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Abstract

Thanks to the performance improvements in hardware and software architectures, more applica-
tions, which used to run only on desktop computers, are now being migrated to mobile devices.
Nowadays, people spend even more time on mobile devices than on desktop computers. How-
ever, this entails increased power consumption, that necessitates more effective runtime power
management techniques due to battery capacity constraints. Such techniques should reduce
power consumption while satisfying user-perceived requirements in interactive applications,
such as frame rate, and response times. A major hurdle in incorporating such techniques into
real products is that user-perceived requirements are only visible to user applications, but not
accessible by the power managers residing in the operating system. Software architectures that
have worked well on desktops might not necessarily be optimal for the mobile counter parts,
exemplified by the current power management software on Android systems. In this work, we
show that better power management is achievable by passing such information to the operating
system, and propose an Application Programming Interface (API) for that purpose. Therefore,
we study two highly interactive applications to give insight into how such an API could be
designed: Mobile games and web browsing.

Gaming workloads exhibit highly variable and user-interactive behavior, which makes it
hard to predict the workload. Modern Multi-Processing System on Chips (MPSoCs) platforms
are equipped with Heterogeneous Multi-Processing (HMP) processors comprising performance-
oriented and energy-efficiency cores in order to better exploit power-performance trade-offs
among different types of applications. To minimize the energy consumption of games on HMP
platforms, it is essential to precisely predict the workload and perform joint thread-to-core al-
location as well as Dynamic Voltage and Frequency Scaling (DVFS). We propose a frame- and
thread-based MPSoC power management strategy for games. In this work, we focus on the
fact that gaming workload has high temporal correlation between frames and evaluate selected
workload predictors on a per-frame basis. Moreover, we find that there are two categories of
thread workloads, periodic and aperiodic, and hence, propose to use a hybrid workload pre-
dictor. Based on per-thread predictions, the power manager allocates the threads among the
heterogeneous cores in an evenly distributed fashion to minimize the operating frequency while
keeping the Frames-per-Second (FPS) constraint. We implement the game power manager
as an Android governor on a state-of-the-art ARM big.LITTLE HMP platform based on the
Exynos5422 System on Chip (SoC), which is also incorporated in the Samsung Galaxy S5
smartphone. Our results show that we save on average 41.9 % of energy compared to the An-
droid default governor. Further, we have performed a user study to evaluate the user perception
of our governor. The gaming experience was rated between good and very good for all games.
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Besides games, web browsers exhibit a variety of possible interactions with the user, such as
loading a web page, scrolling or watching a video. The volume of mobile web browsing traffic
has significantly increased as well as the complexity of the mobile web pages mandating high-
performance web page rendering engines to be used on mobile devices. Although there has been
a significant improvement in performance of web page rendering on mobile phones in recent
years, the power consumption reduction has not been addressed much. A main contribution of
this work is a thread level analysis of the workload generated by Google’s Chrome browser on
our HMP evaluation platform. We analyze the detailed traces of the thread workload generated
by the web browser, especially the rendering engine, and discuss the power saving potentials
in relation to power management policies in Android. Moreover, we performed a power versus
performance analysis of the A15 Central Processing Unit (CPU) on our platform. The focus of
our study lies on frequency capping, thread-to-core allocation and power gating and its effects
on the loading time of web pages. Our work shows that large power savings come with small
performance deficits. However, the amount of power that can be saved is significantly larger
than, for example, the decrease in loading time. In particular, power gating the A15 reduces the
idle power of the A15 by 85 %.

The findings of our browser power characterization motivated us to develop our own browser-
aware power manager that takes into account the application’s state, which mainly depends on
the current user interaction. Browsers have multiple power hungry components such as the ren-
dering engine, and the JavaScript engine, and generate high workload without considering the
capabilities and the power consumption characteristics of the underlying hardware platform.
Also, the lack of coordination between a browser application and the power manager in the
operating system (such as Android) results in poor power savings. Hence, we propose a power
manager that takes into account the internal state of a browser – that we refer to as a phase
– and show with Google’s Chrome running on Android that up to 57.4% more energy can be
saved over Android’s default power managers. We implemented and evaluated our technique
on the HMP platform mentioned above. We believe that our work will lead to development
of practical power management techniques for interactive applications considering collabora-
tive thread-to-core allocation, DVFS and power gating as well as the communication between
power managers and applications.



Zusammenfassung

In den vergangenen Jahren ist die Leistung von Hardware- und Softwarearchitekturen enorm
gestiegen. Als Konsequenz werden immer mehr Applikationen, die ursprünglich für stationäre
Computer entwickelt wurden, auf mobile Geräte portiert. Die Verbraucher benutzen heutzutage
deutlich häufiger mobile Geräte als stationäre Computer. Dieses zieht einen höheren Ener-
gieverbrauch auf dem entsprechenden Gerät nach sich. Das macht es wiederum notwendig,
effizientere Strategien zum Energiemanagement zu entwickeln, da die Batteriekapazität eines
mobilen Geräts begrenzt ist. Solche Strategien sollten den Energieverbrauch reduzieren und
gleichzeitig keinen Einfluss auf die Nutzerwahrnehmung haben. In interaktiven Applikatio-
nen beeinflussen primär die Bildwiederholungsrate und veränderte Ladezeiten der Applikation
die Wahrnehmung durch den Benutzer. Eines der größten Hindernisse, um effizientere Strate-
gien für das Energiemanagement in echte Produkte zu integrieren, ist, dass dem Betriebssystem,
welches das Energiemanagement betreibt, keine Informationen über die Benutzeranforderungen
von interaktiven Applikationen zur Verfügung stehen. Diese sind nur innerhalb der Applikation
selbst verfügbar. Konsequenterweise sind Softwarearchitekturen, welche sich auf stationären
Computern bewährt haben – gerade im Hinblick auf das Energiemanagement von Androidsys-
temen – nicht optimal auf mobile Systeme übertragbar. In dieser Arbeit legen wir ein API-
Konzept dar, welches vorsieht, dass Benutzeranforderungen zwischen der Applikation und dem
Betriebssystem geteilt werden, da dieses besseres Energiemanagement ermöglicht. Im Rahmen
dessen stellen wir zwei in hohem Maße interaktive Applikationen vor, die Aufschluss darüber
geben, wie so eine API gestaltet werden kann: Mobile Spiele und Webbrowser.

Die Arbeitslast des Prozessors bei Spielen ist sehr variabel und hängt von der Aktivität des
Benutzers ab, was eine Vorhersage dieser Last schwierig macht. Moderne MPSoC-Plattformen
sind mit HMP Prozessoren ausgestattet, welche leistungsorientierte und energieeffiziente CPU-
Kerne vereinen. Das soll den variierenden Leistungsanforderungen und dem damit verbunde-
nen Energieverbrauch von verschiedenen Applikationen entgegen kommen. Um den Energie-
verbrauch auf diesen Plattformen zu minimieren, ist es wichtig, die Arbeitslast von Spielen
möglichst genau vorherzusagen. Basierend auf der Vorhersage können Threads bestimmten
Kernen der CPU zugewiesen und DVFS (Regelung der CPU-Taktfrequenz) betrieben werden.
Wir stellen hier eine Strategie zum Energiemanagement für Spiele vor, die auf der Bildwieder-
holungsrate und der Arbeitslast von einzelnen Threads basiert. Hierbei nutzen wir aus, dass
zeitlich benachbarte Bilder eine korrelierende Arbeitslast aufweisen und evaluieren mehrere
Last-Prädiktoren, die bildratenbasiert arbeiten. Außerdem zeigen wir, dass Spielethreads zwei
verschiedene Kategorien von Arbeitslast aufweisen, periodische und aperiodische, und imple-
mentieren einen darauf basierten hybriden Prädiktor, der die Arbeitslast pro Thread pro Bild
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voraussagt. Darauf basierend verteilt der Energiemanager die Threads auf den Kernen der
HMP-Plattform. Hierbei versucht er, die Arbeitslast möglichst gleichmäßig zu verteilen, um
die Taktfrequenz möglichst niedrig halten zu können, dabei aber die Anforderungen an die
Bildwiederholungsrate zu erfüllen. Wir haben den Energiemanager als sogenannten Android
Governor implementiert. Die Experimente werden auf einer modernen ARM big.LITTE HMP
Plattform ausgeführt, die den Exynos5422 Chip verbaut hat. Dieser Chip wurde auch in dem
Samsung Galaxy S5 Smartphone eingesetzt. Unsere Messergebnisse weisen einen durchschnitt-
lich 41.9 % niedrigeren Energieverbrauch auf als die Standardgovernor in Android. Des Wei-
teren haben wir eine Studie durchgeführt, um die Nutzerwahrnehmung unseres Governors zu
bewerten. Die Spielqualität wurde durchgängig als gut und sehr gut bewertet.

Auch der Webbrowser weist eine ganze Reihe von Interaktionen mit dem Benutzer auf,
zum Beispiel das Laden einer Website, Scrollen oder das Gucken eines Videos. Da mobile
Webseiten immer komplexer werden, hat das Datenvolumen im Zusammenhang mit dem mo-
bilen Surfen signifikant zugenommen. Um diese korrekt darstellen zu können, werden perfor-
mante Rendering-Engines benötigt, auch auf mobilen Endgeräten. Obwohl ihre Performanz
in den letzten Jahren massiv zugenommen hat, wurde wenig auf den Energieverbrauch dieser
Rendering-Engines Wert gelegt. Einen signifikanten Beitrag dieser Thesis stellt eine Lastana-
lyse der Threads dar, die vom Googles Chrome Browser erzeugt werden. Diese Analyse wird
auf der bereits erwähnten HMP Plattform durchgeführt. Wir haben den genauen Lastverlauf
der Threads analysiert, insbesondere den des Rendererthreads. Basierend auf dieser Analyse,
zeigen wir Wege zum Einsparen von Energie in Androidsystemen auf. Außerdem haben wir
eine Gegenüberstellung von Performanz und Energieverbrauch für die A15 CPU angefertigt.
Konkret untersuchen wir den Effekt von Begrenzung der CPU-Taktfrequenz, der Zuordnung
von Threads zu bestimmten CPU-Kernen und dem Ausschalten der A15 CPU auf die Ladezeit
von Webseiten. Obwohl große Energieeinsparungen kleinere Performanzeinbußen mit sich
bringen, sind die Einsparungen signifikant größer als beispielsweise die Zunahme der Ladezeit.
Besonders das Ausschalten der A15 CPU reduziert die Leerlaufleistung der A15 CPU um 85 %.

Unsere Ergebnisse bezüglich der Energieanalyse des Browsers haben uns dazu motiviert,
unseren eigenen Energiemanager zu entwickeln. Dieser berücksichtigt den jeweiligen Zustand
des Browsers, welcher hauptsächlich von der Interaktion mit dem Benutzer abhängt. Browser
bestehen aus vielen lastintensiven Komponenten wie der Rendering-Engine oder der JavaScript-
Engine. Diese Komponenten generieren eine hohe Last ohne die Kapazitäten oder den Ener-
gieverbrauch der Hardware-Plattform in Betracht zu ziehen. Zusätzlich führt der nicht vorhan-
dene Informationsaustausch zwischen der Browser-Applikation und dem Energiemanager im
Betriebssystem (hier Android) zu einem hohen Energieverbrauch. Daher haben wir einen Ener-
giemanager implementiert, welcher den internen Status des Browsers berücksichtigt – die so-
genannte Phase. Am Beispiel des Google Chrome Browsers zeigen wir, dass unser Energie-
manager 57 % Einsparung gegenüber den Standardmanagern von Android erreichen kann. Die
Implementierung und Evaluierung unseres Governors erfolgte auf der oben erwähnten HMP-
Plattform. Wir denken, dass unsere Arbeit ein Wegweiser für die Entwicklung von Energiema-
nagern sein könnte, welche auch in der Praxis eine Verbindung von Thread-CPU-Zuordnung,
DVFS und dem gezielten Ausschalten von CPUs sowie die Kommunikation zwischen Applika-
tionen und Energiemanagern in Betracht ziehen.
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1
Introduction

Mobile devices have become an integral part of our daily lives. More and more applications are
shifting from desktop computers to mobile devices such as smartphones and tablets. As a result,
we spend more time on mobile devices than we do on desktop computers, nowadays [98]. This
development is enabled by the fast enhancement of mobile hardware platforms that become
more powerful with every new generation. The downside is a significant increase in the power
consumption of the devices, which has made the battery runtime a major decision criteria for
buying a smartphone [127]. As shown in Figure 1.1, long battery life has been the top decision
criteria for buying a smartphone in Germany in 2014 and 2015. Hence, power management
techniques for mobile devices have become very important in today’s system design. This is
especially true for interactive applications that produce performance peaks, which are highly
resource demanding.

While the battery life of mobile devices is such an important issue for the user, power
management is often not considered during the development of mobile applications− so-called
apps. This is due to multiple reasons:

First, many applications have originated in the desktop world and have been ported to the
mobile domain with the emergence of smartphones and tablets. As power consumption is not a
critical issue for desktop computers, the focus of such applications is usually on performance.
However, high performance comes at the cost of higher power consumption, e.g., by the un-
derlying CPU. While this is not a critical drawback for desktop computers, it is a much more
serious issue in battery-constrained mobile devices.

Second, the major drawback of the current Android software architecture is that the power
management is done without regards to application-specific characteristics, which are not visi-
ble to the kernel. A key characteristic of applications running on mobile devices is that they are
user experience-sensitive. For example, an application is expected to respond immediately to a
touch event like scrolling or zooming, and maintain a certain frame rate during animations. On

1
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Figure 1.1: Most important criteria for buying a new mobile phone or smartphone in Germany
from 2014 to 2015 [71] (excerpt).

the other hand, there are background tasks that have little impact on user experience. As there is
no communication channel between the application and the power manager, the power manage-
ment techniques in Android are purely workload-based and cannot consider application-specific
information [15, 113].

Third, from the application programmers’ point of view, the power management has been
considered a job to be handled by the Operating System (OS) or at the hardware layer, and
energy-aware software development has not yet been in the main focus of the community [128].
Again, this works well for devices without battery constraints, but causes problems for devices
with limited battery runtime. Generally speaking, such a system design that separates kernel
and application layer has been developed to ease the job of the programmer. It should let him
or her focus on the functionality of the app without the necessity to consider other issues. As
a result, there is a lack of awareness and a lack of knowledge in how to design power-aware
applications. Another important issue is the lack of tools that help developers analyze their
code and identify pitfalls that lead to higher power consumption.

The above shortcomings become even more distinctive when it comes to HMP platforms
incorporating the ARM big.LITTLE architecture [92]. This architecture is adopted in state-of-
the-art smartphones like the Nexus 5X with its Qualcomm Snapdragon 808 processor [43, 131],
the Samsung Galaxy S8 with its Exynos Octa 8895 [140, 141], the Samsung Galaxy S9 with its

2
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Exynos Octa 9810 [142, 143], the Huawei Mate 10 with its Kirin 970 [68] or the LG V40 ThinQ
with its Qualcomm Snapdragon 845 [85, 132]. This particular SoC design combines a power-
efficient (little) CPU which is less performant and a performance-oriented (big) CPU. Due to a
larger scope of performance settings, which is described in Section 1.1, the power dissipation for
such platforms is particularly high for workload-intensive applications. The goal of this work
is to demonstrate better power management strategies for Android applications, especially on
HMP platforms, by creating a connection between the application and the kernel, such that the
kernel can incorporate application-specific information for its power management decisions.

The rest of this chapter is organized as follows: We first describe state-of-the-art HMP
platforms with the main focus on the Odroid-XU3 [59] board that we have used for all of the
experiments presented in this work. Then, we explain why the CPU power management, as cur-
rently performed on Android, does not achieve optimal results in terms of power consumption
for such platforms. After that, we briefly outline our implemented power management tech-
niques for the games and web browser applications. Finally, we summarize the contributions of
this thesis and outline the organization of the remainder of this work.

1.1 Android Power Management for HMP Architectures

This section gives some background information of current mobile hardware architectures and
the Android OS. As a representative example for a state-of-the-art SoC, we introduce the
Odroid-XU3 board used in this work. We explain how the Android operating system power
management works for this kind of architectures and where there exists possible improvement
potential of the current Android power management strategy in terms of power consumption.

1.1.1 Android System Design
The structure of the Android OS that runs the different user applications is shown in Figure 1.2.
Generally speaking, the Android OS is divided in two parts, the application layer and the kernel
layer. The kernel contains all the hardware drivers and is implemented partly in assembly and
mostly in C, highly depending on the underlying hardware platform that the system is running
on. Similar to Linux, the kernel drivers can be accessed via the file system if an application
owns the necessary permissions. The permissions can be defined by configuring the ueventd.rc
file inside the Android file system. The applications are usually designed in Java. However,
nowadays, the programming language Kotlin [75] can be used for application development as
well. Moreover, for better performance there exists the so-called Java Native Interface (JNI),
which allows parts of the application to be implemented in C++.

1.1.2 Odroid-XU3 HMP Platform
The platform that we use in this work is the Odroid-XU3 development board [59]. It features
the Exynos5422 SoC, which is also built in the Samsung Galaxy S5 smartphone. The chip
is based on the ARM big.LITTLE architecture with a power-saving little CPU, the A7, and
a performance-oriented big CPU, the A15. Both CPUs contain four separate cores. In the
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Figure 1.2: Android OS system structure.
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Figure 1.3: Traditional Android power management with independent control units.

following, we refer to CPU core clusters such as A7 or A15 as CPUs and single CPU cores as
core. The frequency levels of the CPUs can be controlled separately. The A7 can be operated
from 1.0 GHz to 1.4 GHz while the A15 can be operated from 1.2 GHz to 2.0 GHz (in 100 MHz
steps). While there exist big.LITTLE derivations where only one CPU can be operated at a
time, our platform is a so-called HMP platform. This implies that all eight CPU cores can be
operated in parallel. Further, the platform supports power gating at CPU granularity, but due to
Android limitations, only the A15 can be power gated during run time. The OS on this platform
is an Android Kitkat 4.4.4 which is based on a Linux kernel version 3.10.9.

1.1.3 Android Power Management

The default Android power management system is divided in three separate entities: The task
scheduler, the frequency governor and the wakelock mechanism. The scheduler decides which
tasks runs on which core and when. The governor controls the CPU frequency and the wakelock
mechanism keeps hardware components in a power-up state while they are in use. The three of
them work independently of each other as depicted in Figure 1.3. To understand why the Linux
kernel is structured in this manner, it is worth looking at the development and enhancements of
CPUs over the past years.

At the very beginning, the CPU was a single-core unit running at a fixed frequency. The
only necessary control unit is the scheduler that decides which task is supposed to run at which
time based on its priority. This simple hardware structure was soon enhanced by multi-core
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CPUs that could run multiple tasks in parallel, an enhancement that requires a more involved
scheduling technique. Moreover, CPUs were soon able to switch between different CPU fre-
quencies, which requires a mechanism to control the frequency level. However, the number of
frequencies was not as high as nowadays (e.g., nine different frequency levels for the A15 of
the Odroid-XU3). The Android default CPU frequency governors monitor the workload of the
cores and adjust the frequency of the CPU depending on the workload. State-of-the-art gover-
nors, such as the ondemand [113] and interactive [15], tend to simply ramp up the frequency to
the maximum while the workload is high. Compared to the ondemand governor, the interactive
governor was developed specifically for mobile devices and designed to react to user inputs
fast. For simple architectures, it might be sufficient to switch to the highest CPU frequency
while the workload is high. However, there is more flexibility for power management once the
hardware architecture becomes more complex − not only to exploit more frequency levels but
also to switch between CPUs on a big.LITTLE platform. For big.LITTLE platforms, there is a
governor and a scheduler for each CPU. Note that different CPUs can have different governors.

For HMP platforms, an additional HMP scheduler was designed, which decides whether a
task is allocated to the A7 or the A15 CPU. It prefers the A7, but migrates a task to the A15
if the utilization of the task surpasses a certain threshold. The HMP scheduler only considers
active CPU cores and does not migrate a task to power gated cores. The platform also supports
CPU power gating, but due to performance reasons, this method is not applied by the Android
power managers while the user is interacting with the device. Please note once again that
a big.LITTLE architecture is not automatically an HMP architecture. There also exist older
architectures where the system switches between either the big or the little cores.

1.1.4 Android Power Management Limitations

The division described above works well for traditional hardware architectures with only one
CPU, but not for heterogeneous MPSoCs as used in this work. While wakelock mechanism and
cpufreq work for both CPUs independently, the scheduler has to distribute the tasks over all
available cores. Therefore, the HMP scheduler was designed by Samsung [25]. As mentioned
above, it monitors the individual load of each process. When the load surpasses an upper
threshold, the process is migrated to a big core and vice versa. At the same time, the CPU
governor which works independently from the scheduler rises the frequency because of the
increasing load. This causes maximum power consumption for all CPU intensive applications,
in particular interactive ones. An example for this situation is shown in Figure 1.4. It shows the
loading of the eBay web page using the Chrome browser and the regular Android settings on
the Odroid-XU3 platform.

From this figure we can draw multiple important observations about the Android power
management: (1) Although the workload on the A15 is clearly below 100% and the CPU is not
fully utilized during the first two seconds, the frequency is at the maximum value of 2 GHz.
Hence, DVFS could have been applied to reduce the frequency and generate a higher workload
on the CPU. (2) The loading (or rendering) of the web page generates a high workload, and
consequently, some work has been migrated to the A15. Although neither of the CPUs are fully
utilized, one can see that the corresponding clock frequencies are switched between the mini-
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Figure 1.4: Loading eBay web page (regular Android settings).

mum and maximum values. More important, even when the CPU utilization is less than 100%,
which means that even a single core is not fully utilized, the CPU is at its maximum frequency.
The DVFS granularity for both CPUs is at 0.1 GHz though. Consequently, there is potential
for power versus performance optimization by instrumenting the intermediate frequency levels.
Considering the fact that the power consumption at high frequency levels is disproportionally
higher than the associated performance gains, the default Android DVFS strategy is not bene-
ficial for optimization towards power consumption. Table 1.1 shows the A15 frequencies and
idle power consumptions corresponding to their voltage levels. While the increase in frequency
from 1.2 GHz to 2.0 GHz would result in a maximum performance gain of 1.67, the power
consumption increases by a factor of 3.38x. (3) After loading the web page has finished, the
utilization of the A15 drops to zero and its frequency to the lowest value of 1.2 GHz. Still, the
idle power of the A15 is at the same level as the power consumption of the A7 although the A7
is still in use and the A15 is not. So, even when not in use, the A15 consumes about 50% of
the total CPU power. At this point, the A15 could be put into a deeper power-saving state or be
rather power gated. Many applications such as text messaging, timers, etc. can be run solely
on the little CPU without any adverse performance impact. However, instead of putting the big
CPU to sleep during such occasions, the A15 remains in an idle state in order to avoid the high
wakeup delays. We have measured that a power gated A15 consumes only about 0.045 W, while
its idle power is 0.26 W at the lowest frequency level (a factor of 6x larger).

Another important issue in terms of efficient power management is that the Android system
lacks communication channels among the power management entities in the kernel and the user
applications. For example, a web browser cannot deliver the information about performance
requirements to the underlying operating system to meet user Quality of Service (QoS) expec-
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Table 1.1: Frequency, idle power and voltage of the A15.

Freq. [GHz] Idle Pow. [W] Voltage [V]
1.2 0.26 1.0
1.3 0.30 1.0
1.4 0.33 1.0
1.5 0.37 1.0
1.6 0.44 1.1
1.7 0.51 1.1
1.8 0.58 1.1
1.9 0.69 1.2
2.0 0.88 1.3

tations. This results in over- or under-achieving the performance goals, e.g., frame rate, load
time, and losing the potential for additional power reduction as we will show in Chapter 5.

1.2 Android Application Characteristics

In this section, we describe Android-specific characteristics of applications. More concrete, we
focus on applications states that can be found across not only one but several different kinds
of applications. Then, we describe common performance metrics that do not only apply for
Android apps but for all interactive applications.

1.2.1 Application Performance States

The types of interactions between a user and his or her smartphone are manifold. While there
are actions performed by the user that require immediate response by the device, other tasks
or actions are less critical. For example, applications are expected to respond immediately to
a touch event like scrolling or zooming, and maintain a certain frame rate during animations.
However, there also exist background tasks that have little impact on the user experience. Max-
imum reaction times have already been part of the research performed by the Human-Computer
Interaction (HCI) community [108] and have been adopted for specific applications, such as in
the RAIL model for the web browser [47] (described in more detail in Section 5.4.1). In the
following, we take a cue from these models and describe how applications can be divided into
states, based on their performance requirements.

A key characteristic of applications running on mobile devices is that they are user experience-
sensitive. Figure 1.5 shows typical possible transitions between these states in Android applica-
tions. After startup, many applications wait for input from the user. As the input can be delayed
for various reasons, there are often states where the device is waiting for an input and is doing
nothing in the meantime. This is a typical idle state. However, we can differentiate between
busy idle and true idle states. During true idling, the system appears idle to the user and there
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Figure 1.5: Example for different Android application states.

is no workload being processed by the system. However, during busy idling the system might
appear idle, but there are background tasks being executed that are not perceivable by the user.

