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Abstract: This paper introduces an optimization based holistic energy management system for a battery

electric vehicle. The energy management can adapt the velocity and the power consumed by the cabin heating,

in order to minimize the energy consumption, while keeping total driving time and the cabin temperature within

predefined limits. For the optimization a hybrid genetic algorithm is used. The approach is applied to a driving

cycle, which is optimized by dividing it into separate time frames. This approach is referred to as sliding window

approach. The results of the sliding window approach are compared to an optimization of the whole driving cycle.

The results presented in this paper demonstrate the feasibility of the sliding window approach. Moreover, they

show that the sliding window approach does not lead to a significant deterioration compared with the optimization

of the whole driving cycle. At the same time the driver comfort remains well within the acceptable limits and the

driving time constant.
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1. Introduction

The main disadvantage of battery electric vehicles (BEV)

compared to conventional vehicles is their limited range.

Moreover, electric vehicles tend to be more expensive and

their lifetime is shorter. All these issues have a negative

impact on the user acceptance. One possibility to address

these drawbacks, is a holistic energy management system

(EMS). The importance for such systems is rising for differ-

ent reasons: Firstly, an EMS that allows a higher range for

the vehicle, while also minimizing the component aging will

decrease the total cost of ownership and increase the user

acceptance. Secondly, the hardware in electric vehicles is be-

coming increasingly complex and diverse. As a consequence,

more variables can and must be adapted within the vehi-

cle. This in turn also leads to a more complex EMS. Lastly,

the increase of computing power within vehicles means that

increasingly complex strategies become feasible and can rea-

sonably be used within cars.

This paper describes an optimization based EMS utilizing

a genetic algorithm (GA). Currently, the system is imple-

mented using a simulation model of the drive train as well

as a simplified thermal model of the cabin. The simulation

computes the parameters used to measure the performance

of the vehicle. In this publication, the following parameters

are computed: the energy consumption for a given route, the

time required and the thermal comfort of the driver. These

parameters must be quantified using objective functions fi

and can then be fed into a global fitness function F (fi). This

means that an a priori multi-objective optimization is used

and the individual weights for the fitness function are se-

lected before the algorithm is run. The computed fitness

value of F (fi) is used by the optimization algorithm to cal-
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culate optimized variable values for the next iteration. This

procedure is repeated until a stop criterion is met.

This approach cannot be directly integrated into the vehicle

for two reasons. The first reason is that in a real world sce-

nario the future cannot be predicted exactly and, therefore,

no global optimum can be determined. The second reason

is that the computation power within the vehicle is limited,

and the optimized variables must be available in real-time.

In order to facilitate an easier integration into an existing ve-

hicle, the so called sliding window approach is investigated.

This means that the parameters are not optimized for the en-

tire journey, but for the next section of the trip immediately

ahead. For this purpose, perfect foresight is only needed for

the next section.

The paper mainly contributes the following points:

• Practical example for the use of genetic algorithms for

automotive applications

• Practical example for the potential of an optimization

based holistic energy management

• Comparison between optimization of the whole journey

and the sliding window approach

2. Related Work

In this section the literature on EMS for BEVs is briefly

reviewed. It starts out with strategies that focus on individ-

ual components and continues with holistic strategies.

EMS for the auxiliary consumers are developed. The focus

often lies on the Heating, Ventilation and Air Conditioning

(HVAC) as it is the major auxiliary consumer. Strategies

exist to split the power between traction and the auxiliary

consumers optimally. The aim of these strategies is to shift

the operating points toward the optimal operating range of

the traction battery (1) (2).

Another aspect of EMS research is the thermal management

within the vehicle. Approaches to this issue either focus on

the thermal management of the drivetrain components or

couple the components with the thermal management of the

cabin (3) (4) (5).

Research also focuses on the use of two electric machines. An

example for an EMS employing two machines can be found

in (7).

Another emphasis lies on operation strategies that influence

the velocity. If the route is predicted, an optimal velocity

profile can be determined and the energy consumption can

be reduced (8) (9) (10). Lu et al. (11) concentrate on a ve-

locity profile optimized for a synchronous machine.

