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Abstract

We study the theoretical properties of the model comparison test, introduced by Clarke in

[6]. First, we show that the proposed test statistic is not Binomial distributed, contrary to

what has originally been stated. Second, we propose a corrected test statistic and derive its

asymptotic Normal distribution under some regularity assumptions. Further, we propose

two estimators for the asymptotic variance of the new test statistic. In a Monte Carlo

simulation study, we verify the above distributional approximation and investigate the

empirical level and power of old and new Clarke’s test statistics.



Zusammenfassung

Wir untersuchen die mathematischen Eigenschaften eines statistischen Tests zum Mod-

ellvergleich, der 2007 von Clarke in [6] vorgestellt wurde. Zuerst zeigen wir, dass die

von Clarke vorgeschlagene Teststatistik nicht binomialverteilt ist, im Gegensatz zur Ver-

mutung in [6]. Alternativ schlagen wir eine korrigierte Teststatistik vor und leiten ihre

asymptotische Normalverteilung unter einigen Regularitätsannahmen her. Des Weiteren

werden zwei Schätzer der asymptotischen Varianz dieser Teststatistik vorgestellt. In einer

Monte-Carlo Simulationsstudie verifizieren wir die Verteilungsapproximation und unter-

suchen das Signifikanzniveau sowie die Trennschärfe des vorgeschlagenen Tests.
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Chapter 1

Introduction

In statistics, independent realizations of a random vector X are often given. For many

applications, it is crucial to deduce a suitable distributional approximation of the random

vector X, based on the given observations. The maximum likelihood approach requires the

choice of an appropriate density function for X. Usually, several candidate densities are

available. Among these candidates, the density function forX with the best approximation

should be selected. For this purpose, several approaches for density comparisons have been

introduced in the past.

The most famous density comparison criteria are the AIC and the BIC proposed by Akaike

[1] and Schwarz [16], respectively. They are based on the Kullback-Leibler Information

Criterion (KLIC) [11], which measures the pseudo-distance between a proposed density

and the true density ofX. Both criteria penalize the negative log-likelihood of the proposed

density proportional to the number of estimated parameters. The model with the lowest

AIC or BIC is selected. However, neither approach does provide any information about

the statistical significance of this choice.

This drawback of the AIC and BIC can be mitigated by the test for model comparison in-

troduced by Vuong in [20], which is also based on the KLIC. Vuong derived the asymptotic

distribution of the log-likelihood ratio of two competing densities, whose parameters are

estimated. Based on this result, it is possible to test whether two competing densities are

equally approximating the unknown density of X. Vuong’s test is applicable for nested

and non-nested model comparisons, meaning that one competing family is a subset of

the other or that the competing densities do not coincide, respectively. Vuong’s test has

been generalized by Chen and Fan [5] for parametric copula density comparisons based

on pseudo observations.

In [6], Clarke combines the ideas of Vuong’s test and the paired sign test. He proposed
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a test for non-nested model selection based on the median of the log-likelihood ratio of

two competing density families. The test statistic simply counts the number of positive

likelihood ratios greater than 1 and is claimed to be Binomial distributed. Clarke’s test is

widely applicable, since the median of a continuous distribution always exists. However,

his paper lacks mathematical formalism.

In this master thesis, we provide a mathematical framework for Clarke’s test. We intro-

duce a rigorous mathematical formalism and present two examples of density comparisons

satisfying Clarke’s null hypothesis. The examples illustrate that Clarke’s test statistic is

not (asymptotically) Binomial distributed. Moreover, we prove that the Binomial distri-

bution is not even a viable asymptotic approximation of the distribution of Clarke’s test

statistic.

Our main contribution is the derivation of the correct asymptotic variance of Clarke’s

test statistic. Using techniques from empirical process theory, we show that the properly

normalized Clarke’s test statistic is asymptotically Normal distributed. Since the derived

asymptotic variance is not available in closed form, we propose a weakly consistent esti-

mator. Additionally, we show the bootstrap consistency of an adjusted statistic. Based on

both variance estimates, we introduce two test statistics for non-nested model selection.

Furthermore, we conduct a simulation study to asses the finite sample behavior of the

proposed test statistics and compare our results with those obtained by Vuong.

The master thesis is organized as follows. In Chapter 2, we recall important definitions

and results from functional analysis, measure theory and probability theory. On the basis

of these results, we introduce weak convergence and empirical process theory in Chap-

ter 3. Chapter 4 is split into two subsections. In Subsection 4.1, we shortly motivate

Clarke’s test statistic and introduce several important notions. To specify the mathe-

matical framework, we formally introduce Clarke’s test in Subsection 4.2. In Subsection

4.3, we prove that Clarke’s test statistic B̂n is in general not Binomial distributed. In

Chapter 5, we prove the asymptotic Normality of a suitably normalized Clarke’s test

statistic n−1/2(B̂n − n/2) under various assumptions on the involved families of densities

and estimators. Moreover, we propose two approaches to estimate the asymptotic variance

of the statistic n−1/2(B̂n − n/2). One estimator is based on numerical differentiation in

combination with the usual sample variance estimation of a particular random variable,

whereas the other estimator is based on a bootstrap approach. Combining these results,

we are able to define two asymptotically standard Normal distributed test statistics for

non-nested model selection. In Chapter 6, we compare the modified Clarke’s test statistic

introduced in this master thesis with the test proposed by Vuong in [20]. In Chapter 7,

we calculate all relevant estimators and theoretical quantities introduced in Chapter 5
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for two examples of competing strictly non-nested density families. On the basis of these

calculations we conduct a simulation study to investigate the finite sample behavior of

the estimators proposed in Chapter 5 and the test statistics given in (5.5) and (7.3). In

Chapter 8, we give a summary of our results and discuss topics for future research. Most

of the proofs can be found in Appendix A.



Chapter 2

Mathematical Preliminaries

In this chapter, we recall some important definitions and results from functional analysis,

measure theory and probability theory, since they are crucial to understand the theoretical

framework of empirical process theory. Most of the results in the probability theory part

can be generalized to statements with outer probability, which will be presented in Chapter

3. Some theorems are reformulated to suit the context of this master thesis.

2.1 Preliminaries From Functional Analysis

The results and definitions from functional analysis are the basis to understand empirical

process theory and are stated without comment. This section is based on [15].

Definition 2.1.1

A collection of subset τ of some set Ω is a topology if the following is true:

1. ∅ ∈ τ and Ω ∈ τ ;

2. If for all (Ai)1≤i≤n ∈ τ , then ∩1≤i≤nAi ∈ τ for all n ∈ N;

3. If (Ai)i∈I ∈ τ for some index set I, then ∪i∈IAi ∈ τ .

The sets in τ are called the open sets and the tuple (Ω, τ) is called a topological space.

Definition 2.1.2

A function f : (Ω1, τ1)→ (Ω2, τ2) is continuous if for every A ∈ τ2 we have f−1(A) ∈ τ1.

Definition 2.1.3

The complement of a set A is defined as A{ := Ω \A. The closure of a set A is defined as

A := ∩A⊆B;B{∈τB and the interior of a set is defined as Å := ∪B⊆A;B∈τB.
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Definition 2.1.4

A map ρ : Ω× Ω→ [0,∞) is called a semi-metric if

1. ρ(x, y) = ρ(y, x),

2. ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

Additionally, if ρ(x, y) = 0 is equivalent to x = y, ρ is called a metric. The tuple (Ω, ρ) is

called a (semi-)metric space.

Lemma 2.1.5

Every semimetric on Ω induces a topology τ . τ is defined as the smallest topology contain-

ing the collection of sets {Br(x) | r ∈ Q;x ∈ Ω}, where Br(x) := {y ∈ Ω | ρ(x, y) < r}.

Remark 1

Every semimetric is a metric on the space of equivalence classes of Ω. A point x is equiv-

alent to a point y if ρ(x, y) = 0. Therefore, we can treat every semimetric space as metric

space defined on the equivalence classes of Ω.

Definition 2.1.6

A topological space (Ω, τ) is separable if there exists a countable set A ⊆ Ω with A = Ω.

Lemma 2.1.7

Let T be an arbitrary uncountable set. The space l∞(T ) := {f | f : T → R; supt∈T |f(t)| <
∞} equipped with the norm ‖f‖∞ := supt∈T |f(t)| is a non-separable Banach space.

Definition 2.1.8

A set K ⊆ Ω is compact if every open cover of K has a finite subcover. A set K ⊂ Ω is

σ-compact if K is the countable union of compact sets.

Lemma 2.1.9

A σ-compact set in a metric space is separable.

Definition 2.1.10

A set K ⊂ (Ω, ρ) is totally bounded if there exist finitely many ρ-balls covering K.

Definition 2.1.11

Consider the space (l∞(T ), ‖ · ‖∞), where (T, ρ) is a semimetric space. The subspace of

l∞(T ) containing all functions f : T → R satisfying

lim
δ→0

sup
ρ(s,t)<δ

|f(s)− f(t)| = 0

is called the space of uniformly continuous functions w.r.t. ρ and is denoted as UC(T, ρ).
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Theorem 2.1.12

The closure of a set K ∈ (l∞(T ), ‖ · ‖∞) is σ-compact iff K ⊂ UC(T, ρ) for some semi-

metric ρ making T totally bounded.

2.2 Preliminaries From Measure Theory

In this section, we recall some important notions from measure theory, which will be used

frequently in Chapter 3. The results are based on [7] as well as on [15] and are stated

without comment.

Definition 2.2.1

A collection of sets A ⊂ Ω is called a sigma algebra if it satisfies the following properties:

1. Ω ∈ A;

2. If A ∈ A then A{ ∈ A;

3. If (Ai)i∈N ∈ A then ∪i∈NAi ∈ A.

The tuple (Ω,A) is called a measurable space.

Remark 2

Every topological space induces a measurable space by choosing A to be equal to the smallest

sigma-algebra containing τ .

Definition 2.2.2

Let (Ω, τ) denote a topological space. The Borel sigma-algebra B(Ω) on Ω is defined as the

smallest sigma-algebra on Ω containing τ .

Definition 2.2.3

Let (Ω1,A1) denote a measurable space and (Ω2, τ) denote a topological space. A function

f : Ω1 → Ω2 is called Borel-measurable if f−1(A2) ∈ A1 for every A2 ∈ τ.

Remark 3

By the definition of the Borel sigma-algebra on a topological space (Ω, τ), it is obvious

that the Borel sigma-algebra is the smallest sigma-algebra making all functions in the set

Cb(Ω) := {f | f : Ω→ R; f is bounded and continuous} measurable.

Definition 2.2.4

Let (Ω,A) be a measurable space. A map µ : A → [0,∞] is called a measure if it satisfies

the following properties
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1. µ(∅) = 0;

2. If (Ai)i∈N are disjoint sets µ(∪i∈NAi) =
∑∞

i=1 µ(Ai).

Definition 2.2.5

Let µ denote a measure on the measurable space (Ω,A). The triplet (Ω,A, µ) is called a

measure space. If µ(Ω) = 1, (Ω,A, µ) is called a probability space.

Definition 2.2.6

For any Borel-measurable function f : (Ω,A, µ)→ R ∪ {±∞}, we define∫
fdµ =

∫
max{f, 0}dµ−

∫
max{−f, 0}dµ

if
∫

max{f, 0}dµ <∞ or
∫

max{−f, 0}dµ <∞.

Theorem 2.2.7

There exists a set A ⊂ [0, 1] which is not Borel-measurable.

2.3 Preliminaries From Probability Theory

In this section, we recall some important notions from probability theory. This section is

based on [7].

Definition 2.3.1

Let (Ω,A, P ) denote a probability space and (Ω̃, ρ) denote a semi-metric space. A map

X : (Ω,A, P ) → (Ω̃, ρ) a called a random variable if it is measurable w.r.t. the Borel

sigma-algebra on Ω̃ generated by ρ.

Remark 4

Note that a random variable X induces a probability measure PX on Ω̃ by defining PX(A) =

P (X ∈ A) for any set A in the Borel sigma-algebra on Ω̃. In abuse of the notation, we

will sometimes use P and PX interchangeably, since we are usually interested in PX only

and do not care about the underlying probability space.

Now, we present three modes of convergence of random variables, namely almost sure

convergence, convergence in probability and convergence in distribution. We start with

almost sure convergence, which is defined in the following definition.

Definition 2.3.2

A sequence of random variables (Xi)i∈N converges P -almost surely to a random variable

X, denoted as Xi
a.s.→ X, if

P
(

lim
i→∞

ρ(Xi, X) = 0
)

= 1.
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The P in P -almost surely is usually suppressed if the underlying probability measure is

known from the context. Almost sure convergence is the strongest of the three modes of

convergence introduced in this chapter. It implies convergence in probability, defined in

the next definition.

Definition 2.3.3

A sequence of random variables (Xi)i∈N converges in P -probability to a random variable

X, denoted as Xi
P→ X, if for all ε > 0 :

lim
i→∞

P (ρ(Xi, X) > ε) = 0.

Again, the P in P -probability is usually suppressed if the underlying probability measure

is known from the context. Convergence in probability implies convergence in distribution,

which is the weakest mode of convergence introduced in this thesis.

Definition 2.3.4

A sequence of random variables (Xi)i∈N converges in distribution to a random variable X,

denoted as Xi
d→ X, if for all f ∈ Cb(Ω̃) := {f : Ω̃→ R; f is bounded and continuous} :

lim
i→∞

E [f(Xi)] = E [f(X)] .

As it is not easy to check the condition E [f(Xi)] → E [f(X)] for arbitrary random vari-

ables (Xi)i∈N and X, it is useful to have equivalent conditions to verify convergence in

distribution. The following theorem is known as the Portmanteau-Theorem and states

several equivalent conditions for convergence in distribution.

Theorem 2.3.5

The following statements are equivalent:

1. Xi
d→ X

2. For every open set G ⊆ Ω̃ : lim infi→∞ P (Xi ∈ G) ≥ P (X ∈ G)

3. For every closed set F ⊆ Ω̃ : lim supi→∞ P (Xi ∈ F ) ≤ P (X ∈ F )

4. For every Borel-measurable set B ⊆ Ω̃ with P
(
X ∈ B \ B̊

)
= 0 :

limi→∞ P (Xi ∈ B) = P (X ∈ B) .

If Ω̃ ⊆ Rd, the following condition is equivalent to convergence in distribution.

5. For any continuity point c of the distribution function of X : limi→∞ P (Xi ≤ c) =

P (X ≤ c).
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We previously mentioned that the three introduced modes of convergence are related. The

following theorem summarizes these relations and provides other important properties of

the three modes of convergence.

Theorem 2.3.6

The following statements are true:

1. If Xi
a.s.→ X, then Xi

P→ X.

2. If Xi
P→ X, then Xi

d→ X.

3. If Xi
d→ a, where a is a constant real number, then Xi

P→ a.

4. If Xi
P→ X, Yi

P→ Y and Zi
P→ Z, then XiYi + Zi

P→ XY + Z.

Remark 5

Note that, in general, we do not have a similar statements as 4. of Theorem 2.3.6 for

convergence in distribution. To see this, assume that X is a non-constant and 0-symmetric

random variable taking values in R. Then the distribution of X and −X are identical, i.e.

E [f(X)] = E [f(−X)] for all f ∈ Cb(R). Define Xi := X and Yi := −X and observe that

Xi
d→ X as well as Yi

d→ X, but Xi + Yi = 0
d

6→ 2X. However, one can show that in the

case of independent sequences, statement 4. in Theorem 2.3.6 is valid with
P→ replaced by

d→.

The following theorem is known as Slutsky’s Lemma and will be important in later ap-

plications.

Theorem 2.3.7

Let (Xi)i∈N, (Yi)i∈N and (Zi)i∈N denote sequences of random variables with Xi
d→ X, Yi

P→
a and Zi

P→ b, where a and b are constant real numbers. Then

YiXi + Zi
d→ aX + b.

The next result, known as the Glivenko-Cantelli Theorem, is presented because one of

the main motivations behind empirical process theory is to find generalizations of this

statement.

Theorem 2.3.8

Let (Xi)i∈N be independent and identically distributed (i.i.d.) random variables in Rd with

distribution function F . Then

lim
n→∞

sup
t∈R

∣∣∣F (t)− 1

n

n∑
i=1

1{Xi≤t}

∣∣∣ = 0 almost surely.
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Having the Glivenko-Cantelli Theorem at hand, one can ask the question whether the rate

of convergence of n−1
∑n

i=1 1{Xi≤·} to F (·) is uniform in l∞(Rd). In Chapter 3, we present

the answer to this question, known as Donsker’s Theorem. It tells us that the uniform rate

of convergence is
√
n. Another main motivation of empirical process theory is to provide

general conditions implying the rate of convergence in a generalized Glivenko-Cantelli

Theorem to be uniform. To understand the arising limit objects, we need to introduce a

Brownian motion and Gaussian processes, which are stochastic processes defined on some

probability space.

Definition 2.3.9

Let T be an arbitrary set and Xt : (Ω,A, P ) → (Ω̃, ρ) be Borel-measurable for all t ∈ T .

The collection of random variables (Xt)t∈T is called a stochastic process indexed by T .

Definition 2.3.10

A Brownian motion B is a stochastic process B(t)t∈[0,∞) defined on a probability space

(Ω,A, P ) such that the following is true:

1. B(0) = 0 almost surely,

2. B : [0,∞)→ R is continuous almost surely,

3. For 0 ≤ t0 < ... < tn: The increments (B(tn)−B(tn−1)) , ..., (B(t1)−B(t0)) are

independent and B(ti)−B(ti−1) is Normal distributed with mean zero and variance

(ti − ti−1).

A Brownian motion belongs to the class of Gaussian processes, defined in the next defi-

nition.

Definition 2.3.11

A Gaussian process (G(t))t∈[0,∞) is a stochastic process such that for any (ti)1≤ı≤n ∈ [0,∞),

the vector (G(t1), ..., G(tn)) has a multivariate Normal distribution.

The next theorem collects some useful properties of Brownian motion, which are important

to understand the limit objects of empirical process theory.

Theorem 2.3.12

Let At denote the smallest sigma-algebra such that B(s)s≤t is measurable on (Ω,At). Then

B(t) is adapted to the filtration (At)t∈[0,∞) and the following is true

1. B(t) is a martingale w.r.t.
(

Ω, (At)t∈[0,∞) , P
)

.

2. B(t) is a Gaussian process with covariance function Cov(B(s), B(t)) = min{s, t}.
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3. For t ∈ [0, 1] : G(t) := B(t) − tB(1) is a continuous, mean zero Gaussian process

with covariance function Cov(G(s),G(t)) = min{s, t} − st. G is called a Brownian

bridge on [0, 1]

The last important notion needed to introduce empirical process theory is given in the

following definition.

Definition 2.3.13

A probability measure P is tight if for every ε > 0 there exists a compact set K ⊆ Ω such

that P (K) ≥ 1− ε.

Remark 6

From the definition of tight laws, we deduce that every tight P resides in a sigma compact

set K̃ with probability 1.

In Chapter 3, we will see that many limit laws on l∞(T ) are tight. A tight law on l∞(T )

resides in the set UC(T, ρ) with probability 1 for some semimetric ρ making T totally

bounded, by Theorem 2.1.12. Therefore, many of the limit laws in Chapter 3 will possess

certain continuity properties.



Chapter 3

Empirical Process Theory

3.1 Motivation

Consider i.i.d. random variables (Xi)i∈N distributed according to a distribution function F .

The empirical distribution function of (Xi)1≤i≤n is defined as Fn(t) := n−1
∑n

i=1 1{Xi≤t}.

The functions Fn and F can be viewed as functions in l∞(R). By the Glivenko-Cantelli

Theorem, Theorem 2.3.8, the function Fn almost surely converges to the function F in

the space (l∞(R), ‖ · ‖∞). This is a uniform strong law of large numbers for the random

variables Fn(t)t∈R. A natural question to ask is whether there also a uniform central limit

theorem for the random variables Fn(t)t∈R? Mathematically, we can phrase the question

as follows: Does the process Gn(·) :=
√
n (Fn(·)− F (·)) converge in distribution to some

Gaussian process G in l∞(R)?

The answer to this question is ”yes” and is given by empirical process theory. However,

we have to pay a price for considering Fn as a function in the space l∞(R) equipped with

the norm ‖ · ‖∞. The problem arises from the following example:

Consider (Xi)i∈N as i.i.d. random variables on the product space
(
[0, 1]N,B[0, 1]N, λλ[0, 1]N

)
,

where λλ[0, 1] denotes the Lebesgue measure on [0, 1]. In this case, we can view the resulting

process Fn as a map in (l∞([0, 1]), ‖ · ‖∞). Now, choose a set A ⊂ [0, 1] which is not Borel-

measurable (such a set exists by Theorem 2.2.7) and consider the set C := {1{a≤·} | a ∈
A} ⊂ l∞([0, 1]). Note that C is a closed set in l∞([0, 1]). To see this, choose an arbitrary

f ∈ C{ and observe that every function in C only takes values in {0, 1}. If f does not

exclusively take values in {0, 1}, there exists t ∈ [0, 1] with f(t) = y 6∈ {0, 1}. Choosing

r = min{|y|/2, (|1 − y|)/2}, we get that Br(f) ⊂ C{, because for all g ∈ Br(f), we have

g(t) 6∈ {0, 1}. If f only takes values in {0, 1}, we can deduce that ‖f − 1{a≤·}‖∞ = 1,

since |f(t) − 1{a≤t}| ∈ {0, 1} for any t ∈ [0, 1]. Therefore, B 1
2
(f) ⊂ C{. Combining the
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arguments, we get that C{ is open in l∞([0, 1]). Since every closed set in l∞([0, 1]) is Borel-

measurable, C is a Borel-measurable set. Furthermore, the set C̃ := {f − F | f ∈ C} is a

Borel-measurable set since the translation of a closed set is closed.

To prove that the process Gn(·) :=
√
n (Fn(·)− F (·)) converges in distribution to some

Gaussian process G in l∞([0, 1]), we need to verify one of the four equivalent conditions

in Theorem 2.3.5. However, to be able to formulate any of these conditions, it is required

that the map

G1 : ([0, 1],B[0, 1], λλ[0, 1])→ (l∞[0, 1], ‖ · ‖∞) ; ω 7→ 1{ω≤·} − F (·)

is Borel-measurable. Unfortunately,

G−1
1 (C̃) = {ω | 1{ω≤·} ∈ C} = A 6∈ B[0, 1],

thus G1 is not Borel-measurable. This lack of measurability persists for any fixed n ∈ N.

Therefore, we are not able to formulate any of the conditions of Theorem 2.3.5.

There are two possible solutions to this problem. The first solution is to abandon the

metric ‖ · ‖∞ and to reduce the function space l∞(R) to the space of Càdlàg functions

on R, equipped with the Skorokhod metric. The Skorokhod metric is a weaker metric

than the metric induced by ‖ · ‖∞. This implies that the Borel sigma-algebra on l∞(R)

contains fewer sets and that Gn is measurable. In this particular setting, the definition

of convergence in distribution is well defined and one can prove a functional central limit

theorem, which is known as Donsker’s Theorem.

Theorem 3.1.1

Let Fn denote the empirical distribution function of a sequence of i.i.d. random variables

(Xi)i∈N with distribution function F . Then,

√
n (Fn(·)− F (·)) d→ G

in the space of Càdlàg functions on R, equipped with the Skorokhod metric. G is a Gaussian

process with covariance function Cov (G(s),G(t)) = min{F (s), F (t)}−F (s)F (t) and can

be written as G(t) = G(F (t)), where G is a Brownian Bridge on [0, 1].

It turns out that this approach is useful in the case of empirical distribution functions,

but does not allow for much greater generality.

The second solution to the problem described above allows us to keep the metric ‖ · ‖∞ at

the cost of abandoning the measurability of the process Gn. As long as the limit process G
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is Borel-measurable, one can replace the expectations in Definition 2.3.4 by a more general

construct, which handles non-measurable quantities. It turns out that this approach allows

us to define a useful notion of convergence in distribution in l∞(T ), from now on referred

to as weak convergence. This approach is known as empirical process theory and will be

introduced in the following. We start by introducing outer probability, which is the basis

of the new definition of convergence in distribution, introduced in Chapter 3.3. Chapter

3.4 is a collection of some important theorems from empirical process theory, focusing on

results used in Chapters 4-7. Most of the following is based on [19] Chapters 1-2 and [10]

Chapters 6-8.

