TUTI

TECHNISCHE UNIVERSITAT MUNCHEN

Lehrstuhl fiir Flugsystemdynamik

Model-Based Quantification of
Accident Probabilities from
Operational Flight Data

Chong Wang, M. Sc.

Vollstandiger Abdruck der von der Fakultét fiir Maschinenwesen der Technischen
Universitdt Miinchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Prof. Dr. phil. Klaus Bengler

Priifer der Dissertation: 1. Prof. Dr.-Ing. Florian Holzapfel
2. Prof. Dr.-Ing. Mirko Hornung

Die Dissertation wurde am 14.02.2019 bei der Technischen Universitit Miinchen
eingereicht und durch die Fakultit fiir Maschinenwesen am 05.07.2019 angenommen.






Abstract

This thesis presents novel methods to quantify the occurrence probabilities for given
accidents within the flight operations of an airline. As the number of accidents in com-
mercial aviation has significantly decreased during the last decades while the amount
of traffic has undergone tremendous growth, further improvement in operational safety
has to be predictive. It cannot be based on changes implemented after an accident inves-
tigation simply due to the lack of accident data. Instead, hazards have to be identified
well before they impact the flight operations, or even before they arise. The quantifi-
cation of accident probabilities constitutes a part of this predictive component. It is an
important task of any airline’s Safety Management System in order to set safety targets,
to benchmark with industry standards or competitors and ultimately to improve the
level of safety.

This presented approach uses data that has previously been recorded on-board each
aircraft within the scope of the airline’s Flight Data Monitoring program. Even though
the data does not contain any accident, it records deviations from nominal values — but
still well within the allowed ranges — of single factors that have an influence on the out-
come of potential accidents, which occurs frequently on each flight. The relationship
between these so-called contributing factors is established by a model incorporating the
behavior of the aircraft. The task is to quantify when the deviation of several factors
combined will lead to an accident and how likely this is.

The presented model is dedicated to the landing phase of the flight. It includes an ex-
tensive representation of the landing gear to simulate the braking and steering on the
ground. Furthermore, it includes system logics of the aircraft concerning the activation
of deceleration devices, such as ground spoilers and thrust reverse. The focus of the
model is the accident type of runway excursion, which includes the aircraft unintention-
ally leaving the runway off the far end (overrun) and to the side (veer-off).

For the quantification of the accident probabilities using recorded flight data based on
the aircraft model, the method of Subset Simulation is used. It is particularly suitable
for quantifying small probabilities with low computational effort. Based on the results
obtained for landings at Munich airport, a thorough analysis of the contributing factors
is performed and some hazards are identified.






Kurzfassung

Die vorliegende Arbeit stellt neuartige Methoden vor, um die Eintrittswahrschein-
lichkeiten fiir bestimmte Unfélle im Flugbetrieb von Fluggesellschaften zu quantifi-
zieren. Da die Anzahl der Unfille in der kommerziellen Luftfahrt tiber die letzten
Jahrzehnte gesunken ist und gleichzeitig der Verkehr jedoch stark zugenommen hat,
miissen weitere Verbesserungen in der operationellen Sicherheit pridiktiv sein. Sie kon-
nen nicht weiterhin primér aus Verdnderungen bestehen, die aus Unfalluntersuchun-
gen abgeleitet werden, da kaum Unfalldaten zur Verfiigung stehen. Stattdessen miissen
Gefahren erkannt werden, bevor sie sich auf den Flugbetrieb auswirken oder sogar
schon bevor sie entstehen. Die Quantifizierung von Unfallwahrscheinlichkeiten ist
ein Teil dieser pradiktiven Komponente. Sie ist eine wichtige Aufgabe innerhalb des
Sicherheitsmanagementsystems jeder Fluggesellschaft, um Sicherheitsziele zu setzen,
sich mit Branchenstandards oder Konkurrenten zu vergleichen und letztendlich, um
das Sicherheitsniveau zu verbessern.

Das prasentierte Vorgehen verwendet Daten, die zuvor an Bord jedes Flugzeugs im
Rahmen des Flight Data Monitoring-Programms der Fluggesellschaft aufgezeichnet
worden sind. Obwohl sie keine Unfélle enthalten, zeichnen sie Abweichungen einzel-
ner Faktoren von ihrem Nominalbereich auf, auch wenn sie sich nach wie vor im er-
laubten Bereich befinden. Dies tritt auf jedem Flug haufig auf. Die Beziehung zwischen
diesen sogenannten beitragenden Faktoren wird durch ein Modell hergestellt, welches
das Verhalten des Flugzeuges widerspiegelt. Die Aufgabe besteht nun darin, zu ermit-
teln, wann die Abweichungen mehrerer Faktoren kombiniert zu einem Unfall fithren
und wie wahrscheinlich dies ist.

Das vorgestellte Model ist auf die Landephase des Fluges zugeschnitten. Es beinhaltet
eine ausfiihrliche Beschreibung des Fahrwerks, um das Brems- und Lenkverhalten am
Boden abzubilden. Dariiber hinaus berticksichtigt es Systemlogiken des Flugzeugs im
Hinblick auf die Aktivierung von Verzogerungsvorrichtungen wie Storklappen oder
Schubumkehr. Der Fokus des Modells ist der Unfalltyp Runway Excursion, dieser bein-
haltet sowohl das UberschiefSen am Ende (Overrun) als auch das seitliche Verlassen
(Veer-Off) der Landebahn.

Um die Quantifizierung von Unfallwahrscheinlichkeiten mithilfe von aufgezeichneten
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Flugdaten basierend auf dem Flugzeugmodell durchfiihren zu kénnen, wird die Me-
thode Subset Simulation verwendet. Diese ist inbesondere fiir kleine Wahrscheinlichkeiten
geeignet und ermoglicht niedrigen Rechenaufwand. Auf Basis von Ergebnissen fiir
Landungen auf dem Flughafen Miinchen wird eine detailierte Analyse der beitragen-
den Faktoren durchgefiihrt und es werden einige Gefahren identifiziert.
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Introduction

1.1 Background

Safety has always been of vital concern since the beginning of aviation. After their
successful first flight in 1903, the Wright brothers were also involved in the very first
fatal accident in aviation, which occurred in 1908 [Bau06]. While Orville Wright, who
was the pilot, suffered severe injuries, Thomas Selfridge, who was a passenger on-
board, became the very first fatality in aviation history. Since then and particularly
with the beginning of commercial aviation after World War II, safety has significantly
increased while the amount of traffic underwent tremendous growth at the same time.
Chesley B. Sullenberger was the Pilot in Command (PIC) who performed the successful
water landing with an Airbus A320 on the Hudson River in New York in 2009. He
stated in an interview [Gam10] that “... out of a 43-year career, my entire life is being
judged on the basis of those 3 minutes and 28 seconds.” This clearly shows how rarely pilots
actually have to face emergency situations they train for throughout their professional
life. In fact, many commercial pilots nowadays have an entire career of flying without
encountering any serious event. Most hazardous situations, such as engine failures,
are only known to pilots from recurrent simulator training.

Safety is of utmost significance across all aviation stakeholders. The process of obtain-
ing an Airworthiness Certificate (AC) for an aeroplane is thoroughly regulated and
mainly driven by safety considerations, which is referred to as the Initial Airworthiness.
During the certification process, the Original Equipment Manufacturer (OEM) has to
prove that certain levels of safety for all technical systems affecting the airworthiness
of the aircraft are achieved. For large transport categories aeroplanes certified by the
European Aviation Safety Agency (EASA), the minimum level of system reliability can
be obtained from Book 2 of the CS-25 Certification Specifications [Eurl8], namely in
the Acceptable Means of Compliance (AMC) 25.1309. It highly depends on the con-
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Severity Qualitative Probability | Quantitative Probability per FH
No Safety Effect | N/A N/A

Minor Probable >107°

Major Remote <107°

Hazardous Extremely Remote <1077

Catastrophic Extremely Improbable | < 107°

Table 1.1: The allowed failure probabilities according to CS-25 [Eur18]

sequence, i.e. the severity, of the respective system failure. Table 1.1 shows the corre-
sponding acceptable failure probabilities depending on the severity of the respective

failure condition.

For the most severe category, resulting in catastrophic consequences, which is defined
as multiple fatalities with the loss of the airplane, the probability of failure must be 10~°
per Flight Hour (FH) or less. In addition, any single failure of an aircraft system must
not lead to catastrophic consequences. This does not only apply to systems, but also to
any hardware or software functions incorporated in the aircraft [Soc12]. These safety
considerations will become clearly visible in chapter 7 where the implementations of
some aircraft systems are described and discussed.

Typically, for aircraft types that are produced on a large scale, a Type Certificate (TC)
is obtained for the aircraft type after certification using the prototypes that are built
and flown based on a Permit To Fly (PTF). For all frames that are produced afterwards,
it has to be proven that they are identical with the prototype that was certified for
the TC in order to show the initial airworthiness of this particular newly-built aircraft
frame. After an aircraft enters service, the airworthiness is maintained by complying,
among all, to the Commission Regulation No 1321/2014 [Eur14], including its annexes,
commonly referred to as Part-M and Part-145, which includes regulations about how
maintenance work is to be performed. This is ensured by Continuing Airworthiness
Management Organizations (CAMOs) that are also certified accordingly. The qualifi-
cation of the flying personnel is regulated by Commission Regulation No 1178/2011
[Eurllb] as not only the equipment has to be airworthy, but also the crew operating it.

In contrast to obtaining initial airworthiness, there are no quantitative safety targets
that the operator, along with other stakeholder involved in maintaining the continuing
airworthiness, has to ensure once the aircraft enters service. The safety levels that are
actually achieved for passengers in real-life flight operations are significantly lower
than those shown in table 1.1 due to the environmental and operational conditions
encountered during everyday flying. They are influenced by weather, traffic situation
as well as pilot performance, including human errors.

While no regulatory level of operational safety exists, aviation stakeholders, such as
airlines, Air Navigation Service Providers (ANSPs) and airports are obliged to define
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Chapter 1: Introduction

an Acceptable Level of Safety Performance (ALoSP) as the safety target for their individual
organization. This is guided by the International Civil Aviation Organization (ICAO)
Safety Management Manual [Int13]. Especially the ALoSP expressed as a probability
of suffering from an accident should be clearly set out by the organization.

The ICAO provides a crucial definition for the term accident [Int16]:

An occurrence associated with the operation of an aircraft which [...] takes place between the
time any person boards the aircraft with the intention of flight until such time as all such
persons have disembarked [...], in which:

1. a person is fatally or seriously injured as a result of
* being in the aircraft, or

e direct contact with any part of the aircraft, including parts which have become de-
tached from the aircraft, or

* direct exposure to jet blast, [...]
2. the aircraft sustains damage or structure failure which:

* adversely affect the structural strength, performance or flight characteristics of the
aircraft, and

* would normally require major repair or replacement of the affected component, [...]
3. the aircraft is missing or is completely inaccessible

(ICAO Annex 13 [Int16])

Safety targets can also be defined by regulatory bodies. The European Union (EU)
defined a safety target for commercial aviation in Flightpath 2050 — Europe’s Vision for
Aviation [Eurl1a] for the European air transport system to be less than 10~7 accident per
flight. In addition, each sovereign country can set up an individual State Safety Pro-
gram (SSP). The German airline Lufthansa has further specified this target for its own
operations to be less than 10~® hull losses per flight [Rap09]. For the entire Lufthansa
Group, this would imply that, on average, one hull loss would occur every 100 years
based on the current amount of traffic. This is a particularly challenging goal because it
is already very close to the Airworthiness Certifications requirements of 10~ per flight
hour. One has to keep in mind that compliance with the requirements during certifi-
cation are often demonstrated by performing theoretical analyses, such as Fault Tree
Analysis (FTA) or Failure Mode and Effects Analysis (FMEA). The obtained numbers
do not necessarily agree with the actual numbers measured after the certified aircraft

enters service.

Essentially, the responsibility for safety is shifted from the regulators to the operators.
While it used to be sufficient to be compliant to regulation, airlines nowadays must
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set their own safety targets and implement measures to reach the targets, taking up all
the responsibility if accidents occur, even if all regulatory requirements are met with
respect to the initial and continued airworthiness. From the airline’s perspective, suf-
fering from an accident is not only costly as the premium that has to be paid by the
airline will increase, although the insurance will cover the direct costs of the accident
[VWC]. In addition, accidents also heavily draw negative public attention. Though the
current safety level in aviation is already high, public acceptance for accidents have
also remarkably decreased. Media coverage of accidents are intense, which puts mas-
sive pressure on airlines to avoid such negative publicity. Especially for airlines with
financial struggles, an accident with intense media coverage could be one more nail
in the coffin no matter what the actual causes of the accident are [Sch15]. Prominent
examples include the bankruptcy of Swissair in 2001 after the crash of the MD-11 in
1998, the takeover of Trans World Airline by American Airlines in 2001 after the crash
of the Boeing 747 in 1996 or most recently the takeover of Malaysia Airlines by the
State of Malaysia after losing two aircraft in 2014. These examples clearly demonstrate
the importance of safety and continued improvement of the level of safety for aircraft
operators.

1.2 State of the Art and Motivation

1.2.1 Safety Measurement

According to the ICAO Safety Management Manual [Int13] and the respective author-
ities, each organization has to set up its own safety target, or ALoSP. However, setting
the target is only the first task. In order to reach the target, it has to be made measur-
able using so-called Safety Performance Indicators (SPIs). This implies that one has
to be able to obtain its current level of safety. While this seems to be a simple task, it
comes along with many challenges.

The most straightforward way to measure safety — not just for aviation — is to count

the number of accidents and divide it by a reference number representing the entire

operation, which, in our case, is often either the total number of flights or flight hours.
Number of accidents

Safety Level = Entire operations (1)

This method is commonly used for road traffic: The total number of accidents is di-
vided by the total number of passengers, number of trips or the amount of passenger-
kilometers. As aviation has already reached a very high level of safety, accident data
is very limited simply because accidents rarely occur. The annual safety report pub-
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lished by the International Air Transport Association (IATA) [Intl7] shows that the
accident rate for the entire commercial aviation industry dropped below 2 x 107° per
flight with the rate of hull losses below 1 x 107 per flight in the year 2017. In total,
there were 13 hull loss accidents and 19 accidents involving fatalities in 2017. For sta-
tistical analyses, these numbers are already too low to allow for valid statements. They
certainly demonstrate the high safety standards in aviation, but make it difficult to
actually quantify the safety level.

Additionally, as the safety level for an individual organization has to be obtained, one
cannot simply use the data from other players or the competitors. Flight operations
can be much different between operators due to many reasons:

Network structure: Different airlines have different route networks. Operations at
some airports or in some airspaces are associated with higher risks than others
due to factors such as weather, terrain or operational constraints. A large network
carrier operating from big hubs cannot be compared with regional or commuter
operators.

Operating procedures: Though some parts of the Operations Manual (OM) are de-
fined by the aircraft manufacturer, the operator can customize the way its own
aircraft are operated, particularly in Part A of the OM. A more detailed descrip-
tion of the OMs can be found in chapter 7.

Crew selection and training: The way the pilots are chosen vary significantly among
the airlines. Some airlines allow ready-entries while some insist that every pilot
is trained by the airline’s own flying school from the beginning. Crew members
who previously worked as military fighter pilots can significantly change the way
to cope with emergency situations in the cockpit and the hierarchy between the

crew members.

Equipment: Differences in aircraft types and on-board equipment that are operated
also influences the safety level of each individual airline.

Obviously, when looking at an individual airline, the data becomes extremely rare as
a single airline simply does not have enough hull losses to make reliable statistical
statements with. If an airline does not have any hull loss accidents in the recent years
or even during its entire time of operation, equation (1.1) to obtain the level of safety
above would simply return the value zero. However, we know that, though the num-
ber is small, it cannot be zero. Quantifying this small number, based on the fact that no
accident has occurred so far, now becomes a challenge to be tackled. That is the main
goal of this work.



1.2 State of the Art and Motivation

1.2.2 Safety Management

In the ICAO Safety Management Manual [Int13], safety is defined as “the state in which
the possibility of harm to persons or of property damage is reduced to, and maintained at or
below, an acceptable level through a continuing process of hazard identification and safety risk
management” . Risk is defined as “The predicted probability and severity of the consequences
or outcomes of a hazard” [Int13]. This means that risk is always a combination of how
likely something is going to happen and how severe the consequences are. To be safe,
or to be in the state of safety, risks have to be reduced below a level that is acceptable.
To achieve this, safety has to be managed. The same ICAO document also serves as
guidance material to set up a Safety Management System (SMS) within an aviation

organization.

Safety management can be classified to three different categories. While reactive meth-
ods look at past accidents in order to prevent similar events from happening again,
proactive methods examine the current situation in order to identify existing hazards
in today’s flight operations. Predictive methods, in contrast, look at the future in order
to initiate risk mitigation actions before future hazards will begin to impose threats.

Today, safety management mostly incorporates reactive and proactive tools. As a reac-
tive method, accident investigation is conducted on a routine basis involving a num-
ber of parties. The way to conduct accident investigation is thoroughly guided by the
Annex 13 to the Convention on International Civil Aviation [Intl16] as well as the ICAQO’s
Manual of Aircraft Accident and Incident Investigation (Doc 9756) [Int15]. The improve-
ment of aviation safety during the last decades has been significantly credited to the
thorough and extensive investigations after every accident. Many additional safety
features, whether technical, procedural or organizational, have been introduced after
concluding the investigation of an accident and the identification of the factors con-
tributing to it. However, the drawback of these methods is that they rely on accidents
occurring in order to implement reacting procedures to prevent similar accidents from
happening again in the future. As aviation becomes safer, fewer accidents occur and
the chains of events leading to up to the accident have become very individual. As
a result, these methods are becoming increasingly ineffective to further improve the
level of safety.

Several models to determine the operational safety are already used today. The Causal
Model of Air Transport Safety (CATS) [RvST08] is well-known as well as the Bow-Tie
model: both are used in operational safety management today. However, those two
approaches require data of accidents to be available or at least known relationships in
the causal chain of events that ultimately lead to an accident, which is, only reactive
or proactive. This is also true of the Swiss Cheese Model developed by Reason [Rea(0]
to examine human errors. However, the goal has shifted from just knowing how an
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accident happened towards preventing an accident from happening beforehand.

Other methods to quantify the safety level include many that are mostly used dur-
ing the airworthiness certification process as they are explicitly listed as AMCs by the
authorities, including FTA, Functional Hazard Analysis (FHA) and FMEA [Soc96].

In current SMSs, data is an essential enabler. Many data sources are available to the
airline. One of the most important of them is the Flight Data Monitoring (FDM) sys-
tem, also known as Flight Operations Quality Assurance (FOQA). Besides the well
known Flight Data Recorder (FDR), a second recorder is installed on-board, the Quick
Access Recorder (QAR) is routinely read out and the data is monitored. Some differ-
ences between the FDR and the QAR include the fact that the QAR is not protected
against crash impacts and that the QAR, just as the name implies, can be easily read
out. The data is either stored on a SD card, which can be easily removed, or it can be
transferred via a Wi-Fi network at the gate or even using the 4G — possibly 5G in the
future — mobile network to the airline’s IT system. Besides, the data recorded on the
QAR can be individually configured by the airline whereas the parameters recorded
by the FDR are defined by legislation. FDM using either QAR or FDR data is common
industry standard for commercial aircraft and even mandatory for all aircraft in the
EU with a Maximum Certified Take-off Mass (MCTOM) of 27 000 kg or more according
to EU legislation [Eur08a]. As a standard approach in FDM, certain parameters are
compared to given threshold values to detect violations. One example is the deviation
on the Instrument Landing System (ILS) localizer and glideslope during the approach.
A too high deviation, whatever the exact value is defined to according to the airline,
indicates a more risky approach. The exceedance will, therefore, trigger a warning in
the FDM system. Other common activities within FDM include flight path reconstruc-
tion, providing feedback to pilots whenever requested or benchmarking with other
operators.

The capabilities of FDM, however, are not unlimited. Though the recordings include a
large variety of parameters, the sampling rate as well as the resolution are somewhat
limited, depending on the aircraft type. This is a challenge that has to be taken into
account for any work performed with FDM data.

1.3 Objectives

At the Institute of Flight System Dynamics (FSD) of the Technical University of Mu-
nich (TUM), the work focuses on accident prediction. The goal is the quantification
of the occurrence probabilities for given accidents, which is essential to be able to per-
form benchmark with the safety target that are introduced in section 1.1. Today, this
is typically either not performed in standard FDM or largely based on qualitative ex-
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pert judgement. The general feasibility of a novel approach developed at the FSD has
already been shown that is able to quantify the occurrence probability of accidents
[Drel6]. Many components of the Predictive Analysis, however, still have to be refined.
A detailed description of the Predictive Analysis is available in chapter 4.

The Predictive Analysis is based on three fundamental pillars.

1. The main source of information is data collected from flight operations. The
largest contribution is obtained from FDM data which is recorded on each and
every commercial flight and read out routinely. It contains states, system pa-
rameters and characteristic values of the aircraft as timeseries data throughout
the flight. Additional data is used to complete the picture, such as weather data
from the Meteorological Aerodrome Report (METAR). It can be said that the data
represents the collected previous experience from flight operations.

2. A model of the aircraft is created that is based on the understanding of the behav-
ior of the aircraft from flight mechanics. Just as pilot training can be performed
using flight simulators due to their close resemblance to the reality, the same
simulation techniques can be used to predict the behavior of the aircraft. Ini-
tial conditions are provided to the model along with the control variables. The
model output consists of characteristic performance indicators that are used to
determine whether an accident has happened or not. The modeling contains the
knowledge we have about the physical system of the aircraft.

3. Operating procedures are included when setting up the model. The way the
crews are expected to operate aircraft systems is incorporated as well as system
logics unique to specific aircraft types. This takes into account the uniqueness of
each operator as the safety level can be very different among competitors.

Several requirements have to be fulfilled by the developed methods:

¢ The data that is utilized does not necessarily contain actual accidents. The method
must be capable to predict the accident probabilities without any recordings con-
taining accidents. It has to be able to look beyond the curve.

¢ The prediction must be capable to run for individual organizations, i.e. for dif-
ferent operators with the ability to assess their level of safety individually.

¢ The prediction must be capable to assess the level of safety for separate parts of
the flight operations. For example, it must be possible to quantify the risk indi-
vidually for each aircraft fleet or for operations at specific airports or runways.

The work presented in this thesis focuses on certain parts of the Predictive Analysis
(PA). Further research is also conducted on other parts and should be considered as
well by the interested reader.
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1.4 Contributions

This thesis aims at developing and implementing several sub-parts of the Predictive
Analysis developed at the FSD which is able to quantify accident probabilities of indi-
vidual airlines based on recorded flight data that is accident-free, fulfilling the require-
ments set up in section 1.3. The following work packages were performed that are
either novel by themselves or novel to be used for the application at hand along with

significant modifications.

Accident probability quantification for Runway Excursion (RE)

The developed methods are able to quantify accidents that are related to Runway Ex-
cursion, including runway overrun and runway veer-off. Though the methods are
used for accidents that occur during landing, they can be transferred to the same ac-
cident types that occur during take-off. Runway overrun accidents, for example, can
also occur after a rejected take-off. The relevant steps include modeling as well as data
analysis. In order to perform the Predictive Analysis, the relevant information has to be
extracted from FDM. They include contributing factors that have an impact on whether
a RE accident occurs or not. So-called measurement functions are implemented that ex-
tract these relevant information from recorded data. Data errors have to be accounted
for in order to obtain useful results.

Establishing the Predictive Analysis

The Predictive Analysis consists of seven steps and is described in detail in chapter 4.
This dissertation contributes to four of them with particular focus on runway excursion

accidents, mainly:
¢ Step 1: Define (Contribution in chapter 6)
¢ Step 2: Model (Contribution in chapter 6)
¢ Step 4: Cumulate (Contribution in chapter 8)

¢ Step 3: Predict (Contribution in chapter 9)

Usage of simulation models related to accident quantification based on FDM data

In order to describe the motion of the aircraft on the runway, a six degree-of-freedom
rigid body model of the aircraft was created based on available information from FDM.
The fidelity of the model has to be chosen such that only those parameters can be
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incorporated that can be obtained from FDM. However, the model still covers all the
significant drivers as well as the relevant effects and relationships that are important
for the accident. While flight simulation models are used for various purposes, the
model includes not only the forces and moments acting on the aircraft as in classical
flight simulation, but also system logics of the on-board systems, such as autobrake
or spoiler extension conditions that heavily affect the performance of the aircraft. In
addition, the operating procedures are included as well, which is important to reflect
the way systems are used, activated and deactivated by the flight crew. This reflects
individual operational distinctive features of each airline and is of high importance to
perform safety assessment for individual airlines.

Introducing a landing gear model specifically for accident quantification

The aircraft model is enhanced with a landing gear model. The landing gear of the
aircraft was extensively modeled as the braking force is a key driving factor for any RE
accident. The entire causal chain starting from the application of the brake pressure to
the friction force between the tire and the runway surface was included. Again, just
like the aircraft model mentioned above, the modeling has to be based on parameters
that are obtainable from recorded FDM data and other safety-related information. Us-
ing this analysis, the braking capability of the aircraft can be obtained for individual
environmental conditions which is essential to assess the remaining deceleration mar-
gin. For the lateral behavior on the ground, the model includes the sideslip as well,
which is particularly important when it comes to nosewheel steering and lateral con-
trol. This is of special interest for runway veer-off accidents, i.e. when the aircraft
unintentionally leaves the runway to either side.

Probability distribution propagation for operational flight safety

In order to quantify the accident probability using the model described above, proba-
bility distributions have to be propagated through the model. Though classical Monte
Carlo Simulation (MCS) can be used, they proved to be computationally very costly
when estimating small accident probabilities. The method of Subset Simulation has
been applied to civil engineering and aircraft system development problems so far, the
novelty is the application to operational safety in aviation utilizing a physical model
of the aircraft. The key of using this method is to minimize the covariance of the result
and simultaneously reduce the computational effort that is required.
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1.5 OQOutline

Before describing the novel method introduced in this dissertation, an overview of
how the data is obtained within Flight Data Monitoring is provided in chapter 2. In
chapter 3, an overview is provided about both what is currently being done with FDM
with respect to safety and other applications within airlines, such as efficiency top-
ics. In addition, the FDM data is also used by other stakeholders in aviation, such
as OEMs or Maintenance, Repair and Overhaul (MRO) organizations. In chapter 4,
an overview of the Predictive Analysis developed at the Institute of Flight System Dy-
namics is provided including a description of all seven steps. In chapter 5, an overview
of the stochastic methods used in this dissertation is provided, namely the methods
used to quantify the accident probability, including the classical MCS and the more
sophisticated Subset Simulation. In chapter 6, the basics of flight mechanics and air-
craft modeling is described, along with modeling methods of the landing gear. The
implementation of the system logics and the operating procedures for different aircraft
types is shown in chapter 7. In chapter 8, the relevant data is extracted from FDM and
the distributions are fitted to the data that are later used for accident prediction. In
chapter 9, the actual accident prediction is performed using Subset Simulations, and
the obtained results are presented. Finally, chapter 10 provides a conclusion of this
thesis and an outlook to future work.

Some additional information related to this work can be found in the appendices. Ap-
pendix A provides an overview of the coordinate frames used in this work when the
aircraft is modeled. In appendix B, the probability distributions that are used within
this work are listed. Appendix C provides some aeronautical charts of Munich Airport
(MUC/EDDM) to understand the operations at this airport. Appendix D shows the
data that is used to quantify the probabilities for RE at MUC/EDDM.
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Flight Data Monitoring

2.1 Necessity for Flight Data Recording

The ability to reconstruct any accident that already occurred has been of primary con-
cern since the early days of safety effort in aviation due to the fact that often no on-
board witnesses are available to be questioned. The first Flight Data Recorders (FDRs)
were introduced on military aircraft and they were made mandatory for civilian air-
planes during the 1960s [Air07]. The recorders only contained the most important
parameters, such as speed, altitude and the attitude. The data was written on a metal
strip. It soon became obvious that the data does not necessarily have to be used in an
event of an accident, but also for routine monitoring of the flight operations. During
the 1960s, more advances types of recorders were installed on new generation aircraft,
such as the Comet, the Boeing 707 and the Vickers VC10. When the autoland system
was developed during this time, a large amount of data had to be collected to moni-
tor and to demonstrate the safety performance of the system. The certification of the
autoland system was performed using data from the newly installed Quick Access
Recorder (QAR) on-board the Hawker Siddeley Trident and the Lockheed L-1011 Tri-
Star. The data could be easily transferred from the aircraft for further processing. The
Flight Data Monitoring (FDM) system rapidly developed during this time, with British
Airways being the first airline to monitor all of its aircraft.

FDM, also known as Flight Operations Quality Assurance (FOQA), is a powerful tool
when it comes to not just monitoring, but also improving the level of safety. FDM is
part of the airline’s Safety Management System (SMS) and is nowadays required by
law within the European Union (EU) for all aircraft with a Maximum Certified Take-
off Mass (MCTOM) equal to or greater than 27000 kg. Although FDM is currently not
legally required in the United States, it is common practice for all commercial operators
worldwide due to its clear benefits. Guidance material for FDM can be found in the
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Acceptable Means of Compliance (AMC) of the Part-ORO issued by the European Avi-
ation Safety Agency (EASA) [Eurl2]. The European Authorities Coordination Group
on Flight Data Monitoring (EAFDM) also issued recommendations [Eur17a] as well as
the British Civil Aviation Authoriy (CAA) [Civ13] and the French aviation accident in-
vestigation branch, the Bureau d’Enquétes et d”Analyses pour la Sécurité de 1’ Aviation
Civile (BEA) [Bur05].

This chapter will describe how the flight data is recorded today and how the data can
be converted from a very specific format as found on the recorder memory to meaning-
ful engineering values, enabling the data to be processed analyzed. FDM data offers a
wide range of safety and non-safety related applications, which will be explained sub-
sequently for use-cases from both inside and outside of the airline. In addition, some
current research projects and activities using FDM data that are related to this work
are presented.

2.2 Data Acquisition and Recording

Recording devices on-board the aircraft include, among all, the FDR and the Cockpit
Voice Recorder (CVR). Both combined are very well-known to the public as the Black
Box. Today, the FDR is often referred to as Digital Flight Data Recorder (DFDR) as
the data is nowadays stored on solid state storage devices rather than magnetic tapes
commonly used on older aircraft types. The way the data is recorded and retrieved has
changed as well over time.

All the parameters that are to be recorded are measured by sensors throughout the air-
craft. The measured numbers are converted to digital values and sent to the aircraft’s
on-board buses. For the first generation of aircraft featuring a glass-cockpit and a Flight
Management System (FMS), e.g. the Airbus A320, A330, A340 as well as the Boeing
757 and 767, the common standard is the Aeronautical Radio Incorporated (ARINC)
429 bus. The Flight Data Acquisition Unit (FDAU) — for Boeing aircraft — or the Flight
Data Interface Management Unit (FDIMU) — for Airbus aircraft — acquires the param-
eters for recording from the relevant ARINC 429 buses and converts the data to the
ARINC 717 format [ARI11], which is used for the recording of the data on the DFDR.
Figure 2.1 shows how the data is transferred from the sensors to the recorders.

A second flight data recorder also exists on-board commercial aircraft, which is either
the QAR or the Digital ACMS Recorder (DAR), which also includes the data that is
provided to the Aircraft Condition Monitoring System (ACMS) in addition to data
from the FDIMU or FDAU. Figure 2.2 shows the recording architecture of the Airbus
A380 and its connection to the ACMS. The data available on these recorders can either
be an exact copy of the DFDR or they can be individually configured [Dub14]. As
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Figure 2.2: Recording architecture on the Airbus A380 [Airlla]

data from these recorders are used for FDM, it enables the operator of the aircraft to
put individual focus according to the specific needs. In contrast, the parameters that
have to be recorded on the DFDR are specified by legislation, though parameters can
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be added to adapt to specific needs. Figure 2.3 shows a QAR module manufactured
by Teledyne Controls that is installed on an aircraft. This particular model is also able to
wirelessly transfer the stored data.

e TELEDYNE CONTROLS

ol

Figure 2.3: A wireless QAR produced by Teledyne [Deg16]

When it comes to the amount of recorded data, newer types of aircraft typically record
more parameters simply because more parameters have to be measured and processed
nowadays for other aircraft systems anyway. Especially those equipped with a Fly-
By-Wire (FBW) flight control system combined with envelope protections require the
input of many parameters with high reliability. However, the available amount of data
is heavily limited by the data acquisition system. Airbus, for example, recently started
introducing a new data acquisition and transferring system on the A320 fleet in order
to allow more data being processed compared to current on-board systems [Roc17].

For the newer Airbus aircraft types, e.g. the A380 and the A350, a supplement to the
ARINC 429 bus was created, allowing the data to be transferred via wireless Ethernet
on the ground. On the newer types of the Boeing 777, a new on-board bus protocol, the
ARINC 629, is used, which is a more capable standard compared to the ARINC 429.
For example, the ARINC 629 allows a maximum transmitting speed of 2 Mbps while
the ARINC 429 is only capable of up to 12.5kbps. For the Boeing 787, a newer format
for flight data recording, which is the ARINC 767 [ARI09], was developed. The trend
in the development is to move away from the traditional ARINC 429 protocol towards
a more Ethernet-based architecture for flight data recording.

The description of the data acquisition and recording process applies to both the FDR
and the QAR. The bifurcation in figure 2.1 indicate their distinctive features. There are
three main differences between the FDR/DFDR and the QAR/DAR:

Crash protection: Neither the QAR nor the DAR is crash-protected, they are not de-
signed to resist the mechanical and thermal impact. While their data are also
used for accident investigation if they are still accessible, the FDR remains the
only source of data if the aircraft is heavily damaged.
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Data retrieval: Just as the name suggests, the data from the QAR, but also the DAR,
can be easily retrieved. The data is often stored on a Personal Computer Mem-
ory Card International Association (PCMCIA) memory card or Secured Digital
(SD) memory card which can easily be removed and copied to the airline’s FDM
system. With suitable infrastructure available at the airport, the data can also be
transferred automatically via the company’s Wi-Fi network at the gate or even
worldwide via the 4G mobile network.

