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ABSTRACT

A convolutional layer in a Convolutional Neural Network
(CNN) consists of many filters which apply convolution op-
eration to the input, capture some special patterns and pass
the result to the next layer. If the same patterns also oc-
cur at the deeper layers of the network, why wouldn’t the
same convolutional filters be used also in those layers? In
this paper, we propose a CNN architecture, Layer Reuse Net-
work (LruNet), where the convolutional layers are used re-
peatedly without the need of introducing new layers to get a
better performance. This approach introduces several advan-
tages: (i) Considerable amount of parameters are saved since
we are reusing the layers instead of introducing new layers,
(ii) the Memory Access Cost (MAC) can be reduced since
reused layer parameters can be fetched only once, (iii) the
number of nonlinearities increases with layer reuse, and (iv)
reused layers get gradient updates from multiple parts of the
network. The proposed approach is evaluated on CIFAR-10,
CIFAR-100 and Fashion-MNIST datasets for image classi-
fication task, and layer reuse improves the performance by
5.14%, 5.85% and 2.29%, respectively. The source code and
pretrained models are publicly available 1.

Index Terms— layer reuse, convolutional neural net-
works, inference routing

1. INTRODUCTION

The conventional way of designing a Convolutional Neural
Network (CNN) is to put convolutional, pooling and batch
normalization layers one after another with some nonlinear-
ity functions in between. With the invention of residual con-
nections [4], deeper CNN architectures started to be trained
without overfitting and they achieved better results compared
to shallow ones. Consequently, the primary trend for solving
major visual recognition tasks has become building deeper
and larger CNNs [10, 4, 15]. The best performing CNNs
usually have hundreds of layers and millions of parame-
ters. However, deeper architectures also mean more param-
eters which makes the designed architecture not appropriate

1https://github.com/okankop/CNN-layer-reuse

Fig. 1: (a) Conventional design of CNNs, (b) CNN design
with layer reuse. Instead of stacking convolutional layers and
feeding one layer’s output as input to another layer, we feed
the output of a convolutional block as input to itself for N-
times before passing it to the next block.

for embedded and mobile devices. But the question always
comes to mind: ”Do we really need all these layers and pa-
rameters to achieve a better performance?”. Fig. 2 shows the
learned convolutional kernels in the first convolutional layer
of AlexNet [10]. It is obvious to notice that some of the ker-
nels are very similar, hence redundant. Therefore, instead of
introducing all these similar kernels separately, they can sim-
ply be reused.

In this paper, we propose a network architecture, Layer
Reuse Network (LruNet), where we have reused some convo-
lutional layers repeatedly. Instead of stacking convolutional
layers one after another, as in Fig. 1 (a), we feed the output of
the convolutional blocks to itself for a given N times before
passing the output to the next layer, as in Fig. 1 (b). While
doing this, we apply channel shuffling in order to ensure feed-
ing the outputs of convolution filters as inputs to other filters
in the same block. Layer Reuse (LRU) brings several advan-
tages to the system: (i) The number of parameters in the de-
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Fig. 2: Learned convolutional kernels in the first convolu-
tional layer of AlexNet. Some of the convolutional kernels
are very similar, which are highlighted with the same color.
Better view in color.

signed architecture drops considerably since we are reusing
layers instead of inserting additional new ones, (ii) the Mem-
ory Access Cost (MAC) can be reduced since the computing
device can load the reused layer’s parameters only once, (iii)
convolutional filters get gradient update form all reuse oper-
ations, and (iv) the number of nonlinearities increases as the
number of LRU increases.

The LruNet architecture is constructed following the
guidelines of recent resource efficient CNN architectures
[7, 13, 16, 5, 14, 19, 12, 3]. These architectures are built
mostly using group convolutions and depthwise separable
convolutions. Group convolutions are first introduced in
AlexNet [10] and effectively used in ResNeXt [18]. Depth-
wise separable convolutions are proposed in Xception [1]
and they are the main building blocks for recent lightweight
architectures.