3.2 Outer Probability

Consider an arbitrary, not necessarily Borel-measurable subset A of [0, 1]. What could be

an appropriate ”volume” of this set? One idea is to take the smallest Borel-measurable

set A∗ such that A ⊆ A∗ and assign the measure of A∗ to A. Note that this is a well

defined procedure, since such a set A∗ exists by Corollary 3.2.2 below. An equally valid

approach is to assign the measure of largest Borel-measurable set A∗ ⊆ A to A, which

is also well defined by Corollary 3.2.2. If A itself is Borel-measurable, both approaches

yield the same result. In empirical process theory, we usually deal with sequences of non-

Borel-measurable quantities and we can exploit the just presented ideas. Luckily, the limit

process is usually measurable and it turns out that for large n the empirical process is

”almost” measurable. A rigorous formulation of both approaches is given in the following.

Lemma 3.2.1

Consider an arbitrary map T : (Ω,A, P )→ R∪{±∞} =: R. There exist measurable maps

T ∗ and T∗ with the following properties:

1. T ∗ ≥ T and T∗ ≤ T ;

2. For every measurable U ≥ T almost surely, we have T ∗ ≤ U almost surely;

3. For every measurable U ≤ T almost surely, we have T∗ ≥ U almost surely.

T ∗ is called minimal measurable majorant and T∗ is called maximal measurable minorant

of T .

Note that a similar result also applies to arbitrary subsets of Ω.

Corollary 3.2.2

Let A be an arbitrary subset of Ω. Then there exist sets A∗ and A∗ ∈ A such that
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1. A ⊆ A∗ and A∗ ⊆ A;

2. For all measurable B with A ⊆ B, we have P (A∗) ≤ P (B);

3. For all measurable B with B ⊆ A, we have P (A∗) ≥ P (B).

P (A∗) =: P ∗(A) is called outer probability of A and P (A∗) =: P∗(A) is called inner

probability of A.

Having these tools at hand, we can define “expectation” for non-measurable quantities in

a meaningful way.

Definition 3.2.3

Consider an arbitrary map T : (Ω,A, P )→ R. We define the outer expectation of T as

E∗ [T ] := inf
{
E [U ] | U ≥ T ; E [U ] exists

}
(3.1)

and the inner expectation of T as

E∗ [T ] := sup
{
E [U ] | U ≤ T ; E [U ] exists

}
, (3.2)

where inf ∅ :=∞ and sup ∅ := −∞.

If T is measurable the inner and outer expectation of T are both equal to E[T ], provided

E[T ] exists. The following relationships hold for the minimal measurable majorant and

the maximal measurable minorant of an arbitrary map T .

Lemma 3.2.4

For any subset A ⊆ Ω and an arbitrary map T : (Ω,A, P )→ R, we have

1. If E [T ∗] exists, E∗ [T ] = E [T ∗].

2. If E [T∗] exists, E∗ [T ] = E [T∗].

3. P (A∗) = E∗ [1A] = P ∗(A) and P (A∗) = E∗ [1A] = P∗(A).

Now, we specify the notion of asymptotic measurability. In Chapter 3.3, we will see that

many weakly converging sequences are ”almost” measurable in this sense.

Definition 3.2.5

Let (D, d) be a metric space. A sequence of maps (Tn)n∈N : (Ω,A, P ) → (D, d) is asymp-

totically measurable if for all f ∈ Cb(D) :

lim
n→∞

E∗ [f(Tn)]− E∗ [f(Tn)] = 0.
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As already mentioned in Chapter 2, tightness of the limit process is often related to certain

continuity properties. In fact, the tightness of the limit process can be deduced from the

asymptotic tightness of the converging sequence, which is defined below.

Definition 3.2.6

Let (D, d) be a metric space. A sequence of maps (Tn)n∈N : (Ω,A, P ) → (D, d)

is asymptotically tight if for every ε > 0 there exists a compact set K such that

lim infn→∞ P? (Tn ∈ G) ≥ 1− ε for every open G ⊃ K.

Similar to measurable maps, we have a version of Chebyshev’s inequality for outer prob-

ability.

Lemma 3.2.7

Let φ : [0,∞) → [0,∞) be convex, non-decreasing and strictly positive on (0,∞). For

an arbitrary map T : (Ω,A, P ) → R we have the following outer probability version of

Chebyshev’s inequality

P ∗ (|T | > a) ≤ E∗ [φ(T )]

φ(a)
.

Moreover, there is a version of the Dominated Convergence Theorem.

Lemma 3.2.8

Let (Tn)n∈N, T, S : (Ω,A, P ) → R be a arbitrary maps. If |Tn − T |∗
n→∞→ 0 almost surely

and |Tn| ≤ S for all n ∈ N with E∗ [S] < ∞, the following version of the Dominated

Convergence Theorem holds

lim
n→∞

E∗ [Tn] = E∗ [T ] .

Since we frequently encounter random variables defined on product spaces, it is

useful to have a version of Fubinis theorem for outer expectation. First, we have

to clarify how repeated inner and outer expectations are defined. Consider T :

(Ω1 × Ω2,A1 ⊗A2, P1 ⊗ P2) → R. For fixed ω1, define E∗2[T ] as the outer expectation

of the random variable T (ω1, ·) on Ω2. Now, E∗2[T ] is a map on Ω1 and we define

E∗1 [E∗2 [T ]] =: E∗1E∗2 [T ] as the outer expectation of the map E∗2[T ] on Ω1. Repeated in-

ner expectation is defined similarly.

Lemma 3.2.9

Let T : (Ω1 × Ω2,A1 ⊗A2, P1 ⊗ P2) → R be an arbitrary map on a product probability

space. Then we have the following outer version of Fubinis theorem

E∗ [T ] ≤ E∗,1E∗,2 [T ] ≤ E∗1E∗2 [T ] ≤ E∗ [T ] .
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This outer version of Fubinis theorem is the reason for the measurability assumptions

appearing in Theorem 3.4.5, since we need to avoid disturbing inequalities when changing

the order of expectations. Before introducing weak convergence, we present the definitions

of two other modes of convergence of non-measurable maps.

Definition 3.2.10

Let (D, d) be a metric space and let (Tn)n∈N : (Ω,A, P ) → (D, d) arbitrary random maps

with a measurable random map T : (Ω,A, P )→ (D, d)

1. We say that Tn converges to T in outer probability if for all ε > 0 we have that

limn→∞ P
∗ (d(Tn, T ) > ε) = 0.

2. We say that Tn converges to T outer almost surely if there exists a mea-

surable sequence of random variables ∆n such that d(Tn, T ) ≤ ∆n and

P (lim supn→∞∆n = 0) = 1.

If Tn is measurable, outer almost sure convergence and convergence in outer probability

are equivalent to the usual definitions of almost sure convergence and convergence in

probability for random variables.

Using the concept of outer probability, we are able to introduce a new notion of conver-

gence in distribution of non-measurable quantities.

3.3 Weak Convergence

In this subsection, we introduce weak convergence for sequences of random maps Yn,

which are not necessarily measurable, but converge to a (Borel-)measurable limit Y .

Similarly to Definition 2.3.4, we give the following definition of weak convergence.

Definition 3.3.1

Let Yn denote a sequence of maps from a probability space (Ω,A,P) to some metric space

(D, d). We say that Yn converges weakly to a Borel-measurable limit Y if for every f ∈
Cb(D):

lim
n→∞

E∗ [f(Yn)] = E [f(Y )] . (3.3)

Weak convergence of Yn to Y is denoted as Yn  Y .

If the sequence of random variables Yn is measurable, Definition 3.3.1 is equivalent to

convergence in distribution, defined in Defintion 2.3.4. Similarly to the Portmanteau-
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Theorem for convergence in distribution, we have a version of the Portmanteau-Theorem

for weak convergence.

Theorem 3.3.2

The following statements are equivalent:

1. Yn  Y ;

2. lim infn→∞ P∗(Yn ∈ G) ≥ P(Y ∈ G) for every open G;

3. lim supn→∞ P∗(Yn ∈ F ) ≤ P(Y ∈ G) for every closed F ;

4. limn→∞ P∗(Yn ∈ B) = limn→∞ P∗(Yn ∈ B) = P(Y ∈ B) for any Borel measurable

set B with P(B \ B̊) = 0.

If there exists a measurable and separable set S with P(Y ∈ S) = 1, then 1.− 4. are also

equivalent to

5. limn→∞ supf∈BL1(D)

∣∣E∗ [f(Yn)] − E [f(Y )]
∣∣ = 0, where BL1(D) :=

{
f : D →

R
∣∣ |f(x)− f(y)| ≤ d(x, y)

}
.

Note that the Portmanteau-Theorem can also be formulated in terms of the laws of Yn

and Y . Simply replace the expectations by integrals with respect to the laws of Yn and Y

and one obtains the weak convergence of the laws.

Remark 7

Later, we will see that the limit processes in l∞(T ) often reside in a measurable and sepa-

rable subset of l∞(T ), which implies that weak convergence is metrizable in the following

sense:

Yn  Y is equivalent to ρ(Yn, Y ) := supf∈BL1(D)

∣∣E∗ [f(Yn)− f(Y )]
∣∣ → 0. This “semi-

metric” will be very useful to define the weak convergence of the bootstrapped empirical

process.

Moreover, there is an analogue of Slutsky’s Lemma for weak convergence.

Theorem 3.3.3

Assume Yn  Y and Zn  c, where Y is separable and c is a constant. Then

1. (Yn, Zn) (Y, c)

2. Yn + Zn  Y + c
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Before studying further properties of weak convergence, we investigate the properties of a

Borel measurable Gaussian process Y in l∞(T ), which is the most frequently occuring limit

process. First, we clarify the definition of a Gaussian Process indexed by some arbitrary

set T .

Definition 3.3.4

A stochastic process G in l∞(T ) is Gaussian if for every t1, ..., tk ∈ T the vector

(G(t1), ...,G(tk)) has a multivariate Normal distribution.

The following lemma connects the tightness and the continuity of Borel measurable ran-

dom elements in l∞(T ) and treats the special case of tight Gaussian processes (ref. [10]

p. 106, [19] p. 39-41 and Theorem 2.1.12).

Lemma 3.3.5

Let Y be a Borel measurable random element in l∞(T ). Then the following statements are

equivalent:

1. Y is tight;

2. There exists a semimetric ρ making T totally bounded with P (Y ∈ UC(T, ρ)) = 1.

If Y is Gaussian, the following is also equivalent to 1. and 2.:

3. For all p ≥ 1 ρp(s, t) := (E [|Y (s)− Y (t)|p])1/p defines a semimetric on T , making

T totally bounded with P (Y ∈ UC(T, ρp)) = 1.

Lemma 3.3.5 tells us that a tight Gaussian process in l∞(T ) has to be uniformly continuous

w.r.t. ρp with probability 1. The next remark gives an alternative characterization of the

metric ρ2 in the empirical processes setting.

Remark 8

Assume that we are in the setting of an empirical process stemming from i.i.d. observa-

tions (Xi)i∈N of some random variable X. Furthermore, assume that the limit process G is

a mean zero and tight Gaussian process indexed by a set of functions F . Then G has co-

variance function Cov (Gf,Gg) = E [GfGg] = E [(f(X)− E [f(X)]) (g(X)− E [g(X)])].

This implies that ρ2(f, g) = (E [|Gf −Gg|2])
1
2 is the square root of the second moment

of X1 −X2, where (X1, X2) is a multivariate Normal random vector with mean zero and

covariance matrix

Σ =

(
Var (f(X)) E [GfGg]

E [GfGg] Var (g(X))

)
.
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Thus, X1 −X2 ∼ N
(

0,E
[(
f(X)− E [f(X)]− g(X) + E [g(X)]

)2
])

, since

Var(X1 −X2) = Var (f(X))− 2E [(f(X)− E [f(X)]) (g(X)− E [g(X)])] + Var (g(X))

= E
[
(f(X)− E [f(X)]− g(X) + E [g(X)])2] .

Therefore, G is uniformly continuous w.r.t. ρ2(f, g) =(
E
[
(f(X)− E [f(X)]− g(X) + E [g(X)])2])1/2

and F is totally bounded w.r.t. ρ2.

This shows that we can always work with the semimetric ρ2 and the distribution of the

random variable X if F is a Donsker-class (see Theorem 3.4.1).

The properties of the weakly converging sequence (Yn)n∈N and the limit process Y are

closely related, which is shown in the following lemma.

Lemma 3.3.6

Assume Yn  Y , then

1. Yn is asymptotically measurable;

2. Yn is asymptotically tight iff Y is tight.

Lemma 3.3.6 shows that we automatically get the asymptotic measurability of (Yn)n∈N

by the weak convergence of Yn to Y . Further, the tightness of Y is equivalent to the

asymptotic tightness of (Yn)n∈N.

Recall that the tightness of Y ∈ l∞(T ) is related to certain continuity properties of the

process Y by Lemma 3.3.5. We will see that also the sequence (Yn)n∈N fulfills certain

asymptotic continuity properties known as asymptotic equicontinuity, defined in the fol-

lowing definition.

Definition 3.3.7

A sequence of processes (Yn)n∈N in l∞(T ) is asymptotically uniformly ρ-equicontinuous in

probability if

lim
δ→0

lim sup
n→∞

P∗
(

sup
s,t∈T ;ρ(s,t)<δ

|Yn(s)− Yn(t)| > ε

)
= 0.

Combining the results presented above, we are able to state some equivalent conditions

to weak convergence in l∞(T ). These conditions are easier to verify than the conditions

given in the Portmanteau-Theorem and relate the weak convergence of Yn to a tight Y to

the asymptotic equicontinuity of (Yn)n∈N (ref. [10] Thm 2.1/7.17).
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Theorem 3.3.8

The following statements are equivalent:

1. The sequence Yn converges weakly to a tight limit Y ∈ UC(T, ρ) ⊆ l∞(T ), where ρ

is a semimetric making T totally bounded.

2. Yn is asymptotically tight and all finite dimensional marginals (Yn(t1), ..., Yn(tk))

converge weakly to the finite dimensional marginals of the process Y .

3. (i) All finite dimensional marginals (Yn(t1), ..., Yn(tk)) converge weakly to the finite

dimensional marginals of the process Y .

(ii) Yn is asymptotically uniformly ρ-equicontinuous w.r.t. some semimetric ρ mak-

ing T totally bounded.

Remark 9

Let Gn  G, where G is a tight Gaussian process in l∞(T ). Then Gn is uniformly ρ2-

equicontinuous by an extension of Theorem 3.3.8. It essentially states that the existence

of an arbitrary semimetric ρ, which makes T totally bounded with P(G ∈ UC(T, ρ)) = 1

is equivalent to asymptotic ρ2-equicontinuity of Yn.

3.4 Donsker Theorems

In this section, we formally introduce the empirical process and Donsker-classes. More-

over, we state two sufficient conditions for a class of functions F to be a Donsker-class.

This section is based on [10] Section 8.4 and [19] Section 2.5.

First, recall the mathematical setting of empirical processes. (Xi)i∈N are i.i.d. observa-

tions of some random variable X ∈ Rd defined on a probability space (Ω,A, P ). We are

interested in the uniform limit behavior of
√
n (n−1

∑n
i=1 f(Xi)− E [f(X)]) over a class

of functions F ⊂ {f | f : Rd → R}. In the setting of Theorem 3.1.1, F would cor-

respond to the class of functions {1{·≤t} | t ∈ R}. Let Pn := n−1
∑n

i=1 δXi denote the

empirical measure, where δXi denotes the Dirac measure at Xi. We define the random

operator Pn : F → R as Pnf :=
∫
fdPn = n−1

∑n
i=1 f(Xi). Further, we define the opera-

tor P : F → R as Pf :=
∫
fdP . Now,

√
n (n−1

∑n
i=1 f(Xi)− E [f(X)]) can be rewritten

as
√
n (Pnf − Pf) =

√
n (Pn − P ) f =: Gnf . Gn is called the empirical process and can

be viewed as a bounded stochastic process indexed by the functions f ∈ F , which means

that it is a stochastic process in l∞(F). For fixed f and under some moment conditions

on f(X), we know that Gnf converges in distribution to a Normal distributed random

variable with mean zero and variance Var (f(X)). This property almost ensures the weak

convergence of the sequence Gn and motivates the definition of a P −Donsker class.
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Definition 3.4.1

A class of measurable functions F with supf∈F f(x) < ∞ for all x ∈ Rd is called P −
Donsker (or a Donsker class) if Gn  G in l∞(F), where G is a tight Gaussian process

with mean zero and covariance function Cov (Gf,Gg) = E [f(X)g(X)]−E [f(X)]E [g(X)].

Informally, a Donsker-class is a class of functions, where every projection Gnf converges

to a mean zero Normal random variable, while the limit process G is continuous in F .

Remark 10

Since the limiting process G of a Donsker class is tight, we know that G is in UC(F , ρ2),

by Remark 8.

Clearly, the condition that Gn  G over the class of functions F requires some bounds

on the complexity of F . We will see that this complexity of the class F can be measured

in terms of entropy.

First, we define the concept of bracketing entropy. For any probability measure Q define

L2(Q) := {g |
∫
g2dQ <∞} and define the ball of radius ε around a function g in L2(Q)

as Bε(g) := {f |
(∫

(f − g)2dQ
)1/2

< ε}.

Definition 3.4.2

Let ε > 0. Assume that there exists K ∈ N such that for 1 ≤ i ≤ K we have gi,1, gi,2 ∈
L2(P ), gi,1 ≤ gi,2 and

(∫
(gi,1 − gi,2)2dP

)1/2
< ε. Additionally, for any f ∈ F there exists

i ∈ {1, ..., K} such that gi,1 ≤ f ≤ gi,2. The minimal K satisfying the requirements

above is defined as the L2(P ) bracketing number of F and is denoted as N[](ε,F , L2(P )).

Furthermore, log
(
N[](ε,F , L2(P ))

)
is defined as the bracketing entropy of F .

Intuitively, the bracketing number is the minimal number of functions needed to put every

f ∈ F between two functions from the bracketing cover. Note that the functions in the

bracketing cover do not need to be elements of F .

Another concept of entropy is that of uniform entropy. Let Q be a discrete probability

measure, i.e. Q can be written as Q =
∑n

i=1 δxi for some (xi)1≤i≤n ∈ Rd.

Definition 3.4.3

Let ε > 0 arbitrary.

1. Consider a discrete probability measure Q and assume that there exists K ∈ N and

(gi)1≤i≤K ∈ L2(Q) such that for every f in F there is some i ∈ {1, ..., K} with

f ∈ Bε(gi). The covering number of F in L2(Q) is the minimal number K satisfying

the requirements above and is defined as N(ε,F , L2(Q)).
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2. Let Q be a discrete probability measure and define ‖F‖Q :=
(∫

supf∈Ff
2dQ

)1/2
.

The uniform covering number of F is defined as the supremum of the covering

numbers over all discrete probability measures Q with ‖F‖Q > 0 weighted by ‖F‖Q.

Mathematically, this translates to

sup
Q is discrete; ‖F‖Q>0

N(ε‖F‖Q,F , L2(Q)).

The uniform entropy of F is defined as

log

(
sup

Q is discrete;‖F‖Q>0

N(ε‖F‖Q,F , L2(Q))

)
.

The covering number of F is the minimal number of L2(Q) balls needed to cover F . The

uniform covering number is the maximum of all covering numbers of F over all discrete

probability measures, with the radius weighted by the Q-expectation of a majorant of

the class F . Note that the uniform covering number is independent of the underlying

probability measure P .

The last definition needed in order to state sufficient conditions for a class F to be a

Donsker-class is that of P−measurability. It is essentially required to avoid the disturbing

inequalities in the outer version of Fubinis Theorem (Theorem 3.2.9).

Definition 3.4.4

A class of functions F̃ is called a P -measurable class if for every n ∈ N and (e1, ..., en) ∈
Rn the function

(X1, ..., Xn) 7→ sup
f∈F̃

n∑
i=1

eif(Xi)

is measurable on the completion of
(
Rd,B(Rd), P n

X

)
.

The next theorem combines the results and definitions introduced in the previous chapters

to state two sufficient conditions for the class F to be a Donsker-class.

Theorem 3.4.5

If supf∈Ff(x) <∞ for x ∈ Rd and one of the following conditions is satisfied

1. ∫ ∞
0

√
log
(
N[](ε,F , L2(P ))

)
dε <∞;

2. The classes of functions (F)δ := {f − g |
∫

(f − g)2dP < δ} and {h2 | h ∈ (F)∞}
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are P -measurable for every δ ∈ (0,∞) and E∗
[
supf∈F f(X)2

]
<∞. Additionally,

∫ 1

0

√
log

(
sup

Q is discrete;‖F‖Q>0

N(ε‖F‖Q,F , L2(Q))

)
dε <∞;

then F is P -Donsker.

3.5 Bootstrapping The Empirical Process

In this subsection, we introduce the bootstrapped empirical process, which can be used

to construct confidence intervals or to estimate the asymptotic variance of a test statistic.

Luckily, if we already know that a class of functions is P -Donsker, most of the bootstrap

results require only mild additional assumptions. This section is based on Section 3.6 in

[19].

The main idea of bootstrapping is that a sample of the original sample should behave

similarly to the original sample. If this is the case, one can create arbitrarily many samples

of the original sample, each of them similar to the original sample. For example, one could

estimate the variance of an observed statistic by computing the empirical variance of this

statistic for a large number of bootstrap samples. However, the bootstrap samples are

obviously dependent, because each sample is drawn from the original sample. Therefore,

mathematically precise results can only be obtained asymptotically.

One possibility to create bootstrap samples is to draw with replacement from the original

sample. This approach is known as Efron’s Bootstrap and is incorporated in the bootstrap

scheme introduced below. Note that this procedure is equivalent to re-weighting the initial

sample with multinomial weights. When drawing weights for each observation in the

original sample, there is no need to require these weights to be natural numbers. This idea

leads to exchangeable bootstraps. The general approach is to assign identically distributed

random weights to each observation in the original sample, which is formalized below.

Before introducing the exchangeable bootstrap, we have to modify the probability space

to account for the additional randomness induced by the weights. Define PX := ⊗i∈NP
and assume that the observations (Xi)i∈N only depend on the first and the weights

(ξi,n)1≤i≤n,n∈N only depend on the second coordinate of a product probability space

(X∞,A∞,PX) ⊗ (Z,W ,PW ). Note that this structure implies that the weights are in-

dependent of the observations and that their joint distribution is described by the prod-

uct measure PXW := PX ⊗ PW . Furthermore, assume that the weights (ξi,n)1≤i≤n,n∈N are

non-negative and exchangeable, which is defined in the following definition.
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Definition 3.5.1

A random vector (ξ1,n, ..., ξn,n) is exchangeable if for every n ∈ N and every permutation

π of (1, ..., n) the vector (ξπ(1),n, ..., ξπ(n),n) has the same distribution as (ξ1,n, ..., ξn,n).

We have to impose some conditions on the vector (ξ1,n, ..., ξn,n) such that it can be consid-

ered as meaningful weights for a bootstrap scheme. In particular, define ξ̄ = n−1
∑n

i=1 ξi

and assume

1.

sup
n

∫ ∞
0

√
P
(
|ξ1,n − ξ̄| > x

)
dx <∞

2.
1√
n
E
[

max
1≤i≤n

∣∣ξi,n − ξ̄∣∣]→ 0

3.
n∑
i=1

(
ξi,n − ξ̄

)2 → c2 in PW -probability.

For non-negative exchangeable weights satisfying conditions 1. − 3., we define the ex-

changeable bootstrap empirical measure as P̃n := n−1
∑n

i=1 ξi,nδXi and define the boot-

strap empirical process as G̃n :=
√
nc−1(P̃n − ξ̄Pn).

We want to define convergence of the bootstrapped empirical process conditioned on

the original sample (Xi)i∈N. Therefore, recall the bounded Lipschitz metric defined in

Remark 7, which tells us that weak convergence to a tight limit is metrizable in l∞(F).