Adaptability: The operator can modify the parameters stored in a QAR whereas the
data on the FDR is specified by law and must not be changed below the legally
required standard.

In 2015, an Airbus A320 operated by Germanwings impacted terrain in the French
Alps with high energy after deliberate actions of the First Officer. The mechanical
stress acting on the airframe during the impact was enormous. Although the FDR was
severely damaged from the outside, as seen in figure 2.4, the memory of the recorder
was readable. The QAR was damaged and could not be read [Bur16].

Figure 2.4: The heavily damaged, but still readable FDR of the A320 that crashed in the French
Alps after recovery [Bur16]

2.3 Data Handling

After the binary data from the recorder is transferred to the airline’s IT infrastructure,
some processing of the data has to be performed to make the data ready to be used
for safety monitoring or other purposes. For airlines, many commercial software so-
lutions are available on the market that provide a wide range of services from data
pre-processing to safety analysis. Possible providers include SAFRAN Sagem’s Anal-
ysis Ground Station (AGS), Teledyne’s AirFase as well as General Electric’s Flight Risk
Management tools, formerly a product of Austin Digital.
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The main tasks of these tools include the conversion of data from binary to engineering
values, the visualization of the data and the performance of safety analysis. For the first
task, there are several challenges that a FDM tool has to face:

* The appropriate documentation of the Dataframe Layout (DFL) has to be avail-
able, which contains the information about how to convert from binary to en-
gineering values. While this seems to be straightforward as it should be pro-
vided by the Original Equipment Manufacturer (OEM), the documentation is of-
ten not complete as a significant part of the knowledge is not written, but rather
exchanged informally within the community.

* The tool has to be capable of processing files with large size. Each flight, in bi-
nary format, ranges from several megabytes for short-haul flights on aircraft with
several hundred recorded parameters to almost 100 MB for long-haul flights on
modern aircraft types, such as the Airbus A380, where more than 2000 param-
eters are recorded. While this can be easily handled by today’s computational
power, special attention has to be paid to the processing of data to avoid unnec-
essary memory allocation.

¢ The tool has to be capable of processing a large number of flights. The fleet
of Lufthansa Passage (the mainline within the Lufthansa Group), for example,
consists of about 180 short-haul and about 110 long-haul aircraft. The number
of flights performed on a single day easily reaches a few thousand. The entire
Lufthansa Group performs more than one million flights every year [Deul8b].

Due to the specific use-cases at the Institute of Flight System Dynamics (FSD), which is
different compared to those at airlines, it was decided not to purchase a commercial so-
lution on the market, but rather to develop a tool on their own. Unlike the application
for airlines, the number of files is limited to batches coming in from airline partners
rather than a live and continuous feed from operations. In addition, the main advan-
tage of a self-developed tool is the possibility for quick and tailored customizations.

Each single flight has to be identified as the files typically contain time-continuous and
looped recording, i.e. the recording restarts at the beginning of the memory once it
arrives at the end, overwriting the previously recorded data. A method to split the
individual flights was also developed [WMH16].

There are several types of error that should be accounted for when it comes to recorded
flight data:

Measurement error: The wrong values result from incorrect measurements, mostly
from erroneous sensors. Examples include incorrect position measurements due
to the drift of the gyroscopes or the accelerometers of the Inertial Reference Sys-
tem (IRS). In addition, the measurements can contain bias and noise.
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Recording error: The wrong values result from correct measurements, but the value
was not correctly written on or read from the memory. This is typically caused
by flipped or shifted bits.

Resolution error: As the measured values are stored digitally, the measured values
have to be discretized. This introduces an error because the recorded value is
typically not exactly the same as the one that was measured.

Time discretization error: Similar to the resolution error, measurements can only be
recorded at discrete timepoints. This means that the time at which the value
was recorded is not necessarily the same timepoint when the value was actually

measured.

Dataframe error: The dataframe that is provided along with the data can be erro-
neous, leading to incorrect conversion to engineering values.

Recording errors are typically somewhat easier to detect as a single wrong bit will
usually lead to a large deviation within a very short time frame in the engineering
value, which can be detected because the value is often not physically realistic. Errors
in the dataframe typically result from incorrect conversion factors or incorrect units.
They can be easily detected if the units are significantly different, e.g. speed in knots
instead of meters per second.

All devices involved in flight data recording should be examined and checked on a
regular basis to minimize the errors described above. The sensors and measuring units
should be regularly calibrated [Bur05]. The tolerated deviations from real values are
provided in the EU-OPS [Eur08a].

2.3.1 The ARINC 717 Format
2.3.1.1 Format Structure

As already mentioned in section 2.2, the data on the QAR is recorded in the ARINC
717 format [ARI11] for the large majority of aircraft types currently in service except
the Boeing 787 and other very new types of aircraft. In this section, the ARINC 717
format will be presented along with a tool developed at the FSD which is capable of
converting the ARINC 717 binary data to engineering values.

The structure set up in ARINC 717 is defined by bits, words, subframes (SF) and
frames. Each word consists of 12 bits while 4 subframes constitute one frame. The
number of words per subframe varies between aircraft types. While older aircraft
types only have 64 words per subframe, newer types or newly-built airplanes with
modifications compared to earlier production frames can have a much higher number
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Figure 2.5: The ARINC 717 Layout

of words, allowing a much higher number of parameters to be recorded and also with
higher frequency. For example, the Boeing 747-8, both the passenger and the freighter
version, can have up to 1024 words per subframe while newer productions of the Air-
bus A320 can have 2048 words per subframe. The maximum recording capability is
mainly limited by the FDAU / FDIMU.

The first word in each subframe is reserved for the sync word, which is a unique se-
quence of 12 bits defined in ARINC 717 in order to distinctly identify the beginning of
each subframe. Of course, it cannot be entirely ruled out that the exact same 12 bits ap-
pear at other positions in the binary streams, but it is unlikely. The ARINC 717 layout
is shown in figure 2.5.

The recording speed is set up in such a way that one subframe is recorded every sec-
ond, meaning that one frame comprises four seconds. Depending on the aircraft type,
parameters can have different recording frequencies. While the Boeing 777 and 787
have recording frequencies of 1, 2, 5, 10 and 20 Hz, the Boeing 737 and 747 as well
as all Airbus aircraft types record parameters with frequencies of 1, 2, 4, 8 and 16 Hz.
This implies that every parameter that is recorded with 1 Hz can be found once in each
subframe. Parameters with 8 Hz are found 8 times in each subframe and parameters
with 0.25 Hz can be found once in only one of the four subframes, i.e. once per frame.
Parameters can also be recorded with frequencies lower than 0.25 Hz, they are referred
to as superframe parameters as they cannot be found in every frame. In order to dis-
tinguish each frame, a superframe counter is implemented in one of the words as a
regular parameter.

The recording frequency of each parameter depends on the availability of words to
be utilized on the one hand and the dynamic property of the parameter on the other
hand. Highly dynamic parameters such as acceleration or angular speeds of the aircraft
have a much higher recording frequency than slow-changing parameters, such as the
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aircraft’s mass. Other parameters might not change at all during the flight or never
change at all, but they are still recorded for convenience reasons, examples include
the aircraft’s registration, flight number or callsign. These parameters are typically
recorded as superframe parameters to minimize memory space.

2.3.1.2 Decoding Process

A key task in FDM is the conversion of the binary ARINC 717 to meaningful engineer-
ing values. In order to perform this task, one has to know which parameter is stored
in which word(s) and which subframe(s) and how the relevant bits can be converted
to engineering values. This information is referred to as the Dataframe Layout (DFL). It
has to be provided or generated by the manufacturer of the aircraft or, if the operator
has made modifications to it, by the airline. A MATLAB tool was developed at the FSD
that is capable of making the conversion from binary to engineering values. The DFL
is stored in a database which is accessed by the tool [Moh16].

The number of bits required for each parameter does not only depend on its frequency,
but also on the type of the parameter. A switch that can be either on or off only requires
one bit for one value or two bits, if a valid /invalid flag is added. The position longitude
of the aircraft, for example, with values ranging between —180° and 180°, requires a
larger number of bits for each value which is also due to the fact that the resolution has
to be sufficiently high in order to be able to record the position precisely.

Taking the position longitude as an example, it is typically recorded with 21 bits for
each measurement, enabling the precision to be

360°
212

=0.000171661°.

This corresponds to a resolution of approximately 20 m on the surface of the earth. This
precision is sufficient for airborne navigational purposes, but not for landing analysis,
such as the exact detection of the touchdown point on the runway. The use of 21 bits
implies that they cannot all be located in the same word, but have to be in different
words since one word only contains 12 bits. A decoder will assemble the bits and con-
vert from a binary to a signed decimal number. Numbers can also be stored as Binary
Coded Decimal (BCD) which means that each digit in the decimal representation is
converted to a binary number individually, requiring up to 4 bits for each digit. Let-
ters and symbols, if they need to be recorded, are converted to binary format using the
American Standard Code for Information Interchange (ASCII), thus 7 bits are required
for each symbol.

Before this process can be performed for each parameter to be decoded, the bits have
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to be sorted as they are stored on the memory as a long stream of ones and zeros.
Using the sync words, the beginning of each subframe can be detected. The bits are
then sorted into frames, subframes and words. An algorithm has been developed that
sorts the bits into a 3-dimensional matrix, with the three directions being word, sub-
frame and frame [WDH16a]. The position of the bits for each parameter is located in a
repeating way:

¢ If the recording frequency is smaller than 0.25Hz, the superframe parameter is
always stored in the same word(s) in the same subframe in every frame where

the superframe counter has a given value.

¢ If the recording frequency is 0.25 Hz, it is always stored in the same word(s) in
the same subframe.

¢ If the recording frequency is 0.5 Hz, it is always stored in the same word(s) in the
same two subframes.

¢ If the recording frequency is 1 Hz or greater, it is always stored in the same word(s)
in each subframe.

The indexing of the relevant bits now becomes much simpler when the bits are sorted.

At the FSD, flight data is available from approximately five operators that include a
wide range of aircraft types. Data from almost all Airbus aircraft types featuring FBW
control are available as well as data from the Boeing 747-8. All the data can be con-
verted using the described approach.

2.3.1.3 Example Parameters

Table 2.1 shows three example parameters obtained from the DFL of an aircraft. The
tirst parameter, the barometric altitude in feet, is coded as a binary value. It consists of
19 bits, 6 of them are located in word 852 in each subframe (SF) and each frame. This
implies that a total of 2! = 524288 numbers can be expressed. However, the allowed
range of the numbers is limited to a minimum of —2000 ft and a maximum of 50 000 ft.
That means after converting the binary number to decimal, the entire range has to be
scaled to the interval of [-2000; 50000}, i.e. using a scaling factor of %&)_QOOO) and an
offset of —2000 in order to obtain the engineering value of the barometric altitude in
feet. Instead of providing the maximum and the minimum possible value, some DFLs

also provide the scaling factor and the offset.

The second parameter is the lateral acceleration of the aircraft in g, i.e. scaled to the
normal gravitational acceleration. It is somewhat similar to the first parameter. It is
recorded every SF and every frame and has to be converted from binary to decimal
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ID | Parameter Frame | SF | Word(s) | Bit(s) | Min | Max
1 Barometric Altitude, ft | All All | 852 1-6 -2000 | 50000
All All | 854 1-12
2 | Lateral Acceleration, g | All All | 69 3-12 | -1 1
All All | 197 3-12 -1 1
All All | 325 3-12 -1 1
All All | 453 3-12 | -1 1
All All | 581 3-12 | -1 1
All All | 709 3-12 -1 1
All All | 837 3-12 -1 1
All All | 965 3-12 -1 1
3 | Registration Char 1 8 3 | 445 6-12 | N/A | N/A
4 Ground Sensor All All | 65 2 0 1

Table 2.1: Example parameters from FDM

using the information that the minimum and maximum values are -1 and 1, respec-
tively. However, the difference is that this parameter can be found in 8 different words
containing 10 relevant bits each. This implies that the parameter is recorded 8 times
in every SF, i.e. with a frequency of 8 Hz. Note that the difference between each word
is always at an equal space of 128, which means that the frequency of 8 Hz is constant

over the entire second.

In the documentation of the DFL, very often no reference can be found concerning
whether a parameter located in several words within a subframe is simply because
more than 12 bits are required to record the number or whether the frequency is higher
than 1Hz. For this distinction, common knowledge or experience is required. First,
each measurement has to have the same number of bits for every measurement. This
rules out that, for example, the first parameter in table 2.1 is recorded with 2 Hz because
the number of bits in word 852 and 854 are different. Second, when recorded with a
higher frequency, the space between the words should be equal, as shown in parameter
2 in table 2.1. This also does not apply to the first parameter.

The third parameter is the first character of the registration of the aircraft. The first
significant distinction is that this parameter cannot be found in every frame or SF, but
only in SF 3 and only when the superframe counter is 8. For this particular DFL, this
counter can reach a maximum value of 4096, which means that the counter repeats
itself after 4 x 4096 = 16 384 s, which is also the recording frequency of this parameter.
Of course, registration character of the aircraft rarely changes —if at all. It is only logical
to store it with such a low rate. In order to decode the character, one has to extract the
bits 6 to 12 from word 445, which is a total of 7 bits, as the character is ASCII-coded.

The fourth parameter is the Air/Ground sensor and again recorded in every SF and
every frame, resulting in a recording frequency of 1 Hz. It is located in bit 2 of word 65.
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As it is a boolean variable, only one bit is required. In this case, a value of one indicates
that the aircraft is on ground and zero indicates that the aircraft is airborne. Sometimes
a valid/invalid flag is added to a parameter to indicate whether the measured value is
reliable, requiring an additional bit.

2.3.2 The ARINC 767 Format

A new data recording standard has been introduced to enable better performance com-
pared to the ARINC 717, which is the ARINC 767 format [ARI09]. The ARINC 767 is
currently only used on the Boeing 787 aircraft. However, it will be introduced on newly
produced airframes of the Boeing 777-300ER and the Boeing 737 MAX family as well
as the Boeing 777-8 and -9 at market introduction.

The ARINC 767 is used along with a new type of recorder, which is the Enhanced Air-
borne Flight Recorder (EAFR). The concept of frames and subframes known from the
ARINC 717 is replaced by a timestamp, similar to messages that are transferred via
the Automatic Dependence Surveillance - Broadcast (ADS-B) system. Each measure-
ment is stored along with a time at with this particular measurement was obtained.
This means that the recording frequency does not necessarily have to be one of the
given values, but can be individual. In addition, it is possible to vary the recording fre-
quency throughout the flight. For example, there is no need to record the wheel speed
at a high sampling rate during the flight, but it can be very beneficial during take-off
and landing to record this parameter with a high frequency.

The ARINC 767 is also capable of incorporating voice data, messages from datalink as
well as images from on-board cameras.

2.4 FDM within the Safety Management System

Though FDM offers a rich source of data, additional information is often included
within the scope of FDM. Other sources of information include radar data that is col-
lected by Air Navigation Service Providers (ANSPs) and also ADS-B data. Weather
data is collected and used in the form of Meteorological Aerodrome Report (METAR)
messages. Depending on the confidentiality agreements within the company, personal
data of the flight crew can be incorporated, such as previous experience or flight duty
time.

Despite its importance, FDM is only one module that contributes to the overall SMS of
an airline [Int13]. The implementation of a SMS requires joint effort within the com-
pany, both technical and organizational. Responsibilities are often assigned by the
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appointment of staff members as safety managers. One of their key tasks is to also
promote safety within the organization and to increase the awareness for safety. The
gap between the safety target and the actual level of safety has to be identified and
closed by implementing risk mitigation measures, such as the introduction of safety
barriers or changes in training and procedures. Last but not least, safety management
also includes plans to follow in the event of a crisis, e.g. when an accident has already
occurred. These plans not only include the assignment of tasks and responsibilities,
but also measures concerning how to communicate to the public.

25






FDM Activities Today

3.1 Introduction

Flight Data Monitoring (FDM) is a key part of the Safety Management System (SMS)
of aviation stakeholders. It provides a feedback loop to allow a timely detection of
any safety hazard' as well as any deviation from Standard Operating Procedure (SOP)
[Civ13]. The effectiveness of risk mitigation actions can be monitored and quantified
using FDM. If the results are not satisfying, the measures can be modified accordingly.
This chapter provides an overview about how FDM data is used throughout the in-
dustry. Some research initiatives that are related to this dissertation are also presented.

3.2 Use of FDM within Airlines

FDM, also referred to as Flight Operations Quality Assurance (FOQA) or Flight Oper-
ations Data Analysis (FODA), can be used for safety improvements in various ways.
When it comes to reactive Safety Management, it provides a possibility to review the
sequence of events and the establishment of causal chains. After an accident, the au-
thorities are informed and the flight can be reconstructed. Based on the provided in-
formation, they will decide about further steps. In addition, many minor events occur
during daily flight operations. These are not serious, but still constitute an unusual sit-
uation that could, if not prevented, lead to more serious events in the future. Examples
include unstablized approaches, Traffic Alert and Collision Avoidance System (TCAS)
Traffic Advisory (TA) events or simply messages from the Electronic Centralized Air-
craft Monitoring (ECAM) or Engine Indication and Crew Alerting System (EICAS)

'Hazard is defined by the International Civil Aviation Organization (ICAO) as “A condition or object
with the potential of causing injuries to personnel, damage to equipment or structures, loss of material, or reduction
of ability to perform a prescribed function” [Int13].
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about certain on-board systems. FDM enables the safety manager to look at flights
from the past to identify the contributing factors that lead to the event and to establish
procedures to prevent the same or similar events from happening again in the future
[Cam17].

Visualization tools create graphical images and videos of the flight along with the pre-
vailing environmental conditions at the time of the flight. It can also be beneficial to
the crew to view their own flight from a third viewer’s perspective [Morl7]. Such
feedback to the flight crew can also be routinely made available without the occur-
rence of events. Information provided to each crew member individually can include
the precision of manual flight, the time to perform certain items in the procedure and,
most importantly, the benchmark with other crew members in the airline [Hit17]. This
also enables further development of the flight crew training program since it can be
individually tailored to each person to train what is mostly required for that particular
crew member. This is often referred to as Evidence-Based Training (EBT). Of course,
data confidentiality agreements apply, which is further discussed in section 3.5.

FDM offers more opportunity than just replaying the past. New knowledge can be ob-
tained by deeper analysis as part of the proactive Safety Management. The aim of it is
to anticipate what might be happening based on the current available information and
to implement countermeasures to mitigate the related risks. For example, based on
previous accidents, it is well known that the wind plays a vital role when it comes to
Runway Excursion (RE) accidents. Especially heavy crosswinds significantly increase
the risk of suffering from a runway veer-off while tailwind increases the required land-
ing distance, leading to higher overrun risks. A proactive SMS would analyze the wind
data and implement measures before any RE accidents occur. However, although the
wind is often recorded in FDM and also provided by the Air Traffic Controller (ATCo),
the quality and the sampling rate is very low. Reconstructing the wind, which has
high influence on the quality of the landing, is an enabler for a deeper analysis of the
contributing factors to RE, particularly runway veer-offs. FDM allows unknown infor-
mation that was not available in real-time during the flight to be computed afterwards
using more sophisticated methods. The wind components (crosswind and tailwind)
can be reconstructed for the landing phase using filter methods [van17a]. Novel tech-
niques, such as machine learning tools, can also be used on flight data in order to detect
unusual flights or flight paths rather than defining threshold values and detecting their
exceedance [Oeh17]. Furthermore, the data from FDM can be enhanced since the anal-
ysis is done offline after the flight. Therefore, at each timepoint during the flight, not
only the measurements in the past are available, but also those in the future. Using
this information, advanced smoothing algorithm can be used to correct measurement
errors in the data to enable further studies using the corrected data [Hoh16] [Hoh17].

Today, airlines” FDM activities are not limited to contributing to the goal of improving
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the level of safety. The data can also be used to improve the efficiency of the operations,
for example by analyzing and reducing fuel burn. The direct comparison of two flights
is always difficult, even on the same route using the same type of aircraft because the
conditions are different for each individual flight. The atmospheric conditions con-
stantly change just as the loading is never entirely identical. A clustering method can
be used to compare fuel flow between two aircraft or two aircraft fleets independent of
the exact route to be flown [KSH16] [Kop17]. In recent years, experiments have been
conducted to put a special coating on the outer surface of the aircraft in order to reduce
aerodynamic drag [Luf]. The effect of this coating could be quantified using FDM data.

3.3 Use of FDM at Other Organizations

As FDM data are collected and, consequently, owned by airlines, data must be made
available to other organizations if they wish to make use of it. While data transfer can
be difficult due to legal concerns, as described further in detail in 3.5, the availability
can be of great benefit for other organizations as well.

Another important field of application is the optimization of maintenance work. Data
obtained from FDM is also widely used at Maintenance, Repair and Overhaul (MRO)
organizations [Sor18]. With information about the flight hours, loads and other param-
eters relevant to the aging of the aircraft or the aircraft’s components, the time to failure
for the respective component can be estimated [Sor18], allowing a more efficient plan-
ning of the maintenance schedule. This method, which currently is still undergoing
rapid development, is often referred to as Predictive Maintenance. Big Data processing
algorithms and Machine Learning techniques can be utilized as well. Many big players
on the MRO market have already developed products that utilize recorded data from
the aircraft, including FDM data, but also data from the Aircraft Condition Monitor-
ing System (ACMS) that is additionally stored in the Digital ACMS Recorder (DAR),
to predict the failure of parts and aircraft components in order to replace them before
the failure. AFI KLM E&M, the MRO subsidiary of Air France — KLM, have devel-
oped and implemented the PROGNOS — Predictive Aircraft Maintenance [Airl7] on vital
components of the aircraft, such as the engines or the Auxilliary Power Unit (APU).
Lufthansa Technik developed AVIATAR [Luf17] that is capable of connecting the stake-
holders, including airlines, Original Equipment Manufacturers (OEMs), MROs and
aircraft lessors to manage the fleet, with particular focus on reliability. Of course, the
FDM data has to be made available to the MRO. Due to data confidentiality issues, this
is most often made possible if the MRO and the airline are different subsidiaries of the
same company group.

From the point of operational efficiency, the runway occupation time after landing has
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been investigated using FDM data [Her17]. The data from the on-board recorders often
contain more precise position and speed data of the aircraft than the radar data that is
available to the tower and ground controller. With a deeper knowledge, the arrival and
departure sequence at the airport can be better planned by the ATCo. Furthermore, for
Air Navigation Service Providers (ANSPs), the knowledge about the performance and
the behavior of the aircraft can provide an advantage when it comes to optimizing
the traffic flow. In this case, FDM data is combined and correlated with radar data,
which is directly collected by the ANSP as well as weather data, such as Meteorological
Aerodrome Reports (METARs).

3.4 Use of FDM Across Organizations

FDM data can also be used across organizations. In fact, the exchange of data between
the operators can be greatly beneficial to all the parties involved. While the airlines are
often competitors on the market, it is common industry practice to cooperate rather
than to compete when it comes to safety. In the United States (US), the Aviation Safety
Information Analysis and Sharing (ASIAS) program of the Federal Aviation Adminis-
tration (FAA) serves as a platform to exchange data between the operators [Q]17] with
all the major carriers in the US participating. A similar program called Data4Safety
[Eurl7b] is currently being implemented in the European Union (EU). This type of
data exchange allows not only the exchange of experience and benchmarking, but also
enables the airlines to join the effort if they face the same challenges. The International
Air Transport Association (IATA) offers the Flight Data Exchange (FDX) service to its
member airlines [Int18], where data can be provided by volunteer airlines that are de-
identified. It can be accessed by other member airlines that take part in the program to
perform, for example, benchmarking.

3.5 Data Confidentiality

Wherever data is used, confidentiality issues have to be considered. Although the way
flight data is being handled varies significantly across the organizations, special care
always has to be taken to guarantee that the data will not be misused for purposes
other than those agreed upon.

Data de-identification is a crucial part of FDM, though anonymity is handled differ-
ently throughout the industry. The reason to de-identify the data is to prevent the
capability to trace back to the people involved in the recorded flight. This is a part
of the safety culture of the organization. As the top-level goal of FDM is to increase
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safety, the priority should be the detection of hazardous events, rather than solving
liability issues or even punishing those who are involved in the events. In order to
perform safety monitoring, it is often not necessary to know the exact crew member
[Civ13]. Agreements should be reached within the organization about how to proceed
if it becomes beneficial to discuss the events with the involved pilots.

In order to maintain the anonymity, parameters can be erased. Most often, the date and
the time as well as the aircraft’s tail number are removed to reduce the possibility to
trace back to a particular flight and, more importantly, a particular crew that performed
the flight.

Last but not least, the data always has to be stored securely. The access is restricted to
only those working with the data. This should be done by prompting for passwords
and encryption of the storage device.

3.6 FDM-Related Research Effort at the FSD

3.6.1 Project SaMSys

The project Safety Management System zur Verbesserung der betrieblichen Flugsicherheit
(SaMSys) was initiated by Deutsche Lufthansa AG in 2009 and funded by the German
Federal Ministry for Economic Affairs and Energy. The project was lead by the Safety
Department of Lufthansa German Airlines, with the goal being the development of
novel methods to improve the operational safety level within an airline. Participants
of the project include software companies as well as research institutions, including the
Institute of Flight System Dynamics (FSD). The main task of the FSD was to develop
and calculate Safety Performance Indicators (SPIs) with respect to the safety target that
was set by the company management. Methods to quantify the occurrence probabili-
ties of certain accidents emerged from the project [DH11]. Technical failure on-board
the aircraft, leading to deteriorated performance, is also considered [DH12].

As a complementary part of the project, studies with pilots were performed during the
project by the Chair of Ergonomics (LFE) at the Technical University of Munich (TUM).
A large amount of data was collected during two simulator campaigns [Miil16]. The
pilots were also equipped with eye-tracking devices. The manual flying skills could,
therefore, be correlated with the visual behavior of the pilots. One of the research
topics was how the pilots looked at the flight instruments [HGS12] as well as the way
the pilots use the side stick on the Airbus aircraft [HSGB12]. The decision-making
process under high workload and time pressure was also closely investigated during
the second round of simulator studies [GPHB15].
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The project SaMSys concluded in 2016.

3.6.2 Project Future Sky Safety

Future Sky Safety (FSS) is funded by the European Union starting in 2014 with a total
duration of four years. The project is divided in several sub-projects, with the FSD
being involved in P3 — Solutions for Runway Excursions and P4 — Total System Risk As-
sessment. Other sub-projects also look at different safety-relevant aspects such as hu-
man performance or the influence of the organizational structure on safety. The large
number of project partners in FSS include airlines, OEMs, ANSPs as well as research
institutions.

3.6.2.1 FSS P3 - Solutions for Runway Excursions

P3 is dedicated to Runway Excursions, including both overruns and veer-offs. The
physical behavior of the aircraft plays an essential role. The focus has been to assess
the aircraft’s ability to stop on the runway under different runway conditions as well
as its ability to maintain its direction of movement. A key point of research was the
influence of runway contaminants, e.g. water, slush or snow. The approach was based
on both theoretical models and experimental data. Tests were conducted with both a
small business jet (Cessna Citation) as well as a large military transport aircraft (Airbus
A400M). Braking tests were conducted on flooded runways in order to determine the
friction coefficient [van17b]. The obtained data was used to quantify how water as
contaminant leads to deterioration of the braking capability.

3.6.2.2 FSS P4 - Total System Risk Assessment

P4 is aiming at the development of a Risk Observatory that includes all stakeholders
involved in the aviation transport industry, including OEMs, operators (airlines) as
well as ANSPs. The idea is to present a dashboard that is capable of displaying the
current risks along with a core running in the background that performs the monitor-
ing of the trends in order to initiate risk mitigation actions in a timely manner. A key
novelty of the project is the connection between the domains. While risk mitigation
actions could lead to safety increase for one domain, it can also cause a deterioration
of the safety levels in other domains. This project is aiming at the development of a
predictive SMS, a tool that is able to recognize issues within the flight operations that
might develop into hazards in the future.

Models to assess the safety of the flight operations exist in many domains and for most
stakeholders. OEMs have models to determine the time to failure of certain compo-
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nents or systems. ANSPs have models to predict mid-air conflicts for given airspaces.
Models can be created based on many different principles. They could be purely data-
based, such as causal models. A causal model, such as the Causal Model of Air Trans-
port Safety (CATS) model [RvS*08], finds relationships in existing data and utilizes
these to predict the outcome of future events. The alternative would be models that
are based on physical relationships. When describing mechanical systems, they would
use Newton’s laws of motion or, for example, the Maxwell equations when it comes to
electromagnetic systems.

The novel approach of this project is to develop a risk observatory for the entire avia-
tion transport system, linking all the models. A first prototype of the risk observatory
was presented [VvW] along with a look-and-feel user interface [vWVv16].

Several models were developed for different domains. For aircraft and system manu-
facturers, a model using the AltaRica language was developed [BMMP17] that is capa-
ble of quantifying the failure probability of aircraft systems based on fault tree meth-
ods. A barrier model that is referred to as the Accident Incident Model (AIM) was
created to describe the sequence of events that leads to a Mid-Air Collision (MAC).
The barriers in these models are actions or features that prevents the next event from
occurring, which is of particular interest for an ANSP [LCM*17]. A physical model
describing the motion of the aircraft during landing phase, particularly with focus on
RE was developed by the FSD [WH18a]. A backbone model was created to link these
models comparable to the CATS model developed by the Netherlands Aerospace Cen-
ter (NLR) [RvST08]. The connection between the backbone model, the physical model
as well as the entire risk observatory was established [WMH18].

As of January 2019, the project FSS is scheduled to conclude in June 2019.

3.6.3 Project SafeClouds.eu

The project SafeClouds.eu is also funded by the EU. It aims at using all data that is avail-
able in aviation across all stakeholder to improve safety. A large variety of partners
are involved in the project, including many airlines and research establishments. The
key idea is to generate added value when data that is currently gathered by individ-
ual stakeholders in the aviation system is put together and shared across organization
boundaries and analyzed together. The decoding of binary FDM data, as described in
section 2.3.1 is also performed with the scope of the project [HS17].

The project SafeClouds.eu started in October 2016 and is scheduled to conclude in
September 2019.
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3.6.4 Fueling Policy based on FDM Data
3.6.4.1 Introduction

In addition to the aforementioned research projects, some intensive studies have been
performed along with the project partner Lufthansa concerning the influence of fuel
on the operational safety.

The fuel to be taken on board prior departure is regulated by law [Eur08a] and im-
plemented by the aircraft operator [Deul3][Luf14]. It consists of the following compo-
nents:

Taxi Fuel: The amount of fuel required to taxi from the gate to the take-off position.
The fuel required for taxiing after landing is not included in any of these fuel

components.

Trip Fuel: The amount of fuel required to fly from the origin (brake release on take-
off runway) to the destination (touchdown on landing runway) under normal

circumstances.

Alternate Fuel: The amount of fuel that is required to fly from the missed approach
point of the destination to the landing at the planned alternate airport.

Contingency Fuel: The amount of fuel corresponding to either 5% of the trip fuel or
equivalent to 5 minutes of flying time, whichever is higher. This contingency
accounts for calculation errors or deviation from the planned route, such as cir-
cumnavigation of Cumulonimbus Clouds (CB).

Final Reserve Fuel: The amount of fuel that is required to fly 30 minutes at an altitude
of 1500 ft Above Ground Level (AGL) at the destination airport.

Extra Fuel: Additional fuel to be taken on-board depending on the crew’s decision.

Regulation requires a minimum amount of fuel to be available on-board at the time of
touchdown, which corresponds to the final reserve fuel of 30 minutes of flying time.
Any violation of that requirement must be reported to the authorities. On May 14,
2010, Madrid Barajas Airport (MAD/LEMD) was experiencing severe disruptions due
to thunderstorms, the capacity of the airport was heavily reduced. As a result, a large
number of flights diverted to Valencia Airport (VLC/LEVC). However, congestions
occurred at VLC/LEVC due to its own capacity that is significantly lower than that of
MAD/LEMD. Several aircraft declared emergency, two of them, a Boeing 737 and an
Airbus A340, landed below the required final reserve fuel. The A340 only had 2100 kg
of fuel remaining while its final reserve fuel should have been 2800 kg [Com13].

Air traffic is increasing, leading to congestions in both en-route and terminal airspaces
as well as at airports. It has become a safety-relevant question whether events like
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this will become more likely to happen in the future and how to adapt the procedures
to the increased risk. Especially at hub airports, where traffic is grouped in several
inbound and outbound waves over the day, a closure during an inbound peak could
cause not only severe delays, but also possibly fuel starvation on the inbound flights if

no precautions are taken.

Disruptions at airports or sometimes even a closure can be caused by weather, but
also by accidents occurring on the runway. If an aircraft is disabled within the run-
way protection area, the runway has to be shut down until the aircraft is removed.
Emergency situations on the apron can disrupt the approach flow as well. Flight op-
erations at an airport has to be shut down if the fire department is occupied with an
ongoing emergency because there would be no capacity to cope with any additional
emergency situation if anything happens to other aircraft. For example, in July 2013,
a Boeing 787 parked on the apron at London Heathrow Airport (LHR/EGLL) began
emitting fire from the rear part of the aircraft. It was later found that the Emergency
Location Transmitter (ELT) battery suffered a thermal runaway [Hral4]. While the fire
department extinguished the fire, LHR/EGLL had to be closed, causing severe disrup-
tions. Another accident occurred in 2011 at Munich Airport (MUC/EDDM). A Boeing
777 veered off the runway during landing before becoming disabled on the runway
[Bun18]. One of the two runways at MUC/EDDM had to be closed for several hours,
causing congestions leading to major delays and cancellations.

