ≥ 0. 

d) The zero solution 𝒙(𝑡) ≡ 𝟎 to equation (D-1) is globally asymptotically stable if it is 
Lyapunov stable and for all 𝒙(0) ∈ ℝ , lim

→
𝒙(𝑡) = 𝟎. 

e) The zero solution 𝒙(𝑡) ≡ 𝟎 to equation (D-1) is globally exponentially stable if there 
exist positive constants 𝛼 and 𝛽 such that ‖𝒙(𝑡)‖ ≤ 𝛼‖𝒙(0)‖𝑒 , 𝑡 ≥ 0, for all 𝒙(0) ∈
ℝ . 

The zero solution 𝒙(𝑡) ≡ 𝟎 to equation (D-1) is unstable if it is not Lyapunov stable. 

D.2 Lyapunov’s Direct Method 

Lyapunov’s direct method provides sufficient conditions for Lyapunov, asymptotic and 
exponential stability of a nonlinear system. 

Theorem D.1 – Lyapunov’s Direct Method ([84, p. 137], Theorem 3.1) 
 
Consider the nonlinear dynamical system (D-1) and assume that there exists a continuously 
differentiable function 𝑉: 𝐷 → ℝ such that 

 𝑉(0) = 0,  

𝑉(𝒙) > 0,     𝒙 ∈ 𝐷,    𝒙 ≠ 𝟎, 

𝑉 (𝒙)𝒇(𝒙) ≤ 0,     𝒙 ∈ 𝐷. 

(D-2) 

Then the zero solution 𝒙(𝑡) ≡ 𝟎 to equation (D-1) is Lyapunov stable. If, in addition,  

 𝑉 (𝒙)𝒇(𝒙) < 0,     𝒙 ∈ 𝐷,    𝒙 ≠ 𝟎, (D-3) 

then the zero solution 𝒙(𝑡) ≡ 𝟎 to equation (D-1) is asymptotically stable.  
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Finally, if there exist scalars 𝛼, 𝛽, 𝜀 > 0, and 𝑝 ≥ 1, such that 𝑉: 𝐷 → ℝ satisfies 

 𝛼‖𝒙‖ ≤ 𝑉(𝒙) ≤ 𝛽‖𝒙‖ ,     𝒙 ∈ 𝐷,  

𝑉 (𝒙)𝒇(𝒙) ≤ −𝜀𝑉(𝒙),     𝒙 ∈ 𝐷, 
(D-4) 

then the zero solution 𝒙(𝑡) ≡ 𝟎 to equation (D-1) is exponentially stable. 

 

Proof: 

The proof is omitted here. For a full derivation, see i.a. [84, pp. 137-141]. 

□ 
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E Filter Equations 

This section introduces the equations for the OFPS, which is used in section 4.4.3.1. The 
OFPS consists of a forward and a backward Kalman Filter. In the following, first the 
equations for the Kalman Filter are derived, followed by the OFPS.  

E.1 Kalman Filter 

This section introduces the well-known Kalman Filter ([115], [144]) and derives the 
propagation and update step from a Bayesian perspective. Consider a Markovian model of 
the form 

 𝒙 = 𝑨 𝒙 + 𝒒 , 

𝒚 = 𝑯 𝒙 + 𝒓 , 

𝒒 ~𝑁(0, 𝑸) 

  𝒓 ~𝑁(0, 𝑹) 
(E-1) 

Assume 𝒙  to be modeled by a prior distribution 𝑝(𝒙 |𝒚 ) = 𝑁𝒙 (𝒎 , 𝑷 ). The Kalman-Filter 

is always seen to be comprised of two steps: the prediction step and the update step. The 
former predicts the state distribution 𝑝(𝒙 |𝒚 ) based on the model in (E-1). The latter 
corrects the prediction by incoming measurements. Employing the Chapman-Kolmogorov 
Equation in order to predict the state 𝒙  yields 

 
𝑝(𝒙 |𝒚 ) = 𝑝(𝒙 |𝒙 )𝑝(𝒙 |𝒚 )𝑑𝒙 . (E-2) 

