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Abstract

Semiconductor supply chains are challenged by an intense international competition, techno-

logical complexity, and a high innovation rate, which is typical for the semiconductor industry.

This dissertation addresses these challenges by proposing optimization-based approaches

for three different decision problems in the areas product platform design and hierarchical

production planning. The proposed approaches are applied to cases from the semiconductor

industry and extensive numerical experiments are conducted for validation and evaluation.

First, stochastic optimization is introduced for product platform design in silicon wafer

manufacturing. Numerical results show that taking the uncertainty about future demand

explicitly into account helps to design product platforms optimally — also to the requirements

of future customer orders — and thus reduce future design workload and costs. Second, a

novel cycle time-oriented mid-term production planning model is applied to wafer fabrication.

Tightly integrated with production control, the model ensures an optimal response to machine

failures and unforeseen demand changes. Compared to conventional work-in-process-oriented

planning, cycle time-oriented planning delivers higher service levels, shorter cycle times, and

it generates simpler production plans. Third, a low-dimensional capacity model is suggested

for company-wide production planning. It hides the detailed capacity allocation decisions,

which are usually made for parallel machines, and thus reduces the complexity of the planning

process. Depending on the number of modeled machines and products, an exact or a heuristic

procedure is used for the generation of specific capacity constraints. An aggregation step,

which exploits certain attributes of machines and products, reduces the problem size and

computation time. Compared to existing methods, the proposed procedures deliver a more

accurate representation of throughput limitations, in particular for parallel machines. The

presented optimization-based approaches improve the resource efficiency and the service level

of semiconductor supply chains and thus strengthen the resilience of manufacturers against

future challenges.
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Zusammenfassung

Die Herausforderungen, denen sich Halbleiterlieferketten stellen, ergeben sich aus dem starken

internationalen Wettbewerb, der technologischen Komplexität, und der hohen Innovationsra-

te, die typisch für die Halbleiterindustrie ist. Die vorliegende Dissertation begegnet diesen

Herausforderungen mit Optimierungsmodellen für drei unterschiedliche Entscheidungsproble-

me aus den Bereichen Produktplattformentwicklung und hierarchische Produktionsplanung.

Die präsentierten Modelle werden auf Fälle aus der Halbleiterindustrie angewendet und

in umfangreichen numerischen Experimenten validiert und bewertet. Zuerst wird stochas-

tische Optimierung zur Entwicklung von Produktplattformen in der Substratherstellung

vorgeschlagen. Die numerischen Ergebnisse zeigen, dass die explizite Berücksichtigung der

Nachfrageunsicherheit dabei helfen kann, Produktplattformen optimal zu entwickeln — auch

gemäß den Anforderungen zukünftiger Bestellungen — und dadurch zukünftigen Entwicklungs-

aufwand und Kosten zu reduzieren. Zweitens wird eine neuartige Fertigungszeit-orientierte

mittelfristige Produktionsplanung für die Fertigung von integrierten Schaltkreisen eingeführt.

Eng verbunden mit der Produktionssteuerung, sorgt das Planungsmodell für eine optimale Re-

aktion auf Maschinenausfälle und unvorhergesehene Änderungen der Nachfrage. Im Vergleich

zur konventionellen Umlaufbestand-orientierten Produktionsplanung erhöht Fertigungszeit-

orientierte Planung den Lieferbereitschaftsgrad, reduziert die Fertigungszeit, und generiert

einfachere Produktionspläne. Drittens wird ein niedrigdimensionales Kapazitätsmodell für

die unternehmensweite Produktionsplanung empfohlen. Es verdeckt die detaillierten Ka-

pazitätsallokationsentscheidungen, welche normalerweise für parallele Maschinen getroffen

werden müssen, und reduziert so die Komplexität des Planungsprozesses. Abhängig von der

Anzahl der modellierten Maschinen und Produkte wird ein exaktes oder ein heuristisches

Verfahren zur Generierung spezifischer Kapazitätsbeschränkungen eingesetzt. Ein Aggregati-

onsschritt, welcher bestimmte Eigenschaften von Maschinen und Produkten ausnutzt, reduziert

die Problemgröße und damit die Berechnungszeit. Im Vergleich zu existierenden Methoden

liefern die vorgeschlagenen Verfahren ein akkurateres Abbild der Durchsatzbeschränkung,

insbesondere für parallele Maschinen. Die beschriebenen Optimierungsmodelle unterstützen

die Ressourceneffizienz und den Lieferbereitschaftsgrad in Halbleiterlieferketten und verbessern

so die Widerstandsfähigkeit der Hersteller gegenüber zukünftigen Herausforderungen.
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Chapter 1

Introduction

1.1 Semiconductors

Semiconductors are one of the most pervasive and powerful inventions in human history and

have affected almost every aspect of human life. With a world population of 7.55 billion in

2017, there were globally about 18 billion semiconductor devices connected to IP networks

(see Cisco, 2018). A continuation of growth from 2.4 network devices per capita in 2017 to 3.6

by 2022 is in particular expected from Internet of Things (IoT) applications, i.e., “systems of

interconnected people, physical objects, and IT platforms, as well as any technology to better

build, operate, and manage the physical world via pervasive data collection, smart networking,

predictive analytics, and deep optimization” (see IEEE-SA, 2015). The value of global

semiconductor production was $412 billion in 2017. In the same year, European semiconductor

manufacturers generated $38 billion of revenue, to which the German semiconductor industry

contributed around $14.7 billion (see WSTS, 2018; ZVEI, 2017). Electronics, which includes

semiconductors, is the second largest manufacturing industry in Germany and employs

880 thousand people in 2018 (see ZVEI, 2018).

The most important type of semiconductor is the integrated circuit (IC), which includes

analog, micro, logic, and memory chips. It accounts for 84 % of the world-wide semiconductor

market (see WSTS, 2018). Other types of semiconductors are discrete semiconductors,

optoelectronics, and sensor devices. ICs are created on the surface of a semiconductor

material, which is commonly a thin slice of mono-crystalline silicon (also denoted as wafer or

substrate). Silicon wafers are typically manufactured by growing a single-crystal rod (also

called ingot) from a silicon melt to a cylindrical shape of several meters in length and up to

450 mm in diameter. These ingots are sliced into wafers, which undergo surface treatments.

The creation of ICs on the surface of a wafer is called wafer fabrication. In the production

stages subsequent to wafer fabrication, a wafer is cut apart into dies, dies are sorted and

assembled to semiconductor devices, which are again tested (see Figure 1.1). Dies are small

1
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Silicon
crystal
pulling

Slicing
and wafer
finishing

Wafer
fabrication

Die
sortation

Device
assembly

Device
testing

Customer

Silicon wafer
manufacturing

Semiconductor device manufacturing

Figure 1.1: Production stages in a typical semiconductor supply chain.

fragments of the wafer, each holding a functional IC. Depending on the size of both wafer

and IC, hundreds or thousands of dies are fabricated on a wafer. For more information about

semiconductors and wafer fabrication technology, see for example Geng (2005) and Turley

and Turley (2003).

1.2 Challenges in semiconductor supply chains

Semiconductor supply chains are shaped by distinct attributes that are characteristic for the

semiconductor industry. Commonalities among semiconductor manufacturers are the exposure

to a competitive international market, the mastering of technologically complex production

processes, and a high innovation rate. These challenges form the root causes of many specific

decision problems in the semiconductor industry.

Semi-finished and finished semiconductor products have high value-to-volume ratios. The

manufacturing network of semiconductor device manufacturers, such as Infineon, prove that it

is economical to ship semi-finished and finished products across continents in order to exploit

the competitive advantage of different locations for different stages of production (see, e.g.,

Ehm et al., 2011). Geographical distance is likewise not a barrier for market entry, which

means that companies from across the globe often compete for the same group of customers.

This ensures low consumer prices and it forces manufacturers and suppliers to continuously

improve the cost, speed, and quality of their operations.

Silicon wafer manufacturing and wafer fabrication have high requirements on cleanliness

and precision. The radius of a silicon atom is in the range of 0.1 nanometer. IC features,

which are created in wafer fabrication, are as small as a few nanometers. An important step

in wafer fabrication is photo lithography, which transfers a two-dimensional pattern from a

photo mask to the surface of a with light-sensitive chemicals covered wafer. After exposure,

the physiochemical attributes of the patterned wafer surface is altered by applying techniques,

such as etching, deposition, and oxidation. Up to 40 of such layers, which have to be perfectly

aligned, are iteratively created and build the desired IC (see, e.g., Mönch et al., 2013). The

required level of precision and purity is achieved with substantial investments in technology,

which push the total cost of a new wafer fabrication facility up to several billion Dollars (see,

e.g., Intel, 2017; Samsung, 2017; TSMC, 2018).



1.3 Research objectives 3

Semiconductor devices are high-tech products and technological progress is ongoing. The

most popular observation that illustrates the pace of development in the semiconductor

industry is probably Moore’s Law, which has correctly predicted the doubling of the number

of transistors per IC every 12 to 24 months, beginning with one transistor in 1959 (see

Mack, 2011; Moore, 1965). As a result of this efficiency gain, every newly developed device

experiences a price decline once it is introduced. Declining product prices have to be considered

at all planning levels since inventories can pose a financial risk. Declining product prices

also incentivize investments in research and development in order to secure future business

opportunities.

1.3 Research objectives

The objective of this dissertation is to contribute to the knowledge about relevant decision

making problems in semiconductor supply chains. We identify three research questions based on

cases that were discovered in joint projects with partners from the local semiconductor industry.

These research questions are linked to each other by the general challenges in semiconductor

supply chains and address three different decision making problems, which cover different

supply chain segments (see Figure 1.1) and belong to different levels of hierarchical production

planning and control (see, e.g., Stadtler, 2015). Due to the complementary nature of the

studied topics, this dissertation provides a broad picture of supply chain management-related

issues in the semiconductor industry. Every research question is answered with a quantitative

approach and involves some form of optimization. We demonstrate all proposed models

in extensive numerical experiments with both industry and randomly generated problem

instances. Although these models are tailored to the specifics of the semiconductor industry, we

provide generic problem formulations and model descriptions that allow an easy application to

similar settings in other industries. In the following, we outline the three cases and formulate

the three research questions that are addressed in this dissertation.

The first case refers to product design in silicon wafer manufacturing. The high innovation

rate in the semiconductor industry, which manifests itself in the frequent development of

new IC generations, also affects the suppliers of silicon wafers. A new generation of ICs

often requires a different substrate than previous generations, e.g., with different impurity

levels. Designing a silicon wafer is expensive. It involves an iterative process of manufacturing

sample ingots and testing the resulting sample wafers on the wafer fabrication equipment of

the customer until the physiochemical requirements are satisfied. Several business functions

including sales, product design, engineering, and production contribute to this process. If

customer orders for new wafer types could be served with existing ingots instead of designing

new ones, this would reduce the product development workload and enable a shorter time to

market for the device that the customer intends to manufacture. The customer formulates

many of the feature value requirements that the wafer has to satisfy as tolerance intervals.
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Pending orders, ongoing negotiations, and technological trends can be used by the silicon

wafer manufacturer to forecast future feature value requirements. An ingot can be designed

not only to the requirements of a customer order on hand but also the forecasted requirements

of future orders. However, in order to be feasible for a given set of customer orders, an ingot

has to meet in every feature the most demanding requirement. This increases the expected

production cost of all served orders. In the search for the optimal ingot design, this production

cost increase has to be traded off against the expected reduction of design costs. The objective

is to design an ingot that serves as a product platform for a range of customer orders in

the present and in the future such that total costs are minimized. In this context, the first

research question is:

Research question 1. In an engineer-to-order manufacturing environment with a rapidly

evolving product portfolio and uncertain future demand, what is the optimal product platform

design?

The second case is about mid-term production planning in wafer fabrication. Wafer

fabrication is the creation of ICs on the surface of silicon wafers. It is a technologically

sophisticated production stage of semiconductor device manufacturing and requires expensive

tools and equipment. The technological complexity translates into operational complexity

as equipment costs make a job shop with recirculating process flows the only financially

viable form of organizing production. ICs are fabricated layer by layer, which means that

wafers pass a series of process steps several times. A process flow describes the complete

sequence of process steps, which determine the resulting type of IC. A wafer fabrication facility

(short wafer fab) often fabricates several types of ICs in parallel. As a result, equipment is

shared by wafer lots that differ in both process flow and level of completion. For instance,

a medium-sized wafer fab can release 11,000 wafers per week distributed across 25 different

recirculating process flows. Every process flow can count 400 to 800 process steps visiting

160 work centers, which are defined by grouping 1000 individual machines according to their

capabilities. A wafer cycles 30 to 80 days through the fab before it is finished. Both, uncertain

yield and uncertain customer demand lead to uncertain output targets for the wafer fab.

Output targets that are raised within the cycle time of 30 to 80 days can only be met by

prioritizing wafer lots that are in process. Mid-term production planning determines release

quantities and lot priorities for both new releases and work in process (WIP) such that

multiple objectives are optimized: High fixed costs make high throughput rates and therefore

the avoidance of machine idling necessary. The frequent development of new ICs, uncertain

output targets, and the deflation of product prices demand short cycle times, low WIP levels,

and thin inventories. A high on-time delivery performance is a prerequisite for maintaining

excellent customer relationships. The second research question is hence:

Research question 2. Which mid-term production planning method meets best the conflicting

objectives in wafer fabrication and how does it interact with production control?
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The third case addresses production planning (also called master production scheduling)

in semiconductor device manufacturing. Production planning coordinates the flow of material

and the allocation of bottleneck resources at the company-level such that costs are minimized

and promised deliveries are fulfilled on time. The production network of a semiconductor

device manufacturer typically includes the stages wafer fabrication, sortation, assembly, and

test. Traditionally, there is a stock of dies located between sort and assembly and a stock

of semiconductor devices held after final test. But there can be more buffer inventories

distributed across the network. Production planning ensures that the right quantity of the

right type of semi-finished product leaves a buffer inventory and seizes a bottleneck resource in

the right time bucket. It also ensures that sufficient capacity of bottleneck resources is reserved

for product development. An accurate model of the throughput limitations of bottleneck work

centers is a prerequisite for production planning, which intends to prevent excessive queues as

well as machine idling. Work centers often consist of several machines of different age, whose

performance can differ in speed and capability. The traditional way of modeling the capacity of

such a collection of parallel machines is to capture the capacity allocation of individual machine

types to individual product types in detail. While the accurate representation of bottleneck

work center capacity is crucial, the scale and scope of semiconductor device manufacturing

make it undesirable to model detailed resource allocation decisions in the production planning

problem. Instead, planners prefer capacity constraints that limit the total production rates of

product types without surfacing the complexity of how workload is distributed across parallel

machines. The third research questions is therefore:

Research question 3. How can we accurately capture the capacity of parallel machines such

that the total production rates of product types are the only variables of the model?

1.4 Outline

This dissertation is organized as a collection of three research papers, which can be read as

individual contributions. Every paper is dedicated to one of the three research questions

and forms a separate chapter. In Chapter 2, we propose and evaluate a two-stage stochastic

optimization model to solve the product platform design problem for both customer orders

on hand and expected future customer orders. This chapter aims at answering research

question 1. In Chapter 3, we propose a novel mid-term production planning approach that

is cycle time-oriented. We demonstrate its interaction with production control as well as

its superiority compared to popular WIP-oriented production planning. This chapter aims

at answering research question 2. In Chapter 4, we propose and evaluate a procedure that

generates low-dimensional linear capacity constraints for parallel machines. These constraints

contain one decision variable per product type, modeling the total production quantity of every

product type. This chapter aims at answering research question 3. Every chapter contains a
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review of the respective literature, which is not limited to semiconductors but delimits our

contributions from existing work in general. In addition to the conclusions that are drawn at

the end of every chapter, we finish this dissertation in Chapter 5 with a high-level summary

of the generated insights and an expansion on our discussion of future research opportunities.



Chapter 2

Tactical platform design in supply

chains with rapidly evolving

product portfolios

Abstract

Engineer-to-order companies design products to the requirements of individual customer orders.

The design of new products occupies a highly specialized and expensive workforce, which

experiences an increasing workload due to shortening product life cycles. An opportunity

to reduce the cost and workload of product design is to introduce product platforms that

serve both present and future customer orders. However, future customer orders are uncertain

and designing a product platform to cover the requirements of the most demanding expected

customer order increases the manufacturing costs of all product variants served by the platform.

We propose a two-stage stochastic program with recourse that determines the optimal number

and designs of product platforms. It trades a reduction of design costs off against an increase

in manufacturing costs taking present and expected future orders into account. We test our

approach in settings typical for the silicon wafer manufacturing industry. Compared to existing

modelling approaches derived for the deterministic platform design problem, our efficient

model requires fewer binary decision variables, which reduces computation times significantly.

Numerical experiments also show the greatest benefit of tactical product platform design in

situations with high design costs, low growth and variability of feature value requirements,

and low growth of order quantities.

7
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2.1 Introduction

Form postponement describes the delay of product differentiation to down-stream processing

steps. It typically involves the manufacture of components to stock, from which customization

steps pull. Product platforms enable form postponement as they delay product differentiation

(see, e.g., Jiao et al., 2007; Su et al., 2005). The key benefits of form postponement with

product platforms are the reduction of safety stock levels due to risk-pooling and the reduction

of complexity in the manufacturing system (see, e.g., Hillier, 2000; Lee and Tang, 1997). In

addition, design and engineering costs as well as product lead times are reduced (see, e.g.,

Fisher et al., 1999; Jans et al., 2008; Perera et al., 1999), which is of particular relevance for

engineer-to-order (ETO) environments. The main drawback is the increase in manufacturing

costs because of platform designs that exceed the feature value requirement of some of the

served product variants (also denoted as over-costs, see Briant and Naddef (2004)).

Product platform design selects common parts and an underlying core technology that

are to be implemented across a range of product variants. A product platform is often

designed by combining readily specified modular components (see, e.g., Ben-Arieh et al., 2009;

Swaminathan and Tayur, 1998). Customized product variants are then derived by removing

and adding components, which has been proposed, for example, for the manufacture of power

tools and other electronic devices. A more general approach to product platform design is to

determine all the feature values that specify a platform (see, e.g., Boysen and Scholl, 2009;

Fujita and Yoshida, 2004; Menezes et al., 2016; Thonemann and Brandeau, 2000). Customized

product variants are then derived from a platform unit in downstream processes. Typical

examples can be found in manufacturing industries and also in the process industry (see, e.g.,

Kilic et al., 2013). This paper extends the literature on the latter, more general approach.

The benefit of a product platform depends on its design. Designing product platforms is

in particular challenging in supply chains with rapidly evolving product portfolios. While old

product variants phase out, new product variants with different requirements are introduced

to keep up with technological progress. Moreover, legacy product variants are often tied to

their product platform because the costs of change are prohibitive. A reconfiguration of the

supply chain as well as product approvals by authorities and the customer are time-consuming

and expensive. As a result, product platform designs are a differentiating factor from the

customer’s perspective.

In order to take full advantage of product platforms in changing environments, platform

design has to take present and future expansions of the product portfolio into account. We

define the tactical product platform design problem (TPPDP), which is to minimize the costs

at which product platforms are designed and manufactured to serve product variants that are

ordered in the present and in the future. Both the feature value requirement and the order

quantity of future customer orders are usually uncertain but insights from pending orders,

ongoing negotiations, and technological trends can be leveraged to specify expectations. The
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Figure 2.1: Postponement of the customer order decoupling point in silicon wafer manufactur-
ing.

TPPDP is initialized when customer orders on hand require the design of a new product

platform. This is the case when none of the existing platforms meets the feature value

requirements. The question is then if it is optimal to design a product platform not only to the

requirements of today’s but also to the requirements of expected future orders. This tactical

decision can reduce the number of future customer orders that enter the platform design

phase. In order to minimize total costs, the TPPDP formulation trades off the reduction of

platform design costs against the increase of manufacturing costs.

This paper is motivated by a case in the semiconductor silicon wafer industry, in which

silicon wafers are produced by an ETO company. Subsequent to the design phase, cylindric

silicon monocrystals (also called ingots) are manufactured in a crystal growth process, such as

Czochralski pulling. These ingots are characterized by several features including the grow

material type, silicon grade, dopant material, crystal orientation, electrical resistivity, the

number of oxidation-induced stacking faults, and the concentration of carbon, oxygen, and

iron. Ingots are sliced into silicon wafers, which undergo finishing steps, such as edge rounding,

lapping, cleaning, etching, coating, polishing, and epitaxy. Especially in the semiconductor

industry, customer preferences are pushing for short product lead times, short product life

cycles, and a large product variety. As a result, ETO companies are experiencing decreasing

order quantities and an increasing order frequency, which is a common observation in ETO

supply chains (see, e.g., Kumar and Wellbrock, 2009). We investigate the opportunity to

postpone the customer order decoupling point from the design phase to the stock of ingots

with tactical product platform design (see Figure 2.1).

The scientific contributions of this paper include:

• a formulation of the product platform design problem that

– accounts for an evolving product portfolio in a two-stage stochastic programming

formulation;
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– supports both discrete and continuous feature values and efficiently models the

quadratic relationship between platform design and platform assignment decisions;

• an application of the proposed model to a setting that is typical for the silicon wafer

industry and numerical results that demonstrate its efficiency and effectiveness;

• the identification of situations in which tactical product platform design is most beneficial.

In the following Section 2.2, we review the relevant literature. In Section 2.3, we first define

the TPPDP and then present a two-stage stochastic programming formulation with recourse.

In Section 2.4, we discuss the assumptions that underlie the generation of random problem

instances and present the numerical results of experiments that reveal the effectiveness and

the efficiency of the proposed formulation. We finish the paper with our conclusive remarks

in Section 2.5.

2.2 Related work

A product platform can be either broadly defined as a collection of assets, i.e., components,

processes, knowledge, people, and relationships, or more narrowly as a set of physical com-

ponents, modules, and parts (Jiao et al., 2007). This paper is concerned with the design

of physical product platforms, which is related to the component commonality problem.

Comprehensive reviews of models and methods that have been proposed for the design of

common components can be found in Wazed et al. (2010), Fixson (2007), and Labro (2004).

Simpson (2004) and Jiao et al. (2007) present a classification and summary of approaches

that facilitate platform-based product development and the optimization of product platforms.

The objective is to simultaneously design multiple products for achieving higher optimality

– beyond design methods that consider a single product at a time. Product platforms help

accomplishing product variety at lower costs compared to every product is made from a

unique semi-finished product. Economies of scale are realized by reducing the number of

different semi-finished products, while the valuable variety of final product variants remains

unrestricted.

If the specification of product platforms can be reduced to a single feature, platform

design is an assortment problem. One-way substitution (i.e., feature values can exceed the

requirement but must not fall below) allows the grouping of customer orders so that for every

group, a platform is designed to the requirement of the most demanding variant within the

group. Jans et al. (2008) formulate this deterministic, single-stage optimization problem as a

MILP, which maximizes profit and balances platform development costs, manufacturing costs,

and selling prices. In order to solve large-scale instances of this problem, Briant and Naddef

(2004) and Menezes et al. (2016) propose a Lagrangian relaxation and a steepest descent

greedy algorithm, respectively. They assume that the required number of product platforms

is given as an input and focus on minimizing manufacturing costs.
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Thonemann and Brandeau (2000) propose an integer programming formulation of a

deterministic, single-stage component commonality problem that minimizes the total costs

of production, setups, holding inventory, and variability in the manufacturing system. They

solve the problem with a branch-and-bound algorithm and simulated annealing. The solution

defines the optimal number and specification of components as well as the assignment of

components to product variants. While Thonemann and Brandeau assume that components

are characterized by features that can be either turned on or off, Boysen and Scholl (2009)

extend every feature by a finite set of feasible feature values that allow one-way substitution.

Boysen and Scholl formulate the problem as a MILP and present a two-stage graph-based

heuristic to solve the problem.

Swaminathan and Tayur (1998) and Ben-Arieh et al. (2009) define a product platform

as a composition of modular, fully specified components. Product variants are assembled

based on a platform by adding and removing components. The problem is to specify platform

configurations and define production quantities so that the total costs of mass-producing

product platforms, assembling product variants, holding inventory, and experiencing stock-

outs are minimal for a given demand. Swaminathan and Tayur (1998) also consider that

future demand is stochastic and propose a two-stage stochastic programming formulation, in

which platform configurations and production quantities are decided in the first stage, while

potential platform modifications and the additional production of missing parts are modelled

as recourse decisions. The model does, however, not address the uncertainty of the feature

value requirements of future customer orders.

In summary, there exist optimization-based methods to solve the deterministic single-

stage product platform design problem. Few contributions consider the uncertainty of future

customer orders. There is a gap in the scientific literature as there has not been presented a

model that accomplishes tactical product platform design for an evolving product portfolio

with uncertainty about both order quantities and feature value requirements of future customer

orders.

2.3 Tactical product platform design

2.3.1 Problem statement

ETO companies design product variants to the requirements of customer orders. Customer

orders specify feature value requirements with tolerance intervals. It is assumed that a

semi-finished product can serve as product platform and be the basis for more than one type

of product variant. The extent of such a product platform depends on its compliance with

the feature value requirements of customer orders.
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A set of customer orders arrives in the present. These orders define the feature value

requirements and order quantities of product variants that have to be designed and manufac-

tured in the present. Reorders in the future of the same product variants are possible but

order quantities are uncertain. In addition, a set of different customer orders is expected to

arrive in the future. Both the feature value requirements and the order quantities of these

orders are uncertain.

Product platform design incurs fixed costs, which represent design costs and the costs

of adding complexity to the production system. Manufacturing a product platform incurs

variable costs, which depend on the realized feature values and the production volume. Every

product variant has to be served by one product platform and such assignments made in the

present cannot be modified in the future. The TPPDP is to determine the optimal product

platform designs in order to meet customer orders on hand and, potentially, expected future

customer orders. The objective is to minimize the total costs of designing and manufacturing

product platforms in the present and in the future, which requires the balancing of certain

and uncertain fixed costs with certain and uncertain manufacturing costs along the time line.