3.6.4.2 Approach Bottleneck

The goal of this particular research activity is to develop a tool that is capable of quan-
tifying the risk of fuel starvation in the event of an unexpected disruption. The method
that was developed has been published since 2014 [WDH16b] [Coc14] [Str17]. The idea
is to perform a simulation of the approach, taking into account the capacity of the des-
tination and the alternate airport(s) on the one hand as well as the incoming traffic
on the other hand. The capacity of an airport equipped with an Instrument Landing
System (ILS) is primarily limited by the wake turbulence separation between two air-
craft if operating with inbound traffic only. Another limitation at some airports is the
availability of (possibly high speed) taxiways. They allow landing aircraft to vacate
the runway quickly to enable the next aircraft to land. This limitation was neglected
because large airports are often equipped with a sufficient number of high speed exits.

It is assumed that during an emergency situation, the airport will temporarily stop de-
partures in order to maximize the arrival capacity. Several inbound scenarios from real-
life flight operations at MUC/EDDM were investigated, including both peak and off-
peak hours. At the start of the simulation, aircraft heading towards MUC/EDDM be-
gin their diversion to one of the nearby alternate airports assuming that MUC/EDDM
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is closed. As airports in the vicinity have a significantly lower capacity than Munich
Airport, the traffic begins to build up in the approach sector that also includes the regu-
larly scheduled traffic heading to the alternate airports. This situation is typical for hub
airports as they are mostly the only large airfield available in the area. The intention of
the simulation is to determine the waiting time for each aircraft and subsequently to
calculate the required fuel.

As the decision to divert is entirely up to the flight crew, there is no systematic pattern
of where to divert. Crews typically choose the diversion airport by themselves. The
relevant criteria could be:

¢ Proximity, i.e. the flying distance to it

¢ Remaining amount of fuel

Availability of precision approach procedures, i.e. Instrument Landing System

Weather at the alternate airport

Availability of ground handling agents

Personal preferences, such as familiarity with a particular airport.

The first alternate that is filed in the flight plan is often not necessarily the best airport
to divert to, because it is most often the closest one for convenience of planning and to
reduce the alternate fuel to be taken on-board [Coc14].

Based on collected data from FDM, a Monte Carlo Simulation (MCS) was conducted.
The results show that depending on the diversion decision for all the aircraft involved
in the scenario, severe problems can arise if the same alternate airport is used during
an inbound peak. The waiting time can increase significantly, causing the amount
of fuel to drop below the required final reserve if no extra fuel was taken on-board
prior departure [WDH16b]. Figure 3.1 shows the result from the simulation if — in the
most unfavorable event — all aircraft divert to the same alternate airport, which in this
case is Nuremberg Airport (NUE/EDDN). The histogram represents the remaining
amount of fuel equivalent to flight time when the aircraft touches down, with zero
on the horizontal axis being exactly the required final reserve fuel, i.e. landings with
negative values would violate legal regulations. One can see that a significant amount
of flights landed below final reserve and some flight even landed without fuel at all,
which corresponds to —1800 s of remaining fuel to final reserve.

The information obtained in this study can be used to provide recommendations to
flight crews during their pre-flight briefing and particularly with respect to the amount
of extra fuel that should be taken on-board.
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Figure 3.1: Results of the Monte Carlo Simulation showing a significant part of the simulated
flights being low on fuel at touchdown [WDH16a]

3.6.4.3 Fuel Starvation after Technical Failures

The previous section 3.6.4.2 describes fuel emergency situations that result from dis-
ruptions at the destination airport. However, additional flight time can also be caused
by issues arising on-board, particularly technical failures.

One example for technical failure contributing to fuel starvation is the Airbus A310 in
2000 that crash-landed at Vienna Schwechat Airport (VIE/LOWW) after running out
of fuel [Bun06] on its way from Chania International Airport (CHQ/LGSA) in Greece
to Hanover Airport (HAJ/EDDV), Germany. After take-off, the landing gear could not
be retracted. While the crew was aware of the increased fuel burn, they decided to
continue to MUC/EDDM rather than returning to the departure airport or land at the
nearest suitable airport. However, the indication of remaining flight time shown by
the Flight Management System (FMS) did not take the increased drag caused by the
extended landing gear into account. When the remaining amount of fuel continued
to decrease, the crew decided to divert to Vienna. The engines flamed out while on
final approach to Vienna. The aircraft landed on the grassy area short of the runway,
causing one main gear to collapse.

For the deeper analysis, data from simulator studies that were performed during the
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SaMSys project described in section 3.6.1 were used. The situations included an ap-
proach scenario that involved two technical failures at the same time. The approach
had to be aborted to allow the crew to perform the appropriate troubleshooting. At the
same time, the remaining flying time with the available fuel decreased significantly as
one of the failures led to the landing gear being jammed in the down position and the
flaps to be frozen at the first extended position. Out of the crews that took part in the
study, a significant number was not able to safely land the aircraft on time [DMSM*17]
without violating the final reserve fuel of 30 minutes.

Taking into account the probability of the technical failure to occur, it was concluded
that, with respect to the current regulation of 30 minutes of final reserve fuel, the safety
target of less than one accident per 10 million flights set by the EU in its Flightpath 2050
vision [Eurlla] cannot be achieved. Instead, it is suggested to increase the final reserve
to a total of 45 minutes, with reporting still being mandatory if the remaining fuel drops
below 30 minutes.
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4,1 Introduction

In chapter 1, the terms reactive, proactive and predictive were already introduced and
explained. The goal of this chapter is to present the Predictive Analysis (PA) method
that was developed at the Institute of Flight System Dynamics (FSD) of the Technical
University of Munich (TUM) by the Flight Safety research group and to highlight the
contributions of this work with respect to each individual step of the PA.

Firstly published in 2014 [DSH"13] [DSH*14] [WDG"14], the PA aims at quantifying
the probability of accidents for individual airlines based on their accident-free Flight
Data Monitoring (FDM) data. This is simply because the PA method is supposed to be
used by airlines that most probably have not had an accident or a statistically signifi-
cant number of accidents or of a specific type of accident in their operational history.
As aviation has become very safe during the last decades, this applies to most of the
operators worldwide offering commercial air transport services to the public.

The PA is based on the idea that, when accidents happen in aviation, it is because
several contributing factors, i.e. parameters that have an influence on whether the ac-
cident happens or not, are outside of the usual range. The vast majority of accident
investigation reports shows this phenomena. The aviation system is sufficiently ro-
bust that the deviation of one single factor away from the nominal range will not lead
to an accident. For example, if the approach speed is a few knots higher than usual,
it will most probably not lead to an overrun since landings are performed with suf-
ficient safety margins to account for uncertainties. The performance of an aircraft is
calculated rather conservatively in order to allow some degree of deviation from the
expected conditions. However, if the approach speed is higher than usual and the air-
craft weight is higher than usual and the tail wind is higher than usual and if, still at
the same time, the aircraft touches down later on the runway than usual, suffering a
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Runway Excursion (RE) becomes a highly significant risk. One can see in past accident
investigation reports such as the Lufthansa A320 in Warsaw in 1992 [Mai9%4] or the Air
France A340 in Toronto 2005 [Tra05] that the combination of several deviations at the
same time is what leads to an accident.

While accidents rarely can be observed in flight operations due to the high level of
safety throughout the industry, the deviation of one single factor, however, can occur
quite frequently, i.e. statistically significantly. The PA uses this principle and combines
these factors and their respective probabilities of deviation to obtain the probability of an accident
by inserting not only one single flight into the method, but a set of flights expressed
as probability distributions, representing the airline’s flight operations. The output
is also a probability distribution of the incident metric. This is the key idea of the
Predictive Analysis. The combination of those contributing factors, i.e the quantitative
relationships between them, is established by using a model of the aircraft that is based
on flight physics, i.e. equations of motion are used as the backbone.

Not all types of accidents are suitable to be investigated using the PA. It is important
that the accidents can be well described by flight physics as a physical model is re-
quired in the process that takes into account most of the contributing factors leading
to the accident. For RE and Abnormal Runway Contact (ARC)! accidents, the PA can
well be used. These accidents are mainly driven by flight physics, or ground physics.
However, other types of accidents, such as Mid-Air Collision (MAC), are not quite suit-
able to be analyzed by the PA. MAC?, or Loss of Separation as its precursor, is mainly
influenced by airspace and airway structure as well as traffic density at the current
time. The flight physics will only become relevant when looking at the final avoid-
ance maneuver shortly before the collision, which should definitely be the very last
barrier preventing MAC from happening. Therefore, the PA can only focus on colli-
sion avoidance in the end game, but the emphasis when it comes to preventing MAC
should be conflict avoidance, which is not covered within the scope of flight physics

considerations.

The seven steps of the PA are shown in figure 4.1 and are described in the following
section 4.2. These seven steps are performed in the described order, but it could become
necessary to go to previous steps if the results of one particular step is not satisfying,
as indicated in figure 4.1.

TARC includes all ways the aircraft can contact the runway surface in a way it is not supposed to. It
includes tailstrike, wing tip strike as well as hard landing.

2MAC, also known as airprox, refers to two aircraft colliding in the air or a violation of the minimum
separation between two aircraft.
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Figure 4.1: The seven steps of the Predictive Analysis

4.2 The Seven Steps of the Predictive Analysis

4.2.1 Step 1: Define

The first step of the PA is rather straightforward. Before the actual investigation starts,

the type of accident has to be chosen. Along with it, a metric that can be used to

describe whether this particular type of accident has happened or not has to be de-

fined. This metric, referred to as the incident metric, is a scalar variable that indicates

an accident when a certain inequality constraint is met. It must satisfy the following

requirements:

4
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1. It must be a continuous variable.
2. Tt describes the closeness of a particular flight to an accident.

3. If the metric has a value in a pre-defined interval, it indicates that the accident
has occurred.

4. One has to be able to measure the incident metric from FDM data.

The incident metric can be chosen intuitively. For the accident type of runway overrun,
it is typically chosen to be the remaining distance left on the runway after the aircraft
comes to a full stop, as indicated in equation (4.1), referred to as the stop margin.

incident metricoyerrsn = runway length — landing distance 4.1)

stop margin = runway length — TD point — decel. distance  (4.2)

When the incident metric becomes smaller, it implies that the remaining distance, i.e.
the stop margin, becomes smaller. The landing distance can be obtained by adding (1)
the distance from the runway threshold to touchdown and (2) the distance from touch-
down that is required to slow down the aircraft to a full stop. If the incident metric
decreases below zero, the available runway length is shorter than the distance that the
aircraft uses to come to a stop. Consequently, an overrun has occurred. The incident
metric can be obtained from FDM data by getting the position where the aircraft stops
along with the available runway distance. Of course, in real-life flight operations, the
aircraft typically does not come to a full stop on the runway. In fact, it should not be-
cause it is supposed to exit the runway as soon as possible due to safety reasons and
to allow succeeding aircraft to land or to take-off with minimum delay. In order to
compute this incident metric nevertheless, one can compute the distance until the air-
craft’s speed decreases below a certain value, which should be a sufficiently low value
at which safe vacation from the runway is possible and add a constant distance to it to
virtually account for coming to a full stop.

Other incident metrics are possible as well. One that also has been used is the dif-
ference between the required deceleration to come to a full stop before the end of the
runway and the maximum deceleration that can be achieved given the current envi-
ronmental conditions.

incident metricoyerrun = available deceleration — required deceleration (4.3)

If this incident metric becomes negative, it implies that the achievable deceleration is
not sufficient to bring the aircraft to a full stop on the remaining part of the runway.
An overrun is destined to happen even if the aircraft is still braking on the runway.
However, though the required deceleration is simple to compute based on the remain-
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ing runway and the speed of the aircraft, the deceleration that can be achieved on the
runway given specific environmental conditions is somewhat difficult to obtain from
FDM. More advanced methods have to be implemented to make this assessment pos-
sible.

For runway veer-off accidents, the margin between the aircraft’s lateral position on the
runway and the runway edge can be used as the incident metric. If this value becomes
negative, the aircraft has crossed the runway edge and departed from the runway. This
is similar to the stop margin for overrun. Another possibility for runway veer-off is to
use the time until the aircraft crosses the runway edge if the speed and the heading are
kept constant from the current time. This is similar to the use of time to impact in other
tields of application. Compared to the first incident metric, the latter has the advantage
that it takes the rate of closure into account. Imagine an aircraft that is moving closely,
but parallel to the runway edge compared to another aircraft located on the centerline,
but with a large deviation in heading. The latter could have a much higher risk of
veer-off. Using the distance to the runway edge as the incident metric does not take
this fully into account.

For ARC accidents, incident metrics can be formulated accordingly. Hard landing acci-
dents can be described by either the aircraft exceeding a certain rate of descent during
touchdown or the vertical acceleration during touchdown exceeding a certain value.
These limits are provided by the Original Equipment Manufacturers (OEMs) and are
measured on-board and recorded by FDM. For tailstrike accidents, where the aircraft’s
tail touches the ground during either take-off or landing, the tail clearance, i.e. the
distance between the aircraft’s tail and the runway surface, can be used as an incident
metric. For most aircraft types, the OEM provides schematic drawings for tail and
wing clearance depending on bank and pitch as a high bank angle close to the ground
will cause the wing tip or the engine to touch the runway. Similar to the concept of time
to impact, the time to impact of the tail on the runway, based on the aircraft’s altitude
and its pitch as well as their changes over time, can also be used as an incident metric
for tailstrike.

It becomes obvious that there is no right incident metric. Usually several possibilities
exist and all of them are feasible, with advantages and drawbacks for each one. How-
ever, one has to keep in mind that whatever is chosen as the incident metric, it will
affect all the following steps. An incident metric might ease the work in one of the
steps, but lead to great challenges in another. It is, therefore, recommended to look
closely at the succeeding steps before making the decision. Of course, one can also
reiterate back to this step.
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4.2.2 Step 2: Model

Modeling and simulation is a task which many aeronautical engineers have to face. In
a typical engineering application, modeling and simulation is popular and preferred
to conducting experiments due to many reasons:

¢ Simulation is usually less costly than performing experiments.
¢ Simulation is less risky in terms of safety than experiments.

e Simulation outcomes can be an undesired state, such as an accident, which is
difficult and/or very costly to achieve in real-life.

Today, modeling and simulation are not only performed to replace real-life experi-
ments, but also to test requirements or implementations during the design phase, often
referred to as Model-Based Design. In the operational domain, simulation is used dur-
ing all phases of pilot training. Level D full flight simulators are capable of completely
replacing real-life flight training during certain phases, known as Zero Flight Time
Training (ZFTT). This is an impressive indication of the level of realism and fidelity
achievable in simulators and it demonstrates the capability of aircraft flight dynamics
simulation.

The same method of simulation is used in this step of the PA. Equations governing
the dynamics of the aircraft are created based on Newton’s laws of motion. Forces
and moments acting on the aircraft are taken into account, serving as the backbone of
the model. In addition, system logics as well as operating procedures are considered
to control the forces and moments. Examples include the autobrake system, which,
depending on the setting chosen by the flight crew, aims to achieve a constant value
of deceleration after touchdown. Typically, different settings of the autobrake system
associated with different deceleration values exist, the recommended choice is pro-
vided in the airline’s operating procedures based on the Flight Crew Operating Manual
(FCOM).

The required fidelity of the model heavily depends on the accident to be investigated
on the one hand and the availability of data on the other hand. It is not always nec-
essary to create a six Degree of Freedom (DoF) rigid body model for the aircraft. In
contrast, other degrees of freedom, e.g. the landing gear compression or moving lig-
uids in the fuel tank, could be added if required. However, one always has to keep
in mind that whatever level of modeling is chosen, a number of model parameters are
introduced. These parameters have to be obtained from the recorded FDM data, i.e.
they have to be observable. This is a vital requirement to the model with respect to the
next step, Identify, described in section 4.2.3.

The inputs of the model are the contributing factors, these are parameters that have

44



Chapter 4: Predictive Analysis at a Glance

an influence on whether an accident occurs or not. Examples include wind speed,
aircraft weight and the braking behavior. They have to be obtained from FDM, which
is performed in the Cumulate step, see section 4.2.4. The output of the model is the
incident metric that is used to identify whether this particular flight that was simulated

constitutes an accident or not.

4.2.3 Step 3: Identify

As already mentioned in section 4.2.2, the model incorporates a number of param-
eters. These parameters have to be identified from the available flight data. While
system identification techniques are already quite mature [MK16], they cannot be di-
rectly applied to this case. System identification and parameter estimation are most
often used during flight tests in order to create a model from a newly built aircraft. For
this purpose, specially equipped test aircraft are used that not only measure and record
a large number of parameters relevant for the identification, but they also record with
significantly higher sampling rates than what routine FDM is used to. Typical values
can reach up to 100 Hz, of course, generating a much larger amount of data compared
to FDM. Besides, during flight testing, dedicated flight maneuvers are flown in order
to maximize the observability of certain parameters. For example, if one would intend
to identify the effectivity of the ailerons, one would perform a defined step-input on
the ailerons and measure, among others, the bank angle and roll rate as the system
response.

The data that is available in FDM, however, is recorded with a much lower frequency,
as described in section 2.2. In addition, as the data is recorded during real commercial
flights, there are no dedicated system identification flight maneuvers as they would -
among all — severely affect passenger comfort. These two factors constitute two major
challenges one has to face in this particular step.

Work in this step has already been performed on FDM data obtained from Quick Ac-
cess Recorders (QARs) [SDH13], a Bayesian approach also proved to be beneficial to
identify the parameters from FDM data [SHH14].

4.2.4 Step 4: Cumulate

As already mentioned in section 4.1, not only one set of values describing one single
tlightis inserted into the model, but rather a batch of flights representing the operations
of an airline. The data is obtained from FDM and inserted into the model as probability
distributions. The path from values in the flight data to probability distributions of
contributing factors that are inserted into the model is performed in this step.
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When looking at the contributing factors and at how to extract them from the data,
one can quickly see that most of the contributing factors are values in the flight data at
certain points in time. For example, the landing weight of the aircraft has an important
influence on the behavior of the aircraft and the landing performance. In order to
determine the landing weight, one first has to obtain the point at which the aircraft
actually lands, i.e. where it touches down on the runway. The second step would be
to obtain the weight of the aircraft, which is continuously recorded, at precisely this
timepoint, or at least as close as possible. The determination of certain timepoints,
therefore, becomes a major task.

While detecting certain timepoints during the flight might seem easy, challenges arise
when looking closer at the algorithms. Take the touchdown as an example: It seems to
be obvious that there is no dispute of what a touchdown is, but how is it exactly de-
fined? Do we required all wheels to be on the ground or just those on the main landing
gear? Do we require all wheels to be spinning? Do we require the landing gears to be
compressed to a certain extent? This could make a difference on a slippery runway.
What about bounced landings where the aircraft becomes airborne again for a short
time before touching down again? Do we consider the first or second touchdown?
Even the system logics of an aircraft that detect the touchdown has different ways to
process the signal, depending on the aircraft type. It is important that each timepoint
is not only clearly detected, but — even more importantly — clearly defined.

After having obtained the timestamps, the next task is to obtain measurements at each
specific timepoint, which is a less complex problem. By doing this for a large number
of flights, a histogram can be created. For example, the vertical speed at touchdown
can be extracted and visualized in a histogram for all available flights. A probabil-
ity distribution is fitted to the data that is able to match the datapoints the best. One
should keep in mind that, though widely used in all applications, the normal (Gaus-
sian) distribution should be considered just like any other distributions. Especially
the tails of the distributions should well represent the available data since this is the
part that we are particularly interested in. The normal distribution, however, is not a
heavy-tail distribution and, therefore, does not accurately represent the data if the tails
are heavy.

Whenever working with data, the quality of it has to be taken into account. The values
that were recorded can both be biased and contain noise. It is, therefore, desirable to
remove those errors during the Cumulate process. Work has been performed to reduce
the error in the position recording of the aircraft during the landing phase by integrat-
ing information from the Instrument Landing System (ILS) as well as by incorporating
the runway and taxiway layout [KSR*18]. As the sampling frequency of FDM data
typically ranges up to only 16 Hz, a Rauch-Tung-Striebel (RTS) smoother can be used
to increase the sampling frequency of those parameters that are recorded with a lower
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frequency than the maximum possible [Hoh16] [H6h17]. The RTS smoother makes use
of the fact that the data is analyzed after the flight, i.e. offline, which also makes future
measurements available for smoothing at any timestep in the recording.

4.2.5 Step 5: Calibrate

Before the obtained probability distributions from the Cumulate step can be used to
predict the accident probability, it has to be ensured that they actually do represent the
reality. As a direct comparison with real accidents is not possible due to lack of accident
data, it should be at least ensured that the method represents the reality in the regular,
accident-free area. For this purpose, a probability distribution of the incident metric is
generated using Monte Carlo Simulation (MCS) based on the probability distributions
of the contributing factors that are already obtained. Ideally, the probability distribu-
tion of the incident metric that is generated from simulation should be identical to the
probability distribution of the incident metric directly obtained from FDM data.

However, in reality, this is often not the case. The idea of the Calibrate step is to reduce
the distribution fitting error of both the contributing factors as model input and the
incident metric as the model output [Baul6] to allow an overall optimum performance.

4.2.6 Step 6: Revise

At this stage, a model representing the aircraft has already been created in the Model
step described in section 4.2.2. Though the fidelity of the model is carefully chosen and
thus it should well represent the real behavior of the system in the scope of the partic-
ular accident type, there might be effects that are either not considered or too complex
to be described by physics. Examples include parts of the behavior of the pilot, some of
them might not even be aware to the pilots themselves. It has been found, for example,
that pilots tend to touch down on the runway earlier if they know that the landing is
more critical in terms of stop margin [WF12]. If the runway is not significantly longer
than what is required by the aircraft given the circumstances, the touchdown point
is much closer to the runway threshold compared to landings for which the available
landing distance is much longer than the aircraft would use according to pre-landing
calculations.

These dependencies, even if well known, are difficult to be described by physical equa-
tions. Instead, purely data-based methods should be used for a mathematical formu-
lation. The concept of Copulas is used for this purpose. Copulas have already been
widely used in finance mathematics [KHK15] [KKC18]. They are capable of describ-
ing dependencies between two or more variables as a non-linear relationship. This is
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much more than what correlation coefficients are able to do. This property is essential
because we are particularly interested in dependencies in the tails of the distributions
as this is the area that is relevant for accident prediction. A simple correlation co-
efficient, however, consists of only one value that is an approximation for the entire

domain.

The dependency structure in measurement data that are created in this step has already
been subject to previous studies [Hoh14] [HSH14] [HHD*15] [HCB*17].

4.2.7 Step 7: Predict

The very last step of the PA is the Prediction itself. Mathematically speaking, the goal
is to propagate probability distributions through a physical model. The models that
are created in section 4.2.2 are set up in a way that a single flight can be simulated, i.e.
the contributing factors of one flight are inserted and one value for the incident metric
is calculated by simulation. Afterwards, one can determine whether this particular
flight resulted in an accident or not. The task at hand, however, is to insert probability
distributions for each contributing factor and to obtain a probability distribution for
the incident metric. From this distribution, by quantifying the size of a certain portion
of it, the probability of an accident occurring can be obtained.

The most simple and commonly used method for such an application is the Monte
Carlo Simulation. The idea of the MCS is to generate samples that are distributed
according to the input distributions, simulate each sample and subsequently obtain
a distribution of the output based on the sample results. While the idea of MCS is
simple and easy to implement, it has a huge drawback, particularly for our application
at hand: It is not suitable for quantifying small probabilities as the computational effort
increases significantly. For example, in order to quantify a probability of 107", at least
N = 10" samples should be generated and simulated in order to obtain one accident —
if the samples are exactly distributed according to the input distributions, which is only
the case if the total number of simulated samples N approaches infinity: N — oc. In
order to obtain a reliable value for the accident probability, the Coefficient of Variation
(c.0.v.) must be smaller than one, meaning that the quantified mean value 1 is larger
than the standard deviation o.

cov="2 (4.4)
1

The rule of thumb is that the number of simulated samples should be at least two
orders of magnitude higher than the minimum number [AW14], i.e.

N = 10"+, (4.5)
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However, it is, considering the computational effort that is required, usually not fea-
sible to quantify the probabilities that occur in our use case by applying MCS. As de-
scribed in section 1.1, the safety targets are in the magnitudes of 10~" to 1079, it can
be assumed that the accident probabilities to be identified are in the same order of
magnitude.

Various methods to reduce the number of required samples when quantifying small
probabilities exist. The most commonly used method is Importance Sampling [AW14].
In our case, the method that has proven to be the most suitable is the Subset Simulation.
The idea of it is to express the accident probability as a product of intermediate con-
ditional probabilities that are much larger in value and, therefore, requiring a much
smaller number of samples to be quantified. Details can be found in chapter 5.
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Statistical Methods

5.1 Introduction

Chapter 4 presented the seven steps of the Predictive Analysis (PA). In this chapter,
the statistical methods in Step 7 — Predict described in section 4.2.7 will be described in
detail.

The task to be accomplished is to quantify which combinations of the contributing
factors will lead to a Runway Excursion (RE). A model based on physical relationships,
which is presented in chapter 6, is created to perform this assessment. This model
essentially describes the way the contributing factors are combined and reflects the
influence of them on the incident metric as defined in Step 1: Define in section 4.2.1.
As the model contains complex and highly non-linear relationships, it is capable of
simulating single flights only, rather than a set of flights with continuous input values.
The task at hand now is to propagate not one single flight, but a distribution of flights
through this model.

Several methods that are potentially capable of this task are presented. Some of them,
such as numerical integration, are only presented for the sake of completeness because
they prove to be not suitable for our problem. The method of Subset Simulation, which
is a more advanced type of Monte Carlo Simulation (MCS) using a Markov Chain
Monte Carlo (MCMC) method, turns out to be the method of choice. The way the
samples are generated in the MCMC process is described in section 5.4.2 of this chapter.
It is a non-deterministic approach.
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5.2 Problem Formulation

The process of quantifying accident probabilities using physical models is — mathe-
matically speaking — a way to determine the failure probability of an arbitrary system
with its behavior and properties reflected in the given model. Failure can generally be
expressed by a certain demand D to a system exceeding its capacity C' [ABO1]:

D>C. (5.1)

In the RE example, the demand could be the distance required to stop the aircraft
on the runway or the maximum lateral deviation from the runway centerline during
deceleration. The corresponding capacity is the runway length and the runway width,
respectively. If the latter exceeds the former, a RE accident has occurred.

The goal now is to quantify the size of the hyperplane in which the failure F' occurs.

PFIp(D>C):///Fp(0)d0 (5.2)

In equation (5.2), pr is the probability of failure, p (6) is the probability that a sample
consisting of the input vector 6 € R" is located in the failure region.

The failure probability can also be expressed as an expectation:

pe=Elr(©) = [r(6)q(6)de. 53)

where 7 () is the probability of failure if ® = 8 [AW14]. Coming back to our problem
again using RE as an example, 8 would be a set of multi-dimensional model inputs
containing contributing factors such as the wind speed, the aircraft weight etc., one
component for each contributing factor. ¢ (0) is the Probability Density Function (PDF)
of how 8 is distributed and r () indicates the probability of suffering from a RE if
0 =20.

In our case, r (f) can be viewed as an indicator function with a value of either zero
or one that indicates whether 6 is a failure sample or not, i.e. r (8) becomes I (6 € F)
which determines whether € lies in the failure region or not. /(6 € F') would use
the model output, which is either the lateral deviation on the runway or the landing
distance that is actually required for each landing to determine whether it takes the
value zero or one. Equation (5.3) then changes to

pr=[1(6€F)q(6)de. (5:4)
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The aim of this chapter is to find a suitable method to quantify the integral in equa-
tion (5.3) or (5.4). As always when performing uncertainty quantification using non-
deterministic tools, the method should minimize computational effort and simultane-
ously minimize the Coefficient of Variation (c.0.v.), which is defined in equation (5.5).
p is the expected value resulting from the method and ¢ is the standard deviation.

o

(5.5)

C.0.V. =

The following section 5.3 will present several possible ways to solve for the integral
in equation (5.3). The method that is used for our problem, the Subset Simulation, is
presented section 5.4.

5.3 Failure Quantification

5.3.1 Analytical Method and Numerical Approximation

For some problem formulations, one is able to analytically describe the area in which
the failures occur just by simply looking at the mathematical description incorporated
in the model. However, if the model is complex or if the dimension of the inputs in-
creases, this becomes an increasingly difficult task. The analytical propagation of prob-
ability distributions through models is possible only if (a) all distributions are Gaussian
and (b) the equations governing the model are linear. None of these two conditions
are fulfilled in our case. The model that describes the behavior of the aircraft during
landing phase is highly non-linear and the input distributions are often non-Gaussian.
Some distributions can be Kernel Density Estimations (KDEs) and, therefore, an ana-
lytical description of their PDFs can be very difficult to obtain.

Every integral can be approximated by summing up a discrete number of contribu-
tions, same can be done for equation (5.3). The entire domain in which 8 € R" lies
can be divided up into a discrete number of intervals for each dimension, creating a
discrete number of hypercubes A§ = A#dy, ..., Af, that are disjoint. The contribution
of each of those hypercubes can be computed and summed up. However, for large di-
mensions, i.e. if n is high, the resulting number of hypercubes increases exponentially,
making this method inefficient for high dimensions [AW14].

5.3.2 Monte Carlo Simulation

A common method to approximate the value of an integral is the direct MCS [Ge096],
which has proven to be robust for complex problems and particularly for complex ge-
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ometries of the failure domain. Besides, the MCS is also suitable for high-dimensional
problems [RK17].

The idea of MCS is to generate samples distributed according to the input distributions,
evaluate those samples using the model and count the number of samples in the failure
domain to estimate the probability of failure. Equation (5.3) can then be re-written by
replacing the integral with a sum.

1 N
~ zzj (5.6)

N is the total number of samples and / () is the indicator function where I (8) = 1 if
0 is a failure sample.

Unfortunately, the MCS has a severe drawback which the quantification of small prob-
abilities. The number of samples N that is required is inverse proportional to the prob-
ability that is to be quantified [ABO01], i.e.

1

N o< —. (5.7)
PF

As our problem is about the quantification of small failure probabilities, the computa-
tional effort would be tremendously high if the direct MCS method is used.

5.3.3 Importance Sampling

Importance Sampling is an enhancement to the MCS to tackle rare event problems.
The idea is that, most often, the failure samples are concentrated in a certain region
or several regions. A separate distribution is introduced to generate more samples
in these regions, which is referred to as the Importance Sampling Density (ISD) f (0)
[AW14]. Using the ISD, equation (5.3) can be modified as follows:

0)p(6)

pF=E{r(®>]:/rw)p(mde:/“f(o) r(©)p(®)

f(H)dH:E[ (f(g,) ] (5.8)

In this case, ®' is distributed according to f rather than p. The ISD f can be chosen
such that many samples can be generated in the failure region [Sril4].

The challenge of importance sampling is to create a suitable ISD, which is only possible
if the failure region is well-known and can also be easily described. If the problem
contains a large number of random variables, it becomes more challenging to apply
importance sampling.
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5.4 Subset Simulation

5.4.1 Derivation of the Subset Simulation

The method of Subset Simulation was firstly published in 2001 [ABO1]. The idea of
Subset Simulation is to express the failure probability as a product of several condi-
tional failure probabilities. As these individual conditional probabilities can be chosen
to be large, only a relatively small number of samples is required to quantify them.

pr = p(Fn)=p (é F) =p (Fm! m(j: F) p <m(j: F) (5.9)
- oEalFan (N 7)

= (B T] p(Fa| )

1=1

In equation 5.9, p (F;) represents the failure probability at each subset-level. The fail-
ure thresholds on each of those sub-levels are selected such that the conditional fail-
ure probabilities p (F,,,|F},,—1) are sufficiently large. Using the idea from equation (5.1),
equation (5.9) can be re-written as follows:

pr=p(D>C)=p(D>C) -[[p(D>C). (5.10)

=2

Depending on the chosen conditional probability p, = p (F,|Fn—1) for each subset
level i, the Ng = py /N samples that are the closest to the failure region are selected, with
N being the total number of samples in each subset. Using those samples, referred to in
the following as seeds, the samples for the next subset are generated. The Subset Simu-
lation method requires samples to be created conditionally based on existing samples.
An efficient way to generate the samples is to use MCMC, which is a class of Random
Walk algorithms. Ways to perform this generation is presented in the following section
5.4.2. The total number of samples N and the conditional probability p, has to be cho-
sen such that py is sufficiently large that it can be quantified using a reasonable number
of samples. The number of chains N in each subset is, subsequently, No = p;'. The
values must be chosen such that N, N and N are integers.

One has to keep in mind that, for the Subset Simulation, it has to be ensured that the
newly generated samples in step i + 1, even though accepted by the Random Walk
algorithm, still have to be located inside the previous failure domain, i.e. 6,1, € F;.
Otherwise, it has to be rejected as well after the evaluation of this sample, returning
back to the seed.
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Just like the original direct MCS method, failure quantification using Subset Simulation
comes along with a certain degree of error. The estimated failure probability pp is
computed using the number of samples n; in each subset that are located in the failure
domain, which is derived from equation (5.9). Consequently, they only represent an
approximation of the real failure probability value.

m—1
DPr R Dr :P(F1) H p(Fz‘H’Fi) (5.11)
i=1

m—1

= ﬁ(Fl)' ﬁ(FiH‘E')

™ on; m_1 Mm
_ HN:po L, m (5.12)

Going back to the investigation of runway excursion, each intermediate failure thresh-
old C; can represent different available runway lengths. For example, p (F}) could be
the probability that only 1000 meters of runway is remaining, p (Fz|F;) would be the
conditional probability that only 800 meters is remaining given that less than 1000 me-
ters is remaining. This iterative process continues until the subset arrives at the point
for which the probability of less than zero distance is remaining is considered, which
implies that an excursion occurred. However, one has to keep in mind that in this case,
the threshold values are not fixed beforehand. Instead, they are defined in such a way
that the values for the conditional probabilities p (F;1|F;) are always constant and suf-
ficiently large that they can be quantified using a reasonable number of samples and
returning a low c.o.v..