The distribution 𝑝(𝒙 |𝒙 ) is described by the system dynamics in (E-1). Furthermore, the 
prior 𝑝(𝒙 |𝒚 ) is assumed to be known. Inserting both into (E-2) yields 

 
𝑝(𝒙 |𝒚 ) = 𝑁𝒙 (𝑨 𝒙 , 𝑸)𝑁𝒙 (𝒎 , 𝑷 )𝑑𝒙  (E-3) 

Building the joint distribution by using the calculation rules in Appendix C yields 

 
𝑝(𝒙 |𝒚 ) = 𝑁 𝒙

𝒙

𝒎
𝑨 𝒎 ,

𝑷 𝑷 𝑨

𝑨 𝑷 𝑨 𝑷 𝑨 + 𝑸
𝑑𝒙 . (E-4) 

Note that 𝑝(𝒙 |𝒚 ) does not depend on 𝒙 . Hence, it can be moved out of the integral. 
Using the calculation rules in Appendix C, the predicted distribution is 

 
𝑝(𝒙 |𝒚 ) = 𝑁𝒙 𝑨 𝒎

𝒎

, 𝑨 𝑷 𝑨 + 𝑸
𝑷

. (E-5) 

The explicit prediction equations are 

 𝒎 = 𝑨 𝒎  

𝑷 = 𝑨 𝑷 𝑨 + 𝑸. 
(E-6) 
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The update step aims at calculating 𝑝(𝒙 |𝒚 ). Therefore, consider the definition of 
conditional probability: 

 𝑝(𝒙 , 𝒚 |𝒚 ) = 𝑝(𝒚 |𝒙 )𝑝(𝒙 |𝒚 ). (E-7) 

The dependency on 𝒚  is neglected since it is fully described by the dependence on 𝒙 . 
Inserting the result of the update step in (E-5) as well as the model of (E-1) into (E-7) and 
again using the calculation rules in Appendix C yields 

 𝑝(𝒙 , 𝒚 |𝒚 ) = 𝑁𝒚 (𝑯 𝒙 , 𝑹)𝑁𝒙 (𝒎 , 𝑷 ) = 

𝑁 𝒙
𝒚

𝒎
𝑯 𝒎

,
𝑷 𝑷 𝑯

𝑯 𝑷 𝑯 𝑷 𝑯 + 𝑹
. 

(E-8) 

Employing the calculation rules for conditional probabilities from Appendix C results in  

 𝑝(𝒙 |𝒚 ) = 

𝑁𝒙

𝒎 + 𝑷 𝑯 𝑯 𝑷 𝑯 + 𝑹 (𝒚 − 𝑯 𝒎 ),

𝑷 − 𝑷 𝑯 𝑯 𝑷 𝑯 + 𝑹 𝑯 𝑷
. 

(E-9) 

Using the simplifications 

 𝑺 = 𝑯 𝑷 𝑯 + 𝑹 

𝑲 = 𝑷 𝑯 𝑺 , 
(E-10) 

equation (E-9) becomes 

 𝑝(𝒙 |𝒚 ) = 

𝑁𝒙 𝒎 + 𝑲 (𝒚 − 𝑯 𝒎 )

𝒎

, 𝑷 − 𝑲 𝑺 𝑲
𝑷

. 
(E-11) 

The explicit update equations are 

 𝒎 = 𝒎 + 𝑲 (𝒚 − 𝑯 𝒎 ) 

𝑷 = 𝑷 − 𝑲 𝑺 𝑲 . 
(E-12) 
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E.2 Optimal Fixed Point Smoother 

