
Embedding Procedural Knowledge into Building
Information Models: The IFC Procedural Language and Its
Application for Flexible Transition Curve Representation

Julian Amann1 and André Borrmann2

Abstract: Building information modeling (BIM) refers to the continuous use of semantically rich three-dimensional (3D) building models
throughout the entire lifecycle of a facility. BIM data models capture the geometry as well as the semantics of buildings and its constituent
parts in an object-oriented manner. They have been developed to achieve high-quality data exchange between software applications, reduce
data loss, and increase interoperability. Across the architecture, engineering, and construction (AEC) industry, the open-data model industry
foundation classes (IFC) has become a well-accepted standard. The main contribution of this paper is the introduction of a procedural lan-
guage called the IFC procedural language (IFCPL) that can be easily embedded into an IFC-based building information model. This enables
software developers to exchange procedural programs between different software applications in a platform-independent way using a neutral
data format. IFCPL programs describe algorithms that operate on a set of input parameters and generate a set of output parameters (return
values). The EXPRESS language, which is part of standard for the exchange of product model data (STEP), provides the concept of functions
and rules for representing algorithmic knowledge. However, EXPRESS operates on the schema level, i.e., the rules and algorithms defined
apply to all instances of the respective entity type in the same manner. IFCPL shifts this concept from the schema (class level) to the instance
level and is not limited to realizing data integrity or attribute derivation. The paper describes in detail the features and the design of the IFCPL
language. To illustrate its applicability, the language is used to demonstrate how transition curves of road or railway alignments can be
described in a very flexible manner: IFCPL allows the definition and exchange of algorithms for computing the curve coordinates from
general curve parameters. In doing so, software developers can dynamically define and exchange new transition curve types without modi-
fying the IFC data model. At the same time, this approach helps avoid misinterpretations of informal curve descriptions. The procedural
language provides a powerful option for adding enhancements and reduces software development costs by allowing semiautomated inte-
gration. Besides the alignment use case, there are many other application areas in which IFCPL can be used and where software developers as
well as software users can benefit from it. They are discussed extensively throughout the paper. DOI: 10.1061/(ASCE)CP.1943-5487
.0000592. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, http://
creativecommons.org/licenses/by/4.0/.

Introduction

Building information modeling (BIM) refers to the continuous
use of semantically rich thre-dimensional (3D) building models
throughout the entire lifecycle of a facility (Eastman et al. 2011).
BIM data models capture the geometry as well as the semantics
of buildings and its constituent parts in an object-oriented manner.
They have been developed to achieve high-quality data exchange
between software applications, reduce data loss, and increase
interoperability (Eastman et al. 2005). Among the most widespread
standards for the exchange of product manufacturing information
in use today is standard for the exchange of product model
data (STEP) (Xu and Nee 2009; International Organization for
Standardization 1995). For the architecture, engineering, and

construction (AEC) domain, STEP has been adapted to create the
BIMdatamodel industry foundation classes (IFC). IFC is developed
and maintained by the buildingSMART organization (Eastman
1999). It has been adopted as an ISO standard (ISO 16739), forms
part of AEC data-exchange regulations in many countries
(Waterhouse et al. 2014; Weise et al. 2009) and has been imple-
mented by a large number of software vendors. The IFC standard
is also recommended by the U.S. National Institute of Building
Science in theUSBIMstandardNBIMS-USVERSION3 (buildingS-
MARTAlliance 2015). In its current version, the IFC model focuses
on the representation of buildings, however several extension projects
are underway to include infrastructure facilities in future versions of
the data model. The Infrastructure Alignment and Spatial Reference
System project (also denoted as P6) focuses on the development of an
alignment and reference system to provide data structures for repre-
senting alignments of roads and other linear infrastructure facilities.
The data model developed is called IFC Alignment. In this paper, the
first version of the IFCAlignment standard is considered as a point of
departure and extended by a flexible alignment representation.

The IFC data model is a very large and complex data model.
Some researchers have called the data model overly complex
(Amor et al. 2007). But the data model is by design very fine-
grained, i.e., it has an extensive class inheritance hierarchy and
the defined classes have comprehensive attribute lists. As a conse-
quence, both the standardization process as well as the subsequent
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implementation (adoption) by software developers has been slow
and laborious. To make it easy to extend the data model, the IFC
includes a flexible extension mechanism that allows the ad hoc
definition of additional attributes (IfcProperties) without modifying
the underlying schema. While these extensions do not form part
of the data model itself, they are subject to the standardization pro-
cess, since some Property Sets are predefined by the IFC4 Standard
(Pset_ActorCommon, Pset_WallCommon, etc.), and some Model
View Definitions [e.g., COBie (East 2007)] define certain property
sets as mandatory. In addition, it is possible for software imple-
menters to agree on a custom defined property set in order to target
a particular exchange scenario.