5.4.2 Sampling Methods
5.4.2.1 Metropolis Algorithm

The Metropolis-Hastings algorithm was firstly introduced by Metropolis et al in 1953
[MRR*], scientists in the Los Alamos Scientific Laboratory (later Los Alamos National
Laboratory) in New Mexico, United States. It was generalized by Hastings in 1970
[Has70]. The goal is to generate samples that are distributed according to a given dis-
tribution f; () which does not have to be a standard type of probability distribution.
In fact, the function f, () only has to be non-negative for all  and does not even nec-
essarily have to integrate to one. It only has to be proportional to a function f (x) that
does integrate to one [AW14], representing the PDF.
f ()

fr(x) = Tf(z)ds (5.13)
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The orignal algorithm proposed in 1953 [MRR "] requires the use of a proposal distribu-
tion p* (x; v) which has to be a symmetric function, i.e. p* (;v) = p* (v;x). Of course,
there must be efficient ways to generate samples from p* (x; v).

The Metropolis algorithm is performed as follows:

1. From the existing sample 0,, generate a candidate sample £ using the proposal
distribution p* (-; 6;).

2. Calculate s = J{(f)), set a = min (1, s).

3. Accept £ as the new sample with probability « and set the new sample to 8,.; = &;
Reject £ as the new sample with probability 1 — a and set the new sample to
0;i11=0;".

4. Evaluate r (0). Accept the new sample 6, if 6,,, lies in the failure space, i.e.
0,11 € F;orr(0) = 1; otherwise reject 8,; and set 0,,; = 6,.

The Metropolis algorithm will generate samples with f. as their stationary distribu-
tion. This implies that if the initial samples 8, are distributed according to f., the sam-
ples of the next step 0., will also be distributed according to f. If 6, is not distributed
according to f;, the following samples that are generated are only asymptotically dis-
tributed according to f as k — oo.

5.4.2.2 Metropolis-Hastings Algorithm

The generalization performed by Hastings [Has70] allows the use of non-symmetric
proposal distributions. The modified algorithm for a generalized proposal function
p* (x;v) is as follows:

1. From the existing sample 6;, generate a candidate sample £ using the proposal
distribution p* (+; 6;).
_ p*(0::&)f(8) — i
2. Calculate s = 557y, set a = min (1, 5).

3. Accept £ as the new sample with probability a and set new sample to ;1 = §;
Reject £ as the new sample with probability 1 — ¢ and set the new sample to
0,1 =0,

4. Evaluate r (0). Accept the new sample 6, if 6, lies in the failure space, i.e.
0,11 € F;orr (0) = 1; otherwise reject 6, and set 6., = ;.

This implies a random number has to be sampled from a uniform distribution defined on the inter-
val [0, 1]. If the sampled value is smaller or equal @, the candidate £ is accepted. If not, the candidate is
rejected.
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One can see that only step 2 is modified to take into account the ratio of the two values
of the proposal distribution. If p* (z;v) is symmetric, i.e. p* (x;v) = p* (v;x), the
Metropolis-Hastings (MH) algorithm reduces to the original Metropolis algorithm.

The choice of the proposal distribution determines how fast the Markov Chain moves.
Typical choices of symmetric distributions include uniform, Gaussian, triangular or
exponential distributions. The key, however, is the spread or the width of the distribu-
tion rather than the shape. If it is chosen to be wide, many candidates are generated
far away from the original starting sample which, in the first place, implies that the
Markov Chain would move fast and quickly explore the entire domain. However, if
the spread is chosen to be too wide, many candidates could be rejected, resulting in no
movement of the Markov Chain at all. The key, therefore, is to set up the parameters
such that the acceptance ratio of the newly generated candidate samples is maximized.
The acceptance ratio s; for the i-th chain is formulated in equation (5.14) when using
the generalized MH algorithm.

_p(8:&) - f(§)

S (€676, 619

The first terms in both the numerator and denominator disappear if a symmetric pro-
posal distribution according to the original Metropolis algorithm is used.

5.4.2.3 Component-Wise MH Algorithm

The original MH algorithm can lead to significant difficulties when applied to high-
dimensional problems. This is due to the fact that the proposal distribution, which is a
multi-dimensional distribution, is a product of one-dimensional distributions [AW14]:

P (@ v) = [[ 7 (@01, (5.15)
k=1

where n is the dimension of the problem.

The acceptance ratio according to equation (5.14) is also the product of the acceptance
ratios of each of the components:

6 ﬁ e — ﬁ g% (91@.;5%) - fr (k) (5.16)

One can see that as the dimension n increases, the acceptance ratio will continuously
decrease and tend towards zero which makes the original MH algorithm unusable for
high-dimensional problems. To cope with this problem, a component-wise MH algo-
rithm is introduced [ABO1]. Every component of ; is sampled, accepted or rejected
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individually. The algorithm can be written as follows:

1. Using the existing sample 8; = [6’1(1), o Hz(k)], generate a candidate sample £ =

[5(1), . 5(’“)}. Repeat for every component k = 1, ..., n:
(a) Generate ¢ using the proposal distribution pj (~; Gik)>

P (60750 (60) _
:;((f(k)ﬂz@))-f:(el(k)) ,seta = min (1, Sk)-

(b) Calculate s, =

(c) Set ¢ as the new component of the sample with probability a and set the
new sample 91(_’?1 = ¢®); Reject £ as the new component of the sample
sample with probability 1 — a and set the new sample 91@1 S

2. Evaluate r (0). Accept the new sample 6, if 6, lies in the failure space, i.e.
0,1 € F, orr (0) = 1; otherwise reject 6,;; and set 6,.; = ;.

The component-wise MH algorithm significantly increases the acceptance ratio of each
sample as only one component of a sample has to be accepted in order to accept the
entire sample. However, samples are created in the Markov chain that are more corre-
lated as there will be samples that only differ in some, possibly even a few, but not all
components.

5.4.2.4 Infinity Sampling

As mentioned in the previous section 5.4.2.1, the key of the MH algorithm is to set up
the proposal distribution such that the maximum acceptance ratio can be achieved as
this indicates that the Markov Chain is moving the quickest. The component-wise MH
already introduces a method to significantly increase the acceptance ratio compared
to the original MH. However, the samples obtained from the component-wise MH are
often correlated as very often, only one or a few components of the sample is actually
changed when using the component-wise MH, resulting in many samples being iden-
tical in the other components. Two research groups simultaneously proposed a new
sampling method in 2015 to cope with this issue. It was named Subset Infinity [PA15]
and Conditional Sampling [PBZS15], by each group, respectively.

The idea of this algorithm is that every random variable can be expressed by a linear
combination of a infinite number of Gaussian random variables. In order to simplify
the algorithm, the samples are transformed into the standard normal (U) space. The
existing sample 6, and the candidate that is generated £ are transformed to U-space
with zero mean and unit variance. The samples can be then generated as follows:

1. Seta = V1 — 02, 0 = [0y, ..., 0, are the standard deviations for each of the com-
ponents of 6.

59



5.4 Subset Simulation

2. Generate a new candidate sample £ according to the Gaussian distribution N ~
<a0k7 U)

3. Set the new sample 0., = & if £ lies in the failure space, i.e. £ € F}, otherwise
reject §.

This procedure is repeated for every sample during every step of the Subset Simula-
tion.

5.4.2.5 Dependency Sampling

Throughout this work, the contributing factors are considered to be independent, which
is only an approximation of the true world. It is, however, possible to incorporate de-
pendency structures into the input distributions by using Copulas, see section 4.2.6,
and multi-dimensional distributions [HWK™"18]. The details are further explored in
separate research efforts.

5.4.3 Post-Processing

The Subset Simulation provides an estimate of the failure probability pr of a sys-
tem given certain input distributions shown in equation (5.12). However, it is also
important to provide a measure that is capable of describing the confidence of this
value. The inventors of the Subset Simulation proposed a Bayesian post-processor in
2011 [ZBAK12] that is able to quantify the confidence of the result coming out from
the Subset Simulation. Using equation (5.12), each intermediate failure probability
p(F1),...,p(F,) is considered as a stochastic variable using the Bayesian approach.

The final failure probability pr can then be described as a stochastic variable that is
distributed according to a Beta distribution Be [ZBAK12].

pr ~ Be(a,b), (5.17)
with the parameters a and b being

m  n;+1 1— m  n;+2

i=1 N+2 i=1 N+3

i=1 N+3 =1 N+2

LTI ) (1T 53
b = ( m niiQ)_( m  ni+l . ) (519)
i=1 N+3 =1 N+2

The Beta distribution is defined only on the interval [0; 1] with both parameters a, b > 0.
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The expected value or the failure probability and its square can be given as [ZBAK12]:

Elpr] = li 7v i ; (5.20)

2l - et o21)
The variance of the failure probability can be computed as follows:

Var (pr) = E [pF] — (E [pr])*. (5.22)

Equation (5.22) provides a measure to describe how confident we are about the re-
sults obtained in the Subset Simulation. One can see that with increasing number of
total samples NV, the variance decreases, which is consistent also with the experiences
previously made with direct MCS.

The span of the confidence interval, which is typically two-sided, can also be derived
from the Beta distribution using the Inverse Cumulative Distribution Function (ICDF)
F~! by computing the values F~* (%) and F! (1 — %) for a given confidence level a
[FHK"16]. « is typically chosen to be 0.05.

5.5 Current Use of Subset Simulation

Since its introduction in 2001, the method of Subset Simulation has become increas-
ingly popular in many engineering fields. Most of the applications involve civil en-
gineering or geodesy since Subset Simulation has become the tool of choice when it
comes to quantifying small probabilities, i.e. rare events, for high-dimensional prob-
lems.

Subset Simulation has been used for safety assessment of pipelines that are buried
underground [KT16]. This particular application has two very important similarities
with our problem of quantifying aviation accident probabilities: The rare occurrence
and the severe consequence when it occurs. The contributing factors to the failure of
pipelines are mainly the loading on the structure from both inside and the outside of
the pipeline as well as corrosion. A precise safety assessment can help to reliably de-
termine maintenance cycles to predictively take actions before a pipeline actually fails.
Because the threat of earthquakes, which is a rare, but highly severe event, represents a
significant contributing factor, underwater pipelines are subject to safety assessments
using Subset Simulation as well. A physical model can also be used here, describing
the pipeline as a Timoshenko beam [LZK18]. The stability of offshore structures in gen-
eral is a frequent subject of safety assessment using Subset Simulation. The motion of
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the sea can be described using a given power spectrum density function [LH17], which
also serves as the input into the Subset Simulation.

Rare events can also include natural disasters. Landslides, for example, occur very
rarely, but with severe consequences. In order to determine the probability of the fail-
ure of rock slopes, Subset Simulation has been used [JHZ17]. For structural reliability
analysis, very often the Finite Element Method (FEM) is used for the modeling of the
object as it can be well combined with Subset Simulation in order to determine the
failure of building structures [PHD"(09].

Subset Simulation has also been applied in the field of aviation, mostly during the
development process of aerial systems. For example, in order to certify flight control
algorithms used for aerial refueling, the system has to achieve a certain level of pre-
cision and availability. This can be shown by quantifying the probability of violation
using Subset Simulation [LH15]. With the increasing use of Remotely Piloted Aircraft
Systems (RPASs) in the airspace, the risk of collision has significantly increased. To
counter this, systems have to be built into the RPASs that have to achieve a certain
performance level such that the risk of collision is sufficiently low, which the Subset
Simulation is used to asses [MMAR16]. The first application using Subset Simulation
to quantify accident probabilities for operational flight safety related to this work was
published in 2014 [WDH14] using a 3 Degree of Freedom (DoF) model for runway
overrun, i.e. considering the longitudinal motion only.
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6.1 Coordinate Frames and Transformation

Figure 6.1: Definition of the local navigation coordinate frame N

Before setting up the model of the aircraft, it has to be clarified which coordinate frames
are used. As the landing phase is considered during this work, the coordinate frame
that is of primary interest is a local navigation frame /N, which is illustrated in figure
6.1. Its origin is located on the runway centerline at the runway threshold. Its = axis is
pointing towards the far end of the runway and parallel to it. The z axis is parallel to the
z axis of the North-East-Down (NED) (O) frame, pointing to the direction of the earth’s
gravitation. The y axis is pointing to the right, perpendicular to the runway direction
and the direction of gravitation. For the N frame, it can be beneficial to move the origin
of the coordinate frame translationally along the z axis to the touchdown point of the
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aircraft, however, still located on the runway centerline. The reason is that the braking
phase is considered, which starts at the point of touchdown. This only changes the
reference point, but not the physical behavior. The NV frame can be obtained by rotating
the North-East-Down (O) frame by the runway heading V¥ around the z axis using the
transformation matrix Myo. The z component is often neglected since it is parallel for

both frames.
cosVUr sinWg 0

Myo=| sinVp cos¥p 0 (6.1)
0 0 1

Within the scope of this work, N is considered to be an inertial frame. This assumption
can be made due to the relatively small speed of the aircraft compared to the earth’s
rotation during the landing as well as the fact that only short distances are covered
during this relevant time period. Newton’s laws are thus valid, the force and moments
can directly be integrated.

6.2 Aircraft Model

The nomenclature of the variables for forces and moments is defined in equation (6.2).

F’Reference point
Type of force

(6.2)

) Reference frame

The total force (ﬁf )B acting on the aircraft is obtained by summing up the four types
of forces: aerodynamics A, gravitation G, propulsion P and landing gear L. In this
particular case, the forces are provided in the body fixed coordinate frame B. Different
reference points are used for each of the forces. While the gravitational forces act on
the Center of Gravity (CG) G, the aerodynamic forces act at the aerodynamic reference
point A, the propulsion forces act at the propulsion reference point P and the landing
gear forces act at the landing gear reference point L. Of course, the landing gears can
also be treated separately, resulting in individual landing gear forces and reference
points. Same applies to the engines.

The total force acting on the aircraft can be given as:

Xr
(Fr)y =2 (F), = (F2) , + (FE), + (FE) 4 (FL), = | Yo | - (69
Zr

However, the same forces can also be expressed with respect to a same reference point

64



Chapter 6: Flight Mechanics and Model Build-up

R that is defined for the entire aircraft:

Xit
(FF), =22 (F"), = (FX), + (F&) , + (FF) , + (FE) = | V) (69)
i

From the perspective of physical modeling, using the CG G as the reference point
seems to be the straightforward choice. Typically, this approach poses some prob-
lems since the CG moves during the flight as the mass of the aircraft changes when
the amount of fuel decreases. In our case, however, since the time frame to be consid-
ered is relatively small, it is a valid assumption to have a fixed CG that is used as the
reference point. Using the CG offers some convenient simplifications concerning the
mathematical formulations.

Same applies to the moments acting on the aircraft. The moment is obtained from the
forces by multiplying with their respective lever arm.

Lr
(¥ir),, = X (81), = (¥12), + (¥1c), = (¥1), + (81),, = | 28 | 69
Np B
(MTQ)B - Z<MG)B:< _‘E)Bdk(Mg)B_'_(Mg)B—i_(MLG)B (6.6)
= 2 (), < (), (6.7)
= (7)o (B (7)o (BE) (7)< (B, +
(79),  (7%), o)

In equation (6.5), the forces and moments are summed up, taking into account the re-
spective coordinate frames. The moments consist of forces with their respective lever
arms, see equation (6.7). If the CG is used as the reference point, the summand describ-
ing the moments resulting from the gravitational forces reduces to zero since the lever
arm ('FGG)B is zero, see equation (6.8). Each of the summands could possibly consist
of several summands themselves with different reference points. Examples include
several forces and moments resulting from several engines or landing gears. The total
force is transformed into the inertial frame N using the transformation matrix Mypz. A
flat, non-rotating earth is assumed, i.e. &' = GO = (.

Figure 6.2 shows a Boeing VC-25A shortly after touchdown on the runway. The thrust
reverse is deployed as well as the ground spoilers. The flaps and slats typically remain
in the landing configuration until the aircraft vacates the runway. All the sources of
forces and moments acting on the aircraft during landing are visible in this picture.
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Figure 6.2: A Boeing VC-25A after touchdown on the runway. The deceleration devices are
clearly visible.

6.2.1 Aerodynamics

The aerodynamic is an important feature of every aircraft, not just in the air, but also
on the ground. The aerodynamic configuration of an aircraft can significantly change
throughout and between the flight phases. During take-off, it is important to generate
as much lift as possible, but keeping the drag to a minimum, leading to a compromise
that typically is a partial extension of the high-lift system. During cruise, it is important
to reduce the drag to a minimum and to obtain the optimum lift-to-drag ratio to reduce
fuel burn. During the approach, the lift should be maximized while the drag can be
higher than during take-off. After touchdown down on the ground, the objective is
to maximize drag while destroying the lift as much as possible. The drag contributes
to the slow-down of the aircraft while the reduced lift augments the effect of wheel
brakes as the aircraft is pressed on the ground. In the following section, a model of
these variations of the aerodynamic is presented.

6.2.1.1 Aerodynamic Forces

For the aerodynamic forces acting on the aircraft, the following model is chosen:

C1L - C1LO + CLa So+ CLn /s AC’L,Fla,ps + AC1L,Spoiler (69)
CD = C'DO + k - C% + AC1D,Spoiler + AC'D,Flaps + AC'D,Gear (610)
Co = Cgo+Cgs- B+ Cqye-C. (6.11)

Equation (6.9) shows what the lift coefficient C;, is composed of. A linear dependency
to the angle of attack « is assumed as well as to the elevator deflection 7. Furthermore,
the extension of the flaps during landing will cause an increase of the lift coefficient
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while the extension of the spoilers will cause a decrease of it. It is assumed that the
extension of the landing gear does not change the aerodynamic lift. As the aircraft is
already on the ground, the ground effect is already a part of the model above.

For the drag coefficient C, in equation (6.10), a quadratic drag polar is introduced
using the factor k£ to describe the induced drag. The extension of the spoilers and the
flaps causes additional drag as well as the extension of the landing gear. The landing
gear does not affect the lift coefficient.

The side force coefficient Cy in equation (6.11) is only dependent on the side slip angle
$ and the rudder deflection (. In this case, as the aircraft is assumed to be symmetric,
Cqo s set to zero.

As only the landing phase is considered, the configuration of the aircraft does not
change in the meantime. The only change in aerodynamics occurs when the spoilers
are deployed shortly after touchdown. To extract the parameters above from recorded
flight data, it is useful to introduce a single zero lift coefficient C';y and a zero drag
coefficient C'p for the final configuration, i.e. flaps extended to landing configuration
and gear down. Thus, equations (6.9) to (6.11) simplify to the following;:

Cr = Crorinal + Cra - o+ Cry - 1+ ACL spoiler (6.12)
CYD = CDO,Final + k- CE + AC'D,Spoiler (613)
Co = Cqp- B+ Cqc-C. (6.14)

The aerodynamic forces are computed using equation (6.15). p refers to the prevailing
air density, V), is the aerodynamic velocity of the aircraft and S is the reference wing
area of the aircraft. The wind speed is included by subtracting it from the kinematic
speed, i.e. the Groundspeed (GS) in order to obtain the aerodynamic speed V,;, which
is the True Airspeed (TAS). The Indicated Airspeed (IAS) can be used in this equation
instead of the TAS if the density is substituted with the air density at Mean Sea Level
(MSL), po = 1.225kg m 3.

-D ] ) —Cp
(Ff)A: Q :5,)\‘7;,\ S| Co (6.15)
-L ], ~C1 ],
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6.2.1.2 Aerodynamic Moments

For the aerodynamic roll moment coefficient Cj, the pitch moment coefficient C;,, and
the yaw moment coefficient C,,, the following model is introduced:

Ci = Co+Cp-B+Cie-E+Cp-p (6.16)
g

C’m - C1mO + Cma o+ Cmn “n + Cmq “q (617)
-

=0

Each of the three coefficient has a first C; term, which can be assumed to be zero for the
roll coefficient in equation (6.16) and for the yaw coefficient in equation (6.18) since the
aircraft is symmetric. The roll moment coefficient is linearly dependent on the angle
of sideslip 3, the aileron deflection ¢ as well as the roll rate p. The pitch moment is
dependent on the angle of attack «, the elevator deflection 7 and the pitch rate ¢q. For
the yaw moment, a linear relationship is assumed for the angle of sideslip 3, the rudder
deflection ¢ as well as the yaw rate r, as these values are typically small. The last term
in each equation represents a damping moment since it is dependent on each of the
respective angular rates.

The aerodynamic moments are computed in equation (6.19). They are given in the
body-fixed frame B.

1 2 %Cl
(Mf)B = §p“7,4‘ S| e, (6.19)
e,

B

As the moment coefficients are dimensionless, the values have to be multiplied with a
characteristic length of the aircraft in addition to the dynamic pressure and the wing
reference area. For the pitch moment, this is the half-wingspan £ and for the roll mo-
ment and yaw moment, this is the Mean Aerodynamic Chord (MAC) c.

6.2.1.3 Frame Transformation

As the aerodynamic forces and moments are typically computed in the aerodynamic
frame, they have to be transformed into the body-fixed coordinate frame B according
to equations (6.20) and (6.21).

(FF), = Mg (FF), (6.20)
(1), — a3, 62
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It uses the rotation matrix Mp 4.

cosacos —cosasinff —sina
Mgy = sin (8 cos 3 0 (6.22)

sinacos 3 —sinasinff  cosa

6.2.2 Gravitation

Gravitation consists of the gravity forces of the earth and the centrifugal forces that
depends on the radius to the earth’s rotational axis. The gravitation is given in the
navigation (V) frame. The gravitational forces always act at the CG and in the direction
of the z axis of the O and NV frame.

0

(ﬁg)o =g | 0 (6.23)

1 O

It can be transformed into the body-fixed frame using the rotational matrix Mpo,
(Fg)o = Mpo - (Fg)o (6.24)
with

cos ¥ cos O sin ¥ cos © —sin®©®
Mpo =1 cosUsinOsin® —sinWcos® sin¥sinOsinW + cosWcos® cosOsinP

cosUsin®cos® +sinUsin® sinWUsinOcos® —cosUsin® cosO cosd
(6.25)

As the CG is used as the reference point, the gravitational forces do not cause any
moment to the aircraft since the lever arm is zero.

6.2.3 Propulsion

The propulsion provides reverse thrust during the deceleration phase after touch-
down. In the case of a turboprop engine, the reverse thrust is achieved by propeller
reverse.

As a simplification, the rotational speed of the low pressure shaft wy;, along with the
density of the air p, is used to determine the thrust force. A constant kp is introduced
as well as the exponent n, to characterize the influence of the air density.
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() =k (%) (6:26

The engines are mounted on the aircraft with a fixed yaw angle xp and a pitch angle
op. By assuming that kp = op = 0, the B frame becomes identical to the propulsion
frame P of the aircraft. The engine model that is used is a simple approximation of the
real behavior of the propulsion system that is able to deliver the fidelity required for
this use-case. Of course, the fidelity of the engine model can be increased if required
[KWH"19].

6.3 Landing Gear Model

The landing gear model is a central part of this work as the gear has an important role
during landing. The task of the landing gear is to absorb the energy of the vertical
motion of the aircraft during touchdown and, subsequently, to dissolve the energy of
the aircraft’s horizontal motion by applying the brakes until the speed is sufficiently
low to exit the runway via available taxiways. The gear has to apply lateral forces that
enable traction as well. Last but not least, the landing gear supports the aircraft on the
runway surface by applying vertical forces.

6.3.1 Model Build-up

The landing gear is modeled as a mass-spring-damper assembly shown in figure 6.3.
An additional degree of freedom, which is the vertical position of the landing gear,
is introduced. For the modeling purpose, a landing gear-fixed coordinate frame L is
introduced containing the axes z;, y;, and z;. The y; axis always points parallel to
the rotational axis of the wheel while the z;, axis points perpendicular to the contact
surface. The z; axis is perpendicular to the y; and the z; axis, shown in equation
(6.27). The unit vectors of the coordinate frame €, , €,, and €., are related as follows:

—

€y

—é, x€.,. (6.27)

L

The contact force between the tire and the ground surface is obtained from the com-
pression of the tire, depending on the spring constant of the tire k7 based on the height
of the aircraft reference point and the aircraft’s attitude.

The position of each landing gear (FU)N with ¢ = {nose; main left; main right; ...} rel-
ative to the IV frame can be determined by obtaining the position of the landing gear
relative to the aircraft’s reference point in the B frame and the position of the reference
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Figure 6.3: The model of the landing gear

point in the NV frame. The height above the runway reference point can be determined
by taking the position in the B frame and transforming it into the N and taking the =
component.

(FLi)B - (FR>B T (FRU)B (6.28)

(FL")N = MNB-(FU)BZ i (6.29)

As the runway does not necessarily have to be flat, a model of the runway is used to
determine the height of the runway hp at a given point (xy,yy). It is important to
know that the height is defined to be positive in the direction of the negative z axis of
the IV frame as the z axis is pointing downwards.

hr = f(zn,yn) (6.30)

The compression Al* of the landing gear can be obtained by determining the position
of each landing gear relative to the local runway surface.

Al =1 — (2" + hig (2, uiv) ) (6.31)

l§, is the length of the landing gear in the uncompressed state.

The gear compression as well as its derivatives can be used in the following to deter-
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mine the forces acting on the landing gear. They are each divided into three compo-
nents. The first component £, ;| is the force that is perpendicular to the contact plane,
i.e. the runway surface. This force is typically acting vertically on the aircraft, ensuring
it does not sink into the runway. The second component FJ; |, is the braking force.
It acts in the longitudinal direction of the tires which is the same as the longitudinal
direction of the aircraft for the landing gears that do not have steering control (main
gears). For the nose gear, the direction has to be computed depending on the deflec-
tion of the steering control. The third component F7, |, acts tangential to the runway
surface, but perpendicular to the braking forces. It consists of the forces that ensure
that the aircraft stays on the track in the longitudinal direction.

The three components and the way they are modeled are described further in detail in
the sections 6.3.2 to 6.3.4.

6.3.2 Landing Gear Normal Forces

The force normal to the contact surface acting on the landing gear Fy; ; can directly
be computed using the compression of the tire. Since the aircraft considered is on the
ground, we assume that both the pitch and the bank angle are small. Therefore, the
force acting normal to the contact surface is parallel to the landing gear strut.

The equation of motion of the landing gear can then be derived using the principle
of equilibrium of forces, as shown in equation (6.32). Al; is substituted by [; in the
following equations.

mpl; = —cili — dili + Fri o

The damper and spring characteristics, d and £, are not necessarily constant, but can
be dependent on the gear compression, i.e. d (I;) and & (I;). A typical landing gear, for
example, becomes stiffer with higher compression.

Equation (6.32) is used to compute the vertical acceleration of the landing gear based
on the current state, i.e. vertical position and speed. By integrating the acceleration,
the vertical speed and position are obtained.
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6.3.3 Landing Gear Longitudinal Forces
6.3.3.1 Tire Rotational Dynamics

The longitudinal force acting on each landing gear is typically the braking force. As
they are friction forces, they depend on the normal force between the tire and the run-
way surface, which was described in section 6.3.2, and the friction coefficient. The
friction coefficient 1, in the longitudinal direction can be controlled by the application
of the brake pedals §z or — in case of the use of autobrake — an equivalent degree of
braking action corresponding to a given brake pedal deflection.

FL@',H:): = g (53) FLz’,J_ (6.33)

When modeling the ground forces, the slope and bank of the runway surface has to
be taken into account. Therefore, the normal vector 77 at each contact point has to be
computed. All friction forces have to be within the plane perpendicular to the normal
vector. This can cause one of the most common mistakes when performing contact
force modeling. If the normal vector is not considered and a slope is introduced, the
aircraft will behave as if it is standing on a staircase: tilted, but still with vertical contact
forces only.

In order to obtain the exact relationship between the brake pedal and the friction coef-
ficient, it is assumed that the moment acting on the braking disc M is proportional to
the brake pedal deflection that is applied using the constant coefficient k.

Mp = kg - 0p (6.34)

The speed of the wheel is controlled by the braking system by applying a torque on the
wheel via the braking discs. In order to obtain the wheel speed, the rotating part of the
wheel and tire, including the braking disc, is taken into account using the equilibrium
of moments.

Jw - Ow = —rr - Frij. + Mp (6.35)

Jw is the moment of inertia of the entire rotating assembly, r; is the radius of the tire
and M3 is the torque applied on the wheel by the braking discs. The wheel speed Vyy,
can be obtained from the wheel angular speed wyy .

Viv = ww - rr (1) (6.36)

As shown in figure 6.3, the ground contact force relies on the deformation of the tire.
Therefore, the tire radius r can change significantly over time depending on the com-
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pression, which is indicated in equation (6.36).

Figure 6.4 shows the braking disc on one of the main landing gears of a Boeing 777-
300ER. The tire, the braking disc assembly as well as the hydraulic actuators are shown,
which push the braking disc in the direction of the wheel, building up the braking
torque. The wear indicator pin, which is the long pin pointing towards the braking
disc, is clearly visible. If the right end of the pin is close to the fixation, it indicates that
the braking disc is worn out and should be exchanged.

Figure 6.4: Braking disc on the main landing gear of a Boeing 777-300ER

6.3.3.2 Slip-Friction Curve

The moment acting on the braking disc controls the speed of the tire. Hans B. Pacejka
and his team developed a model that is able to describe the relationship between the
slip s and the friction coefficient i« [Pac12] [BNP87], shown in equation (6.37).

p(s) =D -sin(C-arctan (B - (1 — F)-s+ E -arctan (B - s))) (6.37)

B, C, D and E are parameters that can be used to adapt the curve to match the en-
vironmental conditions. The slip s is defined as the difference between the tire speed
and the road surface speed, normalized to the surface speed, see equation (6.38). For
aircraft tires, as the wheels are not powered, the slip will always be positive since the
wheel speed cannot become faster than the groundspeed. The slip can also not reach
values above 1 since no change of direction of motion is considered.

5 — VGroundspeed - VWheel (638)

VGroundspeed

74



Chapter 6: Flight Mechanics and Model Build-up

Equation (6.37) is sometimes also referred to as the Magic Formula because there is
no physical motivation behind its derivation. However, it has become a standard for
friction and tire modeling, particularly in the automotive industry because of its close
resemblance to the reality. The exact shape of the curve is influenced by the surface of
the runway, the tire tread, runway contaminant, if applicable, the groundspeed as well
as the tire pressure [Eng95].

Figure 6.5 shows a typical curve based on the friction model described in equation
(6.37). For small slip values, the curve is approximately linear with a high gradient. As
the slip increases, the gradient decreases and it reaches its maximum before decreasing
again. For this particular example, the maximum is located at approximately s = 0.2.
The friction coefficient decreases until a slip value of s = 1 is reached, i.e. the tire is
completely skidding on the runway surface.

0.6. Slip Curve
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Figure 6.5: An example friction curve based on Pacejka’s model

The maximum slip s, divides the friction curve into a left part and a right part. On
the left part, a stable behavior with respect to the rotational dynamics of the tire can be
observed. When the wheel speed decreases, the slip will increase if the groundspeed
remains constant. A higher slip will lead to a higher friction coefficient and subse-
quently a higher friction, resulting in a higher braking force. The friction force speeds
up the wheel again and we obtain an asymptotically stable behavior.

On the right side of the curve, however, it becomes obvious that the behavior becomes
unstable when the slip becomes larger than the optimum value s,,;. When the braking
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pressure and subsequently the moment on the braking disc is increased, the moment
leads to a decrease of the wheel speed. The lower wheel speed results in a higher
slip value. The higher slip value leads to a lower friction coefficient and, thus, a lower
braking force which acts against the deceleration of the wheel. This will result in an
even lower tire speed and higher slip. The wheel will lock instantaneously and start
skidding over the runway. In order to move back to the left side of the slip curve, the
braking pressure has to be released until the wheel speeds up again. This behavior is
an analogy to the dependency between the angle of attack a and the lift coefficient C'.
After the maximum lift coefficient C';, max is reached, the lift decreases again when the
angle of attack is further increased. The effect of the ailerons are now inverted, leading
to a highly dangerous and, therefore, undesired state.

Most cars manufactured today as well as large aeroplanes are equipped with an Anti-
Lock Braking System (ABS). The goal of the ABS is to make sure the slip never exceeds
the value at which the maximum friction coefficient is achieved. While the certifica-
tion specifications for large aeroplanes [Eurl8] require the efficiency of the braking
system to achieve certain values, it does not explicitly require the installation of ABS.
However, from the aircraft performance point of view, the Original Equipment Man-
ufacturer (OEM) will most likely install anti-skid systems in order to achieve the re-
quired Accelerate-Stop Distances (ASDs) or Landing Distances (LDs). The regulations
for all-weather operations (“CS-AWQO”) [Eur03] specity that “an antiskid braking system
is considered to be essential” when (possibly automatic) landings are performed with-
out decision heights. Due to the low visibility in these situations, the pilot is likely
to aggressively use the brakes, which increases the risk of skidding. On most mod-
ern commercial aircraft, an autobrake system is available which can only be activated
along with an ABS to ensure the autobrake does not apply too much brake pressure,
causing the tires to skid. In fact, the risk of tire burst increases significantly if the tire is
skidding. Of course, the local wear-out increases as well, leading to a shorter lifetime
for the tire.