This section introduces the Optimal Fixed Point Smoother, also called Rauch –Tung-Striebel 
smoother ([70], [144]). The following derivation is based on [184]. Assume that the state 
estimate 𝒙  at the time instant 𝑘 is sought. The general idea of a fixed point smoother is to 
use the KF approach in section E.1 together with future measurements in order to arrive at 
an improved state estimate. In practice, the OFPS consists of a Forward KF up until time 
step 𝑘 and a Backward Kalman Filter from a future time instant 𝑇, with 𝑇 > 𝑘, to 𝑘. Naturally, 
the estimate of the OFPS is delayed, as 𝒙  needs to be available in order to arrive at a 
smoothed estimate of 𝒙 . Figure E- shows an exemplary timeline of the optimal fixed point 
smoother. Here, the Backward KF operates on four time steps. Also note, that the forward 
KF is operational up to 𝑇. Its estimate of 𝒙  is used in order to initialize the backward KF.  

 

Figure E-1: Timeline of an Optimal Fixed Point Smoother 

In order to derive the solution of the fixed point smoother, consider the system dynamics in 
(E-1) and the estimate of the forward KF in (E-11). In essence, the backward KF seeks the 
distribution of 𝒙  given the data from 𝑘 to 𝑇, i.e. 𝑝(𝒙 |𝒚 : ). In order to derive the backward 
iterated calculation laws, consider the joint probability distribution 𝑝(𝒙 , 𝒙 |𝒚 ), given by 

 𝑝(𝒙 , 𝒙 |𝒚 ) = 𝑝(𝒙 |𝒙 )𝑝(𝒙 |𝒚 ). (E-13) 

The latter is already calculated in (E-4) and given by 

 
𝑝(𝒙 , 𝒙 |𝒚 ) = 𝑁 𝒙

𝒙

𝒎
𝑨 𝒎 ,

𝑷 𝑷 𝑨

𝑨 𝑷 𝑨 𝑷 𝑨 + 𝑸
 (E-14) 

In order to yield a backward iteration, the distribution 𝑝(𝒙 , 𝒙 |𝒚 ) is conditioned on 𝒙 :  

 𝑝(𝒙 |𝒙 , 𝒚 ) = 𝑁𝒙 𝒎 , 𝑷  (E-15) 

Using the calculation rules for conditional distributions in Appendix C.3 the conditional mean 
is 

 𝒎 = 𝒎 + 𝑷 𝑨 𝑨 𝑷 𝑨 + 𝑸 (𝒙 − 𝑨 𝒎 ). (E-16) 

 

 

𝑘 𝑇

Forward Kalman Filter

Backward Kalman Filter

𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 = 𝑥 𝑥
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Similarly, the conditional covariance is 

 𝑷 = 𝑷 − 𝑷 𝑨 𝑨 𝑷 𝑨 + 𝑸 𝑨 𝑷 . (E-17) 

For simplicity, define  

 𝑮 = 𝑷 𝑨 𝑨 𝑷 𝑨 + 𝑸 . (E-18) 

Then (E-15) becomes 

 𝑝(𝒙 |𝒙 , 𝒚 ) = 𝑁𝒙 𝒎 + 𝑮 (𝒙 − 𝑨 𝒎 ), 𝑷 − 𝑮 𝑨 𝑷 𝑨 + 𝑸 𝑮 . (E-19) 

The system in (E-1) represents a Markov chain and therefore its states exhibit the Markov 
property. As a result, 𝑝(𝒙 |𝒙 , 𝒚 ) is only dependent on 𝒚  and not on future 
measurements. Hence,  

 𝑝(𝒙 |𝒙 , 𝒚 : ) = 𝑝(𝒙 |𝒙 , 𝒚 ). (E-20) 

To interpret the latter, note that the conditional distribution assumes 𝒙  to be known. Since 
a Markov chain is only dependent on the current information and not a batch of states, all 
future information, such as 𝒙  or 𝒚  is already contained in 𝒙 . In the next step, the 
joint distribution 𝑝(𝒙 , 𝒙 |𝒚 ) in (E-13) is conditioned on 𝒚 :  instead of 𝒚  only: 

 𝑝(𝒙 , 𝒙 |𝒚 : ) = 𝑝(𝒙 |𝒙 , 𝒚 : )𝑝(𝒙 |𝒚 : ). (E-21) 