Some other architectures are constructed facilitating bet-
ter gradient update mechanism to get improved performance
[2, 6, 12]. Those works concentrate on how to feed the output
of a layer as input to the next layers as efficiently as possible.
In contrast, we reuse the layers multiple times, and as we in-
crease the number-of-reuse (N), convolutional filters also get
more gradient updates.

2. APPROACH

2.1. Layer Reuse

Layer Reuse, referred as LRU, is the concept of using a con-
volutional layer or block multiple times at multiple places of
a CNN architecture. However, the idea of parameter reuse in
CNNs should not be limited at layer level. Convolutional lay-
ers can be split into smaller chunks up to filters, and reuse can
be applied on these chunks throughout the whole network. In
this case, it should be addressed as filter reuse (FRU) or kernel
reuse (KRU). We believe parameter reuse concept will open
a new era for deep learning practitioners for designing new
CNN architectures.

LRU block used in the LruNet architecture is depicted in
Fig. 3 where we use group convolutions and depthwise sepa-

Fig. 3: LRU block architecture. We represent DwConv and
PwConw as depthwise and pointwise convolutions, respec-
tively. F is the number of feature maps of the convolutional
layers and group is the number of groups for group convolu-
tions. BN and ReLU refer to Batch Normalization and Rec-
tified Linear Unit nonlinearity, respectively.

⊕
represents

summation for the shortcut connection.

rable convolutions in order to keep the number of network pa-
rameters as small as possible. We first use depthwise convo-
lutions increasing the channel number from F to 2F. Then, we
apply pointwise group convolutions with 8 groups. We have
tried different group numbers here, but 8 groups experimen-
tally proved to be the best in terms of accuracy and number
of parameters. We have applied Batch Normalization (BN)
[8] after these two layers, and ReLU after the shortcut con-
nection. Finally, channel shuffle is applied at the end of the
LRU block in order to feed different channels to different fil-
ters at each reuse. Channel shuffle is implemented as in [19],
with little modification. In the original implementation, the
first and the last channel of the feature volume always remain
same. So, we switched the first half of the input volume with
the second half before applying shuffling. We have not ap-
plied channel shuffle at the very last reuse since there is no
need.

2.2. Network Architecture

The complete LruNet architecture is given in Table 1. We
have built different LruNet architectures varying the number-
of-reuse N. Similar to [5], width multiplier α can also be ap-
plied to scale the number of filters. The network architecture
in Table 1 is denoted as LruNet-1x. We use N-LruNet-αx to
denote network architecture with N LRU and the number of
filters in LruNet-1x are scaled by α.

Although we reuse the convolutional layers repeatedly, we
need to use a new BN layer for every reuse since the output
feature volume has a different data distribution. Therefore,
the number of parameters increases slightly for increased



Layer / Stride Kernel
Size

Layer
Reuse Output size

Conv/s2 3x3 64x16x16
LRU Block, F:64 N 64x16x16
MaxPool/s2 3x3 64x8x8
Concatenate 128x8x8
LRU Block, F:128 N 128x8x8
MaxPool/s2 3x3 128x4x4
Concatenate 256x4x4
LRU Block, F:256 N 256x4x4
Concatenate 512x4x4
LRU Block, F:512 N 512x4x4
MaxPool/s2 3x3 512x2x2
PwConv/s1, group=8 1x1 256x2x2
PwConv/s1 1x1 NumClsx2x2
AvgPool/s1 2x2 NumCls

Table 1: LruNet architecture. N is the number of times LRU
block is reused. PwConw refers to pointwise convolutions.
Concatenation of output feature map with itself is applied at
the end of each LRU Block for channel expansion, except for
the last one.

LRU due to the newly introduced BN layers. It must be also
noted that the complexity and inference time of the network
linearly depends on the number-of-reuse N.

2.3. Training Details

All the models are trained from scratch. We use stochastic
gradient descent (SGD) with mini-batch of 256, and apply
categorical cross-entropy loss. For the momentum and weight
decay, 0.9 and 5x10−4 are used, respectively.