While the previously described states do not involve any interaction with the user, there
are multiple types of interactive states that differ among their performance requirements. All
interactive states have in common that the user’s action usually requires timely response from
the system to guarantee a good user experience. The types of interaction vary between simply
touching the screen to choose an object, and scrolling through the screen or zooming. After
an interaction with the device, the user is often waiting for content to be loaded, such as for
an application to start up or for a web page to appear when browsing the web. Further, an-
other way of interacting with the device is watching a video or listening to music. Compared
to scrolling or typing, which are actively done by the user, watching a video can be considered
a passive interaction. While there has been a lot of work on video power management previ-
ously, application-aware power management is shifting towards the active type of interactive
applications, especially on mobile devices.

As mentioned above, all the different states also have different performance requirements.
Idle states usually do not require high computation power because there is no need to react
fast to possible user actions. However, if a user action has occurred, the highest priority of the
system is to respond to that particular action in an acceptable amount of time. An optimal power
management strategy consumes the least amount of power for the best possible performance.

1.2.2 Performance Requirements among Application States

By considering the different application states and the degrees of interaction between the user
and the applications, it comes naturally that the CPU workload distribution among the different
states varies. While the workload for idle states is expected to be low, we expect the workload
for user interactive phases to be considerably higher. There are mainly two different metrics for
interactive states that define the user perception of a particular action: The frame rate and the
response time. As mentioned above, such metrics are derived from the HCI community [108]
and adopted to a specific application, such as the RAIL model [47] for the web browser.

The frame rate is usually measured in FPS. A typical target value for the frame rate is
60 FPS, a value that is derived from the Vertical Synchronization (VSync) signal of the display.
The VSync signal is issued by the display to trigger the redraw of the screen at a rate of 60 Hz.
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However, research has shown that it is also possible to achieve good user perception results at
as low as 30 FPS [27]. The response time should be kept as low as possible to guarantee the best
possible user experience. The term does not only refer to the time that an application should
react to a given user input but also, e.g., to the loading time of a web page. For browsing, the
maximum response time to a user action for an already loaded web page is 100 ms, while the
maximum loading and rendering time of web pages is 1 s for desktop computers and up to 5 s
for mobile devices, where slower data transfer rates are tolerated. During idle states, the goal
is to keep the power consumption of the system as low as possible. However, the system has
to maintain responsiveness to user events that can occur suddenly and invoke a transition to an
interactive state.

The two metrics frame rate and response time vary significantly in terms of resource re-
quirements to satisfy the performance requirements. For the frame rate, it is only necessary to
provide the amount of power needed to meet the target FPS value. The response time, however,
should be as low as possible, what can only be guaranteed by providing the maximum resources
available.

1.2.3 State-Based Android Power Management
Given the states defined above and the corresponding performance requirements, it comes natu-
rally that the states can be exploited for power management. The idea of state-based power man-
agement for games has been introduced before [35] and has been proven as effective. In [35],
a game state and a loading state for a number of games have been defined. The frame rate of
the game is adjusted according to the state to save power. Moreover, the frame rate has been
taken into account to perform DVFS and to choose a CPU frequency that would just fulfill the
desired frame rate. Similar to games, states can be found in other applications, as we will show
in Chapter 5 and Chapter 6.

1.3 Application-Aware Android Power Management

While we have previously described different performance requirements for Android applica-
tions, we explain the different layers, e.g., kernel and applications, at which power management
can be performed in Android. Then, we describe common challenges that have to be overcome
when performing power management across different layers.

1.3.1 Levels of Power Management in Android
As mentioned in Section 1.1.4, the Android power management has a lot of potential for im-
provement, especially on HMP platforms. Although the Android default governors do an overall
fair job across a wide range of applications, there are a lot of scenarios where an optimization
towards power consumption is possible.

To perform power-performance optimization, some knowledge about the underlying hard-
ware platform and also about the characteristics of the application is needed, as depicted in
Figure 1.6. The main difficulty is to analyze how many resources an application really needs
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Figure 1.6: General approach to power management.

to execute without any distortions. This not only depends on the application but also varies
between different hardware platforms. While a game might need only 3 ms to compute a frame
on a powerful CPU, it might take twice as much time on a less powerful platform. Finding the
optimal configuration for a given platform is one of the main challenges for application-aware
power management. Therefore, it is important to analyze the application and to look for hints
that allow us to perform power management across different platforms.

Single-Layer Power Management
As shown in Figure 1.6, power management can involve different software layers. First, it
is possible to perform power management only at the kernel layer, as currently done by the
Android default governors. Here, it is sufficient to maintain a minimum of information, in
case of the default governors the CPU utilization, and also some basic knowledge about the
hardware platform to perform DVFS. Second, it is possible to perform power management
solely at the application layer. Such techniques include, for example, targeting a display frame
rate of 30 FPS instead of 60 FPS for animations or the usage of a backend server for heavy
computations instead of performing those computations locally. All methods mentioned above
do not involve any interaction between the different system layers, namely the applications and
the kernel.

Cross-Layer Power Management
Involving communication between the layers increases the complexity of the system, but allows
for more effective power management techniques. The direction of communication can be
either from the application to the kernel or vice versa. An example is an application that shares
its internal information to the kernel, e.g., whether a game that is currently loading, or the frame
rate of a running animation (see [35, 126]). The kernel can also give hints about its internal
state to the application, e.g., to influence the number of threads that are currently spawned
by an application by providing the number and usage of the CPU cores. Generally, it is also
possible for the application and the kernel to provide information to each other simultaneously.

Hybrid Power Management Techniques
Another option is a mixture of the two former strategies: The single layers perform power
management on their own, but can also share information with the other layer. For such con-
stellations, it is important that the power management techniques applied by the different layers
are either orthogonal to each other or coordinated among each other. For example, a technique
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where the the application reduces the frame rate is independent from the kernel doing power
management on a workload-based manner. Here, the system can profit from two independent
strategies. However, if an application produces a number of working threads dependent on in-
formation from the system but the system turns down the corresponding cores, this would most
likely result in a degradation of the user experience. Hence, the applied strategies should not
interfere with other possible approaches.

1.3.2 Challenges of Application-Aware Power Management

When performing application-aware cross-layer power management, there are many multi-
faceted challenges that have to be considered. For example, there is a trade-off between the
efficiency of an application-aware technique and its applicability to other applications. Another
important point is the awareness of the underlying hardware platform. Further, the overhead of
the method should be as low as possible, both in terms of time and in terms of power.

Power Management Overhead
While the Android default power managers only consider the workload, application-aware
power management adds significant overhead to the power manager itself: The communica-
tion between the kernel and the application layer. The communication should be implemented
such that it does not increase the execution time of the application (e.g., by blocking write or
read calls). Furthermore, the power management overhead itself depends on the actual com-
plexity of the power management technique, e.g., the complexity of the algorithm. While a
moving average workload predictor adds only a light overhead, an integral-based predictor will
most likely need significantly more computation time. We do not investigate the overhead of
our implementations, because our implemented strategies perform significantly better in terms
of power consumption than the default strategies.

Generalization across Applications
While application-aware techniques that consider unique information from one particular ap-
plication are usually more effective in terms of power savings, the downside is that those tech-
niques can be used for one specific application only. On the other hand, more general techniques
tend not to cover distinctive features of specific applications. This can result in a better perfor-
mance for the whole system but in a worse performance for one specific application.

However, the Android power managers do not consider any application-specific information
at all. As shown above, there are repetitive states across different Android applications that have
similar performance requirements. Hence, we believe that there is potential to do application-
aware power management across different applications much more efficiently than is it currently
implemented. In order to target this problem, we will study different applications and derive a
common API from the results (see Chapter 6). We start by studying game power management
on HMP platforms (see Chapter 3), as Dietrich et al. have already provided a fundamental
baseline on this topic [33, 35, 36]. Then, we look into browser power management because
browsing provides a variety of states and actions that can also be found in other applications
(see Chapters 4 and 5).
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Platform-Aware Android Power Management
As mentioned before, another important factor for effective power management is the platform-
awareness of the power manager. This holds true in particular for power managers that operate
at the system layer. We have explained in Section 1.1.3 that Android has three power manage-
ment entities - the governor, the scheduler and the power control - that work independently from
each other and how this is problematic on modern HMP platforms.

We believe that the interplay between the separate components of the power management
units would improve the power consumption of the system significantly. For example, if the
power control unit knew whether tasks should be currently scheduled on particular cores or
CPUs, it could keep unused cores or CPUs in a low-power state. On the other hand, the power
control unit could turn on cores or CPUs if it realized that more computation power is required.
Moreover, the scheduler and the governor would profit from sharing information. While the
governor maintains information about the available frequencies of the system, the scheduler
knows all the active threads that will be running in the next scheduling instant. The scheduler
also can provide information about the workload of the available threads. All of these infor-
mation could be combined to find the optimal mapping of threads to cores such that the CPU
frequency can be minimized. We have investigated the Odroid-XU3 platform very thoroughly to
find the best configurations for the optimal power management technique, as will be described
in the Chapters 3, 4 and 5.

Cross-Platform Android Power Management
When the application and the kernel interact, there must be a defined method specifying how
the power managers best react to changes in the application, to avoid undefined behavior by the
power managers. This poses a challenge that has been already addressed by the default Android
power managers: Cross-platform power management. While the Android default governors
only need a little fine-tuning to work with different hardware platforms, an involved application-
specific governor might need much more fine-tuned algorithms to achieve the best possible
power savings. Hence, it is a major challenge to design a governor which is easily portable
across multiple platforms and also provides a general interface for a multitude of applications.
We will detail the challenges of the platform dependency in Chapter 6.

1.4 Contributions

The main focus of this work lies on mobile game and browser power management for Android.
Based on these parts of our work, we derive a generalized power manager that can be applied not
only to specific applications, such as games or browsers, but that can be applied to any Android
application. The main contributions of this work are summarized based on the application they
focus on:
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Game Power Management:

• We characterize the gaming thread workloads and develop a thread-based and frame-
based hybrid workload predictor to accurately predict the gaming workload.

• We implement an integrated power manager, which we refer to as GameOptimized gov-
ernor in the following, and compare it to the default Android governors.

• We perform a user study to evaluate the user perception of our proposed power manager.

Browser Power Management:

• In the area of mobile web browsing, we give a detailed analysis and characterization of
the mobile web browser workload for loading a web page by breaking down the browser
CPU time and CPU energy based on the main browser processes and their threads for a
number of representative web pages.

• Based on the non-trivial analysis, we look into potentials of power saving for mobile
web browsing workloads on HMP platforms using core allocation of individual threads,
DVFS, and power gating of the A15 CPU.

• We outline potential power saving techniques, such as the need for an integrated power
management unit on HMP platforms which combines scheduler, governor, and power
control.

• Further, we define web browsing phases, such as Idle, Load, Scroll, Video, etc., that
exhibit distinct workload characteristics and user requirements, based on the internal in-
formation of the Chrome browser.

• We establish a channel between the application layer, the touch screen driver, and the
governor, to directly share the phase information and react faster to events that trigger
phase transitions.

• We implement a kernel governor – referred to as the browser governor – that controls the
CPU power state and its voltage and frequency according to the available phase informa-
tion and demonstrate the effectiveness of this approach in terms of power consumption as
well as responsiveness of the system.

General Android Power Management:

• Finally, we introduce a generalized power management API as a communication channel
between the kernel and the applications, that we derive from our previous work on game
and browser power management.
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1.5 Organization

This thesis is organized in seven chapters. In this first chapter, we introduced the reader to the
topic and gave an overview of Android applications’ characteristics and Android CPU power
management techniques on a modern smartphone architecture which motivated this work. The
remaining document is structured as follows:

Chapter 2 outlines other important contributions related to application-aware Android power
management, where we mostly focus on CPU power management. In particular, we give an
overview of video power management, which gave important cues for mobile game power
management. Moreover, we introduce existing work in the area of mobile browser power man-
agement - some of which we took as motivation for this particular work. Finally, we outline
more general Android power management strategies related to other peripheral components,
that consume a significant amount of power besides the CPU and deserve some attention when
addressing the topic of Android power management, namely the display and the wireless link.

Chapter 3 shows the importance of workload prediction for mobile games and that this holds
true for HMP platforms in particular. In this chapter, we emphasize the importance of sharing
information (here: frame rate) between the application and the power manager to perform bet-
ter power management. We extend the previous frame-based power management techniques
to HMP platforms to propose a frame-based and thread-based, predictive power manager for
mobile games. The proposed framework is capable of performing thread allocation and DVFS
simultaneously to meet the FPS requirement of the user while minimizing the power consump-
tion. We characterize the gaming thread workloads and implement a thread-based and frame-
based hybrid gaming workload predictor. The hybrid predictor learns online whether the thread
workload is periodic or aperiodic and the power manager, which we refer to as GameOpti-
mized governor, performs thread-to-core allocation and DVFS simultaneously, based on the
predictions. We have implemented the GameOptimized governor on our evaluation board and
compare it to the default Android governors. Moreover, we performed a user study to evaluate
the user perception of our proposed power manager and find that up to 60.0% of energy can be
saved for using power manager, while the user perception is considered good. The results of
this work have appeared in [123].

In Chapter 4, we investigated the power management potentials of the web browser. While
there have been many works on game workload characterization and game power management
before, web browsing has been less studied, especially with respect to Android application
states and power management potentials on HMP platforms. To evaluate these potentials, this
chapter provides a non-trivial, detailed analysis of the actual thread workloads generated by
the web browser for a number of web pages on the Odroid-XU3 platform. We give a detailed
analysis and characterization of the mobile web browser workload for loading a web page by
breaking down the browser’s CPU time and CPU energy based on the main browser processes
and their threads for representative web pages.

We identify the process consuming most of the energy, which is the renderer, and further
break down its energy consumption for different website components. Based on the analysis,
we look into the potential of power savings for mobile web browsing workloads on HMP plat-
forms using core allocation of individual threads, DVFS, and power gating. Further, we show

14



1. Introduction

in a first attempt that we can save up to 39.21% of the CPU power consumption when we power
gate the big CPU after a web page has finished loading. We also introduce our measurement
infrastructure that we have developed for logging all the performance and power relevant in-
formation such as the core utilization, CPU frequency, power consumption, thread allocation,
function tracing, etc., for the underlying HMP hard- and software platform. This infrastructure
is a prerequisite for all analysis and characterization work as it enables us to find which CPU a
thread is scheduled on - the most relevant information in the case of HMP systems. The results
of this work have appeared in [124].

In Chapter 5, we have exploited the results and clues on the browser power consumption
obtained in [124] to develop a new phase-aware power manager for web browsers on HMP
platforms. We show how sharing information between the power manager and the running ap-
plication is beneficial for power management. First, we define different browsing phases, such
as Idle, Load, Scroll, etc., which exhibit distinct workload characteristics and user requirements.
These phases are based on the application states that can be found in Android. Then, we es-
tablish a channel between the application layer, the touch screen driver, and the governor, to
directly share the phase information and react faster to events that trigger phase transitions. We
implement a cpufreq Linux kernel governor – the browser governor – that controls the CPU
power state and its voltage and frequency according to the available phase information based
on a power management strategy that we have defined per phase. Once again, we evaluate
our approach on the Odroid-XU3 platform and demonstrate its effectiveness in terms of power
consumption as well as responsiveness of the system. The results of this work have appeared
in [126].

Based on the results that we have found in our previous works [35, 123, 124, 126], we
propose an API between the power manager residing in the kernel and Android applications
within the user space in Chapter 6. From the example scenarios gaming and browsing, we
can derive many use cases that can also be found in other types of Android applications. We
propose an API design where information such as the current workload priority (e.g., high or
low), the frame rate (current and target frame rate) and a deadline (e.g., the workload x has to be
completed until time y) can be provided to the kernel. We also explain the challenges for kernel
and application developers when introducing such an API. This work has partly been published
in [125].

We summarize our results and conclude this work in Chapter 7. In this chapter, we outline
the potentials of further research in the area of Android power management, especially browser
power management and Android power management in general. In particular, we suggest open
research questions for the given topics.
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Due to the increasing importance of battery runtime of mobile devices, Android power man-
agement has received a lot of attention not only in research but also in the industry during the
last years. In this chapter, we provide an overview of the most relevant topics in regard to
Android power management. The power distribution in a smartphone highly depends on the
underlying hardware platform and differs among the variety of available smartphones on the
market. Hence, it is challenging to provide numbers for the power consumption of mobile de-
vices. First, the power consumption highly depends on the hardware platform and second, the
power consumption of individual components also highly depends on the usage scenario. How-
ever, there are some components that usually consume more power than others. For example,
the display is one of the major contributors towards smartphone power consumption, especially
when brightly illuminated [14]. Moreover, the wireless link, in particular the Global System
for Mobile Communications (GSM) module, has a high power dissipation when used heavily.
Nowadays, the CPUs have become capable of performing complex calculations in a short time
frame. Hence, their power consumption is steadily increasing although industry is working hard
on finding a balanced solution between performance and power consumption, for example the
big.LITTLE platform, designed by ARM [92].

Although our work mainly focuses on CPU power management, we consider it very impor-
tant to give a broad overview of related topics such as display and wireless link power manage-
ment. This enables us to put our work into a larger context by taking cues from other research
areas. First, we give an overview of CPU power management, in particular over application-
aware power management in Section 2.1. We focus on video, game and web browser power
management, as the most relevant applications related to our work. In Section 2.2, we intro-
duce power management related to the wireless link components of mobile devices. As there
exist a number of different protocols for data transmission, we have divided the section into 3G,
4G and WiFi power management as well as hybrid protocols. Finally, we cover display power
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management in Section 2.3. Here, we make a distinction between two state-of-the-art technolo-
gies: Liquid Crystal Display (LCD) and Organic Light-Emitting Diode (OLED) displays.

2.1 Application-Aware CPU Power Management

While the default Android governors are ignorant of the currently running application, there are
many works that have developed approaches to perform power management for specific appli-
cations. We will introduce some of these works in the following. Mainly, we focus on video
power management, game power management and web browser power management. These ap-
plications are the most popular in terms of application-specific power management. However,
we also introduce some more general approaches for application-aware power management in
the following. As graphics contribute a lot towards game power consumption, we will also
cover some Graphics Processing Unit (GPU)-related approaches in Section 2.1.2.

2.1.1 Video Power Management
Video power management dates back a long time, before the era of smartphones had begun.
Although videos are passive interactive applications, video power management has inspired the
work of game power management significantly. Moreover, videos are one of the most important
and popular media formats, nowadays. Only as an example, the popular YouTube platform has
over one billion users and is even more popular than any television network for 18 to 34 years
old inhabitants of the USA [163]. As there has been a lot of work on video power management
over the years, we will focus on CPU-related DVFS strategies in the following.

As mentioned above, video power management has been the focus of research for a long pe-
riod of time. Video streams consist of a finite number of video frames that have to be processed
such that the video can be shown on the screen. Typical steps during this process are video
decoding, transformations or motion compensation. Depending on the actual frame, the work-
load to perform those steps can differ - which is the key prerequisite for performing DVFS. For
constant workloads, the frequency can simply be fixed to a particular value. For completeness
reasons, it should be noted that DVFS was often referred to as Dynamic Voltage Scaling (DVS)
in the past, as can be read in some of the related work papers. However, the functionality of
DVS and DVFS is similar for the works introduced in this section. Hence, we will only use the
term DVFS for the reason of consistency.

There have been a number of earlier works that explore video power management [122, 69,
70, 24, 165, 130, 96]. Pering et al. looked into different types of applications on a Personal
Digital Assistent (PDA), of which one is video decompression, in particular Moving Picture
Experts Group (MPEG) decoding [122]. The findings are 1) that the video workload is of a
varying nature and therefore it is suitable for DVFS. Moreover, 2) their test results show that
by applying a moving average algorithm 24 % of power can be saved. They also performed a
simulation for the theoretical optimal power savings and found that they could even save up to
60 % by applying a more advanced technique. Hudges et al. presented different studies that
looked into DVFS and how to apply it to video power management [69, 70]. Besides audio,
these works focus on H.263 decoding. The authors found that the workload of the decoder is
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highly variable and, hence, suitable for DVFS. They defined the workload as a function of the
Instruction Count (IC) and the Instructions per Cycle (IPC). The IC depends on the applica-
tion’s algorithm and the input to the application, while the IPC on the algorithm, input, and
the architecture of the system. By looking at consecutive frames, the authors found a workload
correlation between neighboring frames for videos, which could be exploited for power man-
agement. This correlation can be used for the prediction of the workload, which itself can be
used to pick the appropriate CPU frequency to process a video frame. Choi et al. presented
another work, which looks into frame-based prediction of MPEG workload [24]. The authors
divided the workload into a frame dependent and a frame independent part. While the workload
for the frame dependent part is predicted using a moving average predictor, the workload of
the frame independent part remains constant. The approach was implemented and evaluated on
the StrongARM evaluation board. The authors reported a 16 % energy reduction for the total
system. A combined scheme of task scheduling and DVFS was presented by Yuan et al., that is
called GRACE-OS [165]. The Linux kernel was modified by adding a profiler that monitors the
workload of multimedia tasks, calculates or predicts the future workload. Based on the predic-
tor, a Soft Real-Time (SRT) scheduler decides the timing of the tasks and a speed adapter adjust
the CPU frequency. The prediction is calculated online, based on the actual system workload.
This approach was further improved and extended resulting in the EScheduler [166]. Akyol et
al. applied a complexity model that takes into account the video source, the video encoding
algorithm and the hardware platform specifications [3]. They estimated the future workload of
video decoding tasks based on Normalized Linear Mean Square (NLMS) predictors. While the
previously introduced approaches mainly focused on systems with CPUs where the single CPU
cores share the same frequency, Khan et el. evaluated a system with individually tunable CPU
cores [77]. They achieved an average of 39 % power savings using their approach.

While the previously presented works rely on workload information per frame obtained
from the system, Pouwelse et al. introduced a technique that suggests providing the relevant
workload information directly by the application [130]. A video decoder was modified in such
a way that it could predict the future workload based on the frame size and the frame type of
the particular frame. Based on the prediction, the application itself could perform a system call
and change the CPU frequency setting as needed. The approach is more effective in terms of
power consumption compared to a statically fixed frequency approach and also to a dynamic
interval-based scheduler that responds to the average workload. Another work by Lorch et
al. implemented PACE (Processor Acceleration to Conserve Energy) that defines deadlines for
particular tasks and re-schedules tasks to improve the power consumption of the system [96].
Moreover, they proposed a race-to-halt strategy for tasks that miss their deadline. However,
recent work has shown that race-to-halt is a very energy consuming strategy for state-of-the-art
SoCs [123, 124]. Huang et al. also suggested providing hints about the computation demand of
decoding a video to the power manager [67]. However, the approach is based on an offline wa-
termarking technique. They analyzed the video stream before transferring the video onto a PDA
device and marked the frequency that is necessary to compute the frame in time. The informa-
tion was inserted into the video stream and could be read on the particular device for frequency
scaling. Their workload prediction is based on so-called macroblocks, that MPEG-2 video is
built from. Each block itself consists of three tasks that significantly contribute to the workload:
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The Variable Length Decoding (VLD) task, the Inverse Discrete Cosine Transformation (IDCT)
task and the Motion Compensation (MC) task. The main advantage of this approach is that the
workload prediction is not performed on the mobile device. This saves a considerable amount
of energy and, hence, battery run time. Sultan et al. proposed a new approach to save power
by introducing different video stream decoding strategies based on the current battery state of
the device [151]. They suggested to decrease the quality of the video step by step. For exam-
ple, the best video quality is given at full Signal-to-Noise Ratio (SNR) values, with full spatial
resolution and at full frame rate. As the battery level falls, all of these values can be decreased
stepwise. First, the frame rate can be decreased from usually 30 to 15 FPS. Later, the spatial
resolution and the number of SNR values can also be dropped. Although this strategy is highly
effective in reducing the power consumption of up to 86 %, it has been shown that dropping the
FPS to such a low rate does affect the user perception of the animation [26, 27]. Hence, it is
preferable to apply methods that reduce the power without impacting the quality of the video.

While the previous approaches mainly focus on video decoding, there have been attempts
to reduce the power consumption of video encoding as well. Jin et al. presented a DVFS
scheme that applies Hilbert Transform-based Workload Estimation (HTWE) for workload pre-
diction [76]. They evaluated their approach using a PC platform and a Hitachi Evaluation board
and report power savings of up to 61.69 % for their approach. Another approach for MPSoCs
was presented by Iranfar et el. [72]. They suggested applying machine learning for power and
thermal management and use data from frame compression, quality, performance, total power
and temperature as learning parameters.

2.1.2 Game Power Management

Nowadays, mobile games are a popular kind of application as smartphone users tend to spend a
lot of time gaming. However, games belong to the most power hungry applications on mobile
devices and power management is challenging due to the interactive nature and the complexity
of modern games. We will outline the major works in the field of game power management in
this section. However, we will explain the main advantages of our work over the related works
in the further chapters, in particular Chapter 3.

Lin et al. were one of the first that proposed DVFS for power management in interactive
applications [93, 100]. In this study, the authors introduced a user-centric feedback mechanism
to control the frequency of the processor. While an application is running, the user is able to
provide feedback about his or her perception. As testbed, a Windows XP Laptop was used. The
CPU features four different frequency levels and the default Windows DVFS policy is purely
workload-based. During a user study, the participants played (among other applications) a FIFA
game to test the implementation. A comparison between the Windows default strategy and the
implemented DVFS policy resulted in 22.1 % power savings. However, the interaction between
the user and the power manager adds an additional burden to the user and makes the game
less enjoyable. Hence, a built-in power manager that does not require the input of the user is
preferable.