To see this, note that tight limits reside in σ-compact subsets of l∞(F) with probability

1. In a metric space σ-compact sets are separable, which allows us to use the bounded

Lipschitz metric. Assume that we have a realization of the original sample (Xi)i∈N. If the

bootstrapped sample behaves similarly as the original sample then P̃n behaves similarly

as Pn. Since we know that Gn converges weakly to some tight Gaussian process G, the

same should be true for G̃n, given the original sample (Xi)i∈N. Intuitively, the law of the

bootstrapped empirical process given (Xi)i∈N converges to the ”law” of the process G if

EPW

[
h(G̃n)

]
→ E [h(G)] for all h ∈ BL1(l∞(F)), where EPW denotes expectation w.r.t.

the weights only. The following definitions formalize this reasoning.

Let Y (ω1, ω2) be measurable w.r.t. (Z,W ,PW ) for every fixed ω1. We define

EPW [Y (ω1, ω2)] as the expectation of Y (ω1, ·) w.r.t. (Z,W ,PW ), treating the random

quantity ω1 as a constant. Using this formalism, we are able to define conditional weak

convergence.

Definition 3.5.2
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Let G ∈ l∞(F) be tight. We say that G̃n converges to G conditionally on (Xi)i∈N if

sup
h∈BL1(l∞(F))

∣∣∣ EPW

[
h(G̃n)

]
− E[h(G)]

∣∣∣→ 0

in outer PX-probability.

Note that h(G̃n) is measurable w.r.t. (Z,W ,PW ) if we assume (Xi)i∈N to be known, since

it is just a composition of a continuous function h with the weighted sum of random

variables (ξi,n)1≤i≤n,n∈N.

Having this definition at hand, we are able to state sufficient conditions for G̃n to converge

to the same limit as Gn, conditionally on the initial sample.

Theorem 3.5.3

Let F be a Donsker class and assume {f−g |
∫

(f−g)2dP < δ} is P -measurable for every

δ > 0. Additionally, assume that the weights (ξi,n)1≤i≤n,n∈N are non-negative, exchangeable

and satisfy conditions 1.− 3. Then

sup
h∈BL1(l∞(F))

∣∣∣ EPW

[
h(G̃n)

]
− E[h(G)]

∣∣∣→ 0

in outer PX-probability. Furthermore, EPW

[
h(G̃n)

]
∗
− EPW

[
h(G̃n)

]∗
→ 0 in outer PX-

probability, i.e. EPW

[
h(G̃n)

]
is asymptotically measurable w.r.t. (X∞,A∞,PX).

Theorem 3.5.3 tells us that we obtain the convergence of the bootstrap whenever F is

Donsker and suitably measurable.



Chapter 4

Clarke’s Test

4.1 Clarke’s And Vuong’s Test

We shortly motivate Clarke’s test statistic and define several important concepts.

Let (Ω,A, P ) be a probability space and X ∈ Rd be a random vector on this probability

space. Assume that the vector X can be split into two subvectors Y and Z, where Z can

be interpreted as a vector of covariates. Now, the conditional distribution of Y given Z

induces a law PY |Z on Rd′ , d′ ≤ d, whose density w.r.t. the Lebesgue measure is denoted

by pY |Z .

Consider an i.i.d. sample (Xi)i∈N from X. We want to find an appropriate probability

density to describe the distribution of Y given Z. Assume we have a candidate probability

density f . To determine the “closeness” of the density f to the true conditional density

pY |Z , the Kullback-Leibler Information Criterion from [11] can be used. It measures the

pseudo-distance of two densities of random vectors and is defined as follows:

Definition 4.1.1

The Kullback-Leibler Information Criterion (KLIC) of f w.r.t. to the true conditional

density pY |Z is defined as

K(f) := E[log(pY |Z(Y | Z))]− E[log(f(Y | Z))].

Note that K(f) ≥ 0 and K(f) = 0 if and only if pY |Z = f almost surely. Unfortunately,

the KLIC is not a true metric, since it is not symmetric and it does not satisfy the

triangle inequality.

As the true density pY |Z is unknown, K(f) is unknown. However, it is possible to minimize
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the KLIC by maximizing E[log(f(Y | Z))]. Suppose we have two candidates of parametric

density families and we want to decide which family maximizes the KLIC. Let the first

and the second family be denoted by fα(· | Z)α∈Θα and gβ(· | Z)β∈Θβ , respectively, where

α takes values in a compact set Θα ⊂ Rdα and β takes values in a compact set Θβ ⊂ Rdβ .

Further, assume that there exist some unique pseudo-true values α? and β?, such that

α? = arg max
α∈Θα

E[log(fα(Y | Z))] and β? = arg max
β∈Θβ

E[log(gβ(Y | Z))].

Comparing these two families in terms of their KLIC, we say that the family of densities

fα(· | Z)α∈Θα is closer to the true model than the family of densities gβ(· | Z)β∈Θβ if

E[log(fα?(Y | Z))] > E[log(gβ?(Y | Z))] and vice versa, if both expectations exist. Two

families fα(· | Z)α∈Θα and gβ(· | Z)β∈Θβ are equally close to the true distribution if

E[log(fα?(Y | Z))] = E[log(gβ?(Y | Z))].

Since the quantities E[log(fα?(Y | Z))] and E[log(gβ?(Y | Z))] are unknown, they should

be estimated. Therefore, let α̂n and β̂n denote the pseudo-maximum likelihood estimators

of α? and β?, which are defined as measurable functions of (X1, .., Xn) satisfying

α̂n = arg max
α∈Θα

n∑
i=1

log(fα(Yi | Zi)) and β̂n = arg max
β∈Θβ

n∑
i=1

log(gβ(Yi | Zi)).

Under some general conditions, see e.g. [21], one can show that these estimators are

consistent and asymptotically Normal distributed.

Using the estimators α̂n and β̂n as the estimated parameters of the competing families

of densities, we are able to evaluate the random quantities
(

log(fα̂n(Yi | Zi))
)

1≤i≤n and(
log(gβ̂n(Yi | Zi))

)
1≤i≤n. In a more restrictive setting than [21] and under the assumption

that fα(· | Z = z) 6= gβ(· | Z = z) for all z and (α, β) ∈ Θα×Θβ it was shown in [20] that

1

n

n∑
i=1

log (fα̂n(Yi|Zi))
a.s.→ E [log (fα?(Y | Z))] ,

and
√
n

(
1

n

n∑
i=1

log

(
fα̂n(Yi|Zi)
gβ̂n(Yi|Zi)

)
− EP

[
log

(
fα?(Y |Z)

gβ?(Y |Z)

)])
d→ Ñ ,

where Ñ denotes a mean zero normally distributed random variable. Exploiting this result,

one can deduce a hypothesis tests for model selection, which is known as Vuong’s test. Its

null hypothesis is given by

HV
0 : E [log (fα?(Y | Z))− log (gβ?(Y | Z))] = 0.
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If two competing density families satisfy the condition fα(· | Z = z) 6= gβ(· | Z = z) for

all z and (α, β) ∈ Θα ×Θβ they are called non-nested density families.

Clarke introduced an alternative to Vuong’s test in [6], assuming that the competing

models are non-nested. Instead of comparing two models in terms of their KLIC, Clarke

proposed a ”distribution-free” alternative by considering the median of log (fα(Y | Z))−
log (gβ(Y | Z)). Then, under Clarke’s approach, a model fα(· | Z)α∈Θα is equally suited

to describe the distribution of Y | Z as a model gβ(· | Z)β∈Θβ if the median of

log (fα?(Y | Z)) − log (gβ?(Y | Z)) is equal to 1/2. This translates to the null hypothe-

sis

H0 : P

(
log

(
f(Y | Z, α?)
g(Y | Z, β?)

)
> 0

)
=

1

2
·

For H0, Clarke proposed the test statistic

B̂n :=
n∑
i=1

1

{
log

(
f(Yi | Zi, α̂n)

g(Yi | Zi, β̂n)

)
> 0

}

and conjectured that it is Binomial distributed. The theoretical counterpart

Bn :=
n∑
i=1

1

{
log

(
f(Yi | Zi, α?)
g(Yi | Zi, β?)

)
> 0

}

of B̂n is indeed Binomial distributed. However, as we will see in Section 4.3, B̂n is generally

not Binomial distributed due to the additional randomness induced by the estimators

α̂n and β̂n. Unfortunately, this method has been extensively applied in many applied

works and in many different fields: finance, economics, accounting, political science, etc:

see [2], [8], [13], [12], among others.

It is worth noting that, in general, Vuong’s null hypothesis HV
0 does not imply Clarke’s

null hypothesis H0 and vice versa. A more detailed discussion of the similarities and

differences between Vuong’s test and Clarke’s test is available in Chapter 6. The main

purpose of this master thesis is to state the correct asymptotic distribution of B̂n in a

slightly modified setting compared to [6] and [20].

4.2 Theoretical Framework

In this section, we introduce the mathematical setup of Clarke’s test statistic B̂n and

define several abbreviations, which are frequently used throughout the master thesis.

Recall that the observations (Xi)i∈N are independent copies of a random vector X ∈ Rd,



4 Clarke’s Test 31

which is distributed according to some probability measure P . The measure P will refer

to the joint law of (Xi)i∈N. In contrast to the papers [20] and [6], we do not assume that

our observations are conditioned on some random vector Z, to simplify our theoretical

developments. In the framework of [20], this would correspond to the case of no covariates.

An extension of our results to the case of a covariate vector Z, whose law is identical under

the potential models f(·, α) and g(·, β), is straightforward. A proof of this statement can

be found in Appendix A.1. Moreover, in this master thesis, we only consider strictly non-

nested models, which is needed to exclude the possibility of fα?(X)/gβ?(X) having an

atom at 1. The definition is as follows:

Definition 4.2.1

A couple of parametric density families (fα)α∈Θα and (gβ)β∈Θβ is strictly non-nested on

Θα ×Θβ ⊆ Θα ×Θβ if fα(X) 6= gβ(X) a.s. for all α ∈ Θα and β ∈ Θβ.

Note that this definition is stronger than the definition of non-nested models in [20], since

we do not allow that two rival models fα and gβ coincide on a set with positive probability.

This case is not excluded in [20], who required that the functions fα(· | Z = z) and

gβ(· | Z = z) are not equal for all z and (α, β) ∈ Θα ×Θβ (“strictly non-nested” models,

Definition 2). However, in most applications, it is rarely the case that two competing

models do not satisfy Definition 4.2.1 but would satisfy the strict non-nestedness Definiton

2 in [20].

Our competing families of densities are (f(·, α))α∈Θα
and (g(·, β))β∈Θβ

, where Θα ⊂ Rdα

and Θβ ⊂ Rdβ are compact sets with possibly different dimensions. Furthermore, for each

(α, β) ∈ Θα × Θβ the functions f(·, α) and g(·, β) are probability densities on Rd, which

are almost surely positive on the support of X. This is not really a lack of generality

in practice. Indeed, when some realizations of X do not belong to the support of f(·, α)

and/or g(·, β), it would not be realistic to select one or both of the latter candidate models.

Further, it is important to note that the latter requirement does not imply f(·, α) and

g(·, β) to have the same support. It is still possible that f(x, α) = 0 and g(x, β) > 0 for

all x in an open subset of Rd. This event just occurs with probability 0 under P . Due to

the reasoning above, it is safer and simpler to assume that both families are almost surely

positive on the support of X. We always assume that the pseudo-true values α? and β?,

as defined in [21], belong to the interior of Θα and Θβ, respectively.

For any δ > 0, denote Eδ := [α?1 − δ, α?1 + δ]× ...× [α?dα − δ, α
?
dα

+ δ]× [β?1 − δ, β?1 + δ]×
...× [β?dβ − δ, β

?
dβ

+ δ] and

ψ(x, α, β) := log

(
f(x, α)

g(x, β)

)
.
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Moreover, for γ > 0 and Eγ ⊆ Θα × Θβ we denote Fγ := {1{ψ(·,α,β)>0} | (α, β) ∈ Eγ}.
From the assumption that (α?, β?) is an interior point of Θα ×Θβ we deduce that such a

γ > 0 always exists, which implies that Fγ is well defined.

We recall the Clarke’s statistic as

B̂n :=
n∑
i=1

1

{
log

(
f(Xi, α̂n)

g(Xi, β̂n)

)
> 0

}
, (4.1)

where α̂n and β̂n are estimators of the pseudo-true values α? and β?. Additionally, the

“unfeasible” Binomial distributed statistic is

Bn :=
n∑
i=1

1

{
log

(
f(Xi, α

?)

g(Xi, β?)

)
> 0

}
.

From now on, if not mentioned otherwise, we always work under the null hypothesis of

Clarke’s test

H0 : P

(
log

(
f(X,α?)

g(X, β?)

)
> 0

)
=

1

2
. (4.2)

Since fα and gβ do not need to have the same support, it can occur that

log(f(x, α)/g(x, β)) is not well defined when one or both densities are zero. In such

cases (these events occur with probability zero), formally set log(f(x, α)/0) := +∞,

log(0/g(x, β)) := −∞ and log(0/0) := 0.

4.3 Non Binomial Distribution Of Clarke’s Test

Statistic

Now, we present a short counterexample to prove that B̂n is generally not Binomial

distributed. In other words, the conclusions drawn in Chapter 2.2 of [6] are incorrect. To

overcome this problem, we will propose two alternative asymptotically standard Normal

distributed test statistics in (5.5) and (7.3) hereafter.

Let the true distribution P follow a Normal distribution with mean µ0 and fixed

variance 1. We compare the density of a Normal distribution with fixed variance σ2
f

and the density of a Normal distribution with fixed variance σ2
g , while estimating the

mean for both of these families. This translates to the families of densities f(·, α) =

(2πσ2
f )
−1/2 exp

(
−(· − α)2/2σ2

f

)
and g(·, β) = (2πσ2

g)
−1/2 exp

(
−(· − β)2/2σ2

g

)
. Note that

the two models are strictly non-nested according to Definition 4.2.1.
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In the following, we will choose σf 6= σg not equal to one, such that the null hypothesis of

Clarke’s test is satisfied. Before fixing σf and σg, we need to find the pseudo-true values

α? and β?. First, we show that α? and β? are both equal to µ0.

E
[
log
(
f(X,α)

)]
= E

[
− log(

√
2πσ2

f )−
(X − α)2

2σ2
f

]
= − log

(√
2πσ2

f

)
− 1

2σ2
f

(
Var(X) + 2E [(X − E [X])(E [X]− α)]

+ (E [X]− α)2
)

= − log
(√

2πσ2
f

)
− 1

2σ2
f

Var(X)− 1

2σ2
f

(µ0 − α)2

≤ − log
(√

2πσ2
f

)
− 1

2σ2
f

Var(X),

where the last inequality is an equality if we choose α = µ0. Thus, µ0 maximizes α 7→
E
[
log
(
f(X,α)

)]
, i.e the pseudo-true value α? is equal to µ0. Because of the symmetry

w.r.t. σg, β
? is also equal to µ0.

In the next step, we need to compute the estimators of the pseudo-true values α? and β?

in the case of known variances. We find the pseudo maximum likelihood estimators for α

and β by solving

β̂n = α̂n = arg max
µ∈R

log

(
n∏
i=1

1√
2πσ2

f

exp
(−(Xi − µ)2

2σ2
f

))
.

This is obviously the usual ML estimator for the mean of a Normal distribution, i.e.

β̂n = α̂n = X̄.

Now, we choose σf and σg such that the null hypothesis of Clarke’s test is satisfied. Thus,

let us calculate the probability of the set

{
log
(f(X,α)

g(X, β)

)
> 0
}

=

{
log
(σg
σf

)
− (X − α)2

2σ2
f

+
(X − β)2

2σ2
g

> 0

}

=

{
(X − β)2σ2

f − (X − α)2σ2
g

2σ2
fσ

2
g

> log

(
σf
σg

)}
.

Replacing α and β with their pseudo-true value µ0, and assuming w.l.o.g. that σg < σf ,

we get {
(X − β)2σ2

f − (X − α)2σ2
g

2σ2
fσ

2
g

> log

(
σf
σg

)}
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=

{
(X − µ0)2 > log

(
σf
σg

)
2σ2

fσ
2
g

σ2
f − σ2

g

}
.

Since (X − µ0) is standard Normal distributed, we calculate

P
({

log
(f(X,α)

g(X, β)

)
> 0
})

= Φ

(
−

√
log

(
σf
σg

)
2σ2

fσ
2
g

σ2
f − σ2

g

)

+ (1− Φ)

(√
log

(
σf
σg

)
2σ2

fσ
2
g

σ2
f − σ2

g

)

= 2Φ

(
−

√
log

(
σf
σg

)
2σ2

fσ
2
g

σ2
f − σ2

g

)
.

E.g. setting σg = 1/2, it is easy to see that the map σf 7→
{

log(2σf )σ
2
f/ (2σ2

f − 0.5)
}1/2

attains all values in R+. Therefore, we can find σf such that −
(

log(2σf )σ
2
f/ (2σ2

f −
0.5)

)1/2
= u0.25, where u0.25 is the 0.25 quantile of the standard Normal distribution and

H0 from (4.2) is satisfied.

In the case σg = 1/2, we get an approximated value of σf ≈ 0.98. Figure 4.1 shows the

curve of pairs (σg, σf ), such that the null-hypothesis is satisfied.

Figure 4.1: Curve of pairs (σg, σf ) satisfying H0 (Normal laws). The red dot displays the
point (1/2, 0.98).
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From now on, consider that we have chosen σf 6= 1, σg 6= 1 and σf > σg such that

P

({
(X − µ0)2 > log

(
σf
σg

)
2σ2

fσ
2
g

σ2
f − σ2

g

})
=

1

2
.

Therefore, the null hypothesis of Clarke’s test is satisfied for the chosen values of σf and

σg. Note that one would clearly prefer the family f(·, α) with variance σf ≈ 0.98 over the

family g(·, β) with variance σg = 1/2, but Clarke’s test considers them as equivalently

suited to approximate a standard Normal distribution. A thorough discussion of this issue

can be found in Chapter 6 and in the discussion of model comparison (7.2) in Section 7.3.

Clarke states in [6] that the statistic B̂n is Binomial distributed with parameter p = 0.5.

We show that B̂n is generally not even Binomial distributed for any p ∈ [0, 1]. For n = 2

the test statistic B̂2 takes the form:

1

{
log

(
f(X1, α̂2)

g(X1, β̂2)

)
) > 0

}
+ 1

{
log

(
f(X2, α̂2)

g(X2, β̂2)

)
> 0

}
,

which is equal to

1

{
(X1 − X̄)2 > log

(
σf
σg

)
2σ2

fσ
2
g

σ2
f − σ2

g

}
+ 1

{
(X2 − X̄)2 > log

(
σf
σg

)
2σ2

fσ
2
g

σ2
f − σ2

g

}

by the previous calculations and the fact that α̂2 = β̂2 = X̄. Noting that X̄ = X1/2+X2/2,

we get

(X1 − X̄)2 =

(
X1

2
− X2

2

)2

=

(
− X1

2
+
X2

2

)2

= (X2 − X̄)2.

Therefore, this yields

B2 = 2× 1

{(
X1

2
− X2

2

)2

> log

(
σf
σg

)
2σ2

fσ
2
g

σ2
f − σ2

g

}
,

which takes values in {0, 2} and is clearly not Binomial distributed.

A remaining question is whether B̂n may be asymptotically Binomial distributed. The

answer to this question is given in Corollary 5.0.2, which describes the asymptotic distance

between Bn and B̂n.
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Asymptotic Normality of B̂n

In this section, we derive the asymptotic distribution of n−1/2(B̂n − n/2) under various

assumptions and we propose two estimators for its asymptotic variance. Additionally, we

will answer the question whether B̂n is asymptotically Binomial distributed in Corollary

5.0.2. Note that, if not explicitly stated otherwise (e.g. as in Theorem 5.0.1), we will

always assume that the null hypothesis of Clarke’s test is satisfied.

Following the notation in [19], we denote Pf =
∫

Ω
f(X(ω))dP (ω) = E[f(X)] for some

measurable function f : Rd 7→ R. The empirical measure associated with the sequence of

random vectors (Xi)i∈N is defined as Pn := n−1
∑n

i=1 δXi , where δXi is the Dirac measure

at Xi. Similarly to Pf , define Pnf := n−1
∑n

i=1 f(Xi). To prove the weak convergence of

Clarke’s test statistic, we frequently use the expression Gnf :=
√
n(Pn − P )f . We use  

to denote weak convergence in l∞(Fγ) := {h | h : Fγ 7→ R; supf∈Fγ |h(f)| <∞} equipped

with the supremum norm d(h, k) := supf∈Fγ |h(f)− k(f)| and refer to outer probabilities

and outer expectations, as defined in Chapter 1 of [19]. Furthermore, denote by u · v the

Euclidean scalar product of two vectors u and v and denote φn := 1{ψ(X, α̂n, β̂n) > 0}
as well as φ? := 1{ψ(X,α?, β?) > 0}. The Normal distribution with mean µ and variance

σ2 is denoted as N (µ, σ2).

We need the following assumptions to prove the asymptotic Normality of a modified

Clarke’s test statistic.

Assumptions

B1 The pseudo-true values α? and β? exist and are unique.

B2 There exists γ > 0 such that, for any x ∈ Range(X), the function ψ(x, ·, ·) is

continuous on Eγ.

B3 There exists γ > 0 such that the models (fα) and (gβ) are strictly non-nested on Eγ.
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B4 There exists γ > 0 such that the function

h : Eγ → [0, 1] ; (α, β) 7→
∫

1{ψ(x,α,β)>0}dP (x) = P (ψ(X,α, β) > 0)

is continuously differentiable at (α?, β?). Denote h1(α, β) :=
(

∂
∂α1

h(α, β), ...

, ∂
∂αdα

h(α, β)
)ᵀ

and h2(α, β) :=
(

∂
∂β1
h(α, β), ..., ∂

∂βdβ
h(α, β)

)ᵀ
the column vectors

of the partial derivatives of h w.r.t. α and β.

B5 The (measurable) estimators α̂n and β̂n can be written as α̂n = Pns1 + oP(1) and

β̂n = Pns2 + oP(1) for some measurable functions s1 and s2 with E [s1(X)2] < ∞
and E [s2(X)2] < ∞. Additionally, the estimators are strongly consistent and it is

possible to write
√
n(α̂n− α?) = Gn(s1) + oP(1) and

√
n(β̂n− β?) = Gn(s2) + oP(1).

Remark 11

1. B5 is true for many M- and Z-estimators by Theorem 2.10/2.12 in [10].

2. Assume that the true density pX is continuous, X is real valued and that for all

(α, β) ∈ Eγ the number of zeros of the function ψ(·, α, β) is bounded by a universal

constant. Additionally, assume that every zero of ψ can be represented as a contin-

uously differentiable function (w.r.t. α and β). Then Assumption B4 is satisfied,

since h(α?, β?) can be written as a finite sum of terms of the form P (X ≤ xi) or

1 − P (X ≤ xi), where xi = xi(α
?, β?) are the continuously differentiable zeros of

ψ(·, α?, β?).

Using Assumption B1 − B5, we are ready to state the main theorem of this master

thesis. The first part of Theorem 5.0.1 shows that n−1/2(B̂n − n/2) is asymptotically

Normal distributed under H0. Parts (ii) and (iii) handle the two possible cases under the

alternative.

Theorem 5.0.1

Assume that there exists γ > 0 such that Fγ is P −Donsker and Assumptions B1− B5

are satisfied. Then the following statements are valid.

(i) Under H0, i.e. if P (ψ(X,α?, β?) > 0) = 1
2
, we have

1√
n

(
B̂n −

n

2

)
 N (0, σ2

ψ), (5.1)

where σ2
ψ = Var (1{ψ(X,α?, β?) > 0}+ h1(α?, β?) · s1(X) + h2(α?, β?) · s2(X)) .

(ii) If P (ψ(X,α?, β?) > 0) < 1/2, then n−1/2(B̂n − n/2)→ −∞ P-almost surely.
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(iii) If P (ψ(X,α?, β?) > 0) > 1/2, then n−1/2(B̂n − n/2)→ +∞ P-almost surely.

The proof of the Theorem has been postponed to Appendix A.2.

From the proof of Theorem 5.0.1, the following corollary can be deduced. It provides

information about the asymptotic distance between B̂n and the unknown statistic Bn.

Corollary 5.0.2

Under the assumptions of Theorem 5.0.1

1√
n

(
B̂n −Bn

)
 N (0, σ2

h),

where σ2
h = Var (h1(α?, β?) · s1(X) + h2(α?, β?) · s2(X)).