For regularization, several techniques are used to reduce
overfitting. Firstly, weight decay (γ=5x10−4) is applied on all
the parameters of the network. Secondly, we used dropout be-
fore the last pointwise convolution with dropout ratio of 0.5.
Lastly, we applied several data augmentation techniques: (a)
Random cropping (padding=4), (b) random spatial rotation
(±10), and (c) random horizontal flipping.

We have trained the networks with learning rate of 0.1 for
200 epochs, and 50 more epochs with learning rates of 0.01
and 0.001. Our approach is implemented in PyTorch with a
single Nvidia Titan Xp GPU.

3. EXPERIMENTS

The proposed approach is evaluated for image classification
task on three publicly available datasets: CIFAR-10, CIFAR-
100 and Fashion-MNIST datasets. Each experiment is re-
peated 5 times in order to obtain more robust results due to
the random initialization of the network parameters.

Model Params MFLOPs Acc.(%)
1-LruNet-1x 131k 3.47 84.20
2-LruNet-1x 137k 6.30 84.95
4-LruNet-1x 149k 11.97 86.87
6-LruNet-1x 160k 17.63 87.91
8-LruNet-1x 172k 23.29 88.45
10-LruNet-1x 183k 28.95 88.66
12-LruNet-1x 195k 34.61 88.73
14-LruNet-1x 206k 40.27 89.34
16-LruNet-1x 218k 45.93 88.45

Table 2: Results for different Layer Reuse (LRU) on the vali-
dation set of CIFAR-10. All networks contain the same num-
ber of convolution parameters, which is 125k.

Model Acc.(%)
8-LruNet-1x (without shuffling) 86.53
8-LruNet-1x (with shuffling) 88.45

14-LruNet-1x (without shuffling) 86.74
14-LruNet-1x (with shuffling) 89.34

Table 3: Results for Layer Reuse (LRU) with/without shuffle
on the validation set of CIFAR-10.

3.1. Results Using CIFAR-10 Dataset

The CIFAR-10 [9] is a fundamental dataset in computer vi-
sion containing 50k training and 10k testing images in 10
classes with image resolution of 32x32. Initially we inves-
tigate the effect of LRU on the performance. Results in Table
2 show that acquired accuracy increases as we increase the ap-
plied LRU until 14-LRU. Afterwards, the performance does
not improve with further reusing. As it has been mentioned
earlier, the computational complexity (floating point opera-
tions - FLOPs) depends on the number-of-reuse N linearly.
14-LruNet-1x achieves 5.14% better classification accuracy
than 1-LruNet-1x.

Secondly, we investigate the effect of channel shuffle. Re-
sults in Table 3 show that channel shuffle plays an important
role in layer reuse. For both 8-LruNet-1x and 14-LruNet-1x
cases, networks with channel shuffle perform better compared
to the networks without channel shuffle. It is also interesting
to note that even without channel shuffle, networks perform
better than 1-LruNet-1x.

Model Params Acc.(%)
67-depth Network (∼ 8-LruNet-1x) 172k 88.45
67-depth Network (with new layers) 902k 90.27

115-depth Network (∼ 14-LruNet-1x) 206k 89.34
115-depth Network (with new layers) 1562k 90.93

Table 4: Comparison of LruNet with the networks having
same depth containing all newly introduced layers.



Model Params MFLOPs Acc.(%)
1-LruNet-2x 514k 10.44 63.02
2-LruNet-2x 525k 19.77 64.77
4-LruNet-2x 549k 38.44 65.50
6-LruNet-2x 572k 57.10 66.02
8-LruNet-2x 595k 75.76 67.57
10-LruNet-2x 618k 94.42 67.98
12-LruNet-2x 641k 113.08 68.30
14-LruNet-2x 664k 131.74 68.87
16-LruNet-2x 687k 150.40 68.02

Table 5: Results for different Layer Reuse (LRU) on the val-
idation set of CIFAR-100. All networks contain the same
number of convolution parameters, which is 501k.

