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Prediction of Protein Structure Using Surface Accessibility Data
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Abstract: An approach to the de novo structure prediction of
proteins is described that relies on surface accessibility data
from NMR paramagnetic relaxation enhancements by a soluble
paramagnetic compound (sPRE). This method exploits the
distance-to-surface information encoded in the sPRE data in
the chemical shift-based CS-Rosetta de novo structure pre-
diction framework to generate reliable structural models. For
several proteins, it is demonstrated that surface accessibility
data is an excellent measure of the correct protein fold in the
early stages of the computational folding algorithm and
significantly improves accuracy and convergence of the
standard Rosetta structure prediction approach.

During the last few decades, NMR spectroscopy has become
the method of choice for studying high-resolution protein
structures in solution. In the standard NMR-based structure
determination approach, structurally relevant data from
different sources, such as pair-wise interatomic distances
and orientation information, are collected and used as
restraints for structure calculation.[1] Very recently, several
groups have realized that the growing number of structural
data available in the Protein Data Base[2] (PDB) provide
a valuable source for NMR-based structure determination, in
particular when combined with NMR chemical shifts.[3] In
these de novo structure prediction approaches, only the
amino acid sequence is needed, and structures are calculated
in an often Monte Carlo-based conformation-searching
algorithm. The benefits of NMR chemical shift data in
fragment selection and evaluation of structural quality have
been recognized[4] and impressively demonstrated.[3, 5] How-
ever, this method is still limited to small proteins owing to
computational bottlenecks[6] and requires extensive sets of

NMR-based structural data, which are difficult to obtain in
case of larger proteins as a result of the increasing complexity
of NMR spectra and line broadening of NMR signals because
of overall slower protein tumbling.

Herein we describe an approach in which we exploit
NMR-based surface accessibility data obtained from mea-
surement of paramagnetic relaxation enhancements induced
by a soluble paramagnetic compound for de novo structure
prediction in the Rosetta framework.[6,7] The addition of
soluble paramagnetic compounds leads to a concentration-
dependent increase of relaxation rates, the so-called para-
magnetic relaxation enhancement (here denoted as solvent
PRE, sPRE; also known as co-solute PRE, Figure 1a). This
effect depends on the distance of the spin to the protein
surface, with the spins on the surface being affected most, and
has been shown to correlate well with protein structure.[8]

sPREs have been exploited for structural studies of biomol-

Figure 1. Principle of sPRE-CS-Rosetta. a) NMR sPRE data provides
quantitative and residue specific information on the solvent accessi-
bility as the effect of paramagnetic probes such as Gd(DTPA-BMA) is
distance dependent. b) Back-calculation of sPRE data relies on placing
the protein into equidistantly spaced grid points, while overlapping
grid points are removed. The sPRE is approximated by the sum of all
contributions of the surrounding grid points. c) The sPRE module is
implemented as a scoring function capable of scoring centroid as well
as full-atom models. At its core, the experimental sPRE data (sPREexp)
is compared to the predicted sPRE data of the current Rosetta model
(sPREcalc) and a score based on the Spearman correlation coefficient
(colored numbers) is computed. In this scheme, the sPRE score is
used during the folding of the protein backbone using the simplified
centroid model as well as for rescoring the final full-atom models.
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ecules such as for structure determination of proteins,[8a,9]

docking of protein complexes,[10] and detection of dynamics[11]

in the recent years.
Although sPRE data has been used to evaluate structural

quality, its use in structure calculations has been limited owing
to the lack of time-efficient computational methods for back-
calculation of sPRE data. This is essential because in Rosetta,
every scoring function (that is, the sPRE score) is evaluated
several ten thousand times for obtaining a single structure.
Furthermore, a typical structural ensemble required for
accurate structure prediction contains at least several thou-
sands of such structure models, emphasizing the need for
efficient scoring functions. Recently, an approach has been
presented for the molecular dynamics software XPLOR-NIH
using a structure-based metric including the neighboring
heavy atoms.[9] Herein, we use a different approach optimized
for high-performance and time-efficiency in which we directly
use a model structure and map it onto a bit array (Figure 1b).
This simplifies the required computations to simple grid-
based operations that are further accelerated by lookup
tables. In this approach, the protein is placed in a regularly
spaced grid represented by a three-dimensional bit array.
Grid positions that overlap with the protein are marked, such