In (12) an architecture for a holistic EMS is introduced. This

approach focuses on the overall architecture and not on the

specific control strategy. Basler (13) also presents an ap-

proach for a holistic EMS for a BEV. Strategies usually em-

ployed by the EMS in combustion engine vehicles are exam-

ined and adapted for BEVs. The focus lies on agent-based

strategies. The strategy itself is optimized using a multi-

objective optimization. A similar agent-based approach is

described by Meis (14), concentrating, however, on commer-

cial vehicles containing more than one power source.

In (15) an on-line EMS based on Evolutionary Algorithms is

proposed for a plug-in hybrid vehicle. They employ a sliding

window approach in order to implement the system on-line,

assuming perfect foresight for the next section of the trip.

3. Basics of Multi-Objective

Optimization

In the following, the basics for multi-objective optimiza-

tion relevant for this publication are introduced. The de-

scribed equations are needed in Section 4.

Two different approaches to multi-objective optimization ex-

ist: a priori and a posteriori methods (16). The difference

between the two approaches is at what point in time the

decision maker must choose the desired point in the Pareto

front. In an a priori method, the decision is made before the

algorithm is run. For example, this can be done by devising a

fitness function which weights the objective functions. When

using an a posteriori method, the algorithm first comes up

with the Pareto front, then the decision maker decides on one

solution. In the following, only a priori methods are consid-

ered because they need a shorter computation time and come

closer to a realistic application scenario.

In order to compare several objective functions fi that con-

tribute to a global optimization function F (fi), an approach

based on the compromise optimization method is used (17).

During optimization, the different objectives fi are normal-

ized within the range [0...1] by applying Equation (1). When

an upper constraint is violated, i.e. the objective’s result

f̃i > 1, a penalty, putting linear pressure on the fitness val-
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ues, is applied in order for the individual to become feasible

again (18)(19), see Equations (2) and (3):

f̃i =
fi − fi,U
fi,N − fi,U

(1)

f̄i =f̃i + 〈f̃i〉pen (2)

with the operator 〈·〉pen being defined as

〈·〉pen =

0, if constraints fulfilled

penalty(f̃i), if constraints violated
(3)

fi,U describe the Utopia-curves, i.e. the best possible curve

or value the objective i can assume during a driving cycle.

These can be calculated independently from each other (16).

The worst physically possible values are called Nadir-points

fi,N . In this approach, the Nadir-values are set to objective

function values obtained by applying a conventional control-

ling policy π of the BEV’s variables, to force the used multi-

objective optimization algorithm to find the global optimum.

Finally, the f̄i define the sum of the normalized objective val-

ues of a single objective function including, its penalties for

violating a constraint.

The weighted sum method lets the decision maker assign

their priorities θ = (θ1 ... θm) to the single objective func-

tions fi resulting in F (fi) described in Equation (4):

F (fi) =

m∑
i=1

θif̄i (4)

with
∑m

i θi = 1, where the index m denotes the number of

objective functions f .

4. Approach

In this publication the optimization of driving cycles is

considered. These represent well known test procedures and

ensure the comparability of the results. In the following the

results for the NEDC are presented.

For the chosen driving cycle the target velocity vx,tar(t) is

transformed into vx,tar(x(t)), so that velocity is expressed de-

pending on the current position x(t). Idle times ∆tn,idl are

extracted from the speed profiles vx,tar(t) and added dur-

ing calculation of the fitness function’s value F (fi) gained

from simulation when an idle position x(t)n,idl according to

the driving cycle is reached. Figure 1 depicts how the driv-

ing cycle is transformed from a representation of v(t) to a

v(x(t)). This combination of time and spatial dependency
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Figure 1: Top: vx,tar(t)-curve, bottom: vx,tar(x(t))-curve of
the NEDC

makes the optimization of real-world trips feasible.

Using a hybrid GA, the goal is to minimize the devia-

tion ∆T (t) from a desired cabin temperature Tdes(t) and

the velocity deviation ∆vx(x(t)) compared with a target

velocity vx,tar(x(t)) derived from a standard driving cycle-

trajectory vx,tar(t). Moreover, the accumulated energy de-

mand E(x(t), t) resulting from the vehicle’s total power re-

quirement Pcyc(x(t), t) is minimized while keeping the opti-

mized driving time ∆topt similar to the original time ∆tcyc.