The four figures 6.6 to 6.9 show how the shape of the curve is influenced by the four
parameters B, C, D and E. For each figure, one parameter is varied. The default
parameter values for this particular example are as set follows:

B = 8
c = 2
D = 06
E = 1

Figure 6.6 shows the slip curve for different values of B. This parameter does not
influence the maximum friction that can be achieved. It rather changes the gradient
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Slip Curve for Different Coefficients B
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Figure 6.6: Pacejka’s curve for different values of parameter B
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Figure 6.7: Pacejka’s curve for different values of parameter C
of the curve for small slip values but also slightly moves the slip value at which the
maximum braking coefficient is achieved to the right as B increases.

In figure 6.7, the coefficient C' is varied. The most significant influence is how the curve
decreases after reaching its maximum. For higher values of C, the friction decreases
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Slip Curve for Different Coefficients D
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Figure 6.8: Pacejka’s curve for different values of parameter D

significantly when the slip moves towards 1. For lower values of C, the maximum fric-
tion coefficient moves towards higher slip values or even reaches its maximum when
the wheel is skidding. For higher values of C, the unstable behavior of the wheel,
as described above, becomes more severe as the negative gradient after s,,, becomes
steeper.

The influence of the parameter D, shown in figure 6.8 can directly be interpreted from
equation (6.37). It is a scaling parameter and D directly represents the maximum fric-
tion coefficient that can be achieved.

The most significant influence of the parameter £, as shown in figure 6.9, is the skid-
ding friction coefficient and the gradient of the curve right of the maximum, while the
part left of s is barely affected by FE.

6.3.4 Landing Gear Lateral Forces — Unbraked Wheel

The lateral forces acting on the tires are generated when the aircraft moves into the
lateral direction, which is usually not the dominant part of the motion. A method very
similar to describing the longitudinal forces in section 6.3.3 is used. Instead of using
the slip as the independent variable, the sideslip angle 5 between the direction of
movement of the aircraft and the longitudinal direction of the tire is used.
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Slip Curve for Different Coefficients £
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Figure 6.9: Pacejka’s curve for different values of parameter E

Frijly = 1y (Br) - Fri1 (6.39)

The lateral force friction coefficient j, can be obtained using a very similar model as
equation (6.37) [Pac12].

ty (Br) = D -sin (C - arctan (B -(1—-FE)- 2§T + E - arctan (BziT>>> (6.40)
The sideslip angle is normalized to 7. Like the longitudinal forces, a very similar curve
as shown in figure 6.5 is obtained. The difference is that the horizontal axis shows the
sideslip angle and that the interval for possible values is limited to fr € {—g; g}, or
[—90°;90°]. This means that the lateral forces increase with an increasing sideslip angle
until a maximum value. When the sideslip angle is 7/2, the tire is effectively skidding
over the runway surface. The curve is symmetric since the behavior of the aircraft is

equal regardless of skidding to the left or the right, as shown in figure 6.10.

The modeling of the lateral landing gear forces is important for two reasons. First,
the lateral force on the main landing gear contribute to the directional stability of the
aircraft on the ground. Second, the lateral forces on the nose landing gear are essential
for steering on the ground, particularly at low speed. Of course, steering can also
be achieved by differential braking on the main landing gear or by the rudder if the
dynamic air pressure is sufficiently high.
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Figure 6.10: Pacejka’s curve for lateral forces

6.3.5 Combination of Sideslip and Braking

When the sideslip 87 and the longitudinal slip s occur at the same time, which can
only be the case for the main landing gear during braking, the velocity of the tire V7
can be divided into two components. One of them, V7, is acting parallel to the velocity
relative to the ground Vg, the other one is acting perpendicular to it V , i.e. in the
x and the y axis of the kinematic frame K. The components are shown in figure 6.11
and are described in equation 6.41 using the transformation matrix M. Since the z
components of both coordinate frames are parallel, it will be neglected in the following.

V| Moo Vi _ cos By sin fp _ Vir v cos fBr
V. « TR 0 . —sin By cos fBr 0 . "\ —sin Br
(6.41)

The perpendicular component V7 | corresponds to a skidding friction while the paral-
lel component V7| can be modeled using Pacejka’s curve as described in section 6.3.3.
Both the longitudinal and the lateral forces for a braked wheel can then be obtained.
Using the definition of friction force in equation (6.33) and the definition of the slip in
equation (6.38), both components of the speed V7 and V7| will cause a friction force.

(ﬁLi>K =Fri1 - ( a (5 ELVEZe:XT,I)) ) (6.42)

By transforming the forces back to the L frame, the friction force on the landing gear
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Figure 6.11: The motion of the single wheel and the coordinate frames

in the landing gear frame can be obtained.
(F.), = M- (Fu),

P ML, ( p (s (Vi = Vi) )
’ p(s=1) X

() (o)) g

sin By cos fr p(s=1)

_ F ( (s (Ve = Vipcos Br)) cos By — p (s = 1) sin fr
= Iril- _q

_ (6.44)
p1(s (Viire = Vr cos Br)) sin Br + p (s = 1) cos Sr )L

For any landing gear with a steering feature, particularly the nose gear, the gear co-
ordinate frame L does not coincide with the aircraft’s body-fixed frame B, making an
additional transformation necessary using the nosewheel deflection angle (;. This is
shown in figure 6.12. The transformation matrix M s is as follows:

—sin(;, cos(y

M, , — ( cos(r sin(y, ) ' (6.45)

The forces of the respective landing gear is thus:
(Fui), = Mp- (Fu), . (6.46)
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Figure 6.12: Transformation of the nose gear forces to body-fixed frame

As M is a rotational matrix, M5 = M}, applies. It reduces to the identity matrix
if there is no deflection of the wheel, i.e. (;, = 0.

6.3.6 Landing Gear Model Assembly and Integration

After all the components of the forces acting on the landing gear strut have been de-
scribed, it is possible to assemble the forces (ﬁLG )B and moments (MLG)B and to de-
scribe their influence on the entire aircraft. The CG G is chosen as the reference point.
The number of elements depends on the number of landing gears.
FG\ G
(F£), = 3 (L),
11 (s (Viire = Vi cos Bri) ) cos fBri — i (s = 1) sin By
= FrLiaMpr, | (s (Vire = Vi cos Bry)) sin By 4+ p (s = 1
' 1

The resulting moments from the landing gear forces are obtained using the vector from
the CG to the respective contact points between the landing gear and the ground sur-
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tace, which can be found in equation (6.29).

(M), =3 (MF) , = (7). < (FE),, (6.48)

6.3.7 Landing Gear Model Simplifications

Some aspects of the landing gear are not included in the model as they are not consid-
ered to be significant for the current problem.

Delays in the hydraulic system are not considered. In the model, it is assumed that
there is no delay between the movement of the brake pedals in the cockpit or the
braking command of the autobrake and the application of braking torque on the brak-
ing disc. This is a valid assumption because the reaction time of the hydraulic sys-
tem is much shorter than that of the systems considered in the model. Estimations
have shown that only a very small amount of hydraulic fluid has to move through
the pipes in order to apply forces on the braking discs since hydraulic fluids are non-
compressible. Delays by inertia can, therefore, be neglected. Furthermore, the purpose
of the simulation is to examine the deceleration behavior of the aircraft rather than
the control behavior of the hydraulic system. The reaction time of the former is much
longer than that of the latter, thus allowing the time delay in the hydraulic system to
be neglected.

While the landing gear strut has a degree of freedom in the vertical direction, no elastic-
ity in the longitudinal or lateral direction is considered. The spring and damper model
in the vertical direction has to be introduced to be able to compute the vertical forces.
The main drawback of including such a landing gear model is the stiffness of the land-
ing gear compared with the behavior of the rest of the aircraft. The use of spring and
damper in the longitudinal and lateral direction does not provide any benefit for our
application. They could be introduced if one would be interested in investigating the
following aspects, which can be relevant in the scope of flight operations safety assess-
ment focusing on the landing.

Touchdown analysis: At the moment of touchdown, not only is there a peak in verti-
cal acceleration. When the wheels spin up at touchdown, an acceleration in the
longitudinal direction can be measured. If the wheel is not perfectly aligned with
the direction of motion, a lateral acceleration also occurs. These forces will cause
high frequency oscillations of the landing gear structure. Introducing a respective
degree of freedom will enable further investigation.

ABS activation: One of the possible implementations of the ABS system would be a
bang-bang controller. Application of braking will lead to oscillation of the land-
ing gear in the longitudinal direction. The frequency of the ABS controller should
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be carefully chosen that it does not excite the eigenfrequency of the landing gear
strut in the longitudinal direction as it could lead to increased wear-out, thus
reduced life-time or even heavy damage and failure of the strut [Wan00].

As none of those two phenomenons are relevant to our problem, there is no necessity
to introduce additional degrees of freedom for the landing gear.

6.3.8 Landing Gear Model Validation

A validation of the landing gear model based on available Flight Data Monitoring
(FDM) data was performed based on a simplified aerodynamic and propulsion model
[WH18a]. The contribution of the braking force to the total deceleration during landing
is extracted. Furthermore, the available data was used to perform a non-linear regres-
sion based on Pacejka’s friction curve [WH18b]. Friction data from other studies was
available [Eng95] for given runway surfaces.

Algorithm 1 Groundspeed Estimation Algorithm [WH18a]

1: loop: For each timestep ¢
2: Compute new groundspeed Vis(t) from previous groundspeed Vis(t — 1) and pre-
vious longitudinal acceleration a,(t — 1)
Obtain new tire speed Viire(t) from measurement
if Vas(t) < Viie(t) then
Set Vgs(t) = VTire(t)-
else )
Set Vgs(t) = VGS(t).

The groundspeed has to be obtained to compute the slip value. For this purpose, the
method described in algorithm 1 is used along with the aircraft’s yaw rate to account
for different wheel groundspeeds during turns [WH18a]. In fact, the groundspeed in
turns can also be estimated from measurements of the yaw rate and lateral acceleration,
but it can only be reliably done when the aircraft is in a turn, which is rarely the case
during deceleration on the runway. The actual groundspeed and the obtained wheel
speed for one example flight are shown in figure 6.13. The difference between the two
curves is clearly visible during the phase where heavy braking is applied.

Figure 6.14 shows the data points for a recorded landing [WH18a]. The red line depicts
the friction value based on the wheel slip as computed from the model described in
this section. The blue circles indicate the values that were actually measured from
this particular landing. The line connects the data point in chronological order. The
data is separated in three different clusters based on the groundspeed as the slip curve

changes along with the speed. Each sub-figure represents an other interval of 10ms™.

First of all, one can see that the datapoints are all located in the left part of the friction
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Figure 6.13: Comparison of wheel speed and wheel groundspeed [WH18a]

curve where an almost linear relationship is valid between the slip and the friction
coefficient. Though the data does not perfectly follow the values as predicted by the
model, it actually fits the model quite well. Particularly for the highest speed interval
in figure 6.14c, it is very close to the prediction, indicating a high validity of the model.
To assess the quality of the fitting, the Root Mean Square Error (RMSE) as well as the
Normalized Root Mean Square Error (NRMSE), which are defined in equations (6.49)
and (6.50) [DS12], are computed for every speed interval.

RMSE — ¢E=1(2_“”) (6.49)
NRMSE = RMSE (6.50)

max {z;} — min {z;}

In both equations, ¢ is the i-th data point out of a total of n data points. A value with a
tilde # indicates that it was measured while a value without a tilde was obtained from
the model.

Speed Range, ms™" | 30 to 40 | 40 to 50 | 50 to 60
RMSE, - 0.0033 | 0.0055 | 0.0028
NRMSE, - 0.2315 0.169 0.0494

Table 6.1: Goodness of fit indicators for the slip curve
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Figure 6.14: Comparison of measured and computed friction coefficient [WH18a]

The NRMSE can be interpreted as the RMSE normalized to the interval width of the
occurring data. The computed values for the three speed intervals are shown in table
6.1. One can see that the the fitting is particularly good for the highest speed interval
and worse for the lower speed intervals, which is consistent with observations made in
figure 6.14. The NRMSE shows that the error corresponds to 23 % of the data range for
the speed interval of 30 to 40 ms~' and decreases to 5 % for the highest speed interval.

Taking a closer look at figure 6.14, especially figure 6.14b and the way the data points
are connected chronologically, one comes to the conclusion that there seems to be some
hysteresis behavior. The values for the friction coefficient are located significantly be-
low the fitted red line when the slip increases and they are located at or above the red
line when the slip decreases, except one single data point. There is, however, no plau-
sible explanation for the hysteresis. It could be the result of different friction behavior
depending on whether the wheel is being accelerated or decelerated.
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6.4 Integration

In the last sections, all the forces acting on the aircraft, with particular focus on the
landing gear forces, have been presented. The forces are summed up, taking into
account different coordinate frames, including aerodynamics, propulsion, gravitation
and landing gear. They are used to obtain the speed and the position of the aircraft by

—

m\ NB
integration of (V ) shown in equation (6.51).

(5) =
() @ () ) ) ) ()

(6.51)

sl

For the rotational dynamics of the aircraft, all moments acting on the aircraft are summed
up. Using the sum of the moments, the derivative of the angular rates can be com-

puted, as shown in (6.52).
]:9 0B\ P A Ve ~OB G ~OB
(-.’ - (wK >B - (I )BB' [Z (MT)B B (wK )B % (I )BB ' (wK )B} (6.52)
"/ B

The attitude of the aircraft [®,©, ¥]” is obtained based on the angular rates.

P 1 sin®tan® cosPtan© P

Ol=10 cos d —sin ® | q (6.53)
[ sin @ cos P

N 0 cos © cos ©

The starting point of the simulation is the moment when the aircraft touches down on
the runway. The initial states can be extracted from FDM data, which is described in
chapter 8.

6.5 Implementation Issues

The most significant challenge one has to face during the implementation of the model
is the difference in stiffness of the subsystems in the model. Particularly the landing
gear has much higher eigenfrequencies than the other components of the airframe.
Higher eigenfrequencies call for smaller timesteps when making time-discrete com-
putational simulation, however, smaller timesteps significantly increase the computa-
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tional effort at the same time while being unnecessary for components that have low
stiffness.

When looking at the moment of touchdown, the wheel speed increases from zero to
approximately the groundspeed of the aircraft in a very short interval of time. If the
time step of the simulation is significantly greater than the time required for the speed-
up of the wheel, it can cause major problems in the simulation. After the angular
acceleration of the wheel is obtained, the solver would take the value and obtain the
angular speed of the wheel in the next step by forward integration. However, when
the time step is too large, it will cause the computed wheel speed to be significantly
higher than the groundspeed of the aircraft in the next timestep as the acceleration
is high, which is simply unrealistic and will also lead to severe problems during the
next time step because the computed friction forces will go out of bound. A possible
solution without increasing the computational effort is limiting the values the variables
can reach. In this case, the wheel speed or the angular acceleration can be limited.
However, the limit values have to be carefully chosen to ensure no desired effect is
ignored in the simulation. As the wheels are not powered, unlike for cars, their speed
cannot be higher than the current groundspeed. In addition, as the aircraft is moving
forward, the wheel speed cannot be smaller than zero. These two values are used as
limits to stabilize the simulation of the rotational dynamics of the wheel. In addition,
the slip of the wheel is limited to the interval of s € [0; 1].
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System Logics, Operating Procedures
and Pilot Behavior

7.1 Introduction

As already mentioned in section 1.2.1, differences among aircraft operators can be
traced back to several factors, including network structure, operating procedures, oper-
ating crew and equipment. Two of them, network structure and crew are reflected in the
collected Flight Data Monitoring (FDM) data. Not only can the data be separated ac-
cording to airport and runway, but the data also contains the specific behavior of the
pilots. For example, the ability and quality of the crew to perform a manual Instrument
Landing System (ILS) approach can be directly derived from the data, specifically the
deviations on the glideslope and the localizer. In this chapter, we focus on how to in-
corporate the remaining two factors, (1) equipment, i.e. aircraft type-specific behavior,
and (2) operating procedures, which also includes the behavior of the flight crew.

In order to include different types of aircraft, system logics have to be considered in
the modeling as they reflect the behavior of the aircraft during certain situations. It in-
corporates the individual properties of each aircraft type. In this chapter, some system
logics of the aircraft types that are relevant to the current work are presented. They in-
clude the Boeing 737 as well as the Airbus Fly-By-Wire (FBW) aircraft types, i.e. A320
family, A330, A340, A350 and A380. In most cases, the logics on the various Airbus
aircraft types are very similar, varying only in the number of landing gears, control
surfaces and engines. Information about the system logics can be found in the Flight
Crew Operating Manual (FCOM) [Airl1a], which is an extensive document provided
to the operator by the Original Equipment Manufacturer (OEM) that contains detailed
descriptions of the on-board technical systems.

Another factor that can lead to differences is the way the aircraft is operated, which
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can be different depending on the airline. The information is mainly extracted from
the Operations Manuals (OMs). The OM is written by the operator based on the infor-
mation provided by the manufacturer. It consists of four parts, which is required by
legislation [Eur08a] within the scope of obtaining the Air Operator Certificate (AOC)
[EurO8b].

Part A: General information and company procedures with no reference to specific
aircraft types. It is intended to establish Standard Operating Procedures (SOPs)
to ensure safe and efficient flight operations.

Part B: Operating procedures for specific aircraft types. Typically, there is one specific
OM-B for a specific aircraft type, a specific aircraft family, or a set of aircraft types
that are operated by the same group of pilots. When aircraft types are grouped
together in one document, they often share very similar cockpits and other on-
board systems, such as the Airbus A330 and A340.

Part C: Operating procedures for specific airspaces, routes and airports. For example,
it contains the potential hotspots and commonly made errors at each airport. It
also includes the contact information of the ground staff at each airport within
the operators network.

Part D: Procedures for training of the personnel.

In this chapter, some items from the OM, the FCOM and other relevant documents
that contribute to the accident types of Runway Excursion and Abnormal Runway
Contact are presented. These are particularly items that are used during landing and
deceleration.

7.2 Ground Spoiler Extension Logics

7.2.1 Airbus FBW Aircraft

Figure 7.1 shows the ground spoiler extension logics for the Airbus A320 family [eas12],
which has been in use until an update in 2010. The A320 has five spoilers on each wing
that are numbered from 1 to 5, beginning with the inbound spoiler. The spoilers 2, 3
and 4 are used as speed brakes when airborne while all spoilers are used as ground
spoilers [Deu09a]. Depending on the exact control law version of the aircraft, both
ailerons are also deflected upwards to support the ground spoiler function. Figure 7.2
depicts the difference. While on the particular A320 shown in 7.2a, all spoilers are
extended, the aileron at the very outbound position of the wing, does not change in
deflection as it is used for roll control only. For the A350 on the right in 7.2b, however,
the aileron is also deflected upwards to support the aerodynamic effect of the spoilers.
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Figure 7.1: The spoiler extension logic on the Airbus A320 [eas12]

This also occurs on the opposite wing, leading to an atypical symmetric deflection of
the ailerons.

(a) Spoiler deployment on the Airbus A320 (b) Spoiler deployment on the Airbus A350
with no use of the aileron with ailerons deflected upwards

Figure 7.2: Wing view after touchdown showing the extension of the ground spoilers for two
different Airbus aircraft types

For safety reasons, Airbus includes a state for the spoilers referred to as Partial Exten-
sion, which is visible in the lower logic branch in figure 7.1. When only one thrust
lever is in reverse with the second one being in idle and only one landing gear is com-
pressed, the spoilers are only partially deployed, which means that the deflection of the
spoiler surfaces are limited to 10°. Only if the conditions in the upper branch are ful-
filled, the spoilers will completely extend. The motivation for this implementation lies
in the requirements set out by the certification specifications [Eur18]. Both the unin-
tended full deployment of ground spoilers during flight and not deploying the ground
spoilers after landing or during Rejected Take-off (RTO) could result in catastrophic con-
sequences, implying that such an event must not occur with a probability of more than
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1 x 107 per Flight Hour (FH). This would impose a very high requirement concerning
the quality and reliability of the signals coming from Weight on Wheel (WOW) sensors
as wrong signals sent from them could lead to one of the described failure conditions
above. Besides, it would violate the certification requirement that a single failure must
not result in a catastrophic failure condition under any circumstances. Multiple redun-
dant sensors could become necessary. In order to be able to use lower quality signals,
the state of partial extension is introduced. Wrong signal from a single sensor can
only lead to a partial spoiler extension, which will not lead to Loss of Control In-Flight
(LOC-I) if it occurs in the air. Besides, if the aircraft has already touched down with
one single landing gear, the partial deployment of the spoilers will aid to the fulfilment
of the conditions for full extension as it reduces the lift and eases the touchdown with
the remaining landing gear.

The condition for which the landing gear is considered compressed, i.e. when the
WOW signal is positive, has to be carefully chosen. In 1993, a Lufthansa A320 over-
ran the runway at Warsaw Frederic Chopin Airport (WAW/LPWA) during landing
[Mai94]. The threshold value for the A320 in order to generate the compressed signal
was set to be 5.8t per main landing gear. As the aircraft touched down very softly
and the wheels did not spin up due to a very wet runway, the spoilers did not extend,
nor did the autobrake activate. Thrust reverse was also not available since the aircraft
system did not detect the ground condition. This greatly contributed to the overrun
accident, along with a late touchdown and a high approach speed, after which Air-
bus lowered the threshold value for landing gear compression to 2t per landing gear
[Aus13].

The logic shown in figure 7.1 was modified in 2010 [BS10] to reduce the risk of hard
landing. This is caused by the pilot not retarding the thrust levers prior to touchdown,
leading to the aircraft bouncing off the runway and becoming airborne again. When
the pilot retards the thrust levers during the bounce, the spoiler extension conditions
are fulfilled since the radio altitude and the landing gear compressed conditions are
memorized for three seconds. This leads to the aircraft touching down hard on the
runway for second time because the lift is suddenly lost when the spoilers extend after
bouncing off the ground. With this modification, Airbus changed the conditions for the
thrust levers to enable a partial condition to both of them being at or below the climb
thrust notch, which is the same position as when the auto-thrust function is in use
[BS10]. The logic is deployed on all newly produced aircraft and can also be updated
to frames that previously left the production sites. 4 Very similar logics are used on
all Airbus FBW aircraft, including the A330 and A340 [Deu09b], the A380 as well as
the A350 [Airl1lb]. Differences exist in the number of spoilers, engines and landing
gear struts in the signal logics. On the A380, for example, the partial extension of the
spoilers requires one of the four main landing gears to be compressed and one of the
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four thrust levers in reverse while the remaining three are at idle. The full extension of
the spoilers requires three landing gears to be compressed and at least one thrust lever
in reverse while at least two of the remaining three are below climb power [Airlla].
At least three thrust levers in idle position is also accepted for the thrust setting to
trigger partial or full extension. On the A380, there are eight ground spoilers available
on each wing in addition to the ailerons that are also deflected upwards to support the
spoilers. There are three adjacent ailerons on the Airbus A380 on each wing that can
be controlled independently.

7.2.2 Boeing 737 NG

GROUND SPOILER|
CONTROL VALVE

GROUND SPOILER|
BYPASS VALVE

RADIO ALTITUDE -
FLAP POSITION ARMED
HYDRAULIC PRESSURE 2 FLIGHT

DETENT
SPEED BRAKE
ARMED
SPEED BRAKE
DO NOT ARM
RIGHT MAIN

LANDING GEAR SPEED BRAKE LEVER

FLIGHT SPOILERS: 2, 3, 4, 5, 8, 9, 10,
GROUND SPOILERS: 1, 6, 7, 12

Figure 7.3: The spoiler extension logic on the Boeing 737 NG [The09]

Figure 7.3 shows the system architecture of the ground spoilers for the Boeing 737 New
Generation (NG) aircraft [The09], which includes the 737-600 to 737-900 series. The 737
has twelve spoilers in total, numbered 1 to 12 from left to right. Eight of them are used
as flight spoilers and ground spoilers, four more are used as ground spoilers only. The
main difference in the architecture compared to the A320 is that the flight spoilers will
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deploy if any of the two main landing gears is compressed. The ground spoilers will
only deploy if the right main landing gear is compressed. In addition, the following
conditions have to be met simultaneously [The(09]:

* The ground spoilers are armed using the speed brake lever.
¢ The radio altitude is smaller than 10 ft.
¢ Both thrust levers are at idle.

¢ The measured wheel speeds on the main landing gear wheels are higher than
60 kn.

When looking at the safety considerations, one can see that the safety requirements on
the compression sensor on the right main landing gear must be significantly higher
than for the left main gear. While a wrong signal from the left gear could trigger the
extension of the flight spoilers, it can be assumed that the aircraft is still controllable
and maneuverable if only the flight spoilers are extended. It is comparable to the con-
cept of partial deployment at Airbus except that Boeing’s understanding of partial is
that only a certain number of spoilers deploy rather than all spoilers, but with a limited
deflection angle.

7.3 Braking System and Autobrake

7.3.1 Airbus FBW Aircraft

Figure 7.4 shows the braking system of the Airbus A320. The braking is controlled
by the Braking Steering Control Unit (BSCU). The naming of it clearly indicates that it
does not only control the braking of the aircraft, but also the steering on the ground as
asymmetric braking can be used to control the yaw axis of the aircraft. This is particu-
larly useful at high speeds when the nosewheel steering is not effective or when very
small turn radii have to be achieved at low speed on ground.

The braking system is using power from two of the three on-board hydraulic systems,
yellow and green. For the default case, the green system is used. If the green hydraulic
system has failed, the yellow hydraulic system is automatically selected to power the
braking pressure. In addition, a Power Transfer Unit (PTU) interconnects the green
and the yellow hydraulic system [eas12] by pressurizing one system using the power
from the other if the difference in pressure between the two systems increases above
500 psi. The Anti-Lock Braking System (ABS) is available unless the BSCU has failed
or if both hydraulic systems are low on pressure. In this case, a brake accumulator
is available that temporarily provides limited braking pressure [eas12]. It stores the

94



Chapter 7: System Logics, Operating Procedures and Pilot Behavior

ATUNNAL  AIRCRAFT SPEED g2 gL
LONGTTUDINAL DFCEL (|| bFCEL DFCE
DECELERATLION AT IMPACT :N = mL

(ADIRUY (WHEEL SPEED)

l"'ir Vo 1 Vprog
Vo yip ot Vo~ ¥ prog -t
Varsc Vprog

¢~ HIGHEST VALUE |-t

OFF le
AUTO BRAKE

V ref
+

RELEASE
ORDER
IF WHEEL SPD
<0.87 V ref

GREEN

[ v s s s v v v v v s s s s

YELLOW

ALTERNATE

SERVD (l)—n—

VALVE

WHEEL
SPEED

Figure 7.4: An overview of the braking system of the Airbus A320 [eas12]

pressure as long as the hydraulics are operating normally and releases the energy in
case of failure.

Figure 7.4 illustrates the principle of ABS. It is activated when the wheel speed is be-
low 0.87 of the reference ground speed, i.e. when the slip increases above 0.13. In
that case, the BSCU commands the brake pressure to be reduced in order to lower
the slip. Obtaining the reference ground speed is a challenge as measurements using
the Global Navigation Satellite System (GNSS) are not very reliable. In this case, the
ground reference speed is obtained by taking the wheel speed shortly after touchdown
as initial value. At that time, the wheel should approximately have the same speed as
the Groundspeed (GS) as no braking has been applied yet. The continuous values for
the GS are obtained by integrating the longitudinal acceleration, i.e. making use of the
principles of inertial navigation.

An autobrake system is available that commands a constant deceleration value that is
pre-selected by the pilot prior landing. On the A320, there are two settings available
for landing, LO and MED. The corresponding deceleration values are depicted in table
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Setting | Deceleration [ms™?]
LO 1.7
MED 3.0

Table 7.1: Autobrake settings and corresponding deceleration values on the Airbus A320 fam-
ily [Deu09a], A330 and A340-300 [Deu09b]

7.1. In addition, a MAX setting is available which is only used for RTO for which the
maximum braking capability is applied with no specific deceleration target value. The
autobrake has to be armed in order to have it activated when certain conditions are
met. For the activation after landing, the same conditions have to be met as for the full
extension of the ground spoilers, described in section 7.2.1 above.

On the Airbus A330 and A340, the architecture is very similar [Deu09b]. Braking pres-
sure is supported by the green hydraulic system as the primary source and the blue
hydraulic system as the secondary source. The two settings for landing with auto-
brake, LO and MED in table 7.1 are also available on all versions of the A330 and the
A340-200 and -300 series with the same deceleration values. On the A340-500 and -600,
five different settings are available, the deceleration values are shown in table 7.2. An-
other dedicated RTO mode is used for take-off. On the A330 and A340, the maximum
slip value before the activation of the ABS is set to be 0.12, slightly lower compared to
the A320 family.

Setting | Deceleration [ms™?]
LO 1.8
2 2.2
3 2.6
4 3.0
HI 3.5

Table 7.2: Autobrake settings and corresponding deceleration values on the Airbus A340-500
and -600 [Deu09b]

On the Airbus A380, only four selection options are available for the autobrake, still
covering the same range with respect to deceleration value. In addition, a Brake To
Vacate (BTV) function is introduced for the autobrake. After the selection of the air-
port, the system indicates the earliest point on the runway at which the aircraft can
vacate the runway for the two cases when the runway is either dry or wet. Based on
the available weather information, the crew can select a taxiway that is located beyond
the respective point. The autobrake system will slow down the aircraft such that it can
safety vacate the runway at the selected taxiway, optimizing brakes and tire wear as
well as passenger comfort. In addition, a new system called Runway Overrun Protec-
tion System (ROPS) is installed that continuously monitors the landing distance and
the remaining runway distance to provide a real-time landing performance update to
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the pilots and trigger additional actions [Airlla] if necessary. It is a combination of
Runway Overrun Warning (ROW), which computes the distance that is still required
on the fly and Runway Overrun Protection (ROP), which prompts the crew to apply
maximum braking and maximum reverse until full stop, which is typically not recom-
mended in the SOP due to a higher risk of Foreign Object Damage (FOD) to the engine.
Alternatively, if a long landing is performed, i.e. touching down too late on the run-
way, the system can also recommend the pilot to perform a go-around if the aircraft
has not been on the ground yet.

On the Airbus A350, there is only one autobrake setting that can be selected, which
is MED, corresponding to a deceleration of 3ms™2 [Deul8a]. However, it is recom-
mended to use the BTV function only for all landings, combined with ROPS [Air11b],
which is standard equipment on the A350. The runway condition, i.e. dry, wet or con-
taminated, has to be pre-selected prior landing based on the information available to
the flight crew.

7.3.2 Boeing 737 NG

On the Boeing 737 NG, the braking pressure is provided by two hydraulic systems with
hydraulic B as the primary and hydraulic A as the alternate source of power [The09].
A brake accumulator is also available that support limited braking power in case both
hydraulic systems have failed.

Just like on the Airbus aircraft, the ABS reduces the braking pressure when the skid-
ding of a wheel is detected. Unfortunately, the exact values that lead to the activation
of the ABS could not be found. The release of braking pressure is done individually
for each wheel.

As for the autobrake, there are four settings that can be used for landing, the corre-
sponding deceleration values are given in table 7.3. The target deceleration for the
MAX setting varies depending on the GS of the aircraft. In addition, there is also an
autobrake mode for RTO, which is explicitly armed prior departure.

Setting Deceleration |ft/s?| | Deceleration [ms2]
1 4 1.22
2 5 1.52
3 7.2 2.19
Max (below 80 kn) 12 3.66
Max (above 80 kn) 14 4.27

Table 7.3: Autobrake settings and corresponding deceleration values on the Boeing 737 NG
[Bra99]. As the original values are provided in ft/s* in the Boeing FCOM, a conversion to
m s~2 is provided to enable direct comparison with the Airbus values.
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The activation of the autobrake during landing is triggered when both thrust levers
are pulled back to at least idle and when the wheels on the main landing gears have
spun-up to 60kts or above. This condition is very similar to the deployment of the
spoilers described in section 7.2.2 above. However, unlike the logics for ground spoiler
extension, both the radio altitude and the landing gear compression are not taken into

account.

For all aircraft types previously mentioned, a touchdown protection is implemented that
ensures the release of the brakes before touchdown until wheel spin-up. Landing with
locked wheels will result in immediate tire bursts and must be avoided.

7.4 Landing Distance and Target Speed Computation

For each landing, the speed that should be kept during final approach is determined
based on values indicated in the OM Part B for each individual aircraft type. Table 7.4
shows the reference speed V. of the Airbus A380 [Airlla] depending on the weight
of the aircraft, the flaps and slats configuration as well as the position of the Center of
Gravity (CG). The exact values for each individual landing can be obtained by inter-
polating the values. In today’s flight operations, these tables are implemented in the
flight crew’s Electronic Flight Bag (EFB), the values are determined typically before
beginning the approach. The final speed that should be kept during approach V,,, as
Indicated Airspeed (IAS) is computed as follows according to Airbus:

1
‘/app = Vief + min {3VHeadwind7 15 ktS} + AVC, (71)

where Vijeadwind 15 the speed of the headwind that should be accounted for by adding
one third of it to the approach speed. However, this increment is limited to 15 kn on the
A380. V¢ is a speed correction increment added to the crew’s discretion to account for
local weather conditions, such as turbulences or wind shear, it is typically a few knots.

. CONF 3 CONF FULL

Weight (10001b) | 5 o/ oG | 43% CG | 20% CG | 43% CG
600 120 120 120 120
700 128 124 125 121
800 137 133 133 130
900 145 141 141 138
1000 153 149 149 145
1100 160 156 157 152
1200 168 163 164 159

Table 7.4: Reference speeds (V) in knots on the Airbus A380 [Airllal
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A factor Kpailure is used as a multiplier to the obtained results to account for system fail-
ures that affect the controllability or the braking capability of the aircraft. Examples
include the failure of the yaw damper, jamming of the horizontal stabilizer, ice accre-
tion or when the flight control system enters the Alternate Law or Direct Law. As the
flight envelope of the aircraft becomes smaller and, in the case of leaving the Normal
Law, the envelope protections successively become unavailable when these failures oc-
cur, it is logical to increase the approach reference speed of the aircraft to have a larger
margin to the stall speed and to account for larger uncertainties and errors in the sensor
measurements.