that the remaining unmarked grid positions represent the
inverted shape of the protein, and can be regarded as a spatial
distribution of the paramagnetic agent. The sPRE of a protein
atom is then calculated by summing up all contributions of the
unmarked grid positions within the integration radius around
the atom (Figure 1b).

We then extended the Rosetta de novo structure pre-
diction method to incorporate sPRE data to take advantage
of the surface accessibility information in the folding of the
protein backbone (Figure 1c). A new scoring function for
sPRE data was implemented and is available to the entire
Rosetta framework. In short, the sPRE module first back-
calculates the sPRE data for a given structure using the grid-
based algorithm described above. The back-calculated sPRE
data is then compared to the experimental sPRE data using
the Spearman correlation coefficient and converted into an
energy score (sPRE score).

The suitability of sPRE-based surface-accessibility data as
an indicator of structural accuracy was evaluated for the
individual CS-Rosetta refinement stages using a set of
proteins ranging from of 6.4 to 41 kDa. To this end, we
created structural ensembles for the individual stages of the
Rosetta AbinitioRelax protocol and compared the sPRE

Figure 2. sPRE data is an excellent measure of the correct protein fold and improves protein structure prediction. a) Structural ensembles of
ubiquitin representing different stages of the AbinitioRelax protocol were rescored using Rosetta centroid and full-atom scores (orange axis), the
sPRE score (blue axis), and the chemical shift score (black axis). Experimental sPRE data for HN and Haliphatic protons were used as input for the
sPRE score. b), c) Box plots showing the average Ca-RMSD to the native structure for models obtained from CS-Rosetta (orange) and sPRE-CS-
Rosetta (blue). sPRE data was determined by NMR experiments (b) or back-calculated (c). All obtained structural models were scored according
to the sum of the Rosetta, chemical shift and sPRE score (b) or according to the sum of the Rosetta and the chemical shift score (c). For every
protein, the best scored 0.2% structures of all models were selected and used to generate the box plots. Proteins for which the sampling was
improved by the sPRE module (reduced mean RMSD to native structure compared to CS-Rosetta) are marked with a gray background and
proteins for which CS-Rosetta and sPRE-CS-Rosetta failed are not shown (average Ca-RMSD >10 � in the case of p16, 1CX1, 1F2H, 1GXE, 1IX5,
1ON4, 1RFL, 1XWE, 2KNR, 2LFC, 2LFP, 2LLL, 2PQE, 2RRF, 3ZQD, and 4A5V). All scores are shown in arbitrary units.
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score to the Rosetta scores. We observed that the sPRE score
outperforms the initial scores in the early protein folding
stage I, which has been initially optimized to collapse the
extended chain but also in the later stages II–IV in which the
fold of the backbone is determined (Figure 2a; Supporting
Information, Figure S1). Over a wide Ca-RMSD range of 3–
20 �, the sPRE score shows a clear correlation with structural
accuracy. In the later stages II–IV, the quality of the standard
Rosetta scores improves and they cooperate with the sPRE
score when combined. This strongly indicates that the sPRE
score is capable of guiding the sampling of a Rosetta
AbinitioRelax run towards the native structure. Interestingly,
for near-native-like structures (Ca-RMSD< 2 �), the Rosetta
score shows a better performance compared to the sPRE
score. This is probably due to the higher susceptibility of the
sPRE to variations on the protein surface where minor
conformational changes, for example, side-chain rotations,
translate into a large variation of the sPRE. Summarizing, our
findings suggest that sPRE data can be valuable for Rosetta-
based de novo structure prediction when sampling states far
from the native state, since it is able to guide it towards more
native-like states. From these more native-like states, the
common Rosetta scoring functions are able to drive the
sampling to high-resolution, full-atom structures.