In order to do that the power of the HVAC unit PairCon(t)

can be varied from 0 to 5 kW and the vehicle’s velocity

vx(x(t)) can be varied within the range of 10 % on a city

road and 30 % on a highway compared with the baseline of

the driving cycle. For each of the mentioned target values

(∆T (t), ∆vx(x(t)), E(x(t), t) and ∆topt), a single objective

function fi is defined according to Equations (5) - (9):

fT =

∫
|T (t)− Tdes(t)|dt

∆tcyc
(5)

fv =

∫
|vx(x(t))− vx,tar(x(t))|dx

∆xcyc
(6)

fE =

∫
Pcyc(x(t), t)dt (7)

ft =

0, ∆topt ≤ ∆tcyc

∆topt, ∆topt > ∆tcyc

(8)

f ′t = ∆topt (9)

with ∆tcyc defining the simulated timespan of the driving cy-

cle and ∆topt being the time taken for the optimized speed

profile to reach the destination. ∆xcyc is the accumulated

driven distance. ft describes a Mayer objective function

that measures the value of ∆topt at the end of the optimiza-
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tion, i.e. the last time step (20), and is normalized by ∆tcyc.

The results of the objective functions fi are obtained by as-

signing time series- and spatially discretized data to the BEV

simulation, which is implemented to be run in parallel.

To ensure comparability among the single objective func-

tions fi these are normalized using Equations (1) to (3) dis-

cussed in Section 3 Finally, a single fitness function value

F (fi) results by taking the decision maker’s preferences θ

into account (Equation (4)). The result is a single optimized

parameter set π(x(t), t) instead of a Pareto front. At the

Parameter Value

Population size 1.5·number of param-
eters to be optimized
per section l

Number of max. generations 50
Crossover-fraction 0.80
Mutation rate feasible adaption
Elitism 0.05·population size
Selection rank based
Discretization step of time-
dependent optimization param-
eters

5 s (? )

Discretization step of space-
dependent optimization param-
eters

400 m

Table 1: Parameters of the GA

end of the GA’s optimization process, a local gradient-based

solver is applied to the best variable-combination. As a re-

sult, overall calculation time is considerably reduced.

The strategy described above can be used to develop a global

optimization policy π(x(t), t) for the whole driving cycle. But

it can also be adapted to the sliding window approach. For

this the sliding window approach, the driving cycle is subdi-

vided into sections l = 1, ..., L. Every section l is optimized

separately with the same approach. A new section starts at

each position where the vehicle stops. Consequently, an opti-

mization policy πl+1(x(t), t) is only computed for the section

l + 1 immediately ahead. This shortened optimization hori-

zon means that no global optimum for the whole test drive

can be found. With the smaller prediction horizons the com-

putation times are reduced. This approach is the first step

towards the integration of the optimization based EMS into

a vehicle, because it becomes feasible to optimize the driving

cycle section l + 1 ahead while traveling the distance of the

current section l.

Configuration Reduction of
energy
consumption

Time relative
to original
traveling time

Optimization of whole cycle
θ = (10 60 30) 8.1 % 100 %

Original penalty function with sliding window
approach
θ1 = (20 50 30) 0.825 % 100.0 %
θ2 = (10 60 30) 1.34 % 99.9 %

Adapted penalty function with sliding window
approach
θ1 = (20 50 30′) 12.1 % 108.3 %
θ2 = (20 30 50′) 6.13 % 102.2 %
θ3 = (10 15 75′) 6.76 % 100.2 %

Table 2: Comparison of traveling time and energy consump-
tion for different decision maker priority vectors θ

The GA is parametrized as shown in Table 1. The popu-

lation size is adapted to the number of parameters that are

optimized per section l. The total distance in x and the driv-

ing time per window l determine the number of parameters

to be optimized.

5. Results

In this paper only the results of the sliding window ap-

proach are presented, as the results for global optimization

can be found in a previous publication (? ). The results

using the sliding window approach are compared with the

results when optimizing the whole cycle.