However, the most significant challenge for IFC implementers
(and at the same time the greatest source of implementation errors)
lies in the correct interpretation of the information encoded in the
data model. Throughout this paper, the authors discuss this issue by
referring to the representation and interpretation of transition curves
as part of the upcoming IFC Alignment standard. There are numer-
ous transition curves in practical use in the entire world, and inte-
grating all of them explicitly in the data model is not a feasible
option. The long history of IFC development has shown that
international standardization should restrict itself to items that are
relevant on an international level. Accordingly, an international
standardization effort (which is typically limited with respect to time
and resources) will only define the most common transition curves
which are in international use. In IFC-Alignment 1.0, for example,
only clothoids have been included. However, for IFC-Alignment to
be of any practical use, there must be ways to represent other tran-
sition curves that are in use on a regional or national level. The IFC
procedural language (IFCPL) approach presented here proposes a
mechanism that allows regional standardization groups to define ad-
ditional transition curves, and—most importantly—includes the in-
terpretation semantics with the files being exchanged. Consequently,
the proposed approach enables an international software vendor to
interpret the transmitted regional transition curve correctly without
the need to develop any particular code.

To this end, the authors propose extending the IFC data model
with capabilities that allow the inclusion of interpretation algo-
rithms in the data exchange. For this purpose, the IFC Procedural
Language (IFCPL) has been developed: a simple imperative pro-
gramming language that is introduced in this paper. Programs writ-
ten in this language are included in IFC instance files and are thus
exchanged between different software applications. On the one
hand, this approach provides a high degree of flexibility, as param-
eters and interpretations can be defined and exchanged in an ad hoc
manner, and on the other, it significantly decreases the effort re-
quired to implement this particular part of the data model, as
the processing algorithm is delivered with the data. Additionally,
it helps to reduce potential errors that arise through the misinter-
pretations of data models and provides an improved flexible exten-
sion mechanism that works for all participants of the data exchange
process. The only prerequisite is the availability of an IFCPL
interpreter on the receiving side.

Taking the higher level perspective of knowledge representation
(Rasdorf 1985), it can be stated that the IFC building information
model is so far restricted to capturing and exchanging static knowl-
edge, with the exception of IfcContraints. IfcConstraints make it
possible to formulate logical assumptions about the underlying data
but lack typical procedural language features such as control flow
statements (e.g., if and for) or subroutines/functions. However, it is
not possible to capture procedural knowledge using the IFC data
model, i.e., knowledge that describes the stepwise (algorithmic)
performance of a task. This significant gap is filled by the proposed
IFC Procedural Language.

Although this paper focuses on the application of IFCPL to de-
scribe arbitrary alignment curves, a wide spectrum of applications
is imaginable. Whenever an algorithm is required for the correct
interpretation of exchanged data, IFCPL can be employed to
capture and transmit this algorithm in a vendor-independent
manner.

The paper begins with a discussion of the state of the art of
building information modeling followed by an introduction to
the proposed programming language IFCPL and its main features.
An example of IFCPL in application then follows with a detailed
breakdown of the flexible definition of transition curves as part of
the upcoming infrastructure extension of the IFC model, as a dem-
onstration of the benefits that IFCPL brings. The paper’s main find-
ings are summarized and discussed in the conclusion.

State of the Art

Representing Algorithms in EXPRESS-Based Building
Information Models

The basis of the product modeling standards STEP and IFC is
formed by the data modeling language EXPRESS. Among its many
features, EXPRESS makes it possible to associate the definition of
a data model entity with integrity rules. To this end, the WHERE
clause is applied, which makes it possible to specify constraints for
the attributes of the entity. A simple example for this is given
in Fig. 1.

Fig. 1. Different concepts of the EXPRESS language to store high-
quality knowledge
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In the example shown, a type is defined (TYPE weight) with the
constraint that the value of an instance of this type always needs to
be positive. In the context of the transition curve application sce-
nario, aWHERE clause can be used, for instance, to specify that the
start radius of a clothoid always needs to be positive.

AlongsideWHERE clauses, it is also possible to make use of the
DERIVE mechanism. An example of a DERIVE attribute is also
shown in Fig. 1. DERIVE attributes are computed from the explic-
itly defined attributes. Because of this, these attributes are only
readable. EXPRESS also offers local and global RULES. Rules
consist of a number of statements and a WHERE clause. Rules
can operate on the data of different entities and return TRUE or
FALSE depending on the evaluation of the WHERE clause. Again,
an example (max_number_of_books) is shown in Fig. 1.

The most powerful capability of EXPRESS for representing
procedural knowledge are FUNCTIONs. A Function can have
an arbitrary number of arguments (parameters) and perform arbi-
trary computations. Functions are used to implement RULES and to
compute derived attributes. EXPRESS supports basic arithmetic
operations and expressions, logical operators and expressions,
numerical functions, operators on aggregates (e.g., sizeof), simple
queries (e.g., all walls with a width smaller than 10 units), and
entity equality test operators.

Further details on the EXPRESS standard can be found in
Schenck and Wilson (1994) and in Xu and Nee (2009). The access
and interpretation of DERIVEable attributes and the evaluation of
RULEs and FUNCTIONs requires an EXPRESS interpreter that
can interpret and execute (evaluate) the corresponding constructs.
RULEs and FUNCTIONs were, however, not conceived to support
the exchange of algorithmic knowledge but rather to improve data
integrity across the model. Many implementations of STEP parsers
do not support derived attributes and WHERE clauses that contain
rules and/or functions. It seems that the great benefit of data integ-
rity tests offered by WHERE clauses is ignored by most software
developers. Nevertheless, to preserve data integrity, the ability to
check the assertions made in the WHERE clauses can be of great
help. The EXPRESS schema of IFC 4, for example, contains more
than 430 WHERE clauses to check for data inconsistencies.