Corollary 5.0.2 tells us that the difference between B̂n and Bn goes to infinity if h1(α?, β?)·
s1(X) + h2(α?, β?) · s2(X) is not equal to 0. This shows that B̂n is not asymptotically

Binomial distributed in general. Furthermore, it is interesting to note that Corollary 5.0.2

is valid independent of the value of P (ψ(X,α?, β?) > 0). This means that H0 does not

have to be satisfied for Corollary 5.0.2 to be true.

Hereafter, we provide a more explicit expression of the variance σ2
h. Define the matrices

Af (α) and Bf (α) with entries

Af (α)i,j := E
[
∂2 log(f(X,α))

∂αi∂αj

]
and

Bf (α)i,j := E
[
∂ log(f(X,α))

∂αi

∂ log(f(X,α))

∂αj

]
, 1 ≤ i, j ≤ dα.

The matrices Ag(β), Bg(β) are defined similarly. Furthermore, for 1 ≤ i ≤ dα and 1 ≤
j ≤ dβ, define the matrix Bf,g(α, β) with entries

Bf,g(α, β)i,j := E
[
∂ log(f(X,α))

∂αi

∂ log(g(X, β))

∂βj

]
.

In [20], it is shown that

√
n

(
α̂n − α?

β̂n − β?

)
 N

(
0,Σ(α?, β?)

)
,
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where

Σ(α?, β?) =

(
A−1
f (α?)−1Bf (α

?)A−1
f (α?); A−1

f (α?)−1Bf,g(α
?, β?)A−1

g (β?)

A−1
g (β?)−1Bg,f (α

?, β?)A−1
f (α?); A−1

g (β?)−1Bg(β
?)A−1

g (β?)

)

:=

(
Σf Σf,g

Σg,f Σg

)
.

We use the just stated results to express the asymptotic variance of Corollary 5.0.2.

Proposition 5.0.3

If we assume all assumptions of Theorem 5.0.1, Assumptions A1−A5 from [20] and that

n (α̂n − α?)2 and n(β̂n − β?)2 are uniformly integrable, the variance σ2
h simplifies to

σ2
h = h1(α?, β?)ᵀΣf (α

?, β?)h1(α?, β?) + h2(α?, β?)ᵀΣg(α
?, β?)h2(α?, β?)

+ h1(α?, β?)ᵀΣf,g(α
?, β?)h2(α?, β?) + h2(α?, β?)ᵀΣg,f (α

?, β?)h1(α?, β?).

Furthermore, Σ can be consistently estimated by its sample equivalent Σ̂n(α̂n, β̂n).

The proof is detailed Appendix A.3.

Remark 12

Note that the asymptotic variance of the test statistic proposed in [20] can be estimated by

its usual sample counterparts. Unfortunately, this is generally not the case for σ2
ψ. To verify

this, note that the natural sample estimator of the variance σ2
ψ is given by Pnφ2

n−(Pnφn)2,

which is not consistent for σ2
ψ. To see this, note that φn = φ2

n and therefore

Pnφ2
n = Pnφn = Pn(φn − φ?) + Pn(φ?)→

1

2

in outer probability, when n tends to infinity. Therefore, we always have Pnφ2
n−(Pnφn)2 →

1/4 in outer probability, but in Example 2, which is presented in Section 7.1.2, we will

see that σ2
ψ is not always equal to 1/4. Thus, σ2

ψ is not consistently estimated by its

sample equivalent in general. This may be explained by the additional noise introduced by

taking n/2 to center B̂n. If we used the unknown quantity nP (ψ(X, α̂n, β̂n) > 0) instead

of n/2 in (5.1), the asymptotic variance of the test statistic would always be equal to

1/4. This phenomenon does not occur for Vuong’s test, since the error from considering

E [ψ(X,α?, β?)] instead of E
[
ψ(X, α̂n, β̂n)

]
can be shown to be of order oP(1).

To construct a consistent estimator, we directly estimate the partial derivatives of the

function h. To this goal, let uα = (0, ..., 0, 1, ..., 0) ∈ Rdα denote the i-th unit vector in

Rdα , and uβj = (0, ..., 0, 1, ..., 0) ∈ Rdβ denote the j-th unit vector in Rdβ .
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Lemma 5.0.4

Consider an arbitrary positive function e(n) with limn→∞ e(n) = 0 and limn→∞
√
ne(n) >

0. Define hn : Eγ 7→ [0, 1], hn(α, β) =
∫

1{ψ(x, α, β) > 0}dPn(x). Under the same

assumptions as in Theorem 5.0.1 and for every i ∈ {1, . . . , dα}, we have,

ĥ1,n,i :=
hn(α̂n + e(n)uαi , β̂n)− hn(α̂n − e(n)uαi , β̂n)

2e(n)
→ ∂

∂αi
h(α?, β?) (5.2)

and, for every j ∈ {1, . . . , dβ},

ĥ2,n,j :=
hn(α̂n, β̂n + e(n)uβj )− hn(α̂n, β̂n − e(n)uβj )

2e(n)
→ ∂

∂βj
h(α?, β?) (5.3)

in outer probability.

A proof is provided in Appendix A.4.

Usually, the functions s1 and s2 are known. Therefore, we can propose the following

estimator of σ2
ψ.

Theorem 5.0.5

Under the same assumptions as in Theorem 5.0.1, we have

σ̂2
ψ := Pn

(
φn + ĥ1,n · s1 + ĥ2,n · s2 − Pn

(
φn + ĥ1,n · s1 + ĥ2,n · s2

))2

→ σ2
ψ (5.4)

in outer probability.

Again, the proof is postponed to Appendix A.5.

By inspecting the proof of Theorem 5.0.1, we deduce that Theorem 5.0.5 is also valid

if the null hypothesis in not satisfied. In this case, σ2
ψ is the asymptotic variance of the

expression n−1/2
(
B̂n − nP (ψ(X,α?, β?) > 0)

)
. This remark is important if we want to

apply the test under the alternative. It shows that the variance estimator σ̂2
ψ converges

to some finite real number and that the test statistic

B̂n − n/2√
nσ̂2

ψ

=: T1,n (5.5)

converges to +∞ or −∞, depending on the sign of P (ψ(X,α?, β?) > 0) − 1/2. Further-

more, by an application of Lemma 7.15 in [10], T1,n is asymptotically standard Normal

distributed under H0, i.e. if P (ψ(X,α?, β?) > 0) = 1/2

T1,n  N (0, 1).
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Remark 13

Note that σ2
h can also be estimated due to the results of Lemma 5.0.4. Mimicking the proof

of Theorem 5.0.5, we deduce the estimator

Pn
(
ĥ1,n · s1 + ĥ2,n · s2 − Pn

(
ĥ1,n · s1 + ĥ2,n · s2

))2

of σ2
h. Additionally, if all assumptions of Proposition 5.0.3 are satisfied, one can also

estimate σ2
h via

ĥ1(α?, β?)ᵀΣ̂f (α
?, β?)ĥ1(α?, β?) + ĥ2(α?, β?)ᵀΣ̂g(α

?, β?)ĥ2(α?, β?)

+ ĥ1(α?, β?)ᵀΣ̂f,g(α
?, β?)ĥ2(α?, β?) + ĥ2(α?, β?)ᵀΣ̂g,f (α

?, β?)ĥ1(α?, β?).

An alternative to the estimator σ̂2
ψ is the bootstrap estimator proposed in Section 5.3,

which can be applied even if the functions s1 and s2 are unknown.

So far, we have assumed that Fγ is P − Donsker. Since this requirement is far from

being trivial, it would be of interest to provide some sufficient conditions so that Fγ is

P − Donsker. In the following sections, we separately tackle the case of univariate and

multivariate random vectors.

5.1 Real Valued Random Variables

Here, we solely consider univariate random variables. If X is a random variable in R, the

indicator function 1{ψ(·,α,β)>0} translates into sums of indicator functions over intervals,

in most of the cases. The following assumption exploits this behavior to state a sufficient

condition for Fγ being P −Donsker.

Assumption B6 For some γ > 0 and every 0 < ε ≤ 1, there exist some constants

M1 ≤M2 such that P (X ∈ [M1,M2]) ≥ 1−ε2 and, for all (α, β) ∈ Eγ, the indicator

function 1{ψ(·,α,β)} can be written as the sum of at most bK(ε)c indicator functions

of the form 1(a,b],1(a,b),1[a,b],1[a,b) on [M1,M2]. Moreover, the latter function K :

(0, 1]→ [0,∞) is differentiable, limε→0 εK(ε) = 0 and εK(ε)+ε is strictly increasing

on [0, a], for a := (εK(ε) + ε)−1(1). Furthermore,∫ a

0

√
dK(ε) + 1e log(64)− 4dK(ε) + 1e log(ε)(K ′(ε)ε+K(ε) + 1)dε <∞.

Lemma 5.1.1

Under Assumptions B1, B2 and B6, there exists some γ > 0 such that the class Fγ is



5 Asymptotic Normality of B̂n 42

P −Donsker.

Again, the proof is postponed into Appendix A.6.

An easily verifiable condition ensuring that Assumption B6 is satisfied is given in the

following proposition.

Proposition 5.1.2

If there exist γ > 0 such that ψ(·, α, β) is continuous for all (α, β) ∈ Eγ and there exits an

integer K such that ψ(·, α, β) has at most K zeros for any (α, β) ∈ Eγ, then Assumption

B6 is satisfied.

Proof. For the first assertion choose M1 = −∞,M2 =∞ and K(ε) = K. Then, choosing

the zeros of ψ as the left and right endpoints of intervals, one can write ψ as a finite sum

of at most K indicator functions of the form 1(−∞,a),1(a,b),1(a,b],1[a,b),1[a,b],1(a,∞), which

is a Donsker class by Corollary 9.32 in [10].

5.2 Random Vectors In Rd

In this subsection, we consider the more complex case of a random vector X ∈ Rd. The

complication arises from the shape of the boundary of the set {x ∈ Rd | ψ(x, α, β) >

0}. Since the shape of these sets strongly depends on the function ψ, we cannot state

general conditions so that Fγ is P−Donsker. However, we state three relatively high-level

conditions, which are sufficient for Fγ to be a Donsker class. For the sake of readability we

write x ∈ Rd, but all of the following assertions only need to be satisfied for x ∈ Range(X).

Lemma 5.2.1

If, additionally to Assumptions B1 and B2, one of the following conditions is satisfied,

then Fγ is P −Donsker.

(i) There exists γ > 0 such that, for any (α, β) ∈ Eγ,

{ψ(x, α, β) > 0} = {ξ1(x) > ξ2(α, β)}

for some measurable functions ξ1 and ξ2 from Rd and Eγ, respectively, to R.

(ii) There exists γ > 0 such that

{
{x ∈ Rd | ψ(x, α, β) > 0} | (α, β) ∈ Eγ

}
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is a VC class of sets and the classes of functions (Fγ)δ := {f − g |
∫

(f − g)2dP <

δ; f, g ∈ Fγ} and {h2 | h ∈ (Fγ)∞} are P -measurable for every δ > 0, according to

Definition 2.3.3. in [19].

(iii) ψ satisfies |ψ(x, α1, β1) − ψ(x, α2, β2)| ≤ L(x)‖(α1, β1) − (α2, β2)‖r for some r ∈ N
and L := supx L(x) <∞. Additionally, there exists γ > 0 and A ∈ R such that

lim
ε→0

sup
(α,β)∈Eγ

P (ψ(X,α, β) ∈ [−ε, ε])
ε

< A.

The proof appears in Appendix A.7.

Remark 14

1. Condition (ii) is satisfied by multivariate polynomials of bounded degree by Exercise

6.12 in [17].

2. Note that an equivalent condition to Fγ being a VC subgraph class is F̃γ :=

{ {(α, β) | (α, β) ∈ Eγ, ψ(x, α, β) > 0} | x ∈ Rd} being a VC-class of sets,

which is proven in [9]. This condition may be easier to verify in some cases.

5.3 The Bootstrap

Now, we present an alternative estimation procedure of the asymptotic variance σ2
ψ, given

in Equation (5.1). We need to introduce a slightly modified mathematical framework to

account for the additional randomness induced by the bootstrap weights.

Let (ξi,n)1≤i≤n;n∈N be an exchangeable triangular array of non-negative random variables

on a probability space Ω2 with probability measure PW . Assume that the ξi,n satisfy the

following conditions, which are given in [19] Chapter 3.6.2

Assumptions

W1
n∑
i=1

ξi,n = n;

W2

sup
n

∫ ∞
0

√
PW (|ξ1,n − 1| > x) dx <∞;

W3
1√
n
EPW

[
max
1≤i≤n

|ξi,n − 1|
]
→ 0;
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W4 For some constant c > 0, n−1
∑n

i=1 (ξi,n − 1)2 → c2 in PW -probability;

Remark 15

Consider i.i.d. non-negative random variables (ξ̃i)i∈N with mean 0 < µ <∞ and variance

0 < τ 2 <∞, such that
∫∞

0

(
PW (|ξ̃1| > x)

)1/2
dx <∞. Then, the conditions W1−W4 are

satisfied for ξi,n := nξ̃i

(∑
1≤i≤n ξ̃i

)−1

, with c = τ/µ.

Define the exchangeable bootstrap empirical measure as P̃n := n−1
∑n

i=1 ξi,nδXi . Further-

more, define the bootstrap empirical process as G̃n :=
√
nc−1(P̃n−Pn) and assume that the

sequences (Xi)i∈N and (ξi,n)1≤i≤n;n∈N originate from a probability space with product struc-

ture as defined in [4], Section 3. This implies that the sequence (Xi)i∈N only depends on the

first coordinate of some probability space (Ω := Ω1 × Ω2,A := A1 ×A2,PXW ) equipped

with a probability measure PXW := PX ⊗ PW . On the other side, the triangular array

(ξi)1≤i≤n;n∈N only depends on the second component of the latter space. This specific

structure implies that (Xi)i∈N and (ξi)1≤i≤n;n∈N are independent. We write G̃n  
ξ

G to

denote convergence in the sense of the bounded Lipschitz metric, i.e.

EPW

[
h(G̃n)

]∗
− EPW

[
h(G̃n)

]
∗
→ 0 in PX-probability and

sup
h∈BL1

∣∣∣EPW

[
h(G̃n)

]
− E [h(G)]

∣∣∣→ 0 in outer PX-probability,

where

• EPW denotes expectation w.r.t. the weights (ξi,n)1≤i≤n,n∈N treating the sample

(Xi)1≤i≤n as constants,

• BL1 := {h | h : l∞(Fγ) 7→ R; supx∈l∞(Fγ) |h(x)| ≤ 1; |h(x) − h(y)| ≤
supf∈Fγ |x(f)− y(f)|}

• Y ∗ and Y∗ denote the measurable majorant and minorant of a random map Y as

defined in [19].

In order to prove the convergence of the bootstrapped process, we need additional as-

sumptions on the estimators α̂n and β̂n and on the class of functions Fγ. Let α̃n and β̃n

denote the bootstrapped estimators for α? and β?, i.e. the estimators of the pseudo-true

values calculated from the bootstrap sample.

Assumptions

B7 The estimators α̂n, α̃n and β̂n, β̃n satisfy
√
n
(
α̃n−α̂n

)
=
√
n
(
P̃n − Pn

)
s1 +oP∗XW (1)

and
√
n
(
β̃n − β̂n

)
=
√
n
(
P̃n − Pn

)
s2 + oP∗XW (1) .
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B8 There exists γ > 0 such that the class of functions {f −g |
∫

(f −g)2dP < δ, (f, g) ∈
Fγ} is P -measurable for every δ > 0, according to Definition 2.3.3. in [19].

B9 For any compact set K ⊂ Range(X), ψ satisfies the following uniform continuity

condition: for all ε > 0, there exists δ > 0 such that

‖(α1, β1)− (α2, β2)‖1 ≤ δ ⇒ sup
x∈K
|ψ(x, α1, β1)− ψ(x, α2, β2)| ≤ ε.

Remark 16

1. Let Q denote the set of rational numbers. We require Assumption B8 solely to satisfy

the measurability condition of Theorem 3.6.16 in [19], which allows us to freely use

Fubini’s theorem. If we restrict the discussion to the bootstrap schemes described

in [10], we do not need Assumption B8. Furthermore, if we restrict ourselves to

rational parameters, i.e. to Eγ ∩Qdα+dβ , Assumption B8 would be satisfied.

2. If there exists γ > 0 such that ψ(x, α, β) is continuous for all (x, α, β) ∈ Rd × Eγ,

then Assumption B9 is satisfied (uniform continuity on a compact subset).

In the following lemma, we state a mild condition such that Assumption B8 is satisfied.

Lemma 5.3.1

Assume there exists γ > 0 such that Assumption B2 is satisfied. Moreover, for all

(α, β) ∈ Eγ, there exists (ᾱn, β̄n) ∈ Eγ ∩Qdα+dβ \ (α, β) with limn→∞(ᾱn, β̄n) = (α, β) and

ψ(x, ᾱn, β̄n)) ≤ 0 for all x ∈ Rd with ψ(x, α, β) = 0. Then, Assumption B8 is satisfied.

Proof. It is sufficient to show that Fγ is a pointwise measurable class, according

to Proposition 8.11 in [10]. To show that Fγ is pointwise measurable choose G :=

{1{ψ(·,α,β)>0}
∣∣ (α, β) ∈ Eγ ∩ Qdα+dβ}. Obviously, G is countable. Now, choose an arbi-

trary 1{ψ(·, α, β) > 0} ∈ Fγ. By Assumption B2 and the stated condition, we can choose

(ᾱn, β̄n) ∈ Eγ ∩ Qdα+dβ with limn→∞(ᾱn, β̄n) = (α, β), such that for all x ∈ Rd with

ψ(x, α, β) = 0 :

1{ψ(x, α, β)} = 0 = lim
n→∞

1{ψ(x, ᾱn, β̄n) > 0}.

If ψ(x, α, β) 6= 0, Assumption B2 implies that there exists N ∈ N such that for all n ≥ N :

sign(ψ(x, α, β)) = sign(ψ(x, ᾱn, β̄n)). This shows that for all x ∈ Rd

lim
n→∞

1{ψ(x, ᾱn, β̄n) > 0} = 1{ψ(x, α, β) > 0}.

Therefore, Fγ is pointwise measurable and the claim follows.
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We define the bootstrapped version of B̂n as

B̃n := nP̃n1{ψ(·, α̃n, β̃n) > 0} =
n∑
i=1

ξi,n1{ψ(Xi, α̃n, β̃n) > 0}. (5.6)

The next theorem shows that the bootstrapped statistic B̃n behaves similarly to B̂n,

knowing the initial sample (Xi)i=1,...,n.

Theorem 5.3.2

Assume Assumptions B1−B5 and B7−B9 are satisfied. Moreover, assume there exists

γ > 0 such that Fγ is P − Donsker. Then, the following statements are true for the

bootstrapped version B̃n of B̂n:

(i)

1

c
√
n

(
B̃n − B̂n

)
= G̃n (1{ψ(X,α?, β?) > 0}+ h1(α?, β?) · s1 + h2(α?, β?) · s2)

+ oP∗XW (1).

(ii)
1

c
√
n

(
B̃n − B̂n

)
 
ξ
N (0, σ2

ψ).

(iii) Statement (ii) is also satisfied unconditionally, i.e. with  
ξ

replaced by  w.r.t.

PXW .

See the proof in Appendix A.8, which utilizes Lemma B.0.1 from Appendix B.



Chapter 6

Comparison With Vuong’s Test

In this chapter, we compare Clarke’s null hypothesis H0 with Vuong’s null hypothesis HV
0 .

Moreover, we compare our Assumptions B1−B9 with the assumptions by Vuong in [20].

Recall that our definition of non-nested models is slightly stronger than the definition of

Vuong, since we do not allow the families of competing densities (fα)α∈Θα and (gβ)β∈Θβ

to intersect on a set with positive probability. Further, recall that the null hypothesis of

Clarke’s test is

H0 : P

(
log

(
f(X,α?)

g(X, β?)

)
> 0

)
=

1

2
,

and the null hypothesis in [20] is

HV
0 : E

[
log

(
f(X,α?)

g(X, β?)

)]
= 0.

Obviously, if the distribution of log(f(X,α?)/g(X, β?)) is symmetric around 0, both null

hypotheses coincide, in case the expectation in HV
0 is finite. Apart from symmetry around

0, it is hard to state any general condition which would imply the equivalence of both null

hypotheses. Presumably, this is hardly ever the case if the distribution is not symmetric

around 0.

Comparing H0 and HV
0 , we observe that HV

0 cannot be defined in case E[log (f(X,α?))] or

E[log (g(X, β?))] does not exist or is infinite. However, in many of these cases, H0 is still

well defined. For example, consider a Normal distribution compared to a t-distribution

and assume that the true distribution is Cauchy. In this case HV
0 is undefined, whereas

H0 is well defined. On the other hand, if HV
0 is well defined, H0 is also well defined. This

shows that Clarke’s test can be applied in a more general setting than Vuong’s test.

In contrast to Vuong’s test, we lack the relation of test statistic T1,n to the KLIC of the
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competing models. In fact, for skewed distributions in particular, it may be the case that

the two tests prefer different models. An example of such a discrepancy is yielded by the

model comparison in (7.2) in our empirical section. A consequence from comparing the

KLIC of the competing models in Vuong’s approach is that the null assumption HV
0

excludes that one or both of the models are correctly specified. To see the claim, recall

Definition 4.1.1 and note that HV
0 implies K(fα?) = K(gβ?). Now, if at least one of the

models is correctly specified, it is true that 0 = K(fα?) = K(gβ?), which is equivalent to

pX = fα? = gβ? . Therefore, the models are nested, contradicting the assumption of non-

nestedness. Unsurprisingly, H0 does not exclude the possibility that either of the models

is correctly specified, which shows that Clarke’s test may not be able to find the true

model, even though fα? or gβ? is equal to the true model.

Next, we compare our Assumptions B1−B9 with the assumptions in [20].

• As stated above, Vuong’s test requires that both E[log (f(X,α?))] and

E[log (g(X, β?))] exist and at least one of them is finite. Clarke’s test does not require

such moment conditions on the log-likelihood. Furthermore, we do not require any

moment condition on (the derivatives of) ψ(X,α, β), but we implicitly impose some

moment conditions on the true distribution via Assumption B5. However, under the

conditions A1 − A5 in [20], the implicit moment conditions of Assumption B5 are

satisfied.

• Comparing the regularity Assumption A4 in Vuong with Assumption B2, we observe

that we only require ψ(x, α, β) to be continuous in (α, β), instead of being twice

continuously differentiable. For example, a Laplace density is not excluded by our

conditions, whereas it is excluded in Vuong’s framework. In contrast to Vuong, we

require a mild differentiability condition on P (ψ(X,α, β) > 0).

• We require the estimators and the class of functions Fγ to be Donsker. The

Donsker property of Fγ is likely to be satisfied if the function ψ has suffi-

ciently ”regular” behavior on the boundary of the set {x ∈ Rd | ψ(x, α, β) >

0}, which is probably the case for many competing densities. Vuong requires

the asymptotic Normality of
√
n (n−1

∑n
i=1 log (f(Xi, α))− E [log (f(X,α))]) and

√
n (n−1

∑n
i=1 log (g(Xi, β))− E [log (f(X, β))]) for all (α, β) ∈ Θα × Θβ. If an ad-

ditional uniform convergence condition would be satisfied, the class of functions

FV := {log (f(·, α)/g(·, β)) | (α, β) ∈ Θα ×Θβ} would be a Donsker class.

Finally, one can conclude that the assumptions of Clarke’s test and Vuong’s test are

similar, but differ slightly in some moment and ”smoothness” conditions. Even if Clarke’s
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test can be applied more often, all of our Assumptions B1 − B9 and all assumptions

of Vuong will be satisfied in many cases. A power analysis would help to discriminate

between both approaches.



Chapter 7

Examples And Simulations

In this chapter, we present two examples of competing models, which satisfy the null

hypothesisH0 and we conduct a small simulation study to assess the finite sample behavior

of the estimators introduced in Chapter 5. Additionally, we simulate Clarke’s test for

competing models that do not satisfy H0 in order to investigate the empirical power of

Clarke‘s test.