2.3.2 Two-stage stochastic program with recourse

We formulate the TPPDP as a two-stage stochastic program with recourse. Similar to the

core component-commonality problem presented by Boysen and Scholl (2009), the proposed

formulation determines how many different product platforms have to be designed, what is the

specification of these product platforms, and which product variant is served by which product

platform. In contrast to Boysen and Scholl (2009), our formulation answers these questions

for a product portfolio that evolves over time. Moreover, our novel modelling approach allows

the use of continuous instead of discrete decision variables to model platform design decisions,

i.e., the specification of the feature values that are going to be realized in product platforms.

Modelling approach and assumptions

We assume that every customer order specifies the order quantity and the feature value

requirement of exactly one product variant. Customer orders arrive in both stages of the

two-stage stochastic program. The first stage models the present. Order quantities and feature

value requirements of customer orders that arrive in the present are certain. The second

stage models the future. Order quantities and feature value requirements of customer orders

that arrive in the future are uncertain, which is modelled by scenarios in the second stage.

Reorders in the future of product variants that have been ordered in the present are uncertain

too and are therefore included in the second stage.
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First-stage decision variables design product platforms in the present. Every product

variant that is ordered in the present has to be served by one product platform that is designed

in the present. Such platforms can be designed to serve product variants that are expected

to be ordered in the future. This often increases platform manufacturing costs as in every

feature, the most demanding of the served product variants dictates the specification of the

platform. In case an expected future customer order is not served by a first-stage design, the

recourse decision remains to design additional product platforms in the second stage.

We assume that two different values of the same feature have a different cost contribution,

i.e., the cost contribution is strictly increasing over the by cost contribution sorted set of

feature values. Due to this strict monotonicity, the feature values of a minimum-cost product

platform design have to attain the lower bound of the tolerance interval of at least one of

the served product variants. If the optimal platform design includes a feature value that is

not the lower bound of a tolerance interval of one of the served product variants, then the

manufacturing costs of the design could be reduced by replacing this feature value with the

minimum requirement of the most demanding of the served product variants and, hence,

cannot be optimal.

The strict monotonicity implies that for every feature, the mapping between feature value

and cost contribution is unambiguous. We can therefore use the cost contribution per feature

as a proxy for feature values in the modelling of platform design decisions. Furthermore, it is

sufficient to consider only the lower bounds and upper bounds of tolerance intervals in the

TPPDP formulation. Optimal product platform specifications consist only of lower bounds.

Upper bounds are needed to define the feasibility area of feature values.

The cost contributions of features are assumed to be independent and additive. Neither

the specification of other features nor the served product variant has an effect on the cost

contribution of the feature value that is realized in a product platform. This is in particular a

valid assumption for the semiconductor silicon wafer industry as wafers have homogeneous

dimensions. Wafers of different diameter would define separate product platform design

problems and the production of one wafer always requires one slice of an ingot.

We divide the set of features into the subsets FD and FC. Design decisions of the features

in FD are modelled by discrete decision variables. Design decisions of the features in FC

are modelled by continuous decision variables. A feature belongs to FD if the feature value

requirement of at least customer order defines two or more intervals on the by cost contribution

sorted union set of feasible feature values. Otherwise, every feature value requirement defines

exactly one interval on the by cost contribution sorted union set of feasible feature values and

the feature belongs to FC.

In the following, we present the MILP formulation of the TPPDP. Order quantities in

the first stage are assumed to be positive. Second stage demand is assumed to be zero or

greater than zero. Given the limited time horizon for which information about potential

future customer orders is available, we neglect the time-value of money.



14 Chapter 2: Platform design in supply chains with evolving product portfolios

TPPDP formulation

We first introduce the notation that is used in the MILP formulation of the TPPDP and begin

with the definition of sets. For the sake of brevity, we refer to product platform as platform

and to product variant as variant:

R1 Set of variant types that customers order in the first stage.

R2 Set of variant types that customers order for the first time in the second stage.

P 1 Set of platform types that are designed in the first stage.

P 2 Set of platform types that are designed in the second stage.

FC Set of platform features that customer orders specify with a single interval on

the by cost contribution sorted union set of feasible feature values.

FD Set of platform features that customer orders specify with one or more intervals

on the by cost contribution sorted union set of feasible feature values.

F Union set of all platform features (F := FC ∪ FD).

Vf Set of values of feature f ∈ FD that form the lower bound of any of the intervals

defined by any of the customer orders.

V 1
rf Subset of Vf containing values that lie within the tolerance intervals defined by

the customer order for variant r ∈ R1.

V 2
rfs Subset of Vf containing values that lie within the tolerance intervals defined by

the customer order for variant r ∈ R2 in second-stage scenario s ∈ S.

S Set of second-stage scenarios.

There cannot be more platform designs than customer orders, which makes |P 1|:= |R1| and

|P 2|:= |R2| sufficient. Next, we define parameters:

D1
r Number of platform units that are needed to meet the demand of variant r ∈ R1

in the first stage.

D2
rs Number of platform units that are needed to meet the demand of variant r ∈

R1 ∪R2 in scenario s ∈ S.

FC Fixed costs per platform type.

VC fv Cost per platform unit of feature value v ∈ Vf .

UB1
rf Cost per platform unit of feature value vUB1

rf , which is the upper bound of the

tolerance interval defined for feature f ∈ FC of variant r ∈ R1.
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UB2
rfs Cost per platform unit of feature value vUB2

rfs , which is the upper bound of the

tolerance interval defined for feature f ∈ FC of variant r ∈ R2 in scenario s ∈ S.

LB1
rf Cost per platform unit of feature value vLB1

rf , which is the lower bound of the

tolerance interval defined for feature f ∈ FC of variant r ∈ R1.

LB2
rfs Cost per platform unit of feature value vLB2

rfs , which is the lower bound of the

tolerance interval defined for feature f ∈ FC of variant r ∈ R2 in scenario s ∈ S.

Prs Probability of scenario s ∈ S.

M Sufficiently large value.

The formulation requires five types of decision variables, which are divided into first-stage

and second-stage variables:

x1rp 1 if platform p ∈ P 1 serves variant r ∈ R1 and 0 otherwise.

x2rps 1 if platform p ∈ P 1 ∪ P 2 serves variant r ∈ R2 in scenario s ∈ S and 0 otherwise.

y1p 1 if platform p ∈ P 1 is active and 0 otherwise.

y2ps 1 if platform p ∈ P 2 in scenario s ∈ S is active and 0 otherwise.

c1pf Cost of feature f ∈ F per unit of platform p ∈ P 1.

c2pfs Cost of feature f ∈ F per unit of platform p ∈ P 2 in scenario s ∈ S.

k1rf Cost of feature f ∈ FC per unit of the platform that serves variant r ∈ R1.

k2rfs Cost of feature f ∈ FC per unit of the platform that serves variant r ∈ R2 in

scenario s ∈ S.

z1rfv 1 if the platform that serves variant r ∈ R1 attains value v ∈ V 1
rf in feature

f ∈ FD and 0 otherwise.

z2rfvs 1 if the platform that serves variant r ∈ R2 in scenario s ∈ S attains value

v ∈ V 2
rfs in feature f ∈ FD and 0 otherwise.

ζ = min
∑
r∈R1

∑
f∈F

D1
rk

1
rf +

∑
p∈P 1

FCy1p +
∑
s∈S

PrsQ(c1pf , k
1
rf , y

1
p, s) (2.1)

∑
p∈P 1

x1rp ≥ 1 r ∈ R1 (2.2)

x1rp ≤ y1p r ∈ R1, p ∈ P 1 (2.3)
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UB1
rf +M(1− x1rp) ≥ c1pf r ∈ R1, p ∈ P 1, f ∈ FC (2.4)

LB1
rfx

1
rp ≤ c1pf r ∈ R1, p ∈ P 1, f ∈ FC (2.5)

k1rf +M
(
1− x1rp

)
≥ c1pf r ∈ R1, p ∈ P 1, f ∈ FC (2.6)∑

v∈V 1
rf

z1rfv = 1 r ∈ R1, f ∈ FD (2.7)

∑
v∈V 1

rf

VC fvz
1
rfv +M

(
1− x1rp

)
≥ c1pf r ∈ R1, p ∈ P 1, f ∈ FD (2.8)

∑
v∈V 1

rf

VC fvz
1
rfv −M

(
1− x1rp

)
≤ c1pf r ∈ R1, p ∈ P 1, f ∈ FD (2.9)

∑
v∈V 1

rf

VC fvz
1
rfv ≤ k1rf r ∈ R1, f ∈ FD (2.10)

c1pf , k
1
rf , y

1
p ∈ R≥0

x1rp, z
1
rfv ∈ {0, 1}

The objective function (2.1) of the TPPDP formulation minimizes the total of manufactur-

ing costs and fixed costs of platforms that are designed in both the first stage and the second

stage. The latter is modelled by the sum of recourse functions Q multiplied with scenario

probabilities Prs. The optimal objective function value is denoted as ζ. Constraint (2.2)

ensures that every variant that is ordered in the first stage is also served with a platform

that is designed in the first stage. With constraint (2.3), every platform that is designed

in the first stage will also incur fixed costs in the first stage. Constraints (2.4) and (2.5)

make sure that the specification of the platform complies with the requirements of the served

variants for the features in FC. Constraint (2.6) propagates the manufacturing costs per

feature and per platform unit to the served variants so that the total manufacturing costs

can be calculated in the objective function by multiplication with demand. Constraint (2.7)

ensures that the platform features in FD are specified by enforcing the selection of one of

the feasible values in V 1
rf . Constraints (2.8) and (2.9) make sure that the specification of

the platform complies with the requirements of the served variants for the features in FD.

Constraint (2.10) propagates the manufacturing costs of the features in FD to the served

variants, which allows the calculation of total manufacturing costs in the objective function.

Q(c1pf , k
1
rf , y

1
p, s) =

∑
r∈R1

∑
f∈F

D2
rsk

1
rf +

∑
r∈R2

∑
f∈F

D2
rsk

2
rfs +

∑
p∈P 2

FCy2ps (2.11)

∑
p∈P 1∪P 2

x2rps ≥ 1 ∀r ∈ {r : r ∈ R2 ∧D2
rs > 0} (2.12)

x2rps ≤

{
y1p ∀r ∈ R2, p ∈ P 1

y2ps ∀r ∈ R2, p ∈ P 2
(2.13)
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UB2
rfs +M(1− x2rps) ≥

{
c1pf ∀r ∈ R2, p ∈ P 1, f ∈ FC

c2pfs ∀r ∈ R2, p ∈ P 2, f ∈ FC
(2.14)

LB2
rfsx

2
rps ≤

{
c1pf ∀r ∈ R2, p ∈ P 1, f ∈ FC

c2pfs ∀r ∈ R2, p ∈ P 2, f ∈ FC
(2.15)

k2rfs +M
(
1− x2rps

)
≥

{
c1pf ∀r ∈ R2, p ∈ P 1, f ∈ FC

c2pfs ∀r ∈ R2, p ∈ P 2, f ∈ FC
(2.16)∑

v∈V 2
rfs

z2rfvs = 1 ∀r ∈ R2, f ∈ FD (2.17)

∑
v∈V 2

rfs

VC fvz
2
rfvs +M

(
1− x2rps

)
≥

{
c1pf ∀r ∈ R2, p ∈ P 1, f ∈ FD

c2pfs ∀r ∈ R2, p ∈ P 2, f ∈ FD
(2.18)

∑
v∈V 2

rfs

VC fvz
2
rfvs −M

(
1− x2rps

)
≤

{
c1pf ∀r ∈ R2, p ∈ P 1, f ∈ FD

c2pfs ∀r ∈ R2, p ∈ P 2, f ∈ FD
(2.19)

∑
v∈V 2

rfs

VC fvz
2
rfvs ≤ k2rfs ∀r ∈ R2, f ∈ FD (2.20)

c2pfs, k
2
rfs, y

2
ps ∈ R≥0

x2rps, z
2
rfvs ∈ {0, 1}

The recourse function (2.11) models the second-stage response in scenario s to the decisions

made in the first stage. In addition to the manufacturing costs incurred by reorders of platforms

that have been designed in the first stage, the recourse function also includes the manufacturing

costs and fixed costs of platforms that are designed in the second stage. The second-stage

constraints (2.12) to (2.20) have a equivalent meaning as their first-stage counterparts (2.2) to

(2.10). The difference is that they are defined for variants that are ordered in a second-stage

scenario. These variants can be served with a platform that is either designed in the first

stage (p ∈ P 1) or in the second-stage scenario in which the variant is ordered (p ∈ P 2).

Constraint (2.12) is not defined in case second-stage demand is zero in order to avoid that

fixed costs are incorrectly added to the objective function.

The efficiency gain of the presented model compared to Boysen and Scholl (2009) is due

to the features in FC. Design decisions for the features in FC are modelled by the continuous

decision variables c1pf and c2pfs. In contrast, values of the features in FD are determined by the

binary decision variables z1rfv and z2rfvs, which is similar to the modelling approach proposed

by Boysen and Scholl. The number of the binary design variables z1rfv and z2rfvs is bounded by

n(R)n(F )n(V )n(S) where n(R) := |R1 ∪R2| is the number of ordered variants, n(F ) := |F |
is the number of features, n(V ) := maxf∈F {|Vf |} is the maximum number of feature values,

and n(S) := |S| is the number of second-stage scenarios. A platform feature either belongs to

FC or to FD. The more features belong to FC, the greater is the efficiency gain compared

to Boysen and Scholl as z1rfv and z2rfvs are not used for these features. Most of the features
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that specify silicon ingots (e.g., electrical resistivity, the number of oxidation-induced stacking

faults, the carrier diffusion length and lifetime, and the concentration of carbon, oxygen, and

iron) have indeed single-interval tolerance intervals and belong to FC. The features grow

material type and silicon grade have tree-like feature value substitution rules, which requires

discrete feature value modelling and lets these features belong to FD.

2.4 Numerical experiments

Tactical product platform design can reduce the total costs of designing and manufacturing

product platforms in the present and in the future. Several factors, including the feature

value requirement and the order quantity of customer orders, are expected to influence the

effectiveness of the proposed TPPDP formulation. We discover the factors that affect tactical

product platform design in experiments that are inspired by settings found in silicon wafer

manufacturing. The tactical design of ingots as product platforms is intended to postpone

the customer order decoupling point (see Figure 2.1). In Section 2.4.1, we first describe the

assumptions that are made in problem instance generation. In Section 2.4.2, we present both

the experimental design and the numerical results that relate effectiveness to certain factor

level combinations. In Section 2.4.3, we discuss an additional experiment that is conducted in

order to measure the effect of the proposed modelling approach on computation time.

2.4.1 Generation of problem instances

The generated problem instances describe settings, in which one variant type is ordered in the

first stage and a few other variant types are expected to be ordered in the second stage. This is

a realistic setting because the TPPDP will be initialized every time an ordered variant requires

the design of a new platform. Extreme differences between the feature value requirements of

variants push over-costs and make a common platform financially unfavourable. That is why

from the set of all variants that are expected to be ordered in the near future, only those that

are similar enough to the variant that is ordered in the present have to be included in the

second stage of the TPPDP formulation.

We assume that the list of features can be reduced to the features that contribute the

most to manufacturing costs. The remaining features are assumed to be inexpensive so that

the platform can be designed to any feature value requirement at low over-costs. In our

experiments, five product platform features are modelled and every feature has 40 possible

feature values including the null value, which models that the feature is not realized. The

cost per platform unit of the null value is zero. The cost per platform unit of any other

feature value v is defined as the vth partial sum
∑v

i=1 ai, with discrete random variable ai,

which has three equally likely realizations: $0.1, $0.5, and $0.9. The cost contribution of any

feature to the cost per platform unit is thus a strictly increasing function of the feature values
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v = 0, 1, . . . , 39. Note that a platform unit represents a slice of an ingot and an ingot can

yield more than 2000 slices, depending on ingot length and final wafer thickness. Such a slice

is processed to a wafer in downstream processing steps, including edge rounding, lapping, and

cleaning (see Figure 2.1), in order to become one of the ordered wafers, i.e., product variants.

For simplicity, we assume that feature value requirements only define lower bounds for

feature values and upper bounds are assumed to be infinite. Note that the proposed formulation

is ready to consume upper bounds. The feature value requirement of the variant r ∈ R1 that

is ordered in the first stage is vLB1
rf = 16 across all features f and its first-stage demand is

D1
r = 1000 platform units. The feature value requirements and the demand of second-stage

orders are uncertain. It is assumed that pending orders, ongoing negotiations, and technological

trends can be used to define scenarios that represent probable future realizations. In our

experiments, the feature value requirement vLB2
rfs of variant r ∈ R2 in second-stage scenario s ∈

S is modelled as a random number that is drawn from the normal distributionN (µFVr , σFV) and

rounded to the nearest integer. The mean feature value requirement of variant r ∈ R2, µFVr , is

also modelled as a normally distributed random number following N (µFM, σFM). Second-stage

order quantities D2
rs are likewise assumed to be normally distributed following N (µD, σD).

Distributional assumptions are used to generate |S| equiprobable scenarios that allow us to

solve the TPPDP using sample average approximation.

2.4.2 Effectiveness of the TPPDP formulation

Design of experiment

An experiment is conducted in order to discover the effect of six factors on the ability of the

TPPDP formulation to reduce costs. The considered factors are the growth, the variability,

and the uncertainty of the feature value requirement of second-stage orders, the growth and

the uncertainty of second-stage order quantities, and the costs of designing a product platform.

The cost of designing a product platform is assumed to be a fixed cost and is modelled

by parameter FC . The growth and the uncertainty of second-stage demand are modelled

by parameters µD and σD. The growth, the variability, and the uncertainty of the feature

value requirement of second-stage orders are modelled by parameters µFM, σFM, and σFV,

respectively.

We define two levels per factor (see Table 2.1). The fixed costs assumption is based on

our observation that the design of a new silicon wafer, which includes the design of an ingot,

is an iterative process that can take a few months and involves multiple business functions

including sales, product design, engineering, and production. The demand per variant in the

second stage is either the same as the first-stage demand, which is 1000 platform units, or
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Table 2.1: Factor levels.

Factor Description Unit Factor level 1 Factor level 2

FC Fixed costs [$] 70,000 110,000
µD Demand growth [platform units] 1,000 2,000
σD Demand uncertainty [platform units] 100 200
µFM Feature value growth [feature value] 16 20
σFM Feature value variability [feature value] 1.6 3.2
σFV Feature value uncertainty [feature value] 1.6 3.2

twice as much. The factor levels for the distribution parameters µFM, σFM, and σFV result

in an average cost per platform unit of around $46.2 (before solving the TPPDP), which is

a realistic cost per wafer depending on size and quality. Standard deviations are defined as

either 10 % or 20 % of the corresponding level 1 mean.

We observe three response variables: The expected number of second-stage orders that are

served by the first-stage platform design η, the relative value of two-stage modelling relVTSM ,

and the relative value of the stochastic solution relVSS . η is formally defined as:

η :=
∑
r∈R2

∑
p∈P 1

∑
s∈S

Prsx
2
rps (2.21)

relVTSM represents the expected cost increase if, instead of the proposed two-stage model,

a single-stage model would optimize the two decision stages of the TPPDP sequentially.

relVTSM is computed by first optimizing the first stage of the TPPDP independently of

second-stage scenarios. The resulting first-stage solution is then hard-coded in the original

TPPDP formulation, allowing second-stage decisions to be chosen optimally. We denote the

optimal objective function value as SEQ and define relVTSM as:

relVTSM :=
SEQ − ζ

ζ
(2.22)

with ζ standing for the objective function value of the optimal solution of the TPPDP

formulation presented in Section 2.3.2.

The value of stochastic solution quantifies the expected cost increase if expected values

would be used instead of weighted scenarios in order to represent uncertainty in the second

stage of the TPPDP formulation. Let EEV be obtained by solving the deterministic program,

in which the random numbers are replaced by their expected values µD and µFM. The

resulting first-stage solution is then hard-coded in the original TPPDP formulation, allowing

second-stage decisions to be chosen optimally. We define relVSS in accordance with Birge

and Louveaux (2011) as:

relVSS :=
EVV − ζ

ζ
(2.23)



2.4 Numerical experiments 21

Every problem instance contains |S|= 25 randomly generated second-stage scenarios.

Every scenario assumes that three variant types are ordered in the second stage and describes

a random realization of both demand and feature value requirement of these three variants. All

features are assumed to belong to FC in order to reduce computation times. The experiment

is a 26 full factorial design. Every treatment combination is replicated 45 times, which results

in 2,880 independent problem instances. Proper variation and coordination of random number

streams are implemented.

Results

An analysis of variance (ANOVA) is conducted for η, relVTSM , and relVSS . We have

verified that the assumptions of error term normality and homogeneity of variance are not

violated in any ANOVA. The results are that all main effects, except for the effect of demand

uncertainty, and several two-way interaction effects are significant at the 99 % confidence

level (see Appendix A.1). The quality of optimal solutions is measured for every treatment

combination by the approximate 95.0 % confidence interval for the true optimum of total

costs ζ∗, which is on average ±1.2 % of treatment mean ζ (see Appendix A.2). It shows that

|S|= 25 can be considered as a sufficient sample size in this experiment.

Table 2.2 presents the grand means of η, relVTSM , and relVSS . On average 1.58 out

of three second-stage customer orders are expected to be served by the first-stage platform

design. The grand means of the relative value of two-stage modelling and of the relative

value of stochastic solution are 3.39 % and 6.91 %, respectively. Since the grand mean of total

costs is $503,992 (see Appendix A.2), this corresponds to on average $17,072 and $34,820.

In comparison to sequential optimization, the TPPDP formulation generates a substantial

expected saving as it prevents second-stage customer orders from entering the platform design

phase. The value of stochastic solution is even greater because designing first-stage platforms

to the expected values of second-stage feature value requirements does incur over-costs, whereas

platform design costs are not avoided as effectively.

A closer look at the main effects in Table 2.2 provides additional insights. The TPPDP

formulation performs better than sequential problem solving because it reduces the expected

number of platforms that have to be designed in the second stage. The greater the fixed

costs (FC ), the greater is the expected saving of the TPPDP formulation, which explains

the increase of both relVTSM and relVSS . Greater fixed costs also compensate greater

over-costs, which explains the increase of the mean number of second-stage orders served by

the first-stage platform design (η). Low demand growth (µD) and a low feature value growth

(µFM) reduce the over-costs incurred by the first-stage platform design and thus increase the

net saving of tactical product platform design. High feature value variability (σFM) and high

feature value uncertainty (σFV) result in fewer opportunities to design product platforms

for future orders. This is because in every feature, the requirement of the most demanding

of the served variants dictates the specification of the platform. Greater variability and
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Table 2.2: Means by factor level and grand means.

Factor Level η relVTSM [%] relVSS [%]

FC 70,000 1.11∗ 1.35∗ 4.93∗

110,000 2.04 5.43 8.89

µD 1,000 2.15∗ 5.72∗ 9.59∗

2,000 1.00 1.05 4.23

σD 100 1.58 3.38 6.90
200 1.58 3.39 6.91

µFM 16 1.91∗ 4.61∗ 6.53∗

20 1.25 2.16 7.29

σFM 1.6 1.67∗ 3.93∗ 7.19∗

3.2 1.48 2.84 6.63

σFV 1.6 2.09∗ 5.13∗ 8.63∗

3.2 1.06 1.64 5.18

Grand mean 1.58 3.39 6.91

* significant main effect (P -value < 0.0001).

uncertainty therefore increase the chance that customer orders exist that push the feature

value requirement and thus over-costs to a prohibitive level. An analysis of the interaction

effects on relVTSM supports these results because significant interaction effects are ordinal

and involve a mutual amplification of main effects (see Appendix A.3).

2.4.3 Computational efficiency of the TPPDP formulation

A second experiment is conducted in order to measure the effect of both problem size and

feature type on computation time. Problem size is controlled by varying the number of

second-stage scenarios |S| between 2 and 16. The effect of feature type is explored by changing

the cardinality of FD. Since there exist two features in silicon wafer manufacturing (i.e., grow

material type and silicon grade) that usually follow tree-like feature value substitution rules,

we vary the cardinality of FD between zero and two. The total number of features is, as in the

previous experiment, five and features that are not in FD are in FC. In order to reduce the

number of treatment combinations, we set each of the factors presented in Table 2.1 to the

average of the two factor levels. To make the problems computationally harder, the second

stage models five instead of three new orders for product variants.

We observe the computation time of both the proposed TPPDP formulation and a

reference model, which implements the modelling approach of Boysen and Scholl (2009) (see

Appendix A.4). All computations are performed by the MILP solver of IBM ILOG CPLEX

12.71 on an Intel Xeon CPU E3-1220 V2 at 3.1 GHz clock speed with four cores and 32 GB

memory while no other application is running. The experiment is replicated 45 times. The

resulting mean computation times of solving problem instances to a MIP gap of 1.5 % are

presented in Table 2.3.
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Table 2.3: Mean computation times in seconds.

TPPDP formulation

|S| |FD|= 0 |FD|= 1 |FD|= 2 Reference model

2 0.2 0.4 0.9 113.0
4 0.4 1.7 3.1 >25,000.0
8 4.7 16.7 33.9 >25,000.0

12 125.7 194.3 457.3 >25,000.0
16 1,173.3 1,394.2 1,941.5 >25,000.0

Grand mean 260.9 321.4 487.4

Increasing the cardinality of FD in the TPPDP formulation from zero to one and from

one to two increases the computation time on average by 23.23 % and 51.61 %, respectively.