The first term on the right hand side is given by (E-19). Let the second term be given by 

𝑝(𝒙 |𝒚 : ) = 𝑁𝒙 𝒎 , , 𝑷 , . Building the joint distribution by using the calculation 

rules in Appendix C yields 

 𝑝(𝒙 , 𝒙 |𝒚 : ) = 

𝑁 𝒙
𝒙

𝒎 ,

𝒎 + 𝑮 𝒎 , − 𝑨 𝒎
,

𝑷 , 𝑷 , 𝑮

𝑮 𝑷 , 𝑮 𝑷 , 𝑮 + 𝑷
. 

(E-22) 

Marginalizing 𝑝(𝒙 , 𝒙 |𝒚 : ) over 𝒙  yields 

 𝑝(𝒙 |𝒚 : ) = 𝑁𝒙 𝒎 , , 𝑷 , . (E-23) 

Using the calculation rules in Appendix C.3, the mean is 

 𝒎 , = 𝒎 + 𝑮 𝒎 , − 𝑨 𝒎 . (E-24) 

Similarly, the covariance is 

 𝑷 , = 𝑮 𝑷 , 𝑮 + 𝑷 = 𝑷 + 𝑮 𝑷 , − 𝑨 𝑷 𝑨 − 𝑸 𝑮 . (E-25) 

Equations (E-24) and (E-25) resemble the update equations for the backward iterated KF. 
The process is initiated by setting 𝒎 , = 𝒎  and 𝑷 , = 𝑷 , where 𝒎  and 𝑷  resemble the 

solution (E-12) of the forward KF at the time instant 𝑇. Recursively applying (E-24) and 
(E-25) yields the smoothed estimate 𝑝(𝒙 |𝒚 : ). 
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F Naming Convention 

This thesis employs the naming convention of the Institute of Flight System Dynamics at the 
Technische Universität München. The following section details the most important parts. The 
respective coordinate frames are summarized in Appendix G. 

Position 

A typical position vector is given by 

 
(�⃗� ) =

𝑥
𝑦

𝑧

. (F-1) 

The vector (�⃗� )  describes the position of point 𝑃 relative to point 𝐺, notated in the 
coordinate frame 𝐶. 

Velocity 

A typical velocity vector is given by 

 

�⃗� =

𝑢

𝑣

𝑤

. (F-2) 

The vector �⃗�  describes the velocity of point 𝑃 relative to point 𝐺. The velocity is of the 

kind 𝐾 (e.g. wind, aerodynamic, kinematic), is relative to the 𝐶  frame and notated in the 
coordinate frame 𝐶 . 

Acceleration 

A typical acceleration vector is given by 

 

�⃗� =

�̇�

�̇�

�̇�

. (F-3) 

The vector �⃗�  describes the acceleration of point 𝑃 relative to point 𝐺. The 

acceleration is of the kind 𝐾 (e.g. wind, aerodynamic, kinematic), is relative to the 𝐶  frame, 
derived relative to the 𝐶  frame and notated in the coordinate frame 𝐶 . 

Rotational rate 

A typical rotational rate vector is given by 

 

𝝎 =

⎣
⎢
⎢
⎡𝜔 ,

𝜔 ,

𝜔 , ⎦
⎥
⎥
⎤

. (F-4) 
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The vector 𝝎  describes the rotational rate of the system 𝐶  relative to the coordinate 

system 𝐶 . The rotational rate is of the kind 𝐾 (e.g. wind, aerodynamic, kinematic) and 
notated in the coordinate frame 𝐶 . 

Rotational Acceleration 

A typical rotational acceleration vector is given by 

 

�̇� =

⎣
⎢
⎢
⎡�̇� ,

�̇� ,

�̇� , ⎦
⎥
⎥
⎤

. (F-5) 

The vector �̇�  describes the rotational acceleration of the system 𝐶  relative to the 

coordinate system 𝐶 . The rotational acceleration is of the kind 𝐾 (e.g. wind, aerodynamic, 
kinematic), derived relative to the 𝐶  and notated in the coordinate frame 𝐶 . 