7.1 Examples

Let us present two examples of strictly non-nested models satisfying H0 and Assumptions

B1 − B9. Our goal is to illustrate the theoretical quantities involved in the formulation

of the test statistic T1,n and to use them as a benchmark to assess the accuracy of the

estimators in finite samples in Section 7.2.

7.1.1 Example 1

First, we come back to the example from Section 4.3. We need to verify Assumptions

B1 − B9. It is obvious that Assumptions B1 − B3 and B6 are satisfied for this model

comparison. Since β̂n = α̂n = n−1
∑n

i=1Xi, we get that Assumptions B5 and B7 are

satisfied with s1(x) = s2(x) = x. Due to the smoothness of ψ(x, α, β) Assumptions B8

and B9 are satisfied. It remains to verify Assumption B4.

Again, assuming w.l.o.g that σf > σg, we calculate

P
(

log
(f(X,α)

g(X, β)

)
> 0
)

= P
(
− (X − α)2

2σ2
f

+
(X − β)2

2σ2
g

+ log

(
σg
σf

)
> 0
)

= Φ (x2(α, β)− µ0)− Φ (x1(α, β)− µ0) ,
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where x2(α, β) > x1(α, β) are the zeros (in x) of the function − (x−α)2

2σ2
f

+ (x−β)2

2σ2
g

+ log
(
σg
σf

)
.

x1(α, β) and x2(α, β) can be calculated by the usual formula for zeros of polynomials of

degree 2 and are given by

x1,2(α, β) =
−
(
α
σ2
f
− β

σ2
g

)
1
σ2
g
− 1

σ2
f

±

√√√√√√
(
α
σ2
f
− β

σ2
g

)2

(
1
σ2
g
− 1

σ2
f

)2 − 2

(
− α2

2σ2
f

+ β2

2σ2
g

+ log
(
σg
σf

))
1
σ2
g
− 1

σ2
f

.

One can check that x1 and x2 are real numbers for sufficiently small γ > 0. To see this,

recall that α? = β? = µ0 and note that x1 and x2 are continuous in (α?, β?). Further, we

have

∂

∂α
x1,2(α, β) =

−1

σ2
f

(
1
σ2
g
− 1

σ2
f

) ±

(
α
σ2
f
− β

σ2
g

)2

(
1
σ2
g
− 1

σ2
f

)2 − 2

(
− α2

2σ2
f

+ β2

2σ2
g

+ log
(
σg
σf

))
1
σ2
g
− 1

σ2
f


− 1

2


(
α
σ2
f
− β

σ2
g

)
σ2
f

(
1
σ2
g
− 1

σ2
f

)2 +
α

σ2
f

(
1
σ2
g
− 1

σ2
f

)


and

∂

∂β
x1,2(α, β) =

1

σ2
g

(
1
σ2
g
− 1

σ2
f

) ±

(
α
σ2
f
− β

σ2
g

)2

(
1
σ2
g
− 1

σ2
f

)2 − 2

(
− α2

2σ2
f

+ β2

2σ2
g

+ log
(
σg
σf

))
1
σ2
g
− 1

σ2
f


− 1

2

−
(
α
σ2
f
− β

σ2
g

)
σ2
g

(
1
σ2
g
− 1

σ2
f

)2 −
β

σ2
g

(
1
σ2
g
− 1

σ2
f

)
 .

Using that µ0 = α? = β? and after some calculations, we get

h1(α?, β?) = ϕ (x2(α?, β?)− µ0)
∂

∂α
x2(α?, β?)− ϕ (x1(α?, β?)− µ0)

∂

∂α
x1(α?, β?)

= ϕ


√√√√√2

log
(
σf
σg

)
1
σ2
g
− 1

σ2
f

 −1

σ2
f

(
1
σ2
g
− 1

σ2
f

) − ϕ
−

√√√√√2
log
(
σf
σg

)
1
σ2
g
− 1

σ2
f

 −1

σ2
f

(
1
σ2
g
− 1

σ2
f

)
= 0.

Similarly,

h2(α?, β?) = ϕ (x2(α?, β?)− µ0)
∂

∂β
x2(α?, β?)− ϕ (x1(α?, β?)− µ0)

∂

∂β
x1(α?, β?)
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= ϕ


√√√√√2

log
(
σf
σg

)
1
σ2
g
− 1

σ2
f

 1

σ2
g

(
1
σ2
g
− 1

σ2
f

) − ϕ
−

√√√√√2
log
(
σf
σg

)
1
σ2
g
− 1

σ2
f

 1

σ2
g

(
1
σ2
g
− 1

σ2
f

)
= 0.

Obviously, h1 and h2 are continuous at (α?, β?), which verifies B4. Thus, all Assumptions

B1−B9 are verified and Theorem 5.0.1 is applicable.

By Theorem 5.0.1, the asymptotic variance of Clarke’s test is 1/4, independent of the

choice of σf , σg and µ0, since h1 = h2 = 0. This result is surprising, since we would expect

the asymptotic variance to exceed the asymptotic variance of Bn, due to the randomness

induced by α̂n and β̂n. However and as expected, as we will see in Example 2 below, there

exist cases in which the asymptotic variance exceeds 1/4.

Remark 17

When carefully looking at Example 1, we can observe that the previous results can be gen-

eralized as described in the following: Assume that the true distribution has a continuous

and symmetric density around its expected value. Then α? = β? = E[X] as E[X] mini-

mizes the function a 7→ E[(X−a)2]. Repeating the above calculations, one can observe that

for arbitrary σf and σg, i.e. we do not have to satisfy the null hypothesis, the asymptotic

variance of Clarke’s test is always P (ψ(X,α?, β? > 0) (1− P (ψ(X,α?, β? > 0)), since

h1 = h2 = 0 in every of these cases. Comparing this with Vuong’s test, we calculate

Var

(
log
(f(X,α?)

g(X, β?)

))
= Var

(
σ2
f − σ2

g

2σ2
fσ

2
g

(X − E[X])2

)

=

(
σ2
f − σ2

g

2σ2
fσ

2
g

)2

Var
(
(X − E[X])2

)
=

(
σ2
f − σ2

g

2σ2
fσ

2
g

)2 (
E
[
(X − E[X])4]− Var(X)2

)
,

which clearly varies with the chosen values of σf and σg. Therefore, when applying Clarke’s

test to compare two Normal distributions with fixed variance, one does not need to estimate

the asymptotic variance, whereas one needs to do so when applying Vuong’s test.

7.1.2 Example 2

As as second example, we consider random variables supported on the positive real line.

The main purpose of this example is to find competing models that satisfy H0 and have
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asymptotic variance larger than 1/4.

Choose the true distribution P as a member of the family of generalized Gamma distri-

butions as defined in [14], which is defined by the densities

q(x, a, d, p) =
p

adΓ(d/p))
xd−1e−(xa)

p

1{x>0}, a, d, p > 0.

Assume that the competing models follow a Weibull distribution, given by the family of

densities

w(x, α1, α2) =
α2

α1

xα2−1 exp

(
−x

α2

α1

)
1{x>0}, α1, α2 > 0

and a Gamma distribution, whose densities are

g(x, β1, β2) =
1

ββ21 Γ(β2)
xβ2−1 exp

(
− 1

β1

x

)
1{x>0}, β1, β2 > 0.

Note that for p = d the generalized Gamma distribution becomes a Weibull distribution

and for p = 1 the generalized Gamma distribution becomes a Gamma distribution. In

order to satisfy Assumption B5, this particular parametrization of the competing models

is convenient, because we need to represent the estimators α̂n and β̂n as α̂n = Pns1 +oP (1)

and β̂n = Pns2 + oP (1) for some measurable functions s1 and s2.

Obviously, if α2 = β2 = 1, the models are nested. To satisfy Assumption B3, we choose

α2 = β2 = 2. As both families only depend on one remaining parameter, we denote

α1 =: α and β1 =: β. First, we calculate the pseudo maximum likelihood estimators of α?

and β?. The partial derivative of
∑n

i=1 log(w(Xi, α, 2)) w.r.t. α is given by

∂

∂α

n∑
i=1

log (w(Xi, α, 2)) = −n
α

+
n∑
i=1

X2
i

α2
.

Thus, the pseudo maximum likelihood estimator of α? is equal to α̂n = n−1
∑n

i=1 X
2
i .

Next, we calculate the pseudo maximum likelihood estimator of β?. The partial derivative

of
∑n

i=1 log(g(Xi, β, 2)) w.r.t. β is given by

∂

∂β

n∑
i=1

log(g(Xi, β, 2)) = −2n

β
+

n∑
i=1

Xi

β2
.

Therefore, the pseudo maximum likelihood estimator of β? is equal to β̂n = (n)−1∑n
i=1Xi/2.

In the next step, we calculate the pseudo-true values α? and β? explicitly, in case the true

distribution belongs to the family of generalized Gamma distributions. The calculations
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of α? and β? involve the calculations of E [log(w(X,α, 2))] and E [log(g(X, β, 2))], which is

a non-trivial task. We will use the formulas given in [3] and [14] and the properties of the

KLIC to split the expressions in several terms, which can be calculated separately. The

details of the calculations are available in Appendix E and yield the following expressions:

E [log (w(X,α, 2))] = log

(
2a

α

)
+

1

p
τ

(
d

p

)
−

Γ
(
d+2
p

)
Γ
(
d
p

) a2

α

and

E [log (g(X, β, 2))] = log

(
a

β2

)
+

1

p
τ

(
d

p

)
−

Γ
(
d+1
p

)
Γ
(
d
p

) a

β
,

where τ(y) = Γ′(y)/Γ(y) denotes the digamma function.

Therefore, we get

∂

∂α
E [log (g(X, β, 2))] = − 1

α
+

Γ
(
d+2
p

)
Γ
(
d
p

) a2

α2
,

which implies α? = a2Γ
(
d+2
p

)
/Γ
(
d
p

)
. Similarly,

∂

∂β
E [log (g(X, β, 2))] = − 2

β
+

Γ
(
d+1
p

)
Γ
(
d
p

) a

β2
,

which implies β? = aΓ
(
d+1
p

)
/2Γ

(
d
p

)
.

Next, we fix the parameters of the underlying generalized Gamma distribution, such that

H0 is satisfied. To calculate the probability of ψ(X,α?, β?) > 0, we need to find the zeros

(in x) of the continuous function

log

(
g(x, β?, 2)

w(x, α?, 2)

)
= log

 x exp
(
− x
β?

)
α?

2(β?)2x exp
(
− x2

α?

)
 = log

(
α?

2(β?)2

)
− x

β?
+
x2

α?
.

By the usual formula for zeros of a polynomial of degree 2 we get,

x1,2 =
α?

2β?
±

√(
α?

2β?

)2

− α? log

(
α?

2(β?)2

)
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=
aΓ
(
d+2
p

)
Γ
(
d+1
p

) ±
√√√√√√
aΓ

(
d+2
p

)
Γ
(
d+1
p

)
2

−
a2Γ

(
d+2
p

)
Γ
(
d
p

) log

Γ
(
d+2
p

)
2Γ
(
d
p

)
Γ
(
d+1
p

)2

.
One can show that x1 and x2 are real number for sufficiently small γ > 0 and we can

w.l.o.g. assume that x1 < x2. Denoting the distribution function of the generalized Gamma

distribution by Qa,d,p, we need to find a triplet of parameters (a, d, p) such that

P (ψ(X,α?, β?) > 0) = Qa,d,p(x1(α?, β?)) + 1−Qa,d,p(x2(α?, β?)) =
1

2

in order to satisfy the null hypothesis H0.

By fixing a = 1/2 and d = 3, we can solve for p numerically and obtain an approximated

value p ≈ 0.6457. Fixing a, d and p as above ensures thatH0 is satisfied with α? ≈ 52.85873

and β? ≈ 2.938702.

It remains to verify Assumptions B1−B9. Obviously, Assumptions B1−B3 and B9 are

satisfied. Additionally B6 is satisfied with K(ε) = 2. Due to the special structure of x1

and x2, Assumption B8 is also satisfied. To verify Assumptions B5 and B7, we observe

that s1(x) = x2 and s2(x) = x/2. Since E[X4] <∞, Assumptions B5 and B7 are satisfied.

To verify B4, it is enough to observe that the zeros x1(α, β) and x2(α, β) are continuously

differentiable at (α?, β?) by Remark 1. However, since we want to calculate the explicit

value of the asymptotic variance σ2
ψ, we will verify B4 by explicitly calculating h1(α, β)

and h2(α, β).

Since ψ(x1(α?,β?)+x2(α?,β?)
2

, α?, β?) < 0, we get

h(α?, β?) = Qa,d,p(x1(α?, β?)) + 1−Qa,d,p(x2(α?, β?)).

Therefore, we obtain

h1(α?, β?) = q (x1(α?, β?), a, d, p)

(
1

2β?
− 1

2

((
α?

2β?

)2

− α? log

(
α?

2(β?)2

))−1/2

(
α?

2(β?)2
− log

(
α?

2(β?)2

)
− 1

))
− q (x2(α?, β?), a, d, p)

(
1

2β?
+

1

2

((
α?

2β?

)2

− α? log

(
α?

2(β?)2

))−1/2(
α?

2(β?)2
− log

(
α?

2(β?)2

)
− 1

))
≈ 0.004467893
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as well as

h2(α?, β?) = q (x1(α?, β?), a, d, p)

(
− α?

2(β?)2
− 1

2

((
α?

2β?

)2

− α? log

(
α?

2(β?)2

))−1/2

(
− (α?)2

2(β?)3
+ α?

2

β?

))
− q (x2(α?, β?), a, d, p)(

− α?

2(β?)2
+

1

2

((
α?

2β?

)2

− α? log

(
α?

2(β?)2

))−1/2(
− (α?)2

2(β?)3
+ α?

2

β?

))
≈ −0.04957933.

Observing that h1 and h2 are continuous at (α?, β?), we have verified Assumption B4

explicitly.

The asymptotic variance of Clarke’s test is given by

σ2
ψ = Var

(
1{ψ(X,α?, β?) > 0}+ h1(α?, β?)X2 +

h2(α?, β?)

2
X

)
≈ 0.3475695.

Again, details of the tedious calculations can be found in Appendix E.

Remark 18

Since the asymptotic variance σ2
ψ is larger than 1/4, we have shown that it is not a

conservative approach to use 1/4 as an estimator of σ2
ψ.

7.2 Simulations

In this subsection, we investigate the finite sample behavior of the estimators introduced

in Chapter 5. To this goal, we conduct a small study of the empirical levels and powers

of Clarke’s test for the examples from Section 7.1 and several other model comparisons

introduced below. For each simulation study, two competing, non-nested density-families

are chosen. Moreover, the true unknown distribution P is fixed in such a way that As-

sumptions B1 − B6 are satisfied. We draw 1000 samples of size n from a distribution

P with absolutely continuous density p w.r.t. the Lebesgue measure and we compute

B̂n, (ĥ1,n,i)1≤i≤dα , (ĥ2,n,i)1≤i≤dβ and σ̂2
ψ defined in Equations (4.1),(5.2),(5.3) and (5.4), re-

spectively. For Examples 1 and 2, the theoretical values of (h1,i)1≤i≤dα , (h2,i)1≤i≤dβ and σ2
ψ

are known and we can assess the precision of their estimation.

Therefore, we proceed as follows:

1. Draw samples of size n from the distribution P , where n ∈ {50, 100, 250, 500,
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1000, 10000}.

2. Calculate B̂n, (ĥ1,n,i)1≤i≤dα , (ĥ2,n,i)1≤i≤dβ and σ̂2
ψ.

3. Calculate T1,n (and other test statistics, if they are of interest).

In each simulation study, we obtain 1000 realizations of the estimators B̂n, (ĥ1,n,i)1≤i≤dα ,

(ĥ2,n,i)1≤i≤dβ and σ̂2
ψ for a sample size n. Under the null hypothesis, Bn is Binomial dis-

tributed with parameter 1/2 and size n. Therefore, the empirical mean of the B̂n’s over

1000 samples estimates the mean of this Binomial distribution. Further, the empirical

means of (ĥ1,n,i)1≤i≤dα , (ĥ2,n,i)1≤i≤dβ and σ̂2
ψ approximate their theoretical counterparts.

After repeating the procedure for various sample sizes n, we summarize the results in

a corresponding table. For each simulated sample size, we present the mean of the 1000

realizations of the estimators. Additionally, we present the empirical level or power, i.e. the

percentage of rejections, of each of the calculated test statistics. The significance level of

the considered test is fixed at 5%. To investigate the stability of the considered estimators,

we report their empirical variances in Appendix D. The following abbreviations are used

in the tables below:

T1,n - the reference test statistic given in (5.5), i.e.
(
B̂n − n/2

)
/
√
nσ̂2

ψ.

T2,n - the test statistic
(
B̂n − n/2

)
/
√
nσ2

ψ.

T3,n - the test statistic
(
B̂n − n/2

)
/
√
n/4.

Due to Theorem 5.0.5, the parameter e(n) has to be chosen in order to estimate the

asymptotic variance σ2
ψ from (5.1). The bandwidth e(n) essentially determines the rate of

convergence of the partial derivative estimators ĥ1,n and ĥ2,n. However, there is a trade

off between accuracy and shrinkage of the error terms. On the one hand, the closer we

choose e(n) to 1/
√
n, the faster the estimators of the partial derivatives converge. On the

other hand, the shrinkage factor of the (asymptotically) Normal distributed error terms

is 1/(
√
ne(n)), due to Equation (A.1). Therefore, the shrinkage factor is close to 1 if e(n)

is close to 1/
√
n. To find an optimal e(n), we computed the estimators ĥ1,n, ĥ2,n and σ̂2

ψ

for the grid of values n−1/2.5, n−1/3, n−1/3.5, n−1/4, n−1/5. After investigating the results, we

chose e(n) = n−1/3, since it resulted in the smallest average empirical variance of the

estimators.
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7.2.1 Simulations For Example 1

We present our numerical results for Example 1, choosing the standard deviations of the

competing models as σg = 1/2 and σf ≈ 0.98. Figure 7.1 displays 1000 realizations of T1,n

(left plot) and of the test statistic T2,n (right plot) together with their respective boxplots.

Figure 7.1: Plot of the simulated test statistics for Example 1. On the left is the plot of
T1,n and on the right is the plot of the test statistic T2,n

Since H0 is satisfied for Example 1, both statistics are asymptotically standard Normal

distributed, which is partially confirmed by the boxplots. All observed values of the test

statistics lie in [−4, 4], showing that no outliers are present. The empirical 25% and 75%

quantiles of the data lie in [−1, 1], which indicates that most of the probability mass in

located around 0.
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Figure 7.2: QQ-plot of the observed T1,n.

To further verify the assumption of Normality, we present the QQ-plots of T1,n in Figure

7.2 for sample sizes 50, 100, 250, 500, 1000 and 10000. The red line is the 45 degree line.

Surprisingly, the QQ-plots display an accurate distributional approximation even for small

sample sizes. The slight step patterns in the QQ-plots for small sample sizes are due to

the discrete values of B̂n. This results in finitely many possible values of the estimators

ĥ1,i, ĥ2,i and σ̂2
ψ, explaining discrete values of T1,n. Altogether, the QQ-plots confirm the

asymptotic normality of T1,n.

Table 7.1 summarizes further simulation results. We observe that the empirical mean

of B̂n is very close to the true value n/2 and that the mean of the estimated variance

σ̂2
ψ is close to the true value 1/4, for every sample size n. The mean of the estimated

variance σ̂2
ψ converges with increasing number of observations. The empirical mean of the

partial derivative estimates are also close to their true value 0. The empirical levels of
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test statistics T1,n and T2,n are close to the (asymptotic) significance level 5%. Table D.1

in Appendix D shows the low variability of the estimators, which are spread around their

true values. It should be noted that the test statistic T3,n is identical to T2,n for Example

1.

Empirical Mean Of Empirical Level Of

n B̂n ĥ1 ĥ2 σ̂2
ψ T1,n T2,n

50 24.62 -0.003058 0.000589 0.271854 0.0610 0.0760
100 49.80 -0.000186 0.004850 0.263450 0.0530 0.0590
250 124.31 -0.000491 0.002835 0.257653 0.0600 0.0620
500 249.68 -0.000302 -0.000706 0.254543 0.0670 0.0720
1000 499.23 0.000065 0.003345 0.253132 0.0420 0.0450
10000 5000.65 0.000386 -0.001303 0.250676 0.0500 0.0500

Table 7.1: Empirical mean and empirical level of the estimators for Example 1 under H0.

7.2.2 Simulations For Example 2

For Example 2, we simulate 1000 samples with the parameters from Section 7.1, namely

α2 = β2 = 2, a = 1/2 and d = 3. Figure 7.3 shows the corresponding boxplots of T1,n (left

plot) and (B̂n − n/2)/
√
nσ2

ψ (right plot).

Figure 7.3: Plot of the simulated test statistics for Example 2. On the left is the plot of
T1,n and on the right is the plot of the test statistic T2,n.

The null hypothesis is satisfied for this example and therefore both test statistics are

asymptotically standard Normal distributed. Most of the observed values of both test

statistics lie in [−4, 4], but some outliers are present in the left plot. The empirical 25%

and 75% quantiles of the observations lie in [−1, 1], which indicates that most of the
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probability mass is located around 0. The quantiles in the left plot seem to be smaller

than the quantiles in right plot, even though outliers are present in the left plot.

In the case of T1,n, it is interesting to present the QQ-plot to check the assumption of

Normality.

Figure 7.4: QQ-plot of T1,n (black dots) and the QQ-plot of T3,n (blue dots).

Figure 7.4 shows the QQ-plot of T1,n with black dots and test statistic T3,n with blue dots

for each sample size. The red line is the 45 degree line. We observe that the black dots

exhibit a S-shaped form around the red line. Further, we see more observations around

the origin as we theoretically expect resulting in the S-shape of the black dots. The

accumulation of observations close to 0 is due the fact that T1,n suffers from some unusual

high variance estimates. These high variance estimates shrink the term (B̂n − n/2)/σ̂2
ψ

towards 0. The distributional approximation of T1,n is improved if we increase the sample
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size.

The QQ-plot of the test statistic T3,n visualizes that the asymptotic variance proposed by

Clarke is too small for Example 2. Indeed, the blue dots are consistently below the red line

for quantiles less than 0 and above the red line for quantiles larger than 0. This resembles

the fact that the asymptotic variance of test statistic T3,n is larger than 1. The effect is

not strongly visible, since the slope of the QQ-line for the blue dots is approximately 1.18,

which is close to the slope of the red line.

Further simulation results are summarized in Table 7.2. It can be observed that the

empirical mean of the B̂n’s is close to the true value n/2 for all sample sizes. The empirical

means of the partial derivative estimates ĥ1 and ĥ2 are close to their true values from

sample sizes n ≥ 250 on. However, the empirical mean of the estimated variances is much

larger than the true value σ2
ψ ≈ 0.348. This behavior explains the S-shape of the black

dots in Figure 7.4. Table D.2 in Appendix D additionally shows that the variability of the

variance estimator is huge for small sample sizes and still significantly large for sample

size 10 000.

We can give two possible explanations for this phenomenon. First, the partial derivatives

h1 ≈ 0.004 and h2 ≈ −0.05 are very small, but have a large impact on the variance. Small

deviations from the true values of h1 and h2 can lead to a large change in the asymptotic

variance. Therefore, the estimated variance can vary largely due to small inaccuracies in

the partial derivative estimates. The second explanation is that e(n) was chosen to be

equal to n−1/3 for both partial derivative estimates ĥ1 and ĥ2. For n = 100, n−1/3 ≈ 0.22

is relatively small in comparison to α?, but still relatively large in comparison to β?. To

validate this explanation, we conducted another simulation study and used the theoretical

values h1 and h2 instead of ĥ1 and ĥ2 in the calculation of σ̂2
ψ. The empirical mean of the

resulting variance estimates is very close to the true variance across all sample sizes and

confirms our statements.

Furthermore, we observe that the empirical level of T1,n deviates from 5% a bit more in

comparison to Table 7.1. The empirical level of T2,n is close to 5% for every sample size

and this indicates that T1,n suffers from outliers of the variance estimate. The last column

of Table 7.2 shows the empirical level of T3,n, which is based on the original Clarke’s test

statistic B̂n. We observe that the original approach from Clarke is too conservative, as we

reject the null hypothesis in about 10% of the cases. This result confirms the theoretical

results of Chapter 5, since it shows that the proposed variance in [6] is false. Therefore,

the approach by Clarke can lead to misleading results and it is advisable to use the

approach proposed in this master thesis. Moreover, the deviation of the level of Clarke’s

test explains the observation on the blue dots in Figure 7.3 and the statement in Remark
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18. Summarizing, we can say that the test based on T1,n keeps its level better than Clarke’s

test based on T3,n.