These functionalities of EXPRESS operate on the schema
level, i.e., the rules and algorithms defined apply to all instances
of the respective entity type in the same manner. Schema-level ap-
proaches for representing algorithmic knowledge are rather static
and meant to persist for a long time. Modifications to these algo-
rithms result in a new schema which (1) is subject to the standardi-
zation procedure, and (2) must be adopted by software vendors to
provide read/write functionalities for the target applications. Both
aspects involve significant effort.

In the IFCPL concept proposed in this paper, the algorithms
(programs) are not part of the schema, but are defined on the in-
stance level. This provides a much higher degree of flexibility,
as programs can be defined and modified without having to alter
the IFC schema. In combination with the available generic data
structure IFC property set, this approach results in a powerful sub-
schema extension mechanism for a very flexible definition of data
structures and algorithms.

Extensible Markup Language

An alternative to STEP-P21 files for exchanging IFC instances
is the use of a corresponding extensible markup language (XML)
mapping of the schema, denoted as ifcXML (Nisbet and Liebich
2009; Liebich and Weise 2013). As XML technology is signifi-
cantly more widespread and much better supported by program-
ming infrastructure, it is expected that it will supersede

EXPRESS in the near future. In the currently available EXPRESS-
Schema-to-XML-Schema mappings, EXPRESS rules and func-
tions are not included. By contrast, IFCPL programs are repre-
sented on an instance level, and integrating them into the XML
mapping is therefore a straightforward procedure covered by the
available mapping mechanisms.

In addition, XML technology also offers a number of promising
features such as the XQuery language. XQuery is a strongly typed
and Turing complete language. The main propose of the language
is to query data from XML documents. But since the language is
targeted at XML document queries, it is not suitable for embedding
procedural knowledge into IFC-based data models.

Structured Query Language Stored Procedures

The structured query language (SQL) (ISO/IEC 2011) is a declar-
ative language for defining and manipulating data structures within
relational databases. Furthermore, it supports complex query mech-
anisms for filtering, searching, and restructuring data contained
in relational databases. Several BIM software applications such as
ArchiCAD or Revit provide an export feature that can map
their internal database, which contains building elements (walls,
slabs, roofs, shells, etc.), to an SQL database. Persistent stored
modules (SQL/PSM) are a part of the SQL standard. SQL/PSM
defines a procedural language for SQL that can be used in so-called
stored procedures. This idea dates back to 1996 and was first in-
troduced by Eisenberg (1996). The feature set of stored procedures
includes control flow statements, variables, assignments, expres-
sions, and subroutines. Stored procedures are used to describe com-
plex tasks such as parts of the business logic of a company. Many
dialects have been derived and implemented on top of SQL/PSM
(e.g., Oracle PL/SQL or Microsoft Transact-SQL). SQL/PSM
offers the possibility to define, for instance, business rules in a plat-
form-independent way that can be accessed and used by different
applications. This makes it possible to reuse code and provides cli-
ent programs with a higher abstraction level. Besides this, stored
procedures are often used for performance (e.g., reducing network
traffic) or security reasons. Like the IFCPL approach, PL/SQL
manages its stored procedures at the instance level. One of the main
problems of SQL is the lack of awareness of the object-oriented
principle of inheritance. Because of this, it is difficult to map
IFC to SQL (Mazairac and Beetz 2013).

Object Constraint Language

The object constraint language (OCL) is part of unified modeling
language (UML) (Fowler 2004). It was introduced into UML to
define specific constraints. For example, a software architect wants
to ensure that the class attribute age in a class person should never
have a negative value. The OCL makes it possible to formulate this
rule as an OCL constraint (context Person inv∶ self:age >¼ 0).
Furthermore, OCL provides the ability to define preconditions
and postconditions and offers other ways of checking and assuring
the accuracy and consistency of data. While it is not possible to
write a program with control flow statements in OCL, it is never-
theless an approach that makes use of an embedded language to
formulate limited logical checks.

Parametric Design

Parametric design allows the creation of flexible geometric models
using parameters for dimensions and makes it possible to define
numeric relationships between these parameters by means of math-
ematical formulas as well as geometric-topological constraints be-
tween geometric entities. The result is a flexible geometric model
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that can be adjusted by manipulating its primary parameters
(Woodbury 2010). In contrast to explicit geometric models with
fixed dimensions, a parametric model can capture the design intent
and represent domain knowledge. This makes it easier to rework
the model when changes are made, and simultaneously provides
a high degree of reusability in other similar projects. As a result,
efficiency is significantly increased (Ji et al. 2013). In the early ar-
chitectural-design and form-finding phases, parametric behavior is
often realized by defining programs using a visual programming
language (Ritter et al. 2013). In contrast to the predefined paramet-
rics of BIM authoring tools, this is a typical example of procedural
knowledge defined on an instance level. Today, it is not possible to
transfer this kind of knowledge using the available features of the
IFC data model.

Vendor-Specific Programming Languages for
Capturing Procedural Knowledge

Several software applications in the BIM domain have come up
with proprietary programming languages for specific tasks. For ex-
ample, ArchiCAD 18 offers a proprietary scripting language called
geometric description language (GDL). It can be used to describe
3D parametric objects like doors, windows, stairs, or structural
elements (Fig. 2, left). More details on GDL can be found in the
program ArchiCAD 18 itself.