Similar computation is performed by the crew to assess the expected landing distance
that is required. Typically, tables are available that use input parameters such as the
aircraft’s weight at landing, the wind, the runway condition (dry, wet or contaminated)
and the airport elevation, adjustments may be made if the landing is performed by
the autopilot. In addition, just as the computation of the approach speed, corrections
have to be made for failures that affect the deceleration capability. Examples include
inoperability of spoilers, even single spoiler surfaces, failure of hydraulic systems that
could affect both the braking performance and spoiler operation or the unavailability
of the ABS. System logics have to be considered as well, as there are inter-dependencies
between the systems. For example, on all Airbus aircraft, if one spoiler surface fails,
the symmetric spoiler on the other wing is also inhibited in order to avoid asymmetry.

In daily flight operations, the crew typically does not use value tables as shown in table
7.4. Instead, a computer tool is used that is provided either directly by the aircraft man-
ufacturer or created by the operator with information supported by the manufacturer.
The advantage is not only the quicker computation process but the ability to quickly
evaluate different options and make the best decision. For example, landings can typ-
ically be conducted with several possible flap settings. Higher settings (flaps and slats
further extended) allow lower approach speeds, but the aircraft will become more sen-
sitive to turbulence and gusts during the approach due to a lower wing load. Lower
settings often have a higher risk of tailstrike due to the higher angle of attack during
approach, but offer better aerodynamic efficiency a reduce the level of noise. Using
the provided calculation tool, the crew is able to explore different options quickly and
decide based on all relevant constraints.

7.5 Thrust Reverse

During certification flight testing, the Landing Distance (LD) as well as the Accelerate-
Stop Distance (ASD) after a RTO must be obtained without the use of thrust reverse.
They present an additional deceleration device providing extra safety margin. During

99



7.5 Thrust Reverse

daily flight operations, however, thrust reverse is routinely used, though some airports
require the operators to restrict the use of thrust reverse as much as necessary due to
noise abatement procedures [Emil3]. Often, thrust reverse is not used in full, but in
idle only, depending on local airport regulations. Penalty fines could be placed if rules
are violated without the necessity to use full reverse based safety considerations.

A failure of the thrust reverse during deceleration phases on the ground will only lead
to the loss of deceleration capabilities that were not accounted for during performance
calculation in the first place, which means that the consequences are manageable. In
fact, the thrust reverse is typically not even an item on the Minimum Equipment List
(MEL), meaning that aircraft can be dispatched if reverse is not functioning properly
and, therefore, deactivated, though operational restriction may apply. However, the
contrary case, meaning that the thrust reverse deploy during flight phases at which it is
not supposed to deploy, could lead to catastrophic consequences. The crash of a Lauda
Air Boeing 767-300ER near Bangkok in 1991 [Air93] was caused by an inadvertent
deployment of the thrust reverse on the number one engine. The aircraft was climbing
through Flight Level (FL) 310 at a speed of Mach 0.78 when the reverse activated. The
aircraft entered a stall due to high asymmetric thrust and broke apart at an altitude of
4000 ft due to excessive load and buffeting.

On the Airbus A320 family, except the A318, two engine types are available for cus-
tomer selection, the CFM International CFM56-5 and the International Aero Engines
(IAE) V2500. On the A318, the smallest aircraft type in the family, the IAE engine is not
available. Instead, the customer can choose between the CFM56-5 and Pratt & Whit-
ney’s PW6000. The engine control architecture and the actuation logic, however, are
very similar for all engine types. The engine is controlled by a Full Authority Digital
Engine Control (FADEC) system with two redundant channels. The deployment of a
thrust reverse requires the operating FADEC channel to be operating and sending the
reverse deployment signal, both main landing gears to be compressed and the thrust
lever to be set to reverse for the respective engine [eas12]. Gear compression signal
is provided by the Landing Gear Control and Indication System (LGCIS), the same
source is used for the WOW signal required for the activation of the autobrake and the
extension of the ground spoilers.

On the Airbus A330 and A340, the logics are very similar. Though the A340 has a cen-
ter body landing gear, it is not required to have a compressed center gear for reverser
deployment [Deu09b]. In fact, the A340 can even be dispatched with weight restric-
tions if the body gear is retracted and not operating. On the A340-200 and -300, no
braking system is installed on the body gear which consists of two wheels only, while
for the A340-500 and -600, the center gear is a two axis bogie with brakes installed. On
the A340, for the outbound engines (1 and 4), an interlock is implemented that limits
the reverse on an engine to idle if the reverse of the corresponding outbound engine
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is not in the deployed and locked position. This reduces the magnitude of possible
asymmetric thrust and avoids uncontrollably high yaw rates.

On the Airbus A380, thrust reverse is only available on the two inbound engines (num-
ber 2 and 3). The outbound engines are approximately 26m away from the fuselage
center [Airl6], which means that, depending on the runway width and the location
of the aircraft on the runway, they could be well located beyond the runway shoul-
der. Thus, the thrust reverse was not installed in order to avoid FOD. The deployment
logic on the A380 is very similar to those on the previously mentioned Airbus aircraft
types. However, it is structured in three lines of defense, each of them is controlled and
monitored by an individual system to prevent inadvertent reverse deployment during
flight. In addition, two protection measures are introduced on the A380 [Airlla] to
limit the effect of inadvertent deployment:

Idle Protection: The FADEC monitors the position of the thrust reverse translating
cowl. If it is deployed by more than 5 % and reverse is not selected on the thrust
lever, the FADEC automatically reduces the thrust on the engine to idle. This
measure is to cope with inadvertent deployment in-flight.

Auto-Idle Protection: Since the outbound engines are not equipped with thrust re-
verse, it is possible to select a thrust above idle on the outbound engines while
the inbound engines are in reverse. In this case, the FADEC reduces the thrust of
the outbound engines to idle without manual interaction.

To sum it up, it becomes obvious that the considerations behind the actuation logics of
the thrust reverse is more focused on preventing inadvertent deployment during the
flight rather than ensuring a high availability of the reverse on ground. The reason
behind this is that the consequences of the former are much more severe than that of
the latter, as shown in previous accidents. This is significantly different compared to
the logics of spoiler deployment or autobrake activation.

7.6 Pilot Behavior

7.6.1 Modeling of the Pilot Behavior

Although the focus of this work is not human performance, it should be addressed
due to the strong influence of the behavior of the flight crew on the occurrence and on
the outcome of an accident. The intention, however, is not to assess human factors by
creating a model representing the pilot, but rather to incorporate interactions with the
pilot wherever possible and wherever this can be observed in FDM data. For example,
it was visible in the FDM data that pilots tend to touch down significantly earlier on
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the runway if the landing is more critical with respect to runway length [WF12]. The
behavior should also be reflected in the model.

Several parts of the model include pilot interactions and they are explained in the suc-
ceeding sections.

7.6.2 Braking Behavior

After touching down, the primary objective is to slow down the aircraft in order to be
able to safely vacate the runway. To achieve this goal, the pilot either applies decel-
eration devices manually or they are automatically activated if the given conditions
are fulfilled. The brakes, which are the most effective means to decelerate, are ap-
plied by the pilot or are activated by the autobrake system, which was described in
section 7.3. The use of the BTV system on the Airbus A380 and A350 already sug-
gests that the braking behavior heavily depends on the location of the taxiway that
is used to vacate the runway. The top-level goal is to minimize brake wear and the
time required to taxi to the gate while avoiding unnecessary risks for Runway Excur-
sion (RE). Figure 7.5 shows the southern part of Munich Airport (MUC/EDDM) along
with the runway 08R/26L. As both passenger terminals are located close to the eastern
part of the runway, the braking action is typically higher when landing in western (26)
whereas in eastern direction (08), a long roll-out can be performed, if traffic permit-
ting, to minimize taxi time on the ground. This behavior can actually be observed in
the available flight data, the details are described in section 9.2.2.1. A full airport chart
of MUC/EDDM can be found in the appendix C.

Figure 7.5: The taxiway layout of the southern runway (08R/26L) at MUC/EDDM (north-up
orientation) [DFS18]

In order to compare the model output with FDM data, the actual landing distance has
to be extracted from the data. However, it is not directly possible to obtain the actual
landing distance used to come to a full stop because the aircraft never comes to a full
stop on the runway unless during an emergency. To overcome this issue, the time point
at which the pilot stops braking during landing roll is extracted. It is assumed that the
pilot would only terminate braking action if a sufficiently safe low speed is already
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reached to exit the runway via the next suitable taxiway. In order to determine the
actual required landing distance, a full braking, using the maximum available braking
action under the given condition, is simulated from this point to compute a distance
that the aircraft would hypothetically use if it had to stop on the runway.

7.6.3 Steering Behavior

In order to quantify the risk of runway veer-off, the steering behavior of the pilot on
the ground has to be considered. The task can be considered a control task with the ob-
jective to be as close to the runway centerline as possible. The control inputs are nose-
wheel steering, rudder deflection, asymmetric braking as well as asymmetric thrust.
However, in our use case, only the first two, nosewheel steering and rudder, shall be
used. In contrast, the application of differential thrust is not recommended. Figure 7.6
shows the runway veer-off accident which occurred at MUC/EDDM in 2011 [Bun11]
[Bun18]. The aircraft departed the runway to the left during the landing roll-out. How-
ever, due to overcorrection by the pilot, the aircraft returned to the runway, but crossed
the runway edges again to the right before coming to a full stop.

Figure 7.6: The RE (veer-off) accident at MUC/EDDM in 2011 [Bunl1]. The tire markings
are well visible.

For the implementation of a ground controller, a control algorithm developed by other
researchers for the application on an Unmanned Aerial Vehicle (UAV) performing Au-
tomatic Take-off and Landing (ATOL) is used [SH17]. Using the lateral deviation on
the runway, i.e. the distance to the runway centerline alone will lead to frequent over-
shoots and augmenting oscillations around the centerline. The idea of this controller
is to have three cascaded loops, controlling the lateral deviation, the heading and the
yaw rate, respectively, in the outer, the middle and the inner loop. Figure 7.7 shows the
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structure of the controller. d.mg is the variable for the control input in general, which can
be both the nosewheel deflection and the rudder. For the implementation, the control
inputs have to be limited in order to be realistic. In our case, the nosewheel deflection
was limited to (;, € [—30°; 30°] and the rudder deflection was limited to ¢ € [—60°; 60°].

AYemg =0 AXemd Temd demd Y
L:@ ky %@» ky 5 Limit ~O— k» [—|Limit ! Aircraft
Ay X — \IIR r
Measurements

Figure 7.7: The cascaded ground controller used to reduce lateral deviation [SKHH18]

The controller gains k,, k, and k, have to be obtained and adjusted. A heuristic ap-
proach is used. For this purpose, all the gains are first set to reasonable values with
the correct sign that are, if in doubt, rather small in magnitude. Starting from the inner
loop to the outer loop, the values of the gains are slowly increased so that the system
is still stable without overshooting. In general, the gains become increasingly smaller
from the inner to the outer loop. Gain scheduling over the speed is not performed
as the previous work has shown that the performance is sufficiently high [SKHH18],
which is also confirmed in this case.

Figure 7.8 shows the performance of the ground lateral controller during a simulated
landing for which the initial touchdown point was set to 20 m right to the runway cen-
terline. In 7.8a, both control variables, the rudder and the nosewheel, are shown. As
the aircraft is significantly off the centerline at the beginning of the simulation, both
variables are at their saturated value, being —30° and 60°, respectively. One has to
keep in mind that a deflection to the right is indicated by a positive value for the nose-
wheel deflection and a negative value for the rudder since the nosewheel is located in
front of the origin of the body-fixed coordinate frame B and the rudder behind it. The
commanded inputs converges to zero as time progresses and the aircraft approaches
the centerline. The discontinuity during the beginning of the simulation is caused by
numerical instabilities resulting from the touchdown and the speed-up of the wheels.

The actual and the commanded yaw rate is shown in figure 7.8b. As the yaw rate is sep-
arated from the control inputs by only one integration, it is fairly dynamic and follows
the commanded value very well. A negative yaw rate is commanded in order to turn
the aircraft to the left towards the centerline when the lateral position offset is positive,
i.e. to the right. The actual and commanded heading in 7.8c are also quite close to each
other, although not as perfectly aligned as the yaw rate. The values for the heading
is corrected such that the runway heading is exactly zero. Figure 7.8d finally shows
the ultimate target variable, which is the lateral deviation from the centerline. The
commanded value is not explicitly shown as it is represented by the horizontal zero
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Figure 7.8: The lateral controller behavior for a simulated landing

line. The increase of deviation, which is also visible in the heading plot, results from
slightly asymmetric braking action caused by oscillations during touchdown. How-
ever, after ground contact is thoroughly established, the deviation decreases quickly
as the aircraft converges towards the centerline without overshooting. Although sta-
tionary accuracy cannot be achieved using this control structure due to the missing
integral component, simulations showed that the performance is sufficiently close to
reaching the runway centerline even under constant crosswind conditions. The lack
of stationary accuracy would only lead to large deviations if the constant crosswind
component is high [SHH18] [SKHH18].
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8.1 Introduction

In this chapter, the relevant contributing factors for Runway Excursion (RE) and Ab-
normal Runway Contact (ARC) are extracted from recorded Flight Data Monitoring
(FDM) data. Within the scope of this work, only the RE data is further processed for
the Predict step. The data for ARC, however, is also useful to demonstrate the methods
and the algorithms that are implemented.

As already pointed out in section 4.2.4, a distinction between timepoints and measure-
ments is necessary. Timepoints can be considered as indexes that are used as markers
for each flight to indicate certain characteristic events such as touchdown or the ap-
plication of brakes. Measurements utilize the information provided by timepoints in
order to extract relevant information from FDM data at these specific times during the
flight. Measurements can directly utilize a single recorded value, such as the speed at
touchdown, a series of values, such as the average brake pressure during deceleration
or even a timespan, such as the time elapsed between touchdown and the application
of brakes.

First, a way to enhance the data and to improve the data quality is presented. For each
measurement, the way it is computed, i.e. the algorithm, is described. As data process-
ing always has to account for measuring and recording error, it is necessary to limit the
values that are extracted to a range that is physically feasible. As the last part of this
chapter, the fitting of probability distributions to the obtained data is presented. These
distributions ultimately serve as the input to the last part of the Predictive Analysis
(PA): Predict.

The detailed data, including histograms as well as the fitted distributions, can be found
in the appendix part D.
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8.2 Data Enhancement

The FDM data that is used, just like any data, contains error that result from both
measuring and recording. The details are described in section 2.3. Particularly the
position data could be very inaccurate for landing analysis. The position on-board an
aircraft is obtained by fusing information from the Global Navigation Satellite System
(GNSS) and the Inertial Reference System (IRS) within the Flight Management System
(FMS). While the GNSS position offers long-term stability, it is not sufficiently accurate
to precisely determine the touchdown point of the aircraft. On the other hand, position
solutions from the IRS is very precise right after initialization, but starts to drift over
time as the error in the acceleration and angular rate measurements is integrated, re-
sulting in trajectories that are shifted as time progresses. The service standards that can
be achieved using the United States (US) Global Positioning System (GPS) is published
by the US government [Nat08]. In the last issue from 2008, the accuracy that could be
achieved was given to be 17 m in horizontal position and 37 m in vertical position. The
numbers given mean that in at least 99 % of the time, the position solution is obtained
such that the 95 % confidence interval is located within this boundary. In addition, the
resolution of the recorded position parameter only allows a precision of approximately
20m, as already described in chapter 2. Clearly, this is not sufficient to obtain the po-
sition, particularly the lateral position, during landing as commercially used runway
have a typical width between 30 and 60 m.

In order to obtain a more precise position and speed data during the approach and
landing of the aircraft, information from several sources of information can be com-
bined. Besides the position and the speed itself that contain large uncertainty, available
measurements include the aircraft’s attitude, angular rates, barometric altitude, radio
altitude as well as deviations measurements from the Instrument Landing System (ILS)
glideslope and localizer. Using a Rauch-Tung-Striebel (RTS) smoother, the data is en-
hanced by making the measurements kinematically compatible to each other [H6h16].
Especially the lateral position with respect to the runway becomes much more precise
by including measurements of the localizer. As the localizer measures the Difference in
Depth of Modulation (DDM), which is proportional to the angular deviation from the
runway centerline, the position can only be obtained by including the distance of the
localizer antenna relative to the runway. The longitudinal position can be corrected by
comparing the point at which the aircraft vacates the runway with the available taxi-
ways and shifting the trajectory to fit to the taxiways, assuming the aircraft is precisely

on the taxiway centerline.

The results from the implemented measurements are based on the enhanced data using
the methods described above [Hoh17]. This is of high importance, particularly for the
examination of runway veer-off accidents since the lateral position is not sufficiently
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precise in the original data. The exact positions of the sensors, including radio altime-
ter, ILS glideslope and localizer receiver antennae as well as barometric altitude, are
required for the smoothing. They can be obtained from datasheets provided by Air-
bus for its aircraft types A319 [Airl8b], A320 [Airl8c], A321 [Air18d], A330 [Airl8e],
A340-300 [Air18g], A340-600 [Air18f], A380 [Airl6] and A350 [Airl8h].

8.3 Implemented Measurements

8.3.1 Operational Parameters
8.3.1.1 Touchdown Point

The logics for spoiler deployment also include a proper detection of the touchdown
point, it is described in section 7.2. When detecting the touchdown point, it is im-
portant that the same logics are used as on-board the aircraft which means the same
signals are used as described in figure 7.1. The algorithm has to be adapted to the air-
craft type, also taking into account multiple landing gears if applicable, such as on the
Airbus A380 in figure 8.1.

Figure 8.1: An Airbus A380 touching down on the runway with multiple landing gears. The
glideslope antenna is visible on the left which is located abeam the desired touchdown point.

8.3.1.2 Aircraft Landing Mass and Balance

The mass of the aircraft at touchdown and the location of the Center of Gravity (CG) is
a strong contributing factor to any runway related accident. The CG is typically given
in percentage of the Mean Aerodynamic Chord (MAC). Both the mass and the CG are
limited by the flight envelope. Each aircraft is certified with a Maximum Landing Mass
(MLM) and a range of permitted positions for the CG.
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8.3.1.3 Landing Speeds

The speed of the aircraft at landing heavily contributes to RE accidents. The cumula-
tion of the landing speed itself, however, proves to be not viable as the landing target
speed varies among the flights depending on operational and environmental condi-
tions. The calculation of the landing speed is described in section 7.4. The actual land-
ing speed again deviates from the target landing speed. This means that when looking
at the landing speed itself as a distribution, it is a distributed value of a distributed
value which further increases the uncertainty. Besides, the approach speed depends
on many other contributing factors. If it is directly used later during sampling, this
dependency has to be taken into account as well.

As an alternative approach, the deviation from the approach speed target is used as
the input. It can be obtained by subtracting the respective target approach speed from
the actual speed at touchdown for every flight. The target approach speed is either
directly recorded in FDM or it can be computed using the Operations Manuals (OMs)
Part B, the required inputs, such as mass, CG, temperature, wind speed and direction,
are available from FDM.

For the simulation model, the groundspeed V(s is required as this is the kinematic
speed used for the numerical integration. The True Airspeed (TAS) Vras is required to
compute the aerodynamic forces. However, the approach speed is always expressed
as Indicated Airspeed (IAS) Vias since this is also the measured speed directly avail-
able in the cockpit. A conversion from Vias to Vras and to Vs becomes necessary. As
the speeds during landing do not exceed an equivalence of Mach 0.3, the conversion
can be performed under the assumption of an incompressible flow, making only the
correction for air density necessary:

Vras = Vias - 7;, (8.1)

where p is the prevalent air density and ps = 1.225 kg m~? is the reference air density ac-
cording to the International Civil Aviation Organization (ICAO) Standard Atmosphere
(ISA) at Mean Sea Level (MSL). Vs can be obtained by subtracting the headwind com-
ponent from Viyas.

8.3.1.4 Flare Height

For this particular measurement, but also for any succeeding measurement involving
the flare maneuver, such as the vertical acceleration during flare, the first task is to
detect the flare. The method used is based on two models: one describing the trajectory
of the flare and the second describing the trajectory on the ILS glideslope. The idea
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is to use data points on the trajectory during final approach and fit the data to both
models, obtaining the fitting error as Root Mean Square Error (RMSE). The error for
the glideslope model increases when the flare is initiated, at the same time, when going
backwards from the touchdown point, the error of the flare model should increase
when data points from the glideslope are added [DHSH13].

When the sum of both errors is computed, an ideal flare is initiated at the point at
which the sum of both errors reaches a minimum. Figure 8.2 shows both RMSE curves
as well as the sum for an ideal flare, indicating where the flare maneuver was initiated.
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Figure 8.2: Flare detection using a flare and a glideslope model [WDH16a]

Of course, most real-life flare maneuvers look different than in figure 8.2. In some
cases, the pilot pulls gently on the stick in order to test the aircraft response early
during the approach long before the actual flare, which could be erroneously detected
as the actual one [WDH16a].

8.3.2 Environmental Parameters

8.3.2.1 Wind

The wind speed Vjy and the wind direction, i.e. where the wind is coming from —xw,
are important contributing factors to the landing performance. xy always indicates the
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direction into which the wind is blowing. Both are recorded in FDM. As the absolute
wind direction is not important for landing analysis but rather the relative direction
to the aircraft’s heading and runway heading, the headwind Viyheaqa and the crosswind
Viweross components based on the aircraft’s heading ¥ are computed using equations
(8.2) and (8.3).

VW,head - _VW COS (XW - \II) (82)
VW,cross = VW sin (XW - \I/) (83)

The direction of the crosswind is defined such that wind blowing towards the right of
the aircraft is considered to be positive.

8.3.2.2 Atmospheric Conditions

The atmospheric conditions during landing include the temperature, the air density as
well as the air pressure. If only two of the values are known, the third can be computed
using the ideal gas law in equation (8.4).

p = pRT (8.4)

R = 287.058 Jkg~! K™! is the gas constant for air, whereas p is the static pressure, p is
the air density and 7' is the static air temperature.

For the static air pressure, it is important to know that it is typically directly measured,
but not recorded. Instead, it is converted to the barometric altitude using the ICAO
standard atmosphere. The air data sensors on the Airbus A350 is shown in figure 8.3.
The visible probes include the sideslip and angle of attack sensor, the static port, the
Pitot tube and the total air temperature sensor.

The static pressure p can then be converted using the recorded barometric altitude Aparo
and the reference pressure ponu, which is recorded using the definition of the ICAO
standard atmosphere:

b = [1 + ﬂ : hbar0:| o . (85)
PQNH T

Equation (8.5) is only valid for the troposphere, i.e. the altitude above MSL is 11 000 km
or lower, which is valid for all the considered landings. The reference parameters for
the standard atmosphere are presented in table 8.1.
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Figure 8.3: Air data sensors on the left side of the nose of the Airbus A350. The static port is
located right below the windows surrounded by the red dashed line.

Parameter Symbol Value
Reference temperature at MSL T 288.15 K
Temperature gradient VI —6.5x 10 Km™*
Gravitational constant hy 9.806 65 m s>
Universal Gas Constant R 287.05 J kg L K1

Table 8.1: Values for the troposphere defined in the ICAO standard atmosphere

8.3.3 Time Measurements
8.3.3.1 Spoiler Deployment

Though the spoiler deployment is triggered by internal system logics of the aircraft
after armed by the flight crew, the time at which the spoilers are extended after touch-
down can slightly vary. The time that elapses between touchdown and the deployment
of the spoilers is, therefore, extracted from FDM as a measurement and incorporated
in the model.

8.3.3.2 Brake Application

The same time measurement is extracted for the application of braking as well. While
the use of autobrake certainly leads to a smaller variance of the time between touch-
down and brake application, this value can have a much higher spread when brak-
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ing is performed manually. It does not only depend on the pilot’s performance, but
also operational aspects, such as the location of the taxiways and the location of the
expected parking position relative to the runway. If the terminal building and the as-
sociated parking position is more towards the end of the runway and high-speed exits
are available, the pilot could somewhat delay the braking or reduce the braking action.

8.3.3.3 Reverser Deployment

The application of reverse thrust also impacts the landing performance. In this case,
it is not only important when reverse thrust was deployed relative to touchdown, but
also how much reverse thrust was applied. Therefore, the exact position of the thrust
lever on the reverse scale is required.

8.4 Distribution Fitting

For the propagation using Subset Simulation, as described in section 5.4, the data has
to be inserted as Probability Density Functions (PDFs). Distributions fitting is carried
out on the available data. The distributions that are used are listed in the appendix B.
In order to determine the distribution that fits best, a least-square method is used. For
each fitted distribution, a Kolmogorov-Smirnov test [Reu(09] is performed. The p value
of the null hypothesis (i.e. the data is distributed according to the fitted distribution)
for each fit is also shown in the figures in appendix B.

In addition to the defined distributions, Kernel Density Estimation (KDE) can be uti-
lized to fit a non-parametric distribution to the data. The advantage of KDE is that it
can closely follow the available data. However, this implies that it also includes spikes
and outliers in the data used for fitting that might not be representative of the actual
distribution of values. In chapter 9, both fitting methods will be used in order to enable
a comparison of the results.

Some of the timepoint data, especially the spoiler deployment and the reverser deploy-
ment, are not very well fitted by the respective distributions, particularly because they
are discretized to certain values or are multi-modal. This is mainly due to the meas-
uring process of the parameters. The spoiler position, for example, is recorded with a
frequency of 1 Hz. This means that a deployment of the spoilers can only be detected
with a precision of 1s in time. Therefore, the continuous distribution is, nevertheless,
used as it represents the real behavior better than a KDE that follows the data more
closely.

After the fitting, the distributions should be truncated, if applicable, to values that are
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realistic from a flight dynamics point of view. Many parametric distributions, by na-
ture, do not have either a lower or an upper boundary, or both, to its domain. However,
this does not mean that the values of the samples that are generated from the distribu-
tions should be unbounded. For many contributing factors, such as the aircraft mass
or the temperature, there are boundaries that cannot be exceeded without getting val-
ues that are just not realistic. The distributions, therefore, should be truncated within
certain values. These boundaries have to be carefully chosen such that:

1. They can prevent physically unrealistic samples to be generated from the distri-
butions;

2. Samples can still be generated in the tails of the distributions since these are the
particularly interesting samples that can lead to accidents.

’ Direction \ Condition \ Limit, kn \ Limit, ms—! ‘
Headwind 30 154
. Dry or wet runway 10 5.1
Tailwind Contaminated runway | 5 2.6
Crosswind Manual landing 30 15.4
Automatic landing 20 10.3

Table 8.2: Wind limits during landing for the Airbus A320 [Deu09a]

These two criteria drive the choice of the truncation values in table 8.3 into contrary di-
rections and suitable compromises have to be found. In addition, limits set by the oper-
ator in the Standard Operating Procedure (SOP) can be used as a reference, particularly
for operational factors. For example, the certified wind limits for the A320 family are
shown in table 8.2. The limits are different depending on headwind, tailwind or cross-
wind and certain conditions, e.g. runway surface or whether the landing is performed
manually or automatically. Landings outside of the given wind conditions must not be
performed, but this does not mean that landings actually never happen under these cir-
cumstances. Another example is the touchdown distance. While the operator specifies
that touchdown should be achieved at 300 m and no later than 900 m beyond the thresh-
old [Deul3], it may be expected that some few landings touchdown beyond that point,
particularly since the runway length at Munich Airport (MUC/EDDM) is 4000 m. For
the heading deviation at touchdown, the so-called crab-angle, a maximum value of
10° is allowed. Airbus requires the crab angle to be no more than 5° at touchdown
[Air08]. In general, if these limits cannot be fulfilled, a landing must not be performed.
However, that does not actually mean that landings are never performed under these
conditions. Limits could be exceeded shortly before touchdown after complying with
them throughout the entire approach. In these cases, pilots could decide to continue
the landing. Previous accidents have also shown that some of them are caused by the
flight crew not realizing or even ignoring that limits have been exceeded.
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The values can also be chosen individually for different airports and aircraft types,
if necessary. For example, the value for the aircraft mass that is shown applies to
the Airbus A320 family. Other values have to be used when other aircraft types are
considered. Individual values for the A319, A320 and A321 can also be introduced if

necessary.

| Contributing Factor

| Unit | Lower Limit | Upper Limit

|

Average brake pressure psi 50 3000
Average reverse thrust lever % 0 100
CG position %MAC 10 50
Crosswind at touchdown ms ! —20 20
Groundspeed at touchdown ms~! 50 100
Headwind at touchdown ms —15 30
Aircraft mass kg 4 x 104 9.5 x 10*
Lateral deviation at touchdown m —25 25
QNH pressure at touchdown hPa 850 1050
Heading deviation at touchdown ° —-10 10
Touchdown distance m 0 2000
Temperature at touchdown K 240 340
Time of spoiler deployment s 0 10
Time of begin of braking s 0 10
Time of reverser deployment s 0 10
Time of end of braking s 20 200
Approach speed deviation ms~! —20 20

Table 8.3: Truncation limits for the contributing factors
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9.1 Introduction

After all the steps of the Predictive Analysis (PA) are described and the required tools
are presented, this chapter finally performs the prediction, i.e. the computation of
the accident probabilities. It combines the aforementioned methods into an entire tool
chain:

1. The processing of Flight Data Monitoring (FDM) data from the aircraft (see chap-
ter 2)

2. The implementation of the PA (see chapter 4) for Runway Excursion (RE), in par-
ticular the following steps:

(a) Modeling of the aircraft’s behavior during landing roll, including the system
logics and pilot behavior (see chapter 6 and chapter 7)

(b) Cumulation of measurements from FDM and distribution fitting (see chapter
8)

(c) Accident prediction using Subset Simulation (see chapter 5)

For the analysis, recorded FDM data from landings at Munich Airport (MUC/EDDM)
is used. Table 9.1 shows the available landings in the database on each runway for the
aircraft types of the Airbus A320 family, i.e. A319, A320 and A321.

The data was provided by the operator without the detailed information about the
specific aircraft type within the A320 family. Therefore, the distinction had to be made
using the available data. The differentiation of the A321 data is based on the engine
type installed. While the A319 and the A320 aircraft in the fleet are equipped with
CFM56-5 engines by CFM International, the A321 in the fleet uses V2500 engines man-
ufactured by International Aero Engines (IAE). Since the two engines use different con-
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AIC A319 | A320 | A321 | Total
Rwy

O8L | 470 | 2058 | 2540 | 5068
O8R | 152 | 980 | 2317 | 3449
26L | 259 | 1307 | 3201 | 4767
26R | 513 | 3303 | 3935 | 7751
Total | 1394 | 7648 | 11993 | 21035

Table 9.1: Available data for each scenario, sorted by aircraft type (A/C) and runway (Rwy);
The baseline scenario is highlighted.

trol parameters, there are distinct properties in the Dataframe Layout (DFL) structure.
While the CFMb56 uses the rotational speed of the low pressure shaft N1 to control the
thrust, the V2500 uses the Engine Pressure Ratio (EPR). The separation of the A319 data
proves to be more difficult since they share the same engine type with the A320. It was
performed using the flap deflection angle when the configuration is set to CONF Full.
In this configuration, the flaps on the A320 extend to 35° while on the A319, the an-
gle reaches 40° [Deu09a]. However, for landings performed using configuration CONF
3, this distinction is not possible since the deflection angle on both aircraft types are
identical. A separation based on the aircraft’s mass was tested since both aircraft differ
in Maximum Take-off Mass (MTOM) and Maximum Landing Mass (MLM). However,
this turned out to be difficult since there are still significant overlaps in the mass range
of the two aircraft types.

A small number of flights was excluded from the analysis because the data enhancing
algorithm using the Rauch-Tung-Striebel (RTS) smoother could not perform success-
fully. The reason for this is mainly the fact that an Instrument Landing System (ILS)
approach is required to perform the smoothing, i.e. a localizer frequency correspond-
ing to the ILS of one of the runways has to be recorded along with the measurements
of the Difference in Depth of Modulation (DDM) of both the localizer and the glide-
slope. If one of these parameters is not available, the smoothing algorithm fails. As
the number of affected flights is very small compared to the total available amount of
data, these flights are simply excluded.

The Subset Simulation runs were, unless otherwise stated, performed using a condi-
tional probability of py = 0.1 and a sample size of N = 2 x 10%. Infinity Sampling is
used to generate the samples for the Markov Chain. These parameters were chosen
as a trade-off: Higher number of samples lowers the Coefficient of Variation (c.o0.v.),
meaning that the obtained accident probability is more reliable, but considering com-
putational effort, the number of samples should be reduced to a minimum.

For the analysis, the landing of the Airbus A320 on runway 26R at MUC/EDDM with
fully extended flaps and slats (CONF Full) under dry runway conditions is used as the
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baseline. This scenario is highlighted in table 9.1. Runway 26R was chosen because it
has the highest number of landings based on the available data. An Airport Ground
Chart (AGC) of MUC/EDDM can be found in the appendix C. All other scenarios are
derived from and compared with the baseline. Table 9.2 shows the properties that can
be varied and the possible states they can adopt. The baseline scenario is written in

italic.
| Property | Possible States |
Aircraft Type A319; A320; A321
Flap / Slat Configuration | CONF 3; CONF Full
Runway Condition Dry; Wet
Runway 08L; O8R; 26L; 26R
Distribution fitting Parametric distribution; Kernel density

Table 9.2: Possible variations from the baseline scenario, which is highlighted in italic.