Empirical Mean Of Empirical Level Of

n B̂n ĥ1 ĥ2 σ̂2
ψ T1,n T2,n T3,n

50 24.42 0.003389 -0.051429 3.393517 0.0700 0.0470 0.1220
100 49.58 0.003365 -0.052404 2.244614 0.0400 0.0440 0.0910
250 124.61 0.004700 -0.051065 1.501887 0.0380 0.0550 0.1000
500 249.49 0.004516 -0.050654 1.044610 0.0290 0.0430 0.0940
1000 499.55 0.004525 -0.051370 0.860713 0.0390 0.0600 0.1010
10000 5000.91 0.004405 -0.049034 0.446276 0.0480 0.0540 0.1140

Table 7.2: Empirical mean and empirical level of the estimators for Example 2 under H0.

7.3 Empirical Power Study

We present our results of the empirical power study for several model comparisons that

are introduced hereafter. For each example, we introduce the competing density families

together with the true distribution P and estimate (ĥ1,n,i)1≤i≤dα , (ĥ2,n,i)1≤i≤dβ and σ̂2
ψ to

compute T1,n. Note that we cannot investigate the behavior of T2,n, because the compu-

tation of the theoretical variance σ2
ψ is very difficult. Moreover, we do not consider T3,n,

since its asymptotic distribution is not standard Normal under H0. This implies that T3,n

does not keep its level under H0, which would be a necessary requirement to investigate

its power.

We summarize the empirical results with the empirical mean of the estimators

(ĥ1,n,i)1≤i≤dα , (ĥ2,n,i)1≤i≤dβ and σ̂2
ψ and the empirical power of T1,n. Note that the empir-

ical power of T1,n is displayed as the percentage of ”correct” rejections. This means that

the critical region is defined as [1.96,∞] if P (log (f(X,α?)/g(X, β?)) > 0) > 1/2 and as

[−∞,−1.96] if P (log (f(X,α?)/g(X, β?)) > 0) < 1/2. If we do not classify rejections as

”correct” or ”incorrect” then the reported empirical powers would be even slightly higher.

Since this gap is negligible, we have preferred to consider unilateral critical regions.

We start with a simple model comparison. We compare a Normal distribution with vari-

ance 2 against a Normal distribution with variance 3. The underlying distribution P is a

standard Normal distribution. It is intuitively clear that the model with variance 2 should

be considered as the ”better” model. Table 7.3 shows the simulation results. The test con-

sistently prefers the Normal distribution with variance 2, since the empirical mean of B̂n

is larger than n/2. In fact, the null hypothesis was rejected in 100% of the cases in favor

of the model with variance 2, for all sample sizes. Note, that in this example h1 = h2 = 0
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by Remark 17 and we can asses the precision of the estimators ĥ1 and ĥ2. The empirical

means of ĥ1 and ĥ2 are close to 0 across all sample sizes indicating their unbiasedness.

Table D.3 shows the low variability of all estimators, illustrating stable estimation results

for all sample sizes.

Empirical Mean Of Emp. Pow.

n B̂n ĥ1 ĥ2 σ̂2
ψ T1,n

50 44.21 0.002953 0.000037 0.112017 1
100 88.24 -0.001625 -0.001114 0.108880 1
250 220.54 0.003969 -0.004044 0.106807 1
500 441.02 -0.000913 -0.001389 0.105710 1
1000 881.72 0.000345 0.000155 0.105252 1
10000 8809.76 0.000486 -0.000207 0.105095 1

Table 7.3: Empirical mean and empirical power of the estimators in the case N (α, 2) vs.
N (β, 3) and P = N (0, 1).

Following this simple example, we continue with more complex model comparisons. First,

we compare the family of Normal distributions against the family of Laplace distribution

by considering the quotient of densities

1√
2πα1

exp
(
− (x−α2)2

2α1

)
1

2β1
exp

(
− |x−β2|

2β1

) . (7.1)

The true distribution P is chosen as a t-distribution with 15 degrees of freedom. Further-

more, we choose the standard maximum likelihood estimators of the respective distribu-

tions as estimators of α? and β?.

The results are summarized in Table 7.4. The test prefers the family of Normal distri-

butions, since the empirical mean of B̂n is consistently larger than n/2. The empirical

means of the estimators ĥ1,1 and ĥ2,1 are close to 0, for all sample sizes. Additionally, we

observe that the empirical means of the estimators ĥ1,2 and ĥ2,2 are stable over all sample

sizes. However, the empirical mean of the variance estimator σ̂2
ψ is only stable for sample

sizes n ≥ 250. Table D.4 in Appendix D confirms this observation, since the empirical

variance of σ̂2
ψ is strongly decreasing for increasing sample size. The empirical power of

T1,n increases with the sample size. For sample size 500, already more than 98% of the

tests reject H0 in favor of the superior family of Normal distributions.
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Empirical Mean Of Emp. Pow.

n B̂n ĥ1,1 ĥ1,2 ĥ2,1 ĥ2,2 σ̂2
ψ T1,n

50 30.29 -0.005121 -0.163571 0.007221 0.276634 0.350380 0.2550
100 60.10 0.004943 -0.161759 0.001601 0.272670 0.330764 0.4070
250 149.91 -0.001462 -0.166385 0.002759 0.272445 0.319871 0.8120
500 300.54 -0.002183 -0.163185 0.000127 0.266858 0.310164 0.9820
1000 599.54 -0.000435 -0.166415 0.001965 0.266085 0.308186 1.0000

Table 7.4: Empirical mean and empirical power of the estimators in the case of Normal
vs. Laplace distribution and P equal to a t distribution with 15 degrees of freedom.

As a last example, we compare a Gamma distribution against an Exponential distribution.

The Gamma distribution is parametrized as in Section 7.1.2 and the parametrization of

the Exponential distribution is as follows:

eβ(x) =
1

β
exp−

x
β .

Thus, we consider the quotient of density families

1
α
α2
1 Γ(α2)

xα2−1 exp
(
− 1
α1
x
)

1
β

exp−
x
β

1{x>0}. (7.2)

The underlying distribution P is chosen to follow an Exponential distribution with mean

1. Fixing the parameter α2 6= 1 of the Gamma density family ensures that Assumption

B3 is satisfied. Now, one can easily check that Assumptions B1 − B6 are satisfied. For

this simulation we choose α2 = 2, which implies that α̂n = (n)−1
∑n

i=1 Xi/2 is the same

estimator as in Section 7.1.2. The pseudo maximum likelihood estimator of β is given by

β̂ := X̄. Note, that the test should clearly prefer the Exponential distribution, since the

true distribution can be perfectly approximated by the Exponential density family.

The simulation results are summarized in Table 7.5. We observe that Clarke’s test is not

able to identify the true underlying Exponential distribution, since the empirical mean of

B̂n is consistently larger than n/2. In fact, it consistently prefers the Gamma distribution

over all sample sizes. Note that the empirical power of Clarke’s test is increasing with the

sample size, since the rejections in favor of the Gamma distribution are mathematically

correct. Indeed, the median of ψ(X,α?, β?) is greater than 1/2 in this example, even

though the identification of the true model would require a median less than 1/2. Since

Clarke’s test is only extracting information about the median of ψ(X,α?, β?), it discards

useful information. E.g. a huge positive observation of ψ(Xi, α̂n, β̂n) has exactly the same

influence on the statistic B̂n as small positive observation of ψ(Xi, α̂n, β̂n). However, in
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the case of a huge observation of ψ(Xi, α̂n, β̂n) density f is a lot more ”likely” than density

g, whereas in the case of a small positive observation of ψ(Xi, α̂n, β̂n) both models f and

g are almost equally ”likely”. This ”oversimplification” of the test statistic leads to the

drawback, that in similar competing models, the ”wrong” model may be chosen. This

is the price one needs to pay for simplifying the test statistic in comparison to the test

statistic presented in [20].

We have simulated the same example for several other values of α2 and observed that

for α2 ≥ 3 and α2 ≤ 1/2 Clarke’s test consistently prefers the true Exponential distribu-

tion. Additionally, we have simulated Vuong’s test with α2 = 2 and obtained an empirical

power of almost 100% for sample sizes n ≥ 250. This shows that Vuong’s test outperforms

Clarke’s test for this example, since it consistently prefers the true Exponential distribu-

tion. Apart from selecting the ”wrong” model, we observe stable estimators across all

sample sizes, which is confirmed by the low variability of the estimators, shown in Table

D.5 in Appendix D.

Empirical Mean Of Emp. Pow.

n B̂n ĥ1 ĥ2 σ̂2
ψ T1,n

50 29.41 0.001032 -0.023062 0.255034 0.2510
100 58.65 -0.040359 -0.023301 0.253163 0.4120
250 146.24 -0.039814 -0.013481 0.248716 0.7780
500 291.57 -0.027105 -0.004516 0.246785 0.9680
1000 583.36 -0.017720 -0.006535 0.245561 1.0000

Table 7.5: Empirical mean and empirical power of the estimators in the case of a Gamma
vs. Exponential distribution under an Exponential distribution with mean 1.

Supplementary to the examples presented above, a further investigation of the power of

T1,n is provided Appendix C.

7.4 Bootstrap Simulations

In this subsection, we investigate the properties of a bootstrap estimation procedure of

the asymptotic variance σ2
ψ and the empirical power of a modified version of T1,n. We

apply Efron’s Bootstrap scheme, corresponding to multinomial weights ξi,n. Obviously,

multinomial weights satisfy the conditions stated in Assumptions W1−W4. In addition

to Assumptions B1−B6, Assumptions B7 and B9 are satisfied for all model comparisons

considered below. Note that we do not need to verify Assumption B8, due to Remark 16.
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The study is conducted similarly to the empirical power study in Section 7.3. The only

difference is that we replace steps 2. and 3. by the following procedure:

2.′ Calculate B̂n. Draw B bootstrap samples of size n from the sample obtained in step

1. For each bootstrap sample i, calculate B̃n,i according to (5.6) to obtain B boot-

strap replicates of B̂n. Define σ2
B as the sample variance of

(
n−1/2(B̃n − B̂n)

)
1≤i≤B

.

3.′ Calculate the test statistic

B̂n − n
2√

nσ̂2
B

=: T4,n. (7.3)

Note, that the test statistic presented in (7.3) is approximately asymptotically standard

Normal distributed. To see the claim, assume that the following assumption is satisfied.

AssumptionB10 Define

fB


(
B̃1
n − B̂n

)
√
n

, ...,

(
B̃B
n − B̂n

)
√
n


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∣∣∣∣∣ 1

B

B∑
i=1

(
1√
n

(
B̃i
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)
− 1

B

B∑
i=1

1√
n

(
B̃i
n − B̂n

))2

− σ2
ψ

∣∣∣∣∣,
where B̃i

n is the bootstrapped version of B̂n calculated from the i-th (independent)

bootstrap sample. Assume that for all ε > 0 there exists K ∈ R such that

lim sup
B,n→∞

E∗PXW

[
fB


(
B̃1
n − B̂n

)
√
n

, ...,
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)
√
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, ...,

(
B̃B
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)
√
n

 > K

}]
< ε.

Using this assumption, we can prove the following lemma.

Lemma 7.4.1

Under Assumptions B1−B10, we have

lim
B→∞

lim
n→∞

P∗XW

∣∣∣∣∣ 1

B

B∑
i=1

(
1√
n

(
B̃i
n − B̂n

)
− 1

B

B∑
i=1

1√
n

(
B̃i
n − B̂n

))2

− σ2
ψ

∣∣∣∣∣ > ε

 = 0.

The proof of Lemma 7.4.1 can be found in Appendix A.9.
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In the following, we will always assume that Assumption B10 is satisfied. Additionally,

we set B = 500. The results of the bootstrap simulations are summarized in tables, which

contain the empirical level/power of test statistic T4,n and the empirical mean of σ2
B, for

each sample size n. Tables of the empirical variance of the estimator σ2
B can be found in

Appendix D.

We start with the simulation of Example 1. The results are summarized in Table 7.6.

We observe, that the empirical mean of σ2
B is slightly biased or suffers from outliers.

Table D.6 in Appendix D shows that the variability of σ2
B is small. This indicates that

the bootstrap variance estimate σ2
B is indeed biased for small sample sizes. However, for

increasing sample size the empirical mean of σ2
B converges to the true value 1/4. The

empirical level of test statistic T4,n is close to 5% for sample sizes n ≥ 100.

Empirical Mean Of Empirical Level Of
n σ̂2

B T4,n

50 0.301268 0.0340
100 0.285053 0.0410
250 0.273778 0.0410
500 0.266621 0.0480
1000 0.261062 0.0450

Table 7.6: Empirical mean and empirical level of the bootstrap estimators for Example 1.

Following Example 1, we present the results for Example 2, which are summarized in

Table 7.7. Again, we can observe that the empirical mean of σ̂2
B is slightly biased or

suffers from outliers. However, σ̂2
B seems to be better than σ̂2

ψ for Example 2, since the

empirical mean of the estimator σ̂2
B is much closer to the true value σ2

ψ than the empirical

mean of σ̂2
ψ. Table D.7 in Appendix D confirms this observation, since the variability of

σ̂2
B is very small in comparison to the variability of σ̂2

ψ. This again indicates that σ̂2
B is

stable, but slightly biased.

The empirical level of the T4,n is close to the approximate asymptotic level of 5%. There-

fore, T4,n yields better results than T1,n, which is due to the stability of the estimator σ̂2
B.
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Empirical Mean Of Empirical Level Of
n σ̂2

B T4,n

50 0.378511 0.0500
100 0.377113 0.0620
250 0.370148 0.0560
500 0.364260 0.0460
1000 0.362580 0.0500

Table 7.7: Empirical mean and empirical level of the bootstrap estimators for Example 2.

In the following, we present the results for the examples from Section 7.3. We begin with

the two competing Normal distributions and compare our results, which are summarized

in Table 7.8, with the results of Table 7.3. The results of both approaches are very similar.

Both test statistics lead to an empirical power of 100% for each sample size n. Moreover,

the empirical mean and variance of the estimators σ̂2
B and σ̂2

ψ are almost identical.

Empirical Mean Of Empirical Power
n σ̂2

B T4,n

50 0.114357 1.0000
100 0.113633 1.0000
250 0.111407 1.0000
500 0.109828 1.0000
1000 0.108122 1.0000

Table 7.8: Empirical mean and empirical power of the bootstrap estimators in the case of
N (0, 2) vs. N (0, 3) under a standard Normal distribution.

Next, we present the model comparison introduced in (7.1). The results are summarized in

Table 7.9. The empirical mean of σ̂2
B is slightly too high for small sample sizes. However,

the same behavior can be observed for the estimator σ̂2
ψ in Table 7.4. The empirical power

of T4,n increases with the sample size and is very similar to the empirical power of T1,n.

Empirical Mean Of Empirical Power
n σ̂2

B T4,n

50 0.349600 0.2320
100 0.346448 0.4130
250 0.334506 0.8050
500 0.321654 0.9760
1000 0.315343 1.0000

Table 7.9: Empirical mean and empirical power of the bootstrap estimators in the case of
Normal vs. Laplace distribution, where P is equal to a t distribution with 15 degrees of
freedom.

As a last example we present the model comparison introduced in (7.2). The results are
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summarized in Table 7.10. Once more, we observe that the variance estimate seems to

be slightly too high, for small sample sizes. Table D.10 shows that the variability of σ̂2
B

is low, again confirming that σ̂2
B is slightly biased. The empirical power of T4,n is slightly

lower than the empirical power of T1,n, but roughly in the same range.

Empirical Mean Of Empirical Power
n σ̂2

B T4,n

50 0.280097 0.2190
100 0.269428 0.3860
250 0.260587 0.7420
500 0.255436 0.9600
1000 0.252380 0.9990

Table 7.10: Empirical mean and empirical power of the bootstrap estimators in the case
of a Gamma vs. Exponential distribution under an Exponential distribution with mean
1.

Altogether, we observe that the empirical mean of σ̂2
B is slightly biased for small sample

sizes, but converges with increasing sample size. If σ̂2
ψ does not suffer from outliers, it

tends to be closer to the true value σ2
ψ than σ̂2

B. In these cases, the empirical variance of

both estimators σ̂2
ψ and σ̂2

B is quite low. However, in comparison to σ̂2
ψ, σ̂2

B does not suffer

from outliers in Example 2, showing that it can be a more reliable estimator.

The empirical level/power of T4,n is very similar to the empirical level/power of T1,n. In

case of Example 2, the empirical level of T4,n is closer to 5% than the level of T1,n, again

indicating that T4,n is not as sensitive to outliers as T1,n.



Chapter 8

Summary And Outlook

In this master thesis, we have revisited Clarke’s test and derived its correct asymptotic

distribution and variance. Based on this result, we have proposed two (approximately)

asymptotically standard Normal distributed test statistics for non-nested model selection.

First, we have shown that the claimed Binomial distribution of Clarke’s test statistic B̂n

is incorrect. In Chapter 5, we have proven that n−1/2(B̂n− 1/2) is asymptotically Normal

distributed. Additionally, we have shown that the asymptotic variance of n−1/2(B̂n−1/2)

can be estimated either by Theorem 5.0.5 or via a bootstrap approach. These results can

be used to formulate the (approximately) asymptotically standard Normal distributed

test statistics T1,n and T4,n. As a side result, we have stated sufficient conditions for

Fγ to be a Donsker class and we have shown that the bootstrapped pseudo maximum

likelihood estimator converges to the pseudo-true value in outer probability. Furthermore,

we have clarified the asymptotic relation ofBn to B̂n, showing that their scaled difference is

asymptotically Normal distributed. The comparison of Vuong’s test with the test proposed

in this master thesis yields that both approaches require similar assumptions. However, our

approach seems to be slightly more general, since it only requires mild moment conditions

and is still applicable if a proposed density is not differentiable w.r.t. its parameters.

In Chapter 7, we presented two examples of competing densities, which satisfy the null

hypothesis H0 and Assumptions B1 − B9. We illustrated these results in a simulation

study, showing that the estimator σ̂2
ψ may suffer from outliers. However, the empirical

levels of T1,n and T4,n do not strongly deviate from their theoretical level. In the empirical

power study, we saw that the proposed test statistics T1,n and T4,n yield similar results in

terms of their empirical power. It should be noted that the proposed bootstrap estimator

of σ2
ψ seems to be slightly biased for smaller sample sizes, but does not suffer from outliers

in any of the presented examples. Therefore, there is no clear recommendation to prefer

one of the proposed variance estimators over the other.
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In further investigations, it would be useful to extend our test to multiple competing

densities, since we only considered the case of pairwise density comparisons. Furthermore,

it is desirable to relax the assumption of strict non-nestedness to the non-nestedness

assumption in [20]. Another interesting task is to investigate cases similar to Remark 17,

i.e. cases in which the asymptotic variance of n−1/2(B̂n−n/2) is equal to 0.25. Looking at

the results of the empirical power study, it seems to be the case that the partial derivative

of h w.r.t. the mean of a proposed elliptical density is zero in case the true underlying

distribution is symmetric around its mean. This would simplify some density comparisons

since one would not need to estimate the asymptotic variance of Clarke’s test statistic.

Further, a mathematical justification for the choice of the shrinkage parameter e(n) in

the estimation of σ̂2
ψ would prove valuable. Finally, it would be of great interest to find

easily verifiable conditions to verify Assumption B10.



Appendix A

Proofs

A.1 Extension of our framework to identical

marginal distributions of the covariates

Assume that X = (Y, Z). Let f(Y | Z, α?) and g(Y | Z, β?) be the conditional densities

of Y given Z under both alternative models, and define fZ(Z, α?) and gZ(Z, β?) as the

marginal densities of Z under the ”optimal” models for the distribution of X. Now,

assume that the marginal distribution of Z is identical in both models, i.e fZ(Z, α?) =

gZ(Z, β?) =: hZ(Z). Moreover, the support of h(·) is the support of the true law of Z.

Therefore, we have

P

(
log

(
f(X,α?)

g(X, β?)

)
> 0

)
= P

(
log

(
f(Y | Z, α?)fZ(Z, α?)

g(Y | Z, β?)gZ(Z, β?)

)
> 0

)
= P

(
log

(
f(Y | Z, α?)
g(Y | Z, β?)

)
> 0

)
,

which proves that the conditional and unconditional null hypotheses of Clarke’s test are

equivalent.

A.2 Proof of Theorem 5.0.1

Proof of (i):

Let γ > 0 such that Fγ is P −Donsker and Assumptions B1 − B5 are satisfied. Under

the null, we can write the normalized test statistic as

1√
n

(
B̂n −

n

2

)
=
√
n(Pnφn − Pφn) +

√
n(Pφn − Pφ?)
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= Gnφn +
√
nP (φn − φ?)

= Gn(φn − φ?) + Gnφ? +
√
nP (φn − φ?).

Since Fγ is P −Donsker, we can use Corollary 2.3.12 in [19] to show that Gn(φn−φ?) is

oP(1). We first show that ρP (φn, φ?) :=
√
P (φn − φ?)2 → 0 P-almost surely. Note that the

pseudometric ρP slightly differs from the pseudometric in [19], but it is obvious that both

metrics are equivalent in our case. By the continuous mapping theorem, ψ(x, α̂n, β̂n) →
ψ(x, α?, β?) P-almost surely for any x ∈ R, since ψ is continuous on Eγ.

Therefore,

P
(
P
(

lim
n→∞

ψ(X, α̂n, β̂n) = ψ(X,α?, β?)
)

= 1
)

= 1.

Note that P
(

limn→∞ ψ(X, α̂n, β̂n) = ψ(X,α?, β?)
)

=
∫

1{limn→∞ ψ(X(ω), α̂n, β̂n) =

ψ(X(ω), α?, β?)}dP (ω) is a random variable, due to the randomness induced by α̂n and

β̂n. Furthermore, by the Dominated Convergence Theorem,

P
(

lim
n→∞

∫
(φn − φ?)2dP = 0

)
≥ P

(
P
(

lim
n→∞

1{ψ(X, α̂n, β̂n) > 0} = 1 {ψ(X,α?, β?) > 0}
)

= 1
)

= P
(
P
(

lim
n→∞

1{ψ(X, α̂n, β̂n) > 0} = 1 {ψ(X,α?, β?) > 0} , ψ(X,α?, β?) 6= 0
)

+ P
(

lim
n→∞

1{ψ(X, α̂n, β̂n) > 0} = 1 {ψ(X,α?, β?) > 0} , ψ(X,α?, β?) = 0
)

= 1
)

= P
(
P
(

lim
n→∞

1{ψ(X, α̂n, β̂n) > 0} = 1 {ψ(X,α?, β?) > 0} , ψ(X,α?, β?) 6= 0
)

= 1
)

= 1,

since ψ(X,α?, β?) has no probability mass at 0, by the definition of strictly non-nested

models. Combining the arguments, we get ρP (φn, φ?)→ 0 P-almost surely.

Next, choose some arbitrary ε > 0 and ν > 0. Choose δ > 0 and n large enough such that

the equicontinuity condition (2.1.8) from [19] is satisfied with

P

(
sup

ρP (f−g)≤δ
|Gn(f − g)| > ε

)
≤ ν,

and P (ρP (φn, φ?) > δ) ≤ ν. This yields

P (|Gn(φn − φ?)| > ε) = P (|Gn(φn − φ?)| > ε , ρP (φn, φ?) > δ)

+ P (|Gn(φn − φ?)| > ε , ρP (φn, φ?) ≤ δ)
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≤ P (ρP (φn, φ?) > δ) + P
(

sup
ρP (f−g)≤δ

|Gn(f − g)| > ε

)
≤ 2ν.

Since ν was arbitrary, we get P (|Gn(φn − φ?)| > ε)→ 0 for all ε > 0, i.e. Gn(φn − φ?) =

oP(1).

The previous result allows us to solely focus on the convergence of Gnφ? + P (φn − φ?) in

the remaining part of the proof. By a limited expansion of h and under H0, we have

P (φn − φ?) = Pφn −
1

2
=

∫
1{ψ(x,α̂n,β̂n)>0}dP (x)− 1

2

= h(α?, β?) + h1(α?, β?) · (α̂n − α?) + h2(α?, β?) · (β̂n − β?)