Dynamo, a visual programming add-in for Revit and Vasari
supports the so-called Dynamo textual programming language
(formerly known as DesignScript) (Fig. 2, right). This language
can also be used to describe geometry in a generative, parameter-
ized manner.

Other software packages reuse existing programming languages
to express procedural knowledge. For instance, Generative Com-
ponents, which is based onMicroStation, as well asDigital Project,
which is based on CATIA, use the programming language visual
basic for applications (VBA) to describe the construction of geo-
metric objects (Hubers 2010). The Grasshopper add-in for Rhinoc-
eros 3D uses C# for scripting. These systems can be categorized
as parametric design systems (Hubers 2010), generative design sys-
tems, or as design computing systems.

Besides such systems, formal languages have been developed
for the acquisition of product-related information (Lee et al.
2006a). Although these languages are well-suited for particular
use cases, each of them has specific limitations. They are either
too focused on one specific use case, not platform-independent,
or not powerful enough for representing complex procedural
knowledge.

IFC Procedural Language

General Approach

The IFC procedural language (IFCPL) has been developed for em-
bedding procedural knowledge in exchangeable IFC models, and is
the main contribution of this paper. It makes it possible to define
and exchange algorithms (programs) in a vendor-independent
manner. The defined algorithms typically encode procedures for
performing computation, processing, and analysis tasks. Possible
applications of IFCPL range from the definition of complex func-
tions for quantity take-off to the description of the behavior of para-
metric objects (Lee et al. 2006b). As the processing algorithms
form part of the exchange process, they can be used directly by
the receiving application, thus saving significant programming
effort and avoiding misinterpretations and errors.

As discussed in the “Related Work” section, an IFCPL program
is not included in the IFC schema, but defined on the instance level.
Compared with a schema-level approach, this provides much
higher flexibility with regard to defining new programs, as schema
modifications require a lengthy standardization process. Never-
theless, IFCPL programs must be agreed upon by domain experts
and the software vendors involved in the data exchange scenario to
ensure the correctness of the defined algorithms. In combination
with the generic data type IfcProperty, the proposed language pro-
vides a very powerful extension mechanism for the IFC schema.

IFCPL is a special-purpose programming language (Mitchell
2002) designed to meet the demands of typical AEC data exchange
scenarios. It is a simple, imperative language providing the control
structures loop and conditional branch. An IFCPL program consists
of a sequence of statements. In addition to control flow statements
(loops or conditional branches), subroutines can also be defined.
The execution of an IFCPL program starts with the main entry
function. The name of the entry function can be specified and is
optional. If no name is defined, it is assumed that the entry function
is called main.

Like many other programming languages, IFCPL provides the
possibility to define and use variables. However, it does not demand
the explicit declaration of the type of variable. Instead, the type of
variable is implicitly defined in the course of the initialization pro-
cess. IFCPL uses a dynamic, implicit and strong type system: Type
checks are performed during runtime (dynamic typing), types of
variables are derived by type inference (implicit typing) and there
are restrictions on how types can be intermingled (strong typing).
The language is deeply integrated with the IFC model by allowing
access to its type system.

Fig. 2. Example of GDL
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An IFCPL program makes use of three different groups of
parameters (Fig. 3):
• Input parameters define the input for the algorithm;
• Computation parameters define how the computation is per-

formed; and
• Output parameters define the result of the computation.

Parameter passing from and to the host program is realized by
means of IFC Property Sets.

To execute an IFCPL program, a dedicated interpreter is re-
quired. As this may represent a significant hurdle to the adoption
of the IFCPL language, the authors propose that a reference imple-
mentation is provided by the IFC standardization committee, which
can be used free-of-charge for any commercial or noncommercial
software development project. Since there are well-established
cross platform and cross language techniques, it would be sufficient
to provide the reference implementation in C/C++. A prototypical
interpreter has been developed over the course of the presented re-
search and can be downloaded from Sengupta and Amann (2015).

Extension of the IFC Schema

Although IFCPL programs are defined on an instance level, a min-
imal extension of the IFC schema is necessary to provide the data
structures capable to hold the IFCPL code. To this end, the entity
IfcProgram is introduced, which contains the relevant information
of an IFCPL program. Fig. 4 shows how the IfcProgram entity can
be integrated into the IFC EXPRESS schema.

An IfcProgram instance holds the corresponding source code of
the IFCPL program in plain-text form (SourceCode), the name of
the main entry point (MainEntryPointName) and the corresponding
feature level (FeatureLevel). The feature level determines a well-
defined set of functionality that is supported by this IfcProgram
instance. At the time of writing, there is only one defined feature
level denoted IFCPL_1_0 (IFCPLVersion 1), which means that this
program supports all features of IFCPLVersion 1. By use of these

feature levels, the IFCPL language can be extended in the future
without breaking downward compatibility.

It is also conceivable to define a simplified subset of the IFCPL
Version 1 and a corresponding feature level (e.g., SIMPLE_
IFCPL_1_0), which does not support advanced language features
such as subroutines or IFC types and is restricted to simple
expressions.