Gu et al. started the first line of work on DVFS for game power management that was in-
dependent of the user and is based on workload prediction [50, 51, 52, 53]. Starting in [53],
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the authors analyzed the open-source game Quake II running on an IBM notebook to identify
patterns among game frames and whether those are applicable for workload prediction. They
identified that the different components of the game, e.g., the number of polygons, the rasteriz-
ing of textures or particles, underly particular models or can be approximated by the constituting
pixels. Several DVFS schemes based on workload prediction are presented in [50, 51, 52]. A
workload predictor that is based on the model in [53] was introduced in [52]. For each so-called
view frustum - the part of the modeled environment that will be visible to the user on the screen
- the workload can be calculated by applying the model. The main drawback of this method is
that the workload calculation involves all objects that should be rendered to the screen and cre-
ates a large calculation overhead. Despite the overhead, the authors reported up to 50 % power
savings on their testbed. In [50], the group presents a Proportional Integral Derivative (PID)
controller for the previously mentioned Quake II game that is used to predict the workload of
the future game frames. The controller achieves considerable power savings compared to the
default frequency governor - up to 22 % - but the PID parameters have to be tuned manually.
Hence, the approach lacks portability to other (non open-source) games. Finally, the group
implemented a hybrid controller that combines the two previous approaches and tested their
approach on a PDA, using Quake as their test application. The results show that the hybrid
approach yields the best results on the PDA.

Similar to videos, games are computed on a per frame basis. While recent games often
target 60 FPS, it has been shown by Claypool et al. that a good user experience can be obtained
even with 30 FPS [26, 27]. The authors did not only look into different frame rates but also
into different screen resolutions and their effects on the ego shooter game Quake. The group
looked at how different frame rates and resolutions affect the perceived quality of the game
play by the user. A user study showed, that, surprisingly, the screen resolution had almost no
effect on the game play. However, the FPS plays an important role and a value below 30 FPS
has a negative impact on the user performance. These studies [26, 27] have a large impact, as
many newer power management strategies target 30 rather than 60 FPS to minimize the power
consumption [35, 111].

Lowering the frame rate is not only beneficial in terms of CPU but also in terms of GPU
power consumption, as was pointed out in [111, 162]. Since the game frame workload and
therefore the required processing frequency highly varies from frame to frame, research mainly
focused on identifying techniques that allow predicting the future workload of game frames.

t

CPU

GPU

Frame 0 1 2 3

VSYNC VSYNC VSYNC VSYNC

1

1

2

2

3

3

4

4

Figure 2.1: Typical frame timing [35].

Figure 2.1 shows how frames are calculated during the game. Nowadays, each frame con-
sists of some calculations done by the CPU. Then the actual graphics processing and rendering
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the frame to the screen is done by the GPU. In case of games, the CPU calculation is usually
based on the Artificial Intelligence (AI), the current positions of the objects, the game logic
and potential user inputs. Different frames can exhibit different complexities, depending on the
previously mentioned aspects. The calculation time is usually set by the VSync signal of the
display that is issued every 60 Hz, but software-wise it is also possible to skip signals and reduce
the frame rate, e.g., to 30 Hz. Previous research has shown that sequential frames (in terms of
time) usually exhibit a similar workload [37]. This can be exploited to develop workload pre-
dictors and adjust the CPU frequency according to the predicted CPU workload. However, in
order to apply DVFS, it is crucial to estimate the frame workload accurately.

This motivated Dietrich et al. to develop sophisticated workload predictors [35, 36, 37],
which enabled DVFS-based power management and outperformed the default Android gover-
nors in terms of power consumption and exhibits decent performance. For example, in [36],
it has been shown that the workload of neighboring frames correlates, which can be exploited
for fine-grained power management. However, the frame workload prediction accuracy is never
100%, and often under- or over-estimated. This leads to frame drops and sub-optimal power
savings. Yet, it is difficult to analyze how close to optimal the state-of-the-art techniques are,
and therefore, it is hard to judge whether more sophisticated techniques such as non-linear
workload predictors are worth investigating. An effort to investigate the potential of an optimal
predictor was made in [32]. In order to address the problem, the group designed a statistical
model based on power and workload measurement conducted on an experimental Android plat-
form. They found that the theoretically possible optimum for DVFS is up to 54 % more power
savings compared to previously published game power managers for the given platform. Given
these numbers, future endeavors in the field of game power management seem promising.

With the emergence of multi-core CPUs and even heterogeneous multi-processing platforms
that combine low-power and high-performance CPUs on a single chip, the multi-threading po-
tential of games has been investigated, recently [118]. Pathania et al. presented a line of work
that deals with game power management on multi-CPU platforms and also takes the GPU into
account. [118] contains a detailed investigation about the actual workload distribution among
the threads in games. The work describes the scheduling of different threads and the frequency
scaling of the CPUs as a problem that is based on a CPU workload-capacity model. Each thread
costs a price in terms of workload. Starting at a configuration where the little CPU is at its lowest
frequency level, the threads are mapped to CPU cores as long as they provide sufficient work-
load capacity. If not, the frequency of the CPU is increased or the thread is transferred to the big
CPU. This guarantees that the CPUs are operated at the lowest frequency level with maximum
utilization, which is more power-efficient than operating the CPUs at high frequencies.

Besides CPUs, GPUs have become an integral part of modern SoCs, recently [99, 116, 117,
2, 61]. As mentioned above, Pathania et al. conducted experiments in which they compare the
CPU and the GPU workloads, dependent on the frequency of CPU and GPU, respectively [116,
117] . They showed that some games are more CPU bound while others have a performance
bottleneck at the GPU side. More precisely, this means that the number of rendered game
frames will increase significantly with the increase of the GPU frequency for some games while
for others the FPS will increase linear with the CPU frequency. There are also games with
hybrid CPU-GPU dependencies. Again, the authors created a cost model, that also involves
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the GPU. Based on the required FPS of the game, the model picks an appropriate CPU-GPU
configuration. This approach works reactive rather than predictive, but still achieves respectable
power savings. A more recent work by Ho et al. also deals with interactive applications and
takes into account CPU and GPU DVFS [61].

2.1.3 Web Browser Power Management

In this section, we introduce recent works that deal with web browser power management.
While there has been numerous works targeting the performance of the browser [160, 144, 12,
28, 31, 54, 105, 81], that should at least be mentioned for the sake of completeness, we will
focus on studies that are related to power management.

Thiagarajan et al. presented one of the most inspiring works for our research. They analyzed
the power consumption of different components of a web page, such as JavaScript, Cascading
Style Sheets (CSS) and images [154]. The work shows that up to 50% of the rendering energy
of a web page is due to JavaScipt - depending on the web page. We took a cue from [154]
to investigate the power consumption of the web browser in our own work [124], presented in
Chapter 4. Besides the characterization, the group also introduced some methods to save energy
while browsing the web. For example, they suggested to modify web pages such that only Joint
Photographic Experts Group (JPEG) images are used rather than Portable Network Graphics
(PNG) images, because those can be compressed and rendered with less overhead. Moreover,
they demonstrated the effectiveness of computation offloading to remote servers.

A very detailed analysis of the web browser power consumption was presented in [13]. Cao
et al. introduced a detailed model of mobile web page loading, namely RECON. RECON can
estimate the energy consumption of a web page load based on a linear regression model. The
approach was validated on multiple hardware platforms and found to have a mean error of 6.4 %
for an entire web page load. The main application of RECON is to find energy pitfalls during
web page development. For example, the authors found that some adblockers consume more
energy for web pages without ads, although the loading time of those pages is not increased.
Zhu et al. presented an analysis of the relationship between the transmission data rate and the
CPU power consumption [170]. They found that the CPU workload increases with higher data
rates while there are a lot of idle times for low data rates. Hence, it is possible to either adapt
the CPU frequency to the corresponding data rate. On the other hand, they also suggested that
it is possible to adapt the network speed to the computation speed of the CPU to avoid power
wastage on the wireless link side.

A series of work on power management for mobile web browsing was introduced by the
same group around Yahao Zhu [169, 171, 172]. They presented a study about the impact of
CSS and Hypertext Markup Language (HTML) tags on the web page loading time [171, 172].
In [172], they developed a model that is based on these tags and utilized it to regulate the CPU
frequency of their experimental board. This work was continued in [171], where Zhu et al. de-
veloped a model that is also based on HTML and CSS tags but is used to determine whether the
browser should be scheduled on the big or the little cores. The big.LITTLE platform in [171]
is not a single platform containing an integrated SoC with two CPUs. It rather consists of two
separate hardware platforms being evaluated separately. In parallel, the group released a work
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where they studied the effect of CSS, HTML and JavaScript on the performance and energy
consumption of web page loading on a desktop computer [172]. The latest publication in this
line of work introduced eQos [169]. The approach profiles user and system events to identify
the QoS required by a mobile web application. The data is used to perform CPU task allocation
and DVFS on a big.LITTLE platform. Different applications are used to verify the approach,
for example zlib and the Google Chrome browser. The authors used indirect information of the
context, e.g., web page primitives or user events - for their strategy. They did not use infor-
mation that are provided directly by the application itself. For eQos, the underlying hardware
platform is a real big.LITTLE platform, namely the Odroid-XU+E board [59]. Compared to the
platform that we have used in our works, this is not an HMP platform, because only one of the
CPU clusters, either the little or the big one, can be used at the same time.

Another area of web browser power management is the power consumption that arises due
to advertisements or ads. Recent works have shown that although advertisements mostly con-
tribute to a higher data usage and CPU power consumption, there also exist adblockers that
actually raise the power consumption of the web browser [13]. As depicted in Figure 2.2, there
is a basic power consumption for loading a web page, which increases when advertisements are
displayed. However, there is also an overhead using the adblocker. If ads on a web page do
not consume additional energy compared to loading the baseline web page, the overhead of the
adblocker might actually be higher than running the web browser without an adblocker. Cao et
al. showed that web pages without intrusive behavior, such as playing a video, often consume
less power without an adblocker than applying the adblocker called BSDgeek_Jake [13].

0 20 40 60 80 100 120 140

Baseline Advertisements Adblock Overhead

Figure 2.2: Energy consumption with and without adblocking [129].

There has been a number of interesting works that cover the energy consumption of adver-
tisements in mobile apps in general [155, 56, 55]. However, given the importance of the topic,
we have focused on the energy consumption of web browsers caused by the contents of the web
page. Simons et al. studied the power consumption of adblockers and tracking protection across
different browsers on different Windows desktop computers [148]. They found that advertise-
ments contribute 3.4 % towards the total energy consumption of the computers. Rasmussen et
al. tested the total phone energy consumption of an Android phone based on different adblock-
ers [135]. They found that the energy consumption was highly dependent on different host files
that were used by the adblocker. The best improvement that they found is 3.8 % and they report
that the energy consumption can even increase up to 6.5 % for some of the host files. A more
recent work by Visser et al. used an external adblocker rather than a build-in adblocker in the
browser to quantify the energy overhead of advertisements [156]. The authors found that adver-
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tisements consume roughly 27 % of the average energy consumption on an Samsung Galaxy S5
smartphone.

2.2 Power Management for Wireless Link

An important question in Android power management and especially for web browsing but also
all other application that rely on a functioning Internet connection is the power consumption and
the performance of the wireless link. There has been a large number of studies that investigated
the power consumption of the wireless link. Most works focus on the power consumption of
either the 3G or Universal Mobile Telecommunications System (UTMS) interface [8, 65, 119,
104, 62, 83, 168], the 4G or Long Term Evolution (LTE) interface [63, 64, 107, 57, 90, 86, 161],
the WiFi protocol [1, 167, 101, 120, 17, 89, 9, 136, 170] or a combination of the former [121,
133, 110, 49, 109, 58, 173]. We present the most relevant works in the following.

2.2.1 3G Protocol
As one of the first, Huang et al. provided significant insight about how the 3G network and its
performance affects the user experience on mobile devices by introducing their tool 3GTest [65].
The tool looks into web browsing, video streaming and Voice over IP (VoIP) applications, and
identifies network problems, performance bottlenecks on the phone or related to the contents.
The authors collected data from around 30000 users around world and presented a variety of
results for different carriers and phone types. Hu et al. analyzed the 3G traffic and performance
in China and complemented the previous work [62]. Other works looked more closely at the 3G
transmission protocol [8, 83, 168]. Balasubramanian et al. and Kulkarni et al. as well as Zhao
et al. suggested to reorganize the data transmission phases of the 3G protocol to save power.
The goal of the works is to combine fragmented transmissions to longer but fewer transmission
phases as each 3G transmission phase comes with an overhead in terms of an active power state.

2.2.2 4G Protocol
The successor of the 3G protocol is the 4G protocol that provides higher down- and upload data
rates than its predecessor. Similar as for 3G, Huang et al. investigated the 4G protocol and de-
veloped a tool called 4GTest [63]. They studied the effect of the Transmission Control Protocol
(TCP) and the effect of application design on the network performance [64]. In [63], the group
introduced 4GTest, a tool for the analysis of the performance characteristics and the power con-
sumption of 4G. Using this tool, they found that although 4G has a higher throughout than 3G
and even WiFi, the power consumption of 4G is much larger than the power consumption of
the other two protocols. They identified a large tail energy as a key contributor to the energy
consumption. Similar to some 3G power optimization techniques, they suggested to have fewer
data transfers sending larger data chunks rather than many transfers sending small data chunks.
Moreover, they found that the processing power can also be the bottleneck for web application
when 4G is used. In [64], the group mainly investigated the TCP protocol and its effect on
performance. They found that the TCP parameter settings, such as the TCP receive window,
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has a significant influence on the utilization of the protocol. Moreover, they showed that many
network applications do not exploit the available bandwidth, which has a negative impact on the
overall user experience and battery life. Similar observations were made by Nguyen et al. [107]
and Li et al. [86], where [86] focused on the TCP performance in high speed trains. Further-
more, Xie et al. tackled this problem by introducing CLAW, a tool that boosts mobile web
loading by taking into account information from the physical layer transport protocol [161].

2.2.3 WiFi Protocol

Besides 3G and 4G, the WiFi protocol is one of the most important protocols with respect to
the wireless link power management. Hence, there exists a variety of work that targets different
aspects of WiFi power management in mobile applications. Since WiFi is one of the most
power hungry network interfaces on mobile devices, many works try to combine WiFi with
other interfaces such as Bluetooth, 3G or 4G.

For example, Agarwal et al. presented an algorithm for reducing the energy of a phone
for VoIP calls [1]. The energy consumption of the WiFi module is very high compared to the
mobile data module for the HTC Tornado (Cingular 2125) smartphone used in the experiments.
Hence, the group leveraged the data module to power on the WiFi module for incoming VoIP
calls. This enabled a significant increase of the battery run time by a factor of 6.4 for the given
setup. Manweiler et al. targeted a rather different approach for power saving [101]. Instead
of implementing a power management algorithm on the client side, the authors presented a
software modification of the access points for WiFi networks called SleepWell. The algorithm
re-schedules WiFi packages on the client side (e.g., smartphone), which allows the clients to
transfer packages sequentially rather than all at once. This minimizes waiting times for the
clients and maximizes the WiFi sleeping time.

More works tried to optimize WiFi power consumption on the client side. For example,
Chen et al. implemented a TCP packet re-scheduling algorithm using an additional buffer that
prioritizes the packets according to the priority of the application [17]. Here, foreground ap-
plications have a higher priority than background tasks. Pefkianakis et al. tried to identify idle
times of the WiFi network connection on smartphones based on the user activities [120]. If the
user is not active, the WiFi module can enter a low-power state. Whenever activity is detected,
the module is powered back on. Bandara et al. took a similar approach [9]. While the previous
two works looked the idle time of the WiFi connection, Rattagan et al. looked at the situation
where the WiFi module is used by multiple applications simultaneously [136]. To maximize the
WiFi throughput, they falsified the WiFi status to background applications such that foreground
applications could complete faster. This approach leads to 8 % power consumption reduction.

While the previously described works looked for a way to reduce the WiFi power con-
sumption, [167] and [89] studied modeling and quantifying the power consumption of WiFi on
mobile devices. Zhang et al. presented a model generator that involves several part of a smart-
phone, such as CPU, GPU, display, and also WiFi [167]. In [89], Li et al. looked at WiFi power
consumption only and fine-tune the power model compared to [167].
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2.2.4 Mixed Protocols

Many works tried not only to minimize the power consumption for a particular network proto-
col, but implemented a hybrid approach that mixes different wireless protocol types. Not only
3G, 4G and WiFi, but also Bluetooth is used in combination with other protocols because it
consumes considerably less energy.

Pering et al. developed the tool Coolspots, inspired by the low energy consumption of
Bluetooth [121]. Coolspots aims to minimize the energy consumption of a mobile device by
balancing the transmissions between the WiFi and the Bluetooth interface. The challenge is
to find an optimal configuration between the low bandwidth and range of Bluetooth and the
higher range and bandwidth of WiFi, that comes with a much larger power consumption. This
approach leads up to 50 % energy savings. Some similar approaches that tried to find the best
configuration for WiFi and the mobile data interface - either 3G or 4G - were presented in
various studies [133, 110, 49, 109, 58, 173]. The main difference of the works lies in the field
of applications. For example, Nika et al. looked at general applications [109], while Zou et al.
studied video streaming [173].

2.3 Display Power Management

When we aim to introduce hardware components that are contributing most to the power con-
sumption of the smartphone for running applications, we cannot avoid looking into power man-
agement techniques for displays. As mentioned above, the majority of the power consumption
of a mobile device can be accounted to the CPU, the wireless link and the display. Hence, in this
section we will introduce power management techniques for the remaining one of these three
components, the display.

Studies on display power management looked extensively at adjusting the illumination of the
screen, especially for so-called LCD displays. Very briefly speaking, LCD displays use a crystal
and filter electrodes in order to control a particular pixel. All pixels have to be illuminated by
a backlight to produce the desired effect of forming a visible picture on the screen, which can
vary in brightness. Many studies have looked into reducing the power consumption of the
display by reducing the illumination of the backlight and adjusting the contrast to compensate
for potential image quality loss [16, 22, 145, 103]. Iranli et al. suggested to take the intra-
frame distortion component and the inter-frame distortion component, namely the spacial and
the temporal components in a video frame into account to perform power management for
LCD displays [73, 74]. Anand et al. implemented a gamma correction algorithm that enables
significant power savings for LCD displays [6]. They verified their work on a laptop and two
smartphones by performing a user study with 60 participants where they applied their approach
to the game Quake III and could report power savings of up to 68 %.

Besides LCD screens, there is another promising technology that has been in the focus of
industry and research community in the past years: OLED-based displays. The main difference
between LCD and OLED technology is that each pixel of OLED displays can be illuminated
by itself and no background illumination is necessary. This makes OLED displays thinner than
LCD displays and the contrast of the display is usually more intensive as every pixel can be
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controlled individually. As the power consumption of an OLED display highly depends on the
colors it shows, there were studies changing the colors of graphical user interfaces of different
applications [38]. Dong et al. could reduced the power consumption of a commercial display
up 75 % and also verified the acceptance of the change in a user study. Moreover, there were
studies on DVFS-based approaches for OLED displays [146, 147]. Shin et al. scaled the supply
voltage and adjusted the the pixels’ R, G and B values based on a distortion factor. Wee et al.
implemented an algorithm that dims areas of the OLED screen that are not relevant to a user
to save power [157]. They performed a user study with 30 participants where they tested the
algorithm on an Android device while playing the game Kwaak 3. The display power savings
of 10 % seemed promising. The group generalized their approach in Focus, a frame work that
applies the OLED power management strategy to a wider range of applications [152, 158]. They
tested Focus on an Samsung Galaxy S3, studying 15 applications, among others Facebook,
GMail and the Firefox browser and reported power savings between 23 % and 34 %.

Chen et al. presented another series of work on OLED DVFS [19, 20, 21]. They proposed
a method where they scaled the voltage of small areas of different images by implementing a
hardware driver [19]. To overcome quality loss caused by the downscaling, they remapped
the colors such that it meets a certain Structural Similarity Index (SSIM). They reported power
savings between 25.9 % and 43.1 %. The work was extended by the same group and applied
to video streams [20, 21]. Similar to techniques for LCD displays, they applied spatial and
temporal optimization on the supply voltage of the OLED display, leading to power savings
between 19.05 % and 49.05 %.

Lin et al. reported that the Human Visual System (HVS) does not perceive all areas in an
image with the same intensity [95]. This implies that changes or distortions in one part of the
image might catch the attention of the user more than changes in another part of the image, or
may not be perceived by the user at all. A technique called image pixel scaling is based on
these findings [94]. While most techniques scale down complete areas of pixels at once, Lin
et al. exploited the fact that every pixel in an OLED display can be tuned separately. While
all regions of a picture are usually displayed at best quality, the group argued that only a few
regions of a picture actually catch the full attention of a user. Hence, they identified those
regions and displayed them in a good quality while other regions could tolerate more distortion
to the image. The group reported power savings between 38 % and 42 % for tests on a Samsung
Galaxy Tab 7.7. Another group around Anand et al. also exploited the HVS in their display
power management approach [5]. The authors made use of the blue channel of the OLED
display that consumes most power, but is least sensitive to the perception of the users. They
generated colors that do not decrease the user experience, but consume less power. Moreover,
they darkened areas of the image where the user pays least attention to. The group verified their
approach in a user study and reported up to 45 % power savings. Further, Kim et al. proposed
a form of content-related display power management [78]. They compared the contents of the
display buffer with the frame that should be displayed next. Excluding the redundant frames,
they could calculate the so-called content rate. Based on the content rate, the refresh rate of the
screen could be adjusted.
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3
Frame-based and Thread-based

Power Management for Mobile Games

In this chapter, we look into game power management specifically for HMP platforms. There
has already been fundamental work done on this topic by Dietrich et al. [33, 35, 36], but it has
been conducted on an older hardware platform, that does not allow for the degrees of freedom
in terms of power management that are possible on the big.LITTLE HMP platforms. Their
hardware platform is a PandaBoard ES development board, that features only one dual-core
CPU [114]. Hence, there is no option to shift tasks between different CPUs and there is no
possibility to apply power-gating on a CPU level. Generally, games are very challenging ap-
plications in terms of power management because they usually contain a lot of unpredictable
user interactions and are demanding in terms of computation power. Especially the interactive
nature of games and the effect of power saving techniques on the user perception is an important
problem. New power management techniques such as power gating or turning off CPU cores
have to be explored in order to find the optimal balance between power and performance. This
makes understanding how games work, their internal structure and their potential for power
savings an important step in understanding Android applications in general.

3.1 Introduction

Games are one of the most favored, but also one of the most power consuming applications
for mobile devices. It is reported that 34% of total mobile time is spent on gaming while 22%
is spent on messaging and social networks [80]. The gaming workload is characterized as
highly variable, and user-interactive as opposed to other types of mobile applications. These
characteristics make it hard for the CPU frequency governor in an Android system to perform
appropriate power management, thereby impairing the battery lifetime.
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Figure 3.1: Power management unit with workload prediction on a per-thread basis, thread to
core allocation and DVFS.

A fine-grained workload estimation has more potential for power reduction than coarse-
grained workload estimations. Some works have focused on the short-term temporal correlation
in computational workload in gaming and proposed frame-based workload predictors [36, 50,
52]. These works made fine-grained frame-wise workload estimations to perform DVFS, and
hence, minimize the power consumption while not violating the performance requirements. The
performance requirements of games are usually defined by FPS. The user perceived quality is
not affected as long as the FPS value stays above a certain threshold, e.g., 30 FPS [27]. Yet, the
frame-wise prediction of gaming workloads is a demanding task, as the workload characteristics
differ among games and underlying hardware platforms.

To meet the dynamic computing demands, HMP SoCs are being embedded in state-of-the-
art mobile devices. They comprise a number of heterogeneous cores to allow computationally
demanding threads to run on the performance-oriented cores, and less demanding threads to run
on the energy-efficient cores to save energy. This way, the system is able to respond to various
computing demands in an energy-efficient manner. However, the problem of minimizing the
power consumption of games by means of thread allocation to cores and DVFS without signif-
icant degradation in user perception is a demanding task. Previous works [36, 50] have looked
into gaming workloads as a whole, and performed power management for the entire application.
Unlike in these works, multiple threads of one game could be distributed over multiple cores,
enabling the cores to run on the minimum frequency that just fulfills the FPS requirement of
the user. Consequently, it is essential that the gaming workload is estimated on a per-thread and
per-frame basis as shown in Figure 3.1. We observed that there are roughly two categories of
thread workloads, periodic and aperiodic. Hence, we propose to make use of a hybrid predic-
tor, a combination of the Autocorrelation Predictor (ACR), and the Weighted Moving Average
(WMA), to handle different workload categories appropriately. However, even if we know the
exact values of workload, finding the energy-optimal allocation and frequency is known to be
computationally intractable [7]. Thus, a heuristic algorithm has to be developed to perform the
actual power management.