+ oP (‖α̂n − α?‖) + oP

(
‖β̂n − β?‖

)
− 1

2

= h1(α?, β?) · (α̂n − α?) + h2(α?, β?) · (β̂n − β?) + oP

(
1√
n

)
,

noting that h(α?, β?) = 1
2
. Thus, this yields

1√
n

(B̂n −
n

2
) = Gn(φn − φ?) + Gnφ? + h1(α?, β?) ·

√
n(α̂n − α?)

+ h2(α?, β?) ·
√
n(β̂n − β?) + oP(1)

= Gnφ? + h1(α?, β?) ·
√
n(α̂n − α?) + h2(α?, β?) ·

√
n(β̂n − β?)

+ oP(1).

From Assumption B5 we get
√
n(α̂n−α?) =

√
n(Pns1−Ps1) + oP(1) = Gns1 + oP(1) and

√
n(β̂n − β?) =

√
n(Pns2 − Ps2) + oP(1) = Gns2 + oP(1), which allows us to calculate

1√
n

(B̂n −
n

2
) = Gnφ? + h1(α?, β?) ·Gns1 + h2(α?, β?) ·Gns2 + oP(1)

= Gn(φ? + h1(α?, β?) · s1 + h2(α?, β?) · s2) + oP(1).

Note that the coordinate projections of s1 and s2, even multiplied by some constants, are

P −Donsker. Since finite sums of Donsker classes are a Donsker class, φ? + h1(α?, β?) ·
s1 + h2(α?, β?) · s2 is also Donsker. Finally,

Gn(φ? + h1(α?, β?) · s1 + h2(α?, β?) · s2) + oP(1) G,
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where G is Gaussian with mean zero. The variance of G is equal to

σ2
ψ = Var (φ?(X) + h1(α?, β?) · s1(X) + h2(α?, β?) · s2(X)) .

Proof of (ii):

By the first part of the proof, we know that

1√
n

(
B̂n −

n

2

)
= Gn(φn − φ?) + Gnφ? +

√
nP (φn − φ?) +

√
nP (φ? −

1

2
)

= OP(1) +
√
nP (φ? −

1

2
).

If P (ψ(X,α?, β?) > 0) < 1
2
, this yields

√
nP (φ? − 1

2
)→ −∞.

Proof of (iii):

Again, by a similar argument, we have

1√
n

(
B̂n −

n

2

)
= Gn(φn − φ?) + Gnφ? +

√
nP (φn − φ?) +

√
nP (φ? −

1

2
)

= OP(1) +
√
nP (φ? −

1

2
).

If P (ψ(X,α?, β?) > 0) < 1
2
, we deduce

√
nP (φ? − 1

2
)→ ∞.

A.3 Proof of Proposition 5.0.3

We calculate

σ2
h = Var (h1(α?, β?) · s1(X) + h2(α?, β?) · s2(X))

= Var (h1(α?, β?) · s1(X)) + Var(h2(α?, β?) · s2(X))

+ 2 Cov(h1(α?, β?) · s1(X), h2(α?, β?) · s2(X))

=
dα∑
i=1

dα∑
j=1

Cov

(
∂

∂αi
h(α?, β?)s1,i(X);

∂

∂αj
h(α?, β?)s1,j(X)

)

+

dβ∑
i=1

dβ∑
j=1

Cov

(
∂

∂βi
h(α?, β?)s2,i(X);

∂

∂βj
h(α?, β?)s2,j(X)

)
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+ 2
dα∑
i=1

dβ∑
j=1

Cov

(
∂

∂αi
h(α?, β?)s1,i(X);

∂

∂βj
h(α?, β?)s2,j(X)

)

=
dα∑
i,j=1

∂

∂αi
h(α?, β?)

∂

∂αj
h(α?, β?)Σi,j +

dβ∑
i,j=1

∂

∂βi
h(α?, β?)

∂

∂βj
h(α?, β?)Σdα+i,dα+j

+ 2
dα∑
i=1

dβ∑
j=1

∂

∂αi
h(α?, β?)

∂

∂β?j
h(α?, β?)Σi,dα+j

= h1(α?, β?)ᵀΣf (α
?, β?)h1(α?, β?) + h2(α?, β?)ᵀΣg(α

?, β?)h2(α?, β?)

+ 2h1(α?, β?)ᵀΣf,g(α
?, β?)h2(α?, β?)

since Var(s1(X)) = limn→∞Var(
√
n(α̂n − α?)) and Var(s2(X)) =

limn→∞Var(
√
n(β̂n − β?)) as well as Cov(s1(X); s2(X)) = limn→∞

Cov
(√

n(α̂n − α?);
√
n(β̂n − β?)

)
by the uniform integrability assumption.

A.4 Proof of Lemma 5.0.4

ĥ1,n,i =
1

2e(n)

(
hn(α̂n + e(n)uαi , β̂n)− hn(α̂n − e(n)uαi , β̂n)

)
=

1

2e(n)

(
Pn1{ψ(·, α̂n + e(n)uαi , β̂n) > 0} − Pn1{ψ(·, α̂n − e(n)uαi , β̂n) > 0}

)
=

1

2e(n)

{
(Pn − P )

(
1{ψ(·, α̂n + e(n)uαi , β̂n) > 0} − φ?

)
− (Pn − P )

(
1{ψ(·, α̂n − e(n)uαi , β̂n) > 0} − φ?

)}
+

1

2e(n)
P
(
1{ψ(·, α̂n + e(n)uαi , β̂n) > 0} − 1{ψ(·, α̂n − e(n)uαi , β̂n) > 0}

)
=

1

2
√
ne(n)

{
Gn

(
1{ψ(·, α̂n + e(n)uαi , β̂n) > 0} − φ?

)
−Gn

(
1{ψ(·, α̂n − e(n)uαi , β̂n) > 0} − φ?

)}
+

1

2e(n)
P
(
1{ψ(·, α̂n + e(n)uαi , β̂n) > 0} − 1{ψ(·, α̂n − e(n)uαi , β̂n) > 0}

)
.

From the proof of Theorem 5.0.1, we get that ρP (1{ψ(·, α̂n + e(n)uαi , β̂n) > 0}, φ?) → 0

P-almost surely and ρP (1{ψ(·, α̂n − e(n)uαi , β̂n) > 0}, φ?)→ 0 P-almost surely. Using the

equicontinuity of Gn and limn→∞
√
ne(n) > 0, we get

1

2
√
ne(n)

(
Gn

(
1{ψ(·, α̂n + e(n)uαi , β̂n) > 0} − φ?

)
(A.1)
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−Gn

(
1{ψ(·, α̂n − e(n)uαi , β̂n) > 0} − φ?

))
= oP∗(1).

For the remaining term we use the same Taylor expansion as is the proof of Theorem

5.0.1 to calculate

1

2e(n)
P
(
1{ψ(·, α̂n + e(n)uαi , β̂n) > 0} − 1{ψ(·, α̂n − e(n)uαi , β̂n) > 0}

)
=

1

2e(n)

(
h1(α?, β?) · (α̂n + e(n)uαi − α?)− h1(α?, β?) · (α̂n − e(n)uαi − α?) + oP (e(n))

)
=

∂

∂αi
h(α?, β?) +

1

2e(n)
oP (e(n)) =

∂

∂αi
h(α?, β?) + oP(1).

Therefore, ĥ1,n,i → ∂
∂αi
h(α?, β?) in P-probability. The convergence of ĥ2,n,j follows analo-

gously.

A.5 Proof of Theorem 5.0.5

Define Qγ := {f + u1 · s1 + u2 · s2 | f ∈ Fγ, (u1, u2) ∈ [h1(α?, β?) − γ, h1(α?, β?) + γ] ×
[h2(α?, β?) − γ, h2(α?, β?) + γ]}. Qγ is P − Glivenko − Cantelli, since it is a finite sum

of P − Donsker classes. Note that for a < b, i ∈ {1, 2} and j ∈ {1, .., dα,β} we have

[a, b]si,j = {λ1asi,j +(1−λ1)bsi,j} is the convex hull of the Donsker class {asi,j, bsi,j} and

therefore a Donsker class. Note that we have invoked the permanence of the Donsker

property under a convex hull transform (Theorem 2.10.3 in [19]). Additionally, Q2
γ is also

P −Glivenko−Cantelli in P-probability by Lemma 2.10.14 in [19]. It is sufficient to show

Pn
(
φn + ĥ1,n · s1 + ĥ2,n · s2

)2

→ P
(
φ? + h1(α?, β?) · s1 + h2(α?, β?) · s2

)2

in outer P-probability. Let ε > 0 and denote qn := φn + ĥ1,n · s1 + ĥ2,n · s2 and q :=

φ? + h1(α?, β?) · s1 + h2(α?, β?) · s2. First,

P (q2
n − q2) = P (φ2

n − φ2
?) + 2P (ĥ1,nφn − h1(α?, β?)φ?) · s1

+ 2P (ĥ2,nφn − h2(α?, β?)φ?) · s2 + (ĥ2
1,n − h2

1(α?β?)) · Ps2
1

+ (ĥ2
2,n − h2

2(α?β?)) · Ps2
2 + 2Pĥ1,n · s1 × ĥ2,n · s2

− 2Ph1(α?, β?) · s1 × h2(α?, β?) · s2

= P (φ2
n − φ2

?) + 2P (φn − φ?)ĥ1,n · s1 + 2Pφ?(ĥ1,n − h1(α?, β?)) · s1

+ 2P (φn − φ?)ĥ2,n · s2 + 2Pφ?(ĥ2,n − h2(α?, β?)) · s2

+ (ĥ2
1,n − h2

1(α?β?)) · Ps2
1 + (ĥ2

2,n − h2
2(α?β?)) · Ps2

2
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+ 2
dα∑
i=1

dβ∑
j=1

(
ĥ1,n,iĥ2,n,j − h1,i(α

?, β?)h2,j(α
?, β?)

)
Ps1,is2,j

≤ P (φ2
n − φ2

?) + 2
dα∑
i=1

ĥ1,n,i

√
P (φn − φ?)2Ps2

1,i

+ 2
dα∑
i=1

(ĥ1,n,i − h1,i(α
?, β?))Pφ? · s1,i + 2

dβ∑
i=1

ĥ2,n,i

√
P (φn − φ?)2Ps2

2,i

+ 2

dβ∑
i=1

(ĥ2,n,i − h2,i(α
?, β?))Pφ? · s2,i + (ĥ2

1,n − h2
1(α?β?)) · Ps2

1

+ 2
dα∑
i=1

dβ∑
j=1

(
ĥ1,n,iĥ2,n,j − h1,i(α

?, β?)h2,j(α
?, β?)

)√
Ps2

1,iPs
2
2,j

+ (ĥ2
2,n − h2

2(α?β?)) · Ps2
2

→ 0

in outer P-probability. The previous statement is valid since from the proof of Theorem

5.0.1 P (φn − φ?)2 → 0 and by Lemma 5.0.4 ĥ1,n,i → h1,i(α
?, β?), ĥ2,n,i → h2,i(α

?, β?) as

well as ĥ1,n,iĥ2,n,j → h1,ih2,j in outer P-probability.

Therefore,

P
(
|Pnq2

n − Pq2| > 2ε
)

= P
(
|(Pn − P )q2

n + P (q2
n − q2)| > 2ε

)
≤ P

(
|(Pn − P )q2

n| > ε
)

+ P
(
|P (q2

n − q2)| > ε
)

≤ P
(
|(Pn − P )q2

n| > ε; ‖ĥ1,n − h1(α?, β?)‖2 < γ; ‖ĥ2,n − h2(α?, β?)‖2 < γ;

|φn − φ?| < γ
))

+ P
(
‖ĥ1,n − h(α?, β?)‖2 > γ

)
+ P

(
‖ĥ2,n − h2(α?, β?)‖2 > γ

)
+ P (|φn − φ?| > γ)

+ P
(
|P (q2

n − q2)| > ε
)

≤ P

(
sup
q2∈Q2

γ

|(Pn − P )q2| > ε

)
+ P

(
‖ĥ1,n − h(α?, β?)‖2 > γ

)
+ P

(
‖ĥ2,n − h2(α?, β?)‖2 > γ

)
+ P (|φn − φ?| > γ) + P

(
|P (q2

n − q2)| > ε
)

→ 0,

by the Glivenko − Cantelli property of Q2
γ, the convergence in outer P-probability of

φn → φ?, ĥ1,n → h1(α?, β?), ĥ2,n → h2(α?, β?) and P (q2
n − q2)→ 0.
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A.6 Proof of Lemma 5.1.1

We use Theorem 19.5 from [18] to show that for some γ > 0 Fγ is P − Donsker with

envelope F = 1. To this goal, we need to show∫ 1

0

√
log
(
N[](ε̃,Fγ, L2(P ))

)
dε̃ <∞

to state that Fγ is P −Donsker.

For any f ∈ Fγ, we have 0 ≤ f ≤ 1 and it suffices to consider 0 < ε̃ < 1. Thus, let

0 < ε̃ < 1 and choose ε ∈ (0, 1) such that K(ε)ε+ ε = ε̃.

Let 〈xi,1, xi,2〉 denote (half-)open or (half-)closed intervals. Under Assumption B6, there

exist M1(ε) and M2(ε) such that, for any (α, β) ∈ Eγ, f = 1{ψ(·,α,β)>0} can be written as

f(·) = 1{ψ(·,α,β)>0}1[M1,M2]{(·) +
K̃∑
i=1

1〈xi,1,xi,2〉(·)

for some K̃ ≤ bK(ε)c and (xi,1, xi,2)1≤i≤K̃ ∈ [M1,M2]2 with xi,1 < xi,2 ≤ xi+1,1.

Note that ‖f1[M1,M2]{‖L2(P ) ≤ ε and

K̃∑
i=1

1〈xi,1,xi,2〉(·) ∈
∑

1≤i≤K̃

D :=


K̃∑
i=1

di
∣∣ di ∈ D


where D = {1〈a,b〉(·)

∣∣ a, b ∈ R}.

According to [18] Example 19.6, the class of functions {1(−∞,t〉 | t ∈ R} has bracketing

numbers that are smaller or equal to 2/ε2. Every indicator of the form 1〈a,b〉 can be

represented as a difference 1(−∞,b〉 − 1(−∞,a〉. Therefore, the bracketing numbers of D are

smaller or equal to 64/ε4.

Now, we know that there exist d1, ..., dK̃ ∈ D such that
∑K̃

i=1 1〈xi,1,xi,2〉 =
∑K̃

i=1 di. Choose

dl1, ..., d
l
K̃

and du1 , ..., d
u
K̃

from the brackets of D such that dli ≤ di ≤ dui with ‖dui −dli‖L2(P ) ≤
ε. Therefore, f l :=

∑K̃
i=1 d

l
i ≤ f ≤ 1[M1,M2]{ +

∑K̃
i=1 d

u
i =: fu. Using the triangle inequality,

we obtain

‖fu − f l‖L2(P ) = ‖1[M1,M2]{ +
K̃∑
i=1

dui −
K̃∑
i=1

dli‖L2(P ) ≤ (K(ε) + 1)ε = ε̃.

This shows that for any f ∈ Fγ we can find a bracket [f l, fu] constructed from at most

bK(ε)c brackets of D with ‖fu − f l‖L2(P ) ≤ ε̃.
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Consequently, Fγ1[M1,M2] ⊂
∑

1≤i≤bK(ε)cD and we get the following bound on the brack-

eting numbers of Fγ:

N[](ε̃,Fγ, L2(P )) = N[]((K(ε) + 1)ε,Fγ, L2(P )) ≤ N[](ε,D, L2(P ))dK(ε)+1e.

By Assumption B6 we have:∫ ∞
0

√
log
(
N[](ε̃,Fγ, L2(P ))

)
dε̃ =

∫ 1

0

√
log
(
N[](ε̃,Fγ, L2(P ))

)
dε̃

=

∫ a

0

√
log
(
N[](ε(K(ε) + 1),Fγ, L2(P )))

)
(K ′(ε)ε+K(ε) + 1)dε

≤
∫ a

0

√
log
(
N[](ε,D, L2(P ))dK(ε)+1e

)
(K ′(ε)ε+K(ε) + 1)dε

≤
∫ a

0

√
log

(
64dK(ε)+1e

(ε4)dK(ε)+1e

)
(K ′(ε)ε+K(ε) + 1)dε

=

∫ a

0

√
dK(ε) + 1e log(64)− 4dK(ε) + 1e log(ε)(K ′(ε)ε+K(ε) + 1)dε

<∞.

This proves that Fγ is P −Donsker.

A.7 Proof of Lemma 5.2.1

Throughout the proof, let γ > 0 such that Assumption B2 and the respective condition

(i), (ii) or (iii) is true.

Proof of (i):

Note that ξ2(α, β) takes only values in R and therefore there exists t(a, b) ∈ R such that

we can write

1{ξ1(x)>ξ2(α,β)} = 1{ξ1(x)>t(α,β)} = 1− 1{ξ1(x)≤t(α,β)}.

Therefore, 1{ψ(·,α,β)>0} ∈ 1 − {1{·≤t}
∣∣ t ∈ R} for all (α, β) ∈ Eγ. Since {1{·≤t}

∣∣ t ∈ R}
is Donsker for any probability measure, it is also Donsker for P ◦ ξ−1

1 . The linear

transformation of a Donsker class is again a Donsker class by [10] Corollary 9.32 and

therefore Fγ is P −Donsker.

Proof of (ii):
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Using that 1{·>0} is a monotone function we conclude by Lemma 2.6.18 in [19] that

{1{ψ(·,α,β)>0}
∣∣ (α, β) ∈ Eγ} is VC-subgraph. Therefore Fγ is P −Donsker.

Proof of (iii):

First, note that Lipschitz continuity w.r.t. ‖ · ‖r implies Lipschitz continuity w.r.t. to the

Euclidean norm ‖ · ‖2, by the equivalence of norms on Rdα+dβ . Thus, we can assume that

L is the upper bound of Lipschitz constants for the Euclidean norm.

By our assumptions, Theorem 2.7.11 in [19] implies that for Fψ := {ψ(·, α, β)
∣∣

(α, β) ∈ Eγ}:

N[](2Lε,Fψ, ‖ · ‖∞) ≤ N(ε, Eγ, ‖ · ‖2).

The latter is O
(
1/εdα+dβ

)
by Problem 6 on page 94 in [19]. To see this, note that covering

numbers are smaller than packing numbers and that any compact subset of Rd is contained

in a Euclidean ball of radius R, for sufficiently large R. Since Eγ is compact, the claim

follows.

Now, for any ψ(·, α, β) ∈ Fψ, there exist two functions ψ1 and ψ2, ψ1(·) ≤ ψ(·, α, β) ≤
ψ2(·), chosen from the brackets of Fψ with ‖ψ1 − ψ2‖∞ ≤ ε. Therefore,

1{ψ1(·)>0} ≤ 1{ψ(·,α,β)>0} ≤ 1{ψ2(·)>0}.

Choose ε̄ such that sup(α,β)∈Eγ P (ψ(X,α, β) ∈ [−ε, ε]) /ε < A for all ε ≤ ε̄. For some ε ≤ ε̄,

we calculate

‖1{ψ1>0} − 1{ψ2>0}‖L2(P ) =
√
P (ψ2 > 0, ψ1 < 0) ≤

√
P (ψ(X,α, β) ∈ [−ε, ε])

≤
√

sup
(α,β)∈Eγ

P (ψ(X,α, β) ∈ [−ε, ε])
ε

ε <
√
Aε.

Therefore,

N[]

(√
ε,Fγ, ‖ · ‖L2(P )

)
≤ N[]

( ε
A
,Fψ, ‖ · ‖∞

)
∈ O

(
1

εdα+dβ

)
,

which is equivalent to

N[]

(
ε,Fγ, ‖ · ‖L2(P )

)
∈ O

(
1

ε2dα+2dβ

)
.
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If ε̄ < ε ≤ 1, we have

N[]

(
ε,Fγ, ‖ · ‖L2(P )

)
≤ N[]

(
ε̄,Fγ, ‖ · ‖L2(P )

)
and for ε > 1, we have

N[](ε,Fγ, ‖ · ‖L2(P )) = 1.

Thus, ∫ ∞
0

√
log
(
N[](ε,Fγ, L2(P ))

)
dε <∞

and Fγ is P −Donsker by Theorem 8.19 in [10].

A.8 Proof of Theorem 5.3.2

Choose γ > 0 such that Fγ is P − Donsker. We will use the same notation as in

the proof of Theorem 5.0.1. Additionally, denote φ̃n = 1{ψ(·,α̃n,β̃n)>0}. Furthermore, we

know that G̃n  
ξ

G by Theorem 3.6.13 in [19] since Fγ is P − Donsker and the class

{f − g | f, g ∈ Fγ , ρP (f, g)2 < δ} is P -measurable by Assumption B8.

Proof of (i):

1

c
√
n

(
B̃n − B̂n

)
=
√
nc−1

(
P̃nφ̃n − Pnφn

)
=
√
nc−1

((
P̃n − Pn

)
φ̃n +

(
Pn − P

)(
φ̃n − φn

)
+ P

(
φ̃n − φn

))
=
√
nc−1P

(
φ̃n − φn

)
+ G̃nφ̃n + c−1Gn

(
φ̃n − φn

)
= G̃nφ? +

√
nc−1P

(
φ̃n − φn

)
+ G̃n

(
φ̃n − φ?

)
+ c−1Gn

(
φ̃n − φn

)
.

By B4, B5 and B7, we can use a Taylor expansion to write

√
nc−1P

(
φ̃n − φn

)
=
√
nc−1

(
P̃n − Pn

)
h1(α?, β?) · s1 +

√
nc−1

(
P̃n − Pn

)
h2(α?, β?) · s2

+ oP∗XW (1)

= G̃n (h1(α?, β?) · s1 + h2(α?, β?) · s2) + oP∗XW (1).
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Therefore,

G̃nφ? +
√
nc−1P

(
φ̃n − φn

)
+ G̃n

(
φ̃n − φ?

)
+ c−1Gn

(
φ̃n − φn

)
= G̃n

(
φ? + h1(α?, β?) · s1 + h2(α?, β?) · s2

)
+ G̃n

(
φ̃n − φ?

)
+ c−1Gn

(
φ̃n − φn

)
+ oP∗XW (1).

From Lemma B.0.1 we know that c−1Gn

(
φ̃n − φn

)
and G̃n

(
φ̃n − φ?

)
are also oP∗XW (1).

Thus,

G̃n

(
φ? + h1(α?, β?) · s1 + h2(α?, β?) · s2

)
+ G̃n

(
φ̃n − φ?

)
+ c−1Gn

(
φ̃n − φn

)
+ oP∗XW (1)

= G̃n

(
φ? + h1(α?, β?) · s1 + h2(α?, β?) · s2

)
+ oP∗XW (1).

Proof of (iii):

Obvious by the usual bootstrap convergence.

Proof of (iii):

Obvious by Lemma 3.1 in [4].

A.9 Proof of Lemma 7.4.1

Let ε > 0 arbitrary. Define Zj
n = 1√

n

(
B̃j
n − B̂n

)
, where B̃j

n is the bootstrapped version

of B̂n calculated from the j-th bootstap sample. By Lemma 3.1 b) in [4], we get that for

every fixed B ∈ N it is true that (Gn, G̃1
n, ..., G̃B

n ) (G,G1, ...,GB), where G̃j
n is the boot-

strapped empirical process calculated from the j-th bootstrap sample and G,G1, ...,GB

are independent and identically distributed. Therefore, (Z1
n, ..., Z

B
n ) (Z1, ..., ZB), where

Z1, ..., ZB are independent and Normal distributed with mean zero and variance σ2
ψ.