Model Params MFLOPs Acc.(%)
1-LruNet-1x 130k 2.85 91.17
2-LruNet-1x 136k 5.40 92.28
4-LruNet-1x 148k 10.50 92.69
6-LruNet-1x 159k 15.61 93.13
8-LruNet-1x 171k 20.71 93.27
10-LruNet-1x 182k 25.81 93.46
12-LruNet-1x 194k 30.92 93.34

Table 6: Results for different Layer Reuse (LRU) on the vali-
dation set of Fashion-MNIST. All networks contain the same
number of convolution parameters, which is 124k.

Lastly, Table 4 compares the LruNet with the networks
having same depth containing all newly introduced layers.
Although networks with newly introduced layers achieves
comparatively better results, networks with LRU have 5.24
and 7.58 times less parameters for 67-depth and 115-depth
networks, respectively.

3.2. Results Using CIFAR-100 Dataset

CIFAR-100 [9] is very similar to the CIFAR-10, except it has
100 classes containing 600 images each. Since it is a more
challenging task, we have increased the dropout rate to 0.7
and used width multiplier α of 2. We again analyzed the ef-
fect of LRU on the performance, and 14-LruNet-2x achieves
5.14% better classification accuracy than 1-LruNet-2x, as de-
picted by Table 5.

3.3. Results Using Fashion-MNIST Dataset

Fashion-MNIST [17] is very similar to MNIST [11], but con-
tains images of various articles of clothing and accessories.
There are 50k training and 10k testing images in grayscale
for 10 classes with image resolution of 28x28. 10-LruNet-1x
achieves 2.29% better classification accuracy than 1-LruNet-
1x, as depicted by Table 6. This performance improvement
is relatively small compared to the performance improve-
ments using CIFAR-10 and CIFAR-100. This might be due

Model Total
Params

Conv.
Params Acc.(%)

C
IF

A
R

10

ShuffleNet-0.5x(g=3) 229k 217k 90.32
ShuffleNetV2-0.25x 211k 205k 89.31
MobileNet-0.25x 216k 210k 84.72
MobileNetV2-0.25x 249k 239k 89.57
14-LruNet-1x 206k 125k 89.34

C
IF

A
R

10
0 ShuffleNet-0.75x(g=3) 560k 542k 69.97

ShuffleNetV2-0.75x 568k 559k 69.15
MobileNet-0.4x 567k 558k 60.54
MobileNetV2-0.4x 603k 588k 69.95
14-LruNet-2x 664k 501k 68.87

Fa
sh

.-M
N

IS
T ShuffleNet-0.5x(g=3) 228k 216k 94.11

ShuffleNetV2-0.25x 211k 205k 93.42
MobileNet-0.25x 216k 210k 90.63
MobileNetV2-0.25x 249k 239k 93.43
10-LruNet-1x 182k 124k 93.46

Table 7: Comparison of LruNet with state-of-the-art results.

to the relative simpleness of the Fashion-MNIST dataset com-
pared to the CIFAR-10 and CIFAR-100. 1-LruNet-1x already
achieves 91.17% classification accuracy on Fashion-MNIST.

Table 7 shows the comparison of LruNet with the state-
of-the-art results. For ShuffleNetv2, channel numbers are
adjusted accordingly for width multipliers of 0.25 and 0.75.
Results in Table 7 show that LruNet achieves comparatively
similar results, although it has much smaller number of con-
volutional parameters.

4. CONCLUSION

This paper proposes a parameter reuse strategy, Layer Reuse
(LRU), where convolutional layers of a CNN architecture
(LruNet) are used repeatedly. We evaluated the LRU on sev-
eral publicly available datasets and achieved improved classi-
fication performance. LRU especially boosts the CNNs with
small number of parameters which is of utmost importance
for embedded applications. We believe this work will open
up a new research direction for deep learning practitioners for
designing novel CNN architectures.

As a future work, we would like to analyze different pa-
rameter reuse strategies. It must be noted that parameter reuse
is not only restricted to layer level, but we can also apply Fil-
ter Reuse (FRU) (or Kernel Reuse (KRU)) for efficient CNN
architecture designs.
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