Forces 

A typical force vector is given by 

 

𝑭 =

𝑋

𝑌

𝑍

. (F-6) 

The vector 𝑭  describes the forces acting on the point 𝑅. The force is of the kind 𝐴 (e.g. 

aerodynamic, propulsive, gravity, total) and notated in the coordinate frame 𝐶 . 

Moments 

A typical moment vector is given by 

 

�⃗� =

𝐿

𝑀

𝑁

. (F-7) 

The vector �⃗�  describes the moments relative to the point 𝑅. The moments are of the 

kind 𝐴 (e.g. aerodynamic, propulsive, gravity, total) and notated in the coordinate frame 𝐶 . 
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G Coordinate Frames 

This section lists coordinate frames required for aerospace modelling and control. 

 

Earth Centered Inertial Frame 
Index 𝐼 
Role Notation frame for Newtonian inertial physics 
Origin Center of the earth 
Translation Around the sun with solar system 
Rotation None 
𝑥-axis In equatorial plane, pointing towards vernal equinox 
𝑦-axis In equatorial plane to form a right-hand system 
𝑧-axis Rotation axis of the Earth 
 

 

Figure G-1: ECI Frame (from [93]) 
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Earth Centered Earth Fixed Frame 
Index 𝐸 
Role Notation frame for Newtonian Inertial Physics 
Origin Center of the Earth 
Translation Around the sun with solar system 
Rotation None 
𝑥-axis In equatorial plane, pointing towards vernal equinox 
𝑦-axis In equatorial plane to form a right-hand system 
𝑧-axis Rotation axis of the Earth 
 

 

 

Figure G-2: ECEF Frame (from [93]) 
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North-East-Down (NED) Frame 
Index 𝑂 
Role Notation frame for velocity and orientation 
Origin Reference point of aircraft 
Translation Moves with aircraft reference point 
Rotation Rotates with transport rate to keep the NED-alignment 
𝑥-axis Parallel to local geoid surface, pointing to geographic north pole 
𝑦-axis Parallel to local geoid surface, pointing east to form a right-hand system 
𝑧-axis Pointing downwards, perpendicular to local geoid surface 
 

 

 

Figure G-3: NED-Frame (from [93]) 
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Body-fixed Frame 
Index 𝐵 
Role Notation frame 
Origin Reference point of aircraft 
Translation Moves with aircraft reference point 
Rotation Rotates with rigid body aircraft 
𝑥-axis Pointing towards aircraft nose in symmetry plane 
𝑦-axis Pointing to starboard wing to form a right-hand system 
𝑧-axis Pointing downwards in symmetry plane, perpendicular to 𝑥- and 𝑦-axes 
 

 

 

Figure G-4: Body-fixed frame (from [93]) 
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Kinematic Frame 
Index 𝐾 
Role Notation frame for flight path 
Origin Reference point of aircraft 
Translation Moves with aircraft reference point 
Rotation Rotates with direction of kinematic aircraft motion 
𝑥-axis Aligned with the kinematic velocity, pointing into the direction of the 

kinematic velocity 
𝑦-axis Pointing to the right, perpendicular to the 𝑥- and 𝑧- axes 
𝑧-axis Pointing downwards, parallel to the projection of the local surface normal 

of the WGS-84 ellipsoid into a plane perpendicular to the 𝑥- axis 
 

 

 

Figure G-5: Kinematic Frame (from [93]) 
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Aerodynamic Frame 
Index 𝐴 
Role Notation frame for aerodynamic flow 
Origin Aerodynamic reference point of aircraft 
Translation Moves with aircraft reference point 
Rotation Rotates with direction of airflow 
𝑥-axis Aligned with aerodynamic velocity, pointing into the direction of the 

aerodynamic velocity 
𝑦-axis Pointing to the right, perpendicular to the 𝑥- and 𝑧- axes 
𝑧-axis Pointing downwards in the symmetry plane of the aircraft, perpendicular 

to the𝑥- axis 
 

 