An alternative to representing IFCPL in plain text would be to
store the program’s abstract syntax tree. To realize this, explicit en-
tities for tokens and each grammar rule (e.g., IfcIFCPLIfStatement
or IfcIFCPLWhileStatement) would have to be defined. This would
allow only syntactically correct programs to be represented by IFC
instance files. However, this approach would introduce many new
items in the express schema and increase the size of instance files.
Since syntax errors are also detected by the IFCPL compiler, plain
text is used.

The IfcProgram entity inherits from the IfcRoot object (Fig. 4).
Doing this, the IfcProgram inherits IfcOwnerHistory in which,
among other things, the application which created the IfcProgram
instance, can be defined. The IfcProgramInstance object can be
used to connect a computation parameter property set with compu-
tation parameters. Different program instances can share the pro-
gram or/and the same computation parameters.

IFCPL Grammar

The grammar of the proposed IFC Procedural Language is defined
in Fig. 5 in Extended Backus Naur Form (ISO/IEC 1996). It defines
valid token combinations (programs). The start symbol is
< Program >.

The rationale behind the design of the grammar is straightfor-
ward. It supports basic arithmetic operations, control flow
mechanisms, and function definitions. A program consists of state-
ments that are concluded by a semicolon. Statements can be expres-
sions that can be numeric values, strings or Boolean values.
As depicted in Fig. 5, IFCPL supports conditional expressions
(ifð : : : Þfgelsefg), a condition-controlled loop (while), and a
count-controlled loop (for). Statements are executed one after an-
other. Additionally, the language supports a C-style line comment
(// my comment). Comments are not part of the grammar because
they are ignored by the lexer. Computed values can be returned via
the return function [returnð : : : Þ]. The return function supports
multiple arguments, for instance the statement returnð1,3; 2Þ will
push the values 1, 3, 2 onto the return stack.

IFCPL provides several basic built-in functions like abs, sin,
cos, tan, print, input, return, factorial, or sqrt. The sqrt function,
for instance, computes the square root of a number. The print func-
tion can be used to write output for debugging purposes. Variables
in IFCPL need not be defined. A variable always takes the type of
the expression it is assigned to.

The IFCPL is similar to a C programming language. Since
many software developers are accustomed to C-like or C++-like

Fig. 3. Overview of the different groups of parameters

Fig. 4. EXPRESS definition of IfcProgram, IfcProgramInstance, and
IfcProgramFeatureLevel
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programming languages such as C# or Java, it should not be hard
for them to adapt to the concepts of IFCPL.

For interpreting IFCPL programs, a parser is required to convert
the tokens into an abstract syntax tree according to the described
grammar. In addition, an interpreter is needed to process the ab-
stract syntax tree to execute an IFCPL program.

Use of IFC Types

In order to facilitate seamless data exchange between an IFCPL
program and the IFC instance model, all IFC entity types are em-
bedded in the language. This allows the use of all types defined by
the IFC data model. In this manner, instances/variables of specific
IFC entities like IfcWall can be used in IFCPL program code. To
create an instance of a certain IFC type, there is a corresponding
create < Type > function where < Type > can be replaced with
the corresponding IFC type such as IfcWall.

For creating lists, bags, or sets, a createListjBagjSet <
Type > function is provided. The different attributes of an IFC
entity can be accessed by the dot-operator (.). Elements of collec-
tions can be counted via a count function. Moreover, elements can
be added to collections using an add function, and a specific
element in a collection can be accessed using a specialized get
function.

Simple Example

An example of an IFCPL program is provided in Fig. 6. The code
shows how a simple wall generator can be implemented using the
capabilities of the IFCPL. In Line 2, a variable of type IfcWall is
created. Afterwards, the wall instance is filled with the necessary
properties, including its placement and geometry. For the geometric
shape representation, a triangulated face set is created in Line 12
and filled with vertex and index data in Lines 18 to 39. The gen-
erated wall is then returned as an IfcWall instance and hence added
to the output parameter property set.

Handling Input, Computation, and Output Parameters

In most of the application scenarios, an IFCPL program requires the
definition of computation parameters as well as input parameters
(function arguments).

Computation parameters are provided through a mechanism
called injection, which extends a program instance with the varia-
bles and initialization values defined in the computation parameter
property set. Fig. 7 shows an overview of this process.

The example shows an IFC instance model that contains an Ifc-
ThermalProgram element. This element references a computation
parameter property set as well as an IFCPL program for computing
the thermal transmittance of a three-layered material. Furthermore,

Fig. 5. Grammar of the IFCPL in Extended Backus Naur Form
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the program expects three input parameters (ThicknessLayer1,
etc.). The input parameters are provided to the program instance
in a similar manner. Input parameters are defined by the host ap-
plication and are provided to the interpreter as an IfcPropertySet.
The interpreter updates the values of the corresponding program
variables (ThicknessLayer1, etc.) and is then ready to execute
the program.

Although the language itself is untyped, each variable is
dynamically assigned the same type as defined by the IFC property
set. For instance, the variable ConductivityLayer1 is of type IfcReal
since it is defined in the parameter property set (#33) as IfcReal.

Before a program instance is executed, the first step is to initial-
ize each of the corresponding variables with the values defined in
the property set. In the example, the variable ConductivityLayer1 is
set to 0.13.