In this work, we extend the previous frame-based power management techniques to HMP
platforms to propose a frame-based and thread-based, predictive power manager for mobile
games. The proposed framework is capable of performing thread allocation and DVFS simul-
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taneously to meet the FPS requirement of the user while minimizing the power consumption.
The contributions of this chapter are summarized as follows:

• We characterized the gaming thread workloads and develop a thread-based and frame-
based hybrid workload predictor to accurately predict the gaming workload.

• The hybrid predictor learns online whether the thread workload is periodic or aperiodic.

• We devised an algorithm to perform thread-to-core allocation and DVFS simultaneously
based on the predictions.

• We implemented the integrated power manager, which we refer to as GameOptimized
governor in the following, on an Odroid-XU3 development board [59] and compared it
to the default Android governors.

• We performed a user study to evaluate the user perception of our proposed power man-
ager.

The experimental results show that up to 60.0% of energy can be saved for our power manager,
while the user perception is considered good.

3.2 Related Work

Power management for mobile games has drawn attention rather recently as opposed to tech-
niques for other multimedia applications such as videos. Prior works regarding fine-grained,
i.e., per-frame, power management of mobile gaming is scarce due to the difficulty of precise
workload prediction and closed-source nature of commercial games. A PID controller-based
workload predictor has been proposed for 3D games, but it requires parameter hand-tuning and
is subject to trade-off between the controller stability and prediction accuracy [37]. Despite
the hand-tuning, the PID predictor diverges for different states of the game, e.g., the loading
and the gaming phase as those two have significantly different workload behavior. To over-
come this issue, auto-regressive (AR) and self-tuning Linear Mean Square (LMS) predictors
have been proposed [36, 35], which have shown reasonable accuracy in workload prediction.
These predictors estimate the workload per frame to perform DVFS in order to reduce power
consumption. However, these predictors are only able to predict the frame workload as a whole,
while per-thread prediction is required to perform thread-to-core allocation on HMP platforms.
Moreover, these predictors are not able to distinguish between different types of thread work-
loads, e.g., periodic and aperiodic. Hence, their prediction accuracy is not guaranteed for all
types of threads.

Power management utilizing both thread-to-core allocation and DVFS on an HMP platform
was proposed in [118]. The work introduces a heuristic online strategy based on a thread-price
calculated from the CPU utilization. It allocates the threads to cores in a way that allows for
reducing the CPU frequency, and hence, the power consumption. Another work from the same
group has proposed a coordinated CPU-GPU power management that could perform better than
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independent management for 3D games [117]. This work has been extended to use a regression-
based predictor for the impact of DVFS on the game workload in [116]. Although these lines
of works achieve decent power reduction compared to the default Android governor, the power
management is mostly done in an inherently reactive way to workload changes, and applied in a
coarse-grained manner, i.e., roughly once per-second. Compared to these works, our proposed
power management offers more potential for power reduction as we are able to better exploit
the per-frame workload changes by the predictive nature of our approach.

In [23], the authors introduce a game state and frame rate dependent DVFS policy. The
work observes that there exists a bottleneck CPU frequency above which the frame rate does
not increase anymore. Moreover, it changes the target frame rate itself based on the game state
detection. The CPU frequency is scaled such that it meets the target frame rate.

In summary, we propose a predictive frame- and thread-based CPU power management
scheme for games on HMP platforms, which integrates scheduling and DVFS. Compared to
previous work, we identify the workload type of each thread, e.g., periodic or aperiodic, and
apply the most suitable predictor for that thread. Based on the predicted workload of threads,
we allocate the threads to the CPU cores such that the workload is evenly distributed over the
cores at the minimum required CPU frequency to meet the target FPS. Rather than relying on
the average FPS as a sole performance metric, we also perform a user study to evaluate our
power manager.

3.3 Workload Characterization of Mobile Games

Previous work proved that frame-based workload prediction and DVFS for games achieves
significant power savings [36, 37]. Game scene changes, e.g., the appearance of a new enemy,
usually occur suddenly and last a number of seconds. Hence, subsequent game frames inherit
similar workload, which can be exploited for workload prediction-based power management.
Also, mobile games are becoming more and more multi-threaded. Therefore, it is essential
to understand the per-frame and per-thread workload characteristics of games to perform the
proposed fine-grained power management.

We observe that there are two types of threads in a typical gaming process, periodic and
aperiodic. Figures 3.2 and 3.3 show the workload over time for the two categories of threads.
The workload was measured on an HMP platform based on the Exynos5422 processor running
an Android operating system that will be described later. Figure 3.2 depicts a sample thread
workload of the game Asphalt. The workload is aperiodic, but shows high temporal correlation
among adjacent frames. Figure 3.3 shows the workload of a periodic thread in the game Grand
Theft Auto (GTA) 3. There is not much temporal correlation among adjacent frames, but the
workload is invoked every second. Once we understand the pattern, it becomes easier to predict
the thread workload. The AR predictor used in [36] performs decently for the aperiodic category
of threads, but it is not so efficient in predicting the periodic threads. This observation is the key
to our proposed hybrid WMA predictor that successfully estimates workload for both categories
of threads.

Another thing to note is the performance requirement of games, usually measured in FPS.
Most modern games target a frame rate of 60 FPS to guarantee a good gaming experience for the
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Figure 3.2: Measured non-periodic workload of one thread from the game Asphalt.
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Figure 3.3: Measured thread workload from the game GTA 3 which is reoccurring periodically.
The workload is zero except for the indicated circles.

user. This means that a game frame is computed within 16.7 ms. Research has shown that lower
frame rates of 30 FPS are barely noticeable for the user in shooter games [27]. Overachieving
this goal requires a great amount of computational resources, and hence, battery energy, which
is not desired in the case of mobile devices. Some game developers have already taken this into
account and run their games with only 30 FPS. We also adopt this result and target to achieve
30 FPS within our GameOptimized Governor.

In general, the GameOptimized governor is designed for applications that exhibit similar
workload characteristics for subsequent frames. It learns the workload within a range of frames
and can be applied to all applications that maintain a constant frame rate by initiating periodic
frame buffer changes within the OpenGL library as explained in Section 3.5.3.

3.4 Frame-based and Thread-based Workload Prediction

Our GameOptimized governor relies on a precise workload prediction of each thread as it per-
forms fine-grained per-thread and per-frame power management. Overestimation of the thread
workload will hinder the power saving potentials as it forces the cores to run at a higher fre-
quency, while underestimation will degrade the user experience by violating the FPS constraint.
The criteria for choosing the predictor are 1) the applicability for a wide range of games with-
out the need of manual parameter tuning for every single game and 2) the applicability for the
various types of thread workloads we have discussed in Section 3.3.

We have compared a set of predictors that have been previously considered for estimating
the per-frame gaming workloads, and a number of hybrid predictors. The predictors are the
PID, the simple moving average (SMA) [149], WMA [149], linear least squares (LLS) [60],

33



3.4. FRAME-BASED AND THREAD-BASED WORKLOAD PREDICTION

LMS [60], and the ACR [150] predictors. Moreover, we evaluate three hybrid predictors that
combine the ACR predictor with the PID, the SMA and WMA predictors. We have not consid-
ered the AR predictors used in previous works as they are not suitable for thread-based workload
prediction. AR predictors need to be trained with recorded workloads to achieve a good result.
As there can be hundreds of game threads that exhibit very different workloads, it is neither
feasible to obtain the optimal weights for each thread nor to obtain one set of weights for all
threads. The chosen predictors are fed with measured thread workloads of five popular games,
Dragon Fly, Star Wars Galactic Defense, Blood and Glory: Legend, GTA 3, and Asphalt 8,
from different genres that exhibit different workload characteristics.

Table 3.1 shows the accuracy of each predictor for each game. The results per game are
shown in terms of error of prediction, errgame, which is defined as follows.

errgame =
1

M

∑
∀tid

1

N

∑
∀n

|Wtid,m(n)−Wtid,p(n)|, (3.1)

where Wtid,m[t] and Wtid,p[t] are the measured workload and predicted workload of thread tid
at time slot n, M is the number of threads in the game, and N is the total number of frames
within the measurement period.

Table 3.1: Averaged prediction error ep in percent.

Predictor Asph. 8 Drag. Fly Glad. GTA III Star W.
PID 9.74 40.97 31.10 3.51 10.45
SMA 9.18 38.32 28.76 3.47 10.17
WMA 9.03 38.37 28.78 3.39 10.04
LLS 9.87 44.46 31.77 3.64 10.63
LMS unstable unstable unstable unstable unstable
ACR 9.73 552.74 34.68 2.90 11.56
Hyb. PID 7.79 39.34 29.44 2.82 10.00
Hyb. SMA 7.51 37.35 27.72 2.82 9.67
Hyb. WMA 7.41 37.36 27.66 2.80 9.61

Our results show that the hybrid predictor that combines the autocorrelation and the WMA
predictor has the smallest prediction error. Hence, we have chosen this predictor and imple-
mented it within our GameOptimized governor. While the ACR predictor performs well for pe-
riodic workloads, the WMA predictor achieves good results for aperiodic workloads. However,
applying either only the WMA or the ACR predictor to all of the threads results in sacrificing
prediction accuracy for the periodic or aperiodic thread workloads, respectively. This can also
be seen from Table 3.1, where the hybrid predictors have a lower prediction error than both
comprising predictors separately. In the subsequent sections, we first describe the two compris-
ing predictors, the WMA and ACR predictors before we describe the proposed hybrid WMA
predictor.
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3.4.1 Weighted Moving Average Predictor
The WMA predictor is motivated by weighted moving average filters [60]. The thread workload
W of a frame is estimated by calculating the weighted average of the past N frames,

W (n+ 1) =

N−1∑
i=0

(N − i) ·W (n− i)

N∑
i=1

i

, (3.2)

where W (n) is the workload of the n-th frame in seconds. The weights are chosen to be larger
for more recent data such that it has greater influence on the prediction than older data. The
window size, N , can be tuned. Inspection of different values for N showed that N = 14 leads
to a good prediction for the WMA. Figure 3.4 shows an example workload from the game
Asphalt and the corresponding prediction of this signal by the WMA predictor. As shown in the
figure, the predicted curve follows the mean of the highly fluctuating workload.
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Figure 3.4: Workload prediction with the WMA Predictor. The black line represents the pre-
dicted workload while the gray line shows the original signal.

3.4.2 Autocorrelation Predictor
As stated in Section 3.3, some thread workloads show periodic behavior. Especially for these
particular threads whose workload is zero most of the time, the WMA predictor does not result
in satisfying prediction accuracy. However, such workloads are highly correlated to a shifted
version of themselves. In other words, the workloads exhibit a high autocorrelation, which can
be exploited in order to achieve better prediction. The ACR predictor is capable of exploiting
the repetitions within a thread workload. The autocorrelation ACorr(W, τ) of the workload W
at lag τ

ACorr(W, τ) =
ACovar(W, τ)

ACovar(W, 0)
, (3.3)

is obtained by normalizing the autocovariance ACovar(W, τ) given by [150],

ACovar(W, τ) =
N−τ−1∑
i=0

(W (i+ τ)−W ) · (W (i)−W ), (3.4)
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where W is the arithmetic mean of the workloads W . If abs(ACorr(W, τ)) is close to 1, the
workload W is highly correlated with itself, shifted by τ samples. By calculating the autocorre-
lation for τ = {1, 2, ...,Υ}, the lag with the highest autocorrelation τMax can be identified. The
new workload is then estimated as

W (n+ 1) = W (n− τMax). (3.5)

Using this predictor, a perfectly periodic signal can be precisely predicted after a certain settling
time. The total time it takes to learn the signal depends on the period of the signal. A perfectly
periodic signal was created to test the autocorrelation predictor. Figure 3.5 shows an example
in which it takes two periods for the ACR predictor to learn the periodic signal.
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Figure 3.5: Workload prediction with the ACR Predictor on a test data set with perfect repeti-
tions. The solid line represents the predicted workload while the dashed line shows the original
signal.

3.4.3 Hybrid WMA
The ACR predictor performs well if the predicted signal is highly autocorrelated. However,
the predictor is not applicable for signals with low autocorrelation. For this reason, the ACR
predictor was combined with the WMA predictor. After calculating the autocorrelation at lags
τ for τ = {1, 2, ...,Υ}, the absolute maximum of the obtained autocorrelations is considered. If
this maximum is above a threshold Θ, the prediction is done using the ACR predictor, otherwise
the WMA predictor is used.

For the hybrid WMA predictor, we need to tune the parameters Υ, N, and Θ. Υ is the maxi-
mum number of lags to find whether the signal exhibits autocorrelation or not. N is the number
of averaged data points for the WMA predictor. Θ is the threshold that indicates whether the
ACR or the WMA predictor should be used. We have estimated the parameters experimentally
by applying the predictor with varying parameter sets to the workload of the five games men-
tioned above. Then, we chose the results with the least prediction error and calculated their
averages. In the following, we exemplify how we have determined the parameter N. For each
game and thread, we have predicted the workload using the WMA predictor varying the param-
eter N = {1, 2, ..., 100}. For each run, we calculated the workload prediction error errgame,N .
Then, we determined the minimum errgame,min for each game and averaged all minimum errors
to obtain the resulting parameter N.
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The approaches for Υ and Θ are similar, so we will not elaborate on this due to space
reasons. Finally, the resulting values are N = 14, Υ = 20 and Θ = 0.34.

3.5 Game Power Management

In this section, we provide an overview of our proposed game power management based on
the predictor we have stated above. First, we provide an overview of the complete framework.
Next, we explain the underlying HMP platform and software components we have implemented.
Finally, we present a heuristic algorithm that allocates threads to CPU cores and performs DVFS
based on the workload prediction.

3.5.1 Overview of Frame- and Thread-based Power Management
The proposed frame-based and thread-based power management execution flow is summarized
as follows:

1. Detect whether the running application is a game or not

2. Detect the beginning of a new frame

3. Predict the workload of each running thread

4. Allocate the threads to CPU cores according to the predicted workload

5. Set the CPU frequency to meet the desired frame rate

The proposed power management policy is implemented mainly in the Android governor. First,
the governor needs to distinguish between the game processes and other application processes
as we propose a power management technique tailored for mobile games. This is done by
maintaining a hash table of known games. Second, the governor is notified about the beginning
of a new frame. As our whole framework is based on per-frame power management and accurate
prediction of the thread workloads, it is important to detect the precise point in time when the
processing of a new frame begins. This is accomplished by modifying the OpenGL library,
as described below. Third, we predict the workload of each thread required to process the
frame. We implement the predictor described in Section 3.4. Fourth, we apply a heuristic
algorithm to allocate threads to each core and set the operating frequency as will be described
in Section 3.5.4. The basic idea of the algorithm is to prefer the A7 CPU and distribute the
threads’ workloads as evenly as possible among all cores as long as the FPS constraint is not
violated.

3.5.2 HMP Hardware Platform
Although we have already introduced the underlying hardware platform in Section 1.1.2, we
want to give a short recap of the most important hardware features of the Odroid-XU3 board. It
features an Exynos5422 MPSoC that is also part of the Samsung Galaxy S5 smartphone [59].
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Figure 3.6: System architecture with modified OpenGL library and combined governor/sched-
uler unit within the GameOptimized governor.

This heterogeneous MPSoC is based on the ARM big.LITTLE architecture, consisting of two
different CPU clusters. One is a performance-optimized Cortex-A15 quad-core CPU (A15) and
the other one is a power-optimized Cortex-A7 quad-core CPU (A7). We refer to a CPU cluster
with a set of CPU cores as a CPU while we refer to a single CPU core of a CPU cluster as a core.
The CPU voltage and frequency can be adjusted independently per CPU but not per individual
core. The A7 supports a frequency range from 1.0, 1.1,· · · to 1.4 GHz while the A15 supports
a range from 1.2, 1.3,· · · to 2.0 GHz. In addition, a Mali-T628 GPU and 2 GB of LPDDR3
memory are integrated into the Exynos5422 SoC. The operating system distribution of our setup
is an Android Kitkat 4.4.4 with a Linux kernel version 3.10.9. The setup features so called HMP
scheduling that allows for the allocation of tasks to all big and little cores simultaneously. The
HMP scheduler prefers the small cores, and only migrates threads to the big cores if the CPU
utilization rises above a certain threshold.

3.5.3 Software Architecture
As mentioned before, our power management technique is implemented as an Android CPU
governor. Figure 3.6 shows the relevant software entities, which are the GameOptimized gover-
nor, and the modified OpenGL library.

GameOptimized Governor
The GameOptimized governor, the key part of our power management technique, performs
workload prediction, thread allocation and DVFS. It is implemented as a Linux kernel governor,
which is a part of the cpufreq module. It contains a set of workload predictors that predict the
workload for each game thread.

Modified OpenGL Library
The GameOptimized governor needs to be aware of the game context such as whether a game
is being played, and the start time of the frame rendering. This is achieved with the help of the
modified OpenGL library. The Android games we look into are downloaded from the Google
Play Store. They are closed-source, and hence, we cannot instrument the source code to detect
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when a frame has been processed. Similar to the approach in [35], we calculate the frame rate
by modifying the eglSwapBuffers() function of the OpenGL library. Usually, the frame buffer of
a graphics unit consists of two buffers, a front and a back buffer. The currently displayed frame
is stored in the front buffer while the next image is rendered into the back buffer. The function
eglSwapBuffers() swaps the two buffers and the new frame is shown on the display. After this
call, the processing of the next frame begins. We calculate the frame rate by measuring the time
between two such function calls. This information is passed to the GameOptimized governor
via an ioctl() call.

Game detection is also done in the modified OpenGL library. The process ID of the calling
process is determined using the system’s getpid() function. Via the process ID, the name of the
process is read from the kernel’s /proc file system. Next, a hash function is used to identify the
process. All hashes of known games are calculated once and stored in a list.

3.5.4 Thread Workload Prediction-Based Core Allocation and Frequency
Selection

In this section, we present our strategy for the thread-to-core allocation and DVFS as well as
the underlying hardware and software models. For the models, we take a cue from [118].

Hardware Model
Our hardware platform comprises of two CPUs Px where x ∈ {big, little} with different per-
formance characteristics, described in Section 3.5.2. Each Px incorporatesNx cores where each
core is denoted as Px,i with i = 1, 2, ..., Nx. The cores operate at the frequency fx that ranges
from fx,min to fx,max. Each core of each CPU provides a maximum capacity Cx,i. The capac-
ity is defined as the number of CPU cycles that can be executed on one CPU core Px,i at the
frequency fx,j within a given time. The time is dependent on the target frame rate FRT . As
introduced in [118], we define a Migration Factor that represents the performance difference
between the big and the little cores. While one core of Plittle can execute a number of n instruc-
tions, one core of Pbig can execute MigrationFactorbig · n instructions within the same time.
Experimentally, we have found that MigrationFactorbig = 1.7058 is a suitable number for the
given platform. MigrationFactorlittle is normalized to 1. Hence, the maximum capacity of
one core is calculated as

Cx,i,max = MigrationFactorx ·
fx,j
FRT

, (3.6)

while Cx,i is the currently available capacity of one core and FR is the target frame rate. It
needs to be considered that Cx,i is further influenced by other threads executing on the CPUs,
for example, threads spawned by the operating system. Therefore, we add an integral controller
It to the calculation of the maximum available capacity for the game threads with

It =
n∑
1

α · (tF − tT ), (3.7)

where tT is the target time for a frame to compute, tF is the actual computation time, n is
the total number of computed frames and α the integral gain of the controller. As α highly
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Table 3.2: Power consumption of the A15 at a utilization of approx. 70%.

Volt. Freq. Idle 1 Core 2 Cores 3 Cores 4 Cores
1.0 V 1.2 GHz 0.30 W 0.70 W 1.07 W 1.46 W 1.80 W
1.0 V 1.3 GHz 0.34 W 0.79 W 1.21 W 1.65 W 2.05 W
1.0 V 1.4 GHz 0.37 W 0.85 W 1.35 W 1.80 W 2.26 W
1.0 V 1.5 GHz 0.42 W 0.98 W 1.51 W 2.03 W 2.57 W
1.1 V 1.6 GHz 0.48 W 1.13 W 1.76 W 2.37 W 2.99 W
1.1 V 1.7 GHz 0.55 W 1.30 W 2.01 W 2.74 W 3.50 W
1.1 V 1.8 GHz 0.66 W 1.48 W 2.30 W 3.20 W 4.05 W
1.2 V 1.9 GHz 0.73 W 1.72 W 2.74 W 3.85 W 4.92 W
1.3 V 2.0 GHz 0.93 W 2.23 W 3.49 W 4.93 W 6.49 W

influences the speed at which the current CPU frequency adopts to frame misses, we introduce
an αup and an αdown. Experimentally, αup was tuned for a too low frame rate, while αdown was
tuned for a too high frame rate. We found that αup = 0.2 and αdown = 0.1 are suitable for our
application. Finally, It is converted to the actual control value Ic, which is measured in CPU
cycles, and subtracted from the maximum available capacity Cx,i,max.

Software Model
A game consists of a number Nt threads Tk where k = 1, 2, · · · , Nt. Each thread puts a work-
load Wk on the system that is measured in CPU cycles. The workload Wk of each thread takes
up capacity on one CPU core Px,i.

Power Consumption Characteristics of the Hardware
As described in Section 3.5.2, our hardware platform comprises the power-efficient A7 CPU
and the performance-oriented A15 CPU. Our measurements have shown that the A7 consumes
significantly less energy than the A15 for the same workload, although the A15 computation
time is significantly lower. Hence, it is more efficient in terms of energy consumption to shift as
much workload as possible to the A7 and only switch to the A15 when the required FPS cannot
be met. However, it is not energy-efficient to process the workload at the maximum frequency
as it results in higher energy consumption.

Furthermore, we have run a measurement set, which shows that it is more power-efficient
on our platform to distribute the threads over all available A15 cores and lower the frequency
rather than utilizing fewer cores at a higher frequency. This is mainly due to the impossibility
of turning off single A15 cores and the resulting high idle leakage currents of these cores.
Table 3.2 shows the power consumption of the A15 at different frequency levels and different
numbers of utilized cores. The load of each utilized core is approximately 70%. Running one
core at 1.9 GHz (case 1) and running four cores at 1.2 GHz (case 2) consumes approximately
the same amount of power. However, if we compare the workload of both cases to the workload
of one core at 1.2 GHz, the workload of case 1 is only 58% larger, while the workload of case 2
is 300% larger. Hence, in this extreme case, we can execute 5 times the amount of work on
multiple cores in case 2 consuming the same amount of power as in case 1. Based on these
observations, we implement a strategy that aims to prefer the A7 if the FPS requirement is not
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violated. Further, we distribute the workload as evenly amongst the cores as possible to keep
the CPU frequency as low as possible.

Thread to Core Allocation
The strategy we use to distribute a game’s tasks to the CPU cores is shown in Algorithm 3.1. It
is executed once every frame. First, frequencies of both CPUs Px are set to the minimum value
and the capacity Cx,i of each core is reset. Then, the workload of the next frame is predicted
for each game thread. Next, we iterate through the threads Tk and assign them to CPU cores.
We begin with the A7 cores at the minimum frequency level flittle,min. To prevent re-allocation
overhead, we first check whether the previously assigned core offers enough capacity for the
current thread. If not, we assign it to the core with the most available capacity. However, if none
of the cores at the current frequency level provides enough capacity Cx,i for the workload Wk

of thread Tk, we increase flittle to the next higher frequency level. If we cannot find a suitable
core on the A7 CPU, we reset its frequency to the previous level. Then, we repeat the same
procedure for the cores of the A15 CPU. If we cannot find a suitable core on the A15, we assign
the thread to the A15 core with the minimum workload.

3.6 Evaluation and User Study

We have evaluated the GameOptimized governor by comparing it to the two most popular An-
droid default governors, interactive and ondemand. Moreover, we performed a user study to test
the users’ perception of the implemented governor. The results show that we save on average
41.9% of energy compared to the interactive and 31.2% compared to the ondemand governor
with only a small degree of perceptible performance loss.

3.6.1 Energy Consumption and Frame Rate Evaluation
The main objective of the GameOptimized governor is to lower the power consumption of the
two CPUs on the Odroid-XU3 board during the game play. To evaluate the governor, we chose
twelve games of different genres. We played each game three rounds using 1) our GameOpti-
mized governor, 2) the interactive governor, and 3) the ondemand governor. Each round had a
duration of 10 minutes. For comparable results and synchronized measurements the board was
rebooted before each measurement. To avoid that changes of the GPU frequency interfere with
the frame rate, the GPU frequency was fixed to the maximum possible value of 543 MHz.