For all experiments, the temperature of the environment

was set to Tenv = 10 ◦C and the desired cabin temper-

ature to Tdes = 22 ◦C. The vehicle is preconditioned to

Tstart = 18 ◦C. Figure 2 shows the energy consumption and

the temperature deviation for the sliding window approach.

The left hand part of the figure displays the results with two

different decision maker priority vectors θ. The final seconds

of the driving cycle are enlarged in the figure. This allows the

reader to compare the arrival times. θ1 weighs the temper-

ature deviation ∆Tcab with 20 %, the energy consumption

E with 50 % and the journey time ∆topt with 30 %. As

described in the approach, the weighing of the journey time

∆topt is realized as a Mayer objective function ft. The sec-

ond priority vector θ2 weighs the temperature deviation val-

ues ∆Tcab with 10 %, the energy consumption E with 60 %

and the journey time ∆topt remains at 30 %. The figure

shows that for the different priority vectors θ1/2 the result

is a different point on the Pareto front. However, both con-

figurations allow for a comparatively small reduction in the
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energy consumption E of about 1 %. Table 2 summarizes the

results for the different priority vectors. The reduction in the

energy consumption E and the traveling time ∆topt relative

to the original time ∆tcyc are summarized. Previous results

for the optimization of the whole driving cycle show a signif-

icantly higher reduction in the energy consumption E using

the same priorities θ (? ). One reason for this is, that the

smaller optimization and prediction horizons in the sliding

window approach allow the vehicle’s velocity vx,tar,opt(x(t))

as well as the HVAC’s power PairCon(t) to be adapted only

within the smaller range in a window l. For every window l

the driving time ∆topt must not exceed the original one in

the base scenario without optimization. One way to address

this, is to change the way of weighing the driving time ∆topt.

Instead of the penalty function ft, the driving time ∆topt is

now weighted in the same way as the other parameters using

the objective function f ′t . Thereby, the algorithm aims to

keep the driving time ∆topt for every window l as short as

possible as a differentiation between driving times ∆topt that

are equal to or smaller than the original driving time ∆tcyc

are realizable.

The right hand part of Figure 2 shows the results obtained by

the adapted optimization using f ′t instead of ft. This time,

three different decision maker priority vectors (θ1, θ2, θ3)

are depicted. It is evident that the driving time is weighted

higher in this scenario. For θ3 the driving time in ft is

weighted with 30 % to compare the effect of the new objec-

tive function f ′t with the old one ft. In this case, the overall

traveling time is 108.3 % of the original one ∆tcyc. Conse-

quently, the effect will be noticable for the driver. This is

considered to be not acceptable. Therefore, a different area

of the Pareto front is investigated. When weighing f ′t with

75 %, the traveling time ∆topt is 100.2 % of the original driv-

ing time ∆tcyc. Simultaneously, the energy consumption E

can be reduced by 6.76 % while keeping the driver’s comfort

well within acceptable limits.

From the results it can be deduced that the sliding window

approach works well in combination with the hybrid genetic

algorithm for a driving cycle. The approach that has been

developed for the optimization of the whole driving cycle can

be applied to the optimization with the sliding window ap-

proach. However, in order to obtain satisfactory results the

approach had to be adapted. With this adaption the results

are very similar to the ones gained with the optimization of

the whole cycle (? ).

6. Conclusion

This paper describes a holistic optimization based EMS.

The implementation using a hybrid GA and a sliding win-

dow approach is described in detail. The proposed method

is applied to a standard driving cycle namely the NEDC.

Thus its feasibility could be demonstrated. Additionally, the

paper compares an optimization of the whole driving cycle

with the sliding window optimization. It can be shown that

the section wise optimization does not lead to significantly

inferior results, if the weights of the objective functions are

adapted and no Mayer penalty function is used. The results

demonstrate the overall feasibility and mark the direction for

future work.

Future work will concentrate on the expansion of the pre-

sented approach. The main focus will lie on developing an

EMS that can be used on-line in the vehicle. For this pur-

pose the sliding window approach will be expanded in order

to work with an inaccurate forecast. This means that in ad-

dition to the optimization of the next time frame a control

system is used, which adapts the strategy to the aberration

from the prediction.

Moreover, future experiments with recorded data from real-

world test drives will be conducted.
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