To examine the potential of solvent accessibility data for
Rosetta de novo structure prediction, we carried out classical
CS-Rosetta as well as CS-Rosetta with sPRE scoring (re-
ferred to as sPRE-CS-Rosetta) calculations with experimen-
tal NMR data (Figure 2b; Supporting Information, Table S1)
and back-calculated sPRE data (Figure 2c; Supporting Infor-
mation, Table S2). For ubiquitin and using experimental
amide (1HN) and aliphatic (1Haliphatic) proton sPRE data, the
sPRE-CS-Rosetta approach improved the sampling signifi-
cantly in a set of about 10 000 models (Figure 3). As a result,
more structures in the Ca-RMSD range up to 1.5 � were
sampled, and subsequently the common Rosetta scores
converge to high-resolution structures as close as 0.7 � Ca-
RMSD to the native structure. The main structural difference
of the ubiquitin ensemble at 2.5 � compared to the ensemble
at about 0.7 � is a register shift of b-strand 5 (Figure 3a). To
evaluate the robustness, we carried out sPRE-CS-Rosetta
calculations using only subsets of the experimental sPRE
data. Surprisingly, even with restricted sPRE data sets (1HN,
sidechain 1H, or 1Ha/1Hb) the sampling was not deteriorated
(Supporting Information, Figure S2 a). This suggests that the
surface-accessibility information is already encoded in a low
number of sPRE restraints and that scoring the global fold of
a protein does not require precise input data as long as the
correct trend of the solvent accessibility pattern is present in
the data. This is further supported by the observation that
a complete set of synthetic ubiquitin sPRE data did not
further improve the structural quality (Supporting Informa-
tion, Figure S2b). Summarizing, this indicates that even in
case of sparse and incomplete chemical shift assignments,
sPRE data can provide high-quality structural models. Similar
results were obtained using experimental data for the C-
terminal domain of Phl p 5a, a four helix bundle in which case
the sPRE-CS-Rosetta approach significantly improved con-
vergence and accuracy of the structural models in a set of

about 100 000 models (Figure 3b; Supporting Information,
Figure S3).

To further examine the potential of solvent accessibility
data for Rosetta structure prediction, we built a benchmark of
challenging proteins with sizes up to 170 residues and using
synthetic sPRE data (Supporting Information, Table S2). The
structure of each protein was subsequently determined using
classical CS-Rosetta as well as sPRE-CS-Rosetta. Comparing
the average Ca-RMSD to the native structure for the best
0.2% models, filtered by the sum of Rosetta and chemical
shift score, revealed that for several proteins (22 of 49) the
accuracy of the structure prediction was notably improved to
models closer to the native structure (Figure 2c). To solely
account for the sampling improvement, we additionally
filtered 1% of the models that are closest to the native
structure and compared the average Ca-RMSD of these sets
(Supporting Information, Figure S4). These results show that
for most of the tested proteins (30 of 49) the sampling is
significantly improved. Two proteins of this benchmark, 2LEJ
and 1P6T, are illustrated in Figure 3c and 3 d, respectively. To
further evaluate the robustness of the sPRE scoring module,
we determined the structure of four proteins using back-
calculated sPRE data with an increasing level of noise,
various assignment completeness and different sets of reso-
nances (Supporting Information, Tables S3 a–d). Our results
for fully assigned proteins and using only sPRE data for HN,
Ha, and Hb resonances show that the sampling is improved
even in the presence of simulated noise with a range of four
times the sPRE value (� 2 sPRE value, here denoted as noise
level of 200 %). Moreover, even for partially assigned
proteins and using only amide protons, which corresponds
to less than one restraint per residue, the number of models
close to the native structure is still enhanced. Therefore, the
results of the benchmark showed that solvent accessibility
data improves accuracy and convergence even if only sparse
data is available.