Additionally, define

fB : RB → R ; x 7→
∣∣∣∣ 1

B

B∑
i=1

(
xi −

1

B

B∑
i=1

xi

)2

− σ2
ψ

∣∣∣∣.
Note that fB is continuous and f(Z1

n, ..., Z
B
n ) is uniformly integrable (in n and B) by

Assumption B10. Therefore, for every ν > 0, we can choose some K ∈ R such that for all
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n and B large enough E∗PXW
[
fB(Z1

n, ..., Z
B
n )1{f(Z1

n, ..., Z
B
n ) > K}

]
≤ ν. We calculate

P∗XW
(
fB(Z1

n, ..., Z
B
n ) > ε

)
≤ 1

ε

(
E∗PXW

[
fB(Z1

n, ..., Z
B
n )1{f(Z1

n, ..., Z
B
n ) > K}

]
+ E∗PXW

[
min{fB(Z1

n, ..., Z
B
n ), K}

] )
≤ ν

ε
+

1

ε
E∗PXW

[
gB(Z1

n, ..., Z
B
n )
]
,

where gB = min{fB, K} ∈ Cb(RB). Therefore,

lim
n→∞

P∗XW
(
fB(Z1

n, ..., Z
B
n ) > ε

)
≤ ν

ε
+ lim

n→∞
E∗PXW

[
gB(Z1

n, ..., Z
B
n )
]

=
ν

ε
+ EPXW

[
gB(Z1, ..., ZB)

]
.

Now,

lim
B→∞

lim
n→∞

P∗XW
(
fB(Z1

n, ..., Z
B
n ) > ε

)
≤ ν

ε
+ lim

B→∞
E∗PXW

[
gB(Z1, ..., ZB)

]
=
ν

ε
,

by an application of the Dominated Convergence Theorem, since limB→∞ gB(Z1, ..., ZB) =

0 PXW -almost surely.

Since ν was arbitrary, we have

lim
B→∞

lim
n→∞

P∗XW
(
fB(Z1

n, ..., Z
B
n ) > ε

)
= 0.



Appendix B

Technical Results

Lemma B.0.1

Under the assumptions of Theorem 5.3.2,

(i) for all ε > 0 : PXW
(
‖(α̃n, β̃n)− (α?, β?)‖1 > ε

)
→ 0, i.e. (α̃n, β̃n) → (α?, β?) in

PXW -probability,

(ii) Gn(1{ψ(·,α̃n,β̃n)>0} − 1{ψ(·,α̂n,β̂n)>0}) = oP∗XW (1), and

(iii) G̃n(1{ψ(·,α̃n,β̃n)>0} − 1{ψ(X,α?,β?)>0}) = oP∗XW (1).

Proof.

Proof of (i):

Since finite sums of Glivenko − Cantelli functions are again Glivenko − Cantelli, we

get that
∑dα

i=1 s1,i +
∑dβ

i=1 s2,i is Glivenko − Cantelli. Define new weights ξ̃i,n = n−1ξi,n,

which remain exchangeable and non-negative. Our assumptions yield
∑n

i=1 ξ̃i,n = 1 and

max1≤i≤n ξ̃i,n → 0 in PW -probability. Thus, all assumptions of Lemma 3.6.16 in [19] are

satisfied. Then, write

PXW
(
‖(α̃n, β̃n)− (α?, β?)‖1 > ε

)
= EPX

[
PW

(
‖(α̃n, β̃n)− (α?, β?)‖1 > ε

)]
,

because α̃n and β̃n are measurable. Using Assumption B5 and B7, we get

EPX

[
PW

(
‖(α̃n, β̃n)− (α?, β?)‖1 > ε

)]
≤ E∗PX

[
P∗W

(
dα∑
i=1

|P̃ns1,i − Ps1,i|+
dβ∑
i=1

|P̃ns2,i − Ps2,i|+ |oP∗XW (1)| > ε

)]

≤
dα∑
i=1

EPX

[
PW

(
|P̃ns1,i − Ps1,i| >

ε

2(dα + dβ)

)]
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+

dβ∑
i=1

EPX

[
PW

(
|P̃ns2,i − Ps2,i| >

ε

2(dα + dβ)

)]
+ E∗PX

[
P∗W

(
|oP∗XW (1)| > ε

2

)]
=

dα∑
i=1

EPX

[
PW

(∣∣∣ n∑
j=1

ξ̃j,n
(
δXj − P

)
s1,i

∣∣∣ > ε

2(dα + dβ)

)]

+

dβ∑
i=1

EPX

[
PW

(∣∣∣ n∑
j=1

ξ̃j,n
(
δXj − P

)
s2,i

∣∣∣ > ε

2(dα + dβ)

)]
+ P∗XW

(
|oP∗XW (1)| > ε

2

)
→ 0

since, due to Lemma 3.6.16 in [19], every summand goes to 0 outer PX-almost surely and

the outer Dominated Convergence Theorem (Theorem 6.12 in [10]) applies.

Proof of (ii):

First, we show EP
[(
φ̃n − φn

)2
]
→ 0 in PXW -probability.

EP
[(
φ̃n − φn

)2
]

= EP
[
|φ̃n − φn|

]
≤ EP

[
|φ̃n − φ?|

]
+ EP

[
|φ? − φn|

]
= EP [|φn − φ?|] + P

(
ψ(X,α?, β?) > 0, ψ(X, α̃n, β̃n) < 0

)
+ P

(
ψ(X,α?, β?) < 0, ψ(X, α̃n, β̃n) > 0

)
.

From the proof of Theorem 5.0.1, EP [|φn − φ?|] converges to 0 PX-almost surely, which

also implies the PXW -almost sure convergence to 0.

In the following, we show that the two remaining probabilities converge to 0 in PXW -

probability. Note that the map (α̃n, β̃n) → P (ψ(X, α̃n, β̃n) ∈ A) is measurable for any

Borel set A, due to the measurability of the map

(Ω̃, Ã)× Eγ → R, (ω̃, α, β)→ P
(
ψ(X(ω̃), α, β) ∈ A

)
,

where (Ω̃, Ã) is an independent copy of the underlying probability space of X.

Choose π ∈ (0, 1) and a sufficiently small ε > 0 such that P (|ψ(X,α?, β?)| ≤ ε) ≤ π
2
. This

is possible due to the non-nestedness of the proposed models f and g. Indeed, the non-

nestedness asumption implies 0 = P (|ψ(X,α?, β?)| = 0) = limn→∞ P (|ψ(X,α?, β?)| ≤
1/n), by the continuity of measures.

Next, for an arbitrary ν > 0, choose N large enough such that

PXW
(
‖(α̃n, β̃n)− (α?, β?)‖1 > δ

)
≤ ν,
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for all n ≥ N , which is proven to be possible in the first part of the Lemma. Additionally,

choose a compact set Aπ ⊂ Rd and δ > 0 with P (X ∈ Aπ) ≥ 1 − π/4 and for all

‖(α, β) − (α?, β?)‖1 ≤ δ and x ∈ Aπ, we have |ψ(x, α, β) − ψ(x, α?, β?)| < ε. Such δ

and Aπ exist by Assumption B9 and the fact that X has a density w.r.t. the Lebesgue

measure, which implies the tightness of X. We split the probabilities as follows:

PXW
(
P
(
ψ(X,α?, β?) > 0;ψ(X, α̃n, β̃n) < 0

)
> π

)
≤ PXW

(
P
(
ψ(X,α?, β?) > ε;ψ(X, α̃n, β̃n) < 0

)
>
π

2

)
+ PXW

(
P
(
ψ(X,α?, β?) ∈ (0, ε];ψ(X, α̃n, β̃n) < 0

)
>
π

2

)
≤ PXW

(
P
(
ψ(X,α?, β?) > ε;ψ(X, α̃n, β̃n) < 0

)
>
π

2
;

‖(α̃n, β̃n)− (α?, β?)‖1 ≤ δ

)
+ PXW

(
‖(α̃n, β̃n)− (α?, β?)‖1 > δ

)
≤ ν + PXW

(
P
(
ψ(X,α?, β?) > ε;ψ(X, α̃n, β̃n) < 0;X ∈ Aπ

)
>
π

4
;

‖(α̃n, β̃n)− (α?, β?)‖1 ≤ δ

)
+ PXW

(
P
(
ψ(X,α?, β?) > ε;ψ(X, α̃n, β̃n) < 0;X 6∈ Aπ

)
>
π

4
;

‖(α̃n, β̃n)− (α?, β?)‖1 ≤ δ

)
= ν + PXW

(
P
(
ψ(X,α?, β?) > ε;ψ(X, α̃n, β̃n) < 0;X ∈ Aπ

)
>
π

4
;

‖(α̃n, β̃n)− (α?, β?)‖1 ≤ δ

)
,

because P (X 6∈ Aπ) ≤ π/4. Finally, we observe that for X ∈ Aπ and ‖(α̃n, β̃n) −
(α?, β?)‖1 ≤ δ, we have |ψ(X, α̂n, β̂n)− ψ(X,α?, β?)| < ε. Therefore,

PXW
(
P
(
ψ(X,α?, β?) > ε;ψ(X, α̃n, β̃n) < 0;X ∈ Aπ

)
>
π

4
;

‖(α̃n, β̃n)− (α?, β?)‖1 ≤ δ

)
= 0.

Thus,

PXW
(
P
(
ψ(X,α?, β?) > 0;ψ(X, α̃n, β̃n) < 0

)
> π

)
≤ ν.
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Since ν was arbitrary, we get

P
(
ψ(X,α?, β?) > 0, ψ(X, α̃n, β̃n) < 0

)
→ 0

in PXW -probability. By the same arguments, we also get

PXW
(
ψ(X,α?, β?) < 0, ψ(X, α̃n, β̃n) > 0

)
→ 0

in PXW -probability. Combining the arguments, we have

ρ2
P (φ̃n, φn) = EP

[(
φ̃n − φn

)2
]
→ 0

in PXW -probability.

Now, for arbitrary ζ, π > 0 choose λ > 0 and N large enough such that

P∗X
(

supf,g∈Fγ :ρP (f,g)≤λGn(f − g) > π
)
≤ ζ for all n ≥ N , which is possible due to 2.1.8

in [19]. Additionally, choose N large enough such that PXW
(
ρP (φ̃n, φn) > λ

)
≤ ζ for all

n ≥ N , which is possible due to the previous arguments.

Therefore, we deduce

PXW
(
|Gn(φ̃n − φn)| > π

)
= PXW

(
|Gn(φ̃n − φn)| > π; ρP (φ̃n, φn) < λ

)
+ PXW

(
|Gn(φ̃n − φn)| > π; ρP (φ̃n, φn) ≥ λ

)
≤ P∗X

(
sup

f,g∈Fγ :ρP (f,g)<λ

|Gn(f − g)| > π

)
+ PXW

(
|ρP (φ̃n, φn)| ≥ λ

)
≤ 2ζ.

Since ζ was arbitrary, we have

PXW
(
|Gn(φ̃n − φn)| > π

)
→ 0,

i.e. Gn(φ̃n − φn) is oP∗XW (1).

Proof of (iii):

By the previous part of the proof, we get ρp(φ̃n, φ?) → 0 in PXW -probability. Mimicking

the proof of part 2, let π, ζ > 0 arbitrary. Choose λ > 0 and N large enough such that
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PXW
(
ρp(φ̃n, φ?) ≥ λ

)
≤ ζ and

P∗XW

(
sup

f,g∈Fγ ;ρP (f,g)<λ

|G̃n(f − g)| > π

)
≤ ζ

for all n ≥ N , which is possible due to the equicontinuity of the bootstrapped process

G̃n. The equicontinuity of the bootstrapped process is obtained in the proof of Theorem

3.6.13 in [19]. This yields

PXW
(
|G̃n(φ̃n − φ?)| > π

)
≤ P∗XW

(
sup

f,g∈Fγ ;ρP (f,g)<λ

|G̃n(f − g)| > π

)
+ PXW

(
ρp(φ̃n, φ?) ≥ λ

)
≤ 2ζ.

Thus, G̃n(φ̃n − φ?) is oP∗XW (1) .
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Further Simulation Results

Consider the quotient of density families

1
2α1

exp
(
− |x−α2|

2α1

)
Γ( ν+1

2 )
Γ( ν2 )

√
νπ

(
1 + x2

ν

)− ν+1
2

.

Fix P as a standard Normal distribution. To our knowledge, there exists no estimator of

the degrees of freedom of a t-distribution, which satisfies assumption B6. This forces us

to fix the degrees of freedom heuristically. In the following, we always use the sample size

as an estimate of the degrees of freedom of the proposed t-distribution. The results of the

simulations are summarized in Table C.1.

Empirical Mean Of Emp. Pow.

n B̂n ĥ1,1 ĥ1,2 σ̂2
ψ T1,n

50 21.54 -0.000516 -0.211537 0.444552 0.1420
100 40.27 0.002947 -0.246120 0.497599 0.2860
250 96.68 -0.006917 -0.268540 0.447074 0.7820
500 190.29 -0.013247 -0.271660 0.379970 0.9860
1000 378.23 -0.003495 -0.277170 0.355862 1.0000

Table C.1: Empirical mean and empirical power of the estimators in the case of a Laplace
distribution vs. a t-distribution under a standard Normal distribution.

The test consistently prefers the Laplace distribution, since the empirical mean of B̂n is

always less than n/2. All estimators seem to be stable, since Table D.11 shows that the

empirical variance of all estimators is low. The empirical mean of ĥ1,1 is close to 0. Notice

that, due to changing estimates of the degrees of freedom, the true value of the estimated

quantities can vary with the sample size. This explains the changing empirical mean of

partial derivative and variance estimates.
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The empirical power of T1,n is increasing with the sample size, yielding very good results

for n ≥ 500.

Next, consider the quotient of density families

1√
2πα1

exp
(
− (x−α2)2

2α1

)
Γ( ν+1

2 )
Γ( ν2 )

√
νπ

(
1 + x2

ν

)− ν+1
2

,

in case P is chosen as a Laplace distribution with mean 0 and shape parameters 1 and 3.

The results are summarized in Tables C.2 and C.3.

Empirical Mean Of Emp. Pow.

n B̂n ĥ1,1 ĥ1,2 σ̂2
ψ T1,n

50 17.07 0.001363 -0.126252 0.389593 0.6860
100 31.71 -0.003620 -0.061826 0.227685 0.9800
250 77.87 0.000227 -0.042686 0.169366 1.0000
500 154.63 0.000651 -0.040971 0.162818 1.0000
1000 308.37 -0.000210 -0.040515 0.159139 1.0000

Table C.2: Empirical mean and empirical power of the estimators in the case of Normal
distribution vs. a t-distribution under a Laplace distribution with mean 0 and shape 1.

Empirical Mean Of Emp. Pow.

n B̂n ĥ1,1 ĥ1,2 σ̂2
ψ T1,n

50 28.00 0.000037 -0.003352 0.342647 0.1170
100 55.89 -0.000255 -0.002553 0.304563 0.1940
250 139.50 0.000277 -0.002595 0.267624 0.4330
500 279.21 -0.000214 -0.002500 0.249998 0.7520
1000 558.13 0.000065 -0.002480 0.238777 0.9770

Table C.3: Empirical mean and empirical power of the estimators in the case of Normal
distribution vs. a t-distribution under a Laplace distribution with mean 0 and shape 3.

In general, the results are similar to all other examples. However, there are two pecu-

liarities, which should be noted. First, the variance estimate only seems to be stable for

n ≥ 250, which can be seen in Tables D.12 and D.13. Second, it can be observed that the

favored model changes with the parameters of the underlying distribution. This is due to

the fact that B̂n is consistently smaller than n/2 in Table C.2 and consistently greater

than n/2 in Table C.3. Note, that this statement may seem obvious, but no example has

been presented yet, which exhibits changing preferences with varying parameters. Both

tables show increasing empirical power with increasing sample size. Table C.2 yields an

empirical power of 100% for sample sizes n ≥ 250. Furthermore, the empirical mean of

ĥ1,1 is close to 0 for both tables and every sample size.
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Summarizing, we can say that the additional examples presented in Appendix C confirm

the previous observations from Section 7.3. For sample sizes 50 and 100 we observed high

variances of σ̂2
ψ, which lead to some instability of T1,n.
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Empirical Variance Tables

Empirical Variance Of

n ĥ1 ĥ2 σ̂2
ψ

50 0.007421 0.026427 0.001831
100 0.004944 0.017164 0.000560
250 0.002763 0.010071 0.000160
500 0.001774 0.006087 0.000054
1000 0.001091 0.003845 0.000020
10000 0.000237 0.000854 0.000001

Table D.1: Empirical variance of the estimators for Example 1; corresponding to Table
7.1 .

Empirical Variance Of

n ĥ1 ĥ2 σ̂2
ψ

50 0.000497 0.000497 158.962342
100 0.000304 0.000304 15.559060
250 0.000155 0.000155 5.439586
500 0.000096 0.000096 1.448591
1000 0.000065 0.000065 0.876214
10000 0.000013 0.000013 0.049156

Table D.2: Empirical variance of the estimators for Example 2; corresponding to Table
7.2
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Empirical Variance Of

n ĥ1,1 ĥ1,2 σ̂2
ψ

50 0.007503 0.006707 0.001797
100 0.005521 0.005452 0.000791
250 0.004541 0.004233 0.000293
500 0.003189 0.002612 0.000141
1000 0.002087 0.001622 0.000064
10000 0.000602 0.000441 0.000006

Table D.3: Empirical variance of the estimators in the case of N (0, 2) vs. N (0, 3) under
a standard Normal distribution; corresponding to Table 7.3

Empirical Variance Of

n ĥ1,1 ĥ1,2 ĥ2,1 ĥ2,2 σ̂2
ψ

50 0.013740 0.013358 0.026687 0.013404 0.018266
100 0.011101 0.008471 0.022317 0.009768 0.006829
250 0.006040 0.005281 0.012629 0.006163 0.002437
500 0.003929 0.003080 0.008147 0.004189 0.000982
1000 0.002507 0.002172 0.005198 0.002914 0.000771

Table D.4: Empirical variance of the estimators in the case of a Normal vs. Laplace
distribution under a t distribution with 15 degrees of freedom; corresponding to Table
7.4.

Empirical Variance Of

n ĥ1 ĥ2 σ̂2
ψ

50 0.032906 0.012246 0.001012
100 0.020526 0.009068 0.000608
250 0.013362 0.004931 0.000144
500 0.010338 0.003565 0.000053
1000 0.006971 0.002309 0.000025

Table D.5: Empirical variance of the estimators in the case of a Gamma vs. Exponential
distribution under an Exponential distribution with mean equal to 1; corresponding to
Table 7.5.

Empirical Variance Of
n σ̂2

B

50 0.002489
100 0.001278
250 0.000735
500 0.000465
1000 0.000363

Table D.6: Empirical variance of the bootstrap estimators for Example 1; corresponding
to Table 7.6.
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Empirical Variance Of
n σ̂2

B

50 0.025648
100 0.021729
250 0.011075
500 0.007867
1000 0.004854

Table D.7: Empirical variance of the bootstrap estimators for Example 2; corresponding
to Table 7.7.

Empirical Variance Of
n σ̂2

B

50 0.001653
100 0.000904
250 0.000326
500 0.000195
1000 0.000122

Table D.8: Empirical variance and empirical level of the bootstrap estimators in the case
of N (0, 2) vs. N (0, 3) under a standard Normal distribution; corresponding to Table 7.8.

Empirical Variance Of
n σ̂2

B

50 0.008663
100 0.004874
250 0.008923
500 0.001672
1000 0.001395

Table D.9: Empirical variance of the bootstrap estimators in the case of a Normal vs.
Laplace distribution under a t distribution with 15 degrees of freedom; corresponding to
Table 7.9.

Empirical Variance Of
n σ̂2

B

50 0.001939
100 0.001013
250 0.000487
500 0.000357
1000 0.000300

Table D.10: Empirical variance of the bootstrap estimators in the case of a Gamma vs.
Exponential distribution under an Exponential distribution with mean 1; corresponding
to Table 7.10.
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Empirical Variance Of

n ĥ1,1 ĥ1,2 σ̂2
ψ

50 0.084446 0.024818 0.027717
100 0.134594 0.013094 0.027402
250 0.093731 0.006675 0.032774
500 0.036978 0.004215 0.005135
1000 0.015369 0.003051 0.001270

Table D.11: Empirical variance of the estimators in the case of Laplace vs. a t distribution
under a standard Normal distribution; corresponding to Table C.1.

Empirical Variance Of

n ĥ1,1 ĥ1,2 σ̂2
ψ

50 0.012123 0.044950 0.428937
100 0.006558 0.012939 0.158472
250 0.003962 0.000677 0.000855
500 0.002454 0.000355 0.000388
1000 0.001566 0.000203 0.000177

Table D.12: Empirical variance of the estimators in the case of a Normal vs. a t distribution
under a Laplace distribution with mean 0 shape 1; corresponding to Table C.2.

Empirical Variance Of

n ĥ1,1 ĥ1,2 σ̂2
ψ

50 0.000436 0.000126 0.247924
100 0.000295 0.000061 0.101232
250 0.000144 0.000034 0.012479
500 0.000090 0.000020 0.003229
1000 0.000059 0.000012 0.000788

Table D.13: Empirical variance of the estimators in the case of Normal vs. a t distribution
under a Laplace distribution with mean 0 and shape 3; corresponding to Table C.3.



Appendix E

Calculations For Example 2

We use the following formulas given in [3] and [14]. Assuming that the true distribution

follows a generalized Gamma distribution with density q(x, a, p, d) and considering an

arbitrary generalized Gamma density q(x, a1, p1, d1), we get

E
[
log

(
q(X, a, d, p)

q(X, a1, d1, p1)

)]
= log

(
pad11 Γ(d1/p1)

p1adΓ(d/p))

)
+

(
τ(d/p)

p
+ log(a)

)
(d− d1)

+
Γ(d+p1

p
)

Γ(d/p)

(
a

a1

)p1
− d

p

and

E [log (q(X, a, d, p))] = log

(
p

aΓ(d/p)

)
− d

p
+
d− 1

p
τ(d/p),

where τ(y) = Γ′(y)/Γ(y) denotes the digamma function. Exploiting that the Weibull

distribution and the Gamma distribution are special cases of a generalized Gamma dis-

tribution, we can deduce the following formulas

E [log (w(X,α, 2))] = E
[
log
(
q(X,α1/2, 2, 2)

)]
= −E

[
log

(
p(X, a, d, p)

p(X,α1/2, 2, 2)

)]
+ E [log (p(X, a, d, p))]

= log

(
2a

α

)
+

1

p
τ

(
d

p

)
−

Γ
(
d+2
p

)
Γ
(
d
p

) a2

α

and

E [log (g(X, β, 2))] = E [log (q(X, β, 2, 1))]
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= −E
[
log

(
p(X, a, p, d)

p(X, , β, 2, 1)

)]
+ E [log (p(X, a, p, d))]

= log

(
a

β2

)
+

1

p
τ

(
d

p

)
−

Γ
(
d+1
p

)
Γ
(
d
p

) a

β
.

Using the formulas introduced above and that

E [Xs] =
asΓ

(
s
p

+ d
p

)
Γ
(
d
p

) ,

we can calculate the asymptotic variance

σ2
ψ = Var

(
1{ψ(X,α?, β?) > 0}+ h1(α?, β?)X2 +

h2(α?, β?)

2
X

)
= Var (1{ψ(X,α?, β?) > 0}) + h2

1(α?, β?) Var
(
X2
)

+
h2

2(α?, β?)

4
Var (X)

+ 2 Cov
(
1{ψ(X,α?, β?) > 0}, h1(α?, β?)X2

)
+ 2 Cov

(
1{ψ(X,α?, β?) > 0}, h2(α?, β?)

2
X

)
+ 2 Cov

(
h1(α?, β?)X2,

h2(α?, β?)

2
X

)

=
1

4
+ h2

1(α?, β?)

a4
Γ
(
d+4
p

)
Γ
(
d
p

) − a4
Γ
(
d+2
p

)2

Γ
(
d
p

)2


+
h2

2(α?, β?)

4

a2
Γ
(
d+2
p

)
Γ
(
d
p

) − a2
Γ
(
d+1
p

)2

Γ
(
d
p

)2


+ 2h1(α?, β?)

E
[
X21{X∈[x1,x2]{}

]
− a2

2

Γ
(
d+2
p

)
Γ
(
d
p

)
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+ h2(α?, β?)

E
[
X1{X∈[x1,x2]{}

]
− a

2

Γ
(
d+1
p

)
Γ
(
d
p

)
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+ h1(α?, β?)h2(α?, β?)

a3
Γ
(
d+3
p

)
Γ
(
d
p

) − a3
Γ
(
d+2
p

)
Γ
(
d+1
p

)
Γ
(
d
p

)2


≈ 0.3475695.
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