After the initialization process, the IFCPL program is executed
by the IFCPL interpreter. As soon as the return statement of the
main function is reached, the program finishes and its result is
passed back to the host application through an IfcPropertySet. This
IfcPropertySet is called the output parameter property set and can

contain multiple properties since the return statement supports
multiple arguments. Return values have the name returnValue
and the type of the return expression—in the example of the pro-
gram given earlier, it is an IfcReal. If a variable of the input property
set is returned, the name of the variable is not returnValue; instead,
it is added to the output property set with the originally de-
fined name.

IFCPL Interpreter

To execute an IFCPL program, a corresponding interpreter is re-
quired. The interpreter must form part of the receiving application.
The implementation of an IFCPL interpreter can be supported by
standard tools such as lexer and parser generators.

The authors have prototypically implemented an IFCPL envi-
ronment that consists of a lexer, a parser, and a corresponding
interpreter in the C++ programming language. The lexer splits
the IFCPL program into a set of tokens (identifiers, keywords,
numbers, brackets, braces, etc.). These tokens are then processed
by the parser, which generates an abstract syntax tree (AST).

Fig. 6. An IFCPL example program that generates walls
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Finally, the interpreter walks through the AST executing the nodes,
each of which corresponds to the linewise execution of the pro-
gram code.

The IFCPL environment is provided as a shared library so it can
be directly used by other software applications. A C# language
binding has also been created for the IFCPL environment. Fig. 8
shows the different phases of the IFCPL execution environment.

The lexer has been generated using Flex. Flex is a well-known
lexer generator (Appel and Ginsburg 2004). Additionally, an
IFCPL parser has been generated using Bison (Donnelly and
Stallman 2003). Flex and Bison can be easily combined (Aaby
2003). Fig. 9 demonstrates the definition of a number of grammar
rules using the Bison grammar syntax.

Application Scenario: Alignment Transition Curves

Background

The availability of an imperative program language as part of IFC
models enables a large range of possible applications. In this ex-
ample, the proposed IFCPL is used for the flexible definition of
alignment transition curves.

The alignment forms a fundamental basis of any linear
infrastructure facility, including roadways, railways, bridges, and
tunnels. A first step towards the major effort of including infrastruc-
ture facilities in the next version of the IFC data model was the
creation of a dedicated alignment project that aims to define data
structures to describe alignment in a vendor-independent manner
(buildingSMART 2014).

Fig. 7. Overview of the injection and extraction process of variables

Fig. 8. Different phases of the IFCPL execution environment
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The alignment is typically described by means of two interre-
lated two-dimensional (2D) curves: the horizontal and the vertical
alignment. Each of these 2D curves is composed of several seg-
ments. In the horizontal alignment (the focus of this example),
the most-typical segment types are linear segments, circular arcs,
and transition curves.

The purpose of the transition curve is to provide a continuously
changing curvature of alignment to provide driving comfort and
reduce accidents (AASHTO 2011). Transition curves are either
placed between a sequence of two arcs with different radius, or be-
tween an arc and a linear segment.

The most widespread type of transition curve is the clothoid
(AASHTO 2011) but numerous other transition curve types are
also in practical use in different parts of the world, for example
the Wiener Bogen, Bloss curve, cubic spiral, cubic parabola, sinus-
oidal curve, cosinusoidal curves, sine half-wavelength diminishing
tangent curve, Lemniscates curve, or the quadratic spiral. All these
curve types require a different set of parameters and different algo-
rithms for their evaluation.

State of the Art: Neutral Data Models for Roadway
Alignments

A large number of data formats for exchanging roadway/railway
alignment data exist, the most common of which is the LandXML
data exchange standard (Rebolj et al. 2008; Ziering et al. 2007).
LandXML 1.2 supports 16 different transition curve types.

A transition curve is denoted Spiral in LandXML. In addition,
LandXML offers a generic template with different parameters, for
example the start and end point, length, radius at start point, radius
at end point, rotation orientation (clockwise versus counterclock-
wise), and start and end direction, to name a few. LandXML also
permits one to overdetermine the spiral type, for instance, by speci-
fying a clothoid with more parameters than actually needed to re-
construct it in a unique way. Unfortunately, this also allows one to
specify impossible transition curves, which violates the principle of
data integrity.

Besides LandXML, other standards such as RoadXML
(Chaplier et al. 2010; Ducloux and Millet 2009), JHDM (Japan
Highways Data Model), or TransXML (Scarponcini 2006) likewise
lack construction rules. The official IFC Alignment extension also
excludes procedural specifications.

Many other alignment models that were developed in the
context of research projects such as IFC-Bridge (Yabuki et al.
2006; Lebegue et al. 2012), IFC-Tunnel (Hegemann et al.
2012; Koch 2008; Yabuki 2009), OpenBrIM (U.S. Department

of Transportation and Federal Highway Administration 2013),
or IfcAlignment (Amann et al. 2013) also do not contain algorith-
mic descriptions.