For the Airbus A320 family, two possible configurations can be used for landing: CONF
3 and CONF Full. The decision is up to the flight crew and it depends on opera-
tional and environmental conditions. For each configuration, different approach target
speeds are used, see table 7.4. The approach target speed is typically higher when us-
ing CONF 3 instead of CONF Full since the zero lift coefficient C is higher if the flaps
and slats are further extended. The runway condition is reflected in the friction coeffi-
cient, represented by the slip-to-friction curve by Pacejka introduced in section 6.3.3.2.
The maximum achievable friction coefficient is always lower for wet runways com-
pared to dry runways, but the overall shape of the curve described by equation (6.37)
can be different as well. All four possible landing runways at MUC/EDDM airport,
i.e. two runways with two directions each, are considered. All of them have a length
of 4000 m and a width of 60 m. As described in section 8.4, the distribution fitting of the
available data can be done by using either given parametric distributions, listed in the
appendix B, or by using Kernel Density Estimation (KDE). The difference of the results
are shown here as well.

In the following sections of this chapter, the computed results for both runway overrun
(section 9.2) and runway veer-off (section 9.3) are presented for the baseline scenario
and the derived scenarios for comparison.

9.2 Runway Overrun Probability

9.2.1 Baseline Scenario

For the baseline scenario, the overrun probability is shown in figure 9.1. The Probabil-
ity Density Function (PDF) of the Beta distribution is shown along with the mean and
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Figure 9.1: The Beta distribution (PDF) of the overrun probability for the baseline scenario,
along with the mean and the median value as well as the boundaries for the 95% confidence
interval

the median. Both of them are at around 3.5 x 107® per flight, the standard deviation
of the Beta distribution is at 6.4 x 10~?, which is almost one order to magnitude lower
than the mean value, resulting in a c.o.v. of 0.18. Figure 9.1 also shows the lower and
the upper boundaries of the 95% confidence interval based on the Beta distribution.

Figure 9.2 shows how samples are generated in each subset and how they move to-
wards lower stop margins as the Subset Simulation progresses. The number of sam-
ples in each subset is identical. As the conditional probability is introduced by the
Markov Chain Monte Carlo (MCMC) algorithm, samples start moving towards lower
stop margins. The intermediate failure domains are very well visible in this figure, it is
indicated by the upper boundaries of the samples in each subset. The intermediate fail-
ure threshold moves towards smaller stop margins with each subset until a sufficient
number of samples fulfilling stop margin < 0 is obtained. According to the MCMC al-
gorithm, it can be said that the histogram of the samples in subset 7 is a magnification
of the histogram from subset ¢ — 1 for the area below the intermediate failure threshold
Ci—1. According to the MCMC algorithm, newly generated samples are rejected and
reverted back to the seed sample if the new sample is located outside of the intermedi-
ate failure region. The simulation stops when at least p,/N samples are located below
a stop margin of zero, i.e. indicating an overrun, which is achieved in subset eight in
this particular example.

It is important to identify the influence of each contributing factor. Therefore, some
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Figure 9.2: Histogram of all samples generated across all subsets

tigures were created that show how the samples move towards lower stop margins
when the contributing factors move to either higher or lower values with each subset.
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Figure 9.3: The influence of speed deviation at touchdown

Figure 9.3 shows the influence of the approach speed deviation. Negative values indi-
cate that the actual approach speed is lower than the target approach speed. Samples
from the same subset are drawn using an identical color. It is well visible that the speed
deviation does not significantly change as the Subset Simulation progresses from one
subset to the next.
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As the value is obtained at the time of touchdown, it is plausible that the deviation of
the approach speed are mostly below zero, which means that the Indicated Airspeed
(IAS) of the aircraft is lower than the target reference speed. Shortly before the touch-
down, the aircraft performs the flare maneuver, enabling a smooth touchdown and
some reduction in speed as the throttles are retarded back to idle. In figure 9.3, one can
see that, as the stop margin decreases, the approach speed deviation moves slightly
towards lower values, but not significantly, though the spread of the samples becomes
smaller. This behavior is surprising as a higher touchdown speed would certainly lead
to longer braking distances and, thus, increase the risk of an overrun.
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Figure 9.4: Correlation to the approach speed at touchdown

A possible explanation can be found in figure 9.4. In figure 9.4a, the touchdown dis-
tance is plotted against the change in speed during the last part before touchdown.
To be more precise, the speed at touchdown and the speed at the point at which the
aircraft is at 50 ft Above Ground Level (AGL) are extracted and subtracted from each
other. Positive values indicate that the aircraft was faster when passing 50 ft which is
essentially when it overflies the runway threshold for a standard ILS configuration. It
is well visible that a higher reduction in speed in general leads to a longer touchdown
distance. This means that the aircraft floats longer above the runway, the speed reduces
in the meanwhile, but the aircraft touches down later. Figure 9.4b shows the same re-
lationship for the distance until the aircraft reaches a Groundspeed (GS) of 80 kn. This
speed is considered as the value until which sufficient braking should be applied re-
gardless of the available margin. A correlation is visible here as well and it shows that
if the speed reduction is higher, the flare is longer and the touchdown is later, leading to
a longer braking distance. The important statement is that deceleration on the ground
is much more effective than while airborne. Therefore, a higher touchdown speed does
not necessarily lead to a higher probability of overrun as it is most often the result of an
earlier touchdown, meaning that the aircraft has a longer distance available to apply
braking and other deceleration means.
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Figure 9.5: The influence of the average brake pressure on the stop margin

Figure 9.5 shows the same samples along with their corresponding stop margins and
the average brake pressure that was applied. It is clearly visible that the influence of
the brake pressure on the stop margin is extremely high. The samples move towards
lower brake pressure values with each subset and decreasing stop margin values. The
samples that represent overruns, i.e. where the stop margin is smaller than zero, are
all associated with brake pressures of no greater than 300 psi whereas the first subset,
which is created by simple Monte Carlo Simulation (MCS), contains samples of up to
1000 psi.

Touchdown Distance

4000
3000
O
52000 0
=
= o S1
£ 1000l o 2 -
= S3
g 0 o 4
A o S5
o S6
1000t o g7
o S8
-2000

0 200 400 600 800 1000
Touchdown distance, m

Figure 9.6: The influence of touchdown distance on the stop margin

In figure 9.6, the influence of the touchdown distance is shown. The desired touch-
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down point for runway 26R at Munich airport is located 1000ft, i.e. 305m, behind
the runway threshold. In figure 9.6, one can see that most landings touched down
significantly further down the runway, reaching values of up to 1000 m. An increase
of the touchdown distance leads to an decrease of the stop margin. The spread be-
tween the samples becomes smaller as the lower limit increases while the upper limit
remains constant. This shows that even though the Landing Distance Available (LDA)
at MUC/EDDM is much longer than what the Airbus A320 requires, a late touchdown
still increases the probability of suffering from a runway overrun. For the analysis, one
has to keep in mind that the touchdown point is also heavily influenced by operational
factors, such as the location of the parking position. A smooth and late touchdown

occurs more often if the parking position is located towards the end of the runway
[WF12].
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Figure 9.7: The influence of wind on the stop margin

The influence of the wind is shown in figure 9.7, where negative values indicate tail-
wind and positive values indicate headwind. It is clearly visible that stronger tailwinds
moves the samples towards lower stop margins, which is consistent with flight physics
considerations. The effect is caused by two main effects:

1. As the approach reference speed is always the IAS, stronger tailwinds will in-
crease the GS of the aircraft, which implies a longer distance to slow down. For
headwinds, the opposite effect applies. Although equation (7.1) indicates that
only a third of the headwind must be added to obtain the target speed, the influ-
ence is still significant as the remaining two thirds of the wind speed can be used
to benefit the landing performance.

2. As the aircraft is on the ground, stronger tailwinds will lead to lower IASs, which
reduce the effect of aerodynamic braking and engine thrust reverse.

124



Chapter 9: Accident Prediction

Aircraft Mass at Touchdown
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Figure 9.8: The influence of aircraft mass on the stop margin

The aircraft’s mass at touchdown is shown in figure 9.8. The MLM of the Airbus A320
is limited to 64 500 kg [Air18c], which is well visible as the upper boundary of the data.
The Maximum Certified Take-off Mass (MCTOM) of the A320 is, depending on the ex-
act version, between 70 400 kg and 77400 kg. In general, the landing mass of the aircraft
must not exceed the MLM, but overweight landings can be performed in emergency
situations. It is, however, clear that the landing weight can never be higher than the
MCTOM because this would indicate a prohibited departure configuration. As there
were no overweight landings in the data, the generated samples are also all located
within the boundaries of the MLM. Figure 9.8 clearly indicates that the samples move
towards higher masses as the simulation progresses and the stop margin decreases.
This is consistent with the physical understanding of the aircraft dynamics. All sam-
ples that indicate an overrun have MLMs greater than 50 000 kg. The typical Operating
Weight Empty (OWE) is provided by Airbus to be 42 600 kg [Air09], which means that
in order to be exposed to a high risk of overrun, the aircraft should have at least 5000 kg
of fuel and payload on board at the time of touchdown.

Besides of the braking system, the reverse thrust is used as well to slow down the air-
craft after landing. Figure 9.9 shows the influence of the use of reverse thrust. Accord-
ing to the system logics of the A320, the reverse thrust has to be manually activated
and modulated by the flight crew. However, reverse thrust is inhibited until the air-
craft detects the ground condition. The horizontal axis is the normalized thrust lever
position when set to reverse thrust with 100% being the maximum possible reverse and
zero being idle reverse. The values are average values during the time frame when re-
verse thrust is activated. The significance can be well seen as all overrun samples use
very little reverse thrust. For all samples, the amount of thrust reverse used is quite
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Thrust Lever during Braking
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Figure 9.9: The influence of reverse thrust on the stop margin

low, never exceeding 50%. This is caused by local procedures at MUC/EDDM as pilots
are strongly discouraged from selecting more than idle reverse at MUC/EDDM due to
noise abatement.

9.2.2 Scenario Comparison
9.2.2.1 Variation of Runway

In the previous section, the baseline scenario, i.e. the Airbus A320 on runway 26R, was
presented. The results for the remaining three runways are shown and compared here.
Table 9.3 shows the overrun probability for the other runways or landings directions
26L, O8L and 08R.

A320
Flaps Full
Dry Runway
p__ | o
O8L || 4.7 x 107° | 7.2 x 1077
08R || 2.2 x 10™* | 2.7 x 1077
26L || 24 x 1077 | 41 x107®
26R || 3.5 x10°° | 6.4 x 1077

Table 9.3: Runway overrun risk for different runways at Munich airport; the baseline scenario

is highlighted.

While the c.o.v. for the other three landing runways are in the same order to mag-
nitude as the results for 26R, which is an indication that the method of distribution
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propagation using Subset Simulation delivers results with the same confidence, the ac-
tual overrun probabilities are significantly different. The probability for 26L, which is
the parallel southern runway, is one order of magnitude higher than for 26R. For 08L,
which is the opposite landing direction of 26R, the probability is two orders of magni-
tude higher. The overrun probability for runway 08R is even larger by a factor of 10*

compared to 26R.
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Figure 9.10: Comparison of the touchdown distance for different runways

Explanations for these numbers are found in the contributing factors for the four run-
ways. Some differences become visible that explain the differences between the results
in table 9.3. Figure 9.10 shows the touchdown distances for the four runways. The
mean value is also displayed at the bottom of each histogram. The touchdown dis-
tances vary slightly across the runways, but the mean is the shortest for 26R, followed
by 26L and 08L while touchdown occurs the latest in average on runway 08R, though
the mean is only 30 m longer compared to 26R. In addition, the histogram for 08R
shows a heavy tail on the right end, which indicates that a larger share of landings
touch down very late on the runway, some more than 800 m.

While some differences are visible when it comes to the touchdown point, they are
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not significant between the runways. The reason could be that a vast majority of the
approaches are performed at MUC/EDDM using the ILS. This means that the guid-
ance of the localizer and the glideslope always leads to the same desired touchdown
point on the runway. Variation is only injected during the very last part of the final ap-
proach, when the pilot transitions from the instruments to visual cues for flying. The
differences become much more significant when comparing the braking behavior after
touchdown.
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Figure 9.11: Comparison of the distances between runway threshold and reaching 80 kn, with
the available exit taxiways shown for each runway

In figure 9.11, the distances between the runway threshold and the point on the run-
way at which the aircraft’s GS decreases below 80kn is extracted from the data. The
value of 80 kn was chosen because this is the reference value pilots typically use to slow
down the aircraft in the first phase of braking. The purpose is to ensure that deceler-
ation is always the top priority until reaching this speed. Below it, other operational
conditions, such as the location of the parking position, can become more relevant. In
fact, during the type certification phase for an aircraft, the values are even lower. It is
typically assumed that any overrun with more than 60 kn or veer-off with more than
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30kn leads to catastrophic consequences [FAA17]. Figure 9.11 clearly shows that the
distance is, in average, similar on the three runways 26L, 26R and 08L. Runway 08R is
an exception with an average value of 400 m higher than the other three. In addition,
the spread of the values is lower on the northern runway (26R/08L) compared to the
southern runway (26L/08R). The dashed lines indicate the positions of available taxi-
ways that can be used to vacate the runway. Their significance is explained later in this

section.
100, 300 -
o 2 200
8 s 5
E- =
g g 100
& &
0 0
3 2 1 3 2 1
Acceleration, m s~2 Acceleration, m s—2
Mean: —2.1ms™2 Mean: —1.9ms™2
(a) Runway 26L (b) Runway 26R
200 - 100

150

Frequency
—_
)
()
Frequency
a1
e}

50}
0 0
-3 -2 -1 25 -2 -15 -1 -05
Acceleration, m s~2 Acceleration, m s—2
Mean: —2.2ms ™2 Mean: —1.5ms™2
(c) Runway 08L (d) Runway 08R

Figure 9.12: Comparison of the mean acceleration during braking

This observation is consistent with the acceleration data, which is presented in figure
9.12 for all four runways. Again, the values for the three runways 26L, 26R and 08L are
close to each other while for 08R, the value is significantly lower. In addition, the data
is multi-modal, i.e. there are two visible peaks in the histogram in figure 9.12d.

Similar observations can be found in figure 9.13. The same comparison is done for the
brake pressure. The applied average braking pressure during braking is much lower
on 08R than on all other runways along with a very heavy tail for low pressure values.
As figures 9.5 and 9.6 highlight the influence of the brake pressure and the touchdown
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distance on the overrun probability, these differences between the data of different
runways explain the difference in the accident probability.
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Figure 9.13: Comparison of the brake pressure for different runways

The reason for this particular behavior on runway 08R that is reflected in the figures
can be found in the layout of Munich Airport. The operator from whom the available
flight data was obtained uses gate positions on apron 2 for which the entries S7 and
S8 are used when arriving on the southern runway. For the northern runway, this ap-
plies to the entries N3 and N4. An aerodrome chart of MUC/EDDM is included in
the appendix C which is published by the German state in the Aeronautical Informa-
tion Publication (AIP) [DFS18]. For the northern runway, i.e. 26R and 08L, in order to
reach apron 2, the quickest way is to use the first high-speed exit for both directions,
A9 and A5, which are located 1580 m and 1270 m behind the threshold, respectively.
In contrast, on the southern runway, the entrance to the apron is located abeam to the
touchdown point of runway 26L, which implies that the aircraft has to taxi back even
if the first exit (B11, 1160 m behind the threshold) is used. For 08R, the first exit is B7
which is 1580 m behind the threshold. However, exit B12, which is 2820 m behind the
threshold is preferably used — traffic permitting — since the aircraft can make a long
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roll-out and exit at B12 with the application of minimum braking. During high-traffic
hours, as the runway has to be vacated as soon as possible for following traffic, the
aircraft can still exit the runway on B10, which is located 2220 m behind the threshold.
Therefore, the location of the taxiways along with the gate positions explain the heavy
tail in the brake pressure histogram of runway 08R in figure 9.13d. Munich Airport
publishes recommended exit taxiways for all four runways when High Intensity Run-
way Operation (HIRO) is in progress, depending on the weight category of the aircraft.
The table is also included in the appendix C.

Going back to figure 9.11, the location of the high speed taxiways that can be used to va-
cate are added for each runway along with the taxiway identifier. It is well visible that
peaks in the histogram are correlated with the taxiway positions. At MUC/EDDM,
high-speed taxiways are available that have an offset of 30° in direction relative to
the runway. According to the Aerodrome Design Manual published by the International
Civil Aviation Organization (ICAO) [Int05], these are rapid exit taxiways with code num-
ber 3 or 4, their design speed is standardized to be 30 kn. Assuming an average decel-

eration of 2m s~2

, slowing down from 80 kn to 30 kn would require a distance of 364 m.
This value is consistent with the distance between the peaks in the data in figure 9.11
and the location of the taxiways. This clearly proves that, even at high speed, the brak-

ing behavior is such that the pilot already aims for a specific exit taxiways.

For the analysis and the computation of overrun probabilities, this has two significant
implications:

1. The deceleration behavior can be clustered, i.e. depending on which taxiway is
aimed for, the braking process can be significantly different.

2. In order to optimize for a specific taxiway, the braking behavior can differ from
the common, i.e. braking with a much lower magnitude may be applied. This
also has an influence on the level of safety with respect to overrun.

Having found the explanation for the differences, it can be said that the number for the
overrun probability does not necessarily imply that landings on 08R are significantly
less safe than on other runways. The operational dependencies are incorporated in the
method by using the data containing the information, but they are not fully considered
in the context of all contributing factors within flight operations. For example, the
applied brake pressure will not be low if the landing becomes more critical due to
environmental factors, such as weather. It is less likely that the pilot chooses to perform
a long roll-out if the touchdown point is already very far down the runway. This calls
for incorporating the dependency structure within the data and during its propagation,
which is covered in the Revise step of the PA, described briefly in section 4.2.6. The
details are further explored in other publications outside of, but related to this work
[HWK*18].
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9.2.2.2 Usage of Kernel Density

Distribution fitting can be performed using either parametric distributions as listed in
the appendix B or by using KDE, see section 8.4. The Subset Simulation algorithm is
run twice for the runways 26L and 26R each, once using parametric distributions and
once using KDE. Table 9.4 shows the results compared with the baseline scenario.

Parametric KDE
A320 A320
Flaps Full Flaps Full
Dry Runway Dry Runway
p | o p__ | o
26L || 24 x 1077 | 41 x 1078 || 1.9 x 1078 | 3.6 x 107°
26R || 3.5 x 107 | 6.4 x 107° || 22 x 107® | 4.0 x 107°

Table 9.4: Runway overrun risk as comparison with KDE; the baseline scenario is highlighted.

In general, overrun probability values obtained by using KDE are smaller compared to
using parametric distributions. The results for runway 26R are very close to each other.
For runway 26L, the difference between KDE and parametric distribution is more than
one order of magnitude apart. Figure 9.14 shows the histogram of two datasets for
runway 26L, along with the fitting of a parametric distribution, in both cases a Gen-
eralized Extreme Value (GEV) distribution, and the fitted KDE. The two contributing
factors that are chosen here have a particular high influence on the outcome, which was
already demonstrated in section 9.2.1. The KDE tends to underestimate the tails of the
distributions compared to the GEV. For the average brake pressure in figure 9.14a, the
underestimation of the lower tail (smaller than 500 psi) leads to lower accident proba-
bilities as well as for the lower tail of the headwind distribution, particularly between
—5ms~ ! and Oms™' in figure 9.14b.
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Figure 9.14: Comparison of fit between parametric distributions and KDE, for runway 26R
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A KDE fit follows the available data much more closely than a parametric distribu-
tion. In addition, a KDE can be multi-modal and the PDF can quickly reach zero if
there is no data available in a certain area. Especially when it comes to the tails of
the distributions, the KDE will, therefore, take up the value of zero if there is sim-
ply no measurement in the data while a parametric distribution will decrease slower
towards both tails. This behavior explains the computed overrun probabilities that
are, in general, lower when using KDE rather than parametric distributions. From the
computational point of view, using KDEs can be less efficient because the generation
of samples requires more computational effort since KDEs are composed of multiple
parametric distributions. Therefore, it always depends on the specific case whether a
parametric distribution should be preferred to a KDE.

The differences in the numbers also demonstrate that further effort should be taken
to refine the distribution fitting (Cumulate) and especially the Calibrate step of the PA,
which is not the focus of this work. For the remaining part of this work, parametric
distributions are used.

9.2.2.3 Variation of Aircraft Type

The Airbus A320 family consists of four members: A318, A319, A320 and A321, listed
in ascending order of MCTOM. Data is available only for the A319, A320 and A321.
The A318, however, is only utilized by a very few operators worldwide as it only
contributes to 80 of 8512 aircraft of the A320 family that have been delivered as of
November 2018 with no more outstanding orders [Air18a]. Therefore, the A318 will be
excluded from further analysis. Table 9.5 shows the MCTOM and the MLM of each of
the three aircraft types according to their certification. As there are many sub-versions
of each type, the minimum and the maximum values of each subversion are presented.

| | A319 | A320 [ A321 |

75900kg | 78000 kg | 93500 kg

MCTOM | 600 ke [ 70000 ke | 78000 kg
MLM || 62500kg | 77800kg | 93500 ke
61000kg | 64500kg | 73500 kg

Table 9.5: Technical specifications for the three members of the Airbus A320 family, showing
maximum and minimum values [Air18b] [Air18d] [Air18c]

Table 9.6 shows the computed overrun probabilities for each of the three aircraft types.
The values for the A319 is close to that of the A320 while the probability for the A321
is significantly higher. Some of the contributing factors are shown in figure 9.15 that
explain the differences. Every histogram shows the distribution of the data separately
for each aircraft type in a different color: blue for A321, brown for A320 and yellow for
A319.
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A319 A320 A321
Flaps Full Flaps Full Flaps Full
Dry Runway Dry Runway Dry Runway
p | o p | o p | o

[26R [1.0x107" [ 1.8 x 107 ° [[35x10°5 [ 6.4 x 107 [ 20 x 1077 [ 3.5 x 1077 |

Table 9.6: Runway overrun risk for different aircraft types of the Airbus A320 family; the
baseline scenario is highlighted.

In figure 9.15a, the distribution of the landing mass is shown. It is not surprising that
the distribution for the A319 is lower in value compared to the A320 while the A321
has highest values. The masses are compliant with the certified numbers in table 9.5
though it is unknown which exact version the individual aircraft are from which the
FDM data was obtained.

All aircraft types share a similar wing. The high-lift system is somewhat different.
while the A319 and A320 have double-slotted flaps, however, with different extension
angles, the A321 is equipped with triple-slotted flaps. In general, higher mass also
leads to a higher approach speed, as shown in figure 9.15b, which is reflected in a
higher deceleration distance until reaching a GS of 80kn in figure 9.15c. The touch-
down distance does not vary significantly among the aircraft types in figure 9.15d, but
it is the lowest for the A319. Again, the approaches are typically performed using the
ILS, which explains the little variation in touchdown point. The comparison of the
average deceleration in figure 9.15f and the applied brake pressure in figure 9.15e sug-
gests that significantly less pressure was applied on the A319, which also leads to a
slightly lower deceleration value. However, as the initial approach speed is lower on
the A319, it is still capable of achieving a shorter stopping distance.
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Figure 9.15: Comparison between different aircraft types of the A320 family
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9.2.2.4 Variation of Landing Configuration

On the Airbus A320 family, two landing configurations are available, CONF 3 and
CONEF Full. CONF Full is the default setting and the flaps (35° instead of 20°) and slats
(27° instead of 22°) are further extended compared to CONF 3. The values provided are
specifically for the A320 and vary slightly across the members of the family [Deu09a].
A lower setting is typically used during high turbulence as the wing loading is higher
due to the smaller wing area. The drawback is the higher approach speed caused by a
higher stall speed, which increases the landing distance. In addition, a higher angle of
attack during approach is required, which can be critical during the flare. An excessive
flare maneuver will lead to a tailstrike while flaring not sufficiently will increase the
risk of a hard landing resulting from the higher approach speed.

A320 A320
CONF 3 CONF Full
Dry Runway Dry Runway
p_ | o p | o

[26R [[1.2x10°%[22x 1077 [[3.5x10 % | 6.4 x 107 |

Table 9.7: Runway overrun risk as comparison between different landing configurations; the
baseline scenario is highlighted

Out of the 3033 available flights of the A320 on runway 26R in table 9.1, 2501 were
performed using CONF Full while 802 used CONF 3, which is about 26 %. Table 9.7
shows the result for the overrun probability using CONF 3 compared to the baseline
scenario using CONF Full. Both results are close to each other, both being in the order
of 108. The probability for CONF 3 is even slightly lower than for CONF Full, which is
unexpected because of the higher approach speed when using CONF 3. According to
the Operations Manual (OM) Part B [Deu(09a], on the A320, the approach speed (CAS)
is between 4 kn and 5 kn higher for CONF 3, provided all other influencing factors are
identical.

Figure 9.16 shows the histograms of some contributing factors, separately for both con-
figurations. In all histograms, the blue color indicates the data for CONF Full while the
brown data indicates the values for CONF 3. The mean values for both configurations
are listed below each figure. As there is less data for CONF 3, the brown histogram is
always drawn in front of the blue histogram to easy the visualization.
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Figure 9.16: Comparison between different landing configuration, for runway 26R
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Figure 9.16a shows the CAS of the aircraft at touchdown. In general, the CAS is higher
for the configuration CONF 3, the mean value is higher by 2ms™!, which is consistent
with the numbers provided in the OM-B. The deviation from the approach target speed
is provided in figure 9.16b. For both configurations, the speed at touchdown is, in av-
erage, smaller than the target speed, which is indicated by the negative sign. However,
the deviation for CONF 3 is, in average, smaller than for CONF Full. A reason for this
difference can be found in figure 9.16c, which shows the touchdown distance for both
landing configurations. While the spread of the values is much smaller for CONF 3, the
mean value is also smaller compared to CONF Full. This suggests that landings per-
formed using CONF 3 tend to touch down earlier on the runway. Though the speed at
touchdown is higher compared to CONF Full, we may expect the same effect that was
also observed in figure 9.4 earlier. Although landing with higher speed increases the
stopping distance, it is often related to an earlier touchdown point, which, in contrast,
decreases the stopping distance because the wheel brakes are applied earlier to slow
down the aircraft.

Another significant reason for the smaller overrun probability when using CONF 3 is
presented in figure 9.16d. The average aircraft mass is more than 2t less for CONF 3.
According to the OM, for landings performed using CONF Full and an aircraft weight
of 58 t requires a landing distance of 1654 m while a landing with CONF 3 and a weight
of 56 t would require a landing distance of 1740 m [Deu09a]. All values are obtained for
International Standard Atmosphere (ISA) conditions at Mean Sea Level (MSL) using
autobrake LOW on a dry runway. The difference between the two values is merely
100 m and it shows how a higher approach speed can be compensated by a smaller
mass. This is also easily visible when looking at the distances from the threshold until
the aircraft reaches a GS of 80kn and 40kn, respectively in figures 9.16e and 9.16f.
For the distance to 80kn, both datasets are very similar with a difference in mean of
only 40 m while for the distance to 40kn, the difference is merely 13 m. For the latter,
two peaks are visibly in the data for both configurations. This is caused by the two
available taxiways A9 and A6, which are located 1580 m and 2200 m after the threshold,
respectively. This, again, shows the strong impact of the exiting taxiway on the braking
behavior.

Considering that the share of landings performed using CONF 3 decreases significantly
as the aircraft mass increases and the fact that the touchdown point tends to be closer
to the threshold when landing in CONF 3, it is clearly explained why the risk for an
overrun is lower when using CONF 3. However, one has to keep in mind that this
is not primarily caused by using a lower landing configuration, but rather by other
factors. A landing does not become less risky with respect to overrun if conducted in
CONF 3, it is rather caused by other factors associated to it. A verifiable explanation
for the correlation between landing configuration and the aircraft mass could not be
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found. One possible motivation could be the reduction of fuel burn and the reduction
of the noise level since the aerodynamic efficiency is higher if flaps and slats are less
extended. Pilots might select CONF 3 if the aircraft mass is low since the approach
speed as well as the landing distance decreases with decreasing landing mass while
accepting the higher approach target speed associated with a lower setting of flaps
and slats.

9.2.2.5 Variation of Runway Condition

The runway condition is varied in the model by introducing different slip-friction
curves previously obtained by experiments in other studies [Eng95]. The input data
into the Subset Simulation containing the contributing factors remain unchanged since
there is no possibility to clearly separate the data according to the runway condition.
Meteorological Aerodrome Report (METAR) data is recorded for each landing, but ef-
forts to distinguish between wet and dry runway proved to deliver very inaccurate
results due to several reasons:

1. METAR is only published and recorded every 30 minutes and the closest METAR
report is available for each landing. Thus, there could be a time offset of up to 15
minutes back or forth.

2. It is very often not possible to unambiguously reconstruct the runway condition
based on METAR. Rain does not necessarily imply a wet runway if it was ob-
served shortly after the landing. Heavy thunderstorms during the summer can
quickly lead to contaminated runways with standing water, but it can also dry
up quickly if the cells have moved and the surface temperature is still high.

These factors either lead to a high number of false positives (dry runway but classified
as wet) or false negatives (wet runway but classified as dry). Therefore, no further
effort was made to separate the input data. Instead, only the model is changed to
reflect changing friction coefficients on the runway:.

A320 A320
Flaps Full Flaps Full
Dry Runway Wet Runway
p | o p_ | o

[26R [[35x10°°[64x10° | 48x107 [80x 1078 |

Table 9.8: Runway overrun risk as comparison between different runway conditions; the base-
line scenario is highlighted.

Table 9.8 shows the results obtained for wet runway compared with the baseline sce-
nario. The overrun probability is approximately one order of magnitude higher than
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for dry runway. This is a plausible result since the friction coefficient that can be
achieved is lower for both a given brake pressure that is applied and globally.

9.3 Runway Veer-Off Probability

9.3.1 Baseline Scenario

For the quantification of the runway veer-off probability, the same model is used as
for runway overrun analysis in the previous section. The only difference is that for the
incident metric, the shortest distance to the runway edge on either side is used, which is
referred to as the shoulder margin in the following. The entire landing roll is simulated
and the smallest shoulder margin that occurs during the landing is taken as the overall
shoulder margin. As the width of the runway at MUC/EDDM is 60m, the largest
possible shoulder margin is 30 m. Of course, each aircraft has a certain track width, i.e.
the distance between the outer wheels on each side. In this case, the shoulder margin
is always computed with respect to the aircraft reference point or the Center of Gravity
(CG), the actual distance between the runway edge and the outer wheel is smaller.

The baseline scenario is defined to be the Airbus A320 landing on runway 26R at
MUC/EDDM using CONF Full on a dry runway, which is identical to the runway
overrun examination in the previous section. Again, the selection was driven by the
fact that this is the scenario with the highest number of flights available in the data.
After presenting the baseline scenario, a comparison for different runways and other
aircraft types of the Airbus A320 family is carried out.

A320
Flaps Full
Dry Runway
p_ | o
[26R [[29x 1077 [48x 1077 |

Table 9.9: Runway veer-off risk for the baseline scenario

Table 9.9 shows the probability of runway veer-off for the baseline scenario obtained
from the Subset Simulation. The mean value is almost one order of magnitude larger
than the standard deviation, resulting in a c.o.v. of 0.17, indicating the confidence of
the Subset Simulation propagation. Figure 9.17 shows how the samples move with
each subset.

Similar to section 9.2.1, some of the contributing factors for runway veer-off are pre-
sented, particularly those with a high influence on the accident probability. It should be

140



Chapter 9: Accident Prediction
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Figure 9.17: Histogram of all samples generated across all subsets

noted that many contributing factors that have high influence on the overrun probabil-
ity, such as brake pressure, deviation from the approach reference speed, headwind or
the touchdown distance do not significantly influence the veer-off probability, which
is consistent with the expectation knowing the flight physics as they mainly contribute
to the longitudinal motion of the aircraft.

Lateral Deviation at Touchdown
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Figure 9.18: The influence of the lateral touchdown point on the shoulder margin

The lateral deviation at touchdown is obviously directly affecting the overall shoulder
margin of the entire landing. Though the aircraft immediately tries to correct the offset
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after landing by applying nosewheel steering and rudder, the initial lateral deviation
will sometimes also be the maximum lateral deviation. Figure 9.18 shows this clear
relationship. A clear boundary is visible on the upper side as the maximum shoulder
margin is 30 m while the maximum possible shoulder margin for a particular flight is
always

30 m — lateral deviation at touchdown.

The values for the lateral deviation that can be sampled is truncated to +25m. This
boundary is also well visible in figure 9.18. It should be noted that there is an asym-
metry in the location of the sample as the branch with deviations to the right is much
larger than the left one. This is caused by an asymmetry of the input distribution of the
lateral offset at touchdown.
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Figure 9.19: The influence of the crab angle on the shoulder margin

Figure 9.19 shows how the samples move with each subset with respect to the heading
deviation at touchdown, i.e. the crab angle between the aircraft’s heading and the
runway heading. Two branches are well visible, indicating veer-off samples to the left
and to the right of the runway. The maximum value that can be sampled is truncated
to £10°. One has to keep in mind that the limit set out by Airbus for the remaining
crab angle at touchdown is £5°. The majority of samples shown in figure 9.19 that
constitute a veer-off, i.e. a shoulder margin of less than zero, violate this limit. It is
also noteworthy that if the aircraft touches down with zero crab, the shoulder margin
will not decrease below 5m, i.e. the maximum distance from the runway centerline is
25 m. The bifurcation of the two branches seems to already occur during the first two
subsets, however, the samples move slightly closer to the center again before the actual
bifurcation. This behavior can be observed in all the following figures visualizing the
contributing factors. The reason for this is that the main contributing factor driving
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the shoulder margin in this stage is the lateral deviation, i.e. as the samples move
towards smaller shoulder margins, this is their main driver while other contributing
factors have much smaller influences. In this case, the Markov Chain tends to generate
samples in areas where the input PDFs have high values for all the contributing factors
except the one that is currently dominating the outcome.
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Figure 9.20: The influence of aircraft mass on the shoulder margin

Figure 9.20 shows that the mass of the aircraft also has significant influence on the
veer-off occurrence probability. As the shoulder margin decreases with each subset, the
mass of the aircraft at touchdown increases. A heavier aircraft is less agile and more
difficult to control, which leads to a higher probability of veer-off. The mass is limited
by the upper boundary which is the MLM. Again, one can see that the samples move
towards higher masses and then spread out in the first three subsets before returning
to high values again. This is also caused by the lateral deviation being the dominant
contributing factor in this phase.