The computation time of the TPPDP formulation grows exponentially in |S|. This is because

the TPPDP is NP-hard. (Note that the uncapacitated facility location problem, which is

NP-complete (see, e.g., the min-sum multicenter problem in Garey and Johnson, 1979), is

reducible to the TPPDP as facility assignment decisions can be transformed to platform

assignment decisions.) Nevertheless, the proposed TPPDP formulation provides a significant

computation time reduction compared to the reference model, which adapts Boysen and

Scholl’s approach for modelling deterministic platform design decisions to the stochastic

situation (see Appendix A.4). The reference model can only be solved for problem instances

with two second-stage scenarios. The TPPDP formulation in contrast can be solved for all

instances and for the instances with two second-stage scenarios in less than 1 % of the time

that is needed by the reference model.

2.5 Conclusion

We propose a two-stage stochastic programming formulation to solve the tactical product

platform design problem. The formulation designs product platforms to the requirements of

present and expected future customer orders by trading off a decrease of design costs against

an increase of manufacturing costs. The explicit consideration of expectations about future

customer orders increases the probability that product platforms that are designed in the

present will be suitable to serve future customer orders too. This reduces platform design

workload and effectively postpones the customer order decoupling point.

In numerical experiments with randomly generated problem instances that reflect settings

in the semiconductor silicon wafer industry, 52.5 % of the expected future customer orders

are on average served by the product platform that is designed in the present. The total

costs of the traditional platform design approach, which involves the sequential solution of

two single-stage platform design problems, is on average 3.39 % more expensive than tactical
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product platform design. The average relative value of stochastic solution is even greater,

i.e., on average 6.91 % of the total costs of tactical product platform design. This shows that

using stochastic optimization for tactical product platform design is an effective means to

reduce costs.

The proposed formulation avoids binary decision variables in the modelling of design

decisions if feature value requirements are specified by a tolerance interval. As a result, the

proposed formulation requires fewer decision variables than a reference approach developed for

the deterministic problem. This leads to a decrease of computation times of several orders of

magnitude, permitting an efficient solution also of our stochastic and hence computationally

demanding model formulation. However, the TPPDP is NP-hard and computation times

grow exponentially in problem size. An opportunity for future research is therefore to solve

the tactical product platform design problem with tailored solution approaches such as

branch-and-price.

Tactical product platform design is financially beneficial because it reduces the product

design workload. Numerical experiments confirm the greatest benefit in environments with high

design costs and low manufacturing over-costs caused by over-design. Low order quantities, a

low feature value requirement growth, homogeneous customer orders, and little uncertainty

about future feature value requirements favour low over-costs. This makes tactical product

platform design in particular interesting for ETO companies that have customers in mature

high-tech industries, such as semiconductor device manufacturing for the automotive industry.

Steady incremental innovation, product proliferation and standardization limit over-costs,

while a labour shortage makes highly specialized product design skills rare and thus product

platform design expensive. This study shows that tactical product platform design can reduce

total costs in such environments significantly.
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Abstract

Wafers are produced in an environment with uncertain demand and failure-prone machines.

Production planners have to react to changes of both machine availability and target output,

and revise plans appropriately. The scientific community mostly proposes WIP-oriented

mid-term production planning to solve this problem. In such approaches, production is

planned by defining targets for throughput rates and buffer levels of selected operations. In

industrial practice, however, cycle time-oriented planning is often preferred over WIP-oriented

planning. We therefore propose a new linear programming formulation, which facilitates

cycle time-oriented mid-term production planning in wafer fabrication. This approach plans

production by defining release quantities and target cycle times up to selected operations. It

allows a seamless integration with the subordinate scheduling level. Here, least slack first

scheduling translates target cycle times into lot priorities. We evaluate our new methodology

25
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in a comprehensive simulation study. The results suggest that cycle time-oriented mid-term

production planning can both increase service level and reduce cycle time compared to WIP-

oriented planning. Further, it requires less modelling effort and generates plans, which are

easier to comprehend by human planners.

3.1 Introduction

Semiconductor wafer fabrication is the creation of electronic integrated circuits (ICs) through

layer-by-layer treatment of the surface of a circular slice of monocrystalline silicon (wafer).

High volume wafer fabrication facilities (fabs) can accommodate hundreds of machines, which

fabricate ICs according to distinct process flows. A process flow describes a sequence of up to

800 process steps, also called operations. It starts with the release of bare wafers into the

fab and ends with the arrival of finished wafers at the finished wafer stock (FWS). Wafer

fabrication is recognised as a complex endeavour, which is in particular because it defines a

job shop environment with recirculating process flows and various process constraints, both

production and development on the same equipment, and both stochastic equipment downtime

and yield (Atherton and Atherton, 1995; Uzsoy et al., 1992).

A high throughput is necessary to achieve competitive unit costs and amortize expensive

wafer fabrication equipment. At the same time, customers evaluate their IC suppliers based

on lead time and on-time delivery. However, an accumulation of substantial inventories,

which would enable such customer response, must be avoided because of the resulting risk of

obsolescence that is due to short product life cycles, strong competition, and the high volatility

of the semiconductor market. As a result, short cycle times, i.e., short sojourn times of wafers

between release and arrival at the FWS, are key in this industry. They allow short customer

lead times, an effective response to demand changes, and a quick development and ramp-up

of new ICs. To avoid contractual penalties or a loss of customer goodwill, it is necessary to

plan and schedule wafer fabrication in such a way that late deliveries are minimised while

achieving the desired throughput and while keeping cycle times short.

3.1.1 Hierarchical production planning and scheduling in wafer fabrication

Hierarchical production planning and scheduling is a widely used concept (see, e.g., Hopp and

Spearman (2011) and Missbauer and Uzsoy (2011)). Hierarchically related decision levels differ

in objective, scope, and level of aggregation. The solution of an upper level decision problem

is integrated into lower level decision problems through constraints. In wafer fabrication,

several studies suggest the use of an upper tactical, a lower tactical, and a scheduling level

(Bard et al., 2010; Cai et al., 2011; Govind et al., 2008; Hwang and Chang, 2003; Leachman

et al., 2002; Sawik, 2006).
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The upper tactical decision level corresponds to company-wide master production planning.

The resulting master production schedule usually defines weekly production targets for each

plant (including the wafer fab) over a planning horizon of up to 52 weeks. For a given demand,

the objective of master production planning is to offer as early delivery dates as possible and

to guarantee that promised deliveries are fulfilled on time. Constraints reflect the promised

delivery dates of committed orders, expected plant capacity, expected plant cycle time, initial

WIP, and the initial inventory including FWS.

The lower tactical decision level is called mid-term production planning (Bard et al., 2010;

Hwang and Chang, 2003). The objective of mid-term production planning is to minimise the

deviation of actual fab output from the master production schedule and to keep cycle time

short. Constraints reflect the master production schedule, the expected capacity of bottleneck

machines, the expected cycle time between bottleneck operations, initial WIP, and initial

FWS.

The scheduling level maximises throughput and fulfils the mid-term production plan. In

practice, there is usually a main scheduling policy in place, such as least-slack first. Depending

on the complexity of process constraints and the scarcity of a particular resource, the main

scheduling policy either dispatches lots directly or provides priorities to machine-specific

scheduling algorithms.

3.1.2 Mid-term production planning in wafer fabrication

Mid-term production planning takes advantage of plant-wide WIP tracking and optimisation

capabilities to provide local schedulers with tactical priority changes. The scope of scheduling

problems in wafer fabrication is usually restricted to a single or a small number of work

centres. That means scheduling problems are myopic and solved in a decentralised way.

Restricting the scope makes scheduling problems solvable within an acceptable time but

neglects information that is necessary to make dispatch decisions leading to better results

on the fab level. Through prioritisation and deprioritisation, mid-term production planning

aligns decentralised scheduling with fab objectives and hence with company objectives. The

specific planning decisions that effectuate priority changes depend on the mid-term production

planning approach that is used.

Leachman et al. (2002) point out that the planning of wafer fabrication either follows the

WIP-management paradigm, i.e., is WIP-oriented, or the lot-dispatching paradigm, i.e., is

cycle time-oriented (CT-oriented). Following the WIP-management paradigm means that

throughput and WIP are decisions, while cycle time is a result. Following the lot-dispatching

paradigm means that throughput and cycle time are decisions, while WIP is a result.

The origin of WIP-oriented planning lies in material requirements planning (see, e.g.,

Vollmann et al., 2005). General purpose linear programming (LP) formulations for WIP-

oriented production planning have been proposed for example by Billington et al. (1983) and

Hackman and Leachman (1989). A number of WIP-oriented mid-term production planning
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models have been developed specifically for semiconductor manufacturing. Leachman and

Carmon (1992), Kim and Leachman (1994) and Cai et al. (2011) suggest linear programming

formulations. Hwang and Chang (2003) present an integer programming formulation and

a solution method based on Lagrangian relaxation. For complexity reasons, many studies

propose heuristic approaches, such as the decomposition of large-scale LP formulations into

sub-problems (Bard et al., 2010), a work centre-based decomposition according to the shifting

bottleneck procedure (Barua et al., 2005; Sourirajan and Uzsoy, 2007), and heuristic scheduling

algorithms (Jula and Leachman, 2008; Kim and Leachman, 1994; Leachman et al., 2002).

The planning of wafer fabrication in fabs of Infineon Technologies, e.g., at Dresden

(Germany), is CT-oriented and not WIP-oriented. Every lot of wafers receives a set of

operation due dates (ODDs) at the point of release. The set of ODDs is defined by the release

date of the lot plus target cycle times up to bottleneck operations along the process flow.

Cycle time is controlled effectively with ODDs because schedulers generally dispatch the lot

with the earliest ODD first. This balances lateness across the lots. Not only fab operators but

also the highly influential study of Lu et al. (1994) suggests simplicity and good cycle time

performance as the key advantages of an ODD-based least slack scheduling policy.

Despite these industry requirements, all of the published mid-term production planning

models for wafer fabrication that have been proposed in scientific literature follow the WIP-

management paradigm. A CT-oriented mid-term production planning model has not yet been

suggested.

3.1.3 Problem statement and scientific contribution

We consider a production environment in which wafer fabrication is driven by ODDs, such as

it is practice in industry. The fab has to fulfil a master production schedule on time, while

the master production schedule as well as the machine availability are subject to uncertainty.

The addressed planning problem is to determine how many lots have to be released during

the next planning period and which target cycle times, i.e., which set of ODDs, have to be

assigned to each lot (including both new releases and initial WIP) such that both cycle time

and the deviation of fab output from the master production schedule are minimised.

The scientific contributions of this study include

• the identification of a gap between scientific literature and industry requirements in

terms of the underlying planning paradigms for mid-term production planning,

• a new optimisation-based methodology to accomplish CT-oriented mid-term production

planning and its integration with hierarchical planning and scheduling, and

• an experimental proof of the superiority of CT-oriented planning over WIP-oriented

planning for a reference case from semiconductor manufacturing.
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In Section 3.2, we present the new LP formulation of the stated CT-oriented mid-term

production planning problem and discuss its integration with the scheduling level. To evaluate

our approach, we benchmark it against the commonly used WIP-oriented mid-term production

planning, for which we present an LP formulation in Section 3.3. We evaluate both formulations

in a rolling horizon framework that includes a discrete event simulation model of a reference

wafer fab, which is described in Section 3.4. The design of experiments and the numerical

results are presented in Section 3.5. The paper ends with our concluding remarks in Section 3.6.

3.2 CT-oriented mid-term production planning

We propose a new linear programming formulation, denoted as CT-LP, of the CT-oriented

mid-term production planning problem. The objective is to minimize both the deviation of

fab output from the output requirement and the amount of WIP, which directly affects mean

cycle time. The CT-LP defines release quantities by product type and divides the lots of every

product type in every segment into different classes of target cycle times that are denoted

as priorities. Different classes of target cycle times are equivalent to different priorities and

translate into different sets of ODDs. For example, a higher priority leads to tighter ODDs.

The CT-LP does not provide WIP level targets to the scheduling level but these are a result

of the management of cycle time via ODDs. The target cycle times depend on several factors,

such as fab utilization, product mix, lot priority, and the number of prioritised lots. It is

assumed that target cycle times are determined for example by simulation as it has been done

by Asmundsson et al. (2006). A shortage of fab output is assumed to create a backlog instead

of lost sales. Recall that finished wafers are consumed by the next manufacturing stage and

not by the customer. After describing the CT-LP in Section 3.2.1, the integration of planning

results into the scheduling level is explained in Section 3.2.2.

3.2.1 LP formulation

The indices and sets used for the CT-LP are:

t ∈ {1, 2, . . . , T + Lmax} Time period representing the time interval (t− 1, t].

i ∈ {1, 2, . . . , I} Product.

j ∈ Fi = {1, . . . , Ji, Ji + 1} Process flow of product i. 1, . . . , Ji is the sequence of bottleneck

operations. Ji + 1 models the FWS.

k ∈ {1, 2, . . . ,K} Bottleneck work centre. A work centre is a group of identical

machines running in parallel.

p ∈ {1, 2, . . . , P} Priority of a lot (low p means high priority).
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We define the following parameters:

T Length of planning horizon.

TWIP Maximum number of time periods by which WIP can be delayed.

Li Maximum cycle time of product i from its release until its arrival at the FWS

given in time periods (smallest following integer). Lmax := maxi Li.

I Total number of products.

Ji Total number of bottleneck operations along the process flow of product i.

Operation Ji + 1 represents the FWS.

K Total number of bottleneck work centres.

P Total number of priority classes.

Ei,j′,τ,p Probability that a lot of product i with priority p initiates bottleneck opera-

tion j′ ∈ Fi in the τth period after the period in which it is released. Note that

τ ∈ {0, 1, . . . , T + Lmax} and
∑T+Lmax

τ=0 Ei,j′,τ,p = 1.

Ei,j,j′,τ,p Probability that a lot of product i with priority p initially in segment [j − 1, j)

initiates bottleneck operation j′ (with j′ ≥ j) in the τth period after the period

in which it continues moving. Note that j ∈ Fi, τ ∈ {0, 1, . . . , T + Lmax} and∑T+Lmax
τ=0 Ei,j,j′,τ,p = 1.

WIP i,j Number of lots of product i that are located in segment [j−1, j) at the beginning

of t = 1 with j ∈ Fi. WIP i,j models the initial WIP level between the bottleneck

operations j − 1 (included) and j (excluded). The raw wafer stock is not

considered.

Ak,i,j Number of machine hours that bottleneck work centre k is occupied when it

performs bottleneck operation j ∈ {1, 2, . . . , Ji} on a lot of product i.

Ck,t Total machine hours that bottleneck work centre k is effectively available in

period t.

Di,t Demand of product i in period t ∈ {1, 2, . . . , T}, i.e., the fab output required by

the master production schedule.

D̄i Mean demand of product i.

V B Cost per period and per lot of backlog.

V D Cost per period and per lot of delayed WIP.
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Figure 3.1: Modelling of WIP and cycle time in the CT-LP formulation.

V H Cost per period and per lot of FWS.

VW
p Cost per period and per lot of WIP with priority p.

UBp Upper bound for the fraction of WIP with priorities 1, 2, . . . , p for

p ∈ {1, 2, . . . , P − 1}.

The following decision variables are continuous and greater than or equal to zero, i.e., in R≥0:

xi,t,p Number of lots of product i with priority p that are released into the fab in

period t.

wi,j,t,p Number of lots of product i that are initially located in segment [j − 1, j) with

j ∈ Fi and that continue moving in period t ∈ {1, 2, . . . , TWIP} with priority p.

hi,t Number of lots of product i that are located in the FWS at the end of period t.

The initial FWS level must be given as parameter hi,0.

bi,t Backlog of lots of product i at the end of period t. The initial backlog must be

given as parameter bi,0.

oxi,t, o
w
i,t Number of lots of product i that arrive at the FWS in period t. Arrivals that

originate from releases are modelled by oxi,t. Arrivals that originate from initial

WIP are modelled by owi,t.

cxk,t, c
w
k,t Number of machine hours that work centre k is occupied in period t. The capacity

consumption of releases is modelled by cxk,t. The capacity consumption of initial

WIP is modelled by cwk,t.

We assume that each process flow fabricates a single (representative) product. Figure 3.1

illustrates an example of a recirculating process flow, which passes two bottleneck work centres

— one of them twice (k = 1). Process flows are divided into segments [j − 1, j). A segment is

defined by the operations on two consecutive bottleneck work centres along the process flow.
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A segment begins with the setup of the upstream bottleneck machine and ends at the setup

of the downstream bottleneck machine, i.e., it includes the processing time of the upstream

but not of the downstream operation. This allows us to define ODDs that are comparable

even if different lots have different processing times on the same work centre.

The parameters Ei,j′,τ,p and Ei,j,j′,τ,p model the time needed for activities in one or more

consecutive segments, which includes setup, loading, processing, unloading, travelling, and

queuing time at both bottleneck and non-bottleneck work centres. Ei,j′,τ,p and Ei,j,j′,τ,p define

probability mass functions of segment cycle time, which is measured in number of time periods.

If a lot of product i with priority p is released in period (t − 1, t] or continues moving in

segment [j − 1, j) at the beginning of this period, then Ei,j′,τ,p and Ei,j,j′,τ,p, respectively,

provide the probability with which the lot initiates operation j′ in period (t+ τ − 1, t+ τ ].

This way of modelling cycle time is an extension of Kim and Kim (2001) and Missbauer

(2002).

Figure 3.1 illustrates that the initial WIP of product i in segment [j − 1, j) is modelled

by parameter WIP i,j . WIP i,1 models the number of lots between the release and the first

bottleneck operation. WIP i,Ji+1 models the number of lots between the last bottleneck

operation Ji and the arrival at the FWS. The decision variable wi,j,t,p decides whether initial

WIP continues moving immediately or in a later period and with which priority. Decision

variable xi,t,p models the number, type, and priority of released lots.

CT-LP formulation

min
I∑
i=1

T+Lmax∑
t=1

P∑
p=1

VW
p xi,t,p +

I∑
i=1

Ji+1∑
j=1

TWIP∑
t=1

P∑
p=1

VW
p wi,j,t,p +

I∑
i=1

Ji+1∑
j=1

TWIP∑
t=2

P∑
p=1

tV Dwi,j,t,p

+
I∑
i=1

T+Lmax∑
t=1

V Hhi,t +
I∑
i=1

T+Lmax∑
t=1

V Bbi,t (3.1)

oxi,t + owi,t + hi,t−1 + bi,t =

{
Di,t + hi,t + bi,t−1 ∀i,∀t ≤ T
D̄i + hi,t + bi,t−1 ∀i,∀t > T

(3.2)

xi,t,P = D̄i ∀i,∀t > T − Li (3.3)

cxk,t + cwk,t ≤ Ck,t ∀k, ∀t (3.4)

The objective function (3.1) minimises total costs including priority-dependent WIP cost,

penalty cost of delaying WIP, FWS holding cost, and backlog cost. Both releases and initial

WIP incur WIP costs. Equation (3.2) ensures mass conservation at the FWS. At the end of

any time period, the sum of arrivals at the FWS, initial FWS, and new backlog must equal
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the sum of demand (i.e., the requirement resulting from master production scheduling), new

FWS, and initial backlog. Yield is not considered but could be easily included (see Leachman,

2002). The mean demand D̄i in (3.2) and (3.3) aims at preventing any kind of end-of-horizon

effect (cp. Leachman, 2002). Capacity constraint (3.4) limits the machine hours required by

both new releases and initial WIP to the available machine hours.

WIP i,j =

TWIP∑
t=1

P∑
p=1

wi,j,t,p ∀i,∀j ∈ Fi (3.5)

WIP i,j models the initial number of lots in segment [j − 1, j) of the process flow of

product i at the beginning of period t = 1. Equation (3.5) allocates WIP i,j to wi,j,t,p over P

priority classes and TWIP time periods. Variable wi,j,t,p defines the fraction of initial WIP that

is planned to continue moving at the beginning of t with priority p. Note that if wi,j,t,p > 0

for some t > 1, wafer lots are planned to be delayed in segment j for t− 1 periods. This can

be necessary in case the projected capacity consumption at downstream operations exceeds

the available capacity. If we do not allow to delay lots in a segment, the CT-LP formulation

can become infeasible. In order to prevent that planned WIP evolve into a (WIP-oriented)

means of lot prioritisation, wi,j,t,p > 0 is penalised in the objective function for t > 1.

Equations (3.6) and (3.7) model the projected arrivals of product i at the FWS in period t

that originate from releases and initial WIP, respectively. Equations (3.8) and (3.9) model

the workload in machine hours of work centre k in period t projected from releases and initial

WIP, respectively.

oxi,t =

min(t−1,Lmax)∑
τ=0

P∑
p=1

Ei,Ji+1,τ,pxi,t−τ,p ∀i,∀t (3.6)

owi,t =

Ji+1∑
j=1

min(t,TWIP)∑
τ=1

P∑
p=1

Ei,j,Ji+1,t−τ,pwi,j,τ,p ∀i,∀t (3.7)

cxk,t =
I∑
i=1

Ji∑
j′=1

min(t−1,Lmax)∑
τ=0

P∑
p=1

Ak,i,j′Ei,j′,τ,pxi,t−τ,p ∀k, ∀t (3.8)

cwk,t =
I∑
i=1

Ji∑
j=1

Ji∑
j′=j

min(t,TWIP)∑
τ=1

P∑
p=1

Ak,i,j′Ei,j,j′,t−τ,pwi,j,τ,p ∀k, ∀t (3.9)

The higher the fraction of prioritised lots on the shop floor, the lower is the effect of

prioritisation on cycle time. Equation (3.10) hence limits the number of lots of product i

with priorities 1, 2, . . . , p that are expected to finish in t to the fraction UBp of the demand

of product i in period t. There is no constraint on the number of lots that have the lowest

priority P .
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min(t−1,Lmax)∑
τ=0

p∑
p′=1

Ei,Ji+1,τ,p′xi,t−τ,p′ +

Ji+1∑
j=1

min(t,TWIP)∑
τ=1

p∑
p′=1

Ei,j,Ji+1,t−τ,p′wi,j,τ,p′ ≤ UBpDi,t

∀i,∀t,∀p ∈ {1, 2, . . . , P − 1} (3.10)

3.2.2 Integration with scheduling level

Wafer fabrication is characterized by recirculating process flows sharing the same equipment.

The queue of a work centre can therefore hold lots from different process flows and different

lots of the same process flow can wait for different operations. Least slack first scheduling

dispatches the lot with the earliest ODD first. The priority ranking of lots that are waiting

in the same queue is thus defined by their ODD for the operation that is pending at the

respective work centre. The idea is to translate a higher priority into a tighter ODD so that

the corresponding lot moves up in the ranking.

The priority of WIP lots, i.e., the set of ODDs assigned to each lot, is aligned with the

plan at the beginning of every time period (t− 1, t]. The target number of lots of product i

in segment [j − 1, j) with priority p is defined by d
∑p

p′=1wi,j,t,p′e − d
∑p−1

p′=1wi,j,t,p′e. On the

shop floor, priority p is reassigned first to lots of the respective product type in the respective

segment that did have the same priority p in the previous time period. If there are more lots

to prioritise, lots of the next lower priority class are selected. Here, the lots with the earliest

ODD are selected first. The xi,t,p lots of product i that have to be released in period t with

priority p ∈ {1, 2, . . . , P} are placed in descending order of priority in the release sequence.

Every lot has an ODD for its next operation on a bottleneck work centre. Assuming that l

is a lot of product i with priority p and release date RD l, then its ODD for operation j, i.e.

its due date for the initiation of operation j, is

ODD l,i,j,p = RD l +

j∑
s=1

TCT i,s,p, (3.11)

where TCT i,j,p is the target cycle time of a lot of product i with priority p between the

initiation of operation j − 1 and the initiation of operation j. The target cycle times of all

segments are assumed to be known for all priorities.

In case the mid-term production plan requires a change of the priority of lot l from p′ to p,

the release date must be revised before a new set of ODDs can be calculated. Given that lot l

is located in segment [j − 1, j) at the beginning of time period t, the revised release date is

RD l = t−
j−1∑
s=1

TCT i,s,p −
1

2
TCT i,j,p. (3.12)
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The calculation of RD l in (3.12) implements the assumption that the lot did have priority p

since its release and that it has halfway passed segment [j − 1, j). The set of target cycle

times TCT i,j,p′ is then used to calculate the new set of ODDs with equation (3.11). In case

the mid-term production plan requires no change of priority, lots keep their old set of ODDs.

3.3 WIP-oriented mid-term production planning

To show how CT-oriented mid-term production planning differs from WIP-oriented mid-

term production planning, we define a benchmark LP formulation, denoted as WIP-LP, in

Section 3.3.1. The WIP-LP is based on the WIP-oriented models proposed by Hwang and

Chang (2003), Bard et al. (2010), and Cai et al. (2011). The objective of the WIP-LP is the

same as the objective of the CT-LP, i.e., minimizing both the deviation of fab output from

output requirement and the amount of WIP. Despite this similarity, the WIP-LP effectuates

the objective differently. It provides targets for the throughput and the buffer level of every

bottleneck operation. These targets are fulfilled by the scheduling level (see Section 3.3.2).

The key difference to CT-oriented mid-term production planning lies in the concept of flow

control. While the CT-LP accelerates or decelerates a lot primarily by changing its target

cycle times, the WIP-LP delays a lot in a buffer or makes it move by changing the targets of

throughput and buffer level. In WIP-oriented planning, cycle times are not planned directly

but are a result of the management of throughput and buffer level. The assumptions regarding

cycle time and backlog are the same as for the CT-LP.