Objektkatalog für das Straßen-und Verkehrswesen (OKSTRA)
(Schultze and Buhmann 2008) is a German standard for the data
exchange of road design information. In a current research project
related to the OKSTRA standard, an approach was developed that
was used to describe cross sections by means of OKSTRA RQCode
(Singer and Amann 2014). OKSTRA RQCode is not a new pro-
gramming language, and uses the syntax of Microsoft Visual Basic
(Kornbichler 2000). A number of predefined objects such as
RQLine, RQBoundaryLine, or RQPoint exist within the OKSTRA
RQCode environment (Feser et al. 2004). This environment also
offers access to the underlying alignment model, making it possible
to define the construction of specific cross sections. To simplify
matters, the real Visual Basic Runtime is used as an interpreter
for RQCode, obviating the need for a dedicated RQcode interpreter.

Representation of Transition Curves in IFC

With respect to including transition curves in the IFC data schema,
there are two general options. The first is to take the conventional
data modeling approach and include a preferably large but fixed set
of different transition curves as explicit entities of the data model.
This approach has a number of shortcomings, including:
• In a specific region or for a specific application scenario, a tran-

sition curve might be necessary that has not been included in the
schema. For example, Schramm curves are extensively used in
German Railway engineering but rarely elsewhere, and Wiener
Bogen is mainly used in Austria. Such transition curves are ac-
cordingly not represented by the IFC model and the necessary
schema extension has to undergo the lengthy standardization
process.

• A specific interpretation algorithm has to be implemented for
each of the curve types. As this requires significant effort, soft-
ware vendors will invariably decide to implement only a subset
of the defined curve types, resulting in unpredictable incompat-
ibilities between software applications.

• Stakeholders must agree on a common parameter set that is used
to describe a specific transition curve.
The second option is to define a generic transition curve capable

of describing any of the concrete types listed earlier as well as any
disregarded transition curve. This would overcome the first of the
aforementioned issues. To resolve the second of the mentioned is-
sues, however, the interpretation algorithms must be included as

Fig. 9. Definition of three Bison grammar rules
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part of the exchanged instance files. This is where the use of IFCPL
is proposed.

The provided algorithms must fit the desired information
processing needs on the receiving side. By taking a closer look
at the purpose of the intended data exchange, the following set
of information to be computed/derived from the curve data can
be identified:
• Compute the length of a transition curve segment;
• Compute the x, y-coordinates for a given abscissa; and
• Compute the curvature for a given abscissa.

This generic set of information would make it possible to dis-
play any transition curve in an arbitrary resolution and forms a suit-
able basis for most of the engineering tasks involved in roadway or
railway design.

Programming Interface

By including the computation procedures (compute length, com-
pute x, y-coordinates, and compute curvature) as part of the ex-
changed IFC model (instance file), the receiving application is
able to access all the necessary information via the interface de-
picted in Fig. 10. The interface is generic and independent of
the concrete type of transition curve represented by the underlying
IFC data. A key advantage for most application scenarios is that no
additional programming is needed at the receiving application

when a new type of transition curve is to be transmitted via the
IFC exchange mechanisms.

The getLengthðÞ method is used to query the length of a
transition curve segment. The method getPositionðÞ is used to re-
trieve a 2D position on the transition curve (since the transition
curve is part of the horizontal alignment, it has a 2D position).
The lerpParameter passed to the method defines the position
along the curve (linear referencing) in a scaled manner. The param-
eter is assigned a value of between 0 and 1, where 0 refers to the
start and 1 to the end position of the curve. For instance, a lerp
parameter of 0.3 returns the point reached after travelling 30%
of the length of the transition curve. The getParameterðÞ method
is used to query the parameters of the transition curve (computa-
tion parameters).

Definition of a Generic Transition Curve

This section describes an IFC data model for including a generic
version of a transition curve, including the necessary IFCPL
programs. The point of departure is formed by the alignment model
proposed by the P6 project of buildingSMART.

First, the model is extended with the new entity IfcArbitrary-
TransitionCurveSegment2D. The IfcArbitraryTransitionCurve-
Segment2D is a subclass of IfcCurveSegment2D. A parameter of
the transition curve is represented as an IfcProperty. The different
IfcProperty values are collected in the ComputationParameters
property set. Furthermore, IfcArbitraryTransitionCurve is asso-
ciated with three instances of IfcProgram. Fig. 11 shows an
EXPRESS-G diagram of the different entities described.

The following example illustrates the use of IFCPL for describ-
ing how a transition curve is defined. For the sake of simplicity, a
straight line has been chosen instead of an actual transition curve as
it offers a good and easy way of demonstrating how IFCPL works,
even though using a straight line as a transition curve makes little
sense in the context of real-world project.

Fig. 11. EXPRESS-G diagram depicting the integration of arbitrary transitions curves into the P6 IFC Alignment schema

Fig. 10. Interface for accessing all necessary information
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It is assumed that the linear segment is defined by its start and
end point. For the start point, the xStart and yStart value of type
IfcPositiveLengthMeasure is stored in the parameter set (Compu-
tationParameter) of the IfcArbitraryTransitionCurveSegment2D.
The same is done for the end point (xEnd and yEnd).

The next step is to create a program that defines the actual
computation of the clothoid. To this end, three programs, a Length-
Program, PositionProgram, and CurvatureProgram, have been
defined. The length program defines how the length of the transi-
tion curve is computed. In the example, the length between two
points can be computed using the Euclidian distance. The length
program is depicted in Fig. 12.

The tokens and abstract syntax tree of the length program is
shown in Fig. 13.

The length program uses the variables xStart, yStart, xEnd, and
yEnd. These variables and values are known to the program be-
cause all variables contained in the computation parameter set
are injected into the length and position program of the transition
curve on startup.