Figure 3.7 shows the total CPU energy consumption (A7 and A15) for the twelve test games
for each of the three governors. The GameOptimized governor can achieve noticeable energy
savings for all of the games, up to 60.0% compared to the interactive governor and 58.5%
compared to the ondemand governor. In general, the savings highly depend on the type of the
game and hence, the workload that is generated. Games like I, Gladiator, Fruit Ninja, Dragon
Fly and Sonic Jump do not generate high workloads. Consequently, both default governors
whose power management strategy is highly workload dependent, do not ramp up the frequency
of the A15 as they do for example for GTA 3 or Interstellar. For those less resource demanding
games, the energy consumption using the default governors is anyway comparatively small.
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1: Initialize fx = fx,min for x ∈ {big, little}
2: Cx,i = Cx,i,max − Ic at fx,min and i = 1..Nx

3: Predict workload Wk for each thread Tk where k = 1..Nt

4: for k = 1 to Nt do
5: if Wk == 0 then
6: Do not change allocation of Tk
7: else
8: Set x = little
9: while fx <= fx,max do

10: Check previous allocation and if needed iterate
11: through all cores at fx to find core with max(Cx,i)
12: if max(Cx,i) > Wk then
13: Allocate Tk to Cx,i
14: Cx,i = Cx,i −Wk

15: Continue with next thread Tk
16: else
17: Increase fx to the next level
18: end if
19: if flittle == flittle,max then
20: Set flittle to previous value and restart
21: while-iteration with x = big
22: end if
23: if fbig == fbig,max then
24: Allocate Tk to Pbig,i, with max(Cbig,i)
25: Continue with next thread Tk
26: end if
27: end while
28: end if
29: end for

Algorithm 3.1: Thread to core allocation and frequency selection strategy.

Hence, the power savings for the GameOptimized governor are smaller than for highly resource
demanding games. Figure 3.8 shows the average FPS for the twelve test games for each of the
three governors. As described in Section 3.5.1, our implementation is designed in a way that it
targets a frame rate of 30 FPS to guarantee a good user experience. The figure shows that the
average frame rate for all games is between 30 and 40 FPS. For Dragon Fly and Sonic Jump,
we can observe that the achieved frame rate is higher than for the other games, approximately
50 FPS. This effect is caused by the above mentioned low resource demand of those games.
Even by applying the GameOptimized governor’s thread allocation scheme and frequency down
scaling, one frame is processed faster than within 33 ms. Consequently, the frame rate clamps
at a higher value. A solution to this problem is to apply a more aggressive power management
technique, for example delay the call to the eglSwapBuffers() function. Another effect that
becomes visible in Figure 3.8 is the frame limitation, which is by default incorporated in some of
the games. For Interstellar and Asphalt 8, the frame rate is already limited to 30 FPS. The game
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Figure 3.7: Total energy consumption of both CPUs for the twelve test games for the game
power manager and the Android default governors.
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Figure 3.8: Average frame rate for the twelve test games for the game power manager and the
Android default governors.

Interstellar is a good example for showing the energy saving efficiency of the GameOptimized
governor. Although the frame rate stays the same as for the other two governors, the energy
consumption is halved. Hence, we can claim that the energy savings we achieve are not only
due to the frame rate reduction, but because of the applied thread to core allocation and DVFS
scheme.

3.6.2 User Study
In the previous section, we have shown that that the GameOptimized governor achieves high
energy savings. Due to the reduced target frame rate of 30 FPS, it needs to be ascertained
whether a decrease in the user experience is perceivable or not. For this reason, a user study
with ten participants was conducted. The goal of this study was to obtain a realistic rating
of the gaming performance of the GameOptimized governor compared to the Android default
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interactive governor. For the study, we have chosen five games, a subset of the twelve games
presented in Section 3.6.1: GTA 3, Angry Birds Star Wars, Interstellar, Fruit Ninja and Sonic
Racing. The reduction of the game number from twelve to five leads to a duration of the study
of about one hour per person.

For each game, there are two phases, the training phase and the actual playing phase. During
the training phase, the participant can try the game for an unlimited amount of time to get used
to the game play and the controls. In the playing phase, the participant plays every game twice
for three minutes, once with the GameOptimized governor (measurement 1) and once with the
interactive governor (measurement 2). The governors are picked in random order, hence, the
user does not know which governor is currently active. The Odroid-XU3 board is rebooted
before each measurement. After one measurement, the user is asked to rate the game play. The
possible grades are in a range from one to six, where one is the best (no lags or glitches) and six
is the worst (game is not playable).

Table 3.3 shows the rating results from all participants for all games. We can see that a small
performance decrease was notable for the GameOptimized governor for four of the five games.
Especially Fruit Ninja, which is a highly interactive game with a lot of fast animations, was
rated worse than the other games. Still, the participants considered the gaming experience as
good and very good for most of the measurements. Moreover, the grading difference between
measurement 1 and measurement 2 is not more than 1 step apart for almost all cases. After
the measurements, we showed the participants the amount of energy (in percent) that could be
saved by applying the GameOptimized governor. All of them agreed to compromise a little
performance for the energy savings that can be achieved with the GameOptimized governor.

Table 3.3: Gradings in the user study for the GameOptimized governor (G) and the interactive
governor (I) per participant (P).

Game GTA III Angry B. Interstel. Fruit N. Sonic R.
Gov. G I G I G I G I G I
P1 2 1 2 1 1 1 2 1 1 1
P2 1 1 2 1 1 1 2 2 1 1
P3 2 2 1 1 1 1 1 1 1 1
P4 1 1 2 1 2 2 1 1 1 1
P5 1 1 1 1 1 1 1 1 1 1
P6 2 2 2 3 1 1 4 3 2 2
P7 1 2 1 1 1 1 1 1 1 1
P8 1 1 2 1 1 1 2 1 1 1
P9 2 1 2 2 1 1 2 1 2 2

P10 2 1 1 1 1 1 3 1 3 1
∅ 1.5 1.3 1.6 1.3 1.1 1.1 1.9 1.3 1.4 1.2
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3.7 Summary

In this chapter, we have presented a predictive, thread- and frame-based Android game power
manager on an HMP SoC, the Odroid-XU3 board. Compared to previous works that have
looked either into workload prediction or thread-to-core-allocation, we combine the advantages
of a frame-based workload predictor with an energy-aware thread-to-core-allocation technique
on the power-efficient little CPU and the performance-oriented big CPU. We predict the work-
loads of all game threads per frame and use this information to distribute the threads over the
CPU cores such that we can minimize the CPU frequency, and hence, save energy. The predic-
tor differentiates between periodic and aperiodic workloads. We evaluate our power manager in
a user study, which reveals that our power manager can save on average 41.9% of total energy
consumption while still maintaining a good and very good user experience.

This work is an important step towards showing that applying power management strategies
on HMP platforms can lead to very high power savings without impacting the user performance
dramatically. We have shown that especially preferring the little cores where possible achieves
high saving rates. Moreover, reducing the frequency of the big cores to meet the demand of the
application proved efficient. Hence, it is important to further look into interactive applications
and find a balance between power and performance.
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4
Web Browser Workload Characterization

for Power Management

In this chapter, we evaluate a new application type in respect to its properties and its power con-
sumption on HMP platforms: The web browser. While games are mostly interactive, which is
challenging for power management, the browser exhibits multiple different states that are also
common for other Android applications. For example, it can playback videos, features scrolling
through different web pages and, most important, downloads and renders different types of con-
tents from the web. Loading web pages is a very expensive task in terms of power consumption.
Hence, the potential of saving power is very large for this task. To identify how much power
we can save for loading a web page on an HMP platform, we tweak the different parameters
that are available on the platform – especially on the big cores – and present a detailed analy-
sis and characterization of the power versus performance trade-off for web browsers on HMP
platforms.

4.1 Introduction

The number of mobile users has increased rapidly over the past few years and is reported to
surpass desktop web browsing traffic. Google reports that already more searches take place on
mobile devices than on desktops in ten major countries, including the US and Japan [48]. This
trend is likely to accelerate with the exploding sales of tablet devices which has grown ever
faster than PCs [97]. Not only mobile web traffic, but also the computational demand of the
mobile web pages is increasing significantly [171].

Mobile web browsing is enabled by mobile browsers such as Chrome, Safari, etc. A browser
consists of multiple components such as the user interface, browser engine, layout engine, dis-
play components, and networking. The most time and power consuming component while
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Figure 4.1: Web Browser with processes and threads running on an HMP platform.

rendering a web page depends on the type of the web page. But in most cases, the rendering
engine and the JavaScript engine beneath it are the key components affecting performance and
power consumption [154]. In order to meet the growing computational demand of mobile web
pages, there has been a race by browser developers to enhance the processing speed. For ex-
ample, Google’s JavaScript engine V8 boosted JavaScript performance of Google Chrome by
implementing a number of performance optimization techniques such Just–In-Time (JIT) com-
pilation, inline caching, etc [42]. However, mobile web browsers are still designed assuming
desktop conditions, that is, for performance, and little attention has been paid to power con-
sumption for mobile scenarios. For example, Google’s JavaScript engine V8 makes extensive
use of performance optimization techniques such as JIT compilation, inline caching, concurrent
garbage collection, and so on.

Hence, existing power management techniques for web browsing workloads on state-of-the-
art Android systems leave much room for power optimization. Power management on Android
systems is performed in collaboration between the Android governor which manages operating
voltage and frequency, the scheduler, which allocates and schedules threads to each CPU core,
and the power control unit which manages the power state of each CPU such as power down.
However, the components are not designed in a way to minimize the power consumption, nor
collaborate closely to reach a system-wide optimal solution. For example, the power control
unit does not turn off unused CPU cores unless the whole device is left unused for some time,
and the scheduler allocates and schedules tasks based on CPU usage thresholds not specifically
taking into consideration the power consumption. Further, the Android default CPU governors
are not aware of the performance requirements from the user so that they can conservatively
reduce the operating frequency in order to optimize the response time. As a result, perhaps the
most precious resource in a mobile system, the battery energy, is wasted in many real usage
scenarios.

The poor interplay between power managing components becomes more distinctive when
it comes to HMP platforms incorporating the big.LITTLE architecture as shown in Figure 4.1.
This architecture is adopted in state-of-the-art smartphones like the Nexus 5X with its Qual-
comm Snapdragon 808 processor [43, 131], the Samsung Galaxy S6 with its Exynos Octa
7420 [139, 138] and many more. The figure gives a complete overview of our evaluated sys-
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tem including the Exonys5422 SoC also based on ARM big.LITTLE architecture. It consists
of two quad-core CPUs, of which one is a performance-oriented big CPU, and the other a
power-saving little CPU. Individual CPU cores cannot be powered down due to complications
in handing shared-cache, but the big CPU can be powered down as a whole. However, even if
only one big core is on, all the other big cores have to idle which constitutes a significant portion
of the total power consumption. Further, the thread allocation problem among the performance-
oriented big cores, and power-saving little cores is not trivial. The default schedulers available
in commercial products seek a rather simple solution based on setting a threshold value for CPU
utilization. The HMP scheduler does not consider the full span of possible thread allocation and
scheduling options such as consolidating workload on one CPU operating at high frequency and
powering down the other cores as opposed to many cores running at low frequency.

In view of the previous discussion, to evaluate possible power saving potentials, this chapter
provides a non-trivial, detailed analysis of the actual thread workloads generated by the web
browser for a number of web pages. These new findings enable us to explore the potentials of
power reduction on a real HMP platform. As we focus on the behavior of mobile web browsers,
the web page rendering and JavaScript processing in particular, we use a trimmed-down version
of the full Chrome browser, the Chrome content shell, which contains only the core components
of the full browser and is referred to as browser in the following. The contributions of this work
are as follows:

• We give a detailed analysis and characterization of the mobile web browser workload for
loading a web page, by breaking down the browser CPU time and CPU energy based on
the main browser processes and their threads for representative web pages. Here, loading
refers to downloading, rendering and displaying the web page. We identify the process
consuming most energy, which is the renderer (up to 70 %), and further break down its
energy consumption by the website components HTML, CSS and JavaScript. Moreover,
we find that different web pages have different workload distributions between the most
relevant renderer threads.

• Based on the non-trivial analysis, we look into the potentials of power saving for mobile
web browsing workload on HMP platforms using core allocation of individual threads,
DVFS, and power gating. Considering the fact that we cannot power down individual
cores of one CPU, we make the non-intuitive observation that not exploiting parallelism
but consolidating all browser threads to one instead of all available big cores can lead to
power savings with only small performance drop. Further, we show in a first attempt that
we can save up to 39.21 % of the CPU power consumption when we power gate the big
CPU after a web page has finished loading. Finally, we explore the DVFS power savings
potential without performance loss during the web page loading using a power model. We
find that we could save up to 26.6 % of energy consumption by applying more aggressive
frequency down-scaling compared to the default power manager.

• We report a measurement infrastructure that we have developed for logging all the perfor-
mance and power relevant information such as the core utilization, CPU frequency, power
consumption, thread allocation, function tracing, etc, for the underlying HMP hard- and
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software platform. This infrastructure is a prerequisite for all analysis and characteriza-
tion work as it enables us to find which CPU a thread is scheduled on - the most relevant
information in case of HMP systems. It was used for all measurements presented in this
chapter.

The rest of the chapter is organized as follows: Section 4.2 gives an overview of related
work in the area of browser power management. In Section 4.3, we give details on browser
internals and web browser application characteristics. We introduce our hardware and software
measurement infrastructure in Section 4.4. In Section 4.5, we give a detailed analysis of the
browser thread workloads and their energy consumption. Based on our results, we combine
HMP platform specific power management with the workload characteristics of web browsers
in Section 4.6.

4.2 Related Work

Although attention has mostly been paid to the performance of the mobile web browsers, re-
searchers have recently begun paying attention to the power consumption of mobile web brows-
ing. There are works putting emphasis on the network power consumption during web brows-
ing. In [170], it was found that the coordination of the CPU’s operating frequency and the
network latency has significant impact on the energy consumption during web page loading
as one has to idle wait for the other to complete its execution or transmission. Another work
successfully reduced the power consumption by grouping the data transmissions during page
loading and letting the 3G radio interface sleep more [168]. However, recent work has revealed
that due to the significantly increased network speed, the complexity of the mobile web pages,
and adoption of high-performance power hungry application processors to mobile platforms,
the processor is becoming the major player in mobile web browsing both in terms of power
and performance, and thus we focus on it. The measurements of mobile web page rendering
power consumption showed that downloading and parsing CSS as well as JavaScript consumes
a significant amount, up to 50 %, of total power [154].

There was some research characterizing the energy consumption of mobile web browsing
according to web page primitives such as HTML, CSS and JavaScript. WebChar, a tool for
analyzing browsers to discover properties of HTML and CSS that affect performance and power
consumption, takes snapshots of a large number of websites and mines the model to produce
a ranked list of expensive features in HTML and CSS [137]. It focuses on showing up energy
pitfalls for web page design. In [154], the authors proposed power saving techniques based
on web page modification and browser computation offloading to a remote proxy. However,
they did not study browser workload characterization and power consumption on thread-level
granularity, but a courser level of granularity, mostly according to web page primitives such as
HTML, CSS and JavaScript.

There was an interesting line of work on this topic that studied web browsing power con-
sumption on HMP platforms. In [171], a predictive model based on web page primitives was
introduced. This model was used to find the appropriate core and operating frequency according
to web pages in a heterogeneous system. However, they used a setup that consists of two sep-
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arate platforms incorporating a big and a little CPU to validate their approach. This work does
not reflect results for a real big.LITTLE platform because both CPUs are not on one chip. An-
other work identified QoS requirements of different mobile web applications by event-profiling
to perform DVFS on a big.LITTLE platform [169]. Again, they did not observe actual thread-
level workloads of web browsers. We took a cue from these studies and analyzed the different
processes and their threads with the JavaScript engine to evaluate their power consumption.

In summary, the main contribution of this chapter is a detailed, non-trivial characterization
of the web browser workload and energy consumption at thread-level granularity, whereas pre-
vious work operates at a more course-grained application level. The workload analysis of the
browser at that level of granularity cannot be translated directly into power management poli-
cies as we are able to do in this work, e.g., determining power-aware thread allocation schemes
to CPU cores. Moreover, to the best of our knowledge, we are the first to show power saving
potentials and propose power management techniques for web browsers on an HMP platform
by exploiting all available mechanisms on the platform, such as power gating, DVFS and HMP
scheduling.

4.3 Page Rendering in Web Browsers

This section gives an overview of the elements of a web page, the structure of a web browser
and the role of the JavaScript engine. Further, we discuss the workload characteristics that are
specific for web browsers and need to be considered for power management.

4.3.1 Components of a Web Page

A web page consists of static and dynamic elements. Static elements are described by HTML
and CSS. HTML describes the basic structure of a web page whereas CSS defines its styling.
Scripting languages like PHP and JavaScript are used for dynamic and interactive elements such
as user inputs or slide shows. We focus on JavaScript as research has already shown its large
impact on web browser power consumption [154]. JavaScript intensive phases occur during the
loading of a web page or user interaction.

4.3.2 Components of a Browser

The main components of a browser are the browser engine, the rendering engine and the
JavaScript engine as shown in Figure 4.2 [40]. The browser engine acts as an interface be-
tween user inputs and the rendering engine. When a web page is parsed, the rendering engine
creates a so-called Document Object Model (DOM) tree from the HTML code. It also parses
the CSS into style rules. DOM tree and style rules are combined to the render tree, the internal
representation of a web page. Hereafter, the exact positions of the render tree components are
determined. Finally, the web page can be drawn on the screen. JavaScript code is processed by
the JavaScript engine and manipulates nodes of the DOM tree.
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Figure 4.2: Schematic structure of a browser.

4.3.3 JavaScript Engine V8

As our experiments were performed using the Chrome browser, we focus on describing the
internals of V8 [42], the JavaScipt engine used in this browser. The browser itself executes
three main processes of which one corresponds to the browser engine, one to the rendering
engine and one to the painting task that communicates with the GPU. V8 executes as part of the
renderer. Our measurements have shown that the rendering process consumes up to 70% of the
total CPU time, depending on the web page, where up to 60 % of the rendering energy is due to
the JavaScript engine.

JavaScript is an untyped script language. The code needs to be downloaded, parsed, com-
piled and executed. V8 can perform all these stages partly concurrently. At the time of perform-
ing the experiments in this chapter, it is a compile-only JavaScript virtual machine consisting of
a quick, one-pass (baseline) compiler and a more aggressive optimizing compiler. The baseline
compiler performs compilation on the main thread whereas optimized code is compiled by con-
current compilation threads. Finally, V8 incorporates a multi-generational garbage collection
mechanism that can be triggered in parallel to the main thread execution.

4.3.4 Web Page Rendering

The browsing process can be separated into a loading phase and a post loading phase as depicted
in Figure 1.4. The loading phase is defined as the phase before the loadEventEnd function call
of the main frame occurs. During the loading phase, the website needs to be downloaded,
rendered and displayed. These steps are highly resource intensive. For this phase, JavaScript
plays an important role as it is used in most of the popular websites and consumes a large
amount of energy [154]. The goal during the loading phase is to download, render and display
the page as fast as possible, spending as little energy as possible. During the post loading phase,
the resource requirements vary from website to website. Among the 25 most popular websites
based on rankings from Alexa Internet [4], which provides commercial web traffic analytics,
are search engines, social networks, online shops, and encyclopedias such as Wikipedia. The
workload highly depends on the type of web page and its degree of interaction with the user,
e.g., scrolling. Other aspects can be the amount of JavaScript executed in the background,
animations or video streaming.
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The corresponding browsing phase and website characteristics could be exploited to design a
web browser specific CPU power management unit that performs in an optimized way compared
to the standard Android power manager.

4.4 Measurement Setup

We have implemented a software measurement framework on top of the commercially avail-
able Odroid-XU3 hardware platform, which we have already described in Section 1.1.2. The
framework is capable of capturing the power consumption of CPU clusters with a granularity
of 1 kHz, and the CPU usage of individual threads running on each core with a granularity of
20 Hz. With this setup, we can not only study the overall power consumption, but also the
detailed internal traces of web browser threads.

Figure 4.3: Exynos5422-based measurement setup.

4.4.1 Hardware Infrastructure
The Odroid-XU3 board provides a built-in power measurement interface which has been uti-
lized in our experimental setup as shown in Figure 4.3. Shunt resistors are placed in front of both
CPUs, the GPU and the memory. INA231 sensors measure voltage and current at the shunts
of the target component while the kernel driver calculates the power. Further, the details of the
Exynos SoC of the Odroid-XU3 board have already been described throughly in Section 1.1.2
and Section 3.5.2. Please refer to those sections for details on the development board.

4.4.2 Software Infrastructure
Our software setup is a combination of three different logging environments as shown in Fig-
ure 4.4, (1) the power logger, (2) the process logger and (3) the Chrome:trace environment.
Combining all the information, we are able to get a detailed profile of which thread was running
when, on which core and how much energy it consumed at that point in time. We exploit this
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Figure 4.4: Software setup for data acquirement.

data to identify the effects of DVFS and thread allocation on the performance of the browser.
The Chrome version that we run is 61.0.3139.0.

Power Logger
For the power measurement, we have developed a logger which instruments the underlying
kernel driver of the sensors. It acquires the power of both the A7 and the A15, GPU and
RAM. Besides the power, it enables us to measure A7 and A15 CPU utilization for each of the
individual cores at a sampling frequency of approximately 1 kHz. Further, we log the frequency
of each CPU by instrumenting the cpufreq driver.

Process Logger
Moreover, we have developed a process tracer for capturing information about the individual
processes and sub-processes of applications. The logger is a C-program capturing the accumu-
lated CPU time and the core a process is currently scheduled on. This is necessary to identify
which threads are running on the A15 and which on the A7. Without this information it is not
possible to create a power profile on an HMP platform. While the CPU allocation is not relevant
to extract power information per thread for traditional chips with only one CPU, it is crucial for
the big.LITTLE architecture.

Chrome:trace
To get deeper insight into the logged processes during the execution of the browser, we instru-
mented the Chrome:trace framework. It gives detailed stack traces of which functions were
executed when and which process they belong to. In this way, we can identify the threads that
are executing HTML, CSS or JavaScript. Chrome:trace does not give any information on the
thread core allocation.

4.5 Web Browser Workload Characterization

In this section, we present a detailed analysis of the web browser workload for the loading and
post loading phase on the underlying HMP platform. We look into the CPU time and energy
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consumption of the browser threads to identify power saving potentials by thread-to-core allo-
cation, DVFS and power gating. To the best of our knowledge, this is the first work to analyze
the actual thread workloads generated by web browsers for power management. Further, we
look more closely on rendering and JavaScript-related power consumption. The representative
websites we have chosen based on rankings from Alexa Internet are eBay, Amazon, Reddit,
Facebook, Wikipedia and CNN. We initiate the loading of the web page and wait for 10 sec-
onds in each experiment.

4.5.1 Breakdown Analysis of Browser Threads

As discussed before, the chosen browser consists of three main processes: (1) the browser pro-
cess itself, which handles user inputs, (2) the rendering process, which sets up the frames, and
(3) the GPU process, which triggers the GPU to draw frames on the screen. All of them create a
set of threads, of which the two most important ones in terms of the workload they generate are
the main renderer thread, CrRendererMain, and the compositor tile worker, CompositorTileW.
Both belong to the renderer process. The main renderer thread sets up the web page including
HTML, CSS and JavaScript while the compositor tile worker deals with GPU communication.
It is of major importance to identify the critical threads related to energy consumption. This
knowledge enables us to apply advanced power management strategies such as power-aware
thread to core allocation.

Figure 4.5 on the top shows the time distribution of the three main browser processes for
A15 and A7, respectively, loading the representative web pages with the default Android set-
tings. The bars are split up among the three processes of the browser where the renderer process
is further split up into the main renderer thread, the compositor tile worker and other miscella-
neous threads. The relative CPU time is normalized to the total A15 CPU time on a per web
page basis for visualization purposes, as the absolute values of the CPU time, e.g., for CNN
and eBay, are significantly different. The main observation is that the renderer process, which
mainly consists of the CrRendererMain and the CompositorTileW threads, takes up most of the
A15 time, and hence, contributes the most to the energy consumption as depicted in Figure 4.5.
This is the first work to perform per-thread analysis of a mobile web browsing workload, which
explicitly shows different levels of parallelism among different threads. This important infor-
mation enables us to target the major power consuming browser threads for energy reduction.

Furthermore, we observe from Figure 4.5 (top) that different web pages exhibit different de-
grees of thread-level parallelism. For example, the time spent on the main renderer thread and
the compositor tile worker thread is almost the same for eBay. In case of Amazon and Facebook,
compositor tile worker thread time is only 20-25 % of the main renderer thread time. In case
of CNN and Wikipedia, the main renderer thread dominates the execution time. The power
saving technique should be aware of the thread-level parallelism and perform core allocation
and workload consolidation accordingly, as we are considering an HMP platform comprising
multiple CPUs. In Section 4.6.2, we are able to show how the number of schedulable cores af-
fects the page loading time and energy consumption according to web pages exhibiting different
degree of thread-level parallelism based on our observations.
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Figure 4.5: Relative CPU time (top) and CPU energy (bottom) consumption web browser
threads per A15 and A7 cluster for representative websites.

Also, we observe that the CPU time spent on the A15 is only between 50-70 %, whereas it
contributes between 80-90 % towards the total energy consumption. This is expected because
the A15 is designed in a performance-oriented way. Figure 4.5 (bottom) shows that the A15 is
approximately 3 times more power consuming than the A7. Therefore, in order to save power,
it is preferable to only allocate threads on the A15 that are the bottleneck for achieving the
performance requirement. We also investigate the impact of deferring thread execution on A15
on power consumption and web page loading time in Section 4.6.2.