3.3.1 LP formulation

The notation introduced in Section 3.2.1 is mostly reused. Additional parameters are:

Ei,j,τ Probability that a lot of product i arrives at the queue of bottleneck operation j ∈
Fi in the τth period after the period in which it initiates bottleneck operation j−1

with τ ∈ {0, 1, . . . , Lmax}. Ei,1,τ refers to the flow from the release to the arrival

at the queue of the first operation. Ei,Ji+1,τ refers to the flow from the initiation

of the last operation to the arrival at the FWS. Note that
∑Lmax

τ=0 Ei,j,τ = 1.

E′i,j,τ Probability that a lot of product i initially in segment [j − 1, j) arrives at the

queue of bottleneck operation j in period τ with j ∈ Fi and τ ∈ {1, 2, . . . , T + Lmax}.
Unlike as in the CT-LP, the modelled segment [j − 1, j) does not include the

downstream queue (cp. Figure 3.2). Note that
∑T+Lmax

τ=1 E′i,j,τ = 1.

WIP ij Number of lots of product i that are located in segment [j − 1, j) (excluding the

queue of bottleneck operation j) at the beginning of t = 1, with j ∈ Fi. Hence,

WIP ij represents the initial WIP in segment [j − 1, j) that is not waiting for

operation j.
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Figure 3.2: Modelling of WIP and cycle time in the WIP-LP formulation.

VW Cost per period and per lot of WIP.

Additional variables are:

xi,j,t Number of lots of product i that initiate bottleneck operation j ∈ {0} ∪ Fi in

period t. xi,0,t models the number of releases into the fab. xi,Ji+1,t models the

number of lots that leave the FWS to meet demand.

hi,j,t Number of lots of product i that wait in queue for bottleneck operation j ∈ Fi
at the end of period t, i.e., the buffer size of j. hi,Ji+1,t models number of lots of

product i in the FWS. The initial buffer size must be given as parameter hi,j,0.

Figure 3.2 illustrates the modelling of both WIP and cycle time in the WIP-LP. Lots that

wait in queue for bottleneck operation j are called the buffer of j. For every operation j of each

product i and for every time period t, the WIP-LP provides both xi,j,t and hi,j,t. Ei,j,τ defines

the probability mass function of the cycle time between the initiation of operation j − 1 and

the arrival at the queue of operation j. E′i,j,τ defines the probability mass function of the

cycle time of initial WIP in segment [j − 1, j) until its arrival at the queue of operation j.

WIP ij , i.e., the initial WIP of segment [j − 1, j), covers all lots in segment [j − 1, j) except

the buffer of j.

WIP-LP formulation

min

I∑
i=1

Ji∑
j=1

T+Lmax∑
t=1

VWhi,j,t +

I∑
i=1

T+Lmax∑
t=1

V Hhi,Ji+1,t +

I∑
i=1

T+Lmax∑
t=1

V Bbi,t (3.13)

min(t−1,Lmax)∑
τ=0

Ei,j,τxi,j−1,t−τ + E′i,j,tWIP i,j + hi,j,t−1 = xi,j,t + hi,j,t ∀i,∀j ∈ Fi,∀t (3.14)
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xi,Ji+1,t + bi,t =

{
Di,t + bi,t−1 ∀i,∀t ≤ T
D̄i + bi,t−1 ∀i,∀t > T

(3.15)

xi,0,t = D̄i ∀i,∀t > T − Li (3.16)

I∑
i=1

Ji∑
j=1

Ak,i,jxi,j,t ≤ Ck,t ∀k, ∀t (3.17)

The objective function (3.13) minimises WIP costs, FWS holding costs, and backlog costs.

Note that WIP costs incur per lot and per period at every buffer where the lot is planned to be

delayed for one or more periods. The equations (3.14) and (3.15) ensure mass conservation at

each WIP buffer and at the FWS. Equation (3.17) is the capacity constraint. Equation (3.16)

in combination with the case t > T of equation (3.15) prevents end-of-horizon effects.

3.3.2 Integration with scheduling level

In WIP-oriented planning, lots do not directly receive priorities. However, a high throughput

target xi,j,t prioritises lots of product i that wait for operation j in the sense that in general

more lots of product type i will be processed than of other types also waiting in the same

queue. This is achieved with the smallest production achievement ratio (PAR) first scheduling

policy.

Let x′i,j be the counter of lots of product i that have initiated operation j since the

beginning of the current time period (t− 1, t]. Further, let IJ (k) be the set of all product-

operation combinations (i, j) that require processing from work centre k. The smallest PAR

first scheduling policy dispatches that lot from the queue of work centre k first that minimises

the PAR x′i,j/xi,j,t over all (i, j) ∈ IJ (k). Smallest PAR first scheduling balances the relative

backlog across the different types of jobs at a work centre. Dispatching lots of product i

for operation j (with (i, j) ∈ IJ(k)) stops at work centre k if x′i,j/xi,j,1 ≥ 1. Without this

stopping rule, the allocation of capacity and hence the WIP-oriented mid-term production plan

would be ineffective and meaningless. Note that in case yield is 100 %, as it is assumed in this

study, the fulfilment of all throughput targets xi,j,1 implies that all buffer level targets hi,j,1

are fulfilled as well. Therefore, we do not use the buffer level targets on the scheduling level.

3.4 Rolling-horizon framework for performance evaluation

We embed the LP formulations into a rolling horizon framework, which is illustrated in

Figure 3.3. The framework allows us to evaluate the different mid-term production planning

approaches in a dynamic environment under identical conditions. The framework includes a

wafer fab configuration, which is based on the widely used MIMAC data set 1 (Fowler and
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Figure 3.3: Rolling horizon framework.

Robinson, 1995). On the mid-term production planning level, one of the LP formulations

solves the production planning problem for the wafer fab at the beginning of the week. The

first week of the plan is deployed in a discrete event simulation model of the fab. Either release

quantities and lot priorities (CT-LP) or release quantities and throughput targets (WIP-LP)

are forwarded to the scheduling level. A scheduling policy, which depends on whether the

CT-LP or the WIP-LP is used, implements the plan. At the end of the week, the current

WIP, FWS, and backlog are reported from the scheduling level back to the planning level in

order to initialize a revised mid-term production planning problem. Then the cycle repeats.

The framework includes two sources of uncertainty: the output requirement of the fab and

machine availability.

3.4.1 Reference case

The MIMAC data set 1 specifies a fab that fabricates memory chips on two process flows (see

Table 3.1). The fab includes a total of 83 work centres, of which each is composed of 1 to

18 identical machines, running in parallel. Setup time, load time, processing time, unload

time, and wafer travel time are modelled by static values. 16 work centres operate in batch

mode, for which batch size limits and feasible batch compositions are given. Two work centres

have sequence dependent setup times. The average machine availability is 91.0 %. Time to

failure and time to repair are exponentially distributed and the means (MTTF k and MTTRk)

are given for each work centre k. We scale all MTTF k and MTTRk with 0.5 based on the

assumption that high-impact low-probability machine failures, such as those with MTTF k > 1

week, lead to manual adjustments of Ck,t in a failure event and should not reduce the effective

capacity upfront. As a result of the scaling, the number of work centres with MTTF k > 1

week decreases from 16 to two.
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Table 3.1: Two process flows specified by the MIMAC data set 1.

Process flow 1 Process flow 2

Product mix 2/3 1/3
Number of operations 210 245
Number of mask layers 14 16
Raw processing time [week] 1.75 2.01

The discrete event simulation model of the fab uses the Java library SSJ 2.5 (L’Ecuyer

et al., 2002). Lots of 48 wafers are released with inter-arrival times that are constant within

each time period. A cyclic release sequence ensures that both process flows are evenly loaded.

Each work centre has a single queue. Queues of bottleneck work centres are sorted according

to the scheduling policy. All other queues are ordered in a FIFO manner. Batch operations

run in a greedy ‘load and go’ fashion, i.e., processing starts as soon as the queue holds enough

lots to form a feasible batch. Operations with sequence dependent setup times follow a setup

avoidance rule. In the event of a machine failure, items in process are finished before the

machine goes off-line. Neither rework nor operators are considered and yield is 100 %. The

maximum steady-state throughput rate with machine failures is 78.82 lots per week and

without machine failures 83.15 lots per week.

3.4.2 Implementation of LPs

CT-LP and WIP-LP are implemented in Java using the IBM ILOG Concert Technology.

Cost parameters are initialized such that V B = 10, V D = 50, V H = 2, VW = 4, VW
1 = 5,

and VW
2 = 4, which is motivated by settings in related studies (cp. Cai et al., 2011; Irdem

et al., 2010; Kim and Leachman, 1994). Two priority classes are considered, i.e., P = {1, 2}
with p = 1 and p = 2 representing hot lots and regular lots, respectively. Following the

recommendation of Fronckowiak et al. (1996), the upper bound for hot lots UB1 is 20 %.

Empirical parameters are initialized based on observations in pre-simulation runs. This

includes capacity consumption factors and probability mass functions of segment cycle times.

Priority-dependent segment cycle times are estimated based on pre-simulation runs with

priority-FIFO dispatching and a share of 20 % prioritised lots. All pre-simulation runs have

the same fab utilization and machine failure rate configuration as the experimental runs,

which they precede.

The set of bottleneck work centres includes the K = 5 most utilised work centres of the

fab. Analyses show that these work centres serve about 30 % of all operations, i.e., J1 = 61

and J2 = 75. This is consistent with the idea that mid-term production planning is conducted

at an intermediate level of detail between master production planning and scheduling.
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Figure 3.4: Demand uncertainty in the rolling horizon framework.

Mid-term production plans are calculated for a planning horizon 20 weeks, which is

approximately five times the mean cycle time at 95.16 % fab utilization with machine failures.

The first week of the planning horizon, i.e., the control horizon, is deployed on the shop

floor. While plans are based on mean machine availability, the actual machine availability

is determined by exponentially distributed random variables in the course of simulation.

Likewise the actual demand, i.e., the master production schedule requirement, is assumed

to be uncertain. Every time the planning horizon ‘rolls’ one week ahead, the demand Di,1,

which has to be met during the control horizon, is drawn from a normal distribution. This is

illustrated in Figure 3.4 for a one-week control horizon that is part of a five-week planning

horizon. For each product i, the normal distribution is truncated to 0 ≤ Di,1 ≤ 2 · D̄i and

has the standard deviation CVDi,t · D̄i with CVDi,t = σ/D̄i being the coefficient of variation.

Beyond the control horizon, planning assumes a static demand of D̄i for product i, which is

the mean of the normal distribution.

The two LPs must use different time granularities such that actual segment cycle times

are longer than a modelled time period. If a segment cycle time is shorter than a modelled

time period, a lot could be at the start and the end of a segment at the same point in time

because it arrives in the same time period as it starts. The CT-LP uses a granularity of

weeks, i.e., T = 20. This is sufficient to approximate the total cycle time to downstream

bottleneck operations, which is generally in the order of weeks. In accordance with Hwang

and Chang (2003) and Bard et al. (2010), the WIP-LP uses a granularity of days (T = 140).

This is necessary because the WIP-LP models the total cycle time as the sum of segment

cycle times, which are mostly shorter than a week. In order to translate the weekly master

production schedule requirement into daily Di,t for the WIP-LP, the requirement is evenly

distributed. The PAR scheduling policy is adapted such that it aims at fulfilling the daily

targets cumulated over the days of a week.
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Figure 3.5: Operating curve of the MIMAC fab 1.

The number of variables of the WIP-LP is approximately seven times the number of

variables of the CT-LP because of the difference in time granularity. Assuming that Lmax ≤ T ,

the number of variables of CT-LP and WIP-LP are bounded by 2IT (JP + P + 2) and

2IT (2J + 1), respectively. The number of constraints of CT-LP and WIP-LP are bounded by

2T (IP + 2I +K) + IJ and 2T (IJ + 2I + K). Both time granularity and segment-specific

mass conservation constraints drive the high number of constraints in the WIP-LP.

3.4.3 Verification

Figure 3.5 shows two operating curves based on data that are collected in simulation runs

with FIFO dispatching as scheduling policy. The flow factor is the mean observed cycle time

divided by the mean total raw processing time of the process flows. The raw processing time

includes load time, processing time, and unload time. The shapes of the operating curves

meet the expectations about the effect of manufacturing variability and fab utilization on

cycle time.

We verify the coordination between LP formulation and simulation model by comparing

the number of lots that are planned to arrive at the FWS per week with the number of

lots that actually arrive at the FWS in the simulation. In a configuration without machine

failures and a static total demand of 78 lots per week (ρfab = 93.81 %), planning with the

CT-LP achieves a mean absolute percentage deviation of observed output from planned output

of 5.81 %. The WIP-LP reaches under the same conditions 5.0 %. This verifies that both LP

formulations are capable of performing equally well in a scenario with no uncertainty.
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3.5 Numerical experiments

3.5.1 Design of experiments

An experiment is conducted to study the effect of the mid-term production planning and

scheduling (MTPPS) methods that are specified in Table 3.2 on fab performance. We compare

four different methods. CT-oriented planning stands for CT-oriented mid-term production

planning with two priority classes using the CT-LP. Release planning is CT-oriented planning

but with only one priority class. It plans the release quantities of regular lots subject to

demand but the ODDs of released lots cannot be modified. WIP-oriented planning stands for

WIP-oriented mid-term production planning using the WIP-LP. The constant release rate

method releases D̄i lots per week regardless of the actual demand.

In addition to the MTPPS method, two other factors, which are likely to have an effect

on the performance of MTPPS, are considered. These are supply uncertainty (with and

without machine failures) and demand uncertainty (CVDi,t = 0.0, 0.1, 0.2, 0.3). Note that if

CVDi,t = 0.0, the demand is constant throughout the planning horizon and has the value D̄i.

The responses that we are going to analyse at first are number of lots in system WIP + FWS ,

i.e., the sum of work in process and finished wafer stock, and γ-service level. The γ-service

level of a week t is defined as

γt = max

{
1− bobst

Dt
, 0

}
(3.18)

with observed demand Dt and observed backlog bobst .

The experimental design is a 42-×-2 full factorial design. Five replications are performed

for each treatment combination, resulting in 160 independent simulation runs. A single

simulation run simulates wafer fabrication for 300 weeks including a 70-week warm-up period.

The steady-state fab utilization is with machine failures 95.16 % and without machine failures

93.81 %. Proper variation and coordination of random number streams are implemented.

Table 3.2: Mid-term production planning and scheduling (MTPPS) methods.

Method Planning model Scheduling policy Priority classes

CT-oriented planning CT-LP ODD 2
Release planning CT-LP ODD 1
WIP-oriented planning WIP-LP PAR n/a
Constant release rate Release of D̄i per week FIFO n/a
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Figure 3.6: Plots of γ-service level and WIP + FWS showing MTPPS method × demand
uncertainty interaction for both levels of machine failures.
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3.5.2 Results

Service level and number of lots in system

An analysis of variance (ANOVA) is conducted for service level and number of lots in system

(see the Tables B.1 and B.2 in the appendix). For each ANOVA, we have verified that the

assumptions of error term normality and equality of variance are not violated. The results are

that all main effects and all two-way interaction effects are significant at the 95 % confidence

level.

Specific focus of the experimentation lies on differences in the effectiveness of the MTPPS

method. The conclusion of a significant interaction between MTPPS method and the two

types of uncertainty implies that differences in MTPPS methods must be examined separately

for the different levels of uncertainty. This is shown in the interaction plots in Figure 3.6.

CT-oriented planning outperforms WIP-oriented planning. At all levels of demand

uncertainty and supply uncertainty, CT-oriented planning results in the highest service level.

At the same time, it always leads to fewer lots in system than WIP-oriented planning, except

for the one configuration with machine failures and CVDi,t = 0.3.

In configurations with machine failures, which is the more realistic factor level, CT-

oriented planning provides on average, i.e., across the four demand uncertainty levels, a

17.99 percentage points higher service level than WIP-oriented planning, while the number of

lots in system is on average 1.44 % higher. Without machine failures, CT-oriented planning

produces on average a 5.94 percentage points higher service level than WIP-oriented planning,

whereas the number of lots in system is on average 8.48 % lower.

A comparison of CT-oriented planning with release planning reveals the positive effect

of the CT-LP performing lot prioritisation on service level while all other factors remain

unchanged. CT-oriented planning achieves on average a 6.71 percentage points higher service

level with 8.04 % more lots in system than release planning in configurations with machine

failures. The numbers are similar without machine failures.

The constant release rate method shows the effect of undertaking no mid-term production

planning in reaction to changes of machine availability and demand. With increasing uncer-

tainty, the service level declines and the number of lots in system increases. As Figure 3.7

shows, the increase in number of lots in system is due to an increasing FWS caused by a mis-

match between output and demand. On average, CT-oriented planning increases the service

level compared to constant release rate by 29.37 percentage points and 20.06 percentage points

in configurations with and without machine failures, respectively.

Tukey’s honestly significant difference test is used to verify that the differences between all

pairs of MTPPS methods at each treatment combination of demand uncertainty and supply

uncertainty are significant (at an overall 95 % confidence level). Indeed, the service level of

CT-oriented planning differs significantly from the service level of other MTPPS methods
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except from release planning in two out of seven treatment combinations. WIP + FWS of

CT-oriented planning differs significantly from WIP + FWS of other MTPPS methods except

from WIP-oriented planning in one out of seven treatment combinations. The complete test

results are presented in the Tables B.3 to B.6 in the appendix.

Work in process and finished wafer stock

We expand the analysis by disaggregating the number of lots in system into its summands

WIP and FWS. The treatment means of WIP and FWS are presented in Figure 3.7. Since we

collect statistics after the simulation has reached a steady state, Little’s law can be applied.

Hence, the results on WIP and FWS can also be used to draw conclusions on cycle time and

FWS turns, respectively.

Compared to the WIP level of other MTPPS methods, the WIP level of WIP-oriented

planning is elevated. This is consistent with experiences reported by Infineon fab operators.

One reason for this phenomenon is a fundamental shortcoming of WIP-oriented planning.

It relies on PAR-based scheduling, which will only dispatch until the targets are met and,

consequently, will limit throughput to the targets. This increases the sojourn time of lots in

buffers, WIP level, and eventually cycle time. CT-oriented planning and release planning,

in contrast, rely on ODD-based scheduling, which is not dependent on throughput targets

and will dispatch lots as long as queues are not empty. Compared to WIP-oriented planning,

CT-oriented planning generally leads to lower WIP levels. This also means that CT-oriented

planning achieves shorter cycle times. The WIP levels of CT-oriented planning increase

significantly, however, with demand uncertainty.

Looking at averages over demand uncertainty, CT-oriented planning results in 7.37 % fewer

lots in WIP and 575.38 % more lots in FWS than WIP-oriented planning in the case with

machine failures. The superiority of CT-oriented planning is confirmed by the case without

machine failures. Here, CT-oriented planning shows on average 13.70 % fewer lots in WIP

and 148.10 % more lots in FWS than WIP-oriented planning.

Compared to release planning, CT-oriented planning holds on average 2.85 % and 2.26 %

(with and without machine failures) more lots in WIP. Likewise, we see 96.77 % and 101.96 %

more lots in the FWS. This shows that prioritising lots effectively moves lots out of the process

flows into the FWS and, in doing so, improves service levels. However, the improvement of

the service level through lot prioritisation comes at the expense of a marginal increase of

variability in the production system and therefore of WIP and cycle time.

Comparing the different methods at the scheduling level, we find that at low levels of

uncertainty, the ODD-based methods (CT-oriented planning, release planning) achieve shorter

cycle times than the FIFO-based constant release rate. This matches the findings of Lu et al.

(1994). At higher levels of uncertainty, planning activities add variability to the production

system and the mean cycle time of the constant release rate method is quickly passed.
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Figure 3.7: Plots of WIP and WIP showing MTPPS method × demand uncertainty interaction
for both levels of machine failures.
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Figure 3.8: Lot prioritisation of CT-oriented planning (left) and lot buffering of WIP-oriented
planning (right) in reaction to cyclic demand increases.

Comprehensibility and the size of mid-term production plans

Both mid-term production planning models, CT-oriented and WIP-oriented, are designed

to make adjustments on the scheduling level in reaction to changes of the system state and

demand. In this section, we compare the scope of these adjustments, i.e., the scope of priority

adjustments and the scope of buffer-level target adjustments.

In a separate series of simulation runs without machine failures, the fab serves a static

base demand that leads to a fab utilization of 93.81 % for eight weeks. During the following

two weeks, demand increases to a level that is equivalent to a fab utilization of 104.63 %. This

10-week cycle repeats for 300 weeks. The two-week peak demand appears only in the control

horizon. Beyond that, mid-term production planning assumes the base demand. In order to

satisfy the peak demand on time, mid-term production planning has to prioritise lots because

there is no opportunity to increase releases in a timely manner.

The outcome of this experiment is illustrated in Figure 3.8. In case CT-oriented planning

increases the priority of at least one lot in segment (j − 1, j] in week t, then the left-hand

side plot of Figure 3.8 shows a dot at these coordinates. In case WIP-oriented planning plans

the buffer level of bottleneck operation j at the end of week t above a critical value, then the

right-hand side plot of Figure 3.8 shows a dot at these coordinates. The critical value is the

mean buffer level of j at 93.81 % fab utilization.
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Lot prioritisation of the CT-LP creates a pattern in Figure 3.8 (left) that is easy to

comprehend. Every ten weeks, some lots in segments 27 ≤ j ≤ 39 are prioritised because they

are likely to finish one week earlier than with regular priority. These lots are prioritised to

fulfil the peak demand on time. Since prioritising lots in segments 27 ≤ j ≤ 39 will create a

backlog of scheduled completions at a later point in time, lots in segment j = 10 are prioritised

to balance that. Buffer level changes of the WIP-LP in Figure 3.8 (right) do not follow such a

clear pattern.

The CT-LP is much smaller than the WIP-LP. The WIP-LP counts on average 50,258

columns and 26,305 rows, while CT-LP has on average 1,552 columns and 778 rows. There

is also a difference in the amount of data that is transferred between planning level and

scheduling level. While CT-oriented planning usually generates priority changes for selected

segments in selected time periods, WIP-oriented planning has to provide every bottleneck

operation in every time period with a target.

3.6 Conclusion

This study addresses the mid-term production planning problem in wafer fabrication. The

challenge is to guide large inventories through a failure-prone production system such that a

time-varying demand is met and cycle time is short. The planning problem becomes more

difficult as the required fab output can change unexpectedly during the production lead time.

In the scientific literature, this problem is commonly solved following the WIP-management

paradigm by planning throughput rates and buffer levels of bottleneck operations. Based

on our analysis of industry practices, we see the need for a new planning model that solves

the problem in a CT-oriented way by planning throughput rates for the point of release and

target cycle times up to bottleneck operations.

We propose a new LP formulation for CT-oriented mid-term production planning and

compare it against an LP formulation for WIP-oriented mid-term production planning. The

LP is embedded in a rolling horizon framework. Production plans are deployed in a discrete

event simulation model of a reference wafer fab. Sources of uncertainty are demand changes

that result from updated master production schedules and machine failures.

The results show that CT-oriented mid-term production planning in combination with

a least slack scheduling policy outperforms WIP-oriented mid-term production planning in

combination with a scheduling policy that fulfils throughput targets. In the examined case,

CT-oriented planning provides on average a 17.99 percentage points higher service level with

7.37 % shorter cycle time and just 1.44 % more lots in system. The CT-oriented approach

is also superior in settings with reduced uncertainty, as our results for a production system

without machine failures show.
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CT-oriented planning achieves short cycle times at low levels of variability. With increasing

demand uncertainty, lot prioritisation, which aims at maintaining the service level, adds to the

variability in the production system and therefore increases cycle time. In our experiments,

lot prioritisation through CT-oriented mid-term production planning contributes on average

6.71 percentage points to the service level at the expense of a 2.85 % increase of cycle time.

WIP-oriented planning is characterized by prolonged cycle times. Since throughput targets

are formulated subject to mean-based capacity assumptions, they are likely to constrain

the performance of work centres and cause delays. CT-oriented planning generates more

comprehensible, human-readable plans than WIP-oriented planning. We consider this as an

important result since acceptance by operators is a prerequisite for effective planning.

Even though our comparison builds on an accepted reference case, future research could

test the presented results also for other environments. A research question could be how well

CT-oriented mid-term production planning performs when demand, product mix, and the

share of prioritised lots cannot be assumed static. This could require a frequent revision of the

distributional assumptions about cycle times. The relevance of this question may, however,

be limited as master production planning generally ensures a high load in order to guarantee

a high utilization of expensive equipment. Another research question could be how the dual

price of constraint (3.10), which limits the number of prioritised lots, can be used to determine

the optimal number of prioritised lots.

Hierarchical production planning and control has to be designed in a way that it fulfils the

manufacturing objectives even if important parameters, such as future capacity and demand,

cannot be predicted with certainty. CT-oriented planning meets this requirement. It improves

the service level through the tactical prioritisation and deprioritisation of lots. In addition,

the negative effect of inappropriate priority changes is limited since opportunistic non-delay

scheduling will keep utilization high.
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Abstract

A crucial input to production planning is a capacity model that accurately describes the amount

of work that parallel machines can complete per planning period. This paper proposes a

procedure that generates the irredundant set of low-dimensional, linear capacity constraints for

unrelated parallel machines. Low-dimensional means that the constraints contain one decision

variable per product type, modeling the total production quantity across all machines. The

constraint generation procedure includes the Minkowski addition and the facet enumeration of

convex polytopes. We discuss state-of-the-art algorithms and demonstrate their effectiveness in

experiments with data from semiconductor manufacturing. Since the computational complexity

of the procedure is critical, we show how uniformity among machines and products can be

51
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used to reduce problem size. Further, we propose a heuristic based on graph partitioning

that trades constraint accuracy off against computation time. A full factorial experiment

with randomly generated problem instances shows that the heuristic provides more accurate

capacity constraints than alternative low-dimensional capacity models.