Additionally, the lerpParameter variable is injected into the po-
sition program. Fig. 14 shows the position program. A return state-
ment adds the computed value to the result property set for further
processing by the host application.

The programs shown can be stored in a STEP P21 file and be
exchanged between different applications. The receiving applica-
tion can execute the program by means of an IFCPL interpreter
and reconstruct (display) the curve without further knowledge of
the concrete type of curve and its internal representation. Fig. 15
shows a pseudo instance file that contains a position program and
demonstrates how this program can be reused by different arbitrary
transition curves.

Implementation Prototype

To demonstrate the feasibility of the proposed concept, a prototype
of this generic approach to handle transition curve types has been
implemented by defining a length, position, and curvature program
for a clothoid. The exchange of the generically defined transition
curves has been tested using several software products, including
Revit, NX, and Dynamo (Fig. 16).

Fig. 13. Token and abstract syntax tree of the length program

Fig. 14. IFCPL position program

Fig. 12. Computation of the length in IFCPL
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A partial standalone prototype of an IFCPL environment can be
found on GitHub (http://github.com/tumcms/BlueCompiler).

Conclusion and Future Work

The paper introduced the IFC Procedural Language (IFCPL), a
simple imperative language that makes it possible to capture algo-
rithmic knowledge and exchange it between software applications
in a vendor-independent manner. IFCPL programs are not defined
on the schema level but at an instance level, which means that pro-
grams can be flexibly defined without the need to modify the IFC
schema.

The main purpose of IFCPL is to define algorithms for process-
ing available data and compute new information. This functionality
can be used to embed the procedural knowledge required to cor-
rectly interpret the transmitted data in the IFC model. This provides
a very high degree of flexibility in data exchange scenarios, as data
structures and their correct interpretation do not have to be defined
a priori in the schema definition, but can be dynamically specified
by the sending application at the time of data transmission. The
embedding of the interpretation algorithm also implies that poten-
tial data interpretation errors by different software developers are
avoided.

To illustrate the advantages of IFCPL, the paper discussed
its application for the flexible definition of horizontal alignment
transition curves. As a very large set of transition curves are used
in practice worldwide, including them all in the IFC standard is not
a feasible option. Using IFCPL, arbitrary types of transition curves

can be described and exchanged. The IFCPL programs embedded
in the corresponding IFC instance models provide the algorithms
required to determine the length of the curve, to compute the x, y
coordinates for a given abscissa and to calculate the curvature at
any given point. These three functions cover the majority of typical
application scenarios, ranging from the pure display of the curve to
determining earthwork haulage and computing perpendicular
forces.

The described concept is generic and can also be applied to el-
ements of the vertical alignment such as parabolas. It can likewise
support the description of parameterized curves for the structural
engineering domain. For example, this approach could be used
to describe B-Spline or nonuniform rational basis spline (NURBS)
curves or surfaces.

The introduction of a programming language for IFC reveals
possibilities that go far beyond the description of curves. More ad-
vanced applications range from embedding quantity take-off rules
to the software-independent description of the behavior of parame-
terized BIM objects. These and other fascinating application areas
will be addressed in future publications.

The only limitation of the proposed approach is that a dedicated
interpreter is necessary on the receiving side. As this could re-
present a hurdle to the adoption of the IFCPL language, a logical
proposal would be that the IFC standardization committee should
provide a reference implementation that can be used free of charge
for any commercial or noncommercial software development
project. The prototype interpreter developed in the framework of
the research project presented here could provide a suitable basis
for this reference implementation.

Fig. 15. A pseudo instance file, which contains a position program and demonstrates how this program can be reused by different arbitrary transition
curves
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Besides addressing new use cases for IFCPL in the future, the
extension of the syntax of IFCPL to include object-oriented fea-
tures (information hiding, inheritance and polymorphism) is
planned along with additional useful features such as an embedded
spatial query language (Daum and Borrmann 2013). Furthermore,
the speed of the IFCPL runtime library will be optimized to support
more computationally intensive use cases using the IFCPL (e.g., ra-
diosity computation for lighting design studies). Currently, the sim-
ple interpreter used to interpret IFCPL programs is, compared with
binary translated interpreters, rather slow. This situation could be
improved by using the LLVM Compiler Infrastructure (Lattner and
Adve 2004). The LLVM Compiler Infrastructure provides a virtual
machine that can execute a virtual assembler language. The virtual
machine of LLVM also needs to interpret assembler language, but
also provides sophisticated optimization techniques such as binary
translation (Smith and Nair 2005) to improve execution speed.

Different software implementers will, of course, implement sim-
ilar IFCPL programs. In the proposed concept, libraries of basic
and advanced IFCPL functions will evolve through contributions
by the community. To this end, a form of modularization is pro-
posed. Each module would be a text file containing IFCPL
source code. A module is imported using the import-Statement
(e.g., import Math.ifcpl;), making it possible to collect common
code in an IFCPL standard library. This IFCPL standard library
can eventually become part of the IFC standard and can be distrib-
uted along with the IFC schema files. This additionally reduces the
amount of duplicated and redundant work, and at the same time the

IFC community can benefit from the advantages of IFCPL dis-
cussed in this paper.
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