4.5.2 Rendering Process

As shown in the previous section, the rendering process is the most time and energy consuming
process. In this section, we further analyze the energy and time contribution of different web
page components handled by the renderer, especially focusing on JavaScript since it contributes
most to the rendering energy consumption. As mentioned before, for the Chrome browser we
are experimenting with, JavaScript code is handled by the JavaScript Engine V8. Therefore,
we refer to all JavaScript related calls as V8 in the following. Figure 4.6 depicts the energy
consumption of the rendering process divided by the main web page components CSS, HTML
and V8 described in Section 4.3.1. The figure shows that V8 consumes a significant part of
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energy, depending on the website. For eBay, V8 takes up about 25 % of the total rendering
energy while it takes up to 60 % for CNN.
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Figure 4.6: Relative energy distribution of the web page components HTML, CSS and
JavaScript.

V8 function and thread time analysis
We have found that V8-related functions consume a significant amount of energy during web
page rendering. To identify bottlenecks and power optimization potentials, we have investigated
the time distribution of different V8 execution stages as described in Section 4.3.3 and studied
the distribution of V8 workloads over threads within the rendering process.

Figure 4.7 shows the relative time V8 spends in its working stages parsing, compilation,
execution and garbage collection. For most of the pages, the time distribution is very similar.
We see that V8 spends up to 40 % in parsing and compilation while it spends 50-60 % in the
execution stage. The stages alternately occur on a time-scale of micro- to milliseconds. The
results show that a large amount of time and, consequently, energy is spent on preparing the
JavaScript code for execution rather than actually executing it. In other words, the reason why
parsing and compilation takes that much time should be investigated further. Our results empha-
size the importance of designing the JavaScript engine in a power-aware fashion. For example,
information which can be gathered about the execution at parsing and compilation stage could
be later exploited for power management.

eBay Amazon Facebook Reddit Wiki CNN
0

0.5

1

Fu
nc

tio
n

Ti
m

e

Parse

Compile

Execute

GC

Misc

Figure 4.7: Relative time distribution of V8-related function calls by category.

Moreover, we have looked into separate threads that are executing V8-related work and
their distribution across the CPU cores. We have found that between 83-96 % of V8 is executed
within the main renderer thread for the representative websites. Further, note that 1-13 % of the
thread time is used by a ScriptStreamerThread which parses JavaScript code. This is important

57



4.6. POWER MANAGEMENT FOR WEB BROWSERS

as this is the only other V8-related thread running on the A15 besides the main renderer thread,
hence, one of the most energy consuming V8 threads. It takes up to 5 % of the total A15
energy consumed by V8. Other threads that are, e.g., responsible for recompilation of the
JavaScript code use at maximum 4 % of the execution time. This information can be exploited
for power saving by thread allocation, for example moving the ScriptStreamerThread to the A7
considering its penalty on performance.

4.6 Power Management for Web Browsers

The default Android power management, which is designed for a wide range of applications,
leaves much room for further power reduction in case of the web browsing workload in spe-
cific. First, the HMP scheduler distributes threads over as many CPU cores as possible to exploit
parallelism whereas the power-optimized thread-to-core allocation depends on the performance
requirements of a web page. Second, the most popular Android default governors, such as inter-
active and ondemand governors, are biased towards the performance requirements of the web
browser, and, hence, the operating frequency is reduced too conservatively. Third, the default
power management policy is not tuned for HMP platforms such that it does not consider power
gating while an application is running. In the following, we apply different power management
strategies for the mobile Chrome browser. Based on our characterization results in Section 4.5,
we show a non-intuitive power-aware thread-to-core allocation strategy in Section 4.6.2 and
outline the potential for energy savings in Sections 4.6.3 and 4.6.4.

4.6.1 Power-Performance Trade-off Analysis
In this section, we investigate the trade-off relationship between the power consumption and the
loading time of the representative websites. We limit the maximum CPU frequency of the A15
to various values and let the default governor control the operating frequency below that value.
As explained in Section 4.3, the loading time of a web page is defined as the time duration from
the start of loading the page until the loadEventEnd function is called.

Figure 4.8 shows the loading time and energy consumption for the test scenario described in
Section 4.5 where all A15 and A7 cores are schedulable and the maximum operating frequency
of the A15 CPU is capped to the corresponding values on the x axis. In case of eBay, by capping
the maximum frequency to 1.2 GHz, the total energy consumption is reduced by 34.6 % while
the loading time is increased only by 16.7 % (0.6 s), which is marginally perceivable by the user.
In case of Wikipedia web page loading, sacrificing only 1 s of loading time saves over 30 % of
energy.

4.6.2 Constraints for Core Allocation
In this section, we look into the effect of thread allocation to cores. Therefore, we investigate
three different cases: Running the browser threads on all A15 and A7 cores (case 1), on one A15
core and all four A7 cores (case 2), and the four A7 cores only (case 3). Controlling the number
of schedulable cores is done by setting the the processor affinity of the threads such that the
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Figure 4.8: Web page loading times (left) and A15 energy consumption (right) according to
different A15 frequency cap.

HMP scheduler allocates the threads solely to the desired cores. In this analysis, we select two
web pages, eBay and Wikipedia, that exhibit different characteristics in terms of thread-level
parallelism. As can be seen in Figure 4.5, eBay exhibits even CPU time distribution among the
two threads CrRendererMain and CompositorTileW, while only the CrRendererMain dominates
the CPU time for Wikipedia. We observe that consolidating the workload into a smaller number
of cores is more efficient in terms of energy consumption than distributing the workload over
multiple cores.

Comparison of case 1 and case 2 for eBay
Figure 4.9 shows the eBay loading phase for case 1 (top) and for case 2 (bottom). Obviously,
the A15 CPU utilization goes up to 200 % for case 1, while the value is limited to 100 % for
case 2. The power consumption of the A15 is coupled to the CPU utilization changes. The
A15 power consumption goes up to 5 W for case 1 while it is clamped around 2 W for case 2.
This computes to the significant difference in the total energy consumption, which is 13.31 J
for case 1, but only 11.57 J for case 2, 13.1 % less. However, the increase in loading time is
marginal from 3.6 s to 3.8 s (5.6 %), which is not significantly perceivable by the users. Besides
the effect on the energy consumption for case 2, it is also important to investigate the effect
of smoothing the power curve on the overall battery lifetime. It is well known that high peak
current flows have a negative impact on the battery lifetime. We leave such an analysis as a
future work.

Comparison of case 1 and case 2 for Wikipedia
The power consumption and CPU utilization while loading the Wikipedia web page is shown
in Figure 4.10. In contrast to eBay, less degree of thread parallelism exists in the Wikipedia
rendering workload, and, hence, the usage stays consistent around 100 % for both test cases.
This fact is also reflected in the power graph such that the power consumption remains around
2 W for both cases, which differs significantly from the eBay web page rendering. The energy
consumption and the loading times are also very similar, 15.40 J and 5.4 s for case 1 and 15.26 J
and 5.4 s for case 2. The comparison between case 1 and case 2 for eBay and Wikipedia web
page rendering shows that controlling the number of utilized A15 cores has different impacts on
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Figure 4.9: Power consumption and CPU utilization for loading eBay for case 1 (top, energy:
13.31 J) and case 2 (bottom, energy: 11.57 J).

power consumption depending on the degree of thread-level parallelism. Nevertheless, using
less number of performance oriented A15 cores is generally preferred even if there is sufficient
thread-level parallelism because of potential savings in the energy consumption (13.1 %) com-
pared to a marginal increase in loading time (0.2 s, 5.6 %). This is a notable and non-intuitive
observation as it is natural to expect significant performance improvement if more cores are
utilized.

Case 3 for eBay
In this case, we power gate the complete A15 and use only the four A7 cores to load the web
pages. The A15 utilization is zero all the time because all threads run on the A7 as shown for
eBay in Figure 4.11. The power consumption of the A7 is nearly the double of the cases 1
and 2, but the total power consumption value of case 3 is significantly smaller compared to the
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A15 power consumption in the above cases. We observe that the A7 consumes around 0.5 W
during the loading phase and 0.3 W during the post loading phase.

The overall results are summarized in Table 4.1. As we have described in the above analysis,
comparing case 1 and case 2, the loading times increase marginally if less number of A15 cores
are utilized, but there could be more reduction in energy consumption depending on the thread-
level parallelism of web pages. As for case 3, the loading time roughly increases by a factor
of 2 compared to the cases 1 and 2, but even more energy could be saved by using A7 only. If
we make a careful evaluation of the user requirement during web page loading, core allocation
could be used to leverage power consumption at cost of a marginal loading time increase.

eBay Amazon Facebook Reddit Wikipedia CNN

Case 1
3.6 s

13.31 J
3.6 s

16.99 J
2.3 s

8.70 J
2.6 s

9.07 J
5.4 s

15.40 J
13.0 s
25.35 J

Case 2
3.8 s

11.57 J
3.6 s

15.95 J
2.5 s

8.37 J
2.7 s

9.08 J
5.4 s

15.26 J
13.9 s
24.07 J

Case 3
6.8 s
4.87 J

5.2 s
5.37 J

5.1 s
4.39 J

5.1 s
4.42 J

11.5 s
5.20 J

> 13 s

Table 4.1: Loading times and energy consumption of representative websites for different core
configurations.

4.6.3 Power Savings by DVFS without Performance Compromise
As discussed in Section 1.1.3, default governors for Android often fail to assign energy-optimal
frequencies to the CPUs. However, prediction of the exact workload and setting the optimal
frequency for a web browsing workload are difficult tasks to achieve. In this section, we make
a rough estimate of how much potential exists for power savings without performance loss
by applying DVFS. Figure 4.12 shows the estimates of power consumption, CPU utilization,
and operating frequency if an oracle workload predictor was used. The oracle predictor is a
theoretical construct of which we assume is capable of knowing the exact future workload such
that the utilization of the core that executes the bottleneck thread is kept as close as possible to
100 % by applying DVFS. In other words, it finds the lowest possible CPU frequency that does
not result in a performance loss unlike the performance oriented default Android governors.
The power graph in Figure 4.12 is obtained by using the following CPU power model

Pcpu = u · Ceff · V 2f + Pstatic(V ), (4.1)

where u is the sum of utilization of the cores, Ceff is the effective switching capacitance, and
V and f are the operating voltage and frequency, respectively. We fit the model to the measured
power consumption of the A15 processor and find that 1.0158 × 10−9 F is a reasonable value
for Ceff . The analysis shows that if we were to predict the workload precisely, the total energy
consumption could be reduced from 10.889 J to 7.996 J, which is about 26.6 %. We consistently
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observe that Android governors are conservatively tuned such that they do not respond fast
enough to web browser workload variations.

4.6.4 Post-Loading Phase Power Gating
We consistently observe that in most cases the A15 is not being utilized and the A7 is mostly
handling the rendering workload during the post-loading phase. However, the Android default
power managers never apply power gating to the A15 as long as the device itself is in use.
This leaves scope for power gating techniques to be utilized during the post-loading phase. The
power consumption of the A15 during idling is approximately Pidle = 0.27 W, while it is only
Poff = 0.04 W when power gated. Hence, power gating results in 85 % idle power savings.
Although the absolute idle power is almost negligible compared to the active power, the energy
consumption of the A15 during the post-loading phase could be significant depending on the
user activity, e.g., the user may read an article for a considerable amount of time after the web
page loading finishes.

We implemented a simple prototype power manager that power gates the A15 immediately
when the utilization is zero during the post-loading phase and turns the A15 back on when the
A7 utilization rises above 110 %. The threshold of 110 % is set because we observe that the
A7 workload during the post-loading phase was fairly single-threaded, so that turning on the
A15 cores would benefit in terms of performance. A real world power manager featuring power
gating should allow for well established theory on predicting idle time and breakeven time as
well as practical constraints such as granularity of power gating, in our case the CPU clusters.
The prototype power manager is very naive, and, hence, cannot be applied for browser power
management in general, but suffices for two simple usage scenarios. We repeat the experiments
as described in Section 4.5 for Wikipedia and eBay using the prototype power manager. For
Wikipedia, the loading time takes 5.4 s and consumes 13.84 J. There is no increase in loading
time, but the energy consumption decreased by 10.1 % compared to the case without power
gating (15.40 J). For eBay, we observe a loading time of 4.8 s and an energy consumption of
8.09 J. Although the increase in loading time compared to the default settings is 1.2 s (25 %),
we can achieve energy saving of 39.2 %. These results show a large scope for power savings
by utilizing A15 power gating for web browser workloads. However, a more elaborate power
gating technique requires detailed knowledge of the time and power overhead, which we leave
as a future work.

4.7 Consequences for Browser Power Management

In Section 1.1.4, we have shown that the default Android power management does not per-
form well as the three power managing entities, the governor, scheduler, and power control unit
separately manage the operating frequency, thread allocation/schedule, and power state of the
CPU, respectively. There has been a significant amount of theoretical research on co-optimizing
thread allocation and DVFS on HMP platforms, and the development of the so called Energy
Aware Scheduler [82] for big.LITTLE systems, an ongoing project pushed by ARM and Linaro.
However, an integrated power manager capable of actually performing all the policies has not
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yet been implemented, especially in the domain of mobile web browsing. In the future, we
would need a power manager that either integrates the separate components or lets them closely
collaborate together to minimize the power consumption. This power manager should be aware
of the different phases of web page rendering and the user requirements to perform optimal
power management. Moreover, it should be aware of different computation demands and im-
pacts on user experience among threads. It would enable us to selectively allocate performance
critical threads such as the CrRendererMain, to the appropriate cores. However, threads that
produce a high workload but are not critical for fast web page rendering could be deferred
to power-optimized cores. A part of our future work will be to identify performance critical
threads and perform scheduling and DVFS to maintain a good user experience.

4.8 Summary

This chapter provided a detailed look into web browser workloads on HMP platforms and
seeked potential power savings based on the observations. Unlike previous works that ana-
lyzed the power consumption according to the inputs to the web browser, the new aspect of
this work is the focus on the actual thread workloads and function calls invoked by the web
browser. They provide information that can be used directly for power management. We per-
formed a breakdown analysis of the CPU time and power consumption per CPU of the browser
processes and threads among websites. Furthermore, we performed a case study on how the
operating frequency, number and types of schedulable cores affect the power consumption and
performance of a mobile web page rendering. Based on the characterization, we applied several
power management techniques, such as DVFS, thread allocation to CPU cores and power gat-
ing. Moreover, we outlined the theoretical power saving potential for web browsing in Android.
We showed that there is significant scope for power management compared to the Android de-
fault governors. Our initial results show that current Android power management leaves a sig-
nificant room for improvement and relevant operating system entities, the governor, scheduler,
and power control unit, should work collaboratively to achieve higher power savings. We use
these findings to implement our own browser-aware governor that we will describe in the next
chapter.
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Figure 4.10: Power consumption and CPU utilization for loading Wikipedia for case 1 (top,
energy: 15.40 J) and case 2 (bottom, energy: 15.26 J).
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Figure 4.11: Power consumption and CPU utilization for loading eBay for case 3.
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Figure 4.12: Frequency, usage and power of the A15 estimated by the oracle verses a real
measurement when loading eBay.
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5
Phase-Aware Web Browser Power

Management

Based on the findings in the previous chapter, we implement and evaluate our own browser-
specific and browser-aware governor in this chapter. This part of the work helps us to gain
insight into the characteristics of different states of Android applications. We study different
states such as the scrolling or the loading state and their performance and power requirements.
Based on the performance requirements, there are different power management strategies that
can be applied to the various states. The states are not specific to the web browser, but also
re-appear in other applications, e.g., scrolling is also available in social media application and
loading can be found in any rendering intensive application. Consequently, the findings in this
chapter are not only meaningful for web browsers but for Android apps in general. They enable
us to generalize the approach and create power management strategies that are suitable for more
than one application.

5.1 Introduction

The time we spend on mobile devices has recently surpassed the time spent on desktop com-
puters [98]. However, using mobile devices for daily activities like instant messaging, social
networking, and web browsing always involves being connected to the Internet. Consequently,
the smartphone constantly satisfies our need for instant messaging, shopping and information.
Although a large variety of mobile applications exists, one of the most traditional, and one of
the most preferred, continues to be the web browser [44]. Therefore, ensuring the quality of the
user experience during mobile web browsing is an important problem.

The user experience of mobile web browsers is multi-faceted. For example, users are
sensitive to the responsiveness of the screen to touch events, e.g., zooming or scrolling web
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Figure 5.1: Proposed phase-aware power management.

pages [47, 164]. Hence, modern web browsers usually target a frame rate of 60 FPS to guar-
antee a good user experience. Further, when loading a web page, users want to view the page
within a reasonable amount of time. The web browser existed long before modern smartphones
and tablets were available on the market. It emerged with the rise of the Internet. Meanwhile,
web pages and consequently also web browsers have grown increasingly complex along with
increasing network and hardware computation speed. Given these trends, web browser perfor-
mance has always been boosted in order to ensure good quality of the user experience. Browsers
have developed into complex applications that consist of multiple components such as a browser
engine, a rendering engine and a JavaScript engine [40]. Such complexity, as well as the focus
on performance, are because many mobile browsers have evolved from the desktop world.

However, high performance comes at the cost of higher power consumption (e.g., by the
underlying CPU). While this is not a critical drawback for desktop computers, it is a much
more serious issue in battery-constrained mobile devices. For such devices, the battery life-
time is one of the most important usability factors to which users now pay a significant amount
of attention [127]. While power management of mobile devices has been extensively studied
for several years now, the focus has been on video decoding applications [66, 134], and also
on games [35, 79]. Surprisingly, power management techniques specifically targeting the web
browser have been less studied [172, 169, 124]. But both, its importance, and its potential for
power savings, is being increasingly recognized.

Android Power Management on HMP platforms
While a mobile device is comprised of a multitude of power hungry components such as the
display or the wireless link, our work focuses on CPU power consumption. Recent work has
shown, that the CPU power consumption contributes on average 38% towards the daily energy
drainage of a smartphone [18]. In general, the overall phone power consumption improvement
heavily depends on the usage scenario and the power management strategies of the other com-
ponents as well, not only the CPU. For example, if the screen is very bright, it will consume
more power and the whole phone power savings would be less compared to the case where the
display is dimmed.

CPU Power management in Android is implemented through CPU frequency governors,
thread schedulers and wakelock mechanisms in the OS. They respectively determine at which
voltage and frequency the CPUs should operate, which threads run on which CPU cores and
which CPU cores are active. The most popular governors in Android are the ondemand [113]
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and the interactive [15] governors. They perform DVFS according to the CPU’s utilization,
with a focus on the responsiveness to user inputs by ramping up the frequency quickly and
conservatively reducing it. Moreover, they do not power down (power gate) CPU cores dur-
ing runtime as the penalty for turning the cores back on affects the system’s responsiveness.
Even though such governors perform well with power management over a wide variety of ap-
plications, they have fundamental limitations. A major limitation in achieving optimal power
management comes from the fact that the user application and the OS power management en-
tities are highly modularized, and lack communication channels between them. In particular,
this results in energy wastage on HMP SoCs with big.LITTLE architectures, which are widely
used in modern smartphones, such as the Nexus 5X (Snapdragon 808) [43, 131], the Samsung
Galaxy S8 (Exynos 8895) [141] and even the iPad pro [159].

The Android default governors monitor the CPU utilization caused by the web browser, and
reactively respond to the changing values regardless of the type of workload or the performance
requirements such as the target FPS. For web browsing, we define two types of workload,
foreground load and background load. The workload caused by building up a web page until
the user can interact with it is referred to as foreground load. After the page is built, background
scripts are often executed and put a high background load on the system. The main difference
between the two is, that the background load does not affect the user’s perception. Hence, it
is not critical to process this kind of workload as fast as possible, what we exploit for power
management. The interactive and ondemand governors, however, increase the CPU frequency
as a response to the tasks’ workload when it is unnecessary to finish them early. Such actions
can significantly increase the power consumption and reduce a device’s battery life. In addition,
in many of the browsing activities, the web browser tries to maintain a target frame rate, e.g., 60
FPS. However, the Android governors are not aware of this, which can lead to slack times [30,
91, 34, 35].

In order to save power, while not sacrificing user experience, the coordination between an
application and the underlying software components related to power management is crucial.
Application-specific characteristics, rather than the CPU utilization alone, can give a better in-
sight into the current resource demands of the application. In games, for example, there are
different game phases such as loading, menu, and playing with varying workloads and perfor-
mance requirements [35]. During the loading phase, frames need not to be updated as frequently
as during the playing phase as the computation is memory bound. A similar observation holds
true for web browsers as well. If the governor was aware of such contexts, or phases, it could
reduce the CPU frequency without degrading the user experience. This scheme, as shown in
Figure 6.2, is proposed as a basis for power management in this work.

Illustrative example
Here, we describe a scenario where a click on a link within the Chrome browser loads a
Reddit web page. The experiments were performed on an HMP platform with a Samsung
Exynos5422 SoC, the Odroid-XU3 board [59] (see Section 1.1 for details). The board fea-
tures a power-saving CPU (A7) and a performance-oriented CPU (A15). Figure 5.2 shows a
time-wise plot of the power consumption, the usage, and the clock frequencies of the CPUs.
It reveals that the power consumption of the A15 is considerably higher than the one of the
A7, although the A7 usage is larger. The graphs on the top show the results for the ondemand
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governor, while the ones on the bottom show the results for our proposed phase-aware gov-
ernor, which hereafter is referred to as the browser governor. While the ondemand governor
regulates the CPU frequency based on the workload alone, we regulate the frequency based on
the workload and the phase of the browser (see Section 5.5 for details). For the Load phase,
both schemes behave similarly and the foreground load times are approximately similar (4.3 s),
while the loading energy is slightly higher for the ondemand governor (7.7 J compared to 6.1 J
for the browser governor). Even after the foreground load has completed, background load is
still active for this web page. Here, our governor knows that the browser enters a Load/Idle
phase that is not relevant for the user’s perception, as the page is already fully visible. Hence, it
keeps the frequency of the high performance CPU (A15) at a low level and saves energy, unlike
the ondemand governor. After the background tasks have finished, the web browser enters the
Idle phase and the high performance cores can be powered down. The ondemand governor does
not take this action, because powering up and down CPUs is accompanied by a time overhead.
We address this problem by establishing a channel directly from the touch screen driver to the
governor that is used to convey user input information. As a result, the energy consumption for
the Load/Idle phase is reduced by 40 % from 8.2 J for the ondemand governor, to 4.9 J for our
proposed browser governor.

Our contributions
In this chapter – as illustrated through the previous example – we propose a phase-aware web
browser power management scheme for HMP platforms, where the power manager in the under-
lying operating system is aware of the context that the web browser is in. Given the significant
period of time we spend on web browsing on mobile devices, the complexity of today’s web
pages, and the impact they have on the smartphone’s battery life, we believe that the changes
we propose in the browser and the governor in the OS are fully justified. The resulting energy
savings are significant, as will be discussed later.

The main contributions of this chapter can be summarized as follows:

• We define web browsing phases, such as Idle, Load, Scroll, Video, etc., that exhibit dis-
tinct workload characteristics and user requirements, based on the internal information of
the Chrome browser.

• We establish a channel between the application layer, the touch screen driver, and the
governor, to directly share the phase information and react faster to events that trigger
phase transitions.

• We implement a kernel governor – referred to as the browser governor – that controls the
CPU power state and its voltage and frequency according to the available phase informa-
tion.

• We demonstrate the effectiveness of this approach in terms of power consumption as well
as responsiveness of the system.

It may be noted that such browser-driven (i.e., single application-driven) power management,
as proposed in this work, is acceptable in the case of mobile devices, since unlike in desktops
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Figure 5.2: Power, CPU usage and CPU frequency for loading the Reddit page with ondemand
(top) and browser governor (bottom).
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or laptops, they usually run only one foreground application at a time. In other words, when a
browser is being used, other applications are either sleeping in the background or closed. In case
of systems that support the true use of multiple applications at the same time, we envision that
each application would convey its phase to the OS, which would then take power management
decisions that are compatible with all these applications. Such a generalization of the API that
we propose in this work might become relevant in future mobile devices.

The rest of the chapter is organized as follows. Section 5.2 summarizes the related work in
this domain. Section 5.3 provides background information about web browsers, and discusses
the nature of internal information that is available. Section 5.4 discusses different web browsing
phases, followed by Section 5.5 that presents the corresponding power management strategies,
and elaborates the overall architecture and the modifications to the OS kernel that we propose.
We present our experimental results in Section 5.6 and give a short summary in Section 5.7.

5.2 Related Work

Various aspects of web browsing and browsers have lately received considerable attention both
in industry and in academia. A number of recent publications have targeted the performance of
browsers [10, 28, 31, 54, 81] with the aim of improving the user experience. However, very few
studies have addressed the issue of web browser power consumption, although battery lifetime
is an important metric when measuring the usability of mobile devices.

There have been studies on managing power consumption by considering the wireless link [83,
170, 168]. The works [83] and [168] analyze the 3G protocol and suggest the reorganization
of data transmission phases. Combining multiple fragmented transmissions into larger chunks
gives more room for the wireless link to enter low power states and save power during web
page loading. The work in [170] investigates the effect of transmission data rates on the CPU
power consumption. It concludes that CPU idle time, which increases with lower data rates, has
a significant impact on the power consumption, and data rates can be used as an indicator for
DVFS. Our work is orthogonal to these techniques and will be able to provide additional power
savings when used together with them.