4.1 Introduction

Production planning defines time-phased production quantities based on capacity, inventory,

and demand. These production targets form the master production schedule and are typically

determined for a wide range of product types, multiple production sites, and a planning

horizon of several weeks. Production control translates these targets into scheduling and

dispatching decisions (see, e.g., Hopp and Spearman, 2011; Vollmann et al., 1997). Production

planning requires a representation of capacities at an aggregate level. Such aggregation must

be done accurately. If capacity is overestimated, the targets can be infeasible, which increases

cycle times and late deliveries. If capacity is underestimated, the production system can

become under-utilized, which increases unit costs. Especially in capital-intensive industries,

such as semiconductor manufacturing, accurate capacity modeling is crucial for the quality of

production plans and eventually for the success of a business (see, e.g., Mönch et al., 2013;

Uzsoy et al., 1992, 1994).

Production is usually planned subject to the capacity of bottleneck stages. A bottleneck

stage often consists of unrelated parallel machines of different types (UPMs), i.e., there is no

relationship among the processing times of the same job on different machine types. Machines

of different age, with different capabilities, and from different manufacturers run in parallel.

A good example for the prevalence of UPMs in manufacturing and therefore in production

planning is the semiconductor industry. Bottleneck operations in wafer fabrication are

performed by photolithography workstations, which have been modeled as UPMs in, e.g., Lee

et al. (2002) and Chung et al. (2008). Bottlenecks of UPMs also exist in wafer testing (Centeno

and Armacost, 2004), assembly, and final testing (Song et al., 2007). Examples of UPM

bottlenecks in other industries are drilling operations in the manufacturing of printed wiring

boards (Yu et al., 2002) and dicing operations in the fabrication of compound semiconductors

(Kim et al., 2002). Even operations on space stations require the modeling of resources as

UPMs (Logendran and Subur, 2004).

The common way of performing production planning is to use variables that model the

total production quantity of every product type and, in addition, to also use allocation

variables that model the distribution of these quantities among the different UPMs. However,

production planning is primarily focused on obtaining production targets that are feasible

with regard to the available capacities. Detailed capacity allocations are beyond the scope of

production planning and are not part of the production targets determined on this planning

level. Including them increases the complexity of both the planning model and the planning

process, which includes data retrieval, plan generation, and plan review. For these reasons,
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practitioners prefer to exclude detailed capacity allocation decisions from the production

planning level. Hence, it is necessary to generate capacity constraints that accurately model

the capacity of UPMs without the use of allocation variables. Not using allocation variables

reduces the dimensionality of the planning problem to the number of products. We denote the

resulting capacity constraints therefore as low-dimensional. Such low-dimensional capacity

constraints are accurate if they define the same set of production plans as feasible as the

higher-dimensional capacity constraints that are based on allocation variables.

The scientific contributions of this paper include:

• a two-step procedure, which generates accurate, low-dimensional capacity constraints

for unrelated parallel machines by

– first, exploiting partial uniformity to reduce the size of the constraint generation

problem,

– second, decomposing the problem so that standard solution procedures from

computational geometry can be applied;

• a partition-based heuristic that divides a large constraint generation problem into smaller

ones, trading accuracy off against computation time;

• numerical results based on problem instances from semiconductor manufacturing that

show the effectiveness of the proposed procedures; and

• a factorial experiment with randomly generated problem instances that evaluates the

accuracy of the constraints provided by the heuristic in comparison to alternative

capacity models.

In the following Section 4.2, we define the problem formally. The related literature

is reviewed in Section 4.3. In Section 4.4, we develop a two-step procedure that generates

accurate, low-dimensional capacity constraints for UPMs. We discuss the critical computational

complexity of this procedure in Section 4.4.4. In Section 4.5, we then propose a partition-

based constraint generation heuristic. We conduct experiments with field data from the

semiconductor industry and with randomly generated problem instances in order to evaluate

the proposed methods in Section 4.6. We summarize and draw conclusions in Section 4.7.

4.2 Problem statement

For the sake of brevity, we refer to machine types as machines and to product types as

products. Let I = {1, 2, . . . ,m} be a set of m parallel machines and J = {1, 2, . . . , n} a set

of n products. We assume that every product j ∈ J requires a single operation. This operation

can be an aggregate representation of several real operations that are performed by the same

machine on a re-circulating process flow. The eligible machine set I(j) ⊆ I defines the subset
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Figure 4.1: System of unrelated parallel machines with three machines and three products.

of parallel machines that are capable of performing the operation on product j. Such eligibility

constraints are also referred to as capability constraints, assignment constraints, and process

window constraints (Centeno and Armacost, 2004; Chung et al., 2008; Logendran and Subur,

2004). By duality, we know for every machine i ∈ I the feasible product set J(i) ⊆ J of

products that can be processed by machine i. We assume that these sets are static, i.e., the

allocation of the capacity of a machine has no effect on the feasible product set of any other

machine.

Let G = (V,E) be an undirected graph with the nodes V = I ∪ J and the edges E such

that any two nodes i ∈ I and j ∈ J are connected by the edge ij if and only if machine i can

process product j. A graph is connected if any two nodes are connected by a path. We say

that I and J establish a system of unrelated parallel machines (SUPM) if I is a set of UPMs

and graph G is connected. A specific instance is denoted as SUPM(I, J). In a SUPM(I, J),

any product in J requires processing from at least one machine in I. Any two products

in J compete with each other either directly or indirectly for capacity from machine set I.

Figure 4.1 shows the connected graph of a SUPM with three machines and three products.

The processing time per item pij ∈ R>0 of product j ∈ J(i) on machine i ∈ I and the

capacity per time unit ci ∈ R>0 of machine i ∈ I are known. Both pij and ci are given in

machine hours. The research question is how to generate the finite set of some l inequalities

of the form

∑
j∈J

ahjxj ≤ bh ∀h ∈ {1, 2, . . . , l} (4.1)

that accurately model the capacity of a SUPM(I, J). The variable xj in (4.1) stands for the

total quantity of product j that is produced by the SUPM(I, J) per time unit. The problem

is to determine the number of constraints l and the parameters ahj , bh ∈ R≥0 for all j ∈ J and

all h ∈ {1, 2, . . . , l} such that the constraints describe the set of feasible production quantities

per time unit of the SUPM(I, J).
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4.3 Related work

Linear programming formulations that model the capacity of parallel resources have been

known for long time (see, e.g., Johnson and Montgomery, 1974). They became highly relevant

when linear programming formulations were introduced for production planning with time

lags (see, e.g., Hackman and Leachman, 1989). New concepts of capacity modeling, such as

clearing functions for release planning, capture the nonlinear relation between throughput

and WIP in the system (see, e.g., Selçuk et al., 2008). Linear capacity models remain however

widely used in production planning due to their simplicity (see, e.g., Missbauer and Uzsoy,

2011). Leachman and Carmon (1992) denote such a model that is based on allocation variables

as “step-separated formulation” (SSF). In the SSF, the allocation variable wij models the

machine hours that machine i allocates to the processing of product j (see equation (4.2)).

Inequality (4.3) ensures that the total workload does not exceed the capacity ci of machine i.

xj =
∑
i∈I(j)

wij
pij

∀j ∈ J (4.2)

∑
j∈J(i)

wij ≤ ci ∀i ∈ I (4.3)

Bermon and Hood (1999) propose a variation of this formulation. In (4.4), the allocation

variable wij represents the utilization of machine i attributable to the processing of product j.

The capacity constraint (4.5) ensures that 100 % utilization is the upper bound.

xj =
∑
i∈I(j)

ci
pij
wij ∀j ∈ J (4.4)

∑
j∈J(i)

wij ≤ 1 ∀i ∈ I (4.5)

We are interested in generating capacity constraints that do not require other decision

variables than those that model the total production quantity per time unit of a product in J .

Leachman and Carmon (1992) study this problem as well. The authors propose a capacity

set generation procedure to generate the “direct product mix formulation” (DPF). The DPF

fulfills the form requirement defined in (4.1). Yet the procedure fails to solve our problem

because it generates accurate capacity constraints only for uniform parallel machines. Parallel

machines are uniform if for every machine i ∈ I and every product j ∈ J(i), the equation

pij =
pj
µi

is true. Here, µi is the speed of machine i, which is defined relative to a reference

machine. pj is the processing time per item of product j on the reference machine. Note that

unrelated parallel machines satisfy the equation pij =
pj
µij

for all i ∈ I and all j ∈ J(i) with

the speed µij being a function of both machine and product (Pinedo, 2012). Uniform parallel

machines are therefore a special case of unrelated parallel machines.
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Leachman and Carmon’s capacity set generation procedure defines some l capacity

sets Sh ⊆ I with h = 1, 2, . . . , l. These sets define l capacity constraints:

∑
j:I(j)⊆Sh

αipijxj ≤
∑
i∈Sh

αici ∀h ∈ {1, 2, . . . , l}. (4.6)

Here, j : I(j) ⊆ Sh represents all products whose eligible machine sets are a subset of the

capacity set Sh and αi is a machine-specific scaling factor. The scaling factor αi is chosen

such that the scaled speeds of any pair of uniform parallel machines i, i′ become identical, i.e.,
αi
µi

=
αi′
µi′

. As a result, the processing times pij , pi′j of product j ∈ J(i) ∩ J(i′) are identical.

In order to demonstrate Leachman and Carmon’s capacity set generation procedure, we

assume that the system illustrated in Figure 4.1 has the processing times and capacities

presented in (4.7). Processing time pij =∞ means that machine i cannot process product j

and j /∈ J(i). Equation (4.7) shows that machine 2 takes twice as long as machine 1 for any

product that can be processed on both machines. Likewise machine 3 takes twice as long as

machine 2. Therefore, (4.7) satisfies the uniformity condition.

p11 p12 p13 c1
p21 p22 p23 c2
p31 p32 p33 c3

=
1 2 ∞ 20
2 4 6 35
∞ 8 12 124

(4.7)

Applied to the system of uniform parallel machines in (4.7), Leachman and Carmon’s

capacity set generation procedure defines the three capacity sets S1 = {1, 2}, S2 = {2, 3}, and

S3 = {1, 2, 3}. The scaling factors are, for example, α1 = 2, α2 = 1, and α3 = 1
2 . All pij and

all ci are scaled as indicated in Step 1 in (4.8). In Step 2, the DPF is generated according

to the definition in (4.6) for the capacity sets S1, S2, and S3. The first inequality limits the

capacity consumption of product 1 to the joint capacity of machines 1 and 2. The second

inequality limits the capacity consumption of product 3 to the joint capacity of machines 2

and 3. The capacity consumption of all products is limited to the joint capacity of all machines

in the third inequality.

1 2 ∞ 20
2 4 6 35
∞ 8 12 124

Step 1−−−−−→
α1,α2,α3

2 4 ∞ 40
2 4 6 35
∞ 4 6 31

Step 2−−−−−→
S1,S2,S3

2x1 ≤ 75
6x3 ≤ 66

2x1 +4x2 +6x3 ≤ 106
(4.8)

Hung and Cheng (2002) refer to Leachman and Carmon (1992) and acknowledge that the

DPF does not require allocation variables. Hung and Cheng also point out that the uniformity

condition is not satisfied in many industrial applications. To overcome this drawback and

to make the procedure applicable to UPMs (that are only partially uniform), the authors

propose an extension of Leachman and Carmon’s capacity set generation procedure. This

extension requires however allocation variables.
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Hung and Cheng partition the set of products into blocks such that each block together

with its sets of eligible machines defines a system of uniform parallel machines. If a machine

is shared by two or more blocks, the allocation variable wiβ is defined to allocate wiβ machine

hours from machine i to the processing of products in block β.

p11 p12 p13 c1
p21 p22 p23 c2
p31 p32 p33 c3

=
1 2 ∞ 20
2 4 6 35
∞ 4 12 124

(4.9)

Equation (4.9) defines a system of partially uniform parallel machines. Comparing the

machines 2 and 3 reveals non-uniformity. If applied to (4.9), Hung and Cheng’s extension

divides the product set J = {1, 2, 3} into the blocks {1, 2} and {3}. The resulting systems

of uniform parallel machines are presented on the left-hand side of (4.10) and (4.11). The

capacity set generation procedure of Leachman and Carmon (1992) is applied to each block

separately. The resulting inequalities include the scaled allocation variable αiβwiβ if machine i

is shared among two or more blocks and can process at least one product in block β. The

constraints (4.12) and (4.13) ensure that the total workload on the shared machines 2 and 3

does not exceed capacity.

Block 1 :
1 2 ∞ 20
2 4 ∞ 35
∞ 4 ∞ 124

Step 1−−−−−→
α11,α21,
α31

2 4 ∞ 40
2 4 ∞ 35
∞ 4 ∞ 124

Step 2−−−−→
S11,S21

2x1 ≤ 40 + w21

2x1 + 4x2 ≤ 40 + w21 + w31

(4.10)

Block 2 :
∞ ∞ 6 35
∞ ∞ 12 124

Step 1−−−−→
α12,α22

∞ ∞ 6 35
∞ ∞ 6 62

Step 2−−−−→
S12

6x3 ≤ w22 + 1
2w32 (4.11)

w21 + w22 ≤ 35 (4.12)

w31 + w32 ≤ 124 (4.13)

At the time of writing, Liberopoulos (2002) is the only paper that examines the capacity

modeling of SUPMs with low-dimensional capacity constraints. The author expresses the

set of feasible production quantities as a convex hull of extreme points. Each facet of the

convex hull corresponds to a capacity constraint. Liberopoulos provides binomial coefficients

to quantify the number of extreme points as well as the number of facets in case every machine

in I is perfectly flexible and can process each of the products in J , i.e., J(i) = J for all i ∈ I.

The study is, however, restricted to a special case of UPMs. It is assumed that for any two

products, the ratio of processing times is different on any pair of machines. A constraint
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generation procedure that specifies the parameters of the capacity constraints is not presented.

Later, Fukuda and Weibel (2009) propose an ouptut-sensitive polynomial algorithm that

solves the facet enumeration problem for polytopes relatively in general position, i.e., under

the very assumption that Liberopoulos makes about processing times.

In summary, there exists a procedure to generate accurate, low-dimensional capacity

constraints of uniform parallel machines, presented by Leachman and Carmon (1992). There

is a gap in the scientific literature as there has not been presented a procedure that generates

low-dimensional capacity constraints for UPMs in the general case, i.e., without any restrictions

on processing times. This paper aims at filling this gap.

4.4 Generation of low-dimensional capacity constraints

4.4.1 Problem size reduction by aggregating uniform machines

Both Hung and Cheng (2002) and our analyses of field data from the semiconductor indus-

try suggest that the assumption of uniform parallel machines does not hold for industrial

applications. However, this does not mean that uniform parallel machines do not exist. In

semiconductor manufacturing, for example, a younger machine often shows a process speed

improvement compared to an older machine by a factor that is uniform across all products

that can be processed by both machines. Given that a SUPM(I, J) includes some uniform

machines, i.e., it is partially uniform, problem size can be reduced by aggregating uniform

machines. Before we introduce the capacity constraint generation procedure, we therefore

first discuss methods for problem size reduction.

The size of the constraint generation problem of a SUPM(I, J) grows with the cardinality

of the sets I and J . Problem size reduction by aggregating uniform machines reduces the size

of I, while the resulting capacity constraints remain accurate. Let Iu ⊆ I to be a set of uniform

machines. That means J(i) = J(i′) holds for all i, i′ ∈ Iu and pij =
pj
µi

is true for all i ∈ Iu
and all j ∈ J(i). We say that the machine set Iu can be aggregated to a representative

machine i∗ so that Iu = {i∗}. Let some i∗ ∈ Iu be the representative machine, which has

the speed µi∗ . Both the feasible product set J(i∗) and the processing time parameters pi∗j

of the representative machine are not changed by the aggregation. The capacity of the

representative machine is defined as the sum of scaled capacities of the represented machines.

That means ci∗ =
∑

i∈Iu
µi
µi∗
ci. The value µi

µi∗
describes the machine speed of i given in percent

of the speed of representative machine i∗.
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Aggregating uniform parallel machines with identical feasible product sets reduces the size

of the machine set I. To give an example, let the left-hand side of (4.14) specify a SUPM(I, J)

of four machines and four products. The subset Iu = {1, 2} has identical feasible product sets

since J(1) = J(2) = {1, 2, 3} and the machines are uniform because the processing times of

machine 2 are twice as long as the processing times of machine 1 across the feasible product

set. We aggregate Iu, which results in |I|= 3, i.e., the size of the machine set I decreases by

one.

p11 p12 p13 p14 c1
p21 p22 p23 p24 c2
p31 p32 p33 p34 c3
p41 p42 p43 p44 c4

=

1 3 2 ∞ 15
2 6 4 ∞ 10
2 6 4 6 35
∞ ∞ 4 12 124

Machine
aggregation−−−−−−−−→
µ1∗=1,µ2=

1
2

1 3 2 ∞ 20
2 6 4 6 35
∞ ∞ 4 12 124

(4.14)

4.4.2 Problem size reduction by aggregating uniform products

Problem size reduction by aggregating uniform products reduces the size of J , while the

resulting capacity constraints remain accurate. We define Ju ⊆ J to be a set of uniform

products if and only if they have identical eligible machine sets and the eligible machines are

uniform with respect to the products in Ju. That means I(j) = I(j′) holds for all j, j′ ∈ Ju
and pij =

pj
µi

is true for all j ∈ Ju and all i ∈ I(j).

Let any j∗ ∈ Ju be the representative product. Product set Ju can be aggregated to the

representative product j∗ so that Ju = {j∗}. As a result, the size of J decreases. Both the

eligible machine set I(j∗) and the processing times pi,j∗ do not change. We demonstrate the

aggregation of uniform products with the outcome of aggregating uniform machines in (4.14).

The aggregation of the uniform subset of products Ju = {1, 2} is shown in (4.15) so that after

aggregation |J |= 3.

1 3 2 ∞ 20
2 6 4 6 35
∞ ∞ 4 12 124

Product
aggregation−−−−−−−→
p1∗=1,p2=3

1 2 ∞ 20
2 4 6 35
∞ 4 12 124

(4.15)

Once the set of low-dimensional capacity constraints of the form (4.1) has been generated

for a SUPM with aggregated products, the representative product has to be disaggregated

again. Disaggregating provides the capacity constraints that include all the products of the

original SUPM. The representative product j∗ has the same eligible machine set and the same

processing times (apart from uniform scaling) as the represented products. We disaggregate

each of the generated capacity constraints (apart from the non-negativity constraints) that

includes the representative product j∗ by replacing the decision variable xj∗ with the linear

combination
∑

j∈Ju
pj
pj∗
xj . Since this linear combination is defined based on Ju, it includes

the representative product j∗ and the represented products. The value
pj
pj∗

is the processing

time of j given in percent of the processing time of j∗. Finally, one non-negativity constraint
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is added for each xj that has been added by disaggregation. This disaggregation step is

demonstrated in Section 4.4.3 for the SUPM(I, J) that is defined on the right-hand side

of (4.15). Note that in contrast to aggregated products, aggregated machines do not require

disaggregation in order to ensure constraint accuracy.

4.4.3 Capacity constraint generation procedure

We propose a new procedure to generate the low-dimensional, irredundant, and accurate

capacity constraints of a SUPM(I, J). Accurate means that the constraints define the same

set of feasible production plans as the constraints according to the SSF from Leachman and

Carmon (1992). Uniform machines and uniform products may have been aggregated but this

is not necessary for the procedure to be functional.

The procedure is based on the observation that the total production quantity of a

SUPM(I, J) is identical to the sum of the production quantities of the m machines in

I. The production quantity of a machine can be modeled as a vector in the n-dimensional

space. The total production quantity of the SUPM(I, J) is therefore the sum of these vectors.

We are looking for inequalities of the form (4.1) that define the set of vectors that are feasible

subject to the capacity of the SUPM(I, J). The computation of these inequalities is divided

into three steps:

• In Section 4.4.3, we show that the capacity of any machine i ∈ I defines a polytope. We

calculate this polytope Pi in vertex representation for every machine i.

• In Section 4.4.3, we show that the capacity of all machines in a SUPM(I, J) combined

is given by the vector sum, also called Minkowski sum, of these polytopes. We calculate

the Minkowski sum P =
∑

i∈I Pi in vertex representation.

• In Section 4.4.3, we enumerate the facet-defining halfspaces of the Minkowski sum P ,

which provides the sought-after low-dimensional capacity constraints of the SUPM(I, J).

For the SUPM(I, J) that is sketched in Figure 4.1 and specified on the right-hand side

of (4.15), these three steps are illustrated in Figure 4.2. The output of the procedure is a set

of inequalities, which define the facet-defining halfspaces of the polytope illustrated in step 3.

The facets are visualized in Figure 4.2 as colored surfaces and the corresponding inequalities

are presented on the left-hand side of (4.25).

Calculation of the polytope Pi for each i ∈ I

The machine set I of a SUPM(I, J) can process n different products. The production quantity

of any machine as well as the total production quantity of all machines combined can be

modeled as a point in the n-dimensional Euclidean space Rn. The value of the first, second,

. . . , nth coordinate is the production quantity of the first, second, . . . , nth product. According
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(20, 0, 0)

(0, 10, 0)

(0, 0, 0)

(0, 0, 5 5
6 )

(0, 0, 16 1
6 )

(0, 10, 16 1
6 )

(20, 0, 16 1
6 )

(0, 0, 16 1
6 )

x1x2

x
3

(0, 0, 10 2
6 )

V(P1) ∈ R3×3

V(P2) ∈ R3×4

V(P3) ∈ R3×3

V(P ) ∈ R3×10 ∩H(P )={x∈R3:Ax≤b},
A∈R8×3,b∈R8

Step 1: Polytopes Pi in
vertex representation
for all machines i ∈ I

Step 2: Polytope
P =

∑
i∈I Pi in ver-

tex representation

Step 3: Polytope
P =

∑
i∈I Pi in half-

space representation

Figure 4.2: Three-step capacity constraint generation procedure.
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to the main theorem of polytopes (see, e.g., Ziegler, 2007), convex polytopes can be specified

in two ways: in vertex representation and in halfspace representation. In this section, we show

that the set of feasible production quantities per time unit of any machine i ∈ I defines a

convex polytope, or just polytope, in Rn. For this polytope, we first provide the well-known

halfspace representation. Next, we derive the vertex representation and prove the equivalence.

The vertex representation serves as the input to the calculation of the Minkowski sum in the

following Section 4.4.3.

A polytope is a point set P ⊆ Rn. A polytope in vertex representation is also called

V-polytope. A V-polytope is defined as the convex hull of a finite set of points. If the point

set V = {v1,v2, . . . ,vk} ⊆ Rn is finite, then its convex hull conv(V) is the set of all convex

combinations of the points in V:

conv(V) =

x : x =
k∑
q=1

λqvq,
k∑
q=1

λq = 1, λq ∈ R≥0

 . (4.16)

A polytope in halfspace representation is called H-polytope. A H-polytope is defined as

the bounded intersection of finitely many closed halfspaces. A halfspace in Rn is defined by a

hyperplane {x ∈ Rn : aᵀx = b} where a ∈ Rn is a non-zero vector, aᵀx stands for the inner

product of two vectors, and b ∈ R. A hyperplane divides Rn into two halfspaces. A closed

halfspace, denoted as H, is a halfspace of Rn unionized with its defining hyperplane, i.e.,

H = {x ∈ Rn : aᵀx ≤ b}. If the set of closed halfspaces H = {H1, H2, . . . ,Hl} is finite, then

its intersection is defined as

∩H = {x : x ∈ H,∀H ∈ H} . (4.17)

“Bounded” means in this context that the intersection does not contain a ray {p + λ(d− p) :

λ ≥ 0} with any points p,d ∈ ∩H and an arbitrary large λ ∈ R.

The feasible production quantities per time unit of a machine i ∈ I are commonly modeled

with the capacity constraints (4.18), (4.19) and (4.20) where xij represents the production

quantity of product j on machine i. Let xi =
(
xi1 xi2 . . . xin

)ᵀ
be the n-dimensional

vector of the production quantities of machine i. The constraints (4.18) to (4.20) clearly put

both an upper and lower bound on every coordinate of xi. Further, the constraints describe

an intersection of finitely many closed halfspaces. As a result, the set of xi that is feasible

subject to the constraints (4.18) to (4.20) defines a H-polytope in Rn, which we call Pi.

The set of closed halfspaces that is defined by the inequalities (4.18) to (4.20) for ma-

chine i ∈ I is irredundant. A set of closed halfspaces H is irredundant if there does not

exist any H ∈ H such that ∩H = ∩(H\{H}). In other words, it is impossible to remove any

inequality from (4.18) to (4.20) so that the set of feasible xi remains unchanged. We denote

the set of irredundant closed halfspaces (4.18) to (4.20) that define Pi as H(Pi).
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∑
j∈J(i)

pijxij ≤ ci (4.18)

xij ≤ 0 ∀j ∈ J\J(i) (4.19)

xij ≥ 0 ∀j ∈ J (4.20)

Now we define the vertex representation of Pi. Let rij = ci
pij

be the maximum quantity

of product j ∈ J(i) that can be processed per time unit on machine i. Let ej and 0 be

the n-dimensional unit vector and the n-dimensional null vector, respectively. We denote

rij = rijej as the capacity vector of machine i given in units of product j. For machine i,

let Ri = {rij : rij 6= 0, j ∈ J(i)} be the set of capacity vectors different from the null vector.

Since zero production is always feasible, xi ∈ Ri ∪ {0} is feasible for all i ∈ I. Note that a

vector xi ∈ Ri ∪ {0} either models that machine i commits all its capacity to the processing

of ci
pij

units of product j or that the machine runs idle. Obviously the capacity vectors

in Ri are orthogonal to each other and hence linearly independent. As a result, Ri ∪ {0}
describes the ki+1 extreme points (or vertices) of a ki-dimensional polytope, i.e., a ki-simplex,

with ki = |Ri|= |J(i)|.