To further evaluate the performance of sPRE-CS-Rosetta
in combination with (sparse) NMR-based structural data, we
carried out de novo structure predictions using random
subsets of experimental nuclear Overhauser enhancement
(NOE)-based distance and residual dipolar coupling (RDC)-
based orientation data. Most notably, the addition of exper-
imental sPRE data increases the sampling significantly in all
cases (Supporting Information, Figure S5, Tables S4 a–b, S5).
This confirms that the sPRE data acts as an orthogonal
restraint.

Iterative sampling has been shown to improve Rosetta-
based de novo structure prediction in some cases. We
compared the performance of our approach to the iterative
sampling algorithm CS-Rasrec-Rosetta.[12] We find that the
performance of the Rasrec-based structure predictions does
not improve significantly in terms of sampling (that is, the
RMSD of the best structures), but rather excludes the high-
RMSD structures during the iteration. In line with this,
inclusion of sPRE data in the sPRE-CS-Rosetta shows
significantly improved performance (Supporting Information,
Figure S6). An explanation for the comparable performance
of CS-Rasrec-Rosetta is the fact that the Abinitio part of the
classical Rosetta is still an integral part of CS-Rasrec-Rosetta.
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Our findings for several model proteins show that sPRE
data improves conformational sampling and scoring of CS-
Rosetta, subsequently provides more accurate and better
converged structural models, and thereby effectively shifts the
size limitations of CS-Rosetta. Our observation that
a restricted set of sPRE data is sufficient to improve structural
quality indicates that this class of restraints will be particularly
powerful for de novo structure prediction of larger proteins
where complete chemical shift assignments are difficult to
obtain. With this respect sPRE data can be used in combi-
nation with (sparse) restraints from conventional approaches
and offer several benefits over conventional approaches

based on NOE-derived distance restraints only: sPRE data
can be obtained for any kind of NMR-active nucleus for
which chemical shift assignments are available (including for
example 13C[8a]), and as long as a NMR spectrum can be
obtained. This is independent of the completeness of chemical
shift assignments which is essential for NOE-based
approaches. Combination of the sPRE-CS-Rosetta approach
with recently developed iterative sampling algorithms,[12] or
comparative modeling[13] in the future promises further
improvements for de novo structure prediction of larger
proteins. In these cases, surface accessibility data can be
particularly useful as it provides orthogonal information

Figure 3. sPRE data enhances accuracy and convergence of CS-Rosetta structure prediction. The lowest-energy models of CS-Rosetta (orange) and
sPRE-CS-Rosetta (blue) are compared to the NMR solution structures (gray, PDB code). For both methods, the corresponding Rosetta score
(score13_env_hb) is plotted on the left and the distribution of the Ca-RMSD of the sampled structures is shown below for both methods in
a logarithmic histogram. For ubiquitin (a) and the C-terminal domain of Phl p 5a (b) experimental sPRE data for amide and aliphatic protons is
used, and for human prion protein (c) and the P-type ATPase CopA (d) the input sPRE data was back-calculated using the lowest energy model.
In (a) and (c), the best scored model according to the Rosetta score is shown (see arrow in score plots), and for (b) and (d) the 10 lowest-energy
models are shown. For ubiquitin (a), a red sphere represents the position of the Cb atom of His 68, indicating the wrong positioning of the b-
strand in the CS-Rosetta run. A more detailed picture of the scores is shown in the Supporting Information, Figure S3. All scores are shown in
arbitrary units.
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compared to other NMR restraints that often contain local,
short-distance information. Furthermore, the sPRE module is
open to complementary types of surface accessibility data
such as for example bioinformatics and mass spectrometry
(cross-linking, radical-mediated protein footprinting) data
and will thereby allow integrating different techniques in one
program.
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