Furthermore, power reduction techniques exploiting web page-specific characteristics have
been explored. In [154], the impacts on power consumption of different web page compo-
nents such as JavaScript, images and CSS have been analyzed. Here, multiple strategies have
been proposed to save power, targeting web page re-organization and computation offloading.
In [171, 172], a power management technique for big.LITTLE platforms was introduced, which
chooses an appropriate CPU for a particular web page. It uses a predictive model that is trained
using web page primitives such as CSS and HTML tags. Another approach profiles user and
system events to identify the QoS required by a mobile web application [169]. This data is used
to perform CPU task allocation and DVFS on a big.LITTLE platform. The main distinguishing
feature of our work over the above works is that while they use indirect information of the con-
text – e.g., web page primitives or user events – we make use of a browser’s internal information
directly, which allows more effective power management. For example, we use states such as
Video or Load/Idle, which are not detectable by using events as in [169] (see Section 5.4).
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Recent work has proposed to perform power management within the browser itself [11]. It
analyzes the energy consumption for mobile web page loading and implements modifications
to the browser to save energy on a big.LITTLE platform. The work also proposes to let the
browser be aware of the underlying hardware, and directly handle thread scheduling. While this
approach proved to be effective, this requires modifications in the browser that are specific to
the hardware platform. In our opinion, the OS should handle hardware-specific operations for
portability reasons, while the user space applications remain independent of the hardware. Our
work proposes that the browser should only convey phase information to the OS such that the
OS can perform better power management.

Further, RECON, a model of the energy consumption of mobile web page loading [13] and
a detailed analysis of the impact of the underlying platform architecture on web browser power
consumption [124] have been presented. In [124], experimental results from an HMP platform
using various configurations such as varying CPU frequencies and CPU core configurations
have been discussed. The conclusion is that by sacrificing browser performance marginally,
a significant amount of power may be saved. However, no new power management strategy
– i.e., no new governor – has been proposed in neither [13] nor [124], while in this work we
propose a new governor and compare it with the existing ones in Android. Our work extends
the studies in [13], [124] and [170]. By taking cues from these results, we decided to design a
new governor that directly exploits a browser’s internal phases for power management.

Finally, the idea of establishing a communication channel between applications and the
power manager was proposed in the past, but targeting different applications. For example,
there has been work on mobile games [33, 35, 116], navigation and media streaming [39, 102].
All the works exploit the application-specific information provided by the respective application
for power management. Another work proposes a more general approach that shares our idea of
phases [29]. This work implements a programming language named Energy Types (ET), where
energy phases are passed to the compiler and translated to power management strategies. To the
best of our knowledge, this is the first proposal for a browser-specific Linux kernel governor for
HMP platforms.

5.3 Web Browsing Characteristics

In this section, we discuss the background information on web browsers that is necessary for
understanding our work. First, we explain how web pages are represented within a browser.
We then describe important implementation features of the browser that we have used for the
purpose of this work – the Chrome browser.

5.3.1 Web Page Representation in a Browser
The web browser is a complex application that transforms a set of commands into the represen-
tation of the web page that we see on the display and that we interact with. The page consists of
static elements such as HTML and CSS, which describe its layout and style. The dynamic be-
haviors of web pages, such as animations or user interactions, are mostly handled by JavaScript.
The browser must guarantee a smooth interaction between the user and the web page.
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Figure 5.3 shows how the browser creates a usable web page. The DOM tree is the internal
representation of the page and is generated from the current web frame. The web frame is
a snapshot of the static code and the dynamic modifications of this code by, e.g., JavaScript.
From the DOM tree, a layout tree is created, that contains information to display the web page
elements – such as style rules. The paint layer tree combines the layout objects and groups them
by the entities that will be displayed in the same coordinate space. The graphics layer contains
already painted elements that are composited to a displayable web page and are rendered to
the display by the GPU. One graphics layer can contain multiple paint layer trees. These data
structures are created while the page is being loaded. Whenever anything changes, e.g., an
animation is triggered by a script, the tree structure has to be updated, as shown in Figure 5.3.
In general, the web browser targets a frame rate of 60 FPS, which is synchronized with the
VSync signal of the display. During the computation of one frame, all of the above steps have
to be completed before the next VSync signal is issued.

Figure 5.3: Updating a web page within the browser.

5.3.2 Browser Implementation Details
This section outlines the relevant implementation details of the Chrome browser. We intend to
perform DVFS and power gating of the A15, hence, it is important to understand what sort of
workload is generated by the browser. As mentioned, we have used the Chrome browser [46]
for all of our experiments. The share of Chrome worldwide for mobiles and tablets is almost
60 % [106]. The second largest share is held by Safari (30 %). Given these numbers, our
implementation reaches most users of open-source browsers. However, it is generally possible
to retrieve similar information from other browsers and apply our approach to them.

Processes
Chrome is divided into three processes, the browser, the renderer and the gpu process. As the
names suggest, the browser process provides the user interface, the renderer process builds up
the web page and the gpu process issues GPU commands to the display. All three processes
maintain child threads. The renderer maintains a helper thread to manage web page contents:
The compositor thread. The compositor holds a copy of the web page tree that was created
by the main renderer to ensure the responsiveness of the browser. The main renderer can be
blocked for different reasons, e.g., JavaScript or background script loading – both highly re-
source consuming actions. In the meantime, the user might want to interact with the web page.
However, the main renderer thread is busy and cannot process the request. This would lead
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to delays and degrade the user perception. To overcome this, the compositor deals with user
interactions, such as scrolling, in place of the main renderer.

Browser state information
There is a considerable amount of information in the previously described threads, which may
be exploited by governors for the purpose of power management. For example, the browser
tracks its own loading state. This can be used to distinguish between foreground and background
load when loading a web page, which could be useful for reducing power without degrading the
user experience. The browser also maintains information about video streams, scrolling speed,
etc. However, current browsers and also the Android system do not have any mechanism to
communicate such information with each other. In Sections 5.4 and 5.5, we elaborate how this
can be enabled and taken advantage of for the purpose of power management.

5.4 Web Browsing Phases

In this section, we explain the browsing phases that we exploit for power management. First,
we introduce the user-centric performance model RAIL in Chrome. Then, we define phases
with different performance requirements based on the RAIL model.

5.4.1 User-Centric Performance Model RAIL
Within the Chrome browser, the user performance requirements are determined by the so-called
user-centric RAIL model [47]. RAIL aims to provide a fast and smooth browsing experience.
It defines the performance targets for the Response, Animation, Idle and Load (RAIL) phases
as shown in Table 5.1, that have been adapted from the HCI domain [108]. Generally, there
are two metrics to classify performance or QoS for web browsing: The response latency and
the frame rate. The response latency is the time that the user needs to wait for an action to
complete, e.g., for a web page to finish loading. The frame rate, usually measured in FPS, is
used as a metric for animations such as scrolling and video playback. For example, animations
should be handled within 16.7 ms which means that the target frame rate is 60 FPS. However,
the beginning of an animation may take up to 100 ms. It is also notable that the maximum web
page loading time on mobiles is restricted to 5 s. This latency only refers to the loading time that
the browser needs to make the page ready to use (foreground load). The background scripts,
associated with advertisements etc., which may still be executed afterwards, are not bound by
this constraint. This background load is not visible to the user and the total loading time of a
page can be longer than the bound. RAIL is the desired behavior of Chrome, but the browser
does not necessarily meet the target values defined by this model. For our power management
strategy, we take a cue from the RAIL model to define corresponding browsing phases.

5.4.2 Definition of Browsing Phases
In this section, we introduce the phases that we have defined based on web browsing activities
and the characteristics of the HMP architecture of our hardware platform.
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Table 5.1: Summary of the RAIL model [47].

RAIL
Step

Latency (User) Actions

Response ,
Animation

< 16 ms
User drags finger and app’s re-
sponse is bound to finger position,
ongoing page scroll/animation

Response ,
Animation

< 100 ms
User taps an icon/button, initiates
page scroll, animation begins

Idle – Background activities

Load < 5 s
Page ready to be used on mobiles
(foreground load only)

Regular Browsing Phases

Naturally, web browsing consists of a sequence of different and repetitive actions. The RAIL
model itself introduces phases such as response, animation, idle and load. We have defined our
own phases (→ phase) based on the RAIL model and extended it where needed.

One of the most important browsing actions is loading a web page (→ phase Load). As
already mentioned, (foreground) load is defined as the time needed to build up the page until
the user is able to interact with it. The browser provides a state value that indicates when
this foreground load has finished. Background scripts may still be processed afterwards. This
may generate high workload that is not critical for the user’s perception. Consequently, if the
background scripts finish without any user interaction, this results in a temporary waiting state
(→ phase Load/Idle). When all background actions have completed, the system enters a true
idle state (→ phase Idle). Normally, there is interaction between the user and the web page, e.g.,
scrolling actions (→ phase Scroll). As a result of scrolling or even during idling, new scripts
within the web page can be triggered, e.g., loading new Facebook posts. This can cause network
traffic and, as a consequence, additional workload (→ phase Load/Intermediate). Further, the
user can also trigger video play (→ phase Video). Both, Scroll and Video phases are derivatives
of the RAIL mode animation.

Touch Events

One additional browsing phase results from the RAIL mode response, the (→ phase Touch).
Responsiveness means that events triggered by the user are handled as fast as possible. As
mentioned in the previous sections, this will pose a challenge if power gating the A15 shall be
exploited to save energy, because the time overhead until the A15 cores are active again would
hinder a fast response to user input. This does not cause a problem for governors that do not
power gate the A15. We introduce a workaround to ensure that the A15 is available on user
interaction, because we assume that the workload will rise significantly after a touch event.
Therefore, we detect touch events within the kernel and power up the A15 to prevent additional
delays caused by power gating (see Section 5.5 for details).
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Figure 5.4: Browser governor information flow.

5.5 Phase-Aware Web Browser Power Manager

Now that we have defined a number of phases, we propose an individual power management
strategy for each of these phases. We also describe the implementation of the proposed browser
governor within the Android OS.

5.5.1 Phase-aware Power Management Strategies
As depicted in Figure 5.4, our power management strategies are based on the workload and the
user requirements in each phase. In our illustrative example, we have shown that the power
consumption of the A15 is considerably higher than the power consumption of the A7. Hence,
our main goal is to restrict the usage of the A15 as much as possible using DVFS and power
gating while maintaining a good user experience. We define the user requirements based on the
RAIL model. In the following, we describe what type of power manager we have implemented
in each phase and why. Note that when we refer to workload, we mean the workload on one
core of a particular CPU. A high workload implies that one particular thread is the bottleneck
of an application. Generally, we have implemented our DVFS strategy following the principles
of the ondemand governor. This means that we increase the CPU frequency if the workload
exceeds a given threshold. We have defined this threshold as 90 %, as used in the interactive
governor, while it is 80 % in the ondemand governor. A lower load threshold will lead to an
under-utilization of the CPU. Hence, all governors set a threshold of 80-90 % and we follow the
same practice. Moreover, we immediately decrease the CPU frequency when the workload is
below the threshold. For brevity, we refer to this strategy as performing DVFS in the following.
Additionally, our governor turns on and off the A15 by monitoring the phase and CPU workload,
so that the default scheduler can migrate high workload tasks to the A15 when it is available. A
transition graph that depicts when and why a phase change occurs is shown in Figure 5.5. Note
that our governor performs a strategy comparable to the ondemand governor, when no browser
workload is currently executing. However, this strategy can be easily adapted due to a modular
source code design.

Idle
There is neither interaction from the user nor any network activity. We minimize the A7 fre-
quency and turn off the A15.
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Figure 5.5: Phase state transition diagram of the browser governor. The transitions are based on
user inputs (U), browser state changes (B), network traffic (N) or CPU workload (WL).

Load/Intermediate

This is an idle state that deals with increased workload based on network activity. Increased
network activity can be triggered by scrolling or animations. For example, scrolling down the
Facebook page can trigger the download of new contents that need to be displayed, even when
the scroll action is over. To deal with such scenarios, we turn on the A15 and allow the governor
to perform DVFS for the A7 based on the workload.

Load

The load state is forwarded from the browser to the governor. We know that the load action is
highly resource demanding. To guarantee the best user experience, we ramp the frequency of
both CPUs up to the maximum when this phase is entered. Afterwards, the frequency of both
CPUs is adjusted by performing DVFS.

Load/Idle

Load/Idle can only be entered when the browser reports that the actual Load phase is over.
This phase becomes active if the workload remains high, although the load itself has finished.
This may be due to background scripts. In this phase, we manage the frequency of the A7 by
performing DVFS and fix the A15 frequency to its minimum possible value to save energy. By
keeping the A15 active, we do not create a bottleneck in case the user starts interacting with the
browser. The phase changes to Idle when the workload of both the A7 and the A15 falls below a
minimum threshold of 200 % (25 % on each core). This value has been determined empirically
and may be fine-tuned.

Touch

This phase was introduced to increase the responsiveness of the browser during phase transitions
from Idle to interactive phases such as Scroll or Load. It is needed because powering up the
A15 comes with a time penalty. Without the Touch phase, the browser governor would wait
for the browser to process the touch event and calculate the next phase, e.g., Load. The regular
touch propagation path in our setup is shown in Figure 5.6 on the left. It works for the default
governors because they only need to ramp up the frequency based on the workload as explained
in Section 1.1.3. However, the browser governor power gates the A15, which adds significant
wakeup overhead to the touch event response time.
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To solve the above issue, we power up the A15 at touch start and go back to Idle after a
timeout of δ = 1.5 s if no other phase change has occurred in the meantime. The same philoso-
phy as used by the interactive governor is applied here: There is likely to be large workload and
tight response time constraints after a touch event. We have determined this timeout parameter
δ as follows. First, we have measured that the A15 needs on average of 9 ms for startup and
127 ms for power down. In the extreme case that the A15 needs to power back up immediately
after a shutdown command was issued, there is a delay of 136 ms. Note that the timing over-
head is the critical aspect why power gating is not practiced by the Android default governors.
However, turning the A15 off and immediately back on again does not make a significant differ-
ence in energy consumption. We have defined the startup time as the time between calling the
cpu_up() function for a CPU and its registration within the cpufreq module. Equivalently,
we have defined the power down time as the time between a call to cpu_down() and its de-
registration within the cpufreqmodule. Second, we have measured the load time for different
δ = {1.0, 1.5, 2.0} s. While there was a significant performance degradation for δ = 1.0 s, there
was no performance improvement for δ = 2.0 s compared to δ = 1.5 s.

Scroll
The Scroll phase power management is based on the scroll speed and the frame rate. Both are
passed from the browser to the governor. In general, we have observed that scrolling is not
a costly operation. This is due to the division of the browser rendering engine into the main
renderer thread and the compositor, as we have described in Section 5.3.2. As suggested by the
RAIL model, we target an FPS value of 60.

The power management strategy is based on monitoring the frame rate and the workload.
We have chosen to work with workload and frame rate ranges to avoid an oscillation of the
CPU frequency. Hence, we are effectively targeting a value of 55 ± 5 FPS. The scrolling state
is usually entered from the Touch phase, so the A15 is turned on at the phase transition. If the
workload is above 90 % and the frame rate below 50, we increase the frequency. If the workload
is below 80 % and the frame rate above 55, we decrease the frequency. The A15 is turned on if
the A7 cannot meet the FPS requirements by itself. Once again, note that we usually enter the
Scroll phase from the Touch phase. Hence, the A15 is initially turned on.

Video
We enter the Video phase based on the given browser information. As the browser does not
provide the current video target frame rate, we target 30 FPS. This is a commonly used setting
on video platforms such as YouTube. Otherwise, the power management strategy is the same
as for the Scroll phase. We are aware that there exist videos with a higher FPS rate. However,
we have postponed such detection strategies to future work.

5.5.2 Power Manager Implementation

In this section, we describe the implementation details of the proposed power manager. We
explain the software changes that we made to the Linux kernel in the Android OS and the
browser.

79



5.5. PHASE-AWARE WEB BROWSER POWER MANAGER

Kernel modifications

We have implemented the phase-aware power manager as a CPU frequency governor, an own
module residing in the cpufreq domain of the Linux kernel. The system structure is shown in
Figure 5.6 on the right. Within the governor, we expose a so-called ioctl device to the system,
which can be accessed by the browser to pass information to the governor (frame rate, etc.).
Such information is used to control the frequency of the CPUs, as well as the power state of the
A15 within the implementation of the previously described power management strategies.

As already mentioned in the previous section, we have also implemented an additional ker-
nel module that forwards user input information directly from the corresponding touch driver to
our governor. This shortcut is shown in Figure 5.6 on the right. One may note that such modules
already exist in other Android systems [153]. Unfortunately, this was not the case in our plat-
form at the time of writing. Hence, we have implemented our own module that propagates the
start of touch events directly from the touch screen driver to our governor. To minimize mod-
ifications of existing drivers, we have instrumented the so-called kernel notifier chains. Using
this method, any module (in our case the governor) can register itself to be notified whenever a
particular event happens. The notification process can be triggered by any other module, for ex-
ample by different touch screen drivers. We make use of this shortcut to alleviate the overhead
caused by power gating the A15.

Browser modifications

In order to deliver phase information to the kernel governor, we also had to modify the Chrome
browser appropriately. While the kernel governor provides the ioctl device itself, the browser
passes data to the governor by writing to this device. The ioctl device can be accessed by
standard file writing operations. The challenging part on the browser side was to actually find
the right information within the browser source code. The information that we pass to the
governor is the load state, frame rate, scrolling speed and video information.

Figure 5.6: Regular touch event propagation (left) and browser governor (right) within the
Android OS.
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5.6 Experimental Results

In this section, we present our experimental setup and the resulting energy savings for the
different web browsing phases. We show that a significant amount of energy can be saved –
which would translate into a longer battery life – by exploiting the phase information of the
browser for power management. Note that we have extracted the frame rate and the loading
times for the measurements using the Chrome trace tool. The web pages were chosen partly
from Alexa Top 50 web pages [4] and the Google Telemetry test suite [45].

5.6.1 Idle Phase

To measure the energy consumption during the Idle phase, we waited for the Load/Idle phase
to complete and then measured the power consumed over a period of 10 seconds. The results
obtained are shown in Figure 5.7. Each bar has three sections corresponding to the power
consumed by A7 (bottom), A15 (middle) and the GPU (top). In Figure 5.7 and some of the next
figures, the GPU power consumption is barely visible. As the system is idling, the results for
different web pages are very similar. Some pages – Amazon, CNN and BBC – exhibit a slightly
higher energy consumption. This is due to workload caused by animations. The maximum
energy savings using our proposed browser governor is 57.4 % (CNN) when compared to the
interactive and 54.2 % (Amazon) when compared to the ondemand governor. The mean savings
are 52.0 % and 51.5 %, respectively. Figure 5.7 clearly shows, that the high savings result
from the power down of the A15. These results emphasize the importance of the power gating
strategies that we adopted. These strategies result in large energy savings and consequently
increase the battery life time of the mobile device. Note that we would not be able to apply
such aggressive power saving techniques if we were not aware of the current browsing phase.
Therefore, these results clearly highlight the effect of sharing the phase information for power
management.
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Figure 5.7: Idle phase energy consumption divided by consumers (A7, A15, GPU) for different
governors.
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5.6.2 Load Phase

Here, we measured the time and the energy from activating a link to a web page until this page
has finished the foreground load. The link was activated by tapping on the screen with a finger.
By designing the experiment in such a fashion, we also evaluate the effect of the Touch phase.
Using our setup, we can extract the start time of the touch event directly from the kernel. The
end of the foreground load is provided by the browser. The results are presented in Figure 5.8.
The browser governor achieves significant energy savings for the Load phase – at maximum
36.3 % over the ondemand (YouTube) and 42.5 % over the interactive governor (Amazon). The
mean savings achieved by our governor over the ondemand is 25.3 % and over the interactive
governor is 33.4 %. On average, the loading time increased by 0.4 s (8.1 %) over the ondemand
and by 1.1 s (28.2 %) over the interactive governor. There are two reasons for this: First, we
perform a more aggressive DVFS strategy compared to the interactive governor. Second, the
internal browser load state is activated considerably late. As a result, our Load phase power
management technique becomes active later than the workload based techniques in the Android
default governors. This problem can not be completely alleviated by the Touch phase. However,
the Touch phase certainly reduces the loading time in our case and without it the delay would
have been much longer. We consider this additional overhead acceptable since it is not always
perceptible and the energy savings are considerable.
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Figure 5.8: Load phase energy consumption (bottom) divided by consumers A7, A15 and GPU
and load time (top).

82



5. Phase-Aware Web Browser Power Management

5.6.3 Load/Idle Phase
The Load/Idle phase marks the time that a web page needs to process potential background
scripts after the foreground load has finished. This phase is derived solely from the CPU work-
load, and there is no explicit indicator from the browser. Hence, we analyzed the CPU workload
to estimate the Load/Idle phase energy for the different governors. We defined the end of this
phase as the time at which the A15 workload has been zero for more than 2 s. The results are
shown in Figure 5.9. As the absolute background load heavily varies across web pages, for each
web page, we have normalized the energy consumption with respect to the governor for which
the energy consumption is the maximum and plotted these normalized values. For example, for
YouTube, the energy consumption with the interactive governor is the highest, and hence, it is
at 100 %, while for BBC the ondemand is at 100 %. On average, the proposed browser governor
saves 44.4 % and 50.5 % energy over the ondemand and the interactive governors, respectively.
Note that some pages do not trigger any background scripts at all, e.g., eBay. As in the Idle
phase, this test emphasizes the benefits of a phase-aware power manager. Again, we are able
to demonstrate that there exists a large potential for energy savings with negligible impact on
user-perceived QoS.
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Figure 5.9: Normalized (see Section 5.6.3) background load energy consumption. The energy
for eBay is zero.

5.6.4 Video Phase
We played nine different videos from the YouTube platform for one minute each to evaluate
the energy consumption of the video phase. We chose three videos showing slowly moving
contents such as slide shows or barely moving contents. Further, we chose three videos with
medium moving contents such as talk shows or animated movies. Last, we chose three videos
containing fast action scenes. The energy consumption and the achieved frame rates are shown
in Figure 5.10. As mentioned in Section 5.5.1, we target 30 FPS in this phase. The mean
frame rate achieved by the interactive governor is 33.5, while the ondemand and the browser
governors achieve 32.2 and 31.2 FPS, respectively. Although the frame rates across the different
governors vary only slightly, the browser governor does a better job with power management
as can be seen from the A15 power consumption (bottom plot in Figure 5.10). It saves up
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to a maximum of 26.4 % energy over ondemand and up to 35 % over the interactive governor
among all the 9 evaluated videos. The mean savings applying the browser governor are 19.2 %
over the ondemand and 29.0 % over the interactive governor. For fairness across achieved FPS,
we provide the energy per frame value (top of Figure 5.10), which is constantly lower for our
governor. This value expresses how much energy was spent on calculating one frame. The
browser governor consumes 16.6 % less energy per frame than the ondemand and 23.6 % less
than the interactive governor.
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Figure 5.10: Video phase energy consumption over 60 s (bottom), frame rate (center), and en-
ergy per frame (top).

5.6.5 Scroll Phase
To evaluate the Scroll phase of the browser governor, we have recorded one long scroll gesture
using the reran [41] tool and replayed it for all the web pages under test. As mentioned in Sec-
tion 5.5.1, the Touch phase usually precedes the Scroll phase. This is not true when we simulate
the gesture with reran, because reran does not trigger the touch driver. To work around this
issue, we turned on the A15 before the test was performed. The total test duration was 2.6 s.
As for the Video phase, we have measured the energy and the frame rate as performance indi-
cators. The results are shown in Figure 5.11. The mean frame rate achieved by the interactive
governor is 54.9, while the ondemand and the browser governors achieve 51.6 and 52.5 FPS,
respectively. On average, the browser governor saves 25.1 % more energy over the interactive
governor and consumes approximately the same energy (0.22 % more) as the ondemand gover-
nor. Our governor sometimes consumes more energy because it explicitly targets an FPS value
between 50 and 60, while the ondemand governor is oblivious to FPS. However, our aggressive
power management utilizing A15 power gating can lead to non-optimal FPS results, for exam-
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ple for Google+. Comparing the energy per frame values, the browser governor outperforms
the interactive governor by 21 % and the ondemand governor by 1.7 % on average. While the
browser governor sacrifices only 4.5 % performance (in FPS) compared to the interactive and
performs even slightly better than the ondemand governor, the energy savings are significant.
This shows that the browser governor performs well not only for different idle phases but also
during interactive phases.
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Figure 5.11: Scroll phase energy consumption (bottom), frame rate (center) and energy per
frame (top).