Proposition 1. For any machine i ∈ I, the set of xi that are feasible subject to the con-

straints (4.18) to (4.20) is equal to the set conv(Ri ∪ {0}).

Proof. For the proof, we refer to Appendix C.1.

We denote the set of vertices of polytope Pi as V(Pi). A point v is a vertex of Pi if it

is irredundant, i.e., if conv(V(Pi)) 6= conv(V(Pi)\{v}). Since the set Ri ∪ {0} is the set of

vertices of a ki-simplex, Ri ∪ {0} defines V(Pi) for all machines i ∈ I. V(Pi) is needed for the

calculation of the Minkowski sum over all Pi’s, which follows in the next section.

The V-polytopes conv(Ri ∪{0}) of the machines i = 1, 2, and 3 in the SUPM(I, J) that is

specified on the right-hand side of (4.15) are plotted on the left-hand side of Figure 4.2. For

example, the polytope of machine 1 with the vertices (0, 0, 0), (20, 0, 0), and (0, 10, 0) in the

upper-left corner of Figure 4.2 is two-dimensional because the right-hand side of (4.15) specifies

that machine 1 can only process the products 1 and 2. If exclusively used for product 1,

the capacity is c1
p11

= 20
1 = 20 units per time period and if exclusively used for product 2, it

is c1
p12

= 20
2 = 10 units per time period.

Calculation of the Minkowski sum P =
∑

i∈I Pi

We have shown that for any machine i ∈ I, the production quantities per time unit can

be modeled as a vector xi ∈ Rn. Let the total production quantities per time unit of a

SUPM(I, J) be modeled as the total production vector x ∈ Rn. Since the machines in I are

assumed to be independent, x is the sum of vectors xi of the machines that constitute the

SUPM(I, J):
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x = x1 + x2 + . . .+ xm : xi ∈ Pi ∀i ∈ I. (4.21)

We are interested in the capacity of the SUPM(I, J), i.e., the definition of the set of all

feasible total production vectors x. The set of all feasible total production vectors {x1 + x2 +

. . . + xm : xi ∈ Pi, ∀i ∈ I} is indeed the Minkowski sum of the polytopes P1, P2, . . . , Pm.

Let P be the Minkowski sum of P1, P2, . . . , Pm, then it holds

P = P1 + P2 + . . .+ Pm = {x1 + x2 + . . .+ xm : xi ∈ Pi,∀i ∈ I}. (4.22)

According to the main theorem of polytopes, the Minkowski sum of polytopes is again a

polytope. That guarantees the existence of a halfspace representation of P , which is the very

set of inequalities of the form (4.1) that we are looking for. Before we can enumerate these

inequalities, we have to compute the Minkowski sum. In terms of computational complexity,

the easiest way to calculate the Minkowski sum P is to compute the vertex representation

of P based on the vertex representations of P1, P2, . . . , Pm. The inputs to this calculation

are the vertex sets V(P1), V(P2), . . . , V(Pm), which we have defined in the previous section.

The output is the set of vertices V(P ) such that

P = conv(V(P )) V(P ) ∈ Rn×k, (4.23)

where V(P ) is a set of some k vertices in the n-dimensional space.

In Figure 4.2, the set of vertices of the Minkowski sum V(P ) = {(0, 0, 0), (0, 0, 161
6),

(0, 10, 161
6), (0, 41, 55

6), (0, 493
4 , 0), (20, 0, 161

6), (20, 31, 55
6), (37.5, 0, 0), (37.5, 0, 101

3), (37.5, 31, 0)}
is plotted in Step 2.

Enumeration of the facets of the Minkowski sum P

Once V(P ) is given, it remains to solve the convex hull problem, i.e., to enumerate the set of

some l halfspace-defining inequalities Ax ≤ b such that

conv(V(P )) = ∩H(P ) = {x ∈ Rn : Ax ≤ b} A ∈ Rl×n, b ∈ Rl. (4.24)

The inequalities Ax ≤ b model the feasible production quantities per time unit of the

underlying SUPM(I, J) accurately. Since every product defines one dimension of P , P must

be full-dimensional, i.e., P is an n-dimensional polytope in Rn. As P is full-dimensional, every

irredundant inequality in H(P ) corresponds to a facet of P ; that is, an (n− 1)-dimensional

face of P . Given that the set of facet-defining inequalities Ax ≤ b does not include any

multiples, it is irredundant (for more information on this topic see, e.g., Ziegler, 2007).
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For the example that is defined on the right-hand side of (4.15), the facets are visualized

by colored surfaces in Step 3 in Figure 4.2. The corresponding set of irredundant linear

inequalities Ax ≤ b is presented on the left-hand side of (4.25). This is the result of the

capacity constraint generation procedure. Each inequality corresponds to one surface in

Figure 4.2. Each point in V(P ) satisfies at least three of these inequalities by equality. For

example, the point (0, 0, 161
6), which lies on the x3-axis above the origin in Step 3, satisfies by

equality the three inequalities that are marked by right-arrows on the left-hand side of (4.25).

Recall that the input to the constraint generation procedure in this example includes

one representative product from the aggregation of uniform products. We disaggregate

this representative product. Otherwise, there will be some product j, which is part of

the original SUPM, i.e., before aggregation, but not included in the capacity constraints.

The disaggregation is shown in (4.25). A decision variable (see the down-arrow) and its

non-negativity constraint is added to the set of inequalities.

The set of inequalities Ax ≤ b on the right-hand side of (4.25) is an accurate description of

the feasible total production quantities per time unit of the SUPM that has been defined on the

left-hand side of Equation (4.14). The inequalities match the form requirement (4.1). Further,

the set of inequalities is irredundant. There does not exist any accurate, low-dimensional

capacity model with a lower number of constraints.
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4.4.4 Computational complexity and algorithms

The presented capacity constraint generation procedure includes two problems on convex

polytopes that are well-known in computational geometry. The first problem is the Minkowski

addition of V-polytopes. The second is the facet enumeration problem, also called convex hull

problem. The procedure can be summarized as

V(P1),V(P2), . . . ,V(Pm)
Minkowski

addition problem−−−−−−−−−−→ V(P )
Facet enumeration

problem−−−−−−−−−−−→ H(P ). (4.26)
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The size of a polytope P in halfspace representation and in vertex representation is given

by n|H(P )| and n|V(P )|, respectively, with n being the dimension of P . Here, the length of the

encoded numbers appearing in the description of the polytopes is ignored for simplicity. For

both problems in (4.26) do exist examples showing that the output size can grow exponentially

in the input size (Fukuda and Weibel, 2007). However, there are also examples in which the

output size is bounded by the input size (Fukuda, 2004). The Minkowski addition presented

in Figure 4.2 is such an example. This diversity in output size justifies that the computational

complexity, i.e., the run time, of algorithms for polytopes is commonly stated as a function of

both input size and output size. An algorithm is denoted as polynomial output-sensitive if its

run time is bounded by a polynomial in the size of both input and output (Fukuda, 2004).

For the Minkowski addition problem, Fukuda (2004) proposes a polynomial output-sensitive

algorithm that computes the Minkowski sum in any dimension n and for any number of

summands m that are given as V-polytopes. It is a parallelizable algorithm based on reverse

search and linear programming. The algorithm runs in time O(mnLP(n,mn)|V(P )|) and

space linear in the input size, where LP(α, β) is the time necessary to solve a linear program

with α rows and β columns.

Algorithms that solve the convex hull problem in general dimensions can be broadly

divided into incremental or insertion algorithms and pivoting or graph traversal algorithms.

Note that the enumeration of H(P ) from V(P ) is equivalent to the enumeration of V(P ∗)

from H(P ∗) with P ∗ being the dual of P . Avis et al. (1997) shows that both types of

algorithms, incremental and pivoting, have superpolynomial worst case run times in n, |H(P )|,
and |V(P )| and cannot be considered as polynomial output-sensitive.

Pivoting algorithms, such as the reverse search method from Avis and Fukuda (1992), are

parallelizable. In case each facet contains exactly n vertices, reverse search is polynomial output-

sensitive and solves the facet enumeration problem in O(n|H(P )||V(P )|) time and O(n|V(P )|)
space. A disadvantage is that the run time performance deteriorates in the degenerate case,

i.e., for n-dimensional polytopes with facets that contain more than n vertices.

Incremental vertex enumeration algorithms, such as the double description method from

Motzkin et al. (1953), compute the intersection of a set of halfspaces H(P ) = {H1, H2, . . . ,Hl}
by inductively computing Pl−1 = ∩l−1i=1Hi to eventually compute Pl−1 ∩Hl. The algorithm is

reported to perform surprisingly well for highly degenerate cases (Fukuda and Prodon, 1996).

A disadvantage is that the intermediate polytopes can count many more vertices than the

final polytope, which can make the problem intractable (Avis et al., 1997).

H(P1),H(P2), . . . ,H(Pm)
Minkowski

addition problem−−−−−−−−−−→ H(P ) (4.27)
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The constraint generation procedure proposed in Section 4.4.3 raises the natural question

if the facets of the Minkowski sum can be enumerated directly from summands in halfspace

representation, such as indicated in (4.27). The input H(P1), H(P2), . . . , H(Pm) is readily

available (see Section 4.4.3). The advantage would be to avoid both the enumeration of the

potentially large vertex representation V(P ) and the solution of the convex hull problem. At

the time of writing, however, no algorithm exists that generally solves the problem in (4.27)

faster than the procedure proposed in this paper. Fukuda and Weibel (2009) propose a

polynomial output-sensitive algorithm but only for the special case when the faces of the

summand polytopes are oriented in generic directions. Moreover, Tiwary (2008) proves that

there cannot exist a polynomial output-sensitive algorithm that solves the problem in (4.27)

in general unless P = NP.

4.5 Partition-based constraint search heuristic

In order to be useful for practical applications, the run time of the capacity constraint

generation procedure has to be limited by an upper bound T . The actual run time t can

grow very quickly because of the computational complexity and output size. We propose a

heuristic that generates the most accurate capacity constraints possible in t < γT where γ is

the number of iterations that the heuristic needs to finish.

The idea of the heuristic is to divide a SUPM(I, J), which requires run time t > T , into a

set of smaller SUPMs that require in total t < T for capacity constraint generation. These

smaller SUPMs are defined by partitioning the graph G = (V,E). G is partitioned by dividing

the node set V = I ∪ J into some κ ≥ 2 disjoint blocks of roughly equal size such that

the objective function is minimized. The objective function is the sum of edge weights of

edges that have to be cut in order to make the blocks disjoint. An imbalance constraint,

which has to be satisfied by all blocks, ensures that the number of nodes per block does not

exceed (1 + υ)
⌈
|V |
κ

⌉
with some υ ≥ 0. This problem is called the (κ, 1 + υ)-balanced graph

partitioning problem in graph G (Sanders and Schulz, 2013).

We define the edge weight of any edge ij ∈ E as the product of the number of machines

represented by node i and the number of products represented by node j. That gives every

edge of the graph (before uniform elements have been aggregated) the weight one. In case G

is partitioned after uniform machines and uniform products have been aggregated, a node can

represent a set of aggregated machines or a set of aggregated products. The edge weight thus

equals the number of edges that would appear if all nodes were disaggregated.

Edges that run between blocks are cut to define κ separate blocks, i.e., at least κ independent

SUPMs. A smaller κ and a greater υ tend to lead to fewer edge cuts. We denote this relation

as the monotonicity of the sum of weighted edge cuts in κ and υ. Let cuts(κ, υ,G) be the

objective function value of the optimal solution of the (κ, 1 + υ)-balanced graph partition
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problem in G, i.e., the smallest sum of weighted edge cuts that can be achieved by a (κ, 1 +υ)-

balanced partition of G. For a given imbalance υ, cuts(κ, υ,G) is monotonically increasing

in the number of blocks κ (see (4.28)). For a given number of blocks κ, cuts(κ, υ,G) is

monotonically decreasing in the imbalance υ (see (4.29)).

κ′ > κ⇒ cuts(κ′, υ,G) ≥ cuts(κ, υ,G) κ′, κ ∈ K υ ∈ Y (4.28)

υ′ > υ ⇒ cuts(κ, υ′, G) ≤ cuts(κ, υ,G) κ ∈ K υ′, υ ∈ Y (4.29)

There is a trade-off between constraint accuracy and block size. Cutting the edge ij means

that the capability of machine i to process product j will not be captured by the capacity

constraints. This makes the constraints inaccurate. While a smaller κ and a greater υ increase

the accuracy of the generated capacity constraints as fewer edges tend to be cut, the resulting

constraint generation problems become harder to solve and run time increases. Our objective

is to find the (κ, 1 + υ)-balanced partition that minimizes cuts(κ, υ,G) subject to that the

resulting constraint generation problem can be solved in t < T . Let K and Y be the domains

of κ and υ, respectively. A naive approach is complete enumeration, i.e., attempting to

solve the capacity constraint generation problems that are defined by the (κ, 1 + υ)-balanced

partitions for all (κ, υ) ∈ K × Y . In order to avoid that, we propose the partition-based

constraint search (PCS) heuristic.

In preparation of the PCS, we reduce the size of the search space K × Y by discretizing

the range of υ and by defining upper bounds for both κ and υ. A natural upper bound of υ

is 1 because for any κ ≥ 2, (1 + 1)
⌈
|V |
κ

⌉
≥ (1 + 0)

⌈
|V |
κ−1

⌉
, i.e., for any κ an υ ∈ [0, 1] exists

such that the (κ, 1 + υ)-balanced partition equals the (κ− 1, 1 + 0)-balanced partition. The

upper bound of κ is defined such that the (κ, 1 + 0)-balanced partition provides a constraint

generation problem that is solvable in t < T .

Let K and Y be sorted sets with zero-based indexing that have the same elements as K

and Y . K[k] and Y[y] represent the kth and yth elements of K and Y. The PCS heuristic

is divided into two phases. Both phases call the function cons(κ, υ,G, T ), which returns

true if and only if the capacity constraint generation procedure successfully computes the

low-dimensional capacity constraints of all SUPMs that are defined by the (κ, 1 + υ)-balanced

partition in t < T .

Phase 1 starts with the smallest υ ∈ Y and largest κ ∈ K. Then, κ is iteratively

decremented. The purpose of phase 1 is to find the (κ, 1 + υ)-balanced partition with

the smallest υ ∈ Y and the largest κ ∈ K that defines a constraint generation problem

unsolvable in t < T . This partition defines the starting point of phase 2. The PCS heuristic is

illustrated in Figure 4.3 with K = {3, 4, 5, 6} and Y = {0, 0.1, 0.2, 0.3}. Phase 1 is indicated

by dashed arrows and rectangle marks, which are white in case the corresponding capacity
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PCS heuristic Partition-based constraint search heuristic.

1: procedure FindCapacityConstraints(K, Y, G, T )
2: k ← K.length− 1 . Phase 1
3: y ← 0
4: while k ≥ 0 & cons(K[k],Y[y], G, T ) do
5: k ← k − 1
6: cuts∗ ← cuts(K[k],Y[y], G)
7: end while
8: k ← k + 1 . Phase 2
9: y ← y + 1

10: while k < K.length & y < Y.length do
11: if cons(K[k],Y[y], G, T ) then
12: if cuts(K[k],Y[y], G) < cuts∗ then
13: cuts∗ ← cuts(K[k],Y[y], G)
14: cons∗ ← cons(K[k],Y[y], G, T ).getConstraints()
15: end if
16: y ← y + 1 . Increase block size
17: else
18: k ← k + 1 . Decrease block size
19: end if
20: end while
21: return cons∗

22: end procedure

constraint generation problem is solved in t < T and black otherwise. For υ = Y[0] = 0, first

κ = K[3] = 6, then κ = K[2] = 5, and finally κ = K[1] = 4 are evaluated. The end of phase 1

is reached when the capacity constraints of the SUPMs defined by the (4, 1 + 0)-balanced

partition cannot be generated in t < T .

Phase 2 explores the frontier of capacity constraint generation problems that are solvable

in t < T by iteratively increasing υ or κ. If cons(κ, υ,G, T ) returns true, υ is increased, i.e.,

we are looking for a partition with fewer weighted edge cuts and the constraint generation

problem becomes harder. If cons(κ, υ,G, T ) returns false, κ is increased, i.e., we are looking

for an easier constraint generation problem and the number of weighted edge cuts increases.

Given that the monotonicity assumption is correct, these steps efficiently enumerate the

frontier because for every υ ∈ Y , the smallest κ ∈ K is found that results in a capacity

constraint generation problem that is solvable in t < T . In Figure 4.3, phase 2 is indicated by

solid arrows and circular marks. As long as the capacity constraint generation problem is

solved in t < T (white marks), y is incremented. Once the problem is not solvable in t < T , k

is incremented until the resulting constraint generation problem is solvable again in t < T .
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Figure 4.3: Phase 1 and phase 2 of the PCS heuristic.

The PCS heuristic returns a set of capacity constraints cons∗ based on the (κ, 1 + υ)-

balanced partition that minimizes cuts(κ, υ,G) over all (κ, υ) ∈ K × Y subject to t <

T . In Figure 4.3, candidate partitions have white marks and the minimum is reached

by cuts(5, 0.1, G) = 91. The worst case total run time of the PCS heuristic is the number of

calls of the function cons(κ, υ,G, T ) times T .

4.6 Experimental results

In the following Section 4.6.1, we demonstrate the aggregation of uniform elements, the

capacity constraint generation procedure, and the PCS heuristic on seven SUPMs found in

semiconductor device manufacturing. First, we apply the constraint generation procedure

directly, which provides the accurate, low-dimensional capacity constraints of two SUPMs (see

Section 4.6.1). The aggregation of uniform elements in Section 4.6.1 then increases this number

to three. Since four out of seven SUPMs remain unsolved, we eventually use the PCS heuristic

in Section 4.6.1, which generates sets of low-dimensional capacity constraints for the remaining

four SUPMs. As the PCS heuristic trades constraint accuracy off against computation time,

we evaluate constraint accuracy in comparison with the DPF proposed by Leachman and

Carmon (1992). The sample of seven SUPMs is too small to allow firm conclusions about

the performance of the PCS heuristic. In Section 4.6.2, we therefore conduct a full factorial

experiment with randomly generated problem instances that resemble the SUPMs found in

the semiconductor industry to determine the performance of the PCS heuristic.
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Table 4.1: Problem instances and results of the capacity constraint generation procedure.

SUPM |J | |I| ρ [%]
∑

i∈I |V(Pi)|∑
i∈I |H(Pi)|

|V(P )| |H(P )| icd minksum cddlib plrs

1 58 3 51.1 92 15,778 104 2,369.5 6,432s 50,701s >48h
2 491 4 35.7 706 n/a n/a n/a >48h n/a n/a
3 474 5 30.7 732 n/a n/a n/a >48h n/a n/a
4 484 6 23.0 675 n/a n/a n/a >48h n/a n/a
5 24 7 22.0 44 34,428 51 10,344.3 986s 134,950s >48h
6 490 7 41.0 1,413 n/a n/a n/a >48h n/a n/a
7 325 30 8.9 898 n/a n/a n/a >48h n/a n/a

4.6.1 Experiments with field data

The bottleneck machines of the testing operations at a German semiconductor manufacturer

form independent SUPMs. Seven of these SUPMs are described in Table 4.1. Table 4.1

presents the number of products |J |, the number of machines |I|, and the density ρ. ρ is the

fraction of product-machine tuples (i, j) ∈ I × J for which a processing time pij ∈ R>0 exists.

The number of products, which defines dimension n, ranges between 24 and 491. The number

of machines, which defines the number of summand polytopes, ranges between 3 and 30. The

density ρ is between 8.9 % and 51.1 %. Since each summand polytope Pi of a SUPM(I, J) is a

ki-simplex, it has both ki + 1 vertices and ki + 1 facets. The sum of vertices over all summand

polytopes
∑

i∈I |V(Pi)| equals the sum of facets over all summand polytopes
∑

i∈I |H(Pi)|.
The seven SUPMs describe summand polytopes with a total of 44 to 1,413 vertices and facets.

Direct application of the capacity constraint generation procedure

We solve the Minkowski addition problem in this and the following experiments with the

minksum program (release 1.7) from Weibel (2010), which is a parallel implementation of the

reverse search-based algorithm from Fukuda (2004). The convex hull problem is solved with

Fukuda’s implementation of the double description method cddlib (release 0.94g) (Fukuda,

2008) as well as the parallel implementation of the reverse search method plrs (release 5.0)

from Avis and Roumanis (2013). All applications are compiled with the GNU Multiple

Precision Arithmetic Library. Computations are performed by an Ubuntu 12.04 workstation

with 32 GB of memory and an Intel Xeon CPU E3-1220 v2 with 3.1 GHz clock speed on

4 cores while no other application is running. The parallel implementations minksum and

plrs run four threads in parallel (one thread per core), whereas cddlib runs a single thread

on a single core.

For two out of seven SUPMs, the constraint generation procedure completes all compu-

tations in less than 48 hours, which was set as a time limit. Table 4.1 presents the results.

|V(P )| and |H(P )| are the number of vertices and the number of facets of the Minkowski sum.

|H(P )| is in fact the number of capacity constraints including |J | non-negativity constraints.

Ignoring the non-negativity constraints, the procedure generates 46 and 27 irredundant ca-
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Table 4.2: The effect of aggregating uniform elements.

SUPM |J | |I| ρ [%]
∑

i∈I |V(Pi)|∑
i∈I |H(Pi)|

|V(P )| |H(P )| icd minksum cddlib plrs

1’ 14 3 66.7 31 416 60 98.1 5s 10s 3,918s
2’ 15 3 60.0 30 428 57 108.2 5s 10s 25,354s
3’ 42 5 41.9 93 n/a n/a n/a >48h n/a n/a
4’ 20 6 29.2 41 28,410 n/a n/a 801s >48h >48h
5’ 10 7 25.7 25 1,033 37 329.6 4s 33s 15,287s
6’ 49 5 51.4 131 n/a n/a n/a >48h n/a n/a
7’ 116 30 10.8 405 n/a n/a n/a >48h n/a n/a

pacity constraints for the SUPMs 1 and 5. The columns minksum, cddlib, and plrs provide

computation times. The run times of cddlib can be considered as too long for practical

applications. The facet enumeration of SUPM 1 requires about 14 hours and of SUPM 5

about 37.5 hours, respectively. For five out of seven SUPMs, we stop the Minkowski addition

after 48 hours of computation with no result.

The column icd provides the average number of incident vertices per facet. A vertex is

said to be incident to a facet if it satisfies the facet-defining inequality by equality. A facet

enumeration problem is called degenerate if there are more than n vertices incident to a facet

of a n-dimensional polytope. The facet enumeration problems of the SUPMs 1 and 5 are

highly degenerate. This explains why the run time performance of plrs is worse than of

cddlib, which is less sensitive to degeneracy. We stop plrs after 48 hours without results.

The effect of aggregating uniform machines and products

Using the same problem instances as in the previous section, we now reduce problem size by

aggregating uniform machines and uniform products before we apply the capacity constraint

generation procedure. The SUPMs whose uniform elements have been aggregated are marked

with a single prime. Table 4.2 presents the results.

The aggregation of uniform elements reduces problem size. Compared to the original

values in Table 4.1, the number of machines |I| decreases from 4 to 3 in SUPM 2’ and from 7

to 5 in SUPM 6’. The number of products |J | decreases between 58.3 % (SUPM 5’) and

96.9 % (SUPM 2’). Both the sum of vertices
∑

i∈I |V(Pi)| and the sum of facets
∑

i∈I |H(Pi)|
over all summand polytopes decrease between 43.2 % (SUPM 5’) and 95.8 % (SUPM 2’).

The output size of the constraint generation procedure decreases as well. The number of

vertices of the Minkowski sum |V(P )| as well as the average size of incidence sets icd decrease

in SUPMs 1’ and 5’ by around 96.3 %. The computation times of minksum and cddlib

decrease by over 99.6 %. The number of capacity constraints |H(P )| decrease by 42.3 % in

SUPM 1’ and 27.5 % in SUPM 5’. The difference in number of capacity constraints between
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the SUPMs 1 and 5 in Table 4.1 and the aggregated SUPMs 1’ and 5’ in Table 4.2 is caused

by the difference in the number of products |J |. Non-negativity constraints are eliminated

from H(P ) because of the projection into a lower dimension. Note that disaggregation will

reverse this effect by adding dimensions and non-negativity constraints.

The computational burden caused by degeneracy can now be quantified. For the convex

hull problems of SUPMs 1’, 2’, and 5’, the reverse search implementation plrs requires

392, 2,535, and 463 times as long as the double description method implemented in cddlib.

The facet enumeration problems are still highly degenerate after the aggregation of uniform

elements, which makes plrs less suitable. In the remaining experiments, we therefore solve

facet enumeration problems solely with cddlib.

Application of the PCS heuristic

The capacity constraint generation procedure does not finish computing the capacity con-

straints of the SUPMs 3’, 4’, 6’, and 7’ within 48 hours even though uniform elements have

been aggregated. In this section, we describe the implementation of the PCS heuristic and

illustrate its logic at the example of SUPM 7’. We define two measures of constraint accuracy.

We apply the PCS heuristic to the SUPMs 3’, 4’, 6’, and 7’, and then determine the accuracy

of the resulting capacity constraints in comparison with the DPF.