 

Figure G-6: Aerodynamic Frame (from [93]) 
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H Auxiliary Information 

H.1 Simulation Parameter List for Example 4-1 

Simulation Parameter Numerical Value  

General Simulation 

𝑡  0𝑠  

𝑑𝑡 0.001𝑠  

𝑡  12𝑠  

𝐴  0  

𝐵  1 

𝑝 (𝑡 ) ~𝑁 −20
°

𝑠
, 5.73

°

𝑠
 

Θ∗ −2 

Baseline Controller 

𝐴  −1 

𝐵  1 

𝑝 (𝑡 ) 0
°
  

𝐾   |  𝐴  −1  |  − 1 

Adaptive Controller 

Γ 50 

𝑄 | 𝑃 1 | 0.5 

𝜎 0.005  

Θ  0  
Table H-1: Simulation Parameters for Example 4-1 
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H.2 Adjusted contours for Example 4-4 

 

  

  
Figure H-1: Adjusted scale for the Kullback-Leibler Divergence based comparison plots in Example 4-4 
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H.3 Simulation Parameter List for Example 4-6 

Simulation Parameter Numerical Value  

General Simulation 

𝑡  0𝑠  

𝑑𝑡 0.001𝑠  

𝑡  40𝑠  

𝑨  0 1
0 0

  

𝑩  0
1

 

[Φ(𝑡 ) 𝑝 (𝑡 )] 28.65° 0
°

𝑠
 

𝚯∗ [−0.4 −0.1157 −0.0107 −0.5] 

𝒗 ~𝑁
0°

0
°

𝑠

,
1 0
0 1

 

Baseline Controller 

𝑨  0 1
−4 −4

 

𝑩  0
4

 

[Φ (𝑡 ) 𝑝 , (𝑡 )] 0° 0
°

  

 𝑲   |  𝑨   [−5 −5]  |   
0 1

−5 −5
 

Adaptive Controller 

𝚪 25𝑰  

𝑸  |  𝑷 𝑰    |   
1.1 0.1
0.1 0.12

 

𝜎 0.005  

𝚯  [0 0 0 0]  

Fixed Point Smoother 

T 0.03𝑠  

𝑑𝑡 0.001𝑠  

GP based Uncertainty Quantification 

𝑝  100 

𝛾 0.3 

𝜇 0.15 

𝜎  0.4 
Table H-2: Simulation Parameters for Example 4-6 
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H.4 Overlapping Coefficient for Different Nonlinear Functions 

  

  
Figure H-2: Overlapping Coefficient of different nonlinear functions 
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H.5 Additional plots for the simulation example of section 5.1 

 

Figure H-3: Evolution of the adaptive parameters under wing-rock motion for normally distributed initial 
conditions 
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Figure H-4: Predicted evolution of the adaptive weights over 40 seconds of the wing-rock simulation 
leveraging a GMM 
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Figure H-5: Predicted evolution of the adaptive weights over 40 seconds of the wing-rock simulation 
leveraging a normal distribution only 
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Figure H-6: Predicted evolution of the adaptive weights over 15 seconds of the wing-rock simulation 
leveraging a normal distribution only 
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Figure H-7: Predicted roll angle 𝝓 over 40 seconds with GP regression based uncertainty estimation 

 

Figure H-8: Predicted roll rate 𝒑𝑩 over 40 seconds with GP regression based uncertainty estimation 
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Figure H-9: Predicted evolution of the adaptive weights over 40 seconds of the wing-rock simulation 
leveraging a GMM and GP regression based uncertainty estimation 
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H.6 Additional plots for the simulation example of section 5.2 

 

Figure H-10: Predicted evolution of the adaptive weights over 30 seconds in the short period simulation 
example leveraging a GMM 
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Figure H-11: Predicted evolution of the predictor states over 30 seconds in the short period simulation 
example leveraging a GMM 

 

 