5.7 Summary

In this chapter, we have introduced a phase-aware power manager for the Chrome browser. We
identified that lack of coordination between the governor and the Chrome browser is a major
hurdle in further reduction of the power consumption. Towards this, we defined multiple phases,
which differ in user performance requirements, and applied phase-specific power management
strategies accordingly. We implemented a new governor that manages CPU frequencies and
power states within an HMP platform, the Odroid-XU3 board, based on the information pro-
vided by the browser. We have shown that there exists a large potential for CPU energy savings
when a browser’s phase-specific characteristics are accounted during power management. In
particular, up to 57.4 % of used energy can be saved in idle phases, and 35 % in interactive/ani-
mation phases, without noticeable degradation in the performance. Moreover, we have investi-
gated browsing phases such as loading and scrolling. In fact, our technique does a better job in
achieving the target FPS because the frame rate is directly communicated from the browser. The
results also show that the performance overhead of our technique – mainly related to the power
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gating overhead associated with A15 – is manageable. Our main goal is to build a generalized
framework for Android governors, which is capable of incorporating information from different
types of applications, not only the browser. We will explain how to exploit the results from the
previous chapters to develop such a framework in the next chapter.
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on Mobile Systems

In this chapter, we introduce the concept for an application-aware API that can be provided
by the kernel for applications. As the implementation of such an API is burdensome in many
ways, we will not only introduce the concept, but also discuss problems that arise with such an
API and how these problems can be solved. We cover topics such as system integration, design
hurdles and challenges for application developers.

6.1 Introduction

Until now, the power management has been considered a job to be handled by the OS or at the
hardware layer, and energy-aware software development has not yet been in the main focus of
the community [128]. For example, in case of Android systems, CPU schedulers and governors
that reside in the kernel space perform thread allocation and determine the operating voltage
and frequency of the CPU, have direct impact on the power consumption. Their decision is
made based only on the information available within the kernel, which is mainly the CPU usage
per core, without regards to the information available in the user space. If the usage of a CPU
core increases above a certain threshold, the operating frequency is increased, and vice versa.
Further, even if software developers consider the energy efficiency of their code as important,
there is still a lack of tools for power-aware application design [128].

A key characteristic of applications running on mobile devices is that they are user experience-
sensitive. For example, an application is expected to respond immediately to a touch event like
scrolling or zooming, and maintain a certain frame rate during animations. On the other hand,
there are background tasks that have little impact on the user experience. There is no need to
rush executing work that is not perceivable by the user, but can increase the power consumption.
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Figure 6.1: Possible Android System Infrastructure for a power-aware interface.

There have been prior works to reduce power consumption with minimal impact on the user ex-
perience for applications such as mobile web browsing [124, 169, 170], gaming [35, 116, 123],
etc. Although they show the benefit of the interaction between the kernel and applications, these
works are highly application-specific and require custom modifications to either kernel or user
space applications.

The major drawback of the current Android software architecture is that the power manage-
ment is done without regards to application-specific characteristics, which are not visible to the
kernel. In the research community, however, the idea of creating a channel between an applica-
tion and the OS has been considered in the past. The idea of energy-efficient software design
for mobile devices is not a new one. The framework proposed in [39], adjusts fidelity, which
allows leveraging trade-off between the energy consumption and user-experience in multimedia
and maps applications. This work was continued later and adopted to newer platforms [102].
It is orthogonal to ours as it does not cover specific power management strategies for the CPU.
Numerous other techniques exist regarding power-aware code design, amongst several others
are [84, 87, 88, 112, 115]. Nevertheless, the works are still application-specific and therefore
have limitations in expandability to other applications or place too much responsibility on the
application developers.

In this chapter, we show that there is a lack of support from the operating system to enable
an application to pass over user requirements or application-specific information to the kernel.
Then, we provide two use cases, mobile gaming and web browsing, to motivate an API between
the user space and the power managers in the kernel space for better CPU power management,
as depicted in Figure 6.1. Such an API should be general enough to be applicable to a wide
variety of applications. We believe that such a generalized framework allowing coordination
of applications and the operating system, would encourage incorporating previously proposed
power reduction techniques to real products.

6.2 API for Power Management

In this section, we propose an API for power-aware application design in Android. We introduce
two examples, namely mobile games and web browsing, where sharing information between
application and governor results in substantial power savings and then we derive a generalized
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API based on these examples. Finally, we evaluate the consequences for developers when
establishing such an API.

6.2.1 Application-Aware Power Management
We use two examples to explain which information can be passed between kernel and applica-
tions. Games show how target frame rate and timing deadlines can be exploited for interactive
workloads. The browser work emphasizes the importance of proper workload prioritization,
which can only be extracted from the application itself.

Game Applications
Mobile games are very popular, but power hungry and computation intensive applications. The
complexity of modern games’ graphics, physics and AI is constantly increasing, what poses
high workloads on the system. Research has shown that the resource demand of games is state-
and frame-bound [33, 35, 123]. State-bound means that workload characteristics change signif-
icantly according to states. For example, in a loading state, the workload is heavily memory-
bound and graphical effects are often minimized. On the contrary, graphical effects and their
computations are dominant during the actual playing state. For loading, the frame rate can be
low but the loading should finish as fast as possible. For the game play, the target FPS value is
normally 30 or 60 to maintain a good user experience.

From the gaming example, we identify two classes of information that can be passed from
the applications to the governor, frame rates and deadlines. A simple approach to control
the power consumption is to pass the target frame rate and the achieved frame rate to the
governor [117, 118]. The governor can regulate the frequency based on the discrepancy of
the achieved and the target frame rate. Further, the frame rate can be considered a dead-
line [35, 123]. The goal of the power management strategy is to calculate the frame (physics,
etc.) within a particular time slot (e.g., 16.67 ms for 60 FPS). Predictive strategies can be ap-
plied to calculate the workload of the next frame based on the past workloads. This information
can be used to find the appropriate frequency level for the particular frame that just fulfills the
frame’s resource requirements. Applying this strategy, frequency overshoots can be avoided
during high workload phases in games and power can be saved. Recent gaming works that
implements such strategies report up to 43.2 % energy savings for dual-core CPUs [35] and
on average 41.9 % for HMP architectures [123] compared to the Android default interactive
governor.

The work on game power management shows the importance of sharing information be-
tween the application and the governor. Providing the frame rate as a computation deadline
results in large power savings as the frequency can be dynamically adjusted. Without this in-
formation, the governor cannot estimate the time that it takes to complete the frame calculation.
Consequently, it tries to finish this job as fast as possible, which results in power wastage.

Mobile Web Browsing
The web browser is another popular smartphone application [44] and we have shown that there
is a large potential for power savings in mobile web browsing [124, 126]. Similar to gaming,
browsing can be divided into different states such as loading a page, scrolling, etc. The so-called
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RAIL model [47] summarizes the performance requirements for different states. As explainted
above, RAIL defines the response time for actions, the time to display animations, idle state
behavior and the maximum loading time for mobile and desktop devices. Moreover, there is
application-specific data (e.g., loading state) readily available within the browser.

Based on the RAIL model, we have defined information that can be passed from the applica-
tion to the governor [126]. For example, maximum response and loading times can be handled
as deadlines if the workload can be determined. Otherwise, both actions can be treated as high
priority actions that need to be completed as fast as possible. As described in Section 5.1, the
state of the current action can be used to distinguish between high workloads that are critical
(foreground load) and others that are not necessarily relevant for a good user experience (back-
ground load). Such information can solely be provided by the application and by no other entity
in the system. Further, the animation action requires a minimum FPS value to be maintained.
Scrolling or zooming actions, but also videos playback are considered animations. Similar to
gaming, the FPS value can be used as a deadline or as a target frame rate.

As we have already shown in Chapter 5, the power saving potential for the web browser is
very high, when application-specific information is utilized. In particular, the information about
the loading state to distinguish between foreground and background loading is very promising.
The measurement results in Section 5.6 show, that power savings up to 50 % are possible if con-
sidering the application state. As mentioned above, the application states can be translated to the
priority of the workloads and a corresponding power management strategy. This is of particu-
lar importance for hardware platforms with a large discrepancy between the standard operating
mode (e.g., mostly A7 for the Odroid-XU3) and a very power consuming high-performance
mode (e.g., highest frequency of the A15 for the Odroid-XU3).

6.2.2 API between Applications and Kernel
As shown in the previous sections, there is a set of common information among Android appli-
cations that can be used for power management. Gaming and browsing already capture a wide
range of application types. For example, social media applications such as Facebook and Twit-
ter can be compared to scrolling through a web page. Other applications, e.g., navigation, are
graphics intensive such as games. In general, all user interactive applications need to maintain
a frame rate, have high priority phases such as displaying incoming messages or other timing
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Priority Mode
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Figure 6.2: Power manager with application-aware strategies.
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constraints such as deadlines. Hence, we suggest a power manager that can switch between dif-
ferent power management strategies, namely modes, as depicted in Figure 6.2. The mode can
be changed by the developer on demand. Besides one default mode (e.g., an Android default
governor), the developer can choose the mode based on the state of the application and needs to
provide mode-specific parameters as described in the following.

Frame rate
The examples in the previous section show that the FPS value can efficiently be exploited for
power management for interactive applications or videos. As described, the frame rate can
be seen as a target value that can be provided by any application that performs frame-based
calculations. For example, there are games that run at 60 FPS, but nowadays there are also
many games that target 30 FPS. Some applications might even target a lower frame rate. If the
governor knew the target value, it could adjust the exact frequency level that is needed by the
application. This is not possible by using workload information only. As of now, there is no
possibility to acquire the current frame rate within the kernel without input from the application
layer. The frame rate information within the kernel is obtainable from the GPU source code,
that it is usually closed-source. Hence, the current FPS value has to be periodically passed from
the application to the kernel to adjust the control loop. However, a GPU API in the kernel space
could even reduce the communication overhead between the Android layers.

Deadlines
Deadline information could be useful in combination with workload estimations. In many ap-
plications, there exists a temporal correlation of frame-based workloads, which allows quite
accurate workload estimations inside the governor [33, 35, 123]. For games, we can consider
the VSync of the display as a deadline for processing frames. One of the major challenges
when implementing such a strategy is coordinating multiple deadlines for different applications
or tasks within the system. If the workload is not known, the frequency of the CPU cannot be
estimated. If there are multiple deadlines for different applications or task within the system, a
deadline based scheduling algorithm has to be implemented within the kernel.

Workload Priority
From the browser power management work we have learned that workloads can be prioritized
differently and, hence, require different power management techniques. For example, we can
distinguish between foreground and background load, because the browser keeps track of the
web page loading state. Generally, developers are aware of performance-critical sections within
their application. Such sections can be loading, displaying data or involve complex algorithms,
such as software encoding or decoding of data streams. The priority of those critical sections
with regards to user perception could be given to the power manager as a hint. This would
inform the power manager not to restrict any resources when that part of the application is
running. In the browser example, the foreground load can be marked as high priority while
the background load can have a low or a default priority level. As a consequence, the power
manager can tune its strategy as needed. However, it should be aware, e.g., in case of HMP plat-
forms, that the user responsiveness is not degraded by limiting the available resources. Hence,
the power manager should be aware of the workload and the underlying hardware platform to
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make a proper decision. Generally, the characteristics of the application workloads were not
obscure anymore, and the power manager could perform better power management.

6.2.3 Implementation Issues and Challenges
Providing a power-aware API between the application and the kernel layer requires modifi-
cations to the Android OS. Moreover, we describe which challenges such an API poses for
application developers. While every new feature brings more complexity to the system, our
initial studies, and numerous previous work point out that the potential power savings surely
outweigh the overhead.

System Integration
As shown in Figure 6.1, we need to establish a communication channel between the application
and the kernel. First, the power manager needs to provide an interface accessible from the
user space. This can be realized using so-called ioctl devices that are created within the kernel
itself. Second, the current Android API needs to be extended such that application developers
can directly access the power manager within their (Java) source code. Third, the API needs
to be designed with respect to downward compatibility. Hence, existing or newly developed
applications that do not make use of the power management API should not be affected by the
feature. These applications could be run using the default mode of the power manager.

Hardware Architecture Support
While the Android API abstracts away the underlying hardware platform, the power manager
within the kernel needs to be platform-aware to achieve the best possible power savings. For
example, if the workload is defined as a low-priority workload, the actions of the power manager
could vary depending on the hardware, e.g., powering down the big CPU for HMP platforms,
lowering the frequency for single-CPU systems, etc. Moreover, a scenario may occur, where
an application developer makes use of the API but the different power management modes are
not supported by the kernel. This should be resolved and abstracted away from the application
developers.

Power Manager Design Hurdles
The implementation of the power manager within the kernel is not trivial. Hence, we address
some major design issues that have to be treated such that the API would bring the intended
benefits. First, the prioritization among the modes needs to be defined in case that there are two
tasks within the system that request different modes from the API. For example, high priority
workload should not be affected by frequency reductions for deadlines or frame rates. Further,
if there is a conflict between deadline and frame rate modes, the power manager should ensure
that the requirements of both modes are fulfilled.

Second, it is important to define what shall be done in case the API is misused. One type
of misuse is applications requesting too many resources although there is only little work that
needs to be done. This can result in an unnecessary high power consumption and consequently
in faster battery drainage. The situation can be mitigated by designing power management
strategies that monitor the workload in addition to the mode parameter. If the workload is
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low although the workload priority is set to high, there will be no performance benefit from
keeping the CPU frequency at its maximum. However, misusing the API can also mean that an
application has a large resource demand but restricts its own resources through the API. This
situation is not as easy to resolve as the former one because saving power is the exact purpose of
the power manager. However, extensive tests of the application should reveal situations where
the mode is not set correctly. For example, an Android debug option that shows the mode and
the workload on the screen could be implemented.

Challenges for Application Developers

As discussed in [128], software developers currently lack the knowledge and tools to design
applications with respect to power consumption reduction. On the one hand, software develop-
ment should be as easy as possible. Hence, developers should worry about as few problems as
possible. On the other hand, power consumption is such an important issue in mobile devices,
nowadays, that it deserves more attention from the developers and the research community. For
the power-aware API, general guidelines can help application developers to choose the correct
mode. For example, interactive applications usually target a specific frame rate. Moreover,
fast loading and rendering action usually do not require a particular frame rate but have a high
workload priority. There could also exist background tasks that pose a high workload on the
system but can be completed over a long period of time that could be used as a deadline. Tools
that visualize the workload of an application and assist in identifying the mode that should be
passed to the API would be even more helpful to the developers.

Security and Misuse

One of the major issues when adding new features to a system nowadays is security. The
developer needs to make sure that his application or feature will not cause any damage to the
user and the data stored on the device. The API that we are proposing could be misused as
described in the previous section. For example, the system could become very slow due to
wrongly requesting an idle mode. On the other hand, the battery could drain fast, if a high
priority mode is requested when the idle mode could suffice. However, implemented wisely it
should not cause any malicious threats to the system that crash the complete system.

First, the API should only take a predefined sequence of commands. All other commands
should be ignored as errors. Second, the API should only provide tuning parameters to the
power manager. This means that the power manager has to anyway take the workload of the
system into account to perform proper power management. Even if the application told the
power manager that critical workload should be handled, it would not raise the CPU frequency
in case there is no actual workload. Still, an application could tell the governor that there is no
critical workload although this is not true. That application is obviously not designed correctly
if the workload is caused by the application itself. However, the power manager needs to make
sure that there is no other application that is running concurrently and could be starved.
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6.3 Summary

Despite a considerable amount of prior work on power management for applications running
on mobile devices, introduction of such techniques into real products has been sluggish. This is
due to, on the one hand, lack of standardized means in Android systems to pass the application-
specific information and user requirements to the operating system, and on the other hand, cus-
tomization efforts required for implementing state-of-the-art power management techniques. In
this chapter, we observed two applications, games and web browsers, to identify information
that are useful for power management done in the operating system, and propose an API for
energy-efficient application development. We also discussed implementation details and accep-
tance issues within the community. As power consumption of mobile devices is of ubiquitous
importance, efforts to push power saving techniques to the general awareness are of major im-
portance. The user space applications may simply notify the desired frame rate, deadlines,
and priorities for workloads to the kernel explicitly to let the operating system perform more
effective power management. We think that the proposed framework is general enough to be
accepted by the mobile software development community.
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7
Conclusions and Future Work

In this thesis, we investigated the power consumption of different interactive Android applica-
tions, namely games and web browsers, and proposed a generalized power management API
between applications and the kernel based on our observations. The state-of-the-art power
managers in the Android system, the interactive and the ondemand CPU governors, already
perform a decent job. However, there is a lot of potential to save power, especially on modern
big.LITTLE platforms, which feature Heterogeneous Multi-Processing.

7.1 Summary

As we have shown, the full potential of HMP SoCs cannot be fully exploited by the Android
default governors. Instead, SoC-specific characteristics should be considered when designing a
power manager, taking into account, for example, that one CPU can be power gated in case the
chip features multiple CPUs. We have shown, that such an approach results in significant power
savings and also verified our approach in a user study in our work on game power management.
Moreover, we have looked at the power saving potential of HMP platforms for web browsers
and found that a considerable amount of power can be saved if only little a performance was
sacrificed. We took the results of this work as a cue and implemented our own power manager
that takes into account not only the underlying hardware platform but also information from
the browser application itself. Based on our observations from the browser governor and the
game-specific governor, we could derive more generalized states that are common for most
Android applications. Consequently, we have concluded the work by proposing a general API
for Android applications that is not bound to a specific application. The main contributions of
this work are summarized as follows:

95



7.1. SUMMARY

Frame- and Thred-based Workload Prediction for Games
We introduced a new prediction frame work for games that takes into account not only the
workload of the complete system, but looks into the specific threads spawned by the applica-
tion. Based on the previous workloads of the threads, the power manager decides what kind of
prediction strategy to apply for a particular thread. We have tested several predictors and have
found the following most effective: The thread workload can be part of a time series where the
current workload depends on the workloads of the preceding frames. Such workloads can be
predicted using a WMA predictor. Other threads are executed periodically. This can be detected
by an ACR predictor. We found that a combination of the WMA and ACR predictors yields the
best results.

The GameOptimized Governor for an HMP Platform
To perform power management on the HMP platform, we have created a software and a hard-
ware model. The software model corresponds to the frame- and thread-based workload predic-
tion strategy of the governor. The hardware model has to be adopted to the HMP platform –
namely the available CPU cores and frequencies. We use a so-called migration factor to com-
pare the capacity of big and little cores. The power manager tries to fill up the cores based
on the available capacity and the predicted workload of the threads. With the GameOptimized
governor, we can save on average 41.9 % of total energy consumption while the user experience
is still rated good and very good.

Web Browser Workload and Power Measurement Setup
While the Odroid-XU3 board provides sensors to measure the power consumption of the CPU,
there is no standardized way to measure the power consumption of an application divided by its
threads. We have developed a software setup, that gathers information from the built-in power
sensors, the running browser processes and the Chrome:trace tool. This setup enables us to
calculate the the power consumption per thread and even per browser task and function based
on the collected information.

Web Browser Workload Characterization on an HMP Platform
We performed a detailed characterization of the browser processes and in particular the render-
ing process on our experimental platform, the Odroid-XU3 board. We showed that the time the
browser spends on the A7 and the A15 is almost equal, however, the energy consumption of
the A15 is between four and six times higher. Moreover, we showed that the CrRendererMain
process contributes most to the time and energy consumption of the browser power consump-
tion. By further analyzing the CrRendererMain process and looking into JavaScript-related
functions, we found that up to 40 % of the time is spent in parsing and compiling the JavaScript
code, rather than executing it.

Web Browser Power-Performance Analysis
We performed a power versus performance analysis of the A15 cores, where we studied the
effects of frequency capping, thread-to-core allocation and power gating on the loading times
of web pages. We found that sacrificing only a little bit of performance results in significant
power saving. This is especially noticeable for power gating the A15 that reduces the idle power
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of the A15 by 85 %. However, the effect of reducing the A15 frequency is also remarkable. For
example, when running the A15 at the minimum (1.2 GHz) instead of the maximum (2.0 GHz)
frequency, the power consumption can be decreased by 34.6 % while the loading time increases
by only 16.7 %.

Phase-Aware Web Browser Power Management on HMP Platforms
We took the results from the characterization and analysis to implement our own browser-
aware CPU frequency governor. Therefore, we divided the browsing procedure into so-called
phases that exhibit different performance characteristics and therefore require different power
management techniques. We introduced phases such as idle, load/idle, load, scrolling and video.
For all phases, we implemented different power management strategies within the kernel. To
identify the phases, we also had to create a link between the application and the kernel layer
that enables us to pass information from the browser to the power manager. Our results show
that we can save up to 57.4 % of energy for idle phases where we can exploit the power gating
of the A15. Moreover, we can save up to 35 % of energy for interactive and animation phases.

API for Power-Aware Application Design on Mobile Systems
Based on our findings in the previous works, our main goal is to propose a power manager that
is not only capable of saving power for one particular application, such as the web browser or
games, but that can be applied to all kinds of Android applications. Therefore, we suggested
that Android applications can be divided into different states that are similar across all applica-
tions. Such states are, for example, interactive states that require resources for short-term peak
performance. Moreover, there are states where a particular frame rate needs to be targeted, e.g.,
in videos or animations. In some applications, such as games, the frame-based workload can
be predicted and the deadline for the execution of the task is known – this can be exploited for
power management. Based on these states, we have proposed an API that allows the applica-
tion developer to pick a state for his or her particular application and to provide the necessary
information directly to the governor.

7.2 Future Work

The techniques presented in this thesis show that there is a significant amount of potential
for power savings in mobile Android systems. However, this thesis is only able to target a
small amount of problems present in such a broad field of research, such as Android power
management. In the following, we outline some follow-up challenges that arose from our work.

Workload Predictors for Mobile Games
We have implemented a workload predictor that exploits the time correlation between neighbor-
ing frames and also the autocorrelation for periodic workloads. Moreover, many other workload
predictors were proposed in previous works, e.g., PID predictors, LMS predictors and ARMA
models. While all these approaches outperform the Android default governors, it was shown
that there is still significant room for improvement in terms of power savings [32]. Based
on these observations, the exploration in the area of workload predictors becomes interesting.
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More involved predictors could be implemented, for example, non-linear predictors or even
neural networks-based predictors or machine learning techniques. Of course, such predictors
could also take the GPU and other hardware components into account.

Estimating the Limits of CPU Power Management for Mobile Games on HMP Platforms
The work in [32] suggests that there is significant room for improvement in terms of CPU power
consumption for mobile games. However, the work does not look at an HMP platform but an
older platform, which only features a dual-core CPU. Nowadays, multi-core SoCs have become
state-of-the-art and it seems natural to extend the work in [32] to a more modern hardware. We
assume that the optimal power savings that can be achieved on an HMP platform would even
outperform the optimal savings on a simpler platform. This is due to more degrees of freedom
of an HMP platforms that include power gating and a larger number of CPU frequencies that
result in higher saving when applying DVFS.

Frame Rate Adaption for Power Management Based on Scrolling Speed
From the browser example, we have seen that scrolling is very sensitive to the current frame rate.
However, we have not tested the effects of different scrolling speeds on the power consumption.
In general, we can assume that different scrolling speeds also imply different perception ability
from the user. For example, when the user is scrolling very fast, then the screen appears blurry.
Consequently, we could lower the frame rate as there will be no deterioration to an animation.
On the other hand, when the user is scrolling very slowly, a low frame rate usually does not
affect the user perception, either [27]. However, by lowering the frame rate and rendering less
frames to the screen, a significant amount of power could be saved. We think that exploring
such strategies and verifying them in a user study could lead to a new approach for power
management when scrolling, which is a very common gesture not only on mobile devices but
also on desktop computers.

Enhanced Browser Governor and User Study
We have implemented and tested the browser governor on our Odroid-XU3 platform. While
the results are overall very promising, there is still potential for improvement of the governor.
For example, we found that power gating the A15 enables us to save a lot of power during
idle states. However, turning the A15 back on comes with some time overhead, that is slightly
noticeable in the results. We believe that the algorithms can be fine-tuned to minimize this
overhead even more. Moreover, it is important to verify power management concepts in terms
of usability not only by benchmarks but also in real user studies. Should a user study confirm
that the user perception of the browser governor is comparable to the interactive and ondemand
governors, then this would be a great step towards implementing A15 power gating for running
applications.

Power Management beyond the CPU
In this work, we have focused our studies on CPU power management, only. While this is a
broad field of research, there exist more components that contribute significantly towards the
power consumption in a mobile device. We have already introduced the display and the wireless
link in Chapter 2. We believe that combining power management strategies for all of these
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components would result in even larger power savings than performing power management for
each component individually. For example, scrolling speed-aware frame rate adaption could not
only affect the CPU power consumption, but also might be combined with dimming the display
- or even parts of the display for OLED technologies. Also, our work on the power-aware API
gives cues for power management strategies for individual components, even if not considered
in combination with each other. As most hardware components feature different power states,
nowadays, we suggest to define not only a power management strategy for the CPU, but also
for the display and the wireless link based on the requirement of the particular state. While
such states are partly implemented, especially for the display, we think that there is significant
potential for improvement.

Implementation and Verification of the API for Power-Aware Application Design
We have proposed an API for power-aware application design in Chapter 6. However, we have
not yet implemented the API and verified the concept. Besides the actual implementation for
our Odroid-XU3 platform, there are a lot more interesting problems that arise in the context of
power-aware programming. First, there is the problem of designing such an API not only for
one platform but such that it is applicable for many platforms. This requires a good balance
between generalization and specification to the hardware. Moreover, cases where the API is not
used or not supported need to be considered. Second, power-aware programming has neither
been in the center of attention in the industry nor in academia. There is a lack of tools, concepts
and general guidelines on how to create applications in such a way that they consume less power.
We see a lot of potential to 1) bring the awareness of power consumption to the developers and
2) create tools that will help the developers programming applications that consume less power.
Such an awareness could be a great step towards developing power-aware applications in the
future.
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