We implement the PCS heuristic using the distributed evolutionary algorithm KaFFPaE,

which is part of the partitioning framework KaHIP (release 0.62) from Sanders and Schulz

(2013). KaFFPaE solves the (κ, 1 + υ)-balanced partition problem heuristically as it is NP-hard

(see, e.g., Garey and Johnson, 1979). We set the timeout of KaFFPaE to 180 seconds per

partition problem. Initial runs have shown that 180 seconds suffice for the sum of weighted

edge cuts cuts(κ, υ,G) in the graphs of the SUPMs 3’, 4’, 6’, and 7’ to converge. Initial runs

have also shown that the constraint generation procedure computes the capacity constraints

within a few seconds if the graph includes at most 15 nodes. SUPM 7’ defines the largest graph

in Table 4.2 and has a total of 146 nodes. We use therefore
⌈
|V |
15

⌉
=
⌈
146
15

⌉
as an upper bound

for κ so that the domain of κ is defined as K = {1, 2, . . . , 10}. The domain of υ is defined

as Y = {0.0, 0.2, . . . , 1.0}. We run the PCS heuristic with a time limit of T = 3,600 seconds.

Phase 1 starts with κ = 10 and υ = 0.

For the purpose of demonstration, we apply the PCS heuristic to SUPM 7’ and present

the results in a surface plot in Figure 4.4. The surface illustrates the relationship between

κ, υ, and the sum of weighted edge cuts cuts(κ, υ,G) of the underlying (κ, 1 + υ)-balanced

partitions. Phase 1 and phase 2 of the PCS heuristic are indicated by rectangle marks and

circle marks, respectively. These marks are white in case the underlying capacity constraint

generation problem is solved in t < T and black otherwise. The frontier of constraint

generation problems that are solvable in t < T forms roughly a diagonal of white circles

across the surface. Pins are labeled with the value of cuts(κ, υ,G). The lowest objective
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Figure 4.4: The PCS heuristic applied to SUPM 7’.

Table 4.3: Result of the PCS heuristic applied to SUPM 7’.

SUPM |J | |I| ρ [%]
∑

i∈I |V(Pi)|∑
i∈I |H(Pi)|

|V(P )| |H(P )| icd minksum cddlib

7’.1’ 12 6 47.2 40 1,670 55 386.7 14s 693s
7’.2’ 14 6 60.7 57 1,152 30 374.9 19s 113s
7’.3’.a 1 1 100.0 2 2 2 1.0 0s 0s
7’.3’.b 1 1 100.0 2 2 2 1.0 0s 0s
7’.4’.a 11 4 56.8 29 294 29 91.5 2s 2s
7’.4’.b 1 1 100.0 2 2 2 1.0 0s 0s
7’.4’.c 1 1 100.0 2 2 2 1.0 0s 0s
7’.5’.a 9 6 37.0 26 469 32 145.2 2s 5s
7’.5’.b 1 1 100.0 2 2 2 1.0 0s 0s
7’.5’.c 1 1 100.0 2 2 2 1.0 0s 0s

function value of partitions that define solvable constraint generation problems appears twice:

cuts(5, 0.1, G) = cuts(7, 0.6, G) = 91. The capacity constraints returned by the PCS heuristic

are based on the (5, 1.1)-balanced partition. Table 4.3 describes these constraints and the

underlying SUPMs, which are the result of partitioning the graph of SUPM 7’ into five blocks.

Two blocks define a single SUPM each, i.e., 7’.1’ and 7’.2’. One block defines two SUPMs,

i.e., 7’.3’.a and 7’.3’.b. And, two blocks define three SUPMs each. The columns |J | and |I|
in Table 4.3 do not sum up to |J |= 116 and |I|= 30 of SUPM 7’ in Table 4.2 because

uniform machines and uniform products have been aggregated once again in each of the

SUPMs in Table 4.3. The SUPMs in Table 4.3 define in total 158 capacity constraints

including 52 non-negativity constraints. The capacity constraints are not accurate. 91 out of

868 product-machine assignments that are feasible according to the original SUPM 7, which is

around 10.5 %, are not captured by the capacity constraints because of edge cuts. Figure 4.5

illustrates this effect. Figure 4.5a shows the graph G of SUPM 7’ and Figure 4.5b shows the
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Figure 4.5: The effect of graph partitioning.

(5, 1.1)-balanced partition of G after cutting the edges between blocks and aggregating the

uniform elements within each block. Every connected component in Figure 4.5b corresponds

to one of the SUPMs in Table 4.3. Gray and white nodes represent machines and products,

respectively. Edge thickness is proportional to the square root of edge weight.

We are interested in the accuracy of the capacity constraints that are provided by the PCS

heuristic and we want to compare it with the accuracy of the DPF proposed by Leachman

and Carmon (1992). Therefore, we define measures for objective function value accuracy and

production plan feasibility. For each type of capacity constraints, we compute these measures

based on the production plans that maximize 1,000 randomly generated objective functions.

For a SUPM that has n products, a set of q = 1, 2, . . . , 1,000 n-dimensional vectors uq is

generated with coordinates that are uniformly distributed between 1 and 999. The vector uq

defines the coefficients of the qth objective function. xq represents the qth n-dimensional

vector of decision variables, i.e., of production quantities. The following formulation represents

a single-period production planning problem. We solve it for each q subject to different types

of capacity constraints that are generated for the same SUPM.

zq = maxuqxq (4.30)

s.t.

capacity constraints (4.31)
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First, (4.30) is maximized subject to the set of high-dimensional, accurate capacity

constraints according to the SSF (see equations (4.2) and (4.3)). The optimal objective

function value and the optimal production plan of the qth problem are denoted as zSSFq and

xSSF
q . Second, we use the low-dimensional capacity constraints provided by the PCS heuristic.

The optimal objective function value and the optimal production plan are denoted as zPCS
q

and xPCS
q . Third, (4.31) is replaced with the low-dimensional constraints provided by the

DPF (see inequality (4.6)). We denote the optimal objective function value and the optimal

production plan as zDPF
q and xDPF

q .

The DPF requires uniformity, i.e., the equation pij =
pj
µi

must hold for every machine i ∈ I
and every product j ∈ J(i). Following the suggestion of Leachman and Carmon (1992), we

create uniformity by averaging. That means every processing time pij ∈ R>0 is replaced with
pi·p·j
p··

, where pi·, p·j , and p·· represent the column average, the row average, and the matrix

average of the processing times. If averaging is applied to the non-uniform processing times

in (4.9), for example, the result is:

p11 p12 p13 c1
p21 p22 p23 c2
p31 p32 p33 c3

=
1 2 ∞ 20
2 4 6 35
∞ 4 12 124

Averaging−−−−−−→
0.51 1.13 ∞ 20
1.35 3.01 8.13 35
∞ 6.02 16.26 124

(4.32)

Using the q = 1, 2, . . . , 1,000 solutions of the production planning problem in (4.30) to

(4.31), we define the objective function value inaccuracy (OFI ) as the mean absolute percentage

deviation from the optimal objective function value subject to the accurate SSF:

OFI PCS =

∑1000
q=1

∣∣∣∣ zPCS
q −zSSFq

zSSFq

∣∣∣∣
1000

(4.33)

OFI DPF =

∑1000
q=1

∣∣∣∣ zDPF
q −zSSFq

zSSFq

∣∣∣∣
1000

(4.34)

The production plan feasibility (Feas) is defined as the percentage of production plans

that are feasible subject to the SSF capacity constraints. In order to determine if a production

plan, e.g., xPCS
q , is feasible subject to the SSF constraints, a ray shooting problem is initialized.

The following maximization problem shoots a ray starting from the origin in the direction of

xPCS
q until it hits the boundary of the polytope that is defined by the SSF constraints. Note

that in this formulation, xPCS
q is fixed as a vector of parameters and x is a vector of decision

variables.

maxλPCS
q

s.t.

x = λPCS
q xPCS

q
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Table 4.4: Results of the PCS heuristic applied to the SUPMs 3’, 4’, 6’, and 7’.
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3’ 3 0.4 13.3 0.5 32.5 100.0 0.0 46s 1,827s
4’ 2 0.5 4.0 2.1 140.0 100.0 0.0 12s 324s
6’ 4 0.8 17.0 10.1 6.0 100.0 0.0 93s 3,145s
7’ 5 0.1 10.5 8.6 56.6 100.0 0.0 37s 813s

step-separated formulation of capacities

The production plan xPCS
q is feasible subject to the SSF if and only if the optimal value of

the scalar λPCS
q is greater or equal to one. The ratio of feasible production plans FeasPCS is

defined as

FeasPCS =

∑1000
q=1 1Feas(λ

PCS
q )

1000
, (4.35)

with indicator function

1Feas(λ
PCS
q ) =

{
1 if λPCS

q ≥ 1

0 otherwise.
(4.36)

The ratio of feasible production plans provided by the DPF, FeasDPF, is calculated analogously

but based on the maximizer xDPF
q .

We apply the PCS heuristic to the SUPMs 3’, 4’, 6’, and 7’ and present the results in

Table 4.4. The columns κ, υ, and cuts(κ, υ,G)rel describe the (κ, 1 + υ)-balanced partitions

that are returned by the PCS heuristic. cuts(κ, υ,G)rel stands for the relative number of cut

edges, i.e., cuts(κ, υ,G) divided by the total number of edges in graph G of the non-aggregated

SUPM. Between 4.0 % and 17.0 % of the feasible product-machine assignments are cut and

are therefore not captured by the capacity constraints. The OFI PCS ranges between 0.5 %

and 10.1 %. The capacity constraints that are generated by the PCS heuristic tend to be more

accurate than the DPF. The average gap between OFI PCS and OFI DPF is 53.4 percentage

points. The relative number of edge cuts cuts(κ, υ,G)rel and OFI PCS are not perfectly rank

correlated. Note that the effect of cutting an edge can vary depending on the production

capacity that is cut. As expected, all of the 1,000 production plans that are optimized subject

to the capacity constraints of the PCS heuristic are feasible. It is remarkable that none of the
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production plans that are generated subject to the DPF of capacities are feasible. The two

rightmost columns of Table 4.4 provide the total computation times of the PCS heuristic on

the partition that is specified by κ and υ. The sum of minksum and cddlib is below the time

limit of T = 3,600 seconds.

4.6.2 Experiment with randomly generated data

The results of the experiment in the previous section indicate that the PCS heuristic provides

more accurate capacity constraints than Leachman and Carmon’s DPF. As the sample size

is too small to draw firm conclusions, we conduct a comprehensive full factorial experiment,

in which problem instances, i.e., SUPMs, are randomly generated such that the diversity of

constraint generation problems observed in the field is largely captured.

A base problem instance counts 500 products and 12 parallel machines and satisfies the

uniformity condition (see Table C.1 in Appendix C.2). All machines are assumed to have a

capacity of 10,000 machine hours. In addition to the constraint generation method, three

factors are examined: the density of the processing time matrix ρ (25 % and 50 %), the

range of processing times ({1, 5, 10,∞} and {1, 100, 200,∞}), and the non-uniformity of the

processing time matrix (four levels). The levels of ρ and the ranges of processing times are

motivated by the SUPMs introduced in Table 4.1. Three levels non-uniformity are created

incrementally by swapping random pairs of 25×3-submatrices of the 500×12-processing time

matrix (Table C.2 in Appendix C.2 shows an example). The intention is to create the structure

of block-wise uniformity, which we have found in the processing time matrices of the SUPMs

from semiconductor manufacturing.

The 22-×-4 full factorial experiment is replicated 30 times, resulting in 480 separate

constraint generation problems. Proper variation and coordination of random number streams

are implemented. The timeout of KaFFPaE and T of the PCS heuristic are set to 60 seconds.

Where possible, uniform elements are aggregated and independent SUPMs are treated sep-

arately. The results are presented in Table 4.5. We have verified that the assumptions of

error term normality and equality of variance are not violated and conducted an analysis of

variance (ANOVA) for OFI PCS (see Table C.3 in Appendix C.2). All main effects and all

two-way interaction effects are significant at the 95 % confidence level. A paired t-test with

two-sided alternative hypothesis comparing OFI PCS with OFI DPF rejects the null hypothesis

of equality for every treatment combination at a significance level of 5 % or less (see p-values

in Table 4.5). Here, a normal probability plot of the residuals of OFI PCS has revealed seven

outliers that are much greater than the replication means. Since these outliers do not change

the direction of the results but affect the normality assumption of the t-test, we have replaced

them with the replication means.
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Table 4.5: Results of the factorial experiment (replication means).
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1 25 {1, 5, 10,∞} 0 4.0 4.0 100.0 1.0 0.00 0.0 0.0∗∗ 0.0 100.0 100.0
2 25 {1, 5, 10,∞} 3 11.0 9.7 36.7 1.7 0.24 1.2 2.4∗∗ 11.6 100.0 15.8
3 25 {1, 5, 10,∞} 6 18.7 11.3 0.0 2.4 0.33 4.9 4.3∗∗ 19.3 100.0 9.5
4 25 {1, 5, 10,∞} 9 27.6 11.7 0.0 3.5 0.48 10.0 8.2∗ 17.9 100.0 2.1

5 25 {1, 100, 200,∞} 0 4.0 4.0 100.0 1.0 0.00 0.0 0.0∗∗ 0.0 100.0 100.0
6 25 {1, 100, 200,∞} 3 11.0 9.7 36.7 1.7 0.24 1.2 2.8∗∗ 23.9 100.0 22.3
7 25 {1, 100, 200,∞} 6 18.7 11.3 0.0 2.5 0.34 4.9 5.4∗∗ 39.01 100.0 22.2
8 25 {1, 100, 200,∞} 9 27.6 11.7 0.0 3.4 0.44 10.1 10.3∗∗ 37.32 100.0 9.9

9 50 {1, 5, 10,∞} 0 2.0 2.0 100.0 1.0 0.00 0.0 0.0∗∗ 0.0 100.0 100.0
10 50 {1, 5, 10,∞} 3 7.8 9.1 46.7 1.5 0.23 1.8 3.5∗∗ 14.0 100.0 52.6
11 50 {1, 5, 10,∞} 6 15.6 11.5 3.3 2.1 0.14 7.6 11.5∗∗ 26.2 100.0 70.5
12 50 {1, 5, 10,∞} 9 25.9 11.9 0.0 3.3 0.47 12.3 15.0∗∗ 32.9 100.0 70.3

13 50 {1, 100, 200,∞} 0 2.0 2.0 100.0 1.0 0.00 0.0 0.0∗∗ 0.0 100.0 100.0
14 50 {1, 100, 200,∞} 3 7.8 9.1 46.7 1.5 0.23 1.8 4.6∗∗ 34.7 100.0 86.2
15 50 {1, 100, 200,∞} 6 15.6 11.5 3.3 2.1 0.13 7.6 15.0∗∗ 53.71 100.0 86.9
16 50 {1, 100, 200,∞} 9 25.9 11.9 0.0 3.3 0.47 12.3 19.2∗∗ 69.8 100.0 85.6

∗ significant at p < 0.05; ∗∗ significant at p < 0.0001
1 one outlier replaced with replication mean; 2 four outliers re-
placed with replication mean
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The results in Table 4.5 show that the PCS heuristic outperforms Leachman and Carmon’s

DPF in both objective function value accuracy and production plan feasibility. OFI DPF is

between 2.2 and 8.6 times greater than OFI PCS in treatment combinations with non-uniform

problem instances. The fraction of feasible production plans of the DPF, FeasDPF, can

deteriorate to 2.1 %, whereas the capacity constraints of the PCS heuristic define feasible

production plans. The column f(cons(1, υ,G, T )) presents the ratio of constraint generation

problems that are solved by the PCS heuristic within the time limit and without partitioning,

i.e., with κ = 1. The PCS heuristic is in particular effective with thin processing time

matrices (ρ = 25 %) and non-uniformity caused by 3 to 6 submatrix swaps. In the treatment

combinations 3 and 7, none of the problem instances can be solved without cutting edges

(f(cons(1, υ,G, T )) = 0 %) and 4.9 % of the edges are cut. The objective function value inac-

curacy of the PCS heuristic, OFI PCS, does not exceed 5.4 % in these treatment combinations.

The objective function value inaccuracy of the DPF, OFI DPF, is in contrast at least 19.3 %

and only up to 22.2 % of the generated production plans are feasible. Note the risk that the

accuracy of the DPF can deteriorate even further as the averaging of processing times can

produce outliers.

4.7 Conclusion

We propose a capacity constraint generation procedure and a partition-based constraint search

heuristic for the generation of low-dimensional capacity constraints of unrelated parallel

machines. Because of its computational complexity, the capacity constraint generation

procedure provides accurate capacity constraints up to a certain problem size. We propose the

aggregation of uniform elements to reduce problem size, which expands the range of application

of the procedure. The PCS heuristic trades off constraint accuracy against computation time

and can offer a solution for otherwise intractable constraint generation problems.

Our numerical results show that the number of generated capacity constraints is acceptable

for practical applications and computation times can be in the range of hours. As capacity

constraints are recalculated only when changes to the production system or the product

range occur, there is however sufficient time for using the proposed methods in practice. The

accuracy of the capacity constraints generated by the PCS heuristic is superior to the direct

product mix formulation of capacities. The objective function value deviates less from the

true optimum and the resulting production plans are feasible. The PCS heuristic performs in

particular well with thin processing time matrices, e.g., when the feasible product sets are on

average half the size or smaller than the complete set of products that can be processed by

the parallel machines. The experiments with both field data and randomly generated data

suggest that the objective function value deviates here from the true optimum by around 5 %.
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An opportunity for future research is to enhance the graph partitioning, which is an input

to the PCS heuristic. The number of weighted edge cuts used by us only approximates the

operational relevance of product-machine assignments. Defining edge weights as a function

of the size and the need for the machine capacity or defining certain edges as unbreakable

could improve the quality of the capacity constraints. Another future development could

be to combine the PCS heuristic with averaging to increase uniformity punctually and thus

avoid partitioning. This would make the aggregation of uniform elements more effective at

the cost of constraint accuracy. Clearly, also future research about algorithms that solve the

underlying geometric problems in shorter time will be of great interest.
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Chapter 5

Summary

5.1 Summary of findings

In this section, we summarize the conclusions drawn in the previous chapters and relate our

findings to the research questions formulated in Section 1.3.

Research question 1. In an engineer-to-order manufacturing environment with a rapidly

evolving product portfolio and uncertain future demand, what is the optimal product platform

design?

In Chapter 2, we explore the opportunity of designing intermediate products as product

platforms for both present and expected future customer orders. Over-designing a product

platform in the present can prevent future customer orders from triggering a full product

design cycle, which is usually the process in engineer-to-order companies. While a product

platform can reduce product design costs, it can also increase manufacturing costs since it has

to meet the feature value requirements of the most demanding of the served product variants

in every feature.

We propose a two-stage stochastic programming formulation with recourse of the tactical

product platform design problem. The first stage models product platform design decisions

in the present. The design of additional product platforms in the future, which become

necessary if first-stage designs do not cover every possible future customer order, is modeled

as a second-stage recourse action. The formulation balances platform design costs with

manufacturing costs and takes both customer orders on hand and expectations about future

customer orders explicitly into account.

83
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We apply the model to a case from the silicon wafer manufacturing industry. Single-crystal

rods of pure silicon (ingots), which are an intermediate product in silicon wafer manufacturing,

are considered as potential product platforms. Final product variants, i.e., silicon wafers, are

manufactured based on an ingot in downstream processing steps, which include ingot slicing

and various surface treatments. We compare the performance of the proposed model with

the performance of its deterministic counterpart in a designed experiment that is inspired by

problem instances found in silicon wafer manufacturing.

Our analyses show that the tactical over-design of product platforms can generate a

significant saving compared to single-stage deterministic platform design. By taking the

stochasticity of future customer orders into account, product platform design can anticipate

future requirements accordingly, and thus avoid the costly design of additional platforms

in the future. Experiments show that this is in particular effective in situation with high

design-to-manufacturing cost ratios and with small innovation steps. In addition to the

saving due to a reduced design workload, the introduction of product platforms also enables a

reduction of variability in the manufacturing system as well as a postponement of the customer

order decoupling point and hence a reduction of safety stock levels due to risk-pooling.

Research question 2. Which mid-term production planning method meets best the conflicting

objectives in wafer fabrication and how does it interact with production control?

In Chapter 3, we study the mid-term production planning problem in wafer fabrication.

Despite the uncertainty of output targets and machine availability, mid-term production

planning guides the flow of material through the complex production system of a wafer fab

and ensures high performance in service level, throughput, and cycle time. It interacts with

production control by influencing scheduling decisions at bottleneck work centers, and thus

ensures that the assignment of jobs to machines is aligned with the overall fab objectives.

We propose a novel CT-oriented mid-term production planning method as an alternative to

popular WIP-oriented mid-term planning. While WIP-oriented planning defines throughput

and WIP level targets for bottleneck work centers, CT-oriented planning defines release

quantities and cycle time targets. On the shop floor, these targets are consumed by scheduling

methods that prioritize the production lots that are most behind their target for the respective

work center. Due to this integration with scheduling, CT-oriented planning manages the cycle

time and thus the completion date of lots directly, whereas in WIP-oriented planning, cycle

time is an indirect planning result.

We apply both planning methods to a reference model of a wafer fab. Comprehensive

analyses are conducted using a rolling horizon framework that simulates the iterative process

of production planning and production control over several weeks. Both planning methods

are tested under different levels of uncertainty and we investigate their ability to meet spikes

in fab output targets at short notice.
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The results show that CT-oriented mid-term production planning outperforms WIP-

oriented planning. For a given throughput level, CT-oriented planning delivers higher service

levels and shorter cycle times. CT-oriented planning effectively accelerates lots by tightening

target cycle times and thus maintains a high service level even when output targets and

machine capacity are uncertain. The negative effect of inappropriate priority changes is limited

since opportunistic non-delay scheduling keeps throughput high. WIP-oriented planning, in

contrast, suffers from targets that stringently control the throughput of every bottleneck

and, which result in elevated WIP levels and a lack of responsiveness to demand changes.

Another advantage of CT-oriented planning is that it involves much less communication with

production control as it only shares target cycle time changes, while WIP-oriented planning

has to provide a full set of targets for all bottleneck work centers every time a new plan is

generated. This makes CT-oriented mid-term production plans easier to comprehend and

adjust by human planners and operators.

Research question 3. How can we accurately capture the capacity of parallel machines such

that the total production rates of product types are the only variables of the model?

Company-wide production planning generates a master production schedule, which defines

production targets for all facilities of the production network. While the accurate representation

of capacity in the production planning model is a prerequisite for generating feasible and

efficient plans, detailed capacity allocation decisions are beyond the scope of a typical master

production schedule. In Chapter 4, we therefore explore methods for the generation of low-

dimensional capacity constraints, which accurately model the capacity of parallel machines

and only rely on variables that model the total production rates of product types.

We propose a novel constraint generation procedure, which generates the irredundant set

of exact, low-dimensional, and linear capacity constraints for unrelated parallel machines.

This procedure is based on standard algorithms developed for convex polytopes. Since the

computational complexity of the procedure is critical, we exploit the uniformity of both

machines and products to reduce problem size. Further, we propose a heuristic constraint

generation procedure based on graph partitioning, which solves even bigger problem instances

by trading off constraint accuracy against computation time.

The proposed methods are applied to problem instances from semiconductor manufacturing.

In addition, a comprehensive designed experiment is conducted with randomly generated

problem instances that mimic real-world settings. Both the exact and the heuristic constraint

generation method are evaluated based on the accuracy and the feasibility of the resulting

capacity constraints. The results show that exact low-dimensional capacity constraints

can be calculated for realistic problem instances up to a certain size. For larger problems,

our heuristic constraint generation procedure outperforms an existing heuristic in both

accuracy and feasibility. This holds especially for problem instances that are typical for the

semiconductor industry.
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To conclude, this dissertation provides quantitative approaches to decision making problems

that are prevalent in the planning and control of semiconductor supply chains, i.e., supply

chains that are strongly affected by a fierce international competition, technological complexity,

and rapid innovation. The intense competition in the semiconductor industry incentivizes

manufacturers to improve operational efficiency, which is also the objective of tactical product

platform design, mid-term production planning, and accurate capacity modeling. The high

level of technological complexity justifies the relevance of the studied decision problems since

technological sophistication translates into expensive production systems, whose utilization

can be improved through better planning and control. At last, the high innovation rate of the

semiconductor industry adds an extra level of difficulty as it requires planning and control

to manage a source of variability that is characteristic for semiconductors. Although the

presented approaches are tailored to industry-specific cases, the proposed optimization and

simulation models are formulated generically enough to be applied to any other setting with

similar requirements. It is demonstrated how mathematical modeling and optimization can

be used by planning and control to improve key metrics, such as cost per unit, customer

lead time, and service level, through better decision making. Numerical experiments and

simulations are proven to be powerful tools for validation and providing confidence in the

benefit of the proposed changes in planning and control. Eventually, quantitative approaches

offer a path to the complete automation of decision making processes, which can lead to

further enhancements of decision quality and cost.

5.2 Future research opportunities

Future research opportunities have been outlined in the concluding sections of the previous

chapters. In this section, we expand on this more generally.

This dissertation focuses on the modeling, optimization, and simulation of planning and

control problems in semiconductor supply chains. The values of model parameters are either

derived as statistics from historical observations or based on results published in related studies.

In reality, the proper parametrization of a model is difficult because conditions are usually less

stable than in controlled experiments. In addition, it is desirable that model parametrization is

an automated process, requiring little human interaction. The ever increasing volume of data

that is collected by production monitoring and the rise of large-scale data analysis enabled

by an abundance of computing power suggest future research opportunities in the accurate

estimation of important production planning parameters. For example, CT-oriented mid-term

production relies on accurate distributional assumptions of segment cycle times, which are

affected by several factors, such as product mix, priority mix, and fab utilization. While these

distributional assumptions can be specified based on simulation results, actual production

data could help to predict cycle time distributions more accurately and thus improve the

quality of plans.
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Another research opportunity lies in the application of pricing and revenue management

techniques in the semiconductor industry. Speed matters and despite many types of semicon-

ductors being considered as commodities, there might exist niche markets, such as prototype

development, in which customers are willing to pay a premium for reduced lead times. This will

not only affect investment decisions but can also offer opportunities for revenue maximization.