The CG does not have an influence on the overrun probability, but it does influence
the outcome for veer-off, which is visible in figure 9.21. A tendency to a narrower
span of CG values is shown. A reason for this could be the effectiveness of nosewheel
and rudder when it comes to steering. A forward CG reduces the lever arm of the
nosewheel and increases the lever arm of the rudder. However, the nosewheel steering
could also become more effective since the weight on the nosewheel increases with a
more forward CG. In general, the rudder is used for higher speeds and the nosewheel
steering is used for lower speeds, as the dynamic pressure enables rudder control. It
seems that a CG position between 22 and 35 % of the Mean Aerodynamic Chord (MAC)
is the least favorable. This could be caused by a minimum of the overall effectiveness
of both steering devices.
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Figure 9.21: The influence of CG on the shoulder margin

However, the influences of the CG could also result from the fact that there is a depen-

dency between the aircraft’s mass and its CG, as shown in figure 9.22. A higher mass

is typically associated with to a more aft CG.
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Figure 9.22: Dependency between mass and CG

When creating the same plot showing the influence of the crosswind, one might expect

a similar behavior as the lateral deviation in figure 9.18 or the crab angle in figure 9.19.

However, figure 9.23

shows that the shoulder margin is not significantly affected by

the crosswind. Instead, samples with crosswind values across the entire range exist

throughout all subsets with a slight tendency to zero crosswind. This, however, is not

consistent with the knowledge about the flight dynamics. The issue that actually arises
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here is not that the crosswind does not directly influence the probability of runway
veer-off but rather the dependency with other contributing factors. Deviations from
the nominal value, i.e. zero, typically does not occur for the crosswind only, but also
for other contributing factors at the same time, such as the crab angle.
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Figure 9.23: The influence of crosswind on the stop margin
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Figure 9.24: Dependency between crab angle and crosswind

Figure 9.24 shows the dependency between the crab angle and the crosswind. Posi-
tive values of the crab angle indicate that the aircraft heading is deviating to the right
compared to the runway heading. Positive crosswind values indicate wind blowing
towards the right side of the aircraft, i.e. the wind is coming from the left. Two sets
of data are shown. The blue dataset indicates the measured crab angle at touchdown
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Urp. The red data is the computed crab angle that the aircraft should have during the
tinal approach Wgin, assuming the aerodynamic angle of sideslip is zero: 4 = 0. It is
obtained using equation (9.1) from the crosswind speed Viy cross and the IAS Vias. For
the sake of simplicity, the IAS and the True Airspeed (TAS) are considered to be the
same at this stage of flight as the speeds are low.

1%
Wrinal = arctan Z W, cross 9.1)
IAS

The computed crab angle for the final approach is almost entirely on a straight line with
little deviation. This is straightforward, as the IAS of the aircraft at touchdown only
varies within a small range. The crab angle at touchdown provides more interesting
facts.

1. Only one flight in the available dataset actually touched down outside of the crab
angle range of +5° set out by Airbus.

2. The figure clearly shows a correlation between the two parameters. Positive crab
angle values are likely to be related to negative crosswind values, which applies
to both the blue and the red data points. This indicates that a small crab angle
still exists at the moment of touchdown, i.e. it is not completely reduced to zero
or reverted to the opposite direction, indicating that the aircraft’s nose is still
pointing slightly towards the wind.

3. The spread of the blue data points for small crosswind values is larger than for
high crosswinds. It can be concluded that for light crosswinds, the pilot tends to
accept the crab angle and to keep it until touchdown to avoid destabilization of
the aircraft’s attitude and trajectory during the final seconds prior touchdown.

For runway 26R, the maximum crosswind value in the data is 6.5m s~! while for the
entire dataset at MUC/EDDM, the maximum value is 13.0ms~!, which is still within
the limits of the Airbus A320 for dry runways, see table 8.2. This is attributed to the
environmental conditions at MUC/EDDM, as the prevalent wind directions are east
and west and both runways are aligned accordingly. This explains figure 9.23 in which
the crosswind apparently does not influence the veer-off probability. The crosswind is
reflected in the crab angle of the aircraft at touchdown, which heavily influences the
veer-off probability. If the crab angle would be set to a constant value, e.g. zero, the
direct influence of the wind would be able to stand out in the analysis. However, this
is not physical from the perspective of flight dynamics.

Figure 9.25 shows the ILS localizer deviation and the lateral position deviation at
touchdown for runway 26R, respectively. The localizer deviation is measured in DDM,
which results from the 90 Hz and the 150 Hz signal transmitted by the localizer antenna
[Men14]. According to regulation, the signal must be configured such that a linear
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Figure 9.25: Comparison between the localizer deviation and the lateral deviation of the touch-
down point for runway 26R

relationship is established between the DDM values in the range of +-0.155 and the an-
gular deviation from the runway centerline. In addition, at runway threshold, a lateral
deviation of 300 ft must correspond to a DDM value of £0.155 [Int06]. For runway 26R
at MUC/EDDM, a lateral deviation of 30 m to either side abeam the runway threshold
corresponds to a localizer offset of +0.0435 ddm. Therefore, the measurements in figure
9.25a are truncated to this value. Out of the 2501 flights available, 20 flights have mea-
surements outside of this range. It can be assumed that no aircraft landed outside of
the runway edge as this would be an incident that must be reported to the authorities.
These measurements could be caused by disturbances in the localizer signal.

Figure 9.25a also shows an unexpected peak at approximately 0.013 DDM. No plau-
sible explanation for this could be found in the data. As this corresponds to a lateral
deviation of approximately 7m, see figure 9.25b, it is still well within the limits. As
it appears to be a systematic deviation, possible explanation could also be erroneous
ILS measurements resulting from reflections of the localizer signal by buildings or by
other aircraft waiting at the holding point, if the airport is not operating under CAT
IT or III conditions, requiring a larger runway protection zone in order to be able to
conduct automatic landings. This hypothesis would imply that the actual touchdown
points are located around the centerline as flight crew performs the landing visually,
but the measured localizer deviation is biased. The lateral deviation in figure 9.25b
reflects this behavior, but one has to keep in mind that the data has been processed by
the trajectory smoothing algorithm described in section 8.2, so the lateral deviation is
adjusted according to the measured localizer deviation. This bi-modally distributed
data could only be found for landings on runway 26R for all three aircraft types, but
on no other runway. Further investigations have shown that the second, smaller peak
also exists for localizer deviations when overflying the runway threshold.

147



9.3 Runway Veer-Off Probability

9.3.2 Scenario Comparison
9.3.2.1 Variation of Runway

The veer-off probabilities for different runways is presented in table 9.10. The runways,
sorted by descending order of probability, is 26R, 08R, 26L, 08L. The highest and the
lowest value are less than two orders of magnitude apart.

A320
Flaps Full
Dry Runway
p | o
O8L || 84 x 1077 | 1.6 x 10~
O8R || 6.2 x107® | 1.1 x 1078
26L || 3.3 x 107® | 6.0 x 107
26R [[2.9x 10" | 48 x10°®

Table 9.10: Runway veer-off risk for different runways at Munich airport; the baseline scenario
is highlighted.

A reason for the difference can be found in figure 9.26, showing the distributions of
the lateral deviation for the four runways. As the nominal mean value should be zero
for all distributions, the standard deviation, indicating the spread of the values, is also
displayed below each figure. Though it can be questioned whether the lateral offset of
the touchdown point on runway 26R is really bi-modal with a second peak around 7m,
propagating this data in figure 9.26b leads to a higher spread of the lateral touchdown
point and thus also a higher probability for veer-off. Landings on runway 08L, which
is the same runway, but opposite direction as 26R, also have, in average, a small offset
to the left, though no second peak is visible.

Figure 9.27 shows the crab angle at touchdown for the four runways. Like the lateral
deviation, both the mean value and the standard deviation are displayed. No signifi-
cant differences could be found between the runways, the mean values are all closely
located at zero, with a standard deviation between 1.1° and 1.3°.

The crosswind data is shown in figure 9.28. The mean value for all runways are pos-
itive, indicating that the wind, in average, is coming from the left side of the aircraft.
This indicates that, assuming landings are performed with a headwind component
rather than tailwind, the prevailing wind direction at MUC/EDDM is not exactly the
runway direction, i.e. 81° and 261° magnetic or 83° and 263° true [DFS18], but slightly
rotated counter-clockwise. In addition, the variation of the crosswind, when the 08
direction is in use, is smaller compared to landings in the 26 direction.

To sum up the runway comparison, the veer-off probability for 26R is higher than for
the other three runways due to the larger lateral offset of the touchdown point. The
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Figure 9.26: Comparison of the lateral deviation of the touchdown point for different runways.
The mean and the standard deviation of the respective dataset is also provided.

differences between the other three runways are minor and no significant differences
could be found in the data of the contributing factors that would lead to differences in
the veer-off probability.

9.3.2.2 Variation of Aircraft Type

Similar to section 9.2.2.3, a comparison between the Airbus A320 family aircraft types
A319, A320 and A321 is made for runway veer-off. The results are shown in table
9.11. The probabilities of the A319 and the A320 are all close to each other while for
the A321, it is slightly higher. The higher mass of the A321 causes the aircraft to be
less agile and more difficult to control. However, this effect is not visible for the A319,
which can be explained by the fact that the fuselage of the A319 is shorter, resulting in
less control authority of both the rudder and the nose landing gear due to the shorter
lever arm. The A319 features the same vertical stabilizer as the other types in the
A320 family and, therefore, the controllability is slightly reduced. The A318, which is
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Figure 9.27: Comparison of the crab angle at touchdown

a further shortened version of the A319, features a larger stabilizer in order to achieve
the required directional stability, compensating for the shorter fuselage.

A319 A320 A321
Flaps Full Flaps Full Flaps Full
Dry Runway Dry Runway Dry Runway
1 o 1 o f o

[ 26R [ 55x 1077 [9.1x10°[[29x10 7 [49x 105 [ 1.2x10°°[2.0 x 1077 |

Table 9.11: Runway veer-off risk for different aircraft types of the Airbus A320 family; the
baseline scenario is highlighted.

9.3.2.3 Variation of Landing Configuration

A comparison between landing in the two possible configurations CONF 3 and CONF
Full in table 9.12 shows that landing with a lower flaps setting leads to a slightly lower
occurrence probability for runway veer-off. However, both values are very close to
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Figure 9.28: Comparison of the crosswind component for different runways
each other.

A320 A320
CONF 3 CONF Full
Dry Runway Dry Runway
26R [[85x107°% | 1.5x107% [[29x 107 |49 x10°°

Table 9.12: Runway veer-off risk as comparison between different landing configurations; the
baseline scenario is highlighted

When comparing the contributing factors for both configurations, no significant differ-
ences can be found, which is consistent with both numbers being very close to each
other. The bi-modal input data of the lateral offset of the touchdown point is also re-
flected in the data for landings using CONF 3. The slightly lower probability in CONF
3 could result from the fact that the aircraft’s mass is typically lower when conducting
landings in this configuration, which has already been shown in section 9.2.2.4 and
tigure 9.16d for the overrun scenario.
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9.3.2.4 Variation of Runway Condition

As previously described in section 9.2.2.5, it is not possible to separate the available
flights in the data according to the runway condition during landing. Therefore, the
Subset Simulation is conducted based on the same set of data, however, using friction
coefficient values describing a wet runway. The results are displayed in table 9.13.

A320 A320
Flaps Full Flaps Full
Dry Runway Wet Runway
p_ | o p_ | o

[26R[[29Xx 10 7[49x10 % [ 1.0x 10" [1.4x 107" |

Table 9.13: Runway veer-off risk as comparison between different runway conditions; the
baseline scenario is highlighted

The probability for runway veer-off is significantly higher if the runway is wet com-
pared to a dry runway. The difference is almost a factor of 10%, which is much larger
compared to the overrun scenario in table 9.8. An explanation can be found when
looking closely at the dynamics of the aircraft after touchdown. Figure 9.29 shows a
simulated flight with an initial lateral offset of the touchdown point of 10 m right of
the centerline and a crab angle of 5° to the right. Immediately after touchdown, the
lateral deviation increases towards the direction of the crab angle, see figure 9.29a. In
this case, the aircraft deviates to the right, leading to an additional increase of the lat-
eral deviation. The controller immediately corrects the aircraft’s heading towards the
runway centerline, see figure 9.29b, resulting in a minimum phase behavior with an
overshoot. During this phase, as the aircraft is steering, the traction relies on the fric-
tion coefficient between the tire and the runway. If the achievable friction coefficient
is smaller due to different runway conditions, the overshoot of the lateral position will
further increase, resulting in higher veer-off probabilities for wet runways.

However, the probabilities are computed based on the assumption that the contribut-
ing factors are independent. When the aircraft performs the de-crab maneuver shortly
before touchdown, its nose is rotated such that the aerodynamic angle of sideslip in-
creases, thus its lateral position will move towards the direction of the wind. As al-
ready shown in figure 9.24, the crab angle is typically reduced, but rarely changes to
the opposite direction. This means that at the moment of touchdown, the aircraft’s
nose is often still pointed into the wind, which is also the direction of the runway cen-
terline. This means that the remaining crab angle will lead to a reduction of the lateral
offset immediately after touchdown. If this dependency between the lateral offset and
the crab angle is taken into account, the actual veer-off probability will decrease. The
current approach of independent contributing factors overestimates the accident prob-
ability. Based on the numbers in figure 9.13, veer-off accident at MUC/EDDM on wet
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Figure 9.29: Heading and lateral position for a simulated landing roll with inital crab angle
and lateral deviation

runways should already be well observable from the number of movements. However,
this has not emerged in the flight operations.

9.4 Summary of Results

In this chapter, the probabilities for both runway overrun and runway veer-off have
been computed. A baseline scenario, i.e. Airbus A320 on dry runway 26R at Munich
Airport using full flaps and slats configuration, is presented and other scenarios are de-
rived from it, the results are compared with the baseline. Based on these quantitative
results, the influence of the contributing factors are highlighted qualitatively. Some
interesting information in the data could be derived based on the analysis results. De-
pendencies between the contributing factors in the data could be identified.

As of December 2018, no runway overrun at MUC/EDDM could be found in publicly
accessible databases. Two runway veer-off accidents occurred since the opening of the
airport in 1992, both during landing. One of them involved an Avions de Transport
Régional (ATR)-72 turboprop aircraft, which suffered an engine failure during take-off
and subsequently returned for an emergency landing. Due to blockage of the rudder
pedals, the yaw moment caused by the asymmetric thrust could not be compensated
and the aircraft veered off from runway 26L after touchdown [Bun12]. The final posi-
tion of the aircraft is shown in figure 9.30, the tire marks in the grass are well visible.

The second accident involved a Boeing 777-300ER. The aircraft performed an auto-
matic landing assuming CAT III meteorological conditions, though the airport was
not operating under CAT III since the visibility was much better. However, the aero-
drome controller was not informed about the flight crew’s decision to perform au-
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Figure 9.30: The RE (veer-off) accident at MUC/EDDM in 2012 involving an ATR-72 aircraft
[Bun12]

toland. Therefore, the runway protection zone was not sufficiently cleared of objects
and other traffic. As the aircraft was shortly before touchdown on runway 08R, a de-
parting traffic on the same runway flew above the ILS localizer, causing the signal to
be disturbed. The aircraft slightly banked to the left as it touched down and departed
from the runway to the left. As the pilots tried to correct, the aircraft returned to the
runway, but departed again to the right before coming to a stop [Bun18].

Both accidents did not cause any fatalities. While some passengers were injured in the
ATR and the aircraft was severely damaged due to collapse of one main landing gear,
the Boeing only received minor damages with no harm to passengers and crew.

Compared to the total number of aircraft movements at MUC/EDDM, which sums
up to 9228000 — half of them being landings, i.e. 4 614 000 — from the opening in 1992
until the end of 2018 [Flu], the numbers are consistent with the accident probabilities
computed in this chapter. Two veer-off accidents out of 4 614 000 movements and zero
overrun accident would result in a veer-off probability of 4.3 x 10~ and an overrun
probability of less than 1.1 x 10~7. However, one has to keep in mind that these two
accidents that have occurred, apart from the fact that the sample size is fairly small, are
primarily caused by technical failures. The primary cause for the ATR accident was an
engine failure combined with rudder blockage and for the Boeing, it was the incorrect
signal from the ILS localizer combined with the inappropriate handling of the fight
crew and the lack of necessary exchange of information between flight crew and the
tower controller. Though the aircraft model is capable of including technical failures,
they were excluded during the computation of the numbers presented in this chapter.
These system failures and their influences should be included in the model for future
work.
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9.5 Assessment of the Subset Simulation Algorithm

Some remarks concerning the behavior of the Markov Chain were already made as cer-
tain properties had become visible. Two aspects are further discussed in the following.

Contributing factors with large differences in impact

The movement of the Markov Chain was discussed for figure 9.19. The MCMC al-
gorithm explores the parameter space in all directions using the Infinity Sampling
method. Newly generated samples are only rejected if they are not located in the fail-
ure space. However, if the motion of the Markov Chain in one component is capable
of compensating any contrary effect coming from other components, their values can
quickly take up the entire parameter space according to the input distributions. For ex-
ample, for the veer-off, the lateral offset of the touchdown position is the main driver
during the first three subsets. When the Markov Chain explores the parameter space
individually for each component, an increase of the lateral offset is capable of com-
pensating for most changes in other contributing factors, such as the crab angle, with
respect to the shoulder margin as the lateral offset is much more dominant compare
to others, at least during this stage. This means that values generated in the other
components do not make a difference or at least no significant difference. The result is
that samples are generated over the entire range defined by the input PDF and most
samples are generated in the center, i.e. where the PDF has the highest value.

The behavior vanishes as the effect of the contributing factors become more equally
distributed. In the veer-off example, the lateral offset is truncated to certain values and
cannot be further increased at a certain point. In this case, other contributing factors
start to move faster towards values leading to further decreasing shoulder margins.

Model singularities

This problem arose during the assessment of runway veer-off. For certain initial con-
ditions at touchdown, the model shows singularities with respect to the shoulder mar-
gin. This phenomena occurs when the crab angle at touchdown is very high and the
aircraft touches down with a bank angle and the controller immediately tries to correct
the offset combined with braking. This combination rarely occurs, but in this case, the
lateral friction coefficient is not sufficient any more to keep the aircraft on track and it
starts skidding laterally and spinning around the yaw axis. The violation of the overall
shoulder margin in this case is very high, often beyond —100 m. The Anti-Lock Braking
System (ABS) is not capable of regaining the control of the aircraft if the sideslip angle
is already close to 90°.
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If one of the samples during the first few subsets shows this behavior, it will be au-
tomatically used as a seed for the next sample as the corresponding shoulder margin
is well in the negative. However, as one of the input factors is changed, the aircraft
becomes controllable again and the shoulder margin becomes positive. However, this
also means that the generate candidate sample is often not in the failure domain of the
previous subset. Therefore, it is rejected and the newly generated sample is set to be
the seed. As N Markov Chains exist, each of them does this again and the seed is
effectively copied N¢ times to form the samples for the next subset. Ultimately, in each
of the i succeeding subsets, the same sample occurs (N¢)' times, the correlation in the
samples increase significantly as the same sample appears several times and the result
becomes erroneous.
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Conclusion and Outlook

10.1 Summary

In this work, novel methods contributing fo the Predictive Analysis (PA) have been pre-
sented. It consists of seven steps. Three of them, namely Model, Cumulate and Predict,
are the foci of this work. The enablers and techniques underlying this approach are ex-
plained in the first chapters. The necessity of the PA results from the continuously de-
creasing accident rates in commercial aviation. As the number of accidents decreases,
the classical reactive safety management by analyzing accidents that have happened in
the past gradually loses its effectiveness. Accident investigation has led to significant
improvement of the level of safety in aviation over the last decades. However, the cur-
rent low number of accidents does not only imply a small amount of data, but also very
different factors that contribute to an accident. Thus, the lessons learned have become
less transferable and less useful to derive safety recommendations from. The PA aims
at quantifying accident probabilities and identifying the main drivers without requir-
ing actual accident data for individual organizations. It enables the further reduction
of accident rates and, therefore, can become a useful tool for airline safety managers.

For the demonstration of the PA, the example of Runway Excursion (RE) during land-
ing is used, including both runway overrun and runway veer-off. To explain the
method, an introduction to an airline’s Safety Management System (SMS) has been
given in which the Flight Data Monitoring (FDM) system is a key element. To un-
derstand FDM, it is essential to understand how flight data is measured, acquired,
recorded and - finally — transferred and processed within the operator’s IT system. Af-
ter the data has become available and accessible, key characteristics at specific points
in time, the so-called timepoints and measurements, are extracted from the data, creating
distributions that represent the airline’s entire flight operations without the focus on
single flights.
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In order to perform the PA, a model of the aircraft is required. The model is mainly
a physical model, incorporating the laws of motion based on the forces and moments
acting on the aircraft. As the landing gear forces are essential when it comes to the
behavior of the aircraft on the ground within the scope of RE, the landing gears are
extensively modeled. In addition to the flight physics, the system logics of the aircraft
are included as well as the braking and steering behavior of the pilot.

For the propagation of the distributions obtained from FDM data through the aircraft
model within the scope of the Predict step, the Subset Simulation is used that is partic-
ularly suitable for the quantification of small probabilities as a classical Monte Carlo
Simulation (MCS) approach would require an unreasonably high computational effort,
providing a lower confidence at the same time. The results are computed for both ac-
cident types, runway overrun and runway veer-off. Based on the available FDM data,
accident probabilities are obtained for the runways at Munich Airport (MUC/EDDM)
and members of the Airbus A320 family aircraft. Two possible configurations of the
high-lift system that can be used for landing are compared as well as dry and wet
runways. The most influential contributing factors are identified for each scenario.
In addition, some findings, such as dependencies between the contributing factors and
operational influences with impact on the level of safety, are highlighted, they are sum-
marized in section 10.2. The obtained numbers serve three main purposes:

1. They quantify the absolute occurrence probability for given scenarios and thus pro-
vide a direct measure for the level of safety within the flight operations of an
airline.

2. They quantify the differences in the level of safety with respect to RE between air-
craft types, landing runways, landing configurations and runway conditions.

3. They represent the starting point for further analysis to explore the reasons in the
contributing factors for the differences between the numbers as well as how to
influence them, ultimately with the goal to further decrease the accident proba-
bilities and to increase the level of safety.

10.2 Key Findings for Runway Excursion

During the analysis of the results obtained in chapter 9, the key findings concerning
the hazards affecting RE accidents are obtained which are summarized and listed in
the following.
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Late touchdown with lower speed

If the flare is performed too firmly, the aircraft will float above the runway for a long
time as the speed decreases. This leads to a touchdown with a lower speed, but at
the same time a longer touchdown distance. The probability for an overrun increases
as the means for deceleration on the ground are much more powerful compared to
those available in-air due to the use of brakes, the extension of ground spoilers and the
deployment of reverse thrust.

Landing with lower flap setting and mass dependency

Landings with a lower flap setting, namely CONF 3 instead of CONF Full on the Air-
bus A320 family, have a lower probability for overrun because it is typically performed
when the aircraft’s mass is low, thus compensating for the higher approach speed. An
important advantage of lower flap settings is the reduced fuel consumption and noise
level due to the higher aerodynamic efficiency during the approach. This example
clearly shows that, even though landings with CONF 3 are less risky than CONF Full,
the level of safety will not improve by simply performing all landings using CONF 3
because the reason for this — the difference in average mass between the two configu-
rations — is not directly visible, but hidden in the data of the contributing factors.

Low brake application due to operational reasons

Although applying brakes and other deceleration devices should be done immediately
after touchdown to slow down the aircraft to a sufficiently safe Groundspeed (GS),
braking is sometimes delayed and/or heavily reduced due to operational reasons, e.g.
the fact that the parking position is located towards the end of the runway. This be-
havior, which becomes eminent when comparing different runways at the same air-
port, significantly increases the probability for runway overrun as well as the severity
in case of an overrun caused by the higher speed. The difference in braking behavior
becomes particularly observable for long runways, such as those in MUC/EDDM.

Impact of wet runways

Wet runways significantly reduces the friction coefficient that can be achieved between
the runway surface and the aircraft’s tires. While for the overrun scenario, the increase
of the accident probability is significant, but not major, the increase for the veer-off
scenario is tremendous. However, the influence on the overrun probability should in-
crease if the available runway length is shorter than the 4000 m at MUC/EDDM and
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thus more critical. For veer-off, the impact will be even higher when landing on run-
ways with widths less than 60 m. Therefore, special attention should be paid by the
flight crew when performing landings on wet, or even contaminated runways under
high crosswind conditions with respect to veer-off and when performing landings on

short runways with respect to overrun.

Dependency between the contributing factors

Some contributing factors are closely related to each other. Examples include the crab
angle versus the crosswind or the speed reduction during flare versus the touchdown
distance. One effect resulting from this is that certain contributing factors can shadow
the influence of other contributing factors. A clear distinction should be made between
a causal relationship and a simple data-based correlation. Furthermore, these depen-
dencies should be included for future assessments.

10.3 Outlook and Perspectives

Despite the fact that the Predictive Analysis has proven to be a useful and reliable
method to quantify the occurrence probabilities for given accident types and its ap-
plicability has been shown for the use-case of Runway Excursion, more work is in
progress or still to be done. The steps Identify, Calibrate and Revise are covered in other
works, on which the results obtained in this work also rely. The parameters required
to build the aircraft model is taken from the step Identify, the distributions to be prop-
agated through the model using Subset Simulation are finalized in the step Calibrate
and the dependency structures between all the contributing factors are derived in the
step Revise. Especially with respect to the dependency in the data, the results obtained
in this work have shown that they should be included to improve the quality of the
results.

Several sources of error exist in the entire chain leading from processed flight data to
accident probabilities besides the errors in the data, which is thoroughly described in
chapter 3. Modeling errors are introduced when the aircraft model is created due to
simplifications that have to be made. The extraction of measurements is associated
with errors when it comes to correctly detecting timepoint and measurement values.
The fitting of distributions causes errors as the available data does not necessarily fol-
low one of the available parametric distributions. The data can be limited to certain
values or be multi-modal. Kernel Density Estimations (KDEs) can be used in this case
to minimize the fitting error, but can also lead to other errors. For example, a KDE
will return a Probability Density Function (PDF) value of zero if no data is present in

160



Chapter 10: Conclusion and Outlook

a sufficiently large span. However, that does not mean that there cannot be any data.
The recorded data is just a sample representing the flight operations.

In order to improve the quality of the data, particularly the kinematic parameters of
the aircraft, it is enhanced using the Rauch-Tung-Striebel (RTS) smoother. For landings
on runway 26R, it was shown that there is a smaller peak in the localizer position offset
right to the centerline. It should be further investigated whether this error is caused
by erroneous signal of the localizer or whether it actually represents the real trajectory.
Reflections of Instrument Landing System (ILS) signal by buildings, ground vehicles
and other aircraft is not uncommon and was one of the main causes for one veer-off
accident at Munich Airport.

For the detection of the runway condition, further sources of data have to be included
in order to reliably detect whether the runway was dry, wet or contaminated. An
alternative approach would be to treat the runway condition as a continuous variable.
The maximum achievable friction coefficient could be identified from the data and
a distribution of the friction coefficient can be obtained, serving as an input into the
Subset Simulation.

When it comes to the overall safety assessment of RE, the model should be enhanced
in the future to include technical failures on-board the aircraft. A classification should
be made to include only those failure conditions that occur with a frequency that is rel-
evant to the overall safety assessment. The occurrence probability of failure conditions
should always be, if possible, directly obtained from operational data rather than cer-
tification requirements to account for the difference between actual real-life reliability
values and theoretical ones. Furthermore, the model should be modified such that the
singularities mentioned in section 9.5 do not occur or at least in such a ways that the
overall result is not affected.

To extend the safety assessment for RE, an assessment of the approach phase should be
conducted to determine unstabilized approaches and possible decisions for conduct-
ing a missed approach. As the assessment of RE begins at the time of touchdown,
unfavorable conditions during touchdown, e.g. the combination of late touchdown
and high approach speed or excessive crab angle, are caused by events during the fi-
nal approach. A similar model-based procedure based on the Predictive Analysis can
be used. This work is already in progress [WSK*19]. The output will be the inputs
for RE assessment, but will also include occurrence probabilities for other types of ac-
cidents, such as Abnormal Runway Contact (ARC), including hard landing, tailstrike
and wingtip strike. Other accident types that can occur during the approach, such as
Loss of Control In-Flight (LOC-I) as well as Controlled Flight Into Terrain (CFIT) can be
assessed. Combined with the methods presented in this work, an overall risk picture
of the entire approach and landing phase can be obtained, which is the most critical
part of a flight with respect to safety.
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Appendix A

Definition of Coordinate Frames

Aerodynamic Frame A

The A frame translates with the aircraft and rotates with the airflow. It is suitable to
describe the aerodynamic forces and moments.

Property | Description

Origin Aircraft reference point

T axis Pointing towards the airflow relative to the aircraft, parallel to
the aerodynamic velocity

y axis Perpendicular to the x and z axes

z axis Pointing down within aircraft’s symmetry plane

Body-Fixed Frame B

The B frame is fixed with the aircraft and rotates with the motion of the aircraft. It
is often suitable to express the position of certain point with respect to the aircraft
reference point as it does not change in the 5 frame when the aircraft is considered as
arigid body. For some applications, the aircraft reference point can set to be the Center
of Gravity (CG).

Property | Description

Origin Aircraft reference point 12

T axis Pointing towards the nose of the aircraft within the aircraft’s
symmetry plane

Yy axis Pointing towards the right wing

z axis Pointing down within aircraft’s symmetry plane, perpendicular
to the = and y axes




Earth-Centered-Earth-Fixed Frame F

The FE is fixed to the earth and rotates with the earth. It is suitable for navigation

applications.
Property | Description
Origin Center of the earth
x axis Pointing towards the prime meridian within the equatorial plane
y axis Pointing towards the 90° meridian within the equatorial plane
z axis Pointing towards the true north pole. It is the rotation axis of the
earth.

Instead of Cartesian coordinates, the position on the earth can also be expressed with
the geodetic latitude y, the longitude A and the height above the reference ellipsoid h

when the World Geodetic System 1984 (WGS84) is used.

Kinematic Frame K

The K translates with the aircraft and rotates with the kinematic velocity.

Property | Description

Origin Center of the earth

T axis Pointing towards the direction of motion, parallel to the kine-
matic velocity

y axis Perpendicular to the x and z axes

z axis Pointing down within aircraft’s symmetry plane

North-East-Down Frame O

The O translates along with the aircraft, but maintains a fixed orientation relative to
the local earth’s surface. It can be used to express the gravitational forces and for

navigation purposes.

Property | Description

Origin Aircraft reference point R

T axis Pointing towards the true north pole

Yy axis Pointing towards the east, parallel to the circles of latitude

z axis Pointing downwards, perpendicular to the earth local surface
and parallel to the direction of the earth’s gravitation
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Navigation Frame N

The N is a local navigation frame that was introduced in section 6.1. The N is obtained
from the O by rotating around the z axis. A picture showing the N frame is shown in

tigure 6.1.

Property | Description

Origin On the runway centerline, either on the threshold or abeam the
touchdown point of the aircraft

T axis Pointing towards the direction of the runway

Yy axis Pointing towards the side of the runway, perpendicular to the
and z axes

z axis Pointing downwards, perpendicular to the earth local surface
and parallel to the direction of the earth’s gravitation
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Appendix B

Probability Distributions

The following probability distributions are used in the scope of this work as inputs to

the Subset Simulation.

Distribution Parameters | PDF
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Appendix C

Aeronautical Charts

Exit Taxiway Positions for Munich Airport

According to the Aeronautical Information Publication (AIP), the following taxiways
should be used to vacate the runways at Munich Airport (MUC/EDDM) when High
Intensity Runway Operation (HIRO) is in progress [DFS18]. The distance from runway
threshold is also provided.

| Aircraft Type | 0BL | 08R | 26L | 26R |

Heavy A10 B10 A6 B6
Distance 2260m | 2200m | 2200m | 2220 m
Medium A7 B7 A9 B8
Distance 1710m | 1580m | 1580 m | 1660 m
Light A5 B7 A9 B11
Distance 1270m | 1580m | 1580m | 1160 m

Airport Ground Chart for Munich Airport

On the following page, the Airport Ground Chart (AGC) for MUC/EDDM is shown
[DFS18].
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Appendix D

Data Measurements for the Baseline

Scenario

The baseline scenario is set to be the landing of the Airbus A320 on runway 26R at
MUC/EDDM using CONF Full on a dry runway surface.

Measurements as Direct Model Input

The distributions that are fitted using the following measurements serve as direct in-
puts into the model that are propagated using Subset Simulation.

For each histogram, a distribution is fitted. The type of the distribution and the value
of the distribution parameters are shown. In addition, a Kolmogorov-Smirnov (KS)
test is performed that is an indication of how well the data actually follows the fitted

distribution.
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Temperature at Touchdown Approach Speed Dev at Touchdown
Generalized Extreme Value t Location-Scale
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Timepoints as Direct Model Input

104

Probability density

Timepoints are used to activate or deactivate deceleration devices during the simu-
lation of the landing. They include the deployment of spoilers, the deployment and

retraction of thrust reverse as well as the activation and deactivation of braking.
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Time at Reverser Stowage
Log-Logistic
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Supplementary Measurements

Supplementary measurements are not directly fed into the model. However, they are
used to make adjustments to the model and to perform further analysis within the
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