For example, in production networks with an option to assign workload to contractors, capacity

allocation decisions have to be made such that revenue is maximized. Further, production

planning can provide valuable information about the marginal cost of prioritizing production

lots, which can be used in pricing decisions.

The semiconductor industry is predicted to grow as both a supplier and a customer of

IoT and data analytics technology. The collection of big data through embedded sensors,

its transmission to the cloud, and data analysis for corrective actions in real-time enable

new business models that are based on servitization. For example, semiconductor equipment

manufacturers could servitize expensive process steps in wafer fabrication to increase equipment

uptime, improve fab efficiency, and reduce the overall cost of ownership. As a supplier of IoT

components, the semiconductor industry could servitize the provision of compute and storage

hardware in data centers. This could reduce demand uncertainty and improve fab utilization

and it also offers new research opportunities in, e.g., predictive and preventive maintenance.
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Appendix A

A.1 Multifactor ANOVA

The ANOVA Tables A.1, A.2, and A.3 decompose the variability of the response variables η,

relVTSM , and relVSS , respectively, into contributions due to various factors. The contribution

of every factor is measured having removed the effects of all other factors. The P -values test the

statistical significance of each of the factors. All factors, except for demand uncertainty σD,

have a statistically significant main effect on the three response variables at the 99.0 %

confidence level as the corresponding P -values are less than 0.01.

89
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Table A.1: ANOVA for the number of second-stage orders that are served with the first-stage
platform design (η).

Source Sum of Squares Df Mean Square F -Ratio P -Value

MAIN EFFECTS
A: Fix costs FC 630.71 1 630.71 1,318.07 0.0000
B: Demand growth µD 962.35 1 962.35 2,011.12 0.0000
C: Demand uncertainty σD 0.00 1 0.00 0.01 0.9193
D: Feature value growth µFM 312.05 1 312.05 652.12 0.0000
E: Feature value variability σFM 25.84 1 25.84 54.00 0.0000
F: Feature value uncertainty σFV 768.30 1 768.30 1,605.61 0.0000

INTERACTIONS
AB 14.12 1 14.12 29.51 0.0000
AC 0.07 1 0.07 0.14 0.7109
AD 40.01 1 40.01 83.61 0.0000
AE 3.21 1 3.21 6.70 0.0096
AF 4.13 1 4.13 8.63 0.0033
BC 0.05 1 0.05 0.09 0.7580
BD 20.19 1 20.19 42.19 0.0000
BE 1.16 1 1.16 2.43 0.1187
BF 3.30 1 3.30 6.89 0.0087
CD 0.01 1 0.01 0.01 0.9056
CE 0.02 1 0.02 0.05 0.8243
CF 0.05 1 0.05 0.09 0.7580
DE 3.58 1 3.58 7.49 0.0062
DF 9.74 1 9.74 20.36 0.0000
EF 2.53 1 2.53 5.30 0.0214

RESIDUAL 1,367.59 2,858 0.48

TOTAL (CORRECTED) 4,169.01 2,879
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Table A.2: ANOVA for the relative value of two-stage modelling (relVTSM ).

Source Sum of Squares Df Mean Square F -Ratio P -Value

MAIN EFFECTS
A: Fix costs FC 1.1971 1 1.1971 3,866.86 0.0000
B: Demand growth µD 1.5707 1 1.5707 5,073.83 0.0000
C: Demand uncertainty σD 0.0000 1 0.0000 0.02 0.8853
D: Feature value growth µFM 0.4327 1 0.4327 1,397.69 0.0000
E: Feature value variability σFM 0.0854 1 0.0854 275.93 0.0000
F: Feature value uncertainty σFV 0.8792 1 0.8792 2,839.94 0.0000

INTERACTIONS
AB 0.5028 1 0.5028 1,624.26 0.0000
AC 0.0000 1 0.0000 0.00 0.9633
AD 0.0581 1 0.0581 187.66 0.0000
AE 0.0182 1 0.0182 58.75 0.0000
AF 0.1449 1 0.1449 468.10 0.0000
BC 0.0000 1 0.0000 0.02 0.9022
BD 0.1166 1 0.1166 376.68 0.0000
BE 0.0305 1 0.0305 98.66 0.0000
BF 0.2367 1 0.2367 764.70 0.0000
CD 0.0000 1 0.0000 0.00 0.9692
CE 0.0000 1 0.0000 0.00 0.9721
CF 0.0000 1 0.0000 0.00 0.9933
DE 0.0183 1 0.0183 59.27 0.0000
DF 0.0810 1 0.0810 261.74 0.0000
EF 0.0279 1 0.0279 90.05 0.0000

RESIDUAL 0.8848 2,858 0.0003

TOTAL (CORRECTED) 6.2851 2,879
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Table A.3: ANOVA for the the relative value of stochastic solution (relVSS ).

Source Sum of Squares Df Mean Square F -Ratio P -Value

MAIN EFFECTS
A: Fix costs FC 1.1312 1 1.1312 3,752.75 0.0000
B: Demand growth µD 2.0710 1 2.0710 6,870.77 0.0000
C: Demand uncertainty σD 0.0000 1 0.0000 0.02 0.8834
D: Feature value growth µFM 0.0415 1 0.0415 137.72 0.0000
E: Feature value variability σFM 0.0224 1 0.0224 74.29 0.0000
F: Feature value uncertainty σFV 0.8580 1 0.8580 2,846.53 0.0000

INTERACTIONS
AB 0.3590 1 0.3590 1,191.10 0.0000
AC 0.0000 1 0.0000 0.00 0.9613
AD 0.0573 1 0.0573 190.09 0.0000
AE 0.0018 1 0.0018 5.89 0.0153
AF 0.1367 1 0.1367 453.61 0.0000
BC 0.0000 1 0.0000 0.02 0.9020
BD 0.0510 1 0.0510 169.26 0.0000
BE 0.0019 1 0.0019 6.14 0.0132
BF 0.2249 1 0.2249 746.27 0.0000
CD 0.0000 1 0.0000 0.00 0.9819
CE 0.0000 1 0.0000 0.00 0.9972
CF 0.0000 1 0.0000 0.00 0.9954
DE 0.0074 1 0.0074 24.63 0.0000
DF 0.0959 1 0.0959 318.21 0.0000
EF 0.0280 1 0.0280 92.84 0.0000

RESIDUAL 0.8615 2,858 0.0003

TOTAL (CORRECTED) 5.9496 2,879

A.2 Mean and confidence interval of total costs by treatment

combination

The sample mean ζ of optimal total costs and the relative half-width of the approximate

95.0 % confidence interval for the true optimal total costs ζ∗ are provided for every treatment

combination in Table A.4. According to the central limit theorem, the approximate half-width

is the 0.975 critical value of the standard normal distribution z0.975 multiplied with the

unbiased estimator of the standard deviation of the sample mean
√
S2/45. S2 represents the

sample variance of ζ and 45 is the number of replications per treatment combination. The

central limit theorem can be applied because ζ is i.i.d. for every treatment combination. The

relative half-width is defined as the half-width divided by ζ. The grand mean of the relative

half-width is 1.20 %, which means that the interval ζ ± 0.012ζ covers the true optimal total

costs with 95.0 % probability.
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Table A.4: Mean total costs and the relative half-width of the 95.0 % confidence interval for
the true optimal total costs ζ∗ by treatment combination.

Treatment FC µD σD µFM σFM σFV ζ [$]
z0.975

√
S2

45

ζ
[%]

1 70,000 1,000 100 16 1.6 1.6 329,274.3 1.11
2 70,000 1,000 100 16 1.6 3.2 360,713.9 0.83
3 70,000 1,000 100 16 3.2 1.6 342,543.7 1.93
4 70,000 1,000 100 16 3.2 3.2 366,147.0 1.36
5 70,000 1,000 100 20 1.6 1.6 380,111.2 0.89
6 70,000 1,000 100 20 1.6 3.2 398,008.8 0.54
7 70,000 1,000 100 20 3.2 1.6 389,793.3 1.41
8 70,000 1,000 100 20 3.2 3.2 402,038.6 1.07
9 70,000 1,000 250 16 1.6 1.6 329,062.5 1.15
10 70,000 1,000 250 16 1.6 3.2 360,461.2 0.90
11 70,000 1,000 250 16 3.2 1.6 342,328.1 1.95
12 70,000 1,000 250 16 3.2 3.2 365,864.7 1.38
13 70,000 1,000 250 20 1.6 1.6 379,849.2 0.96
14 70,000 1,000 250 20 1.6 3.2 397,845.6 0.66
15 70,000 1,000 250 20 3.2 1.6 389,464.8 1.44
16 70,000 1,000 250 20 3.2 3.2 401,780.7 1.11
17 70,000 2,000 100 16 1.6 1.6 523,826.4 1.03
18 70,000 2,000 100 16 1.6 3.2 549,387.0 0.81
19 70,000 2,000 100 16 3.2 1.6 535,739.3 1.70
20 70,000 2,000 100 16 3.2 3.2 555,628.3 1.50
21 70,000 2,000 100 20 1.6 1.6 597,878.6 0.72
22 70,000 2,000 100 20 1.6 3.2 615,271.0 0.68
23 70,000 2,000 100 20 3.2 1.6 606,691.5 1.46
24 70,000 2,000 100 20 3.2 3.2 622,722.0 1.37
25 70,000 2,000 250 16 1.6 1.6 523,611.3 1.05
26 70,000 2,000 250 16 1.6 3.2 549,192.7 0.84
27 70,000 2,000 250 16 3.2 1.6 535,542.8 1.70
28 70,000 2,000 250 16 3.2 3.2 555,380.9 1.50
29 70,000 2,000 250 20 1.6 1.6 597,710.9 0.76
30 70,000 2,000 250 20 1.6 3.2 615,092.0 0.71
31 70,000 2,000 250 20 3.2 1.6 606,441.2 1.47
32 70,000 2,000 250 20 3.2 3.2 622,457.8 1.38
33 110,000 1,000 100 16 1.6 1.6 372,033.5 1.01
34 110,000 1,000 100 16 1.6 3.2 409,791.3 0.87
35 110,000 1,000 100 16 3.2 1.6 387,118.0 1.90
36 110,000 1,000 100 16 3.2 3.2 421,019.5 1.67
37 110,000 1,000 100 20 1.6 1.6 422,869.6 0.83
38 110,000 1,000 100 20 1.6 3.2 458,887.2 0.75
39 110,000 1,000 100 20 3.2 1.6 437,540.4 1.65
40 110,000 1,000 100 20 3.2 3.2 469,279.0 1.35
41 110,000 1,000 250 16 1.6 1.6 371,809.7 1.05
42 110,000 1,000 250 16 1.6 3.2 409,524.2 0.94
43 110,000 1,000 250 16 3.2 1.6 386,873.1 1.91
44 110,000 1,000 250 16 3.2 3.2 420,750.8 1.68
45 110,000 1,000 250 20 1.6 1.6 422,591.9 0.89
46 110,000 1,000 250 20 1.6 3.2 458,597.8 0.84
47 110,000 1,000 250 20 3.2 1.6 437,255.8 1.67
48 110,000 1,000 250 20 3.2 3.2 468,938.4 1.37
49 110,000 2,000 100 16 1.6 1.6 574,449.9 1.13
50 110,000 2,000 100 16 1.6 3.2 625,719.6 0.82
51 110,000 2,000 100 16 3.2 1.6 596,761.5 1.93
52 110,000 2,000 100 16 3.2 3.2 633,797.0 1.44
53 110,000 2,000 100 20 1.6 1.6 666,004.6 0.90
54 110,000 2,000 100 20 1.6 3.2 695,312.4 0.60
55 110,000 2,000 100 20 3.2 1.6 682,167.5 1.48
56 110,000 2,000 100 20 3.2 3.2 703,042.9 1.22
57 110,000 2,000 250 16 1.6 1.6 574,263.3 1.14
58 110,000 2,000 250 16 1.6 3.2 625,527.5 0.85
59 110,000 2,000 250 16 3.2 1.6 596,580.9 1.93
60 110,000 2,000 250 16 3.2 3.2 633,558.9 1.44
61 110,000 2,000 250 20 1.6 1.6 665,765.3 0.91
62 110,000 2,000 250 20 1.6 3.2 695,144.9 0.63
63 110,000 2,000 250 20 3.2 1.6 681,865.8 1.48
64 110,000 2,000 250 20 3.2 3.2 702,770.8 1.23

Grand mean 503,991.8 1.20
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A.3 Factor means plot

The plots on the main diagonal of the factor means plot show the mean relative value of

two-stage modelling relVTSM at every level of the factors, while the off-diagonal plots display

the mean response at every combination of two factors. For example, the plot in the upper

left corner shows the mean relVTSM for both levels of fixed costs FC . The plot below shows

the same means where the observations have been subdivided by the mean second-stage

demand µD. Level 1 and Level 2 refer to the factor levels in Table 2.1.
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Figure A.1: Factor means plot for relVTSM (* significant interaction effect at the 99.0 %
confidence level).
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A.4 Reference model

The following two-stage stochastic programming formulation is equivalent to the formulation

presented in Section 2.3.2. Given that both formulations solve the same TPPDP and the

problem is not degenerated, both formulation will provide the same optimal solution. The

difference is that this formulation relies on the modelling approach proposed by Boysen and

Scholl (2009). The assumptions and the notation introduced in Section 2.3.2 remain valid. In

addition, we define the following parameters:

T 1
rfv 1 if value v ∈ Vf is in the tolerance interval defined for feature f ∈ F of

variant r ∈ R1 and 0 otherwise.

T 2
rfvs 1 if value v ∈ Vf is in the tolerance interval defined for feature f ∈ F of

variant r ∈ R2 in scenario s ∈ S and 0 otherwise.

We also define additional variables following the notation of Boysen and Scholl:

z1pfv 1 if value v ∈ Vf of feature f ∈ F is realized in platform p ∈ P 1 and 0 otherwise.

z2pfvs 1 if value v ∈ Vf of feature f ∈ F is realized in platform p ∈ P 2 in scenario s ∈ S
and 0 otherwise.

q1rpfv 1 if variant r ∈ R1 is assigned to platform p ∈ P 1 that has value v ∈ Vf in

feature f ∈ F and 0 otherwise.

q2rpfvs 1 if variant r ∈ R2 is assigned in scenario s ∈ S to platform p ∈ P 1 ∪ P 2 that

has value v ∈ Vf in feature f ∈ F and 0 otherwise.

min
∑
r∈R1

∑
p∈P 1

∑
f∈F

∑
v∈Vf

D1
rVC fvq

1
rpfv +

∑
p∈P 1

FCy1p +
∑
s∈S

PrsQ(x1rp, z
1
pfv, q

1
rpfv, y

1
p, s) (A.1)

∑
p∈P 1

x1rp ≥ 1 ∀r ∈ R1 (A.2)

x1rp ≤ y1p ∀r ∈ R1, p ∈ P 1 (A.3)∑
v∈Vf

z1pfv = 1 ∀p ∈ P 1, f ∈ F (A.4)

q1rpfv ≥ x1rp + z1pfv − 1 ∀r ∈ R1, p ∈ P 1, f ∈ F, v ∈ Vf (A.5)

T 1
rfv ≥ q1rpfv ∀r ∈ R1, p ∈ P 1, f ∈ F, v ∈ Vf (A.6)

q1rpfv, y
1
p ∈ R≥0 (A.7)

x1rp, z
1
pfv ∈ {0, 1} (A.8)
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The recourse function is:

Q(x1rp, z
1
pfv, q

1
rpfv, y

1
p, s) =∑

f∈F

∑
v∈Vf

Cfv

∑
r∈R1

∑
p∈P 1

D2
rsq

1
rpfv +

∑
r∈R2

∑
p∈P 1∪P 2

D2
rsq

2
rpfvs

+
∑
p∈P 2

FCy2ps (A.9)

∑
p∈P 1∪P 2

x2rps ≥ 1 ∀r ∈ {r : r ∈ R2 ∧D2
rs > 0} (A.10)

x2rps ≤

{
y1p ∀r ∈ R2, p ∈ P 1

y2ps ∀r ∈ R2, p ∈ P 2
(A.11)∑

v∈Vf

z2pfvs = 1 ∀p ∈ P 2, f ∈ F (A.12)

q2rpfvs ≥

{
x2rps + z1pfv − 1 ∀r ∈ R2, p ∈ P 1, f ∈ F, v ∈ Vf
x2rps + z2pfvs − 1 ∀r ∈ R2, p ∈ P 2, f ∈ F, v ∈ Vf

(A.13)

T 2
rfvs ≥ q2rpfvs ∀r ∈ R2, p ∈ P 1 ∪ P 2, f ∈ F, v ∈ Vf (A.14)

q2rpfvs, y
2
ps ∈ R≥0 (A.15)

x2rps, z
2
pfvs ∈ {0, 1} (A.16)
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B.1 Multifactor ANOVA for γ-service level and number of

lots in system

The ANOVA Tables B.1 and B.2 decompose the variability of γ-service level and the variability

of number of lots in system (WIP + FWS ) into contributions due to various factors. The

contribution of each factor is measured having removed the effects of all other factors. The

P -values test the statistical significance of each of the factors. Since all P -values are less than

0.05, these factors have a statistically significant effect on γ-service level and the number of

lots in system at the 95.0 % confidence level.

Table B.1: ANOVA for γ-service level (all F-ratios are based on the residual mean square
error).

Source Sum of squares Degrees of freedom Mean square F -ratio P -value

MAIN EFFECTS
A:Method 3,348.54 2 1,674.27 103.12 0.0000
B:Demand uncertainty 7,076.71 2 3,538.36 217.92 0.0000
C:Supply uncertainty 960.56 1 960.56 59.16 0.0000

INTERACTIONS
AB 368.12 4 920.30 5.67 0.0005
AC 981.13 2 490.57 30.21 0.0000
BC 209.94 2 104.97 6.46 0.0026

RESIDUAL 1,233.98 76 162.37

TOTAL (CORRECTED) 14,179.00 89
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Table B.2: ANOVA for number of lots in system (all F-ratios are based on the residual mean
square error).

Source Sum of squares Degrees of freedom Mean square F -ratio P -value

MAIN EFFECTS
A:Method 9,035.52 2 4,517.76 2,253.60 0.0000
B:Demand uncertainty 13,864.90 2 6,932.44 3,458.12 0.0000
C:Supply uncertainty 26,191.50 1 26,191.50 13,065.18 0.0000

INTERACTIONS
AB 2,799.72 4 699.93 349.15 0.0000
AC 2,455.90 2 1,227.95 612.54 0.0000
BC 102.57 2 512.85 25.58 0.0000

RESIDUAL 152.36 76 200.47

TOTAL (CORRECTED) 54,602.50 89

B.2 Tukey’s HSD test for differences between means

The Tables B.3 to B.6 present treatment means that are plotted in Figure 3.6 and the result

of Tukey’s HSD test. At each level of uncertainty, we test all pairs of treatment means

for equality at an overall significance level of 5 %. The result is provided by letters on the

left-hand side next to each column of treatment means. If the same letter stands next to two

treatment means in a column, the hypothesis of equality cannot be rejected. Configurations

without machine failures and CVDi,t = 0.0 are not included in the test because the response

is not a random variable. The constant release rate method is not included in the test because

variance is much greater than for the other MTPPS methods, which violates the assumption

of homogeneity of variances.

Table B.3: Comparing treatment means of γ-service level at each level of demand uncertainty
without machine failures.

CVDi,t

0.1 0.2 0.3

CT-oriented planning a 99.7 a 95.3 a 85.6
Release planning b 94.5 b 83.8 b 77.0
WIP-oriented planning c 96.4 b 86.8 b 74.0

Table B.4: Comparing treatment means of γ-service level at each level of demand uncertainty
with machine failures.

CVDi,t

0.0 0.1 0.2 0.3

CT-oriented planning a 100.0 a 99.8 a 95.3 a 80.4
Release planning a 99.5 b 94.8 b 83.9 a 70.5
WIP-oriented planning b 94.0 c 86.8 c 68.4 b 54.3
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Table B.5: Comparing treatment means of WIP + FWS at each level of demand uncertainty
without machine failures.

CVDi,t

0.1 0.2 0.3

CT-oriented planning b 216.8 b 231.9 b 255.3
Release planning c 203.2 c 216.1 c 236.7
WIP-oriented planning a 246.1 a 252.3 a 257.4

Table B.6: Comparing treatment means of WIP + FWS at each level of demand uncertainty
with machine failures.

CVDi,t

0.0 0.1 0.2 0.3

CT-oriented planning b 255.2 b 259.3 a 272.8 a 302.4
Release planning c 234.9 c 238.5 b 254.0 b 281.3
WIP-oriented planning a 259.9 a 265.6 a 271.8 c 277.1
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Appendix C

C.1 Proof of Proposition 1

We observe:

1. For j ∈ J\J(i), the inequalities (4.18) to (4.20) imply xij = 0 and there does not exist

any rij in Ri.

2. For j ∈ J(i), we have developed the set of |J(i)|+1 extreme points Ri ∪ {0}, which are

affinely independent and therefore define a simplex.

3. This simplex has |J(i)|+1 vertices, which can also be obtained by imposing that |J(i)|
out of the |J(i)|+1 inequalities (4.18) to (4.20) are satisfied at equality. By direct

calculation, this yields the points in Ri ∪ {0}.

This proves that conv(Ri ∪ {0}) = ∩H(Pi) with ∩H(Pi) representing the set of feasible xi

subject to (4.18) to (4.20). For more information on convex polytopes see, e.g., Grünbaum

(2003) and Ziegler (2007).
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C.2 Experiment with randomly generated data

Table C.1: Uniform problem instance with ρ = 25 % and pij ∈ {1, 100, 200,∞}.

Machine i
pij 1 2 3 4 5 6 7 8 9 10 11 12

P
ro

d
u
ct
j

1 1 ∞ ∞ ∞ 100 ∞ ∞ ∞ 200 ∞ ∞ ∞
...

...
...

...
...

...
...

...
...

...
...

...
...

125 1 ∞ ∞ ∞ 100 ∞ ∞ ∞ 200 ∞ ∞ ∞
126 ∞ ∞ ∞ 100 ∞ ∞ ∞ 200 ∞ ∞ ∞ 1

...
...

...
...

...
...

...
...

...
...

...
...

...
250 ∞ ∞ ∞ 100 ∞ ∞ ∞ 200 ∞ ∞ ∞ 1
251 ∞ ∞ 100 ∞ ∞ ∞ 200 ∞ ∞ ∞ 1 ∞

...
...

...
...

...
...

...
...

...
...

...
...

...
375 ∞ ∞ 100 ∞ ∞ ∞ 200 ∞ ∞ ∞ 1 ∞
376 ∞ 100 ∞ ∞ ∞ 200 ∞ ∞ ∞ 1 ∞ ∞

...
...

...
...

...
...

...
...

...
...

...
...

...
500 ∞ 100 ∞ ∞ ∞ 200 ∞ ∞ ∞ 1 ∞ ∞

Table C.2: Problem instance with ρ = 50 %, pij ∈ {1, 5, 10,∞}, and a swapped pair of
randomly selected 25×3-submatrices (marked by dashed rectangles).

Machine i
pij 1 2 3 4 5 6 7 8 9 10 11 12

P
ro

d
u
ct
j

1 1 ∞ 5 ∞ 10 ∞ 1 ∞ 5 ∞ 10 ∞
...

...
...

...
...

...
...

...
...

...
...

...
...

249 1 ∞ 5 ∞ 10 ∞ 1 ∞ 5 ∞ 10 ∞
250 1 ∞ 1 ∞ 10 ∞ 1 ∞ 5 ∞ 10 ∞
251 ∞ ∞ 1 ∞ ∞ 10 ∞ 1 ∞ 5 ∞ 10

...
...

...
...

...
...

...
...

...
...

...
...

...
274 ∞ ∞ 1 ∞ ∞ 10 ∞ 1 ∞ 5 ∞ 10
275 ∞ 1 ∞ 5 ∞ 10 ∞ 1 ∞ 5 ∞ 10

...
...

...
...

...
...

...
...

...
...

...
...

...
474 ∞ 1 ∞ 5 ∞ 10 ∞ 1 ∞ 5 ∞ 10
475 ∞ 1 ∞ 5 ∞ 10 ∞ 5 ∞ 5 ∞ 10
476 ∞ 1 ∞ 5 ∞ 10 1 ∞ 5 5 ∞ 10

...
...

...
...

...
...

...
...

...
...

...
...

...
499 ∞ 1 ∞ 5 ∞ 10 1 ∞ 5 5 ∞ 10
500 ∞ 1 ∞ 5 ∞ 10 ∞ 1 ∞ 5 ∞ 10



Table C.3: ANOVA for OFI PCS (all F-ratios are based on the residual mean square error).

Source Sum of squares Df Mean square F -ratio P -value

MAIN EFFECTS
A: Constraint generation method 9.69 1 9.69 450.84 0.0000
B: ρ 1.73 1 1.73 80.69 0.0000
C: Range of pij 2.78 1 2.78 129.10 0.0000
D: Number of swaps 2.52 2 1.26 58.50 0.0000

INTERACTIONS
AB 0.27 1 0.27 12.73 0.0004
AC 1.92 1 1.92 89.52 0.0000
AD 0.27 2 0.13 6.23 0.0021
BC 0.19 1 0.19 8.72 0.0031
BD 0.42 2 0.21 9.77 0.0001
CD 0.15 2 0.08 3.53 0.0297

RESIDUAL 15.16 705 0.02

TOTAL (CORRECTED) 35.10 719
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